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Abstract

Designers use simulations to observe the behaviour of a system and to make design decisions
to improve dynamic performance. However, for complex dynamic systems, these simulations
are often time-consuming and, for robust design purposes, numerous simulations are required
as a range of design variables is investigated. Furthermore, the optimum set is desired to meet
specifications at particular instances in time. In this thesis, the dynamic response of a system
is broken into discrete time instances and recorded into a matrix. Each column of this matrix
corresponds to a discrete time instance and each row corresponds to the response at a
particular design variable set. Singular Value Decomposition (SVD) is then used to separate
this matrix into two matrices: one that consists of information in parameter-space and the
other containing information in time-space. Metamodels are then used to efficiently and
accurately calculate the response at some arbitrary set of design variables at any time. This
efficiency is especially useful in Monte Carlo simulation where the responses are required at
a very large sample of design variable sets. This work is then extended where the normalized
sensitivities along with the first and second moments of the response are required at specific
times. Later, the procedure of calculating the metamodel at specific times and how this
metamodel is used in parameter design or integrated design for finding the optimum
parameters given specifications at specific time steps is shown. In conclusion, this research
shows that SVD and metamodelling can be used to apply probabilistic robust design tools

where specifications at certain times are required for the optimum performance of a system.
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Chapter 1 — Introduction

Chapter 1

Introduction

1.1. Problem Statement

Designers are often required to analyze a system in order to make design decisions. However,
most real-world systems are quite complex and their use in experiments is financially
undesirable. Due to these complications, the designer then develops a computer simulation
model of the system. Although simulations are quite helpful and are cheaper than physical
models of the real system, even these computer models may be too complex for analysis and
for the implementation of robust design techniques. In order to reduce these complexities,

analysts require less complicated but accurate models of the original system.

Furthermore, in search of the design variables that result in the optimum performance
of a dynamic system, the response of the system over time is desired at different
combinations of the design variables. Now suppose the designer developed a simulation of a
real system, segregates the continuous response of the dynamic system into discrete time
steps and records the initial results into a matrix where each column represents a time step
and each row represents a particular design variable combination. Even if the analyst finds
simple models to fit these initial results at each time, interpolation at each time step to find
the response at some arbitrary design variable set can become a tedious process especially if a
large number of time steps is involved. In addition, for the purpose of design where an
optimum result is desired, finding the response at many design variable combinations in a
Monte Carlo simulation becomes tedious. Therefore, some method must be found for fast and

accurate interpolation.
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Also, the responses at particular times are important when finding the optimum
design of a dynamic system such as the ‘settling’ or ‘rise’ time. Consider Figure (1-1) where
the dynamic response of some system is recorded at various design variable sets. An optimum
system is required such that the responses at t; and t, meet some desired specifications. At t;,
the analyst may be interested in limiting the overshoot and at t, ensuring the response ‘settles’
at some specific target or within a specific range may be important. A method is therefore
needed to easily pick various time steps and perform robust design such that specifications at

those times are met.

v
—

t t

Figure 1-1 showing the dynamic response of some arbitrary systems at various design

variable sets.
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1.2. Objective

In order to address the problems mentioned, the objectives of this work are
e To develop models in order to simplify complex simulation models

e To find a technique in which interpolation can be quickly performed and can be

extended for the purposes of design.

e To apply sensitivity analysis and probabilistic robust design to find optimum

parameters of dynamic systems given specifications at certain discrete times.

1.3. Methodology

Before achieving the objectives stated, some research is done to find the mathematical
principles and concepts that will be applicable. Among these, the concepts of
‘metamodelling’ and the characteristic of singular value decomposition (SVD) to separate a
matrix of response time histories into parameter and time-space is first presented. Then, this
feature of SVD is combined with metamodelling to allow quick and accurate interpolation of
the original matrix to find the time history response at an arbitrary design variable set. This
efficient method of interpolation ultimately becomes useful for generating the response at a
large set of arbitrary design variable combinations as in the case of a Monte Carlo simulation.
Furthermore, since parameter information and time information are separated, picking

specific time steps for robust design methods to be applied is enabled.

In Chapter 2, a brief description of the concept of ‘metamodelling” and the
mathematical theory of two types of metamodels that are used during the course of this work
is presented. The recent work in using SVD to partition a matrix, consisting of response time
histories, into parameter and time space is introduced. Some research is also presented to
show how other authors have used metamodelling in their work and the comparison of
Kriging with Regression Models. Furthermore, the various tools of robust design, sensitivity
analysis techniques and the use of the Taylor series expansion to find first and second

moments of the response are presented.
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Chapter 3 shows how SVD can be combined with metamodelling to reduce
interpolation calculations. Three case studies are used to illustrate the theory. In each of these
cases, the experimental results are arranged into a matrix of dynamic responses at various
design variable sets. SVD is then applied to this matrix thus separating the matrix into three
matrices, two of which are parameter-dependent and the last being time-dependent. The two
parameter-dependent matrices are then multiplied and metamodels are developed for the
columns of this matrix. Two metamodelling techniques, the Spatial Correlation Model
(Kriging) and the Response Surface Model (RSM), are then used and the results obtained
from each are recorded and compared. Along with predictions at arbitrary design variable
sets, the statistical coefficient of determination is calculated as a measure of comparing the

two metamodelling techniques in fitting the experimental data.

In Chapter 4, the procedure of using SVD to calculate the normalized sensitivities
and first and second moments of the response at each time is shown. In addition, SVD and
metamodelling is combined with robust design tools where specifications at certain times are
given. Case studies are used to illustrate these ideas. For each case study, the coefficient of
determination is calculated to choose the more suitable metamodel to be used for robust
design. A Monte Carlo simulation is then used to find the probability of conformance given
specifications at some important time and, if necessary, improvements to this probability will
be made through parameter design or integrated design. For cases with multiple random
design variables, normalized sensitivities of each design variable are calculated at the time of

interest.

Chapter 5 then presents a discussion of the results obtained and the problems that
arose. A brief discussion of the suitability of the Kriging Model and the Response Surface

Model for use in robust design is also given.
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Chapter 2

Literature Review and Theory

Although much research has been done in maximizing the performance or improving the
quality of a system through robust design techniques, research in the design of a dynamic
system where specifications at certain periods of time have to be met is quite young. This
chapter will first present the mathematical theories of Singular Value Decomposition (SVD),
metamodelling and robust design techniques for efficient design of a dynamic system. The
two metamodels, Kriging and Response Surface Models, will be used for comparison later in
this thesis; therefore, their respective mathematical theories of general model form and
estimating model parameters will be presented. A brief description on the work of previous
authors in the comparison of these two methods and their uses in various fields will be
presented. Later, the theory of normalized sensitivity and probability calculations will be

presented along with robust design tools of parameter and integrated design.

2.1 Singular Value Decomposition

Consider the m x n matrix, Z

z(vm,tl) z(vm,tz) z(vm,tn)mxn

where Z(Vm ,tn) represents the response at the m™ design variable combination and at the n®

time step. The rows of Z represent the dynamic response at the various design variable
combinations and each column corresponds to a particular time step. SVD factorizes Z into
the product USV" where U is a column-orthogonal m x m matrix with each column being the

left eigenvector of Z. V' is an orthogonal n x n matrix of the right eigenvectors of Z and form

9



Chapter 2 — Literature Review

an orthonormal basis for the response time histories of the various design variable

combinations.

Z=U,_ S V' =pv’ (2.1)

mxm mxn nxn

where D is a matrix obtained from the product of U and S. S is a diagonal matrix containing

all singular values of Z where

sy 28,2...25,20

n

The magnitude of the singular values also provides a measure of how closely Z can be
approximated by a matrix of smaller rank (Leon, 1998). The rank of a matrix is defined here
as the number of linearly independent rows or columns. An interesting characteristic of SVD
is its ability to factorize Z into parameter-space and time-space (Wehrwein and Mourelatos,
2006). Although very little research was found on the application of this characteristic in
design application, the use of SVD in principal component analysis (PCA) is fairly well
known (Berrar D.P., Dubitzky, W. and Granzow, M., 2003 and Leon, S.J., 1998). In order to
gain an appreciation of how SVD separates the matrix into time and parameter-space,
reference is made to work done in the use of SVD and PCA for gene expression analysis
(Berrar, Dubitzky and Granzow, 2003). The theory presented in this work is applied to Z

consisting of dynamic responses.

One way to calculate the SVD is to first calculate V' and S by diagonalizing Z'Z
(Berrar, D.P., Dubitzky, W. and Granzow, M., 2003)

7'2=VS8*V’ (2.2)
and then to calculate U as follows

U=ZVS™' 2.3)

10



Chapter 2 — Literature Review

The elements of the i row of Z form the n-dimensional vector G; referred to as the time
history response of the i design variable set and the elements of the j" column of Z form the
m-dimensional vector a; referred to as the response profile of the j™ time step. This response
profile gives the responses at the various design variable combinations at the particular time

step. If Z is conditioned by centering each column, then

Z2'2=3 GG/ (24)

is proportional to the covariance matrix of the variables of G;. A centered vector is one with
zero mean value for the elements and the covariance matrix for a set of variables {Z*} are
given by ¢;; = C(z,7). By equation (2.2), diagonalization of Z"Z yields V", which also yields
the principal components of G;. So, the right eigenvectors found in V" are the same as the
principal components of G;. The eigenvalues of Z'Z are proportional to the variances of the
principal components. The matrix US then contains the principal component scores, which
are the parameter information in the space of principal components (Berrar, D.P., Dubitzky,

W. and Granzow, M., 2003).

In other words, the matrix US contains all the parameter-dependent information of Z
whilst V' contains all its time-dependent information and each row in D corresponds to the
information of Z in parameter-space with respect to each design variable combination. In
order to then find the parameter information of Z at some other design variable set, v, a row
in D is needed that corresponds to vo. The entire time-dependent response at v, is then found

by multiplying this new row by V'. This new row is calculated using metamodels.
Z(vo) = U(vo)S(vo)V' = D(vo)V" 2.5)

D is an m x m matrix and if n>>m, meaning the number of time steps involved is much larger
than the number of design variable combinations, then fewer metamodels are derived.
Metamodels can be developed for each time step and can be ultimately used in the calculation
of the response at some arbitrary design variable combination. However, if a very large
number of time steps are involved, developing a metamodel for each column of Z becomes
extremely time-consuming especially if more complex metamodels are used. Hence, the

above method can be employed.

11
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2.2 Metamodelling

Computer simulation models are normally used in design to model a real-life system in order
to make decisions. These models are used because it is expensive to either construct
prototypes of the real system or to even use these real systems in experiments; however, they
may also be too complex for use in analysis and design. Therefore, simpler models of these

simulation models, also known as metamodels, are still required.

A metamodel is a model of the input/output function or a simple function that
approximates the relationship between system performance and the controllable factors
(Salvendy, and Kleijnen and Van Beers, 2004), and a simulation input—output model may be

represented mathematically as (Barton, 1998)
y=1(v)

where v is a vector of design variables. The major issues in metamodelling include:

1) the choice of the function form for the metamodel
ii) the design of experiments
1ii) the assessment of the adequacy of the fitted metamodel

Some popular examples of metamodels are splines, radial basis functions, neural networks,
Kriging Models and Response Surface Models (Barton, 1998). Since this research will
mainly focus on Response Surface and Kriging models, further details on the general

functional form and calculation of model parameters will now be presented.

2.2.1 Response Surface Models (RSM)

Response Surface Models, sometimes known as regression models, are one of the most
commonly used and simplest techniques used to generate metamodels. The construction of
these models through regression techniques is well known from their use in fitting data from
physical experiments in statistical applications. In RSM-construction, the response, y(v), is
modelled as the realization of a stochastic variable (Montgomery, 2005 and Walpole, R.E.,
Myers, R.H., Myers, S.L. and Ye, K., 2002)

y=s(v.B)+e 2:6)
12
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where f(v,B) is a function of the design variables and model parameters f with
v=ly v, ov | B=[B B .. BT

and ¢ is the error term.

When developing a RSM, the form of the relationship between the response and the
independent variables is unknown and must be approximated. Usually, a low-order
polynomial in some region of the independent variables is employed. If the response can be
modelled well by a linear function of the independent variables, then a first-order model is

used to approximate the function
y=By+Bvi+ Py, +...t By, +eE 2.7

However, if there is curvature in the system, then a polynomial model of higher degree may

be used
P P 5
Y=Bo+ D B+ D B+ DD By, +€ (2.8)
i=1 i=1 i<j
The model parameters, B, are calculated using the ordinary least squares equation
I~ T
p=(X"X)'X"Y (2.9)

After calculating these model parameters, an estimate of the output at some arbitrary set of

design variables, 7(v,, ), is found from
(vo)=1(vo.B) (2.10)

2.2.2 Spatial Correlation Models or Kriging Models

The spatial correlation metamodel, also known as the Kriging model, is another popular type
of metamodel. Several recent researchers (Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn,
H.P., 1989) have developed a spatial correlation parametric regression modelling approach
that shares some common features with spline smoothing and kernel metamodelling (Barton,

1998).

13
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Kriging was named after a South African mining engineer D.G. Krige and began as
an interpolation method (Kleijnen and Van Beers, 2004). In order to perform predictions,
Kriging uses a weighted linear combination of all the output values already observed. The
distance between the location to be predicted and the locations already observed determines
the weights used in Kriging. The use of Kriging in deterministic simulation became popular
from some previous research (Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. 1989).
Many authors after have since used Kriging as both a metamodel and an interpolation
technique in a wide variety of applications. Authors have also compared Kriging to Response
Surface Models in a variety of applications, however, very little research was found on the

use of Kriging in probabilistic design of dynamic systems.

2.2.3 Kriging in Interpolation

The Kriging predictor for some unobserved input v,y given initial data, is a weighted
linear combination of the entire m observed responses (Kleijnen and Van Beers, 2004 and

Sakata, S., Ashida, F. and Zako, M., 2003)
Mve)=D wY, Q.11
i=1

where Y; represents the observed ouput or experimental response and w; is the weight given

to Y;. This method of estimating )"/(VO )is used in spatial estimation and for simple

interpolation. However, for design purposes, a metamodel is needed to describe the

simulation output.

2.2.4 Kriging as a Metamodel

Some authors have used a Kriging metamodel that fits the response as the realization of a
(Gaussian) stochastic process (Simpson and Martin, 2005 and Simpson, T.W., Peplinski, J.D.,
Koch, P.N. and Allen, J.K., 2001)

y(v)=f(v.B)+E(v) 2.12)

This model is the combination of a ‘global’ regression model f(v,) and a random process

E(v) that allows for ‘local’ corrections to the ‘global’ model. Research in this type of

14
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metamodel found that previous authors used various ‘global’ models such as a linear
regression model (Martin and Simpson, 2003) or even a constant term (Simpson, T.W.,
Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001). Others suggested the use of a polynomial
regression model (Rijpkema, J.J.M, Etman, L.F.P. and Schoofs, A.J.G., 2001).

The random process, E(v), is assumed to have zero mean as well as a spatial
covariance for design sites x; and xl.k of design variable i which is the product of a process

variance o~ and a correlation function 7(xij - xl.k ) (Rijpkema, J.J.M, Etman, L.F.P. and

Schoofs, A.J.G., 2001)

ol bt )=o) @)

There are different types of correlation functions that can be used and the particular
correlation function chosen depends on the preference of the user. The random process of the
Kriging model uses a correlation function to “pull” the model through the observed locations
in the domain (Martin and Simpson, 2003). This function also affects the smoothness of the
model and the impact or weight of nearby points on the prediction. Some correlation

functions and their properties are shown in Table (2-1)
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Table 2-1 showing various forms of Correlation Functions and their Properties (Martin and

Simpson, 2003).

Parameter
Name I'(d)
Restriction
Gaussian o 6>0
Exponential ola 9>0
xponentia e 1<p<2
1—6(—} +6[|dq d| 2
0 0 2
Cubic Spline )’ o
2{1——}, <|d|<6
& 0>0
0, |d|=6
Mat u K |old 6>0,v>0
atern F[V]Zv—l v[ ‘ ‘]

where d = (xl’ —xf ), I'(d) is the function used to calculated the correlation matrices and 6 is

the model parameter to be estimated. Although a wide variety of correlation functions are

available, the most popular function is the Gaussian correlation function. Kriging requires a

lot of iterative calculations to estimate model parameters, therefore, a correlation function

with the least number of parameters to estimate is most desirable. Therefore, the Gaussian

correlation function is chosen

r=yx/ —xt)= HCXP( (xij—xl-k)zj

(2.14)

Similar to RSM, in order to estimate the parameters used in the Kriging model an

experimental design has to be selected containing m design variable combinations for which
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simulations have to be carried out. These initial design variable combinations are called the

training points.
y=f(v,p)+E (2.15)

Equation (2.15) above is similar to the general funtional form of the RSM shown in equation
(2.6); however, the residuals, E, are now correlated according to a correlation function

specified by the user
cov(E)=o? * 5 5 =T (2.16)

The model parameters  are best estimated using the following equation:
T L Tyl
p=(x"rx)'X'TY 2.17)

and an estimate, s°, for o can be derived from

2 =LErE (2.18)
m

However, these estimates depend on the correlation function parameters 6 through I'.
Therefore, these parameters are usually estimated first from the experimental data using a

Maximum Likelihood approach resulting in the maximization of the log-likelihood function
L(6)=—(m(in(s?))+ In(det(r))) 2.19)

The iterative process of maximizing L(ﬂ) can become computationally expensive, since for
every evaluation of L(ﬂ) estimates of s, b as well as det(I") must be calculated. Hence, most

authors have strived to reduce this computational burden by choosing a correlation function

with very few parameters.

The general form of the Kriging model is

y=By+ Y By +ly' ) T7E (2.20)
i=1
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where y"(v) is a function in v that calculates the correlation between v, and the training

points and E is a vector of the residuals of the experimental results calculated using equation
(2.21)

E=Y-/(v,) (2.21)

where Y is a vector of the experimental responses and the training points are substituted into
the linear regression model, f(v,p) to obtain an estimate of the responses at the training points.
Once model parameters and correlation function parameters are estimated, the best linear

unbiased prediction of the output at some arbitrary design v, can be generated from:

(V)= r(veB)+ (" (v,) TE (2.22)

and y*(vo) is in the form of a Gaussian correlation function
% 'd 0 - \2
v (vo)=] Texn(- 0,6 - /] ) (223)
i=1

where v represents some arbitrary value of design variable i. The second expression in
equation (2.20) for the predicted response is in fact an interpolation of the residuals of the
regression model f (v0 , B). Therefore, exact predictions are obtained at the initially observed
experimental responses.

The general Kriging model is shown in equation (2.20) and the following summary of

steps outlines the procedure used to estimate the parameters, 0 used in the Kriging model.
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1. Make an initial guess for 0

2. Use this initial guess to calculate I" using equation (2.14).

3. Substitute I' in equation (2.17) to calculate 8

4, Calculate the residuals for the training design using equation (2.21).

5. Use B to calculate s* using equation (2.18) and then use this estimate of s* to

calculate L(0) using equation (2.19).
6. Repeat steps 1 — 5 until L(0) is maximized.

Several authors have done research on comparing the performance of Kriging with
RSM in deterministic simulations. Among these are: Rijpkema, J.J.M, Etman, L.F.P. and
Schoofs, A.J.G., 2001 who applied RSM and Kriging to a simple two-variable analytical test
function and Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001, who
investigated the use of Kriging models as alternatives to traditional second-order polynomial
response surfaces for constructing global approximations in the design of an aerospike
nozzle. Similar research was also done by Jin, R., Du, X. and Chen, W., 2003, Simpson,
T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001, Sakata, S., Ashida, F. and Zako, M.
2003, Martin and Simpson, 2005 and Kleijnen and Van Beers, 2003. All these authors have
found that response surface models, although quite simple and even with the availability of
second-order polynomial models for non-linear functions, did not perform as accurately as
Kriging. However, Kriging models require an iterative procedure to estimate model
parameters that can be quite time consuming. Although Kriging models show great promise
in its ability to fit ‘noisy’ data, but, its limited use in engineering applications may be due to

the lack of readily available software.

Later, this research will use the statistical coefficient of determination to calculate the
adequacy of each model in fitting the experimental data. Since the RSM is simpler than the
Kriging model, if the RSM fits the experimental data well, it will be used for robust design;

otherwise, the Kriging model is used.
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2.3 Model Adequacy

Now that the general functional forms of the Kriging and Response Surface models have
been presented along with the method of calculating model parameters, a measure to compare
the adequacy of each metamodel in fitting the experimental data is required. To determine if a
model is a good fit for the experimental data, a Goodness-of-fit Test is performed in which
the coefficient of determination, R2, is calculated (Walpole, R.E., Myers, R.H., Myers, S.L.
and Ye, K., 2002 and Montgomery, 2005). R? is a dimensionless quantity used in statistical
applications to check how well the metamodel performs in fitting the experimental data. The

“R-squared” value is calculated from

R*=1- SSemr (2.24)
SStotal
From equation (2.24)
SSermr = i(z('xi )_ é(xi ))2 (225)
i=1
SS i = 2, (2(x;) = 2)° (2.26)

where z(x;) represents the response at training point i, i(x,. )represents the estimate of the

response at i" training point obtained from the metamodel and Z represents the mean of the

observed responses. If the calculated R? is close to 1, then the model is a good fit.

2.4 Robust Design

“Robust Design is an engineering methodology for optimizing the product and process
conditions which are minimally sensitive to the various causes of variation, and which
produce high-quality products with low development and manufacturing costs” (Sung, 1996).
Two of the most important tools in robust design are Taguchi’s parameter design and
integrated design. In parameter design, the design variables are chosen to minimize the effect
of noise factors that can affect the quality of the product. In integrated design, means and
tolerances of the design variables are chosen in order to minimize system failure. Before any

of these tools are used, some analysis should be done to determine the effect of the design
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variables on the response. All the robust design tools and their equations presented here were

obtained from Savage, 2007.

2.4.1 Normalized Sensitivities

In the analysis of dynamic systems, and also for the purpose of robust design, the impact of
each design variable on the response is desired. This information is found by calculating the
first-order sensitivity factors and then the normalized sensitivities. The normalized
sensitivities calculate the percentage change of the response for a 1% change in the design

variable. For the function
y=r(v)

the first-order sensitivity factors, (FOS) factors, with respect to v; are found from

FOS, zé‘f_(v) (2.27)
! ov.

l

which is just the first-order derivative of the function with respect to v;. Using the FOS factor,

the sensitivity function, or normalized sensitivity, of a particular design variable is calculated

using
5, =AW _v (2.28)
' avi f(v) | yhom
where v/ is the nominal value of design variable i and f (V) |v""’" is the value of the

function evaluated at the nominal values of all the design variables

Calculation of the FOS factors using the Response Surface Model is very easy;
however, this is not so obvious with the Kriging model. Consider equation (2.20) written in

the form

y(v)=r(v.B)+ (y*(v))TF‘lE

where the first part of the model is the ‘global’ estimation and the second part is an
interpolation of the residuals. Taking first-order derivatives of the ‘global’ part of the model

is quite simple even if a polynomial approximation is used. The second part of the model
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consists of the two correlation matrices and a vector of the residuals of the experimental
design. Now, I is a constant matrix and does not change as v, changes and neither does E
change since these depend only on the experimental design. Therefore, this correlation matrix
and vector can be considered to be constants. Now, y*(v) is not a constant matrix but is a

function in v

y*<v>=1jeXp(— 0,0, - x, )

agv(v) =-20,(v, —x,)[ [ expl- 6,0, - x, ) (2.29)

i k=1

and the first-order derivative of equation (2.20) becomes

ov; ov, ov;

l 1

ov(v) _ o (v.B) N [GY*(V)]T 'E (2.30)

Therefore, for a Kriging model consisting of one design variable

y=PBy+pBv + [CXP(_ 0, (Vl - X )2 )]TF_IE

where x, is a vector of the training points of v,. The first derivative of y with respect to v; is

therefore

jTy =p + [_ 20, (V1 —-X; )exp(— o, (V1_X1 )2 )]T I'''E
1

and the second derivative is

dzy

2 = [_ 26, exp(— 0, (Vl - X )2 )+ 4912 (Vl - X )2 exp(— 6, (Vl - X ))]T I'E
1

This method can be easily extended to multiple design variables and an example of how these

equations are used will be shown later.
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2.4.2 Probability Calculations

Given the mean and variance of each random design variable and the design specifications,
the probability of conformance can be easily calculated using a variety of methods; Monte

Carlo Simulation and the Second Moment Method.
Transmission of Moments

In order to eventually determine the probability of conformance of the response at a particular
time step, it is necessary to calculate the mean and variance of the response given the mean

and variance of the design variables. Given the function

y =1(v)
and the information
2
V] v 1>%2 1°"p
y7; o cov(v % ) covly,,v
2
| A, c - cov(vz,vl) o, cov(vz,vp)
:uv - : v . : . :
2
My, cov(vp,vl) cov(vp,vz) o,

where C, is a matrix of covariances and ¢, is a vector of the means of the design variables.

Taylor series expansion is now performed on y = f(v) to get

of (v of (v 10°f(v
PR VR R RS LD RN
i Hy X Hy Hy (231)
19 fgv) (vz—,uv )2+...+L(V) C, +HOT.
2 ov ? Ov0v5...|,

where H.O.T. represents higher order terms and are neglected. Therefore, the mean and

variance of the response is calculated as

vecC (2.32)
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_i_
vzl cov(vl,vz) cov(vl,vp)_ ov,
o2 ~ i i i COV(Vz,vl) O'Vz2 cov(vz,vp) i 233
aa ov, Ov, v, : : . : 8\:/2 .
cov(vp,vl) cov(vp,vz) O'vzp i
) ﬁvp

where 22, denotes the mean of the response and o> denotes the variance of the response.

The specified lower and upper limits are denoted as {; and (y, where these limits may
be related to the target and some known tolerances. The quality characteristic and the limits
are connected through the use of “limit-state functions” denoted as g(v). Then, for the i"

quality characteristic, and say some upper limit ;, the limit-state function is written as
gi(v)=¢i-z(v) (2.34)

where

gi(v) =0 v e Limit-state surface

gi(v) > 0 v e Conformance region (S)

gi(v) <0 v e Non — conformance region (F)

More specifically,
Pr(S) = Pr{gi(v) > 0} (2.35)
Pr(F) = Pr{gi(v) <0} (2.36)

where Pr(S) is the probability of success or conformance and Pr(F) is the probability of
failure or nonconformance. The probability of conformance can also be calculated using the
mean and variance of the response calculated using the transmission of moment theory.

Therefore,

O O

z z

Pr(S)~1- q)(—(éy - u, )j B q)(—(uz -4, )J 237

where @ denotes the normal cumulative distribution function.
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Sometimes it is necessary to convert the limit-state functions from the original v-
space into the standard normal u-space. The Rosenblatt transformation is used for this
conversion. Consider the case where p-design variables are normal and the parameters are in

matrix form

2
My, o, cov(v,,v,) ... cov(v1 v, )
2
| Ay, q c - cov(v,, ) o, cov(vz,vp)
= - an v = . . . :
2
My, cov(vp W ) cov(vp Vs, ) . o,

0 10 0
0 1
u, = and C,=|.
0 00 1

The transformation is a generalization of the one-dimensional form U = é (V - y) and the
linear form is written as

U=A(V-E(V)) (2.38)
where A™ = Cholesky(Cy) and A also gives the reverse transformation

V=A"U+E(V) (2.39)
and E(V) is the expected value operator of the design variables.

Monte Carlo Simulation

Another method of calculating probabilities is to generate a very large sample of data and
count the instances when the specifications are met. In a Monte Carlo simulation, a sample of
design variables is generated from their probability distributions and the corresponding
responses are found by substituting the sample of design variables into the derived
metamodel. Given the mean and tolerance of a particular design variable used in the

generation of data from the simulation, the variance is found from
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0'2 _tOZ%
" =300 Ky,

(2.40)

where pr and My, denotes the variance and mean of v, (Savage, 2007) and tol% is the

percentage tolerance.

2.4.3 Parameter Design

Parameter design is used to calculate the mean value of the design variables, given constant
tolerances that will result in the response having an acceptable probability of conformance.

There are various methods available for parameter design.

One method is by balancing conformance indices. In this method, probability is

associated with
k
min. Qlu]=Y e~ (2.41)
i=1

where
a = sign(g(u)=0)=+1 (2.42)
and g(u) is the limit-state function in u-space and for bi-linear models

[ Al

NI .

By = (2.43)

where

P P

hy =a, +Zailui _g[bo _ZbiﬂiJ (2.44)

i-1 i=1
hy :GI(al _@1)

hzzo'z(az_éﬁz) (2.45)

hp ZGP(.ap _é/bp)

and { can be an upper or lower specification or both. For two specifications, two equations

are generated for each design variable. A bi-linear model assumes the form
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Qg tay +ayv, F..a,y,

y (2.46)

- by +bvy +byvy +...0,v,
The above method of finding the optimal design parameters will be applied to response
surface models and will be shown later. However, for non-linear models such as the Kriging

model, this method is inappropriate.

Another method that can be attempted for Kriging models is using a probability
objective function where the probability of conformance is calculated from the second
moment method. The objective function becomes either minimizing or maximizing the
probability of failure or conformance. Expressions are developed for the mean and variance
of the response in terms of the means of the design parameters. Eventually, the objective
function becomes an expression in terms of the means of the design variables. Recall

equation (2.37)

maxpr(s)zl_@(MJ_q{Mj

O O

where the mean and variance of the response is a function of the design variables using
equations (2.31) and (2.32). For bi-linear models, the probability objective function can also

be described in terms of conformance indices
min Q=Y ®(-a,,) (2.47)

where Q above represents the probability of non-conformance or failure.

2.4.4 Integrated Design

In some cases, the optimum values of both the tolerance and the mean of the design variable
are required. For these cases, integrated design is performed. Since choosing tolerances
affects the production costs as tighter tolerances usually results in higher costs, the objective
function in performing this method minimizes the production cost while minimizing the

probability of failure. This problem is stated as
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min C,(u,,t0l,) (2.48)

subject to
Pr(F) < some specified limit
where Cr is a function of the means and tolerances of the design variables.

Robust design enables the cost of quality placed onto the manufacturer to be reduced
and provides a way of delivering a product to the customer that meets specifications at the
lowest cost to the manufacturer. Overall, robust design provides a way to make the product
insensitive to variation in the raw material, manufacturing and in the operating environment.
Therefore, the total cost, Cr, is a function that is made up of the production cost that
comprises material and component tolerances and the ‘loss of quality’ costs is made up of the
factors stated above. Some examples of equations that are used to calculate the production

cost are shown in Table (2-2)

Table 2-2 showing production cost models (Savage, 2007).

Model Name Cost Model (C,)

Reciprocal
a+—
tol

Reciprocal Power
tol*

Exponential be "ol

Piecewise Linear

i

tol,

where a and b are cost parameters set by a particular manufacturing process.
The ‘loss of quality’ cost is calculated using the equation

C
Cip =5l -7 +0?) (2.49)
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where C; is the scrap cost and T is the target value. The mean and variance of the response is
calculated using equations (2.32) and (2.33). Now, all this theory will be applied to dynamic

systems where specifications at different time steps are required for optimum system

performance.
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Chapter 3

Singular Value Decomposition

Combined With Metamodels

The combination of Singular Value Decomposition (SVD) with metamodelling provides a
way of reducing the computational burden required to calculate the response at some arbitrary
design variable set (Wehrwein and Mourelatos, 2006). All the responses obtained from an

initial set of simulation runs are arranged into a matrix, Z

3.1)
Z(vm’tl) Z(vm’tZ) Z(vm’t”) mxn

where z(vm .1, ) represents the response at design variable combination v,, and time step t,.

SVD is then applied to Z according to the relation

Z=U,_ S V' =pvV’ (3.2)

mxm mxn nxn

SVD partitions Z into matrices of parameter and time-dependent information. D is a matrix of
the information of Z in parameter-space and V comprises the time-dependent information of
Z.. In order to obtain responses and perform robust design according to the parameters,
metamodels are developed for the columns of D. A description of how SVD partitions this
matrix is given Chapter 2 and for a complete description of this procedure, reference is made

to Berrar, D.P., Dubitzky, W. and Granzow, M., 2003. There are other applications of the use
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of SVD in principal component analysis that is similar to this work (Leon, S.J., 1998, Berrar,

D.P., Dubitzky, W. and Granzow, M., 2003).

If the experimental design set is much less than the number of time steps used,
(m<<n), then finding metamodels for each of the m columns of D is an advantage. However,
if m is still very large, this task may also be tedious. Previous research on SVD states that
singular values gives an indication of how closely the original matrix can be approximated;
therefore, if only the dominant singular values in S are kept, equation (3.2) can be partitioned

as

z=[U Un]{sdom 0}{ M } (3.3)

where

u=[u u,] S{S“S‘“ g} VTz[\\/j

and s4om, denotes the dominant singular values. In determining whether a singular value is
dominant or not, depends on the degree of accuracy desired by the analyst. In this research, a

dominant singular value was in the order of 107 or greater.

For determining whether a particular singular value is dominant or not depends on
the analyst and their preference of how accurate an approximation is desired. However, a
look at the relation between the coefficient of determination, Rz, and the singular value can
show how the magnitude of the singular value can affect the adequacy of the metamodel in
fitting the experimental responses. The non-dominant singular values of S have been

truncated to zero and equation (3.2) becomes
Z=USV'=DV' (3.4)

The time dependent response of an arbitrary design variable set, vo, which is different from
all m sample points, is calculated using a nonlinear interpolation of each column of matrix D

in equation (3.2)
2("0): U(VO)S(VO)VT :D(VO)VT (3.5)
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Therefore, metamodels are used to estimate the row in D corresponding to v, and the time-
dependent information in V stays the same. Let each column of D be d,, and the metamodels

found for each column of D are

Yo =1 Y2 e V] (3.6)

where y,, represents the metamodel for the m" column of D. After substituting v, into each of
the metamodels, an estimate of the row in D corresponding to v, is obtained. Then

multiplying this new row by V", the estimate of the response at v, is obtained

2("0)25’1("0) )Afz("o) JA’m(Vo)]VT (3.7)

where y, (VO ) is the estimate of v, in the m” column of D. Later, it will be shown how this

combination of SVD and metamodelling can be useful in robust design applications.

This theory is very useful especially for cases where a very large number of time
steps are involved since only the “significant” columns of D are used. In order to show how
the number of columns of D affects the calculated response, the coefficient of determination

(R?) at each time step is calculated using equations

SS In
R2 =1- error 38
" SStt(:ltal ( )
SSéZmr = i(z(vi’tn )_ é(vi’tn ))2 (39)
im1
S = Zm‘, (z(v1,)-2, F (3.10)

i=1
where z, represents the mean of the responses at the n" time step and 2(vi ot ) is the estimate

of the response at v; and the n" time step. Two case studies will now be presented to show
how the combination of SVD and metamodelling is used and how the number of columns of

D used affects the R values and the calculated response.
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3.1. Case Study 1 — Servo with one random design variable

Consider the servo-system (Chandrashekar, M. and Savage, G.J., 1997) shown in Figure (3-1)

]

0
R, L, K Q
J.B T [0)

Figure 3-1 showing a schematic of a position control Servo-System.

The motor equations are

v=Ri+Lﬁ+Ka) (3.11)
dt
T=Ki—Ba)—Jc;—(;) (3.12)

where R is the winding resistance - Q, L is the winding inductance - H, K is the torque
constant — Nm/A, B is friction — Nms/rad, J is shaft inertia — kgm” and G is the gain of the
amplifier. These variables make up the design variables of the servo. The servo consists of

three responses, angular position, angular speed and inductor current, the state equation of

each is
0 0 1 0 o 0
ol=| 0 ~-B/J K/J |o|+| 0 1|6, (3.13)
i -G/L -K/L —-R/L|i G/L

MAPLE was used to run the simulation and achieve the response time history at the specified

design variable combinations.
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3.1.1 Angular Speed Response — One Design Variable

Consider the case where winding inductance, L, is a random design variable and is denoted as
v, with all other design variables held constant; the response of interest is the angular speed
of the servo. Response time histories at three levels of v; were generated using MAPLE. The
simulation was run from t = 0.005s to t = 0.100s and the dynamic response was recorded at
intervals of 0.005s resulting in a total of twenty discrete time steps. The matrix Z shows an

extract of the response obtained, at the low, medium and high values of the design variable

Vi =4.00
v=|v" =440
v/ =4.84

354135 50.2836 49.2782 ... 0.3880
Z=\324767 46.6146 46.6894 ... 0.4199
29.7636 43.1454 44.0685 ... 0.2897

3x20

The rows of Z correspond to the dynamic angular speed at the three levels of v; and each

column represents a particular time step. Therefore, the first row of Z corresponds to the

angular velocity time history at v{”" and the third row is the response time history at v{”gh .

Singular Value Decomposition is now performed on Z to yield the matrices U, S and

V. These values are

155.6462 0 0
S=| 0 89566 0
0 0 04325

From S, the singular values decrease rapidly and from the theory of SVD, using the first
column alone of S and equation (3.4) would result in a matrix that very closely approximates

the original matrix. From the product of U and S, D was found to be

-93.6644 6.2518  0.1679
D=|-98.9039 -0.4008 -0.3525
—-85.8489 -6.4012 0.1860

3x3
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Each row of D corresponds to the information of Z in parameter-space at each level of vi;
therefore, the first row of D corresponds to the low value of the design variable. The design
variables used to generate these initial results are called the “training points” and will
eventually be used to estimate model parameters in the metamodels. In this example, D
consists of only three columns; therefore, metamodels are developed for all columns. Later,

examples will be presented where using all columns of D will be too time-consuming.

3.1.2 Response Surface Model

Since only one design variable is assumed to be random, a linear RSM is assumed
Y =B+ By +& (3.14)

where y,, represents the metamodel of the m" column of D and B, and B, are the model
parameters. These model parameters are calculated using equation (2.9) restated here for

convenience
p=(x"x)' X"y

To show how the model parameters are calculated, consider the first column of D

—-93.6644
Y =d, =[-89.9039
—85.8489
and the matrix X as
1 4.00
X=[1 4.40
1 4.84

and after substituting these matrices into equation (2.9), the model parameters are found to be
b —130.8617
| 9.3027
Therefore, on substituting these parameters into equation (3.14) as B, and ;, the RSM to

represent the first column of D is
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y,=-130.8617 +9.3027v, (3.15)

This procedure of estimating model parameters is then repeated to the other two columns of

D and the metamodels found are

y, =66.1902 —15.0393, (3.16)

35 =—0.1831+0.0416v, (3.17)

3.1.3 Kriging Metamodel

Recall the general form of the Kriging model
y=/(v,B)+E(v) (3.18)

where f(v, B) is assumed to take the form of a linear RSM model similar to equation (3.14).
Therefore, the Kriging model to fit the experimental results of the m™ column of D, for one

design variable is
* T -1
ym:ﬁ0+ﬂlvl+(y (V))mrmEm (319)
where " (v)= exp(— 0,(v, —x, ) ) Consider d,

—93.6644
Y =d, = —89.9039
—85.8489

with training points of v, being

4.00
X, =|4.40
4.84

To begin the iterative procedure outlined in Chapter 2 to calculate the Kriging model
parameters J, an initial estimate of 0 is made. The correlation function that will be used is the
Gaussian correlation function and according to Simpson & Martin, 2003, 8 must be greater
than zero. Consider an initial estimate of @ = 20. This value is then used to calculate I" using

equation (2.14), which for one design variable becomes equation (3.20)
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I= exp(— H(x{ —xf )zj (3.20)

where (x{ - xlk ) is the difference between the training points. These values are found in

Table (3-1)

Table 3-1 showing the calculation of (x{ —xf )

X"=4 | X’=44 | X¥’=484
X '=4 | 4-4=0 -0.4 -0.84
xX'=4.4 0.44 0 -0.44
X' =4.84 0.84 0.44 0

and after substituting these values into equation (3.20) above, the matrix of the correlation

between each of the training points becomes

1.0000 0.0408 0
I'=|0.0408 1.0000 0.0208
0 0.0208 1.0000 |,

In order to clarify how this matrix is obtained, consider the value found in I'y;; that is, the ond
row and 3™ column of I'. This number represents the correlation between the second and third

training points of the design variable, therefore,

T, = exp[— 20(x2 —x} j = exp(-20(- 0.44)* )= 0.0208

This is then repeated to the other numbers found in (x{ —xf ) to find the entire correlation

matrix.

Following the procedure to calculate the optimum 0, the correlation matrix is then

substituted into equation (2.17) to find an initial estimate of f5.

_[-130.8645
| 9.3033

This estimate of B is then substituted into equation (2.18) to obtain an estimate of s>
37



Chapter 3 — SVD Combined with Metamodels

2
S =

(Y- f(v,)) T (Y - f(v,B))=3.5007x10"*

1
m
and s” is now substituted into equation (2.19) to obtain an estimate of L(0).

L(0)=23.8742

Now, the first estimate of 0 is then changed and the entire procedure is repeated until a value
of 0 is achieved that maximizes L(0). Eventually, an optimum 0 of 65 is reached to yield the

following metamodel to fit the data in D,
y, =-130.8617 +9.3027v, +(y"(v)) T]'E, 3.21)

This entire procedure of estimating an optimum value of @ to maximize L(0) is then repeated

to the other two columns of D and the Kriging metamodels obtained for d, and d; are

¥, =66.1902 -15.0393v, + [y (v)} I';'E, (3.22)

5 =—0.1831+0.0416v, + (3" (v)); I'3'E, (3.23)

The final estimate of 0 that maximizes L(0) was found using the MATLAB function

‘fminsearch’.

On comparing the RSMs with the Kriging metamodels, it is clear that the model
parameters found for the ‘global’ part of the Kriging model are identical to those found for
the RSMs. The only difference between these two metamodels is the interpolation of the
residuals present in the second part of the Kriging metamodel. Now that the two different
metamodels have been developed for each of the three columns of D, suppose the angular
velocity time history at vy = [4.2] is desired. Since each row of D corresponds to a particular
design variable then to calculate the entire response time history, a new row in D has to be
calculated that corresponds to the parameter-dependent information of v, and this new row is

then multiplied by V.
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3.1.4 Response Calculation at v, - Response Surface Model

Recall the three equations (3.15), (3.16) and (3.17), found to describe the experimental data
found in the three columns of D. Predicting the response time history at v is easy using the
RSM. Here, v, is just substituted into each metamodel to obtain the estimate at each column

of D. Therefore, substituting v, = [4.2] into the metamodel representing the first column of D
$1(v,)=-130.8617 +9.3027(4.2) = —91.7904
and repeating this procedure for the other two equations, the row estimate becomes

§(vy)=[-91.7894 3.0129 —-0.0186]

This row in then multiplied by V" as described in equation (3.7) to obtain the response time

history at vy; the results of which are shown graphically in Figure (3-2).

3.1.5 Response Calculation at v, - Kriging Metamodel
When using the Kriging metamodel, the correlation between v, and the training
points, ('y* (V))T , 1s needed and in order to calculate this matrix, the difference between v, and

all the training points are first calculated

Table 3-2 showing the calculation of (vlo -x/ )

x| =4 | x{ =44 | x] =4.84

vo=42 |0 -0.4 -0.84

Consider the first column of D. The correlation between v, and the training points was found

to be

0.0743
v (v,)=]0.0743
0

using the equation

v'(vo)=exp-6,(v - x/))
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and the values found in Table (3-2). The number in the first row of matrix »~ (vo) represents

the correlation between v, and the first training point. The details of this calculation are
¥ (v)=expl- 650 — x! )= exp(- 65(4.2 - 4 )= 0.0743

Eventually, the estimate, p, is -91.7894 and the entire estimate of the row corresponding to v,
is
§(vy)=[-91.7894 3.0129 —-0.0186]

After multiplying y(vo )by V', the angular velocity time history at v, = [4.2] is obtained

—-0.3629 —0.5203 ... —0.0041
2(v,)=[-91.7894 3.0129 -0.0186] 0.2226  0.2430 ... 0.0050
0.1750  0.1836 ... —0.1550],
50 ‘L T T
i —— RSM
—— Kiriging
40 . —S— "true"
v 30r
8
i
Q 20t
%]
k.
3
& 10
O,

10 | | | | | | | | |
0 0.01 002 003 004 005 0.06 007 008 009 01
time-s

Figure 3-2 showing the angular speed response at v, calculated using RSM and Kriging.
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From Figure 3-2, it is clear that both metamodels seem to produce accurate results after
comparison with those obtained from the simulation. On looking at these results more

closely, as in Table 3-3, the Kriging model seems to give a closer prediction than the RSM.

One of the attractive features of the Kriging metamodel is that the derived model
exactly predicts response at the training points. To show this, consider v, = [4] and after

substituting this number into each of the metamodels, the row estimate is
(v, )=[-93.6644 62518 0.1679]

which is exactly equal to the first row of D and after multiplication with V" yields the exact
angular speed response at v; = 4. This feature is especially useful for very ‘noisy’ responses
and leads to more accurate predictions. Later, an example with a ‘noisy’ response will be

presented and the difference in RSM and Kriging is clearly seen.
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Table 3-3 showing the angular speed response obtained from the RSM, Kriging models and

the simulation.

Time RSM Error | Kriging | Error Actual
(“0) (o)
0.005 | 33.9842 | 0.3037 | 33.9794 | 0.290 | 33.8813
0.010 | 48.4919 | 0.2301 | 48.4866 | 0.219 | 48.3806
0.015 | 48.0009 | 0.0861 | 47.9988 | 0.0817 | 47.9596
0.020 | 39.0973 | -0.1280 | 39.0993 | -0.123 | 39.1474
0.025 27.03 -0.4383 | 27.0353 | -0.419 | 27.1490
0.030 | 15.3436 | -0.9291 | 15.3502 | -0.887 | 15.4875
0.035 | 5.9766 -2.049 5.9825 -1.95 6.1016
0.040 | -0.3917 24.35 -0.3879 23.1 -0.3150
0.045 | -39178 | 0.4616 | -3.9165 0.428 -3.8998
0.050 | -5.2028 | -0.6493 | -5.2040 | -0.626 | -5.2368
0.055 | -4.9907 | -1.358 -4.9936 | -1.301 | -5.0594
0.060 | -3.9721 -2.027 -3.9758 -1.93 -4.0543
0.065 | -2.6823 -2.787 -2.6858 -2.66 -2.7592
0.070 | -1.4723 -3.840 -1.4751 | -3.658 | -1.5311
0.075 | -0.5257 | -6.209 -0.5276 -5.87 -0.5605
0.080 | 0.1016 12.27 0.1008 11.4 0.0905
0.085 | 0.4359 -1.758 0.4360 -1.74 0.4437
0.090 | 0.5209 -1.773 0.5246 -7.12 0.5648
0.095 | 0.4955 -6.948 0.4980 -6.48 0.5325
0.100 | 0.3915 -6.586 0.3930 -6.23 0.4191
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3.2 Case Study 2 - Servo with Three Random Design Variables

Now, consider the same servo with multiple design variables L (v;), K (v,) and R (v3). As
before, these variables are assumed to be random and the low, medium and high values of

each variable used to generate the training design are

v ) (0.0010 v ) (8.00x107) (v ) (4.00
v |=]0.0011 vyl =1 8.80x107° | | vy |=| 4.40
v | 10.0012 vi¥ ] 19.68x107 | | vy | |4.84

The angular speed response time histories at each of the twenty-seven design variable

combinations are

354135 50.2836 ... 0.3880
7 32.4767 46.6146 --- 0.4199

35.1859 49.6381 ... 0.3436

27x20

The first row of Z corresponds to all the low values of v, v, and v; and the last row
represents the response at all the high values of the design variables. The rows in-between
represent the dynamic responses at the various design variable combinations. After SVD,

metamodels were developed for the first 11 columns of D.

3.2.1 Response Surface Model

Normally, for multiple design variables, a quadratic RSM is assumed. However, if a linear
RSM fits the experimental design well, then there is no need for a more complex model. In
this research, the choice of metamodel is between the RSM or Kriging model. Therefore, if

the linear RSM does not provide a good fit, the Kriging model is chosen.

The linear RSM has the form
Y =P+ Bv + Byvy + By (3.24)

In estimating the RSM model parameters, consider the matrices X and d,
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1 0001 0.008 4 ] [—93.8644 ]
1 0.001 0.008 44 —89.6539

X=|1 0.001 0.008 4.84 Y=d, =|-85.2081

1 0.0012 0.00968 4.84 ] —92.4988 |

After using the least squares theory B is found to be

~99.5914
—953.6270
Tl —3790.1
9.3335

and eventually the following equations are obtained for columns 1 and 2 respectively

y, ==99.5914 —953.6270v, —3790.1v, +9.3335v, (3.25)

y, =3.4160 — 563.1305v, + 7407.9v, —15.5230v, (3.26)

3.2.2 Kriging

The general form of the Kriging model for the m™ column of D for three random design

variables is
s/ AW et
Y =Bo + Bvi + Byvy + By +(’Y (V))mrmEm (3.27)

where 5" (v) = exp(— 0, (v1 -X, )2 ) exp(— o, (v2 -X, )2 ) exp(— 0, (v3 — X, )2 ) In order to show
how Kriging model parameters are estimated using multiple design variables, consider d, and

the initial estimate of 0
8, =[10000 10000 1]

For three design variables, the Gaussian correlation function becomes

I'= exp(— 0, (x{ —xf )2] . exp(— 0, (xz’ —xk )zj . exp(— o, (x3’ —x¥ )2] (3.28)

where (x{ - xlk ) is the difference between all training points for the first design variable and

so forth. An extract of the matrix of the experimental design variable combinations is
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[ 0.001  0.008 4
0.001  0.008 4.4
X, =| 0.001 0.008 4.84

tr

100012 0.00968 4.84

27x3

where the first row of X, corresponds to all the low values of the design variables and the last
row represents all the high values of the design variables. The first column of X, x; is the
training design for the first design variable. The entire matrix is shown in the appendix. In
order to estimate the model parameters, the difference between training points for each design

variable is required. Extracts of these matrices are

0 0 ... —0.0002 —0.0002]
0 0 ... —0.0002 —0.0002
i -xt]=| R :
0.0002 0.0002 ... 0 0
10.0002 0.0002 ... 0 0 |0
0 0 ... —0.0017 —0.0017
-0.0017 —0.0017
[ -xt]=| TR :
0.0017 0.0017 ... 0 0
10.0017 0.0017 ... 0 0 |y
0 —040 ... —040 —-0.84]
0.40 0 ... 0 -044
[ —xt]=] A :
-044 040 ... 0 —044
| 084 044 ... 044 0 |

These matrices are then used, along with 0y, in the calculation of I" and eventually, I' is found

to be
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1 0.8521 0.4938 ... 0.4799]
0.8521 1 0.8240 ... 0.8007
I'=]0.4938 0.8240 1 ... 09718

10.4799 0.8007 0.9718 ... | P

In order to show how the calculations are performed, consider I'5;, This value is obtained by
using the value found in the 2™ row and 3™ column of each of the three matrices shown

above. Then using equation (3.28) as follows
[, = 1000007 o p100000F" o 1044 _ 150 150.8240 = 0.8240

The above correlation matrix, I', and X is then substituted into equation (2.17) to obtain an

initial estimate of 8

1 0.001 0.008 4

860340
1 0.001 0.008 44

-690

X=|1 0.001 0.008 4.84 B,=
. . . . -106990
—-159700

1 0.0012 0.00968 4.84

This initial B, is then used to obtain estimates of E using the initial simulation runs, the linear

RSM model used to represent f(v, f) and equation (2.21).

[~ 220760 ]
—~156990
E=| — 86600

| —86430 |

27x1

These preliminary estimates of E and p are then substituted into equation (2.18) to get

5% =8.8952x10'"

which is then substituted into equation (2.19) to get

L(0)=-319.8718
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Now, this entire procedure is then repeated for another estimate of 0 until L(0) is

maximized. Eventually, an optimal estimate of 0, is found to be

0, =[90000000 20000000 10]

and
-99.8
B - —950.7960
'l -3794.6
9.3927
The Kriging model to fit the data in D, is then
¥, =—99.8330 -950.7960v, —3794.6v, +9.3927v, + (y* (V))IT I''E, (3.29)

Now the metamodels will be used along with SVD to estimate the response at some arbitrary

design variable set.

3.2.3 Estimation of Response at v,.

An estimate of the angular velocity at v, =[0.00115 0.008 4.6] is desired. In using the
linear RSM, v, is just substituted into the metamodel to obtain the row estimate for D that is
then multiplied by V'. These results are shown in Table (3-4). For the Kriging model, as with
one random design variable, y*(v) has to be estimated. For three design variables, this

equation becomes
v (v,)= exp[— 0, (vlo - x] )ZJ : exp(— 0, (vg -xJ )ZJ : exp[— 0, (v? - x] )ZJ (3.30)

Extracts of the matrices containing the differences between v, and the training points

are shown below

1.5%107 |
1.5x107*

~5%x107°
-5%107° |

27x1
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0
0
bo-xil=|
V), =X |= :
-1.68x107°

| -1.68x107" |

27x1

[ 0.6
0.2
0.2

| —0.24 |

27x1
After substituting these values into equation (3.30), the correlation between v, and the

training points was found to be

0.0036

" 0.0036
Y (Vo): .

0 Jyu
and substituting all this information in equation (3.29), the following estimate is obtained for

v, for d,
P1(vy)=-93.6432

These calculations are then repeated to the other columns of D to get the estimate of the row
corresponding to v,. Eventually, the response at v, is calculated from equation (3.7) the

results of which, using both the RSM and Kriging models are shown in Table 3-4.

3.2.4 Model Adequacy

In order to further determine the adequacy of the Kriging and Response Surface Models, the
coefficient of determination (R?) is calculated at each time step. R” is also used to show how
the model adequacy changes when the number of columns of D used changes. Table (3-5)

shows these results.

From Table (3-5), 12 columns of D exactly predict the experimental response time

histories using the Kriging model. Also, the Response Surface models obtained are quite
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good for most of the time steps but there are some exceptions. Reducing the number of
columns of D to 5 also gives fairly acceptable results for both Kriging and RSM. Now,
calculating R? just determines how well the metamodel models the experimental results. The
metamodels can also be tested by calculating the response at some v, and comparing these
results with those obtained from running the simulation at vo. From the predictions found in
Table (3-4), the predictions obtained from both models were quite close as can also be seen in

Figure (3-3). Now, a system with a noisier response will be used.
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Table 3-4 showing response at v, for Servo Example with three random design variables

calculated using the RSM, Kriging and from the simulation.

Time RSM Error Kriging Error Actual
(%) (%)
0.005 | 31.0771 0.0634 31.0743 0.054 31.0574

0.010 | 45.1115 0.2832 44.9835 -0.0013 44.9841
0.015 | 45.7757 0.4695 45.5277 -0.0748 | 45.5618
0.020 | 38.6222 0.5200 38.3476 -0.1947 | 38.4224
0.025 | 28.2108 0.5844 27.9775 -0.2474 | 28.0469
0.030 | 17.5700 0.2602 17.4679 -0.3224 17.5244
0.035 8.5586 -0.9777 8.6154 -0.3205 8.6431
0.040 1.9668 -8.729 2.1626 0.3573 2.1549

0.045 | -2.1447 12.69 -1.8625 -2.139 -1.9032
0.050 | -4.1484 6.141 -3.8441 -1.645 -3.9084
0.055 | -4.6040 4.338 -4.3355 -1.747 -4.4126
0.060 | -4.0984 3.047 -3.9039 -1.843 -3.9772
0.065 | -3.1201 1.417 -3.0151 -1.996 -3.0765
0.070 | -2.0354 -1.093 -2.0145 -2.109 -2.0579
0.075 | -1.0717 -5.900 -1.1154 -2.063 -1.1389
0.080 | -0.3400 -20.45 -0.4220 -1.264 -0.4274
0.085 0.1353 176.7 0.0403 -17.59 0.0489
0.090 | 0.3550 13.46 0.2506 -19.91 0.3129
0.095 0.4446 7.834 0.3683 -10.67 0.4123
0.100 | 0.4194 4.458 0.3741 -6.824 0.4015

50



Chapter 3 — SVD Combined with Metamodels

Table 3-5 showing the coefficient of determination at each time Step using different numbers

of columns of D for the Servo with three random Design Variables.

Time | R’ (12 Columns of D) | R?(5 Columns of D) R’ (2 Columns of D)
RSM Kriging RSM Kriging RSM Kriging
0.005 | 0.9968 1.0000 0.9968 1.0000 0.9928 0.9935
0.010 | 0.9983 1.0000 0.9983 1.0000 0.9980 0.9983
0.015 | 0.9962 1.0000 0.9962 1.0000 0.9955 0.9983
0.020 | 0.3360 1.0000 0.3360 1.0000 0.3209 0.7161
0.025 | 0.9521 1.0000 0.9521 1.0000 0.9487 0.9886
0.030 | 0.9874 1.0000 0.9874 1.0000 0.9873 0.9990
0.035 | 0.9963 1.0000 0.9963 1.0000 0.9958 0.9990
0.040 | 0.9980 1.0000 0.9980 1.0000 0.9955 0.9927
0.045 | 0.9879 1.0000 0.9879 1.0000 0.9807 0.9712
0.050 | 0.9257 1.0000 0.9257 0.9999 0.9006 0.8877
0.055 | 0.4164 1.0000 0.4163 0.9992 0.2946 0.3551
0.060 | 0.6828 1.0000 0.6828 0.9993 0.6404 0.7359
0.065 | 0.9342 1.0000 0.9342 0.9993 0.9296 0.9638
0.070 | 0.9851 1.0000 0.9850 0.9992 0.9849 0.9973
0.075 | 0.9957 1.0000 0.9956 0.9989 0.9945 0.9930
0.080 | 0.9786 1.0000 0.9784 0.9986 0.9731 0.9591
0.085 | 0.9031 1.0000 0.9027 0.9982 0.8865 0.8567
0.090 | 0.5585 1.0000 0.5460 0.9387 0.5159 0.4846
0.095 | 0.0797 1.0000 0.0653 0.9399 0.0061 0.0522
0.100 | 0.6220 1.0000 0.6198 0.9888 0.5987 0.6749
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Figure 3-3 showing the response at v, calculated using both the RSM and Kriging Model for

the servo with three random design variables.
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3.3 Case Study 3 — Simulation of a Piano String

Another example of a dynamic system is the action of a hammer hitting the string in a piano.
The response of this system is more erratic than that of the servo. The string velocities were
obtained from simulations performed by Motion Research Group of the University of

Waterloo. A diagram of the experimental setup

Ir--
accelerometer | {

bridge —

strings " concrete support

hammer —__

ill

Figure 3-4 showing the experimental setup to obtain sample piano string velocities. (Bensa,

J., Gipouloux, O. and Kronland-Martinet, R., 2005).

3.3.1 Simulation Results

The most important parameters in piano design are relative striking position of the hammer,

hammer-string mass ratio and string stiffness (Askenfelt, A. and Chaigne, A., 1994). For this
case study, the three random variables were initial hammer velocity (v;), string stiffness (v;)
and striking position of hammer (v3). The three levels of each design variable used in

experimental design are
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v | [3.50 v 13.60x107° v | 7.44%107
vl | =] 4.00 vyl |=13.90%10°° vy | =|8.06x107
pligh || 450 viE 1 14.20%107° viEh | 18.68x107

The 27 combinations of these three design variables yield 27 string velocity time histories

from Os to 0.005s using 252 time steps. An extract of these results are shown in Z

[0 —0.001361 —0.005883 ... 0.8626]
0 —0.0007399 —0.002602 ... 0.5833
Z=|0 -0.001331 -0.005742 ... 1.2870

0 -0.002564 —0.01144 ... 1.5444 |

L 27x252

This simulation is quite expensive and can deter the analyst from observing the response at
various design variable combinations. Metamodelling and SVD are quite useful since
interpolation is performed on a much smaller scale. Z gives some initial simulation runs at
the different combinations of the three design variables and SVD was then performed on this
matrix. For accurate predictions and modelling of the experimental design, the most dominant
values of S are used. A graphical representation of the dynamic string velocity is shown in

Figure (3-5).
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String Velocity - m/s

Figure 3-5 showing the string velocity output when v, = 3.50, v, = 3.60 x 10~ and v; =

7.44x1072
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3.3.2 Response Surface and Kriging Models

Metamodels were generated for the first ten columns of D, however, the first four RSM and

Kriging models are shown here in equations (3-31) — (3-38)

y, =—7.78 = 7.99v, —1548.45v, — 84.34v,
y, =54.24+0.28v, +1226.80v, — 686.92v,

5 =0.30 - 0.020v, +6832.90v, — 6.08v,

y, =—13.52+2.00v, +1.30x10°v, +4.72v,

T

Y1 =-8.70—-7.94v, —1.77x10°v, —95.08v; + [, (v))| I'}'E,
Y2 =41.10+0.19v, —~4.03x10°v, —518.57v; + (" (v)}; I3'E,

Yy =—4.54-0.18v, —338.33v, +59.11v, + (1" (v)| T;'E,

Vs =—1230+1.78v, +1.25x10v, +2.43v; + (" (v)), T;'E,

Now, the response at v, = [3.50 3.80x107° 8.10x 10_2] is desired. Therefore, after

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

substituting these numbers into the RSMs and using equation (3-7) as in the previous case

study, the response was found and is shown graphically in Figure (3-6). For the Kriging

models, the correlation between v, and the training points was calculated and a row in D was

estimated. The estimated response is also shown in Figure (3-6).
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4 \
RSM
3 ——— Kiriging ||
—e— actual

vy

string velocity - m/s

x 10

Figure 3-6 showing the response at v, calculated using Kriging and RSM.

From Figure 3-6 there is a noticeable difference between the response found using
the Kriging model and the RSM. The RSM does not capture some of the behaviour of the
string velocity between 2 x 10~ and 3 x 10s; the RSM just “smoothes” the response. Table
3-6 shows the R? value between 2 x 107s and 3 x 107s and from this table, it is clear that the
RSM does not model the experimental results as well as the Kriging model. Therefore, if
design analysis is to be made at any of these time steps, the Kriging model is preferred. The

entire table of results is shown in appendix A.
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Table 3-6 showing R? calculated for times 2x 10 sto 3x107 s

Time x10™ | 2.0120 2.032 | 2.0518 | 2.0717 | 2.0916 | 2.1116 | 2.1315

RSM | 0.9596 0.883 | 0.7461 | 0.5416 | 0.3252 | 0.1901 | 0.1393

Kriging | 0.9994 0.999 | 09983 | 0.9986 | 0.9988 | 0.9993 | 0.9986

Time x10° | 2.1514 | 2.1713 | 2.1912 | 22112 | 22311 | 22510 | 2.2709

RSM | 0.1523 | 0.2522 | 0.4414| 0.6551| 0.8385| 0.7689 | 0.4759

Kriging | 0.9984 | 0.9974 | 0.9917 | 0.9886 | 0.9934| 0.9948 | 0.9952

Time x10° | 2.2908 2311 | 23307 | 23506 | 23705 | 23904 | 2.4104

RSM | 0.2963 0.170 | 0.0529 | 0.0837 | 0.2419 | 0.3624 | 0.4552

Kriging | 0.9935 0.992 | 09954 | 09980 | 0.9963 | 0.9980 | 0.9991

Time x10” | 2.4303 | 2.4502 2470 | 2.4900 | 2.5100 | 2.5299 2.550

RSM | 0.6053 | 0.8151 0919 | 09392 | 0.9535| 0.9589 0.932

Kriging | 0.9985 | 0.9965 0.997 | 0.9956 | 0.9964 | 0.9983 0.992

Time x10™ | 2.5697 | 2.5896 | 2.6096 2.630 | 2.6494 | 2.6693 | 2.6892

RSM | 0.8504 | 0.6646 | 0.5296 0.620 | 0.7714 | 0.9076 | 0.9456

Kriging | 0.9911 | 0.9847 | 0.9813 0.997 | 0.9942 | 0.9920 | 0.9945

Time x10” | 2.7092 | 2.7291 | 2.7490 | 2.7689 | 2.7888 | 2.8088 | 2.8287

RSM | 0.5869 | 0.2358 | 0.8016 | 0.9096 | 0.8373 | 0.4610 | 0.4635

Kriging | 0.9667 | 0.9784 | 0.9864 | 0.9801 | 0.9926 | 0.9852 | 0.9647

Time x10™ | 2.8486 | 2.8685 | 2.8884 2908 | 2.9283 | 2.9482 | 2.9681

RSM | 0.8460 | 0.9533 | 0.9548 0.824 | 0.2735| 0.6074 | 0.8714

Kriging | 0.9909 | 0.9978 | 0.9940 0.988 | 09860 | 0.9943 | 0.9979
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Chapter 4

Sensitivity Analysis and Robust Design

In dynamic systems, the response at certain time steps may determine whether or not a
specific system is optimum. An acceptable design may require that the overshoot of the
response at some time lies between specific limits or that the response stabilizes at a
particular settling time. Therefore, it is important that design calculations are done such that
specifications at different times are met. Before parameter design is performed, however,
some analysis of the system must be first performed. First, a suitable metamodel must be
chosen; that is, one that fits the experimental results well. For this, the statistical coefficient
of determination is used. When a suitable model is chosen, sensitivity analysis is then
performed to determine the effect of each design variable on the response. This can give the
analyst an idea of how sensitive is the response to each design variable. Then, robust design

calculations are performed to find the optimum system.

This chapter shows how normalized sensitivities are calculated over time for each
design variable and how robust design through parameter design or integrated design is done
to find the optimum system given specifications at certain time steps. The theory is then
illustrated through the use of several case studies: the first of which is the design of a position
control servo where only one design variable is random, the second considers the same servo
but now three design variables are random. The third case study is the design of a mobile sign
used in shop windows and the fourth looks at choosing variables to allow the velocity of a

piano string to meet specifications at specific time steps.

59



Chapter 4 — Sensitivity Analysis and Robust Design

4.1 Normalized Sensitivities

Normalized sensitivities are used to determine the effect of the design variables on the
response of the system and are calculated using equation (2.28). SVD can, again, be used to
quickly calculate normalized sensitivities over time especially for systems with very large
time steps. The First-Order Sensitivity factor (FOS) of equation (2.28) is just the first-order
derivative of a function of the design variables. Therefore, to obtain the FOS factors over
time, this first order derivative can be applied to the metamodels obtained for the columns of

D and then multiplied by the matrix V

V7 4.1)

nom
Vi

9 _[mv) anl) aym(v)}
ov; ov; ov; ov;

1

1 1

v, (V)

ov,

1

where is the first-order derivative of the metamodel of the first column of D with

m

respect to v; and v;”" is just the nominal value of design variable i. Therefore, the time

history of normalized sensitivities is obtained from

o) v
5\/ yrom f; (V) | viem

SV = (4.2)

i

4.2 Robust Design

A metamodel has been developed for each time step along with the coefficients of
determination and normalized sensitivities. Taking all this information into account, robust
design can now be performed. Although Kriging tends to always fit the experimental results
quite well, it is non-linear and finding sensitivities and first and second moment information
of the response is more difficult than using the RSM. Therefore, if the RSM is acceptable in

fitting the experimental data it should be used as a first choice.

Before robust design is performed, the probability of conformance is calculated using
the initial means of the design variables to determine how well the initial system meets

specifications. A very high probability of conformance would indicate an acceptable system.
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If the probability of conformance is too low, robust design is then performed and the

probability of conformance re-calculated.

Normalized sensitivities are also calculated to give the analyst an idea of the
important variables for design. A variable with a very small or negligible effect on the
response can be ignored since changing this variable will not very likely change the response
by very much. Also, including this variable will add complexities to the calculations that are
not necessary. The application of robust design techniques to both the RSM and Kriging

models will be presented to show how an optimum system may be calculated.

4.2.1 Probability Calculations

The probability of conformance at specific times can be calculated using either the Monte
Carlo simulation with limit state functions or the Second Moment Method. Limit-state
functions are easily derived at each time using equation (2.34) and for limit-state functions in

u-space, the transformation of equation (2.39) is used.

At the n™ time, t,, suppose ¢, denotes the upper limit with metamodel f, (v)

Therefore, the limit-state function, g, (v) , becomes

&, (V): gz,, - fz,, (V) (43)
where the probability of success is found from

pr(s, )=Prlg, (v)>0) (4.4)
For the case where ¢ ‘ 1s a lower limit, then

gt,, (V):fz,, (V)_gtn (45)

and the probability of success is calculated using equation (4.4) again. Now that the limit-
state function has been derived, Monte Carlo simulation is used to generate a large sample of
results given the mean and variance of each design variable and the number of instances

when the specifications are met is counted.

The other method of probability calculation, the Second Moment method, utilizes the
transmission of moment methodology to calculate the probability of conformance. The

theories presented in the literature review in equations (2.32 and 2.33) can be applied to
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situations where the response of the system varies over time. The first-order derivative of

each design variable for each metamodel is arranged into the matrix shown in equation (4.6)

below
o
v, ov, ov,
Fyr} Dy D Dy
— =lov, ov, = ov (4.6)
A R D
Vi W Y
i ov, O0v, ov, Loy

0 L .
where ay—'” represents the derivative of the metamodel of the m™ column of D with respect to

Vp

design variable p. A matrix of these derivatives over time is found using equation (4.7)

o (v)_(ay" TVT 4.7)
vl | ov '

and can then be used to find the mean and variance of the response at each time step using

equations (4.8) and (4.9) given the means and variances of the design variables

T

[:uz,t ]m ~ f,(V)‘v +% z(ﬁT()‘;) vecC, (4.8)
\4 _
b2]., z[agv—(v)J C[a;—(v)} 49)

4.2.2 Parameter Design using the Response Surface Model

Parameter design is easily done using the response surface model. For a linear response
surface model the minimization of conformance indices method is used. Consider the general

linear RSM

f(VaB): Bo+Bivi+pPv, +...+B,v,
that can be considered to be a bi-linear model of the form shown in equation (4.10)
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)_ Bo+Bvi+Byvy +...+ By,

f(v.p 1

(4.10)

where ay =4y, a,=p,, a,=p,...a,=p, and b, =1 according to equation (2.46).

These numbers are then substituted into equations (2.43), (2.44) and (2.45) to achieve the

objective function in equation (2.41) repeated below
k

min. Q = Ze”"ﬂ"
i=1

The RSM at a specific time step is found by multiplying the row of metamodels found for
each column of D by the row in V that corresponds to the time of interest. This method is

shown in equation (4.11)
L, 0)=(v) ».(v) oy, (v 4.11)

where f, (v)refers to the metamodel at the n™ time step and V,f refers to the column in V'

that represents the n™ time step.

In many instances, an optimum system is desired where the response at several time
steps is specified. For such a case, constraints can be introduced where each constraint
specifies the minimum acceptable probability of success using the limits at the specific time

steps
k
min Q= Zea’ﬁ"
i=1

subject to

Pr(S )2 b

15} 5]

Pr(S )> X

B3] 73

Pr(S,n )> X

=,

where x, is the desired probability of conformance at the n™ time step. This problem was

solved using ‘fmincon’ in MATLAB.
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4.2.3 Parameter Design using the Kriging Model

Parameter design using the Kriging model cannot be done using the above procedure. Instead,
a probability objective function is used where the probability is calculated using equation

(2.37) for the time of importance

(4.12)

max Pr(Stn)zl—CD[_ - o

(gU,zn “Hzy, )] _ (D[_ ('uz,tn B é/l"tn )]

Z,t, Z,t,

or

min Pr(F,n ): 1- Pr(Stn )

where Pr(S p )denotes the probability of success or conformance at the specific time and,

n

likewise, Pr(an ) denotes the probability of failure or non-conformance. The expressions L

and o, are calculated from equations (4.8) and (4.9). Similar to parameter design using the

Response Surface model, for multiple time steps

min Pr(F, ) (4.13)

subject to

Pr(S )Z X,

15}

Pr(St )2 X,

n n

4.2.4 Integrated Design

Like parameter design, integrated design for dynamic systems is done to meet certain
specifications at particular times by finding the mean and tolerance of each design variable to
give a theoretical optimum system and this is done by minimizing the total cost while

ensuring that the probability of failure is within acceptable limits.

Now, the total cost is made up of the production and loss of quality costs. The
production cost is simply calculated using the Reciprocal cost model shown in Table (2-2)
where the assumptions a = 0 and b= 1 are made. However, the loss of quality cost requires
the mean and variance of the response at the time of interest are calculated using equations

(4.14) and (4.15) below
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vecC, (4.14)

1
Moy, ™ fz,, (VXV + 5 8(VT )2

o, z[rf’”(v)} J [Cv{aft”—(v)] (4.15)
sty aVT . dVT .

A particular time step is selected by picking the row in V that corresponds to this point in

time. Therefore,

£ =) »,(v) oy, O]V, (4.16)
a T
D, _ {Q} V7 4.17)
ov, ov "
and the loss of quality cost at the ™ time step becomes
C
Co="> (., -1P+02,) (4.18)

4.3 Calculating a specific response given specifications at every time
step.

Sometimes, the analyst may require the dynamic response of a system to follow a specific
pattern (Yue, H. and Jiang, W., 2002). For this case, specifications at each time step have to
be met. Normally, if the system has to meet specifications at only two times, metamodels can
be developed only for these two times instead of performing SVD. However, for this case of
meeting specifications at each time, developing metamodels at each time is impractical and in
this case, applying SVD becomes useful. When metamodels are developed for the columns of
the reduced matrix, D, the metamodel for any other time is found using equation (4.11).

Given specifications at each time, the optimum system can be found from

min Pr(F.,, ) (4.19)

system
where

Pr(F,,., )= (Pr(F, )+ Pr(F, )+...+ Pe(F, )-Pe(F, nF, n...AF, )

system
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4.4 Case Study 1 — Servo with One Random Design Variable

Suppose the servo presented in Chapter 3 contains one random design variable, winding
resistance denoted as vi. However, for an optimum system, the performance of the angular
position of the servo at specific times is important. Like the previous examples in chapter 3,
three levels of v;

v | 18.00x107°

vl 1=18.80x107
vl 19.68x107

are used to generate a sample of angular position time histories

0.0937 0.3161 0.5701 ... 0.9990
Z=0.1025 0.3425 0.6105 ... 1.0009
0.1120 0.3702 0.6513 ... 1.0002],

The graphical plot of the experimental responses is shown in Figure 4-1 where ‘low’,
‘medium’ and ‘high’ refers to the three levels of v;. After SVD of Z, D becomes
—-4.2313 0.0832  0.0022

D=|-4.2558 -0.0009 -0.0045
-4.2750 -0.0815 0.0023

3%3
and since D is so small, metamodels are developed for all three columns.

The response surface models are

= —4.0248 — 25.9654v, (4.20)
¥, =0.8649 — 97.9526v, 4.21)
y, =-0.0016 +0.1861v, 4.22)

and the Kriging models are
1= —4.0248 - 25.9654v, + (y'(v)) T'E, 4.23)
¥, =0.8649—97.9526v, + [y (v)}; I3'E, (4.24)
5 =—0.0016+0.1861v, + (3" (v)J; I'3'E, (4.25)
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Figure 4-1 showing the Angular Position Response of the Experimental Design.

R’ was then calculated at each time step to determine how well each model fits the

experimental data. These results are shown in Table (4-1).

For an optimum system, we want to control the overshoot of the response at t =
0.035s and ensure that the response “settles” at 0.070s as seen from Figure (4-1). First, robust
design is done using only one time and then later, both times are used to find optimum
parameters. Before robust design calculations are performed, a suitable model at this time has
to be found; therefore, reference is made to Table (4-1). At t=0.035s, the response surface
model has a high R* of 0.9478; however, the Kriging model exactly predicts the experimental
data. The Kriging model would be better to use in robust design calculations but the response
surface model is easier. Since R? for the RSM is fairly large, the RSM would be acceptable
for use in these calculations. For this case study, the two models are now used to show how
the design calculations are performed using the different metamodels to find the optimum

system.
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Table 4-1 showing R* over time for each model.

Time | 0.005 | 0.010 | 0.015 | 0.020 | 0.025 | 0.030 | 0.035 | 0.040
R?*| RSM | 1.0000 | 0.9998 | 0.9994 | 0.9984 | 0.9961 | 0.9889 | 0.9478 | 0.6566
R’ | Kriging | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Time | 0.045 | 0.050 | 0.055 | 0.060 | 0.065 | 0.070 | 0.075 | 0.080
R*| RSM | 0.9920 | 0.9999 | 0.9984 | 0.9929 | 0.9771 | 0.9102 | 0.0017 | 0.9561
R’ | Kriging | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Time | 0.085 | 0.090 | 0.095 | 0.100
R*| RSM | 0.9970 | 0.9992 | 0.9888 | 0.9679
R’ | Kriging | 1.0000 | 1.0000 | 1.0000 | 1.0000
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4.4.1 Moments of the Response using the RSM

A suitable system is desired such that the angular position response at t = 0.035s falls
between ¢, =1.10 and ¢, =1.05. However, before optimum parameters are found, the
mean and variance of the response at each time should be determined in order to have an idea

of the distribution of the data. The mean and variance of v, are initially z, = 0.0088 and

2
0'12 = (2.93 X 10_4) where the variance is calculated using

% Y
o2 = (“’ j 426
1 300 H ( )

with a 10% tolerance.

In order to calculate the mean and variance of the response at a specific time,
equations (4.14) and (4.15) are used. To illustrate this procedure, consider t = 0.005s, the

RSM model and equation (4.17) to find the first order derivatives at this single time step time

3
—f’é (V)=[— 25.9654 —97.9526 0.1861]-0.0242 —0.1046 0.0885] (4.27)
vV

=10.8907

o, (v)
ov

From equation (4.14), the mean of the response at t; is

M.y =0.1024+0=0.1024
and from equation (4.15), the variance of the response at t; is

o2, =10.8907x(2.93x107* | x10.8907=0.0102x10">
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4.4.2 Moments of the Response using the Kriging model

Now, using the Kriging model, the first and second order derivatives are

. T
%=—25,9654+£67—(V)j r'E, (4.28)
Vi Vi
0%y %y (v) '
S SN i (4.29)
ov; o),
5 o' (v))
D2~ 979506+ LY | g, (4.30)
o oy ),
azh 627*(") ' 1
- I,'E 431
8v12 [ 6v12 }2 2 ( )
. T
0
D3 _ 18614 2 W) I;'E, (4.32)
ov, o),
T
82)’3 627*(") -1
- I;'E 433
aVIZ [ av12 . 3 3 ( )

where y"(v) is a function of the design variables of the correlation between v, and the

training points
7/*(V)=6Xp(— 0, (Vl _Xl)z) (4.34)

and x, is a matrix representing the training points of v;. Also, the first and second derivatives

at this first time step, (0.005s), are found using equations (4.35) and (4.36)

B0 [ & o yr (4.35)
o, v, v, ov | " .
2
a f‘tl (V)_ azyl azyz azyS VT (4 36)
6 2 - a 2 6 2 a 2 4l :
Vi Vi Vi Vi
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After substituting the mean of v, into equations (4.28) to (4.36) and then the results
obtained from these equations into equations (4.14) and (4.15), the mean and variance at

0.005s using the Kriging model was found to be

u,, =0.1025+ %(— 5.9540x10° J8.6044 x 10~ )= 0.1022

o2, =108912x(2.93x 107 | x10.8912=0.0102x 10~

The first and second moments of the response at the remaining time steps are shown in table
4-2. These first and second moments can be used to calculate the probability of conformance
at each time step using equation (2.37). However, a simpler approach is to use a Monte Carlo

simulation where a large sample of responses is generated from the mean and variance of v;.

From table (4-2), at 0.035s, the mean and variance of the response would indicate
that the probability of conformance given the limits specified previously would be 0. Using a
Monte Carlo simulation to check this assumption and a sample of 10000 values of v, the
probability of conformance was found to be 0 using both the Kriging and RSM models. In

order to improve this probability, robust design is done.
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Table 4-2 showing first and second moments at each time step calculated using Kriging and

RSM.
Time RSM Kriging
Mz, | o;,%x107° Hz, oy, %107

0.005 | 0.1024 0.0102 0.1029 0.0102
0.010 | 0.3421 0.0892 0.3425 0.0892
0.015 | 0.6093 0.2007 0.6080 0.2007
0.020 | 0.8373 0.2361 0.8329 0.2361
0.025 | 0.9968 0.1709 0.9893 0.1709
0.030 | 1.0859 0.0737 1.0763 0.0737
0.035 | 1.1177 0.0123 1.1081 0.0123
0.040 | 1.1113 0.0008 1.1031 0.0008
0.045 | 1.0852 0.0143 1.0799 0.0143
0.050 | 1.0534 0.0255 1.0514 0.0255
0.055 | 1.0250 0.0242 1.0261 0.0242
0.060 | 1.0043 0.0152 1.0072 0.0152
0.065 | 0.9920 0.0062 0.9958 0.0062
0.070 | 0.9868 0.0012 0.9905 0.0012
0.075 | 0.9866 0 0.9895 0
0.080 | 0.9893 0.0004 0.9909 0.0004
0.085 | 0.9929 0.0010 0.9935 0.0010
0.090 | 0.9963 0.0010 0.9959 0.0010
0.095 | 0.9989 0.0006 0.9978 0.0006
0.100 | 1.0006 0.0003 0.9993 0.0003
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4.4.3 Parameter Design Using RSM — Balancing Conformance Indices

Now, the optimum mean of v; will now be calculated by first using the RSM. For robust

design, the optimization function becomes
min Q=e “P 4 e %P (4.37)

where the constants «,, f,, o, and f, are found using equations (2.42) and (2.43).The RSM
att=0.035sis

Vicoosss =1.0126 +11.9468v, (4.38)
with the limit state functions being (in u-space)

g, =1.10—(1.0126 + 11.9468(1, + o,u,)) (4.39)
g, =(1.0126 +11.9468(11, + o,u,))—1.05 (4.40)
then, from equations (2.42), (2.43), (2.44) and (2.45)
a, =1.0126  a, =11.9468 b, =1
hyy =ay +a,u, —1.10 hy, =a, +ap, —1.05 h =a,o,

. - o] |- (1.0126 +11.94684, —1.10)) (4.41)

h} J(11.94680, )

o] |-(1.0126 4+ 11,9468, —1.05)

h} J(11.94680, )

B, (4.42)

with
a, =sign(gl( ZO))

o, = sign(g2 (” = 0))
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After minimizing Q using ‘fsolve’ in MATLAB, the optimum design was found to be p =
0.0064.

Using a Monte Carlo simulation, the probability of conformance was found to be

10000 _,

Pr(S,=o,035s )= 10000

The angular displacement estimates from the Monte Carlo simulation are shown in Figure (4-
2). For the upper and lower specifications of 1.10 and 1.05, it can be seen from Figure (4-2)
that all the responses using the theoretical optimum of v, lies within this range with a mean

value of about 1.09.

4.4.4 Parameter Design using Kriging Model — Probability Objective Function

Using the above set of equations is easy for linear or bi-linear models. However, the non-
linear Kriging model requires a different approach. The objective becomes maximizing the
probability of success or minimizing the probability of failure where the probability of

success at 0.035s (7™ time step) is calculated using

max Pr(s, )=1- (D[— M] - cp[— M] (4.43)

7 o o
Z,t7 Z,t7

where ¢, and £, are the upper and lower limits respectively at 0.035s and 4, . and

o, are the mean and standard deviation of the response at 0.035s. Using this equation and

z,t

the function ‘fsolve’ in MATLAB, the optimum v; was found to be 0.0064.

From the Monte Carlo Simulation, the probability of conformance was found to be

Pr(s, )= % = 0.9996

Figure (4-3) shows the data from the Monte Carlo simulation using as a histogram and it can

be seen that the data follows a similar distribution as that of Figure (4-2).
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Figure 4-2 showing a histogram of the results from Monte Carlo at the theoretical optimum

mean of v; and RSM
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Figure 4-3 showing a histogram of the results from Monte Carlo using the theoretical

optimum and Kriging model.
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4.4.5 Robust Design Using Multiple Time Steps

The angular position response of the servo contains two important time steps; the ‘rise’ time
and the ‘settling’ time. The ‘rise’ time is where the response overshoots and we want to limit
the amount of overshoot that takes place. This design was done previously; however, at the
‘settling’ time, we also want to ensure that the response stabilizes at t = 0.070s and at this
time the specifications are 0.995<60,_ ;,,, <1.005. Since the RSM provides a good fit of the
experimental design, it will be used to determine the optimum design variables. The RSM at
this time is
Vicoors =1.0196 =3.7179v, (4.44)

In order to find the best design variables such that both specifications are met,
constraints can be introduced to equation (4.43) and these constraints specify that the
probability of failure at other times does not exceed some stated amount. The optimization
problem then becomes

min Pr(Fz=0A035s ) (4.45)

subject to

Pr(Fz=0.o7s ) <0.10

where the probability of nonconformance is calculated using either equation (2.37) or (2.47).
The optimum mean of v; was found to be 0.0063. When using this result to generate a sample

of 10000 results using the Monte Carlo simulation, the probabilities of conformance are
Pr(1.05<6,_ 55, <1.10)=1
Pr(0.995<6,_) 40, < 1.005) =0.927

The results from the Monte Carlo simulation are shown in Figures (4-4) and (4-5). From the
figures, the mean at 0.035s and 0.070s are 1.0875 and 0.996. It can also be seen from Figure
(4-5) that some of the observed values are less than 0.995. However, the overall probability

of conformance is acceptable.
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Figure 4-4 showing a histogram of the distribution of the response at 0.035s from Monte

Carlo using the theoretical optimum mean

350
300| AN ]
250} . \ |

200+ / \ |

Frequency

150 2?

100 - B

0 L L
0.993 0994 0.995 0.996 0.997 0.998 0.999 1 1.001
Obsenved Value

Figure 4-5 showing a histogram of the distribution of the response at 0.070s from Monte

Carlo using the theoretical optimum mean.
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4.5 Case Study 2- Servo with Three Random Design Variables

The variables winding inductance, v,, winding resistance, v,, and torque constant, v; are now
considered to be random and the response time histories at the various combinations of the

three levels of each design variable

v ) (1.00x107° v} (8.00x107° Vi) (4.00
v 1= 1.10x 107 vyl |=| 8.80x107° vy |=| 4.40
v ] 11.20%107° v | 19.68x107 viEh || 4.84

are recorded into Z

[0.0937 0.3161 0.5701 ... 0.9990 |
0.0861 0.2911 0.5289 ... 0.9968

Z=|0.0791 0.2677 0.4898 ... 0.9954

10.0934 03136 0.5637 ... 0.9987

27x20
Metamodels were found for the first eight columns of D; however, the first four are shown

below. The response surface models obtained are

y; =—4.2973 — 4.8982v, — 29.6885v, + 0.0777v, (4.46)
v, =0.1068 — 2.6635v, +98.4941v, — 0.2207v, (4.47)
5 =0.0806 +15.4473y, —5.9340v, —0.0103v, (4.48)
y4 =0.0073 +7.7310v, — 0.9482v, —0.0017v, (4.49)

and the Kriging models are

y, = —4.2847 —4.9833v, —29.8292v, +0.0751v; + (y* (v))lTFflEl (4.50)
¥, =0.1135—2.7075v, +98.7854v, — 0.2229v; +[y"(v)), T';'E, 4.51)
y; =0.0516 +15.5365v, —5.9147v, — 0.0033v, + (y*(v))§ I';'E, (4.52)
v, =0.0085 + 7.7285v, —0.9177v, —0.0020v, + (y*(v))f I,'E, (4.53)
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The coefficient of determination at each time step calculated using both metamodels are
shown in Table (4-3). Later, these values will be used to determine the metamodel more

desirable for use in robust design.

Table 4-3 showing R” at each time step calculated using both metamodels for Servo with

multiple random design variables.

Time 0.005 | 0.010 | 0.015 | 0.020 | 0.025 | 0.030 | 0.035 | 0.040
RSM 0.997 10.997 [0.998 |0.999 |0.998 |0.991 |0.961 | 0.755
Kriging | 1 1 1 1 1 1 1 1

Time 0.045 | 0.050 | 0.055 | 0.060 | 0.065 | 0.070 | 0.075 | 0.080
RSM 0.525 |0.925 0986 | 0.997 |0.988 |0.950 |0.816 |0.310
Kriging |1 1 1 1 1 1 1 1
Time 0.085 | 0.090 | 0.095 | 0.100
RSM 0.436 | 0.873 |0.970 | 0.989
Kriging | 1 1 1 1

The FOS factors at each time step are then found using equation (4.1) and using these FOS
factors and equation (4.2), the normalized sensitivities can then be calculated for each

variable at each time step. These results are shown in Table (4-4).

In order to show how these sensitivities are calculated for multiple random design
variables, consider t = 0.005s and the response surface models. The FOS factors are

calculated as shown in equation (4.54)

M Dy D
ov, 0y ov,
{af”—(qu |2 P [-0.0223 0.0840 ... 0.0997] (4.54)
ov _ | ov, Ov, ov,
o wm o
| Ovy  Ov, ovs ||,

where the first matrix is evaluated at the mean of the design variables and the second matrix
is the row in V corresponding to 0.005s. The first row of the first matrix of equation (4.54)

corresponds to the first-order derivatives with respect to v;. All this information is then
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substituted into equation (4.2) to get the normalized sensitivities of each design variable at

each time step.

Consider now the same time and the Kriging models. The first derivative with respect

to v, of the metamodel of D, is

M 40833+ 7 W

ov, ov,

After finding the required derivatives and again using equation (4.7) and the first row of V"
for 0.005s, the FOS factors can be calculated. The normalized sensitivities are then ultimately

calculated using equation (4.2).

From Table (4-4), v, has the smallest effect on the angular position response of the
servo, whereas the magnitudes of the other two variables are about the same. Also,
comparison of the sensitivities calculated using Kriging and RSM with the analytical results
showed that in some cases the Kriging model seemed to perform better but in others, the
RSM performed better. Therefore, for this example, no model always gave better results.
These results will just give the analyst an idea as to how the response will behave when trying
to find optimal results. Since the effect of v, is so small, v; will be considered to be a constant

at its mean value and v, and v; will be used in parameter design.
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Table 4-4 showing the normalized sensitivities calculated at each time step for angular

position response of the servo.

Vi A7) V3
Time RSM Krig. Actual | RSM | Krig. | Actual | RSM | Krig. | Actual
0.005 -0.085 -0.088 | -0.085 | 0.937 | 0.943 0.939 | -0.873 | -0.878 | -0.811
0.010 | -0.031 -0.032 | -0.032 | 0.841 0.845 0.835 | -0.852 | -0.865 | -0.791
0.015 -0.011 -0.012 | -0.012 | 0.721 0.724 0.709 | -0.769 | -0.782 | -0.723
0.020 | -0.002 -0.002 | -0.001 | 0.585 | 0.587 0.567 | -0.653 | -0.664 | -0.624
0.025 0.004 0.004 0.004 0.440 | 0.441 0415 | -0.516 | -0.525 | -0.506
0.030 0.006 0.006 0.007 0.294 | 0.294 0.264 | -0.370 | -0.376 | -0.376
0.035 0.007 0.007 0.007 0.156 | 0.156 0.124 | -0.224 | -0.228 | -0.241
0.040 0.006 0.006 0.007 0.038 | 0.039 0.007 | -0.092 | -0.094 | -0.115
0.045 0.005 0.004 0.005 | -0.051 | -0.051 | -0.079 | 0.015 | 0.015 | -0.008
0.050 0.006 0.003 0.003 | -0.106 | -0.106 | -0.127 | 0.091 0.094 0.071
0.055 | 0.0008 | 0.0004 0.001 | -0.115 | -0.126 | -0.139 | 0.124 | 0.127 0.117
0.060 | -0.0007 | -0.001 -0.001 | -0.126 | -0.119 | -0.121 | 0.128 | 0.131 0.130
0.065 -0.001 -0.002 | -0.001 | -0.118 | -0.092 | -0.087 | 0.108 | 0.111 0.117
0.070 | -0.0018 | -0.002 | -0.002 | -0.092 | -0.059 | -0.048 | 0.076 | 0.079 0.089
0.075 | -0.0016 | -0.002 | -0.001 | -0.059 | -0.027 | -0.013 | 0.043 | 0.045 0.056
0.080 | -0.0012 | -0.001 -0.002 | -0.003 | -0.003 | 0.011 0.014 | 0.016 0.024
0.085 | -0.0007 | -0.0005 | -0.001 | 0.013 | 0.013 0.024 | -0.006 | -0.004 | 0.001
0.090 | -0.0004 | -0.0003 0 0.020 | 0.021 0.028 | -0.017 | -0.016 | -0.014
0.095 | -0.0003 | -0.0002 0 0.021 0.022 0.025 | -0.021 | -0.020 | -0.022
0.100 | 0.0002 | 0.0002 0 0.018 | 0.018 0.019 | -0.020 | -0.018 | -0.022
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4.5.1 Moments of the Response

Now, to find the mean and variance of the response, the first-order derivatives have already
been obtained and since the RSMs are linear, the second-order derivative is 0. All the
required information is then substituted into equations (4.8) and (4.9) to obtain the first and

second moments of the response.

When using the Kriging model to calculate the moments, the first and second

derivatives of the Kriging model representing D, are

D053+ 7 Mg

Vv, ov,

3’y _ 7" (v)
— 5= IE
ov; ov;
* 2 2 2 o
where y (v)z exp(— o, (v1 - X, ) )exp(— 0, (v2 - xz) )exp(— 0, (v3 - x3) ) . After substituting
the required information into equations (4.8) and (4.9), the moments of the response are

calculated at each time step. The results obtained using both metamodels were calculated and

are found in Table (4-5).
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Table 4-5 showing the First and Second Moments of Angular Position Response at Each
Time Step.

RSM Kriging

Time n o’ n ¢’

0.005 | 0.0949 | 0.0161 | 0.0942 | 0.0166
0.010 | 0.3195 | 0.1590 | 0.3179 | 0.1682
0.015 | 0.5742 | 0.3981 | 0.5723 | 0.4282
0.020 | 0.7972 | 0.5322 | 0.7959 | 0.5806
0.025 | 0.9599 | 0.4636 | 0.9599 | 0.5134
0.030 | 1.0580 | 0.2738 | 1.0595 | 0.3087
0.035 | 1.1016 | 0.0997 | 1.1042 | 0.1156
0.040 | 1.1065 | 0.0135 | 1.1096 | 0.0162
0.045 | 1.0890 | 0.0037 | 1.0921 | 0.0020
0.050 | 1.0623 | 0.0245 | 1.0644 | 0.0245
0.055 | 1.0360 | 0.0373 | 1.0376 | 0.0396
0.060 | 1.0145 | 0.0347 | 1.0153 | 0.0382
0.065 | 1.0000 | 0.0224 | 1.0000 | 0.0254
0.070 | 0.9920 | 0.0102 | 0.9915 | 0.0120
0.075 | 0.9891 | 0.0028 | 0.9885 | 0.0034
0.080 | 0.9896 | 0.0002 | 0.9890 | 0.0003
0.085 | 0.9919 | 0.0002 | 0.9915 | 0.0002
0.090 | 0.9946 | 0.0008 | 0.9946 | 0.0008
0.095 | 0.9972 | 0.0010 | 0.9973 | 0.0011
0.100 | 0.9991 | 0.0008 | 0.9995 | 0.0009
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4.5.2 Probability of Conformance Calculations

For an optimum system, the upper and lower specifications at t = 0.035s are {y = 1.10 and (.

=1.05. The means and variances of each design variable are

w, | [0.0011 or | |3.67x107
#,, |=|0.0088 oo |=/293x107"
A, 44 o, 0.15

where the variance is calculated using

2 _ 104,

O-V
© 300

and the probability of conformance at 0.035s is

Pr(s/ )=1- [cp(_ (.10~ 1'0966)J " cp(— MB — 1- (03667 + 0) = 0.6333

70.0997 x 1073 70.0997 x107

A sample of 10000 design variable combinations was generated using the means and

variances of each variable. Among the 10000 responses of angular position at t = 0.035s, the
total number of responses that conformed to specifications is 6288 and, from the Monte Carlo

simulation, the probability of conformance was found to be

Pr(sc )= 2258 _ g 683

10000

Now, using the second moment method and the Kriging model,

Pr{siene )= 1 - (q{_ (.10 1'0942)} " q{— {1.0942-1.05) N ~1-(0.2634+0) =0.7366

70.0839x107 4/0.0839%x1073

and from Monte Carlo using the Kriging metamodels to estimate responses, the probability of

conformance was found to be

Pr($ )= 0.6386
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4.5.3 Parameter Design using the RSM — Balancing of Conformance Indices

In order to increase the probability of conformance, parameter design is now performed to
select the means of the design variables that will yield satisfactory results. From the
sensitivity calculations, v, has a very small effect on angular position; therefore this variable
is considered to be constant. The parameter design method that will be used is balancing
conformance indices. Although the RSM is simpler than the Kriging model and is preferred
for robust design calculations, the coefficient of determination is needed to determine how
well it models the experimental data. From Table (4-3), the coefficient of determination
calculated at 0.035s shows that the RSM is quite acceptable and will now be used for

parameter design.
Using equation (4.12), the RSM model for the response at 0.035s is
y=1.1635+6.7901v, +19.4638v, —0.0588v,

and the objective function is

minQ =e " + e %"
with
o, = sign(g1 (u = 0))
a, =sign(g,(u=0))

[~ (1.16 +6.79 1, +19.46,1, + (= 0.0594) —1.10)

J(6.7985,  + (19460,  + (- 0.059c, )’
|- (1.16 +6.791, +19.46,41, + (- 0.059; ) 1.05)

J(6.79, F +(19.465, ) +(=0.0595, )

The optimum design was then found to be

m, | [0.0011
u,, |=|0.0063
u,, | 3.9998
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Using the Monte Carlo simulation, from a sample of 10000 responses at 0.035s, the

probability of success was found to be

Pr(S)= 9843 _ ) 9844
10000

and a histogram of the data from the Monte Carlo simulation is shown in Figure (4-6). Given
upper and lower limits of 1.10 and 1.05 respectively, the results Monte Carlo simulation
seems to conform to these specifications. Although from Figure (4-6) some observed values
fall below the lower specification, the overall probability of conformance is still acceptable.

From the figure, the mean is approximately 1.07.
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Figure 4-6 showing a histogram of the data obtained from Monte Carlo for the Servo with

three random design variables at t = 0.035s.
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4.5.4 Multiple Responses

We want to design the system, now considering all three random design variables with v,
held constant, to meet the specifications previously stated at times t = 0.035s and t = 0.070s.
As before, the optimization problem becomes

min Pr(Fz=o.o35s )

s.t.

Pr(Fz=o.o70s ) <0.100

and using ‘fsolve’, the optimum design was found to be v, = 0.0077 v; = 4.3799 where the
probabilities of conformance at the two time steps are

Pr(1.05<6,_) 55, <1.10)=0.9939
Pr(0.995 < 6,_; 470, <1.005)=0.8979

The results from the Monte Carlo simulation show that an infeasible solution has
been reached since the constraint was not met. These results are clearly seen in Figures (4-7)
and (4-8). Although the responses at 0.035s fall within the specifications, many of the
responses at 0.070s are greater than 1.005. On looking at Table (4-4), the problem lies in the
normalized sensitivities of the variables. At 0.035s, a 1% change in v, would increase the
response by 0.156%. However, this same percentage change at 0.070s decreases the response
by -0.059%. A similar situation occurs for v;. Therefore, it is difficult to find a set of design
variables that can achieve the desired results. The designer must, therefore, be willing to
compromise. Perhaps the probability of conformance at 0.035s can be reduced in order to
increase the conformance at 0.070s. If this is unacceptable, then no feasible solution is

achieved.
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Figure 4-7 showing a histogram of the responses at 0.035s from the Monte Carlo simulation

using the optimum means.
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Figure 4-8 showing a histogram of the response at 0.070s from the Monte Carlo simulation

using the optimum means.
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4.6 Case Study 3 —Window Sign

Consider the case of finding the design variables to give an optimum performance of a mobile
display (Cochin, 1980). The sign uses a windup oscillating device to attract shoppers to a
shop window. The mechanism is made up of two steel spheres on either end of a rod and is
hung on a thin wire that can be twisted many times without breaking. At the start of the
business day, the device is wound up 4000° which is approximately 11 revolutions. A design
is desired such that the motion of the display, at the end of the business day, decays to

approximately 10°. A diagram of the device is shown below

444/
Torsion Wire
—
(Spring)
r=0.5m
Don’t Shop
Vacillate Here
Sphere
M=1kg

Figure 4-9 showing the mechanism of a windup oscillating display sign.

The system is torsional with a torsion spring, K, being the thin wire. This wire connects the
rigid rod to ground. The system also has an initial displacement of 4000° and the equation of

the system is

0=0,e "

Whereazgwn,a)nz\/g,gz D and J =2Mr*.
J 2Jo,
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4.6.1 Simulation Results

The two design variables of interest are K — Nm/rad and r - m with constants M = 1kg, and 8,
=4000°. The angular displacement response of the system was observed fromt=0s to t =

30000s (8.3hr) using the following low, medium and high values of each design variable

plow 0.45 K 1.82x107*
rmed =1 0.495 K™ |=]2.00x107*
- high 0.54 K igh 220x107*

The time history responses at the nine design variable combinations were recorded and an

extract of these results are show in Z

(4000 3656.20 334190 ... 4.7271]

4000 3623.8 3283 ... 2427
Z=14000 3588.2 32188 ... 1.571

14000 3709.3 34398 ... 13.952]

A plot of the experimental responses are shown in Figure (4-10)
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Figure 4-10 showing the experimental responses for the Display Sign

Now, a business day for this problem is considered to be 30000s; therefore, an optimal design
is required such that the angular displacement at this time is between 11° and 9° with a target
of 10°. The problem with the original design variables and tolerances is that too much
variability exists at the time of interest. Therefore, a set of design variables and tolerances has
to be found.

Like the servo example, SVD is applied to Z and metamodels are developed for the
significant columns of D. Initially, response surface models will be derived for the first four
columns of D and the R” value will be calculated at t = 30000s. If the calculated R” is found
to be acceptable, an RSM will be used for Robust Design. However, if R? indicated an
inadequate model, then a Kriging model will be used for design. R* at 30000s was found to
be 0.88. This value indicates that the RSM does not provide a very good model of the
experimental design at t = 30000s. Using the Kriging models, R* was found to be 1 meaning

that an exact model of the experimental design is achieved.
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4.6.2 Robust Design

At the time of interest, the upper and lower specifications are 11° and 9° respectively with a
target of 10°. The Kriging model will be used for design calculations since it provides a
better ‘fit’ of the experimental data than the response surface model. The normalized
sensitivities of each design variable at this time are v; = 13.0827 and v, =-7.5125 indicating
that the response is very sensitive to a change in either one of these design variables,
therefore, optimum means as well as tolerances are required.

min CT = CLQ + CP

subject to
1—®| - (C;U,t% - :uz,t76 ) —® - (:uz,t76 - gL,t76) >0.97
Gz,t76 Gz,t76
0.1<tol, <10

0.1<¢0l, <10
The optimum set of means and tolerances was then found to be

#, =0.5003, u, =2x107, 10l, =0.7807 and rol, =1.1338

and from a Monte Carlo simulation, the probability of conformance is 0.9794. A histogram of
the results from the Monte Carlo simulation is shown in Figure (4-11) and it is clear that the

responses fall within specifications with a mean of 10.
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Figure 4-11 showing a histogram and normal distribution fit of the observed data from Monte

Carlo simulation using the theoretical optimum means.
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4.7 Case Study 4 — Design of a Piano String

From Chapter 3, the velocity of a piano string is observed while varying the initial hammer
velocity, spring stiffness and the striking position of the hammer. For illustrative purposes,
suppose an optimum set of design variables is desired such that the response at particular time
steps meets some stated specifications. The responses obtained from the initial set of design

variable combinations are shown graphically in Figure 4-12.

5 A

String Velocity - m/s

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time - s -3

Figure 4-12 showing the responses at the training points from the simulation of the piano

string.

The initial means and variances of each design variable are

1y, 4.00 oo | | 1.33x107"

V1

u, |=[3.90x107 ol |=]1.69x107"
v2

V2

U 8.06x1072 ol 7.22x107°
v3

V3

where the variance is calculated from
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2 ( 1 Jz
30077
4.7.1 Design Specifications

Consider the times t = 0.0003187s and t = 0.004243s which correspond to the 17" and 214"
time steps respectively. The specifications at these times, stated below, are shown in Figure

(4-12)

Cray, =27 Cug, =33

Gy, =35 Sy, =42
The optimum means and tolerances of the three design variables are required to meet these
specifications. Consider, first, the specifications at t = 0.0003187s. To find the desired means

and tolerances, integrated design is used. The optimization problem is then
min C}7 (u,, iy, 115,201, ,t0l, , tol,)
subject to

Pr(F, . )<0.020

h7
where C;7 (yl , My, s, 101, tol, ,tol3) denotes the total cost at 0.0003187s and is a function of

the means and tolerances of the design variables. This cost is made up of the production and
loss of quality costs which for t = 0.003187s are

C, = ! + ! + !
tol tol tol

V1 V2 V3

CLQ = ( < (('UZJH _3)2 + 65,117)

33-27)
where the scrap cost, C, is assumed to be $1 and the mean and variance of the response at t;;
is calculated using equations (4.14) and (4.15). The production cost takes the reciprocal

model form with the assumptions of a=0and b= 1.

The normalized sensitivities of each design variable at this time are

v, =1.0616
v, = 0.0054
vy =0.0217
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indicating that v, has a very small effect on the string velocity. If v, is kept constant, the

problem becomes

min C}” (ul,y3,toll,tolz,tol3)

subject to

Pr(F, )<0.020

where C;7 (yl, s ,toll,tolz,tol3) is the total cost as a function of the means and tolerances of

v, and vs.

4.7.2 Multiple Responses

The optimum design is now found to meet specifications at the 17" and 214™ time steps when

the means and tolerances of v, and v; are unknown.
Total Cost, C, =C7 + Cp*
: yalivi 14
min C, =C;7 + Cy

subject to

P(F, )<0.02

7

P(F,  )<0.02

014

Optimum design at v; = 3.8586, v, = 3.90 x 107, v; = 0.1146, tol, = 1.6086, tol, = 10 and tol;
=9.4375. Using a Monte Carlo simulation and 5000 runs, at t = 0.003187s, the probability of

conformance is

Pr(s, )=0.98

and at 0.004243s,

Pr(s,, )=0.99

D14

Histograms of the data obtained from the Monte Carlo simulation at these times using the
optimum means and tolerances of the design variables are shown in Figures (4-13) and (4-
14). From these figures the spread of the observed responses fall within the specifications

with means of approximately 3.26 and 3.65 and the 17" and 214™ time steps respectively.
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Figure 4-13 showing a histogram of the data obtained from Monte Carlo at the 17" time step

using the optimum values of the means and tolerances of the design variables.

250

200} 1 /’5\ ]
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Frequency
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0
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Figure 4-14 showing a histogram of the data obtained from Monte Carlo at the 214" time step
using the optimum values of the means and tolerances of the design variables.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Previous research focussed on using metamodelling for fitting experimental results and
making predictions at some arbitrary set of design variables. However, very little research has
been found on the use of metamodelling in the design of dynamic systems where
specifications at certain times are desired. This research has introduced a method of
combining Singular Value Decomposition (SVD) and Metamodelling in order to find the set
of design variables that resulted in an optimum dynamic system given specifications at
individual time steps. The practicality of two popular metamodels, Response Surface Models
(RSM) and Kriging models, has been compared by way of several case studies. The findings
of this research will now be presented.

The dynamic response of some system has been broken into discrete time steps and
recorded in a matrix. Normally, to find responses at multiple design variable sets,
metamodels are developed for each time step. However, for cases where the number of time
steps is of the order of one hundred and above, finding a metamodel for each step will take a
very long time. To address this problem, SVD has been applied to factorize this matrix into
matrices containing information in parameter- and time-space. Metamodels are then found
only for the columns of the matrix in parameter-space, D. The response at any specific time is
then found from the product of the new row in D, corresponding to v, with the matrix of
time-dependent information. Furthermore, the numbers found in the columns of D are
decreasing in magnitude. The coefficient of determination has been used to show how a few

columns of D can also achieve acceptable results in fitting the experimental responses.
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This feature of SVD has been used for designing a system where the optimum
performance depends on specifications at certain times. Several case studies have been used
to illustrate the theory of combining SVD with metamodelling for robust design applications.
In order to determine which metamodel fit the experimental results more accurately the
statistical coefficient of determination, R?, was calculated. If R? indicated that the RSM
provided a suitable fit of the experimental response, the RSM was used for robust design. For
systems with multiple design variables, normalized sensitivities were calculated for each
design variable and the design variable with a negligible effect on the response (of order 107)
was considered constant when applying robust design calculations.

Also, the comparison of the dynamic response at some arbitrary set of design
variables calculated using both metamodels with the results obtained from the actual
simulation served as a method of evaluating the metamodel performance. For a system
containing a simple response, although the Kriging model fit the experimental results exactly
according to the R” value, the RSM is also quite acceptable. For the same system, predictions
at v, using the Kriging model were not much better than those obtained from the RSM.
However, for a system with a ‘noisy’ response, the advantage of the Kriging model in better
fitting the data is more clearly seen. A plot of the response showed that in some areas, the

RSM smoothes the data rather than modelling it exactly.

5.2 Conclusion

Overall, SVD with metamodelling helps to greatly reduce the number of calculations
required by reducing the number of columns over which interpolation is needed. This method
is very helpful when using a Monte Carlo simulation to generate responses at a large sample
of design variable combinations. Also, for robust design at specific time steps, for a system
with a simple dynamic response, as in the case of the servo, a simple RSM is suitable for
design since calculations required to estimate Kriging model parameters are quite demanding.
However, for a “noisy” response like that of the velocity of the piano string, the iterative
process in estimating Kriging model parameters is offset by very accurate results in fitting the
experimental data and, thus, the Kriging model is preferred for robust design calculations.

More importantly, this method of using SVD to separate a matrix of dynamic response

into parameter- and time-space was found to be very helpful for robust design since the

99



Chapter 5 — Discussion and Conclusion

metamodel, normalized sensitivities, first and second moments and probability of

conformance can be easily found.

5.3 Future Work

Future work includes

e comparing the predictions obtained using different correlation functions in the

Kriging metamodel

e applying this methodology for the case of multiple responses and for situations where

there are specifications at every time step
e using first-order reliability method (FORM) as opposed to a Monte Carlo simulation

e applying this methodology to cases where specifications at every time step have to be

met
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Appendix A

R’ calculated at each time step using the RSM and Kriging model.

Time 0.000 0.020 | 0.0398 | 0.0598 | 0.0797 | 0.0996 | 0.1195

x10?

RSM 0.000 0.429 | 0.3190 | 0.0230 | 0.5482 | 0.9800 | 0.9947
Kriging | 1.000 0.996 | 0.9979 | 0.9981 | 0.9933 | 0.9964 | 0.9994

Time | 0.1394 | 0.159 0.179 | 0.1992 | 0.2191 | 0.2390 | 0.2590

x107

RSM | 0.9891 | 0.996 0.999 | 0.9996 | 1.0000 | 1.0000 | 1.0000
Kriging | 0.9924 | 0.997 0.999 | 0.9997 | 0.9999 | 0.9999 | 0.9999

Time | 0.2789 | 0.2988 | 0.319 0.339 | 0.3586 | 0.3785 | 0.3984

x10?

RSM | 0.9999 | 0.9999 | 1.000 0.999 | 0.9995 | 0.9994 | 0.9975
Kriging | 0.9999 | 0.9999 | 1.000 1.000 | 1.0000 | 0.9998 | 1.0000

Time | 0.4183 | 0.4383 | 0.4582 | 0.478 0.498 | 0.5180 | 0.5379

x107

RSM | 0.9989 | 0.9879 | 0.9926 | 0.990 0.953 | 0.9679 | 0.9909
Kriging | 0.9999 | 1.0000 | 0.9995 | 1.000 1.000 | 0.9998 | 0.9998

Time | 0.5578 | 0.5777 | 0.5976 | 0.6175 | 0.638 0.657 | 0.6773

x10?

RSM | 0.9390 | 0.8660 | 0.9152 | 0.9740 | 0.988 0.965 | 0.9055
Kriging | 0.9999 | 0.9995 | 0.9996 | 0.9999 | 1.000 0.999 | 0.9996

Time | 0.6972 | 0.7171 | 0.7371 | 0.7570 | 0.7769 | 0.797 0.817

x107

RSM | 0.8460 | 09128 | 0.9839 | 0.9952 | 0.9912 | 0.992 0.986
Kriging | 0.9994 | 0.9994 | 0.9996 | 0.9995 | 0.9991 | 0.999 0.999
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Time
10° 0.8367 | 0.8566 0.8765 0.8964 0.9163 0.9363 0.956
X
RSM 0.9677 0.9152 0.8513 0.8752 0.9601 0.8991 0.608
Kriging | 0.9994 | 0.9995 0.9992 0.9983 0.9974 0.9976 0.999
Time
107 0.976 0.9960 1.0159 1.0359 1.0558 1.0757 1.0956
X
RSM 0.340 0.3248 0.4630 0.3619 0.4918 0.6549 0.8169
Kriging 0.999 0.9975 0.9917 0.9984 0.9994 0.9998 1.0000
Time
107 1.116 1.136 1.1554 1.1753 1.1952 1.2151 1.2351
X
RSM 0.935 0.982 0.9691 0.9195 0.8462 0.7528 0.6696
Kriging 1.000 0.999 0.9997 0.9999 1.0000 0.9998 0.9990
Time
107 1.2550 1.275 1.294 1.3147 1.3347 1.3546 1.3745
X
RSM 0.7094 0.885 0.976 0.9355 0.8738 0.8688 0.9236
Kriging | 0.9974 0.997 0.997 0.9982 0.9989 0.9992 0.9994
Time
107 1.3944 1.4143 1.434 1.4542 1.4741 1.4940 1.5139
X
RSM 0.9774 | 0.9666 0.924 0.9221 0.9695 0.9695 0.8563
Kriging | 0.9995 | 0.9996 0.999 0.9994 0.9991 0.9987 0.9986
Time
107 1.5339 1.5538 1.5737 1.5936 1.6135 1.6335 1.6534
X
RSM 0.7394 | 0.6899 0.7030 0.7601 0.8440 0.9307 0.9787
Kriging | 0.9990 | 0.9995 0.9998 1.0000 0.9997 0.9993 0.9990
Time
107 1.6733 1.6932 1.713 1.7331 1.753 1.7729 1.7928
X
RSM 0.9577 0.8784 0.775 0.6795 0.603 0.5591 0.5899
Kriging | 0.9989 | 0.9991 0.999 0.9999 0.999 0.9995 0.9987
Time
107 1.8127 1.8327 1.8526 1.873 1.8924 1.9124 1.9323
X
RSM 0.7185 | 0.8521 0.9253 0.959 0.9751 0.9842 0.9895
Kriging | 0.9986 | 0.9993 0.9996 0.999 0.9998 0.9997 0.9997
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Time
10° 1.9522 1.9721 1.9920 2.0120 2.032 2.0518 2.0717
X
RSM 0.9931 0.9955 0.9902 0.9596 0.883 0.7461 0.5416
Kriging | 0.9998 | 0.9999 0.9994 0.9994 0.999 0.9983 0.9986
Time
107 2.0916 | 2.1116 2.1315 2.1514 2.1713 2.1912 2.2112
X
RSM 0.3252 0.1901 0.1393 0.1523 0.2522 0.4414 0.6551
Kriging | 0.9988 | 0.9993 0.9986 0.9984 0.9974 0.9917 0.9886
Time
107 2.2311 2.2510 2.2709 2.2908 2.311 2.3307 2.3506
X
RSM 0.8385 | 0.7689 0.4759 0.2963 0.170 0.0529 0.0837
Kriging | 0.9934 | 0.9948 0.9952 0.9935 0.992 0.9954 0.9980
Time
107 2.3705 | 2.3904 2.4104 2.4303 2.4502 2.470 2.4900
X
RSM 0.2419 | 0.3624 0.4552 0.6053 0.8151 0.919 0.9392
Kriging | 0.9963 | 0.9980 0.9991 0.9985 0.9965 0.997 0.9956
Time
107 2.5100 | 2.5299 2.550 2.5697 2.5896 2.6096 2.630
X
RSM 0.9535 | 0.9589 0.932 0.8504 0.6646 0.5296 0.620
Kriging | 0.9964 | 0.9983 0.992 0.9911 0.9847 0.9813 0.997
Time
107 2.6494 | 2.6693 2.6892 2.7092 2.7291 2.7490 2.7689
X
RSM 0.7714 | 0.9076 0.9456 0.5869 0.2358 0.8016 0.9096
Kriging | 0.9942 0.9920 0.9945 0.9667 0.9784 0.9864 0.9801
Time
107 2.7888 | 2.8088 2.8287 2.8486 2.8685 2.8884 2.908
X
RSM 0.8373 | 0.4610 0.4635 0.8460 0.9533 0.9548 0.824
Kriging | 0.9926 | 0.9852 0.9647 0.9909 0.9978 0.9940 0.988
Time
107 2.9283 | 2.9482 2.9681 2.9880 3.0080 3.0279 3.0478
X
RSM 0.2735 | 0.6074 0.8714 0.9535 0.9772 0.9666 0.8989
Kriging | 0.9860 | 0.9943 0.9979 0.9980 0.9985 0.9994 0.9977
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Time
10° 3.068 3.0876 3.1076 3.1275 3.1474 3.1673 3.1873
X
RSM 0.606 0.5079 0.8229 0.9207 0.9567 0.9726 0.9811
Kriging 0.992 0.9915 0.9973 0.9977 0.9970 0.9978 0.9990
Time
107 3.2072 3.227 3.2470 3.2669 3.2869 3.3068 3.3267
X
RSM 0.9868 0.989 0.9878 0.9891 0.9908 0.9888 0.9857
Kriging | 0.9992 0.999 0.9998 0.9994 0.9985 0.9990 0.9986
Time
107 3.347 3.3665 3.3865 3.4064 3.4263 3.4462 3.4661
X
RSM 0.983 0.9690 0.9560 0.9713 0.9856 0.9796 0.9821
Kriging 0.994 0.9930 0.9970 0.9949 0.9925 0.9970 0.9994
Time
107 3.4861 3.506 3.5259 3.5458 3.5657 3.5857 3.6056
X
RSM 0.9908 0.989 0.9768 0.9711 0.9780 0.9726 0.9402
Kriging | 0.9976 0.995 0.9953 0.9963 0.9954 0.9929 0.9927
Time
107 3.6255 | 3.6454 3.665 3.6853 3.7052 3.7251 3.7450
X
RSM 0.9316 | 0.9575 0.968 0.9693 0.9784 0.9903 0.9920
Kriging | 0.9906 | 0.9860 0.989 0.9966 0.9982 0.9959 0.9962
Time
107 3.7649 | 3.7849 3.8048 3.825 3.8446 3.8645 3.8845
X
RSM 0.9890 | 0.9905 0.9926 0.983 0.9478 0.8908 0.8382
Kriging | 0.9986 | 0.9987 0.9959 0.994 0.9947 0.9924 0.9600
Time
107 3.9044 | 3.9243 3.9442 3.9641 3.9841 4.0040 4.0239
X
RSM 0.8177 0.8396 0.8852 0.9385 0.9758 0.9881 0.9842
Kriging | 0.9636 | 0.9928 0.9983 0.9983 0.9985 0.9990 0.9993
Time
107 4.0438 | 4.0637 4.0837 4,104 4.1235 4,143 4.1633
X
RSM 0.9704 | 0.9575 0.9630 0.979 0.9911 0.997 0.9988
Kriging | 0.9985 | 0.9982 0.9988 0.999 0.9992 0.999 0.9997
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Time 4.1833 4.2032 4.2231 4.2430 4.2629 4.2829 4.303
x103

RSM 0.9946 0.9847 0.9750 0.9730 0.9798 0.9896 0.992
Kriging 0.9997 0.9994 0.9993 0.9996 0.9994 0.9994 0.999
Time 4.3227 4.3426 4.3625 4.3825 4.4024 4.4223 4.4422
x10°

RSM 0.9845 0.9802 0.9846 0.9852 0.9659 0.9343 0.9184
Kriging 0.9990 0.9993 0.9995 0.9986 0.9984 0.9989 0.9991
Time 4.4622 4.4821 4,502 45219 45418 45618 4.5817
x103

RSM 0.9313 0.9614 0.981 0.9578 0.8716 0.7467 0.6791
Kriging 0.9994 0.9997 0.999 0.9988 0.9988 0.9992 0.9994
Time 4.6016 4.6215 4.6414 4.6614 4.6813 4,701 47211
x103

RSM 0.7403 0.8500 0.9328 0.9769 0.9819 0.949 0.8875
Kriging 0.9995 0.9996 0.9996 0.9995 0.9994 0.999 0.9995
Time 4.7410 4.7610 4.7809 4.8008 4.8207 4.8406 4.8606
x103

RSM 0.8116 0.7404 0.7249 0.8033 0.9059 0.9597 0.9750
Kriging 0.9991 0.9982 0.9971 0.9981 0.9981 0.9984 0.9991
Time 4.8805 4.900 4.9203 4.940 4.9602 4.9801 5.0000
x10°

RSM 0.9805 0.984 0.9776 0.959 0.9407 0.9374 0.9487
Kriging 0.9982 0.998 0.9986 0.9989 0.9988 0.9987 0.9975
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Appendix B

Training points used for the position control servo

tr

[ 0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.0011
0.0011
0.0011
0.0011
0.0011
0.0011
0.0011
0.0011
0.0011
0.0012
0.0012
0.0012
0.0012
0.0012
0.0012
0.0012
0.0012

10.0012

0.008
0.008
0.008
0.0088
0.0088
0.0088
0.00968
0.00968
0.00968
0.008
0.008
0.008
0.0088
0.0088
0.0088
0.00968
0.00968
0.00968
0.008
0.008
0.008
0.0088
0.0088
0.0088
0.00968
0.00968
0.00968

106

.
4.4
4.84
4
4.4
4.84
4
4.4
4.84
4
4.4
4.84

4.4
4.84

4.4
4.84

4.4
4.84

4.4
4.84

4.4

4.84 |

27x3
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Appendix C

R’ calculated at each time step, for the Servo Example (three random design variables and

Angular Position Response), using both metamodels.

Time 0.005 | 0.010 | 0.015 0.020 | 0.025 | 0.030 | 0.035
RSM 0.997 | 0.997 | 0.998 0.999 | 0998 | 0.991 | 0.961
Kriging 1 1 1 1 1 1 1
Time 0.040 | 0.045 | 0.050 0.055 | 0.060 | 0.065 | 0.070
RSM 0.755 | 0.525 | 0.925 0.986 | 0997 | 0.988 | 0.950
Kriging 1 1 1 1 1 1 1
Time 0.075 | 0.080 | 0.085 0.090 | 0.095 | 0.100
RSM 0.816 | 0.310 | 0.436 0.873 | 0.970 | 0.989
Kriging 1 1 0.9999 | 0.9999 1 0.9998
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The coefficient of determination calculated at each time step, using both metamodels, for the

Grocery Sign example.
Time 0 400 800 1200 1600 2000 2400 2800
RSM 1 0.992 | 0993 | 0.994 | 0.995 | 0.996 | 0.997 | 0.998
Krig 1 1 1 1 1 1 1 1
Time | 3200 3600 4000 4400 4800 5200 5600 6000
RSM | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999
Krig 1 1 1 1 1 1 1 1
Time | 6400 6800 7200 7600 8000 8400 8800 9200
RSM | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.997 | 0.996 | 0.995
Krig 1 1 1 1 1 1 1 1
Time | 9600 | 10000 | 10400 | 10800 | 11200 | 11600 | 12000 | 12400
RSM | 0.995 | 0.994 | 0993 | 0991 | 0.990 | 0.989 | 0.988 | 0.986
Krig 1 1 1 1 1 1 1 1
Time | 12800 | 13200 | 13600 | 14000 | 14400 | 14800 | 15200 | 15600
RSM | 0985 | 0.983 | 0.981 | 0.980 | 0.978 | 0976 | 0974 | 0.972
Krig 1 1 1 1 1 1 1 1
Time | 16000 | 16400 | 16800 | 17200 | 17600 | 18000 | 18400 | 18800
RSM | 0970 | 0.968 | 0.966 | 0.964 | 0.961 | 0.959 | 0.957 | 0.954
Krig 1 1 1 1 1 1 1 1
Time | 19200 | 19600 | 20000 | 20400 | 20800 | 21200 | 21600 | 22000
RSM | 0952 | 0.949 | 0947 | 0.944 | 0.941 | 0.939 | 0.936 | 0.933
Krig 1 1 1 1 1 1 1 1
Time | 22400 | 22800 | 23200 | 23600 | 24000 | 24400 | 24800 | 25200
RSM | 0930 | 0.928 | 0.925 | 0922 | 0919 | 0916 | 0913 | 0.910
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Krig 1 1 1 1 1 1 1 1
Time | 25600 | 26000 | 26400 | 26800 | 27200 | 27600 | 28000 | 28400
RSM | 0907 | 0.904 | 0.901 | 0.898 | 0.895 | 0.891 | 0.888 | 0.885
Krig 1 1 1 1 1 1 1 1
Time | 28800 | 29200 | 29600 | 30000

RSM | 0.882 | 0.879 | 0.876 | 0.872

Krig 1 1 1 1

109



References

References

Askenfelt, A. and Chaigne, A., 1994, “Numerical simulations of piano strings. IL
Comparisons with measurements and systematic exploration of some hammer-string

parameters”, Journal of the Acoustical Society of America, Vol. 95 (3), pp. 1631 — 1640.

Badiru, Adedeji B., 2006, Handbook of Industrial and Systems Engineering, CRC Press
Taylor and Francis Group, USA.

Barton, R.R., 1998, “Simulation Metamodels”, Proceedings of the 1998 Winter Simulation

Conference.

Bensa, J., Gipouloux, O. and Kronland-Martinet, R., 2005, “Parameter fitting for piano sound
synthesis by physical modelling”, Acoustical Society of America, Vol. 118, pp. 495 — 504.

Berrar, D.P., Dubitzky, W. and Granzow, M., 2003, A Practical Approach to Microarray Data

Analysis, Kluwer Academic Publishers, United States of America.

Chandrashekar, M. and Savage, G.J., 1997, Engineering Systems: Modelling, Analysis and

Design, University of Waterloo, Canada.

Cochin, L., 1980, Analysis and Design of Dynamic Systems, Harper and Row Publishers Inc.,

United States of America.

Jin, R., Du, X. and Chen, W., 2003, “The use of metamodelling techniques for optimization
under uncertainty”, Structural Multidisciplinary Optimization, Vol. 25, pp. 99-116.

Kleijnen, J.P.C. and Van Beers, W.C.M., 2004, “Kriging Interpolation in Simulation: A
Survey”, Proceedings of the 2004 Winter Simulation Conference, pp. 113-121.

Kleijnen, J.P.C. and Van Beers, W.C.M., 2004, “Application-driven sequential designs for
simulation experiments: Kriging metamodeling”, Journal of the Operational Research

Society, Vol. 55, pp. 876-883.

Kleijnen, J.P.C., and Van Beers, W.C.M, 2003, “Kriging for interpolation in random
simulation”, Journal of the Operational Research Society, Vol. 54, pp.255-262.

110



References

Leon, S.J., 1998, Linear Algebra with Applications, Prentice Hall Inc., United States of

America.

Martin, J.D. and Simpson, T.W., 2006, “A Methodology to Manage System-level Uncertainty
During Conceptual Design”, Journal of Mechanical Design, Vol. 128, pp. 959-968.

Martin, J.D. and Simpson, T.W., “A Study on the use of Kriging Models to Approximate
Deterministic Computer Models”, Proceedings of DETC’03 ASME 2003 Design
Engineering Technical Conferences and Computers and Information in Engineering

Conference.

Martin, J.D. and Simpson, T.W., 2005, “Use of Kriging Models to Approximate
Deterministic Computer Models”, 4144 Journal, Vol. 43 (4), pp. 853-863.

Montgomery, D.C., 2005, Design and Analysis of Experiments, John Wiley & Sons Inc.,

United States of America.

Park, S.H., 1996, Robust Design and Analysis for Quality Engineering, Chapman and Hall,
London, UK.

Rijpkema, J.J.M, Etman, L.F.P and Schoofs, A.J.G., 2001, “Use of Design Sensitivity
Information in Response Surface and Kriging Metamodels”, Optimization and

Engineering, Vol. 2, pp. 469-484.

Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P., 1989, “Design and Analysis of
Computer Experiments”, Statistical Science, Vol. 4 (4), pp. 409-435.

Sakata, S., Ashida, F. and Zako, M, 2003, “Structural optimization using Kriging
approximation”, Computer methods in applied mechanics and engineering, Vol. 192, pp.
923-939.

Savage, G. J., 2007, Model-Based Robust Design, Department of Systems Design

Engineering, University of Waterloo.

Salvendy, G., 1992, Handbook for Industrial Engineers, ond Edition, John Wiley and Sons
Inc, USA

111



References

Simpson, T.W., Mauery, T.M., Korte, J.J. and Mistree, F., 2001, “Kriging Models for Global
Approximatioin in Simulation-Based Multidisciplinary Design Optimization”, Al4A
Journal, Vol. 39 (12), pp. 2233-2241.

Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001, “Metamodels for
Computer-based Engineering Design: Survey and recommendations”, Engineering with

Computers, Vol. 17, pp. 129-150.

Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K., 2002, Probability & Statistics for

Engineers & Scientists, Prentice Hall, United States of America.

Wehrwein, D. and Mourelatos, Z.P., 2006, “Reliability-Based Design Optimization of
Vehicle Drivetrain Dynamic Performance”, Submitted for publication in: International

Journal of Product Development.

Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P. and Wang, B.P., 2005, “Metamodeling
Development for Vehicle Frontal Impact Simulation”, Transactions of the ASME Journal

of Mechanical Design, Vol. 127, pp. 1014-1020

Yue, H. and Jian, W. 2002, “A New Probabilistic Robust Optimization method”, Research
Institute of Automation, Vol. 37, pp. 2205 - 2209

112



Glossary of Terms

Glossary of Terms

Design Variable — input variable that affects the output of a system

Design Variable Combination or Design Variable Set — set of two or more design
variables used to generate one response. E.g. Angular response when v; = 0.0011 and v, =

0.0088 is a design variable combination
Dynamic System — a system in which the response changes over time
Experimental design — design consisting of training points and experimental responses.

Experimental responses — set of responses obtained from the simulation at the training

points.

FOS Factors or first-order sensitivity factors — first derivative of a function with respect to a

particular design variable

Integrated Design — robust design technique used to find the means and tolerances of the

design variables to maximize the probability of conformance

Kriging — type of metamodel initially used as an interpolation method in spatial estimation

Metamodelling — process of developing metamodels to fit experimental data
Metamodel — a simple model used to fit the experimental data.

Normalized Sensitivities or Sensitivities — gives the percentage change of the response for a

1% change of a particular design variable

Parameter Design — robust design technique used to find the means of the design variables

at constant tolerances to maximize the probability of conformance

PCA or Principal Component Analysis — a statistical process that groups individual variables
into separate components of factors and uses these rather than individual variables as a basis

for measuring similarities between areas. (Badiru, 2006).
Response — output of a system

Response Time History — response of a system recorded at consecutive time steps
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Glossary of Terms

RSM or Response Surface Model — otherwise known as regression model; a type of

metamodel common in statistical applications for fitting experimental data
SVD or Singular Value Decomposition — matrix decomposition technique
Time Step — a discrete instance in time

Training points — set of initial design variables or design variable combinations used for

generating initial response data from the simulation
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