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Abstract

Designers use simulations to observe the behaviour of a system and to make design decisions 

to improve dynamic performance. However, for complex dynamic systems, these simulations 

are often time-consuming and, for robust design purposes, numerous simulations are required 

as a range of design variables is investigated. Furthermore, the optimum set is desired to meet 

specifications at particular instances in time. In this thesis, the dynamic response of a system 

is broken into discrete time instances and recorded into a matrix. Each column of this matrix 

corresponds to a discrete time instance and each row corresponds to the response at a 

particular design variable set. Singular Value Decomposition (SVD) is then used to separate 

this matrix into two matrices: one that consists of information in parameter-space and the 

other containing information in time-space. Metamodels are then used to efficiently and 

accurately calculate the response at some arbitrary set of design variables at any time. This 

efficiency is especially useful in Monte Carlo simulation where the responses are required at 

a very large sample of design variable sets. This work is then extended where the normalized 

sensitivities along with the first and second moments of the response are required at specific 

times. Later, the procedure of calculating the metamodel at specific times and how this 

metamodel is used in parameter design or integrated design for finding the optimum 

parameters given specifications at specific time steps is shown. In conclusion, this research 

shows that SVD and metamodelling can be used to apply probabilistic robust design tools 

where specifications at certain times are required for the optimum performance of a system.
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Nomenclature

Common English Characters

f(v,β) = function in terms of design variables and model parameters

 v
nt

f = metamodel at the nth time step

 v
nt

g  = limit-state function at the nth time step

p = number of design variables

sdom = dominant singular values of S

tn = nth time step

ivtol = tolerance of vi

vi = design variable i  

iv = mean of design variable i

nom
iv  = nominal value of ith design variable

wi = weight of response i in Kriging interpolation.

 k
i

j
i xx   = difference between training points of design variable i.

ym(v) = metamodel found for the mth column of D

 0ˆ vmy = estimate for v0 at the mth column of D 

z(vm,tn) = response at the mth design variable combination at the nth time step.
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Capital English Characters

CLQ = loss of quality cost

Cp = production cost

CS = scrap cost

CT = total cost

 
nt

SPr  = probability of success or conformance at nth time step

i

n

v
tS  = normalized sensitivity at nth time step for vi

Common Bold English Characters

dm = mth column of D

v – vector of design variables

v0 = vector containing the arbitrary design variable combination

m1y = row vector of all metamodels found for the m columns of D

 0ˆ vy  = row estimate of D corresponding to v0.

z(v0) = dynamic response at v0

Capital Bold English Characters

Cv = matrix of covariances

Ε = vector of experimental response residuals

S = matrix of singular values found from Singular Value Decomposition

iv
tS  = normalized sensitivities over time for vi

X = matrix used in the calculation of model parameters
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Xtr = matrix of design variables used to generate initial experimental design otherwise known 

as the ‘training points’.

VT = matrix containing information from Z in time-space found from Singular Value 

Decomposition

Z = m x n matrix containing all the response time history information obtained from 

Simulations

Greek Characters

 
ntz 1,  = 1 x n matrix containing the mean of the response at each of the n time steps

 
ntz 1

2
,  = 1 x n matrix containing the variance of the response at each of the n time steps

ntz, = mean of the response at the nth time step

iv  = mean of the ith design variable

2
iv  = variance of the ith design variable

ntL, = lower limit specification at tn

ntU , = upper limit specification at tn

Bold Greek Characters

βi = model parameters used in Response Surface Models 

(γ*(v)) = function in v of the correlation between some arbitrary set of design variables and 

the training points.

(γ*(v0)) = vector containing the covariance between v0 and the training designs m
ji vv 1  for a 

particular design variable.

θi = correlation function parameters used in Kriging model
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Γ = correlation matrix, used in Kriging, representing the correlation between all design sites 

for all design variable found using a specified correlation function.

Other

Tv

y




 = matrix of first derivatives of all metamodels of D.

 
i

t

v

f


 v

 = first derivative of the metamodels over time with respect to the ith design variable.
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Chapter 1

Introduction

1.1. Problem Statement

Designers are often required to analyze a system in order to make design decisions. However, 

most real-world systems are quite complex and their use in experiments is financially 

undesirable. Due to these complications, the designer then develops a computer simulation 

model of the system. Although simulations are quite helpful and are cheaper than physical 

models of the real system, even these computer models may be too complex for analysis and 

for the implementation of robust design techniques. In order to reduce these complexities, 

analysts require less complicated but accurate models of the original system.

Furthermore, in search of the design variables that result in the optimum performance 

of a dynamic system, the response of the system over time is desired at different 

combinations of the design variables. Now suppose the designer developed a simulation of a 

real system, segregates the continuous response of the dynamic system into discrete time 

steps and records the initial results into a matrix where each column represents a time step 

and each row represents a particular design variable combination. Even if the analyst finds 

simple models to fit these initial results at each time, interpolation at each time step to find 

the response at some arbitrary design variable set can become a tedious process especially if a 

large number of time steps is involved. In addition, for the purpose of design where an 

optimum result is desired, finding the response at many design variable combinations in a 

Monte Carlo simulation becomes tedious. Therefore, some method must be found for fast and 

accurate interpolation. 
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Also, the responses at particular times are important when finding the optimum 

design of a dynamic system such as the ‘settling’ or ‘rise’ time. Consider Figure (1-1) where 

the dynamic response of some system is recorded at various design variable sets. An optimum 

system is required such that the responses at t1 and t2 meet some desired specifications. At t1, 

the analyst may be interested in limiting the overshoot and at t2 ensuring the response ‘settles’ 

at some specific target or within a specific range may be important. A method is therefore 

needed to easily pick various time steps and perform robust design such that specifications at 

those times are met.

Figure 1-1 showing the dynamic response of some arbitrary systems at various design 

variable sets.

t
t1 t2
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1.2. Objective

In order to address the problems mentioned, the objectives of this work are

 To develop models in order to simplify complex simulation models

 To find a technique in which interpolation can be quickly performed and can be 

extended for the purposes of design.

 To apply sensitivity analysis and probabilistic robust design to find optimum 

parameters of dynamic systems given specifications at certain discrete times.

1.3. Methodology 

Before achieving the objectives stated, some research is done to find the mathematical 

principles and concepts that will be applicable. Among these, the concepts of 

‘metamodelling’ and the characteristic of singular value decomposition (SVD) to separate a 

matrix of response time histories into parameter and time-space is first presented. Then, this 

feature of SVD is combined with metamodelling to allow quick and accurate interpolation of 

the original matrix to find the time history response at an arbitrary design variable set. This 

efficient method of interpolation ultimately becomes useful for generating the response at a 

large set of arbitrary design variable combinations as in the case of a Monte Carlo simulation. 

Furthermore, since parameter information and time information are separated, picking 

specific time steps for robust design methods to be applied is enabled.

In Chapter 2, a brief description of the concept of ‘metamodelling’ and the 

mathematical theory of two types of metamodels that are used during the course of this work 

is presented. The recent work in using SVD to partition a matrix, consisting of response time 

histories, into parameter and time space is introduced. Some research is also presented to 

show how other authors have used metamodelling in their work and the comparison of 

Kriging with Regression Models. Furthermore, the various tools of robust design, sensitivity 

analysis techniques and the use of the Taylor series expansion to find first and second 

moments of the response are presented.
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Chapter 3 shows how SVD can be combined with metamodelling to reduce 

interpolation calculations. Three case studies are used to illustrate the theory. In each of these 

cases, the experimental results are arranged into a matrix of dynamic responses at various 

design variable sets. SVD is then applied to this matrix thus separating the matrix into three 

matrices, two of which are parameter-dependent and the last being time-dependent. The two 

parameter-dependent matrices are then multiplied and metamodels are developed for the 

columns of this matrix. Two metamodelling techniques, the Spatial Correlation Model 

(Kriging) and the Response Surface Model (RSM), are then used and the results obtained 

from each are recorded and compared. Along with predictions at arbitrary design variable 

sets, the statistical coefficient of determination is calculated as a measure of comparing the 

two metamodelling techniques in fitting the experimental data.

In Chapter 4, the procedure of using SVD to calculate the normalized sensitivities 

and first and second moments of the response at each time is shown. In addition, SVD and 

metamodelling is combined with robust design tools where specifications at certain times are 

given. Case studies are used to illustrate these ideas. For each case study, the coefficient of 

determination is calculated to choose the more suitable metamodel to be used for robust 

design.  A Monte Carlo simulation is then used to find the probability of conformance given 

specifications at some important time and, if necessary, improvements to this probability will 

be made through parameter design or integrated design. For cases with multiple random 

design variables, normalized sensitivities of each design variable are calculated at the time of 

interest. 

Chapter 5 then presents a discussion of the results obtained and the problems that 

arose. A brief discussion of the suitability of the Kriging Model and the Response Surface 

Model for use in robust design is also given.
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Chapter 2

Literature Review and Theory

Although much research has been done in maximizing the performance or improving the 

quality of a system through robust design techniques, research in the design of a dynamic 

system where specifications at certain periods of time have to be met is quite young. This 

chapter will first present the mathematical theories of Singular Value Decomposition (SVD), 

metamodelling and robust design techniques for efficient design of a dynamic system. The 

two metamodels, Kriging and Response Surface Models, will be used for comparison later in 

this thesis; therefore, their respective mathematical theories of general model form and 

estimating model parameters will be presented. A brief description on the work of previous 

authors in the comparison of these two methods and their uses in various fields will be 

presented. Later, the theory of normalized sensitivity and probability calculations will be 

presented along with robust design tools of parameter and integrated design. 

2.1 Singular Value Decomposition 

Consider the m x n matrix, Z

     
     

     
nmnmmm

n

n

tvztvztvz

tvztvztvz

tvztvztvz























,,,

,,,

,,,

21

22212

12111









Z

where  nm tvz ,  represents the response at the mth design variable combination and at the nth

time step. The rows of Z represent the dynamic response at the various design variable 

combinations and each column corresponds to a particular time step. SVD factorizes Z into 

the product USVT where U is a column-orthogonal m x m matrix with each column being the 

left eigenvector of Z. VT is an orthogonal n x n matrix of the right eigenvectors of Z and form 
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an orthonormal basis for the response time histories of the various design variable 

combinations. 

TT
nnnmmm DVVSUZ   (2.1)

where D is a matrix obtained from the product of U and S. S is a diagonal matrix containing 

all singular values of Z where

021  nsss 





















ns

s

s


2

1

S

The magnitude of the singular values also provides a measure of how closely Z can be 

approximated by a matrix of smaller rank (Leon, 1998). The rank of a matrix is defined here 

as the number of linearly independent rows or columns. An interesting characteristic of SVD 

is its ability to factorize Z into parameter-space and time-space (Wehrwein and Mourelatos, 

2006). Although very little research was found on the application of this characteristic in 

design application, the use of SVD in principal component analysis (PCA) is fairly well 

known (Berrar D.P., Dubitzky, W. and Granzow, M., 2003 and Leon, S.J., 1998). In order to 

gain an appreciation of how SVD separates the matrix into time and parameter-space, 

reference is made to work done in the use of SVD and PCA for gene expression analysis

(Berrar, Dubitzky and Granzow, 2003). The theory presented in this work is applied to Z

consisting of dynamic responses.

One way to calculate the SVD is to first calculate VT and S by diagonalizing ZTZ 

(Berrar, D.P., Dubitzky, W. and Granzow, M., 2003)

TT VVSZZ 2 (2.2)

and then to calculate U as follows

1 ZVSU (2.3)
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The elements of the ith row of Z form the n-dimensional vector Gi referred to as the time 

history response of the ith design variable set and the elements of the jth column of Z form the 

m-dimensional vector aj referred to as the response profile of the jth time step. This response 

profile gives the responses at the various design variable combinations at the particular time 

step. If Z is conditioned by centering each column, then


i

T
ii

T GGZZ (2.4)

is proportional to the covariance matrix of the variables of Gi. A centered vector is one with 

zero mean value for the elements and the covariance matrix for a set of variables {zk} are 

given by cij = C(zi,zj). By equation (2.2), diagonalization of ZTZ yields VT, which also yields 

the principal components of Gi. So, the right eigenvectors found in VT are the same as the 

principal components of Gi. The eigenvalues of ZTZ are proportional to the variances of the 

principal components. The matrix US then contains the principal component scores, which 

are the parameter information in the space of principal components (Berrar, D.P., Dubitzky, 

W. and Granzow, M., 2003).

 In other words, the matrix US contains all the parameter-dependent information of Z

whilst VT contains all its time-dependent information and each row in D corresponds to the 

information of Z in parameter-space with respect to each design variable combination. In 

order to then find the parameter information of Z at some other design variable set, v0, a row 

in D is needed that corresponds to v0. The entire time-dependent response at v0 is then found 

by multiplying this new row by VT. This new row is calculated using metamodels.

Z(v0) = U(v0)S(v0)V
T = D(v0)V

T (2.5)

D is an m x m matrix and if n>>m, meaning the number of time steps involved is much larger 

than the number of design variable combinations, then fewer metamodels are derived. 

Metamodels can be developed for each time step and can be ultimately used in the calculation 

of the response at some arbitrary design variable combination. However, if a very large 

number of time steps are involved, developing a metamodel for each column of Z becomes 

extremely time-consuming especially if more complex metamodels are used. Hence, the 

above method can be employed.
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2.2 Metamodelling

Computer simulation models are normally used in design to model a real-life system in order 

to make decisions. These models are used because it is expensive to either construct 

prototypes of the real system or to even use these real systems in experiments; however, they 

may also be too complex for use in analysis and design. Therefore, simpler models of these 

simulation models, also known as metamodels, are still required. 

A metamodel is a model of the input/output function or a simple function that 

approximates the relationship between system performance and the controllable factors 

(Salvendy, and Kleijnen and Van Beers, 2004), and a simulation input–output model may be 

represented mathematically as (Barton, 1998)

 vfy 

where v is a vector of design variables. The major issues in metamodelling include: 

i) the choice of the function form for the metamodel

ii) the design of experiments

iii) the assessment of the adequacy of the fitted metamodel

Some popular examples of metamodels are splines, radial basis functions, neural networks, 

Kriging Models and Response Surface Models (Barton, 1998). Since this research will 

mainly focus on Response Surface and Kriging models, further details on the general 

functional form and calculation of model parameters will now be presented.

2.2.1 Response Surface Models (RSM)

Response Surface Models, sometimes known as regression models, are one of the most 

commonly used and simplest techniques used to generate metamodels. The construction of 

these models through regression techniques is well known from their use in fitting data from 

physical experiments in statistical applications. In RSM-construction, the response, y(v), is 

modelled as the realization of a stochastic variable (Montgomery, 2005 and Walpole, R.E., 

Myers, R.H., Myers, S.L. and Ye, K., 2002)

   βv,fy (2.6)



Chapter 2 – Literature Review

13

where f(v,β) is a function of the design variables and model parameters β with

 pvvv 21v  Tp 21β

and   is the error term.

When developing a RSM, the form of the relationship between the response and the 

independent variables is unknown and must be approximated. Usually, a low-order 

polynomial in some region of the independent variables is employed. If the response can be 

modelled well by a linear function of the independent variables, then a first-order model is 

used to approximate the function

  ppvvvy 22110 (2.7)

However, if there is curvature in the system, then a polynomial model of higher degree may 

be used





ji

jiij

p

i
iii

p

i
ii vvvvy 

1

2

1
0 (2.8)

The model parameters, β, are calculated using the ordinary least squares equation

  YXXXβ TT 1
 (2.9)

After calculating these model parameters, an estimate of the output at some arbitrary set of 

design variables,  0ˆ vy , is found from

   ,ˆ 00 vv fy  (2.10)

2.2.2 Spatial Correlation Models or Kriging Models

The spatial correlation metamodel, also known as the Kriging model, is another popular type 

of metamodel. Several recent researchers (Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, 

H.P., 1989) have developed a spatial correlation parametric regression modelling approach 

that shares some common features with spline smoothing and kernel metamodelling (Barton, 

1998). 
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Kriging was named after a South African mining engineer D.G. Krige and began as 

an interpolation method (Kleijnen and Van Beers, 2004). In order to perform predictions, 

Kriging uses a weighted linear combination of all the output values already observed. The 

distance between the location to be predicted and the locations already observed determines 

the weights used in Kriging. The use of Kriging in deterministic simulation became popular 

from some previous research (Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. 1989). 

Many authors after have since used Kriging as both a metamodel and an interpolation 

technique in a wide variety of applications. Authors have also compared Kriging to Response 

Surface Models in a variety of applications, however, very little research was found on the 

use of Kriging in probabilistic design of dynamic systems. 

2.2.3 Kriging in Interpolation

The Kriging predictor for some unobserved input v0 given initial data, is a weighted 

linear combination of the entire m observed responses (Kleijnen and Van Beers, 2004 and 

Sakata, S., Ashida, F. and Zako, M., 2003)

  



m

i
iiYwy

1
0ˆ v (2.11)

where Yi represents the observed ouput or experimental response and wi is the weight given 

to Yi. This method of estimating  0ˆ vy is used in spatial estimation and for simple 

interpolation. However, for design purposes, a metamodel is needed to describe the 

simulation output. 

2.2.4 Kriging as a Metamodel

Some authors have used a Kriging metamodel that fits the response as the realization of a 

(Gaussian) stochastic process (Simpson and Martin, 2005 and Simpson, T.W., Peplinski, J.D., 

Koch, P.N. and Allen, J.K., 2001)

     vβvv  ,fy (2.12)

This model is the combination of a ‘global’ regression model f(v,β) and a random process 

Ε(v) that allows for ‘local’ corrections to the ‘global’ model. Research in this type of 
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metamodel found that previous authors used various ‘global’ models such as a linear 

regression model (Martin and Simpson, 2003) or even a constant term (Simpson, T.W., 

Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001). Others suggested the use of a polynomial 

regression model (Rijpkema, J.J.M, Etman, L.F.P. and Schoofs, A.J.G., 2001).

The random process, Ε(v), is assumed to have zero mean as well as a spatial 

covariance for design sites j
ix  and k

ix of design variable i which is the product of a process 

variance 2 and a correlation function  k
i

j
i xx   (Rijpkema, J.J.M, Etman, L.F.P. and 

Schoofs, A.J.G., 2001)

      k
i

j
i

k
i

j
i xxxzxz ,,cov 2 (2.13)

There are different types of correlation functions that can be used and the particular 

correlation function chosen depends on the preference of the user. The random process of the 

Kriging model uses a correlation function to “pull” the model through the observed locations 

in the domain (Martin and Simpson, 2003). This function also affects the smoothness of the 

model and the impact or weight of nearby points on the prediction. Some correlation 

functions and their properties are shown in Table (2-1)
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Table 2-1 showing various forms of Correlation Functions and their Properties (Martin and 

Simpson, 2003).

Name Γ(d)
Parameter

Restriction

Gaussian
2de  0

Exponential
p

de 

21

0




p



Cubic Spline






































d

d
d

d
dd

,0

2
,12

2
,661

3

32

0

Matern
 
 

 dK
d

v





 12 

0,0  

where  k
i

j
i xxd  , Γ(d) is the function used to calculated the correlation matrices and θ is 

the model parameter to be estimated. Although a wide variety of correlation functions are 

available, the most popular function is the Gaussian correlation function. Kriging requires a 

lot of iterative calculations to estimate model parameters, therefore, a correlation function 

with the least number of parameters to estimate is most desirable. Therefore, the Gaussian 

correlation function is chosen

   







 

p

i

k
i

j
ii

k
i

j
i xxxx

1

2
exp Γ (2.14)

Similar to RSM, in order to estimate the parameters used in the Kriging model an 

experimental design has to be selected containing m design variable combinations for which 
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simulations have to be carried out. These initial design variable combinations are called the 

training points. 

  Εβv,  fy (2.15)

Equation (2.15) above is similar to the general funtional form of the RSM shown in equation 

(2.6); however, the residuals, Ε, are now correlated according to a correlation function 

specified by the user

 
   

   
ΓΕ 2

1

111

2

,,

,,

cov 



 


















m
i

m
ii

m
i

m
iiii

xxxx

xxxx







(2.16)

The model parameters β  are best estimated using the following equation:

  YΓXΓXXβ 11 
 TT (2.17)

and an estimate, s2, for 2 can be derived from

ΕΓΕ 12 1  T

m
s (2.18)

However, these estimates depend on the correlation function parameters θ through Γ. 

Therefore, these parameters are usually estimated first from the experimental data using a 

Maximum Likelihood approach resulting in the maximization of the log-likelihood function

        Γθ detlnln 2  smL (2.19)

The iterative process of maximizing  θL  can become computationally expensive, since for 

every evaluation of  θL  estimates of s2, b as well as det(Γ) must be calculated. Hence, most 

authors have strived to reduce this computational burden by choosing a correlation function 

with very few parameters.

The general form of the Kriging model is 

   ΕΓvγ 1*

1
0





  T
p

i
ii vy  (2.20)
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where  v*  is a function in v that calculates the correlation between v0 and the training 

points and Ε is a vector of the residuals of the experimental results calculated using equation 

(2.21)

 βv,YΕ f (2.21)

where Y is a vector of the experimental responses and the training points are substituted into 

the linear regression model, f(v,β) to obtain an estimate of the responses at the training points. 

Once model parameters and correlation function parameters are estimated, the best linear 

unbiased prediction of the output at some arbitrary design v0, can be generated from:

       ΕΓvγβvv 1
0

*
00 ,ˆ 

T
fy (2.22)

and γ*(v0) is in the form of a Gaussian correlation function

   







 

p

i

j
iii xv

1

20
0

* exp vγ (2.23)

where 0
iv represents some arbitrary value of design variable i. The second expression in 

equation (2.20) for the predicted response is in fact an interpolation of the residuals of the 

regression model  β,v 0f . Therefore, exact predictions are obtained at the initially observed

experimental responses.

The general Kriging model is shown in equation (2.20) and the following summary of 

steps outlines the procedure used to estimate the parameters, θ used in the Kriging model.
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1. Make an initial guess for θ

2. Use this initial guess to calculate Γ using equation (2.14).

3. Substitute Γ in equation (2.17) to calculate β

4. Calculate the residuals for the training design using equation (2.21).

5. Use β to calculate s2 using equation (2.18) and then use this estimate of s2 to 

calculate L() using equation (2.19).

6. Repeat steps 1 – 5 until L() is maximized.

Several authors have done research on comparing the performance of Kriging with 

RSM in deterministic simulations. Among these are: Rijpkema, J.J.M, Etman, L.F.P. and 

Schoofs, A.J.G., 2001 who applied RSM and Kriging to a simple two-variable analytical test 

function and Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001, who 

investigated the use of Kriging models as alternatives to traditional second-order polynomial 

response surfaces for constructing global approximations in the design of an aerospike 

nozzle. Similar research was also done by Jin, R., Du, X. and Chen, W., 2003, Simpson, 

T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K., 2001, Sakata, S., Ashida, F. and Zako, M. 

2003, Martin and Simpson, 2005 and Kleijnen and Van Beers, 2003. All these authors have 

found that response surface models, although quite simple and even with the availability of 

second-order polynomial models for non-linear functions, did not perform as accurately as 

Kriging. However, Kriging models require an iterative procedure to estimate model 

parameters that can be quite time consuming. Although Kriging models show great promise 

in its ability to fit ‘noisy’ data, but, its limited use in engineering applications may be due to 

the lack of readily available software.

Later, this research will use the statistical coefficient of determination to calculate the 

adequacy of each model in fitting the experimental data. Since the RSM is simpler than the 

Kriging model, if the RSM fits the experimental data well, it will be used for robust design; 

otherwise, the Kriging model is used.
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2.3 Model Adequacy

Now that the general functional forms of the Kriging and Response Surface models have 

been presented along with the method of calculating model parameters, a measure to compare 

the adequacy of each metamodel in fitting the experimental data is required. To determine if a 

model is a good fit for the experimental data, a Goodness-of-fit Test is performed in which 

the coefficient of determination, R2, is calculated (Walpole, R.E., Myers, R.H., Myers, S.L. 

and Ye, K., 2002 and Montgomery, 2005). R2 is a dimensionless quantity used in statistical 

applications to check how well the metamodel performs in fitting the experimental data. The 

“R-squared” value is calculated from

total

error

SS

SS
R 12 (2.24)

From equation (2.24)

    



m

i
iierror xzxzSS

1

2ˆ (2.25)

  



m

i
itotal zxzSS

1

2 (2.26)

where z(xi) represents the response at training point i,  ixẑ represents the estimate of the 

response at ith training point obtained from the metamodel and z represents the mean of the 

observed responses. If the calculated R2 is close to 1, then the model is a good fit. 

2.4 Robust Design

“Robust Design is an engineering methodology for optimizing the product and process 

conditions which are minimally sensitive to the various causes of variation, and which 

produce high-quality products with low development and manufacturing costs” (Sung, 1996). 

Two of the most important tools in robust design are Taguchi’s parameter design and 

integrated design. In parameter design, the design variables are chosen to minimize the effect 

of noise factors that can affect the quality of the product. In integrated design, means and 

tolerances of the design variables are chosen in order to minimize system failure. Before any 

of these tools are used, some analysis should be done to determine the effect of the design 
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variables on the response. All the robust design tools and their equations presented here were 

obtained from Savage, 2007.

2.4.1 Normalized Sensitivities

In the analysis of dynamic systems, and also for the purpose of robust design, the impact of 

each design variable on the response is desired. This information is found by calculating the 

first-order sensitivity factors and then the normalized sensitivities. The normalized 

sensitivities calculate the percentage change of the response for a 1% change in the design 

variable. For the function

 vfy 

the first-order sensitivity factors, (FOS) factors, with respect to vi are found from

 
i

v v

f
FOS

i 



v

(2.27)

which is just the first-order derivative of the function with respect to vi. Using the FOS factor, 

the sensitivity function, or normalized sensitivity, of a particular design variable is calculated 

using

 
  nom

i f

v

v

f
S

nom
i

i
v

v
v

v

|





 (2.28)

where nom
iv  is the nominal value of design variable i and   nomf

v
v |  is the value of the 

function evaluated at the nominal values of all the design variables

Calculation of the FOS factors using the Response Surface Model is very easy; 

however, this is not so obvious with the Kriging model. Consider equation (2.20) written in 

the form

       ΕΓvγβvv 1*, 
T

fy

where the first part of the model is the ‘global’ estimation and the second part is an 

interpolation of the residuals. Taking first-order derivatives of the ‘global’ part of the model 

is quite simple even if a polynomial approximation is used. The second part of the model 
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consists of the two correlation matrices and a vector of the residuals of the experimental 

design. Now, Γ-1 is a constant matrix and does not change as v0 changes and neither does Ε

change since these depend only on the experimental design. Therefore, this correlation matrix 

and vector can be considered to be constants. Now, γ*(v) is not a constant matrix but is a 

function in v

    



p

i
iii v

1

2* exp xvγ 

      





 p

k
iiiiii

i

vv
v

v

1

2
*

exp2 xx
γ

 (2.29)

and the first-order derivative of equation (2.20) becomes

     
ΕΓ

vγβvv 1
*, 





















T

iii vv

f

v

y
(2.30)

Therefore, for a Kriging model consisting of one design variable

    ΕΓx 12
111110 vexp 

T
vy 

where 1x is a vector of the training points of v1. The first derivative of y with respect to v1 is 

therefore

      ΕΓxx 12
1111111

1

vexpv2 
T

dv

dy


and the second derivative is

         ΕΓxxx 1
111

2
11

2
1

2
11112

1

2

exp4exp2 
T

vvv
dv

yd


This method can be easily extended to multiple design variables and an example of how these 

equations are used will be shown later.
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2.4.2 Probability Calculations

Given the mean and variance of each random design variable and the design specifications, 

the probability of conformance can be easily calculated using a variety of methods; Monte 

Carlo Simulation and the Second Moment Method.

Transmission of Moments

In order to eventually determine the probability of conformance of the response at a particular 

time step, it is necessary to calculate the mean and variance of the response given the mean 

and variance of the design variables. Given the function

y = f(v)

and the information 
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where Cv is a matrix of covariances and v is a vector of the means of the design variables. 

Taylor series expansion is now performed on y = f(v) to get
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(2.31)

where H.O.T. represents higher order terms and are neglected. Therefore, the mean and 

variance of the response is calculated as

   
  vC
v

v
v

v

v
vec

f
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


 2
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1




 (2.32)
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where z  denotes the mean of the response and 2
z  denotes the variance of the response.

The specified lower and upper limits are denoted as ζL and ζU, where these limits may 

be related to the target and some known tolerances. The quality characteristic and the limits 

are connected through the use of “limit-state functions” denoted as g(v). Then, for the ith

quality characteristic, and say some upper limit ζi, the limit-state function is written as

   vv iii zg   (2.34)

where

gi(v) = 0 v Limit-state surface

gi(v) > 0 v Conformance region (S)

gi(v) < 0 v Non – conformance region (F)

More specifically,

Pr(S) = Pr{gi(v) > 0} (2.35)

Pr(F) = Pr{gi(v) ≤ 0} (2.36)

where Pr(S) is the probability of success or conformance and Pr(F) is the probability of 

failure or nonconformance. The probability of conformance can also be calculated using the 

mean and variance of the response calculated using the transmission of moment theory. 

Therefore,
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1Pr (2.37)

where Φ denotes the normal cumulative distribution function.
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Sometimes it is necessary to convert the limit-state functions from the original v-

space into the standard normal u-space. The Rosenblatt transformation is used for this 

conversion. Consider the case where p-design variables are normal and the parameters are in 

matrix form
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The transformation is a generalization of the one-dimensional form  


 VU
1

 and the 

linear form is written as

  VVAU E (2.38)

where A-1 = Cholesky(Cv) and A-1 also gives the reverse transformation

 VUAV E1   (2.39)

and E(V) is the expected value operator of the design variables.

Monte Carlo Simulation

Another method of calculating probabilities is to generate a very large sample of data and 

count the instances when the specifications are met. In a Monte Carlo simulation, a sample of 

design variables is generated from their probability distributions and the corresponding 

responses are found by substituting the sample of design variables into the derived 

metamodel. Given the mean and tolerance of a particular design variable used in the 

generation of data from the simulation, the variance is found from 
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pp vv

tol 
300

%2  (2.40)

where 2
pv  and 

pv  denotes the variance and mean of vp (Savage, 2007) and tol% is the 

percentage tolerance.

2.4.3 Parameter Design

Parameter design is used to calculate the mean value of the design variables, given constant 

tolerances that will result in the response having an acceptable probability of conformance. 

There are various methods available for parameter design. 

One method is by balancing conformance indices. In this method, probability is 

associated with β

min.   



k

i

iieQ
1

 (2.41)

where 

   10  ugsign (2.42)

and g(u) is the limit-state function in u-space and for bi-linear models






2
2

2
1

0

hh

h
k (2.43)

where
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i
ii

p

i
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1
0

1
00  (2.44)

 
 

 pppp bah

bah

bah












2222

1111

(2.45)

and ζ can be an upper or lower specification or both. For two specifications, two equations 

are generated for each design variable. A bi-linear model assumes the form
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pp
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vbvbvbb

vavavaa
y










22110

22110
(2.46)

The above method of finding the optimal design parameters will be applied to response 

surface models and will be shown later. However, for non-linear models such as the Kriging 

model, this method is inappropriate. 

Another method that can be attempted for Kriging models is using a probability 

objective function where the probability of conformance is calculated from the second 

moment method. The objective function becomes either minimizing or maximizing the 

probability of failure or conformance. Expressions are developed for the mean and variance 

of the response in terms of the means of the design parameters. Eventually, the objective 

function becomes an expression in terms of the means of the design variables. Recall 

equation (2.37)

max      







 








 


z

Lz

z

zUS






1Pr

where the mean and variance of the response is a function of the design variables using 

equations (2.31) and (2.32). For bi-linear models, the probability objective function can also 

be described in terms of conformance indices 

min   
i

iia Q  (2.47)

where Q above represents the probability of non-conformance or failure.

2.4.4 Integrated Design

In some cases, the optimum values of both the tolerance and the mean of the design variable 

are required. For these cases, integrated design is performed. Since choosing tolerances 

affects the production costs as tighter tolerances usually results in higher costs, the objective 

function in performing this method minimizes the production cost while minimizing the 

probability of failure. This problem is stated as
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   min  vvT tolC , (2.48)

         subject to

Pr(F) ≤ some specified limit

where CT is a function of the means and tolerances of the design variables.

Robust design enables the cost of quality placed onto the manufacturer to be reduced 

and provides a way of delivering a product to the customer that meets specifications at the 

lowest cost to the manufacturer. Overall, robust design provides a way to make the product 

insensitive to variation in the raw material, manufacturing and in the operating environment. 

Therefore, the total cost, CT, is a function that is made up of the production cost that 

comprises material and component tolerances and the ‘loss of quality’ costs is made up of the 

factors stated above. Some examples of equations that are used to calculate the production 

cost are shown in Table (2-2)

Table 2-2 showing production cost models (Savage, 2007).

Model Name Cost Model (Cp)

Reciprocal

tol

b
a 

Reciprocal Power
ktol

b
a 

Exponential mtolbe

Piecewise Linear

i

i
i tol

b
a 

where a and b are cost parameters set by a particular manufacturing process.

The ‘loss of quality’ cost is calculated using the equation

  22

2 zz
s

LQ T
C

C  


 (2.49)
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where Cs is the scrap cost and T is the target value. The mean and variance of the response is 

calculated using equations (2.32) and (2.33). Now, all this theory will be applied to dynamic 

systems where specifications at different time steps are required for optimum system 

performance.
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Chapter 3

Singular Value Decomposition 

Combined With Metamodels

The combination of Singular Value Decomposition (SVD) with metamodelling provides a 

way of reducing the computational burden required to calculate the response at some arbitrary 

design variable set (Wehrwein and Mourelatos, 2006). All the responses obtained from an 

initial set of simulation runs are arranged into a matrix, Z

     
     

     
nmnmmm

n

n

tvztvztvz

tvztvztvz

tvztvztvz























,,,

,,,

,,,

21

22112

12111









Z (3.1)

where  nm tvz ,  represents the response at design variable combination vm and time step tn. 

SVD is then applied to Z according to the relation

TT
nnnmmm DVVSUZ   (3.2)

SVD partitions Z into matrices of parameter and time-dependent information. D is a matrix of 

the information of Z in parameter-space and V comprises the time-dependent information of 

Z. In order to obtain responses and perform robust design according to the parameters, 

metamodels are developed for the columns of D. A description of how SVD partitions this 

matrix is given Chapter 2 and for a complete description of this procedure, reference is made 

to Berrar,  D.P., Dubitzky, W. and Granzow, M., 2003. There are other applications of the use 
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of SVD in principal component analysis that is similar to this work (Leon, S.J., 1998, Berrar, 

D.P., Dubitzky, W. and Granzow, M., 2003).

If the experimental design set is much less than the number of time steps used, 

(m<<n), then finding metamodels for each of the m columns of D is an advantage. However, 

if m is still very large, this task may also be tedious. Previous research on SVD states that 

singular values gives an indication of how closely the original matrix can be approximated; 

therefore, if only the dominant singular values in S are kept, equation (3.2) can be partitioned 

as

  

















n

dom
n V

V

00

0s
UUZ (3.3)

where

 nUUU 









00

0doms
S 










nV

VTV

and sdom denotes the dominant singular values. In determining whether a singular value is 

dominant or not, depends on the degree of accuracy desired by the analyst. In this research, a 

dominant singular value was in the order of 10-2 or greater.

For determining whether a particular singular value is dominant or not depends on 

the analyst and their preference of how accurate an approximation is desired. However, a 

look at the relation between the coefficient of determination, R2, and the singular value can 

show how the magnitude of the singular value can affect the adequacy of the metamodel in 

fitting the experimental responses. The non-dominant singular values of S have been 

truncated to zero and equation (3.2) becomes

Z = USVT = DVT (3.4)

The time dependent response of an arbitrary design variable set, v0, which is different from 

all m sample points, is calculated using a nonlinear interpolation of each column of matrix D 

in equation (3.2)

        TTz VvDVvSvUv 0000ˆ  (3.5)
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Therefore, metamodels are used to estimate the row in D corresponding to v0 and the time-

dependent information in V stays the same. Let each column of D be dm and the metamodels 

found for each column of D are

 mm yyy 211 y (3.6)

where ym represents the metamodel for the mth column of D. After substituting v0 into each of 

the metamodels, an estimate of the row in D corresponding to v0 is obtained. Then 

multiplying this new row by VT, the estimate of the response at v0 is obtained

         T
myyyz Vvvvv 002010 ˆˆˆˆ  (3.7)

where  0ˆ vmy is the estimate of v0 in the mth column of D. Later, it will be shown how this 

combination of SVD and metamodelling can be useful in robust design applications.

This theory is very useful especially for cases where a very large number of time 

steps are involved since only the “significant” columns of D are used. In order to show how 

the number of columns of D affects the calculated response, the coefficient of determination 

(R2) at each time step is calculated using equations 

n

n

n t
total

t
error

t
SS

SS
R 12 (3.8)
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
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m

i
tni

t
total n

n ztvzSS
1

2, (3.10)

where 
nt

z represents the mean of the responses at the nth time step and  ni tvz ,ˆ  is the estimate 

of the response at vi and the nth time step. Two case studies will now be presented to show 

how the combination of SVD and metamodelling is used and how the number of columns of 

D used affects the R2 values and the calculated response.
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3.1. Case Study 1 – Servo with one random design variable

Consider the servo-system (Chandrashekar, M. and Savage, G.J., 1997) shown in Figure (3-1)

Figure 3-1 showing a schematic of a position control Servo-System.

The motor equations are

K
dt

di
LRiv  (3.11)

dt

d
JBKiT

  (3.12)

where R is the winding resistance - Ω, L is the winding inductance - H, K is the torque 

constant – Nm/A, B is friction – Nms/rad, J is shaft inertia – kgm2 and G is the gain of the 

amplifier. These variables make up the design variables of the servo. The servo consists of 

three responses, angular position, angular speed and inductor current, the state equation of 

each is 

in
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MAPLE was used to run the simulation and achieve the response time history at the specified 

design variable combinations.

G

R, L, K

J, B

θ

ω

i
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3.1.1 Angular Speed Response – One Design Variable

Consider the case where winding inductance, L, is a random design variable and is denoted as 

v1 with all other design variables held constant; the response of interest is the angular speed 

of the servo. Response time histories at three levels of v1 were generated using MAPLE. The 

simulation was run from t = 0.005s to t = 0.100s and the dynamic response was recorded at 

intervals of 0.005s resulting in a total of twenty discrete time steps. The matrix Z shows an 

extract of the response obtained, at the low, medium and high values of the design variable 


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












84.4

40.4

00.4

1

1

1
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v

v

v

v

203
2897.00685.441454.437636.29

4199.06894.466146.464767.32
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Z

The rows of Z correspond to the dynamic angular speed at the three levels of v1 and each 

column represents a particular time step. Therefore, the first row of Z corresponds to the 

angular velocity time history at lowv1 and the third row is the response time history at highv1 . 

Singular Value Decomposition is now performed on Z to yield the matrices U, S and 

V. These values are

33
4325.000
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From S, the singular values decrease rapidly and from the theory of SVD, using the first 

column alone of S and equation (3.4) would result in a matrix that very closely approximates 

the original matrix. From the product of U and S, D was found to be

33
1860.04012.68489.85

3525.04008.09039.98
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Each row of D corresponds to the information of Z in parameter-space at each level of v1;

therefore, the first row of D corresponds to the low value of the design variable. The design 

variables used to generate these initial results are called the “training points” and will 

eventually be used to estimate model parameters in the metamodels. In this example, D

consists of only three columns; therefore, metamodels are developed for all columns. Later, 

examples will be presented where using all columns of D will be too time-consuming.

3.1.2 Response Surface Model

Since only one design variable is assumed to be random, a linear RSM is assumed

  110 vym (3.14)

where ym represents the metamodel of the mth column of D and β0 and β1 are the model 

parameters. These model parameters are calculated using equation (2.9) restated here for 

convenience

  YXXXβ TT 1


To show how the model parameters are calculated, consider the first column of D
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and the matrix X as


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
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
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
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84.41

40.41

00.41

X

and after substituting these matrices into equation (2.9), the model parameters are found to be











3027.9

8617.130
β

Therefore, on substituting these parameters into equation (3.14) as β0 and β1, the RSM to 

represent the first column of D is
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11 3027.98617.130 vy  (3.15)

This procedure of estimating model parameters is then repeated to the other two columns of 

D and the metamodels found are

12 0393.151902.66 vy  (3.16)

13 0416.01831.0 vy  (3.17)

3.1.3 Kriging Metamodel

Recall the general form of the Kriging model

   vβv,  fy (3.18)

where f(v, β) is assumed to take the form of a linear RSM model similar to equation (3.14). 

Therefore, the Kriging model to fit the experimental results of the mth column of D, for one 

design variable is

   mm

T

mm vy ΕΓvγ 1*
110

  (3.19)

where     2
111

* exp xv   v . Consider d1
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with training points of v1 being
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84.4

40.4

00.4
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To begin the iterative procedure outlined in Chapter 2 to calculate the Kriging model 

parameters β, an initial estimate of θ is made. The correlation function that will be used is the 

Gaussian correlation function and according to Simpson & Martin, 2003, θ must be greater 

than zero. Consider an initial estimate of θ = 20. This value is then used to calculate Γ using 

equation (2.14), which for one design variable becomes equation (3.20)
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  




 

2

11exp kj xxΓ (3.20)

where  kj xx 11   is the difference between the training points. These values are found in 

Table (3-1)

Table 3-1 showing the calculation of  kj xx 11 

xj=1 = 4 x2 = 4.4 x3 = 4.84

xi=1 = 4 4 – 4 = 0 -0.4 -0.84

x2 = 4.4 0.44 0 -0.44

x3 = 4.84 0.84 0.44 0

and after substituting these values into equation (3.20) above, the matrix of the correlation 

between each of the training points becomes

33
0000.10208.00

0208.00000.10408.0

00408.00000.1



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


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




Γ

In order to clarify how this matrix is obtained, consider the value found in 23; that is, the 2nd

row and 3rd column of Γ. This number represents the correlation between the second and third 

training points of the design variable, therefore, 

     0208.044.020exp20exp 223
1

2
123 





  xxΓ

This is then repeated to the other numbers found in  kj xx 11  to find the entire correlation 

matrix. 

Following the procedure to calculate the optimum θ, the correlation matrix is then 

substituted into equation (2.17) to find an initial estimate of β.











3033.9

8645.130
β

This estimate of β is then substituted into equation (2.18) to obtain an estimate of s2
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      412 105007.3,,
1   βvYΓβvY ff
m

s T

and s2 is now substituted into equation (2.19) to obtain an estimate of L(θ).

  8742.23θL

Now, the first estimate of θ is then changed and the entire procedure is repeated until a value 

of θ is achieved that maximizes L(θ). Eventually, an optimum θ of 65 is reached to yield the 

following metamodel to fit the data in D1

   1
1

11
*

11 3027.98617.130 ΕΓvγ 
T

vy (3.21)

This entire procedure of estimating an optimum value of θ to maximize L(θ) is then repeated 

to the other two columns of D and the Kriging metamodels obtained for d2 and d3 are

   2
1

22
*

12 0393.151902.66 ΕΓvγ 
T

vy (3.22)

   3
1

33
*

13 0416.01831.0  Γvγ
T

vy (3.23)

The final estimate of θ that maximizes L(θ) was found using the MATLAB function 

‘fminsearch’.

On comparing the RSMs with the Kriging metamodels, it is clear that the model 

parameters found for the ‘global’ part of the Kriging model are identical to those found for 

the RSMs. The only difference between these two metamodels is the interpolation of the 

residuals present in the second part of the Kriging metamodel. Now that the two different 

metamodels have been developed for each of the three columns of D, suppose the angular 

velocity time history at v0 = [4.2] is desired. Since each row of D corresponds to a particular 

design variable then to calculate the entire response time history, a new row in D has to be 

calculated that corresponds to the parameter-dependent information of v0 and this new row is 

then multiplied by VT.
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3.1.4 Response Calculation at v0 - Response Surface Model

Recall the three equations (3.15), (3.16) and (3.17), found to describe the experimental data 

found in the three columns of D. Predicting the response time history at v0 is easy using the 

RSM. Here, v0 is just substituted into each metamodel to obtain the estimate at each column 

of D. Therefore, substituting v0 = [4.2] into the metamodel representing the first column of D

    7904.912.43027.98617.130ˆ 01 vy

and repeating this procedure for the other two equations, the row estimate becomes

   0186.00129.37894.91ˆ 0 vy

This row in then multiplied by VT as described in equation (3.7) to obtain the response time 

history at v0; the results of which are shown graphically in Figure (3-2).

3.1.5 Response Calculation at v0 - Kriging Metamodel

When using the Kriging metamodel, the correlation between v0 and the training 

points,   Tvγ* , is needed and in order to calculate this matrix, the difference between v0 and 

all the training points are first calculated 

Table 3-2 showing the calculation of  jxv 1
0
1 

1
1x  = 4 2

1x  = 4.4 3
1x  = 4.84

v0 = 4.2 0 -0.4 -0.84

Consider the first column of D. The correlation between v0 and the training points was found 

to be 

 

















0

0743.0

0743.0

0
* vγ

using the equation 

    jxv 1
0
110

* exp  vγ
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and the values found in Table (3-2). The number in the first row of matrix  0
* v represents 

the correlation between v0 and the first training point. The details of this calculation are 

        0743.042.465exp65exp 21
1

0
10

*  xvvγ

Eventually, the estimate, 1ŷ  is -91.7894 and the entire estimate of the row corresponding to v0

is

   0186.00129.37894.91ˆ 0 vy

After multiplying  0ˆ vy by VT, the angular velocity time history at v0 = [4.2] is obtained
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Figure 3-2 showing the angular speed response at v0 calculated using RSM and Kriging.
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From Figure 3-2, it is clear that both metamodels seem to produce accurate results after 

comparison with those obtained from the simulation. On looking at these results more 

closely, as in Table 3-3, the Kriging model seems to give a closer prediction than the RSM.

One of the attractive features of the Kriging metamodel is that the derived model 

exactly predicts response at the training points. To show this, consider v0 = [4] and after 

substituting this number into each of the metamodels, the row estimate is

   1679.02518.66644.93ˆ 0 vy

which is exactly equal to the first row of D and after multiplication with VT yields the exact 

angular speed response at v1 = 4. This feature is especially useful for very ‘noisy’ responses 

and leads to more accurate predictions. Later, an example with a ‘noisy’ response will be 

presented and the difference in RSM and Kriging is clearly seen.
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Table 3-3 showing the angular speed response obtained from the RSM, Kriging models and 

the simulation.

Time RSM Error 

(%)

Kriging Error 

(%)

Actual

0.005 33.9842 0.3037 33.9794 0.290 33.8813

0.010 48.4919 0.2301 48.4866 0.219 48.3806

0.015 48.0009 0.0861 47.9988 0.0817 47.9596

0.020 39.0973 -0.1280 39.0993 -0.123 39.1474

0.025 27.03 -0.4383 27.0353 -0.419 27.1490

0.030 15.3436 -0.9291 15.3502 -0.887 15.4875

0.035 5.9766 -2.049 5.9825 -1.95 6.1016

0.040 -0.3917 24.35 -0.3879 23.1 -0.3150

0.045 -3.9178 0.4616 -3.9165 0.428 -3.8998

0.050 -5.2028 -0.6493 -5.2040 -0.626 -5.2368

0.055 -4.9907 -1.358 -4.9936 -1.301 -5.0594

0.060 -3.9721 -2.027 -3.9758 -1.93 -4.0543

0.065 -2.6823 -2.787 -2.6858 -2.66 -2.7592

0.070 -1.4723 -3.840 -1.4751 -3.658 -1.5311

0.075 -0.5257 -6.209 -0.5276 -5.87 -0.5605

0.080 0.1016 12.27 0.1008 11.4 0.0905

0.085 0.4359 -1.758 0.4360 -1.74 0.4437

0.090 0.5209 -7.773 0.5246 -7.12 0.5648

0.095 0.4955 -6.948 0.4980 -6.48 0.5325

0.100 0.3915 -6.586 0.3930 -6.23 0.4191
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3.2 Case Study 2 - Servo with Three Random Design Variables

Now, consider the same servo with multiple design variables L (v1), K (v2) and R (v3). As 

before, these variables are assumed to be random and the low, medium and high values of 

each variable used to generate the training design are
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The angular speed response time histories at each of the twenty-seven design variable 

combinations are

2027
3436.06381.491859.35

4199.06146.464767.32

3880.02836.504135.35

x
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Z

The first row of Z corresponds to all the low values of v1, v2 and v3 and the last row 

represents the response at all the high values of the design variables. The rows in-between 

represent the dynamic responses at the various design variable combinations. After SVD, 

metamodels were developed for the first 11 columns of D. 

3.2.1 Response Surface Model

Normally, for multiple design variables, a quadratic RSM is assumed. However, if a linear 

RSM fits the experimental design well, then there is no need for a more complex model. In 

this research, the choice of metamodel is between the RSM or Kriging model. Therefore, if 

the linear RSM does not provide a good fit, the Kriging model is chosen. 

The linear RSM has the form

3322110 vvvy   (3.24)

In estimating the RSM model parameters, consider the matrices X and d1
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


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


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After using the least squares theory β is found to be



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
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





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3335.9

1.3790

6270.953

5914.99

β

and eventually the following equations are obtained for columns 1 and 2 respectively

3211 3335.91.37906270.9535914.99 vvvy  (3.25)

3212 5230.159.74071305.5634160.3 vvvy  (3.26)

3.2.2 Kriging

The general form of the Kriging model for the mth column of D for three random design 

variables is

   mm

T

mm vvvy ΕΓvγ 1*
3322110

  (3.27)

where           2
333

2
222

2
111

* expexpexp xxxv  vvv  . In order to show 

how Kriging model parameters are estimated using multiple design variables, consider d1 and 

the initial estimate of θ

 110000100001 θ

For three design variables, the Gaussian correlation function becomes

      




 





 





 

2

333

2

222

2

111 expexpexp kjkjkj xxxxxx Γ (3.28)

where  kj xx 11   is the difference between all training points for the first design variable and 

so forth. An extract of the matrix of the experimental design variable combinations is
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where the first row of Xtr corresponds to all the low values of the design variables and the last 

row represents all the high values of the design variables. The first column of Xtr, x1 is the 

training design for the first design variable. The entire matrix is shown in the appendix. In 

order to estimate the model parameters, the difference between training points for each design 

variable is required. Extracts of these matrices are

 
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These matrices are then used, along with θ1, in the calculation of Γ and eventually, Γ is found 

to be
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In order to show how the calculations are performed, consider Γ23. This value is obtained by 

using the value found in the 2nd row and 3rd column of each of the three matrices shown 

above. Then using equation (3.28) as follows

      8240.08240.011
222 44.01010000010000

23   eeeΓ

The above correlation matrix, Γ, and X is then substituted into equation (2.17) to obtain an 

initial estimate of β
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This initial β1 is then used to obtain estimates of Ε using the initial simulation runs, the linear 

RSM model used to represent f(v, β) and equation (2.21). 
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These preliminary estimates of Ε and β are then substituted into equation (2.18) to get

102 108952.8 s

which is then substituted into equation (2.19) to get

  8718.319L
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Now, this entire procedure is then repeated for another estimate of θ until L(θ) is 

maximized. Eventually, an optimal estimate of θ1 is found to be

 1020000000900000001 θ

and
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The Kriging model to fit the data in D1 is then

   1
1

11
*

3211 3927.96.37947960.9508330.99 ΕΓvγ 
T

vvvy (3.29)

Now the metamodels will be used along with SVD to estimate the response at some arbitrary 

design variable set.

3.2.3 Estimation of Response at v0.

An estimate of the angular velocity at  6.4008.000115.00 v  is desired. In using the 

linear RSM, v0 is just substituted into the metamodel to obtain the row estimate for D that is 

then multiplied by VT. These results are shown in Table (3-4). For the Kriging model, as with 

one random design variable, γ*(v) has to be estimated. For three design variables, this 

equation becomes

        




 





 





 

2

3
0
33

2

2
0
22

2

1
0
110

* expexpexp jjj xvxvxv vγ (3.30)

Extracts of the matrices containing the differences between v0 and the training points 

are shown below
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After substituting these values into equation (3.30), the correlation between v0 and the 

training points was found to be
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and substituting all this information in equation (3.29), the following estimate is obtained for 

v0 for d1

  6432.93ˆ 01 vy

These calculations are then repeated to the other columns of D to get the estimate of the row 

corresponding to v0. Eventually, the response at v0 is calculated from equation (3.7) the 

results of which, using both the RSM and Kriging models are shown in Table 3-4. 

3.2.4 Model Adequacy

In order to further determine the adequacy of the Kriging and Response Surface Models, the 

coefficient of determination (R2) is calculated at each time step. R2 is also used to show how 

the model adequacy changes when the number of columns of D used changes. Table (3-5) 

shows these results.

From Table (3-5), 12 columns of D exactly predict the experimental response time 

histories using the Kriging model. Also, the Response Surface models obtained are quite 
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good for most of the time steps but there are some exceptions. Reducing the number of 

columns of D to 5 also gives fairly acceptable results for both Kriging and RSM. Now,

calculating R2 just determines how well the metamodel models the experimental results. The 

metamodels can also be tested by calculating the response at some v0 and comparing these 

results with those obtained from running the simulation at v0. From the predictions found in 

Table (3-4), the predictions obtained from both models were quite close as can also be seen in 

Figure (3-3). Now, a system with a noisier response will be used.
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Table 3-4 showing response at v0 for Servo Example with three random design variables 

calculated using the RSM, Kriging and from the simulation.

Time RSM Error 
(%)

Kriging Error 
(%)

Actual

0.005 31.0771 0.0634 31.0743 0.054 31.0574

0.010 45.1115 0.2832 44.9835 -0.0013 44.9841

0.015 45.7757 0.4695 45.5277 -0.0748 45.5618

0.020 38.6222 0.5200 38.3476 -0.1947 38.4224

0.025 28.2108 0.5844 27.9775 -0.2474 28.0469

0.030 17.5700 0.2602 17.4679 -0.3224 17.5244

0.035 8.5586 -0.9777 8.6154 -0.3205 8.6431

0.040 1.9668 -8.729 2.1626 0.3573 2.1549

0.045 -2.1447 12.69 -1.8625 -2.139 -1.9032

0.050 -4.1484 6.141 -3.8441 -1.645 -3.9084

0.055 -4.6040 4.338 -4.3355 -1.747 -4.4126

0.060 -4.0984 3.047 -3.9039 -1.843 -3.9772

0.065 -3.1201 1.417 -3.0151 -1.996 -3.0765

0.070 -2.0354 -1.093 -2.0145 -2.109 -2.0579

0.075 -1.0717 -5.900 -1.1154 -2.063 -1.1389

0.080 -0.3400 -20.45 -0.4220 -1.264 -0.4274

0.085 0.1353 176.7 0.0403 -17.59 0.0489

0.090 0.3550 13.46 0.2506 -19.91 0.3129

0.095 0.4446 7.834 0.3683 -10.67 0.4123

0.100 0.4194 4.458 0.3741 -6.824 0.4015
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Table 3-5 showing the coefficient of determination at each time Step using different numbers 

of columns of D for the Servo with three random Design Variables.

Time R2 (12 Columns of D) R2 (5 Columns of D) R2 ( 2 Columns of D)

RSM Kriging RSM Kriging RSM Kriging

0.005 0.9968 1.0000 0.9968 1.0000 0.9928 0.9935

0.010 0.9983 1.0000 0.9983 1.0000 0.9980 0.9983

0.015 0.9962 1.0000 0.9962 1.0000 0.9955 0.9983

0.020 0.3360 1.0000 0.3360 1.0000 0.3209 0.7161

0.025 0.9521 1.0000 0.9521 1.0000 0.9487 0.9886

0.030 0.9874 1.0000 0.9874 1.0000 0.9873 0.9990

0.035 0.9963 1.0000 0.9963 1.0000 0.9958 0.9990

0.040 0.9980 1.0000 0.9980 1.0000 0.9955 0.9927

0.045 0.9879 1.0000 0.9879 1.0000 0.9807 0.9712

0.050 0.9257 1.0000 0.9257 0.9999 0.9006 0.8877

0.055 0.4164 1.0000 0.4163 0.9992 0.2946 0.3551

0.060 0.6828 1.0000 0.6828 0.9993 0.6404 0.7359

0.065 0.9342 1.0000 0.9342 0.9993 0.9296 0.9638

0.070 0.9851 1.0000 0.9850 0.9992 0.9849 0.9973

0.075 0.9957 1.0000 0.9956 0.9989 0.9945 0.9930

0.080 0.9786 1.0000 0.9784 0.9986 0.9731 0.9591

0.085 0.9031 1.0000 0.9027 0.9982 0.8865 0.8567

0.090 0.5585 1.0000 0.5460 0.9387 0.5159 0.4846

0.095 0.0797 1.0000 0.0653 0.9399 0.0061 0.0522

0.100 0.6220 1.0000 0.6198 0.9888 0.5987 0.6749
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Figure 3-3 showing the response at v0 calculated using both the RSM and Kriging Model for 

the servo with three random design variables.
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3.3 Case Study 3 – Simulation of a Piano String

Another example of a dynamic system is the action of a hammer hitting the string in a piano. 

The response of this system is more erratic than that of the servo. The string velocities were 

obtained from simulations performed by Motion Research Group of the University of 

Waterloo. A diagram of the experimental setup 

Figure 3-4 showing the experimental setup to obtain sample piano string velocities. (Bensa, 

J., Gipouloux, O. and Kronland-Martinet, R., 2005).

3.3.1 Simulation Results

The most important parameters in piano design are relative striking position of the hammer, 

hammer-string mass ratio and string stiffness (Askenfelt, A. and Chaigne, A., 1994). For this 

case study, the three random variables were initial hammer velocity (v1), string stiffness (v2) 

and striking position of hammer (v3). The three levels of each design variable used in 

experimental design are
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The 27 combinations of these three design variables yield 27 string velocity time histories 

from 0s to 0.005s using 252 time steps. An extract of these results are shown in Z
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This simulation is quite expensive and can deter the analyst from observing the response at 

various design variable combinations. Metamodelling and SVD are quite useful since 

interpolation is performed on a much smaller scale. Z gives some initial simulation runs at 

the different combinations of the three design variables and SVD was then performed on this 

matrix. For accurate predictions and modelling of the experimental design, the most dominant 

values of S are used. A graphical representation of the dynamic string velocity is shown in 

Figure (3-5).
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Figure 3-5 showing the string velocity output when v1 = 3.50, v2 = 51060.3  and v3 = 

21044.7 
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3.3.2 Response Surface and Kriging Models

Metamodels were generated for the first ten columns of D, however, the first four RSM and 

Kriging models are shown here in equations (3-31) – (3-38)

3211 34.8445.154899.778.7 vvvy  (3-31)

3212 92.68680.122628.024.54 vvvy  (3-32)

3213 08.690.6832020.030.0 vvvy  (3-33)

32
5

14 72.41030.100.252.13 vvvy  (3-34)

   1
1

11
*

32
3

11 08.951077.194.770.8 ΕΓv 
T

γvvvy (3-35)

   2
1

22
*

32
3

12 57.5181003.419.010.41 ΕΓv 
T

γvvvy (3-36)

   3
1

33
*

3213 11.5933.33818.054.4 ΕΓv 
T

γvvvy (3-37)

   4
1

44
*

32
5

14 43.21025.178.130.12 ΕΓv 
T

vvvy  (3-38)

Now, the response at  25
0 1010.81080.350.3  v  is desired. Therefore, after 

substituting these numbers into the RSMs and using equation (3-7) as in the previous case 

study, the response was found and is shown graphically in Figure (3-6). For the Kriging 

models, the correlation between v0 and the training points was calculated and a row in D was 

estimated. The estimated response is also shown in Figure (3-6).
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Figure 3-6  showing the response at v0 calculated using Kriging and RSM.

From Figure 3-6 there is a noticeable difference between the response found using 

the Kriging model and the RSM. The RSM does not capture some of the behaviour of the 

string velocity between 2 x 10-3 and 3 x 10-3s; the RSM just “smoothes” the response. Table 

3-6 shows the R2 value between 2 x 10-3s and 3 x 10-3s and from this table, it is clear that the 

RSM does not model the experimental results as well as the Kriging model. Therefore, if 

design analysis is to be made at any of these time steps, the Kriging model is preferred. The 

entire table of results is shown in appendix A.
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Table 3-6 showing R2 calculated for times s3102  to s3103 

Time x10-3 2.0120 2.032 2.0518 2.0717 2.0916 2.1116 2.1315

RSM 0.9596 0.883 0.7461 0.5416 0.3252 0.1901 0.1393

Kriging 0.9994 0.999 0.9983 0.9986 0.9988 0.9993 0.9986

Time x10-3 2.1514 2.1713 2.1912 2.2112 2.2311 2.2510 2.2709

RSM 0.1523 0.2522 0.4414 0.6551 0.8385 0.7689 0.4759

Kriging 0.9984 0.9974 0.9917 0.9886 0.9934 0.9948 0.9952

Time x10-3 2.2908 2.311 2.3307 2.3506 2.3705 2.3904 2.4104

RSM 0.2963 0.170 0.0529 0.0837 0.2419 0.3624 0.4552

Kriging 0.9935 0.992 0.9954 0.9980 0.9963 0.9980 0.9991

Time x10-3 2.4303 2.4502 2.470 2.4900 2.5100 2.5299 2.550

RSM 0.6053 0.8151 0.919 0.9392 0.9535 0.9589 0.932

Kriging 0.9985 0.9965 0.997 0.9956 0.9964 0.9983 0.992

Time x10-3 2.5697 2.5896 2.6096 2.630 2.6494 2.6693 2.6892

RSM 0.8504 0.6646 0.5296 0.620 0.7714 0.9076 0.9456

Kriging 0.9911 0.9847 0.9813 0.997 0.9942 0.9920 0.9945

Time x10-3 2.7092 2.7291 2.7490 2.7689 2.7888 2.8088 2.8287

RSM 0.5869 0.2358 0.8016 0.9096 0.8373 0.4610 0.4635

Kriging 0.9667 0.9784 0.9864 0.9801 0.9926 0.9852 0.9647

Time x10-3 2.8486 2.8685 2.8884 2.908 2.9283 2.9482 2.9681

RSM 0.8460 0.9533 0.9548 0.824 0.2735 0.6074 0.8714

Kriging 0.9909 0.9978 0.9940 0.988 0.9860 0.9943 0.9979
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Chapter 4

Sensitivity Analysis and Robust Design

In dynamic systems, the response at certain time steps may determine whether or not a 

specific system is optimum. An acceptable design may require that the overshoot of the 

response at some time lies between specific limits or that the response stabilizes at a 

particular settling time. Therefore, it is important that design calculations are done such that 

specifications at different times are met. Before parameter design is performed, however, 

some analysis of the system must be first performed. First, a suitable metamodel must be 

chosen; that is, one that fits the experimental results well. For this, the statistical coefficient 

of determination is used. When a suitable model is chosen, sensitivity analysis is then 

performed to determine the effect of each design variable on the response. This can give the 

analyst an idea of how sensitive is the response to each design variable. Then, robust design 

calculations are performed to find the optimum system.

This chapter shows how normalized sensitivities are calculated over time for each 

design variable and how robust design through parameter design or integrated design is done 

to find the optimum system given specifications at certain time steps. The theory is then 

illustrated through the use of several case studies: the first of which is the design of a position 

control servo where only one design variable is random, the second considers the same servo 

but now three design variables are random. The third case study is the design of a mobile sign 

used in shop windows and the fourth looks at choosing variables to allow the velocity of a 

piano string to meet specifications at specific time steps.
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4.1 Normalized Sensitivities

Normalized sensitivities are used to determine the effect of the design variables on the 

response of the system and are calculated using equation (2.28). SVD can, again, be used to 

quickly calculate normalized sensitivities over time especially for systems with very large 

time steps. The First-Order Sensitivity factor (FOS) of equation (2.28) is just the first-order 

derivative of a function of the design variables. Therefore, to obtain the FOS factors over 

time, this first order derivative can be applied to the metamodels obtained for the columns of 

D and then multiplied by the matrix V

        T

vi

m

iii

t

nom
i

v

y

v

y

v

y

v

f
V

vvvv
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




















21 (4.1)

where 
 
iv

y


 v1  is the first-order derivative of the metamodel of the first column of D with 

respect to vi and nom
iv  is just the nominal value of design variable i. Therefore, the time 

history of normalized sensitivities is obtained from

 
  nom

i
nom
i

i

t

nom
i

i

tv
t f

v

v

f

vv
v

v
S

|





 (4.2)

4.2 Robust Design

A metamodel has been developed for each time step along with the coefficients of 

determination and normalized sensitivities. Taking all this information into account, robust 

design can now be performed. Although Kriging tends to always fit the experimental results 

quite well, it is non-linear and finding sensitivities and first and second moment information 

of the response is more difficult than using the RSM. Therefore, if the RSM is acceptable in 

fitting the experimental data it should be used as a first choice. 

Before robust design is performed, the probability of conformance is calculated using 

the initial means of the design variables to determine how well the initial system meets 

specifications. A very high probability of conformance would indicate an acceptable system. 
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If the probability of conformance is too low, robust design is then performed and the 

probability of conformance re-calculated. 

Normalized sensitivities are also calculated to give the analyst an idea of the 

important variables for design. A variable with a very small or negligible effect on the 

response can be ignored since changing this variable will not very likely change the response 

by very much. Also, including this variable will add complexities to the calculations that are 

not necessary. The application of robust design techniques to both the RSM and Kriging 

models will be presented to show how an optimum system may be calculated.

4.2.1 Probability Calculations

The probability of conformance at specific times can be calculated using either the Monte 

Carlo simulation with limit state functions or the Second Moment Method. Limit-state 

functions are easily derived at each time using equation (2.34) and for limit-state functions in 

u-space, the transformation of equation (2.39) is used.

At the nth time, tn, suppose 
nt

 denotes the upper limit with metamodel  v
nt

f . 

Therefore, the limit-state function,  v
nt

g  , becomes

   vv
nnn ttt fg   (4.3)

where the probability of success is found from

    0PrPr  v
nn tt gS (4.4)

For the case where 
nt

 is a lower limit, then

   
nnn ttt fg  vv (4.5)

and the probability of success is calculated using equation (4.4) again. Now that the limit-

state function has been derived, Monte Carlo simulation is used to generate a large sample of 

results given the mean and variance of each design variable and the number of instances 

when the specifications are met is counted.

The other method of probability calculation, the Second Moment method, utilizes the 

transmission of moment methodology to calculate the probability of conformance. The 

theories presented in the literature review in equations (2.32 and 2.33) can be applied to 
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situations where the response of the system varies over time. The first-order derivative of 

each design variable for each metamodel is arranged into the matrix shown in equation (4.6) 

below
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where 
p

m

v

y




 represents the derivative of the metamodel of the mth column of D with respect to 

design variable p. A matrix of these derivatives over time is found using equation (4.7) 

  T

TT

T
tf

V
v

y

v

v















(4.7) 

and can then be used to find the mean and variance of the response at each time step using 

equations (4.8) and (4.9) given the means and variances of the design variables

     
  vv
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v
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4.2.2 Parameter Design using the Response Surface Model

Parameter design is easily done using the response surface model. For a linear response 

surface model the minimization of conformance indices method is used. Consider the general 

linear RSM 

  ppvvvf   22110,βv

that can be considered to be a bi-linear model of the form shown in equation (4.10)
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 
1

,
22110 ppvvv

f
 




βv (4.10)

where 00 a ,  11 a  ,  22 a … ppa   and 10 b  according to equation (2.46). 

These numbers are then substituted into equations (2.43), (2.44) and (2.45) to achieve the 

objective function in equation (2.41) repeated below

min. 



k

i

a iieQ
1



The RSM at a specific time step is found by multiplying the row of metamodels found for 

each column of D by the row in V that corresponds to the time of interest. This method is 

shown in equation (4.11) 

         T
tmt nn

yyyf Vvvvv  21 (4.11)

where  v
nt

f refers to the metamodel at the nth time step and T
tn

V refers to the column in VT

that represents the nth time step.

In many instances, an optimum system is desired where the response at several time 

steps is specified. For such a case, constraints can be introduced where each constraint 

specifies the minimum acceptable probability of success using the limits at the specific time 

steps

min 



k

i

iieQ
1



subject to

 
22

Pr tt xS 

 
33

Pr tt xS 



 
nn tt xS Pr

where 
nt

x is the desired probability of conformance at the nth time step. This problem was 

solved using ‘fmincon’ in MATLAB.
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4.2.3 Parameter Design using the Kriging Model

Parameter design using the Kriging model cannot be done using the above procedure. Instead, 

a probability objective function is used where the probability is calculated using equation 

(2.37) for the time of importance

max      
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(4.12)

or

min    
nn tt SF Pr1Pr 

where  
nt

SPr denotes the probability of success or conformance at the specific time and, 

likewise,  
nt

FPr  denotes the probability of failure or non-conformance. The expressions μt

and σt are calculated from equations (4.8) and (4.9). Similar to parameter design using the 

Response Surface model, for multiple time steps

min  
1

Pr tF (4.13)

subject to

 
22

Pr tt xS 



 
nn tt xS Pr

4.2.4 Integrated Design

Like parameter design, integrated design for dynamic systems is done to meet certain 

specifications at particular times by finding the mean and tolerance of each design variable to 

give a theoretical optimum system and this is done by minimizing the total cost while 

ensuring that the probability of failure is within acceptable limits.

Now, the total cost is made up of the production and loss of quality costs. The 

production cost is simply calculated using the Reciprocal cost model shown in Table (2-2) 

where the assumptions a = 0 and b = 1 are made. However, the loss of quality cost requires 

the mean and variance of the response at the time of interest are calculated using equations 

(4.14) and (4.15) below
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A particular time step is selected by picking the row in V that corresponds to this point in 

time. Therefore,

         T
tmt nn

yyyf Vvvvv  21 (4.16)
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and the loss of quality cost at the nth time step becomes
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4.3 Calculating a specific response given specifications at every time 

step.

Sometimes, the analyst may require the dynamic response of a system to follow a specific 

pattern (Yue, H. and Jiang, W., 2002). For this case, specifications at each time step have to 

be met. Normally, if the system has to meet specifications at only two times, metamodels can 

be developed only for these two times instead of performing SVD. However, for this case of 

meeting specifications at each time, developing metamodels at each time is impractical and in 

this case, applying SVD becomes useful. When metamodels are developed for the columns of 

the reduced matrix, D, the metamodel for any other time is found using equation (4.11). 

Given specifications at each time, the optimum system can be found from

min  systemFPr (4.19)

where
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PrPrPrPrPr
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4.4 Case Study 1 – Servo with One Random Design Variable

Suppose the servo presented in Chapter 3 contains one random design variable, winding 

resistance denoted as v1. However, for an optimum system, the performance of the angular 

position of the servo at specific times is important. Like the previous examples in chapter 3, 

three levels of v1
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The graphical plot of the experimental responses is shown in Figure 4-1 where ‘low’, 

‘medium’ and ‘high’ refers to the three levels of v1. After SVD of Z, D becomes

33
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and since D is so small, metamodels are developed for all three columns. 

The response surface models are

11 9654.250248.4 vy  (4.20)

12 9526.978649.0 vy  (4.21)

13 1861.00016.0 vy  (4.22)

and the Kriging models are

   1
1

11
*

11 9654.250248.4 ΕΓvγ 
T

vy (4.23)

   2
1

22
*

12 9526.978649.0 ΕΓvγ 
T

vy (4.24)

   3
1

33
*

13 1861.00016.0 ΕΓvγ 
T

vy (4.25) 
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Figure 4-1 showing the Angular Position Response of the Experimental Design.

R2 was then calculated at each time step to determine how well each model fits the 

experimental data. These results are shown in Table (4-1).

For an optimum system, we want to control the overshoot of the response at t = 

0.035s and ensure that the response “settles” at 0.070s as seen from Figure (4-1). First, robust 

design is done using only one time and then later, both times are used to find optimum 

parameters. Before robust design calculations are performed, a suitable model at this time has 

to be found; therefore, reference is made to Table (4-1). At t = 0.035s, the response surface 

model has a high R2 of 0.9478; however, the Kriging model exactly predicts the experimental 

data. The Kriging model would be better to use in robust design calculations but the response 

surface model is easier. Since R2 for the RSM is fairly large, the RSM would be acceptable 

for use in these calculations. For this case study, the two models are now used to show how 

the design calculations are performed using the different metamodels to find the optimum 

system.
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Table 4-1 showing R2 over time for each model.

Time 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

R2 RSM 1.0000 0.9998 0.9994 0.9984 0.9961 0.9889 0.9478 0.6566

R2 Kriging 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Time 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080

R2 RSM 0.9920 0.9999 0.9984 0.9929 0.9771 0.9102 0.0017 0.9561

R2 Kriging 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Time 0.085 0.090 0.095 0.100

R2 RSM 0.9970 0.9992 0.9888 0.9679

R2 Kriging 1.0000 1.0000 1.0000 1.0000
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4.4.1 Moments of the Response using the RSM

A suitable system is desired such that the angular position response at t = 0.035s falls 

between 10.1U  and 05.1L . However, before optimum parameters are found, the 

mean and variance of the response at each time should be determined in order to have an idea 

of the distribution of the data. The mean and variance of v1 are initially 0088.01  and 

 242
1 1093.2  where the variance is calculated using

2

1
2
1 300

%






  tol

(4.26)

with a 10% tolerance.

In order to calculate the mean and variance of the response at a specific time, 

equations (4.14) and (4.15) are used. To illustrate this procedure, consider t = 0.005s, the 

RSM model and equation (4.17) to find the first order derivatives at this single time step time

    Ttn
f

0885.01046.00242.01861.09526.979654.25 




v

v
(4.27)

 
8907.10





v

v
nt

f

From equation (4.14), the mean of the response at t1 is

1024.001024.0
1, tz

and from equation (4.15), the variance of the response at t1 is

  3242
, 100102.08907.101093.28907.10

1

 tz
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4.4.2 Moments of the Response using the Kriging model

Now, using the Kriging model, the first and second order derivatives are

 
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1
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1 9654.25 ΕΓ
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
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where  v*  is a function of the design variables of the correlation between v0 and the 

training points

    2
111

* exp xvv   (4.34)

and 1x is a matrix representing the training points of v1. Also, the first and second derivatives 

at this first time step, (0.005s), are found using equations (4.35) and (4.36)

 
T
t

t

v

y

v

y

v

y

v

f
1

1

1

3

1

2

1

1

1

V
v






















(4.35)

 
T
t

t

v

y

v

y

v

y

v

f
1

1

2
1

3
2

2
1

2
2

2
1

1
2

2
1

2

V
v



























(4.36)



Chapter 4 – Sensitivity Analysis and Robust Design 

71

After substituting the mean of v1 into equations (4.28) to (4.36) and then the results 

obtained from these equations into equations (4.14) and (4.15), the mean and variance at 

0.005s using the Kriging model was found to be

   1022.0106044.8109540.5
2

1
1025.0 83

, 1
 

tz

  3242
, 100102.08912.101093.28912.10

1

 tz

The first and second moments of the response at the remaining time steps are shown in table 

4-2. These first and second moments can be used to calculate the probability of conformance 

at each time step using equation (2.37). However, a simpler approach is to use a Monte Carlo 

simulation where a large sample of responses is generated from the mean and variance of v1.

From table (4-2), at 0.035s, the mean and variance of the response would indicate 

that the probability of conformance given the limits specified previously would be 0. Using a 

Monte Carlo simulation to check this assumption and a sample of 10000 values of v1, the 

probability of conformance was found to be 0 using both the Kriging and RSM models. In 

order to improve this probability, robust design is done.
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Table 4-2 showing first and second moments at each time step calculated using Kriging and 

RSM.

Time RSM Kriging

tZ , 32
, 10tZ tZ , 32

, 10tZ

0.005 0.1024 0.0102 0.1029 0.0102

0.010 0.3421 0.0892 0.3425 0.0892

0.015 0.6093 0.2007 0.6080 0.2007

0.020 0.8373 0.2361 0.8329 0.2361

0.025 0.9968 0.1709 0.9893 0.1709

0.030 1.0859 0.0737 1.0763 0.0737

0.035 1.1177 0.0123 1.1081 0.0123

0.040 1.1113 0.0008 1.1031 0.0008

0.045 1.0852 0.0143 1.0799 0.0143

0.050 1.0534 0.0255 1.0514 0.0255

0.055 1.0250 0.0242 1.0261 0.0242

0.060 1.0043 0.0152 1.0072 0.0152

0.065 0.9920 0.0062 0.9958 0.0062

0.070 0.9868 0.0012 0.9905 0.0012

0.075 0.9866 0 0.9895 0

0.080 0.9893 0.0004 0.9909 0.0004

0.085 0.9929 0.0010 0.9935 0.0010

0.090 0.9963 0.0010 0.9959 0.0010

0.095 0.9989 0.0006 0.9978 0.0006

0.100 1.0006 0.0003 0.9993 0.0003
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4.4.3 Parameter Design Using RSM – Balancing Conformance Indices

Now, the optimum mean of v1 will now be calculated by first using the RSM. For robust 

design, the optimization function becomes

min 2211    eeQ (4.37)

where the constants 2211 and,,  are found using equations (2.42) and (2.43).The RSM 

at t = 0.035s is

1035.0 9468.110126.1 vy st  (4.38)

with the limit state functions being (in u-space)

  1111 9468.110126.110.1 ug   (4.39)

   05.19468.110126.1 1112  ug  (4.40)

then, from equations (2.42), (2.43), (2.44) and (2.45)

0126.10 a 9468.111 a 10 b

10.11100  aah U 05.11100  aah L 111 ah 
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with

  011  ugsign

  022  ugsign
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After minimizing Q using ‘fsolve’ in MATLAB, the optimum design was found to be μ = 

0.0064.

Using a Monte Carlo simulation, the probability of conformance was found to be

  1
10000

10000
Pr 035.0  stS

The angular displacement estimates from the Monte Carlo simulation are shown in Figure (4-

2). For the upper and lower specifications of 1.10 and 1.05, it can be seen from Figure (4-2) 

that all the responses using the theoretical optimum of v1 lies within this range with a mean 

value of about 1.09. 

4.4.4 Parameter Design using Kriging Model – Probability Objective Function

Using the above set of equations is easy for linear or bi-linear models. However, the non-

linear Kriging model requires a different approach. The objective becomes maximizing the 

probability of success or minimizing the probability of failure where the probability of 

success at 0.035s (7th time step) is calculated using

max      









 










 


7

77

7

77

7
,

,,

,

,,
1Pr

tz

tLtz

tz

tztU
tS








 (4.43) 

where 
7,tU  and 

7,tL  are the upper and lower limits respectively at 0.035s and 
7,tz and 

7,tz are the mean and standard deviation of the response at 0.035s. Using this equation and 

the function ‘fsolve’ in MATLAB, the optimum v1 was found to be 0.0064. 

From the Monte Carlo Simulation, the probability of conformance was found to be

  9996.0
10000

9996
Pr

7
tS

Figure (4-3) shows the data from the Monte Carlo simulation using as a histogram and it can 

be seen that the data follows a similar distribution as that of Figure (4-2).
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Figure 4-2 showing a histogram of the results from Monte Carlo at the theoretical optimum 

mean of v1 and RSM
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Figure 4-3 showing a histogram of the results from Monte Carlo using the theoretical 

optimum and Kriging model.
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4.4.5 Robust Design Using Multiple Time Steps

The angular position response of the servo contains two important time steps; the ‘rise’ time 

and the ‘settling’ time. The ‘rise’ time is where the response overshoots and we want to limit 

the amount of overshoot that takes place. This design was done previously; however, at the 

‘settling’ time, we also want to ensure that the response stabilizes at t = 0.070s and at this 

time the specifications are 005.1995.0 070.0   st . Since the RSM provides a good fit of the 

experimental design, it will be used to determine the optimum design variables. The RSM at 

this time is

107.0 7179.30196.1 vy st  (4.44)

In order to find the best design variables such that both specifications are met, 

constraints can be introduced to equation (4.43) and these constraints specify that the 

probability of failure at other times does not exceed some stated amount. The optimization 

problem then becomes

min  stF 035.0Pr  (4.45)

                                  subject to                                    

  10.0Pr 07.0  stF

where the probability of nonconformance is calculated using either equation (2.37) or (2.47).

The optimum mean of v1 was found to be 0.0063. When using this result to generate a sample 

of 10000 results using the Monte Carlo simulation, the probabilities of conformance are

  110.105.1Pr 035.0   st

  927.0005.1995.0Pr 070.0   st

The results from the Monte Carlo simulation are shown in Figures (4-4) and (4-5). From the 

figures, the mean at 0.035s and 0.070s are 1.0875 and 0.996. It can also be seen from Figure 

(4-5) that some of the observed values are less than 0.995. However, the overall probability 

of conformance is acceptable.
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Figure 4-4 showing a histogram of the distribution of the response at 0.035s from Monte 

Carlo using the theoretical optimum mean
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Figure 4-5 showing a histogram of the distribution of the response at 0.070s from Monte 

Carlo using the theoretical optimum mean.
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4.5 Case Study 2- Servo with Three Random Design Variables 

The variables winding inductance, v1, winding resistance, v2, and torque constant, v3 are now 

considered to be random and the response time histories at the various combinations of the 

three levels of each design variable 












































3

3

3

1

.
1

1

1020.1

1010.1

1000.1

high

med

low

v

v

v












































3

3

3

3

.
2

2

1068.9

1080.8

1000.8

high

med

low

v

v

v


































84.4

40.4

00.4

3

.
3

3

high

med

low

v

v

v

are recorded into Z

2027
9987.05637.03136.00934.0

9954.04898.02677.00791.0

9968.05289.02911.00861.0

9990.05701.03161.00937.0

x


































Z

Metamodels were found for the first eight columns of D; however, the first four are shown 

below. The response surface models obtained are

3211 0777.06885.298982.42973.4 vvvy  (4.46)

3212 2207.04941.986635.21068.0 vvvy  (4.47)

3213 0103.09340.54473.150806.0 vvvy  (4.48)

3214 0017.09482.07310.70073.0 vvvy  (4.49)

 and the Kriging models are

   1
1

11
*
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The coefficient of determination at each time step calculated using both metamodels are 

shown in Table (4-3). Later, these values will be used to determine the metamodel more 

desirable for use in robust design.

Table 4-3 showing R2 at each time step calculated using both metamodels for Servo with 

multiple random design variables.

Time 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

RSM 0.997 0.997 0.998 0.999 0.998 0.991 0.961 0.755

Kriging 1 1 1 1 1 1 1 1

Time 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080

RSM 0.525 0.925 0.986 0.997 0.988 0.950 0.816 0.310

Kriging 1 1 1 1 1 1 1 1

Time 0.085 0.090 0.095 0.100

RSM 0.436 0.873 0.970 0.989

Kriging 1 1 1 1

The FOS factors at each time step are then found using equation (4.1) and using these FOS 

factors and equation (4.2), the normalized sensitivities can then be calculated for each 

variable at each time step. These results are shown in Table (4-4). 

In order to show how these sensitivities are calculated for multiple random design 

variables, consider t = 0.005s and the response surface models. The FOS factors are 

calculated as shown in equation (4.54)
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(4.54)

where the first matrix is evaluated at the mean of the design variables and the second matrix 

is the row in V corresponding to 0.005s. The first row of the first matrix of equation (4.54) 

corresponds to the first-order derivatives with respect to v1. All this information is then 
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substituted into equation (4.2) to get the normalized sensitivities of each design variable at 

each time step. 

Consider now the same time and the Kriging models. The first derivative with respect 

to v1 of the metamodel of D1 is 

 
ΕΓ

v 1
1

1

*

1

1 9833.4 








vv

y 

After finding the required derivatives and again using equation (4.7) and the first row of VT

for 0.005s, the FOS factors can be calculated. The normalized sensitivities are then ultimately 

calculated using equation (4.2).

From Table (4-4), v1 has the smallest effect on the angular position response of the 

servo, whereas the magnitudes of the other two variables are about the same. Also, 

comparison of the sensitivities calculated using Kriging and RSM with the analytical results 

showed that in some cases the Kriging model seemed to perform better but in others, the 

RSM performed better. Therefore, for this example, no model always gave better results. 

These results will just give the analyst an idea as to how the response will behave when trying 

to find optimal results. Since the effect of v1 is so small, v1 will be considered to be a constant 

at its mean value and v2 and v3 will be used in parameter design. 
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Table 4-4 showing the normalized sensitivities calculated at each time step for angular 

position response of the servo.

v1 v2 v3

Time RSM Krig. Actual RSM Krig. Actual RSM Krig. Actual

0.005 -0.085 -0.088 -0.085 0.937 0.943 0.939 -0.873 -0.878 -0.811

0.010 -0.031 -0.032 -0.032 0.841 0.845 0.835 -0.852 -0.865 -0.791

0.015 -0.011 -0.012 -0.012 0.721 0.724 0.709 -0.769 -0.782 -0.723

0.020 -0.002 -0.002 -0.001 0.585 0.587 0.567 -0.653 -0.664 -0.624

0.025 0.004 0.004 0.004 0.440 0.441 0.415 -0.516 -0.525 -0.506

0.030 0.006 0.006 0.007 0.294 0.294 0.264 -0.370 -0.376 -0.376

0.035 0.007 0.007 0.007 0.156 0.156 0.124 -0.224 -0.228 -0.241

0.040 0.006 0.006 0.007 0.038 0.039 0.007 -0.092 -0.094 -0.115

0.045 0.005 0.004 0.005 -0.051 -0.051 -0.079 0.015 0.015 -0.008

0.050 0.006 0.003 0.003 -0.106 -0.106 -0.127 0.091 0.094 0.071

0.055 0.0008 0.0004 0.001 -0.115 -0.126 -0.139 0.124 0.127 0.117

0.060 -0.0007 -0.001 -0.001 -0.126 -0.119 -0.121 0.128 0.131 0.130

0.065 -0.001 -0.002 -0.001 -0.118 -0.092 -0.087 0.108 0.111 0.117

0.070 -0.0018 -0.002 -0.002 -0.092 -0.059 -0.048 0.076 0.079 0.089

0.075 -0.0016 -0.002 -0.001 -0.059 -0.027 -0.013 0.043 0.045 0.056

0.080 -0.0012 -0.001 -0.002 -0.003 -0.003 0.011 0.014 0.016 0.024

0.085 -0.0007 -0.0005 -0.001 0.013 0.013 0.024 -0.006 -0.004 0.001

0.090 -0.0004 -0.0003 0 0.020 0.021 0.028 -0.017 -0.016 -0.014

0.095 -0.0003 -0.0002 0 0.021 0.022 0.025 -0.021 -0.020 -0.022

0.100 0.0002 0.0002 0 0.018 0.018 0.019 -0.020 -0.018 -0.022
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4.5.1 Moments of the Response

Now, to find the mean and variance of the response, the first-order derivatives have already 

been obtained and since the RSMs are linear, the second-order derivative is 0. All the 

required information is then substituted into equations (4.8) and (4.9) to obtain the first and 

second moments of the response. 

When using the Kriging model to calculate the moments, the first and second 

derivatives of the Kriging model representing D1 are
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where           2
333

2
222

2
111

* expexpexp xxxv  vvv   . After substituting 

the required information into equations (4.8) and (4.9), the moments of the response are 

calculated at each time step. The results obtained using both metamodels were calculated and 

are found in Table (4-5).
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Table 4-5 showing the First and Second Moments of Angular Position Response at Each 

Time Step.

RSM Kriging

Time μ σ2 μ σ2

0.005 0.0949 0.0161 0.0942 0.0166

0.010 0.3195 0.1590 0.3179 0.1682

0.015 0.5742 0.3981 0.5723 0.4282

0.020 0.7972 0.5322 0.7959 0.5806

0.025 0.9599 0.4636 0.9599 0.5134

0.030 1.0580 0.2738 1.0595 0.3087

0.035 1.1016 0.0997 1.1042 0.1156

0.040 1.1065 0.0135 1.1096 0.0162

0.045 1.0890 0.0037 1.0921 0.0020

0.050 1.0623 0.0245 1.0644 0.0245

0.055 1.0360 0.0373 1.0376 0.0396

0.060 1.0145 0.0347 1.0153 0.0382

0.065 1.0000 0.0224 1.0000 0.0254

0.070 0.9920 0.0102 0.9915 0.0120

0.075 0.9891 0.0028 0.9885 0.0034

0.080 0.9896 0.0002 0.9890 0.0003

0.085 0.9919 0.0002 0.9915 0.0002

0.090 0.9946 0.0008 0.9946 0.0008

0.095 0.9972 0.0010 0.9973 0.0011

0.100 0.9991 0.0008 0.9995 0.0009
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4.5.2 Probability of Conformance Calculations

For an optimum system, the upper and lower specifications at t = 0.035s are ζU = 1.10 and ζL

= 1.05. The means and variances of each design variable are
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and the probability of conformance at 0.035s is
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A sample of 10000 design variable combinations was generated using the means and 

variances of each variable. Among the 10000 responses of angular position at t = 0.035s, the 

total number of responses that conformed to specifications is 6288 and, from the Monte Carlo 

simulation, the probability of conformance was found to be
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Now, using the second moment method and the Kriging model,
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4.5.3 Parameter Design using the RSM – Balancing of Conformance Indices

In order to increase the probability of conformance, parameter design is now performed to 

select the means of the design variables that will yield satisfactory results. From the 

sensitivity calculations, v1 has a very small effect on angular position; therefore this variable 

is considered to be constant. The parameter design method that will be used is balancing 

conformance indices. Although the RSM is simpler than the Kriging model and is preferred 

for robust design calculations, the coefficient of determination is needed to determine how 

well it models the experimental data. From Table (4-3), the coefficient of determination 

calculated at 0.035s shows that the RSM is quite acceptable and will now be used for 

parameter design.

Using equation (4.12), the RSM model for the response at 0.035s is

321 0588.04638.197901.61635.1 vvvy 

and the objective function is
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Using the Monte Carlo simulation, from a sample of 10000 responses at 0.035s, the 

probability of success was found to be

  9844.0
10000

9844
Pr S

and a histogram of the data from the Monte Carlo simulation is shown in Figure (4-6). Given

upper and lower limits of 1.10 and 1.05 respectively, the results Monte Carlo simulation 

seems to conform to these specifications. Although from Figure (4-6) some observed values 

fall below the lower specification, the overall probability of conformance is still acceptable. 

From the figure, the mean is approximately 1.07.
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Figure 4-6 showing a histogram of the data obtained from Monte Carlo for the Servo with 

three random design variables at t = 0.035s.
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4.5.4 Multiple Responses

We want to design the system, now considering all three random design variables with v1

held constant, to meet the specifications previously stated at times t = 0.035s and t = 0.070s. 

As before, the optimization problem becomes

min  stF 035.0Pr 

         s.t.

                100.0Pr 070.0  stF

and using ‘fsolve’, the optimum design was found to be v2 = 0.0077 v3 = 4.3799 where the 

probabilities of conformance at the two time steps are

  9939.010.105.1Pr 035.0   st

  8979.0005.1995.0Pr 070.0   st

The results from the Monte Carlo simulation show that an infeasible solution has 

been reached since the constraint was not met. These results are clearly seen in Figures (4-7) 

and (4-8). Although the responses at 0.035s fall within the specifications, many of the 

responses at 0.070s are greater than 1.005. On looking at Table (4-4), the problem lies in the 

normalized sensitivities of the variables. At 0.035s, a 1% change in v2 would increase the 

response by 0.156%. However, this same percentage change at 0.070s decreases the response 

by -0.059%. A similar situation occurs for v3. Therefore, it is difficult to find a set of design 

variables that can achieve the desired results. The designer must, therefore, be willing to 

compromise. Perhaps the probability of conformance at 0.035s can be reduced in order to 

increase the conformance at 0.070s. If this is unacceptable, then no feasible solution is 

achieved.
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Figure 4-7 showing a histogram of the responses at 0.035s from the Monte Carlo simulation 

using the optimum means.
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Figure 4-8 showing a histogram of the response at 0.070s from the Monte Carlo simulation 

using the optimum means.
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4.6 Case Study 3 –Window Sign

Consider the case of finding the design variables to give an optimum performance of a mobile 

display (Cochin, 1980). The sign uses a windup oscillating device to attract shoppers to a 

shop window. The mechanism is made up of two steel spheres on either end of a rod and is 

hung on a thin wire that can be twisted many times without breaking. At the start of the 

business day, the device is wound up 4000˚ which is approximately 11 revolutions. A design 

is desired such that the motion of the display, at the end of the business day, decays to 

approximately 10˚. A diagram of the device is shown below

Figure 4-9 showing the mechanism of a windup oscillating display sign.

The system is torsional with a torsion spring, K, being the thin wire. This wire connects the 

rigid rod to ground. The system also has an initial displacement of 4000˚ and the equation of 

the system is

ate 0

where na  , 
J

K
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nJ
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4.6.1 Simulation Results

The two design variables of interest are K – Nm/rad and r - m with constants M = 1kg, and θ0

= 4000˚. The angular displacement response of the system was observed from t = 0s to t = 

30000s (8.3hr) using the following low, medium and high values of each design variable
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The time history responses at the nine design variable combinations were recorded and an 

extract of these results are show in Z
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A plot of the experimental responses are shown in Figure (4-10) 
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Figure 4-10 showing the experimental responses for the Display Sign

Now, a business day for this problem is considered to be 30000s; therefore, an optimal design 

is required such that the angular displacement at this time is between 11˚ and 9˚ with a target 

of 10˚. The problem with the original design variables and tolerances is that too much 

variability exists at the time of interest. Therefore, a set of design variables and tolerances has 

to be found.

Like the servo example, SVD is applied to Z and metamodels are developed for the 

significant columns of D. Initially, response surface models will be derived for the first four 

columns of D and the R2 value will be calculated at t = 30000s. If the calculated R2 is found 

to be acceptable, an RSM will be used for Robust Design. However, if R2 indicated an 

inadequate model, then a Kriging model will be used for design. R2 at 30000s was found to 

be 0.88. This value indicates that the RSM does not provide a very good model of the 

experimental design at t = 30000s. Using the Kriging models, R2 was found to be 1 meaning 

that an exact model of the experimental design is achieved. 
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4.6.2 Robust Design

At the time of interest, the upper and lower specifications are 11˚ and 9˚ respectively with a 

target of 10˚.  The Kriging model will be used for design calculations since it provides a 

better ‘fit’ of the experimental data than the response surface model. The normalized 

sensitivities of each design variable at this time are v1 = 13.0827 and v2 = -7.5125 indicating 

that the response is very sensitive to a change in either one of these design variables, 

therefore, optimum means as well as tolerances are required.

min CT = CLQ + CP
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The optimum set of means and tolerances was then found to be

5003.0
1
v , 4102

2

v , 7807.0
1
vtol and 1338.1

2
vtol

and from a Monte Carlo simulation, the probability of conformance is 0.9794. A histogram of 

the results from the Monte Carlo simulation is shown in Figure (4-11) and it is clear that the 

responses fall within specifications with a mean of 10.
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Figure 4-11 showing a histogram and normal distribution fit of the observed data from Monte 

Carlo simulation using the theoretical optimum means.
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4.7 Case Study 4 – Design of a Piano String

From Chapter 3, the velocity of a piano string is observed while varying the initial hammer 

velocity, spring stiffness and the striking position of the hammer. For illustrative purposes, 

suppose an optimum set of design variables is desired such that the response at particular time 

steps meets some stated specifications. The responses obtained from the initial set of design 

variable combinations are shown graphically in Figure 4-12.
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Figure 4-12 showing the responses at the training points from the simulation of the piano 

string.

The initial means and variances of each design variable are
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where the variance is calculated from



Chapter 4 – Sensitivity Analysis and Robust Design

95

2
2

300

10








ii vv 

4.7.1 Design Specifications

Consider the times t = 0.0003187s and t = 0.004243s which correspond to the 17th and 214th

time steps respectively. The specifications at these times, stated below, are shown in Figure 

(4-12) 

7.2
17, tL 3.3

17, tU

5.3
214, tL 2.4

214, tU

The optimum means and tolerances of the three design variables are required to meet these 

specifications. Consider, first, the specifications at t = 0.0003187s. To find the desired means 

and tolerances, integrated design is used. The optimization problem is then

min  321321 ,,,,,17 toltoltolC t
T 

subject to

  020.0Pr
17

tF

where  321321 ,,,,,17 toltoltolC t
T   denotes the total cost at 0.0003187s and is a function of 

the means and tolerances of the design variables. This cost is made up of the production and 

loss of quality costs which for t = 0.003187s are

321

111

vvv
p toltoltol

C 

 
  2

,
2

,2 1717
3

7.23.3
tZtZ

s
LQ

C
C  




where the scrap cost, Cs, is assumed to be $1 and the mean and variance of the response at t17

is calculated using equations (4.14) and (4.15). The production cost takes the reciprocal 

model form with the assumptions of a = 0 and b = 1. 

The normalized sensitivities of each design variable at this time are

v1 = 1.0616

v2 = 0.0054

v3 = 0.0217
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indicating that v2 has a very small effect on the string velocity. If v2 is kept constant, the 

problem becomes

min  32131 ,,,,17 toltoltolC t
T 

subject to

  020.0Pr
17

tF

where  32131 ,,,,17 toltoltolCt
T   is the total cost as a function of the means and tolerances of 

v1 and v3.

4.7.2 Multiple Responses

The optimum design is now found to meet specifications at the 17th and 214th time steps when 

the means and tolerances of v1 and v3 are unknown. 

Total Cost, 21417 t
T

t
TT CCC 

min 21417 t
T

t
TT CCC 

subject to

  02.0
17

tFP

  02.0
214

tFP

Optimum design at v1 = 3.8586, v2 = 3.90 x 10-5, v3 = 0.1146, tol1 = 1.6086, tol2 = 10 and tol3

= 9.4375. Using a Monte Carlo simulation and 5000 runs, at t = 0.003187s, the probability of 

conformance is

  98.0Pr
17

tS

and at 0.004243s,

  99.0Pr
214

tS

Histograms of the data obtained from the Monte Carlo simulation at these times using the 

optimum means and tolerances of the design variables are shown in Figures (4-13) and (4-

14). From these figures the spread of the observed responses fall within the specifications 

with means of approximately 3.26 and 3.65 and the 17th and 214th time steps respectively.
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Figure 4-13 showing a histogram of the data obtained from Monte Carlo at the 17th time step 

using the optimum values of the means and tolerances of the design variables.
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Figure 4-14 showing a histogram of the data obtained from Monte Carlo at the 214th time step 

using the optimum values of the means and tolerances of the design variables.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Previous research focussed on using metamodelling for fitting experimental results and 

making predictions at some arbitrary set of design variables. However, very little research has 

been found on the use of metamodelling in the design of dynamic systems where 

specifications at certain times are desired. This research has introduced a method of 

combining Singular Value Decomposition (SVD) and Metamodelling in order to find the set 

of design variables that resulted in an optimum dynamic system given specifications at 

individual time steps. The practicality of two popular metamodels, Response Surface Models 

(RSM) and Kriging models, has been compared by way of several case studies. The findings 

of this research will now be presented.

The dynamic response of some system has been broken into discrete time steps and 

recorded in a matrix. Normally, to find responses at multiple design variable sets, 

metamodels are developed for each time step. However, for cases where the number of time 

steps is of the order of one hundred and above, finding a metamodel for each step will take a 

very long time. To address this problem, SVD has been applied to factorize this matrix into 

matrices containing information in parameter- and time-space. Metamodels are then found 

only for the columns of the matrix in parameter-space, D. The response at any specific time is 

then found from the product of the new row in D, corresponding to v0, with the matrix of 

time-dependent information. Furthermore, the numbers found in the columns of D are 

decreasing in magnitude. The coefficient of determination has been used to show how a few 

columns of D can also achieve acceptable results in fitting the experimental responses.
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This feature of SVD has been used for designing a system where the optimum 

performance depends on specifications at certain times. Several case studies have been used 

to illustrate the theory of combining SVD with metamodelling for robust design applications. 

In order to determine which metamodel fit the experimental results more accurately the 

statistical coefficient of determination, R2, was calculated. If R2 indicated that the RSM 

provided a suitable fit of the experimental response, the RSM was used for robust design. For 

systems with multiple design variables, normalized sensitivities were calculated for each 

design variable and the design variable with a negligible effect on the response (of order 10-3) 

was considered constant when applying robust design calculations.

Also, the comparison of the dynamic response at some arbitrary set of design 

variables calculated using both metamodels with the results obtained from the actual 

simulation served as a method of evaluating the metamodel performance. For a system 

containing a simple response, although the Kriging model fit the experimental results exactly 

according to the R2 value, the RSM is also quite acceptable. For the same system, predictions 

at v0 using the Kriging model were not much better than those obtained from the RSM. 

However, for a system with a ‘noisy’ response, the advantage of the Kriging model in better 

fitting the data is more clearly seen. A plot of the response showed that in some areas, the 

RSM smoothes the data rather than modelling it exactly.

5.2 Conclusion

Overall, SVD with metamodelling helps to greatly reduce the number of calculations 

required by reducing the number of columns over which interpolation is needed. This method 

is very helpful when using a Monte Carlo simulation to generate responses at a large sample 

of design variable combinations. Also, for robust design at specific time steps, for a system 

with a simple dynamic response, as in the case of the servo, a simple RSM is suitable for 

design since calculations required to estimate Kriging model parameters are quite demanding. 

However, for a “noisy” response like that of the velocity of the piano string, the iterative 

process in estimating Kriging model parameters is offset by very accurate results in fitting the 

experimental data and, thus, the Kriging model is preferred for robust design calculations.

More importantly, this method of using SVD to separate a matrix of dynamic response 

into parameter- and time-space was found to be very helpful for robust design since the 
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metamodel, normalized sensitivities, first and second moments and probability of 

conformance can be easily found.

5.3 Future Work

Future work includes

 comparing the predictions obtained using different correlation functions in the 

Kriging metamodel

 applying this methodology for the case of multiple responses and for situations where 

there are specifications at every time step

 using first-order reliability method (FORM) as opposed to a Monte Carlo simulation

 applying this methodology to cases where specifications at every time step have to be 

met 
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Appendix A

R2 calculated at each time step using the RSM and Kriging model.

Time 

x10-3

0.000 0.020 0.0398 0.0598 0.0797 0.0996 0.1195

RSM 0.000 0.429 0.3190 0.0230 0.5482 0.9800 0.9947

Kriging 1.000 0.996 0.9979 0.9981 0.9933 0.9964 0.9994

Time 

x10-3

0.1394 0.159 0.179 0.1992 0.2191 0.2390 0.2590

RSM 0.9891 0.996 0.999 0.9996 1.0000 1.0000 1.0000

Kriging 0.9924 0.997 0.999 0.9997 0.9999 0.9999 0.9999

Time 

x10-3

0.2789 0.2988 0.319 0.339 0.3586 0.3785 0.3984

RSM 0.9999 0.9999 1.000 0.999 0.9995 0.9994 0.9975

Kriging 0.9999 0.9999 1.000 1.000 1.0000 0.9998 1.0000

Time 

x10-3

0.4183 0.4383 0.4582 0.478 0.498 0.5180 0.5379

RSM 0.9989 0.9879 0.9926 0.990 0.953 0.9679 0.9909

Kriging 0.9999 1.0000 0.9995 1.000 1.000 0.9998 0.9998

Time 

x10-3

0.5578 0.5777 0.5976 0.6175 0.638 0.657 0.6773

RSM 0.9390 0.8660 0.9152 0.9740 0.988 0.965 0.9055

Kriging 0.9999 0.9995 0.9996 0.9999 1.000 0.999 0.9996

Time 

x10-3

0.6972 0.7171 0.7371 0.7570 0.7769 0.797 0.817

RSM 0.8460 0.9128 0.9839 0.9952 0.9912 0.992 0.986

Kriging 0.9994 0.9994 0.9996 0.9995 0.9991 0.999 0.999
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Time 

x10-3
0.8367 0.8566 0.8765 0.8964 0.9163 0.9363 0.956

RSM 0.9677 0.9152 0.8513 0.8752 0.9601 0.8991 0.608

Kriging 0.9994 0.9995 0.9992 0.9983 0.9974 0.9976 0.999

Time 

x10-3 0.976 0.9960 1.0159 1.0359 1.0558 1.0757 1.0956

RSM 0.340 0.3248 0.4630 0.3619 0.4918 0.6549 0.8169

Kriging 0.999 0.9975 0.9917 0.9984 0.9994 0.9998 1.0000

Time 

x10-3 1.116 1.136 1.1554 1.1753 1.1952 1.2151 1.2351

RSM 0.935 0.982 0.9691 0.9195 0.8462 0.7528 0.6696

Kriging 1.000 0.999 0.9997 0.9999 1.0000 0.9998 0.9990

Time 

x10-3 1.2550 1.275 1.294 1.3147 1.3347 1.3546 1.3745

RSM 0.7094 0.885 0.976 0.9355 0.8738 0.8688 0.9236

Kriging 0.9974 0.997 0.997 0.9982 0.9989 0.9992 0.9994

Time 

x10-3 1.3944 1.4143 1.434 1.4542 1.4741 1.4940 1.5139

RSM 0.9774 0.9666 0.924 0.9221 0.9695 0.9695 0.8563

Kriging 0.9995 0.9996 0.999 0.9994 0.9991 0.9987 0.9986

Time 

x10-3 1.5339 1.5538 1.5737 1.5936 1.6135 1.6335 1.6534

RSM 0.7394 0.6899 0.7030 0.7601 0.8440 0.9307 0.9787

Kriging 0.9990 0.9995 0.9998 1.0000 0.9997 0.9993 0.9990

Time 

x10-3 1.6733 1.6932 1.713 1.7331 1.753 1.7729 1.7928

RSM 0.9577 0.8784 0.775 0.6795 0.603 0.5591 0.5899

Kriging 0.9989 0.9991 0.999 0.9999 0.999 0.9995 0.9987

Time 

x10-3 1.8127 1.8327 1.8526 1.873 1.8924 1.9124 1.9323

RSM 0.7185 0.8521 0.9253 0.959 0.9751 0.9842 0.9895

Kriging 0.9986 0.9993 0.9996 0.999 0.9998 0.9997 0.9997
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Time 

x10-3
1.9522 1.9721 1.9920 2.0120 2.032 2.0518 2.0717

RSM 0.9931 0.9955 0.9902 0.9596 0.883 0.7461 0.5416

Kriging 0.9998 0.9999 0.9994 0.9994 0.999 0.9983 0.9986

Time 

x10-3 2.0916 2.1116 2.1315 2.1514 2.1713 2.1912 2.2112

RSM 0.3252 0.1901 0.1393 0.1523 0.2522 0.4414 0.6551

Kriging 0.9988 0.9993 0.9986 0.9984 0.9974 0.9917 0.9886

Time 

x10-3 2.2311 2.2510 2.2709 2.2908 2.311 2.3307 2.3506

RSM 0.8385 0.7689 0.4759 0.2963 0.170 0.0529 0.0837

Kriging 0.9934 0.9948 0.9952 0.9935 0.992 0.9954 0.9980

Time 

x10-3 2.3705 2.3904 2.4104 2.4303 2.4502 2.470 2.4900

RSM 0.2419 0.3624 0.4552 0.6053 0.8151 0.919 0.9392

Kriging 0.9963 0.9980 0.9991 0.9985 0.9965 0.997 0.9956

Time 

x10-3 2.5100 2.5299 2.550 2.5697 2.5896 2.6096 2.630

RSM 0.9535 0.9589 0.932 0.8504 0.6646 0.5296 0.620

Kriging 0.9964 0.9983 0.992 0.9911 0.9847 0.9813 0.997

Time 

x10-3 2.6494 2.6693 2.6892 2.7092 2.7291 2.7490 2.7689

RSM 0.7714 0.9076 0.9456 0.5869 0.2358 0.8016 0.9096

Kriging 0.9942 0.9920 0.9945 0.9667 0.9784 0.9864 0.9801

Time 

x10-3 2.7888 2.8088 2.8287 2.8486 2.8685 2.8884 2.908

RSM 0.8373 0.4610 0.4635 0.8460 0.9533 0.9548 0.824

Kriging 0.9926 0.9852 0.9647 0.9909 0.9978 0.9940 0.988

Time 

x10-3 2.9283 2.9482 2.9681 2.9880 3.0080 3.0279 3.0478

RSM 0.2735 0.6074 0.8714 0.9535 0.9772 0.9666 0.8989

Kriging 0.9860 0.9943 0.9979 0.9980 0.9985 0.9994 0.9977
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Time 

x10-3
3.068 3.0876 3.1076 3.1275 3.1474 3.1673 3.1873

RSM 0.606 0.5079 0.8229 0.9207 0.9567 0.9726 0.9811

Kriging 0.992 0.9915 0.9973 0.9977 0.9970 0.9978 0.9990

Time 

x10-3 3.2072 3.227 3.2470 3.2669 3.2869 3.3068 3.3267

RSM 0.9868 0.989 0.9878 0.9891 0.9908 0.9888 0.9857

Kriging 0.9992 0.999 0.9998 0.9994 0.9985 0.9990 0.9986

Time 

x10-3 3.347 3.3665 3.3865 3.4064 3.4263 3.4462 3.4661

RSM 0.983 0.9690 0.9560 0.9713 0.9856 0.9796 0.9821

Kriging 0.994 0.9930 0.9970 0.9949 0.9925 0.9970 0.9994

Time 

x10-3 3.4861 3.506 3.5259 3.5458 3.5657 3.5857 3.6056

RSM 0.9908 0.989 0.9768 0.9711 0.9780 0.9726 0.9402

Kriging 0.9976 0.995 0.9953 0.9963 0.9954 0.9929 0.9927

Time 

x10-3 3.6255 3.6454 3.665 3.6853 3.7052 3.7251 3.7450

RSM 0.9316 0.9575 0.968 0.9693 0.9784 0.9903 0.9920

Kriging 0.9906 0.9860 0.989 0.9966 0.9982 0.9959 0.9962

Time 

x10-3 3.7649 3.7849 3.8048 3.825 3.8446 3.8645 3.8845

RSM 0.9890 0.9905 0.9926 0.983 0.9478 0.8908 0.8382

Kriging 0.9986 0.9987 0.9959 0.994 0.9947 0.9924 0.9600

Time 

x10-3 3.9044 3.9243 3.9442 3.9641 3.9841 4.0040 4.0239

RSM 0.8177 0.8396 0.8852 0.9385 0.9758 0.9881 0.9842

Kriging 0.9636 0.9928 0.9983 0.9983 0.9985 0.9990 0.9993

Time 

x10-3 4.0438 4.0637 4.0837 4.104 4.1235 4.143 4.1633

RSM 0.9704 0.9575 0.9630 0.979 0.9911 0.997 0.9988

Kriging 0.9985 0.9982 0.9988 0.999 0.9992 0.999 0.9997
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Time 

x10-3

4.1833 4.2032 4.2231 4.2430 4.2629 4.2829 4.303

RSM 0.9946 0.9847 0.9750 0.9730 0.9798 0.9896 0.992

Kriging 0.9997 0.9994 0.9993 0.9996 0.9994 0.9994 0.999

Time 

x10-3

4.3227 4.3426 4.3625 4.3825 4.4024 4.4223 4.4422

RSM 0.9845 0.9802 0.9846 0.9852 0.9659 0.9343 0.9184

Kriging 0.9990 0.9993 0.9995 0.9986 0.9984 0.9989 0.9991

Time 

x10-3

4.4622 4.4821 4.502 4.5219 4.5418 4.5618 4.5817

RSM 0.9313 0.9614 0.981 0.9578 0.8716 0.7467 0.6791

Kriging 0.9994 0.9997 0.999 0.9988 0.9988 0.9992 0.9994

Time 

x10-3

4.6016 4.6215 4.6414 4.6614 4.6813 4.701 4.7211

RSM 0.7403 0.8500 0.9328 0.9769 0.9819 0.949 0.8875

Kriging 0.9995 0.9996 0.9996 0.9995 0.9994 0.999 0.9995

Time 

x10-3

4.7410 4.7610 4.7809 4.8008 4.8207 4.8406 4.8606

RSM 0.8116 0.7404 0.7249 0.8033 0.9059 0.9597 0.9750

Kriging 0.9991 0.9982 0.9971 0.9981 0.9981 0.9984 0.9991

Time 

x10-3

4.8805 4.900 4.9203 4.940 4.9602 4.9801 5.0000

RSM 0.9805 0.984 0.9776 0.959 0.9407 0.9374 0.9487

Kriging 0.9982 0.998 0.9986 0.9989 0.9988 0.9987 0.9975
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Appendix B

Training points used for the position control servo
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Appendix C

R2 calculated at each time step, for the Servo Example (three random design variables and 

Angular Position Response), using both metamodels.

Time 0.005 0.010 0.015 0.020 0.025 0.030 0.035

RSM 0.997 0.997 0.998 0.999 0.998 0.991 0.961

Kriging 1 1 1 1 1 1 1

Time 0.040 0.045 0.050 0.055 0.060 0.065 0.070

RSM 0.755 0.525 0.925 0.986 0.997 0.988 0.950

Kriging 1 1 1 1 1 1 1

Time 0.075 0.080 0.085 0.090 0.095 0.100

RSM 0.816 0.310 0.436 0.873 0.970 0.989

Kriging 1 1 0.9999 0.9999 1 0.9998
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Appendix D

The coefficient of determination calculated at each time step, using both metamodels, for the 

Grocery Sign example.

Time 0 400 800 1200 1600 2000 2400 2800

RSM 1 0.992 0.993 0.994 0.995 0.996 0.997 0.998

Krig 1 1 1 1 1 1 1 1

Time 3200 3600 4000 4400 4800 5200 5600 6000

RSM 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999

Krig 1 1 1 1 1 1 1 1

Time 6400 6800 7200 7600 8000 8400 8800 9200

RSM 0.999 0.999 0.999 0.998 0.998 0.997 0.996 0.995

Krig 1 1 1 1 1 1 1 1

Time 9600 10000 10400 10800 11200 11600 12000 12400

RSM 0.995 0.994 0.993 0.991 0.990 0.989 0.988 0.986

Krig 1 1 1 1 1 1 1 1

Time 12800 13200 13600 14000 14400 14800 15200 15600

RSM 0.985 0.983 0.981 0.980 0.978 0.976 0.974 0.972

Krig 1 1 1 1 1 1 1 1

Time 16000 16400 16800 17200 17600 18000 18400 18800

RSM 0.970 0.968 0.966 0.964 0.961 0.959 0.957 0.954

Krig 1 1 1 1 1 1 1 1

Time 19200 19600 20000 20400 20800 21200 21600 22000

RSM 0.952 0.949 0.947 0.944 0.941 0.939 0.936 0.933

Krig 1 1 1 1 1 1 1 1

Time 22400 22800 23200 23600 24000 24400 24800 25200

RSM 0.930 0.928 0.925 0.922 0.919 0.916 0.913 0.910
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Krig 1 1 1 1 1 1 1 1

Time 25600 26000 26400 26800 27200 27600 28000 28400

RSM 0.907 0.904 0.901 0.898 0.895 0.891 0.888 0.885

Krig 1 1 1 1 1 1 1 1

Time 28800 29200 29600 30000

RSM 0.882 0.879 0.876 0.872

Krig 1 1 1 1
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Glossary of Terms

Design Variable – input variable that affects the output of a system

Design Variable Combination or Design Variable Set – set of two or more design 

variables used to generate one response. E.g. Angular response when v1 = 0.0011 and v2 =

0.0088 is a design variable combination

Dynamic System – a system in which the response changes over time

Experimental design – design consisting of training points and experimental responses.

Experimental responses – set of responses obtained from the simulation at the training 

points.

FOS Factors or first-order sensitivity factors – first derivative of a function with respect to a 

particular design variable

Integrated Design – robust design technique used to find the means and tolerances of the 

design variables to maximize the probability of conformance

Kriging – type of metamodel initially used as an interpolation method in spatial estimation

Metamodelling – process of developing metamodels to fit experimental data

Metamodel – a simple model used to fit the experimental data.

Normalized Sensitivities or Sensitivities – gives the percentage change of the response for a 

1% change of a particular design variable

Parameter Design – robust design technique used to find the means of the design variables 

at constant tolerances to maximize the probability of conformance

PCA or Principal Component Analysis – a statistical process that groups individual variables 

into separate components of factors and uses these rather than individual variables as a basis 

for measuring similarities between areas. (Badiru, 2006).

Response – output of a system

Response Time History – response of a system recorded at consecutive time steps
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RSM or Response Surface Model – otherwise known as regression model; a type of 

metamodel common in statistical applications for fitting experimental data

 SVD or Singular Value Decomposition – matrix decomposition technique

Time Step – a discrete instance in time

Training points – set of initial design variables or design variable combinations used for 

generating initial response data from the simulation


