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Abstract

Flecs is a framework for facilitating rapid implementation of communication proto-
cols. Forwarding functionality of protocols can be modeled as a combination of packet
processing components called abstract switching elements or Ases. The design of Ases
is constrained by the axioms of communication which enables us to formally analyze for-
warding mechanisms in communication networks. Ases can be connected in a directed
graph to define complex forwarding functionality. We have developed Flecs on top
of the Click modular router. The compilers in the Flecs framework translate protocol
specifications into its Click implementation. We claim that the use of our framework
reduces the implementation time by allowing the programmer to specify Ases and the
forwarding configuration in a high-level meta-language and produces reasonably effi-
cient implementations. It allows rapid prototyping through configuration, as well as
specialized implementation of performance-critical functionality through inheritance.
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Chapter 1

Introduction

Designing, implementing and deploying network software is an expensive and time-
consuming process. As a result, modular network architectures have gained significant
interest in the networking research community. Modular architectures are ideal vehi-
cles to design, develop, test and optimize individual components of communication
protocols. Components can be reused in different implementations and can be read-
ily adapted and tuned for new environments [12]. An added advantage of a modular
design is that components can be specified and verified more easily compared to a
monolithic implementation. Furthermore, the dynamic nature of today’s communica-
tion networks require individual components to evolve over time [13]. We intend to
use concepts from modularization to reduce the complexity of network communication
infrastructure and we hope to use formal analysis to understand and prove correctness
even for complex protocols.

The benefits of modularization come at a cost. Modularization may lead to high
performance overhead due to additional boundary crossings. There may also be an
additional cost of configuring the system in terms of selection and parametrization of
components.

This thesis describes the design and implementation of Flecs, a framework that
employs modularization to quickly implement forwarding functionality of communi-
cation protocols. Most of the existing research in protocol prototyping is generally
directed towards optimization and performance enhancement techniques [6, 26]. Most
current systems lack a solid theoretical foundation, which makes it almost impossible
to formally analyze their behavior with respect to communication. Notable exceptions
include [7, 14], which study the underlying principles of connectivity in communica-
tion protocols. In contrast, our work builds on an axiomatic basis for expressing com-
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munication primitives that provides a theoretically sound framework for expressing
fundamental internetworking concepts such as deliverability of messages. In particu-
lar, we use the axiomatic basis to derive and implement a universal forwarding engine,
constrained by the axioms of our theoretical framework. We do so by using meta-
compilation techniques to rapidly generate protocol implementations for a variety of
forwarding schemes.

1.1 The Theoretical Framework

A parallel stream of research has made an attempt to define communication invariants
using axioms [22, 23]. This work was inspired by Hoare’s axiomatic basis for program-
ming [16] and is closely related to other work in the area of naming and addressing
indirection [2, 15, 32].

The axiomatic framework defines components called abstract switching elements or
Ases. This facilitates the overall protocol design by dividing it into subtasks and makes
use of the divide-and-conquer strategy to simplify complex forwarders. The axioms in
the framework help constrain the behavior of Ases as communication protocol com-
ponents in contrast to prior work, where each module can perform arbitrary actions.
These constraints on Ase design are enumerated as follows.

• Two Ases can directly communicate by exchanging messages if and only if they
are neighbors.

• Ases choose which neighbor to forward a packet to based only on the packet
header and local switching information.

• Packet forwarding from a source to a destination is modeled as a transitive closure
of direct communication and local switching.

These constraints do not restrict the power of an Ase significantly, yet they are
sufficient to allow formal verification. In effect, the more the user is constrained, the
more the framework knows about what the user can possibly do. Stated another way,
Flecs has more domain knowledge than an approach in which packet forwarders are
specified in a general-purpose language. This knowledge can possibly, in the future,
be harnessed to apply internal optimizations as well as automated verification of for-
warder implementations.
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1.2 A Simple Configuration

We describe the concepts behind the design of Flecs by showing a simple example.
Figure 1.1 illustrates the configuration for an Ethernet broadcast forwarder with three
interfaces called eth0, eth1 and eth2. It shows the complete Ase and configuration
code for broadcast. In this configuration, the Ase forwards an arriving packet to all
the interfaces except the one on which it arrived. Figure 1.1(b) gives the code for the
Broadcast Ase, where lines 8-10 define the forward pattern. The lookup specified in
the pattern indicates which field is used for switching lookup. In this case it is the
dest field, which will always match the first line in the switching table (Figure 1.1(c),
line 6). This switching entry is defined with wildcard (∗), which matches any value to
forward the packet to all the interfaces except the one on which it arrived. To indicate
all the interfaces other than the source −$i is used to replace the number in the interface
name. This feature assumes that the network interface prefixes are the same. Figure
1.1(c) illustrates the configuration file for broadcast. Lines 1-8 instantiate a Broadcast
Ase with the respective control and switching table. The single entry in the control
table (Figure 1.1(c), line 3) results in the execution of the forward pattern on all arriving
packets. Finally, lines 9-12 give the textual representation of the configuration graph
shown in Figure 1.1(a).

1.3 Objectives

The main contribution of this thesis is Flecs, a configurable, flexible universal forward-
ing engine for implementing packet forwarders. The Flecs framework allows a pro-
grammer to specify a protocol in a high-level meta-language. The language inherently
restricts the design choices available to the programmer while making the specification
simpler. The constraints imposed by our language are derived directly from our com-
munication axioms [23]. This special-purpose programming language also provides an
explicit model for concisely expressing protocols in accordance to the design principles
stated in the axiomatic basis.

This work also presents encouraging results from our experience with implement-
ing the universal forwarding engine. The project was undertaken with the following
goals in mind.

• Implement fundamental packet processing operations that can be composed to
form packet forwarding schemes.
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(a)

1 DEFINE DEST_OFFSET 0

2 DEFINE DEST_LENGTH 6

3 ASE Broadcast {

4 peek {

5 READ { dest DEST_OFFSET DEST_LENGTH }

6 CONTROL { dest }

7 }

8 forward {

9 LOOKUP { dest }

10 }

11 };

(b)
1 Broadcast bc {

2 control {

3 [*, *] -> [forward/none];

4 }

5 switching {

6 [eth$i, *] -> [eth-$i, null];

7 }

8 }

9 config(eth0, eth1, eth2) {

10 eth0 <-> bc <-> eth1;

11 bc <-> eth2;

12 }

(c)

Figure 1.1: (a)Ethernet broadcast configuration for a three interface forwarder. Network
interfaces are represented as special Ases with a single input and a single output.
(b) Definition of Broadcast Ase in Flecs (broadcast.ase). (c) Broadcast configuration
represented in Flecs (broadcast.flecs).
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• Use object-oriented programming methodology to enforce constraints and allow
re-usability of code.

• Present meta-language specifications for packet forwarders and demonstrate their
feasibility by implementing some non-trivial forwarding schemes.

• Implement tools to automatically generate runnable forwarder implementations
from the specifications written in our meta-language.

• Provide a framework where formal reasoning can be applied for automated pro-
tocol verification in the future.

The contributions of this thesis are threefold. First, it describes the design of Flecs,
including its programming model. Second, it discusses the Flecs implementation us-
ing the Click modular router [24]. Third, it demonstrates the feasibility of a universal
forwarding engine by building working prototypes that inter-operate with existing pro-
tocol suites.

1.4 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 gives an overview of related
work followed by a brief restatement of the axiomatic formulation in Chapter 3. Chap-
ter 4 examines the Flecs framework and its core components. Chapter 5 describes the
implementation of Flecs in Click. This chapter also details our meta-language con-
structs with some simple examples. Chapter 6 illustrates the practical capabilities of
our framework by compactly describing some non-trivial forwarding schemes such as
an Ethernet bridge, IP router, NAT and i3 server. Chapter 7 evaluates the effectiveness
of our approach and we end with conclusions and future work in Chapter 8.
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Chapter 2

Related Work

Our work is related to a handful of attempts to build engines for rapid protocol pro-
totyping. It also relates to work in understanding the architecture of the Internet. The
axiomatic framework described in [22, 23] succinctly formalizes the design principles
behind communication protocols and provides a basis for formal reasoning about their
properties. This formulation forms the foundation for Flecs. We briefly describe the
axioms in the next section. Flecs attempts to implement the constraints defined by
the axioms, using Click [24, 29]. The design of Flecs reflects our understanding of
protocol software based on experience and insight to support rapid implementation of
protocols.

Click defines a flexible, modular architecture for building configurable routers.
Click routers can be configured by connecting Click components, called elements, in
a directed graph. Each element defines a simple packet processing operation, such as
queuing, scheduling, switching, and interfacing with network devices. These elements
are written in C++. The edges in the configuration represent possible packet paths.
Click can be used to implement any forwarding engine, with few constraints on its de-
sign. It does not allow elements to share data-structures but a limited amount of data
can be passed from one element to the other along with the packet. Modular design
makes it easier to extend Click configurations. We differ from this approach in that we
specify protocols at a higher level of abstraction rather than in a general-purpose pro-
gramming language. The Ases are fairly complex compared to Click elements. Other
aspects of Click architecture include push and pull connections, where packet handoff
is initiated by the source end or the destination end. Pull processing makes it possible
to write composable packet schedulers. Flecs does not allow the programmer to write
such schedulers by restricting the Ases to use push processing and making the queuing
elements implicit in the design, for simplification. In addition, our design constrains
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the programmer according to the axiomatic formulation of packet forwarding [23]. We
find Click to be complementary to our work and indeed we use it to build the first
prototype of our system.

The x-Kernel [17, 30] is an early contribution towards a system for composing net-
work protocols from user-level protocol objects. These objects can be specified in a
high level programming language [1] that allows the programmer to program in an
imperative style. Like a Click router, an x-Kernel configuration is a graph of processing
nodes, and packets are passed between nodes by virtual function calls. However, it im-
poses constraints on the configuration that result in an acyclic and layered graph. This
restricts x-Kernel to stack-oriented configurations and makes it difficult to construct
simple cyclic configurations like an IP router. The inter-node communication protocols
are fairly complex and connections between graph nodes are bi-directional. Packets
travel up the graph to the user level and down the graph to the network. This is be-
cause the framework is intended for use at end nodes, where packet motion is vertical
(between network and user level) rather than horizontal (between network interfaces).
In contrast, our framework can handle vertical as well as horizontal packet motion.

Estelle (Extended State Transition Language) [5] is a format description technique
to describe communication protocols and services developed within the International
Standard Organization (ISO). This technique is based on an extended finite state tran-
sition model. It borrows features from Pascal programming language and some Ada
modular constructs. The Estelle framework consists of objects called modules. An Estelle
specification is a set of cooperating modules, interacting with each other by exchanging
messages through links called channels. The actual behavior of a module is is specified
either as an integrated behavior of a set of interacting sub-modules or at the innermost
level, as an extended finite state machine. The channels are type defined in modules
according to their roles, i.e. user and provider. Operations in a module are classified
as transitions, based on an input or spontaneous event. A spontaneous transition may
be executed regardless of any input interaction. It should be mentioned that the Estelle
state machine is nondeterministic. Our approach has several similarities with Estelle.
However Flecs is unlike Estelle in that it strives to present a higher level of abstraction
to the programmer.

Approaches like SDL [34], LOTOS [3] and Esterel [6, 11], also describe techniques
to express communication protocols using formal descriptions, like Estelle. Instead of
expressing protocols in completely abstract terms, they use an approach that requires
protocols to be specified in an implementation oriented formal description. The code
generated is generally in the form of a skeleton that must be completed by the pro-
grammer. Although this eases the task of manual programming, the implementation
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is similar to one written in a general-purpose language, subject only to the constraints
imposed by the operating system and architectural environment in which the protocol
will be used. Although forwarders implemented in this way are generally efficient,
the programming task varies in difficulty, depending on the extent the framework is
designed to accommodate new protocols. Others have augmented these techniques to
design protocol prototyping systems with message sequence charts [19] and automated
verification tools [20].

Flecs represents a middle ground approach compared to previous approaches to
protocol design. It allows the user to define communication protocols at a higher level
of abstraction using configurable protocol objects; yet it retains the clarity and simplic-
ity in design that enables us to prove some essential properties of protocols.
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Chapter 3

Axioms of Communication

In this section we briefly discuss the axiomatic framework [23] that forms the basis of
this work. It formulates fundamental forwarding mechanisms in communication net-
works. This formulation allows us to express precisely and abstractly the concepts of
naming and addressing and to specify a consistent set of control patterns and opera-
tional primitives, from which a variety of communication services can be composed.

3.1 The Axioms

The axiomatic formulation of forwarding principles describe the properties of the “leads
to” relation denoted as →. In these axioms the Ases are denoted by letters A, B and C
having input and output ports for inter-Ase communication. At Ase B, the input port
from predecessor A is denoted as AB and the output port to a successor C is BC. A
variable port is denoted as x. The unit of communication between Ases is a message
m. A message m that exists at a port x is denoted as m@x. An Ase maintains a private
set of mappings, called the switching table. The switching table at Ase B is denoted
as SB and contains mappings 〈A, p〉 7→ {〈C, p′〉} from an Ase-string pair 〈A, p〉 to a
set of Ase-string pairs {〈C, p′〉}. The switching table can be queried through a lookup
operation SB[A, p]. The “leads to” relation is defined by the following four axioms:

LT1. (Direct Communication)
∀A, B,m : ∃AB,A B ⇐⇒ m@AB → m@AB.

LT2. (Local Switching)
∀A, B,C,m, p, p′ : ∃AB, BC ∧ 〈C, p′〉 ∈ SB[A, p] =⇒ pm@AB → p′m@BC.
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LT3. (Transitivity)
∀x,y,z,m,m′,m′′ : (m@x → m′@y) ∧ (m′@y → m′′@z) =⇒ m@x → m′′@z.

LT4. (Reflexivity) ∀m, x : m@x → m@x

These axioms constrain Ase packet processing. LT1 denotes direct communication
between Ases A and B. This is possible if and only if A and B are connected to each
other by a link. Axiom LT2 expresses the lookup and switching capability of an Ase.
Note that in the theoretical model a packet pm is logically split into a header prefix p
and the opaque message m during each local switching step. LT2 also covers any form
of multi-destination forwarding, such as multicast, since the set SB[A,b] may have mul-
tiple elements. LT3 describes transitivity over direct communication and local switch-
ing to splice the individual forwarding steps together. These three axioms naturally
express the simplex forwarding process in a communication network, where, poten-
tially, at each forwarding step, a forwarding label is swapped. Axiom LT4 specifies
reflexivity for simplification of certain formal proofs.

3.2 Forwarding and Control Primitives

Theoretically, the transformation from p to p′ in LT2 in Section 3.1 is unrestricted, but
in practice it is either a push, pop, swap, or nop operation. In case of push, a new prefix q
is prepended and p′ = qp. In case of pop, p is removed and p′ = ∅. In case of swap, p is
replaced by p′, which usually is of equal length. With nop, p remains unchanged and
p′ = p. Given these transformations, it is possible to identify corresponding forwarding
operations that cover a wide range of forwarding techniques used in communication
protocols.

These processing operations can be translated into a set of forwarding primitives
that can be used to abstractly specify ASE processing in pseudo-code. Each ASE sup-
ports the same set of operational primitives. Although all Ases offer the same interfaces
and roughly the same semantics, they differ in their specific implementations. In addi-
tion to these transformations LT1 and LT2 describe communication between Ases and
lookup of the switching table. These can be represented as the forwarding primitives
which can be further used to specify the abstract functionality of a network element.
These include send, receive, copy, push, pop and lookup and will be discussed in more
detail later.

The operations mentioned thus far are sufficient for forwarding in a static network.
However, to perform forwarding or distributed resolution each Ase’s local switching
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table needs to be populated. To handle the dynamic nature of the network, control
primitives are introduced to update an Ase’s switching table and/or create and send
a reply message carrying information from the local switching table. These include
update and create.

3.3 Packet Processing

It turns out that the fundamental elements for message processing can be expressed as
a small number of processing patterns. The overall processing of an Ase can be logi-
cally partitioned into the following processing patterns. These patterns are invoked by
a tight processing loop in the Ase. In an implementation this processing loop may be
implemented in a ’Super-Ase’ from which the rest of the Ases inherit the base func-
tionality.

• forward

This pattern is used for regular forwarding of data messages.

• setup

This pattern is used for forwarding path setup requests. An Ase can be configured
to implement virtual circuit switching or bridging through this pattern.

• resolve

The resolve pattern carries out a resolution request.

• respond

The respond pattern is used when a remote lookup request arrives. It creates a
response if requested name is found in the local switching table and sends it.

• rupdate

The rupdate pattern is invoked on receipt of a response to s resolution request.

It would be worth noting that these patterns are sufficient to model virtual circuit
switching and packet forwarding, as well as path setup and name resolution. In addi-
tion, they can be composed from primitives outlined in Section 3.2.

3.4 Constraints imposed by the Axiomatic Basis

The axiomatic basis imposes stringent constraints on the behavior of an Ase. These
constraints apply to two main aspects of Ase design.
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• Inter-Ase Communication: These constraints arise directly from the axioms them-
selves. LT1 restricts each Ase by only allowing direct communication between
neighbors. Two Ases are neighbors only and only if they are directly connected
to each other.

The second constraint arises from LT3. This bounds the overall connectivity of an
Ase by the transitive closure of direct communication and local switching.

• Processing within an Ase: Constraints of this type arise from the general Ase

design and the patterns defined in Section 3.3.

The first constraint is that the Ase is not allowed to overwrite or redefine the
main loop which forms the core of Ase processing. This prohibits the user from
defining completely new Ases in the framework.

The second constraint is imposed by the processing patterns. The Ase is restricted
to a small well-defined set of patterns. Any Ase specific processing must be
defined by specialization and configuration of the patterns.
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Chapter 4

Framework

There are two main design goals behind the Flecs framework. First, our protocol speci-
fication language should comply with the axiomatic fundamentals [23], which constrain
packet processing in Ases. Second, Flecs should allow programmers to specify com-
plete protocol functionality in a simple and concise manner. The first goal emerges
from experiences with traditional routers, firewalls, VLAN switches, NAT boxes and
other middleboxes. As is often the case in writing software, one programs a protocol
by using a similar protocol as a template, and then editing it to obtain the desired func-
tionality. This approach derives its benefits from the fact that there are routine tasks,
such as manipulating headers and demultiplexing, that are common to many proto-
cols. This common functionality can be extracted as a super component and can be
reused for different implementations instead of being re-written from scratch [10, 25].
This enables the programmer to automate the task of protocol implementation from a
minimum set of specifications.

Note that restricting the programmer to a limited specification language constrains
the design choices for the protocol. An obvious benefit is that the programmer does not
have to write the entire protocol code. A less obvious benefit is that the programmer is
restricted from making bad design choices.

4.1 Object-Oriented Design

Flecs models fundamental protocol abstractions as objects, represented by Ases. The
framework predefines a Base Ase (Base) and the programmer can implement new Ases
by refining Base to produce Ases required to construct a specific protocol. Figure 4.1
illustrates the general design of the Flecs framework. It depicts the inheritance of Ases
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Figure 4.1: The Design of the Flecs Framework.

from Base to compose the final forwarder. A protocol instance is made up of Ase

instances, connected together to form a configuration graph. Representing protocol ab-
stractions this way not only achieves our goal of constraining Ases using our axiomatic
formulation, but it also supports our secondary goal of dividing the functionality into
smaller components, hence making the specifications simpler and easier to write.

Object-oriented programming is well-suited for representing the Ases. One char-
acteristic of Flecs is that it partitions protocol state such that each Ase operates on
its own local state information. Object-oriented design fosters this way of thinking by
packaging related meta-data and procedures together within an Ase. Another benefit
is that object-orientation provides inheritance as an in-built language discipline for sup-
plying packet processing functionality and data structures from the Base. It should be
noted here that there are certain protocol specific functions, such as TTL decrement or
checksum re-computation in an IP Router, which are difficult to generalize. To accom-
modate such functionality the framework allows for inclusion of arbitrary functions in
the Ases as discussed in the Chapter 5.

It should be noted that Flecs is object-oriented only with respect to the protocol
abstractions built in the Base. Flecs programmers cannot define arbitrary, new and
unconstrained Ases. The language specifications only allow the programmer to create
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specializations of the Base. This makes Flecs specific for packet processing, and unlike
a general purpose, object-oriented language, it does not explicitly provide the pro-
grammer with language-level constructs to optimize protocol software. This restriction
allows us to exploit the knowledge of common patterns in protocol operations for inter-
nal optimizations. This gives additional power to Flecs over hand-coded optimizations
by reducing per-layer overhead, even though the protocol graph is not determined until
run time.

4.2 Packet Processing Primitives

Flecs represents fundamental tasks in protocols as packet processing primitives. It pre-
defines a collection of primitives, using which any arbitrary network protocol can be
easily composed. We hope that these primitives are expressive enough to represent
packet forwarding as well as basic control operations. Communication protocols can
be represented as a sequence of these primitive operations. Since any communication
protocol can be specified using a combination of these primitives, we claim that our list
of primitives forms a complete set of packet processing operations. This set is enumer-
ated in Table 4.1. Our primitives can be implemented in any protocol subsystem which
has basic packet processing capabilities.

For packet processing and forwarding, we need to extract strings from the packet
header (peek) and modify the header structure (push, pop and swap) as well as main-
tain switching tables, such as those used in NAT, i3 [32], etc. Finally, we need a few
helper functions to copy a packet, create a new packet and discard ones which are not
needed. In addition, we also need to send and receive packets to and from neighboring
Ases.

4.3 Processing Patterns

It turns out that the forwarding functionality of an Ase can be specified through a small
number of processing patterns, using the primitives described above. We use patterns
and primitives to abstractly describe the design of Ases. We logically partition overall
Ase processing into several processing patterns, enumerated in Table 4.2. Each pattern
defines either a forwarding or control procedure. Forwarding includes manipulation of
the packet header as well as packet switching based on a switching table lookup. This
forwarding operation is along with the necessary modifications to the packet is defined
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Table 4.1: Packet Processing Primitives
Primitive Description

send(p, ase) Sends packet p to the Ase specified by the second
argument.

{p, ase} = receive() Receives a packet p from a neighboring Ase spec-
ified by ase. This information (i.e. the previous
Ase) is stored and can later be used in making
forwarding decisions.

{s} = peek(p) Returns a set of strings {s}, copied from the
given packet. In its implementation it would also
take a set specifying the fields to be copied by
their offset and length.

p2 = push(p1, {s}) Encapsulates the packet with the given set of
strings. The resultant packet length increases by
the cumulative length of all the strings in {s}.

p2 = pop(p1, l) Removes a prefix of length l from the packet
header. The length of the resultant packet de-
creases by l and the data in that part of the packet
header is lost.

p2 = swap(p1, {s}) Rewrites part of the packet header with the given
set of strings. The length of the packet remains
unchanged.

p = create({s}) Creates a new packet p and populates it with the
given strings {s}. The length of the new packet
is the cumulative length of all the strings in {s}.

p2 = copy(p1) Creates a new packet p2 and copies the contents
of p1 into it.

drop(p) Discards packet p. After drop is called on a p, the
data in p is lost and cannot be accessed again.

v = lookup(t,k) Returns a value object, v, with key k in the given
table t. The objects represented by k and v can
represent different types depending on the table
t.

update(t,k,v) Updates or inserts a table row with key k in table
t with the given value object v.
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by the forward pattern. Control patterns are designed to update local or remote Ase

state. These include setup, resolve, respond and rupdate.

Patterns model complex operations of packet processing than the afore-mentioned
primitives. In fact, each pattern can be composed from a set of primitives arranged in
a block of code using regular programming constructs. For different Ases the same
pattern can be configured differently, possibly with different options, to yield different
functionality.

Essentially, it is the processing patterns that implement the constraints imposed by
the axiomatic formulation. The patterns that can be used to define Ases are enumerated
in Table 4.2. At present, the listed patterns are sufficient to implement all of the well-
known packet forwarders.

4.4 ASEs Inside Out

Ases are a particularly novel aspect of Flecs. Each Ase operates on a specific prefix
of the packet header. It extracts the relevant information from this header prefix and
uses it for processing the packet and forwarding. An Ase can be instantiated multiple
times in the same configuration. An active instance of an Ase in a particular forwarder
configuration can emulate a protocol layer such as IP.

Ases make processing and switching decisions based on values retrieved from the
packet header. They can carry out complex operations such as swapping header fields,
encapsulating a message with a new header or removing header prefixes as required by
the specific protocol. The functionality of an Ase is defined by the processing patterns it
implements (e.g. forward pattern in Broadcast, Figure 1.1(c)). At runtime, the behavior
of an Ase is determined by its local state. Ases maintain their local state in control and
switching tables. These are initialized for each instance of an Ase in the configuration.

The pseudo-code in Figure 4.2 shows the main processing routine for an Ase. When
a packet arrives at an Ase, it is handed to its process routine. Process extracts the
relevant fields from the packet header and looks up the control table to determine
which patterns are to be executed on the packet. If there is no matching entry for a
particular packet in the control table, the packet is discarded. Otherwise, the patterns
returned by the lookup are sequentially executed on the packet.

The control table determines the patterns to be executed on different packets re-
ceived by the Ase. Entries in the control table specify mappings as [Asex, p′] →
{[pattern/subtype]}, where Asex is the Ase from which the packet was sent and p′
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Table 4.2: Processing Patterns
Pattern Description

forward/subtype Looks up the switching table to determine
the next destination Ase. It also executes
push/pop/pop+push/swap if specified as
subtype and sends the packet to the next
Ase. If push or swap are specified as sub-
type then the forward pattern expects to get
the strings to be pushed or swapped from
the switching table lookup. The default sub-
type is none, meaning no modifying opera-
tion is to be performed on the packet.

setup/subtype Updates the switching table using informa-
tion from the packet. It also executes swap if
specified as the subtype in the case of virtual-
circuit setup. By default the subtype would
be none.

resolve In the case where a name needs to be re-
motely resolved, this pattern creates a re-
mote lookup request message and sends
it towards the relevant Ase. If a packet
triggered this resolution request then it is
queued until a reply is received.

respond Handles resolve requests from other Ases.
It creates a new packet containing the reply
for each request and sends it to the querying
Ase.

rupdate Upon receiving a reply for a resolve request
this pattern updates the local state of the
Ase. It also invokes the processing of any
potential packets that are waiting for this up-
date.
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1 process(Packet *p, String prev) {

2 {s} = peek(p)

3 patterns[] = ctrlLookup(prev, {s})

4
5 for (each pattern in patterns[]) {

6 if (p) execute(pattern, p)

7 }

8 }

Figure 4.2: The Main Processing Routine of an Ase.

is a set of strings; the pair forms the key for that entry. The key maps onto a set of
patterns. Switching table entries are mappings of the form [Asex, p′] → {[Aseyi , p′′]}.
In the forward pattern, a packets forwarding path is determined by using previous Ase

and a set of header fields as the lookup value. The lookup returns a set of Ase and
string pairs, and copies of the packet are then forwarded to each of those Ases along
with the string p′′ which is used as a name for the destination Ase of this packet.

4.5 Base ASE

Base models a generic Ase by implementing the forwarding primitives and declaring
the processing patterns as virtual functions as shown in the Base interface, Figure 4.3.
The programmer implements a specific type of Ase by refining Base, thereby deriving
Ases that are specific to the desired protocol. A subclass is derived from Base by
providing implementations of peek and other patterns required for packet processing.
Additional procedures may be added to refine and add functionality not currently
handled by the framework, by its post-processing features.

The framework allows the derived Ases to override certain operations in the Base

Ase. These are defined as virtual functions in the interface defining Base. Since the
base class is predefined the instances of the other operations, including most of the
forwarding primitives are fixed and cannot be overridden, understanding and using
the framework becomes easier. In the implementation of Flecs the keywords and their
semantics are easy to learn as they are few and correspond to meaningful units of
behavior.
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1 interface BASE {

2 // The two tables which contain the local state.

3 Table control;

4 Table switching;

5
6 // Base class methods which cannot be overridden in

7 // sub classes. These consist of most of the main

8 // processing method and most forwarding primitives.

9 void process(Pkt p, Str prev);

10 void send(Pkt p, Str next);

11 void receive(Pkt p, Str prev);

12 Pkt push(Pkt p, int pushlen, Triple[] d);

13 Pkt swap(Pkt p, Triple[] d);

14 Pkt pop(Pkt p, int length);

15 Pkt create(int createlen, Triple[] d);

16 void drop(Pkt p);

17 Pattern[]ctrlLookup(Str prev, Str n);

18 {Pair[]} fwdLookup(Str prev, Str n);

19 void fwdUpdate(Str prev, Str n, Pair[] v);

20
21 // Processing operations that

22 // can be overridden in sub classes.

23 virtual Str[] peek(Pkt p);

24 virtual Pkt recast(Pkt p, Str prev);

25 virtual Pkt forward(Pkt p, Str sub, Str prev);

26 virtual Pkt setup(Pkt p, Str sub, Str prev);

27 virtual Pkt resolve(Pkt p, Str prev);

28 virtual Pkt respond(Pkt p, Str prev);

29 virtual Pkt rupdate(Pkt p, Str prev);

30 };

Figure 4.3: The Interface for Base Ase.
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4.6 Inheritance Model

We now consider how Base allows protocol code to be inherited and integrated within
a Flecs protocol implementation. In the specification of an Ase, the programmer con-
figures the required patterns in a specified format. This augments or overwrites the
code in Base for those patterns. If an Ase does not need a given pattern, it simply does
not define the corresponding configuration. Since Ases implemented in Flecs inherit
code from a single base Ase, Base is never instantiated directly, and consequently the
programmer cannot define completely new Ases.

Flecs has two features supported by the basic inheritance mechanism just de-
scribed. The first is the ability to override the Base behavior. This permits Base to
offer default behavior even though it might not always be desired. The second feature
is the ability to intermix Base and subAse code at a finer granularity. This results from
the flexibility provided by the language model to configure the patterns.

4.7 Message Flow

Message flow between Ases is constrained by the axioms as outlined in Chapter 3. Mes-
sages flow between Ases which are directly connected to each other. Our framework
assumes that messages do not get modified during direct communication, and hence
our model does not handle any corruption or loss of messages. Thus we cannot model
many interesting phenomena driven by packet loss or corruption.

Flecs also assumes that messages that arrive at an Ase do always find room in the
local buffer and the control table contains the respective entry to process the packet.
This also means that we assume the completeness of the control table in the sense that
it has entries to handle all the possible packets that can arrive at the Ase.
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Chapter 5

Implementation

We have implemented Flecs using Click [24], a framework for building flexible, con-
figurable routers. A Click router configuration is specified by a directed graph of click
elements where each element performs a specific and simple router function such as
queuing, scheduling or updating a field of a packet. Click elements are implemented
in C++ and form the core of the Click runtime system. They are configured at run-
time by interpreting a configuration file, which specifies how and which elements are
connected to each other.

We use a hybrid approach of class inheritance and meta compilation to produce
the desired Click implementation and configuration. The complete protocol develop-
ment process in Flecs is shown in Figure 5.1 where Base is implemented as a Click
element. Ase specifications are compiled by the asec compiler to generate code for
the corresponding Click elements. Ases are implemented as complex Click elements,
extending Base to inherit the generic functionality. However, unlike most traditional
Click elements, an Ase represents a more complex unit of processing. Given the Ase

design, it can easily be noticed that a traditional protocol layer can be modeled as an
Ase. A particular protocol configuration might require multiple instances of the same
Ase to simulate a single layer. A specific Flecs configuration can be translated into the
corresponding Click configuration using the confic compiler. The elements are com-
piled to form the Click executable which interprets the configuration file to produce
the desired forwarding functionality represented by Forwarder in Figure 5.1.

Succinctly stated, the Flecs framework is comprised of two meta-compilers and
the respective meta-language specifications. The Ase compiler, called asec, compiles
Ase specifications written in Ase Description Language (ADL) to generate Click ele-
ment code representing the Ase. The configuration compiler, namely confic, compiles
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configurations specified in Flecs Configuration Language (FCL) to produce a Click
configuration.

Figure 5.1: Flecs Implementation in Click.

5.1 ASE Description Language (ADL)

Ases are specified in ADL which is a formal description language subject to constraints
imposed by the underlying axiomatic framework. An Ase specification contains, first,
the protocol constants (if needed), pattern definitions, and references to relevant fields
in the packet header (see Figure 1.1(c)). The constituents of the Ase description are
defined in more detail below.

5.1.1 Protocol Constants

Constant values to be used in the Ase description can be declared using the keyword
DEFINE at the beginning of the specification file. The main objective of this language
construct is to improve readability of code. The broadcast example declares the OFFSET

and LENGTH. Usually these are protocol specific constants that specify fields in the
packet header by their offset and length. Constant string values are also specified
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using DEFINE. These values are specified as hexadecimal strings using double quotes.
Following are examples from the Ethernet Ase.

DEFINE ETHERNET_HEADER_LEN 14

DEFINE SOURCE_MAC_OFFSET 6

DEFINE BROADCAST_ADDRESS "FFFFFFFFFFFF"

The first defines the length of the Ethernet header which is used to pop the Eth-
ernet header from the packet. BROADCAST_ADDRESS is used as data to be written in the
destination field of the Ethernet header if the packet is to be broadcasted.

5.1.2 Extracting Header Fields

Ases define the peek method to extract relevant data from the packet arriving at the
Ase. Peek defines the set of packet fields to be used in the processing patterns. Each
triple in the READ block of peek represents referencing a specific header field by a vari-
able. The first string in the triple specifies the name of the variable by which the header
field will be referenced, the second is its offset from the beginning of the packet and the
third is the field length. The variable name used in the triple can be used later in the
pattern definitions. An example READ block that reads three values has the following
syntax:

READ {

var0 OFFSET_0 LENGTH_0

var1 OFFSET_1 LENGTH_1

var2 OFFSET_2 LENGTH_2

}

5.1.3 Specifying Control Values

Each Ase must specify the header fields to be used for control table lookup. This is
specified in the control block of peek. The peek specification would thus contain a READ

block and a CONTROL block. The CONTROL block specifies the fields to be looked up in
the control table to determine which patterns are to be executed on the packet. The
following is an example of peek where the relevant offsets and lengths are assumed to
have been declared using DEFINE. In this example, the control table lookup is based on
address and port fields of the arriving packet.
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peek {

READ {

address ADDRESS_OFFSET ADDRESS_LENGTH

port PORT_OFFSET PORT_LENGTH

}

CONTROL { address port }

}

5.1.4 Forwarding

The forward pattern relays the packet to a neighboring Ase or drops it based on the
result of the switching table lookup. The lookup searches for a match in the switching
table using the Ase from which the packet arrived denoted by prev, and the specified
header fields as the key for the lookup. The lookup returns a result in the format
{[next_Ase,{s}]} and sends a copy of the packet to the respective destination deter-
mined by next_Ase and a set of strings {s}. Each string in {s} is given in a hexadecimal
representation. This pattern also has advanced subtypes, push, pop or swap. Push ap-
pends the set of strings {s} from the lookup result as a prefix to the given packet and
pop removes a prefix of specified length from the header. Swap replaces a given set
of header fields with the given strings. Pop and swap subtypes can be specified after
lookup.

forward {

LOOKUP { address port }

POP { POP_LENGTH }

SWAP { WRITE { DATAw0 OFFSETw0 LENGTHw0 } }

}

The example shows a forward specification for a hypothetical Ase. It translates
into a pattern, when executed on a packet with subtype pop, looks up the address and
port combination, removes POP_LENGTH bytes from the beginning of the packet and
forwards it to the next_Ase. Note that the push subtype is not specified in the forward
specification as it simply prepends the strings from the lookup result to the packet.
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Figure 5.2: An abstract representation of recasting data from a previous Ase into the
protocol defined header format.

5.1.5 Encapsulation

When packets arrive on an incoming path from the network interface, for example
from a lower layer, they are decapsulated before being passed to the next higher layer.
For example an Ethernet Ase would pop off the Ethernet header before forwarding an
ARP packet to the ARP Ase. On the other hand, when the packets are passed from a
higher layer to a lower layer they need to be encapsulated with the appropriate header.
For example a packet arriving at an Ethernet Ase from ARP would need to have the
correct Ethernet header added to it before being forwarded anywhere. This operation is
performed by recast. Conceptually recast restructures the packet header by using the
information prepended by the previous Ase and prefixing the packet with the correct
header. This is illustrated in Figure 5.2. It can be generalized into the following format,
where ANNOTAION_LENGTH is the length of data from the previous Ase and CAST_LENGTH

is the length of the properly formed header. The following example shows the recast

specification which eventually writes two fields in the reconstructed packet.

recast {

CAST { ANNOTAION_LENGTH CAST_LENGTH

WRITE { data_0 OFFSET_0 LENGTH_0

data_1 OFFSET_1 LENGTH_1 }

}

}

In Figure 5.2 the ANNOTAION_LENGTH is the combined length of a and b whereas
CAST_LENGTH is the combined length for i, a, j, b and k. The WRITE block in recast is
responsible for populating these fields with the correct values.
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5.1.6 Path Setup

Control patterns are required to: 1) update local state, and 2) retrieve state information
from remote Ases and serve remote update requests. The simplest control pattern is
setup. Upon execution, it updates the local switching table using information from the
packet header. The example below shows setup for an EthernetBridge Ase which is
invoked upon receiving any Ethernet packet. It learns the forwarding path for a packet
destined to src_mac.

setup {

UPDATE { * src_mac prev null }

}

In this simple example, EthernetBridge would update its switching table with the
entry [∗, src_mac] → [prev,null]. Each pattern is aware of the interface from which the
packet arrived. The identifier of that interface can be accessed from the variable prev.
The setup pattern also handles virtual-circuit setup and NAT translations using its
VC option. With this option setup is able to generate virtual circuit identifiers using
local_name(), update the translation table and swap names in the packets before for-
warding them. For example, in the case of NAT local_name() is expected to return an IP
address and UDP/TCP port pair. This is then used to update the switching table which
corresponds to the NAT translation table. These values are also used to overwrite spe-
cific values in the packet using swap. An example VC specification is given below. In
this example the Ase swaps a single value which is written in the swap subtype.

Lookup of the switching table is specified to check whether the entry already exists.
If not, then VC option is called and a local name is created. The VC block also specifies
the updates to be made to the switching table. There can be multiple updates for
optimization, as in the case of NAT. The SWAP block handles the switching of names in
the packet.

setup {

LOOKUP { val }

VC {

LOC_NAME { local_name() }

UPDATE { * LOC_NAME prev val }

}

SWAP { WRITE { data_0 OFFSET_0 LENGTH_0 } }

}
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5.1.7 Remote Resolution

There are other more complex patterns that are needed for retrieving state information
from remote Ases (resolve), serving resolve requests (respond) and handling reso-
lution replies (rupdate). These patterns can be defined as a combination of packet
creation along with the push option to create the appropriate request or response.

The resolve pattern is comprised of create and push and is configured using the
following template. Usually resolve is triggered by the arrival of a packet for which
a remote name resolution is required in order to forward it correctly. In this case an
appropriate request message is created and sent. The arriving message is added to the
wait queue until the response is received. The push in the case of resolve and respond

is specified separately from create as it adds the data required for the next Ase to
properly format the packet.

resolve {

CREATE { CREATE_LENGTH

WRITE { data_0 OFFSET_0 LENGTH_0

data_1 OFFSET_1 LENGTH_1 }

}

PUSH { PUSH_LENGTH

WRITE { data_2 OFFSET_2 LENGTH_2

data_3 OFFSET_3 LENGTH_3 }

}

}

The syntax for rupdate is similar to a simple setup and can be specified as follows.
It handles the updates to the switching table and its implementation discards the packet
which is actually a response to the request sent to be resolved. It also handles the
packets which are waiting for the remote resolution response by looking up the wait
queue against the changes made to the switching table. The following is an example of
rupdate specified in an address resolution protocol.

rupdate {

UPDATE { * src_proto#ip prev src_hwadd }

}
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The respond pattern is triggered by the arrival of a resolution request packet from
a remote Ase. In response it creates an appropriate reply to the request and sends it
towards the concerning Ase.

respond {

CREATE { CREATE_LENGTH

WRITE { data_0 OFFSET_0 LENGTH_0

data_1 OFFSET_1 LENGTH_1 }

}

PUSH { PUSH_LENGTH

WRITE { data_2 OFFSET_2 LENGTH_2

data_3 OFFSET_3 LENGTH_3 }

}

}

5.1.8 Post-Forwarding Hooks

There are also certain operations which are specific to forwarders and have not yet
been modeled in our framework. These include specialized mathematical operations
on certain fields of the header or the entire packet, such as TTL decrements, checksum
computations, etc. Our framework allows the programmer to inline Ase methods di-
rectly into the Click implementation of an Ase. This can be done using the character
% at the beginning of a line. This piece of code is passed directly into the output file
without any syntactic or semantic interpretation. For example the TTL decrement code
in IP would read the TTL value from the packet, decrement it and write it back.

void localTTLUpdate(Packet *p) {

% unsigned char ttl =

% (unsigned char) p->data()[TTL_OFFSET];

% �ttl;

% write(p->uniqueify(), TTL_OFFSET, TTL_LENGTH,

% (unsigned char *)&ttl);

}
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Note that the declaration line of the method and the last line are not preceded by
the % character. The method name should have a prefix ‘local’. Also, this code should
be a valid and complete function as the compiler will not check the inlined code for
consistency, but the errors will be reported when the Click elements are compiled by
the C++ compiler.

This feature is used to make modifications to the packets which do not affect the
switching decisions, but are required for correctness of the overall forwarding protocol.
These include error detection and error correction functions such as checksum compu-
tations etc. This feature cannot be used to extend the core functionality of an Ase as the
main process loop cannot be overwritten to directly call these user-defined functions.
These functions can only be called from within recast, forward and setup.

5.1.9 Meta-Compilation of Ases

Figure 5.3: Generating Click Implementation of an ASE.

Conventionally Ases are specified in .ase files. For example the Broadcast Ase is
defined in broadcast.ase. It can be compiled using the following command:

asec [-l] broadcast.ase

This produces Click element code for user-level Click for Broadcast. For generating
code for kernel-module Click, the same command can be used with -l option. The
asec compiler generates two files. They are named broadcast.hh and broadcast.cc

for the given example. The asec compiler transformation is shown in Figure 5.3. These
files must be copied over to the root Click folder where they can be compiled with the
rest of the Click elements.
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5.2 FLECS Configuration Language (FCL)

Flecs configuration consists of Ase initializations and forwarding graph layout. These
are specified using a formal definition language called Flecs Configuration Language
or FCL.

5.2.1 Ase Initialization

The type of an Ase is the name with which it is defined in the .ase file. An instance can
be named using an unused string identifier. In general, initialization involves creating
an instance of an Ase defined in a .ase file, naming the instance and specifying initial
entries for the local state (control and switching tables). The following is the syntax
for Ase initialization.

AseType AseName {

control { /* Control Table Entries */}

switching { /* Switching Table Entries */}

}

Multiple symmetric Ases can be instantiated using the same declaration by using
$i at the end of its name. The $i permits the instances to range from 1 to n, depending
on the configuration of the graph. For example, in an IP router configuration, an Arp
Ase instance is required for each interface and can be declared using one declaration
named as Arp$i. $i can then be used in the initial control and switching table entries.

Another use of $i is in switching Ases. If Ase$i is used in combination with Ase−$i,
as in broadcast (Figure 1.1(a)), it corresponds to multiple entries in the table resulting
in forwarding packets to all the Ases whose names have a prefix Ase except from the
one it arrived from i.e. prev.

5.2.2 Control Table

The theoretical model described in the axiomatic basis [23] assumes complete tables.
This means that all possible lookup values are handled by the control table. In reality,
this assumption is not very practical for an implementation. Thus wildcard matching
is introduced to handle arbitrary lookups and hence reduce the size of the tables.

The control table specifies the patterns to be executed on different packets. The
control table row from the Broadcast example is
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[*, *] -> [forward/none];

This entry matches all packets arriving from any Ase. It specifies that the forward

pattern (with no options) is to be executed for all packets. The wildcard(*) is used
to match all possible lookup values. In general, specific string patterns are used in
the control table keys and a sequence of processing patterns executed on each packet.
The patterns which can be used in this table are listed in Table 4.2. In addition the
pseudo-patterns are listed in Table 5.1. These operations are elevated to a special status
of pseudo-patterns because they can be used in the control table just like our regular
patterns.

Table 5.1: Additional Pseudo Processing Patterns
Pattern Description

recast Encapsulates the packet in proper header
format by removing a specified prefix from
the packet header and reconstructing the
header into a specified format.

drop Discards the packet.

5.2.3 Switching Table

Theoretically the switching table should also be complete. But in practice the same
argument that applies to the control table also applies to the switching table, and we
use wildcards and partial matching for feasibility of implementation. Each switching
table entry maps an Ase-string pair to a set of Ase-string pairs. As in the control

table wildcard(*) can be used in the key for arbitrary matching. An example from
the EthSwitch Ase switching table which maps the destination MAC address to the
forwarding interface is shown below. Multi-string entries are separated by #.

[eth1, 0005A23B45FF#0800] -> [IP, null];

5.2.4 Configuration Graph

The configuration graph can be created using Ase instances, network interfaces and
connectors. This is done in the config block as shown in Figure 1.1(a). The graph can
be specified in multiple statements. Each statement ends with a semi-colon.
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5.2.5 Implicit Queuing

The specification language does not allow explicit queuing. Queuing is implicit in the
framework. The generated configuration adds the queues at the end of each outgo-
ing path towards the network interfaces. This restricts the programmer from defining
composable packet schedulers, which require that queues be specified explicitly.

5.2.6 Network Interfaces

Flecs identifies network interfaces by the device name allocated to it by the system.
In Linux this tends to have a prefix eth followed by one or more numeric characters.
These must be specified as arguments to config. Figure 1.1 shows how a forwarder
handling three network interfaces can be specified. Once specified as arguments to
config, these interfaces can be used in the configuration like any other Ase with the
limitation that they can have only one input and one output.

5.2.7 Connectors

Flecs allows both unidirectional and bidirectional links between Ases. These are rep-
resented by arrows: ->, <- and <->. The Ethernet broadcast configuration example
shows a typical use of the double arrow in Figure 1.1.

5.2.8 Meta-Compilation of Flecs Configuration

Figure 5.4: Generating Click Configuration.

The Flecs configuration can be translated into Click configuration by using the
command
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confic broadcast.flecs

This generates broadcast.click which can be run on the click interpreter to pro-
duce the desired forwarding functionality. The transformation of the configuration
compiler is shown in Figure 5.4.
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Chapter 6

Examples

In this section, we discuss how the Flecs framework can be used to implement some
well-known and non-trivial communication protocols. In the following sections, we
discuss a few protocol implementations with diverse compositions. The framework
can be used to implement DNS [27, 28], Mobile IP [31], Dynamic Source Routing [21]
and others with minimum effort. We discuss the implementation details of a learning
Ethernet bridge, an IP router, NAT (as an example of virtual-circuit setup) and forward-
ing in an i3 server (as an example of an overlay routing mechanism). These examples
also give some intuition behind code reuse and the amount and complexity code that
Flecs programmer is spared from writing, that is, the boilerplate code generated by
the compiler.

6.1 Ethernet Bridging

We can model Ethernet bridging in Flecs with a single Ase called EthBridge, as shown
in Figure 6.1. Figure 6.2 shows the EthBridge specification in ADL and Figure 6.3
defines the bridge configuration in FCL.

In the given model, EthBridge is directly connected to all the network interfaces
(in this case four, i.e. eth0, eth1, eth2 and eth3). A packet arriving at any interface is
forwarded to EthBridge which peeks at the Ethernet destination(dest_mac) and source
(src_mac) (Figure 6.2, lines 14-15).

The control table lookup results in the sequential execution of setup and forward

(Figure 6.3, line 7). The execution of setup results in a switching table entry that
learns the path towards src_mac. The forward pattern looks up the switching table
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Figure 6.1: Ethernet Bridge in Flecs.

1 //

2 // This is an implementation of a learning Ethernet bridge

3 // which learns the reverse path from the source address

4 //

5
6 DEFINE ETHERNET_HEADER_LENGTH 14

7 DEFINE ETHERNET_ADDRESS_LENGTH 6

8 DEFINE DEST_MAC_OFFSET 0

9 DEFINE SRC_MAC_OFFSET 6

10
11 ASE EthBridge {

12
13 peek {

14 READ { dest_mac DEST_MAC_OFFSET ETHERNET_ADDRESS_LENGTH

15 src_mac SRC_MAC_OFFSET ETHERNET_ADDRESS_LENGTH }

16 CONTROL { dest_mac }

17 }

18
19 forward { // forwarding is based on destionation MAC lookup

20 LOOKUP { dest_mac }

21 }

22
23 setup { // switching table is updated with the entry

24 // [*,src_mac]->[prev,null];

25 UPDATE { * src_mac prev null }

26 }

27 };

Figure 6.2: EthBridge Specification in ADL.
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1 //

2 // Ethernet Bridge configuration for two NICs

3 // eth0 <-> bridge <-> eth1;

4 //

5 EthBridge bridge {

6 control { // standard bridge operations

7 [*, *] -> [setup/none][forward/none];

8 }

9 switching { // broadcast is the default entry

10 [eth$i, *] -> [eth-$i, null];

11 }

12 }

13
14 config(eth0, eth1, eth2, eth3) {

15 eth0 <-> bridge <->eth1;

16 eth2 <-> bridge <->eth3;

17 }

Figure 6.3: Ethernet Bridge Configuration in FCL.

for dest_mac. If the path to dest_mac is known, then the packet is forwarded to the
respective interface. If there is no specific entry for dest_mac in the switching table, the
packet is broadcasted, which is the default configuration of the switching table (Figure
6.3, line 10). Figure 6.3 (lines 15-16) describes the connections of the EthBridge instance
(bridge) to the network interfaces.

6.2 IP Routing

A simple IP router can be modeled in Flecs as shown in Figure 6.4. The corresponding
configuration is shown in Figure 6.5. An IP packet arriving at a network interface is
forwarded to the corresponding ETH Ase. ETH Ase’s switching lookup on the Ethernet
destination and protocol determines whether to forward the packet to the IP Ase, ARP
Ase or drop it. If the intended Ethernet destination of the packet differs from the
Ethernet address assigned to the respective ETH Ase, the packet is dropped, otherwise
the Ethernet header is popped off and the packet forwarded to IP Ase (Figure 6.5, lines
8-10).

The IP switching table lookup determines the interface to forward the packet and
passes it on to the corresponding ARP Ase, annotating the packet with the next hop
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Figure 6.4: IP Router in Flecs.

IP address given in the switching table entry of IP Ase. The IP switching table is the
routing table of the IP Router. This can be configured manually during initialization
or rupdate in the IP Ase can be defined for handling routing table updates. ARP looks
up its switching table to resolve the next hop IP address, pushes the resolved Ethernet
address and forwards the packet to the ETH Ase which recasts the packet in the correct
Ethernet header and relays it to the respective interface.

ETH and ARP Ases are also configured to handle ARP requests and ARP replies,
hence the extra arrows between them. The ARP Ases are configured with the local ip
and the corresponding Ethernet address. The example below shows how an ARP Ase is
initialized in an IP Router configuration. A complete sample configuration is given in
Figure 6.5.

ARP_1(ip=C0A80705, mac=00055DE6265E);

An interesting feature in the IP forward specification is the TTL decrement which
is invoked on packets forwarded by the IP Ase.

forward {

LOOKUP { dest_ip }

%localTTLDecrement(p);

}
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1 // eth0 <-> Eth <-> Arp <-> IP <-> Arp <-> Eth <-> eth1;

2 //

3 Eth eth_$i {

4 control {

5 [eth$i, mac] -> [forward/pop]; // packets directed at this MAC

6 [eth$i, FFFFFFFFFFFF] -> [forward/pop]; // broadcast packets

7 [arp_$i, *] -> [recast][forward/none]; // ip or arp packets

8 }

9 switching {

10 [eth$i, mac#0806] -> [arp_$i, null]; // arp packets

11 [eth$i, FFFFFFFFFFFF#0806] -> [arp_$i, null]; // arp requests

12 [eth$i, mac#0800] -> [ipswitch, null]; // ip packets

13 [arp_$i, *] -> [eth$i, null]; // outgoing packets

14 }

15 }

16 Arp arp_$i {

17 control {

18 [eth_$i, 0001#ip] -> [rupdate][respond]; // ARP_REQUEST opcode = 0001

19 [eth_$i, 0002#ip] -> [rupdate]; // ARP_REPLY opcode = 0002

20 [ipswitch, *] -> [resolve][forward/pop+push]; // ip packets

21 }

22 }

23 Ip ipswitch {

24 control {

25 [*, *] -> [forward/push]; // push appends the gateway information

26 }

27 switching {

28 [*, C0A80303] -> [arp_0, C0A80303]; // specific routing table entries for

29 [*, C0A80707] -> [arp_1, C0A80707]; // this dual NIC configuration

30 }

31 }

32 // constant values to be used in each ASE instance are specified as

33 // parameters along with an idenifier which can be used in the

34 // initialization (above) and also in the ASE specs as local.<name>

35 // for e.g. in Eth spec we can access 'mac' value as 'local.mac'.

36 config(eth0, eth1) {

37 eth0 <-> eth_0(mac=00055DE62C09) <-> arp_0(ip=C0A80305, mac=00055DE62C09);

38 eth1 <-> eth_1(mac=00055DE62C0A) <-> arp_1(ip=C0A80705, mac=00055DE62C0A);

39 eth_0 -> ipswitch <- eth_1;

40 arp_0 <- ipswitch -> arp_1;

41 }

Figure 6.5: Sample IP Router Configuration in FCL.
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6.3 Network Address Translation

Figure 6.6: NAT Configuration in Flecs.

Figure 6.6 shows the NAT model in Flecs for a NAT box having two internal and
two external interfaces. In addition to forwarding packets, the NAT Ase also performs
path setup for outgoing packets and the NAT forwarding entries act as a filter for all
incoming packets. The following snippet shows the pattern specifications in the NAT

Ase. The setup specification illustrates the virtual circuit setup for packets coming
from the internal subnet.

The setup pattern first looks up the switching table to see if the entry for the source
IP and port exists. If not, then it executes the virtual circuit (VC) block (Figure 6.7
lines 21-26). VC acquires a local name and creates the virtual circuit entries in the
switching table (Figure 6.7 lines 23-24). It rewrites the source IP and port in the SWAP

block (Figure 6.7 lines 27-30) before calling localRecalculateChecksums on the packet.
The setup pattern is called on packets from the internal network.

The other Ases, which are common in both NAT and IP router configurations per-
form forwarding operations as described for the IP router, with the exception of a few
minor changes to route the packets through NAT Ases.
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1 peek {

2 READ { src_ip IP_ADDRESS_LEN+SRC_IP_OFFSET IP_ADDRESS_LEN

3 dest_ip DEST_IP_OFFSET IP_ADDRESS_LEN

4 src_port IP_ADDRESS_LEN+SRC_PORT_OFFSET PORT_LENGTH

5 dest_port DEST_PORT_OFFSET PORT_LENGTH

6 protocol TRANS_PROTO_OFFSET TRANS_PROTO_LENGTH }

7 CONTROL { dest_ip dest_port }

8 }

9
10 forward {

11 LOOKUP { dest_ip dest_port }

12 SWAP {

13 WRITE {LOOKUP_NAME[0] DEST_IP_OFFSET IP_ADDRESS_LEN

14 LOOKUP_NAME[1] DEST_PORT_OFFSET PORT_LENGTH }

15 }

16 %localRecalculateChecksums(p);

17 }

18
19 setup {

20 LOOKUP { src_ip src_port }

21 VC {

22 LOC_NAME { local_name() }

23 UPDATE {* LOC_NAME prev src_ip#src_port

24 * src_ip#src_port local.next LOC_NAME

25 }

26 }

27 SWAP {

28 WRITE{LOOKUP_NAME[0] IP_ADDRESS_LEN+SRC_IP_OFFSET IP_ADDRESS_LEN

29 LOOKUP_NAME[1] IP_ADDRESS_LEN+SRC_PORT_OFFSET PORT_LENGTH }

30 }

31 %localRecalculateChecksums(p);

32 }

Figure 6.7: Pattern Specifications in NAT.
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6.4 i3 Forwarding

Figure 6.8: I3 Forwarding in Flecs.

Using the Flecs framework, i3 [32] becomes a straightforward implementation of
forwarding using Chord [33] as the routing process. This can be modeled by extending
the IP router design by adding a I3Switch and I3TriggerHandler Ases as shown in
Figure 6.8. In our model the i3 overlay sits on top of UDP. When a UDP packet arrives at
IP for the i3 server it is relayed to I3Switch after the IP and UDP headers are removed
in the respective Ases. I3Switch, which implements the Chord protocol, determines
whether the topmost i3 id can be locally resolved or not through switching table lookup.
If so, then the message is forwarded to the I3TriggerHandler, otherwise it is forwarded
to the Chord neighbor as determined by the switching table. I3TriggerHandler lookup
on the topmost i3 id in the i3 id stack determines the number of packet copies made
and forwarded, each one with either a new i3 id added on top of the id stack or a
specific IP/UDP destination. The packet or packets are then forwarded to the respec-
tive translators (I3IP-Trans or I3SW-Trans) for proper recasting depending upon the
switching table lookup in I3TriggerHandler. If I3TriggerHandler does not have an
entry for the topmost i3 id and the i3 id stack in the packet is empty, the packet is
dropped.
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Chapter 7

Evaluation

Figure 7.1: Comparison of the number of lines of code in the .ase file with the number
of lines generated by the asec compiler.

To evaluate the effectiveness of the framework, we compare the number of lines of
code written by the programmer and the ones generated by the compilers, asec and
confic. This determines the gain in terms of the amount of code written to imple-
ment a protocol in Flecs compared to developing the corresponding implementation
in Click. We have performed some experiments to compare the performance of Flecs
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generated implementation of the IP router with the comparable Click implementation
using regular Click elements.

7.1 Automated Code Generation

Figure 7.2: Comparison of the number of lines of code in the .ase file with the number
of lines generated by the confic compiler.

Figures 7.1 and 7.2 demonstrate the feasibility of using the Flecs framework to pro-
totype forwarding functionality of communication protocols. It shows the difference
between the lines of code written by the programmer in Flecs compared to the number
of lines of code generated by the asec compiler for different protocol implementations.
For example an Ethernet bridge configuration can be specified in Flecs along with its
configuration for a two network interfaces in less than thirty lines. The same imple-
mentation in Click results in around two hundred lines of code. Flecs produces the
Click implementation from the specification in less than a hundred lines of code. This
does not include the generic code inherited from Base. A comparable Ethernet bridge
written for FreeBSD is around three thousand lines of code. This difference between
implementations in different environments results partly because of our generalized
nature of the framework, reusable code base and inheritance model and partly because
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other implementations have a big chunk of error handling and optimization code. This
includes optimizations such as the spanning tree protocol implementation and network
interfacing with the LAN driver in FreeBSD.

Figure 7.2 presents the comparison for the configuration files written in FCL and
those generated by the confic compiler. The small difference in this case does not
seem to justify the corresponding compiler implementation. However, it disregards the
complexity and thus the difficulty of hand-coding the target protocol configuration,
where the input and output ports of Ases have to be manually specified using Click
configuration language.

7.2 Performance Measurements

Figure 7.3: Forwarding Rates of an IP Router in Flecs.

The purpose of this evaluation is also to determine the cost of adhering to the ax-
iomatic constraints and increased complexity of the Ases as opposed to the regular
Click elements. Figure 7.3 characterizes the performance of an IP router in Flecs by
measuring the rate at which it can forward 64 byte packets, when compared to a Click
implementation of an IP router. This analysis presents the router behavior under dif-
ferent workloads. The experiments were conducted by running the implementations
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in user-level Click, on the same machine. The Flecs-generated implementation peaks
at 7,000 packets where as the Click implementation peaks at 10,000. The resulting
Ases from Flecs were modified to use an optimized data structure to hold extracted
values from the packets and table lookups. These changes have not been merged in the
framework.

This is not a significant hit considering that each IP packet passes through five com-
plex elements, each performing at least two lookup operations, compared to thirteen
simple elements in the Click implementation with a single lookup amongst them. With
that said, these results are encouraging, considering that we have not yet incorporated
any optimization techniques into our compilers. For this purpose, the asec compiler
can utilize domain knowledge to apply optimizations and significantly improve the
forwarding performance.
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Chapter 8

Conclusions

This thesis describes Flecs, a framework for rapid protocol prototyping. Flecs applies
a divide-and-conquer strategy to decompose complex protocols into a combination of
Ases. Ases can support a wide variety of complex packet forwarding tasks through
composition.

The compilers in our framework translate meta-language programs specified by
simple and easy to program data-structures. Complete forwarding functionality of
complex communication protocols can be specified in a fraction of the code required
to produce equivalent implementations. This not only saves the programmer from
writing numerous lines of error checking code but also reduces the chances of bugs to
be introduced in these implementations.

We demonstrate how non-trivial forwarders can be quickly expressed in the meta-
languages defined in the Flecs framework. These specifications can then be used to
generate protocol implementations. Careful language design constrains Ase processing
to predefined axiomatic fundamentals to achieve conceptual clarity. This combined
with auto-generation of protocol code eliminates error-prone human coding of complex
protocols.

8.1 Discussion

There are a three main advantages of using Flecs for implementing packet forwarders.
The first is that by using the Flecs framework the time to design and implement com-
munication protocols can be drastically reduced.
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The second advantage is that by adhering to the axiomatic basis, the generalized
proofs of correctness of patterns can eventually be used in augmentation with auto-
mated theorem provers to prove correctness of protocol implementations.

The third advantage emerges from our use of the object-oriented inheritance model
to extract the generic functionality and the main processing loop in the Base. This
not only constrains design choices but also reduce the protocol specifications to mere
data-oriented specializations of the Base.

8.2 Contributions

In the context of implementing networking software, our objective is to explore the
design space that lies between implementing protocols by hand and automatically gen-
erating protocol implementations from axiomatically constrained specifications. We
claim that the following has been achieved.

• Flecs identifies and implements fundamental primitive operations of packet pro-
cessing which are concise, making it easy to reason about protocols and yet pow-
erful enough to implement a variety of forwarding schemes.

• Our design employs object-oriented techniques to implement the building blocks
of network protocols. This greatly reduces protocol complexity by decomposing
them into small components.

• We discovered some well-defined packet processing patterns which fit nicely into
our axiomatic framework to support componentization of protocols and give the
design a formal meaning.

• We describe a meta-language with formal semantics to define the core compo-
nents (Ases) of protocol design. This allows us to concisely specify complex
protocols in a readable format.

• Flecs supports a modular design of Ases, making them suitable for formal anal-
ysis and reasoning about fundamental properties of protocols.

• The framework uses an inheritance model, allowing packet processing code to be
re-used for different implementations while making the framework easily config-
urable and flexible.
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It should be noted that Flecs has been developed as a proof of concept for the
axiomatic basis for communication [23] and is limited by the same set of limitations as
the model, such as obliviousness to time, error and loss.

8.3 Future Work

Our conformance to the axiomatic basis not only allows us to discover different patterns
in protocol implementations but also makes the design of our framework independent
of any software or hardware architectures. It would be reasonable to state that Flecs

can be implemented on other packet processing engines and network processors [9, 8].
Future implementations of Flecs may perhaps be able to generate validated proto-
col implementations for programmable hardware devices such as FPGA [4, 18]. This
would demonstrate the potential of automatically building validated protocol imple-
mentations.

Given the current status of our work, we can implement optimization techniques
available to a domain specific framework to generate very efficient implementations.
Using our inheritance model and defining more efficient data-structures in the Base

we can reduce per Ase processing overhead. Latency of the individual Ases is not the
only performance issue for network software implemented using Flecs. Maximizing
throughput is also a pressing problem. We can focus on optimizations which actually
contribute to increased throughput. These include use of more efficient data structures
for Ase tables and manipulation of packet data.

Other aspects which still need some further work include exploration of alternate
ways of representing protocol specifications more concisely which is also easier to un-
derstand and modify. Automated theorem provers can also be incorporated into the
framework for automated generation of correctness proofs for specific implementa-
tions.
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