
Investigating the Application of

Opposition-Based Ideas to Ant Algorithms

by

Alice Ralickas Malisia

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2007

c©Alice Ralickas Malisia, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144142261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Alice R. Malisia

ii

Abstract

Opposition-based learning (OBL) was recently proposed to extend different machine learn-

ing algorithms. The main idea of OBL is to consider opposite estimates, actions or states

as an attempt to increase the coverage of the solution space and to reduce exploration time.

OBL has already been applied to reinforcement learning, neural networks and genetic al-

gorithms. This thesis explores the application of OBL to ant algorithms. Ant algorithms

are based on the trail laying and following behaviour of ants. They have been successfully

applied to many complex optimization problems. However, like any other technique, they

can benefit from performance improvements. Thus, this work was motivated by the idea of

developing more complex pheromone and path selection behaviour for the algorithm using

the concept of opposition.

This work proposes opposition-based extensions to the construction and update phases

of the ant algorithm. The modifications that focus on the solution construction include

three direct and two indirect methods. The three direct methods work by pairing the ants

and synchronizing their path selection. The two other approaches modify the decisions of

the ants by using opposite-pheromone content. The extension of the update phase lead to

an approach that performs additional pheromone updates using opposite decisions.

Experimental validation was done using two versions of the ant algorithm: the Ant

System and the Ant Colony System. The different OBL extensions were applied to the

Travelling Salesman Problem (TSP) and to the Grid World Problem (GWP). Results

demonstrate that the concept of opposition is not easily applied to the ant algorithm.

One pheromone-based method showed performance improvements that were statistically

significant for the TSP. The quality of the solutions increased and more optimal solutions

were found. The extension to the update phase showed some improvements for the TSP

and led to accuracy improvements and a significant speed-up for the GWP. The other

extensions showed no clear improvement.

The proposed methods for applying opposition to the ant algorithm have potential, but

more investigations are required before ant colony optimization can fully benefit from op-

position. Most importantly, fundamental theoretical work with graphs, specifically, clearly

defining opposite paths or opposite path components, is needed. Overall, the results indi-

cate that OBL ideas can be beneficial for ant algorithms.

iii

Acknowledgements

I would like to thank my supervisor, Professor H. R. Tizhoosh, for his valuable support

and encouragement, which led to the creation of this thesis. I would also like to extend

my thanks to my readers, Professor F. Karray and Professor J. Kofman, for their time

and feedback. Finally, I thank the Natural Sciences and Engineering Research Council of

Canada for providing the necessary funding for this research.

iv

Contents

1 Introduction 1

2 Background 4

3 Ant Colony Optimization 7

3.1 Background . 7

3.2 Natural metaphor . 8

3.3 History . 8

3.4 The ACO algorithm . 9

3.4.1 Ant System . 10

3.4.2 Ant Colony System . 13

3.5 Applications . 15

4 Opposition-Based Learning 17

4.1 Theory . 17

4.2 Existing OBL extensions . 19

4.3 Opposition and ACO . 20

5 Travelling Salesman Problem Experiments 23

5.1 Construction phase extensions . 23

5.1.1 Synchronous Opposition . 24

5.1.2 Free Opposition . 25

5.1.3 Free Quasi-Opposition . 25

5.1.4 Opposite Pheromone per Node . 27

v

5.1.5 Opposite Pheromone per Edge . 29

5.2 Update phase extension . 29

5.2.1 Opposite Pheromone Update . 29

5.3 Experimental setup . 31

5.4 Results . 33

5.4.1 Results for direct modification of ant decision 33

5.4.2 Results for indirect modification of ant decision 36

5.4.3 Results for modifying pheromone update 45

6 Grid World Problem Experiments 49

6.1 Description of the grid world problem . 49

6.2 ACO applied to the GWP . 50

6.2.1 Representation . 50

6.2.2 Initialization . 51

6.2.3 Solution construction . 51

6.2.4 Pheromone update . 51

6.2.5 Policy calculation . 53

6.3 OBL extensions . 53

6.3.1 Opposite Pheromone per Node for the GWP 53

6.3.2 Opposite Pheromone Update for the GWP 53

6.4 Experimental setup . 55

6.5 Results . 56

6.5.1 Accuracy results . 56

6.5.2 Convergence results . 60

7 Discussion 62

8 Conclusions and Future Work 65

Bibliography 67

vi

List of Tables

3.1 AS Algorithm . 13

3.2 ACS Algorithm . 15

5.1 Direct Modification Algorithms . 26

5.2 Opposite Pheromone per Node Algorithm for the TSP 28

5.3 Opposite Pheromone per Edge Algorithm 30

5.4 Opposite Pheromone Update Algorithm for the TSP 32

5.5 Overview of the TSP Instances . 32

5.6 Accuracy Results of the Direct OBL Extensions for the TSP 34

5.7 Median Final Iteration of the ACS and the Direct OBL Extensions 35

5.8 Contribution of the Opposite-Ants for the Direct OBL Algorithms (in %) . 36

5.9 Accuracy Results of OPN for the TSP with Fixed λ̆o 38

5.10 Accuracy Results of OPN for the TSP with Increasing and Decreasing λ̆o . 39

5.11 Accuracy Results of OPE for the TSP . 40

5.12 Convergence of OPN for the TSP with Fixed λ̆o 43

5.13 Convergence of OPN for TSP with Increasing and Decreasing λ̆o 43

5.14 Convergence of OPE for the TSP . 44

5.15 Accuracy Results of OPU for the TSP with Increasing and Decreasing λ̆o . 46

5.16 Convergence of OPU for the TSP . 48

6.1 GWP Algorithm . 52

6.2 Opposite Pheromone per Node Algorithm for the GWP 54

6.3 Opposite Pheromone Update Algorithm for the GWP 55

6.4 Accuracy Results of OPN for the GWP . 57

vii

6.5 Accuracy Results of OPU for the GWP . 57

6.6 Convergence Results of OPN algorithms for the GWP 60

6.7 Convergence Results of OPU for the GWP 61

viii

List of Figures

3.1 Behaviour of ants when they are presented with alternate paths [23]. . . . 9

4.1 Illustration of one-dimensional opposition. 19

4.2 Illustration of pheromone matrix opposition. 21

5.1 Synchronous Opposition: leading-ant and opposite-ant on the same city. . . 24

5.2 Synchronous Opposition: leading-ant and opposite-ant on different cities. . 25

5.3 OPN: Pheromone content of all outgoing edges of a node depends on λ̆. . . 28

5.4 OPE: Pheromone content of individual edges j depends on λ̆j. 29

5.5 Accuracy results of ACS and OPU with W = 1000 for the 198-city TSP. . 45

6.1 The Grid World Problem. 50

6.2 Two optimal policies for a 6× 6 grid encompassing all possibilities. 56

6.3 Accuracy per iteration for AS and OPU for the GWP (20× 20). 58

6.4 Accuracy per iteration for AS and OPU for the GWP (50× 50). 59

6.5 Accuracy per iteration for AS and OPU for the GWP (100× 100). 59

ix

Chapter 1

Introduction

Optimization problems are commonly faced by industry, the scientific community and

are present even in our everyday lives. Better optimization algorithms and methods are

constantly being developed to attempt to solve these complex problems. These complex

optimization problems can be solved using sophisticated machine learning methods such

as genetic algorithms, neural networks, and ant algorithms to name a few [9]. These

machine learning algorithms are successful, but they can always benefit from performance

improvements. Recently, the concept of Opposition-Based Learning (OBL) was introduced

as a new way to extend machine learning algorithms [31–33].

The idea of opposition might be relatively new in the world of optimization, but it is

a concept that is existent all around us in nature, society, and other fields. It is a concept

that is everywhere: day/night, hot/cold, negative/positive, multiplication/division. Thus,

OBL was is inspired from examples in the real world.

Opposition-based learning was introduced recently [31–33], but it has already been

succesfully applied in three main types of algorithms: reinforcement learning [25, 26, 31],

genetic algorithms [17–20], and neural networks [34, 35]. Given the success and the possi-

bility of exploring new approaches, it was encouraging to extend the work to another class

of algorithms: swarm intelligence. One important algorithm in that class is ant colony

optimization.

Ant colony optimization is a powerful technique that has been used to solve many com-

plex optimization problems, such as the travelling salesman problem, quadratic assignment

1

2 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

problem, vehicle routing, and others [8]. Given the complexity of these problems and the

real-world applications, any improvement is encouraged and strongly welcomed. Despite

its successes, ant colony optimization is not a perfect algorithm. Like many other opti-

mization techniques, it can remain trapped in a local optima, miss a portion of the solution

space or, in some cases, it can be slow to converge. Thus, it is interesting to study and

develop more complex behaviour for the ant algorithm.

Essentially, this work involves an initial investigation of the application of OBL ideas

to ant colony optimization. It aims at exploring how the opposition framework can be

extended to the ant algorithm and it also attempts to evaluate this framework with two

different applications.

This thesis proposes two main types of opposition-based extensions to the ant algorithm.

The first type involves modifications to the construction phase of the ant algorithm. The

second type focuses on the pheromone update phase of the algorithm.

The construction phase modifications include different classes of modifications: direct

and indirect. Direct modifications to the construction phase mean that the decisions made

by the ants are controlled. The three direct modification algorithms proposed in this thesis

are: Synchronous Opposition, Free Opposition and Free Quasi-Opposition. An indirect

modification affects the decisions of the ants by altering decision parameters, such as

pheromone. The two indirect extensions are: Opposite Pheromone per Node and Opposite

Pheromone per Edge.

Extending the update phase of the ant algorithm led to a single type of algorithm that

involves additional updates to the pheromone content of opposite decisions. The extension

to the update phase is called: Opposite Pheromone Update.

Two different applications were used to evaluate the opposition-based approaches:

the Travelling Salesman Problem (TSP) and the Grid World Problem (GWP). All the

opposition-based approaches were applied to the TSP, but only the Opposite Pheromone

per Node and the Opposite Pheromone Update methods were applied to the GWP. The

performance of the proposed OBL algorithms is compared to the performance of the nor-

mal ant algorithms. The experiments aim at assessing the validity of the different OBL

extensions, as well as establishing the applicability of opposition to ant colony optimization.

The remaining of this thesis is organized as follows. Chapter 2 provides a background

Introduction 3

of work that has been conducted to improve the performance of ant algorithms. Chapter

3 gives an overview of ant colony optimization. Chapter 4 presents the concept of OBL.

Chapter 5 and 6 include the experimental results for the OBL ant algorithms for the

travelling salesman problem and the grid world problem respectively. A detailed discussion

of the results is included in chapter 7, which is followed by the conclusions and future work

in chapter 8.

Chapter 2

Background

The concept of Opposition-Based Learning (OBL) was recently proposed a new extension

to learning algorithms [31–33]. The idea underlying OBL is that by considering opposite

estimates, actions, weights, etc., one can improve the coverage of the solution space for a

particular problem. In turn, the improved coverage can lead to better covergence and/or

higher accuracy. A detailed discussion of OBL is included in chapter 4. OBL has already

been successfully applied to reinforcement learning [25,26,31], evolutionary algorithms [17–

20] and neural networks [34,35]. Thus, there was motivation to investigate the application

of opposition to a new algorithm: Ant Colony Optimization (ACO).

Like some other machine intelligence methods, ACO algorithms are based on a phe-

nomenon occurring in nature: the social behaviour of ant colonies [8]. Ants are well-known

for their ability to efficiently find the shortest path between their nest and their food

source [1]. ACO implementations have been successfully applied to many complex op-

timization problems, such as the travelling salesman problem [8]. The ant algorithm is

described in detail in the following chapter.

Despite being a powerful algorithm, ACO can benefit from performance improvements.

On one hand, ACO has many applications and deals with complex optimization problems.

Thus, any increase in speed of convergence is beneficial. On the other hand, given the fun-

damental structure of ACO, the algorithm can sometimes remain trapped in local optima

resulting in reduced accuracy. This situation can occur when a certain component is very

desirable on its own, but leads to a sub-optimal solution when combined with other com-

4

Background 5

ponents. Consequently, modifications that can help increase the accuracy of the algorithm

are also welcomed.

Since the introduction of ACO, researchers have developed multiple versions to improve

the performance of the algorithm. The Ant Colony System (ACS) is a commonly used

extension of the original ant algorithm [8]. The ACS algorithm has a greedy selection rule,

but provides regular pheromone reduction as a measure to decrease desirability of arcs

once they are travelled [6]. This prevents all the ants in the colony from generating the

same solution. Another successful version of the ant algorithm is the Max-Min Ant System

(MMAS) [8, 29]. The MMAS strongly exploits the best tours found, but the MMAS also

limits the range of pheromone content values and initializes the pheromone contents at the

upper limit. These modifications led to performance improvements.

In addition, work has been conducted to establish more complex pheromone mech-

anisms, such as multiple pheromone matrices, and complex pheromone updates. These

modifications were implemented so ant algorithms could solve more complex problems and

to improve the performance of the ACS. For instance, one particular variant of the ant

algorithm, known as the Best-Worst Ant System (BWAS) [2], substracts pheromone con-

tent based on the results of the worst ant of the colony. The BWAS also uses a form of

pheromone mutation based on concepts from evolutionary computation. To solve a bi-

criterion vehicle routing problem, Iredi, Merkle and Middendorf proposed a version of the

ACS where two different pheromone trail matrices and two heuristic functions are consid-

ered simultaneously [11]. Randall and Montgomery proposed the Accumulated Experience

Ant Colony as a method to determine the effect of each component on the overall solution

quality [21]. In their approach, the pheromone and heuristic values of an edge are weighted.

Schoonderwoerd and his colleagues were one of the first to elude to the concept of

an ‘anti-pheromone’, where ants would decrease pheromone contents rather than reinforce

them [24]. Montgomery and Randall developed three methods based on the concept of

anti-pheromone as an attempt to capture complex pheromone behaviour [15]. In the first

method, the pheromone of the elements composing the worst solutions is reduced. Their

second alternative combines a pheromone content for the best solution and pheromone

content for the worst solution. The ants select edges based on a weighted combination of

pheromone and anti-pheromone and the heuristic. Finally, their third approach involves the

6 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

use of a small number of explorer ants that have a reversed preference for the pheromone.

Their methods produced better solutions on the smaller TSP problems.

Given these existing extensions, their results, and the potential for performance im-

provement, there was strong motivation to investigate the application of opposition to ant

colony optimization. OBL can potentially lead to a new way of developing more complex

pheromone or path selection behaviour for ant algorithms.

Chapter 3

Ant Colony Optimization

3.1 Background

Ant Colony Optimization (ACO) is classified under the general class of algorithms known

as Swarm Intelligence (SI). SI reflects the emergence of collective intelligence from a swarm

of simple agents. It is generally defined as a structured collection of interacting organisms

which cooperate to achieve a greater goal [1,12]. It is possible to have genetic cooperation,

as in the case of genetic algorithms, but in SI, it is more of a social interaction. The

framework is based on the repeated sampling of solutions to the problem at hand, where

each member of the population provides a potential solution. In the case of ACO, the

algorithm mimics the social interaction of ants; thus, the population is a colony of ants.

Social behaviour increases the ability of individuals to adapt, as they can cooperate

and learn from each other. The main idea of SI algorithms is that organisms of a swarm

behave in a distributed manner while exchanging information directly or indirectly. The

general characteristics of SI algorithms are [12]:

• a collection of autonomous agents;

• distributed control among the agents;

• agents interact and communicate;

• agents have a stochastic component (usually for decisions) to encourage exploration;

7

8 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

• agents use collective knowledge to make the stochastic decision.

One important element of SI is agent communication. That is the key for the collective

intelligence because agents share the information. There are two main types of agent

communication: 1) broadcast-like and 2) indirect [1, 12]. In indirect communication, two

individuals interact indirectly when one of them modifies the environment and the other

responds to the modified environment at a later time. This phenomenon is called stigmergy.

A classical example of this is the pheromone deposits present in ant colonies.

3.2 Natural metaphor

The ACO algorithm is inspired from the natural behaviour of trail laying and following by

ants [1, 8]. When exploring a region, ants are able to find the shortest path between their

nest and a food source. They can adapt to changes in the environment and restructure

their path around new obstacles. Their optimizing capacity is a result of their ability to

communicate indirectly with each other via pheromone, which is a chemical the ants leave

behind as they travel. The pheromone deposited by one ant influences the selection of

the path by other ants. A high pheromone concentration increases the probability that

the path will be selected. Additionally, pheromone evaporates over time. The pheromone

deposits work as a form of positive feedback, reinforcing good path choices and guiding

the ants to better paths. Fig. 3.1 depicts the behaviour of ants over a period of time when

they are presented with alternate paths.

3.3 History

The ACO algorithm was introduced by Marco Dorigo in 1992 in his PhD thesis [3]. It was

developed to solve complex discrete combinatorial problems. The first ACO algorithm was

the Ant System (AS) [5], which was designed to solve the Travelling Salesman Problem

(TSP). The TSP is an optimization problem based on the problem faced by a travelling

salesman who, given a starting city, wants to take the shortest trip through a set of customer

cities, visiting each city once before returning to the starting point. Mathematically, the

TSP involves finding the minimum cost path in a weighted graph. A particular TSP

Ant Colony Optimization 9

Figure 3.1: Behaviour of ants when they are presented with alternate paths [23].

instance has a specific number of cities (nodes) and arc weights (typically the distance

between the cities). The AS algorithm performed well with TSP instances up to about 50

cities, then it generally did not converge to an optimum.

Since the introduction of ACO, researchers have developed multiple versions to improve

the performance of the algorithm. The Ant Colony System (ACS) is a popular revised

version of ACO [8]. It achieved considerable accuracy improvements [6,8]. Other extensions

of the original ACO algorithm include the Best-Worst Ant System [2], the Max-Min Ant

System [29], Ant-Q (extends ACO with reinforcement learning), AntNet (dynamic version

of the algorithm designed for the vehicle routing problem), and the ACS combined with

local search [8].

3.4 The ACO algorithm

When dealing with complex optimization problems, it is generally necessary to use meta-

heuristics to solve them. Metaheuristics are procedures that use heuristics to seek a near-

optimal solution with reasonable computation time [7,8]. The general idea behind a meta-

heuristic is to create a balance between local improvements and a high-level strategy. They

10 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

optimize problems through guided search of the solution space [8,27]. In brief, metaheuris-

tics seek optimality while attempting to reduce computation time. Their goal is to search

the space efficiently to find near-optimal solutions. ACO is a metaheuristic.

When applied to an optimization problem, the ACO metaheuristic usually involves

solution construction on a graph. Ants will move between nodes, sequentially adding edges

to their current path until they have visited all nodes. The selection of an edge depends on

the pheromone content, represented by values in a n× n matrix where n is the number of

nodes, and the heuristic function values of the available edges. The pheromone content is

a form of positive reinforcement to influence future constructions and the heuristic guides

the search to potential promising solutions.

ACO has three critical characteristics [27]: positive feedback, distributed computation,

and local heuristic. The positive feedback increases the rapidity at which good solutions are

found. The distributed computing, embodied by large number of ants working together,

avoids premature convergence to suboptimal solutions. Finally, the addition of a local

heuristic leads to finding good solutions in the earlier stages of the optimization. Dorigo

and Stützle explain the uniqueness of the ACO algorithm [8]: “The ACO uses a population

(colony) of ants which construct solutions exploiting a form of indirect memory called

artificial pheromones”. The following sections will provide a detailed description of two

important versions of ACO, namely the AS and the ACS.

3.4.1 Ant System

As previously mentioned, the AS was the first instance of ACO. The basic steps are:

1. Represent problem as a graph.

2. Initialize the pheromone matrix.

3. Each ant constructs a solution.

4. Evaporate pheromone matrix.

5. Update the pheromone content on the path travelled by each ant.

6. Repeat steps 3 through 5 until the termination criterion is satisfied.

Ant Colony Optimization 11

Problem representation

Problems are usually represented in the form of a graph, where solutions are a path along

the graph. The ants will travel from node to node constructing a full solution in each

iteration.

Initialization

The initialization involves setting all the values of the pheromone matrix to a small value,

which is equivalent to dropping an initial amount of pheromone on all edges of the graph.

The number of ants, m, is usually smaller than the number of nodes, n (m < n). The

initial pheromone content, τo is usually based on the worst case solution, thus a very small

amount [8]. A good value for τo is m/Cnn, which is the total number of ants, m, divided

by the cost of the nearest neighbour path, Cnn [8]. The nearest neighbour path cost is the

cost of the solution achieved by always moving to the nodes connected by the arc with the

lowest weight. Following initialization, the AS has two main phases: solution construction

and trail update. The trail update includes evaporation and pheromone update.

Solution construction

The ants are initially distributed randomly among the nodes. Ants travel through the

graph adding solution components to partial solutions until they reach a complete solution.

They build their solutions stochastically. The selection of the components depends on the

pheromone content of the paths and a heuristic value. At each step of construction, ant k

selects the next node using a probabilistic action choice rule, which dictates the probability

with which ant k will choose to go from current node i to next node j:

pk
ij =

[τij]
α[ηij]

β∑
l∈Nk

i
[τil]α[ηil]β

if j ∈ Nk
i , (3.1)

where τij represents the pheromone content on the edge connecting city i to city j. The

city j is a node that is included in Nk
i , the neighbourhood for ant k given its current

location i. The neighbourhood only includes nodes that have not been visited by ant

k. If all feasible nodes have been visited, then all neighbours of the current node become

available for visit. The constants α and β represent the influence of pheromone content and

12 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

heuristic respectively. If α = 0, the AS simply becomes a greedy algorithm with random

starts. Similarly, if β = 0, it would mean that there is no heuristic bias, which might lead

the ants to premature convergence. Experimental results suggest setting α = 1 and β from

2 to 5 [8]. Finally, ηij is the heuristic information for going from node i to node j. The

heuristic value of an arc is a measure of the cost of extending the current partial solution

with that arc (typically the inverse of the weight of the arc). For example, in the TSP, ηij

is usually set to 1/dij, the reciprocal of the distance between the two nodes. The heuristic

should guide the search to more promising solutions. The stochastic component of the

algorithm, namely selecting a component based on a probability, leads to exploration of a

higher number of solutions because components with lower probability can be selected.

Evaporation

In the AS, when all ants have completed their paths, pheromone is evaporated. Pheromone

evaporation involves decreasing the pheromone content of arcs over time. As the number of

iterations increases, the pheromone content of unvisited arcs drops. This is an important

factor to reduce the chance of premature convergence, as it gives ants a chance to visit arcs

that were not visited in the initial iterations. It works as a “forgetting” mechanism. It is

important to ensure that local optima are not reinforced [1]. The pheromone evaporation

is applied to all arcs following the relation

τnew
ij = (1− ρ)τ current

ij 0 < p < 1, (3.2)

where τ represents the pheromone content of the arcs and ρ is the evaporation rate. Re-

search indicates that ρ = 0.5 is appropriate for the AS [8].

Pheromone update

After the evaporation, the solutions are evaluated and pheromone is deposited relative to

the quality of the solution. The ants deposit pheromone on the arcs they visited as follows:

τnew
ij = τ current

ij +
m∑

k=1

∆τ k
ij, (3.3)

Ant Colony Optimization 13

where ∆τ k
ij is the amount of pheromone ant k contributes to the arc going from node i

to node j and m is the total number of ants. The additional pheromone is based on the

overall quality of the total path and is defined by

∆τ k
ij =

 1
Ck

if arc is in the path of ant k,

0 otherwise,
(3.4)

where Ck is the total cost of the solution for ant k. In the TSP, it represents the length of

the path for ant k. All arcs of one path will receive the same amount of pheromone.

Termination

The algorithm can be terminated after a specific number of cycles, when all ants are

travelling the same path (stagnation) or when the quality of the solution has reached a

desired value.

Summary

The AS algorithm is summarized in Table 3.1.

Table 3.1: AS Algorithm

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Repeat until solution is constructed (for each ant k):

Pick next node j

Evaporate pheromone

Apply pheromone trail update

3.4.2 Ant Colony System

Another commonly used version of ACO is the ACS. This version differs from the AS

algorithm in three aspects [6, 8]: 1) different selection rule for tour construction, 2) trail

14 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

update only occurs for the best-so-far solution, and 3) local pheromone removal occurs

each time an ant visits a node.

Selection rule

When ants construct their paths in the ACS, they use a selection rule that has a strong

emphasis on exploitation of previous experience. An ant k located on node i chooses the

next node j using a pseudorandom proportional rule described by

j =

argmax

l∈Nk
i

{
τil[ηil]

β
}

if q < qo,

J otherwise.

(3.5)

The parameter q is a uniform random number and qo is the probability that an ant will

use learned knowledge. If q < qo, the ant will select the node with the highest product

of pheromone content and heuristic function value. Otherwise, it will use J , which is a

random variable selected by the probabilistic action rule used in the AS (see Eq. 3.1).

Note that if qo = 0, the pseudorandom rule is reduced to the selection rule from the AS.

In contrast, if qo ≈ 1, the search is highly focused on experience by searching around the

best-so-far solution. In general, experimental results indicate that selecting qo = 0.9 leads

to good results [8]. This pseudorandom rule is a greedy selection approach that will tend

to favour short edges with high pheromone.

Best trail update

The ACS has a pheromone update approach that exploits the best solutions found. The

evaporation and deposit of pheromone is only applied to the arcs contained in the current

best solution. The update is implemented by

τnew
ij = (1− ρ)τ current

ij + ρ(∆τ bs
ij) ∀(i, j) ∈ T bs, (3.6)

where ∆τ bs
ij is additional pheromone, ρ is the global evaporation rate, and T bs is the best-so-

far path. Sometimes the best-iteration path is used for smaller problems. The additional

pheromone is calculated using the cost of the best-so-far path. Research indicates that

ρ = 0.1 is an appropriate value for the ACS algorithm [8].

Ant Colony Optimization 15

Local update

The ACS includes a local pheromone update to reduce emphasis on exploitation of ex-

isting solutions. Immediately after an ant adds an arc to its current path the amount of

pheromone on the arc is decreased as follows:

τnew
ij = (1− ξ)τ current

ij + ξτo 0 < ξ < 1, (3.7)

where τo is the initial amount of pheromone. In the case of the TSP, research indicates

that for the ACS, this value should be set to 1/mCnn, where m is the number of ants,

n represents the number of cities and Cnn is cost of the nearest neighbour solution. The

parameter ξ is the local evaporation rate, which is typically set to 0.1 [8]. This local update

works to counterbalance the greedy construction rule by reducing the pheromone on the

selected edge, thus making it less desirable to the next ant.

Summary

The general steps of the ACS algorithm are summarized in Table 3.2.

Table 3.2: ACS Algorithm

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Repeat until solution is constructed (for each ant k):

Pick next node j

Apply local pheromone update

If necessary, update best-so-far solution

Apply best trail update

3.5 Applications

The ACO metaheuristic has mostly been applied to solve common optimization problems

such as the travelling salesman problem, quadratic assignment, and vehicle routing [8].

16 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

More recently, there have been a wide set of new applications, namely sequential ordering,

graph coloring, generalized assignment, multiple knapsack and constraint satisfaction [8],

cell planning for mobile computing [30], power systems optimization [27], and the shortest

common supersequence problem [14]. The ACO metaheuristic was also applied to dynamic

shortest-path problems [7]. A very active area of research is the application of ACO

algorithms to telecommunication problems, specifically network routing [4, 8]. While the

focus of ACO has been optimization problems, researchers have also begun to apply it to

fields such as image processing [13,16,36].

Chapter 4

Opposition-Based Learning

Opposition-based learning (OBL) was proposed by Tizhoosh as a possible new way to

improve the performance of machine learning algorithms [31–33]. The main idea of OBL is

that by considering “opposites”, one can increase the coverage of the solution space leading

to increased accuracy and/or faster convergence. OBL provides a general strategy that can

be tailored to the technique of interest.

4.1 Theory

While the idea of opposition might be new in the area of algorithms, it is prevalent in the

world around us: male/female, up/down, day/night, etc. The interplay between opposites

apparently provides a state of balance. Then, it is only natural that opposition may be a

possibility to improve algorithms.

Whenever one is looking for the solution x of a given problem, one usually makes an

estimate x̂. This estimate is not the exact solution and can be based on experience, a

heuristic or a totally random guess. Sometimes, the estimate x̂ may be sufficient, as it may

have reasonable fitness and accuracy. In most cases, the initial guess x̂ is not satisfactory;

thus, the estimated value must be modified to move closer to the optimal value.

In machine learning algorithms, learning usually begins at a random point and then

moves towards better solutions. For example, the weights of a neural network are initialized

randomly, the parameter population in genetic algorithms is configured randomly and the

17

18 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

action policy of reinforcement agents is initially based on randomness. The random guess,

if not far away from the optimal solution, can result in a fast convergence. However, it is

natural to state that when beginning with a random guess that is very far from the existing

solution, then the approximation, search or optimization will take considerably more time,

or can even become intractable. Of course, in the absence of any a priori knowledge, it is

not possible to make the best initial guess. Logically, the algorithm should be looking in

all directions simultaneously, or more concretely, in the opposite direction. Consequently,

if the algorithm is searching for x, and one agrees that searching in the opposite direction

could be beneficial, then calculating the opposite number, x̆, is the first step.

Definition (Opposite Number) - Let x ∈ < be a real number defined on a certain

interval: x ∈ [a, b]. The opposite number, x̆, is defined as follows:

x̆ = a + b− x. (4.1)

Analogously, the opposite number in a multidimensional case can be defined.

Definition (Type-I Opposition) - Let P (x1, x2, . . . , xn) be a point in a n-dimensional

coordinate system with x1, x2, . . . , xn ∈ < and xi ∈ [ai, bi] ∀i ∈ [1, n]. The opposite point

P̆ is completely defined by its coordinates (x̆1, x̆2, . . . , x̆n) where

x̆i = ai + bi − xi. (4.2)

Type-I Opposition is applied to candidate solutions, P . If the points P and P̆ are candidate

solutions for a function f(x1, x2, . . . , xn) then it is not always possible to ensure that f(x)

will be the mathematical opposite of f(x̆1, x̆2, . . . , x̆n). The type-I opposite will deliver

an opposite output only for linear or quasi-linear functions. Thus, a type-II opposite was

defined.

Definition (Type-II Opposition) Let y = f(x1, x2, . . . , xn) ∈ < be an arbitrary

function with y ∈ [ymin, ymax]. For every point P = (x1, x2, . . . , xn), the opposite point

P̆ = (x̆1, x̆2, . . . , x̆n) is defined by

x̆ = {x|y̆ = ymin + ymax − y} . (4.3)

This definition assumes that the function f(x) is not known, but ymin and ymax are given or

can be estimated. A type-II opposite is difficult to calculate as it generally involves some

Opposition-Based Learning 19

Figure 4.1: Illustration of one-dimensional opposition.

a priori knowledge about the output function. Consequently, type-I opposites are used as

an approximation for type-II opposition. The general opposition scheme for learning can

now be concretized.

Opposition-Based Learning - Let f(x) be the function in focus and g(·), the be the

proper fitness evaluation function. If x ∈ [a, b] is an initial (random) guess and x̆ is its

opposite value, then in every iteration f(x) and f(x̆) are calculated. The learning continues

with x if g(f(x)) ≥ g(f(x̆)), otherwise it continues with x̆.

OBL is illustrated in Fig. 4.1 for the one-dimensional case. For example, given the

current guess x, considering its mathematical opposite (as defined in equation 4.1) can

lead to a better area in the solution space. The consideration of the mathematical opposite

provides a better coverage than a simple second random guess would achieve [17, 19]. In

addition, one can note that, in this case, x and x̆ have a one-to-one correspondence.

4.2 Existing OBL extensions

In order to fit in the OBL scheme, one must relate the term opposite to the specific

algorithm. The general OBL idea can be applied in many different ways. OBL has been

successfully applied to reinforcement learning [25,26,31], differential evolution [17–20], and

neural networks [34,35].

In reinforcement learning, opposition is used to accelerate the learning process by per-

forming additional updates of opposite actions [25,26,31]. The work was conducted using

20 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

the Q-learning algorithm. The main idea is that when one action of the agent is rewarded,

the opposite action is simultaneously punished. Results indicate that the OBL extension

leads to an improvement in the learning speed, as well as a better success rate. The best

results occur when there is a diminishing consideration of the opposite actions.

In neural networks, OBL was applied to a typical multi-layer perception network by

incorporating opposite transfer functions [34,35]. The use of the opposite transfer functions

led to an improved search of the weight space. Results showed significant improvement

over standard backpropagation learning. The accuracy was comparable, but convergence

was much faster.

In differential evolution, which is a type of genetic algorithm, OBL was implemented

during population initialization and used for generation jumping. Generation jumping

means that, based on a jumping rate, a new population is generated using opposition in-

stead of the regular genetic operators. This new population is a mathematically opposite

population. Then, the fitness of the original and opposite populations are calculated and

only the best individuals are kept for further optimization [17–20]. The boundaries for

opposite generation are dynamic and decrease as the population becomes more concen-

trated. The opposites generated within the OBL scheme are used to efficiently generate

guesses that have a chance of having a better fitness than simply random guesses. In this

approach, opposition is a way to reach far points in the solution space, which may have

better fitness. The results indicate that the OBL algorithms accelerate the convergence.

4.3 Opposition and ACO

In the case of ACO, the application of opposition is not as straightforward as mapping

between two estimates. ACO usually optimizes combinatorial problems, like TSP instances.

Thus, the opposite of solutions and partial components of the solutions are not clearly

defined. Even if only one element of the solution is changed, it generates a whole set of

new solutions. Moreover, simply taking the opposite of every component of the solution

might not necessarily lead to a plausible solution. If one refers back to the one-dimensional

example (see Fig. 4.1), one can see that it is not clear how one can generate an opposite

solution, mainly because of the combinatorial aspect of the applications associated with

Opposition-Based Learning 21

Figure 4.2: Illustration of pheromone matrix opposition.

ACO. To fit in the OBL scheme, the term opposite must be related to ant algorithms.

The concept of opposition [31,33] which was described in section 4.1 serves as a starting

point for he proposed extensions. The main idea was to think of opposition as a way of

increasing the coverage of the solution space. The goal was to attempt to extend the idea

of opposite estimates illustrated in Fig. 4.1. Ant algorithms do not work by evolving

solutions; instead, at each iteration, new solutions are created based on the pheromone

matrix. It is the pheromone matrix that changes as the algorithm progresses.

In algorithms that work with complete solutions, such as genetic algorithms, one can

generate an opposite candidate solution and replace the current candidate solution. Then

the evolution proceeds with the opposite candidate solution. In contrast, in the ant al-

gorithm, even if the opposite solution is generated, one needs to find a way to alter the

pheromone content since that is what affects solution creation. To move in the solution

space, the algorithm has to move in the pheromone space. Thus, instead of looking at

a solution candidate and its opposite, the concept illustrated in Fig. 4.1 is extended to

involve the pheromone matrix and its opposite. This is illustrated in Fig. 4.2.

One can note that, because of the probabilistic nature of the path selection in ACO, a

particular pheromone matrix can lead to an array of solutions. This leads to an array of

fitness values and, hence, there is no one-to-one relationship between a particular matrix

and fitness that exists in the candidate solution-based opposites. Additionally, an oppo-

22 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

site pheromone matrix is not easily defined. In a classical ant algorithm, the pheromone

matrices are modified by the ants, which is how the algorithm moves between pheromone

matrices and solutions. The idea was to find a way to use opposition to move in the

pheromone matrix solution space. It was determined that opposition can be applied in two

main parts of the ACO algorithm: 1) the construction phase and/or 2) the update phase.

The construction phase can be modified by affecting the ant’s decision. This can be done

directly or indirectly. Directly means that opposition is used to control the decision of the

ant by restricting and reducing the number of available choices. The indirect modification

involves altering the parameters used by the decision, namely the pheromone content.

The modification to the update phase involves altering the way the pheromone is up-

dated. It can be done by making additional updates using other ants. A form of this idea

was implemented in the Best-Worst Ant System [2], which uses the worst-ant to remove

pheromone. However, there are other ways to affect the update phase. It can also involve

the best paths. One possible way is to use opposite components of the solution without

necessarily creating an opposite solution.

Consequently, with the proposed OBL modifications, the algorithm is able to move to

a new region of pheromone matrices. By changing the decision of the ants or changing the

pheromone content used in the decision, one simulates the creation of another pheromone

matrix without directly changing the current matrix. In contrast, in the case of opposition-

based pheromone updates, the algorithm is actually moving to a new pheromone matrix.

It will probably not be the opposite pheromone matrix, but it may eventually lead to an

area closer to the optimal solution.

The discussed modifications provide a general framework as to how opposition can

extend ACO. These ideas were used to design specific OBL algorithms for two applications:

the Travelling Salesman Problem and the Grid World Problem. The following two chapters

will provide a very detailed description of the OBL algorithms used to solve these two

problems. This thesis presents three direct approaches (Synchronous Opposition, Free

Opposition, and Free Quasi-Opposition), two indirect approaches (Opposite Pheromone

per Node, Opposite Pheromone per Edge), and one method that modified the update

phase (Opposite Pheromone Update).

Chapter 5

Travelling Salesman Problem

Experiments

The Travelling Salesman Problem (TSP) is a classical optimization problem which has

been used for the evaluation of the performance of ant algorithms. This chapter presents

experiments on TSP instances comparing the performance of ant colony optimization with

opposition-based extensions to the ant algorithm. The implementations use the Ant Colony

System (ACS) version of the ant algorithm. The proposed methods include five extensions

to the contruction phase and one extension to the update phase of the algorithm.

5.1 Construction phase extensions

The first three approaches, namely Synchronous Opposition, Free Opposition, and Free

Quasi-Opposition, directly change the decisions of the ants. They use the idea of paired ants

(ant and opposite ant) searching the space. By pairing ants and synchronizing their con-

struction, one can reduce the randomness. The other two methods, Opposite Pheromone

per Node and Opposite Pheromone per Edge, follow the indirect approach by modifying

decision parameters. They use opposite pheromone values. While the two last approaches

resemble the explorer ants proposed in [15], they differ in that the entire colony is subject

to the possibility of using opposite pheromone content. Also, the opposite pheromone is not

always activated. The five versions will be described in detail in the following subsections.

23

24 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Figure 5.1: Synchronous Opposition: leading-ant (left) and opposite-ant (right) on the

same city.

5.1.1 Synchronous Opposition

The Synchronous Opposition approach is the most rigid in terms of synchronicity. The

colony is divided in two and the ants are paired. Each pair follows a similar construction

behaviour. The pairs start on a randomly selected city, meaning the two paired ants will

start on the same city. The first ant of a pair (leading-ant) follows the usual selection rules,

but the second ant (opposite-ant) picks its next city based on the decision of the leading-

ant. If the opposite-ant was on the same city as the leading-ant, it selects the opposite city

(see Fig. 5.1). The opposite city is determined by calculating the rank of the city selected

by the leading-ant and assigning the city with the opposite rank to the opposite-ant.

In contrast, if the opposite-ant was located on a different city, then it will mimic the

decision made by the leading-ant. The opposite-ant will select a city with the same rank

as the one selected by the leading-ant. This is illustrated in Fig. 5.2. The rank of a city

is based on the combination of pheromone content and heuristic on the edge connecting

it to the current city. It is analoguous to the selection probability usually used by ants to

select a city. It is important to note that the same rank does not necessarily mean the

same city because as the construction progresses, the leading-ant and the opposite-ant will

have visited different cities. This procedure is followed for the entire construction phase.

Through opposition, the opposite-ant diverges from its corresponding leading-ant, which

helps guide the ants into different areas of the solution space. The approach also maintains

a constant synchronous relationship between the two ants, which reduces the randomness

of the selection process. The synchronous opposition algorithm is included in Table 5.1.

Travelling Salesman Problem Experiments 25

Figure 5.2: Synchronous Opposition: leading-ant (left) and opposite-ant (right) on different

cities.

5.1.2 Free Opposition

The Free Opposition approach retains the opposite selection element from the Synchronous

Opposition method. Thus, when the opposite-ant is located on the same city as the

leading-ant, the opposite-ant will move to the opposite-ranking city. However, it relaxes

its synchronicity aspect, so that if the two ants are not on the same city, the opposite-

ant will select the next city using the pseudorandom rule (see Eq. 3.5). This method

was implemented to examine the effect of removing the rigid synchronicity between the

two ants. Nevertheless, since the ACS has a greedy selection process, the leading-ant and

the opposite-ant will both often select the highest ranking city. Table 5.1 includes the

pseudocode for the Free Opposition extension of the ACS algorithm.

5.1.3 Free Quasi-Opposition

The third synchronous algorithm is similar to the Free Opposition extension. This exten-

sion also has a relaxed synchronocity so that when the leading-ant and the opposite-ant

are located on different cities, they will both use the pseudorandom rule (see Eq. (3.5))

to select their next city. In constrast, the selection of an opposite city is relaxed. Thus,

in the case when the two ants are on the same city, the opposite-ant also uses the pseu-

dorandom rule, except that the city that was selected by the leading-ant is removed from

the possible choices. This extension tries to increase the exploration of the solution space

by restricting some of the choices by the opposite-ants. However, in contrast to the two

previous methods, the opposite-ant is still able to select highly ranked edges when it is on

the same city as the leading-ant. Table 5.1 describes the Free Quasi-Opposition extension.

26 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.1: Direct Modification Algorithms

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Repeat until solution is constructed (for each ant k)

IF ant k is leading-ant

Pick next city j using pseudorandom rule

ELSE

IF opposite-ant is on SAME city as leading-ant

Synchronous Opposition: Pick opposite-rank city

Free Opposition: Pick opposite-rank city

Free Quasi-Opposition: Pseudorandom rule (exclude leading-ant city)

ELSE

Synchronous Opposition: Pick same-rank city

Free Opposition: Pick next city j using pseudorandom rule

Free Quasi-Opposition: Pick next city j using pseudorandom rule

Apply local pheromone update

If necessary, update best-so-far solution

Apply best trail update

Travelling Salesman Problem Experiments 27

5.1.4 Opposite Pheromone per Node

The Opposite Pheromone per Node (OPN) extension to the ACS is a direct modification

to the pheromone value used by the ants to make their selection. Basically, there is an

opposite rate, λ̆o, that determines the rate at which opposite pheromone will be used in

the construction step. Every time an ant k has to select a city from the available cities,

the pheromone content used for its decision will depend on the value of a uniform random

number, λ̆. If λ̆ < λ̆o, then the ant selects its next city j using the opposite pheromone

content, τ̆ , as follows:

j =

argmax

l∈Nk
i

{
τ̆il[ηil]

β
}

if q < qo,

J otherwise,

(5.1)

pk
ij =

[τ̆ij][ηij]
β∑

l∈Nk
i
[τ̆il][ηil]β

if j ∈ Nk
i , (5.2)

τ̆ = τo +
1

Lbs

− τ. (5.3)

The parameter τo represents the initial pheromone deposit and Lbs is the length of

the best-so-far path. These values are used to determine the opposite pheromone content

because they bound the possible pheromone deposit. Given the governing equations of the

ACS, the pheromone content is bounded by the initial pheromone deposit and the global

optimal value [8]. Furthermore, the pheromone of all the available edges will be modified.

In the other case, when λ̆ ≥ λ̆o, the ant will select the next city using the original pheromone

content. Fig. 5.3 illustrates the selection when the opposite pheromone is used. The local

update and best trail update steps were not modified.

This pheromone-centred extension differs from the explorer ants method proposed by

Montgomery and Randall [15]. In their approach, only a small portion of the colony used

the anti-pheromone. Additionally, these explorer ants always used the anti-pheromone in

their selection. In the method proposed in this work, all ants have the opportunity to

use the opposite, and the affected decisions vary from ant to ant and from iteration to

iteration. Table 5.2 describes the OPN extension of the ACS.

28 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Figure 5.3: OPN: Pheromone content of all outgoing edges of a node depends on λ̆.

Table 5.2: Opposite Pheromone per Node Algorithm for the TSP

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Repeat until solution is constructed (for each ant k):

IF λ̆ < λ̆o

Calculate opposite pheromone values, τ̆ = τo + 1
Lbs

− τ

Pick next city j (pseudorandom rule with τ̆)

ELSE

Pick next city j (pseudorandom rule with τ)

Apply local pheromone update on selected edge

If necessary, update best-so-far solution

Apply best trail update

Travelling Salesman Problem Experiments 29

Figure 5.4: OPE: Pheromone content of individual edges j depends on λ̆j.

5.1.5 Opposite Pheromone per Edge

The second pheromone extension, Opposite Pheromone per Edge (OPE), is a modification

of the OPN method. With this approach, the ants also have the possibility to use the

opposite pheromone value to make their decision. However, the opposite rate, λ̆o, is applied

to each individual edge of the decision instead of applying it to all the edges j connected

to the current city i. This is depicted in Fig. 5.4. Table 5.3 describes the OPE extension

of the ACS. The ants use the pseudorandom selection rule (see Eq. 3.5) to make their

decision. The pheromone of each edge is determined by

τij =

τ̆ij = τo + 1
Lbs

− τij if λ̆j < λ̆o,

τij otherwise.
(5.4)

5.2 Update phase extension

Besides directly and indirectly modifying the construction phase, it was also important to

experiment with the other type of OBL extension to the ant algorithm, namely modifying

the update phase. Thus, a version of the algorithm by applying OBL to the update phase

of the ant algorithm was also implemented.

5.2.1 Opposite Pheromone Update

The Opposite Pheromone Update (OPU) extension aims at performing additional updates

using opposition information. The extension is applied during the best trail update phase

30 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.3: Opposite Pheromone per Edge Algorithm

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Repeat until solution is constructed (for each ant k):

FOR each available city j

IF λ̆ < λ̆o

Use opposite pheromone for edge from nodes i to j, τij = τo + 1
Lbs

− τij

END

Pick next city j (using appropriate pheromone values τij)

Apply local pheromone update on selected edge

If necessary, update best-so-far solution

Apply best trail update

of the ACS. As pheromone is added to the edges of the best path, a proportionally smaller

amount is added to all the other edges. At every node, one outgoing edge will receive the

best trail pheromone update. Then, an opposition-rating, ŏ, is calculated for all the other

outgoing edges relative to the winning edge. This rating is used to determine the amount

of pheromone to add to the other edge. It is calculated using the heuristic function values:

ŏij =

∣∣ηij − ηbs
i

∣∣
ηmax − ηmin

, (5.5)

where ηij represents the heuristic function value for the edge going from city i to city j,

and ηbs
i is the value for the edge outgoing from city i included present in the best path.

The values ηmax and ηmin are the maximum and minimum heuristic values of the graph.

They are used to normalize the opposition-rating of the edges. Once the opposition-rating

is determined, the pheromone content of the edges that are not part of the best path is

updated as follows:

τnew
ij = (1− ρ)τ current

ij + ρ(∆τ bs
ij)

(1− ŏij)

W
∀(i, j) /∈ T bs, (5.6)

Travelling Salesman Problem Experiments 31

where ŏij is the opposition-rating for the edge and W is a weight to modulate the effect of

the additional pheromone. This parameter must be relatively high because the additional

pheromone must not overpower the amount deposited for the best trail update. This

additional pheromone is simply trying to guide the learning in the right direction. Thus,

if the edge has a high ŏij (for instance, a long edge compared to a short edge in the best

path), then ∆τ bs
ij will be multiplied by a smaller number. For edges that have a similar

length to the selected edge, the factor will be higher. Note that the pheromone for the

edges in the best path are updated normally (see Eq. 3.6).

In the ACS, only the best ant performs updates. Thus, only some edges benefit from

the experience of the ants. Adding pheromone to all the edges helps extend the learning to

the entire graph, while maintaining the relation to the best available path. This extension

was devised with a pheromone increase because the ACS adds pheromone only to the best

path. Removing pheromone would likely lead to extremely low levels of pheromone. This

additional operation can be performed during the entire run or for a specific number of

iterations. However, it is expected that it would be best if it was only performed for a

certain number of iterations, as it mostly helps in the early stages of the algorithm. Table

5.4 summarizes the OPU method.

5.3 Experimental setup

All algorithms were compared to the ACS algorithm on 4 symmetric TSP instances of

geographical nature, namely eil51, eil76, kroA100 and d198 [22]. Table 5.5 provides more

details about each instance. All algorithms were coded in the C language based on the code

developed by Stützle [28] except for Synchronous Opposition and Free Opposition, which

were implemented in MATLAB. The algorithms solved the instances using real-valued

distances.

The parameters of the algorithms were all set to the same values, namely β = 2, p = 0.1,

ξ = 0.1, m = 10, and qo = 0.9. These values were selected based on other research done

using ACS and TSP [6, 15]. The algorithms completed 100 trials for the three smaller

instances and 70 trials for the 198-city problem. Each trial was terminated after 5000

iterations or if the optimal solution was found.

32 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.4: Opposite Pheromone Update Algorithm for the TSP

Initialize pheromone matrix (τ = τo)

Repeat until termination condition is satisfied

Place m ants on random squares

Repeat until solution is constructed (for each ant k)

Pick next direction j

Apply local pheromone update (see Eq. (3.7))

If necessary, update best-so-far solution

Apply best trail update

IF OBL condition is satisfied

Calculate opposition-rating ŏ for all edges

Apply opposite pheromone addition

Table 5.5: Overview of the TSP Instances

Instance #Cities Optimal Tour (real-valued)

eil51 51 428.87

eil76 76 544.37

kroA100 100 21285.4

d198 198 15808.7

Travelling Salesman Problem Experiments 33

5.4 Results

The Wilcoxon rank sum (or Mann-Whitney) test was used to compare the results [10].

This test is a non-parametric alternative to the two-sample t-test. It compares two inde-

pendent samples with a non-normal distribution to assess whether they come from a single

distribution. This test performs a statistical comparison of the medians of two samples

of unknown distribution. If the result of the test comparing two samples is significant

(p < 0.05), one can accept the alternative hypothesis that there is a difference between the

median of the two samples. A multiple comparison adjustment was not included because

the comparisons were only done between two samples at once.

5.4.1 Results for direct modification of ant decision

Synchronous Opposition, Free Opposition and Free Quasi-Opposition are the three algo-

rithms that extended the construction phase of the ACS by directly modifying ant decisions.

The performance of each algorithm was evaluated in terms of the quality of the solution

and the iteration when the best solution was found.

General results

Table 5.6 summarizes the accuracy results for the different algorithms. The median, min-

imum, and maximum of the final path length and number of times the optimal path was

achieved are reported. Table 5.7 includes results on the iteration number when the final

solution of the algorithm was found.

The median length of the solutions for the Synchronous Opposition and Free Oppo-

sition algorithms was statistically worse than that of the ACS. However, the Free Op-

position approach was still able to find the optimal solutions for the three smaller TSP

instances. When comparing the number of iterations needed to achieve their final solu-

tion, Synchronous Opposition took significantly more iterations for the 100-city problem

and significantly less iterations for the 198-city problem. The Free Opposition method

had significantly more iterations in both the 76-city and 100-city instances. These results

seem to indicate that the two methods have difficulty converging, as they are unable to

34 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.6: Accuracy Results of the Direct OBL Extensions for the TSP

Instance Measure ACS SyncOpp FreeOpp FreeQuasiOpp

eil51 Median 429.53 435.34 † 433.70 † 430.24

Min 428.87 428.87 428.87 428.87

Max 441.09 449.65 446.54 445.81

#Opt 7 0 1 5

eil76 Median 552.84 561.53 † 561.38 † 553.83

Min 544.37 548.70 544.37 545.39

Max 567.57 576.94 573.99 563.95

#Opt 1 0 1 0

kroA100 Median 21428 21755.1 † 21708.8 † 21472.7

Min 21285.4 21316.4 21285.4 21285.47

Max 22455.4 22054.2 22685.3 22584.3

#Opt 10 0 2 7

d198 Median 16141.98 16781 † 16712.5 † 16127.3

Min 15901.1 16328.6 16266.1 15955.9

Max 16442.6 17943.3 17523.2 17062.5

#Opt 0 0 0 0

Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

Travelling Salesman Problem Experiments 35

Table 5.7: Median Final Iteration of the ACS and the Direct OBL Extensions

Instance ACS SyncOpp FreeOpp FreeQuasiOpp

eil51 2665.5 1901 2910 2181

eil76 3438 2986 3661 † 3582

kroA100 2454 3003 † 3816 † 2312

d198 4543 4343 † 4718 4569

† Difference with the ACS median is significant (p < 0.05).

find the optimal solution for the smaller city instances even with a larger number of it-

erations. When considering the 198-city problem, which is a more complex problem, the

smaller number of iterations is an indication that the Synchronous Opposition algorithm

has difficulty improving and remains trapped in a local optima.

The Free Quasi-Opposition extension to the ACS was more successful than the other

two direct modification approaches. Its performance is equivalent to the normal ACS with

no significant differences in their solution quality. There were also no significant differences

in the number of iterations required to achieve the final solution. These results suggest

that this extension did not have enough impact on the algorithm. However, the Free

Quasi-Opposition algorithm was able to find a comparable number of optimal solutions.

Ant contribution in the algorithms

It was interesting to compare the level of contribution of the leading-ants and opposite-

ants. The contribution was calculated as the number of times the ant’s solution updated

the best-so-far solution. Table 5.8 provides the relative contribution over all the trials.

The results show that in the Synchronous Opposition and Free Opposition algorithms,

the opposite-ants contribute less than 2% of the time to the update of the best solution.

Thus, their only contribution is through the local update of pheromone. This may be one

reason why the algorithms did not perform as well as expected; even when the opposite-

ants are discovering new potential paths, they are not receiving any additional pheromone.

Instead, the local update reduces the pheromone content to discourage other ants to take

36 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.8: Contribution of the Opposite-Ants for the Direct OBL Algorithms (in %)

Instance SyncOpp FreeOpp FreeQuasiOpp

eil51 0.972 1.760 48.287

eil76 0.274 0.462 45.713

kroA100 0.074 0.182 46.505

d198 0.294 1.441 45.610

those paths. When comparing Free Opposition with Synchronous Opposition, it seems that

the reduced synchronicity in Free Opposition helps the opposite-ants find better solutions.

This is also supported by the performance results. The Free Quasi-Opposition algorithm

receives similar contribution from the two types of ants.

5.4.2 Results for indirect modification of ant decision

The OPN and OPE extensions also modify the construction phase of the ants, but they

do so indirectly by altering the pheromone values used in the decision. The opposite rate,

λ̆o, can be fixed or variable. The variable rates can be increasing or decreasing over time.

The increasing rate is determined by

λ̆o = λ̆final ×
ncurr

I

nmax
I

, (5.7)

and the decreasing rate is calculated as follows:

λ̆o = λ̆init ×
nmax

I − ncurr
I

nmax
I

. (5.8)

In the case of the OPN algorithm, the opposite rate, λ̆o, was set to fixed rates 0.01,

0.05, 0.1 and 0.3, to variable rates increasing from 0 to 0.05 and 0.1 and to rates ecreasing

from 0.05 and 0.1 to 0. For the OPE algorithm, the rates were fixed at 0.001, increased

from 0 to 0.001 and 0.01, and decreased from 0.001 and 0.01 to 0.

Travelling Salesman Problem Experiments 37

Accuracy results

The accuracy performance of the algorithms was evaluated in terms of the median final path

length, the median accuracy, the median accuracy difference with the ACS, the number

of times the optimal solution was found, and the median total computational time. The

accuracy was calculated by

A = 2− (
Lbs

Lopt
)× 100%. (5.9)

Additionally, the median accuracy difference between ACS and the OBL algorithms

was quantified as follows:

Ādiff (%) =

(
ĀOBL

ĀACS
− 1

)
× 100%. (5.10)

The median accuracy and the median total computational time for the proposed algo-

rithms were compared to the ACS. The accuracy performance results for the OPN algo-

rithm with fixed rates and variables rates are reported in Tables 5.9 and 5.10 respectively.

The results for the OPE algorithm are summarized in Table 5.11.

In general, the OPN and the OPE algorithms achieved better results than the direct

approches from the previous section. The OPN method with fixed λ̆o achieved interesting

results in all cases except for the 198-city instance and when λ̆o = 0.3.

When λ̆o = 0.01, the median accuracy was better than the ACS in all cases but the

differences were not statistically significant. For the 76-city case, the improvement was

slighty significant (p < 0.055). At λ̆o = 0.05, the accuracy results are the best. The

algorithm performed better than the normal ACS for the three smaller instances and

the median differences were statistically significant. For λ̆o = 0.01, only the 50- and

76-city instances had statistically better accuracy than the ACS. Finally, setting λ̆o = 0.3

resulted in worse results for all test instances. The three OPN algorithms with the lower λ̆o

values achieved a number of optimal solutions comparable to the ACS. Overall, OPN with

λ̆o = 0.05 found the most optimal solutions (20). The computational time was however

higher for all the OPN extensions.

The results indicate that the use of opposite pheromone content for some decisions can

improve the accuracy of the solutions. It is noted that a very low value for the opposition-

rate will improve the results but not significantly. The results did improve when the

38 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.9: Accuracy Results of OPN for the TSP with Fixed λ̆o

Instance Measure ACS OPN(0.01) OPN(0.05) OPN(0.1) OPN(0.3)

eil51 Median 429.53 429.48 429.12 † 429.48 † 431.57 †
Ā 99.85 99.86 99.94 99.84 99.37

Ādiff (%) – 0.011 0.096 0.011 -0.476

#Opt 7 3 4 2 1

t(s) 4 4.4 † 5.4 † 6.2 † 10.1 †
eil76 Median 552.84 551.77 551.32 † 550.85 † 558.61 †

Ā 98.44 98.64 98.72 98.81 97.34

Ādiff (%) – 0.20 0.28 0.372 -1.07

#Opt 1 2 4 3 0

t(s) 7.7 8.4 † 10.3 † 12.453 † 21.3 †
kroA100 Median 21428 21400.3 21388.4 † 21408.4 22015.9 †

Ā 99.33 99.46 99.52 99.42 96.57

Ādiff (%) – 0.13 0.19 0.092 -2.78

#Opt 10 11 12 11 0

t(s) 12.4 13.8 † 16.8 † 20.6 † 35.4 †
d198 Median 16142 16103.3 16287.1 † 16718.5 † 17365.8 †

Ā 97.89 98.14 96.97 94.24 90.15

Ādiff (%) – 0.25 -0.94 -3.73 -7.9

#Opt 0 0 0 0 0

t(s) 48.0 52.5 † 65 † 80.0 † 141 †
Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

Travelling Salesman Problem Experiments 39

Table 5.10: Accuracy Results of OPN for the TSP with Increasing and Decreasing λ̆o

Instance Measure ACS OPN (increasing λ̆o) OPN (decreasing λ̆o)

(0→0.05) (0→0.1) (0.05→0) (0.1→0)

eil51 Median 429.53 429.48 429.30 † 429.48 † 429.12 †
Ā 99.85 99.86 99.90 99.86 99.94

Ādiff (%) – 0.01 0.05 0.01 0.096

#Opt 7 5 5 4 8

t(s) 4 4.7 † 5.2 † 4.8 † 5.3 †
eil76 Median 552.84 551.29 † 550.91 † 551.60 † 550.83 †

Ā 98.44 98.73 98.8 98.67 98.81

Ādiff (%) – 0.29 0.36 0.23 0.38

#Opt 1 1 1 9 2

t(s) 7.7 9.1 † 10.3 † 9.3 † 10.4 †
kroA100 Median 21428 21393.2 21383.2 † 21390.8 † 21393 †

Ā 99.33 99.49 99.54 99.51 99.49

Ādiff (%) – 0.16 0.21 0.18 0.165

#Opt 10 12 14 9 12

t(s) 12.4 14.8 † 16.7 † 15.0 † 16.9 †
d198 Median 16142 16221.4 † 16297.2 † 16163.2 16219.5 †

Ā 97.89 97.39 96.91 97.76 97.40

Ādiff (%) – -0.513 -1 -0.137 -0.5

#Opt 0 0 0 0 0

t(s) 48.0 56.7† 64.6† 57.1† 64.7†
Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

40 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.11: Accuracy Results of OPE for the TSP

Instance Measure ACS OPE OPE(incr.λ̆o) OPE (decr.λ̆o)

(λ̆o = 0.001) (0→0.001) (0→0.01) (0.001→0)

eil51 Median 429.53 430.24 430.24 431.9† 430.24

Ā 98.85 98.68 99.63 99.30 99.63

Ādiff (%) – -0.167 -0.208 -0.54 -0.167

#Opt 7 5 4 3 4

t(s) 4 † 8.2 † 10.5 † 10.7 12.1

eil76 Median 552.84 554.66 † 554.06 560.35 † 555.06 †
Ā 98.44 98.11 98.22 97.06 98.03

Ādiff (%) – -0.33 -0.23 -1.40 -0.41

#Opt 1 1 1 0 0

t(s) 7.7 17.1 † 22.2 † 24.9 † 25.9 †
kroA100 Median 21428 21465.7 21452 21547.4 † 21415.5

Ā 99.33 99.15 99.24 98.77 99.39

Ādiff (%) – -0.179 -0.087 -0.565 0.059

#Opt 10 5 5 0 8

t(s) 12.4 28.8 † 38 † 38.2 † 44.3 †
d198 Median 16142 16596.6 † 16272.4 † 17104.2 † 16230.7 †

Ā 97.89 95.01 97.07 91.81 97.33

Ādiff (%) – -2.94 -0.84 -6.22 -0.57

#Opt 0 0 0 0 0

t(s) 48.0 113.3 † 148.3 † 149.7 173.4 †
Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

Travelling Salesman Problem Experiments 41

opposition-rate was increased from 0.01 to 0.05 and 0.1. However, the performance was

not as good when λ̆o = 0.1, suggesting that increasing the opposition-rate too much results

in a drop in accuracy. This is supported by the fact that the performance was lower when

the opposition-rate was set to 0.3. Overall, there is an indication that λ̆o = 0.05 is a

reasonable value. Nevertheless, it was important to investigate the effects of varying the

opposition-rate during the optimization.

The results for OPN with variable rate were similar to OPN with fixed rate. Increasing

the rate from 0 to 0.05 resulted in statistically higher accuracy for the 76-city case. The

other two smaller instances also had lower median, but the difference was not statistically

significant. Increasing the rate from 0 to 0.1 also led to better results for the smaller

instances. The differences were statistically significant. The two OPN versions with de-

creasing rates led to accuracy that were statistically better than those achieved by the ACS

for the three smaller instances.

For the 198-city instance, all OPN versions, except OPN decreasing from 0.05 to 0,

led to statistically worse results. Finally, the number of optimal solutions achieved by the

OPN extensions with variable rate was in general higher than the ACS. The two cases with

decreasing rate had the overall highest number of optimal solutions, namely 22. Thus, it

seems that the ant algorithm benefits from the use of opposite pheromone earlier in the

optimization. Despite the use of linearly decreasing and increasing rates, the computational

time was still higher than for the ACS. However, the OPN algorithm with variable rates

was slighty faster compared to fixed rate.

When comparing the fixed rate and the variable rate OPN results for the 198-city case,

the paths achieved by increasing to or decreasing from λ̆o = 0.05 were statistically better

than the fixed λ̆o. In the case of the three smaller instances, increasing and decreasing the

rate did not generate any statistical differences.

The OPE approach with a fixed rate had no significant difference in solution quality

compared to the ACS algorithm for the 51- and 100-city instances. Its performance was

statistically worse for the other two cases. This may suggest that the extension has a very

small impact on the path construction phase. However, the OPE algorithm was still able

to find optimal solutions in the three smaller instances.

Increasing the rate of OPE from 0 to 0.001 led to statistically worse solutions only in

42 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

the 198-city case. The performance in the other instances was only slightly better than

for the ACS. Increasing the rate from 0 to 0.01 led to significant worse solutions in all

instances. This may also be an indication that 0.01 is too high for the OPE approach.

Decreasing λ̆o from 0.001 to 0 did not lead to improvements in any of the instances. It

seems that the use of OPE is not beneficial for the ant algorithm.

Finally, the computational time was statistically higher for all the OPE versions.

Convergence results

To evaluate the convergence rate of the algorithms, a desired accuracy of 95% was set. The

number of iterations needed to reach the accuracy was used as the convergence measure

since total computational time has already been reported. A speed-up factor, S, was also

defined, to compare the median number of iterations of ACS relative to the median number

of iterations of the OBL algorithm:

S =

(
1− n̄OBL

I

n̄ACS
I

)
× 100% (5.11)

Tables 5.12 and 5.13 summarize the convergence results for OPN for fixed and variable λ̆o

respectively. Table 5.14 reports the results for the OPE algorithm.

Similar to the accuracy results, OPN with λ̆o = 0.3 required statistically more iterations

than the ACS to achieve 95%. The other three OPN algorithms had all comparable results

with the ACS in the three smaller instances. When λ̆o = 0.05 in the 51-city instance, the

algorithm achieved a statistically significant improvement of 20%. In the 198-city case,

the median number of iterations was 5000 for λ̆o = 0.3 and 0.1, meaning that the desired

accuracy was not reached in most cases. Overall, the results indicate that fixed rate OPN

has a lower convergence rate than the normal ACS.

Results for the OPN algorithms with variable rates show that decreasing the rate from

0.1 to 0 requires more iterations to achieve the desired accuracy. This version of OPN took

statistically more iterations in the 76- and 198-city instances. The other three algorithms

resulted in better performance than the ACS, but the differences were not statistically

significant. When λ̆o was decreased from 0.05 to zero, for the 198-city instance, the number

of iterations was statistically higher. In sum, the algorithm provides a small speed-up for

the smaller TSP instances, but with no statistically significant differences.

Travelling Salesman Problem Experiments 43

Table 5.12: Convergence of OPN for the TSP with Fixed λ̆o

Instance Measure ACS OPN(0.01) OPN(0.05) OPN(0.1) OPN(0.3)

eil51 n̄I 70.5 59.5 56 † 67.5 177 †
S(%) – 15.60 20.57 † 4.26 -151.1

eil76 n̄I 173.5 175 174.5 196.5 1165 †
S(%) – -0.864 -0.57 -13.2 -571

kroA100 n̄I 251 223 230 251 2223 †
S(%) – 11.16 8.37 0 -785.4

d198 n̄I 966.5 900.5 2000 † – –

S(%) – 6.83 -106.88 – –

Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

Table 5.13: Convergence of OPN for TSP with Increasing and Decreasing λ̆o

Instance Measure ACS OPN (increasing λ̆o) OPN (decreasing λ̆o)

(0→0.05) (0→0.1) (0.05→0) (0.1→0)

eil51 n̄I 70.5 56 53.5 63 63.5

S(%) – 20.57 24.11 10.64 9.93

eil76 n̄I 173.5 154 169 169 † 256

S(%) – 11.24 2.59 2.59 -47.84

kroA100 n̄I 251 232 229 212 270

S(%) – 7.57 8.76 15.54 7.57

d198 n̄I 966.5 995.5 1015 1480 † 2920 †
S(%) – -3.0 -5.02 -53.1 -202

Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

44 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.14: Convergence of OPE for the TSP

Instance Measure ACS OPE (fixed λ̆o) OPE(incr.λ̆o) OPE (decr. λ̆o)

(0.001) (0→0.001) (0→0.01) (0.001→0)

eil51 n̄I 70.5 82 63.5 67 75

S(%) – -16.3 9.93 4.96 -6.38

eil76 n̄I 173.5 269 † 172 201.5 289 †
S(%) – -55 0.864 -16.1 -66.6

kroA100 n̄I 251 349 † 243.5 215 352.5 †
S(%) – -39.0 2.99 14.3 -40.4

d198 n̄I 966.5 4997 † 1075 5000 † 2888 †
S(%) – -417 -11.2 – -198.8

Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

With a fixed rate, the OPE algorithm also had a significantly slower convergence in

all instances except for the 51-city case. Increasing the rate from 0 to 0.001 led to faster

convergence than the ACS for the three small instances, but the difference was not of

statistical significance. This seems to indicate that linearly decreasing the rates can be

beneficial. In the 198-city case the number of iterations was only slighty higher. Increasing

the rate from 0 to 0.01 led to comparable results to the ACS for the three smaller instances,

but the convergence rate was the worse for the 198-city case. The median was 5000,

indicating that the desired accuracy was often not reached. This confirms that 0.01 may

be too high for the more complex problems. Finally, decreasing from 0.001 to 0 led to

significantly worse results in the three larger instances. However, one can notice that for

the 198-city case, it was not one of the worse convergence rates. The lower convergence

rates for the 198-city instance were achieved with the two linear variations of the 0.001 rate,

which is consistent with the accuracy results. Overall, it seems that linearly increasing to

the rate to 0.001 is the most beneficial extension.

Travelling Salesman Problem Experiments 45

Figure 5.5: Accuracy results of ACS and OPU with W = 1000 for the 198-city TSP.

5.4.3 Results for modifying pheromone update

In contrast to the other five extensions, Opposite Pheromone Update (OPU) modifies the

update phase of the ant algorithm. It changes the pheromone values after the construction.

The algorithm was tested with four combinations of the two settings: 1) OPU applied at all

iterations or for nI < 1000 and 2) W = 100 or W = 1000. The accuracy and convergence

performance of the algorithms was evaluated.

Accuracy results

Once again, the accuracy performance of the algorithms was evaluated in terms of the me-

dian final path length, the median accuracy relative to the optimal solution, the difference

in median accuracy with the ACS, the number of times the optimal solution was reached

and the median total computational time. Table 5.15 summarizes the results.

The results of the OPU approach were very interesting. In contrast to OPN, OPU did

not affect the accuracy of the small instances, but had an impact on the performance of

the 198-city instance. In the 198-city instance, the best results occur when W = 1000.

Moreover, it did not matter if the updates were applied at every iteration or only for the

first 1000 iterations. The OPU accuracy was statistically better in both cases. The only

46 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.15: Accuracy Results of OPU for the TSP with Increasing and Decreasing λ̆o

Instance Measure ACS OPU (∀ iter) OPU (for iter≤1000)

(W = 100) (W = 1000) (W = 100) (W = 1000)

eil51 Median 429.53 429.48 432.15 † 430.47 430.60

Ā 99.84 99.86 99.23 99.63 99.6

Ādiff (%) – 0.011 -0.61 -0.22 -0.25

#Opt 7 6 1 3 0

t(s) 4 8.6 † 8.9 † 4.9 † 4.9 †
eil76 Median 552.84 552.81 555.0 † 553.58 552.7

Ā 98.44 98.45 98.04 98.31 98.47

Ādiff (%) – 0.006 -0.406 -0.137 0.027

#Opt 1 1 1 1 3

t(s) 7.7 18.8 † 18.2 † 9.8 † 9.7 †
kroA100 Median 21428 21426.4 21478.1 21390.8 21410.7

Ā 99.33 99.34 99.1 99.51 99.41

Ādiff (%) – 0.008 -0.237 0.176 0.082

#Opt 10 6 2 11 9

t(s) 12.4 34 † 34.1 † 16.7 † 16.8 †
d198 Median 16142 16647.3 † 16083.8 † 16196.8 † 16070.6 †

Ā 97.89 94.7 98.26 97.54 98.34

Ādiff (%) – -3.27 0.376 -0.354 0.461

#Opt 0 0 0 0 0

t(s) 48.0 136.7 † 136.3 † 65.9 † 65.6 †
Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

Travelling Salesman Problem Experiments 47

difference is that the computational time was greatly reduced when OPU application was

limited. In contrast, when W = 100, the median accuracy was statistically worse compared

to the ACS and to OPU with W = 1000.

For eil51 and eil76, the accuracy results were comparable to the ACS, except when

OPU was applied at every iteration with W = 1000. In that case, the median of the TSP

solution for the two instances was statistically larger (p < 0.01). In the 100-city instances,

the differences were not significant, but it seems that better results were achieved with

W = 100.

The results indicate that W = 1000 is an appropriate choice for larger TSP instances,

but becomes detrimental as the number of cities decreases. In fact, for all three smaller

instances, applying OPU at every iteration with W = 1000 leads to results that are statis-

tically worse than the other three OPU cases. Moreover, for the 51- and 100-city instances,

the number of optimal solutions achived when W = 100 is higher than when W = 1000.

It appears that a lower weight might be necessary for smaller instances. Fig.5.5 depicts

the performance for the 198-city instance for the two cases with W = 1000. The accuracy

difference and the rapid convergence at the early stages of the optimization can be clearly

identified.

The required computational time of the OPU extension was higher with statistical

significance for all cases and for all the TSP instances.

Convergence results

Like in the previous experimental results, a desired accuracy of 95% was set in order to

quantitatively evaluate the convergence rate of the algorithms. The results were compared

using a speed-up factor (see Eq. 5.11) and the Wilcoxon rank sum test. Table 5.16 reports

the median iteration and speed-up factor for the different algorithms.

Supporting the accuracy results, the 198-city instance had the best results when the

W = 1000. The median number of iterations required by the OPU algorithm for both

cases were significantly lower than for the ACS. When applied at every iteration, the OPU

algorithm achieved a 60.5% speed-up. If applied only for the first 1000 iterations, the speed-

up was 51.8%. It is important to realize that the algorithms are computationally slower,

as reported in Table 5.15, but their operations lead to results in less iterations. When

48 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 5.16: Convergence of OPU for the TSP

Instance Measure ACS OPU (∀ iter) OPU (for iter≤1000)

(W = 100) (W = 1000) (W = 100) (W = 1000)

eil51 n̄I 70.5 58.5 122 † 52.5 112 †
S(%) – 17.0 -73.0 25.5 -58.7

eil76 n̄I 173.5 164 190.5 184.5 187

S(%) – 5.48 -9.8 -6.3 -7.78

kroA100 n̄I 251 225 292 234.5 263.5

S(%) – 10.1 -16.3 6.57 -4.98

d198 n̄I 966.5 – 382 † 2318 † 466 †
S(%) – – 60.5 -139.9 51.8

Bold values indicate a better result than the ACS algorithm.

† Difference with the ACS median is significant (p < 0.05).

W = 100, for the 198-city case, the median iteration number was significantly higher.

Similar to the previously reported accuracy results, the three smaller instances had

better results when W = 100. When W = 1000, the 51-city instance required significantly

more iterations. As for the other instances, the results were not statistically significant, but

one can notice a similar trend in the reported iterations. Moreover, while the difference is

not statistically significant, the median number of iterations is usually lower than the ACS

when W = 100 for the three small instances. This suggests that OPU may be beneficial

for the smaller instances, but the parameter must be better adjusted.

Compared to the indirect OBL algorithms, it is interesting that OPN is able to improve

the accuracy of the three smaller instances, but fails with the 198-city case. In contrast,

OPU resulted in significantly better performance for the 198-city instance, but the perfor-

mance was not as good for the lower instances. Further work is necessary to fully determine

the benefits of this approach, the effects of the weight constant, and if opposite updates

should be done in a different manner.

Chapter 6

Grid World Problem Experiments

To further assess the benefits of extending ACO with OBL, the OBL versions of the

ant algorithm were tested with another application: the Grid World Problem (GWP).

The GWP was selected for two main reasons. The first is that the GWP has been used

as a benchmark problem for studies involving opposition-based Reinforcement Learning

(RL) [25,26,31]. The results were successful with the GWP. It was interesting to see if the

success extends to ACO. Secondly, it was important to use a different application than the

TSP to generalize the study of the effects of opposition on ACO.

6.1 Description of the grid world problem

The GWP involves a n × n grid where one square is randomly selected as the goal. The

problem is to determine the optimal movement policy for the entire grid (see Fig. 6.1).

This means that a direction is assigned to each square of the grid so that, when an agent

moves using this grid, it will reach the goal in the smallest number of steps. This is not a

typical ACO problem, so the original algorithm had to be customized for this particular

problem.

One difference between the implementation proposed in this thesis and the one used in

RL is that, in the RL study, the rewards are given based on the location of the goal. In

this study, the goal is unknown. Consequently, it was expected that computational time

would be higher and accuracy lower than in those experiments.

49

50 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Figure 6.1: The Grid World Problem: the agent A moves in different directions to reach

the goal G.

6.2 ACO applied to the GWP

Before extending the ant algorithm with OBL strategies, it was necessary to design an

ant algorithm for solving the GWP. The framework of the algorithm is based on the Ant

System (AS) version of the ant algorithm.

6.2.1 Representation

The GWP can be represented as a graph, where each square is a node and the ants travel

between nodes. However, unlike the TSP, the graph is not fully connected and the ants do

not need to pass through all the nodes to have a solution. Given a starting location, the

ants only need to find the goal. The path completed by one ant only represents part of the

final policy. The path found by an ant is the path that an agent would potentially take

from the ant’s starting location to the goal. The complete solution, or policy, is determined

by the current pheromone matrix.

The pheromone content is associated with the edges connecting the squares in the grid,

which is comparable to the edge connecting two cities in a TSP instance. Consequently,

each square is associated with four pheromone levels.

Grid World Problem Experiments 51

6.2.2 Initialization

The initialization involves dropping an initial amount of pheromone throughout the net-

work. However, the initial pheromone deposit, τo, will be higher than it is typically sug-

gested for the AS. It was decided to use a higher starting pheromone rate, specifically 1,

which is the maximum amount of pheromone that can be deposited by the ants (inverse

of the path length). This was to encourage more exploration earlier in the algorithm, so

that the ants do not focus too fast on a single direction.

6.2.3 Solution construction

At each iteration, m ants are randomly placed on m squares of the grid. Then, each ant

moves from square to square until it finds the goal. The ants can move in four directions

(up, down, left or right) to find the goal. The heuristic function was not included in

the algorithm. The heuristic is usually used as a way to measure the cost of adding a

component to the current path. However, since the location of the goal is unknown, it is

not possible to estimate the quality of a decision. To make the problem more realistic, it

was important to assume that there is no knowledge about the goal location. The ants

select the next direction using the pseudorandom rule from the AS (refer to Eq. 3.5).

6.2.4 Pheromone update

Once the ants complete their path, the pheromone is evaporated and pheromone is de-

posited in the selected paths.

Evaporation

The evaporation for this algorithm was modified because of the nature of the GWP. In

each iteration of the ant algorithm, ants will only visit a certain number of squares. Con-

sequently, only a small number of squares will receive pheromone updates. In many cases,

squares will not be visited for many iterations. Typical evaporation would therefore have

a strong impact on the algorithm. Consequently, it was determined that the evaporation

could not be applied to all the squares in the grid at each iteration because it would out-

52 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

weight the pheromone deposits. In the proposed algorithm, the evaporation is applied only

to squares that have been visited by the m ants during the iteration. The pheromone for

a particular square is only evaporated once, even if it was visited by more than one ant.

After some testing, the evaporation parameter, ρ, was set to 0.001.

Best trail update

Like in the AS, pheromone is deposited on the path travelled by the ants. Each square is

associated with four pheromone quantities, one corresponding to each available direction.

The pheromone is deposited on the direction selected by the ants:

τnew
ij = τ current

ij +
m∑

k=1

∆τ k
ij i = 1, . . . , n× n; j = 1, . . . , 4. (6.1)

The amount deposited is calculated as per Eq. 3.4, namely the inverse of the length of

the path. Another measure would have been to compare the final length with the optimal

length, but that would require knowledge of the location of the goal. Here, the ants keep

track of the number of steps they do until they find the goal, but they cannot spatially

relate their starting point with the goal. Table 6.1 describes the AS algorithm for the

GWP.

Table 6.1: GWP Algorithm

Initialize pheromone matrix (τ = τo = 1)

Randomly select goal

Repeat until termination condition is satisfied

Place m ants at random starting squares

Repeat until goal is found (for each ant k):

Pick direction j → next square

Evaporate

Apply best trail update

Grid World Problem Experiments 53

6.2.5 Policy calculation

The final policy is determined based on the pheromone content of each available direction

for a square of the grid. The direction with most pheromone becomes the direction of the

final policy. During the optimization, the ants provide pheromone information for each

direction; they do not provide final solutions. In the TSP, ants will always generate a

complete solution to the problem. In the GWP, the ants provide partial solutions, which

help build the final pheromone matrix. Also, in the GWP, one pheromone matrix is

associated with one policy, but in the case of the TSP, the same pheromone matrix can

lead to multiple paths.

6.3 OBL extensions

Two different types of extensions to the AS algorithm were tested: applying OBL to the

construction phase and to the update phase.

6.3.1 Opposite Pheromone per Node for the GWP

In this algorithm, the design is the same as for the OPN for the TSP. Every time an

ant k has to select the next direction, the pheromone content used for its decision will

depend on the value of a random number, λ̆, and the opposite-rate, λ̆o. If λ̆ < λ̆o, then

the ants will use the opposite pheromone content, τ̆ . With the AS, the maximum and

minimum pheromone contents are not bounded. Thus, the opposite is calculated using the

maximum and minimum pheromone contents of the available directions. The maximum

and minimum will vary depending on the current square. This method was designed to

help the ants try different paths. Table 6.2 summarizes the OPN extension on the ACS

for the GWP.

6.3.2 Opposite Pheromone Update for the GWP

The second algorithm focuses on the update of pheromone content. Additional updates

are done on the opposite actions. When an ant completes its path by finding the goal,

54 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 6.2: Opposite Pheromone per Node Algorithm for the GWP

Initialize pheromone matrix (τ = τo = 1)

Randomly select goal

Repeat until termination condition is satisfied

Place m ants on random squares

Repeat until goal is found (for each ant k):

IF λ̆ < λ̆o

Calculate opposite pheromone values, τ̆ = τo + 1
Lbs

− τ

Pick next direction j

ELSE

Pick next direction j (regular selection rule)

Evaporate

Apply best trail update

it adds pheromone to every decision along the path. In this extension, the ant will also

remove pheromone from the opposite decisions along the path. For example, if, at square i,

the ant choses to move “up”, then, for that particular square, the pheromone for the “up”

direction will increase and it will decrease by the same amount for the “down” direction.

The amount of pheromone deposited is calculated using Eq. 3.4 using the length of the

path. The following relation describes the update action:

τij̆ = τij̆ −∆τ k, i = 1 to n× n. (6.2)

In the OPU algorithm, the opposite update replaces the evaporation that occurs before

the best trail update. Evaporation is used as a way to “forget” bad decisions. Removing

pheromone from opposite actions can be a form of evaporation. Also, since the opposite

actions will vary in the early iterations, the opposite update will be applied to different

directions.

The opposite update can be used during the entire run of the algorithm or it can be

used at a decreasing opposite-rate, λ̆o. In the case of the variable rate, the type of update

Grid World Problem Experiments 55

Table 6.3: Opposite Pheromone Update Algorithm for the GWP

Initialize pheromone matrix (τ = τo = 1)

Randomly select goal

Repeat until termination condition is satisfied

Place m ants on random squares

Repeat until goal is found (for each ant k):

Pick next direction j

IF λ̆ < λ̆o

Apply best trail update

Apply opposite update

ELSE

Evaporate

Apply best trail update

will depend on the value of a uniform random number, λ̆. If λ̆ < λ̆o, the opposite update

will occur, otherwise, regular evaporation is used. Table 6.3 describes the OPU extension

on the ACS.

6.4 Experimental setup

Each algorithm was tested on three different grid sizes, namely 20×20, 50×50 and 100×100.

They were implemented in the C programming language, inspired from code developed by

Stützle [28]. The algorithms terminated after 10000 iterations. Each algorithm completed

100 trials on each grid set. The parameters of the different algorithms were set to the

following values: α = 1, ρ = 0.001, τo = 1, and m = 10. In the case of the OPN algorithm,

the opposite rate, λ̆o, was set to 0.01, 0.05 and a linearly decreasing rate from 0.01 to 0.

In the case of the OPU extension, the removal of pheromone was done in two different

settings: 1) for the entire trial with λ̆o = 1 and 2) linearly decreasing from 1 to 0 (regular

evaporation was used the rest of the time).

56 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Figure 6.2: Two optimal policies for a 6× 6 grid encompassing all possibilities.

6.5 Results

The perfomance of each algorithm was evaluated based on the accuracy of the final policy

and computation time. The Wilcoxon rank sum (or Mann-Whitney) test was used to

compare the medians of the results [10].

6.5.1 Accuracy results

The quality of the policies is determined by comparing them to an optimal policy. This

performance measure, which was used in other work with GWP experiments [31], is defined

as follows:

Aπ∗ =
‖(π∗ ∩ π1) ∪ (π∗ ∩ π2)‖

n× n
, (6.3)

where π1 and π2 represent the two optimal possibilities for each square given a goal. Ba-

sically, for any problem, one can manually generate the possible solutions for each square

that would be optimal. Fig. 6.2 illustrates manually generated policies for a 6× 6 grid.

Like in the TSP experiments, the accuracy difference (in percent) between the AS and

the OBL algorithms was also calculated. Tables 6.4 and 6.5 report the overall accuracy

results for the OPN and OPU algorithms respectively.

Results show that the OPN algorithm was not as successful with the GWP as it was

with the TSP instances. When λ̆o = 0.01, the accuracy for all three grid problems was

comparable with the AS, but the differences were not statistically significant. With λ̆o =

Grid World Problem Experiments 57

Table 6.4: Accuracy Results of OPN for the GWP

Instance Measure AS OPN(0.01) OPN(0.05) OPN(0.01 → 0)

20× 20 Ā 98.0 97.88 97.75 98.0

Ādiff (%) – -0.128 -0.255 0

t(s) 6.06 6.13 † 6.39 † 6.33

50× 50 Ā 97.1 97.08 96.84 † 97.08

Ādiff (%) – -0.025 -0.268 -0.021

t(s) 39.64 41.4 † 42.98 † 42.53 †
100× 100 Ā 93.2 93.25 92.575 † 93.22

Ādiff (%) – 0.048 -0.676 0.016

t(s) 190.5 204.3 † 210.3 † 209.3 †
Bold values indicate a better result than the AS algorithm.

† Difference with the AS median is significant (p < 0.05).

Table 6.5: Accuracy Results of OPU for the GWP

Instance Measure AS OPU OPU → evap

20× 20 Ā 98.0 98.25 † 98.5 †
Ādiff (%) – 0.255 0.510

t(s) 6.06 5.83 † 5.91 †
50× 50 Ā 97.1 97.84 † 98.0 †

Ādiff (%) – 0.762 0.927

t(s) 39.64 35.73 † 36.68 †
100× 100 Ā 93.2 96.67 † 96.165 †

Ādiff (%) – 3.71 3.176

t(s) 190.5 165.9 † 171.2 †
Bold values indicate a better result than the AS algorithm.

† Difference with the AS median is significant (p < 0.05).

58 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Figure 6.3: Accuracy per iteration for AS and OPU for the GWP (20× 20).

0.05, the rate that had the most success in the TSP experiments, in the GWP, the accuracy

was lower for all the cases with statistical difference in the two larger grids. Finally,

linearly decreasing λ̆o does not have a significant impact on performance. All three OPN

implementations were also more computationally expensive.

In contrast to the OPN results, the OPU extensions performed very well. The version

of OPU that applies the update at every iteration led to improved accuracy for all grid

sizes. The difference is significant for the smaller size (p < 0.05) and very significant

(p < 0.01) for the 50 × 50 and 100 × 100 grids. In the 100 × 100 grid case, the accuracy

was improved by 3.7%, which is good considering that the base accuracy is already high.

The second OPU alternative, where the rate of application linearly decreases over time,

also led to accuracy improvements that were statistically significant. In the 100 × 100

case, the accuracy improved by 3.1%. The two OPU algorithms were less computationally

expensive than the original AS. The differences were statistically significant for all of the

cases (p < 0.01).

Figures 6.3, 6.4, and 6.5 depict the performance of the algorithms on the 20×20, 50×50

and 100×100 grids respectively. The accuracy difference and the rapid convergence at the

early stages of the optimization can be clearly identified.

Grid World Problem Experiments 59

Figure 6.4: Accuracy per iteration for AS and OPU for the GWP (50× 50).

Figure 6.5: Accuracy per iteration for AS and OPU for the GWP (100× 100).

60 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Table 6.6: Convergence Results of OPN algorithms for the GWP

Instance Measure AS OPN(0.01) OPN(0.05) OPN(0.01→0)

20× 20 n̄I 321 349 347 323

S(%) – -8.72 -8.1 -0.62

50× 50 n̄I 1885.5 1885.5 2056 † 1978

S(%) – 0 -9.04 -4.91

100× 100 n̄I 6155 6147 6778.5 † 6193

S(%) – 0.13 -10.13 0.62

Bold values indicate a better result than the AS algorithm.

† Difference with the AS median is significant (p < 0.05).

6.5.2 Convergence results

It was interesting to establish a quantitative measure of convergence for the two OPU

algorithms. In order to evaluate the convergence rate of the algorithms, a desired accuracy

of 90% was set. The Wilcoxon test was used to statistically compare the median of the

results. The speed-up factor, S, used in the TSP experiments (see Eq. 5.11), was also used

as a comparative measure. Tables 6.6 and 6.7 summarize the convergence results for the

OPN and OPU algorithms respectively.

The three OPN algorithms did not lead to improvements in convergence. The results

were all comparable with no statistical significance, except for λ̆o = 0.05. At that rate, the

number of iterations was significantly higher for the two larger grid sets.

In contrast, the OPU algorithms were significantly faster than the AS. The OPU version

that works at every iteration achieved a speed-up factor of 66%, 60% and 50% for the

20× 20, 50× 50, and 100× 100 grids respectively. The linearly decreasing OPU achieved

similar speed-up improvements of 64%, 59.5% and 48%. These results clearly demonstrate

that the opposite updates are providing essential information to the ants, helping them

achieve the optimal policy faster.

Grid World Problem Experiments 61

Table 6.7: Convergence Results of OPU for the GWP

Instance Measure AS OPU OPU/evap

20× 20 n̄I 321 108.5 † 115.5 †
S(%) – 66.2 64.0

50× 50 n̄I 1885.5 755.5 † 763.0 †
S(%) – 59.9 59.5

100× 100 n̄I 6155 3048.5 † 3200.5 †
S(%) – 50.5 48.0

Bold values indicate a better result than the AS algorithm.

† Difference with the AS median is significant (p < 0.05).

Chapter 7

Discussion

While the application of OBL to ACO can be challenging, in general, results indicate that

the use of opposition can be beneficial. Specifically, results show that the OPN approach,

namely using the opposite pheromone for some decisions was beneficial for the TSP. The

OPU extension, which involved performing additional updates during the best trail update

phase, led to excellent results for the GWP and some interesting performance improvements

for the TSP. Nevertheless, there were performance differences among the OBL algorithms

and the two applications. Results in both applications showed that OPN does not help

with convergence rates. OPN did not lead to any significant convergence improvements.

The only exception occurred for the 51-city TSP instance where OPN achieved a 20%

speed-up in the number of iterations when the opposite-rate was fixed at 0.05.

The OPN method did not perform as well for the GWP. In the TSP, it was clear that

the use of opposites was a contributing factor since a higher opposition rate improved the

results. Additionally, linearly decreasing the rate at which opposite pheromone was used

during the optimization also helped improve accuracy. In contrast, in the GWP, the use

of opposite pheromone was not advantageous.

The OPU method applied to the GWP led to accuracy improvements in all grid sizes

and convergence speed-ups reaching 66%. It was interesting to see that the performance

improvements were relatively similar for all grid sizes. For the TSP, while great benefits

came from OPN, it still failed in the larger instance. In contrast, OPU was not as successful

with the small instances. However, for the 198-city instance, OPU achieved improvements

62

Discussion 63

in accuracy that were statistically significant and a speed-up of 60%. In general, it seems

that OPU performs well with the more difficult problems, as it helps the learning process.

These results are very encouraging, as they demonstrate that opposition can help improve

performance.

The performance of the OPE extension applied to the TSP instances was comparable

to that of the ACS, which may suggest that the algorithm does not have much impact.

When OPE used a variable rate increasing to or decreasing from 0.001 the accuracy and

convergence results seemed slightly better. Perhaps this is an indication that opposition

should only be used in a manner that does not interfere with regular learning.

There are a few possible reasons for the differences between the TSP and GWP results.

One of them may be that the GWP has less alternatives at each decision step. In the GWP,

the ants only have up to four choices at each step, but in the TSP, the number of choices

can go up to the total number of cities in the instance. Moreover, there is no middle choice

among the alternatives in the GWP: some directions are perfectly correct and the others

are incorrect. Thus, using opposite pheromone in the GWP will often lead the ants to

pick a direction that is wrong. In contrast, in the TSP, the number of alternatives is much

higher and the distinction between what is right or wrong is not as clear. An edge might

be longer than the others, but it may still be part of the optimal solution. Consequently,

in the TSP, the use of the opposite pheromone might lead to a better solution, as the ants

may pick one edge that seems “wrong” and still achieve a good solution.

Another possible reason for the difference is that the TSP was solved using the ACS and

the GWP optimization worked with the AS. These are two different ant algorithms based

on different strategies. In AS, the solution of every individual ant receives a pheromone

update, even if it is not the best solution. In the ACS, only the best-so-far solution is

updated. Thus, with the AS, if using OPN led to a bad decision, it will still be somewhat

reinforced. In contrast, with the ACS algorithm, only the best solution is reinforced.

Additionally, in the GWP, since the ant algorithm does not use a heuristic function, the

pheromone content is the only decision parameter. Therefore, using opposite pheromone

will often lead to the worse available solution. In the TSP, when the ants use the opposite

pheromone, the heuristic is still available, which balances out the opposite pheromone.

One fundamental difference between the TSP and the GWP is that, in the GWP, the

64 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

“opposite” is clearly defined. For each square in a grid, there are two sets of opposite pairs:

up/down and left/right. Each direction has a unique opposite. Consequently, if one action

is good, the bad action can be easily identified. In the TSP, a choice made by the ant

at a certain node does not have a clearly defined opposite. Also, a straight mathematical

opposite might not even be defined. Simply defining opposites with respect to the length

of the edge might not make sense because, in some solutions, you need to take a longer

edge to get an overall shorter path. In the GWP, the partial components of the solution

are all the perfect components, which may be a reason why OPU, by removing pheromone

in rejected directions, is very advantageous for the GWP. In the TSP, the algorithm makes

local sacrifices for global success, which may explain why OPN might be helpful for the

TSP.

Moreover, in the GWP, the path travelled by the ants from their start point to the

goal is unidirectional. Thus, it is possible to define an “opposite” path that makes sense.

This opposite path would include all the decisions that would bring the ants away from

the goal. In the TSP, the solutions are bidirectional : going in the opposite direction of the

path makes no difference in the final solution. Therefore, defining the “opposite” path is

not as straightforward. The combinatorial aspect of the TSP complicates the definition

of an opposite path. Changing a single component in the solution brings a new array of

possibilities. The partial components of a solution are all dependent.

Another important difference is that in the GWP, the solutions achieved by the ants

at the end of iterations are components of the final policy. The ants cover a small part of

the grid. In the TSP, the ants are solving the entire problem in every iteration.

The speed-ups achieved with the use of opposite pheromone updates can be explained

by the fact that the algorithm is rapidly moving toward the final optimal pheromone matrix.

With usual pheromone updates, the algorithm takes very small steps moving towards the

final pheromone matrix. In contrast, the opposite pheromone updates allow the algorithm

to take very large guided jumps toward the optimal solution, by removing or adding more

pheromone in the appropriate regions.

Chapter 8

Conclusions and Future Work

The work of investigating the application of opposition to ACO is just beginning. It

would be very important to continue the exploration. Results are encouraging, especially

for the OPN and OPU methods. Some fundamental opposition concepts, such as the

use of opposite pheromone and performing opposite updates, led to encouraging results

in the TSP and the GWP. Thus, opposition is a way that can provide benefits to ant

algorithms, but more work is needed to fully develop the OBL framework for ACO. Further

investigation of the OPU method will likely lead to excellent results. It is also important

to attempt to combine the success of the different algorithms.

Consequently, it would be interesting to fully investigate the extent of the exploration

done by each algorithm. While the OPN extension proved successful for the three small

TSP instances, more work is required to determine all the benefits of this extension. The

results show that pheromone content is a key element in solution creation. Thus, using

more complex pheromone behaviour could lead to a better coverage of the search space.

Additional investigations in new ways to vary the pheromone rate are also necessary. Re-

sults showed that a simple linear variation of the opposition rate led to improvements in

the larger TSP instances. Future work should also involve the investigation of new ways

of using the pheromone deposits.

Computational expense differences should also be evaluated. Most OBL extensions were

computationally expensive, despite the success. Thus, it would definitely be important to

optimize the algorithm performance .

65

66 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

Further work is be needed to explore the application of opposition to different versions

of the ant algorithm, namely the Max-Min Ant System and the Best-Worst Ant System.

Continuing the investigation with the ACS and the AS is also necessary so that performance

differences can be clearly understood. It is also possible that applying opposition to ant

algorithms will eventually generate a new form of the algorithm, which will be separate from

the existing ACO frameworks. There should also be some experiments with the concept

of opposition in combination with local search. It would be important to determine if the

benefits of opposition complement those achieved through local search.

It was interesting to see that the results were not the same for the TSP and the GWP.

While it is true that the GWP is not a direct ACO application, it helped reinforce some of

the good results achieved with the TSP. Some of the differences might be attributed to the

implementations and the different ACO versions. However, the application is what defines

the algorithm that is used. Thus, future work should include more applications of ACO.

Another potential issue, as discussed in the OBL section of this work, was that, in the

TSP, pheromone matrices lead to an array of possible solutions. There is no one-to-one

relation between the pheromone matrix and a solution. Therefore, it might be important

to establish rules on how to generate an actual opposite solution in a graph, so that there

can be an exact fitness value. Additionally, it is important to establish how to compute

the opposite pheromone matrix. The GWP was a little different from the TSP, in that

the pheromone matrix was directly related to a solution, which may be one reason why

OPU performed better with the GWP than with the TSP. This work explored opposite

pheromone values and opposite updates; however, it did not create a direct relation between

two pheromone matrices.

The most important work that needs to be developed is fundamental theoretical work

with opposition and graph theory. While the GWP was an application that worked well

with opposition, the true nature of ant algorithms are graphs like in the TSP. Thus, it is

crucial to establish a strong theoretical base regarding opposition and graphs. As it has

already been mentioned, opposition is not clearly defined in TSP, which springs from that

fact that opposition is not clearly defined in graphs. Research has established opposite

actions, opposite estimates, and opposite transfers functions. Perhaps, the next step is to

establish the “opposite graph”.

Bibliography

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to

Artificial Systems. New York: Oxford University Press, 1999.

[2] O. Cordón, I. F. de Viana, F. Herrera, and L. Moreno, “A New ACO Model Integrating

Evolutionary Computation Concepts: The Best-Worst Ant System,” in Proc. of the

2nd Int. Workshop on Ant Algorithms (ANTS2000), Brussels, Belgium, 2000, pp. 22-

29.

[3] M. Dorigo, “Optimization, Learning and Natural Algorithms (in Italian),” PhD dis-

sertation, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

[4] M. Dorigo, and G. Di Caro, “Ant Colony Optimization: A New Meta-heuristic,” in

Proc. of the 1999 Congress on Evolutionary Computation-CEC99, New Jersey, 1999,

vol. 2, pp. 1470-1477.

[5] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a Colony

of Cooperating Agents,” IEEE Trans. Systems, Man, and Cybernetics, vol. 26, pp. 29-

41, 1996.

[6] M. Dorigo, and L. M. Gambardella, “Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem,” IEEE Transactions On Evolutionary

Computation, vol. 1, no. 1, pp. 53-66, 1997.

[7] M. Dorigo and T. Stützle, “The Ant Colony Optimization Metaheuristic: Algorithm,

Applications, and Advances,” Handbook of Metaheuristics. Fred Glover, Gary A.

Kochenberger eds. Boston: Kluwer Academic Publishers, 2003, pp. 55-82.

67

68 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

[8] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, Massachusetts: The

MIT Press, 2004.

[9] F. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics. Kluwer Aca-

demic Publishers, 2003.

[10] M. Hollander, and D. A. Wolfe, Nonparametric Statistical Methods. Wiley, 1973.

[11] S. Iredi, D. Merkle, and M. Midderndorf, “Bi-Criterion Optimization with Multi

Colony Ant Algorithms,” in Proc. First Int. Conf. on Evolutionary Multi-Criterion

Optimization (EMO’01), 2001, pp. 359-372.

[12] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo, CA: Morgan

Kaufman, 2001.

[13] A. R. Malisia and H. R. Tizhoosh, “Image Thresholding Using Ant Colony Optimiza-

tion,” in Proc. of the Third Canadian Conference on Computer and Robot Vision,

Qubec City, Canada, June 7th-9th, 2006.

[14] R. Michel and M. Middendorf, “An Island Model Based Ant System with Lookahead

for the Shortest Supersequence Problem,” in Proc. of the 5th Int. Conf. on Parallel

Problem Solving from Nature, September 27-30, 1998, pp. 692-701.

[15] J. Montgomery and M. Randall, “Anti-Pheromone as a Tool for Better Exploration of

Search Spaces,” in Proc. 3rd Int. Workshop on Ant Algorithms (ANTS2002), Brussels,

Belgium, September 2002, pp. 100-110.

[16] S. Ouadfel, M. Batouche and C. Garbay, “Ant Colony System for Image Segmenta-

tion Using Markov Random Field,” in Proc. 3rd Int. Workshop on Ant Algorithms

(ANTS2002), Brussels, Belgium, September 2002, pp. 294-295.

[17] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-Based Differen-

tial Evolution Algorithms,” in Proc. IEEE Congress on Evolutionary Computation,

Vancouver, July 16-21, 2006, pp. 7363-7370.

Bibliography 69

[18] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based Differential

Evolution Algorithms for Optimization of Noisy Problems,” in Proc. IEEE Congress

on Evolutionary Computation, Vancouver, July 16-21, 2006, pp. 6756-6763.

[19] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “A Novel Population Initializa-

tion Method for Accelerating Evolutionary Algorithms,” Computers and Mathematics

with Applications, vol. 53, no. 10, pp. 1605-1614, 2007.

[20] S. Rahnamayan, H. R. Tizhoosh and M. M. Salama, “Opposition-Based Differential

Evolution (ODE) With Variable Jumping Rate,” in Proc. of IEEE Symposium on

Foundations of Computational Intelligence (FOCI’07), Hawaii, April 1-5, 2007, pp. 81-

88.

[21] M. Randall and J. Montgomery, “The Accumulated Experience Ant Colony for the

Travelling Salesman Problem,” in Proc. of Inaugural Workshop on Artificial Life,

Adelaide, Australia, 2001, pp. 79-87.

[22] G. Reinelt, “TSPLIB - A traveling salesman problem library,” ORSA J. Comput.,

vol. 3, pp. 376-384, 1991.

[23] J. Schneider, “Swarm Intelligence: Power in Numbers,” Communications of the ACM,

vol. 45, no. 8, pp. 62-67, 2002.

[24] R. Schoonderwoerd, O. E. Holland, J.L. Bruten, and L.J.M. Rothkrantz, “Ant-Based

Load Balancing in Telecommunications Networks,” Adaptive Behavior, vol. 2, 1996,

pp. 169-207.

[25] M. Shokri, H. R. Tizhoosh and M. S. Kamel, “Opposition-Based Qλ Algorithm,” in

Proc. IEEE International Joint Conf. on Neural Networks (IJCNN), Vancouver, July

16-21, 2006, pp. 646-653.

[26] M. Shokri, H. R. Tizhoosh and M. S. Kamel, “Opposition-Based Q(lambda) with Non-

Markovian Update,” in Proc. IEEE Symposium on Approximate Dynamic Program-

ming and Reinforcement Learning (ADPRL 2007), Hawaii, April 1-5, 2007, pp. 288-

295.

70 Investigating the Application of Opposition-Based Ideas to Ant Algorithms

[27] Y. Song and M. R. Irving, “Optimisation techniques for electrical power systems. II.

Heuristic optimisation methods,” Power Engineering Journal, vol. 15, no. 1, pp. 151-

160, 2001.

[28] T. Stützle, Ant Colony Optimization, Public Software, June 14, 2004.

http://iridia.ulb.ac.be/ mdorigo/ACO/aco-code/public-software.html

[29] T. Stützle and H. H. Hoos, “MAX-MIN Ant System,” Future Generation Computer

Systems, vol. 16, no. 8, pp. 889-914, 2000.

[30] R. Subrata and A. Y. Zomaya, “A Comparison of Three Artificial Life Techniques for

Reporting Cell Planning in Mobile Computing,” IEEE Transactions On Parallel And

Distributed Systems, vol. 14, no. 2, pp. 142-153, February 2003.

[31] H. R. Tizhoosh, “Opposition-Based Learning: A New Scheme for Machine Intelli-

gence,” in Proc. Int. Conf. on Computational Intelligence for Modelling Control and

Automation - CIMCA’2005, Vienna, Austria, 2005, vol. I, pp. 695-701.

[32] H. R. Tizhoosh, “Reinforcement Learning Based on Actions and Opposite Actions,”

in Proc. Int. Conf. on Artificial Intelligence and Machine Learning, 2005.

[33] H. R. Tizhoosh, “Opposition-Based Reinforcement Learning,” Journal of Advanced

Computational Intelligence and Intelligence Informatics, vol. 10, no. 4, pp. 578-585,

2006.

[34] M. Ventresca and H. R. Tizhoosh, “Improving the Convergence of Backpropagation

by Opposite Transfer Functions,” in Proc. IEEE International Joint Conf. on Neural

Networks (IJCNN), Vancouver, July 16-21, 2006, pp. 9527-9534.

[35] M. Ventresca and H. R. Tizhoosh, “Opposite Transfer Functions and Backpropaga-

tion Through Time,” in Proc. IEEE Symposium on Foundations of Computational

Intelligence (FOCI’07), Hawaii, April 1-5, 2007, pp. 570-577.

[36] X. Zhuang, “Image feature extraction with the perceptual graph based on the ant

colony system,” in Proc. of 2004 IEEE International Conference on Systems, Man

and Cybernetics, 2004, vol. 7, pp. 6354-6359.

	Introduction
	Background
	Ant Colony Optimization
	Background
	Natural metaphor
	History
	The ACO algorithm
	Ant System
	Ant Colony System

	Applications

	Opposition-Based Learning
	Theory
	Existing OBL extensions
	Opposition and ACO

	Travelling Salesman Problem Experiments
	Construction phase extensions
	Synchronous Opposition
	Free Opposition
	Free Quasi-Opposition
	Opposite Pheromone per Node
	Opposite Pheromone per Edge

	Update phase extension
	Opposite Pheromone Update

	Experimental setup
	Results
	Results for direct modification of ant decision
	Results for indirect modification of ant decision
	Results for modifying pheromone update

	Grid World Problem Experiments
	Description of the grid world problem
	ACO applied to the GWP
	Representation
	Initialization
	Solution construction
	Pheromone update
	Policy calculation

	OBL extensions
	Opposite Pheromone per Node for the GWP
	Opposite Pheromone Update for the GWP

	Experimental setup
	Results
	Accuracy results
	Convergence results

	Discussion
	Conclusions and Future Work
	Bibliography

