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Abstract 

Right parietal lesions often lead to neglect, in which patients fail to attend to leftward stimuli. Recent 

models of neglect suggest that, in addition to attentional impairments, patients demonstrate impairments 

of spatial remapping and/or spatial working memory (SWM). Although spatial remapping could be 

considered a kind of spatial memory process itself (i.e., updating remembered locations based on 

anticipated saccade outcomes), the two processes operate on very different time scales (milliseconds 

versus seconds). In the present study, the influence of saccadic and spatial remapping on SWM was 

examined in healthy individuals. An initial control condition, in which participants had to respond to a 

probe stimulus (i.e., “is the probe in the location previously occupied by the target?”) following a 1500 

ms delay, was contrasted with conditions in which the fixation point moved (left, right, up, or down) at 

the onset of the delay. In a second version of the task, participants made covert shifts of attention at 

delay onset requiring covert spatial, rather than saccadic, remapping. In both tasks SWM performance 

was best when no remapping was required. Decrements in SWM were largest overall in the spatial 

remapping task, whereas for both saccadic and spatial remapping, a consistent cost was observed for 

remapping the target array into right visual space. Results are discussed in terms of hemispheric biases 

in attention and differences in performance for peripersonal versus extrapersonal space. 
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Introduction 

One of the most common consequences of right parietal lesions is the disorder of unilateral 

spatial neglect, in which patients behave as if one half of their world has simply ceased to exist 

(Danckert & Ferber, 2006). Neglect is typically defined as a failure to report, respond to, or orient 

towards stimuli in contralesional space (Danckert & Ferber, 2006; Heilman, Watson & Valenstein, 

1993; Driver & Mattingley, 1998; Halligan, Fink, Marshall & Vallar, 2003). Neglect patients may shave 

only the right side of their face or eat food from only the right half of a plate, and in general they fail to 

attend or respond to stimuli or events on the left side of space. Symptom profiles of patients with neglect 

tend to be extremely heterogeneous, making it difficult to construct comprehensive neurocognitive 

models of the disorder. Most theories of neglect focus on the obvious impairments of spatial attention 

evident in these patients, which can be broadly characterised by two interacting components. The first is 

an attentional selection bias toward ipsilesional space (Kinsbourne,1993), and the second – the so-called 

‘disengage deficit’ – represents a difficulty in reorienting attention away from ipsilesional stimuli 

toward stimuli and events in contralesional space (Posner, Walker, Friedrich & Rafal, 1984). 

More recent attempts to understand the neglect syndrome suggest, however, that the disorder is 

not simply due to attentional impairments that favour ipsilesional stimuli. Instead, the neglect syndrome 

is made up of several component deficits including spatial and non-spatial impairments that in concert 

lead to impaired awareness for contralesional space (Danckert & Ferber, 2006; Ferber & Danckert, 

2006; Pisella & Mattingley, 2004). In addition to attentional biases, it has been suggested that deficits in 

spatial working memory (SWM) and/or spatial remapping are at the heart of the loss of awareness for 

contralesional stimuli and events (Danckert & Ferber, 2006; Pisella & Mattingley, 2004). 

Clinical tests used for assessing the presence or severity of neglect provide some hints that the 

disorder involves more than impaired attentional orienting. For example, when performing a 

cancellation task in which the patient must place a mark through targets presented on a page aligned to 

their body’s midline, patients typically fail to mark a substantial portion of targets to the left of midline. 
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In addition to this most obvious manifestation of neglect, patients also commonly fail to cancel some 

targets from the right (putatively non-neglected) half of the page. Such a deficit would suggest that even 

for supposedly non-neglected space the patient has difficulty maintaining (or updating) an accurate 

representation of the spatial array. In addition, patients commonly place more than one cancellation 

mark through the same target, apparently treating old target locations (i.e., locations that have already 

been cancelled), as if they were new (Malhotra, Mannan, Driver, & Husain, 2004). These findings on 

more clinically based tasks are further supported by experimental research using visual search 

paradigms. In one such study researchers found that, for neglect patients, visual search was most 

impoverished for displays in left visual space (Behrmann et al., 2004). Although visual search requires 

the use of SWM, the previously discussed study was not designed to examine the two mechanisms 

independently. However, there is substantial research that indicates a SWM deficit in neglect is evident, 

even in tasks where search behaviour is not required (Ferber & Danckert, 2006; and Malhotra et al, 

2005). Thus, the behaviours observed on clinical tests discussed above, suggest that patients’ memory 

for a given spatial array is impaired. This deficit that has now been demonstrated in a wide variety of 

tasks and circumstances clearly indicates a spatial working memory deficit, relatively independent of 

biases in spatial attention (Ferber & Danckert, 2006; Malhotra et al., 2004; Husain et al., 2001; 

Wojciulik et al., 2004). In other words, these behaviours – omitting right sided targets and revisiting old 

locations as if they were new – cannot easily be accounted for by an attentional impairment alone 

favouring stimuli in right space.  

Pisella and Mattingley (2004) have suggested that many of the behaviours observed in neglect 

could be explained by an impairment in spatial remapping during shifts of attention (both overt and 

covert), in addition to the commonly observed attentional deficits. In their model, internal 

representations of the environment, referred to as ‘salience maps’, must be continually updated (or 

‘remapped’) to account for changes in the absolute and relative positions of objects. In addition, one’s 

own actions, including eye movements or even covert shifts of spatial attention, have consequences for 
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those internal representations. The kind of remapping or spatial updating being referred to in Pisella and 

Mattingley’s model reflects the process of updating internal representations as a consequence of shifts of 

attention, whether executed overtly (i.e., via eye movements) or covertly (e.g., via covert shifts of 

attention). 

Initial demonstrations of saccadic remapping processes come from the monkey neurophysiology 

literature (Duhamel, Colby, & Goldberg, 1992a). In the classic double-step saccade task, two sequential 

targets for eye movements are presented and extinguished in under 200 ms (i.e., prior to the initiation of 

a saccade to the first target). The monkey must then anticipate the outcome of the saccade to the first 

target to appropriately program the saccade to the second target. Relying solely on the retinal locations 

of the two targets would lead to an erroneous second saccade. Neurons in the monkey lateral 

intraparietal region (LIP) show increased firing rates during this task, suggesting that they code for the 

anticipated outcome of intended actions and remap the internal representation of the spatial layout of the 

environment accordingly (Duhamel, Colby, & Goldberg, 1992a). 

In humans, right hemisphere lesions of the kind that often lead to neglect, impair not only the 

initiation of contralesional saccades (Behrmann, Ghiselli-Crippa, & Dimatteo, 2001, 2002; Behrmann, 

Ghiselli-Crippa, Sweeney, Dimatteo, & Kass, 2002), but also the ability to perform remapping processes 

during the execution of saccades (Pisella & Mattingley, 2004; Vuilleumier, Sergent, Schwartz, Valenza, 

Girardi, Husain, & Driver, 2007). Importantly, according to Pisella and Mattingley’s (2004) model of 

neglect, if the right hemisphere maintains a salience map for the entire visual field, then overt or covert 

shifts of attention to left visual space will lead to remapping deficits that affect the entire visual field, 

which is precisely what happens (recall the deficits observed in right, putatively non-neglected space on 

cancellation tasks discussed above). Duhamel and colleagues (1992b) examined performance on the 

double-step saccade task in a patient with a large right fronto-parietal lesion and unilateral neglect. 

When the first target was presented in the patient’s right visual field and the second target appeared in 

the left visual field, the patient was able to acquire both targets accurately. This presumably reflects the 
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fact that in this instance he was able to rely on left hemisphere parietal cortex to remap left visual space, 

based on the anticipated sensorimotor outcomes of the first saccade made to a target in right visual 

space. In the opposite circumstance, when the first target was presented in the left visual field and the 

second target appeared in the right, the patient failed to ever acquire the second target. 

This result, since replicated in a larger group of patients (Heide et al., 1995), suggests that the 

damaged right parietal cortex was unable to accurately anticipate the outcome of a saccade made into 

left visual space and therefore could not remap the visual environment in such a way that the second 

target could be accurately acquired (Pisella & Mattingley, 2004). Given that previous work has 

demonstrated remapping deficits in left parietal patients (Heide et al., 1995), a saccadic remapping 

deficit is obviously not sufficient to demonstrate the neglect syndrome (i.e., the left parietal patients in 

Heide et al.’s study did not demonstrate neglect). Instead, Pisella and Mattingley (2004) suggest that 

such a spatial remapping deficit must be accompanied by the attentional deficits (i.e., a rightward 

attentional bias and a difficulty in disengaging from rightward stimuli) to demonstrate the full neglect 

syndrome. 

More recently, it was shown that neglect patients had difficulty maintaining the spatial locations 

of targets in a task that required saccadic remapping over a retention interval (Vuilleumier, et al., 2007). 

In this study patients first identified the colour of a target (i.e., either red or green) by fixating the target 

(which could appear at random locations to the left and right of fixation). At delay onset the display was 

either blank, in which case patients were not required to maintain fixation at any specific location, or 

contained a letter stimulus to the far left or far right of the display, requiring the target location to be 

remapped due to the gaze shift. A probe appeared after a 2 second delay that could be either at the same 

location as the coloured target or slightly shifted to the left or right of the initial target position. Patients 

had to report whether or not the target had changed location by making a same/different judgement. 

When a gaze-shift was required to the right, thereby requiring the target location to be remapped into 

left, neglected space, patients demonstrated a striking cost to spatial memory. Interestingly, healthy 
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controls showed no cost in any of the remapping conditions (Vuilleumier et al., 2007). While the results 

of this study clearly show a remapping deficit for neglect patients, it is difficult to claim that this is a 

remapping influence on spatial working memory. In the no-remapping condition fixation was not 

restricted after the target was first identified. Presumably patients could choose to maintain fixation at 

the target location making this a good control for the effects of remapping (when contrasted with the 

conditions in which gaze is manipulated during the delay), but a poor example of spatial working 

memory performance. In addition, when remapping was required, it occurred in multiple stages. That is, 

the patient would first fixate centrally and presumably form an internal representation of the target 

location that must then be updated (i.e., ‘remapped’) when gaze was shifted there. The array must then 

be remapped again once gaze is shifted to the letter stimulus explicitly used to elicit remapping. Finally, 

the probe is sufficiently difficult to resolve in peripheral vision that it requires a gaze shift in order to 

make the final same/different judgement concerning its location. This would again require the internal 

representation to be updated or ‘remapped’ (Vuilleumier et al., 2007). Such multiple remapping 

requirements would compound performance decrements when they were in opposite directions, as was 

the case for the patients in this study. That is, performance was worst when a target was first identified 

in left neglected space, and then remapped after a rightward gaze shift and then remapped again when 

the probe appeared in left space (Vuilleumier et al., 2007). Thus, the methodology used in this study 

does not provide for an unambiguous exploration of the effects of saccadic remapping on processes of 

spatial working memory.  

Saccadic or spatial remapping processes operate on the order of milliseconds. On clinical tests of 

neglect, such as the cancellation tasks discussed above, the patient is given unlimited time to find the 

targets and still fails to cancel many left-sided targets. In addition, patients are often capable of 

cancelling targets to the far left of the page and returning to cancel targets on the right side of the page. 

They simply fail – by definition – to cancel a significant portion of left sided targets. These observations 

have led many authors to suggest that neglect patients suffer from impaired spatial working memory 
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(Husain et al., 2001; Wojciulik, Husain, Clarke, & Driver, 2001). The definition for spatial working 

memory (SWM) is remarkably similar to that of spatial remapping in that it involves the ability to keep 

in mind the locations of stimuli in space and their relation to one another. The critical difference 

between the two would seem to be the time scale over which they operate (milliseconds for remapping, 

seconds to minutes for SWM) and their relation to shifts (either overt or covert) of attention. With regard 

to the latter, spatial remapping processes are explicitly engaged in response to a shift of attention in any 

direction, whereas SWM has been shown to benefit from attentional shifts to the location of the 

memorized target(s) only (Awh, Jonides, & Reuter-Lorenz, 1998). Current investigations into the 

mechanisms behind SWM indicate that spatial information is actively maintained through focal shifts of 

spatial attention towards the to-be-remembered locations (Postle, Awh, Jonides, Smith, & D’Esposito, 

2004; Awh & Jonides, 2001; Awh & Jonides, 1998). In this fashion, overlapping neural circuits 

involved in spatial attention and spatial working memory are engaged in the rehearsal of spatial 

information for SWM by keeping the representation of locations activated in memory. 

There is mounting evidence that patients with neglect do indeed suffer from impaired spatial 

working memory (Husain, et al., 2001; Malhotra et al., 2005; Mannan et al., 2005; Wojciulik, Rorden, 

Clarke, Husain, & Driver, 2004; Ferber & Danckert, 2006). Although many of the results obtained in 

these studies could be at least partially accounted for by reference to a spatial remapping deficit, others 

offer more compelling evidence of a fundamental dysfunction of SWM, independent of any remapping 

problems. In one such study, SWM deficits were observed for stimuli that were vertically aligned in 

right visual space (Ferber & Danckert, 2006; see also Malhotra et al, 2004 and Malhotra et al, 2005). 

Such an arrangement ought to minimise the influence of impairments in saccadic remapping which, for 

neglect patients, are known to be greatest for horizontal saccades that cross the midline, or remapping 

that occurs entirely in left visual space (Heide et al., 1995; note that the stimuli in Ferber & Danckert’s 

study were all within right visual space, whereas for Malhotra and colleagues stimuli were presented in 

central space).  
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The ways in which saccadic and spatial remapping may influence the efficiency of spatial 

working memory processes was examined in healthy individuals in two experiments. Although 

Vuilleumier and colleagues (2007) demonstrated clear evidence for an effect of remapping on 

perception of location changes in neglect patients, several key questions still need to be addressed. First, 

do saccadic (overt) and spatial (covert) remapping processes operate in the same manner? That is, would 

covert shifts of attention exert the same influence on SWM as do overt shifts? Second, are there different 

consequences for SWM from remapping a target array after horizontal shifts of attention (either overtly 

or covertly) when contrasted with remapping along the vertical meridian? In Experiment 1, I 

investigated the influence of saccadic remapping processes on the precision of SWM1 performance 

under circumstances in which the spatial array had to be remapped as a consequence of a saccade made 

at the onset of the delay period. In Experiment 2, I explored the effect of covert shifts of attention on 

SWM accuracy using a similar paradigm in which spatial remapping was induced via a covert 

attentional shift made at the onset of the delay. 

 

 

 

 

 

 

 

 

                                                 
1 Memory for spatial information can be broadly categorised into two types of processes: memory for locations and route 
finding (De Renzi, Faglioni & Villa, 1977). Memory for locations can be further broken down into relational/categorical 
spatial memory, sometimes referred to as ‘object-location binding’, and co-ordinate spatial memory known as ‘positional 
memory’. Object-location binding refers to the ability to keep in mind the positions of objects relative to one another 
(Chalfonte, Johnson, Verfaellie & Reiss, 1996), whereas positional memory is the ability to keep in mind the precise co-
ordinates of objects (McNamara, Hardy & Hirtle, 1989). In the present study the SWM task reflects those processes 
specifically involved in positional memory. 
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Experiment 1 

Methods 

Participants 

Eighteen healthy normal participants (11 females; mean age = 24 years, ±SD = 4.84; range = 20-

39; 1 left handed) participated in Experiment 1. All participants had either normal or corrected to normal 

vision and were free from any neurological or psychiatric conditions. All participants were recruited 

from the University of Waterloo, and written informed consent was obtained from each participant prior 

to commencing the study. 

Procedure 

Participants were seated in front of a 15.4-inch computer screen at a distance of approximately 

45 cm with their head placed in a chin rest. All stimuli were designed using E-Prime software and the 

task was run on a Dell Optiplex GX260 desktop computer. Each participant completed 20 practice trials 

and 320 experimental trials that were divided into four equal blocks to provide breaks. 

At the beginning of each trial a central fixation cross was presented. After 1000 ms, five target 

stimuli, consisting of open circles, were presented surrounding the cross in pseudorandom locations. 

Participants were told that one of the five circles may or may not have a gap in it. ‘Gapped circles’ 

resembled either a “C” or a backwards “C” on an equal numbers of trials, with a gapped circle appearing 

on 80% of all trials. Targets for the spatial working memory task (including “gapped circles” when 

present) remained on the screen for 500 ms, with participants instructed to make a key press (‘m’ for yes 

and ‘z’ for no on a standard keyboard) to indicate whether a “gapped circle” was present among the 

array.  Participants were then instructed to keep the location of the gapped circle in mind over a brief 

delay period of 1500 ms. Following the delay, during which participants made their response to the 

presence or absence of a gap in one of the target circles, a probe stimulus, consisting of a filled circle, 

appeared in any one of the five target locations. Participants had to indicate whether the probe was 

presented in the location previously occupied by the gapped circle (Figure 1). To introduce a saccadic 

 8



remapping component to the task, at the onset of the delay the fixation cross would shift to one of four 

locations: to the left, right, up, or down (Figure 1).  On 20% of trials the fixation point would remain 

stationary, thereby not requiring any saccadic remapping of the target array. This condition acted as a 

control for the remapping trials. Participants were instructed to fixate the cross at all times, such that on 

trials in which the cross moved at the onset of the delay, participants were also to move their eyes to the 

new location. To ensure that the cross was fixated throughout the task, eye movements were monitored 

using a Canon MiniDV ZR500 camcorder. 
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Figure 1. Time course for a single trial of Experiment 1. Participants first identified the presence of a 
target (a ‘gapped circle’ indicated in grey in the figure; note, the target was the same colour as non-
targets in the actual experiment). Following a delay in which the fixation could remain static or move to 
one of four possible locations, subjects responded to a probe (filled circle) indicating whether it was 
presented in the same location as the previously detected target (in the schematic shown the correct 
answer would be ‘yes’). Once the fixation point had shifted it remained in the new location until the end 
of the trial (in the schematic the fixation point at the time the probe is presented is shown as it would 
appear in a ‘no-remapping’ trial). Note that remapping of the stimulus array was in the opposite 
direction to the shift of the fixation such that a fixation cross moving to the left required the array to be 
remapped into right visual space and so on.  
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Several important aspects of the stimulus array warrant further discussion. First, targets could 

appear in locations that formed two concentric circles around the fixation point (Figure 2). The outer rim 

of the first circle was 5 o from fixation; the rim of the second circle was 15 o from fixation. This allowed 

for the presentation of targets (i.e., gapped circles) in locations close to, or more distant from fixation. 

This factor was crucial once the saccadic remapping component was added to the task. In short, I wanted 

to be sure that any influence of saccadic remapping on the efficiency of SWM was not due solely to any 

effects of the initial eccentricity of targets. By requiring participants to detect a gapped circle in the 

initial target array, it provided the option to examine whether there were any differences in perceptual 

capacity for detecting targets according to their distance from fixation that would later influence their 

SWM performance. In other words, did participants encode target locations more efficiently when they 

were close to fixation? So on half of the trials in which a gapped circle appeared, it would appear close 

to fixation, whereas on the other half of trials it would appear further away from fixation (Figure 2). In 

addition, on half of the trials in which the fixation point moved at the onset of the delay period (see 

below), the physical location of the gapped circle would now be close to fixation (i.e., after initially 

being further away from fixation), whereas on the other half of trials the opposite circumstance would 

arise (i.e., a gapped circle that was initially close to fixation would now be further away from fixation). 

Once again, this ensured that any possible influence of eccentricity was effectively counterbalanced 

across trials. 

All individual circle stimuli (i.e., open targets, gapped circles, and filled circle probes) subtended 

a visual angle of 3.25o. The five circle stimuli appeared in various arrangements out of a possible sixteen 

locations, with the constraint that one stimulus occupied a location in 3 of the 4 quadrants surrounding 

fixation, and two stimuli occupied a location in the fourth quadrant of the screen (Figure 2). Each visual 

quadrant contained two stimuli on an equal number of trials. The cross was presented in all five ‘shift’ 

fixation positions (centre, left, right, up, or down) an equal number of times (64 trials per condition). 

When the fixation cross was moved, the visual angle of the displacement was 20o in the horizontal 
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dimension and 13.75o in the vertical dimension (Figure 2). Probes appeared in the same location as the 

previously presented “gapped circle” (the target) on 50% of trials. 

 

 

 

Figure 2. Schematic representations of the visual angles involved in stimulus displays for Experiments 1 
and 2.  The upper panel shows the arrangement of potential target and distractor stimuli being placed 
around two concentric circles (not visually present in the display) with a radius of 5 and 15 degrees of 
visual angle. An example target array is presented to the right. The lower panels represent the degree of 
visual angle for the shift in fixation (for Experiment 1 represented on the left) and the shift in the target 
reference frame (for Experiment 2 represented on the right).  
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Data Analysis 

 First, the accuracy with which gapped circles were detected was examined according to their 

location in the target array (prior to any SWM component of the task). These data were explored using a 

repeated measures ANOVA with two factors: distance from fixation (near vs far) and visual quadrant of 

the display (upper left, upper right, lower right and lower left). Responses to the probe stimulus were 

then examined as an index of SWM performance (i.e., “was the probe in the same location as the 

previously detected ‘gapped circle’?”; Figure 1). This was done via an accuracy score in which the 

proportion of false alarms (i.e., saying a probe was in the location of a target when in fact it wasn’t) 

were subtracted from the proportion of hits (i.e., correctly indicating that the probe was in the same 

location as the target). Accuracy scores for each individual were calculated in this manner, with group 

mean accuracy scores compared across the different conditions (i.e., no remapping, remapping up, 

down, left, or right) via repeated measures ANOVA. A' was also calculated, which provided an index of 

sensitivity. As the results from this measure were identical to the results obtained from the accuracy 

scores, we are reporting only the accuracy scores here. 

 

Results 

All participants had no difficulty following the movement of the cross in the remapping trials 

with all participants moving their eyes to refixate the new location and maintaining fixation there until 

the end of the trial.  

 

Gapped circle detection 

Although repeated measures ANOVA revealed a significant interaction between the factors of 

distance from fixation and visual quadrant of the display (F(7, 119) = 3.96, p < .01), post-hoc t-tests 

contrasting near and far target detection in each quadrant separately (with Bonferroni correction for the 

number of comparisons made setting alpha at 0.0125) found no significant differences. There was a 
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slight trend for target detection to be superior for near versus far targets in all conditions, although this 

was only significant at the far less conservative alpha level of p<0.05 for the upper right and upper left 

quadrants (Table 1). It is important to note here that target detection was uniformly high in all locations 

across the display. In addition, SWM performance was only analysed for those trials in which the target 

had been accurately detected.  

 

Table 1. Mean hit % (±SD) for detection of a gapped circle close to (near) and further away from (far) 
fixation. 
 
 Visual quadrant of target 

 Upper right Lower right Upper left Lower left 

Target location Experiment 1 

Near  .998 (.01) 1.0 .995 (.02) .991 (.02) 

Far .984 (.03) .995 (.01) .976 (.03) .981 (.03) 

p-value .028 .083 .021 .165 

 Experiment 2 

Near   .987 (.02) .983 (.02) .968 (.03) .981 (.03) 

Far .992 (.02) .979 (.02) .975 (.04) .973 (.03) 

p-value .436 .521 .579 .410 

α = .05/4 = .0125 
 

 

 SWM Analysis 

First, SWM in the ‘no remapping’ condition was analysed to ensure that there were no inherent 

biases in spatial memory relative to the particular location of the target to be remembered. Repeated 

measures ANOVA with the factor of target quadrant (upper right, lower right, lower left, upper left) 

showed a trend towards a significant effect of quadrant on spatial memory (F(3, 51) = 2.60, p = .06). To 

examine the possibility of significant effects further, performance for each quadrant was contrasted with 

one another. Alpha was set at 0.0083 to correct for the number of comparisons made (i.e., 0.05/6; 
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Bonferroni correction). The results of this analysis revealed no significant effects, indicating that there 

was no bias for spatial memory to be more efficient in any particular region of space in this task when 

no remapping was required (Table 2). 

 

Table 2. Comparison of hits, false alarms, and mean accuracy (±SE) for probe detection between the 
four display quadrants for the no remapping condition in Experiment 1 
 
Quadrant comparison Hits False Alarms Mean Accuracy 

scores 

Upper right .981 (.01) .100 (.04) .882 (.04) 

Lower right .951 (.02) .204 (.06) .748 (.07) 

p-value   .041 

Upper left .944 (.02) .079 (.04) .865 (.04) 

Lower left .929 (.03) .111 (.04) .818 (.06) 

p-value   .312 

Upper right .981 (.01) .100 (.04) .882 (.04) 

Upper left .944 (.02) .079 (.04) .865 (.04) 

p-value   .726 

Lower right .951 (.02) .204 (.06) .748 (.07) 

Lower left .929 (.03) .111 (.04) .818 (.06) 

p-value   .228 

α = .05/6 = .0083  
 
Note: Two comparisons are not shown in this table – upper right vs. lower left and upper left vs. lower 
right, as these were not considered meaningful. If these are removed from consideration when setting the 
alpha level, significance would still be set at 0.0125 (α = .05/4 = .0125) rendering all comparisons non-
significant.  
 

 

Then, the complete data set was analyzed to determine the effects of saccadic remapping on 

SWM. It is important to note here that the direction of remapping was opposite to that of the direction in 

which the cross was shifted. For example, if the fixation cross was shifted to the left, then the initially 

encoded target array would have to be remapped into right visual space. A one-way ANOVA with the 
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five different levels of remapping (no remapping, remap left, right, down, or up) revealed a significant 

effect for remapping direction (F(4, 68) = 8.72, p < .001; Figure 3).  

 

 

Figure 3. SWM performance for Experiment 1 – Saccadic remapping. Performance is measured as an 
accuracy score (% hits – % false alarms) and compared across five conditions: no remapping (black 
bar), leftward vs. rightward remapping (white bars), downward vs. upward remapping (grey bars). Error 
bars represent the standard error for each condition. † represents p < .01 and * represents p < .05. 
 

 

Planned comparisons contrasted performance in the left remapping condition with performance in the 

right remapping condition and, similarly, contrasted performance in the upward remapping condition 

with performance in the downward remapping condition.  Results showed a significant difference for 

accuracy between left and right remapping (t(17) = -2.48, p < .05), with rightward remapping being 

associated with inferior performance. As well, a significant difference between the downward and 
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upward remapping conditions (t(17) = 3.98, p< .01) was found, with downward remapping being 

associated with inferior performance by comparison (Figure 3). 

Each remapping condition was then explicitly contrasted to the no-shift condition to determine 

whether the specific remapping direction led to a cost in SWM performance. Alpha was set at 0.0125 to 

correct for the number of comparisons made (i.e., 0.05/4; Bonferroni correction). This analysis revealed 

significant cost for rightward (t(17) = -3.04, p < .01) and downward remapping (t(17) = -5.13, p < .001). 

At a less conservative alpha level there was a slight trend towards a cost to SWM for leftward 

remapping (t(17) = -1.85, p = .08), while upward remapping did not lead to any significant cost (t(17) = 

-1.61, p = .13). These costs are represented graphically in Figure 4 by way of a difference score such 

that accuracy in the particular remapping condition of interest was subtracted from accuracy in the no 

remapping condition. A difference score approaching zero would indicate no significant cost to SWM 

performance in the remapping condition relative to the no remapping condition (Figure 4). 
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Figure 4. Remapping cost of Experiment 1 expressed as differences scores for SWM accuracy 
comparing remapping to specific directions (left, right, down, up) with no remapping. A difference score 
greater than zero signifies a cost to SWM for remapping in that direction. Error bars represent the 
standard error. A schematic outlining the method used to calculate the difference scores is shown to the 
right. * represents p < .05 and † represents p < .01. 
 

 

Discussion 

The results of the first experiment indicated that remapping the target array into right visual 

space or lower visual space, as a consequence of a saccade in the opposite direction, led to a significant 

cost in terms of SWM performance. This was true when these two conditions were compared with either 

the no remapping condition, or the condition that required remapping of the target array into the 

opposite visual hemifield. In other words, the greatest cost to SWM was observed for remapping the 
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target array into right or lower visual space (Figures 3 and 4). It may be the case that the observed 

decrements to SWM performance from rightward remapping arose as a consequence of mechanisms 

related to hemispheric dominance for spatial processing. That is, the right hemisphere has been shown to 

be more proficient at processing exact metric spatial information when compared to the left hemisphere 

(Kosslyn et al., 1989; Hellige & Michimata, 1989; Kessels et al., 2002). If one considers that rightward 

remapping may rely on left hemisphere neural systems (Kinsbourne, 1993), it is possible that remapping 

right space is less efficient than the opposite condition in which right hemisphere structures specialised 

for spatial processing of the kind involved by saccadic remapping perform the task more efficiently. In 

contrast, the performance decrements to SWM observed for downward remapping may result from 

different mechanisms entirely. Previc’s model of how the brain processes three-dimensional space 

(1998) suggests that neural systems involved in processing different regions of space are also specialised 

for performing specific tasks within those regions of space. Specifically, he argues that far 

(extrapersonal) space is specialized for such things as visual search and visual memory (1998; Previc & 

Intraub, 1997). In the current study, remapping to upper space was relatively unaffected, which is 

compatible with Previc’s notion that extrapersonal space (operationalized here as upper visual space) 

demonstrates superior visual search and memory. These hypotheses will be explored further in the 

general discussion. 
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Experiment 2 

There still remains the possibility that the interactions observed between saccadic remapping and 

SWM are unique to the execution of a saccade. In other words, would similar deficits to SWM 

performance be observed if the remapping required was performed covertly, in the absence of any 

movement of the eyes? Pisella and Mattingley (2004) first made the suggestion that spatial remapping, 

independent of the execution of an eye movement, may be critically impaired in neglect patients. Indeed, 

a great deal of research has demonstrated specific covert orienting deficits as a consequence of parietal 

injury (Poser et al., 1984; Friedrich et al., 1998; see Losier & Klein, 2001 for review). In addition, a 

great deal of human neuroimaging research has demonstrated overlapping neural circuitry for overt and 

covert shifts of attention (see Corbetta, 1998 for review). Importantly, these networks rarely (if ever) 

completely overlap, suggesting that there are distinct neural networks invoked when covert shifts of 

attention are made (see Corbetta, 1998 and Corbetta & Shulman, 2002 for review). It is important, 

therefore, to examine whether or not similar influences on SWM will be observed when the target array 

must be remapped covertly.  

 

Methods 

Participants 

Eighteen healthy normal participants (11 females; mean age = 20.67 years, ±SD = 2.11; range = 

18-25; 1 left handed) participated in Experiment 2. All participants had either normal or corrected to 

normal vision and were free from any neurological or psychiatric condition. All participants were 

recruited from the University of Waterloo, and written informed consent was obtained prior to 

commencing the experiment. 
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Procedure 

In Experiment 2, participants completed a similar SWM task to the one used in Experiment 1, 

with a few notable exceptions. Most critically, rather than moving the fixation point at the onset of the 

delay, thus requiring saccadic remapping to take place, participants were instead required to make 

covert shifts of attention at delay onset that would require spatial remapping of target locations (Figure 

5). To induce covert spatial remapping of the target array, participants were first required to maintain 

central fixation throughout a trial. Targets were then presented within a square reference frame which on 

some trials was shifted up, down, left, or right at the onset of the delay (Figure 5). Participants were 

instructed to make judgments concerning a probe stimulus presented inside the shifted reference frame, 

thus requiring them to have covertly remapped the entire target array into the new location occupied by 

the reference frame (Figure 5). 

 

 21



 

 

Figure 5. The time course for a single trial of Experiment 2. In addition to the control condition where 
the target reference box remains static during the delay period, the four possible spatial remapping 
conditions are also shown. This manipulation of the box landmark was maintained throughout the 
remainder of the trial. Remapping of the stimulus array was in the same direction as the box shift. 
Participants had to identify the presence or absence of a ‘gapped circle’ (the target) upon initial 
presentation. Following that, participants had to make a judgment as to whether the probe occupied the 
same location as the previously presented target relative to the box. Note that in the schematic, the probe 
location is indicated as it would appear for a trial in which no remapping was required. 
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It was not possible to equate all aspects of the displays used in the two experiments. Critically, it 

seemed most important to equate the distance shifted by the fixation cross in Experiment 1 with the 

distance shifted by the reference frame in Experiment 2 (Figure 2). To do this, the physical size of the 

target stimuli had to be reduced as they appeared on the computer screen. Then, the stimuli were back 

projected onto a rear projection screen measuring 125 cm by 125 cm using an InFocus LP130 projector.  

The projected on-screen display measured 125 cm by 93 cm.  Participants sat in front of the screen at a 

viewing distance of 168 cm, with their head positioned in a chin rest.  As with Experiment 1, each 

participant completed 20 practice trials and 320 experimental trials with intermixed conditions.  The task 

was again divided into four equal blocks separated by breaks. 

For the back projected display in Experiment 2, the fixation cross subtended a visual angle of 

0.5o and the width of the box subtended a visual angle of 8.5o. All circle stimuli subtended a visual angle 

of 1.1o. Despite this reduction in visual angle of the target size from Experiment 1 to Experiment 2, no 

participants reported any difficulty in detecting the gapped circle targets. As will become clear below, 

the accuracy of target detection was very similar across the two experiments. Once again, the stimuli 

locations were arranged in two “rings” around the fixation cross with an inner ring creating a visual 

angle of 1.7o from central fixation and the outer ring creating a visual angle 3.2o from central fixation. 

The visual angle between the centrally presented cross and the outer edge of the displaced box was 20o 

in the horizontal dimension and 15o in the vertical dimension (Figure 2). Thus, the shift of fixation in 

Experiment 1 and the shift of reference frame in Experiment 2 were roughly equivalent in terms of 

degrees of visual angle despite the overall reduction in size for the other stimuli used in the second 

experiment. Data were analysed in the same manner as in Experiment 1. 
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Results 

Gapped circle detection 

Again, I wanted to ensure that participants were able to detect the target (a gapped circle) to-be-

remembered equally well when it was presented in the different regions of the display. One subject had 

to be removed from this analysis because of a data recording failure. The mean hit percentages per 

quadrant can be seen in Table 1. Repeated measures ANOVA with factors of distance from fixation 

(near vs far) and visual quadrant (upper right, lower right, lower left, upper left) showed no significant 

main effects or interactions, indicating that participants did not demonstrate any differences in their 

ability to detect the gapped circle as a function of either the proximity to fixation or the visual quadrant 

in which the target appeared. 

 

SWM Analysis 

As in Experiment 1, I first wanted to ensure that there were no inherent biases in spatial memory 

when no remapping was required.  Repeated measures ANOVA with the factor of target location within 

the box (upper right, lower right, lower left, upper left) revealed no significant effect of location on 

spatial memory, F(3, 51) = 1.38, p = .261.  This indicates that there was no inherent bias for spatial 

memory in any quadrant of the visual display when no remapping was required. 

Spatial working memory performance was then analyzed to determine the effects of covert 

spatial remapping. Unlike Experiment 1, the direction of remapping was the same as the direction in 

which the box was shifted at the onset of the delay, such that when the box was shifted to the left, the 

target array had to be remapped into left visual space (Figure 5). A one-way repeated measures ANOVA 

with remapping direction as the within subjects factor (left, right, up, down, or no remapping) revealed a 

significant effect for remapping direction (F(4, 68) = 15.53, p <.001). The no remapping condition had 

the highest mean accuracy; all other conditions had substantially lower mean accuracy scores (Figure 6).   
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Figure 6. SWM performance for Experiment 2 – Spatial remapping. Performance is measured as an 
accuracy score (% hits – % false alarms) and compared across five conditions: no remapping (black 
bar), leftward vs. rightward remapping (white bars) and downward vs. upward remapping (grey bars). 
Error bars represent the standard error for each condition. † represents p < .01 and * represents p < .05. 
 

 

Again, planned comparisons were run to compare performance in the left and right remapping 

conditions and the down and up remapping conditions separately. Results showed a significant 

difference for accuracy between left and right remapping, (t(17) = 2.43, p <.05) but no significant 

difference between the downward and upward remapping conditions, although there was a trend toward 

upward remapping having a greater cost (t(17) = 1.80, p = .09; Figure 6). Each remapping condition was 

then contrasted with the no-remapping condition to examine whether covertly remapping the target array 

led to a cost in SWM accuracy for each direction of movement separately.  Four post hoc comparisons 
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were run with alpha set to .0125 to correct for the number of comparisons made (i.e., 0.05/4; Bonferroni 

correction). Leftward and rightward remapping both led to significant costs to performance (t(17) = -

4.34, p < .001 for leftward remapping and t(17) = -8.41, p < .001 for rightward remapping). Remapping 

to upper and lower visual space also resulted in significant costs to SWM performance (t(17) = -6.33, p 

< .001 for upward remapping and t(17) = -3.92, p < .001 for downward remapping). These costs are 

represented graphically in Figure 7 as difference scores calculated in the same manner as in Experiment 

1. 

 

 

Figure 7. Remapping cost of Experiment 2 expressed as differences scores for SWM accuracy 
comparing remapping to specific directions (left, right, down, up) with no remapping at all. Error bars 
represent the standard error. * represents p < .05. 
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Finally, I wanted to compare the effects of remapping on SWM across Experiments 1 and 2.  To 

do this, the differences scores from each individual in the two experiments were subjected to a between-

subjects ANOVA, with the fixed factor being experiment number (1 or 2). A significant difference was 

found between Experiments 1 and 2 for the cost of leftward remapping (F(1, 34) = 7.11, p < .05), and 

rightward remapping (F(1, 34) = 5.86, p < .05). Also, a significant difference was found for the cost of 

upward remapping (F(1, 34) = 6.19, p < .05), but no difference in the cost associated with downward 

remapping across the two experiments (F(1, 34) = 0.99, p = .33) (Figure 8; also see Figures 4 and 7 for 

comparison). 
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Figure 8. Comparison of the remapping cost for Experiments 1 and 2. Costs are expressed as differences 
scores for SWM accuracy contrasting remapping to specific directions (left, right, down, up) for spatial 
and saccadic remapping. Error bars represent the standard error. * represents p < .05. 
 

 

Discussion 

The results of Experiment 2 indicated that covertly remapping the target array in any direction 

had a negative impact on SWM accuracy compared with the no remapping condition. In addition, 

rightward remapping was associated with a greater cost to SWM compared to leftward remapping. 
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Finally, there was a slight trend for upward remapping to have a greater cost than downward remapping. 

The decrements to SWM demonstrated in the horizontal dimension can once again be accounted for by 

hemispheric dominance for spatial processing. Remapping rightward may rely on the left hemisphere, 

which is not as proficient at processing spatial information as the right hemisphere (Kinsbourne, 1993).  

The pattern of costs associated with saccadic remapping in upper and lower visual space was not 

observed for covert remapping. Several previous studies have shown that attention is superior in the 

lower visual field (He, Cavanagh, & Intrilligator, 1996) which also seemed to be the case here with a 

trend towards a greater cost for SWM when remapping towards upper visual space. That saccadic 

remapping produces the opposite pattern of performance suggests that the execution of an eye 

movement improves memory performance only for the upper visual field.  
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General Discussion 

The results of the second experiment demonstrated a more reliable cost to SWM during covert 

shifts of attention, in that the decrement was observed for all directions of remapping (Figures 3, 4, 6 

and 7). Additionally, the between experiment analysis suggests that spatial remapping led to greater 

costs for SWM than did saccadic remapping (Figure 8). Despite this, there remained some similarities in 

the nature of the decrements to SWM caused by the need to remap the target array. When subjects were 

required to remap the array into right visual space, in both the saccadic and spatial remapping tasks, 

there was a significant cost to SWM relative to both the no remapping and leftward remapping 

conditions. Along the vertical dimension, remapping the target array into lower visual space led to 

equivalent costs to SWM in both the saccadic and spatial remapping tasks (Figures 4 and 7). Although 

there was no significant difference in the spatial remapping task between upward and downward 

remapping conditions, there was a trend toward a greater cost for upward remapping. This was in stark 

contrast to the findings for saccadic remapping, which revealed a significantly greater cost to SWM for 

downward compared to upward remapping. Finally, whereas saccadic remapping did not induce any 

cost for leftward or upward remapping conditions relative to no remapping, the same was not true for 

spatial remapping. Thus, spatial remapping seems to pose a greater difficulty in terms of accurately 

maintaining the remapped target locations over a brief delay. It should be noted that it is not believed 

that these effects were due to an inability to properly rehearse target locations in SWM. Although Awh, 

Jonides, & Reuter-Lorenz (1998) found that preventing attention from being directed to the memorized 

target locations impaired SWM performance by reducing rehearsal ability, this was unlikely to confound 

the results of the present study. In both experiments, participants were fully able to covertly attend to, 

and thus rehearse, the spatial locations of the targets. However, they were then required to remap the 

target array, which ultimately impaired SWM efficiency. Furthermore, inhibited spatial rehearsal cannot 

explain the differential effects to SWM accuracy for remapping to different regions of space (e.g. greater 

cost to remapping into right compared to left space). 
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 What is clear from the two experiments presented here is that there are distinct influences of 

remapping processes on the efficiency of SWM, despite the fact that the two processes normally operate 

on very different time scales. The most consistent effect across the two experiments occurred for 

remapping in the horizontal direction. That is, when participants had to remap the target array into right 

visual space with either a leftward saccade or a rightward shift of covert attention, SWM was worse than 

in conditions in which leftward remapping was required (Figures 3 & 6). This result may reflect the fact 

that the right hemisphere is specialised for spatial processes across a broad range of cognitive functions. 

For instance, it has been demonstrated in a wide variety of paradigms that the right hemisphere controls 

attention for both left and right space, whereas the left hemisphere controls attention only for right space 

(Heilman & Van Den Abell, 1979, 1980; Corbetta & Shulman, 2003). Right hemisphere mechanisms 

have also been shown to be more effective in the execution of attentional tasks in general (Mesulam, 

1981). Furthermore, and perhaps more relevant to the current study, the right hemisphere dominance for 

spatial cognition extends beyond the realm of attentional control. A great deal of research has shown 

that the right hemisphere is more proficient at processing exact metric spatial information (i.e., 

positional or location memory) compared to the left hemisphere (Kosslyn et al., 1989; Hellige & 

Michimata, 1989; Kessels et al., 2002). Recently, Vuilleumier et al. (2007) demonstrated that right 

hemisphere patients with neglect were impaired on a perceptual memory task (i.e., detecting slight 

variations in position of a target) when they had to remap the target array into left space after a right 

gaze-shift. In addition, a PET study by Köhler and colleagues (1995) indicated that the right inferior 

parietal lobule was more involved in a spatial location matching task than in an object identity matching 

task. Studies such as this one have suggested that each hemisphere is specialized for the processing of 

different types of information, with the right hemisphere demonstrating superiority for spatial processing 

(Kosslyn et al., 1989; Hellige & Michimata, 1989; Köhler et al., 1995, 1998; Kessels et al., 2002), and 

the left hemisphere demonstrating a clear preference for language functions including auditory working 

memory capacity (Wise et al., 2001). 
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Our results demonstrate that remapping into right space led to a larger performance decrement 

for SWM than did leftward remapping. One possibility is that remapping the target array into right space 

relies more heavily on the left hemisphere, which in turn is not as efficient for either attentional 

processing or positional memory (Corbetta & Shulman, 2003; Kessels et al., 2002; Köhler et al., 1998). 

Importantly, it is not merely the side of initial target presentation driving the asymmetry in spatial 

processing; when no remapping was required, there were no inherent biases in SWM performance 

evident. In addition, spatial or covert remapping in any direction, regardless of original target position, 

was shown to have a detrimental effect on SWM accuracy. It was simply that remapping into right space 

led to a greater cost to SWM than did remapping into left space (which led to no significant cost when 

saccadic remapping was required). These results strongly suggest that the effects we found on SWM 

accuracy in the horizontal dimension were due to an interaction between mechanisms of spatial 

remapping and SWM, which demonstrate biases that are driven by the right hemisphere’s dominance for 

spatial processing. 

Horizontal remapping resulted in the same effects on SWM whether it was performed overtly or 

covertly (i.e. SWM cost for rightward remapping only). However, remapping the target array in the 

vertical dimension led to differential costs to SWM, depending on the nature of the remapping task. 

Specifically, when the target array had to be remapped overtly, a decrement to SWM was only observed 

for downward remapping compared to upward remapping. Conversely, covert remapping of the array 

led to an observable cost for both directions of remapping with a slight trend for upward remapping to 

have a greater cost compared to downward remapping. Of the eighteen participants, twelve showed this 

direction of effect with lower accuracy scores for upward remapping. 

One possible explanation for this dissociation could be found in Previc’s theory of the three-

dimensional representation of space (1990, 1998). Broadly speaking, Previc suggests that the neural 

systems devoted to processing events in peripersonal and extrapersonal space have been adapted to 

processing specific kinds of information relevant to different task demands typically associated with 
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each region of space. In short, he suggests that the ventral visual stream – which runs from primary 

visual cortex (area V1) to inferotemporal cortex – is involved in attending to far (extrapersonal) space 

and is specialised for such things as visual search and visual memory. In contrast, the dorsal visual 

stream – which runs from V1 to posterior parietal cortex – is principally involved in the control of 

attention and action in near (peripersonal) space (Previc, 1990; Danckert & Goodale, 2001, 2003; 

Goodale & Milner, 1992; Weiss et al., 2000; Butler, Eskes, & Vandorpe, 2004). 

Several different lines of research have suggested that both visuomotor control and the efficiency 

with which attention is deployed is more proficient in lower visual space, which can be taken as a rough 

analogue of peripersonal space (i.e., space that is close to the body). For example, He, Cavanagh and 

Intrilligator (1996) found that attentional resolution was greater in the lower visual field during a covert 

visual attention task. In addition, Danckert and Goodale (2001) have shown that a more robust speed-

accuracy trade-off is observed for visually guided movements that are executed in the lower as 

compared to the upper visual field. So when covert attention is employed to remap the display to the 

lower visual field, one might expect there to be a lower cost than when covertly remapping the display 

into upper visual space. In contrast, Previc’s theory would suggest that visual search, and by extension 

the execution of saccades in a visual search type paradigm, should be more efficient in extrapersonal 

space, or that region of space that is beyond arms reach (Previc, 1990, 1998; note that here I am using 

the upper visual field as a rough analogue of far, extrapersonal space). 

Indeed, previous research has demonstrated that saccadic reaction times are shorter for saccades 

executed to targets appearing in upper versus lower visual space (Sheliga, Craighero, Riggio, & 

Rizzolatti, 1997). In addition, when asked to reproduce (via drawing) a previously viewed scene, healthy 

participants included greater detail in the upper portions of the scene, even expanding the upper region 

of their reproduction relative to the actual scene presented (Previc & Murphy, 1997). What this work 

suggests is that the execution of eye movements, and subsequent visual memory for scenes, is more 

efficient in upper versus lower visual space. This kind of anisotropy in visual processing may be 
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responsible for the findings in Experiment 1 in which there was no appreciable cost for saccadic 

remapping into upper visual space, but a substantial cost was observed for remapping into lower visual 

space (Figure 3). 

The contrasting effects of overt and covert remapping in the vertical axis suggest that different 

mechanisms are at play here, as opposed to the common mechanism that is likely to be responsible for 

the effects of remapping along the horizontal axis. Interestingly, vertical biases in performance were not 

evident during the static conditions when no remapping was required. According to Previc’s model 

(1998), biases should be evident even in cases in which no remapping is required. The current results 

suggest that although there are no inherent biases in pure positional memory, biases will become evident 

when an additional requirement to remap the to-be-remembered target array is included in the task. 

Further research is required to determine whether the dissociable differences in covert and overt 

remapping in the vertical axis are robust, and whether they represent distinct biases in the three-

dimensional perception of space for covert and overt mechanisms of attention, as suggested above. 

 The current findings have considerable implications for research on neglect. The consistent 

effects of remapping along the horizontal axis provide some support for Pisella and Mattingley’s (2004) 

model which suggests a remapping deficit as the cornerstone of the neglect syndrome. The current data 

set would also suggest that separable deficits in SWM (i.e., Ferber & Danckert, 2006) and spatial 

remapping (i.e., Heidi et al., 1995) will interact in neglect patients to further impair their ability to 

maintain an accurate representation of left visual space. In addition, one theory of visual attention would 

suggest that covert shifts of attention precede the execution of eye movements (i.e., the premotor theory 

of attention; e.g., Rizzolatti et al., 1987). In the present study, the greater costs to SWM seen when 

covert remapping is required in any direction suggest that any requirement to execute covert spatial 

remapping may lead to greater impairment in neglect patients than does overt spatial remapping (i.e., via 

saccades). This hypothesis would of course require further investigation with neglect patients using the 

paradigm developed here. 
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Finally, in addition to lateral biases in spatial processing, neglect patients have also demonstrated 

performance gradients for the near-far dimension in peripersonal and extrapersonal space (Chatterjee, 

Thompson, & Ricci 1999; Mark & Heilman, 1997). Several studies have found that neglect of 

contralesional space is more severe in peripersonal than in extrapersonal space, where it is often not 

demonstrated at all (Halligan & Marshall, 1991; Guariglia & Antonucci, 1992; Halligan & Marshall, 

1995; see also Berti & Frassinetti, 2000; Butler et al., 2004). The demonstration here that both overt and 

covert remapping into lower visual space led to a cost to SWM is consistent with what is known of 

peripersonal neglect. That is, the current data suggest that processes of remapping generally lead to 

poorer SWM when the to-be-remembered stimuli must be remapped into the lower visual field. 

Demonstrations of more severe neglect symptoms in peripersonal space may suggest that the regions 

commonly damaged in neglect patients – including the inferior parietal cortex and the superior temporal 

gyrus – may well be responsible for maintaining and updating representations of this region of space. 

Further research in patients with dissociable deficits in peripersonal and extrapersonal space will be 

needed to determine whether remapping impairments are worse for patients with predominantly 

peripersonal neglect. 
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