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Abstract

This thesis focuses on two fundamental machine learning problems: unsupervised learn-

ing, where no label information is available, and semi-supervised learning, where a small

amount of labels are given in addition to unlabeled data. These problems arise in many real

word applications, such as Web analysis and bioinformatics, where a large amount of data

is available, but no or only a small amount of labeled data exists. Obtaining classification

labels in these domains is usually quite difficult because it involves either manual labeling

or physical experimentation. This thesis approaches these problems from two perspectives:

graph based and distribution based.

First, I investigate a series of graph based learning algorithms that are able to exploit

information embedded in different types of graph structures. These algorithms allow label

information to be shared between nodes in the graph—ultimately communicating informa-

tion globally to yield effective unsupervised and semi-supervised learning. In particular, I

extend existing graph based learning algorithms, currently based on undirected graphs, to

more general graph types, including directed graphs, hypergraphs and complex networks.

These richer graph representations allow one to more naturally capture the intrinsic data

relationships that exist, for example, in Web data, relational data, bioinformatics and

social networks. For each of these generalized graph structures I show how information

propagation can be characterized by distinct random walk models, and then use this char-

acterization to develop new unsupervised and semi-supervised learning algorithms.

Second, I investigate a more statistically oriented approach that explicitly models a

learning scenario where the training and test examples come from different distributions.

This is a difficult situation for standard statistical learning approaches, since they typically

incorporate an assumption that the distributions for training and test sets are similar, if

not identical. To achieve good performance in this scenario, I utilize unlabeled data to

correct the bias between the training and test distributions. A key idea is to produce

resampling weights for bias correction by working directly in a feature space and bypassing

the problem of explicit density estimation. The technique can be easily applied to many

different supervised learning algorithms, automatically adapting their behavior to cope

with distribution shifting between training and test data.
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Chapter 1

Introduction

1.1 Motivation

Two of the most prominent areas of machine learning research are supervised and un-

supervised learning respectively. In supervised learning a learner attempts to acquire a

predictive model from explicitly labeled training examples, while in unsupervised learning

a learner attempts to extract a descriptive model from unlabeled training examples. Re-

cently, interest has increased in the hybrid problem of learning a predictive model given

a combination of both labeled and unlabeled examples. This modified learning problem,

generally referred to as semi-supervised learning, arises in many real world applications,

such as text and gene classification, since unlabeled data is usually freely available, whereas

explicitly labeled data is expensive and requires manual effort to obtain. For example, in

text classification, great effort is required to manually label a set of documents for super-

vised training, while at the same time, unlabeled documents are available in abundance.

It is natural in this case to attempt to exploit the existence of a large set of unlabeled

documents to reduce the number of labeled documents required to learn a good document

classifier. Similarly, in the problem of predicting gene function from microarray data and

sequence information, the experiments needed to label a subset of the genes are typically

very expensive to conduct. As a result, there exist only a few hundred labeled genes out

of the population of thousands.

Although it is a challenging problem, semi-supervised learning offers sufficient promise

1



2 Learning from Partially Labeled Data

in practice that many algorithms have been proposed for this type of problem in the past

few years. Among the proposals are graph based learning algorithms, which have become

popular due to their computational efficiency and their effectiveness at semi-supervised

learning. Some of these graph based learning algorithms generate predictions directly for

a target set of unlabeled data without creating a model that can be used for out-of-sample

predictions; a process referred to as transductive learning. Such algorithms bypass many

of the requirements of traditional supervised learning and can be much simpler as a result.

However, other approaches to semi-supervised learning still generate a model that can be

used to make predictions unseen test data.

The thesis focuses on learning from partially labeled data—that is, unsupervised learn-

ing and semi-supervised learning—approaching them mainly from two perspectives: graph

based and distribution based.

In the graph based approach, training examples are represented by vertices in a graph

where edges convey the local similarity between data examples. However, local informa-

tion is usually not sufficient to yield accurate predictions, and current graph based learning

methods obtain an advantage by propagating information globally to obtain more accurate

predictions of missing labels. One shortcoming with current work on graph based learning

is that it is based on undirected graphs. Undirected graphs are appropriate for captur-

ing useful symmetric relations that exist in many real-world applications; for example,

the correlations between documents are calculated by symmetric bag of word similarities.

However, undirected graphs are not effective at capturing every type of data relationship.

For example, there are many challenging problems where the relationship between data

items follows a much more complex arrangement. I give some examples to illustrate.

• Web clustering and classification. Many challenging problems have been raised due to

the success of search engines. Among the fundamental problems of improving search

engine services are Web clustering and Web page classification. Web clustering is

motivated by the fact that if one could identify Web communities, this could facilitate

improved browsing and personalized retrieval services. Web page classification is

motivated by the fact that if an intrinsic categorization of Web pages was available,

then vertical search services could be enabled. To attack these problems, one might

attempt to represent the data in an undirected graph, as suggested above. However,
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the structure of the Web graph can not be completely preserved with an undirected

graph: directionality information is lost. A more natural choice is to represent the

relationships in a directed graph, since, intuitively, asymmetric relationships encode

important information in the Web, such as whether a page is a Hub or an Authority

on some topic.

• Relational database analysis. Learning in relational databases involves analyzing data

items that are represented by vectors of categorical attributes. One way to determine

the similarity of two data items is whether they share any common attributes. If we

consider using a graph to represent similarities between items in a relational dataset,

one might consider placing an undirected edge between any two vertices (data items)

that share a common attribute value; i.e., we could represent the data similarities

by an undirected graph. However, a simple binary edge does not indicate whether

there exist other vertices sharing the same attribute value. The pairwise relationships

encoded in an undirected graph will lead to an information loss in relational data.

A more natural choice in this setting is to represent the data relationships by a

hypergraph where an edge may contain multiple vertices.

• Citation network analysis. In a citation network, as well as other natural bipartite

graphs, one is often interested in performing a simultaneous clustering of the different

object types, e.g., authors and papers. However, in reality one also has additional

relevant data items, such as publication venues, that might also be worth clustering,

and can moreover contribute to improving the clustering of papers and authors. In

general, there may be multiple types of relationships present in a data network; for

example, author-paper relationships and paper-conference relationships in a citation

graph. For citation networks, note that the author-paper relationship can be rep-

resented in a bipartite graph, and the additional paper-conference relationship will

turn the bipartite graph into a tripartite graph. In some other applications, one may

even encounter higher order of k-partite graphs, if observing multiple object types

and relationships. Thus, using a bipartite or tripartite graph representation is still

not sufficient in general. A complex, heterogeneous network of multiple object types

and multiple relations is a more natural representation to consider in these scenarios.



4 Learning from Partially Labeled Data

In a nutshell, one would like to be able to use different types of graph representations

that preserve the natural data information as much as possible, rather than simply using

undirected graphs. Learning will not yield accurate results if the graphical representation

loses the natural relationships between the data items. This observation raises an obvi-

ous question: Given that important data sets are naturally represented in more general

structures than undirected graphs, how can one adapt the existing unsupervised and semi-

supervised learning algorithms for undirected graphs to these more general cases? The

first part of the thesis answers this question. I extend the existing unsupervised and semi-

supervised learning algorithms that have been developed for undirected graphs to directed

graphs, hypergraphs and complex heterogeneous networks. In addition to proposing new

learning algorithms, I also draw connections between unsupervised, semi-supervised and

supervised learning by presenting them in a common regularization framework.

The second part of the thesis investigate a more statistically oriented approach that

models a different learning scenario from the traditional one. In most classical research on

supervised and semi-supervised learning, there is a hidden assumption that the distribution

of the training and test data should be the same, or at least very close. Intuitively, it would

be hard to make good predictions on test data if one had to use a model inferred from

training drawn from a different distribution. Although not been well recognized, this type

of problem is common in real world applications. For example, if one were to analyze data

generated from a Brain Computer Interface, it is known that the distribution over incoming

signals changes as experiments continue because of subject fatigue and the sensor setup

changes and so on. Here we wish to obtain a model based on the earlier experimental data

that is also able to make accurate predictions on signals obtained from the later period of

the experiments, but obviously these two distributions are quite different. Another example

comes from survey analysis. If, for example, one would like to collect some features of

customers that are interested in a certain product. A survey form will be given to the

customers for data collection. However, it is more likely that those people who are willing

to fill the forms are those who are interested in the product. If we generate a model

based on the profiles of these customers, it would be less accurate to make judgment on

a random person in the whole general population. The problem is that the training set is

collected in a biased manner and we do not notice the bias. Therefore a natural question
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is whether it is possible to still learn a good model when a bias exists between training

and test sets? In the second part of the thesis, I present an approach that accommodates

the difference between the two distributions by using unlabeled data drawn from the test

distribution. Thus, I present a semi-supervised learning method that is able to handle the

above challenging scenario.

1.2 Thesis Contributions

The contributions of the thesis are outlined below:

• First, in the background chapter, I provide a common view of unsupervised and

semi-supervised learning on undirected graphs. Various graph based unsupervised

and semi-supervised algorithms have been separately proposed in literature recently,

while little attention has been paid to the connection between the algorithms de-

veloped for these problems. In the background chapter, I demonstrate a novel uni-

fied perspective of unsupervised, semi-supervised and supervised learning on graphs,

based on a common regularization framework. The chapter also discusses the dif-

ferences between different regularizers in graph based semi-supervised learning to

further validate the connection.

• Then, I propose new unsupervised and semi-supervised learning algorithms for di-

rected graphs. Directed graphs are useful when the underlying data relationship is

not symmetric. For example, if a Web page A has a hyperlink to Web page B, it

does not necessarily mean that B also has a link pointing to A. I present experimen-

tal results on Web classification and protein function prediction which demonstrate

that the proposed directed graph algorithms obtain much better performance than

their undirected counterparts. Recalling the unified framework I develop for undi-

rected graphs, I also develop a corresponding analysis for directed graphs that relates

unsupervised, semi-supervised and supervised learning with this representation.

• The unsupervised algorithm on directed graphs is very useful for solving the Web

community identification problem, a challenging problem in Web search. Noticing

that the random walk model is a free parameter in learning on directed graphs, I
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propose variations of the random walk models raised from different Web topologies

and investigate their effects for finding Web communities. The analysis shows that the

hyperlink structure of the Web provides very useful information for identifying Web

communities, and that random walks are able to capture different relationships based

on various hyperlink topologies. This analysis provides a practical characterization

of distinct random walks for unsupervised learning on directed graphs.

• Next, I propose unsupervised and semi-supervised algorithms for hypergraphs. Hy-

pergraphs are useful when the underlying data relationships are not naturally pair-

wise. The algorithms I develop here involve new extensions to the original undirected

variants. This extension also has a useful random walk interpretation, as in the di-

rected case. I present experiments in unsupervised and semi-supervised learning on

various real world relational datasets to illustrate the advantage of preserving non-

pairwise relationships.

• Furthermore, I develop a simple, unified mechanism for incorporating information

from multiple object types and relations on a target subgraph—achieving a general

approach to learning problems in heterogeneous networks that involve multiple object

types and relations. I define a marginalized random walk that effectively propagates

all sources of relevant information onto a target subgraph. I present experimental

evaluations in challenging real world problems, including Web classification with both

text and hyperlink information, and ranking in citation networks.

• Finally, I develop a new kernel method for solving sample selection bias in learning

problems. The sampling bias, which arises from differences between the training and

test distributions, usually causes significant inaccuracies in standard learning algo-

rithms. I propose a method that uses a reweighting scheme to correct for the bias.

The resampling weights are inferred directly by distribution matching between train-

ing and testing sets, where the matching is performed implicitly in a feature space.

I show that the matching error and the estimated risk error are bounded in terms

of the support of the distribution and the sample sizes. I also demonstrate empir-

ically that the new method yields significant improvements over standard learning

algorithms in the presence of distribution shifting.
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1.3 Thesis Outline

Below is a summary of the thesis.

• Chapter 2 Background: Learning with undirected graphs I provide the rel-

evant background on learning with undirected graphs, including unsupervised and

semi-supervised learning algorithms. The chapter attempts to illustrate the key con-

nection between graph based unsupervised and semi-supervised learning algorithms

through a unified regularization interpretation. This unification requires some addi-

tional background on graph Laplacians, discrete analysis on undirected graphs, and

regularization theory.

• Chapter 3 Beyond symmetry: Learning with directed graphs I show how

directionality can be efficiently used in unsupervised and semi-supervised learning

algorithms by representing data as a directed graph. The chapter also extends the

unified regularization analysis to directed graphs.

• Chapter 4 Beyond pairs: Learning with hypergraphs This chapter presents

unsupervised and semi-supervised learning algorithms based on hypergraphs.

• Chapter 5 Beyond homogeneity: Learning with complex networks This

chapter extends the graph based learning framework to complex heterogeneous net-

works that involve multiple types of data objects and relations.

• Chapter 6 Learning under distribution shifting with unlabeled data I

present the new de-biasing procedure I propose to reweight training data to account

for distributional shifting between the training and test distributions. I show that

this procedure can be used to modify many standard learning algorithms, by incor-

porating additional unlabeled test data, to achieve more accurate results in these

circumstances.

• Chapter 7 Conclusions Finally, Chapter 7 concludes the thesis with a summary

of the main contributions and a discussion of several directions for future research.
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1.4 Publication Notes

Most of the work presented in this thesis has already been published. Some of the back-

ground material presented in Chapter 2 is based on a technical report published at MPI

in 2005 (Huang, 2005). Material presented in Chapter 3 appeared in (Zhou et al., 2005a)

and (Huang et al., 2006d). Material presented in Chapter 4 has been published in (Zhou

et al., 2006); earlier it is published as a technical report at MPI when I was working there

as a research intern. Material presented in Chapter 5 has been published in (Huang et al.,

2006c). The work in Chapter 6 was completed when I was working at NICTA and has

been published in (Huang et al., 2006a); earlier it is published as a technical report (Huang

et al., 2006b) at University of Waterloo.



Chapter 2

Background: Learning with

Undirected Graphs

Graphs are a very useful representation of data. Often, data relationships are naturally ob-

tained from original connectivity information between individual data items. This chapter

provides background on learning algorithms for problems where the input data is rep-

resented as a graph. In particular, in this setting, each vertex in a graph denotes an

observation, and we wish to learn a function that assigns a label to each vertex. Beyond

the basic connectivity information, I will also assume that we have some prior knowledge

about the similarities between the vertices; given for example, by a Gaussian response

to the Euclidean distances between the observations at each vertex. These similarities

characterize the local connection strengths in the graph.

A number of machine learning methods for unsupervised and semi-supervised learning

can be formulated in terms of optimizing a labeling function over vertices in a given graph.

However, in current research, the algorithms for different types of learning problems—

unsupervised versus semi-supervised learning—have been developed individually, with very

few direct connections established between them. Here, in addition to reviewing current

techniques in graph based unsupervised and semi-supervised learning, I demonstrate a

novel unified understanding of the connections between unsupervised, semi-supervised and

supervised learning on graphs. I begin with the observation that graph based unsupervised

learning algorithms optimize a labeling function over vertices that minimizes some cut cost

9
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objective; whereas semi-supervised and supervised learning algorithms minimize a combi-

nation of a loss between the function and a set of target labels with a regularization penalty.

The connection is achieved by observing that the cut cost objective used by unsupervised

learning algorithms can also serve as a valid regularizer for labeling functions defined on

the graph vertices. The connection is further reinforced by a direct analogy between the

functional analysis of the cut cost regularizer applied to functions on graphs, with the the

functional analysis of standard regularizers applied to functions over continuous spaces.

In this way, one can see that the cut cost regularizer forces the function values change

“smoothly” over the graph. Once a regularizer has been properly formulated from an

unsupervised learning objective on the graph, it is then straightforward to formulate semi-

supervised learning principles from unsupervised criteria by combining the regularizer with

an empirical loss of the observed data. Thus, we obtain a learning mechanism on graphs

that is based on the same general learning principles as traditional supervised learning,

while avoiding the need to invent new principles. Understanding the behavior of different

cut cost objectives also explains the effectiveness of different graph based semi-supervised

learning methods.

2.1 Preliminaries

Throughout this chapter, I assume data is represented in a simple undirected graph. An

undirected graph G = (V, E) consists of a set of vertices V and a set of edges between the

vertices E. I denote by (u, v) the edge e that joins vertices u and v. Hence I refer to u

and v as neighbors. A self-loop is an edge which starts and ends at the same vertex. The

assumption that the graph is simple means that it has no self-loops and at most one edge

connects between any two vertices. The assumption that the graph is undirected means

that the each edge is a unordered pair of distinct vertices; i.e., (u, v) ∈ E denotes the same

edge as (v, u) ∈ E. Thus, I denote u ∼ v when u and v are neighbors.

An undirected graph is weighted if its edges are associated with a symmetric weight

function w : E → R
+. Such graph is also called as similarity graph. The weight func-

tion indicates the similarity between vertices. For example, the weight function could be

constructed via a k-nearest neighbor rule that models the local k nearest neighborhood
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relationships; or alternatively, we can simply use fully connected graph where a Gaus-

sian function is used to calculate similarity weights based on features associated with each

vertex.

I will also make use of the following definitions. The degree function d : V → R
+ is

defined as

d(u) =
∑

v∼u

w(u, v) (2.1)

The volume of a set of vertices S ⊂ G is defined as

vol S =
∑

u∈S

d(u) (2.2)

The volume of the graph is therefore given by

vol G =
∑

v∈V

d(v) (2.3)

In addition, the cardinality of S is defined as |S|.

2.2 Unsupervised Learning on Undirected Graphs

First, I review the classical problem in unsupervised learning—clustering—where one pari-

tions the data in an attempt to uncover the intrinsic class structure. Clustering is a fun-

damental problem in machine learning that has been widely applied in many application

areas, ranging from statistics, computer vision, and data mining, to biology and physics.

When data is represented as a weighted graph, the goal of clustering is to partition a con-

nected graph into homogeneous and well separated subsets such that the vertices within

the same subset are similar and the vertices in different subsets are dissimilar. For a binary

graph clustering, the problem is to find an integer assignment function f : V → {−1, 1}
that achieves this intuitive criterion.

Mathematically, a binary vertex partition on a graph separates the graph into two

disjoint vertex sets S and Sc, where Sc is the compliment of S, by removing edges connecting

the two sets. This partition is denoted as Π(S, Sc). In general, the sets S1, . . . , Sk form a

partition of the graph if Si

⋂
Sj = ∅ and S1

⋃ · · ·⋃Sk = V . In this section I will consider

work that exploits partitioning as a means to cluster the vertices in the graph.
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Define the out-boundary , ∂S, of S to be ∂S = {(u, v)|u ∈ S, v ∈ Sc} which is the cut

set. The quantity vol ∂S is also referred to as the edge cut cost, cut(S, Sc). That is

cut(S, Sc) =
∑

u∈S,v∈Sc

w(u, v) = vol ∂S (2.4)

One intuitive way to compute a partition Π(S, Sc) is to minimize the edge cut cost. By

convention I will label

f(u) =







1 u ∈ S

−1 u ∈ Sc
(2.5)

The problem of undirected graph clustering is well studied and the literature on the

subject is very rich (Everitt, 1980). Binary graph clustering is primarily related to combi-

natorial problems that involve partitioning vertices in two equal subsets with the minimum

number of edges cutting across the partition (Garey and Johnson, 1979). Although there

is a simple polynomial time minimum cut algorithm for this problem, richer partition ob-

jectives require an exponential search time for finding the exact optimum. Many heuristics

have been developed over the years for these richer criteria. Recently, spectral partitioning

methods emerged as a particularly effective and principled approach that often outperform

the traditional techniques, such as k-means or single linkage. Spectral graph clustering

methods relax the combinatorial problem into a real valued problem that can be solved

efficiently. Interestingly, these relaxed cut cost objectives can usually be expressed in terms

of a graph Laplacian, which facilitates the analysis and derivation of the clustering tech-

niques, and later, as we will see, provides a connection to continuous regularization theory.

In the following, I review some typical spectral clustering methods on undirected graphs

and compare some of their properties.

2.2.1 Minimum Cut

Consider the simple objective of minimizing cut(S, Sc) defined in (2.4), referred to as

Minimum Cut. It is well-known that the dual of the minimum cut problem is the well

known max flow problem (Cormen et al., 2001), which has a polynomial time solution via

linear programming.
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Even though there is a polynomial time solution, below I will develop an efficient

spectral approximation to the exact algorithm. An earlier paper by (Pothen et al., 1990)

has further discussions of this spectral approximation. Although the approximate solution

is not useful in practice, I would like to explain the derivation here in order to make other

spectral methods easier to understand. The spectral approximation for Minimum Cut is

achieved by relaxing the integer constraint on the integer assignment function f . First

note that the objective of minimizing cut(S, Sc) can be expressed directly in terms of the

unnormalized graph Laplacian (also referred to as the combinatorial Laplacian) L, which

is defined as

L(u, v) =







d(u) if u = v

−w(u, v) if u ∼ v

0 otherwise

It is convenient to view the Laplacian as a linear operator such that for any function

f : V → R, we have

Lf(u) =
∑

v∼u

w(u, v)(f(u)− f(v))

In matrix form, L is represented as

L = D −W

where D is a diagonal matrix that D(u, u) = d(u), and W is the matrix for the weight

function where W (u, v) = w(u, v). It is known that L is a symmetric positive semidefinite

operator, so its eigenvalues are real and non-negative (Chung, 1997). Obviously, its first

eigenvector is e = (1, 1, ..., 1) with the eigenvalue of 0. Mohar (1991, 1997) has an overview

of its many other properties.

We have the following proposition for the Minimum Cut objective.

Proposition 2.2.1. Minimizing cut(S, Sc) is equivalent to minimizing 1
4
fTLf , where f is

defined as in (2.5).

Proof. Consider an edge (u, v) ∈ E. Note that for any proposed partition Π(S, Sc), given

the definition of f , then (f(u)− f(v))2 = 4 if u ∈ S and v ∈ Sc. But if u, v are both in S
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or both in Sc then (f(u)− f(v))2 = 0. Therefore, we obtain

cut(S, Sc) =
1

4

∑

u∈S,v∈Sc

w(u, v)(f(u)− f(v))2

=
1

8

∑

u∼v

w(u, v)(f(u)− f(v))2

=
1

4
fT Lf (2.6)

Thus, solving for the Minimum Cut is equivalent to solving for a {+1,−1}-valued

function, f , on vertices that minimizes (2.6). If one were to drop the integer constraint

on f , this becomes a straightforward convex quadratic optimization with a closed form

solution: Lf = 0. This equation explicitly demonstrates that the solution f requires the

harmonic property—the function value of vertex u is the weighted linear combination of

the values of its neighbors. Interestingly, in the continuous case, this is exactly Laplace’s

equation, which is a partial differential equation that occurs in many fields of science, such

as electromagnetism, astronomy and fluid dynamics. A function f that satisfies Laplace’s

equation is said to be harmonic. A solution to Laplace’s equation has the property that

the average value over a spherical surface is equal to the value at the center of the sphere.

The minimization problem has no local maxima or minima because the solution equation

is linear; any superposition of any two solutions is also a solution. In the discrete case,

as in a graph, the equation has similar meaning and properties. I will explore a deeper

connection between the graph Laplacian with the continuous standard Laplacian defined

in terms of differential operators in Section 2.3.2.

Unfortunately, without any further constraints, the solution of the equation Lf = 0 is

not uniquely determined so that the solution can still be undesirable. For example, there

is nothing to prevent the solution from cutting off a single vertex that happens to have a

small total weight in its connections to the rest of the graph (Shi and Malik, 2000). To

overcome this problem, the objective should be modified to take into account the sizes of

S and Sc in the partition, which leads to the next clustering method.
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2.2.2 Ratio Cut

To improve the quality of the clustering results, it is natural to impose an additional

constraint on partition size to ensure balance. However, this results in an NP-complete

problem (Matula and Shahrokhi, 1990). Although many heuristics have been proposed

to solve this problem, a significant advance was made by the Ratio Cut method, which

incorporates partition balance in the cut cost criterion rather than imposing the constraints

explicitly (Hagen and Kahng, 1992b). This allows one to achieve a convenient spectral

approximation.

Ratio Cut attempts to minimize the cut cost while simultaneously balancing the car-

dinality of the partitions. The Ratio Cut criterion is defined as

Rcut(S, Sc) =
cut(S, Sc)

|S| +
cut(Sc, S)

|Sc| (2.7)

Proposition 2.2.2. Let α = |S|/|G|. Then

Rcut(S, Sc) =
gT Lg

gTg
, where g(u) =







2(1− α) u ∈ S

−2α u ∈ Sc
(2.8)

Moreover, g satisfies

gTe = 0 (2.9)

where e is a column vector with all elements equal 1.

Proof. First to establish (2.8), note that from the definition of f given in (2.5) and from

Proposition 2.2.1 we have

Rcut(S, Sc) =

(
1

|S| +
1

|Sc|

)

cut(S, Sc)

=

(
1

|S| +
1

|Sc|

)(

1

8

∑

u∼v

w(u, v)(f(u)− f(v))2

)

=

∑

u∼v w(u, v)(f(u)− f(v))2

8α(1− α)
∑

u f 2(u)
(2.10)
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where the last step follows from the fact that 1
|S| +

1
|Sc| = |G|

|S||Sc| = 1
α(1−α)|G| and |G| =

∑

u f 2(u). Now by the definition of g, we have that f(u)− f(v) = g(u)− g(v), and hence
∑

u∼v

w(u, v)(f(u)− f(v))2 =
∑

u∼v

w(u, v)(g(u)− g(v))2 = 2gTLg (2.11)

which establishes the numerator in (2.8). It remains only to derive the denominator. To

do so, first notice that g(u) = f(u) + (1− 2α), and therefore
∑

u

f(u) =
∑

u∈S

f(u) +
∑

u∈Sc

f(u) = (2α− 1)|G|

Thus, we obtain

gT g =
∑

u

g2(u) =
∑

u

(f(u) + (1− 2α))2

= |G|+ (1− 2α)2|G|+ 2(1− 2α)
∑

u

f(u)

= |G|+ (1− 2α)2|G|+ 2(1− 2α)(2α− 1)|G|
= 4α(1− α)|G| = 4α(1− α)

∑

u

f 2(u) (2.12)

Plugging (2.11) and (2.12) into (2.10) yields (2.8).

Finally, to show that the constraint (2.9) holds, note that
∑

u

g(u) =
∑

u∈S

g(u) +
∑

u∈Sc

g(u) = α|G|(2− 2α) + (1− α)|G|(−2α) = 0

Therefore, an approximate solution to minimizing the Ratio Cut objective can be ob-

tained by relaxing the discrete constraint on g. In this case, minimizing the objective (2.8),

which is the Rayleigh Quotient, can be obtained by solving

min gTLg s.t. ‖ g ‖= 1, gTe = 0

Since there are boundary conditions, the Rayleigh-Ritz theorem (Lutkepohl, 1997) can be

used to show that the second smallest eigenvector of L is the unique solution.

Although the Ratio Cut criterion is a significant improvement over Minimum Cut, in

that it attempts to balance the size of the partitions, it still does not necessarily give

reasonable results if the edge weights are not approximately uniform, which is common in

reality.
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2.2.3 Normalized Cut

A more sophisticated method has recently been proposed by Shi and Malik (2000). In this

method, the volumes of the partitions are considered, not just their cardinalities, which

takes into account the distribution of weights in the graph. The Normalized Cut cost

objective is given by

Ncut(S, Sc) =
cut(S, Sc)

vol S
+

cut(Sc, S)

vol Sc
(2.13)

Computing the minimum Normalized cut is also a combinatorial optimization problem

that is NP hard (Shi and Malik, 2000). However, the spectral approach, again, allows the

problem be approximately solved by relaxing the integer contraints. The spectral solution

involves another form of the graph Laplacian—the normalized graph Laplacian ∆ which is

defined as

∆(u, v) =







1− w(v,v)
d(v)

if u = v

− w(u,v)√
d(u)d(v)

if u ∼ v

0 otherwise

(2.14)

As with the combinatorial Laplacian, L, the normalized Laplacian ∆ can also be inter-

preted as a linear operator on vertex functions f

∆f(u) =
1

√

d(u)

∑

v∼u

w(u, v)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)

(2.15)

Note that if d(u), defined in (2.1), is uniformly distributed, then ∆f(u) reduces to Lf(u)

up to a constant factor 1
d(u)

.

We can write the normalized Laplacian as a matrix

∆ = I −D−1/2WD−1/2 (2.16)

In general, the following relation holds between L and ∆:

∆ = D−1/2LD−1/2

∆ is also semidefinite. However, its first eigenvector is D1/2e which is not constant anymore.

Chung (1997) introduces other properties for the normalized graph Laplacian.
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Proposition 2.2.3. Let γ = vol S/ vol G where vol S and vol G are defined as in (2.2) and

(2.3), and d is defined as in (2.1). Then

Ncut(S, Sc) =
hT ∆h

hT h
(2.17)

where h =
√

d ◦ r1 such that

r(u) =







2(1− γ) u ∈ S

−2γ u ∈ Sc

Moreover, h satisfies

hT D−1/2e = 0 (2.18)

Proof. Similar to the proof of (2.10) in Proposition 2.2.2, the Normalized Cut cost criterion

can be written as

Ncut(S, Sc) =

∑

u∼v w(u, v) (f(u)− f(v))2

8γ(1− γ)
∑

v∈V f 2(v)d(v)
(2.19)

Clearly for all u, v ∈ V ,

sign(r(v)) = sign(f(v))andr(u)− r(v) = f(u)− f(v) (2.20)

Following a similar proof to (2.12) and (2.9), we have

4γ(1− γ)
∑

v∈V

f 2(v)d(v) = 2
∑

v∈V

r2(v)d(v) (2.21)

and
∑

v∈V

r(v)d(v) = 0 (2.22)

(2.22) shows the constraint (2.18) holds given h =
√

d◦ r. Therefore, combining (2.20) and

1Operator ◦ denotes componentwise multplication.
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(2.21) into (2.19) we have

Ncut(S, Sc) =

∑

u∼v w(u, v) (r(u)− r(v))2

2
∑

v∈V r2(v)d(v)

=

∑

u∼v w(u, v)

(

h(u)
√

d(u)
− h(v)
√

d(u)

)2

2
∑

v∈V h2(v)
(2.23)

=
hT ∆h

hT h
(2.24)

As in the Ratio Cut case, an approximate solution to minimizing the Normalized Cut

objective, can be obtained by relaxing the discrete constraint on h by solving

min hT ∆h s.t. ‖ h ‖= 1, hT D−1/2e = 0

The solution is the second smallest eigenvector of normalized Laplacian ∆, or equivalently

the generalized eigenvector of Lv = λDv. This gives an efficient computational technique

for finding an approximate solution by relaxing the discrete constraint on h. Another

closely related work is by Ng et al. (2002), which directly finds the eigenvector with the

second largest eigenvalue of I −∆, obtaining the same solution as above.

2.2.4 Random Walk Interpretation

A nice advantage of the normalized cut criterion in particular is that it can also be under-

stood in terms of stationary random walks on the undirected graph. Random walks can

be used to elegantly model how local information is naturally propagated over the entire

graph. This interpretation is related to low conductivity sets in a Markov random walk

(Meila and Shi, 2001). The random walk model is also related by analogy to a model of

electrical flow in a network (Lovasz, 1996). Some basic properties of random walks on a

graph (e.g. the mixing time that measures how fast the random walk reaches its stationary

status) are determined by the spectrum of the graph. To demonstrate the interpretation,

I will use some basic definitions in random walks.
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A random walk is determined by the transition probability P (u, v) indicating the prob-

ability of traversing from vertex u to v. Clearly for each vertex u

∑

u∼v

P (u, v) = 1

A random walk is said to be ergodic if there is a unique stationary distribution π satisfying

the following balance equation

∑

v∼u

π(u)P (u, v) = π(v), ∀v ∈ V (2.25)

A natural random walk on a weighted undirected graph can be defined by the transition

probabilities

p(u, v) =
w(u, v)

d(u)
(2.26)

where d(u) is defined in (2.1). It is easy to verify that the stationary distribution of this

particular random walk model on a undirected graph satisfies

π(u) = d(u)/ volG

where vol G is defined in (2.3). The conductance of a set S ⊂ V is defined as

Φ(S) =

∑

u∈S,v∈Sc π(u)P (u, v)

π(S)

where π(S) =
∑

u π(u).

A natural way to measure the quality of a partition Π(S, Sc) is the frequency with which

a stationary random walk goes from S to Sc in proportion to the frequency with which the

walk remains in the set S. It can be shown that that minimizing the Normalized Cut in

undirected graph spectral clustering is in fact equivalent to minimizing the following (Shi

and Malik, 2000):

Ncut(S, Sc) = Φ(S) + Φ(Sc)

= Pr[S → Sc|S] + Pr[Sc → S|S]

Here, Pr[S → Sc|S] is the probability that the random walker goes from set S to set

Sc in one step, given that the current state is in S and the random walk has reached its
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stationary distribution. Intuitively, this makes sense that the normalized minimum cut cost

corresponds to having the probability of jumping between different clusters be small while

the probability of staying within the same cluster be large. This random walk interpretation

makes the normalized spectral clustering method more special and interesting compared to

other spectral methods. This interpretation will be exploited again in my research below,

and generalized to other types of graphs.

2.2.5 k-way Spectral Partitioning

The spectral clustering methods discussed up to now focus on binary clustering. For the

case of finding k clusters where k > 2, there are various approaches. For example, one can

recursively perform binary clustering. Another approach is to modify the cut criteria to

consider k clusters simultaneously. I briefly present the derivation for k-way Normalized

Cut in the following. The method for Ratio Cut can be obtained in a similar way.

Let Π = (Vi)
k
i=1 be a k-way disjoint partition of V such that V =

⋃k
i=1 Vi, where

Vi

⋂
Vj = ∅ for all 1 ≤ i, j ≤ k, i 6= j. The k-way Normalized Cut given by Gu et al. (2001)

is

Ncut(Π) =
W (V1, V

c
1 )

W (V1, V )
+

W (V2, V
c
2 )

W (V2, V )
+ · · ·+ W (Vk, V

c
k )

W (Vk, V )
(2.27)

Let xi = [0, . . . 0, 1 . . . 1, 0, . . . 0]T be an indicator vector with respect to all other vertices

such that 1 indicates two vertices belong to the same cluster. Then, (2.27) can be written

as

Ncut(Π) =
xT

1 (D −W )x1

xT
1 Dx1

+
xT

2 (D −W )x2

xT
2 Dx2

+ · · ·+ xT
k (D −W )xk

xT
k Dxk

(2.28)

Let yi = D1/2xi/‖D1/2xi‖2 and Yk = [y1, y2, . . . yk]. Then Y T
k Yk = Ik. Relaxing the

discreteness condition and substituting yi to xi in (2.28), we obtain the relaxed optimization

problem

min
Yk∈Rn×k

Tr(Y T
k (I −∆)Yk) s.t. Y T

k Yk = Ik

Again, this is a standard problem which can be solved by choosing the first k eigenvectors

of ∆ as the real valued solution.

To use the first k eigenvectors to obtain a discrete k-way partition, many heuristics

have been proposed. Perhaps the most popular one among them is the following (Ng
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et al., 2002): First form a matrix X = [Φ1 . . .Φk], consisting of the k smallest eigenvectors

of ∆. Then each row vector in X is regarded as the representation of one of vertex in a k-

dimensional Euclidean space. The vectors corresponding to vertices in distinct classes are

generally expected to be well separated, and consequently we can obtain a good partition

simply by running k-means on the rows of X.

A general practical issue for multi-class clustering problem is how to choose the number

of clusters k. A variety of methods have been proposed for this problem. One is to use

the eigengap heuristic that seeks a k such that the eigenvalues λ1, . . . λk are very small but

λk + 1 is relatively large (Tibshirani et al., 2001). BenHur et al. (2002) and Lange et al.

(2004) propose to apply the stability measurement to decide k. Interestingly, Ben-David

et al. (2006b) argue that the stability is not a suitable criterion to determine k. So far,

there is no justification of an optimal solution for this problem.

2.2.6 Comparison of Different Cut Criteria

It is worth noting that there is significant difference between the solutions of different

combinatorial problems arising from the different cut criteria. For example, Ratio Cut

only considers the cardinalities of the partition sets, whereas Normalized Cut considers the

weight-volumes of the partition sets. Thus, Ratio Cut essentially makes the assumption

that the node degree distribution over the graph is approximately uniform, which is not

generally true in applications. This explains why Normalized Cut outperforms both Ratio

Cut and Minimum Cut in most cases. The performance differences in clustering will

have impact on the semi-supervised learning methods that I will discuss in Section 2.4.

In addition, Normalized Cut is the only cut criterion that has the natural random walk

interpretation I gave in Section 2.2.4, which implies more powerful interpretations and

extensions that I will exploit in the next few chapters.

2.3 Supervised Learning on Undirected Graphs

One of my goals in this thesis is to demonstrate connections between different types of

learning problems on graphs; specifically unsupervised, semi-supervised and supervised

learning. To begin to establish these connections, I now consider a different learning
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problem: supervised learning. In supervised learning, all the training data (i.e. vertices)

are labeled y(v) ∈ {1,−1}, and we attempt to acquire a predictive model for unobserved

test data. If we were to temporarily restrict attention to classification behavior just on the

graph, intuitively, one could imagine balancing a tradeoff between minimizing a cut cost

while also trying to minimize the loss with respect to the given vertex labels. In this way,

it might be natural to consider learning a function by optimizing the combination

min
f

∑

v∈V

loss(f(v), y(v)) + λΩ(f) (2.29)

where Ω(f) = cut(f) and λ is a parameter. Clearly, the role that the cut cost plays in (2.29)

is that of a regularizer. For example, if one uses the Ratio Cut criterion, the regularizer

would be

ΩR(f) = fT Lf

on the other hand, if one uses the Normalized Cut criterion, the regularizer would be

ΩN (f) = fT ∆f

(Note that the denominator fT f in the cut costs is not considered here.)

Equation (2.29) provides a tentative general principle for graph based supervised learn-

ing that raises many interesting questions: What is the relationship between a cut cost and

a regularizer? Is the cut cost equivalent to a regularizer in terms of making the smooth-

ness assumption? Can one combines a cut cost regularizer with traditional regularizers

in supervised learning? To answer these questions more concretely, I need to first review

classical regularization theory for supervised learning in continuous spaces.

2.3.1 Regularization over a Continuous Domain

In the usual supervised learning setting, we are given a set of input vectors X = {x1,x2, . . . ,

xn},xi ∈ R
n, and a corresponding set of target labels Y = {y1, y2, . . . , yn}. We seek a func-

tion f : X → Y such that given a new input x∗ the inferred label f(x∗) approximates the

true label y∗. Referring to X and Y as the training data and the target labels respectively,

note that it is easy to arbitrarily construct some function that fits the training data exactly.

However, such an arbitrarily constructed function will predict poorly on unseen test data,
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particularly if there was noise present in the training data. This effect is usually referred to

as overfitting. To overcome the problem of overfitting when designing learning algorithms,

one typically uses a regularizer that smooths the function in a way that hopefully esti-

mates the true outputs more accurately for the given and unseen inputs. In other words,

we impose a bias towards smoothness in an attempt to reduce generalization error.

Thus, one normally optimizes a combined objective in this case, just as in the graph

case above

min
f

n∑

i=1

loss (yi, f(xi)) + λΩ(f) (2.30)

where loss(yi, f(xi)) is a loss function, Ω is a regularization operator on f , and λ is a

tradeoff parameter. A difference from before is that here we assume the domain is R
n, not

a discrete vertex set, and that f is defined on all of R
n. A key part of understanding (2.30)

is understanding the regularization operator Ω on f . The study of regularizers originally

arose from research on multivariate function estimation in statistics, such as polynomial

spline analysis. Regularization theory provides a framework for restoring well-posedness

by adding an appropriate constraint on the solution in (2.30) (Tikhonov and Arsenin,

1977; Morozov, 1984; Wahba, 1979). The choice of regularizer is understood as looking for

a smoothness functional that (hopefully) facilitates generalization to future inputs. For

example, a classical regularization functional is

Ω(f) =

∫

‖Df‖2dx (2.31)

where D is a linear differential operator, e.g., D = ∂
∂x

or D = ∂2

∂2x
(or even higher or-

der). The smoothness prior implicated in D makes the solution stable and insensitive to

noise. Intuitively, the higher the order of the derivative we consider, the greater the prior

preference will be for function smoothness.

An important special case is to choose D = ∂
∂x

, which gives the regularization functional

Ω(f) =

∫

‖Df‖2dx = ‖∆1/2f‖2 = fT ∆f (2.32)

where ∆ is the Laplacian operator. The Laplacian operator is a second order differential

operator, defined as the divergence (div) of the gradient (∇) as

∆f = div(∇f)
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This definition can be applied to functions defined on R
n, but can even be extended to

functions defined on a Riemannian manifold. The divergence operator on a manifold is

adjoint to the gradient operator that is implied by the classical Stoke’s theorem

∫

M

〈∇f, g〉 = −
∫

M

(div g)f

Below I demonstrate that the graph based Normalized Laplacian that was derived above

can be interpreted as a direct analogue of this classical continuous Laplacian. In particular,

I will establish this connection by showing that the important properties of the Laplacian

still hold.

2.3.2 Regularization over a Discrete Domain

To show that the cut cost obtained from spectral clustering is really a regularizer in the

same sense in a continuous space, I will show the normalized cut cost can be viewed as a

discrete form of the Laplacian differential operator.2

Let H(V ) denote the space of functions, in which f : V → R assigns a real value f(u)

to each vertex u. A function in H(V ) can be thought of as a column vector in R
|V |, where

|V | is the number of vertices in V . The function space then can be endowed with the

standard inner product in R
|V | as

〈f, g〉H(V ) =
∑

u∈V

f(u)g(u)

for any two functions f and g in H(V ). Similarly define H(E) consisting of the real-valued

functions on edges.

Remember that, regularization is achieved by enforcing smoothness in f via (2.31) or

via the more particular form (2.32). Such a smoothness objective has the same form as the

2Recently a family of analogous “differential operators” have been developed that connects to those in

continuous spaces studied in differential geometry (Zhou and Schölkopf, 2005). The paper attempts to

study the regularizer in a semi-supervised learning method(Zhou et al., 2004). Here I further explain why

the cut cost can be understood as a regularizer and present this unification of unsupervised, supervised

and semi-supervised learning on graphs in a way that facilitates solving problems on more complicated

graphs.
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spectral graph clustering objectives, e.g. 〈f, ∆f〉, thus indicating that the cut cost may be

interpretable as penalizing the second order “derivatives”.

For continuous spaces, the divergence of the gradient of a scalar valued function is the

Laplacian. Therefore, we would like to explore if the graph Laplacian operator also satisfies

this definition as stated in the following definitions and theorem (Zhou and Schölkopf,

2005).

Definition 2.3.1. Let the graph gradient on an undirected graph be an operator ∇ :

H(V )→H(E) defined by

(∇f)(u, v) =

√

w(u, v)

d(v)
f(v)−

√

w(u, v)

d(u)
f(u), for all (u, v) ∈ E (2.33)

In the definition, clearly, the gradient measures the change of a function on each edge.

Moreover

(∇f)(u, v) = −(∇f)(v, u)

Definition 2.3.2. Let the graph divergence div : H(E)→ H(V ) be an operator defined by

(div g)(v) =
∑

u∼v

√

w(u, v)

d(v)
(g(v, u)− g(u, v)) (2.34)

Then we have the following proposition.

Proposition 2.3.3. The graph divergence div satisifies

〈∇f, g〉 = 〈f,− div g〉 for all f ∈ H(V ) and g ∈ H(E) (2.35)

The proof is obtained simply by applying the definitions of the gradient and divergence

to both sides of (2.35) which quickly yields the result.

The discrete divergence operator can be thought of discrete analogue of the classical

Stoke’s theorem that
∫

M
〈∇f, g〉 = −

∫

M
(div g)f . Intuitively, the divergence measures the

net outflow of function f at each vertex.

Definition 2.3.4. Let the normalized graph Laplacian operator ∆ : H(V )→ H(V ) on an

undirected graph defined by

(∆f)(v) = f(v)−
∑

u∼v

w(u, v)
√

g(u)g(v)
f(u)
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Theorem 2.3.5. The normalized graph Laplacian on an undirected graph satisfies

∆f = −1

2
div(∇f)

Proof. Substituting Equation (2.33) and (2.34) into (2.32), we have

(∆f)(v) =
1

2

∑

u∼v

√

w(u, v)

g(v)
((∇f)(u, v)− (∇f)(v, u))

=
∑

u∼v

√

w(u, v)

g(v)

(√

w(u, v)

g(v)
f(v)−

√

w(u, v)

g(u)
f(u)

)

= f(v)−
∑

u∼v

w(u, v)
√

g(u)g(v)
f(u)

It is not hard to see that in matrix notation, ∆ can be written as ∆ = I −D−1/2WD−1/2,

which is just the normalized Laplace matrix in Equation (2.16).3

Thus the theorem shows the graph Laplacian is a discrete version of a classical differ-

ential operator.

Further justification for the analogy is given by considering the spectrum of the operator

∆, which is defined by its eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. To analyze the spectrum,

first note that the Rayleigh quotient of ∆ associated with an arbitrary function f ∈ H(V )

is given by Chung (1997),

〈f, ∆f〉
〈f, f〉 =

∑

u∼v(g(u)− g(v))2w(u, v)
∑

v g(v)2d(v)

where g(u) = d(u)−1/2f(u). Then, letting e be the constant 1 function, note that e0(u) =

d(u)−1/2e is an eigenfunction of ∆ with eigenvalue 0. This immediately yields the result

3Similarily, we can also derive the combinatorial Laplacian by defining the gradient as

(∇f)(u, v) =
√

w(u, v)f(v)−
√

w(u, v)f(u), for all (u, v) ∈ E

and the divergence as

(div g)(v) =
∑

u∼v

√

w(u, v) (g(v, u)− g(u, v))
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that

λ1 = min
g:

P

g(u)d(u)=0

∑

u∼v(g(u)− g(v))2w(u, v)
∑

v g(v)2d(v)
(2.36)

This shows that the definitions leading to the normalized graph Laplacian are not arbi-

trary, since (2.36) closely corresponds to the first nontrivial eigenfunction of the Laplacian-

Beltrami operator on functions defined over a Riemannian manifold.4 The investigation of

the connection between continuous Laplacian operator and the graph Laplacians has also

been studied by Belkin and Niyogi (2005); Hein et al. (2005); Gine and Koltchinskii (2005)

and Hein (2006).

2.4 Semi-supervised Learning on Undirected Graphs

Interestingly, this connection between unsupervised cut criteria and supervised regulariza-

tions yields its greatest benefits when applied to semi-supervised learning. Semi-supervised

learning attempts to learn a predictive model given a combination of both labeled and unla-

beled data. Formally, the problem is defined as given a set of data X = {x1, x2, . . . , xl, xl+1,

. . . , xn} on domain X where the first l are labeled Y = {y1, y2, . . . , yl} and the rest data

are not labeled. There are two common variants of this problem: out of sample and

transduction. In the out of sample problem, one attempts to generate a model that can be

used for out-of-sample predictions. The transductive problem typically considers a discrete

assignment function that only labels the given set of data without creating a model.

Either way, the intuition in semi-supervised learning is the same as graph based super-

vised learning. The goal is to minimize

min
f

l∑

i=1

loss(f(xi), yi) + λ cut(f) (2.37)

4For functions defined over a Riemannian manifold M , the eigenvalue of the first nontrivial eigenfunc-

tion, f , of the Laplacian-Beltrami operator satisfies

λ1 = inf
f :

R

M
f=0

∫

M
|∇f |2

∫

M
|f |2
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where cut(f) is one of the natural graph cut criteria discussed above. The combined

objective encourages the learner to minimize the cut cost over both labeled and unlabeled

data, while trying to preserve the original class labels on labeled data.

Section 2.3.2 demonstrated that the cut cost associated with the graph Laplacian is

a valid regularizer defined on functions over graphs. Therefore, a general objective for

semi-supervised learning can be rewritten as

min
f

l∑

i=1

loss(f(xi), yi) + λΩ(f) (2.38)

The difference between this objective and the graph based supervised discussed earlier is

that here the regularizer is applied to the function on both labeled and unlabeled data.

Not surprisingly, objective (2.38) serves as a general principle in many graph based

semi-supervised learning algorithms. Here I list some of them.

• Zhou et al. (2004) proposes a framework for learning from labeled and unlabeled data

on graphs by using the Normalized Cut objective as the regularizer. The framework

solves the optimization problem

f ∗ = arg min
f∈H(V )

µ‖f − y‖2 + ΩN(f) (2.39)

where the regularizer ΩN(f) is derived from Normalized Cut objective. Initially,

fi = yi for all labeled data and fi = 0 for all unlabeled data. Conveniently, (2.39)

has a closed form solution

f ∗ = (1− α)(I − αS)−1y

where α = 1/(1 + µ) and S = D−1/2WD−1/2 = I −∆.

• The method in (Zhu et al., 2003) is equivalent to using the Ratio Cut objective as

the regularizer in (2.38) with a hard labeling constraint—the labels on the labeled

vertices are all fixed to f = y. Both (Zhou et al., 2004) and (Zhu et al., 2003)

propose transductive learning algorithms over graphs. Interestingly, they both have

interesting random walk interpretations, which I include in the thesis Appendix.

Notably, I present an interpretation for (Zhu et al., 2003) that has not been explicitly

outlined in literature before.
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• Belkin and Niyogi (2004) propose to solve the out of sample problem by combining the

regularizer derived from Ratio Cut with a classical regularizer in supervised learning.

The objective is

f ∗ = arg min
f∈H

l∑

i=1

loss(xi, yi, f) + γA‖f‖2H + γIΩR(f)

where ‖f‖H denotes the norm of f in a reporducing kernel Hilbert space. The

solution for the optimization problem can be derived by the Representer theorem.

The discrete analysis in Section 2.3.2 motivates why the Ratio Cut cost can be used

as a regularizer and therefore can be properly combined with other regularizers.

• Another related algorithm for out of sample prediction is the transductive SVM

algorithm of Vapnik (1998), which involves finding a separating hyperplane for a

labeled data set that is also maximally distant from a given set of unlabeled test

points. The problem can be written as a optimization problem as,

min
w

C

l∑

i=1

|1−
(
yi(wxi + b)

)
|+ + C∗

n∑

i=l+1

|1− (wxi + b)|+ +
1

2
wTw

The drawback is that the objective is non-convex and thus it is difficult to minimize.

A broader literature review in semi-supervised learning can be found in (Zhu, 2006).

Though there are various methods, many of them follow the general principle (2.38). I

will also utilize this framework to solve more involved graph based learning problems in

the next few chapters.

2.4.1 Empirical Comparison of Regularizers

Section 2.2 introduces three distinct cut cost objectives which we have seen can all be

interpreted as regularizers. A natural question is: Which of these alternative regularizers

gives better semi-supervised learning performance in practice?

To illustrate the performance differences when using the different regularizers, I consider

a semi-supervised classification task using the USPS handwritten 16 × 16 digits dataset,
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Figure 2.1: test errors in classification using different cut costs as regularizers

providing both labeled and unlabeled data to the learning algorithm (2.39) but with dif-

ferent regularizations that are from Normalized Cut and Ratio Cut respectively. I use the

digits 1, 2, 3 and 4 as the four classes in the experiment. There are 1269, 929, 824 and

852 examples for each class respectively, for a total of 3874. I construct a fully connected

graph by using a RBF kernel where the width is set to 1.25. I sequentially increase the

number of labeled points. The test errors are averaged over 100 trials and are summerized

in Figure 2.1–left. It is clear that the method using Normalized Cut regularization signifi-

cantly improved the accuracy over Ratio Cut (which I refer to as unnormalized regularizer).

The right side of Figure 2.1 shows the performance of these two methods in comparison

to a heuristic approach used in (Zhu et al., 2003) that approximates class proportions as

prior knowledge. The method using Normalized Cut regularization still exhibits the best

performance.

The reason for the performance difference is that the Normalized Cut objective is

typically better than Ratio Cut in unsupervised learning, and this advantage carries over

to the semi-supervised case. The methods proposed in (Zhu et al., 2003) and (Belkin and

Niyogi, 2004) amount to adding label constraints to the Ratio Cut objective, which explains

why these methods require additional heuristics to maintain the class proportions. The

experiment shows that the selection of unsupervised cut criteria has significant influence

on the performance of the resulting semi-supervised learning algorithms.
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2.5 Summary

This background provides reviews for graph based unsupervised, supervised learning and

semi-supervised learning. I have demonstrated a unified connection for unsupervised, semi-

supervised and supervised learning on undirected graphs. This connection was established

by noticing that the cut costs derived from unsupervised learning are equivalent to regular-

izers that impose smoothness assumptions in semi-supervised learning. Different learning

algorithms on graphs can be unified in the same regularization framework.

I would like to note that a further generalization of regularization operators can be ob-

tained via reproducing kernel Hilbert space(RKHS). For example, the radial basis function

(RBF) kernel can be shown to correspond to regularization based on higher order differen-

tial operators (see thesis Appendix for a brief discussion). In Chapter 7, I discuss a future

work the possibility that regularization based on such higher order differential operators

might also be possible over graphs.

An obvious limitation of the algorithms so far is that they only work for undirected

graphs. However, undirected graphs are not effective at capturing every type of data

relationship. This leads to my next few chapters that solve learning problems where the

relationship between data items follows a much more complex arrangement.



Chapter 3

Beyond Symmetry: Learning with

Directed Graphs

In this chapter, I investigate the question of how to exploit the directionality and con-

nectivity structure of a directed graph, rather than just exploit symmetric relationships

encoded in an undirected graph in unsupervised and semi-supervised learning.

Many types of relationships between data can be better modelled by directed as op-

posed to undirected edges; for example, consider the hyperlink structure of the World Wide

Web (Figure 3.1), the citation and reference links in bibliographic data, and the relation-

ships in social networks. In these domains directionality is important and encodes useful

information that is not adequately captured by undirected edges. In particular, there has

been a significant research on exploiting the link structure of the Web for many purposes,

including ranking Web pages, detecting Web communities, finding Web pages similar to

a given web page, and finding Web pages of interest to a given geographical region; see

Henzinger (2001) for a comprehensive survey. Unfortunately, few of the previous research

efforts have worked directly with directed graphs; instead they have alternatively resorted

to transforming a directed graph to an undirected one and applied undirected methods

like those discussed in the previous chapter. However, by doing so, important information

is lost—the asymmetric relationship encoded by edge direction. The shortcoming in cur-

rent research raises the question of how to explore the directionality information naturally

encoded in directed graphs to achieve better results.

33
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Figure 3.1: The World Wide Web can be considered as a directed graph, where vertices

correspond to web pages and directed edges represent hyperlinks between them.

The major contribution of this chapter is to propose new unsupervised and semi-

supervised learning algorithms for directed graphs. The unsupervised learning approach

will be based on a generalization of undirected spectral clustering to directed graphs. In-

terestingly, the question of how eigenvectors partition a directed graph has been listed as

one of six algorithmic challenges in Web search engines by Henzinger (2003). I have made

progress on this question, and developed effective new unsupervised and semi-supervised

learning algorithms for directed graphs as a result. I apply these new algorithms to classi-

fication and clustering problems on different types of networks, including Web and protein

interaction networks. In particular, I study the problem of Web community identification,

investigating how the directed hyperlink information conveyed via random walks can help

one efficiently identify latent Web communities from the hyperlink topology alone. The

analysis contributes a practical characterization of distinct random walks for unsupervised

learning on the Web.

3.1 Preliminaries

A directed graph G = (V, E) consists of a finite set of vertices V , together with a subset of

directed edges E. An edge of a directed graph is an ordered pair (u, v) where u and v are

the vertices of the graph. Given an edge (u, v), I say that the vertex v is adjacent from the
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vertex u, and the the vertex u is adjacent to the vertex v, and the edge (u, v) is incident

from the vertex u and incident to the vertex v.

A path in a directed graph is a tuple of vertices (v1, v2, . . . , vp) with the property that

(vi, vi+1) ∈ E for 1 ≤ i ≤ p − 1. A directed graph is strongly connected if for every pair

of vertices u and v there is a path in which v1 = u and vp = v. For a strongly connected

graph, there is an integer k ≥ 1 and a unique partition V = V0 ∪ V1 ∪ · · · ∪ Vk−1 such that

for all 0 ≤ r ≤ k − 1 each edge (u, v) ∈ E with u ∈ Vr has v ∈ Vr+1, where Vk = V0, and k

is maximal, that is, there is no other such partition V = V
′

0 ∪· · ·∪V
′

k′−1
with k

′
> k. When

k = 1, we say that the graph is aperiodic; otherwise we say that the graph is periodic.

A weighted directed graph incorporates an associated weight function w : E → R
+

that assigns a weight to each edge. Given a weighted directed graph and a vertex v of

this graph, the in-degree function d− : V → R
+ and out-degree function d+ : V → R

+ are

defined by1

d−(v) :=
∑

v←u

w(u, v) (3.1)

and

d+(v) :=
∑

v→u

w(v, u) (3.2)

where u → v denotes the set of vertices adjacent to the vertex v, and u ← v the set of

vertices adjacent from the vertex v.

3.2 Unsupervised Learning on Directed Graphs

To solve unsupervised learning on directed graphs, I will need to give the following defini-

tions.

Given weighted directed graph, there is a natural random walk on the graph with the

transition probability function p : V × V → R
+ defined by p(u, v) = w(u, v)/d+(u) for

all (u, v) ∈ E, and 0 otherwise. The random walk on a strongly connected and aperiodic

directed graph has a unique stationary distribution π; i.e. a unique probability distribution

satisfying the balance equation π(v) =
∑

u→v π(u)p(u, v), for all v ∈ V . Moreover, π(v) > 0

for all v ∈ V.

1Note that
∑

u→v is the same as
∑

u:u→v, where I omit ‘u :’ for short.
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Given a subset S of the vertices from a directed graph G, define the volume of S to be

vol S =
∑

v∈S

π(v) (3.3)

Clearly, vol S is the probability that the random walk occupies some vertex in S and

consequently vol G = 1.

Define the volume of the out-boundary of the subset S to be

vol ∂S =
∑

∂S

π(u)p(u, v) (3.4)

Note that vol ∂S is the probability with which one sees a transition from the subset S to its

complement Sc. The definition clearly takes the directionality into account by considering

one step move after the walk in the graph has reached stationary status.

3.2.1 Normalized Cut on Directed Graphs

Now we may partition a directed graph into two parts S and Sc by minimizing

Ncut(S, Sc) =

(
vol ∂S

vol S
+

vol ∂Sc

vol Sc

)

(3.5)

which is a directed generalization of the Normalized Cut criterion for undirected graphs in

Section 2.2.3.

The key observation for generalizing the Normalized Cut criterion for directed graphs

is

Proposition 3.2.1. vol ∂S = vol ∂Sc.

Proof. Obviously the probability of a transition from the subset S to its complement Sc

must be compensated by the probability of an opposite transition. Formally, for each

vertex v in V , it is easy to see that

∑

u←v

π(v)p(v, u) = π(v)
∑

u←v

p(v, u) = π(v)

and
∑

u→v

π(u)p(u, v) = π(v)
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Figure 3.2: A subset S and its complement Sc. Note that there is only one edge in the

out-boundary of S.

Therefore,
∑

u→v

π(u)p(u, v)−
∑

u←v

π(v)p(v, u) = 0 (3.6)

This is consistent with the law of flow conservation in electrical networks stating that the

amount of flow entering a vertex equals the amount of flow that leaves the vertex.

Summing (3.6) over the vertices of S (see also Figure 3.2) then

∑

v∈S

(
∑

u→v

π(u)p(u, v)−
∑

u←v

π(v)p(v, u)

)

=
∑

(u,v)∈∂Sc

π(u)p(u, v)−
∑

(u,v)∈∂S

π(u)p(u, v) = 0,

which completes the proof.

Therefore, The directed normalized cut criterion (3.5) can be further written as

Ncut(S, Sc) = vol ∂S

(
1

vol S
+

1

vol Sc

)

I next consider a spectral relaxation of the Normalized Cut criterion that permits an

efficient algorithmic approach.
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Proposition 3.2.2. Let ν denote vol S as defined in (3.3). Then

Ncut(S, Sc) =

∑

(u,v)∈E

π(u)p(u, v)

(
f(u)
√

π(u)
− f(v)
√

π(v)

)2

2〈f, f〉 (3.7)

where f =
√

π ◦ g such that

g(u) =







2(1− ν) u ∈ S

−2ν u ∈ Sc

Moreover,
∑

v∈V

√

π(v)f(v) = 0 (3.8)

Proof. Define an indicator function h ∈ R
|V | by h(v) = 1 if v ∈ S, and −1 if v ∈ Sc.

Clearly, we have 0 < ν < 1 due to S ⊂ G. Then (3.5) may be written

Ncut(S, Sc) =

∑

(u,v)∈E

π(u)p(u, v)(h(u)− h(v))2

8ν(1− ν)

Based on the definition of g, clearly, sign g(v) = sign h(v) for all v ∈ V and h(u)− h(v) =

g(u)− g(v) for all u, v ∈ V . Moreover, similar to the proof in Proposition 2.2.3, it is not

hard to see that
∑

v∈V

π(v)g(v) = 0

which shows the constraint (3.8) holds given f =
√

π ◦ g. Also we have

∑

v∈V

π(v)g2(v) = 4ν(1− ν)

Therefore

Ncut(S, Sc) =

∑

(u,v)∈E

π(u)p(u, v)(g(u)− g(v))2

2
∑

v∈V

π(v)g2(v)

The above equation may be further transformed into (3.7) when f =
√

π ◦ g.
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Efficient computation Define the numerator of Ncut(S) as Ω(f)

Ω(f) =
1

2

∑

(u,v)∈E

π(u)p(u, v)

(
f(u)
√

π(u)
− f(v)
√

π(v)

)2

For solving the minimization of the directed Normalized Cut objective, I introduce an

operator Θ : R
|V | → R

|V | defined by

(Θf)(v) =
1

2

(
∑

u→v

π(u)p(u, v)f(u)
√

π(u)π(v)
+
∑

u←v

π(v)p(v, u)f(u)
√

π(v)π(u)

)

(3.9)

Let Π denote the diagonal matrix with Π(v, v) = π(v) for all v ∈ V ; let P denote

the matrix with P (u, v) = p(u, v) if (u, v) ∈ E and 0 otherwise; and let P T denote the

transpose of P . Then the operator Θ may then be written in matrix form as

Θ =
Π1/2PΠ−1/2 + Π−1/2P TΠ1/2

2
(3.10)

The following lemma allow us to rewrite Ω(f) in terms of a inner product that facilitates

minimizing (3.7)

Lemma 3.2.3. Let I denote the identity matrix. Then

Ω(f) = 2〈f, (I −Θ)f〉

Proof. The idea is to use summation by parts, a discrete analogue of the more common

integration by parts.

∑

(u,v)∈E

π(u)p(u, v)

(

f(u)
√

π(u)
− f(v)
√

π(v)

)2

=
1

2

∑

v∈V

{
∑

u→v

π(u)p(u, v)

(

f(u)
√

π(u)
− f(v)
√

π(v)

)2

+
∑

u←v

π(v)p(v, u)

(

f(v)
√

π(v)
− f(u)
√

π(u)

)2}

=
1

2

∑

v∈V

{
∑

u→v

p(u, v)f 2(u) +
∑

u→v

π(u)p(u, v)

π(v)
f 2(v)− 2

∑

u→v

π(u)p(u, v)f(u)f(v)
√

π(u)π(v)

}

+
1

2

∑

v∈V

{
∑

u←v

p(v, u)f 2(v) +
∑

u←v

π(v)p(v, u)

π(u)
f 2(u)− 2

∑

u←v

π(v)p(v, u)f(v)f(u)
√

π(v)π(u)

}
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The first term on the right-hand side may be written

∑

(u,v)∈E

p(u, v)f 2(u) =
∑

u∈V

∑

v←u

p(u, v)f 2(u)

=
∑

u∈V

(
∑

v←u

p(u, v)

)

f 2(u) =
∑

u∈V

f 2(u) =
∑

v∈V

f 2(v)

and the second term

∑

v∈V

(
∑

u→v

π(u)p(u, v)

π(v)

)

f 2(v) =
∑

v∈V

f 2(v)

Similarly, for the fourth and fifth terms, one can show that

∑

v∈V

∑

u←v

p(v, u)f 2(v) =
∑

v∈V

f 2(v)

and
∑

v∈V

∑

u←v

π(v)p(v, u)

π(u)
f 2(u) =

∑

v∈V

f 2(v)

respectively. Therefore

Ω(f) =
∑

v∈V

{

f 2(v)− 1

2

(
∑

u→v

π(u)p(u, v)f(u)f(v)
√

π(u)π(v)
+
∑

u←v

π(v)p(v, u)f(v)f(u)
√

π(v)π(u)

)}

which completes the proof.

Lemma 3.2.4. The eigenvalues of the operator Θ are in [−1, 1], and the eigenvector with

the eigenvalue equal to 1 is
√

π.

Proof. It is easy to see that Θ is similar to the operator Ψ : R
|V | → R

|V | defined by

Ψ =
(
P + Π−1P TΠ

)
/2. Hence Θ and Ψ have the same set of eigenvalues. Assume that f is

the eigenvector of Ψ with eigenvalue λ. Choose a vertex v such that |f(v)| = maxu∈V |f(u)|.
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Then we can show that |λ| ≤ 1 by

|λ||f(v)| =

∣
∣
∣
∣
∣

∑

u∈V

Ψ(v, u)f(u)

∣
∣
∣
∣
∣
≤
∑

u∈V

Ψ(v, u)|f(v)|

=
|f(v)|

2

(
∑

u←v

p(v, u) +
∑

u→v

π(u)p(u, v)

π(v)

)

= |f(v)|

In addition, we can show that Θ
√

π =
√

π by

1

2

(
∑

u→v

π(u)p(u, v)
√

π(u)
√

π(u)π(v)
+
∑

u←v

π(v)p(v, u)
√

π(u)
√

π(v)π(u)

)

=
1

2

(
∑

u→v

π(u)p(u, v)
√

π(v)
+
∑

u←v

π(v)p(v, u)
√

π(v)

)

=
1

2

(

1
√

π(v)

∑

u→v

π(u)p(u, v) +
√

π(v)
∑

u←v

p(v, u)

)

=
√

π(v)

According to the previous lemmas, if function f is allowed to take arbitrary real values,

then the directed graph partition problem (3.5) becomes

arg min
f∈R|V |

〈f, (I −Θ)f〉 (3.11)

subject to ‖f‖ = 1, 〈f,
√

π〉 = 0

Therefore, similar to the relaxed solution for undirected spectral clustering, the approx-

imate solution for (3.11) is the second smallest eigenvector of ∆ = I − Θ. ∆ shall be

called the directed graph Laplacian. I name this new clustering method as directed spectral

clustering.

In addition, one can define the Cheeger’s bound to indicate the quality of the ap-

proximation for directed spectral clustering. In undirected graphs, the Cheeger’s constant
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is defined as h(G) = minS h(S), where h(S) = vol(∂S)
min{vol(S),vol(Sc)} . Similarly to undirected

graphs, one can define the Cheeger’s constant by replacing vol(S), vol(Sc) and vol(∂S)

to be our new definitions on directed graphs. The Cheeger’s constant is bounded by the

expression with the second smallest eigenvalue λ of ∆ as 2h(G) ≥ λ ≥ h2(G)
2

(Chung, 2005).

3.2.2 Random Walk Interpretation

Clearly, in the directed normalized cut criterion (3.5), the ratio of vol ∂S to vol S is the

probability that the random walk leaves S in the next step given that it is currently in

S. A similar property holds for the ratio of vol ∂Sc to vol Sc. Therefore, the directed

normalized cut corresponds to finding a cut such that the probability of jumping between

different clusters is small while the probability of staying within the same cluster is large,

given that the current state is in stationary distribution. Clearly, the random walk model

is a free parameter in the directed spectral clustering. Technically, the only requirement is

that the transition probabilities of the random walk satisfies the balance equation π(v) =
∑

u→v π(u)p(u, v).

So far, I have assumed that the graph is strongly connected and aperiodic, which ensures

that the natural random walk over the graph converges to a unique stationary distribution.

Obviously this assumption cannot be guaranteed for a general directed graph. If the graph

is not aperiodic but is strongly connected, one remedy is to introduce a lazy random walk.

The lazy random walk has a transition probability as P = (I + P0)/2, where P0 is the

original natural random walk defined in Section 3.2. Since it has self-loops, so clearly it

is aperiodic. This modification is suggested by Chung (2005). Another situation which

happens more often in real-world applications is that the graph is not strongly connected.

If so, to remedy this problem, one can introduce the so-called teleporting random walk

(Page et al., 1998) to replace the natural one.

Practical Analysis of Random Walks

In practice, the random walk should be defined according to specific context of problems.

In this section, I analyze the behavior of different random walk models in the problem of

Web communities identification (Huang et al., 2006d). Before I analyze the specific models,



3. BEYOND SYMMETRY: LEARNING WITH DIGRAPHS 43

I briefly review related work on identifying Web communities. The overview will help us

understand the advantages of the new directed spectral clustering.

As we know, the Web is comprised of multiple communities (Flake et al., 2002) created

by different groups of people having common interests. However, the sheer heterogeneity

of Web users and authors—given diverse backgrounds and interests—hampers traditional

information retrieval approaches that rely on content analysis alone. The identification

of Web communities can help users with their information retrieval goals, by allowing the

construction of pre-classified directories and the creation of more effective recommendation

services.

The problem of identifying Web communities is clearly related to the more fundamen-

tal problem of graph partitioning. For general graph partitioning, one can often resort

to straightforward principles such as unrestricted minimal cut. However, the graphs used

by most such techniques are undirected, and therefore they ignore the directionality infor-

mation encoded in Web hyperlinks (Flake et al., 2000; Ino et al., 2005). Another simple

approach is to extract similarity measurements between neighboring vertices (Web pages)

directly from the link structure to perform a generic clustering method (Kessler, 1963).

However, the similarity should be measured from the global structure of the graph. A

more global approach to Web graph clustering suggests, therefore, that some sort of aggre-

gate similarity measure be used, such as those based on the spectrum of the connectivity

matrix. For undirected graph clustering, a common suggestion is to partition by perform-

ing a singular value decomposition (SVD) on W (Perona and Freeman, 1998). However

again, the connectivity matrix W is not symmetric.

By considering the directed links of Web pages, Kleinberg showed that the HITS rank-

ing algorithm (Kleinberg, 1999) converges to a spectral method that uses the principle

eigenvectors of W TW and WW T —the final weight scores for the authorities and hubs.2

Later, it was observed that this technique can in fact be used to identify web communities,

where Web pages with highest authority and hub scores are used to define the core of a

community (Gibson et al., 1998). However, one can see that this approach reduces to SVD

on an undirected graph weight matrices WW T and W T W . In fact, this approach suffers

from two drawbacks: first, a straightforward graph partition method based on simply com-

2Vertices that have in-links are called authorities, vertices that have out-links are called hubs.
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puting the principle eigenvectors is not very effective in general; and second, the directed

hyperlink information is significantly diminished through the symmetric transformations.

Regarding the first drawback, a more appropriate way to solve the graph partitioning

problem is to consider it as a balanced minimum cut problem, which usually results in

more accurate clusters being obtained. Although most versions of the balanced minimum

cut are NP-complete, the eigenvectors of graph Laplacians (Chung, 1997) provide a good

approximation to this NP-hard problem. Unfortunately, these methods have only been

developed for undirected graphs, and do not consider directionality information.

To address these shortcomings, one requires a balanced spectral clustering principle that

can take the directionality of Web hyperlinks into account. My new unsupervised method

in directed graphs offers a mathematically clean solution to this problem. It minimizes

a balanced cut criterion for directed graphs that has a very natural interpretation in a

random walk framework.

In this section, I am addressing the specific role of random walks in Web clustering. It

is critical to formulate a proper random walk model that ensures similar pages are grouped

into coherent Web communities. Therefore, I analyze two random walk models with their

variants that are sufficiently flexible to capture important aspects of Web graph topology,

and disclose how walk connectivity is related to page similarity in directed spectral clus-

tering. I will also investigate the performance of these random walk models in comparison

with standard models of spectral clustering on undirected graphs (Gibson et al., 1998) in

Section 3.2.4.

One-Step Random Walk The one-step random walk model I examine initially is the

teleporting random walk model of Page et al. (1998). Given that the random surfer is

currently at a vertex u: (a) with probability ǫ it chooses an outlink uniformly at random

and follows the link to the next page; or (b) with probability 1 − ǫ it jumps to a Web

page uniformly at random over the entire Web (excluding itself). Here, a damping factor

ǫ (0 < ǫ < 1) is introduced in the case where the current page has no outlink. Such a

random walk is guaranteed to converge to a unique stationary distribution.The transition

probability ptele(u, v) between u and v under this model can be written as

ptele(u, v) = ǫ
w(u, v)

d+(u)
+ pǫ(u, v),
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Figure 3.3: Constructing a bipartite graph from a directed graph. Left: directed graph.

Right: bipartite graph. The hub set H = {1, 3, 4, 5}, and the authority set A = {2, 3, 4, 5}.
Notice that the vertex indexed by 3, 4, 5 are simultaneously in the hub and authority set.

where pǫ(u, v) = w(u, v)/ volG if d+(u) = 0 and pǫ(u, v) = (1−ǫ)w(u, v)/ volG if d+(u) > 0;

vol G =
∑

u(d
+(u) + d−(u)) in which d− and d+ are defined in (3.1) and (3.2).

This random walk makes the simple assumption that similar pages are directly linked.

The stationary probability of a Web page corresponds to the frequency that a surfer visits

the page following forward links. This can be viewed as an authority effect in the Web

page ranking. I refer to this random walk as the one-step authority model (OneStepA).

Conversely, one can consider another random walk that traverses backward along the hy-

perlinks (Ding et al., 2002). This is equivalent to the hub effect, since a good hub page

should be able to visit many other related pages. Therefore, I refer to this random walk

as the one-step hub model (OneStepH ).

Two-Step Random Walk Web pages are “connected” by more than their direct hy-

perlinks. Intuitively, commonality between two Web pages is revealed by the presence of

common co-citation or co-reference pages. The random walk should therefore also consider

these implicit connections in Web community identification.

I now consider a two-step random walk model motivated by the Hubs and Author-

ities model by Kleinberg (1999) on a bipartite graph. A directed graph can naturally

converted into a bipartite graph representing the hub and authority subsets of the data

(Zhou et al., 2005b). Figure 3.3 depicts the construction of the bipartite graph. Assume
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temporarily that each Web page has inlinks and outlinks. Then, starting from a page

u, the random surfer first jumps backward to an adjacent hub vertex h with probability

p−(u, h) = w(h, u)/d−(u), then it jumps forward to a page v adjacent from h with proba-

bility p+(h, v) = w(h, v)/d+(h). Then the two-step transition probability pA(u, v) between

two authorities u and v is given by

pA(u, v) =
∑

h

p−(u, h)p+(h, v) (3.12)

Proposition 3.2.5. The stationary distribution πA of pA is

πA(u) = d−(u)/ volG−

where vol G− =
∑

u∈V d−(u).

Proof. To show πA satisfies the balance equation

∑

u∈V

πA(u)pA(u, v) =
∑

u∈V

d−(u)

vol G−

∑

h∈V

w(h, u)w(h, v)

d−(u)d+(h)

=
1

vol G−

∑

h∈V

w(h, v)

d+(h)

∑

u∈V

w(h, u) =
d−(v)

vol G−
= πA(v)

This random walk is performed by treating pages as authorities.

Using the same argument, one can define a two-step random walk by treating pages as

hubs. The random walk performs among hubs u and v by first taking a forward step and

then a backward step along the edges u→ a and a← v, yielding the transition probability

between hubs

pH(u, v) =
∑

a

p+(u, a)p−(a, v) (3.13)

Similarly, this random walk between hubs has the stationary distribution

πH(u) = d+(u)/ volG+
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The two-step random walk exploits the co-citation and co-reference effects in the high

level Web link topology. The assumption here is that two similar pages should share more

common hubs or authorities.3

The above two-step random walks require that each Web page has inlinks and outlinks,

but this is not always true for real Web graphs. To be able to handle the general case, I

propose to combine the two-step random walk with a teleporting step, so that each forward

and backward step through an outlink and a inlink has a damping factor. Therefore, to

obtain the mixed two-step random walk, simply plug the modified transition probabilities

p− and p+ into formulas (5.3) and (3.13) to modify pA and pH among authorities and hubs.

In my experiments below I only use the mixed version of the two-step random walks, but

for simplicity I just refer to them as TwoStepA and TwoStepH respectively. Finally, I

consider a convex combination of the two types of two-step random walks that address the

hyperlink structure in a more flexible manner P = βP A + (1− β)P H, where β is a tuning

parameter that controls the different weights of co-citation and co-reference effects. The

advantage of this combination is that it can help us determine which effect is dominant in

the link structure, based on the results. Or conversely, given some prior knowledge about

the levels of link structure, we can set a proper value for β that consistently matches the

hyperlink topology.

Comparison of Different Random Walks To partition a directed Web graph, one can

simply use the adjacency matrix A with unit weights (i.e., a(u, v) = 1 when u→ v). It is

interesting to compare the results of the different random walk models and the symmetrized

transformation models in this case. To demonstrate the differences in a simple toy example,

I compute the second eigenvectors of Θ formulated as in (3.10) for both the one-step and

two-step random walks on the graph in Figure 3.4-left. I set ǫ = 0.95. I also obtain the

principal eigenvectors of AT A and AAT , corresponding to the symmetrized authority and

hub scores (Kleinberg, 1999). I refer to these symmetrized (undirected) methods as Auth

and Hub respectively.

One can partition the directed graph into two clusters by examining the values in the

3I briefly note that Lempel and Moran (2000) uses the stationary distribution proportional to vertex

in-degrees to perform a simple ranking method and showed similar derivations of stationary distributions.
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Figure 3.4: Left: A toy example of a directed graph. Right: Illustrating partitioning by sorted

values. Here, “|” indicates the threshold value (zero) such that vertices on each sides are grouped

into separate clusters.

eigenvector thresholding at zero. Pages within an initial grouping can then be partitioned

further after the first partitioning (Chakrabarti et al., 1998), and so on. In addition to just

partitioning the vertices, however, the eigenvector values can also be used to assign a weight

or confidence that each Web page belongs to its assigned cluster. That is, the greater the

eigenvector value at a page, the more likely the page is to belong to the given cluster. I

will therefore refer to these values as the weights of pages below. The visualization of the

partitioning by assigning each vertex on a solid line is as shown in Figure 3.4-right.

In the toy example, the partitions are the same for OneStepA and OneStepH, which

tend to extract highly correlated clusters via direct connections. Moreover the vertices

that have large values (e.g., 1 and 8) are also the vertices that have the highest stationary

distributions under the random walks. It is known that PageRank ranks Web pages by their

stationary distribution, but pages with high stationary probabilities might be of dissimilar

topics. However, besides clustering, this method can provide rearranged rankings within

each cluster which is very useful to current search engines.

TwoStepA tends to group strong authorities (4, 5, 6, 7) together that are linked by

common pages. TwoStepH extracts the hub vertices (1, 8) that link to similar vertices

directly and/or indirectly, e.g., vertex 1 points to vertices 4 and 5 after passing 2 and
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3. Vertex 8 points to vertices 4 and 5 directly. This random walk tends to group good

hubs that link to common pages either implicitly or explicitly. The partition using the

symmetrized authority score is similar to TwoStepA, but it does not distinguish among

the vertices 1, 2, 3 and 8. The partition using the symmetrized hub score also ignores any

differences among the vertices in each group, and is thereby less meaningful.

Random walks are able to effectively capture the differences between direct hyper-

link and indirect second order hyperlink topologies that have different co-citation and co-

reference patterns in directed spectral clustering. All of these can be exploited to efficiently

identify vertex communities via directed spectral clustering. Section 3.2.4 demonstrates

more extensive experiments in Web communities identification.

3.2.3 k-way Directed Spectral Partioning

It is easy to extend the directed spectral clustering technique to computing k-way partitions

instead of just 2-partitions. Define a k-way partition to be V = V1 ∪ V2 ∪ · · · ∪ Vk, where

Vi ∩ Vj = ∅ for all 1 ≤ i, j ≤ k, i 6= j. Let Pk denote a k-partition. Then we may obtain a

k-way partition by minimizing

Ncut(Pk) =
∑

1≤i≤k

vol ∂Vi

vol Vi
(3.14)

Using similar derivation in Section 2.2.5, it is easy to see that the solution of the

corresponding relaxed optimization problem of (3.14) can be any orthonormal basis for the

linear space spanned by the eigenvectors of Θ corresponding to the k largest eigenvalues.

3.2.4 Evaluation and Comparison of Directed Spectral Cluster-

ing

Now I show real world evaluations of the new directed spectral clustering algorithm in

terms of using different random walk models in the practical problem of Web communities

identification. I examine various random walk models that capture different level aspects

of hyperlink connectivity. In addition, I examine the performance of different random walk

models and damping factors in identifying Web communities from pure graph topology.
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The empirical results provide practical insights in applying directed spectral clustering in

real-world Web clustering.

I also perform comparison experiments to see the different performance between di-

rected and undirected methods in the problem of Web clustering. This demonstrates the

directionality does play an important role in Web clustering.

Experimental Design

Root queries vertex num edge num

1. “waterloo” 2130 4688

2. “movies”+“olympics” 6634 65536

3. “risk analysis”+“bussiness optimization” 3357 10490

4. “differential geometry”+ “parallel computing” 2575 6844

5. “data mining”+“computer vision” 3907 12416

6. “body arts”+“fashion design” 3091 4122

Table 3.1: Web graphs statistics

I construct Web graphs of varying degrees of difficulty by either building the graph from

a single topic query, which results in multiple topics that can be hard to distinguish, or

building the graph from multiple queries, which results in a few more easily distinguishable

topics. To obtain Web graphs, I first chose some root queries, submited these to Google,

and retrieved the first t html pages (not including pdf or ps files). For a given query or set

of queries, I then combined the retrieved pages as roots and perform a one level expansion

by adding pages that are linked from or link to the root pages. Finally, I filtered out non-

informative links that exist among Web pages as follows. I restrict the number of pages

that link to or are pointed to by every root URL to be at most d pages. This operation was

first proposed by Kleinberg (1999). I also filter out all cgi scripts links. I set t and d equal

to 100 and 50 respectively. The collections I finally obtain are relatively sparse graphs. In

the experiments, I use several groups of root queries that focus on a variety of interests.

Pages retrieved from queries that have significant overlap intuitively should increase the

difficulty of Web page clustering. The query statistics are listed in Table 3.1.
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Results

Choosing Parameters Practically, two parameters need to be selected when defining

the random walks on Web graphs: the damping factor ǫ in the one-step and two-step

random walks, and the tuning parameter β in the two-step random walks. I test with 2

root queries using the damping factor ǫ set to 0.75, 0.85 and 0.95. Clustering performance

is evaluated by counting the correctly classified pages that have the 30 greatest weights

among those ranked within top 100 by Google.

Figures 3.5 plot the confusion matrix4 values corresponding to the numbers of pages

among the 30 with the greatest weight that are classified as “movie” (class 1) and “olympics”

(class 2). Ideally, the best result should have corresponding numbers of 30, 0, 0, 30. Since

OneStepA and OneStepH give very similar results in this experiment, I only show the

results of OneStepA.

One can see from these figures that the directed spectral method with OneStepA obtains

the best performance when ǫ equals 0.85. Thus, we fix this value for OneStepA in later

experiments. For TwoStepA, the results are competitive when ǫ takes value 0.85 and 0.95.

Since each result has a better performance for one of the communities, I choose ǫ = 0.90

as an compromise value in the following experiments.

Next, I consider the tuning parameter β that balances between P A and P H in the

two-step random walk. Figure 3.6 (left) shows the results when β changes from 1 to 0

in the “movies+olympic” Web graph. Instead of reporting the confusion matrix values in

detail, I summarize it by the F measure, which can be derived from the confusion matrix

as 2(precision×recall)
(precision+recall)

where precision = C11/(C11 + C21) and recall = C11/(C11 + C12). The

Figure shows that the best performance is obtained when β = 1. This means that the Web

page similarities are most correctly assessed when the transition matrix is P A for this Web

graph. Not surprisingly, this result is consistent with the ranking methods that consider

inlink degree and authority scores from AT A (Gibson et al., 1998; Lempel and Moran,

4A confusion matrix C contains information about actual and predicted classifications. The elements

in a confusion matrix for a two class classifier are: C11 is the number of correct predictions that an item

is positive; C12 is the number of incorrect predictions that an item is positive; C21 is the number of

incorrect of predictions that an item is negative; and C22 is the number of correct predictions that an item

is negative.
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Figure 3.5: OneStepA results(left) and TwoStepA results(right). Plot of confusion matrix values

C11, C12, C21, C22(from left to right of each column block) for ǫ = 0.75, 0.85, 0.95.

Figure 3.6: Left: F scores when β changes in two-step random walk, ǫ = 0.90. Right: F score

for 4 binary clustering tasks. Blue: TwoStepA, Red: OneStepA, Yellow: Undirected

2000). These studies have already shown that important pages can be found by evaluating

their authority scores only. Thus, I set β = 1 in my following experiments, although I

should point out that this is not a globally optimal choice.

Single Broad-topic Query Table 3.2 lists the communities detected by the directed

spectral method using OneStepA. For each community, I list the URLs with significant

PageRanks.

It is not hard to see that using only hyperlink structure, one can still identify reasonable

communities from a Web graph constructed by a single broad topic query. The weights

of pages in clusters 1 to 4 are closer to each other than to the pages in other clusters.

This discloses that the first 4 clusters are related within a broader scope: they are mainly
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Table 3.2: Communities from query “waterloo”
Cluster 1: Pages from universities and schools at Wa-

terloo, Canada

Cluster 2: Pages for the public community service in

Waterloo, Canada

www.uwaterloo.ca/ www.city.waterloo.on.ca/

www.wlu.ca/ www.waterloorecords.com/

www.lib.uwaterloo.ca/ www.therecord.com/

www.math.uwaterloo.ca/ www.wpl.ca/

www.cs.uwaterloo.ca/ www.wrps.on.ca/

www.wcdsb.edu.on.ca/ www.oktoberfest.ca/

Cluster 3: Pages for living at Waterloo, Canada Cluster 4: Pages for life at Waterloo, Canada

www.waterlooinn.com/ www.kwymca.org/

www.waterloochamber.org/ www.waterloo.ca/

www.kwhumane.com/ www.kwag.on.ca/

www.kwsymphony.on.ca/ www.uptownwaterloojazz.ca/

www.kwsc.org/

www.waterloo-biofilter.com/

www.wnhydro.com/

Cluster 5: Pages for Waterloo, Iowa, USA Cluster 6: Pages for Waterloo in the USA

www.wplwloo.lib.ia.us/waterloo/ www.waterloobucks.com/

www.wcfsymphony.org/ www.waterloo.k12.ia.us/

www.waterloocvb.org/ www.waterloo.il.us/

www.waterlooindustries.com/ www.waterlooindustries.com/

Cluster 7: Pages for Waterloo in Europe Clusters 8 and 9: Pages for the history of Waterloo

from public pages and from wiki

www.trabel.com/waterloo/ waterloo-thebattle.htm/ www.garywill.com/waterloo/ history.htm/

www.waterloo.org.uk/ www.bbc.co.uk/history/war/ trafalgar waterloo/

www.trabel.com/waterloo/waterloo.htm/ en.wikipedia.org/wiki/ Battle of Waterloo/

www.napoleonguide.com/ battle waterloo.htm/ en.wikipedia.org/wiki/Waterloo station/

www.waterloo.co.uk/

pages from Waterloo, Canada, including academic institutions, social communities and

living. The observation that the weights of clusters 5 and 6 are closer to each other than to

the others identifies they are the pages of Waterloo locales in the US. The sub-topics are

generalized upward to larger common topics. Cluster 9 identifies the pages from Wikipedia,

even though I eliminate links among pages from the same domain.

Multiple Topic Related Queries I also evaluate clustering performance for 4 Web

graphs that are obtained from multiple root queries. I compare the directed spectral

methods using one-step random walk and two-step random walks to the undirected method

that uses the symmetrized authority scores from AT A (referred to as the undirected method
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Table 3.3: Pages with the top 10 significant weights for Queries of “computer vision” +

“data mining”
Directed spectral method with OneStepA Undirected method.

URL Cat URL Cat

cmp.felk.cvut.cz/eccv2004/ 1 dms.irb.hr/index.php 2

iris.usc.edu/Vision-Notes/bibliography/contents.html 1 www.comp.leeds.ac.uk/nlp/ 2

www.intel.com/research/mrl/research/opencv/ 1 www.comp.leeds.ac.uk/vision/ 1

marathon.csee.usf.edu/ 1 www.statsoft.com/textbook/stdatmin.html 2

vis-www.cs.umass.edu/ 1 lear.inrialpes.fr/people/triggs/events/iccv03/ 1

www.cs.cmu.edu/ cil/vision.html 1 dir.groups.yahoo.com/group/datamining2/ 2

www.sciencedirect.com/science/journal/10773142 1 www.acv.ac.at/ 1

www.cs.cmu.edu/ cil/v-source.html 1 www-ai.ijs.si/SasoDzeroski/RDMBook/ 2

iris.usc.edu/Information/Iris-Conferences.html 1 www.autonlab.org/tutorials/ 2

homepages.inf.ed.ac.uk/rbf/CVonline/ 1 www.cs.columbia.edu/ sal/hpapers/USENIX/

usenix.html 2

itmanagement.webopedia.com/TERM/D/ www.scd.ucar.edu/hps/GROUPS/dm/dm.html 2

data mining.html 2

www.ncdm.uic.edu/ 2 www.kdnuggets.com/ 2

www.kdnuggets.com/ 2 www.spss.com/ 2

www.dmg.org/ 2 www.eco.utexas.edu/ norman/BUS.FOR/course.mat/

Alex/ 2

www.salforddatamining.com/ 2 www.acm.org/sigkdd/ 2

www.spss.com/ 2 www.infogoal.com/dmc/dmcdwh.htm 2

www.acm.org/sigkdd/ 2 www.the-data-mine.com/ 2

www.megaputer.com/ 2 www.thearling.com/text/dmwhite/dmwhite.htm 2

www.cacs.louisiana.edu/ icdm05/ 2 www.ncdm.uic.edu/ 2

in the results) as used by Gibson et al. (1998).

Figure 3.6–Right shows the clustering results for 4 Web graphs obtained from root

queries 3, 4, 5 and 6. Not surprisingly, both of the directed spectral methods outperformed

the undirected method in all cases.

I also show some of the clustering results by listing the highly ranked URLs with the

most significant weights in corresponding communities in Tables 3.3 and 3.4.“Cat” denotes

the ture category for each URL. Once again, we can see that the directed spectral methods

work better than the undirected method by tending to group pages more correctly. For

example, in Table 3.3, the pages correctly clustered in the data mining community are

about major conferences, term explanations, and companies in data mining. In Table 3.4,

we see in the olympics community, multiple homepages from the olympic game hosts were

obtained. Although these pages do not have hyperlinks between them, they all are pointed
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Table 3.4: Pages with top 15 significant weights for Queries “movies”+ “olympics”
Directed spectral method with TwoStepA Undirected method

URL Cat URL Cat

www.saltlake2002.com/ 1 www.fhw.gr/olympics/ancient/ 1

www.specialolympics.org/ 1 cityguide.aol.com/main.adp 1

www.olympic.org/ 1 www.dallasnews.com/sharedcontent/dws/spt/olympics/

vitindex.html

1

www.torino2006.it 1 www.baltimoresun.com/sports/olympics/ 1

sports.espn.go.com/oly/index 1 www.latimes.com/sports/olympics/ 1

www.athens2004.com/athens2004/ 1 diveintomark.org/howto/ipod-dvd-ripping-guide/ 2

www.perseus.tufts.edu/Olympics/ 1 movies.nytimes.com/pages/movies/ 2

www.perseus.tufts.edu/Olympics/sports.html 1 news.bbc.co.uk/sport1/hi/other sports/olympics 2012/

default.stm 1

news.bbc.co.uk/sport1/hi/olympics 2004/default.stm 1 www.austin360.com/movies/content/movies/ 2

www.nbcolympics.com/ 1 www.musicfromthemovies.com/default.asp 2

www.olympics.com.au/ 1 sports.yahoo.com/olympics 1

www.fhw.gr/projects/olympics/ 1 movies.yahoo.com/mv/upcoming/ 2

www.london2012.org/ 1 www.fairolympics.org/en/ 2

en.beijing-2008.org/ 1 cbs.sportsline.com/u/olympics/2002/ 1

www.imdb.com/ 2 www.imdb.com/ 2

us.imdb.com/ 2 us.imdb.com/ 2

www.imdb.com/search 2 rogerebert.suntimes.com/ 2

movies.go.com/ 2 www.lordoftherings.net/ 2

www.usatoday.com/life/movies/front.htm 2 www.allmovie.com/ 2

movies.aol.com/ 2 www.rottentomatoes.com/ 2

movies.yahoo.com/ 2 www.infonegocio.com/xeron/bruno/olympics.html 1

movies.guide.real.com 2 www.brainpop.com/ 2

www.rottentomatoes.com/ 2 www.foxmovies.com/ 2

www.hollywood.com/ 2 www.hollywood.com/ 2

www.boxofficemojo.com/ 2 www.reel.com/ 2

www.movieflix.com/ 2 www.perseus.tufts.edu/Olympics/ 1

www.ifilm.com/ 2 www.ucmp.berkeley.edu/geology/tectonics.html 1

to by the Olympic Games organization (olympic.org). Thus, the two-step random walk

was able to detect their similarity by identifying a common hub. Similar observations can

be made about the pages classified in the movies community. In each of these tasks, the

undirected method failed to identify pages from same communities, and tended to mix

pages from the different communities.

The experiments again demonstrate that the directionality contains important infor-

mation that significantly improves the unsupervised performance.
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3.3 Supervised Learning on Directed Graphs

I consider learning a function for supervised learning on a directed graph by optimizing

the combination

min
f∈R|V |

∑

v∈V

loss(f(v), yv) + λΩ(f)

where Ω : V → R
+ is the cut cost derived from directed Normalized Cut. As in undirected

graphs, One can interpret the Normalized Cut cost of directed graph clustering to be a

regularizer, which is a smoothness functional.

Ω(f) =
1

2

∑

(u,v)∈E

π(u)p(u, v)

(
f(u)
√

π(u)
− f(v)
√

π(v)

)2

(3.15)

For an undirected graph, it is well-known that the stationary distribution of the natural

random walk has a closed form expression π(v) = d(v)/
∑

u∈V d(u). Substituting the closed

form expression into (3.15), we have

Ω(f) =
1

2 volG

∑

(u,v)∈E

w(u, v)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

which is exactly the cut cost for the normalized spectral clustering in (2.23) and the

regularizer on undirected graphs up to a constant of 1
vol G

. This validates the generalization

of the new regularizer.

Below I will verify the cut cost for directed spectral clustering plays the same role as a

standard regularizer.

3.3.1 Regularization over a Discrete Domain

I briefly develop a discrete analysis on directed graphs that extends the previous work

on undirected graphs in Section 2.3.2. This allows the regularizer derived from directed

spectral clustering to be reconstructed and generalized as a discrete analogue of classic

regularization theory (Tikhonov and Arsenin, 1977; Wahba, 1990).

Let H(V ) and H(E) be the space of functions over vertices and edges, as defined in

Section 2.3.2.
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Definition 3.3.1. The graph gradient on a directed graph is an operator∇ : H(V )→H(E)

defined by

(∇f)(u, v) =
√

π(u)

(√

p(u, v)

π(v)
f(v)−

√

p(u, v)

π(u)
f(u)

)

(3.16)

Note that for an undirected graph, equation (3.16) reduces to

(∇f)(u, v) =

√

w(u, v)

d(v)
f(v)−

√

w(u, v)

d(u)
f(u)

which is exactly the same as the gradient operator defined in Section 2.3.2. Therefore, in

the same way as in Section 2.3.2, one can recover natural representations of the divergence

and the graph Laplacian for directed graphs as well.

Definition 3.3.2. Let the graph divergence div : H(E)→ H(V ) be an operator defined by

(div g)(v) =
1

√

π(v)

(
∑

u←v

√

π(v)p(v, u)g(v, u)−
∑

u→v

√

π(u)p(u, v)g(u, v)

)

Then we have the same proposition as in proposition 2.3.3: 〈∇f, g〉H(E) = 〈f,− div g〉H(V )

with the same proof.

Definition 3.3.3. Let the directed graph Laplacian ∆ : H(V )→H(V ) on a directed graph

defined by

(∆f)(v) = f(v)− 1

2

(
∑

u→v

π(u)p(u, v)f(u)
√

π(u)π(v)
+
∑

u←v

π(v)p(v, u)f(u)
√

π(v)π(u)

)

(3.17)

Then we again have the same theorem as in Theorem 2.3.5: ∆f = −1
2
div(∇f), with a

similar proof. It is not hard to see that in matrix notation, ∆ can be written as

∆ = I − Π1/2PΠ−1/2 + Π−1/2P T Π1/2

2
, (3.18)

which is just the Laplace matrix for directed graphs appearing in Ω(f) in directed spectral

clustering. It is also the same matrix that proposed by Chung (2005). For an undirected

graph, (3.18) clearly reduces to the Laplacian for undirected graphs (Chung, 1997).
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For well understanding the regularizer, I may compare it with an alternative approach

which defines the gradient as

(∇f)(u, v) =

√

w(u, v)

d−(v)
f(v)−

√

w(u, v)

d+(u)
f(u), for all(u, v) ∈ E

The corresponding regularizer is

Ω(f) =
∑

(u,v)∈E

w(u, v)

(

f(u)
√

d+(u)
− f(v)
√

d−(v)

)2

(3.19)

A similar solution can be obtained from the corresponding optimization problem for unsu-

pervised learning and later in semi-supervised learning. Clearly, this function also reduces

to the regularizer for undirected graphs. At first glance, this function may look natural,

but in the later experiments I will show that the algorithm based on this functional does

not work as well as the previous one. This is because the directionality is only slightly

taken into account via the degree normalization such that much valuable information for

classification conveyed by the directionality is ignored by the corresponding algorithm.

Once I remove the degree normalization from this functional, the resulted functional is

totally insensitive to the directionality.

3.4 Semi-supervised Learning on Directed Graphs

I focus on a transducive problem in semi-supevised learning on a directed graph. Given a

directed graph G = (V, E) and a label set Y = {1,−1}, assume that a subset S ⊂ V of

the vertices have been labeled. The problem is to classify the vertices in the complement

of S. The graph G is assumed to be strongly connected and aperiodic.

The goal is to solve the optimization problem

arg min
f∈H(V )

Ω(f) + µ‖f − y‖2 (3.20)

where µ > 0 is the regularization parameter. On one hand, one wants to keep a good

partition on the graph which consists both labeled and unlabeled vertices, and on the
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other hand one wants to minimize the loss over the labeled vertices. Section 3.3.1 shows

that Ω(f) is a valid regularizer.

From Lemma 3.2.3, now differentiate 3.20 with respect to function f , we get (I−Θ)f ∗+

µ(f ∗ − y) = 0. Define α = 1/(1 + µ). This system may be written (I − αΘ)f ∗ = (1− α)y.

From Lemma 3.2.4, we easily know that (I − αΘ) is positive definite and thus invertible.

It is worth mentioning that the approach of Zhou et al. (2005b) can also be derived

from this algorithmic framework by defining a two-step random walk P A which is the same

as being discussed in Section 3.2.2.

3.4.1 Empirical Evaluation

To evaluate the regularization principle for directed graphs, I conduct semi-supervised

classification experiments on two sets of data where directionality of the edges encodes

meaningful information. Thus, the directed framework proposed above is expected to

demonstrate an advantage in these cases.

Web Page Classification

The first data set I consider is the WebKB data set (Craven et al., 1998)—using a subset

of the data set containing the pages from the four universities: Cornell, Texas, Washington

and Wisconsin. I remove the pages that have no incoming nor outgoing links, reducing the

number of pages to 858, 825, 1195 and 1238 respectively, for a total of 4116 web pages.

All of these pages are manually classified into one of the seven categories: student, faculty,

staff, department, course, project and other.

I compare the directed graph approaches to the alternate directed graph approach

using a different regularizer in (3.19). I also compare this method to the schemes proposed

in (Zhou et al., 2005b, 2004). Interestingly, it is not hard to show that the method in

(Zhou et al., 2005b) is equivalent to my new directed method by using the TwoStepA. To

distinguish among these approaches, I refer to them as distribution regularization, degree

regularization, second-order regularization, and undirected regularization respectively. The

distribution regularization method developed in this section uses teleporting random walks.

Second-order regularization uses two-step random walks. Undirected regularization is the
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method based on undirected graphs.

Although one can assign a weight to each hyperlink in this data that depends on

the textual content or anchor text, here I am only interested in investigating what can

be inferred solely from the link structure, and hence adopt that canonical (uniform 1)

weight function. For every method, the regularization parameter is set to α = 0.1. For

the distribution regularization approach, I adopt the teleporting random walk with jump

probability η = 0.01. Figure 3.7 reports the results. Each test error is averaged over 50

random repeats, where each repeat is guaranteed to have at least one labeled point in each

class (otherwise the sampling is repeated).

These results show that the distribution regularization approach obtains superior re-

sults to the degree regularization method. Furthermore, the distribution regularization

approach is competitive with second-order regularization as they both are directed meth-

ods. By contrast, the degree regularization approach shows weaker performance that is

only comparable to the undirected regularization method. This shows that degree regular-

ization only considers directionality slightly.

Protein Function Prediction

The next dataset I consider is a protein-protein interaction network constructed from

yeast two-hybrid screens. Large-scale yeast two-hybrid screens are usually used to identify

protein-protein interactions between full-length open reading frames (ORFs) predicted

from the saccharomyces cerevisiae genome sequences (Uetz and et al., 2000; Ito and et al.,

2001). I focus on the assignment of proteins to functional classes on the basis of the physical

interaction network in yeast saccharomyces cerevisiae (Schwikowski et al., 2000).

The search for reliable methods for assigning protein function is the most challenging

problem of the post-genomic era. Many approaches have been proposed for protein func-

tion prediction from protein-protein interaction networks using the information derived

from sequence similarity, phylogenetic profiles, protein-protein interactions, and protein

complexes (Vazquez et al., 2003). A map of protein-peortein interactions typically pro-

vides valuable insight into the cellular function and machinery of a proteome. A common

approach is the majority vote, which involves assigning a function to an unclassified protein

based on the most common function of its neighbors (Hishigaki et al., 2001; Schwikowski



3. BEYOND SYMMETRY: LEARNING WITH DIGRAPHS 61

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

# labeled points

te
st

 e
rr

or

distribution regularization
degree regularization
second−order regularization
undirected regularization

(a) Cornell (student)

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

# labeled points

te
st

 e
rr

or

distribution regularization
degree regularization
second−order regularization
undirected regularization

(b) Texas (student)
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(c) Washington (student)
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(d) Wisconsin (student)
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(e) Cornell (faculty)
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(f) Cornell (course)

Figure 3.7: Classification on the WebKB data set. Figures (a)-(d) depict the test errors of

the regularization approaches on the classification problem of student vs. non-student in

each university. Figures (e)-(f) illustrate the test errors of these methods on the classifica-

tion problems of faculty vs. non-faculty and course vs. non-course in Cornell University.
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Figure 3.8: 4 methods comparison for different proportions of labelled proteins by test

errors.
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Figure 3.9: Left: A comparison to majority vote for 1 binary task. This category has the

biggest number of positive labels of known proteins. Sampled protein proportion is from

0.2 to 0.6.; Right: A comparison to majority vote for 15 binary tasks. These categories have

the most significant numbers of proteins with positive labels. Sampled protein proportion

is 0.3.

et al., 2000; Vazquez et al., 2003), which is essentially a local nearest neighbor method

based on an undirected interaction network. Much of the information contained in the

global protein-protein interaction network is not fully explored.

Although more sophisticated methods have been proposed, all previous work took the

protein-protein interaction network to be an undirected graph. Despite this, the network

constructed via two-hybrid screens actually provides directionality information: given a

pair of interacting proteins, one protein consists of a DNA-binding domain (DBD). The

another protein consists of a transcriptional activation domain (AD) which is fused to a

defined protein ORF. If these two proteins interact, a transcriptional activator is recon-

stituted that can activate transcription of a reporter gene and therefore the interaction

generates an easily visible yeast colony that can be detected via the test. Therefore, in the

interaction, one protein is considered to be the “bait” and the other the “predator” (or

a “lock” and a “key” by another analogy). Thus the protein-protein interaction network

can be more properly considered to be a directed graph, where an edge from protein A

to protein B implies that A is a bait for predator B. This directionality information from
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two-hybrid screens tests is ignored in all previous prediction methods and I would like

to demonstrate the advantage of the new directed method comparing to the traditional

undirected method.

I use the protein interaction information in (Ito and et al., 2001) extracted from EBI

database (ftp://ftp.ebi.ac.uk/pub/databases/IntAct/current/xml/), and use the

gold standard functional categories from the MIPS Comprehensive Yeast Genome Database

(CYGD, mips.gsf.de/genre/proj/yeast) to provide the target labels. I consider all

proteins that have functional categories in MIPS and obtain a resulting network of 3856

protein interactions involving 2926 proteins. There are 799 unclassified proteins among

which only 161 proteins have at least one partner of known function and only 69 have two

or more partners of known function. The categories are not mutually exclusive so they are

appropriate to be used as independent binary classification tasks.

I examine the performance of the different algorithms when increasing the sampling

proportion of proteins from 0.1 to 0.7 for each classification task. I test on 4 function

prediction tasks for proteins selected from category IDs 14, 16, 11 and 10 in MIPS, which

have 552, 476, 479 and 465 proteins respectively. The results are presented in Figure 3.8.

I also compare to the simply majority vote method in Figures 3.9. The parameter setting

is the same as in the Web classification experiment.

The experiments again prove that the directionality contains important information and

it has significant impact on analysis of biology networks. By exploiting this information in

learning methods, the performance is significantly improved. Therefore, the new directed

method can be used as a general tool for assignment for protein function based on the

interaction network constructed via two-hybrid screens tests.

3.5 Summary

I propose unsupervised and semi-supervised learning algorithms for learning from partially

labeled data on a directed graph. The unsupervised learning algorithm generalizes the

spectral clustering approach for undirected graphs. It is the first time that spectral methods

have been successfully extended to directed graphs. The algorithms can be used to deal

with structured data like the Web and biomedical networks. The empirical results in
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Web classification and protein function prediction demonstrate the advantages of the new

methods.

Additionally, to automatically identify Web communities from hyperlink topology via

the new directed spectral clustering, I address a key component in directed spectral clus-

tering, the random walk model, that is used to infer relationships between Web pages. I

propose variations of random walk models raised from different Web topologies and inves-

tigate their effects for finding Web communities. The experiments show that the hyperlink

structure of the Web provides very useful information, and that random walks are able to

capture different relations based on various hyperlink topologies. The technique provides

advanced tools for developing search engines in vertical searches.

Please note that the new directed spectral clustering method I proposed here attacked

clustering of a directed graph directly from the original asymmetric affinity matrix A. I

have illustrated in experiments that traditional transformations used in previous literature,

such as A + AT and AT A, these transformations symmetrize A in a brute-forced way such

that in many cases clusters in the original asymmetric A becomes partially or completely

invisible after such symmetrization (Pentney and Meila, 2001). After our publication of

the new directed spectral clustering method, Meila and Pentney (2007) observed that this

new directed clustering method could be also interpreted as minimizing weighted cuts in

directed graphs by spectral methods that amounts to symmetric spectral clustering on a

“symmetrized” matrix Θ. However, the symmetrization is not trivial and this chapter pro-

vided an algorithmic approach to formulate the directed spectral clustering in a principled

manner. The nice random walk interpretation derived from the principle can be further

extended to methods on other types of graphs as we will see in the next two chapters.





Chapter 4

Beyond Pairs: Learning with

Hypergraphs

In this chapter, I consider the problem of learning from more complex relationships be-

tween data items than just pairwise relationships encoded in a graph. In many real-world

problems, we generally assume pairwise relationships among the objects of interest. An

object set with pairwise relationships can be naturally illustrated as a graph. The graph

can be undirected or directed, depending on whether the pairwise relationships are sym-

metric or not. However, representing a set of complex relational objects as undirected or

directed graphs is not sufficient for many problems. To illustrate this point, consider the

problem of grouping a collection of articles into different topics based only on author infor-

mation. One could construct an undirected graph where two vertices are connected by an

edge if the corresponding articles share at least one common author (Figure 4.1-middle).

In this case an undirected graph based approach could be applied, e.g., using the spectral

graph techniques introduced in Section 2.2. Although this method might sound natural, it

obviously misses information about whether the same person wrote three or more articles.

The lost information is potentially useful however, because articles by the same author are

likely to belong to the same topic.

A natural way to remedy this type of information loss is to represent the data as

a hypergraph instead. A hypergraph is a generalized form of graph where edges can

connect more than two vertices. That is, each edge is a subset of vertices. Throughout

67
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Figure 4.1: Hypergraph vs. simple graph. Left: an author set E = {e1, e2, e3} and an

article set V = {v1, v2, v3, v4, v5, v6, v7}. The entry (vi, ej) is set to 1 if ej is an author of

article vi, and 0 otherwise. Middle: an undirected graph in which two articles are joined

together by an edge if there is at least one author in common. This graph cannot tell us

whether the same person is the author of three or more articles or not. Right: a hypergraph

which completely illustrates the complex relationships among authors and articles.

this chapter, I refer to undirected or directed graphs as simple graphs. Moreover, unless

specialized otherwise simple graphs are assumed to be undirected. It is obvious that a

simple graph is a special kind of hypergraph where each edge contains only two vertices.

In the article clustering problem introduced above, one could construct a hypergraph with

vertices representing articles and hyperedges corresponding to each author (Figure 4.1-

right). In this case, each hyperedge would contain all the articles an author writes. In

addition, one could simultaneously represent other relationships among the articles, such

as the journal or conference proceedings where they were published. This information could

naturally be represented by just adding further hyperedges. One can also use weights on the

hyperedges to represent the relative importance of the different attributes. For instance,

for an author working on a broad range of areas, we might assign a relatively small weight

to his hyperedge.

The main contribution in this chapter is to develop new unsupervised and semi-supervised

learning algorithms for hypergraphs. The unsupervised learning method introduced here

generalizes previous spectral clustering techniques originally designed for simple graphs. I

apply these hypergraph based approaches to real-world problems in embedding and clas-
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sification. The results show the advantages of using hypergraphs over usual simple graphs

in many cases.

I would like to note that there exists a significant literature on unsupervised learning

on hypergraphs, which arises in a variety of practical problems, such as partitioning circuit

netlists (Lengauer, 1990; Hagen and Kahng, 1992a), clustering categorial data (Gibson

et al., 2000), and image segmentation (Agarwal et al., 2005). Unlike the present work how-

ever, these previous approaches generally transform the hypergraphs into simple graphs,

using various sorts of heuristics and then applying standard graph based spectral clus-

tering tehcniques. Gibson et al. (2000) proposed an iterative approach which was indeed

specialized for hypergraphs, but did not consider a spectral method.

4.1 Preliminaries

Let V denote a finite set of vertices v, and let E be a family of subsets e of V such

that ∪e∈E = V . Then G = (V, E) is a hypergraph with vertex set V and hyperedge

set E. A hyperedge containing just two vertices is just a simple graph edge. There

is a hyperpath between vertices v1 and vk if there is an alternating sequence of distinct

vertices and hyperedges v1, e1, v2, e2, . . . , ek−1, vk such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤
k − 1. A hypergraph is connected if there is a path for every pair of vertices. In the

following, hypergraphs are always assumed to be connected. Given a set S, let |S| denote

the cardinality of S. Then the size of the set of vertices is denoted |V |, and the size of the

set of hyperedges is |E|. A weighted hypergraph is a hypergraph that has a positive value

w(e) associated with each hyperedge e, referred to as the weight of hyperedge e. I denote

a weighted hypergraph by G = (V, E, w).

A hyperedge e is said to be incident with a vertex v when v ∈ e. For a vertex v ∈ V ,

the degree of v is defined by

d(v) =
∑

{e∈E|v∈e}
w(e)

For a hyperedge e ∈ E, the degree is defined to be

δ(e) = |e|
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A hypergraph G can be represented by a |V | × |E| matrix H , called the incidence matrix

of G such that H has entries h(v, e) = 1 if v ∈ e, and 0 otherwise, Then

d(v) =
∑

e∈E

w(e)h(v, e) (4.1)

and

δ(e) =
∑

v∈V

h(v, e) (4.2)

Let Dv and De denote the diagonal matrices containing the vertex and hyperedge degrees

respectively. Let W denote the diagonal matrix containing the weights. Then the adjacency

matrix A of G is defined as

A = HWHT −Dv (4.3)

4.2 Unsupervised Learning on Hypergraphs

For a vertex subset S ⊂ V , let Sc denote the compliment of S. The problem of unsupervised

learning on a hypergraph G = (V, E) is to obtain a cut over G that partitions V into two

parts S and Sc. A hyperedge e is cut if it is incident with the vertices in S and Sc

simultaneously.

Given a vertex subset S ∈ V , define the hyperedge boundary ∂S of S to be a hypergedge

set consisting of the hyeredges that are cut, i.e.,

∂S := {e ∈ E|e ∩ S 6= ∅, e ∩ Sc 6= ∅}

For a vertex subset S ⊂ V , define the volume vol S of S to be the sum of the degrees of

the vertices in S, that is

vol S :=
∑

v∈S

d(v)

where d(v) is defined in (4.1). Moreover, define the volume of ∂S by

vol ∂S :=
∑

e∈∂S

w(e)
|e ∩ S| |e ∩ Sc|

δ(e)
(4.4)

Clearly, vol ∂S = vol ∂Sc. The definition given by (4.4) can be understood as follows.

Let us imagine each hyperedge e as a clique, i.e., a fully connected subgraph. To avoid
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confusion, I call the edges in such an imaginary subgraph the subedges. Moreover, I assign

the same weight w(e)/δ(e) to all subedges. Then, when a hyperedge e is cut, |e ∩ S| |e ∩ Sc|
subedges are cut. Hence a single term in (4.4) is the sum of the weights over the subedges

that are cut.

4.2.1 Normalized Cut on Hypergraphs

A natural objective for clustering is to partition the hypergraph into disjoint components

while cutting as few hyperedges as possible, while otherwise maintaining subgraphs that

are as dense as possible. Therefore, I consider an analogue to the Normalized Cut criterion

first introduced in Section 2.2

argmin
∅6=S⊂V

Ncut(S, Sc) =
vol ∂S

vol S
+

vol ∂Sc

vol Sc

= vol ∂S

(
1

vol S
+

1

vol Sc

)

(4.5)

For a simple graph, |e ∩ S| = |e ∩ Sc| = 1, and δ(e) = 2, thus the right-hand side of

equation reduces to the Normalized Cut on undirected graphs in Section 2.2, up to a

constant factor.

In the following proposition, I relax (4.5) into a real-valued optimization problem to

obtain an approximate solution.

Proposition 4.2.1. Let α denote the ratio of vol S/ vol V . Then

Ncut(S, Sc) =

∑

e∈E

w(e)

δ(e)

∑

{u,v}⊆e

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

2〈f, f〉
where f =

√
d ◦ r such that

r(u) =







2(1− α) u ∈ S

−2α u ∈ Sc

Moreover,
∑

v∈V

√

d(v)f(v) = 0 (4.6)
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Proof. Let g be an indicator function with g(v) = 1 if v ∈ S and −1 if v ∈ Sc. For a

cut edge e ∈ ∂S and the vertices {u, v} ⊆ e, u ∈ S, v ∈ Sc, one has (g(u) − g(v))2 = 4;

otherwise (g(u)− g(v))2 = 0. Then the Normalized Cut criterion may be written

Ncut(S, Sc) =

∑

e∈E

1

δ(e)

∑

{u,v}⊆e

w(e) (g(u)− g(v))2

8α(1− α)
∑

v∈V

g2(v)d(v)

Moreover, it is not hard to show that

∑

v∈V

d(v)r(v) = 0

which shows the constraint of (4.6) holds, and also we have that

∑

v∈V

r2(v)d(v) = 4α(1− α)
∑

v∈V

g2(v)d(v)

Thus

Ncut(S, Sc) =

∑

e∈E

w(e)

δ(e)

∑

{u,v}⊆e

(r(u)− r(v))2

2
∑

v∈V

r2(v)d(v)

=

∑

e∈E

w(e)

δ(e)

∑

{u,v}⊆e

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

2
∑

v∈V

f 2(v)
,

Efficient computation Let the elements of f take any continuous values, and define

Ω(f) =
1

2

∑

e∈E

1

δ(e)

∑

{u,v}⊆e

w(e)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

(4.7)

where Ω is just the numerator of Ncut(S) on a hypergraph.
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To solve the problem of minimizing Normalized Cut objective efficiently, similarly to

directed spectral clustering in Section 3.2.1, one can first define a matrix ∆ as

∆ = I −D−1/2
v HWD−1

e HT D−1/2
v (4.8)

where I denotes the identity. The following lemma allows one to rewrite Ω(f) in terms of

inner product that facilitates solving the optimization problem.

Lemma 4.2.2.

Ω(f) = 〈f, ∆f〉 (4.9)

Proof. To prove (4.9), consider the following reformulation of (4.7), recalling that h is the

incidence matrix of the hypergraph as defined in Section 4.1 above.

Ω(f) =
∑

e∈E

∑

u,v∈V

w(e)h(u, e)h(v, e)

δ(e)

(

f 2(u)

d(u)
− f(u)f(v)
√

d(u)d(v)

)

=
∑

e∈E

∑

u∈V

w(e)h(u, e)f 2(u)

d(u)

∑

v∈V

h(v, e)

δ(e)
−
∑

e∈E

∑

u,v∈V

w(e)h(u, e)h(v, e)

δ(e)

f(u)f(v)
√

d(u)d(v)

=
∑

u∈V

f 2(u)
∑

e∈E

w(e)h(u, e)

d(u)
−
∑

e∈E

∑

u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)
√

d(u)d(v)δ(e)

=
∑

u∈V

f 2(u)−
∑

e∈E

∑

u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)
√

d(u)d(v)δ(e)

The final expression can be shown to be equal to fT∆f . This lemma also establishes that

the matrix ∆ is positive semi-definite.

It is easy to verify that the smallest eigenvalue of ∆ is 0 with eigenvector
√

d.

Then the combinatorial optimization problem (4.2.1) may be relaxed into

argmin
f∈R|V |

Ω(f) (4.10)

subject to ‖f‖ = 1, 〈f,
√

d〉 = 0

The solution of (4.10) is the normalized eigenvector Φ of the matrix ∆ with the second

smallest eigenvalue. Then the vertices of the hypergraph are partitioned into two parts
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S = {v ∈ V |Φ(v) ≥ 0} and Sc = {v ∈ V |Φ(v) < 0}. I refer to this method as hyperspectral

Clustering.

Notably, this method can be further generalized to directed hypergraphs, where each

hyperedge e is an ordered pair (X, Y ) such that X ⊆ V is the tail of e and Y ⊆ V \X is

its head.

As an aside, one can observe that for a simple graph the edge degree matrix De reduces

to 2I, and therefore

∆ = I − 1

2
D−1/2

v HWHTD−1/2
v

= I − 1

2
D−1/2

v (Dv + A) D−1/2
v

=
1

2

(
I −D−1/2

v AD−1/2
v

)

where A is the adjacency matrix for the graph. This corresponds to the definition of the

undirected graph Laplacian given in Section 2.1, up to a constant factor. Therefore, ∆ can

be regarded as an analogue of the Laplacian for simple graphs, thus I suggestively call it

the hypergraph Laplacian.

Correspondingly, for the special case of a graph, each edge is incident with only two

vertices, and thus δ(e) = 2. In this case (4.7) reduces to

Ω(f) =
1

4

∑

e=(u,v)∈E

w(u, v)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

which is identical with the cut cost objective for normalized spectral clustering on undi-

rected graphs in Section 2.2.3 and equivalently the regularizer for semi-supervised methods

on undirected graphs in Section 2.4, up to a constant factor.

4.2.2 Random Walk Interpretation

Recall that there is a natural random walk interpretation for undirected spectral cluster-

ing (Section 2.2.4), and the random walk model is played a key role in directed spectral

clustering as well (Section 3.2.2). The hypergraph normalized cut also has a nice random

walk interpretation.
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Consider a natural random walk on a hypergraph defined by the following transition

rule: given a current vertex u ∈ V , first choose a hyperedge e among the hyperedges

incident with u with probability proportional to the weight of e; then choose a vertex v ∈ e

uniformly at random and walk to v. Obviously, this procedure generalizes the natural

random walk defined on simple graphs.

Let P denote the transition probability matrix of the random walk. Then each entry

of P is

p(u, v) =
∑

e∈E

w(e)
h(u, e)

d(u)

h(v, e)

δ(e)
(4.11)

In matrix notation, P = D−1
v HWD−1

e HT .

Proposition 4.2.3. The random walk P has a stationary distribution π given by

π(v) =
d(v)

vol V
, (4.12)

Proof. Equation (4.12) follows from the fact that

∑

u∈V

π(u)p(u, v) =
∑

u∈V

d(u)

vol V

∑

e∈E

w(e)h(u, e)h(v, e)

d(u)δ(e)

=
1

vol V

∑

u∈V

∑

e∈E

w(e)h(u, e)h(v, e)

δ(e)

=
1

vol V

∑

e∈E

w(e)
∑

u∈V

h(u, e)
h(v, e)

δ(e)

=
1

vol V

∑

e∈E

w(e)h(v, e) =
d(v)

vol V
= π(v)

Interestingly, one can understand the Normalized Cut criterion proposed above in terms

of this random walk. First note that the Normalized Cut criterion (4.2.1 ) can be trans-

formed into

Ncut(S, Sc) =
vol ∂S

vol V

(
1

vol S/ vol V
+

1

vol Sc/ volV

)
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From the stationary distribution (4.12), we have

vol S

vol V
=
∑

v∈S

d(v)

vol V
=
∑

v∈V

π(v) (4.13)

Hence this ratio is the probability with which the random walk occupies some vertex in S.

Moreover,

vol ∂S

vol V
=

∑

e∈∂S

w(e)

vol V

|e ∩ S| |e ∩ Sc|
δ(e)

=
∑

e∈∂S

∑

u∈e∩S

∑

v∈e∩Sc

w(e)

vol V

h(u, e)h(v, e)

δ(e)
(4.14)

=
∑

e∈∂S

∑

u∈e∩S

∑

v∈e∩Sc

w(e)
d(u)

volV

h(u, e)

d(u)

h(v, e)

δ(e)

=
∑

u∈S

∑

v∈Sc

d(u)

vol V

∑

e∈S

w(e)
h(u, e)

d(u)

h(v, e)

δ(e)
(4.15)

=
∑

u∈S

∑

v∈Sc

π(u)p(u, v) (4.16)

Therefore, the ratio vol ∂S
vol V

is the probability that one witnesses a jump of the random walk

from S to Sc under the stationary distribution. Thus the Normalized Cut criterion can be

reinterpreted as seeking a cut where the probability of the random walk crossing between

the different clusters is as small as possible, while the probability of staying within the

same cluster is as large as possible. The intuitive consistency of this random walk view

validates that the generalization of the normalized cut objective from simple graphs to

hypergraphs is reasonable.

4.2.3 k-way Spectral Hypergraph Partitioning

It is straightforward to extend the hyperspectral clustering approach to computing a k-way

partition. Define a k-way partition to be V = V1 ∪ V2 ∪ · · · ∪ Vk, where Vi ∩ Vj = ∅ for

all 1 ≤ i, j ≤ k. Let Pk denote a k-way partition. Then a natural generalization of the

previous criterion is

Ncut(V1, . . . , Vk) =
∑

1≤i≤k

vol ∂Vi

vol Vi

(4.17)
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Similarly, the combinatorial optimization problem can be relaxed into a real-valued one,

where the solution is any orthogonal basis of the linear space spanned by the eigenvectors

of ∆ associated with the k smallest eigenvalues.

Theorem 4.2.4. Assume a hypergraph G = (V,E,w) with |V | = n. Denote the eigenvalues

of the Laplacian ∆ of G by λ1 ≤ λ2 ≤ · · · ≤ λn. Define ck(G) = min c(V1, . . . , Vk), where

the minimization is over all k-way partitions. Then

k∑

i=1

λi ≤ ck(G)

Proof. Let ri be a n-dimensional vector defined by ri(v) = 1 if v ∈ Vi, and 0 otherwise.

Then

c(V1, . . . , Vk) =
k∑

i=1

rT
i (Dv −HWD−1

e HT )ri

rT
i Dvri

Define si = D
−1/2
v ri, and fi = si/‖si‖, where ‖ · ‖ denotes the usual Euclidean norm. Thus

c(V1, . . . , Vk) =
k∑

i=1

fT
i ∆fi = trF T ∆F,

where F = [f1, . . . , fk]. Clearly, F TF = I. If allowing the elements of ri to take arbitary

continuous values rather than Boolean ones only, we have

ck(G) = min c(V1, . . . , Vk) ≥ min
F T F=I

trF T ∆F =
k∑

i=1

λi

The last equation follows from standard results in linear algebra. This complete the proof.

The above result also shows that the real-valued optimization problem derived from

the relaxation actually provides a lower bound of the original combinatorial optimization

problem. Similar to the case for undirected graphs, it is unclear how to utilize multiple

eigenvectors simultaneously to obtain a k-way partition, and how to determine the number

of classes k. The same heuristics for undirected graphs can be applied here.
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4.2.4 Evaluation of Hyperspectral Clustering

I considered clustering on the zoo data set from the UCI repository, which contains 100

animals with 17 Boolean-valued attributes classified into 7 different categories. The at-

tributes include hair, feathers, eggs, milk, legs, tail, etc. Each attribute value is thought of

as a hyperedge and the weights are simply set to 1. I embed the data set into Euclidean

space using the eigenvectors of the hypergraph Laplacian (Figure 4.2). Clearly, the animals

are well separated by the first three eigenvectors. Moreover, it is worth noticing that seal

and dolphin are mapped to the positions between class 1 consisting of the animals having

milk and living on land, and class 4 consisting of the animals living in the sea. A similar

observation also holds for seasnake.

4.3 Supervised Learning on Hypergraphs

I consider learning a function for supervised learning on a hypergraph by optimizing the

combination

min
f∈R|V |

∑

v∈V

loss(f(v), yv) + µΩ(f)

where Ω(f) : V → R
+ is the cut cost defined from the Normalized Cut over labeled

data only. Similar to undirected graphs and directed graphs, we can interpret the cut

cost objective on hypergraphs to be a regularizer Ω : V → R
+; that is, s a smoothness

functional

Ω(f) =
1

2

∑

e∈E

1

δ(e)

∑

{u,v}⊆e

w(e)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

We can also justify that the cut cost for hypergraphs plays the same role as a standard

regularizer by defining a gradient operator on hypergraphs as for simple graphs.

4.4 Semi-supervised Learning on Hypergraphs

Again, I focus on a transducive learning problem in semi-supevised learning on hyper-

graphs. Recall that the transduction involves solving the following: Given a hypergraph
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Figure 4.2: Embedding the zoo data set into Euclidean space. Top panel: the two eigen-

vectors of the hypergraph Laplacian corresponding to the second and third smallest eigen-

values. Bottom panel: the two eigenvectors of the hypergraph Laplacian corresponding

to the third and fourth smallest eigenvalues. For animals having the same attributes, we

randomly choose one as their representative to put in the figures. It is worth noticing that

the animals like dolphin are between class 1 (denoted by ◦) containing the animals mostly

milking and living on land, and class 4 (denoted by ⋄) containing the animals living in sea.
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G = (V, E) where the vertices in a nonempty subset S ⊂ V are labeled as positive or

negative, classify the remaining set of unlabeled vertices. Intuitively we want to assign the

same labels to vertices that have many incident hyperedges in common.

It is straightforward to derive a transductive approach from the clustering scheme for

hypergraphs. The optimization objective to solve this problem is

arg min
f∈R|V |

Ω(f) + µ‖f − y‖2 (4.18)

where µ > 0 is the tradeoff parameter.

As before, this is a general framework for learning with both labeled and unlabeled

data on a hypergraph. This objective sums the changes of a classification function f

over the hyperedges of the hypergraph. Of course, in addition to obtain a good cut on

the hypergraph, one would also like f to match the initial label assignment as much as

possible. To represent the initial assignment, let y denote the function in R
|V | defined by

y(v) = 1 or −1 if vertex v has been labeled as positive or negative respectively, and 0 if it

is unlabeled.

To solve (4.18), note that by (4.9) differentiating (4.18) with respect to f yields ∆f +

µ(f − y) = 0, which is a linear equation. Hence we can obtain a closed form solution

f ∗ = (1− α)(I − αΘ)−1y, (4.19)

where α = 1/(1 + µ) and Θ = D
−1/2
v HWD−1

e HTD
−1/2
v .

4.4.1 Empirical Evaluation

I applied the semi-supervised approach on hypergraphs to four real-world problems, and

compared it to the method in (Zhou et al., 2004). I considered three data sets from

the UCI repository, letter, mushroom and zoo, and the 20-newsgroup data set. In these

data sets, the instances are described by vectors of attribute values. For the hypergraph

approach, each attribute value is thought of as a hyperedge and the weights are simply set

to 1. Choosing suitable weights is definitely an important problem that requires additional

exploration however. I constructed a simple graph for each dataset—an edge is included

if two instances share an attribute value, with an adjacency matrix defined in (4.3). The

simple graph based approach is used as a baseline.
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Figure 4.3: Classification on the data sets with complex relationships. Fig. (a)-(c) depict

the test errors of the hypergraph based approach and the baseline on three different data

sets. The number of the labeled instances for each data set is increased from 20 to 200.

Fig. (d) illustrates the influence of the regularization parameter α in the letter recognition

task with 100 labeled instances.
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The first data set I considered is the mushroom data set, which contains 8124 instances

described by 22 categorical attributes (I remove the 11th attribute because it had missing

values) classified into two classes, edible or poisonous. The two classes have have 4208 and

3916 instances respectively. The second data set I considered is the the 20-newsgroup data,

which contains binary occurrence values for 100 words across 16242 news articles classified

into 4 different classes corresponding the highest level of the original 20 newsgroups. These

classes contain 4605, 3519, 2657 and 5461 articles respectively. The third task I considered

is the letter data set, which contains images of five capital letters (A to E) represented

by 16 integer attributes extracted from raster scan image of the letter. I use a subset of

the data consisting of 789, 766, 736, 805 and 768 examples from each of the five classes

respectively.

The experimental results of the last three tasks are shown in Figure 4.3(a)-4.3(c). The

regularization parameter α for both the hypergraph and undirected graph approaches is

fixed at 0.1. Each test error is averaged over 20 trials. In each trial, I randomly resample

training points until there is an example from each class. The results clearly show that the

hypergraph based method is consistently better than the baseline approach. The influence

of the α for the letter recognition task is shown in Figure 4.3(d). It is interesting that the

parameter α influences the performance of the baseline much more than the hypergraph

based approach.

4.5 Summary

I generalized spectral clustering techniques to hypergraphs, and developed algorithms for

unsupervised and semi-supervised learning on hypergraphs. These algorithms reduce to

previous methods on simple graphs, which validates the new extension. This new extension

also has a useful random walk interpretation similar to simple graphs.

It is interesting to consider applying the present methodology to a broader range of

practical problems. One possible application is biological network analysis. Biological net-

works have mainly been modeled as simple graphs to date. It might be more sensible to

model them as hypergraphs instead, to take into account more complex interactions. An-

other possible application is social network analysis. As recently pointed out by Bonacich
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et al. (2004), many social transactions are supra-dyadic; they either involve more than

two actors or they involve numerous aspects of the interaction setting. So standard net-

work techniques are generally not adequate for analyzing these networks. Consequently,

Bonacich et al. (2004) resorted to the concept of a hypergraph, and showed how the concept

of network centrality can be adapted to hypergraphs.

Again we note that the hyperspectral clustering method also amounts to symmetric

clustering on a “symmetrized” matrix ∆. However this symmetrization is non-trival. Af-

ter the publication of our work, Agarwal et al. (2006) observed that the eigenvalue problem

for ∆, the hypergraph Laplacian is equivalent to the problem derived from the normalized

Laplacian for a transformed bipartite graph. Our new spectral clustering algorithm on

hypergraphs provides a clear and principled algorithmic approach to formulate the eigen-

value problem directly that generalizes previous symmetrization on both undirected and

directed graphs. The random walk interpretation again show the principled way of treating

the graph as a Markov chain. We will see further extension on more complex graphs in

next chapter.





Chapter 5

Beyond Homogeneity: Learning with

Complex Networks

In this chapter I consider the problem of learning from even more complex relationships

between data items, specifically considering heterogeneous networks that involve multiple

objects types and relations. A common property of graphs that I have considered so far

is that the vertices all represent data objects of same data type; e.g. Web pages or arti-

cles. However, in many other applications, e.g. citation network analysis, the data might

involve multiple types of objects and relationships. For instance, a citation network could

explicitly consider two types of objects, ‘papers’ and ‘authors’, that exhibit both paper-

author interactions and paper-paper citation relationships. A typical learning problem we

encounter in this scenario requires one to make inferences about one subset of objects (e.g.

‘papers’), while using the remaining objects and relations to provide relevant information.

The main contribution of this chapter is to propose a simple, unified mechanism for

incorporating information from multiple object types and relations when learning on a tar-

geted subset. In this scheme, all sources of relevant information are efficiently propagated

onto a target subgraph via marginalized random walks. I demonstrate that marginalized

random walks can be used as a general technique for combining multiple sources of in-

formation in relational data. With this scheme, I formulate new inference algorithms for

complex relational data, and quantify the performance of new approaches on real world

data—achieving good results in many challenging problems.

85
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5.1 Problem Overview

Before I present my work, I first briefly give an overview of the problem of learning with

multiple relationships. Currently, bipartite graphs are the most commonly used representa-

tion in many text classification and clustering problems involving two types of data objects.

For example, in document analysis one has documents and terms, where inference is based

on the co-occurrence statistics of terms appearing in documents. Many algorithms have

been developed for clustering in bipartite graphs, i.e., by Zha et al. (2001); Dhillon (2001);

Dhillon et al. (2003); Tishby et al. (1999) and El-Yaniv and Souroujon (2001). The under-

lying intuition behind these approaches is that the similarities among one type of object

can be used to cluster the other type of object.

One obvious limitation of current co-clustering methods is that they can only deal with

two types of data objects, e.g. terms and documents, whereas most data sets may contain

more than two types of objects. For example, in a paper clustering task on a citation

network, beyond the bipartite interaction between papers and authors, it is also useful to

consider other sources of relevant information, such as the conferences where the papers

are published. Such additional paper-conference information could help enhance learning

performance. In this case, one could construct a tripartite graph G = (〈A, B, C〉, E),

where the vertex sets correspond to authors, papers, and conferences respectively, and

E is the set of edges, as shown in Figure 5.1–left. One could consider addressing the

problem of higher-order-partite graphs in a trivial manner by applying co-clustering on

each pair of object types; that is, apply a co-clustering method on A, B, and then on B, C

individually. However it is hard to ensure the solutions are consistent at the intersection on

B. Bekkerman et al. (2005); Gao et al. (2005) proposed methods for solving clustering with

interactive relationships among multiple object types using ideas from information theory

and spectral graph clustering, but they need to employ sophisticated and computationally

expensive methods like semidefinite programming to keep the partitions consistent.

Beyond tripartite clustering, more complex scenarios arise when one considers relation-

ships among the same type of data objects. The work on clustering with bipartite and

k-partite graphs has, for the most part, not taken the relationships between objects of the

same type into account. Obviously, such information is simply ignored if we present the

data as a k-partite graph.
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Figure 5.1: Left: A tripartite graph. Right: A graph of Web pages and terms.

Moving beyond documents and terms, if one considers clustering Web pages, it is clear

that the bipartite graph information between Web pages and terms ignores significant

relevant information encoded in the hyperlink structure (Page et al., 1998; Kleinberg,

1999; Zhou et al., 2005a). When clustering Web pages, it seems clear that both hyperlink

structure and term co-occurrence are relevant sources of useful information that one would

like to take account of in a unified way. Ideally, one would just model the relationships

between Web pages and terms as vertices in a graph like the one shown in Figure 5.1–

right. To the best of my knowledge, clustering in data sets with multiple object types, and

multiple relationships between objects of various types has not been well studied in the

graph partitioning literature.

Contributions I propose a simple and unified mechanism for learning in complex sce-

narios, like the ones shown above, in a graph based approach. I model all data objects

as vertices in a graph; e.g., a k-partite graph or a mixed graph as shown in Figure 5.1–

right. The graph based representation allows a simple mechanism for propagating useful

information globally throughout a large database of objects: based on the graph, a natural

random walk model can be defined that communicates information in a Markov chain. To

summarize information from multiple object types and relations when making inferences

about one object type, I marginalize the transition probability of the random walk onto the

target subset, based on the transition probability of the induced subgraph and the transi-
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tion probability between the subset and its complement. In this way, I obtain a valid, new

random walk model on the induced subgraph that summarizes all external and internal

sources of relevant information. Two objects in the target subgraph that share a lot of com-

mon external information will be highly linked in the induced random walk, even if they

share no direct links in the induced subgraph. Once a valid random walk model has been

defined, one can derive algorithms for various learning problems, by performing random

walks over a Markov Chain. The idea of marginalization is a simple and elegant way of

dealing with many types of complex scenarios uniformly. Interestingly, when dealing with

graphs that happen to be bipartite, the unsupervised method implied by marginalization is

equivalent to the spectral co-clustering method proposed by Zha et al. (2001) and Dhillon

(2001). That is, I recover prominent bipartite graph based inference methods as a special

case.

Furthermore, the marginalization idea can be extended to solve more general and in-

teresting types of inference problems on graphs than having been commonly studied in

graph partitoning. Consider the problem of clustering the set of blog pages on the Web. In

a conventional approach, one could use the induced subgraph on blog pages (namely the

subgraph of all the blog pages and their hyperlink structure) to classify the blog pages with

respect to their common topics. However, the difficulty with this approach is that there

is not much information in the hyperlinks between blog pages, as the owners of the blogs

typically do not add links to other blogs if they do not know each other. Therefore, the

information obtained directly from the subgraph is not enough to identify blogs of com-

mon interest. It therefore makes sense to explore the hyperlinks that connect blog pages to

other general web pages. For example, people who are interested in computer programming

might add a link from their blogs to the page “the art of computer programming” created

by Donald Knuth. Although the blogs themselves may have only a few direct links, the

blogs can still be clustered into identifiable communities by detecting the pages of com-

mon interest linked from the blogs. The scheme I propose can fully exploit all sources of

relevant information in a graph of heterogeneous objects to achieve better performance on

the target subset.
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5.2 Preliminaries

A bipartite graph G = (〈A, B〉, E) is a graph that consists of two disjoint sets of vertices, A

and B, and a set of unordered pairs as edges, E, between A and B. (Typically, the two sets

represent different objects, e.g. documents and terms.) Each edge (a, b) is associated with

a similarity weight w(a, b). One can generalize bipartite graphs to higher order k-partite

graphs, whose vertices are divided into k disjoint sets.

Given a graph G = (V, E) (directed or undirected), and a subset S ⊂ V of the vertices,

the induced subgraph with respect to S is the subset V of vertices of G together with any

edges whose endpoints are both in V .

Recall that given an undirected graph, a natural random walk can be defined by the

transition probability p : V × V → R
+ such that p(a, b) = w(a, b)/d(a) for all (a, b) ∈ E,

where d(a) =
∑

b w(a, b). If the edges have directions, then p is defined by p(a, b) =

w(a, b)/d+(a) for all (a, b) ∈ E and 0 otherwise, where d+(u) =
∑

u→v w(u, v). The random

walk on a strongly connected and aperiodic graph has unique stationary distribution π that

satisfies the balance equation πp = π.

5.3 Marginalized Random Walks on a Subgraph

We can model many versions of graph based inference problems as learning on an induced

subgraph. Typical learning tasks in this setting are unsupervised and semi-supervised

learning on a target subset, where one would like to utilize not only the original structure

of the subgraph, but also the global structure and the interactions between the subgraph

and its complement. To propagate the information needed to perform these tasks, the

graph based approach depends upon a random walk model to communicate the relevant

information globally throughout the graph. In the case where the inference problem is to

be localized on a focused subset of the graph, we need a new random walk model that

communicates the sources of relevant information to the subset. With an appropriate

marginalized random walk model, we can then derive principled techniques for various

learning problems on a heterogeneous network.

Given a graph G = (V, E) (either directed or undirected), and a subset of vertices
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A ⊂ V , we are interested in performing a learning task in A, e.g., learning a classification

of A’s vertices. Let Ac denote the complement of A. For example, in the blog example

where A is the set of blog pages we want to classify based on topics, Ac is the set of non-blog

Web pages that have connections to the blog pages. In the example of a tripartite graph

for a citation network including papers, authors and conferences, A is the set of papers

and Ac includes all the authors of the papers and the conferences.

Typically, the transition probability P of a natural random walk model on the graph can

be written as in Section 5.2. Here one can equivalently rewrite the transition probability

in a blockwise form with respect to A and Ac

P =

(

PAA PAAc

PAcA PAcAc

)

where PAAc denotes the transition probability between vertices in A and Ac, etc.

One could attempt to perform classification in A based only on PAA, by applying the

framework in Chapter 3. However this ignores the information that connects A and Ac,

which could be significant. A extreme case is that when we have no interactive relationships

in either A or Ac but only PAAc and PAcA; that is, a bipartite graph (when edges between

A and Ac are undirected). We will see later in Section 5.3.2 that co-clustering methods on

bipartite graphs actually utilize PAAc and PAcA in an undirected case. Now my goal is to

define a new random walk in A incorporating all relevant information.

Given a vertex u in A, I first assume it has outlinks to a vertex v in A and a vertex vc

in Ac. The random walk has the following two options starting from u: it can follow the

outlink to v (and so stay within A), or to vc (and so leave A). The two walking options

result in two transition probabilities: Pin and Pout.

Pin is the probability If the random surfer stays in A, which equals the probability PAA.

If the random surfer jumps out of A to Ac, its walk will follow the transition probability

PAAc . Once it enters Ac, there is a non-zero chance it will take any number of steps in Ac

before possibly returning to A. Therefore, we have the following definition for Pout.

Definition 5.3.1. Let Pout be the transition probability between u and v in A, such that

the surfer re-entered A after transiting from A to Ac and back to A. Define Pout as

Pout = PAAc

(

I +

n→∞∑

i=1

P i
AcAc

)

PAcA = PAAc(I − PAcAc)−1PAcA
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Note that Pout considers any kind of transition that may occur in Ac, so that the random

walk marginalizes the relational information in Ac.

Combining the two transition models Pin and Pout yields a new random walk P ∗AA on

the subgraph A.

Definition 5.3.2. Define the new marginalized random walk P ∗AA on the subgraph A as

P ∗AA = Pin + Pout

P ∗AA is the new transition probability on A by marginalizing the random walk on subset

A, taking all sources of information into account. The similarity among vertices in A is

measured by a combination of the transition probability within A, Pin, and the probability

of escaping from A to Ac and then returning to A, Pout.

To ensure Pout and P ∗AA are well defined, we assume P is ergodic. We then have the

following propositions.

Proposition 5.3.3. I − PAcAc is invertible.

Proof. Assume I − PAcAc is singular. Then (I − PAcAc)x = 0 has a non-trivial solution

x = PAcAcx. Taking norms, we have ‖x‖ = ‖PAcAcx‖ ≤ ‖PAcAc‖ ‖x‖ < ‖x‖. The last

inequality follows because the row sum of PAcAc is less than 1. Contradiction.

Proposition 5.3.4. P ∗AA is a valid transition probability; i.e. the sum of each row equals

1.

Proof. Consider the ways a random surfer can start from a vertex u in A and return to

another vertex v in A. In the first step, u has two choices, either follow links in A or jump

out of A to Ac. If it stays in A, the transition probability is Pin. If it jumps out of A,

then the surfer has an infinite number of paths lenghts that stay in Ac, before (possibly)

returning to A. Here, Pout is the probability of transiting from u to v via Ac and Pin is the

transition probability from u to v without entering Ac. Thus the sum of these two disjoint

transition probabilities is a valid transition probability.
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5.3.1 Learning on a Subgraph

It is natural to utilize the framework (3.20) on directed graphs to produce graph based al-

gorithms for unsupervised, semi-supervised and ranking on complex networks G, targeting

on subset A:

f ∗ = arg min
f∈R|A|

Ω(f) + µ ||f − y||2

where Ω(f) is defined as in (3.15) while using the new marginalized random walk P ∗AA.

Here y = 〈yi〉 is the partially labeled vector; where each labeled data is either 1 or −1, and

yi = 0 for each unlabeled data point. For ranking, I label the root data as 1 and the rest

as 0. Also, µ is a tuning parameter; where for clustering tasks I set µ = 0 since we do not

have any label information.

5.3.2 Special Case: Learning with a Bipartite Graph

Now I show that the original spectral co-clustering by Zha et al. (2001) and Dhillon (2001)

on a bipartite graph can be equivalently interpreted as defining new random walk mod-

els on each subset of the bipartite graph in my scheme. This equivalence validates the

generalization of the new proposed method.

Given a bipartite graph G = (〈A, B〉, E), where A and B are disjoint subsets of vertices,

the transition probability P over G has the following blockwise form

P =

(

0 PAB

PBA 0

)

Thus, I can define new marginalized random walk in A and B as

P A = PABPBA, (5.1)

P B = PBAPAB (5.2)

Intuitively, such random walks can be also understood as a two step random walk that

I discussed before in Chapter 3 First consider the random walk among vertices in A (B will

be isomorphic). If the random surfer is currently at vertex ai ∈ A, it first takes a backward

step along edge (ai, b) to some vertex b ∈ B. Then if b also has an edge connected to aj ,

the surfer will visit aj along the edge (b, aj).
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The two-step transition probability pA(ai, aj) is determined by the surfer taking one

backward step and one forward step. Therefore,

pA(ai, aj) =
∑

b

p(ai, b)p(b, aj) =
∑

b

w(ai, b)w(b, aj)

d(ai)d(b)
(5.3)

which is exactly the same as the P A obtained in (5.1).

Proposition 5.3.5. The stationary distribution πA of the random walk defined by P A is

πA(a) =
d(a)

vol GA
(5.4)

where vol GA =
∑

a∈A d(a).

The proof is the same as the one for two-step random walks in Proposition 3.2.5

Similarly, one can define the two step transition process among nodes in B, yielding

the transition probability

pB(bi, bj) =
∑

a

p(bi, a)p(a, bj) =
∑

a

w(bi, a)w(a, bj)

d(bi)d(a)
(5.5)

which corresponds to (5.2). Moreover, the stationary distribution πB is

πB(b) =
d(b)

vol GB

(5.6)

To obtain unsupervised and semi-supervised results on both subsets simultaneously, I

define a smoothness function f over A from Equation (3.15) that is measured by

ΩA(f) =
1

2

∑

ai,aj

P A(ai, aj)π(ai)

(

f(ai)
√

π(ai)
− f(aj)
√

π(aj)

)2

Similarly, the smoothness function g over B is defined as

ΩB(g) =
1

2

∑

bi,bj

P B(bi, bj)π(bi)

(

g(bi)
√

π(bi)
− g(bj)
√

π(bj)

)2
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Proposition 5.3.6. Let W be the weight matrix between A and B. Define DA = We,

DB = W T e. Then ΩA(f) and ΩB(f) satisfy

ΩA(f) =
1

vol GA
fT ∆Af

and

ΩB(g) =
1

vol GB
gT ∆Bg

where

ΩA = I −D
−1/2
A W T D−1

B WD
−1/2
A = I −MMT

ΩB = I −D
−1/2
B WD−1

A W TD
−1/2
B = I −MT M

and M = D
−1/2
A W T D

−1/2
B .

The proof is obtained simply by applying (5.3), (5.4), (5.5) and (5.6) to the left sides

of ΩA(f) and ΩB(f), which quickly yields the equality.

It is not hard see that the solutions for f and g by minimizing ΩA(f) and ΩB(f) are

the eigenvectors of MMT and MT M with second largest eigenvalues.

It is known the solution of spectral co-clustering on A and B is the second largest left

and right singular vectors of M (Zha et al., 2001; Dhillon, 2001). It is easy to see that from

the singular value decomposition, that the non-zero left singular eigenvalues of M are the

square roots of the non-zero eigenvalues of MMT with the same eigenvector space. The

eigenvector space of M ’s right eigenvectors is the same as the one of MT M . Therefore,

the two solutions are exactly the same, but with different motivations.

The advantage of having marginalized random walk models on each subset is that

we can treat each set individually while using their mutual relationships. As expected,

the solution is exactly the same as when we considered the combinatorial cut problem in

bipartite graphs. In spectral co-clustering method, the goal is to define a cut criterion for

the weight matrix that minimizes the cut over the unmatched edges and maximizes the

matched vertices in the subgraphs. Such cuts naturally partition the bipartite graph into

two parts in each set. The solution is not clear though if we want different number of

partitions on each subset. While using the new scheme, we can obtain k-cluster results

using the first k eigenvectors of ∆A and ∆B. Moreover, as discussed in Section 5.3, this
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method can be easily generalized into more complex graphs, which would have been difficult

from graph cut perspective.

5.4 Evaluation

I demonstrate several problem settings that involve data represented in complex graph

structures. I evaluate the information marginalization approach by applying it to two

datasets: WebKB and CiteSeer, to solve these problems.

5.4.1 Web Classification

The first dataset is from WebKB (www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/

www/data), which includes pages from four universities: Cornell, Texas, Washington and

Wisconsin. After removing isolated pages, the Web pages have been manually classified

into seven categories: student, faculty, staff, department, course, project and other. I take

advantage of the link structure and page-word relationships for the following two learning

tasks.

(1a) Given the link structure of all the pages and the words used in them, discriminate

student (course) pages from non-student (non-course) pages. Here, A corresponds to the

web pages, and Ac to the words. See Figure 5.1.

(1b) Given only the link structure, discriminate student pages (labeled as 1) from course

pages (labeled as -1). For this task, A corresponds the pages of students and courses, and

Ac to the web pages from other classes.

I compare the performance of two algorithms for Web page classification in transductive

setting. The first transductive algorithm uses the marginalized random walk P ∗, and the

second one uses hyperlink structure PAA only. I use canonical 0-1 weights over the directed

hyperlinks. I set the tuning parameter µ = 2.5 for both algorithms. I increase the size of

the labeled data sample at each iteration. The comparison is based on 0/1 classification

error, averaged by 20 iterations.

Figures 2 and 3 show the comparison results for problem (1a), and Figure 5.4, for

problem (1b). It is clear that the methods using information marginalization outperforms

the one with only the local hyperlink information from subset. Specifically, this implies



96 Learning from Partially Labeled Data

10 20 30 40 50 60
0.06

0.07

0.08

0.09

0.1

0.11
Washington: course vs non−course

# labeled points

te
st

 e
rr

or

non−marginlized
marginlized

10 20 30 40 50 60 70 80
0.105

0.11

0.115

0.12

0.125

0.13 Washington: student vs non−student

# labeled points

te
st

 e
rr

or

non−marginlized
marginlized

Figure 5.2: Classification error on discriminating course pages from non-course pages (left)

and student pages from non-student pages (right) from Washington.
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Figure 5.3: Classification error on discriminating course pages from non-course pages (left)

and student pages from non-student pages (right) from Wisconsin.
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Figure 5.4: Classification error on discriminating course pages from student pages.

that the marginalized random walk is able to convey more global information onto the

subset, efficiently improving the performance in classifications.

5.4.2 Ranking in Citation Networks

The second dataset is based on CiteSeer (citeseer.ist.psu.edu)—a well-known scientific

digital library that catalogues primarily computer and information science literature. I

construct citation networks based on paper-paper and paper-author relationships from

CiteSeer. I extract a set of papers P with authors U . Here, I focus on two kinds of ranking

problems.

(2a) Given some papers (i.e., seed papers) in P labeled as relevant to a specific topic
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T , rank the rest of the papers based on their relevance to T . Here, A is P , Ac is U .

(2b) Given some authors (i.e., seed authors) in A identified as relevant since they share

similar research interests, rank the remaining authors based on how much they share the

research interests with these seed authors. A is U , Ac is P .

To build citation networks, I scout ahead following the paper citation and corresponding

authors information from the OAI records (citeseer.ist.psu.edu/oai.html). I start a

crawl from a set of pre-selected authors (i.e., root authors), then collect all their papers

and the co-authors of these papers. The co-authors are added to a growing set of authors

that is used in the next iteration. I repeat this iteration n = 3 times to collect a number of

related authors and papers. In my experiment, I choose the root authors from two different

areas:

Root authors # Authors # Papers

“Berhard Scholkopf” + “John Kleinberg” 7156 4979

“Vladimir Vapnik” + “Jianbo Shi” 3048 2097

Therefore, the citation network contains authors with different research subjects, which is

more realistic.

For problem (2a), Table 5.1 shows the top 20 results of paper ranking with respect to

the labeled paper “Kernel Principal Component Analysis”; and Table 5.2 shows the top

10 papers ranked with respect to “Authoritative Sources in a Hyperlinked Environment”.

We can see that the information maginalization method works better than only using

citation links information as the highly ranked papers are closer to the labeled paper in

information marginalization scheme. If one only considers citation links, some papers from

slightly different domain may be included in the top ranking list because they may have

citations with similar papers. With the help of author-paper relationships, the relationship

between the labeled paper and other papers become more clear thus lead more accurate

ranking results.

For problem (2b),Table 5.3 lists the ranking results of authors with respect to Vladimir

Vapnik in the second citation network. The information from the citation links moves some

authors—Chris Burges, Bernhard Scholkopf, Olivier Chapelle and Alex Smola—to higher

ranking positions than only using author-paper relationships. The reason is that these

authors also have many citation links among their papers that strengthen the similarities
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Table 5.1: Papers Ranked closest to “Kernel Principal Component Analysis”
marginalized random walk use only citation links

title title

1. Regression Estimation with Support Vector

Learning Machines

1. Model Selection for Support Vector Ma-

chines

2. Model Selection for Support Vector Ma-

chines

2. SV Estimation of a Distribution’s Support

3. Support Vector Method for Novelty Detec-

tion

3. Support Vector Method for Novelty Detec-

tion

4. A Generalized Representer Theorem 4. Optimal Hyperplane Classifier with Adap-

tive Norm

5. Optimal Hyperplane Classifier with Adap-

tive Norm

5. Inclusional Theories in Declarative Pro-

gramming

6. Incorporating Invariances in Support Vector

Learning Machines

6. Studies on the Formal Semantics of Pictures

7. Latent Semantic Kernels 7. A Noise-Tolerant Hybrid Model of a Global

and a Local Learning Module

8. Sparse Kernel Feature Analysis 8. Latent Semantic Kernels

9. Extracting Support Data for a Given Task 9. Incorporating Invariances in Support Vector

Learning Machines

10. Support-Vector Networks 10. A Generalized Representer Theorem

11. Kernel Methods: A Survey of Current Tech-

niques

11. Equivalent Conditions for the Solvability

of Nonstandard LQ-Problems with Applica-

tions to Partial Differential Equations with

Continuous Input-Output Solution Map

12. A Training Algorithm for Optimal Margin

Classifiers

12. Hyperbolic Conservation Laws with a Mov-

ing Source

13. Improving the Accuracy and Speed of Sup-

port Vector Machines

13. Extracting Support Data for a Given Task

14. The Connection between Regularization

Operators and Support Vector Kernels

14. Support-Vector Networks

15. Generalization Performance of Regulariza-

tion Networks and Support Vector Machines

15. On Molecular Approximation Algorithms

for NP Optimization Problems

16. Statistical Learning and Kernel Methods 16. Kernel Methods:A Survey of Current Tech-

niques

17. The Kernel Trick for Distances 17. CPU Management for UNIX-based MPEG

Video Applications

18. On a Kernel-based Method for Pattern

“Recognition,” “Regression,” “Approxima-

tion”

18. Efficient Lossless Compression of Trees and

Graphs

19. Advances in Kernel Methods - Support Vec-

tor Learning

19. A Precise Semantics For Vague Diagrams

20. Estimating the Support of a High-

Dimensional Distribution

20. Redescription, Information And Access
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Table 5.2: Papers Ranked closest to “Authoritative Sources in a Hyperlinked Environment”
marginalized random walk use only citation links

title title

1. Fast Monte-Carlo Algorithms for finding

low-rank approximations

1. volutionary Strategies For Solving Frus-

trated Problems

2. Evolutionary Strategies For Solving Frus-

trated Problems

2. Fast Monte-Carlo Algorithms for finding

low-rank approximations

3. The Anatomy of a Large-Scale Hypertextual

Web Search Engine

3. Reconstruction From The Multi-Component

Am-Fm Image

4. Latent Semantic Indexing: A Probabilistic

Analysis

4. The Anatomy of a Large-Scale Hypertextual

Web Search Engine

5. Challenges in Web Search Engines 5. Latent Semantic Indexing: A Probabilistic

Analysis

6. How to Personalize the Web 6. Learning Decision Strategies with Genetic

Algorithms

7. Efficient and Effective Metasearch for Text

Databases Incorporating Linkages among

Documents

7. A Model for Sequence Databases

8. The PageRank Citation Ranking: Bringing

Order to the Web

8. Semantically Driven Automatic Hyperlink-

ing

9. New Results for Online Page Replication 9. Applications of a Web Query Language

10. Searching the Web: General and Scientific

Information Access

10. Efficient and Effective Metasearch for Text

Databases Incorporating Linkages among

Documents

Table 5.3: Author ranking result in network 2.
marginalized only author-paper

relationships

marginalized only author-paper

relationships

name name name name

1.Chris Burges 1.Sayan Mukherjee 11.Mark Stitson 11.Vladimir Vovk

2.Bernhard E.Boser 2.Chris Burges 12.Alex Gammerman 12.Alex Gammerman

3.Isabelle M. Guyon 3.Bernhard E. Boser 13.Vladimir Vovk 13.Mark Stitson

4.Sayan Mukherjee 4.Isabelle M.Guyon 14.Chris Watkins 14.Klaus-Robert

Muller

5.Donghui Wu 5.Donghui Wu 15.Partha Niyogi 15.Federico Girosi

6.Bernhard

Scholkopf

6.Steven E.Golowich 16.Olivier Chapelle 16.Koh.Sung

7.Heinrich

H.Bulthoff

7.Volker Blanz 17.Alex Smola 17.Partha Niyogi

8.Thomas Vetter 8.Bernhard Scholkopf 18.Adnan Aziz 18.Jason Weston

9.Volker Blanz 9.Thomas Vetter 19.Jason Weston 19.Olivier Chapelle

10.Steven Golowich 10.Chris Watkins 20.Koh.Sung 20.Alex Smola
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with respect to the labeled author.

5.5 Summary

I propose a unified mechanism for incorporating information from multiple object types

and relations in a heterogeneous network when making inferences on a targeted subgraph.

The new mechanism allows me to only focus on the subgraph as the information has been

marginalized onto the subgraph. The marginalization is achieved via a valid composition of

random walk models that propagate information both externally and internally. Moreover,

interestingly, this new method generalizes the special case in bipartite spectral clustering.

If we take one vertex set in the bipartite graph to be a hyperedge, then it is not hard to

see that this method also generalizes previous hyperspectral clustering in Chapter 4.

I quantify the performance of my new schemes on two real world relational data and

achieve good results in challenging inference problems.





Chapter 6

Learning under Distribution Shifting

with Unlabeled Data

So far, the previous chapters have discussed how to solve unsupervised and semi-supervised

learning problems with data embedded in different types of graph structures. In this chap-

ter, I switch to a distribution based approach and also shift from discrete to continuous

domains, to address these problems. In the distribution based approach, the learned func-

tions are defined on a continuous domain X , encoding the instances of the learner’s world,

with a distribution Pr(x).1 Additionally, an instance of X determines a probability distri-

bution on an output space Y . The labeled examples (X, Y ) ∈ X ×Y are independently and

identically (iid) drawn from a fixed target distribution Pr(x, y) over X × Y . The learned

function f : X → Y is constructed to predict Y from X.

One of the major limitations of current semi-supervised learning methods in the distri-

bution based approach is that there is no straightforward way for these methods to make

predictions on test points that are not drawn from Pr(x). That is, most current methods

experience difficulty when the distributions between training to test data are different.

This distribution shifting may come from a censoring mechanism that has control over the

assignment of labels to data points. Such test points from different distribution could be

harmful as they provide misleading information about Pr(x). Therefore for semi-supervised

learning, the test points have to be drawn from Pr(x), or some distribution closely related

1Throughout this chapter I will use Pr to define a probability distribution on X .
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to Pr(x) (Chapelle et al., 2006). This is an underlying assumption for most semi-supervised

learning methods, as well as for supervised learning.

Therefore, a natural interesting question is raised: Is it possible to make predictions on

the test points that are not drawn from Pr(x), or some distribution that has been skewed

or shifted from Pr(x)? The contribution of this chapter is that it presents a method that is

able to resolve this challenging situation by using unlabeled data. Most algorithms for this

setting in literature try to first recover sampling distributions and then make appropriate

corrections based on the distribution estimate. The method I present is a novel nonpara-

metric method that directly produces resampling weights to correct the distribution bias

effects by matching distributions between training and testing sets in a feature space, by-

passing the problem of explicit density estimation. The technique can be easily applied

to many different supervised learning algorithms, automatically adapting their behavior

to cope with distribution shifting between training and test data. Experimental results

demonstrate that the new method works well in practice.

6.1 Learning under Distribution Shifting

This section covers the background in learning with distribution shifting. I first give the

motivation by illustrating a toy example and discussing some real world phenomenon. Then

I briefly review some related methods for this problem in literature. Finally I highlight the

differences and advantages of my new approach from existing ones.

The default assumption in many classical learning scenarios is that training and test

data are drawn iid from the same distribution. When the distributions on training and

test set do not match, we are facing sample selection bias which I referred to as distri-

bution shifting. In this case, given a domain of patterns X and labels Y , the training

samples Z = {(x1, y1), . . . , (xm, ym)} ⊆ X × Y we obtained are from a probability distri-

bution Pr(x, y), and test samples Z ′ = {(x′1, y′1), . . . , (x′m′ , y′m′)} ⊆ X × Y are drawn from

another distribution Pr′(x, y). This is a difficult situation for standard statistical learning

approaches. It is not hard to imagine that it will result a biased function with potentially

poor performance in learning if we do not correct the shifting.
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6.1.1 Motivation

I first illustrate the phenomenon of learning under distribution shifting via a toy example.

Toy regression example The toy example is to demonstrate the effect of learning func-

tions with and without bias correction on data of different training and test distributions.

The data is generated according to the polynomial regression example from Shimodaira

(2000), for which q0 ∼ N (0.5, 0.52) and q1 ∼ N (0, 0.32) are two normal distributions. The

observations are generated according to y = −x + x3, and are observed in Gaussian noise

with standard deviation 0.3 (see Figure 6.5.1; the blue curve is the noise-free signal).

I sample 100 training (blue circles) and testing (red circles) points from q0 and q1

respectively. I attempt to model the observations with a degree 1 polynomial. The red

line is directly derived only from the training data via ordinary least squared (OLS), and

predicts the test data very poorly as the test data has different distribution of the training

data. The black dashed line is the optimal function which is fitted using OLS on the red

test points. The other three dashed lines are obtained by fitting on the labeled test points

with bias correction in OLS (I will present each of the methods later). We can see that all

these methods give much better performance to the red one by taking the bias correction

into account.

Real World Problems Although there are some work addressing the learning problem

with different training and test distributions, distribution shifting is typically ignored in

standard learning algorithms. Nonetheless, in reality the problem occurs rather frequently:

While the available data have been collected in a biased manner, the test is usually per-

formed over a more general target population. Below, I give three examples; but similar

situations may occur in many other domains.

1. Suppose we wish to generate a model to diagnose breast cancer. Suppose, moreover,

that most women who participate in the breast screening test are middle-aged and

likely to have attended the screening in the preceding three years. Consequently

our sample includes mostly older women and those who have low risk of breast

cancer because they have been tested before. The examples do not reflect the general
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Figure 6.1: Four dashed lines Polynomial models of degree 1 fit with OLS and WOLS

with bias correction; Labels are Ratio for ratio of test to training density; KMM for our

approach; min IC for the approach of Shimodaira (2000); and OLS for the model trained

on the labeled test points.

population with respect to age (which amounts to a bias in Pr(x)) and they only

contain very few diseased cases (i.e. a bias in Pr(y|x)).

2. Gene expression profiles are commonly used in tumor diagnosis. A typical problem

is that the samples are obtained using certain protocols, microarray platforms and

analysis techniques. And they typically have relatively small sample sizes. The test

cases are recorded under different conditions, resulting in a different distribution of

gene expression values.

3. Consider performing data analysis using a Brain Computer Interface where the dis-

tribution over incoming signals is known to change as experiments go on, because the

subjects get tired, the sensor setup changes, and so on. In this case it is necessary

to adapt the estimator to the patterns with the new distribution in order to improve

performance.
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The generalization of the learned model in supervised learning can be significantly

defected if we do not have enough or the wrong information of Pr(x) or Pr(y|x) in the

above problems.

Similar to supervised learning, semi-supervised learning methods will also face problems

with distribution shifting. The reason is that generally, semi-supervised learning takes

the test distribution into account implicitly, where the unlabeled data provides useful

information of Pr(x), e.g., Chapelle et al. (2003) designs kernels to find decision boundary

based on the density from unlabeled data. When the unlabeled data provide misleading

or less useful information, traditional semi-supervised methods will fail. For example, the

model using generative methods in semi-supervised learning may be misspecified by the

unlabeled data since maximum likelihood tries to model Pr(x) rather than Pr(y|x) (Cozman

et al., 2002). The biased estimate from misleading unlabeled sample with inconsistent

distribution may lead to dramatic error to the method by Szummer and Jaakkola (2002),

as it adds information regularization on Pr(x) where Pr(x) is obtained from an empirical

estimate obtained from the unlabeled sample.

While the unlabeled data might be harmful in learning, it will do good for us if we pay

attention to the phnomenon and appropriately correct the bias in our learning procedures.

6.1.2 Problem Overview

In the following, I list some methods that are mostly related to my work in solving sample

selection bias problem. Some of them achieved better performance by using unlabeled

data. I will also investigate the problem of how to utilize unlabeled data in this distribution

shifting scenario later. One may refer to (Chawla and Karakoulas, 2005) for more literature

review.

Heckman’s method (Heckman, 1979) Heckman studied the sample selection bias

for modeling labor supply in the field of Econometrics, which is a Nobel-prize winning

work in 2000. He developed a procedure for correcting sample selection bias by estimating

the probability that an observation is selected into the training set to correct the linear

regression model. Heckman’s sample selection model consists of a linear regression model

and a binary probit selection model. The method contains two steps. The first step is to
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use the selection model to explicitly model the censoring mechanism and correct for bias.

The second step is to generate a regression model only for data that satisfies the selection

equation. Specifically, the two models associated with a random sample of observations

are

Y1 = βT
1 X1 + u1

Y2 = βT
2 X2 + u2

where u1, u2 are from normal distribution and they form a joint distribution with correlation

ρ as u1, u2 ∼ N [0, 0, σ2, ρ]. Y2 indicate whether the data is labeled or not. Data is labeled

if y2 = 1, and not labeled if y2 = 0. The information from Y2 will be applied to Y1 where

y1 has the observed value if y2 > 0 and y1 is missing if y2 ≤ 0. The estimate of β1 will be

unbiased if u1 and u2 are uncorrelated and therefore the data on Y1 are missing randomly.

In the biased case, the regression will be effected based on ρ and σ. Then the conditional

regression function for selected samples can be written as

E(Y1|X1, Y2 ≥ 0) = βT
1 X1 + E(u1|u2 ≥ −βT

2 X2)

where E(u1|u2 ≥ −βT
2 X2) is estimated by assuming u1, u2 has a bivariate normal distribu-

tion.

By recovering the censoring mechanism, the bias is filtered out in the regression model.

Heckman’s procedure requires a regression based model that is commonly used in Econo-

metrics. However, we may interested in other types of learning models that handle the

problem.

Weighting the log-likelihood (Shimodaira, 2000) Shimodaira (2000) proposed a

weighting technique to reweight the observed samples in maximizing the log-likelihood

(MLE) function. The original maximum likelihood may be poorly estimated due to the

distribution shifting and results in misspecification of the model. Consider the loss

loss(θ) = −
∫

Pr∗(x)

∫

Pr(y|x)log Pr(y|x, θ)dydx

where Pr∗(x) is the density of training (Pr(x)) or the test data (Pr′(x)). If the densities

are not consistent, then the estimated loss from the training data will not match the one
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that should come from the test data. Therefore, MLE does not provide a good inference

in this case. To achieve better performance, the author proposed to apply weights w(x) =

Pr′(x)/ Pr(x) motivated from importance sampling. Therefore, the log-likelihood function

becomes

Lw(θ|x, y) = −
n∑

i=1

(−w(xi)log Pr(yi|xi, θ))

The weights are estimated by minimizing an information criterion ICw. The information

criterion is an estimate of the expected loss unbiased up to O(n−1) term. The search for

optimal weights has high computational cost thus the author proposed to do line search

with parameter λ as

w(x) =

(
Pr′(x)

Pr(x)

)λ

, λ ∈ [0, 1]

Shimodaira (2000) numerically finds a λ̂ that minimizes ICw by searching over [0, 1], which

is a kind of heuristic for finding the optimal w(x). Specifically, for normal linear regression,

the information criterion can be calculated in a simpler form that assumes the residual of

the regression model is distributed normally and the distribution parameters are known.

For more complicated models, this approach requires taking first and second derivatives of

log Pr(y|xθ) and Lw with respect of θ, which is not easy to calculate in general.

Shimodaira (2000) provides an important intuition for bias correction by re-weighting

the log-likelihood function. I will also investigate this re-wighting mechanism and compare

with this method to my approach later.

Sample selection bias in machine learning (Zadrozny, 2004) Zadrozny (2004)

formalized the sample selection bias problem in machine learning and studied analytically

how learned classifiers are affected by it. The paper considers four cases selection bias.

Define examples (x, y, s) drawn i.i.d. from a distribution with domain X ×Y ×S, where S
is a binary space indicating whether the data is selected as a training input or not: s = 1

means the data is selected and s = 0 means not selected. The four cases of denpendece of

s on the sample are

1. s is independent of x and y, which indicates that the selected sample is not biased.
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2. Pr(s|x, y) = Pr(s|y), s is independent of y given x. This indicates that the bias

depends on feature x.

3. Pr(s|x, y) = Pr(s|x), s is independent of x given y. This indicates that the bias

depends on label y.

4. No independence assumption between x, y and s.

Zadrozny (2004) focused on Case (2), as it occurs more frequently in real world datasets.

The paper experimentally shows how the sample selection bias affects different types of

classification methods, including Bayesian classifiers, logistic regression, SVM and decision

trees. In addition, it presents a bias correction method that can be applied to any classifier

learner. However, the model for the selection probabilities Pr(s = 1|x) has to be known,

which is not typically true in real world problems. The method also applies a re-wighting

approach, that tries to minimizing the expected value of a loss function over the distribu-

tion of training examples; that is, it minimizes Ex,y∼Pr′(loss(x, y, θ)). Let Pr be another

distribution such that Pr(x, y, s) = P (s = 1) Pr′(x,y,s)
Pr(s=1|x)

, then we have

Ex,y∼Pr′loss(x, y, θ) = Ex,y∼Pr(loss(x, y, θ)|s = 1)

The proof is based on a similar idea of importance sampling as being used in (Shimodaira,

2000) where the weight is P (s=1)
P (s=1|x)

. However, the question of how to obtain a correct

selection probability Pr(s = 1|x) to infer the weights remains unsolved in this paper.

Inferring label sampling mechanisms in semi-supervised learning (Rosset et al.,

2005) Rosset et al. (2005) improved the work of Zadrozny (2004) by proposing a method

to infer the sampling model using unlabeled data. Therefore, it is a semi-supervised

method. The work establishes a general equality

E(f(X, Y, S)) = E(g(X))

for any feature function g(x) and f(x, y, s) = g(x)
P (s=1|x,y)

if s = 1 and 0 otherwise. Therefore,

the weighting function is 1
P (s=1|x,y)

. This procedure more general than (Zadrozny, 2004).

The main goal in (Rosset et al., 2005) is to estimate w(x, y) = P (s = 1|x, y) with a “method
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of moments” approach that estimates w(x, y) by applying k different representative feature

functions g(x) with respect to different matching moments. To solve for the correction

weights, it involves solving a least squares optimization problem based on both labeled

and unlabeled data. This work proposed a parameterized method to infer the sampling

mechanism from unlabeled data, but only solves the problem for a predefined parameterized

sampling model. Intuitively, we hope to obtain better weights by matching all possible

moments.

Others There are some other related work that I would like to mention briefly. The

problem of the distribution shifting is referred to as a nonstandard situation in (Lin et al.,

2002). It explained why SVMs are not suitable for nonstandard situations and introduced

a simple procedure for adapting SVMs to this caseThe idea of this method is to apply

correction weights to the expected hinge loss term in SVM, where the weights are estimated

based on the prior probabilities of positive and negative classes in the test population.

However, this prior knowledge is not typically known in practice.

Elkan (2001) addresses a similar case when the sampling mechanism is dependent on the

class label. Sugiyama and Muller (2005) proposed to reweight the training examples that

fall in areas of high density among test examples. Dudik et al. (2005) proposed three bias

correction approaches in the problem of maximum entropy density estimation. However,

all of them assume the sampling distribution is known.

More recent work can be found in (Ben-David et al., 2006a) and (Storkey and Sugiyama,

2006). In (Ben-David et al., 2006a), the problem is referred to as domain adaptation. The

training and test sets are samples from the target domain and source domain respectively.

This work formalized a bound on the target generalization error of a classifier trained from

the source domain without assuming any relationship between labels and the structure of

unlabeled data.

Comments As one can see, many existing methods, e.g., in (Zadrozny, 2004; Dudik

et al., 2005; Shimodaira, 2000), use re-weighting approaches to solve the sample selection

bias problem where the training sample is selected in a biased manner while the test

domain targets at a more general population. A common property of these approaches is

that the re-weighting idea is adopted from important sampling: the “important” training
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observations are emphasized by penalizing the risk more significantly; the biased model

estimator is reweighted that ensures the new estimator is unbiased. It is assumed that the

support of Pr′ is contained in the support of Pr and the selection probabilities are greater

than zero for all observations (the importance weights are the inversion of the selection

probabilities in above methods).

In a more general scenario, where the training and test distributions could be arbitrary

far apart, the problem is typically unsolvable. It is not hard to imagine that if training and

test data are generated from significantly different distributions, there is little hope one

could find a function that performs well on both datasets. Therefore in the following we will

make certain assumptions as described in Section 6.1.3 to proceed with our methodology.

6.1.3 Contributions

As one can see, there have been several algorithms proposed for solving the sample selection

bias problem. Some of these approaches exploit unlabeled data to infer the sampling

mechanism. However, one of the main drawbacks in previous work is the requirement that

biased densities be explicitly estimated (Zadrozny, 2004; Dudik et al., 2005; Shimodaira,

2000). Some approaches require the class prior to be known in advance (Lin et al., 2002).

I also attempt to utilize the availability of unlabeled data to direct a sample selection

de-biasing procedure based on a re-weighting approach. However, unlike previous work, I

infer the resampling weight directly, by distribution matching between training and testing

sets in feature space. The method does not require parametric distributional assumptions;

rather, I account for the difference between Pr(x, y) and Pr′(x, y) by reweighting the train-

ing points such that the means of the training and test points in a reproducing kernel

Hilbert space (RKHS) are close. I refer to this re-weighting process kernel mean matching

(KMM).

The required optimization is a simple QP problem. The reweighted sample can be

straightforwardly incorporated into a variety of regression and classification algorithms. I

apply the method to a variety of regression and classification benchmarks, as well as to

classification of microarrays from prostate and breast cancer patients. These experiments

demonstrate that KMM greatly improves learning performance compared with training on

unweighted data, and that the reweighting scheme can in some cases outperform reweight-
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ing using the true sample bias distribution.

Key Assumption 1: In general, the estimation problem with two different distribu-

tions Pr(x, y) and Pr′(x, y) is unsolvable, as the two terms could be arbitrarily far apart.

In particular, for arbitrary Pr(y|x) and Pr′(y|x), there is no way we could infer a good

estimator based on the training sample when the two distributions are different. Hence we

make the simplifying assumption that Pr(x, y) and Pr′(x, y) only differ via their marginals

on X ; that is, Pr(x, y) = Pr(y|x) Pr(x) and Pr(y|x) Pr′(x). In other words, the conditional

probabilities of y|x remain unchanged. (This particular case of sample selection bias has

been termed covariate shift (Shimodaira, 2000).)

Key Assumption 2: We note that assumption 1 is not sufficient to guarantee that

this problem is always solvable. Therefore, assumption 2 additionally assume the marginal

distributions are close in the way that first, the ratio of the marginal distribution Pr′ / Pr ≤
B; second, the empirically estimated βi satisfies the inequality (6.10). When the difference

is bounded, depend on the assumptions, we can provide a guarantee of the performance,

as we will see later in Section 6.4.

6.2 Sample Reweighting

I begin by stating the problem of regularized risk minimization.2 In general a learning

method targets at minimizing the expected risk

R[Pr, θ, l(x, y, θ)] = E(x,y)∼Pr [l(x, y, θ)] (6.1)

of a loss function l(x, y, θ) depending on a parameter θ. For instance, the loss function

could be the negative log-likelihood, − log Pr(y|x, θ), a misclassification loss, or some form

of regression loss. However, since typically we only observe examples (x, y) drawn from

Pr(x, y) rather than Pr′(x, y), one resorts to computing the empirical average

Remp[Z, θ, l(x, y, θ)] =
1

m

m∑

i=1

l(xi, yi, θ). (6.2)

2The thesis Appendix provide some background in classical learning theory.
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To avoid overfitting, instead of minimizing Remp directly one often minimizes a regularized

variant:

Rreg[Z, θ, l(x, y, θ)] = Remp[Z, θ, l(x, y, θ)] + λΩ[θ]

where Ω[θ] is a regularizer.

6.2.1 Sample Correction

The problem is more involved if Pr(x, y) and Pr′(x, y) are different. The training set is

drawn from Pr, however what we would really like is to minimize R[Pr′, θ, l] as we wish to

generalize to test examples drawn from Pr′. An observation from the field of importance

sampling is that

R[Pr ′, θ, l(x, y, θ)] = E(x,y)∼Pr′ [l(x, y, θ)] = E(x,y)∼Pr

[
Pr′(x,y)
Pr(x,y)
︸ ︷︷ ︸

:=β(x,y)

l(x, y, θ)
]

(6.3)

= R[Pr, θ, β(x, y)l(x, y, θ)], (6.4)

provided that the support of Pr′ is contained in the support of Pr. Given β(x, y), we can

thus compute the risk with respect to Pr′ using Pr, Similarly, we can estimate the risk

with respect to Pr′ by computing Remp[Z, θ, β(x, y)l(x, y, θ)].

The key problem is that the coefficients β(x, y) are usually unknown. We need to

estimate the coefficients from data. When Pr and Pr′ differ in Pr(x) and Pr′(x) only

as being stated in the assumption before, we have β(x, y) = Pr′(x)/Pr(x), where β is a

reweighting factor for the training examples. We thus reweight every observation (x, y)

such that observations that are under-represented in Pr obtain a higher weight, whereas

over-represented cases are downweighted.

Now we could estimate Pr and Pr′ and subsequently compute β based on those es-

timates. This is closely related to the methods in (Zadrozny, 2004; Lin et al., 2002) as

they have to either estimate the selection probabilities or have prior knowledge of the class

distributions. Though being intuitive, this approach has two major problems: first, it only

works whenever the density estimates for Pr and Pr′ (or potentially, the selection prob-

abilities or class distributions) are good. In particular, small errors in estimating Pr can

lead to large coefficients β and consequently to a serious overweighting of the correspond-

ing observations. Second, estimating both densities just for the purpose of computing
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reweighting coefficients may be overkill: we may be able to directly estimate the coeffi-

cients βi := β(xi, yi) without having to estimate the two distributions. Furthermore, we

can regularize βi directly with more flexibility, taking prior knowledge into account similar

to learning methods for other problems.

6.3 Distribution Matching

6.3.1 Kernel Mean Matching and its Relation to Importance

Sampling

Let Φ : X → F be a feature map into a feature space F and denote by µ : P → F the

expectation operator

µ(Pr) := Ex∼Pr(x) [Φ(x)] . (6.5)

Clearly µ is a linear operator mapping the space of all probability distributions P into

feature space.

In the following, we will consider universal reproducing kernel Hilbert spaces as defined

by Steinwart (2002b).

Definition 6.3.1. A continuous kernel k on a compact metric space (X , d) is called uni-

versal if the space of all functions induced by k is dense in C(X ) where C(X ) is the space

of continuous bounded functions on X , i.e., for every function f ∈ C(X ) and every ǫ > 0

there exists a function g induced by k with

‖f − g‖∞ ≤ ǫ

Theorem 6.3.2 (Huang et al. (2006b)). The operator µ is bijective if F is an RKHS with

a universal kernel k(x, x′) = 〈Φ(x), Φ(x′)〉.

Proof. Let F be a universal RKHS, and let G be the unit ball in F . We need to prove

that Pr = Pr′ if and only if µ(Pr) = µ(Pr′), or equivalently ‖µ(Pr)−µ(Pr′)‖ = 0. We may
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write

‖µ(Pr)− µ(Pr′)‖ = sup
f∈G
〈f, µ(Pr)− µ(Pr′)〉

= sup
f∈G

(EPr[f ]−EPr′ [f ])

=: ∆ [G, Pr, Pr′] .

It is clear that ∆ [G, Pr, Pr′] = 0 is zero if Pr = Pr′. To prove the converse, we begin with the

following result from Dudley (2002, Lemma 9.3.2): If Pr, Pr′ are two probability mesures

defined on a separable metric space X , then Pr = Pr′ if and only if EPr[f ] = EPr′[f(x′)]

for all f ∈ C(X ), where C(X ) is the space of continuous bounded functions on X . If

we can show that ∆ [C(X ), Pr, Pr′] = D for some D > 0 implies ∆ [G, Pr, Pr′] > 0: this

is equivalent to ∆ [G, Pr, Pr′] = 0 implying ∆ [C(X ), Pr, Pr′] = 0 (where this last result

implies Pr = Pr′). If ∆ [C(X ), Pr, Pr′] = D, then there exists some f̃ ∈ C(X ) for which

EPr

[

f̃
]

− EPr′

[

f̃
]

≥ D/2. By definition of universality, F is dense in C(X ) with respect

to the L∞ norm: this means that for all ǫ ∈ (0, D/8), we can find some f ∗ ∈ F satisfying∥
∥
∥f ∗ − f̃

∥
∥
∥
∞

< ǫ. Thus, we obtain
∣
∣
∣EPr [f ∗]− EPr

[

f̃
]∣
∣
∣ < ǫ and consequently

|EPr [f ∗]− EPr′ [f
∗]| >

∣
∣
∣EPr

[

f̃
]

− EPr′

[

f̃
]∣
∣
∣− 2ǫ > D

2
− 2D

8
= D

4
> 0.

Finally, using ‖f ∗‖ <∞, we have

|EPr [f ∗]−EPr′ [f
∗]| /‖f ∗‖ ≥ D/(4 ‖f ∗‖) > 0,

and hence ∆ [G, Pr, Pr′] > 0.

To summerize the main idea of the proof, we know that under the sated conditions, a

sufficient condition for Pr = Pr′ is that for all continuous functions f , we have
∫

fd Pr =
∫

fd Pr′. Such functions f , can be arbitrarily well approximated using functions in a

universal RKHS. The intuition comes from that to mimic a distribution one can match the

moments of a distribution and by using universal RKHS, we are able to matching all the

moments. We note that a limitation of the consequence is that the only RHKSs with Gauss

and Laplace kernels that are bounded satisfy the conditions. However Gauss kernel is the

most useful kernel in many applications. Therefore the theorem is still widely applicable.
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The practical consequence of this result is that if we know µ(Pr′), we can infer a suitable

β by solving the following minimization problem: this is the kernel mean matching (KMM)

procedure:

minimize
β

∥
∥µ(Pr ′)−Ex∼Pr(x) [β(x)Φ(x)]

∥
∥ subject to β(x) ≥ 0 and Ex∼Pr(x) [β(x)] = 1.

(6.6)

Lemma 6.3.3 (Huang et al. (2006b)). The optimization problem (6.6) is convex. More-

over, assume that Pr′ is absolutely continuous with respect to Pr (so Pr(A) = 0 im-

plies Pr′(A) = 0). And assume that k is universal. Then the solution of (6.6), β, is

Pr′(x) = β(x)Pr(x).

Proof. The convexity of the objective function comes from the facts that the norm is

a convex function and the integral is a linear functional in β. The other constraints

are convex, too. By the virtue of the constraints, any feasible solution of β corresponds

to a distribution, as
∫

β(x)d Pr(x) = 1. Moreover, it is not hard to see that β̂(x) :=

Pr′(x)/ Pr(x) is feasible as it minimizes the objective function with value 0, and that such

a β(x) exists due to the absolute continuity of Pr′(x) with respect to Pr(x). Theorem 6.3.2

implies that there can be only one distribution β(x) Pr such that µ(β(x) Pr) = µ(Pr′).

Hence β(x) Pr(x) = Pr′(x).

6.3.2 Convergence of the Reweighted Means in Feature Space

Lemma 6.3.3 shows that in principle, if we knew Pr and µ[Pr′], we could fully recover Pr′

from it by solving a simple quadratic program. In practice, however, neither µ(Pr′) nor Pr

is known. Instead, we only have samples X and X ′ of size m and m′, drawn iid from Pr

and Pr′ respectively.

Naively we could just replace the expectations in (6.6) by empirical averages and hope

that the resulting optimization problem will provide us with a good estimate of β. However,

it is to be expected that empirical averages will differ from each other due to finite sample

size effects. In this section, we explore two such effects. First, we demonstrate that in the

finite sample case, for a fixed β, the empirical estimate of the expectation of β is normally

distributed: this provides a natural limit on the precision with which we should enforce
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the constraint
∫

β(x)d Pr(x) = 1 when using empirical expectations (we will return to this

point in the next section).

Lemma 6.3.4 (Huang et al. (2006b)). If β(x) ∈ [0, B] is some fixed function of x ∈ X , then

given xi ∼ Pr iid, the sample mean 1
m

∑

i β(xi) has an asymptotically Gaussian distribution

about its expectation
∫

β(x)d Pr(x) with standard deviation bounded by B
2
√

m
.

This lemma is a direct consequence of the central limit theorem (Casella and Berger,

2002).

The second result demonstrates the deviation between the empirical means of Pr′ and

β(x) Pr in feature space, given β(x) is chosen perfectly in the population sense. In partic-

ular, this result shows that to achieve good convergence when the difference in the density

probability of Pr′ and Pr is large, we would need more sample from Pr′ and Pr.

Lemma 6.3.5 (Huang et al. (2006b)). In addition to the Lemma 6.3.4 conditions, assume

that we draw X ′ := {x′1, . . . , x′m′} iid from X using Pr′ = β(x) Pr, and ‖Φ(x)‖ ≤ R for all

x ∈ X . Then with probability at least 1− δ

∥
∥
∥

1

m

m∑

i=1

β(xi)Φ(xi)−
1

m′

m′
∑

i=1

Φ(x′i)
∥
∥
∥ ≤

(

1 +
√

−2 log δ/2
)

R
√

B2/m + 1/m′ (6.7)

Proof. Let Ξ(X, X ′) :=
∥
∥
∥

1
m

∑m
i=1 β(xi)Φ(xi)− 1

m′

∑m′

i=1 Φ(x′i)
∥
∥
∥. The proof follows by first

bounding the tail behavior using a concentration inequality and subsequently by bounding

the expectation.

To apply McDiarmid’s tail bound (McDiarmid, 1989) first we need to bound the change

in Ξ(X, X ′) if we replace any xi by some x̄i and likewise if we replace any x′i by some

arbitrary x̄′i from X . By the triangle inequality of function norm, a replacement of xi by

some arbitrary x ∈ X can change Ξ(X, X ′) by at most 1
m
‖β(xi)Φ(xi)− β(x)Φ(x)‖ ≤ 2BR

m
.

Likewise, a replacement of x′i by x changes Ξ(X, X ′) by at most 2R
m′ . Since m(2BR/m)2 +

m′(2R/m′)2 = 4R2(B2/m + 1/m′), then we have

Pr {|Ξ(X, X ′)− EX,X′ [Ξ(X, X ′)]| > ǫ} ≤ 2 exp
(
−ǫ2/2R2(B2/m + 1/m′)

)
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Hence with probability 1− δ the deviation of the random variable from its expectation is

bounded by

|Ξ(X, X ′)−EX,X′ [Ξ(X, X ′)] | ≤ R

√

−2 log
δ

2

(
B2

m
+

1

m′

)

To bound the expected value of Ξ(X, X ′) we use EX,X′ [Ξ(X, X ′)] ≤
√

EX,X′ [Ξ(X, X ′)2].

Since all terms in Ξ(X, X ′) have the same mean, µ(Pr′), we obtain

EX,X′

∥
∥
∥

1

m

m∑

i=1

β(xi)Φ(xi)−
1

m′

m′
∑

i=1

Φ(x′i)
∥
∥
∥

2

=
1

m
Ex∼Pr

[

‖β(x)Φ(x)− µ(Pr ′)‖2
]

+
1

m′
Ex∼Pr ′

[

‖Φ(x)− µ(Pr ′)‖2
]

≤(B2/m + 1/m′)Ex∼Pr′(x)k(x, x) ≤ R2(B2/m + 1/m′) (6.8)

Combining the bounds on the mean and the tail proves the claim.

Note that this lemma shows that for a given β(x), which is correct in the population

sense, we can bound the deviation between the mean and the importance-sampled mean

in feature space. It is not a guarantee that we will find coefficients βi when solving the

optimization problem, which are close to β(xi). But it gives us a useful upper bound on

the outcome of the optimization problem.

Lemma 6.3.5 implies that we have O(B
√

1/m + 1/m′B2) convergence in m, m′ and B.

This means that, for very different distributions we need a large equivalent sample size to

get reasonable convergence. The result also implies that it is unrealistic to assume that

the empirical means (reweighted or not) should match exactly.

6.3.3 Empirical KMM Optimization

To find suitable values of β ∈ R
m we want to minimize the discrepancy between means

subject to constraints βi ∈ [0, B] and | 1
m

∑m
i=1 βi− 1| ≤ ǫ. The upper bound is to limit the

influence that a single point can effect, i.e., it has a really high weight, so that the method

is more robust. The former limits the scope of discrepancy between Pr and Pr′ whereas

the latter ensures that the corresponding measure β(x) Pr(x) is close to a probability
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distribution. The objective function is given by the discrepancy term between the two

empirical means. Using Kij := k(xi, xj) and κi := m
m′

∑m′

j=1 k(xi, x
′
j) one may check that

∥
∥
∥

1

m

m∑

i=1

βiΦ(xi)−
1

m′

m′
∑

i=1

Φ(x′i)
∥
∥
∥

2

=
1

m2
β⊤Kβ − 2

m2
κ⊤β + const.

Now we have all necessary ingredients to formulate a quadratic problem to find suitable β

via

minimize
β

1

2
β⊤Kβ − κ⊤β subject to βi ∈ [0, B] and

∣
∣
∣

m∑

i=1

βi −m
∣
∣
∣ ≤ mǫ. (6.9)

From Lemma 6.3.4, a good choice of ǫ should be O(B/
√

m). Note that (6.9) is a quadratic

program which can be solved efficiently. It is expected that the empirical solution of β is

well-concentrated with respect to the true weights derived from (6.6), although there is a

trade off of the approximation quality by adding constraint on β to make sure that the

data is not too unevenly weighted. If the true β is well-approximated by the empirical βi,

we could achieve the convergence guarantee of the difference in the density probabilities in

terms of the empirical β as has been demonstrated in Section 6.3.2.

6.4 Risk Estimates

So far we consider the distribution matching for the purpose of finding a reweighting

scheme between the empirical means on training X and test set X ′. The section attempts

to show that as long as the means on the test set are well enough approximated, we are

able to obtain almost unbiased risk estimates regardless of the actual values of βi vs. their

importance sampling weights β(xi). The price is an increase in the variance of the estimate.

m2/ ‖β‖2 will act as an effective sample size. A key assumption is that the induced loss

function class is well behaved.

For simplicity, we only consider the transductive case. That is, we will make uniform

convergence statements with respect to EY ′|X′ and EY |X only. We are interested in the

behavior of the loss induced function class l(x, y, θ) rather than 〈φ(x, y), θ〉. Thus the

difference between φ used in Section 6.2, which relates to the parameterization of the

model, and Φ used in the current section, relating to the loss.
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Key Assumption 3: Denote by Θ : X → Y a class of functions and let l : X ×
Y → R be a expected loss function l(x, θ)( θ ∈ Θ : x → y) over conditional distribution

p(y|x). Assume l(x, θ) is a smooth function and thus it can be well approximated in a

universal Reproducing Kernel Hilbert Space H with bounded norm, therefore the smooth

loss function l(x, θ) can be approximately expressed as inner product in the universal RKHS

with kernel k(x, x′) ≤ R2, i.e. l(x, θ) = 〈Φ(x), Θ〉 such that each θ maps to some vector of

parameters Θ in the feature space where ‖Θ‖H ≤ C. That is we minimize the empirical risk

over the well approximated smooth loss function. Examples of such smooth loss functions

could be the modified quadratic loss lq (Zhang and Oles, 2001) or the smoothed hinge loss

lh (Rennie and Srebro, 2005) that are defined as,

lq(z) =

{

(1− z)2 z ≤ 1

0 z ≥ 1

lh(z) =







1/2− z z ≤ 0
1
2
(1− z)2 0 < z < 1

0 z ≥ 1

where z is the product of the true label and the prediction.

The main conclusion in this section is the following corollary.

Corollary 6.4.1 (Huang et al. (2006b)). Suppose that key assumptions 1, 2 and 3 are

satisfied and let X, X ′ be iid samples drawn from Pr and Pr′ respectively, and let Y |X be

drawn iid from Pr(y|x). Moreover, let G be a class of loss-induced functions l(x, θ) with

‖θ‖ ≤ C and let M := m2/ ‖β‖2. And assume that also l(x, y, θ) can be expressed as an

element of an RKHS via 〈Φ(x, y), Θ〉 with ‖Θ‖ ≤ C and ‖Φ(x, y)‖ ≤ R. In addition,

assume for any βi such that

∥
∥
∥
∥
∥

1

m

m∑

i=1

βiΦ(xi)−
1

m′

m′
∑

i=1

Φ(x′i)

∥
∥
∥
∥
∥
≤ ǫ (6.10)

Then with probability at least 1− δ

sup
l(·,·,θ)∈G

∣
∣
∣
∣
∣

1

m

m∑

i=1

βil(xi, yi, θ)− EY ′|X′

[

1

m′

m∑

i=1

l(x′i, y
′
i, θ)

]∣
∣
∣
∣
∣
≤ (1 +

√

(− log δ)/2)2CR√
M

+ Cǫ
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This means that if we minimize the reweighted empirical risk we will, with high proba-

bility, we minimize an upper bound on the expected risk on the test set. The minimization

of the reweighted empirical risk is based on minimizing the empirical mean between train-

ing and test data in the feature space as in (6.10), assuming that the set of loss functions

need to be smooth such that minimizing the expected risk everywhere can be accomplished

by doing so on a selected subset of locations.

A direct practical consequence of this corollary is that one could have some prior knowl-

edge of the expected performance using KMM. One would expect to have a reasonable low

risk on the test data using KMM only if both feature map means are close. This also

implies that if the risk of test data diverges from reasonable range, the training and test

must have very different distributions. Therefore, it is useful to check the condition (6.10)

before running KMM.

There are two steps to prove the corollary: first we show that for smooth functions

expected loss l(x, θ) := Ey|xl(x, y, θ), the coefficients βi can be used to obtain a risk estimate

with low bias. Then, we show that the random variable
∑

i βil(xi, yi, θ) is concentrated

around
∑

i βil(xi, θ), if we condition Y |X. Combining the bounds from both lemmas below

gives the result in Corollary 6.4.1.

Lemma 6.4.2 (Huang et al. (2006b)). Under the assumption of Corollary 6.4.1 that there

exist some βi such that
∥
∥
∥
∥
∥

1

m

m∑

i=1

βiΦ(xi)−
1

m′

m′
∑

i=1

Φ(x′i)

∥
∥
∥
∥
∥
≤ ǫ

Then the empirical risk estimates can be bounded as

sup
l(·,·,θ)∈G

∣
∣
∣
∣
∣
EY |X

[

1

m

m∑

i=1

βil(xi, yi, θ)

]

−EY ′|X′

[

1

m′

m∑

i=1

l(x′i, y
′
i, θ)

]∣
∣
∣
∣
∣
≤ Cǫ (6.11)

Proof. First note that by key assumption 1 the conditional distributions Pr(y|x) are the

same for Pr and Pr′. By linearity, apply the epxectation EY |X to each sum individually.

Then, by key assumption 3 the expected loss l(x, θ) can be written as 〈Φ(x), θ〉. Therefore,

rewrite the left hand side of (6.11) as

sup
l(·,θ)∈G

∣
∣
∣
∣
∣

1

m

m∑

i=1

βil(xi, θ)−
1

m′

m′
∑

i=1

l(x′i, θ)

∣
∣
∣
∣
∣
≤ sup
‖Θ‖≤C

∣
∣
∣
∣
∣

〈

1

m

m∑

i=1

βiΦ(xi)−
1

m′

m′
∑

i=1

Φ(x′i), Θ

〉∣
∣
∣
∣
∣
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By the definition of norms this is bounded by Cǫ, which proves the claim.

The second step in relating a reweighted empirical average using (X, Y ) and the ex-

pected risk with respect to Pr′ requires us to bound deviations of the first term in (6.11).

Lemma 6.4.3 (Huang et al. (2006b)). Suppose the assumptions in Corollary 6.4.1 satisfied.

Then with probability at least 1− δ over all Y |X

sup
l(·,·,θ)∈G

∣
∣
∣
∣
∣

1

m

m∑

i=1

βil(xi, yi, θ)−
1

m

m∑

i=1

βil(xi, θ)

∣
∣
∣
∣
∣
≤ (1 +

√

(− log δ)/2)2CR/
√

M (6.12)

Proof. The proof strategy is almost identical to the one of Lemma 6.3.5 Denote by

Ξ(Y ) := sup
l(·,·,θ)∈G

1

m

m∑

i=1

βi [l(xi, yi, θ)− l(xi, θ)] (6.13)

the maximum deviation between empirical mean and expectation. The key is that the ran-

dom variables y1, . . . , ym are conditionally independent given X. Using the Symmetrization

idea, replacing one yi by an arbitrary y′ ∈ Y leads to a change in Ξ(Y ) which is bounded

by βi

m
C ‖Φ(xi, yi)− Φ(xi, y

′)‖ ≤ 2CRβi/m. Then apply McDiarmid’s theorem yields

Pr
Y |X

{
|Ξ(Y )− EY |XΞ(Y )| > ǫ

}
≤ exp

(
−ǫ2m2/

(
2C2R2 ‖β‖22

))
. (6.14)

In other words, M := m2/ ‖β‖22 acts as an effective sample size when determining large

deviations. Next we use symmetrization to obtain a bound on the expectation of Ξ(Y ).

Again, the proof routine is the same as supplied in the thesis appendix.

EY |X [Ξ(Y )] ≤ 1

m
EY |XEȲ |X

[

sup
l(·,·,θ)∈G

∣
∣
∣
∣
∣

m∑

i=1

βil(xi, yi, θ)− βil(xi, ȳi, θ)

∣
∣
∣
∣
∣

]

(6.15)

≤ 2

m
EY |XEσ

[

sup
l(·,·,θ)∈G

∣
∣
∣
∣
∣

m∑

i=1

σiβil(xi, yi, θ)

∣
∣
∣
∣
∣

]

where σi ∈ {±1} . (6.16)

The first inequality follows from convexity. The second one follows from the fact that all

yi, ȳi pairs are independently and identically distributed, hence we can swap these pairs.

Now we bound on the Rademacher average for constant βi for the right hand side.

We use the condition of the lemma, namely that l(x, y, θ) = 〈Φ(x, y), Θ〉 for some Θ with
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‖Θ‖ ≤ C. This allows us to bound the supremum. Combine the fact of the convexity of

x2 yields the following bounds on the right hand side in (6.16)

RHS ≤ 2

m
EY |XEσC

∥
∥
∥
∥
∥

m∑

i=1

σiβiΦ(xi, yi)

∥
∥
∥
∥
∥
≤ 2

m
C

√
√
√
√EY |XEσ

∥
∥
∥
∥
∥

m∑

i=1

σiβiΦ(xi, yi)

∥
∥
∥
∥
∥

2

(6.17)

=
2

m
C

√
√
√
√

m∑

i=1

β2
i Eyi|xi

‖Φ(xi, yi)‖2 ≤ 2

m
CR ‖β‖2 =

2CR√
M

. (6.18)

Combining the bound on the expectation and solving the tail bound for ǫ proves the

lemma.

6.5 Evaluation

6.5.1 Toy Regression Example

My first experiment is on toy data. It is intended mainly to provide a comparison with the

approach of Shimodaira (2000). Recall that this method uses an information criterion to

optimise the weights, under certain restrictions on Pr and Pr′ (namely, Pr′ must be known,

while Pr can be either known exactly, Gaussian with unknown parameters, or approxiated

via kernel density estimation).

The statistics of of the toy data has been showned in Section 6.1.

I sample 100 training (blue circles) and testing (red circles) points from Pr as q0 and

Pr′ as q1 respectively. I model the observations with a degree 1 polynomial. The black

dashed line is a best-case scenario, which is shown for reference purposes: it represents the

model fit using ordinary least squared (OLS) on the labeled test points. The red line is a

second reference result, derived only from the training data via OLS, and predicts the test

data very poorly. The other three dashed lines are fit with weighted ordinary least square

(WOLS), using one of three weighting schemes: the ratio of the underlying training and

test densities, KMM, and the information criterion of (Shimodaira, 2000) that I discussed

in Section 6.1.2. A summary of the performance over 100 trials is shown in Figure 6.2(b).

Clearly, the new method outperforms the two other reweighting methods.
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Figure 6.2: (a) Polynomial models of degree 1 fit with OLS and WOLS;(b) Average perfor-

mance of three WOLS methods and OLS on the test data in (a). Labels are Ratio for ratio

of test to training density; KMM for our approach; min IC for the approach of Shimodaira

(2000); and OLS for the model trained on the labeled test points.

6.5.2 Real World Datasets

I next test the proposed approach on real world data sets, from which I select training

examples using a deliberately biased procedure (as in (Zadrozny, 2004; Rosset et al., 2005)).

To describe our biased selection scheme, I need to define an additional random variable si

for each point in the pool of possible training samples, where si = 1 means the ith sample

is included, and si = 0 indicates an excluded sample. Two situations are considered: the

selection bias corresponds to our assumption regarding the relation between the training

and test distributions, and P (si = 1|xi, yi) = P (si|xi); or si is dependent only on yi,

i.e. P (si|xi, yi) = P (si|yi), which potentially creates a greater challenge since it violates

our key assumption 1. In the following, I compare the proposed method (labeled KMM)

against two others: a baseline unweighted method (unweighted), in which no modification

is made, and a weighting by the inverse of the true sampling distribution (importance

sampling), as in (Zadrozny, 2004; Rosset et al., 2005). In the experiments, I use a Gaussian

kernel exp(−σ‖xi−xj‖2) in kernel classification and regression algorithms, and parameters
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Figure 6.3: Classification performance analysis on breast cancer dataset from UCI
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ǫ = (
√

m− 1)/
√

m and B = 1000 in the optimization (6.9).

Breast Cancer Dataset

This dataset is from the UCI Archive, and is a binary classification task. It includes

699 examples from 2 classes: benign (positive label) and malignant (negative label). The

data are randomly split into training and test sets, where proportion of examples used

for training varies from 10% to 50%. Test results are averaged over 30 trials, and were

obtained using a support vector classifier with kernel size σ = 0.1.

First, I consider a biased sampling scheme based on the input features, of which there

are nine, with integer values from 0 to 9. Since smaller feature values predominate in the

unbiased data, I sample according to P (s = 1|x ≤ 5) = 0.2 and P (s = 1|x > 5) = 0.8,

repeating the experiment for each of the features in turn. Results are an average over 30

random training/test splits, with 1/4 of the data used for training and 3/4 for testing.

Performances is shown in Figure 6.3(a): KMM consistently outperform the unweighted

method, and match or exceed the performance obtained using the known distribution ratio.

The reason that why KMM outperforms the one using true distribution ratio is that the

test set is the empirical sample from test distribution, not the truly test distribution, while

importance sampling uses the ratio of the true distribution which will be less accurate in

some cases.

Next, I consider a sampling bias that operates jointly across multiple features. I select

samples less often when they are further from the sample mean x over the training data,

i.e. P (si|xi) ∝ exp(−σ‖xi−x‖2) where σ = 1/20. Performance of KMM in 6.3(b) is again

better than the unweighted case, and as good or better as reweighting using the sampling

model.

Finally, I consider a simple biased sampling scheme which depends only on the label y:

P (s = 1|y = 1) = 0.1 and P (s = 1|y = −1) = 0.9 (the data has on average twice as many

positive as negative examples when uniformly sampled). Average performance for different

training/testing split proportions are in Figure 6.3(c); remarkably, despite our assumption

regarding the difference between the training and test distributions being violated, our

method still improves the test performance, and outperforms the reweighting by density

ratio for large training set sizes. Figure 6.3(d) shows the weigths β are proportional to the
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inverse of true sampling probabilities: positive examples have higher weights and negative

ones have lower weights.

Further Benchmark Datasets

I next compare the performance on further benchmark datasets3 by selecting training data

via various biased sampling schemes. Specifically, for the sampling distribution bias on

labels, I use P (s = 1|y) = exp(a + by)/(1 + exp(a + by)) (datasets 1 to 5) and simple

stepsize distribution P (s = 1|y = 1) = a, P (s = 1|y = −1) = b (datasets 6 and 7). For the

other datasets, I consistently generate biased sampling schemes over their features. I first

do PCA, selecting the first principal component of training data and the corresponding

projection values. Denote the minimum value of the projection as m and the mean as m.

Then I apply a normal distribution with mean m+(m−m)/a and variance (m−m)/b as the

biased sampling scheme. Please refer to Table 6.5.2 for detailed parameter settings. I use

penalized LMS for regression problems and SVM for classification problems. To evaluate

generalization performance, I utilize the normalized mean square error (NMSE) given by
1
n

∑n
i=1

(yi−µi)
vary

for regression problems, and use standard average test error for classification

problems. In 16 out of 23 experiments, KMM is the most accurate (see Table 1), despite

having no prior information about the bias of the test sample (and, in some cases, despite

the additional fact that the data reweighting does not conform to our key assumption 1).

In addition, the KMM always improves test performance compared with the unweighted

case.

Tumor Diagnosis using Microarrays

The next benchmark is a dataset of 102 microarrays from prostate cancer patients (Singh

et al., 2002). Each of these microarrays measures the expression levels of 12,600 genes.

The dataset comprises 50 samples from normal tissues (positive label) and 52 from tumor

tissues (negative label). I simulate the realisitc scenario that two sets of microarrays A and

B are given with dissimilar proportion of tumor samples, and we want to perform cancer

diagnosis via classification, training on A and predicting on B. I select training examples

3Regression datasets cf. http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html; classifica-

tion sets are from UCI. Sets with numbers in brackets are examined by different sampling schemes.
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Table 6.1: Test results for three methods on 18 datasets with different sampling schemes.

Datasets marked with * are for regression problems. The results are the averages over 10

trials for regression problems and 30 trials for classification problems.

NMSE / Test err.

DataSet ntr selected ntst unweighted import. sampling KMM

1. Abalone* 2000 853 2177 1.00± 0.08 1.1± 0.2 0.6± 0.1

2. CA Housing* 16512 3470 4128 2.29± 0.01 1.72± 0.04 1.24± 0.09

3. Delta Ailerons(1)* 4000 1678 3129 0.51± 0.01 0.51± 0.01 0.401± 0.007

4. Ailerons* 7154 925 6596 1.50± 0.06 0.7± 0.1 1.2± 0.2

5. haberman(1) 150 52 156 0.50± 0.09 0.37± 0.03 0.30± 0.05

6. USPS(6vs8)(1) 500 260 1042 0.13± 0.18 0.1± 0.2 0.1± 0.1

7. USPS(3vs9)(1) 500 252 1145 0.016± 0.006 0.012± 0.005 0.013± 0.005

8. Bank8FM* 4500 654 3692 0.5± 0.1 0.45± 0.06 0.47± 0.05

9. Bank32nh* 4500 740 3692 23± 4.0 19± 2 19± 2

10. cpu-act* 4000 1462 4192 10± 1 4.0± 0.2 1.9± 0.2

11. cpu-small* 4000 1488 4192 9± 2 4.0± 0.2 2.0± 0.5

12. Delta Ailerons(2)* 4000 634 3129 2± 2 1.5± 1.5 1.7± 0.9

13. Boston house* 300 108 206 0.8± 0.2 0.74± 0.09 0.76± 0.07

14. kin8nm* 5000 428 3192 0.85± 0.2 0.81± 0.1 0.81± 0.2

15. puma8nh* 4499 823 3693 1.1± 0.1 0.77± 0.05 0.83± 0.03

16. haberman(2) 150 90 156 0.27± 0.01 0.39± 0.04 0.25± 0.2

17. USPS(6vs8) (2) 500 156 1042 0.23± 0.2 0.23± 0.2 0.16± 0.08

18. USPS(6vs8) (3) 500 104 1042 0.54± 0.0002 0.5± 0.2 0.16± 0.04

19. USPS(3vs9)(2) 500 252 1145 0.46± 0.09 0.5± 0.2 0.2± 0.1

20. Breast Cancer 280 96 419 0.05± 0.01 0.036± 0.005 0.033± 0.004

21. Indias diabets 200 97 568 0.32± 0.02 0.30± 0.02 0.30± 0.02

22. ionosphere 150 64 201 0.32± 0.06 0.31± 0.07 0.28± 0.06

23. German credit 400 214 600 0.283± 0.004 0.282± 0.004 0.280± 0.004
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Table 6.2: Statistics of datasets used in the experiments
1* 2* 3* 4* 5 6 7 8* 9* 10* 11* 12*

σ 1e-1 1e-1 1e3 1e-5 1e-2 1/128 1/128 1e-1 1e-2 1e-12 1e-12 1e3

a 1.5 10 1e3 1e4 0.2 0.1 0.1 20 4 4 4 1e3

b -0.5 -5 -1 -5 0.8 0.9 0.9 8 8 8 8 -1

13* 14* 15* 16 17 18 19 20 21 22 23

σ 1e-4 1e-1 1e-1 1e-2 1/128 1/128 1/128 1e-1 1e-4 1e-1 1e-4

a 2 4 4 0.2 4 4 4 2 2 2 4

b 2 6 4 0.8 4 8 4 2 2 2 4
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Figure 6.4: (a) test errors in 500 trials for cancer diagnosis Index sorted by error values.

(b) Classification results when training and testing are from different sources of Microarray

examples for breast cancer
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via a biased selection scheme as P (s = 1|y = 1) = 0.85 and P (s = 1|y = −1) = 0.15, the

remaining data points form the test set. This setting is similar to the women breast cancer

example as I discussed before. I then perform SVM classification, once for the unweighted,

the KMM, and the importance sampling approach. The experiment is repeated over 500

independent draws from the dataset according to our biased scheme; the 500 resulting test

errors are plotted in Figure 6.4(a) in Figure 6.4(a) (sorted in order of test error size, to

make clear how the test errors of the three approaches are consistently ordered for any

given draw of the data, regardless of the actual test size). The KMM achieves much higher

accuracy levels than the unweighted approach, and is very close to the importance sampling

approach.

I study a very similar scenario on two breast cancer microarray datasets from (Gru-

vberger et al., 2001) and (West et al., 2001), measuring the expression levels of 2,166

common genes for normal and cancer patients (Warnat et al., 2005). I train an SVM on

one of them and test on the other. KMM achieves significant improvement in classification

accuracy over the unweighted, SVM as shown in Figure 6.4(b). Hence KMM promises to

be a valuable tool for cross-platform microarray classification.

6.6 Summary

I have presented a new kernel method of dealing with sampling bias in various of learning

problems via directly estimating the resampling weights by matching training and testing

distributions in a feature space. In addition, I presented a general theory (Huang et al.,

2006b) in bounding the matching error in terms of the support of the distribution and the

sample sizes. The experiments demonstrated the advantage of correcting sampling bias

using unlabeled data in various classification and regressions tasks. The new technique

promises a tool for many other application problems, such as brain computer interface and

data privacy preserving.





Chapter 7

Conclusions

Research presented in this thesis has focused on problems—unsupervised and semi-supervised

learning—that involve learning with partially labeled data, approaching them mainly from

two perspectives. In the first part of the thesis I approach these problems from a graph

based perspective. In the second part, I considered a statistical setting where there is a

shift between training and test distributions. Both parts of the thesis address non-standard

learning scenarios for classical statistical learning.

In the graph based approach, as should be clear by now, unsupervised and semi-

supervised learning methods collect heterogeneous and homogeneous information sources,

and can be unified in a regularization framework. The unification of unsupervised, semi-

supervised and supervised learning I proposed is based on the observation that the cut

cost objectives used by unsupervised learning algorithms can also be taken as regularizers

for labeling functions on graphs. Given this unification, I am able to develop unsupervised

and semi-supervised learning algorithms on directed graphs, hypergraphs and complex net-

works, which encode more complex data relationships than simple relation on undirected

graphs. Moreover, for each of these generalized graph structures, I show how information

propagation can be globally characterized by distinct random walk models that underly

the principle of graph based learning, and then we can use this characterization to develop

new learning algorithms.

Second, the thesis also investigates a statistically oriented approach to solving a difficult

learning scenario where the training and test examples come from different distributions.

133
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By using an abundance of unlabeled data, the new method I have proposed produces re-

sampling weights that correct bias by minimizing the empirical distribution discrepancy

between training and test data in a feature space. This new approach has several advan-

tages over previous methods; for example, it does not require explicit density estimation

nor prior knowledge of the sampling schemes. The theoretical analysis examines the con-

vergence properties of the empirical means and the empirical risk estimates in a RKHS.

Overall, the work presented in this thesis contributes methods that lead to state-of-art

performance on tasks considered, and provides a number of useful algorithms for problems

in learning with partially labeled data.

Future work The work motivates future research in the following directions.

• Machine learning problems

Online learning on graphs The problems I considered in graph based learning

so far are in an offline setting. It would be interesting to extend these algorithms to

an online setting where the models are refined as the graph expands. This problem

occurs in many real world scenarios where data is collected online and one has to make

decision in real time. In this case, we would like to only label a subset of the examples

so that hopefully the current labeled set would provide the good representation of

the entire data stream. Online learning algorithms therefore are involved with issues

in active learning.

Learning with multiple graphs The graph based algorithms in this thesis

mainly consider a single graph. In some cases, the relationships among same type

of data objects can be observed from multiple sources. For example, in computer

vision, the “set-of-patches” approach is a successful technique in image classification.

This method represents an image by features generated from a set of small image

patches. Each feature type provides a kind of image representation that corresponds

to a similarity graph connecting the images. In this case we may obtain multiple

graphs from the data. How to use a graph based approach to solve this problem has
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not been intensively studied before and it would be interesting to explore further in

this direction.

• Applications

Spam detection In the Web, it has been noticed that there have been many

attempts to mischievously influence page ranking by constructing link farms, i.e. link

spamming. Web spamming is a major problem to search engines and have negative

impacts to the Web community. Learning algorithms on directed graphs might be

able to provide efficient solutions for distinguishing detecting the “bad” pages from

general Web pages via link analysis.

Data privacy preserving In many real world applications one of the key con-

cerns is respecting privacy and protecting access to confidential information, while

still allowing useful, large-scale patterns to be extracted from the data. Privacy and

security considerations are typically enforced by restricting access to the original

data, which forces data mining to be conducted without direct access. A general

question to ask is whether one can develop accurate models without access to the

original data? One scenario where these privacy and security issues arise is when

an owner of a confidential database wishes to extract useful patterns without reveal-

ing any individual examples in the database. The situation can be also extended

to preserve privacy in multiple databases when running a data mining algorithm on

their union. The approach used to solve the distribution shifting problem can be

applied in this case by preserving an underlying confidential database given a public

“standard” database that is adopted as a proxy. We can extract the weights to refine

the data mining algorithm on the proxy dataset so that the result will match the one

achieved when analyzing the confidential database.

Some immediate applications are to insurance company customer profiles and hos-

pital patient records. If successful, this technique could also be applied to many

other domains, including medical record data mining, fraud detection in banking

and financial databases, and Web log analysis.
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• Theory

Discrete analysis on graphs As I have shown, regularization is a very useful

concept when cosidering unsupervised and semi-supervised learning algorithms on

graphs. We have already shown that some operators, the graph Laplacians, are a

discrete analogue of standard differential operators in a continuous space. I con-

jecture that the regularization operators would be more powerful if we could define

higher order differential operators and further construct discrete Taylor expansion

on graphs. In addition, many other properties may be useful to discover on graphs.

Chung (1997) has achieved some interesting results in exploiting concepts in the

isoperimetric problem, Harnack inequalities, heat kernels and Sobolev inequalities.

These achievements suggest a promising direction for future theoretical research on

graphs.



Appendix

Functional Smoothness in Reproducing Kernel Hilbert

Space

The simplest view of kernel methods is that they map the input observations into a very

high dimensional feature space, and then solve the problem by considering linear models in

that space. Such a space is often referred to as a Reproducing Kernel Hilbert Space(RKHS)

and denoted as H. Consistent with Regularization Theory, in kernel methods, the regu-

larization is defined in RKHS. Examples include regularization networks and kernel SVMs

(Vapnik, 1998).

We have the following theorem (Wahba, 1990; Schölkopf and Smola, 2002) in connection

with regularization theory.

Theorem .0.1. For an RKHS H associated with the reproducing kernel k, there is a unique

corresponding regularization operator D : H → L2 such that for all f ∈ H,

〈Dk(x, ·), Df(·)〉L2
= f(x)

and in particular,

〈Dk(x, ·), Dk(x′, ·)〉L2
= k(x, x′)

and vice versa.

According to the theorem we can have that

‖Df‖2L2
= ‖f‖2H (1)

137
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which means that adding the smoothness penalty in the function norm of the L2 space gives

an identical result to penalizing the function norm in Hilbert Space. Choosing different

kernels, the norm in the corresponding RKHS encodes different notions of smoothness.

Moreover, the kernel associated with the differential operator D is the Green’s function

D ∗D (Wahba, 1990; Schölkopf and Smola, 2002).

A specific example resulted from this theorem is RBF kernel. The square norm of

the function in Hilbert space with RBF kernel can be explicitly represented in terms of

differential operators as (Yuille and Grzywacz, 1988)

‖Df‖2 =

∫

X

∑

n

σ2n

n!2n
(Onf(x))2dx (2)

where O2n = ∆n, and ∆ is the Laplacian. The proof is obtained by rewriting the function

as a Taylor expansion in X in terms of the differential operators. Eq.(2) explains why

the Gaussian RBF kernel works so well in many kernel method applications. The reason

is that f is smoothed by penalizing all of its derivatives. Therefore, the regularization is

comprehensive and the resulting function is very smooth. One can imagine to define Taylor

expansion on graphs to produce more powerful regularizers.

Random Walk Interpretation

I present random walk interpretations for methods in (Zhou et al., 2004) and (Zhu et al.,

2003). The interpretation for Zhu et al. (2003) is not explicitly outlined in literature

before. The interpretation shows that the graph based semi-supervised learning has a

strong connection to random walks on Markov chains.

• Commute Time of a Random Walk

The approach in (Zhou et al., 2004) is involved with commute time of random walk

on a undirected graph. In a typical random walk, according to Aldous and Fill,

hitting time is the expected number of steps to reach vertex v from u for the first

time. Starting at vertex u, the expected number of steps to return to u is called

return time R(u, u). commute time C(u, v) is the expected number of steps to go

from vertex u through vertex v and back to u again.
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Let G denote the inverse of the matrix Π(I−P ) where Π denotes the diagonal matrix

with Π(v, v) = π(v) for all v ∈ V . Then the commute time satisfies

C(u, v) =

{
G(u, u) + G(v, v)−G(u, v)−G(v, u) ∀u 6= v

1/π(u) ∀u = v
(3)

Consider to normalize H(u, v) by

H(u, v) =
√

π(u)π(v)H(u, v)

Let G denote the inverse of the matrix I−αS, and G denote the inverse of the matrix

D − αW . Then normalized commute time satisfies (Zhou and Schölkopf, 2004),

G(u, v) =
G(u, v)

√

C(u, u)C(v, v)

Then the solution of (2.39) corresponds to picking larger value from p+(xu) and

p−(xu), which is in turn comparing the normalized commute times to the labeled

data of different classes.

p+(xu) =
∑

v:yv=1

G(u, v), and p−(xu) =
∑

v:yv=−1

G(u, v)

• Absorbing Probability of a Random Walk

The solution for semi-supervised learning in (Zhu et al., 2003) is the standard knowl-

edge in absorbing Markov Chian in which we take all the labeled nodes as absorbing

states (denote as A, all states belong to A can not walk to elsewhere after reaching

the state) and all the unlabled nodes as transitive states (denote as T ). In a Markov

chain, the canonical form of the transition probability given there are absorbing and

transitive states is:

P =

[

PTT PTA

PAA PAT

]

=

[

Q R

0 I

]

In this semi-supervised problem given both labeled and unlabeled data(l and u),

Q = Puu and R = Pul.
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Lemma .0.2. When times goes to infinity, the stationary distribution of limn→∞ P n =

P ∗ is

P ∗ =

[

0 B

0 I

]

where B = (I −Q)−1R

Now the harmonic function method (Zhu et al., 2003) is equivalent to compare the

absorbing probability when arriving stationary distribution. Assuming that fi ∈
[0, 1]∀i, then we have

f = P ∗f

therefore we can have

fu = (I − Puu)
−1Pulfl

which is exact the solution of (Zhu et al., 2003).

Learning Theory and some Inequalities

I provide some basic background in learning thoery and some well-known theorems used

for deriving error bounds for Chapter 6. The material is based mainly on (Bousquet et al.,

2004) and (Mendelson, 2003).

Consider an input space X and output space Y . We consider binary classification case

where Y = {−1, 1}. We are given some empirical observations D = (X, Y ) ∈ X ×Y which

are assumed to be i.i.d generated from an unknown distribution Pr(x, y) on X × Y . This

sampling assumption is important in the statistical learning theory. The independence

assumption means that each new observation gives new information. The identical distri-

bution means that the observations characterize the underlying probability distribution.

The learning goal is to obtain a function f : X → Y that predicts Y from X.

To chose such function f , we hope it results in a low probability of error P (f(X) 6= Y ).

The risk of f is defined as

R(f) = P (f(X)) = E[1f(X)6=Y ].
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The optimal function f ∗ is obtained by minimizing risk over all possible functions

R(f ∗) = inffR(f)

Since Pr is unknown, a commonly used way is to measure an empirical risk accordingly

Rn(f) =
1

n

n∑

i=1

1f(X)6=Y

However, since the input space is infinite, we can always find an optimal f ∗ that predict

perfectly on every training observations, thus Rn(f) = 0. The problem with this function is

that it may perform badly on test data that causes overfitting. One way to fix this problem

is to constrain f into a model F and add regularization that leads to a regularized empirical

risk minimization problem

f ∗n = argmin
f∈F

Rn(f) + λΩ(f)

where Ω(f) decodes a prior knowledge in function smoothness.

We can judge whether the learned function fn is good or not based on R(fn). However,

we can not compute R(fn) from data as it depends on unknown distribution Pr and this

quantity is a random variable since it depends on data. Therefore, in statistical learning,

R(fn) is examined by relating it to an estimate such as the empirical risk Rn(fn). Typically,

one would be interested at the upper and lower bounds for

Pr[|R(gn)−Rn(gn)| > ǫ]

which can be rewritten as

Pr

[∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)−E[f(x)]

∣
∣
∣
∣
∣
> ǫ

]

(4)

Now I reviewed some well-known theorems for deriving bounds for (4). The theorems

are widely applied to proofs in Chapter 6.

Hoeffding’s Inequality (Hoeffding, 1963)
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Theorem .0.3. Suppose xi, i = (1, . . . , n) are n iid. random variables with f(xi) ∈ [a, b].

Then for any ε > 0, we have

P

[∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− E[f(x)]

∣
∣
∣
∣
∣

]

> ε] ≤ 2 exp

(

− 2nε2

(b− a)2

)

McDiarmid’s theorem (McDiarmid, 1989)

Theorem .0.4. Denote by f(x1, . . . , xn) a function of n independent random variables.

Moreover let

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′, xi+1, . . . , xn)| ≤ ci (5)

for all x1, . . . , xn and x′. Denote by C :=
∑

i c
2
i . In this case

Pr {|f(x1, . . . , xn)− Ex1,...xn
[f(x1, . . . , xn)]| > ε} ≤ exp(−2ε2/C). (6)

This is a generalization of the Hoeffding Inequality.

Symmetrization Symmetrization can be used together with McDiarmid’s theorem to

study the quantity ∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− Ef

∣
∣
∣
∣
∣

which can be further rewritten as |∑n
i=1 Zi(f)|. The difficulty to analyze this quantity

is that we don’t know the distribution and therefore can not compute Ef . The idea of

Symmetrization can be used to analyze this quantity. The main idea is that if 1
n

∑n
i=1 f(xi)

is close to Ef for various data x1, . . . , xn, then 1
n

∑n
i=1 f(xi) is close to 1

n

∑n
i=1 f(x′i), given

that the empirical average on x′1, . . . , x
′
n that are independent copy of x1, . . . , xn. Therefore,

if the two empirical averages are far from each other, then empirical error is far from

expected error.

Theorem .0.5. Let F be a class of functions. Define an empirical process:

Z(x1, . . . , xn) = sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− Ef

∣
∣
∣
∣
∣
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and a Rademacher Process:

R(x1, . . . , xn, ǫ1, . . . , ǫn) = sup
f∈F

1

n

n∑

i=1

ǫif(xi)

where ǫ1, . . . , ǫn are iid Rademacher random variables.1 Then

EZ ≤ 2ER

Proof.

EZ = Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− Ef

∣
∣
∣
∣
∣

= Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− E′x

(

1

n

n∑

i=1

f(x′i)

)∣
∣
∣
∣
∣

= Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(xi)− E′x

(

1

n

n∑

i=1

(f(x′i)|X)

)∣
∣
∣
∣
∣
(X = x1, . . . , xn is independent of X’)

≤ Ex,x′

(

sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

(f(xi)− f(x′i))

∣
∣
∣
∣
∣
|X
)

(convexity of sup and | · |)

= Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

(f(xi)− f(x′i))

∣
∣
∣
∣
∣

Now note that the distribution of f(xi) − f(x′i) is symmetric around 0, so it has same

distribution as ǫi(f(xi)− f(x′i)) for any fixed ǫi. So the above quantity does not change if

multiply ǫi to any term in the summation. Since this is true for all fixed ǫi, we can also

1Rademacher random variable has values of -1 or 1 with probability 0.5. ER is called a Rademacher

Average.
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take expectation over ǫi. Therefore, continue with the last quantity,

= Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫi (f(xi)− f(x′i))

∣
∣
∣
∣
∣

≤ Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫif(x′i)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫif(xi)

∣
∣
∣
∣
∣
(triangle inequality)

≤ Ex sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫif(x′i)

∣
∣
∣
∣
∣
+ Ex sup

f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫif(xi)

∣
∣
∣
∣
∣
(sup

i
(ai + bi) ≤ sup

i
ai + sup

i
bi)

= 2ER

Recall that our goal is to bound Z. The above theorem suggests that to control Z, we

need follow two steps: 1) show Z is concentrated around its mean EZ; 2) bound ER and

use the above bound EZ ≤ 2ER. Now we show how to achieve these two things.

1) Use McDiarmid’s inequality to show the concentration of Z around EZ.

Lemma .0.6. Assume f(x) ∈ [a, b] for all x and f ∈ F . Then

Pr(|Z − EZ| > ǫ) ≤ exp
(
−n2ǫ2/

(
2(b− a)2

))

Proof.

|Z(x1, . . . , x
′
i, . . . , xn)− Z(x1, . . . , xi . . . , xn)|

=

∣
∣
∣
∣
∣
sup
f∈F
|Ef − 1

n

n∑

j=1

f(xj) +

(
1

n
f(xi)−

1

n
f(x′i)

)

| − sup
f∈F
|Ef − 1

n

n∑

j=1

f(xj)|
∣
∣
∣
∣
∣

≤ sup
f∈{

1

n
|f(xi)− f(x′i)| ≤

b− a

n
= ci

Then apply McDiarmid’s inequality, we have

Pr(|Z −EZ| > ε) ≤ exp

( −ε2

2
∑n

i=1(b− a)2n2

)

= exp
(
−nε2/2(b− a)2

)

Now let

δ = 2 exp
(
−nε2/2(b− a)2

)
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then,

ε = (b− a)

√

−2 log(
δ

2
)
1

n

which euivalently means with probability at least 1− δ

|Z −EZ| < (b− a)

√

−2 log(
δ

2
)
1

n

2) Use the Symmetrization,

Z ≤ EZ + (b− a)

√

−2 log(
δ

2
)
1

n
≤ 2ER + (b− a)

√

−2 log(
δ

2
)
1

n

So if we obtain the bound on ER, we know how the random variable Z is concentrated

around EZ. It turns out that ER is always easier to bound than EZ given the convexity

and linearity properties.
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