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Abstract

This thesis addresses difficult challenges in distributed document clustering and cluster

summarization. Mining large document collections poses many challenges, one of which

is the extraction of topics or summaries from documents for the purpose of interpretation

of clustering results. Another important challenge, which is caused by new trends in

distributed repositories and peer-to-peer computing, is that document data is becoming

more distributed.

We introduce a solution for interpreting document clusters using keyphrase extraction

from multiple documents simultaneously. We also introduce two solutions for the problem

of distributed document clustering in peer-to-peer environments, each satisfying a different

goal: maximizing local clustering quality through collaboration, and maximizing global

clustering quality through cooperation.

The keyphrase extraction algorithm efficiently extracts and scores candidate keyphrases

from a document cluster. The algorithm is called CorePhrase and is based on modeling

document collections as a graph upon which we can leverage graph mining to extract

frequent and significant phrases, which are used to label the clusters. Results show that

CorePhrase can extract keyphrases relevant to documents in a cluster with very high

accuracy. Although this algorithm can be used to summarize centralized clusters, it is

specifically employed within distributed clustering to both boost distributed clustering

accuracy, and to provide summaries for distributed clusters.

The first method for distributed document clustering is called collaborative peer-to-

peer document clustering, which models nodes in a peer-to-peer network as collaborative

nodes with the goal of improving the quality of individual local clustering solutions. This

is achieved through the exchange of local cluster summaries between peers, followed by

recommendation of documents to be merged into remote clusters. Results on large sets
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of distributed document collections show that: (i) such collaboration technique achieves

significant improvement in the final clustering of individual nodes; (ii) networks with larger

number of nodes generally achieve greater improvements in clustering after collaboration

relative to the initial clustering before collaboration, while on the other hand they tend to

achieve lower absolute clustering quality than networks with fewer number of nodes; and

(iii) as more overlap of the data is introduced across the nodes, collaboration tends to have

little effect on improving clustering quality.

The second method for distributed document clustering is called hierarchically-distributed

document clustering. Unlike the collaborative model, this model aims at producing one

clustering solution across the whole network. It specifically addresses scalability of network

size, and consequently the distributed clustering complexity, by modeling the distributed

clustering problem as a hierarchy of node neighborhoods. Summarization of the global dis-

tributed clusters is achieved through a distributed version of the CorePhrase algorithm.

Results on large document sets show that: (i) distributed clustering accuracy is not af-

fected by increasing the number of nodes for networks of single level; (ii) we can achieve

decent speedup by making the hierarchy taller, but on the expense of clustering quality

which degrades as we go up the hierarchy; (iii) in networks that grow arbitrarily, data gets

more fragmented across neighborhoods causing poor centroid generation, thus suggesting

we should not increase the number of nodes in the network beyond a certain level with-

out increasing the data set size; and (iv) distributed cluster summarization can produce

accurate summaries similar to those produced by centralized summarization.

The proposed algorithms offer high degree of flexibility, scalability, and interpretabil-

ity of large distributed document collections. Achieving the same results using current

methodologies require centralization of the data first, which is sometimes not feasible.
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C H A P T E R 1
Introduction

T
his thesis embodies research that aims at advancing the state of the art in dis-

tributed text mining, specifically distributed document clustering and cluster

summarization. Document clustering is regarded as a key technology for intelli-

gent unsupervised categorization of content in text form of any kind; e.g. news articles, web

pages, learning objects, electronic books, even textual metadata. Information retrieval,

provides access to information. Categorization, on the other hand, provides organized,

summarized, browsing-oriented access to information, and in this regard it intelligently

complements basic information retrieval.

Information environments today possess two key characteristics that sets them apart

from information environments decades ago: (a) information is no longer maintained in

central databases (e.g. the Web); and (b) computers processing this information are no

longer central supercomputers, but rather a huge network of computers of all scales.

The problem of document clustering thus becomes more complex under those circum-

stances. How can documents distributed across a large number of sites be clustered together

1



2 Distributed Document Clustering and Cluster Summarization in P2P Environments

in an efficient way? And can we interpret the results of such distributed clustering? The

work presented in this thesis answers those two questions.

First, a novel approach for document cluster summarization is proposed. The approach

utilizes a robust document phrase-based model to efficiently extract keyphrases from mul-

tiple documents simultaneously, and uses those keyphrases to label a cluster of documents.

This provides a cluster interpretation capability for all sorts of document clustering meth-

ods, either centralized or distributed. As an enabling method for distributed clustering,

keyphrase extraction is utilized both in boosting distributed clustering accuracy, and for

providing summaries of distributed clusters.

Second, two novel approaches for distributed document clustering are proposed. The

first is based on collaborative clustering between a set of nodes, and utilizes the cluster

summarization technique mentioned above to produce compact cluster representation to be

exchanged between peers during collaboration. This approach aims at producing locally-

optimized document clusters for each node, thus final clusters are unique at each node.

The second distributed document clustering approach aims at scalability by structuring

peer-to-peer networks as a hierarchy of node neighborhoods. Clustering is performed within

neighborhood boundaries and then combined up through the hierarchy. This approach

aims at producing globally-optimized document clusters for the entire network, thus final

clusters are identical at each node. Summarization of the distributed clusters is performed

through distributed keyphrase extraction by a distributed variant of the original algorithm.

This introduction is organized as follows. Section 1.1 gives an overview of data clus-

tering, document clustering, and distributed clustering. Section 1.2 introduces the cluster

summarization approach. Section 1.3 introduces the two distributed document clustering

approaches. Section 1.4 lists the contributions made in this thesis. Finally, section 1.5

provides an overview of the thesis organization.



3

1.1 Overview

Analysis of data can reveal interesting, and sometimes important, structures or trends in

the data that reflect a natural phenomenon. Discovering regularities in data can be used

to gain insight, interpret certain phenomena, and ultimately make appropriate decisions

in various situations. Finding such inherent but invisible regularities in data is the main

subject of research in Data Mining.

1.1.1 Data clustering

One type of regularity in data is the natural grouping of objects into clusters. Data

clustering is a data mining technique that enables the abstraction of large amounts of data

by forming meaningful groups or categories of objects, formally known as clusters, such

that objects in the same cluster are similar, and those in different clusters are dissimilar.

A cluster of objects indicates a level of similarity between those objects such that we

can consider them to be in the same category, thus simplifying our reasoning about them

considerably. For example, we can consider computers with one processor and limited

memory to be in the category of personal computers, while those with multiple processors

and large memory are in the category of server computers, without having to refer to

every computer instance in those categories. Consequently, we can characterize a group of

objects by referring to the common features that differentiate them from other groups.

The choice of which objects belong to the same cluster depends on the clustering model.

In distance-based clustering the decision is based on the distances between objects, and

thus requires definition of a distance (or inversely a similarity) measure defined over the

object feature space. In conceptual clustering there is a common concept (a statistical

model that emphasizes common features in a cluster) that ties objects in the same cluster,
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and the decision of including objects into a cluster is based on how well the features of an

object fit that concept.

Types of clustering algorithms

Clustering algorithms fall into a number of categories depending on their various aspects.

• Hard clustering, e.g. k-means, assigns each object exclusively to one cluster, thus

creating a disjoint set of clusters. Probabilistic, e.g. expectation-maximization, and

fuzzy clustering, e.g. fuzzy c-means, assigns for each object a degree of membership

to each cluster, thus creating overlapping clusters.

• Hierarchical clustering, e.g. hierarchical agglomerative clustering, creates a dendo-

gram of clusters such that clusters can contain sub-clusters. It works either bottom-

up by merging clusters into larger clusters on the next level of the hierarchy, or

top-down by splitting clusters into sub-clusters. Flat clustering, on the other hand,

produces a flat set of clusters with no ordering or subsumption between them.

• Density-based clustering, e.g. DBSCAN [33], forms clusters by finding density-connected

regions in the feature space.

• Neural network-based clustering, e.g. SOM [68], utilizes a neural network approach

that automatically tunes the network weights such that similar objects tend to be

close to each other.

Applications of clustering

Clustering is used in a wide range of applications, such as marketing, biology, psychology,

astronomy, image processing, and text mining. For example, in marketing it is used to find
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groups of customers that share common behavior for the purpose of market segmentation

and targeted advertisement. In biology it is used to form a taxonomy of species based on

their features. In image processing it is used to segment texture in images to differentiate

between various regions or objects. Clustering is also practically used in many statistical

analysis software packages for general purpose data analysis.

1.1.2 Document clustering

Although clustering can be applied to many types of data, the focus of this thesis is on

clustering text documents, a field known in the literature as document clustering [94] which

is a subfield of text mining. Document clustering deals with the unsupervised partitioning

of a document collection into meaningful groups based on their textual content, usually for

the purpose of topic categorization; i.e. documents in one cluster belong to a certain topic,

while different clusters represent different topics. Unlike document classification – which

is a supervised learning method that requires prior knowledge of document categories to

train a classifier, document clustering is an unsupervised learning method that does not

rely on prior categorization knowledge.

Document clustering has many applications, such as clustering of search engine results

to present organized and understandable results to the user (e.g. Vivisimo1), clustering

documents in a collection (e.g. digital libraries), automated (or semi-automated) creation

of document taxonomies (e.g. Yahoo! and Open Directory styles), and efficient information

retrieval by focusing on relevant subsets (clusters) rather than whole collections. News

aggregation is becoming a common application of document clustering, exemplified by the

Google News2 service, which uses document clustering to group news articles from multiple

1www.vivisimo.com
2news.google.com

www.vivisimo.com
news.google.com
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news sources, providing an automated compilation of recent news.

1.1.3 Challenges in clustering

There is a number of problems associated with clustering, which are outlined here:

• choice of a good (dis)similarity measure,

• choice of the number of clusters,

• ability to perform incremental update of clusters without re-clustering,

• properly dealing with outliers,

• interpretation of clustering results,

• tackling distributed data,

• scalability, both in terms of the number of objects and the number of dimensions,

and

• evaluation of clustering quality,

In this thesis, three of those challenges are addressed: interpretation of clustering re-

sults, scalability, and tackling distributed data. Interpreting clustering results is addressed

through document cluster summarization using a novel keyphrase extraction algorithm,

while scalability and tackling distributed data are addressed through novel distributed

clustering algorithms. The cluster summarization algorithm plays a key role both as a

stand-alone algorithm for post-processing clustering results, as well as in facilitating the

distributed clustering algorithms. Before introducing those algorithms, an overview of

distributed clustering is in order.
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1.1.4 Distributed clustering

Han and Kamber [49] describe the need for parallel and distributed mining algorithms:

“The huge size of many databases, the wide distribution of data, and the com-

putational complexity of some data mining methods are factors motivating the

development of parallel and distributed data mining algorithms. Such

algorithms divide the data into partitions, which are processed in parallel. The

results from the partitions are then merged.”

With the continuous growth of data in distributed networks, it is becoming increasingly

important to perform clustering of distributed data in-place, without the need to pool it

first into a central location. We introduce a general view of how clustering can be applied

in distributed environments, which is outlined in Table 1.1.

Table 1.1: Types of data and clustering process distribution
Centralized Data Distributed Data

Centralized Clustering CD-CC DD-CC
Distributed Clustering CD-DC DD-DC

Centralized Data - Centralized Clustering (CD-CC) This is the standard approach

where the clustering process and data both reside on the same machine. Other dis-

tributed models can be mapped to CD-CC by pooling the distributed data into one

location and performing centralized clustering on it.

Distributed Data - Centralized Clustering (DD-CC) Data is dispersed across a num-

ber of nodes, while the clustering process runs on a single machine. Web mining is

an example of DD-CC, where a single machine crawls and mines web pages from a

large number of remote web sites.
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Centralized Data - Distributed Clustering (CD-DC) Data is stored in one loca-

tion, while clustering processes run on different machines accessing the same data.

This is a typical case of parallel processing, such as in compute clusters and grid

computing.

Distributed Data - Distributed Clustering (DD-DC) The highest level of distribu-

tion, where both the data and the clustering process are distributed.

In general, centralized clustering usually implies high computational complexity, while

distributed clustering usually aims for speedup but suffers from communication overhead.

The general goal of distributed clustering is achieving a level of speedup that outweighs

communication overhead. The distributed clustering algorithms presented in this thesis

fall under the DD-DC category.

Adopting distributed clustering introduces another factor affecting algorithm scalabil-

ity: number of nodes. Data privacy is also an issue in distributed clustering, since the

participating sites may not be willing to share their data with peers.

In general, there are two architectures in distributed clustering: peer-to-peer and

facilitator-worker.

• In the peer-to-peer model all nodes perform the same task and exchange the necessary

information to perform their clustering goals.

• In the facilitator-work model one node is designated as a facilitator, and all others

are considered worker nodes. The facilitator is responsible for partitioning the task

among the workers and aggregating their partial results.

The goal of distributed clustering can be either to produce globally or locally optimized

clusters. Globally optimized clusters reflect the grouping of data across all nodes, as if data
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from all nodes were pooled into a central location for centralized clustering. As a result,

at the end all nodes acquire the same clustering solution, but local data stays the same.

Globally optimized clustering is suitable for speeding up clustering of large data sets by

partitioning the data among many nodes. Both the peer-to-peer [24, 25, 23] and the

facilitator- worker [62, 64, 67] models can be used to achieve globally optimized clustering.

On the other hand, locally optimized clusters create a different set of clusters at each

node, taking into consideration remote clustering information and data at other nodes.

This implies exchange of data between nodes so that certain clusters appear only at specific

nodes. Locally optimized clusters are useful when whole clusters are desired to be in one

place rather than fragmented across many nodes. It is also only appropriate when data

privacy is not a big concern. Both the peer-to-peer model [47] and the facilitator-worker [76]

models can be used to achieve locally optimized clustering.

1.2 Summarization of Document Clusters

While document clustering can be valuable for categorizing documents into meaningful

groups, the usefulness of categorization cannot be fully appreciated without labeling those

clusters with the relevant keywords or keyphrases that describe the various topics associated

with them. A highly accurate keyphrase extraction algorithm, called CorePhrase [44], is

proposed for this particular purpose.

CorePhrase works by building a complete list of phrases shared by at least two docu-

ments in a cluster. Phrases are assigned scores according to a set of features calculated

from the matching process. The candidate phrases are then ranked in descending order

and the top L phrases are output as a label for the cluster.

While this algorithm on its own is useful for labeling document clusters, it is used to
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Figure 1.1: Levels of Clustering and Summarization

produce cluster summaries for the collaborative clustering algorithm (described below).

Cluster keyphrase summaries are exactly what is used to succinctly inform remote nodes

of the content of local document clusters, which in turn is used to judge the similarity

between remote data and local clusters.

A distributed version of this algorithm is also used in the hierarchically-distributed

clustering algorithm (described below) to produce summaries for the globally distributed

clusters.

Figure 1.1 illustrates the various levels at which summarization of document clusters

can take place.

• Keyphrase extraction can be applied to a single document for labeling the document;

this is mainly used in generating metadata (e.g. title, description, keywords) that

can be associated with the document.

• A centralized document cluster can be summarized and labeled using keyphrase ex-

traction.
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• Distributed document clusters in a flat peer-to-peer network can be summarized.

Cluster summaries can be exchanged between peers to facilitate collaborative clus-

tering.

• Distributed document clusters in a hierarchical peer-to-peer network can be summa-

rized. Cluster summaries can be accessed at different levels of the hierarchy, thus

providing variable scope of summaries ranging from specific to broad.

Evaluation of the accuracy of CorePhrase shows that it can accurately extract those

phrases that match the manually labeled topic of clusters, and is able to rank those match-

ing phrases in the top two or three keyphrases.

1.3 Distributed Document Clustering

Both locally-optimized and globally-optimized distributed clustering are addressed in this

thesis. A concept of collaborative peer-to-peer nodes is adopted to solve both problems,

with a focus on application to document clustering. Locally-optimized distributed cluster-

ing is discussed in chapter 4. Part of the algorithm is dependent on keyphrase extraction

from document clusters, which is presented first in chapter 3. The globally-optimized dis-

tributed clustering, which is based on a hierarchically-distributed peer-to-peer architecture,

is discussed in chapter 5.

Notations and Definitions

A distributed network of NP peer nodes is modeled as a set P = {pi}
NP

i=1. Unless otherwise

noted, any node can communicate with any other node for the purpose of exchange of data

or control messages.
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The global data set is represented as D = {di}
ND

i=1. Each node pi stores locally a subset

of the global data set Di ⊆ D. Local data sets may overlap; i.e. ∀i, j 6= i : Di ∩ Dj is

not necessarily empty. The global data set is partitioned among network nodes using a

partitioning process P that chooses a uniformly-distributed random subset of D for each

node, subject to partitioning factor α that determines how much overlap of data is required

between nodes:

{Di} = P(D, α),
1

NP

≤ α ≤ 1 (1.1)

Thus |Di| = NDi
= α ·ND.

A clustering solution is a set of clusters C = {ck}
NC

k=1 defined over a data set D, such that

each cluster ck contains a subset of D. In distance-based clustering algorithms, the input

data D is transformed into a symmetric distance (or similarity) matrix S, over which

the clustering algorithm operates, such as the case in hierarchical clustering and graph

partitioning algorithms. In general, the clustering solution is acquired using a clustering

algorithm A:

C =







A(D) if input is D

A(S) if input is S
(1.2)

1.3.1 Locally-optimized Distributed Clustering

The objective of locally-optimized distributed clustering is to employ collaboration between

nodes to improve the quality of local clustering solutions [47]. This implies that there is no

common set of clusters across nodes, but rather local clusters that reflect the characteristics

of local data sets. However, by strategically moving (or copying) certain data objects from

one node to another, the quality of local clusters is boosted. This effectively creates

a network where certain nodes have authority over certain clusters, which can simplify

query-answering in P2P networks by routing queries to relevant nodes only, instead of
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flooding the query throughout the network.

Collaboration between nodes is achieved through sharing of summarized local clustering

information across the network. A node pi starts by creating an initial local clustering CI
i ,

and creates a summary for it, Λi, using keyphrase extraction from the document clusters

(other types of summarization are possible depending on the type of data). The node

then shares Λi with all other nodes. After node pj receives cluster summary information

Λi it computes a similarity matrix between its own data set Dj and Λi, and builds a

recommendation list D+
ji of documents that are of high similarity to remote clusters (called

peer-positive docuemnts) to be merged into remote clusters. When pi receives D+
i , it

performs a merging step to include those documents that it believe will contribute positively

to its own clusters.

More formally, let CI
i be the initial clustering solution computed by node pi over the

local data set Di. Then the final clustering solution after collaboration with all peers is:

CF
i = Merge(CI

i , {D+
ji}j 6=i) (1.3a)

D+
ji = FindSimilar(Λi, Dj)|T (1.3b)

where Merge is the operation for merging recommendation lists D+
ji from remote nodes into

the initial local clusters, and FindSimilar is the operation for determining the similarity

between cluster summaries D+
ji and the data Dj at node pj , subject to the similarity

threshold T . Figure 1.2 illustrates this process showing only interaction between two

nodes.

Both the initial clustering and the merging step are based on a similarity-histogram

based clustering algorithm [41]. The algorithm represents the distribution of pairwise

similarities in clusters as a histogram with an associated property called Histogram Ratio.
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Figure 1.2: Abstract model of the locally-optimized collaborative clustering technique

The histogram ratio represents the fraction of similarities above a certain threshold to the

total set of similarities. The higher the ratio the more coherent the cluster. Addition or

merging of documents into clusters is controlled by keeping this ratio as high as possible.

Results on large sets of distributed document collections (see chapter 6) show that

• such collaboration technique achieves significant improvement in the final clustering

of individual nodes;

• networks with larger number of nodes generally achieve greater improvements in

clustering after collaboration relative to the initial clustering before collaboration,

while on the other hand they tend to achieve lower absolute clustering quality than

networks with fewer number of nodes; and

• as more overlap of the data is introduced across the nodes, collaboration tends to

have little effect on improving clustering quality.
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1.3.2 Globally-optimized Distributed Clustering

The goal of globally-optimized clustering is to compute one set of clusters over all local

data sets, as if the data were pooled into one site and a centralized clustering algorithm was

applied to it. Globally-optimized clustering algorithms can be either exact or approximate.

Exact algorithms produce a set of clusters identical to ones produced by performed cen-

tralized clustering on the whole data. Approximate algorithms do not necessarily produce

exact solutions, but usually produce ones that are close enough, with the added benefit of

being less complex both in terms of computation and communication.

To address the problem of scalability and modularity of globally-distributed cluster-

ing, a hierarchically-distributed peer-to-peer clustering architecture and algorithm are pro-

posed. Nodes in the network are partitioned into neighborhoods, the size of each is usually

an order of magnitude lower than the size of the network. A distributed variant of the

k-means algorithm is applied within each neighborhood to arrive at a set of centroids3. The

algorithm works iteratively by updating local centroids after receiving centroid information

from peers in the same neighborhood:

Ct
i = Update({Ct−1

j }) (1.4)

The problem is now reduced into combining the set of centroids from the various neigh-

borhoods. One solution is to allocate a facilitator node that combines multiple sets of

centroids, but this would defeat the scalability of the method in cases when the number of

neighborhoods is very large.

To address this issue, a node in each neighborhood is designated as a supernode, and

the neighborhood concept is recursively applied to all supernodes such that we create a

3A centroid is the mean of a set of document vectors.
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Figure 1.3: Abstract model of the globally-optimized hierarchically-distributed clustering
technique

multi-layer hierarchical network. At each layer we combine the set of centroids computed

from the lower layers, until we arrive at the root with a single set of centroids. This set

is the globally-optimized clustering solution across all nodes. Figure 1.3 illustrates this

process showing a global view of the node hierarchy, and a focus on one neighborhood in

addition to the abstract process of iterative cluster update.

We define a relationship between the hierarchy height H , the neighborhood size SQ,

and the total number of nodes NP . This architecture faces a tradeoff between speedup

and the approximate clustering quality. The taller the hierarchy the less the quality of

clustering, but the greater the speedup. Results on large document sets show that:

• we can achieve decent speedup by making the hierarchy taller, but at the expense

of clustering quality which degrades as we go up the hierarchy due to working with

centroid information only rather than actual data at higher levels; and

• we should not increase the number of nodes in the network beyond a certain level

without increasing the data set size due to fine-grained data partitioning across nodes.

Finally, a method for generating keyphrase summaries for the distributed clusters based
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on CorePhrase is proposed. At level 0 of the hierarchy, each node in a certain neighborhood

produces a set of core keyphrases for each cluster. Then nodes exchange those keyphrases,

intersecting the list with all other keyphrase summaries from their neighbors. The result

of the intersection is called the cluster core and is kept for the next iteration by all nodes.

At the same time, each node intersects its neighbors’ keyphrases with its local data to

produce a list of keyphrases to be used in the next iteration. This process repeats until

the desired number of keyphrases is extracted, or the intersection yields an empty set.

At higher levels, when a set of cluster centroids are merged, their respective keyphrase

summaries are merged as well. At the root of the hierarchy, one set of summary keyphrases

for each cluster is obtained.

1.4 Contributions

The following is a list of contributions in this thesis.

Document Clustering and Summarization

• Development of a keyphrase extraction algorithm from document clusters. The al-

gorithm efficiently finds all matching phrases between documents in a cluster, and

subsequently ranks them to discover the highly relevant keyphrases for the cluster.

Higher accuracy is demonstrated over keyword-centroid algorithms.

• Combining the keyphrase extraction algorithm with the collaborative clustering al-

gorithm to provide collaborative document clustering capability. The extracted

keyphrases are used as cluster summaries that are shared between nodes in the net-

work for the purpose of identifying similar documents in remote peers.
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• Combining the keyphrase extraction algorithm with the hierarchically-distributed

clustering algorithm to provide summaries for the globally distributed clusters.

Distributed Clustering

• Development of a collaborative peer-to-peer clustering algorithm. The algorithm pro-

vides locally-optimized distributed clustering through the exchange of cluster sum-

maries between peers, upon which recommendation of merging remote data into local

clusters is based. Final clusters after collaboration show significant improvement in

quality over initial clusters before collaboration.

• Development of a hierarchically-distributed peer-to-peer architecture and algorithm.

The architecture aims for scalability through modularizing the network into a hier-

archy of peer neighborhoods. The clustering algorithm directly exploits the archi-

tecture through recursively computing cluster centroids within neighborhoods, and

merging multiple centroid solutions up the hierarchy. The algorithm scales with a

large number of nodes, with clustering quality comparable to the centralized version.

Data Clustering

• Definition of a new clustering algorithm based on positive and negative contribu-

tion of specific data objects to clusters. The algorithm maximizes the quality of

clusters by removing negatively contributing objects while incorporating positively

contributing objects. The method is guided by a histogram representation of the

pairwise similarity distribution in clusters.

These contributions provide necessary methods for distributed document repositories,

such as digital libraries or distributed knowledge bases, to collaborate with each other to
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discover regularities and patterns that may span multiple sites.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a background and review

of the research subjects related to the work herein. Chapters 3, 4, and 5 introduce the main

work in the thesis: chapter 3 introduces the text mining algorithm for keyphrase extraction

from document clusters; chapter 4 introduces the distributed collaborative peer-to-peer

document clustering method; and chapter 5 introduces the hierarchically-distributed peer-

to-peer clustering method. Experimental setup and results and given in chapter 6. Finally,

a summary, conclusions, and future research are presented in chapter 7.



C H A P T E R 2
Background and Related Work

D
ata mining is a broad field that is at the cross-roads of many disciplines. In

this chapter we will review the relevant literature as it relates to distributed

document clustering. Figure 2.1 illustrates the various fields of study which

the work in this thesis stems from or extends, with an emphasis on positioning the work

within those fields. Not all (sub)fields were shown; only those important enough or directly

relevant to the work are included.

The highlighted areas in the figure indicate the research areas directly touched by this

research, namely: Distributed Clustering, Peer-to-Peer Clustering - specifically P2P

Document Clustering, and Text Mining - specifically Document Clustering. As can

be seen, the work is based largely on applying text data mining (document clustering)

within distributed computing environments (peer-to-peer networks).

The organization of this literature review can be categorized into the following broad ar-

eas: (1) Text Mining, (2) Clustering Algorithms, (3) Distributed Clustering, and (4) Agent-

based Data Mining. There are many ways to break down the literature on text and dis-

20
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tributed data mining. Regardless of how we choose to look at it, we should be able to

appreciate the different approaches that have been reported in the literature by the end of

this chapter.

The first two sections on text mining and clustering algorithms are largely based on

centralized approaches, and thus those sections discuss basic centralized models and algo-

rithms only. The latter two sections focus on distributed architectures and algorithms for

performing the equivalent of the centralized approaches in distributed environments.

2.1 Text Mining

The term text mining was first proposed by Feldman and Dagan in [35]. According to a

survey by Kosala and Blockeel on Web mining [69], currently the term text mining has

been used to describe different applications such as text categorization [54, 100, 104], text

clustering [107, 110, 12, 70, 100], empirical computational linguistic tasks [52], exploratory

data analysis [52], finding patterns in text databases [35, 36], finding sequential patterns

in text [74, 2, 3], and association discovery [87, 100].

Text Mining vs. Information Retrieval

Text Mining is a field that is considered as an extension of Data Mining in general, also

known as Knowledge Discovery in Databases [34]. It is a term that sometimes gets confused

with Information Retrieval, which is a different, but related, field. Mining is not Retrieval.

The goal of information retrieval (or information access) is to help users find documents

that satisfy their needs [4]. The problem is not that the information is not known, but

rather that the information coexists with other valid pieces of information, and we just

need to “home in” on this information. This search-centric view misses the point that we
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might actually want to treat the information as a large knowledge base from which we can

extract new, never-before encountered information [20]. On the other hand, the goal of

data mining is to discover new information from data, finding patterns across data sets,

and separate signal from noise [52].

Document Categorization

It is also sometimes confusing when people refer to document categorization as data mining.

Document categorization is a process of mapping the content of a document into one (or

more) of a set of pre-defined labels. Although it is considered a machine learning task,

it does not lead to discovery of new information; rather, it produces a classification of

something already known. This is not to undermine document categorization; it has its own

benefits in assigning documents to their respective categories automatically, thus relieving a

human from such a daunting task. The argument here is just that it does not provide more

than what is already known. Aas et al [1] give a good account of the text categorization

literature, exposing the different types of text representation and classification methods.

Document Clustering

Clustering is a technique to group similar objects together, based on their (dis)similarity,

to form a grouping of objects such that objects in the same group are most similar, while

objects in different groups are most dissimilar [57]. In the context of text mining, clustering

is a really powerful method for discovering interesting (inherent) grouping of documents,

maybe to form a computer-aided information hierarchy, such as a Yahoo-like topic direc-

tory. A potential benefit is to let the documents categorize themselves. It might be possible

to come up with groups of things that are recognized, but it might not be clear that they

could be made into a category in advance. After clustering analysis is done, clusters could
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be refined, and as new documents are introduced they can be automatically assigned using

automatic classification.

Clusters are not the same as categories. Clusters are based on similarities found by

the computerized analysis of the documents in the collection. Categories are pre-assigned

groupings designed to be meaningful (and helpful) to people. Because categories are pre-

assigned without reference to the content of the document collection it is likely that some

categories will have many documents while other categories are empty [77].

2.1.1 Text Representation Models

In data mining in general, usually there is a fixed model for data that is assumed by

most mining algorithms. This data model varies depending on the nature of the data

itself. For problems that have numerical data, a straightforward numerical representation

is assumed by the algorithms. However, in text mining we have free unstructured text

data, which poses a problem of representation. An overview of the most common document

representation models used in text mining is given here.

Document Data Models

Most text mining methods use the Vector Space Model, introduced by Salton in 1975

[92], to represent document objects. Each document is represented by a vector d, in

the term space, d = {tf1, tf2, . . . , tfn}, where tfi, i = 1, . . . , n is the term frequency in

the document, or the number of occurrences of the term ti in a document. To represent

every document with the same set of terms, we have to extract all the terms found in the

documents and use them as our feature vector1. Sometimes another method is used which

1Obviously the dimensionality of the feature vector is always very high, in the range of hundreds and
sometimes thousands.
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combines the term frequency with the inverse document frequency (TF-IDF) [92, 1]. The

document frequency dfi is the number of documents in a collection of N documents in

which the term ti occurs. A typical inverse document frequency (idf ) factor of this type is

given by log(N/dfi). The weight of a term ti in a document is given by:

wi = tf i × log(N/dfi). (2.1)

To keep the dimension of the feature vector reasonable, only a small number of n terms

with the highest weights in all the documents are chosen. Wong and Fu [107] showed that

they could reduce the number of representative terms by choosing only the terms that have

sufficient coverage2 over the document set.

Some algorithms [61, 107] refrain from using term frequencies (or term weights) by

adopting a binary feature vector, where each term weight is either 1 or 0, depending on

whether it is present in the document or not. Wong and Fu [107] argued that the average

term frequency in Web documents is below 2 (based on statistical experiments), which does

not indicate the actual importance of the term, thus a binary weighting scheme would be

more suitable to this problem domain.

Another model for document representation is called N-gram [98]. The N-gram model

assumes that the document is a sequence of characters. Using a sliding window of size n,

the original character sequence is scanned to produce all n-character sub-sequences. The

N-gram approach is tolerant of minor spelling errors because of the redundancy introduced

in the resulting n-grams. The model also achieves minor language independence when used

with a stemming algorithm, which reduces inflected words to their stem form. Similarity

in this approach is based on the number of shared n-grams between two documents.

Another model proposed by Zamir and Etzioni [109] is a phrase-based model based on

2The Coverage of a feature is defined as the percentage of documents containing that feature.
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Suffix Trees. The model finds common phrase suffixes between documents and builds

a suffix tree where each node represents part of a phrase (a suffix node) and associated

with it are the documents containing this phrase-suffix. The approach clearly captures

the information of word proximity, which is thought to be valuable for finding similar

documents. However, the branching factor of this tree is questionably huge, especially at

the first level of the tree, where every possible suffix found in the document set branches

out of the root node. The tree also suffers a great degree of redundancy of suffixes repeating

all over the tree in different nodes.

Finally, another phrase-based approach was proposed by Hammouda and Kamel [41]

to facilitate matching phrases efficiently between documents. The model is called the

Document Index Graph (DIG). It is a graph-based model in which nodes represent

unique words along with term frequency information, and edges represent sequences of

words. Since this model is used as the underlying representation model in the keyphrase

extraction algorithm in chapter 3, as well as for the cluster summarization part of chapter 4,

a brief definition of the DIG model is given here.

The DIG is a directed graph (digraph) G = (V, E)

where V : is a set of nodes {v1, v2, . . . , vn}, where each node v represents a unique word

in the entire document set; and

E : is a set of edges {e1, e2, . . . , em}, such that each edge e is an ordered pair of nodes

(vi, vj). An edge from vi to vj indicates that the word vj appears successive to

the word vi in some document.

Each document di is mapped to a document sub-graph gi that represents the unique

words and their sequences in that document (i.e. phrases). The DIG model is built

incrementally by merging each document sub-graph into a cumulative graph that represents

documents processed up to di: Gi = Gi−1 ∪ gi.
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Upon merging a document sub-graph into the cumulative graph, it is possible to extract

the matching phrases between the new document and all previous documents. The list of

matching phrases between document di and dj is computed by intersecting the subgraphs

of both documents, gi and gj, respectively. Let pij denote such list, then:

pij = gi ∩ gj

A list of matching phrases between document di and all previously processed documents

is computed by intersecting the document subgraph gi with the cumulative DIG Gi−1. Let

pi denote such list, then:

pi = gi ∩Gi−1

This process produces complete phrase matching output between every pair of doc-

uments in near-linear time, with arbitrary length phrases [43]. Thus, the model allows

phrase-based similarity calculation, which was experimentally shown to be more accurate

than single-word analysis.

Text Pre-processing

Before any feature extraction takes place, the document set is normally cleaned by remov-

ing stop-words 3 and then applying a stemming algorithm that converts different word

forms into a similar canonical form. The most popular stemming algorithm is the Porter

stemmer [90].

3Stop-words are very common words that have no significance for capturing relevant information about
a document (such as “the”, “and”, “a”, . . . etc).
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2.1.2 Document Similarity Measures

A key factor in the success of any clustering algorithm is the similarity measure adopted

by the algorithm. In order to group similar data objects, a proximity metric has to be

used to find which objects (or clusters) are similar. There are a large number of similarity

metrics reported in the literature, only the most common ones are reviewed in this section.

The calculation of the (dis)similarity between two objects is achieved through some

distance function, sometimes also referred to a dissimilarity function. Given two feature

vectors x and y representing two objects it is required to find the degree of (dis)similarity

between them.

A very common class of distance functions is known as the family of Minkowski dis-

tances [16], described as:

‖x− y‖p = p

√

√

√

√

n
∑

i=1

|xi − yi|p (2.2)

where x,y ∈ ℜn. This distance function actually describes an infinite number of the

distances indexed by p, which assumes values greater than or equal to 1. Some of the

common values of p and their respective distance functions are:

p = 1 : Manhattan Distance ‖x− y‖1 =

n
∑

i=1

|xi − yi| (2.3)

p = 2 : Euclidean Distance ‖x− y‖2 =

√

√

√

√

n
∑

i=1

|xi − yi|2 (2.4)

p =∞ : Tschebyshev distance ‖x− y‖∞ = max
i=1,2,...,n

|xi − yi| (2.5)

A more common similarity measure that is used specifically in document clustering is
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the cosine correlation measure (used by [94, 21, 107]), defined as:

cos(x,y) =
x · y

‖x‖‖y‖
(2.6)

where (·) indicates the vector dot product and ‖ · ‖ indicates the length of the vector.

Strehl et al [95] provide a discussion on the impact of similarity measures on web page

clustering.

Another commonly used similarity measure is the Jaccard measure (used by [70, 61,

51]), defined as:

sim(x,y) =

∑n
i=1 min(xi, yi)

∑n
i=1 max(xi, yi)

(2.7)

which in the case of binary feature vectors could be simplified to:

sim(x,y) =
|x ∩ y|

|x ∪ y|
(2.8)

It has to be noted that the term “distance” is not to be confused with the term “simi-

larity”. Those terms are opposite to each other in the sense of how similar the two objects

are. Similarity decreases when distance increases. Another remark is that many algorithms

employ the distance function (or similarity function) to calculate the similarity between

two clusters, a cluster and an object, or two objects. Calculating the distance between

clusters (or clusters and objects) requires a representative feature vector of that cluster

(sometimes referred to as a medoid).

Some clustering algorithms make use of a similarity matrix . A similarity matrix is a

N×N matrix recording the distance (or degree of similarity) between each pair of objects.

Obviously the similarity matrix is a positive definite matrix so we only need to store the

upper right (or lower left) portion of the matrix.
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2.1.3 Keyphrase Extraction

An important task in text mining is given a set of text documents, extracting the essence

of the information in those documents and presenting it in the form of the few keyphrases

that capture the topic covered by those documents. One of the answers is keyphrase

extraction, which is concerned with the analysis of text documents to extract highly relevant

keyphrases from them.

Applications of keyphrase extraction are numerous. Turney [102] lists over a dozen ap-

plications that directly or indirectly depend on keyphrase extraction, to name a few: pro-

viding mini-summaries of large documents, highlighting keyphrases in text, text compres-

sion, constructing human-readable keyphrase-based indexes, interactive query refinement

by suggesting improvements to queries, document clustering, and document classification.

Much of the work reported in the literature about keyphrase extraction has to do

with single-document extraction, with roots in text summarization. There have been few

attempts towards summarizing text clusters, or multi-document sets, which is one of the

challenges addressed in this thesis. Moreover, those cluster summarization techniques use

keyword-based frequency measures, with no use of keyphrases.

Two popular single-document keyphrase extraction algorithms are: Extractor by Tur-

ney [102], and Kea by Frank et al [37]. Extractor uses machine learning to extract

keyphrases from individual documents, which employs a genetic algorithm to tune its pa-

rameters. Evaluation is based on the number of extracted keyphrases that match human

generated keyphrases, which is claimed to achieve human-like performance, but could be

biased towards the trained data. Kea is a single document summarizer, which employs a

Bayesian supervised learning approach to build a model out of training data, then applies

the model to unseen documents for keyphrase extraction.
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Mana-Lopez et al [78] have applied multi-document summarization as a post-processing

step of document clustering. Their approach is system-based with focus on the integration

of the summarization with IR systems, and the differences between presentation of the

retrieved results in the form of a pure ranked list, clustered lists, and cluster summaries.

Another system called SNS has been proposed by Radev and Fan [91] for summarizing

search engine hit lists. It employs multi-document summarization using full sentences by

ranking candidate sentences according to their relevance to the cluster centroid.

Among the methods using keyword-based cluster labeling is a one proposed by Neto

et al [88], which uses Autoclass-based clustering with top frequent keywords for cluster

labels. In addition to keyword-based cluster summarization, it is also used to perform

single document summarization, using a variation of the popular tf×idf weighting scheme

to score phrases. A similar approach for describing SOM-based text clusters using keywords

has been proposed by Merkl and Rauber [82]. The method is called LabelSOM, and uses

cluster centroids to find the most relevant keywords related to the cluster.

An information theoretic based approach for phrase extraction from multi-documents

has been proposed by Bakus et al [6]. The method finds hierarchical combinations of

statistically significant phrases. The approach was mainly used for document classification,

but was also used to support document clustering [5].

Another method based on hierarchical clustering was proposed by Osdin et al [89].

Summarization of clusters is performed by extracting the phrases that best match a user-

query.

Mani and Bloedorn suggested a method for multi-document summarization based on

a graph representation based on concepts in the text [79]. Also another system for topic

identification is TopCat [17]. It uses a series of natural language processing, frequent

itemset analysis, and clustering steps to identify the topics in a document collection.
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2.1.4 Document Clustering Evaluation Criteria

To evaluate the effectiveness of some method, we need accurate evaluation measures. Some

of these evaluation measures are presented here, and are put specifically into the context

of document clustering, as this is a major focus of the proposed work, and will be used to

evaluate some of the methods used.

The results of any clustering algorithm should be evaluated using an informative quality

measure that reflects the “goodness” of the resulting clusters. The evaluation depends on

whether we have prior knowledge about the classification of data objects; i.e. whether we

have labeled data, or no classification for the data is known. If the data is not previously

classified we have to use an internal quality measure that allows us to estimate the validity

of clusters without reference to external knowledge. On the other hand, if the data is

labeled, we make use of this classification by comparing the resulting clusters with the

original classification (ground truth); such measure is known as an external quality measure.

We review two external quality measures, F-measure and Entropy, and two internal quality

measure, Dunn’s Index and Separation Index.

F-measure

This measure combines the Precision and Recall ideas from the Information Retrieval

literature. The precision and recall of a cluster cj with respect to a class (topic) ti are

defined as:

P = Precision(ti, cj) =
Nticj

Ncj

(2.9a)

R = Recall(ti, cj) =
Nticj

Nti

(2.9b)
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where Nticj
: is the number of members of class ti in cluster cj ,

Ncj
: is the number of members of cluster cj, and

Nti : is the number of members of class ti.

The F-measure of class ti is defined as:

F (ti) =
2PR

P + R
(2.10)

With respect to class ti we consider the cluster with the highest F-measure to be the cluster

cj that maps to class ti, and that F-measure becomes the score for class ti. The overall

F-measure for the clustering result C is the weighted average of the F-measure for each

class ti:

FC =

∑

i[Nti × F (ti)]
∑

i Nti

(2.11)

where Nti is the number of objects in class ti. The higher the overall F-measure, the better

the clustering, due to the higher accuracy of the clusters mapping to the original classes.

Entropy

Entropy indicates how homogeneous a cluster is. Lower entropy indicates more homoge-

neous clustering.

For every cluster cj in the clustering result C we compute pij, the probability that a

member of cluster cj belongs to class ti. The entropy of each cluster cj is calculated using

the standard formula Ecj
= −

∑

i pij log(pij), where the sum is taken over all classes. The

total entropy for a set of clusters is calculated as the sum of entropies for each cluster

weighted by the size of each cluster:
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EC =

NC
∑

j=1

(
Ncj

ND

× Ej) (2.12)

where Ncj
is the size of cluster cj, and ND is the total number of data objects.

Dunn’s Index

Dunn’s Index is a cluster validity index that accounts for cluster diameters and inter-cluster

distances [31]. It is defined as:

DI = min
1≤i≤NC

{

min
i<j≤NC

{

dist(ci, cj)

max1≤i≤NC
(diam(ck))

}}

(2.13)

where

dist(ci, cj) = min
x∈ci,y∈cj

{dist(x, y)}

diam(ck) = max
x,y∈ck

{dist(x, y)}

Dunn’s index rewards well-separated clusters that have small diameters, and thus larger

values indicate better clustering solutions. A widely criticized drawback of this index is

its expensive computation, especially for large NC and ND. Moreover, it is sensitive to

noisy data points, since inter-cluster distance is based on the minimum pair-wise distance

between points in different clusters.

Separation Index

Separation Index is another cluster validity measure that utilizes cluster centroids to mea-

sure the distance between clusters, as well as between points in a cluster to their respective

cluster centroid. It is defined as the ratio of average within-cluster variance (cluster scatter)
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to the square of the minimum pair-wise distance between clusters:

SI =

∑NC

i=1

∑

xj∈ci
dist(xj, mi)

2

ND min1≤r,s≤NC

r 6=s
{dist(mr, ms)}2

=

∑NC

i=1

∑

xj∈ci
dist(xj , mi)

2

ND · dist2
min

(2.14)

where mi is the centroid of cluster ci, and distmin is the minimum pair-wise distance between

cluster centroids. Clustering solutions with more compact clusters and larger separation

have lower Separation Index, thus lower values indicate better solutions. This index is

more computationally efficient than Dunn’s index, and is less sensitive to noisy data.

2.2 Clustering Algorithms

In this section some of the methods that have been reported in the literature on data

clustering are presented. By definition clustering is an unsupervised learning technique,

and that will be the focus of this section. However, references to some work on supervised

and semi-supervised learning approaches will be given as needed.

Jain et al [57, 58] cover the topic very well from the point of view of cluster analysis

theory. They break down the methodologies mainly into partitional and hierarchical clus-

tering methods. Chakrabarti [15], on the other hand, categorizes clustering methods into

partitioning, geometric embedding, and probabilistic approaches. We base our discussion

here on Chakrabarti’s categorization.

The motivation behind unsupervised learning approaches, especially clustering, is that

it can often provide an automatic organization for a document collection. Topic directo-

ries, such as Yahoo! and the Open Directory (dmoz.org) are of great value due to their
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organization of knowledge into a hierarchical taxonomy. These directories are created man-

ually today. Clustering can help in the organization of such directories by performing a

preliminary clustering, which may be followed by classification of new documents into the

pre-clustered topics. Other applications include the clustering of query search results, thus

providing the user with groups of results instead of a linear ranked list, which should be

easier for the user to “zoom in” on their topic of interest.

2.2.1 Partitioning Clustering Approaches

One approach to clustering is to partition the document collection into k clusters C1, . . . , Ck

such that the intra-cluster distance
∑

i

∑

d1,d2∈Di
dis(d1, d2) (where dis is the distance func-

tion) is minimized, or the intra-cluster similarity
∑

i

∑

d1,d2∈Di
sim(d1, d2) (where sim is

the similarity function) is maximized. This kind of clustering relies on external represen-

tation using pair-wise document similarity information only. If an internal representation

of documents is available, such as the vector space model, then it is possible to repre-

sent a prototype of the cluster itself using, for example, the centroid of the cluster. In

such cases, the goal could be to partition the collection into C1, . . . , Ck so as to mini-

mize
∑

i

∑

d∈Di
dis(d,

−→
D i) or maximize

∑

i

∑

d∈Di
sim(d,

−→
D i), where

−→
D i is the vector-space

representation of cluster Ci.

k-means and FCM

Partitioning could also be achieved by having a map of document-to-cluster assignment,

in which assigning a document d to cluster i is done by setting a boolean variable zd,i to 1.

In this case, we need to find a map that will minimize
∑

i

∑

d∈D zd,idis(d,
−→
D i) or maximize

∑

i

∑

d∈D zd,isim(d,
−→
D i). This is realized through the popular k-means clustering algorithm.

Complexity this type of algorithms is O(kndT ), where k is the number of clusters, n is
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the number of documents, d is the dimension of the feature space, and T is the number of

iterations.

A variant of k -means that allows overlapping clusters is known as Fuzzy C-means

(FCM). Instead of having binary membership of objects to their respective clusters, FCM

allows for varying degrees of object memberships [59]. Krishnapuram et al [70] proposed

a modified version of FCM called ”Fuzzy C-Medoids” (FCMdd) where the means are re-

placed with medoids. They claim that their algorithm converges very quickly and has a

worst case of O(n2) and is an order of magnitude faster than FCM.

Top-down vs. Bottom-up

Partitions could be created bottom-up, in which each document is assigned to its own

cluster, and then clusters are combined in a greedy manner according to the most similar

pair of clusters at each iteration, thus forming a hierarchy of clusters. This type of clustering

is best known as Hierarchical Agglomerative Clustering (HAC). Time complexity of such

algorithms is O(n2). The other approach is to set the number of clusters a priori, and

create a random partition of clusters, then refine the clusters so as to satisfy one of the

cost function mentioned above. Such techniques are known as top-down approaches.

Jain and Dubes [57] give a comprehensive account of clustering techniques including

partitioning clustering.

2.2.2 Geometric Embedding Approaches

Some clustering approaches work by projecting the problem space into a two or three-

dimensional space, so as to aid the user in spotting natural clusters. The merit of such

approaches is that they allow the visualization of clusters, which is often considered an

advantage.
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Self-Organized Maps

One such approach is Self-Organizing Maps (SOM) [55, 56, 65, 73]. In SOM, clusters are

laid out on a plane in a regular grid, and documents are iteratively assigned to regions

of the plane. Clusters are embedded in a low-dimensional space, where the process tries

to place related clusters close together in that space. Like k-means SOM associates a

representative vector µc with each cluster c, and iteratively refines these representative

vectors. Unlike k-means, each cluster is represented in the low-dimensional space.

Multidimensional Scaling (MDS)

In MDS the system input is the pairwise (dis)similarity between documents, rather than

the internal vector-space representation of the documents. The algorithm seeks to project

the documents onto a low-dimension space (often 2D or 3D) with minimum distortion of

the original pairwise distances. This is usually keeping the Euclidean distance between

any pair of points in the low-dimensional space as close as possible to the distance between

them specified by the input.

Let di,j be a (symmetric) user-defined measure of distance (or similarity) between doc-

uments i and j, and d̂i,j be the Euclidean distance between the point representation of

the two documents chosen by the MDS algorithm. The stress of the embedding (which we

would like to minimize) is given by

stress =

∑

i,j(d̂i,j − di,j)
2

∑

i,j d2
i,j

Convergence of this function is often difficult to achieve, and is usually done using

iterative relaxation (hill climbing). Initially points are assigned random coordinates, and

are moved iteratively by small distance in a direction that locally minimizes the stress.
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Latent Semantic Indexing (LSI)

LSI uses techniques from linear algebra to factor the term-document matrix. The factors

can be used to derive a low-dimensional representation for documents as well as terms.

LSI maps synonyms and related words to similar vectors, thus bridging the syntax gap.

The technique works by decomposing the term-document matrix to compute its singular

value decomposition (SVD). The resultant singular values are ranked such that the top r

singular values capture the “signal” in the original matrix, leaving out the lower singular

values to account for the “noise”. Berry et al [9] give a detailed account of LSI.

2.2.3 Probabilistic Approaches

One of the issues of the approaches discussed above is that they are considered somewhat

sensitive to the similarity measure used for clustering. The probabilistic approach assumes

that the documents follow a specific distribution, which the approach tries to model by find-

ing the distribution parameters. Effectively, estimating these parameters is the clustering

process itself.

Such approaches include the Maximization Expectation algorithm (based on a Gaussian

Mixture Model), Probabilistic LSI, and Multiple Cause Mixture Model (MCMM). Some

are discussed in Mitchell’s standard text [84]. One of the major drawbacks of probabilistic

approaches is that they are computationally expensive.

Statistical methods have also been widely used in problems related to document classi-

fication. They mostly rely on Bayesian statistics, of which the most widely used approach

is the naive Bayes classifier. Primary applications include key-phrase extraction from text

documents [37], text classification [18], text categorization [30], and hierarchical cluster-

ing [53, 63].
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2.3 Distributed Data Mining

Distributed Data Mining (DDM) started to gain attention during the late nineties. Al-

though it is still a young area of research, the body of literature on DDM constitutes a

sizeable portion of the broader data mining literature. DDM in general deals with the

problem of finding patterns in an environment where data is either naturally distributed,

or could be artificially partitioned across computing nodes. It implies distribution of one or

more of: users, data, hardware, or mining software [71]. Centralized data mining systems

do not address some the requirements of distributed environments, such as scalability and

cooperation.

Data mining in distributed environments is known as Distributed Data Mining (DDM),

and sometimes as Distributed Knowledge Discovery (DKD). The central assumption in

DDM is that data is distributed over a number of sites, and that it is desirable to derive,

through data mining techniques, a global model that reflects the characteristics of the

whole data set.

Applications of DDM are numerous, and are usually manifested as distributed comput-

ing projects. They often try to solve problems in mathematics and science. Specific areas

and example projects include: astronomy (SETI@home), biology (Folding@home, Predic-

tor@home), climate change (CPDN), physics (LHC@home), cryptography (distributed.net),

and biomedicine (grid.org). Those projects are usually built on top of a common platform

providing low level services for distributed or grid computing. Examples of those platforms

include: Berkeley Open Infrastructure for Network Computing (BOINC), Grid.org, World

Community Grid, and Data Mining Grid.

A number of challenges (often conflicting) arise when developing DDM methods:

• Communication model and complexity
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• Quality of global model

• Privacy of local data

It is desirable to develop methods that have low communication complexity, especially

in mobile applications such as sensor networks, where communication consumes battery

power. Quality of the global model derived from the data should be either equal or com-

parable to a model derived using a centralized method. Finally, in some situations when

local data is sensitive and not easily shared, it is desirable to achieve a certain level of

privacy of local data while deriving the global model.

Although not yet proven, usually deriving high quality models requires sharing as much

data as possible, thus incurring higher communication cost and sacrificing privacy at the

same time.

2.3.1 Homogeneous vs. Heterogeneous distributed data

We can differentiate between two types of data distribution. The first is homogeneous,

where data is partitioned horizontally among the sites; i.e. each site holds a subset of the

data. The second is heterogeneous, where data is partitioned vertically; i.e. each site holds

a subset of the attribute space, and the data is linked among sites via a common key.

2.3.2 Exact vs. Approximate DDM algorithms

A DDM algorithm can be described as either exact or approximate. Exact algorithms

produce a final model identical to a hypothetical model generated by a centralized process

having access to the full dataset. Figure 2.2 illustrates the hypothetical process that is

modeled by an exact distributed clustering algorithm. The exact algorithm works as if

the data subsets, Di, from each node were brought together into one data set, D, first;
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Figure 2.2: Exact Distributed Clustering Model

then a centralized clustering algorithm, A, had performed the clustering procedure on the

whole data set. The clustering solutions are then distributed again by intersecting the data

subsets with the global clustering solution.

Approximate algorithms, on the other hand, produce a model that closely approximates

a centrally-generated model. Most DDM research focuses on approximate algorithms as

they tend to produce comparable results to exact algorithms with far less complexity [22].

2.3.3 Communication models

Communication between nodes in distributed clustering algorithms can be categorized into

three classes (in increasing order of communication cost)

• communicating models, which involves calculating local models that are then

sent to peers or a central site. These models often are comprised of cluster centroids,

e.g. P2P k-means [25], cluster dendograms, e.g. RACHET [93], or generative models,

e.g. DMBC [83];

• communicating representatives, in which nodes select a number of representative

samples of the local data to be sent to a central site for global model generation,

such as the case in the KDEC distributed clustering algorithm [67], and the DBDC
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algorithm [60]; and

• communicating data, in which nodes exchange actual data objects; i.e. data ob-

jects can change sites to facilitate construction of clusters that exist in certain sites

only, such as the case in the collaborative clustering scheme in [45], and the dis-

tributed signature-based clustering in [76].

2.3.4 Distributed Text and Web Mining

Applications of DDM in the text mining area are rare, but usually employ a form of dis-

tributed information retrieval. Distributed text classification and clustering have received

little attention. PADMA is an early example of parallel text classification [63].

The work presented by Eisenhardt et al [32] achieves document clustering using a

distributed peer-to-peer network. They use the k-means clustering algorithm, modified

to work in a distributed P2P fashion using a probe-and-echo mechanism. They report

improvement in speed up compared to centralized clustering. Their algorithm is an exact

algorithm, although it requires global synchronization at each iteration.

A similar system can be found in [76], but the problem is posed from the informa-

tion retrieval point of view. In this work, a subset of the document collection is centrally

partitioned into clusters, for which “cluster signatures” are created. Each cluster is then

assigned to a node, and later documents are classified to their respective clusters by com-

paring their signature with all cluster signatures. Queries are handled in the same way,

where they are directed from a root node to the node handling the cluster most similar to

the query.

Centralized mining can hardly scale to the magnitude of the data on the Web. Google,

for example, is able to index the Web daily and respond to millions of queries per day
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because it employs a farm of distributed computing nodes that apply distributed algorithms

for content indexing and query processing.

2.3.5 State of the art

In the latest issue of IEEE Internet Computing [72] (at the time of writing this thesis), a

few algorithms were presented representing the state of the art in DDM. Datta et al [23]

described an exact local algorithm for monitoring a k-means clustering (originally proposed

by Wolff et al in [106]), as well as an approximate local k-means clustering algorithm for

P2P networks (originally proposed by Datta et al in [24, 25]).

Although the k-means monitoring algorithm does not produce a distributed clustering,

it helps a centralized k-means process know when to recompute the clusters by monitor-

ing the distribution of centroids across peers, and triggering a re-clustering if the data

distribution significantly changes over time.

On the other hand, the P2P k-means algorithm in [24, 25] works by updating the

centroids at each peer based on information received from their immediate neighbors. The

algorithm terminates when the information received does not result in significant update

to the centroids of all peers. The P2P k-means algorithm finds its roots in a parallel

implementation of k-means proposed by Dhillon and Modha [27].

To summarize the literature on distributed clustering, figure 2.3 illustrates the various

distributed clustering algorithms and their roots in a time line format. Entities with

thick borders are distributed algorithms, while plain entities are centralized algorithms or

theories behind the distributed algorithms.
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2.4 Agent-Based Data Mining

Data mining is often viewed from, or implemented within, an agent paradigm. A data

mining process could be often viewed as an agent. The agents literature is so diverse

and sometimes confusing on what is actually an agent. There has been so many theories

formed to describe the underlying models driving agent behavior and reasoning. In their

key 1995 article, Wooldridge and Jennings [108] give a very detailed and thorough review

of the different agent theories, architectures, and languages. D’Inverno and Luck [28] also

presented detailed formal agent specification framework called SMART, which describes

agency in a thorough formal framework.

For simplicity it will be assumed that an agent is a software entity that possesses

the ability to perform a task given certain resources. Abilities such as communication

and negotiation are fundamental for a multi-agent system that will exhibit some kind

of collaboration for the ultimate success of the whole system. This particular aspect of

agenthood is one of the fundamental issues addressed in this research. The key is to have

collaboration between a set of Web mining agents, so as to achieve maximum overall system

performance.

Green et al [38] identify three types of agents: user interface agents, distributed agents,

and mobile agents. The type associated with the topic at hand is the distributed agents

type. Distributed agents technology is concerned with problem solving by a group of

agents, and is most relevant here for the problem of collaborative knowledge discovery.

Kargupta et al [63] specifically addressed this problem using a distributed architecture

for data mining in general. However, the literature is quite sparse in this specific area.

There has been little work on real distributed content mining using a multi-agent approach

specifically to address the collaboration and scalability issues.
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The most relevant approaches either use agents to aid the users in information retrieval

based on their personal preferences, or use collaborative techniques to make use of other

users’ judgements in rating content for making recommendations.

Delgado [26] classifies agents by the underlying information filtering technology into:

content-based filters, reputation-based filters, collaborative or social-based filters, event-

based filters, and hybrid filters. Each one of these filtering methods map to one of either

content-based mining, structure-based mining, and usage-based mining.

2.4.1 Intelligent Mining Agents

Generally speaking, agent-based data mining systems (especially for text/web mining) can

be categorized as follows [19]:

Intelligent Search Agents. Several approaches are reported that search for relevant

information using domain characteristics and user profiles to organize and interpret the

discovered information. They mainly rely on either pre-specified domain information about

particular types of documents, or hard coded models of the information sources to retrieve

and interpret the documents.

Information Filtering/Categorization. Some agent-based approaches use various

information retrieval techniques and characteristics of hypertext documents to automati-

cally retrieve, filter, and categorize those documents. Hypersuit [103] is one such system.

It uses semantic information embedded in link structures and document content to create

cluster hierarchies of hypertext documents, and structure an information space.

Personalized Web Agents. These agents learn user preferences and discover Web

information sources based on these preferences, and those of other individuals with similar

interests (using collaborative filtering).



48 Distributed Document Clustering and Cluster Summarization in P2P Environments

2.4.2 Multi-Agent Systems

D’Inverno and Luck [28] define a multi-agent system as one that contains a collection of

two or more agents, with at least one autonomous agent, and at least one relationship

between two agents where one satisfies the goal of the other. The requirement for an

autonomous agent in the system was based on the argument that the system should have

some kind of goal generation mechanism, which is provided by autonomous agents only

through motivation.

Multi-agent systems usually operate in distributed and complex environments. In a

typical collaborative multi-agent system, each agent has incomplete information or capa-

bilities. These agents work together to achieve a global objective based on distributed

data, mostly in a decentralized fashion.

To enable effective inter-agent communication and coordination, agents that work to-

gether have to use an inter-operable, platform-independent, and semantically unambiguous

communication protocol. There are two widely used such protocols, called Agent Com-

munication Language (ACL): the Knowledge Query and Manipulation Language (KQML)

and the FIPA ACL. KQML, developed as part of the ARPA Knowledge Sharing Effort, is

a language and protocol for exchanging information and knowledge among software agents.

In KQML, each expression is a speech act described by a performative. The FIPA ACL was

developed by the Foundation for Intelligent Physical Agents (FIPA). Similarly to KQML,

the FIPA ACL is based on speech act theory and the two languages have similar syntax.

Another paradigm for agent communication which has been gaining momentum re-

cently is Web Services, which is based on the standard XML data format for exchanging

information between agent-like programs on the Web. A Web service is an entity that pro-

vides reusable functionality accessible over the Web through the standard SOAP4 protocol.

4Simple Object Access Protocol
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This platform allows for the discovery and integration of distributed services over the Web,

so as to build a complete systems from reusable components. A multi-agent system using

Web services for communication will be able to seek and reuse other agents capabilities to

satisfy its goals.

In general, the agent paradigm lends itself to distribution very well. Attributes such as

autonomy, cooperation, negotiation, and sharing are of great value to a distributed mining

system.

2.5 Application Scenario: E-learning

Educational Data Mining is an emerging discipline, mainly focusing on the types of data

consumed or produced by learners in e-learning environments. This field of study is com-

monly known as Artificial Intelligence in Education (AIED), and most of the work in the

literature in this area uses various AI techniques in the context of e-learning to design what

is known as Intelligent Tutoring Systems (ITS). The application of data mining methods to

e-learning is assumed to help in understanding and improving the student and/or teacher

experience through discovering previously unknown trends or patterns [46].

According to Monk [85], the best use of online media for e-learning, such as the web,

is not simple delivery of printed material, but rather for collaboration and discussion,

simulation and testing, tutoring and guidance, and feedback. He also argues that learning

environments should be structured around learning outcome, not content. Under these

insightful remarks, we can see that data mining, as a tool for discovery, extraction, and

adaptation, can be of great benefit to e-learning.
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2.5.1 Actors and Goals

We can view e-learning environments as multi-actor systems, where agent-like actors are

part of distributed activities. We can identify three types of such actors who can benefit

from data mining in e-learning: learners, instructors, and learning designers. Although

they have correlated roles, their goals could be substantially different and on varying scale.

Learner

Learners (students) are the main focus of many e-learning studies. Data mining methods

are mainly used to aid the learner. Notable methods that help in guiding the learner are

classification methods for predicting learner outcome, failure risk analysis, self assessment,

and providing suggestions for improving competencies. In those scenarios, data mining is

typically applied to learner data that spans weeks, to the extent of a full semester.

Instructor

Instructors are the primary direct user of data mining tools in e-learning. Although learners

may benefit indirectly through data mining, it is the instructor who proactively utilizes

data mining tools for the purpose of identifying patterns among learners. Among other

goals, instructors may use data mining to evaluate either the learners or the learning

process itself. They are able to find patterns among groups of learners (through clustering

techniques), or identify a bottleneck in the course instruction process (through pattern

mining of course activity events or student discussions). Typically, the data used in those

scenarios spans months, to the extent of a few semesters in which the course is offered.
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Learning Designer

Learning designers are involved in designing courses or instructional processes. Data mining

can help learning designers in two aspects: understanding learner behavior, and gaining

insight into good course structure and composition. Data in such scenarios come from

learner modeling systems, which typically spans years.

2.5.2 Types of Data

Before delving into data mining scenarios, it is imperative to describe the types of data

usually subject to analysis in e-learning environments. The most visible types of data in

educational data mining are learner interaction logs, and course content and its associated

metadata. We discuss each of those types briefly in this section.

Interaction Logs

The most common data type subject to analysis and data mining in e-learning is learner

interaction logs. Usage logs usually describe the nature of interaction, such as the type of

activity, duration of activity, transition between activities, and various context information.

Muehlenbrock [86] describes that this type of data is similar to web site access logs,

but argues that in web access scenarios the available logs are shallow, providing only

click-through streams of information, while in learning settings more pedagogical data is

available for logging and thus should be leveraged during analysis.

Interaction logs are usually used for the purpose of user modeling. By identifying reg-

ularities in usage logs, a descriptive model of the learners is derived that can be used to

predict future learner actions. Brooks et al [14] describe a Massive User Modeling System

(MUMS) to support the modeling of learners in distributed e-learning environments. The
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system utilizes a broker model for event capturing and distribution. Learner interactions

are captured by MUMS-compliant modules, such as message boards and learning man-

agement systems, and sent to the central MUMS server where they are made available

to subscribers for analysis. They do not imply how the interaction data should be ana-

lyzed to model learner behavior; their aim was to effectively collect and store pedagogical

events for later consumption by modelers and reasoners in a scalable distributed learning

environment.

Content and Metadata

E-learning systems follow strict standards for static course content structure and organi-

zation, as well as dynamic sequencing of course elements during online instruction. The

IMS Content Packaging (IMS CP) standard is used for specifying how course modules,

lessons, and learning objects are put together in a hierarchical structure suitable for course

organization.

Usually associated with the course structure are metadata that describe the content,

such as the title, author, publisher, subject, and copyright information. Metadata stan-

dards in use by e-learning systems include Dublin Core and IEEE Learning Object Meta-

data (IEEE LOM). The role of metadata is to provide cataloging information that can be

used to make search and access to the content easier and more efficient.

Metadata can also describe pedagogical information, such as competency levels, target

learner class, duration of instruction; it also can describe technical aspects, such as format

of the material and the system requirements to access it.

The literature on content mining for e-learning is quite scarce. Since tagging content

with metadata is an expensive process, most of the work in this area is focused on automati-

cally generating metadata from content and other context data. Brooks et al [13] discussed
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the issues of automatic metadata generation through collaborative filtering techniques, as

well as by directly applying text mining to the content for the purpose of metadata ex-

traction. The system can accurately extract useful metadata from content, although it is

limited to a few metadata fields.

2.5.3 Data Mining Scenarios

We can broadly divide the work in educational data mining into two categories: usage

pattern mining, and extraction of information.

Pattern Mining

The interaction between learners and e-learning systems produce a large amount of data,

which is usually captured into logs for further analysis. It is the job of usage pattern

mining to analyze such logs. The goal of this process is manifold, but usually is focused

on detecting commonalities or anomalies in usage. Commonalities are similarity in usage

patterns that can help instructors identify group behavior.

Merceron and Yacef specifically designed a tool, called TADA-Ed, for mining student

interaction with an online tutoring system [80, 81]. The tool incorporates two clustering

algorithms, k-means and hierarchical clustering and one decision tree classifier, all adapted

from open source data mining library Weka [105]. It also implements the popular asso-

ciation rule algorithm a priori, with an adapted version that takes sequences of events

into consideration. Their primary goal was to identify frequent mistakes done by students,

and consequently identify either a group of students, through clustering, who need further

attention, or identify certain topics in the curriculum that may need modification. The

classifier was used to predict student marks given current context and previous history.

Although the algorithms they implemented are basic data mining algorithms, it clearly
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shows the benefit of data mining when correctly applied to an application domain such as

e-learning.

A similar attempt has been made by Superby et al [99], where they analyzed perfor-

mance data collected about first year university students with the purpose to predict those

at risk of failure, and thus enabling them to take corrective measures so as to avoid this

risk. They mainly used classification techniques such as discriminant analysis, neural net-

works, and decision trees. Their data primarily come from a questionnaire administered

to first year students, which is used in correlation with their academic performance early

in the year.

Other work in pattern mining for e-learning was done by Kay et al [66]. Their work was

fundamentally aimed at assessing teamwork processes and providing feedback to students

about how they could improve them. Their data were collected through a system called

TRAC for tracking different types of events in an e-learning environment. They used a

frequent sequential pattern mining algorithm, which is based on the a priori pattern mining

algorithm. Although they were able to mine many patterns from the data, they were not

able to interpret them properly, and conclude that further clustering of patterns may be

required to properly differentiate classes of patterns.

Federated Search

Educational content is usually stored and indexed by digital repositories, called Learning

Object Repositories (LORs), which facilitate storage and retrieval. The existence of multi-

ple distributed repositories creates a problem if we would like to look for content that could

be available in any of those repositories. A possible solution is the federated search concept,

in which repositories are peered together, and search across repositories is performed in a

peer-to-peer manner.
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Hatala et al [50] developed an interoperability protocol, the EduSource Communication

Layer (ECL), that links digital repositories. ECL implements the IMS Digital Repository

Interoperability Standard (IMS DRI). Through ECL, different repositories, with different

metadata schemas, can peer together, and answer requests in a peer-to-peer manner for

storage and retrieval of learning objects.

Collaborative Filtering

Collaborative filtering is a way to tap into the collective wisdom of the crowd. By analyzing

the preferences or traces of a large enough number of individuals, we can filter the most

common preferences and suppress the unpopular ones. For example, Brooks et al [13]

suggested a method by which metadata tags assigned by students to content can be filtered

by keeping the most frequent tags. This way, they did not need expensive manual labeling

by experts, although the quality of the filtered tags could be questioned. The same method

could be used to filter content based on recommendation by a large number of students,

which provides an automatic way to promote high quality content simply by allowing

students to vote for or against certain learning materials.

Winters et al [101] also suggested that collaborative filtering could be used to analyze

test scores by constructing a matrix recording scores for every student and every question.

Through collaborative filtering techniques, we can discover what the fundamental topics

of a course are and the proficiencies of each student in those topics.

2.6 Summary

The various fields relevant to the research in this thesis have been reviewed so as to give the

reader the necessary background to follow the work introduced in later chapters. Specif-
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ically, background on text mining, clustering algorithms, distributed data mining, and

agent-based data mining has been discussed. One specific application area of data mining

(e-learning) has been reviewed briefly so as to link basic research to real-world application

scenarios.

The background on text mining will be of benefit in chapter 3, where the keyphrase

extraction algorithm is introduced. The background on distributed data mining and agent-

based data mining will be of benefit when discussing chapters 4 and 5, where the collabora-

tive peer-to-peer clustering and hierarchically-distributed clustering methods are discussed.

The background on clustering in general will be of benefit throughout the thesis, since it

is the backbone of the work introduced herein.



C H A P T E R 3
Document Cluster Summarization

Using Keyphrase Extraction

E
ffectively describing the patterns extracted through data mining is a challenging

problem. First we need to identify possible patterns, then we need to select

those interesting ones and describe them properly. In document clustering this

means we need to describe document clusters effectively if we want to reason about them.

Keyphrase extraction provides an answer to this problem. Automatic keyphrase extraction

from document clusters provides a very compact summary of the contents of the clusters,

which often helps in locating information easily.

This chapter introduces an algorithm for topic discovery using keyphrase extraction

from multi-document sets or clusters based on frequent and significant shared phrases be-

tween documents [44]. The keyphrases extracted by the algorithm are highly accurate

and fit the cluster topic. Subjective as well as quantitative evaluation show that the algo-

rithm outperforms keyword-based cluster-labeling algorithms, and is capable of accurately

57
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discovering the document cluster topic.

While this algorithm on its own is useful for labeling document clusters, it is used in the

cluster summarization step of the collaborative clustering algorithm described in chapter 4.

Cluster keyphrase summaries are exactly what is used to succinctly inform remote nodes

of the content of local document clusters, which in turn is used to judge the similarity

between remote data and local clusters.

3.1 Overview

In this chapter we present a highly accurate method for extracting keyphrases from multi-

document sets or clusters, with no prior knowledge about the documents; i.e. it is domain-

independent. The algorithm is called CorePhrase, and is based on finding a set of core

phrases that best describe a multi-document set.

The algorithm works by first intersecting all documents together to generate a list of

candidate keyphrases for describing the topic of the documents. Intersecting every pair

of documents is a very time-consuming task, especially if we would like to find not only

shared words, but shared phrases as well. The algorithm employs a powerful phrase-based

document indexing model [42, 39, 40] for pair-wise phrase matching among documents.

The extracted candidate keyphrases are then analyzed for frequency, span over the

document set, and other features. Each phrase is assigned a score based on its features, then

the list is ranked and the top phrases are output as the descriptive topic of the document

cluster. Four scoring method variants are employed and their performance is analyzed.

Figure 3.1 illustrates the different components of the keyphrase extraction system.

Results show that the extracted keyphrases are highly relevant to the topic of the

document set, and accurately describe their topic. We used two data sets representative of
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Figure 3.1: CorePhrase Keyphrase Extraction System

two keyphrase extraction tasks: one represents a collection of documents retrieved through

a search engine, and the other is a collection of intranet web pages. The algorithm is

so accurate that in most cases the top one or two phrases are sufficient to describe the

reference topic, thus providing the end user with very compact description, rather than a

long list of keywords as usually the case with keyword-based methods.

The work presented here assumes the following:

• Keyphrase extraction: keyphrases are assumed to exist in the text and are not auto-

matically generated.

• Unsupervised extraction: the algorithm discovers keyphrases rather than learns how

to extract them.

• If used with text clustering, the algorithm is not concerned with how the clusters are

generated; it extracts keyphrases from clusters that have been already generated by
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some clustering algorithm.

In the following section some issues in keyphrase extraction are discussed. Section 3.3

presents the CorePhrase algorithm and and discusses its complexity.

3.2 Keyphrase Extraction

Keyphrase extraction algorithms fall into two categories: keyphrase extraction from indi-

vidual documents, and keyphrase extraction from a set of documents. The difference is

subtle, but reflects two different problems, which sometimes overlap.

Keyphrase extraction from a single document is often posed as a document summa-

rization task, and usually employs supervised machine learning, where an algorithm is first

trained on a set of documents to learn the relationship between a document and its associ-

ated set of keyphrases; then the learned model is applied to unseen documents to produce

a summary for them.

On the other hand, keyphrase extraction from a set of documents is often associated

with document clustering to describe the produced clusters. It is regarded as an unsuper-

vised machine learning task, where the algorithm tries to discover the set of keyphrases

that best describe the set of documents.

3.2.1 Extraction vs. Construction

In the literature there are two ways to finding relevant keyphrases in text: either to ex-

tract them from existing phrases in the text, or to automatically construct them [37]. In

theory, construction of keyphrases is regarded as a more intelligent way of summarizing

text that promises to produce more comprehensible keyphrases. In practice, the automatic
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construction of keyphrases is quite difficult and there is no guarantee that the new phrases

will be meaningful.

In our work we assume that the representative phrases of a document cluster should be

extracted from existing phrases in the cluster rather than constructed to fit the cluster.

3.2.2 Keyphrases vs. Keywords

In the context of cluster description (or characterization), we define a keyphrase to be “a

sequence of one or more words that is highly relevant to a cluster of text documents.” A

keyword, on the other hand, is “a single word that is highly relevant to the cluster.” It

should be noted that an arbitrary combination of keywords does not necessarily constitute

a keyphrase; neither do the constituents of a keyphrase necessarily represent individual

keywords. However, we believe that keywords and keyphrases will overlap most of the

time.

That said, we argue that using a small set of (one or two) succinct keyphrases to

describe a cluster of text documents is a better way, subjectively, to characterize the cluster

than using a longer set of keywords. Since keyword-based cluster description methods

(e.g. [82, 88]) often have to produce many keywords to describe the cluster, we believe

that using one or two highly accurate keyphrases would be favored over such methods.

3.2.3 Evaluation of Keyphrases

In practice, to quantify the quality of extracted keywords or keyphrases we need to use

extrinsic measures; i.e. using an external reference against which to compare the extracted

phrases. Section 6.2.1 discusses two evaluation measures based on the overlap of the

extracted phrases with a reference topic of the document set or cluster.
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3.3 The CorePhrase Algorithm

Virtually every keyphrase extraction algorithm works by first constructing a list of can-

didate keyphrases, scoring each candidate keyphrase according to some criteria, ranking

the keyphrases by score, and finally selecting a number of the top ranking keyphrases for

output. In this section, the CorePhrase multi-document keyphrase extraction algorithm is

presented.

3.3.1 Extraction of Candidate Keyphrases

A candidate keyphrase that has the power to represent a set of documents in a cluster

(rather than a single document) would naturally lie at the intersection of those documents.

The CorePhrase algorithm works by first finding all possible keyphrase candidates through

matching document pairs together, extracting all matching phrases between document

pairs. A master list of candidate phrases for the document cluster is then constructed

from the pairwise document matching lists by consolidating the individual lists to remove

duplicates. The resulting list contains all phrases that are shared by at least two documents.

This process of matching every pair of documents is inherently O(n2). However, by

using a proven method of document phrase indexing graph structure, known as the Doc-

ument Index Graph (DIG), the algorithm can achieve this goal in near-linear time [42].

In DIG, phrase matching is done in an incremental fashion; all documents up to docu-

ment di are represented by a graph structure, and, upon introducing a new document di+1,

the new document is matched to the graph to extract matching phrases with all previous

documents. The new document is then added to the graph. This process produces com-

plete phrase-matching output between every pair of documents in near-linear time, with

arbitrary length phrases.
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Figure 3.2: Phrase Matching Using Document Index Graph

Figure 3.2 illustrates the process of phrase matching between two documents. In the

figure, the two subgraphs of two documents are matched to get the list of phrases shared

between them.

The following set of definitions explain how the DIG model is used to represent docu-

ments and extract matching phrases between them.

Document Subgraph: Each document di is mapped to a subgraph gi that rep-

resents this document in a stand-alone manner. Each subgraph can be viewed

as a detached subset of the DIG that represents the corresponding document

in terms of the DIG properties: gi = {Vi, Ei}, where Vi is the set of nodes

corresponding to the unique words of di, and Ei is the set of edges representing

the sentence paths of di.

Cumulative DIG : Let the DIG representation of the documents processed up to

document di−1 be Gi−1, and that of the documents processed up to document
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di be Gi. Computing Gi is done by merging Gi−1 with the subgraph gi:

Gi = Gi−1 ∪ gi (3.1)

Gi is said to be the Cumulative DIG of the documents processed up to document

di.

Phrase Matching : A list of matching phrases between documents di and dj is

computed by intersecting the subgraphs of both documents, gi and gj , respec-

tively. Let Mij denote such list, then:

Mij = gi ∩ gj (3.2)

A list of matching phrases between document di and all previously processed

documents is computed by intersecting the document subgraph gi with the

cumulative DIG Gi−1. Let Mi denote such list, then:

Mi = gi ∩Gi−1 (3.3)

When a matching phrase, lij , is found between documents di and dj, we calculate its

features with respect to each document, li and lj , respectively, according to section 3.3.2.

Since this method outputs matching phrases for each new document, it is essential to

keep a master list, M , of unique matched phrases, which will be used as the list of candidate

keyphrases. The following simple procedure keeps this list updated:

The set of matching phrases from all documents forms a pool of candidate keyphrases.

Each phrase in this pool is guaranteed to have been shared by at least two documents.
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Algorithm 3.1 Extract Matching Phrases

1: {calculate Mi for document di using (3.3)}
Mij = {lij: 1<j< i}: matching phrases between di and dj

Mi = {Mij}: matching phrases of di

2: for each phrase lij in Mi do
3: if phrase lij is in master list M then
4: add feature vector li to lij in M
5: add feature vector lj to lij in M if not present
6: else
7: add lij to M
8: add feature vectors li and lj to lij in M
9: end if

10: end for
11: for each unique phrase lk in M do
12: calculate averages of feature vectors associated with lk
13: end for

It should be noted that using the matching phrases from multi-document sets as can-

didate keyphrases saves us from problems often faced by single-document keyphrase ex-

traction, namely that of having to identify possible candidates using heuristic techniques,

such as the case in the Kea [37] and Extractor [102] algorithms.

3.3.2 Phrase Features

In order to judge the quality of the candidate keyphrases, we need to differentiate between

them based on quantitative features. Each candidate keyphrase l is assigned the following

features:

df : document frequency; the number of documents in which the phrase appeared, nor-

malized by the total number of documents.

df =
| documents containing l |

| all documents |
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w: average weight; the average weight of the phrase over all documents. The weight

of a phrase in a document is calculated using structural text cues. Examples: title

phrases have maximum weight, section headings are weighted less, while body text

is weighted lowest.

pf : average phrase frequency; the average number of times this phrase has appeared in

one document, normalized by the length of the document in words.

pf = arg avg

[

| occurrences of l |

| words in document |

]

d: average phrase depth; the location of the first occurrence of the phrase in the docu-

ment.

d = arg avg

[

1−
| words before first occurrence |

| words in document |

]

Those features will be used to rank the candidate phrases. In particular, we want

phrases that appear in more documents (high df), have higher weights (high w), higher

frequencies (high pf), and shallow depth. It might seem counter-intuitive to look for

phrases with high df to readers familiar with the tf-idf term weighting scheme. Remember

that we are not scoring the phrase with respect to a particular document, but rather with

respect to the whole document set. So the more common a phrase is across all documents

the higher its weight should be.

The df feature can be regarded as the support of the keyphrase; i.e. from a frequent-set

analysis point of view, df tells how many items (documents) support the keyphrase. Since

we are extracting keyphrases that are shared by at least two documents, the minimum

support is accordingly two. Although this may seem unnecessarily low support value,

when the keyphrases are ranked (as described in the next section), the top ranking phrases
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usually exhibit high support.

3.3.3 Phrase Ranking

In a single-document keyphrase extraction setting, the above phrase features will be used

as input vectors to a machine learning algorithm for training. The model is then applied

to unseen documents to extract the keyphrases. However, in our case we are looking at

discovering “good” keyphrases from multi-document data sets or clusters. Thus, we will

use the features to calculate a score for each phrase, rank the phrases by score, and select

a number of the top phrases as the ones describing the topic of the cluster.

There are two phrase scoring formulas used, as well as two methods of assigning the

score to the candidate phrases, for a total of four variants of the CorePhrase algorithm.

First Scoring Formula. The score of each phrase l is calculated using the following

empirical formula:

score(l) = (w · pf)×− log(1− df) (3.4)

The equation is derived from the tf×idf term weighting measure; however, we are

rewarding phrases that appear in more documents (high df) rather than punishing those

phrases. Notice also that the first scoring formula does not take the depth feature into

account. We will refer to the variant of the algorithm that uses this formula as CorePhrase-

1.

Second Scoring Formula. By examining the distribution of the values of each feature

in a typical corpus (see Table 6.2 for details), it was found that the weight and frequency

features usually have low values compared to the depth feature. To take this fact into

account, it was necessary to “expand” the weight and frequency features by taking their

square root, and to “compact” the depth by squaring it. This helps even out the feature
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distributions and prevents one feature from dominating the score equation. The formula

is given in equation 3.5.

score(l) = (
√

w · pf · d2)×− log(1− df) (3.5)

We will refer to the variant of the algorithm that uses this formula as CorePhrase-2.

Word weight-based score assignment. A modified score assignment scheme based

on word weights is also used:

• First, assign initial scores to each phrase based on phrase scoring formulas given

above.

• Construct a list of unique individual words out of the candidate phrases.

• For each word: add up all the scores of the phrases in which this word appeared to

create a word weight.

• For each phrase: assign the final phrase score by adding the individual word weights

of the constituent words and average them.

We will refer to the variants of the algorithm that use this method as CorePhrase-1M

and CorePhrase-2M, based on the equation that was used to assign the initial phrase scores.

3.3.4 Complexity Analysis

The analysis of this algorithm can be divided into two stages: extraction of candidate

keyphrases, and scoring and ranking the top keyphrases. As mentioned in section 3.2,

candidate keyphrase extraction relies on near-linear time performance of the DIG phrase

matching algorithm. This is achieved through graph matching of each newly introduced



69

document to the cumulative graph of all previous documents. However, this graph-based

algorithm’s memory requirements can be demanding in some scenarios, typically those

involving long documents. Assume that:

n : is the number of documents in the data set,

m : is the number of unique terms in the data set,

idf avg : is the average inverse document frequency (IDF), and

q : is the average number of terms per document,

then the space requirements of the model is:

size(G) = (m · idfavg) + q · n (3.6)

The first term in (3.6) accounts for individual words feature storage, while the second

term accounts for the extra storage required for phrase indexing structures.

Phrase scoring is inherently linear with the number of candidate keyphrases, while

ranking the phrases is bound by the sorting algorithm used. We found that the processing

time of this stage can be considered insignificant compared to the time required for the

candidate keyphrase extraction itself.

3.4 Summary

In this chapter an unsupervised algorithm for keyphrase extraction from document clus-

ters was presented. The algorithm, CorePhrase, works by extracting a full list of candi-

date keyphrases from a document cluster by matching phrases using the document index

graph model. Candidate keyphrases have a support of at least two documents. The algo-

rithm then scores each candidate phrase based on associated features, ranks the candidate
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keyphrases, and finally extracts the top L keyphrases.

The algorithm works because it measures the global relevance of keyphrases to the

whole cluster (coverage), as well as taking into consideration the local average significance

of phrases within individual documents (weight, frequency, and depth). By balancing those

two criteria, it is able to identify highly relevant phrases.

Experimental results in chapter 6, section 6.2, illustrate the high accuracy of the algo-

rithm. For example, from a list of 24,403 candidate phrases, the top 10 keyphrases were

highly relevant to the cluster topic. In fact, the top ranked keyphrase was an exact match

to the reference topic (manually labeled).

In the next chapter, CorePhrase is employed within the collaborative document clus-

tering scheme as a component for cluster summarization. Sharing only summarized cluster

information (in the form of keyphrase vectors) between nodes has the desired effect of min-

imizing traffic between nodes, as well as providing the ability of remote nodes to perform

content-based similarity calculation between the remote documents and the summarized

clusters.



C H A P T E R 4
Collaborative Peer-to-Peer

Document Clustering

F
or the past few decades the mainstream data clustering technologies have been

fundamentally based on centralized operation; data sets were of small manage-

able sizes, and usually resided on one site that belonged to one organization.

Today, data is of enormous sizes and is usually located on distributed sites; the primary

example being the Web. This has created a need for performing clustering in distributed

environments. Distributed clustering solves two problems: infeasibility of collecting data

at a central site, due to either technical and/or privacy limitations, and intractability of

traditional clustering algorithms on huge data sets.

In this chapter we propose a collaborative approach for clustering documents in dis-

tributed peer-to-peer environments. The collaborative approach finds locally-optimized

clusters. The main objective is to allow nodes in a network to first form independent opin-

ions of local document clusters, then collaborate with peers to enhance the local clusters.

71
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Information exchanged between peers is minimized through the use of cluster summaries in

the form of keyphrases extracted from the clusters. This summarized view of peer data en-

ables nodes to request merging of remote data selectively to enhance local clusters. Initial

clustering, as well as merging peer data with local clusters, is based on similarity histogram-

based clustering (SHC) [41], that keeps a tight similarity distribution within clusters. This

approach achieves significant improvement in local clustering solutions without the cost of

centralized clustering, while maintaining the initial local clustering structure.

4.1 Overview

There is a strong movement towards more distributed computing such as peer-to-peer

computing and grid computing. This movement stems from two problems with centralized

operation in general: the infeasibility of collecting data at a central location (due to tech-

nical and/or privacy limitations), and intractability of traditional clustering algorithms

when applied to huge data sets.

In other situations involving distributed data, having one global clustering solution is

not required; rather, multiple local clustering solutions are desired, each of which can then

be enhanced by having access to summarized information from remotely distributed data.

This is the situation addressed by this chapter.

As a motivating scenario, consider data distributed among a set of digital libraries.

Each library can form an opinion about the topic groups in its collection by applying

local clustering. To further enhance this local clustering solution, each library can receive

recommendations from remote libraries on what articles, which it currently does not carry,

can fit into its clustering solution. Minimum information is exchanged, but wider access

to distributed data that contributes to improving local clustering is achieved.
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In this chapter we present an approach that enables collaborative clustering among

distributed P2P nodes [47]. The collaborative nature of the algorithm is a central charac-

teristic that provides the ability of one node to benefit other nodes based on their needs.

Figure 4.1 illustrates the collaborative clustering system presented in this chapter, while

Figure 4.2 illustrates the inter-node communication sequence. The network is modeled as

a connected graph in which every node is connected to every other node. The document

collection is equally partitioned across nodes.

The system is comprised of three main components. First, a clustering algorithm,

called “Similarity Histogram-based Clustering” (SHC), is introduced. The algorithm is

incremental, and is based on statistical representation of the distribution of pair-wise doc-

ument similarities within a cluster. By carefully monitoring this distribution during the

cluster update process we are able to guide the clustering algorithm towards producing

accurate clusters. The SHC algorithm is presented in section 4.3.1.

The second component involves cluster summarization through keyphrase extraction.

The purpose of this process is to minimize the amount of information being exchanged

in the distributed environment. Each node creates a set of cluster summaries, in the

form of keyphrase vectors, which are exchanged with its peers. The keyphrase extraction

algorithm, CorePhrase, has been introduced in chapter 3.

The third component is the main collaborative document clustering algorithm. It is

a distributed variant of the SHC algorithm that involves a series of steps: local cluster

generation and summarization, exchange of cluster summaries, similarity calculation of

cluster summaries to peer documents, recommendation of peer documents, and merging of

peer documents into local clusters. The collaborative clustering algorithm is presented in

section 4.3.3.

In the following section the collaborative peer-to-peer clustering model is presented.
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Section 4.3 presents the algorithms for initial local clustering and subsequent distributed

collaborative clustering. Finally, a summary is given in section 4.4.

4.2 Collaborative Peer-to-Peer Clustering Model

To achieve the goal of collaborative clustering, we propose a number of models that describe

different aspects of the problem. In this section we discuss how to represent the distributed

nodes and how the data is distributed among them, how to represent clusters of documents,

and how the documents themselves are represented.

4.2.1 Distributed P2P Model

Distributed nodes form a network of peers, where each node performs exactly the same

tasks; i.e. there is no centralized operation. The network is represented as a connected

graph G(P,L)

where P : is the set of peers or nodes {pi}, i = 1, . . . , NP .

L : is the set of links {lij} between every pair of nodes pi and pj, i, j = 1, . . . , NP ,

i 6= j. The number of links in the network NL = NP (NP − 1)/2.

This kind of connectedness is chosen for the sake of simplicity, since the typical scenarios

for our approach involves only several nodes.

The number of nodes is static; i.e. NP is fixed for a certain configuration and cannot

be dynamically changed. We, however, test with different network sizes for different values

of NP .

Node links are assumed to be equally weighted. Nodes are assumed to have identical

roles in the network, hence the peer-to-peer model.
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Data Distribution Model

The global view of data is a collection of documents D = {di}, i = 1, . . . , ND. The

document collection is randomly, but evenly, distributed across network nodes; i.e. each

node holds the same number of documents, which is a fixed percentage α of the total

number of documents ND. We refer to the parameter α as the distribution ratio. Overlap

between the nodes in terms of the documents they hold is allowed; i.e. 1/NP ≤ α ≤ 1.

Thus, node pi will hold a set of documents Di ⊆ D, such that |Di| = NDi
= α ·ND.

This type of document distribution reflects typical scenarios. In environments where

nodes are under control of different entities (e.g. on the Web), overlap between the data is

common. On the other hand, in environments where the complete network is under control

of a single entity, specific data partitioning strategies can be achieved, including disjoint

partitioning. Although in realistic situations the documents are not necessarily evenly

distributed among nodes, we argue that this distribution is a reasonable approximation.

Document Categories

The original classification of the documents is assumed to be known, but not used during

clustering, but rather during evaluation only. The set of categories, referred to here as

topics1, are represented as T = {tc}, c = 1, . . . , NT . Each document is assumed to belong

to one topic; i.e. Topic(di) ∈ T.

4.2.2 Cluster Model

Upon clustering the documents, each node will have created a set of document clusters

that best fit its local document collection. Thus, each node pi maintains a set of clusters

1The term topic is used to refer to the document class to avoid confusion in mathematical notation.
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Ci = {cr}, r = 1, . . . , NCi
. A cluster contains a subset of the documents in the node; i.e. cr

contains a subset of Di.

Clusters are allowed to overlap; i.e. each document can belong to more than one cluster,

either in the same node or across different nodes. Thus, ∀di, it is possible that ∃c1, c2 ∈ C,

such that dk ∈ c1 and dk ∈ c2.

Document-to-cluster membership is represented as a relation R(D,C), which is a binary

membership matrix:

M = [mi,r]

mi,r =







1 iff di ∈ cr

0 otherwise







A projection of M over the documents dimension yields the number of documents in

each cluster:

[M ↓ D]r =
∑

i

mi,r

Similarly, a projection ofM over the clusters dimension yields the number of clusters

to which each document belongs:

[M ↓ C]i =
∑

r

mi,r

In the process of distributed collaborative clustering, there will be a need to represent

cluster summaries in the form of keyphrase vectors, so that they can be exchanged between

peers. This is achieved using the CorePhrase algorithm introduced in chapter 3. The

summary of cluster cr is represented as a keyphrase vector λr, and is referred to as the

cluster core summary. The set of cluster cores corresponding to the set of clusters at node
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pi is Λi = {λr}, and will be referred to as the node summary. The keyphrases in each

cluster core are the top L keyphrases extracted from the cluster using the CorePhrase

algorithm described in section 4.3.2.

4.3 Collaborative Document Clustering Algorithm

The collaborative document clustering system relies on three components: an initial cluster-

ing algorithm using similarity histogram-based clustering (SHC), a cluster summarization

algorithm (CorePhrase), and a distributed document clustering algorithm based on ex-

change of cluster summaries, recommendation and merging of peer documents. We discuss

each of those components in the following subsections.

4.3.1 Initial Cluster Generation

Initial clustering is performed using a Similarity Histogram-based Clustering (SHC) [41].

The coherency of a cluster is represented as a Cluster Similarity Histogram.

Cluster Similarity Histogram: A concise statistical representation of the set of

pairwise document similarities distribution in the cluster. A number of bins in

the histogram correspond to fixed similarity value intervals. Each bin contains

the count of pair-wise document similarities in the corresponding interval.

Similarity. For the purpose of this work, we define the similarity between two docu-

ments as the ratio of their common features to the union of their features; i.e.

sim(di, dj) =
di ∩ dj

di ∪ dj
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If each document is represented as a vector of keyword weights, we can calculate the

similarity between a pair of documents using the widely used cosine coefficient:

sim(di, dj) = cos(di, dj) =
di · dj

‖di‖‖dj‖

This cosine measure is used in our experiments to calculate document-to-document

similarity. Regardless of which similarity function we choose, the similarity histogram

concept remains neutral to our choice. The only requirement is that the similarity measure

constitutes a metric on the document vector space.

Similarity Histogram Coherency. A coherent cluster should have high pairwise

document similarities. A typical cluster has a normal distribution, while an ideal cluster

would have a histogram where all similarities are maximum.

We judge the quality of a similarity histogram (cluster cohesiveness) by calculating

the ratio of the count of similarities above a certain similarity threshold RT to the total

count of similarities. The higher this ratio, the more cohesive the cluster. Let NDc
be the

number of the documents in a cluster. The number of pair-wise similarities in the cluster

is NRc
= NDc

(NDc
+ 1)/2. Let R = {ri : i = 1, . . . , NRc

} be the set of similarities in the

cluster. The histogram of the similarities in the cluster is represented as:

Hc = {hi : 1 ≤ i ≤ B} (4.1a)

hi = count(rk), δ · (i− 1) ≤ rk < δ · i (4.1b)

where B : is the number of histogram bins,

hi : is the count of similarities in bin i, and

δ : is the bin width of the histogram.
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The histogram ratio (HR) of a cluster, which indicates cluster cohesiveness, is calculated

as:

HR(c) =

∑B
i=T hi

∑B
j=1 hj

(4.2a)

T = ⌊RT · B⌋ (4.2b)

where HR(c) : the histogram ratio of cluster c,

RT : the similarity threshold, and

T : the bin number corresponding to the similarity threshold.

Similarity Histogram-based Clustering. The algorithm works by maintaining high

HR for each cluster. New documents are tested against each cluster, adding them to

appropriate clusters if they do not degrade the HR of that cluster significantly. Provisions

are also made so as not to allow a chain reaction of “bad” documents being added to the

same cluster, thus bringing its cohesiveness down significantly.

The algorithm (shown in Algorithm 4.1) works incrementally by iterating over the

documents at node i, and for each cluster calculates the cluster histogram ratio before and

after simulating the addition of the document to that cluster (lines 4-6). If the new ratio

is greater than or equal to the old one, the document is added to the cluster. Otherwise

if it is less than the old ratio by no more than ε and still above HRmin, it is added (lines

7-9). Otherwise it is not added. If the document was not assigned to any cluster, a new

cluster is created to which the document is added (lines 11-15).

4.3.2 Cluster Summarization Using Keyphrase Extraction

After initial clustering, a summary of each cluster cr is computed as a set of core keyphrases,

λr. The keyphrase extraction algorithm, CorePhrase, which is used in this stage of the
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Algorithm 4.1 Similarity Histogram-based Incremental Document Clustering

1: Ci ← Empty List {Cluster List of Node i}
2: for each document dj ∈ Di do
3: for each cluster cr ∈ Ci do
4: HRold = HR(cr)
5: Simulate adding dj to cr

6: HRnew = HR(cr)
7: if (HRnew ≥ HRold) OR ((HRnew > HRmin) AND (HRold −HRnew < ε)) then
8: mj,r ← 1 {Add dj to cr}
9: Update HR(cr)

10: end if
11: end for
12: if [M ↓ Ci]j = 0 {dj was not added to any cluster} then
13: Create a new cluster cnew

14: Ci ← {Ci, cnew} {Add cnew to Ci}
15: mj,new ← 1 {Add dj to cnew}
16: end if
17: end for

algorithm, was discussed in chapter 3. Cluster summaries will be exchanged with peers to

solicit their collaboration for enhancing the initial local clustering solution (described in

section 4.3.3).

The usage of keyphrases to summarize document clusters is what enables peers to

judge the similarity between their local data and the clusters of the node providing the

summaries.

4.3.3 Collaborative Document Clustering

At this stage, each node pi has an initial local clustering solution Ci, and cluster summary

information in the form of the core keyphrases of each cluster λr, which we will refer to as

cluster cores. The set of cluster cores at a node is referred to as the node summary, Λi

Algorithms 4.2 and 4.3 describe the collaborative document clustering process. Algo-
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Algorithm 4.2 Recommend to Peers

1: for each peer pj, j = 1, . . . , NP , j 6= i do
Require: Cj and Λj have been calculated at peer pj

2: Receive peer node summary Λj

3: S = R(Di,Λj)← ∅ {Similarity matrix between local data and peer summary}
4: for each document dk ∈ Di and cluster core λr ∈ Λj do
5: S(dk, λr)← (dk ∩ λr)/(dk ∪ λr)
6: end for
7: for each cluster core λr ∈ Λj do
8: D+

i,r ← {dk ∈ Di | S(dk, λr) > RT}
9: Send peer-positive set D+

i,r to peer pj

10: Wait for peer pj to merge peer-positive set D+
i,r

11: Receive peer-positive set merge status D∗
i,r

12: for each d∗
k ∈ D∗

i,r do
13: if status(d∗

k) == merged then
14: c∗i ← cluster to which d∗

k belongs
15: HRold = HR(c∗i )
16: Simulate removing d∗

k from c∗i
17: HRnew = HR(c∗i )
18: if (HRnew > HRold) then
19: mk,i∗ ← 0 {Remove d∗

k from c∗i }
20: end if
21: end if
22: end for
23: end for
24: end for

rithm 4.2 recommends documents to peers based on the received peer cluster summaries.

It starts by exchanging cluster cores between peers. Each node receives NN−1 peer cluster

summaries; each summary is a set of cluster cores Λj . The receiving node compares the

cluster cores to its own documents and builds a similarity matrix S between its local doc-

uments and peer cores. The document-to-cluster similarity is measured by calculating the

ratio of common keywords between each document vector, dk, and the cluster keyphrase

vector, λr, to the union of the two vectors (line 5).
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Algorithm 4.3 Aggregate Peer Recommendation

1: for each peer pj, j = 1, . . . , NP , j 6= i do
2: Receive recommendations {D+

j } from peer pj

3: for each recommendation D+
j,r ∈ {D

+
j } do

4: for each document d+
k ∈ D+

j,r do
5: {Skip documents that already belong to this node}
6: if d+

k ∋ Di then
7: cir ← cluster corresponding to recommendation D+

j,r

8: HRold = HR(cir)
9: Simulate adding d+

k to cir

10: HRnew = HR(cir)
11: if (HRnew ≥ HRold) OR ((HRnew > HRmin) AND (HRold−HRnew < ε)) then
12: mk,ir ← 1 {Add d+

k to cir}
13: Update HR(cir)
14: status(d+

k ) ← merged {set status of this document to merged}
15: end if
16: end if
17: end for
18: end for
19: {D∗

j} ← {status(dk)|dk ∈ D+
j } {merge status vector}

20: Send merge status vector {D∗
j} to peer pj

21: end for

A node then recommends to each peer those documents that are most similar (above a

similarity threshold RT ) to the peer core summaries; we call these documents peer-positive

documents. A peer-positive document does not necessarily have to leave the local cluster;

i.e. it can be “copied” rather than “moved” to another peer. Peer-positive documents are

sent as recommendation to the corresponding peer for evaluation and possible merging

with its own clusters.

A peer decides what to do with the peer-positive recommendation set. Upon finishing,

the peer returns a “merge status” vector indicating which of the peer-positive documents

were merged with its own clusters. The node that receives that merge status vector then has
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the opportunity to re-evaluate the membership of those merged peer-positive documents to

its own clusters. If a merged peer-positive document is found to be affecting a local cluster

negatively (by measuring the difference in histogram ratio before and after simulating the

removal of the document), it is removed from the cluster. This strategy ensures that the

local node never removes a document from its clusters unless it has been merged by another

node.

Algorithm 4.3 aggregates the recommendations of each peer. It starts by receiving

recommended documents from each peer, then follows the same logic of the SHC clus-

tering algorithm described in section 4.3.1, except that it does not create new clusters

for documents that were not assigned to any cluster. This decision was made to avoid

creating small singleton clusters, which does not benefit the clustering solution. Instead,

those documents are simply discarded, and their status will be “un-merged”. When this

peer reports back to the original node the merge status of the documents it received, the

original node will know that those documents were not merged and thus will keep them

regardless of their negative impact (if any) to its own clusters.

The algorithm promotes collaboration between peers by encouraging the exchange of

documents so that everyone benefits. Documents in remote peers can be brought locally for

merging if they are similar to a local cluster, and local negatively-contributing documents

can be removed if they can be merged with remote clusters. This process tends to create

better clusters at each node. This is confirmed through experimental evaluation where the

final clusters are always of higher quality than the initial clusters.

4.3.4 Communication Complexity

We can estimate the number of messages passed between peers by analyzing the algorithms

where sending or receiving information is needed. Each peer sends to all other peers
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summarized clusters, equal to NP (NP −1)/2 messages. If we denote the maximum number

of clusters at any node by K, then we have O(KN2
P ) messages being sent for the summary

broadcast part. Recommendation messages consist of a set of documents, D+
i ⊂ Di, from

each peer to all other peers. D+
i depends on the similarity threshold, RT . If we denote the

maximum set of recommended documents from any peer as D+, then we have O(D+N2
P )

messages for recommendation. Merge status messages will be even smaller in size than

recommendation messages, so we can neglect them. Then total communication complexity

will be O((K + D+)N2
P ).

4.4 Summary

In this chapter a method for locally-optimized distributed clustering was presented. The

method employs collaborative clustering between distributed nodes, through the exchange

of cluster summaries. By giving remote peers a summary of local clusters, a node allows its

peers to judge the similarity between their local data and the node’s clusters. This in turn

allows the peers to make recommendation of which data objects is most likely to enhance

the quality of the node’s data. Data can be copied or moved from one node to another

based on this collaboration, which results in the improvement in the local clustering quality.

This process implies that clustering under this collaboration scheme will produce asym-

metric clustering solutions, hence the locally-optimized clustering. It is suitable for sce-

narios where clusters are preferred to be maintained wholly by certain nodes, as opposed

to the globally-optimized clusters, where one set of cluster prototypes is computed over all

nodes.

Experimental results in chapter 6, section 6.3, illustrate the improvement achieved

in clustering quality through node collaboration, showing a significant improvement in
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final local clustering over the initial clustering before collaboration. Statistical significance

testing is performed to back this claim. The effect of data distribution ratio is also tested,

and shows that that as more data overlap exists, collaboration produces less improvement

in clustering quality.

In the next chapter we introduce a globally-optimized distributed clustering method,

called hierarchically-distributed peer-to-peer clustering (HP2PC), which aims for scalabil-

ity and modularity of the distributed clustering architecture and algorithm. Unlike locally-

optimized distributed clustering, the HP2PC method produces a single set of globally-

optimized cluster prototypes across the whole network.



C H A P T E R 5
Hierarchically-Distributed

Peer-to-Peer Document Clustering

I
n distributed data mining models, adopting a flat node distribution model can af-

fect scalability. To address the problem of modularity, flexibility and scalability, we

propose a Hierarchically-distributed Peer-to-Peer Clustering (HP2PC) architecture

and algorithm [48]. The architecture is based on a multi-layer overlay network of peer

neighborhoods. Supernodes, which act as representatives of neighborhoods, are recursively

grouped to form higher level neighborhoods. Peers at a certain level of the hierarchy form

the overlay network at that level, and cooperate within their respective neighborhoods to

perform P2P clustering. Using this model, we can partition the clustering problem in a

modular way among neighborhoods, solve each part individually, then successively com-

bine clusterings up the hierarchy where increasingly more global solutions are computed.

We applied the model to a distributed document clustering problem and achieved decent

speedup (reaching 155 times faster than centralized clustering, for a 250-node network)

88
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with comparable clustering quality to the centralized approach.

5.1 Overview

A recent shift towards distributed data mining (DDM) was sparked by the data mining

community since the mid 90s. It was realized that analyzing massive data sets, that

often span different sites, using traditional centralized approaches can be intractable. In

addition, DDM is being fueled by recent advances in grid infrastructures and distributed

computing platforms.

Huge data sets are being collected daily in different fields; e.g. retail chains, banking,

biomedicine, astronomy, etc., but it is still extremely difficult to draw conclusions or make

decisions based on the collective characteristics of such disparate data.

Four main approaches for performing DDM can be identified. A common approach is

to bring the data to a central site, then apply centralized data mining on the collected

data. Such an approach clearly suffers from a huge communication and computation cost

to pool and mine the global data. In addition, it cannot preserve data privacy.

A smarter approach is to perform local mining at each site to produce a local model.

All local models can then be transmitted to a central site that combines them into a global

model [93, 83, 22]. Ensemble methods also fall into this category [97]. While this approach

may not scale well with the number of nodes, it can be considered better than pooling the

data.

Another smart approach is for each site to carefully select a small set of representative

data objects and transmit them to a central site, which combines the local representatives

into one global representative data set. Data mining can then be carried on the global

representative data set [60, 67].
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All three previous approaches involve a central site to facilitate the DDM process. A

more departing approach does not involve centralized operation, and thus belongs to the

peer-to-peer (P2P) class of algorithms. P2P networks can be unstructured or structured.

Unstructured networks are formed arbitrarily by establishing and dropping links over time,

and they usually suffer from flooding of traffic to resolve certain requests. Structured net-

works, on the other hand, make an assumption about the network topology and implement

a certain protocol that exploits such a topology.

In P2P DDM, sites communicate directly with each other to perform the data mining

task [32, 24, 25, 23]. Communication in P2P DDM can be very costly if care is not taken

to localize traffic, instead of relying on flooding of control or data messages.

In this chapter we introduce an approach for distributed data clustering, based on a

structured P2P network architecture. The goal is to achieve modularity, flexibility and

scalability. The proposed model is called Hierarchically-distributed Peer-to-Peer Cluster-

ing (HP2PC). It involves a hierarchy of P2P neighborhoods, in which the peers in each

neighborhood are responsible for building a clustering solution, using P2P communication,

based on the data they have access to. As we move up the hierarchy, clusters are merged

from lower levels in the hierarchy. At the root of the hierarchy one global clustering can

be derived.

The model deviates from the standard definition of P2P networks, which typically in-

volve loose structure (or no structure at all), based on peer connections that are created

and dropped frequently. The HP2PC model, on the other hand, is based on static hier-

archical structure that is designed up front, upon which the peer network is formed. We

plan to introduce a dynamic structure extension to this model in future work.

Using the HP2PC model, we can partition the problem in a modular way, solve each

part individually, then successively combine solutions if it is desired to find a global solu-
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tion. This way, we avoid two problems in the current state-of-the-art DDM: (a) we avoid

high communication cost usually associated with a structured, fully-connected network,

and (b) we avoid uncertainty in the network topology usually introduced by unstructured

P2P networks. Experiments performed on document clustering show that we can achieve

comparable results to centralized clustering with high gain in speedup.

The model lends itself to real-world structures, such as hierarchically distributed or-

ganizations or government agencies. In such scenario, different departments or branches

can perform local clustering to draw conclusions from local data. Parent departments or

organizations can combine results from those in lower levels to draw conclusions on a more

holistic view of the data.

The following section introduces the HP2P distributed architecture. Section 5.3 dis-

cusses the foundation behind the HP2P distributed clustering algorithm, and discusses its

complexity. Finally, a summary is given in section 5.6.

5.2 The HP2PC Distributed Architecture

HP2PC is a hierarchically-distributed P2P architecture for scalable distributed clustering.

We argue that a scalable distributed clustering system (or any data mining system for that

matter) should involve hierarchical distribution. A hierarchical processing strategy allows

for delegation of responsibility and modularity.

Central to this hierarchical architecture design is the formation of neighborhoods. A

neighborhood is a group of peers forming a logical unit of isolation in an otherwise unre-

stricted open P2P network. Peers in a neighborhood can communicate directly, but not

with peers in other neighborhoods. Each neighborhood has a supernode. Communica-

tion between neighborhoods is achieved through their respective supernodes. This model



92 Distributed Document Clustering and Cluster Summarization in P2P Environments

reduces flooding problems usually encountered in large P2P networks.

The notion of a neighborhood accompanied by a supernode can be applied recursively

to construct a multi-level overlay hierarchy of peers; i.e. a group of supernodes can form

a higher level neighborhood, which can communicate with other neighborhoods on the

same level of the hierarchy through their respective (higher-level) supernodes. This type

of hierarchy is illustrated in figure 5.1.

5.2.1 Hierarchical Overlays

A P2P network is comprised of a set of peers, or nodes, P = {pi}
NP

1 . An overlay network

is a logical network on top of P that connects a certain subset of the nodes in P. Most

work in the P2P literature refers to a single level of overlay; i.e. there exists one overlay

network on top of the original P2P network. In our work, this concept is extended further

to allow multiple overlay levels on top of P.

To distinguish between the different levels of overlay, we will use the height of an overlay

network. An overlay network at height h is denoted P(h). The lowest level network (the

original P2P network) is at height h = 0, thus denoted P(0); while the highest overlay

possible is at height H , denoted P(H), and consists of a single node (the root of the overlay

hierarchy). In subsequent formulations, we will drop the superscript (h) if the formulation

is referring to an arbitrary level that does not require level information; otherwise we will

use it to distinguish overlay levels.

The size of the overlay network at each level will differ according to how many peers

comprise the overlay. However, since a higher level overlay will always be a subset of its

immediate lower level overlay, we maintain the following inequality:

0 < |P(h)| < |P(h−1)|, ∀h > 0. (5.1)
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Figure 5.1: The HP2PC Hierarchy Architecture

The choice of which subset of peers forms the next level overlay is closely related to the

next subsection discussing peer neighborhoods.

5.2.2 Neighborhoods

A neighborhood, Q, is a set of peers that is subset of an overlay P, and that has a designated

peer known as a supernode, ps; thus

Neighborhood ≡ (Q, ps) : Q ⊆ P, ps ∈ Q.

The following neighborhood properties are enforced for the HP2PC architecture:

• A set of neighborhoods, Q = {Qj}
NQ

1 , covers the overlay network P:

P ≡

NQ
⋃

j=1

Qj .
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• Neighborhoods do not overlap:

∀i, j 6= i : Qi ∩Qj = ∅.

• A node must belong to some neighborhood:

∀p ∈ P : p ∈ some Q.

A network partitioning factor, β ∈ R, 0 ≤ β ≤ 1, partitions the P2P network into

equally sized neighborhoods. The number of neighborhoods in an overlay network as a

function of β is then given by

NQ = ⌊1 + β(NP − 1)⌋ (5.2)

At one extreme, when β = 0, there is only one neighborhood that contains all the peers in

P. On the other extreme, when β = 1, there are NP neighborhoods, each containing one

peer only. In between we can set β to a value that determines the number of neighborhoods,

and consequently the size of each neighborhood.

An initial attempt to determine the size of each neighborhood as a fraction of the size

of the network was to allocate for each neighborhood a floor-rounded equal partition of the

nodes, and then allocate the remaining nodes to the last neighborhood; i.e.

sizej =







⌊NP /NQ⌋ 1 ≤ j ≤ (NQ − 1)

NP −
∑NQ−1

k=1 sizek j = NQ

(5.3)

However, this only works well when NP ≫ NQ. When NP and NQ are of the same

order of magnitude, sizej tends to be a small real number. The problem is that such small
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number will cause all neighborhoods, except the N th
Q , to have a very small number of nodes,

while the N th
Q will absorb the remaining (large number of) nodes. For example, if NP is

250, and NQ is 150, then the we have 149 neighborhoods with size 1, and one neighborhood

with size 101.

To solve this problem, we use a binary function to generate the neighborhood sizes

based on a specified probability for each value. Let r represent this probability, given by:

r = (NP /NQ)− ⌊NP /NQ⌋.

The following function then generates two neighborhood sizes based on r:

size =







⌊NP /NQ⌋ with probability (1− r)

⌈NP /NQ⌉ with probability r
(5.4)

This method produces a more even distribution of neighborhood sizes, even if NP and

NQ are of the same order of magnitude. In the example above, using equation 5.4 we have

NP /NQ = 1.67 (r = 0.67), so 67% of the neighborhoods will be of size 2, and 33% will be

of size 1, far more balanced than with equation 5.3.

All peers on the same level, h, of the hierarchy are denoted by p(h). Let the function

level(p) determine the level of a peer; i.e. level(p(h)) = h. A peer pi can communicate with

peer pj if, and only if, level(pi) = level(pj) and pi ∈ Q ⇐⇒ pj ∈ Q.

Peer hierarchy formation is bottom-up, so the lowest level of the hierarchy is h = 0. The

supernodes of level 0 neighborhoods form the overlay network at level h = 1. Recursively,

at level h = 2 are the supernodes of level 1 neighborhoods (groups of level 1 supernodes.)

The root supernode is at level H , the height of the hierarchy; i.e. there exists exactly one

p(H) in the system.
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The network partitioning factor, β, can be different for different levels of the hierarchy;

i.e. neighborhood count and size is not necessarily the same at each level. If we apply

the same network partitioning factor to every level we can deduce the height, H , of the

hierarchy. We can approximate equation 5.2 to

NQ ≈ βNP

Since the number of nodes at a certain level is equal to the number of superndoes (or

neighborhoods) in the lower level, then we can say that

N
(h)
P = βN

(h−1)
P , ∀h > 0

At the top of the hierarchy (level H) we have one node, then

βHN
(0)
P = 1 (5.5)

from which we can deduce H :

H =



















⌈−
log N

(0)
P

log β
⌉ 0 < β < 1

1 β = 0

undefined β = 1

(5.6)

If, however, the partitioning factor is chosen to be different for different levels of the

hierarchy, then we cannot deduce the full height of the hierarchy up front. However, we can

deduce the maximum height reachable from a certain level using equation 5.6, and hence

we can iteratively calculate the full hierarchy height if all level βs are known a priori.

If, instead of specifying βs, a certain hierarchy height is desired (e.g. to mirror an
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Figure 5.2: Example of HP2PC Network

already existing hierarchical structure), we can calculate the proper β (the same for all

levels) using the following equation (which is derived from equation 5.6):

β =







e−(log N
(0)
P

)/H H > 1

0 H = 1
(5.7)

5.2.3 Example

Figure 5.2 illustrates the HP2PC architecture with an example. The network shown con-

sists of 16 nodes and 4 hierarchy levels. The set of nodes at level 0, P(0), are divided into

4 neighborhoods, subject to the network partitioning factor β(0) = 0.2. Each supernode of

level 0 becomes a regular node at level 1, forming the set of 4 nodes P(1). Those in turn

are grouped into two neighborhoods forming Q(1), satisfying β(1) = 0.33. At level 2, only

one neighborhood is formed out of level 1 supernodes, satisfying β(1) = 0. Finally the root

of the hierarchy is found at level 3.
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Algorithm 5.1 HP2PC Construction

Require: P(0), β(h) (1 ≤ h ≤ H − 1)
P = ConstructHP2PC(P(0), β[], 0)

Function ConstructHP2PC(P, β[], h)

1: if |P(h)| = 1 then
2: return P {stopping criterion}
3: end if
4: Calculate N

(h)
Q by substituting |P(h)| and β[h] into equation 5.2

5: Q(h) = φ, P(h+1) = φ
6: m = 1, n = 1 {Partition P into NQ neighborhoods}
7: for j = 1 to NQ do
8: Calculate sizej using equation 5.4
9: n = n + sizej

10: Qj = P(h)[m : n]
11: m = n + 1
12: Add Qj to Q(h)

13: Designate Qj [1] as supernode for Qj

14: Add Qj [1] to P(h+1)

15: end for
16: P = ConstructHP2PC(P, β[], h + 1) {recursively build higher levels}
17: return P

5.2.4 HP2PC Network Construction

An HP2PC network is constructed recursively, starting from level 0 up to the height of the

hierarchy, H . The number of neighborhoods and size of each neighborhood, is controlled

through the partitioning factor β which is specified for each level of the hierarchy (except

the root level).

The construction process is given in algorithm 5.1. Given the initial set of nodes, P(0),

and the set of partitioning factors β[], the algorithm recursively constructs the network.

At each level we partition the current P(h) into the proper number of neighborhoods, and

assign a supernode for each one. The set of supernodes at a certain level form the set of
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nodes for the next higher level, which are passed to the next recursive call. Construction

stops when the root is reached.

5.3 The HP2PC Distributed Clustering Algorithm

The HP2PC algorithm is a distributed iterative clustering process. It is a centroid-based

clustering algorithm, where a set of cluster centroids are generated to describe the clustering

solution. In HP2PC, each neighborhood converges to a set of centroids that describe the

data set in that neighborhood. Other neighborhoods, either on the same level or at higher

levels of the hierarchy, may converge to another set of centroids.

Once a neighborhood converges to a set of centroids, those centroids are acquired by

the supernode of that neighborhood. The supernode, in turn as part of its higher level

neighborhood, collaborates with its peers to form a set of centroids for its neighborhood.

This process continues hierarchically until a set of centroids are generated at the root of

the hierarchy.

5.3.1 Estimating Clustering Quality

The distributed search for cluster centroids is guided by a cluster quality measure that

estimates intra-cluster cohesiveness and inter-cluster separation. The measure is similar to

the Histogram Ratio introduced in chapter 4, but instead of working with the histogram

ratio, we calculate the first moment of the histogram; i.e. its skew.

Cluster Cohesiveness. The distribution of pair-wise similarities within a cluster is

represented using a cluster similarity histogram, which is a concise statistical representation

of the cluster tightness [41].

Let sim(·) be a similarity measure between two objects, and Sc be the set of pair-wise
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similarity between objects of cluster c:

Sc = {sk : 1 ≤ k ≤ |c|(|c|+ 1)/2} (5.8a)

sk = sim(di, dj), di, dj ∈ c (5.8b)

where |c| is the number of the objects in a cluster. The histogram of the similarities in the

cluster is represented as:

Hc = {hi : 1 ≤ i ≤ B} (5.9a)

hi = count(sk), (5.9b)

sk ∈ Sc, δ · (i− 1) ≤ sk < δ · (i) (5.9c)

where B : the number of histogram bins,

hi : the count of similarities in bin i, and

δ : the bin width of the histogram.

To estimate the cohesiveness of cluster c, we calculate the histogram skew. Skew is the

third central moment of a distribution; it tells us if one tail of the distribution is longer

than the other. A positive skew indicates a longer tail in the positive direction (higher

interval of the histogram), while a negative skew indicates a longer tail in the negative

(lower interval) direction. A similarity histogram that is negatively skewed indicates a

tight cluster.

Skew is calculated as

skew =

∑

i(xi − µ)3

Nσ3
(5.10)
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so, the tightness of a cluster, ϕ(c), calculated as the skew of its histogram Hc, is

ϕ(c) = skew(Hc) =

∑

k(sk − µSc
)3

|Sc|σ3
Sc

, sk ∈ Sc. (5.11)

A clustering quality measure based on skewness of similarity histograms of individual

clusters can be derived as a weighted average of the individual clusters skew:

ϕ(C) =

∑

i |ci|ϕ(ci)
∑

i |ci|
, ci ∈ C. (5.12)

5.3.2 Distributed Clustering (Level h = 0)

We define a general function for updating cluster models in a fully-connected neighbor-

hood:

Ct
i = f({Ct−1

j }), i, j ∈ Q (5.13a)

C0
i = C0 (5.13b)

where Ct
i is the clustering model (usually a set of centroids) calculated by peer i at iteration

t, and f(·) is an aggregating function. The equation can be illustrated by figure 5.3, where

the output of each peer at iteration t depends on the models calculated by all other peers

at iteration t − 1. In P2P k-means [24], f(·) ≡ avg(·), and the neighborhood is based on

network topology.

The HP2PC algorithm iteratively updates the cluster centroids at each node. For each

neighborhood an initial set of centroids, m0, is calculated by the supernode and transmitted

to all peers in the neighborhood. Like k-means, during each iteration each peer assigns
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Algorithm 5.2 Level 0 Neighborhood Clustering

Require: Neighborhood Q = {pi}, #clusters K
Ensure: C
1: S = CalcSimilarityMatrix(Di)
2: {(ms, ws)} = ReceiveFrom(ps) {ps: supernode of Q}
3: ∀j 6= s : {(mj, wj)} = 0
4: {c, ϕ} = UpdateClusters(Di, {mi})
5: while change in {mi} > ǫ do
6: for all pj ∈ Q, j 6= i do
7: SendTo(pj, {(mi, wi)})
8: {(mj , wj)} = ReceiveFrom(pj)
9: end for

10: for all k ∈ [1, K] do
11: mik = 0, wk = 0
12: for all j ∈ Q do
13: mik = mik + (mjk · wjk)
14: wk = wk + wjk

15: end for
16: mik = mik/w
17: end for
18: {c, ϕ} = UpdateClusters(Di, {mi})
19: end while
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Algorithm 5.3 Utility Routines for Neighborhood Clustering

Function UpdateClusters(D, {m})

1: c = {}
2: for all d ∈ D do
3: l = argmink{|d−mk|}
4: cl ← {cl, d}
5: end for
6: for all ck do
7: mk = avg(di)i∈ck

8: Sk = S ↓ ck {part of S indexed by objects in ck}
9: ϕk = CalcSkew(Sk)

10: end for
11: return {c, ϕ}

Function CalcSkew(S)

1: ϕ← 0, µ← avg(S), σ ← stddev(S)
2: for all sk ∈ S do
3: ϕ = ϕ + (sk − µ)3

4: end for
5: ϕ = ϕ/(|S| × σ3)
6: return ϕ

Function CalcSimilarityMatrix(D)

1: S ← φ
2: for i = 1 to |D| do
3: for j = 0 to i− 1 do
4: S ← {S, sim(D[i], D[j])}
5: end for
6: end for
7: return S
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Figure 5.3: Distributed Clustering Iterative Loop

local data to their nearest centroid, and calculates their new centroids. In addition, it also

calculates cluster skews using equation 5.11.

The final set of centroids for each iteration is calculated from all peer centroids. Unlike

k-means (or P2P k-means), those final centroids are weighed by the skew and size of

clusters at individual peers. At the end of each iteration, peers broadcast cluster centroid,

skew, and size information:

Ct
j ≡ (mjk, ϕjk, |cjk|)

t, k ∈ [1, K]

The weight of a cluster k at peer j is defined as:

wjk = ϕ(cjk) · |cjk|

At peer i, the centroid of cluster k is updated according to the following equation,

which favors tight and dense clusters:

mt
ik =

∑

j wt−1
jk ·m

t−1
jk

∑

j wt−1
jk

, j ∈ Q (5.14)

This is followed by assigning objects to their nearest centroid, and calculating the new

set of cluster skews, ϕik, and sizes, |cik|, which are used in the next iteration. The algorithm



105

terminates when object assignment does not change, or when ∀i, k |mt
ik−mt−1

ik | < ǫ, where

ǫ is a sufficiently small parameter.

5.3.3 Distributed Clustering (Level h > 0)

Once a neighborhood converges to a set of clusters, the centroids and weights of those

clusters are acquired by the supernode as its initial set of clusters; i.e. for neighborhood Q

with supernode ps

C(0,h)
s = C

(T,h−1)
Q

where T is the final iteration of the algorithm at level h− 1 for neighborhood Q.

Since at level h of the hierarchy the actual data objects are not available, we rely on

meta-clustering : merging the clusters using centroid and weight information alone. At

level h > 0, clusters are merged in a bottom-up fashion, up to the root of the hierarchy;

i.e. C(h) = f(C(h−1)). This means once a neighborhood at level h converges to a set of

clusters, it is frozen, and the higher level clustering is invoked. (A more elaborate technique

would involve bi-directional traffic, making C(h−1) = f(C(h)) as well, but the complexity

of this approach could be prohibitive, so we leave it for future work.)

A neighborhood at level h consists of a set of peers, each having a set of K centroids.

To merge those clusters, the centroids are collected and clustered at the supernode of this

neighborhood, using k-means clustering. This process repeats until one set of clusters is

computed at the root of the hierarchy. The formal procedure representing this clustering

process is presented in algorithm 5.4.

One of the major benefits of this algorithm is the ability to zoom in to more refined

clusters by descending down the hierarchy, and zoom out to more generalized clusters
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Algorithm 5.4 HP2PC Clustering

1: for all Qi ∈ Neighborhoods(h = 0) do
2: {mi}

(0) = NeighborhoodCluster(Qi)
3: end for
4: for h = 1 to H do
5: for all Qi ∈ Neighborhoods(h) do
6: for all pj ∈ Qi do
7: {mj} = {mj}

(h−1)

8: SendTo(ps, {mj})
9: end for

10: {mi}
h = kmeans({mj}) {only at peer ps}

11: end for
12: end for

by ascending up the hierarchy. The other major benefit is the ability to merge a forest

of independent hierarchies into one hierarchy by putting all roots of the forest into one

neighborhood and invoking the merge algorithm on that neighborhood.

5.4 Distributed Cluster Summarization

Summarizing the clusters generated by HP2PC using CorePhrase poses two challenges.

First, since CorePhrase works by intersecting documents in a cluster together, generating

a summary for a document cluster that is distributed across various nodes cannot be done

directly, and thus CorePhrase needs modification to work in this kind of environment.

Second, merging cluster summaries up the hierarchy will require working with keyphrases

extracted at level 0 only, without any access to the actual documents.
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5.4.1 Summarizing Level 0 Clusters

Let every node pi generate a cluster summary λik (set of keyphrases) for each cluster ck

using CorePhrase. Nodes in the same neighborhood will enter into multiple rounds of

communication to agree on a common summary for each cluster. For cluster ck, on each

round, node pi receives a cluster summary λjk, j ∈ Q, from all nodes in its neighborhood.

Node pi then produces two sets of keyphrases based on λjk, one is called core summary,

λQk, and the other is called local cluster summary, λik. The core summary is generated by

intersecting all keyphrases in {λjk, λik}:

λQk =
⋂

j∈Q

λjk (5.15)

The local cluster summary is generated by intersecting all summaries from other nodes

with local documents from cluster ck:

λik =
⋃

j∈Q,j 6=i

λjk ∩Dik (5.16)

Note that, by definition, the core summary will be the same at all nodes, since the

operation is identical at all nodes. The local cluster summary, however, will be different

due to intersection with local documents. On the next iteration, each node will send its

local cluster summary to all other nodes. Local cluster summaries are intersected together

again according to equation 5.15, and the result is appended to the core summary λQk:

λ
(t+1)
Qk = λ

(t)
Qk ∪

[

⋂

j∈Q

λ
(t)
jk

]

(5.17)

This process repeats until the desired number of keyphrases per cluster summary is
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acquired, or the intersection yields an empty set.

5.4.2 Summarizing Higher Level Clusters

At higher levels, equation 5.16 is not applicable, since no local data is available. Summa-

rization of a cluster at higher levels is simply an intersection of keyphrase summaries of

the clusters chosen to be merged into said cluster by the higher level k-means algorithm.

Let Ck = {ci} be the set of clusters chosen to be merged into one cluster, ck, and let {λi}

be their corresponding summaries. The summary for cluster ck is the intersection of the

constituent cluster summaries, merged with the an equal subset from every constituent

summary, up to L keyphrases.

Let λk represent the core intersection:

λk =
⋂

i∈Ck

λi

If |λk| > L, then λk is truncated up to L keyphrases. Otherwise, λk is merged with an

equal subset from every constituent cluster summary λki. Let M = (L − |λk|)/K, where

K is the number of clusters; and let λ∗
ik = λik \ λk then the final cluster summary is:

λk ← {λk,
⋃

i

λ
∗(M)
ik } (5.18)

where λ
∗(M)
ik denotes the top M keyphrases in λ∗

ik. Thus, the core cluster summary is

augmented with an equal subset from the top keyphrases in each constituent cluster sum-

mary that is not in the core summary. This is to make sure that the core summary is

representative of all constituent clusters.
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5.5 Complexity Analysis

We divide the complexity of HP2PC into computational complexity and communication

complexity.

5.5.1 Computation Complexity

Assume the whole data set size for all nodes is D. Data is equally partitioned among nodes,

so each node holds DP = D/NP data objects. For level 0, we have NQ neighborhoods,

each of size SQ = NP /NQ.

Each node has to compute a pair-wise similarity matrix before it begins the P2P clus-

tering process, requiring DP (DP − 1)/2 similarity computations. For each iteration, each

node computes a new set of K centroids by averaging all neighborhood centroids (K ·SQ),

assigns the data objects to those centroids (K · DP ), recomputes centroids based on new

data assignment (DP ) , and calculates the skew of the clusters (DP (DP − 1)/2). Those

requirements are summarized as:

Tsim = DP (DP − 1)/2

Tupdate = K(S
(0)
Q + DP ) + DP

Tskew = DP (DP − 1)/2

Let the number of iterations required to converge to a solution be I. Then the total

number of computations required by each node to converge is:

TP = Tsim + I [Tupdate + Tskew] (5.19)
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If we assume that DP ≫ 1 and I ≫ 1, then we can rewrite equation 5.19 as:

TP = I(K(S
(0)
Q + DP ) + D2

P /2) (5.20)

For levels above 0, each neighborhood is responsible for meta-clustering a set of KSQ

centroids into K centroids using k-means. Then for each neighborhood at level h, the

required computation is:

Th = IS
(h)
Q K2 (5.21)

Since each neighborhood computation is done in parallel with the others, we need only

Th computations per level. However, since computations at higher levels of the hierarchy

need to wait for lower levels to complete, we have to sum Th for all levels. The total

computations required for all levels above 0 are thus:

TH =
H−1
∑

h=1

Th (5.22)

Finally, we can combine equations 5.20 and 5.22 to find the total computation com-

plexity for HP2PC:

T = TP + TH (5.23)

It can be seen that computation complexity is largely affected by the data set size of

each node (DP ). By increasing the total number of nodes we can decrease DP (since the

data is equally partitioned among nodes), but at the expense of increasing communication

complexity, as well as decreasing clustering quality due to fragmentation of the data set.
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5.5.2 Communication Complexity

In neighborhoods at level 0, at each iteration every peer sends SQ − 1 messages to its

neighbors, and each message is of size K. For SQ peers in one neighborhood, SQ(SQ − 1)

messages are exchanged. Communication complexity for N
(0)
Q neighborhoods at level 0 is

then:

M0 ≈ N
(0)
Q S

(0)2
Q IK (5.24)

Since NQ = NP /SQ, then:

M0 ≈ N
(0)
P S

(0)
Q IK (5.25)

For levels above 0, each neighborhood requires SQ − 1 messages to be sent to each su-

pernode, and each message is of size K. Communication complexity for N
(h)
Q neighborhoods

at level 0 is then:

Mh ≈ N
(h)
Q S

(h)
Q K

≈ N
(h)
P K

(5.26)

Total communication requirements for HP2PC is then:

M ≈M0 +

H−1
∑

h=1

Mh (5.27)

We can see that the communication complexity is greatly influenced by the size of

neighborhoods at level 0. The worst case is when all nodes are put into one neighborhood,

resulting in quadratic complexity (in terms of the number of nodes). As we adopt more fine

grained neighborhoods we can reduce both computation and communication complexity,
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but at the expense of clustering quality as will be discussed in the results section.

5.6 Summary

In this chapter a globally-optimized distributed clustering method was introduced. The

hierarchically-distributed peer-to-peer distributed clustering (HP2PC) architecture and al-

gorithm were discussed. HP2PC aims to compute a single set of clusters across all nodes

in the network, and addresses scalability and modularity through the concept of multiple

overlays of node neighborhoods in the form of a hierarchy.

Distributed clustering is divided into two phases: at level 0 of the hierarchy, each neigh-

borhood forms a set of cluster centroids through a distributed variant of the k-means algo-

rithm. The centroids produced at level 0 neighborhoods are directly derived from the data

at each node. At higher levels of the hierarchy, supernodes of lower level neighborhoods

from higher level neighborhoods, at which the centroids at lower levels are meta-clustered.

This process is repeated recursively until one set of centroids is computed at the root of

the hierarchy, which reflects the global clustering of data in the whole network.

An analysis of the relationship between the number of nodes, the height of the hierarchy,

and the network partitioning factor was given. Also computation and communication

complexity were discussed.

Experimental results in chapter 6, section 6.4, illustrate that we can achieve good

speedup with a large number of nodes, showing the scalability of the algorithm. Results also

show a tradeoff between hierarchy height and quality of global clustering; taller hierarchies

cause clustering quality to slightly drop, but achieve greater speedup.



C H A P T E R 6
Experimental Results

E
valuation of the algorithms presented in this thesis is done through conducting

a set of experiments using various document data sets. In this chapter, evidence

in support of the three major contributions is presented, namely: keyphrase ex-

traction from document clusters, collaborative peer-to-peer clustering, and hierarchically-

distributed peer-to-peer clustering.

The accuracy of keyphrase extraction is important both for properly labeling document

clusters as a post-processing step, which provides interpretation of clustering results to

humans, and for providing the necessary cluster summarization functionality used in the

collaborative peer-to-peer clustering method to share clustering results between nodes in a

succinct form. Evaluation of CorePhrase shows significant keyphrase extraction accuracy

in terms of overlap between the extracted keyphrases and the reference cluster topic, as well

as in terms of ranking the most relevant phrases higher than non-relevant ones. Accuracy

of CorePhrase is around double the that of keyword-centroid labeling method on average.

Collaborative clustering results show that collaboration between peers results in a

113
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statistically-significant improvement of clustering quality compared to the initial clustering

quality, reaching 15% improvement in F-measure quality. Statistical significance testing

is performed to back those results. The effect of data distribution ratio is also tested by

introducing overlap in data between nodes, which shows that as more data overlap exists,

collaboration produces less improvement in clustering quality.

Finally, results on the hierarchically-distributed peer-to-peer clustering show that we

can achieve good speedup with large number of nodes, reaching a speedup of 165 (over

centralized version) for a 250-node network with a height of 5, showing the scalability of

the algorithm. Results also show a tradeoff between hierarchy height and quality of global

clustering; taller hierarchies cause clustering quality to slightly drop, but achieve greater

speedup.

The rest of the chapter gives detailed description of the experiments, and provides

interpretation of results and discussion of their implications.

6.1 Data sets

Experiments were performed on a number of document data sets with various character-

istics and sizes. Table 6.1 lists the data sets used for evaluation. YAHOO, 20NG, and RCV1

are standard text mining data sets, while CAN and UW were manually collected and labeled;

SN was manually collected but was already labeled. Below is is a brief description of each

data set.

Canada

CAN is a collection of 151 web documents retrieved through the Google search engine by

submitting six different queries about Canada (e.g. winter, snowboarding, river rafting,
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Table 6.1: Data Sets

Data Set Name Type Documents Terms Categories
Avgerage

terms/doc

CAN Canada HTML 151 8,778 6 506
UW UW HTML 161 5,710 4 432
YAHOO Yahoo! News HTML 2,340 28,298 20 289
SN SchoolNet Metadata 2,371 7,166 17 145
20NG 20 newsgroups USENET 18,828 91,652 20 151
RCV1 Reuters RCV1 Plain Text 23,149 47,236 103 196

etc.), and collecting the top 20-30 results. The topic of each class represents the terms

used in the query. This data set provide realistic evaluation in scenarios involving online

web mining applications (e.g. [89, 91]). It contains both related (e.g. snowboarding &

winter) and unrelated categories (e.g. transportation & black bear attacks).

UW

UW is a collection of 161 web documents collected from intranet web sites at the University

of Waterloo, with topics about various university services. This data set has moderate

degree of overlap between the different categories, and was used in related work [40, 43].

The nature of this data set serves in the evaluation in scenarios involving data mining

within an intranet information system. Both the UW and CAN data sets are available at

http://pami.uwaterloo.ca/~hammouda/webdata/.

Yahoo! News

YAHOO is a collection of 2340 news articles from Yahoo! News. It contains 20 categories

(such as health, entertainment, etc.), which have rather unbalanced distribution. It has

been used in document clustering-related research, including [10, 12, 11, 96]. The data set

http://pami.uwaterloo.ca/~hammouda/webdata/
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is available at

ftp://ftp.cs.umn.edu/dept/users/boley/.

SchoolNet

SN is a collection of 3271 metadata records collected from the SchoolNet learning resources

web site (http://www.schoolnet.ca/). We extracted the fields containing text from

the metadata records (title, description, and keywords) and combined them to form one

document per metadata record. We used the 17 top-level categories from the SchoolNet

data set.

20 newsgroups

20NG is the standard 20-newsgroup data set, which contains 18,828 documents from 20

Usenet newsgroups divided into 20 balanced categories. This data set is available at

http://people.csail.mit.edu/jrennie/20Newsgroups/.

Reuters RCV1

RCV1 is a subset of 23,149 documents selected from the standard Reuters RCV1 text cate-

gorization dataset, converted from the original Reuters RCV1 dataset by Lewis et al [75].

The documents in the RCV1 dataset are assigned multiple labels. In order to properly

evaluate the clustering algorithms using single-label validity measures, we restricted the

labels of the documents to the first document label that appears in the dataset.

Text Pre-processing

All text was preprocessed in the following way. First words were tokenized using a specially-

built finite-state-machine tokenizer that can detect both alphanumeric and special entities

ftp://ftp.cs.umn.edu/dept/users/boley/
http://www.schoolnet.ca/
http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 6.2: Description of data and features used for keyphrase extraction

class docs.
average

words/doc.
candidate

phrases
feature averages

df w pf d

CAN

canada transportation 22 893 24403 0.0934 0.2608 0.0007 0.4907
winter weather canada 23 636 5676 0.0938 0.2530 0.0019 0.5903
snowboarding skiing 24 482 990 0.0960 0.3067 0.0033 0.5215
river fishing 23 443 485 0.1129 0.2965 0.0042 0.5763
river rafting 29 278 599 0.0931 0.3680 0.0057 0.5612
black bear attacks 30 620 1590 0.0859 0.3593 0.0023 0.6024

UW

Co-operative Education 54 251 1379 0.0511 0.2672 0.0082 0.5693
Career Services 52 508 4245 0.0473 0.2565 0.0031 0.5000
Health Services 23 329 351 0.1454 0.2707 0.0057 0.5170
Campus Network 32 510 14200 0.0810 0.2569 0.0020 0.5198

(such as currencies, dates, etc.). Then tokens were lower-cased, stop-words were removed,

and finally the remaining words were stemmed using the popular Porter stemmer algo-

rithm [90].

6.2 CorePhrase Keyphrase Extraction Results

A challenge faced while evaluating the cluster summarization accuracy of CorePhrase was

the lack of datasets manually labeled with keyphrases. For the manually collected datasets

CAN and UW it was easy to label the categories with keyphrases from the queries used to

collect the documents. Thus most of the quantitative evaluation of CorePhrase is based on

those two datasets. Nevertheless, we also show keyphrase extraction results for the 20NG

dataset for qualitative evaluation.

Evaluation of cluster summarization in the collaborative (section 6.3) and hierarchical

peer-to-peer clustering (section 6.4) schemes is based on using the results of the central-
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ized CorePhrase algorithm as a baseline for comparison against the results obtained using

distributed clustering.

Table 6.2 provides more detail about the two data sets used for quantitative evaluation,

in terms of the number of documents in each class, average number of words per document,

the number of candidate phrases, and average values of each keyphrase feature.

The documents in each class were processed by the four variants of the CorePhrase

algorithm. The extracted keyphrases were ranked in descending order according to their

score, and the top L keyphrases were selected for output by the algorithm. The baseline for

comparison of the CorePhrase algorithm is a standard keyword-based extraction algorithm.

The keyword centroid-based algorithm finds the centroid vector of a cluster represented

as a set of keyword weights, and ranks them extracting the top weighted keywords in the

cluster. This method is representative of most cluster labeling/summarization methods.

We introduce next the keyphrase extraction evaluation measures, followed by experi-

mental results showing direct comparison with the keyword-based algorithm, then experi-

ments illustrating the effect of the number of top keyphrases extracted (L), as well as the

effect of introducing noise into a pure cluster on the accuracy of extraction.

6.2.1 Evaluation Measures

In addition to qualitative evaluation of the extracted keyphrases, we used two other ex-

trinsic evaluation measures that quantitatively assess how well the extracted keyphrases

relate to the topic of the original class or cluster. The extracted keyphrases are compared

against a manually labeled keyphrase that represent the class topic. The metrics used are

overlap and best rank, which are described next.

Overlap measures the similarity between each extracted keyphrase and the predefined

topic phrase of the cluster. The similarity is based on the number of terms shared between
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the two phrases. The overlap between an extracted keyphrase pi and the topic phrase pt

is defined as:

overlap(pi, pt) =
| pi ∩ pt |

| pi ∪ pt |
(6.1)

Evaluating each extracted keyphrase alone might not give a good idea of how the whole

set of top k phrases fit the topic. To evaluate the top k keyphrases as a set, we take the

average overlap of the whole set. This measure is essentially telling us how well the top

keyphrases, as a set, fit the reference topic.

Best Rank gives an indication of how high the single keyphrase that best fits the

topic is ranked. The best keyphrase is defined as the first keyphrase, in the top k, that

has maximum overlap with the reference topic. Thus, the best rank for the set of top k

phrases (pk) with respect to the reference topic pt is defined as:

bestRank(pk, pt) = overlap(pmax, pt) ·

[

1−
rank(pmax)− 1

k

]

(6.2)

where pmax ∈ pk is the first phrase with maximum overlap in the top k phrases; and

rank(pmax) is its rank in the top k. In other words, precision tells us how high in the

ranking the best phrase appears. For example, if we get a perfect overlap in the first rank,

precision is maximum. The lower the best phrase comes in the ranking, the lower the

precision.
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6.2.2 CorePhrase Accuracy

Table 6.3 shows the results of keyphrase extraction by the CorePhrase algorithm variants

for four of the classes (two classes from CAN, and two classes from UW)1. Subjectively, the

keyphrases extracted by the variants of the CorePhrase2 algorithm are quite similar to the

reference topic. The phrases in the results are shown in stemmed form, with stop words

removed. In a real system the output of the algorithm would have to be in the original

unstemmed form for presentation to the end user.

Table 6.4 shows the extracted keyphrases for 10 of the classes in the 20NG dataset

(using the CorePhrase-1M variant). The number of candidate keyphrases for each class

is listed under the newsgroup name. Again, the top keyphrases exhibit high similarity to

the corresponding newsgroup main topic. We can notice, however, that some irrelevant

keyphrases make it to the top due to some artifacts of this particular dataset; e.g. the

phrase “writes in article” appears at the top in a few categories due to a standard format

used by news readers to quote a previous post. Also notice the second phrase in the

comp.graphics category, “tiff: philosophical significance of 42”, which turned out to be the

subject of a heated debate in one of the threads, thus pushing it to the top. Otherwise,

most of the extracted keyphrases look quite relevant to the main topic of the corresponding

category, given that the number of candidate keyphrases to choose from is in the range of

tens (sometimes hundreds) of thousands.

Evaluation based on the quantitative measures, overlap and best rank, is given in Ta-

ble 6.5, which is illustrated also in figure 6.1. For each of the four variants of the CorePhrase

algorithm, in addition to the baseline keyword centroid algorithm, we report the overlap

1A complete list of the results for the 10 classes can be found at:
http://pami.uwaterloo.ca/~hammouda/corephrase/results.html

2Throughout this discussion the name CorePhrase will refer to both CorePhrase-1 and CorePhrase-2,
while CorePhrase-M will refer to both CorePhrase-1M and CorePhrase-2M, unless otherwise specified.

http://pami.uwaterloo.ca/~hammouda/corephrase/results.html
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Table 6.3: Keyphrase Extraction Results, L = 10 [CAN, UW]

CorePhrase-1 CorePhrase-2 CorePhrase-1M CorePhrase-2M

canada transporation

1 canada transport canada transport transport canada canada transport

2 panel recommend canada transport act canada transport transport canada

3 transport associ transport act road transport transport act

4 transport associ canada transport associ transport issu transport issu

5 associ canada panel recommend govern transport recommend transport

6 canada transport act unit state surfac transport transport polici canada transport

7 transport act transport associ canada tac public transport canadian transport

8 road transport associ canada tac transport public transport public

9 transport infrastructur canada tac transport infrastructur public transport

10 transport associ canada tac public privat sector transport passeng transport infrastructur

black bear attacks

1 black bear black bear bear bear bear bear

2 bear attack bear attack bear black bear bear bear black bear bear

3 black bear attack black bear attack black bear bear bear black bear

4 grizzli bear black bear countri bear black bear black bear bear

5 bear safeti grizzli bear bear black bear black

6 bear black bear grizzli bear attack black bear black bear

7 bear countri bear safeti bear attack bear bear attack bear

8 nation park nation park bear grizzli bear bear grizzli bear

9 black bear countri bear countri bear encount bear bear encount bear

10 deal bear bear black bear bear bear safeti bear bear safeti

health services

1 health servic univers waterloo health servic univers waterloo servic univers counsel servic

2 servic univers waterloo servic univers waterloo univers waterloo assist student supplementari health

3 univers waterloo univers waterloo servic univers waterloo student univers

4 health servic health servic health servic univers supplementari health

5 health servic univers health servic univers health servic univers waterloo page maintain chri

6 servic univers servic univers health servic chri strome

7 page maintain chri strome supplementari health waterloo health servic univers

8 page maintain health care copyright univers waterloo student supplementari health plan

9 page maintain chri student supplementari copyright univers health import

10 maintain chri strome student supplementari health student univers student health

campus network

1 campu network campu network network network network network

2 uw campu network uw campu network network uw network network level network

3 uw campu uw campu network level network network uw network

4 roger watt network connect uw network network subscrib network

5 roger watt ist level network network uw level network level network

6 watt ist high speed network subscrib network level network

7 ip address uw resnet network assign network network level

8 ip network connect uw network uw campu network network assign network

9 high speed area campu network network level extern network level network level network

10 request registr switch rout level network level network network level network rout
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Table 6.4: Keyphrase Extraction Results, CorePhrase-1M, L = 15 [20NG]
comp.graphics comp.sys.ibm.pc.hardware comp.sys.mac.hardware sci.crypt sci.space

rank 74354 81101 66965 129520 114469

1 graphic librari id vs scsi centri 610 clipper chip vandal sky

2 tiff philosoph signific 42 hard drive monitor kept 24 hour tap code gamma rai burster

3 rumour 3do 17 monitor x86 680x0 compar white hous announc q clipper chip hst servic mission schedul 11 dai

4 24 bit local bu centri 650 netcom com access digex

5 help need cd rom duo 230 kei escrow 1 billion year

6 3d graphic video card se 30 chip encrypt space market

7 cview answer id drive lc iii secret algorithm clipper chip crypto kei edu write

8 polygon routin western digit cach card clipper chip crypto kei dc x

9 im look diamond stealth quadra scsi problem secret algorithm clipper chip space station

10 newsgroup split date stuck mac plu clipper chip crypto kei escrow prb access digex

11 comp graphic hard disk hard drive crypto kei digex net

12 recommend 3d graphic librari ibm pc non appl clipper consid harm nasa gov

13 polygon routin need isa bu mac ii wiretap chip space market wonderful

14 file format write articl new duo keyseach machin aurora alaska

15 fast polygon routin soundblast irq port set mac portabl david sternlight temporari orbit

comp.sytalk.politics.mideast rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

rank 232619 98341 85662 104535 149481

1 isra terror warn read shaft drive jewish basebal player nhl team

2 europ vs muslim bosnian automot concept shaft drive wheeli basebal player plu minu

3 muslim bosnian v4 v6 v8 v12 vx drive wheeli jack morri european nhl

4 write articl write articl write articl brave updat nhl team captain

5 israel expans chang oil counterst faq post red sox goali mask

6 u s chang oil self need advic best homerun plu minu stat

7 center polici research manual shift moa member jai vs indian seri edu write

8 edu write rec auto good reason wave america team team captain

9 igc apc org question insur compani faq post hbp bb big cat octopu detroit

10 freedom u s opel owner polic offic bat 4th don cherri

11 armenia sai shoot radar detector need advic ride pillion game length red wing

12 polici research cpr ohio state riceburn respect barri bond bat 4th stanlei cup

13 turkish plane dirti diesel bmw moa member dave kingman game plai

14 human right 1994 mustang maxima chain wax time best player abc coverag

15 final solut plymouth sundanc dodg shadow dog attack speed game nhl letter
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and best rank. The average overlap is taken over the top 10 keyphrases/keywords of each

class, with the maximum overlap value (best phrase) also shown. Total averages per data

set and overall average is also reported.

The first observation is that CorePhrase performs consistently better than the keyword

centroid method. This is attributed to the keyphrases being in greater overlap with the

reference topic than the naturally-shorter keywords. An interesting observation also is

that CorePhrase-M, which is based on weighted words for phrase-scoring, and the keyword

centroid follow the same trend. This is due to the link between the phrase scores and their

constituent word scores.

The second observation is that the variants of the algorithm that use the depth feature

(CorePhrase-2 and CorePhrase-2M) are consistently better than those that do not use the

depth feature (CorePhrase-1 and CorePhrase-1M) in terms of both overlap and best rank.

This is attributed to the fact that some common phrases usually appear at the end of each

document (such as “last updated”, “copyright”, the name of the web site maintainer). If

depth information is ignored, these phrases make their way up the rank (e.g. the phrase

“roger watt” in campus network cluster, which is the name of the network maintainer

that appears at the end of each document.) If depth information is taken into consideration,

these phrases are penalized due to their appearance at the end of the document.

Another observation is that the four variants of the algorithm were able to discover

the topic of the cluster and rank it in the top 10 keyphrases, which can be deduced from

the maximum overlap value. CorePhrase is somewhat better than its word-weighted coun-

terpart (CorePhrase-M) in extracting the best phrase and ranking it among the top 10,

where it achieves 97% overlap on average for the best phrase. The word-weighted variant

achieves 83% maximum overlap on average for the best phrase.

However, if we look at the set of the top 10 extracted phrases as a whole and not just
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Table 6.5: Performance of the CorePhrase algorithm, (L = 10) [CAN, UW]
CorePhrase-1 CorePhrase-2 CorePhrase-1M CorePhrase-2M Keyword Centroid

class
overlap

(avg,max)
bestRank

overlap

(avg,max)
bestRank

overlap

(avg,max)
bestRank

overlap

(avg,max)
bestRank

overlap

(avg,max)
bestRank

Dataset 1
canada transportation (0.45,1.00) 1.00 (0.32,1.00) 1.00 (0.47,1.00) 1.00 (0.57,1.00) 1.00 (0.22,0.50) 0.5
winter weather canada (0.22,0.67) 0.60 (0.28,0.67) 0.60 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.0
snowboarding skiing (0.37,1.00) 1.00 (0.47,1.00) 1.00 (0.58,1.00) 0.90 (0.58,1.00) 0.90 (0.24,0.50) 0.5
river fishing (0.41,1.00) 0.90 (0.41,1.00) 0.80 (0.43,1.00) 0.60 (0.39,1.00) 0.60 (0.14,0.50) 0.5
river rafting (0.38,1.00) 1.00 (0.42,1.00) 1.00 (0.68,0.67) 0.90 (0.65,0.67) 1.00 (0.32,0.50) 0.5
black bear attacks (0.45,1.00) 0.80 (0.48,1.00) 0.80 (0.47,1.00) 0.60 (0.51,1.00) 0.60 (0.25,0.33) 0.33
data set 1 average (0.38,0.95) 0.88 (0.39,0.95) 0.87 (0.44,0.78) 0.67 (0.45,0.78) 0.68 (0.20,0.39) 0.39

Dataset 2
co-operative education (0.38,1.00) 0.20 (0.47,1.00) 0.30 (0.55,1.00) 0.80 (0.83,1.00) 0.90 (0.41,0.50) 0.3
career services (0.37,1.00) 0.70 (0.42,1.00) 0.70 (0.58,1.00) 0.90 (0.43,1.00) 0.90 (0.26,0.50) 0.5
health services (0.28,1.00) 0.70 (0.38,1.00) 0.70 (0.32,1.00) 0.50 (0.21,0.33) 0.33 (0.10,0.50) 0.5
campus network (0.23,1.00) 1.00 (0.40,1.00) 1.00 (0.38,0.67) 0.20 (0.33,0.50) 0.50 (0.12,0.50) 0.5
data set 1 average (0.31,1.00) 0.65 (0.42,1.00) 0.68 (0.46,0.92) 0.60 (0.45,0.71) 0.66 (0.22,0.46) 0.45

overall average (0.35,0.97) 0.79 (0.40,0.97) 0.79 (0.45,0.83) 0.64 (0.45,0.75) 0.67 (0.21,0.42) 0.41
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Figure 6.1: Keyphrase Extraction Accuracy Comparison, Top 10 Keyphrases [CAN, UW]
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the best phrase, the word-weighted variant achieves better performance in terms of average

overlap (45% for CorePhrase-M against 40% for CorePhrase). This is attributed to the

fact that keyphrases extracted by the word-weighted version will always contain heavily

weighted words, which often overlap with the reference topic. This means that CorePhrase-

M will consistently extract phrases containing words found in the reference topic, but which

do not necessarily constitute the best descriptive keyphrases. This drawback manifests

itself when there are few words which occur very frequently throughout the candidate

phrases, but are not part of the reference topic. In this case the algorithm will rank up

irrelevant phrases which contain those words due to their heavy weight. (An example is

the winter weather canada cluster.)

A final observation is that CorePhrase consistently achieves better best rank than

CorePhrase-M (79% for CorePhrase against 67% for CorePhrase-M.) This means that

CorePhrase does not only find the best keyphrase, but ranks it higher than CorePhrase-M.

To summarize these findings: (a) CorePhrase is more accurate than keyword-based

algorithms; (b) using phrase depth information achieves better performance; (c) using

word-weights to rank phrases usually produces a better set of top phrases; however, ig-

noring the word-weights usually produces the best descriptive phrase and ranks it higher;

and (d) in most cases, CorePhrase is able to identify the reference topic in the top few

keyphrases.

6.2.3 Number of Extracted Keyphrases

So far we evaluated the accuracy of CorePhrase with respect to the relevance of the ex-

tracted keyphrases to the cluster topic using a fixed number of top keyphrases, usually 10

or 15 keyphrases. In order to test if we could have used a larger number to get more rel-

evant keyphrases, we report the trend of the average overlap measure against the number
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Figure 6.2: CorePhrase Accuracy vs. Number of Top Keyphrases [CAN, UW]
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of extracted keyphrases, L. Figure 6.2 illustrates this trend using 9 classes from CAN and

UW. The number of extracted keyphrases, L, is reported on the horizontal axis (log scale),

while the cumulative average overlap is reported on the vertical axis.

The observation made here is that the top several keyphrases are responsible for the

peak of the average overlap, before the trend goes down quickly; i.e. most of the relevant

keyphrases are correctly ranked at the top, while irrelevant phrases are pushed down the

ranking. This suggests that it is reasonably safe to assume that the top 10, 15, or 20

keyphrases are usually sufficient to properly summarize a cluster of documents.

6.2.4 Effect of Cluster Impurity

It is important to investigate how well CorePhrase behaves in the presence of noise. In

previous experiments we only introduced pure clusters to CorePhrase; i.e. documents from

the same class. A set of experiments were performed where we introduced impurity into

a cluster and the accuracy of extracted keyphrases is measured. In such experiments,

accuracy is measured as the percentage of extracted keyphrases that are common with

those extracted from a pure cluster; i.e.

% of correct keyphrases =
|keyphrases common with pure cluster|

L

In those experiments, we started with a pure cluster and incrementally replaced docu-

ments from the pure cluster with documents from other classes. Two document replacement

scenarios were tested: (1) random replacement with documents from a single class, and

(2) random replacement with documents from multiple classes.

Figure 6.3 shows the results of those experiments. We can observe that in both re-

placement scenarios, the impurity introduced into the pure cluster affects the accuracy of
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Figure 6.3: CorePhrase Accuracy vs. Class Impurity [CAN, UW]
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extracted keyphrases, which is expected due to the gradually disappearing support of the

correct keyphrases.

The second observation is that the accuracy of CorePhrase seems to tolerate noise

introduced from multiple classes as opposed to noise introduced from a single class. When

introducing single-class noise, keyphrases from the noisy class tend to compete with the

original class. Introducing multiple-class noise, on the other hand, does not provide enough

support for competing keyphrases to appear quickly, since the introduced documents do

not share much in common.

Thus, unless noise is consistently introduced from a single class of documents, CorePhrase

tolerates random impurity in clusters by suppressing the usually low-support phrases in

such noisy documents.

6.2.5 CorePhrase Scalability

To test the scalability of CorePhrase, we applied the algorithm with 3 of the larger datasets:

YAHOO, SN, and 20NG3. Usually CorePhrase works on one class or cluster at a time, but for

the sake of scalability demonstration, we combined all classes from each dataset into one

set which was processed by the algorithm. We also tested the performance against CAN and

UW, but the results were not included because the number of documents in those datasets

is relatively small, and usually takes a few seconds to complete.

Figure 6.4 shows the time performance of CorePhrase against the three datasets. The

results were obtained using an Intel Core 2 Duo computer, with 4 GB of RAM. The first

observation is that CorePhrase scales well with the number of documents in all datasets.

It can process several hundred documents in under a minute; or several thousands of

3The RCV1 dataset was not used in this experiment because it was in a format where the original order
of words in documents was not preserved.
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Figure 6.4: CorePhrase Time Performance [YAHOO, SN, 20NG]

documents in a few minutes.

The second observation is the difference between datasets. CorePhrase takes less time

to process datasets with fewer words per document than those with more words. While

YAHOO has almost twice the number of words per document as SN, it takes about 15 times

the time to process. SN and 20NG are roughly close to each other in performance (they also

have similar average words per document). Thus, while CorePhrase can scale well with

large number of documents, it may need improvement with respect to the dimensionality

of the documents, which we leave for future work.

In the next two sections we evaluate both the collaborative peer-to-peer and hierarchical
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peer-to-peer clustering algorithms, and examine how CorePhrase can be used in distributed

clustering environments for both improving clustering accuracy and producing meaningful

summaries for distributed clusters.

6.3 Collaborative P2P Clustering Results

In this section we introduce the experiments performed to evaluate the collaborative P2P

document clustering algorithm. We tested three network configurations and measured the

difference between the initial and final clustering quality to see the effect of collaboration.

6.3.1 Results and Discussion

Table 6.6 shows the results obtained for three network configurations: 3-Node, 5-Node,

and 7-Node for YAHOO, while Table 6.7 shows similar results for 20NG. The results reported

were obtained using a random data distribution ratio α = 1/NP ; i.e. the data was equally

and randomly partitioned over all nodes.

For each configuration five runs were performed, and the average was taken to alleviate

any bias that may result from random data partitioning and the insertion order of the

documents to the SHC clustering algorithm. The results of the average initial and final

(after aggregating peer recommendations) F-measure (F ) and Entropy (E) per node are

reported, along with overall averages over the nodes. The difference between the final and

initial measure values is reported as the improvement in accuracy. The F-measure and

Entropy were introduced in chapter 2.

Figure 6.5 illustrates the mean initial and final clustering F-measure values for each of

the network configurations, bounded by their standard deviation (error bars). Results for

both YAHOO and 20NG are shown. Figures 6.6 and 6.7 illustrate the same results (F-measure
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Table 6.6: Collaborative P2P Clustering Results [YAHOO]
3-Node 5-Node 7-Node

Initial Final Initial Final Initial Final
Node F E F E F E F E F E F E

1 0.59 0.20 0.65 0.18 0.44 0.25 0.58 0.20 0.26 0.36 0.40 0.26
2 0.61 0.19 0.66 0.18 0.47 0.23 0.59 0.19 0.29 0.32 0.42 0.21
3 0.59 0.18 0.64 0.14 0.42 0.28 0.53 0.22 0.30 0.31 0.48 0.19
4 0.42 0.29 0.54 0.21 0.28 0.34 0.43 0.22
5 0.43 0.28 0.55 0.19 0.27 0.35 0.43 0.24
6 0.28 0.34 0.42 0.23
7 0.32 0.29 0.49 0.17

Average 0.60 0.19 0.65 0.17 0.44 0.27 0.56 0.20 0.29 0.33 0.44 0.22
Std Dev ±0.01 ±0.01 ±0.01 ±0.02 ±0.03 ±0.02 ±0.03 ±0.01 ±0.03 ±0.03 ±0.05 ±0.03

Improvement +5% -2% +12% -6% +15% -11%

Table 6.7: Collaborative P2P Clustering Results [20NG]
3-Node 5-Node 7-Node

Initial Final Initial Final Initial Final
Node F E F E F E F E F E F E

1 0.44 0.27 0.47 0.25 0.38 0.29 0.44 0.23 0.31 0.32 0.45 0.25
2 0.45 0.30 0.48 0.25 0.40 0.32 0.49 0.26 0.43 0.33 0.48 0.26
3 0.43 0.28 0.46 0.24 0.34 0.32 0.45 0.26 0.35 0.34 0.47 0.23
4 0.46 0.27 0.49 0.28 0.36 0.31 0.47 0.24
5 0.40 0.32 0.46 0.27 0.34 0.31 0.44 0.21
6 0.38 0.28 0.47 0.22
7 0.26 0.32 0.44 0.30

Average 0.44 0.28 0.47 0.25 0.40 0.30 0.47 0.26 0.35 0.32 0.46 0.25
Std Dev ±0.03 ±0.03 ±0.04 ±0.03 ±0.06 ±0.05 ±0.07 ±0.04 ±0.08 ±0.05 ±0.08 ±0.07

Improvement +3% -3% +7% -4% +11% -7%

only), showing averages of the initial F-measure (solid bars) and final F-measure (difference

bars) of all three network configurations on the same graph for comparison.

It should be noted that the evaluation of the final clustering after aggregation of peer-

positive documents takes into consideration that the initial document class distribution at

the local node has been changed, and updates the final number of documents in each class.

This is essential for the initial and final F-measure and Entropy calculations to be correct.

The results are interesting, and show an improvement in both evaluation measures

per node and on average. A very important observation is that networks with fewer nodes

appear to have higher absolute accuracy (both initial and final) compared to networks with
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larger number of nodes; e.g. the 3-Node network has initial F of 59% and final of 65%, as

opposed to 30% and 45% in the 7-Node network. However, networks with larger number of

nodes exhibit greater improvement in the final clustering compared to the initial clustering,

as can be seen from the improvement percentages; e.g. in the case of the YAHOO dataset

the 7-Node network has an improvement of 15% in F compared to just 6% improvement

in the 3-Node network.

This observation is attributed to the fact that, in networks with fewer nodes, each node

has access to larger percentage of the data than those in larger networks. This results in

smaller networks being able to build better clusters. The ideal case is when there is only

one node, in which case the one and only node has complete knowledge about all the data

and thus can build the best clusters. However, the real benefit of the system is observed

in situations involving larger networks (typical case). Each node in larger networks has

limited view of the global data collection, but through distributed clustering they are able

to have better visibility of global data through peer recommendation.

The results, however, show a difference between the two data sets under investigation.

For the YAHOO dataset the improvement in clustering quality is more noticeable than in

the case of the 20NG data set. This reflects some data set characteristics. The 20NG data

set has much larger number of documents, with almost even distribution of documents

among classes. On the contrary, the YAHOO dataset has fewer documents with unbalanced

class distribution. Most clusters created in the case of the YAHOO set encompassed much

of the smaller classes resulting in higher evaluation measure. On the other hand, in the

20NG case classes were more fragmented among clusters, causing lower clustering quality.

In both cases, however, improvement in clustering quality is noticeable, albeit a smaller

change in the case of the 20NG data set.
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Figure 6.5: Average F-measure (Initial and Final). (a), (c), and (e) YAHOO; (b), (d), and
(f) 20NG.
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Figure 6.6: Clustering Accuracy Improvement – F-measure [YAHOO]

6.3.2 Significance Testing

To back the claim of clustering quality improvement, statistical significance testing is

presented here, where the average final F-measure is compared to the average initial F-

measure. This is a comparison of two means test that enables us to calculate the confidence

intervals for the difference between the two means.

Our null hypothesis (which we will argue to be rejected in favor of the alternate hy-

pothesis) is that the average F-measure for the initial clustering and the final clustering

are the same; i.e.

H0 : F̄f = F̄i (6.3)

where F̄f is the average F-measure for the final clustering over all runs for all nodes,

and F̄i is the corresponding average initial F-measure. The alternate hypothesis will be
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Figure 6.7: Clustering Accuracy Improvement – F-measure [20NG]

that the average final F-measure is greater than the initial average F-measure; i.e.

Ha : F̄f > F̄i (6.4)

Since the actual underlying means and standard deviations are not known, we are

going to use a two-sample t statistic (instead of a two-sample z statistic), in which the

population standard deviation is estimated by the calculated standard deviations s1 and

s2 from the samples. The t statistic is given by:

t =
(x̄1 − x̄2)− (µ1 − µ2)

√

s2
1

n1
+

s2
2

n2

(6.5)

where x̄1 and x̄2 are the calculated means of the two populations, µ1 and µ2 are the

actual means, s1 and s2 are the calculated standard deviations, and n1 and n2 are the
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sample sizes from the two populations.

For the 3-node network case there are 15 sample pairs (of initial and final F-measure):

3 nodes x 5 runs. The average initial F-measure is F̄i = 0.60, while the average final F-

measure is F̄f = 0.65. The calculated standard deviations are si = 0.0086 and sf = 0.0098

for the initial and final measures, respectively. The t statistic for the 3-node case under

the null hypothesis (µ1 − µ2 = 0) is thus

t =
(F̄f − F̄i)− (µ1 − µ2)

√

s2
i

ni
+

s2
f

nf

=
(0.65− 0.60)− 0

√

0.000074
15

+ 0.000099
15

= 14.18

Using the t(14) distribution, we see that 2 · P (t ≥ 14.18) is < 0.001, which allows us

to reject the null hypothesis in favor of the alternate hypothesis, indicating a significant

difference between the two means. Thus the difference between the initial and final F-

measures is statistically significant.

The confidence interval of the difference between the two means at a confidence level

C (usually 95%) is given by

(x̄1 − x̄2)± t∗

√

s2
1

n1

+
s2
2

n2

(6.6)

where t∗ is the upper (1−C)/2 critical for the t distribution with k degrees of freedom

(number of samples - 1). To compute a 95% confidence interval for the difference between

the two means, we first note that the 0.025 ((1 − C)/2) critical value t∗ of the t(14)

distribution is 2.14479 (from standard t distribution tables). This gives us the interval

(0.041, 0.0556); i.e. the difference between the initial and final average F-measure is 0.048±
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Table 6.8: Significance Tests and Confidence Interval [YAHOO]

Network F̄i F̄f ∆̄F si sf t P-value error ∆F confidence interval

3-Node 0.603 0.651 0.048 0.0086 0.01 14.18 < 0.001 0.0073 (0.0410, 0.0556)
5-Node 0.437 0.557 0.120 0.0292 0.0342 13.33 < 0.001 0.0240 (0.0959, 0.1438)
7-Node 0.287 0.440 0.153 0.0324 0.0486 15.46 < 0.001 0.0308 (0.1218, 0.1834)

Table 6.9: Significance Tests and Confidence Intervals [20NG]

Network F̄i F̄f ∆̄F si sf t P-value error ∆F confidence interval

3-Node 0.441 0.472 0.030 0.0266 0.0435 2.300 0.019 0.0282 (0.0020, 0.0585)
5-Node 0.400 0.466 0.068 0.0703 0.0746 3.327 0.001 0.0546 (0.0136, 0.1228)
7-Node 0.347 0.459 0.112 0.0831 0.0798 5.737 < 0.001 0.0607 (0.0510, 0.1724)

0.0073.

The same test can be applied to the two other network configurations of 5 nodes and 7

nodes. The calculations are summarized in table 6.8. An interesting observation is that as

the average improvement in clustering quality increases with the increase in the number of

nodes, the confidence interval of the improvement also increases, indicating a larger margin

of error (although still acceptable). We can attribute this to the variation in the output

of the experiments when using larger number of nodes, since they tend to each have less

exposure to the data than with the networks with fewer nodes, resulting in larger variation

on judgement of a proper clustering solution.

The same analysis has been applied to the 20NG dataset, and the results are reported

in Table 6.9. The tests show that the improvement is still statistically significant, at least

at the 0.05 level for the 3-node case, and at the 0.01 level for the 5-node and 7-node cases.
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6.3.3 Effect of Data Distribution Ratio

A set of experiments have been conducted to test the effect of increasing the data distribu-

tion ratio among nodes, α. Figure 6.8 illustrates the quality trend against this ratio for the

YAHOO dataset. The line graphs in the figure represent the final F-measure of each network

configuration for various distribution ratios. The vertical error bars show the difference

between the initial and final clustering F-measure quality.

As noted earlier, the figure confirms that networks with fewer nodes (e.g. 3-Node)

maintain higher absolute accuracy for the range of distribution ratios. It also confirms our

observation that networks with more nodes exhibit greater relative increase in clustering

quality after aggregating peer recommendations. It is also interesting to note that as the

distribution ratio reaches its maximum (all nodes having access to 100% of the data), all

networks tend to have the same (maximum) performance, which is logical since at this

maximum distribution ratio (α = 1) each node has access to the full data set.

Notice also that at the same distribution ratio, networks with higher number of nodes

result in higher improvements in the final clustering result quality than those with fewer

number of nodes. This is attributed to the larger coverage of data found in networks with

higher number of nodes.
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Figure 6.8: Effect of Data Distribution Ratio [YAHOO]

6.4 Hierarchically-Distributed P2P Clustering Results

6.4.1 Experimental Setup

A simulation environment was used for evaluating the HP2PC algorithm. During simula-

tion, data was partitioned randomly over all nodes of the network. The number of clusters

was specified to the algorithm such that it corresponds to the actual number of classes in

each dataset. A random set of centroids were chosen by each supernode and the centroids

were distributed to all nodes in its neighborhood at the beginning of the process. Cluster-

ing was invoked at level 0 neighborhoods, and was propagated to the root of the hierarchy

as described in section 5.3.
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6.4.2 Evaluation Measures

Three aspects of the algorithm were evaluated: clustering accuracy, speedup, and dis-

tributed summarization accuracy. For evaluating clustering accuracy we relied on both

external (F-measure) and internal evaluation measures (Separation Index). Detailed dis-

cussion of clustering evaluation measures is given in section 2.1.4.

We evaluated the quality of clustering at different levels of the hierarchy. At level h = 0,

we evaluated the quality of clustering for each neighborhood, with respect to the subset of

the data in the neighborhood; i.e.

FQ = F (CQ, DQ)

where CQ is the set of clusters obtained for neighborhood Q, and DQ is the union of data

sets of all nodes in that neighborhood (DQ =
⋃

i∈Q Di).

At level h > 0, we evaluated the the clustering acquired by a supernode with respect to

the data subset of the nodes at the level 0 reachable from the supernode. Thus, evaluation

of the clustering acquired at the root node reflects the quality with respect to the whole

data set.

Speedup is a measure of the relative increase in speed of one algorithm over the other.

For evaluating HP2PC, it is calculated as the ratio of time taken in the centralized case

(Tc) to the time taken in the distributed case (Td), including communication time; i.e.

S =
Tc

Td

. (6.7)

To take communication time into consideration in the simulations, we factored the time
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taken to transmit a message from one node to another on a 100 Mbps link4. Thus, the

time required to transmit a message of size |M | bytes is calculated as:

TM = |M |/(100, 000, 000/8) seconds.

During simulation, each time a message is sent from (or received by) one node to another,

its time is calculated and is added to the total time taken by that node. Since in a real

environment all nodes on the same level of the hierarchy run in parallel, the total time

taken by that level is calculated as the maximum time taken by any node on the same

level. Time taken by different levels is added to arrive at the global Td.

For cluster summarization accuracy, evaluation of the produced cluster summaries

was based on how much the extracted keyphrases agree with the centralized version of

CorePhrase when run on the centralized cluster. Assume HP2PC produced a cluster ck

that spanned Np nodes, each holding subset of the documents, Dki, from that cluster. If all

documents were pooled into a centralized cluster, we have Dk documents in that cluster.

The percentage of correct keyphrases is calculated as:

% correct keyphrases =
CorePhrase(Dk) ∩ DistCorePhrase({Dki})

L

where L is the maximum number of top keyphrases extracted.

In the next subsections, we evaluate the effect of network size on clustering accuracy,

the effect of scaling the hierarchy height, the quality of clustering at different levels within

a single hierarchy, and the accuracy of distributed cluster summarization using the dis-

tributed CorePhrase algorithm.

4This is a simplified assumption. Real networks exhibit communication overhead due to network pro-
tocols and network congestion.
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Table 6.10: Accuracy and Performance of HP2PC [YAHOO]
F-measure SI Speedup

Nodes H=1 H=2 H=3 H=1 H=2 H=3 H=1 H=2 H=3
1 0.683 0.679 0.705 0.035 0.035 0.035 1.00 1.00 1.00
5 0.706 0.655 0.643 0.052 0.051 0.184 3.11 3.80 4.02

10 0.685 0.641 0.627 0.036 0.104 0.171 4.67 6.90 7.16
15 0.681 0.634 0.579 0.021 0.122 0.236 7.15 10.50 11.87
20 0.667 0.612 0.541 0.022 0.168 0.233 12.68 15.10 16.48
25 0.711 0.593 0.535 0.031 0.190 0.248 15.33 18.30 20.10
30 0.693 0.589 0.531 0.046 0.205 0.247 16.26 20.80 23.06
35 0.677 0.582 0.528 0.030 0.225 0.281 17.74 24.80 26.94
40 0.698 0.581 0.529 0.068 0.238 0.267 18.11 25.00 29.61
45 0.691 0.564 0.502 0.039 0.231 0.295 19.04 28.90 32.14
50 0.654 0.539 0.443 0.034 0.254 0.341 20.27 29.50 33.04
55 0.688 0.525 0.364 0.058 0.362 0.786 20.78 31.10 34.47
60 0.680 0.484 0.292 0.075 0.567 1.597 21.07 31.40 35.36
65 0.700 0.440 0.260 0.063 0.891 3.447 21.25 33.20 36.86

6.4.3 Network Size and Height

Experiments on different network sizes and heights were performed, and their effect on clus-

tering accuracy (F-measure and SI) and speedup over centralized clustering were measured.

Table 6.10 summarizes those results for the YAHOO dataset, and table 6.11 summarizes the

same results for the SN dataset. The same results are illustrated in figure 6.9 and figure 6.10,

respectively.

The first observation here is that for networks of height H = 1 (β = 0), the distributed

clustering accuracy stays almost the same as the network size increases. This is evident

through both the F-measure and SI. Since for networks of height 1 all nodes at level 0

are in the same neighborhood, every node can update its centroids based on complete

information received from all other nodes at the end of each iteration (at the cost of

increased communication). This means that increasing the network size does not affect
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Figure 6.9: HP2PC Accuracy and Speedup [YAHOO]
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Table 6.11: Accuracy and Performance of HP2PC [SN]
F-measure SI Speedup

Nodes H=1 H=2 H=3 H=1 H=2 H=3 H=1 H=2 H=3
1 0.581 0.592 0.602 0.155 0.135 0.144 1.00 1.00 1.00
5 0.590 0.581 0.581 0.168 0.253 0.361 2.80 3.30 4.34

10 0.588 0.566 0.536 0.154 0.367 0.517 5.30 6.00 7.45
15 0.602 0.554 0.482 0.148 0.451 0.782 8.50 10.10 12.64
20 0.594 0.502 0.473 0.161 0.752 0.799 11.10 15.60 17.05
25 0.581 0.499 0.481 0.177 0.680 0.881 12.90 20.80 22.40
30 0.576 0.481 0.462 0.160 0.811 0.889 14.20 23.40 25.71
35 0.607 0.476 0.444 0.132 0.828 0.852 15.50 27.30 29.21
40 0.584 0.480 0.423 0.163 0.857 0.993 16.20 29.40 32.52
45 0.586 0.476 0.372 0.149 0.843 1.584 15.70 31.70 33.03
50 0.577 0.472 0.348 0.150 0.904 1.561 16.90 32.00 34.35
55 0.581 0.461 0.320 0.138 0.942 2.311 18.10 32.10 36.03
60 0.599 0.422 0.319 0.142 1.202 3.764 17.30 33.60 38.19
65 0.581 0.414 0.309 0.154 1.680 4.819 18.20 32.90 39.33

accuracy of clustering, as long as it is of height 1.

The second observation is that, for networks of the same size, larger network heights

cause clustering accuracy to drop. It is not surprising that this is the case, since at higher

levels meta-clustering of lower level centroids is expected to produce some deviation from

the true centroids. It is also noticeable that unlike networks of height 1, networks with

height H > 0 tend to have less accuracy as the number of nodes is increased. As we keep

H constant and increase NP , the network partitioning factor, β, increases. This in turn

means neighborhoods become smaller, thus causing the more accurate centroids at level 0

to become more fragmented.

An interesting observation is that there is a noticeable plateau region between the

centralized case (NP = 1), and a point where the data is finely partitioned (NP > some

value), after which quality degrades rapidly. This plateau provides a clue on the relation
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between the data set size and the number of nodes, beyond which the number of nodes

should not be increased without increasing the data set size. An appropriate strategy

for automatically detecting the higher boundary of this region (in scenarios where the

network grows arbitrarily) is to compare the SI measure before and after adding nodes;

if a sufficiently large difference in SI is noticed then network growth should be suspended

until more data is available (and equally partitioned).

We investigate the effect of increasing hierarchy heights, as well as the accuracy at

different levels within a single hierarchy, in more detail in the next subsections.

In terms of speedup, the trends show that the HP2PC algorithm exhibits decent speedup

over the centralized case. For H = 1, however, speedup does not scale well with the

network size, largely due to the increased communication cost for networks of that height.

For H > 0, speedup becomes more scalable, as we can notice a big difference between

H = 1 and H = 2 than between H = 2 and H = 3. This result carries an assertion that

the hierarchical architecture of HP2PC is indeed scalable compared to flat P2P networks.

Comparison with P2P K-means

The accuracy of HP2PC is compared with P2P K-means [24], which is the current state-

of-the-art in P2P-based distributed clustering. Since the implementation of P2P K-means

is non-trivial, we used their benchmark synthetic dataset and results to compare against.

The dataset is a two-dimensional mixture of 10 Gaussians, containing 78,200 points (re-

ferred hereto as 10G). The actual data was not available from the authors, but rather the

parameters of the Gaussians, which we used to re-generate the data5. The 10G dataset is

illustrated in figure 6.11.

5This means that there could be difference in the actual data points between our and their generated
data due to the random number generation. However, we assume that the very large number of points
will offset differences due to sampling
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Figure 6.11: Two-dimensional Mixture of 10 Gaussians Dataset [10G]

The measure of accuracy in [24] was based on the difference between cluster membership

produced by P2P K-means and that of the same data point as produced by the centralized

K-means. To ensure accurate comparison, initial seeds for both the centralized and the

P2P algorithms were the same. They report the total number of mislabeled data points as

a percentage of the size of the dataset. The percentage of mislabled points (PMP) is

100|{d ∈ D : Lcent(d) 6= Lp2p(d)}|

|D|

Table 6.12 reports the results for P2P K-means and HP2PC (with various hierarchy

heights). Nodes vary between 50 and 500, as reported in [24]. Figure 6.12 illustrates the

trend in the results. HP2PC has zero error for networks of height 1, as expected. It is

clear that for networks of low height, HP2PC is superior to P2P K-means. As the height

increases, HP2PC starts to approach the error rate of P2P K-means (H = 4, H = 5), but



150 Distributed Document Clustering and Cluster Summarization in P2P Environments

Table 6.12: PMP Comparison Between HP2PC and P2P K-means [10G]
Nodes P2P K-Means HP2PC

H=1 H=2 H=3 H=4 H=5
50 1.98 0.00 0.06 0.10 0.57 0.35

100 1.88 0.00 0.08 0.67 0.68 0.66
150 1.78 0.00 0.16 0.68 0.81 1.89
200 1.73 0.00 0.15 0.72 0.90 2.04
250 1.82 0.00 0.18 1.05 1.57 3.19
300 1.58 0.00 0.22 1.13 1.66 4.32
350 2.04 0.00 0.21 1.18 2.32 4.38
400 2.47 0.00 0.34 1.14 2.75 4.55
450 3.71 0.00 0.26 1.35 3.33 5.67
500 7.25 0.00 0.28 1.32 4.17 6.92

interestingly, HP2PC does not suffer from the sharp increase in PMP at very large number

of nodes (NP > 300).

P2P K-means has an advantage of being a model for unstructured P2P networks. It

assumes that each node has a finite number of reachable neighbors, which are randomly

selected from the nodes population. HP2PC, on the other hand, has a fixed hierarchi-

cal structure that allows it to produce superior results by avoiding random peering and

propagation delay and error, a common disadvantage in P2P networks.

6.4.4 Clustering Quality at Different Hierarchy Levels

To test the effect of the hierarchical structure on clustering quality at different levels, we

performed experiments on a network of size 250 nodes, and a fixed height of 5 (β = 0.33),

on 20NG and RCV1. The number of nodes at each level are: 250, 83, 28, 9, 3, and 1, from

level 0 to level 5, respectively. We compared the results to centralized k-means performed

at each level of the hierarchy, and took the average over all neighborhoods on that level.

Figure 6.13 shows the accuracy achieved at each level of the hierarchy for 20NG, and
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Table 6.13: Performance of HP2PC vs. Hierarchy Levels, NP = 250, β = 0.33 [20NG]
HP2PC Centralized

Level NP NQ F-measure SI F-measure SI
0 250 83 0.694 0.357 0.734 0.281
1 83 28 0.677 0.473 0.726 0.297
2 28 9 0.592 0.592 0.713 0.406
3 9 3 0.540 1.105 0.674 0.512
4 3 1 0.527 1.244 0.669 0.744
5 1 - 0.484 1.602 0.657 1.055
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Table 6.14: Performance of HP2PC vs. Hierarchy Levels NP = 250, β = 0.33 [RCV1]
HP2PC Centralized

Level NP NQ F-measure SI F-measure SI
0 250 83 0.842 0.034 0.881 0.021
1 83 28 0.673 0.112 0.846 0.038
2 28 9 0.608 0.187 0.709 0.161
3 9 3 0.589 0.349 0.701 0.255
4 3 1 0.586 0.441 0.692 0.270
5 1 - 0.571 0.606 0.673 0.364

compares it to the average centralized k-means accuracy at the same level. Figure 6.13(a)

shows F-measure accuracy, while figure 6.13(b) shows SI change with hierarchy level. We

notice that the clustering quality achieved by HP2PC is comparable to centralized k-means,

and that it slightly degrades as we go up the hierarchy. Figure 6.14 shows the same results

for RCV1, and verifies the same trend. Since at higher level of the hierarchy we only rely

on cluster centroid information, this result is justifiable. Nevertheless, it is clear that at

level 0 we can achieve clustering quality close to the centralized k-means algorithm. In

scenarios where tall hierarchies are necessary (e.g. deep hierarchical organization) we can

still achieve results that do not deviate much from the centralized case.

6.4.5 Hierarchy Height Scalability

Finally, we performed a set of experiments to test the effect of increasing hierarchy heights.

Experimenting on tall hierarchies requires a large number of nodes so as to keep the

neighborhood sizes reasonable. For this reason only the larger datasets 20NG and RCV1

were used in those experiments to avoid fine-grained partitioning of data across such a

large number of nodes.

Table 6.15 reports the outcome of those experiments for a network of 250 nodes. The
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Table 6.15: Performance of HP2PC vs. Hierarchy Heights, NP = 250 [20NG, RCV1]
20NG RCV1

Height β N
(0)
Q S

(0)
Q F-measure SI Speedup F-measure SI Speedup

1 0.00 1 250.00 0.721 0.293 94.60 0.871 0.133 76.22
2 0.06 15 16.67 0.554 0.808 135.07 0.622 0.482 110.46
3 0.16 40 6.25 0.522 1.211 151.82 0.603 0.554 123.74
4 0.25 63 3.97 0.509 1.590 164.23 0.580 0.589 134.92
5 0.33 83 3.01 0.484 1.602 165.51 0.571 0.606 129.69
6 0.40 100 2.50 0.462 1.962 163.47 0.512 0.626 132.42
7 0.45 113 2.21 0.447 2.154 161.17 0.518 0.718 136.80
8 0.50 125 2.00 0.411 2.218 158.62 0.516 0.79 137.01
9 0.54 135 1.85 0.383 2.513 159.37 0.503 0.899 131.55

10 0.58 145 1.72 0.356 2.641 155.11 0.508 0.943 132.64

results are also reported in figure 6.15. We can see that as we increase the height clustering

quality (which is measured at the root of the hierarchy) is affected (figure 6.15(a)). The

sharpest decrease happens as soon as the height increases from 1 to 2, and then the

degradation in F-measure and SI tend to stabilize. A similar trend can be seen in speedup

(figure 6.15(c)). Both observations can be related to the size of neighborhoods at level 0

(S
(0)
Q ), which decreases significantly when the height is increased from 1 (250 nodes) to

2 (16.67 nodes). From those observations we can conclude that neighborhood size plays

a key role in determining both clustering quality and speedup. The more fine-grained

neighborhoods in the network, the less the final clustering solution is dependent on the

actual data (only available to level 0 nodes), because we have to go up the hierarchy several

levels before we can converge to one solution for the whole network. Conversely, the more

coarse-grained the neighborhoods, the better the final clustering solution is, due to creating

more accurate clustering at lower levels before the less accurate merging of centroids takes

place at higher levels of the hierarchy.

A similar argument can be made about speedup. The fewer nodes in a neighborhood,
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the less communication is needed between peers. However, from figure 6.15(c) we can see

that we do not gain much speedup after a certain height (around H = 4 or 5). In fact

speedup tend to decrease slightly after that point. This can be explained by looking at

the size of neighborhoods in table 6.15. As soon as S
(0)
Q decreases from 250 to 16.67 we

notice a big jump in speedup (from 94.60 to 135.07). S
(0)
Q then tends to decrease slowly

as we increase the height, which after H = 4 stays almost the same. So in effect no

gain is achieved; on the other hand, due to the increased height, we have to go through

several cluster merging layers before the final solution is achieved. So our conclusion is

that hierarchy height should not be increased unless there is a corresponding increase in

the number of nodes at level 0.

6.4.6 Distributed Cluster Summarization

Generation of cluster summaries using the distributed version of CorePhrase was evaluated

using different network sizes (Np) and heights (H). Experiments were performed on the

20NG dataset where the summary of each distributed cluster is compared to that of its

centralized counterpart, and an average is taken over all clusters.

Figure 6.16 illustrates the accuracy of distributed cluster summarization compared to

the baseline centralized cluster summarization. The first observation is that distributed

cluster summaries can agree with their centralized counterparts with up to 88% (H =

1, NP = 50) of the output keyphrases, which shows the feasibility of the distributed sum-

marization algorithm.

The second observation is that the number of top keyphrases, L, has a direct effect on

accuracy. Lower values of L (usually lower than 100) tend to produce poor results, which

is interpreted as being not enough keyphrases to accurately represent the core summaries

exchanged between peers. Higher values (usually above 500) also may have negative effect.
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Figure 6.15: HP2PC Performance vs. Hierarchy Heights [20NG, RCV1]
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For networks of low height (here H = 1), 100 < L < 500 produces best results; while

for those of larger heights (here H = 3, 5), 400 < L < 700 produces best results. An

interpretation of this observation is that accuracy of shorter hierarchies are less dependent

on the less-accurate merging of keyphrases at higher levels. While on the the other hand,

taller hierarchies require longer lists of core summaries to be carried over to higher levels

to have enough keyphrases for merging, thus increasing the probability that intersection

of summaries will not be empty.

The third observation is that networks of smaller number of nodes, NP , produce more

accurate results. Since the whole dataset is partitioned among NP nodes, it is expected

that a coarse-grained partitioning (smaller NP ) means that each node has access to larger

portion of the distributed cluster, thus is able to get more accurate keyphrases.

To summarize those findings: (a) results of distributed cluster summarization can agree

with centralized summarization with up to 88% accuracy ; (b) for networks of small height,

100 < L < 500 should be used, while for networks of large height, 400 < L < 700 should

be used; and (c) accuracy of distributed summarization increases as the network size and

height are decreased.

6.5 Summary

In this chapter an evaluation of the various methods and algorithms presented in this thesis

was presented. Experiments were performed on actual document data sets representing

different characteristics. Evaluation of the keyphrase extraction, collaborative distributed

clustering, and the hierarchically-distributed clustering methods was presented and dis-

cussed.

Based on the experimental results, we can conclude that the distributed clustering
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methods introduced in this thesis are successful with respect to their goal, with certain

limitations that mostly can be accommodated. In addition to improving quality or gain-

ing speedup, providing accurate interpretation for document clustering results through

keyphrase extraction makes the results available for human interpretation. Detailed sum-

mary, conclusions, and recommendations are discussed in the next chapter.



C H A P T E R 7
Conclusions and Future Research

I
n this thesis a set of methods and algorithms have been proposed to advance the per-

formance of distributed document clustering. Distributed environments provide both

opportunities and challenges for data mining. By building a collaborative scheme for

clustering in distributed environments it was possible to construct locally-optimized clus-

ters across a network of peer nodes, where collaboration between the nodes re-distributes

data in such a way that clusters are finely tuned locally. We showed that collaboration

between nodes can be limited if there is significant overlap between nodes in terms of their

local data.

In the problem of globally-optimized distributed clustering, we proposed a hierarchically-

distributed peer-to-peer architecture and a clustering algorithm that specifically addresses

modularity and scalability of the network and consequently the scalability of the distributed

clustering algorithm. We showed that good speedup can be achieved using this algorithm,

with comparable results to centralized clustering.
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7.1 Summary and Conclusions

Keyphrase Extraction

We presented the CorePhrase algorithm for accurately extracting descriptive keyphrases

from text clusters, or multi-document sets in general. The algorithm is capable of discov-

ering the topic of the cluster among the very few top extracted keyphrases. Usually the

top two or three keyphrases are sufficient to cover the topic of the cluster; but cases where

the very first keyphrase is sufficient are not uncommon. The algorithm is also domain-

independent, requiring no prior knowledge about the data. The CorePhrase algorithm can

be used in many applications; e.g. by any clustering algorithm for describing the discovered

document clusters, or for creating a subject index of document collections.

Other uses of the algorithm include using the extracted keyphrases as representative

features of the cluster, which could be employed to efficiently measure the similarity be-

tween clusters, or between a new document and a cluster, as used in the Collaborative P2P

Clustering model.

Collaborative P2P Clustering

We have introduced a collaborative distributed approach for document clustering, which

minimizes peer communication through cluster summarization. The major contribution of

this work lies in three parts: (a) an incremental similarity-based clustering algorithm (b)

an accurate document cluster summarization algorithm based on unsupervised keyphrase

extraction, and (c) a collaborative document clustering algorithm based on exchanging

cluster summaries, recommendation and aggregation of peer documents.

The results show significant improvement in the final clustering quality after aggregating
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peer recommendations over the initial clustering solutions. The algorithm exhibits better

improvements in the final clustering in networks with a larger number of nodes, by allowing

nodes to expose more useful data to their peers, thus enhancing the global view of data of

each node.

Hierarchically-Distributed P2P Clustering

We introduced a novel architecture and algorithm for distributed clustering, the Hierarchically-

Distributed Peer-to-Peer Clustering model (HP2PC), which allows building hierarchical

networks for clustering data. We demonstrated the flexibility of the model, showing that it

achieves comparable quality to its centralized counterpart, and that it is possible to make

it equivalent to traditional distributed clustering models (e.g. facilitator-worker models)

by manipulating the neighborhood size and height parameters. We also demonstrated its

superiority to a state-of-the-art algorithm.

7.1.1 Challenges

A number of challenges arose during this research, ranging from trivial to overwhelming.

We list here some of those challenges and how they were addressed, so that others who

follow this line of research become aware of what to expect.

• Data. Text mining is different than data mining. While data mining researchers

enjoy a huge repository of standard machine learning datasets such as UCI [29], text

mining has received little attention in this regard. Text mining researchers have access

to a handful of standard datasets, most of which are prepared for information retrieval

research, and some for natural language processing. The Reuters and 20-newsgroups

datasets are probably the only datasets specifically created for text categorization,
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and are used mainly in classification as opposed to clustering. We tried to adhere

to those datasets, but also used other manually collected datasets, especially for

keyphrase extraction, and made them available for others to use.

• High dimensionality. Again, unlike standard data mining research data which usu-

ally involve several dimensions, text data is of extremely high dimensionality (tens of

thousands). To be able to properly handle such high dimensionality, a feature selec-

tion process is usually employed to bring the number of dimensions to a manageable

level. Text feature selection is a research field on its own [7]. We used the simple

Document Frequency feature selection method to reduce the number of features in

large datasets. This reduced feature set was used during clustering. However, during

keyphrase extraction the raw data was used to enable proper keyphrase identification.

• Distributed computing Simulation of peer-to-peer environments is not trivial.

Initial attempts to use multiple machines for P2P experiments resulted in implemen-

tation and synchronization issues that were overwhelming. In addition, experiments

that involves hundreds of nodes were not possible due to the limited number of

computers available. Due to these limitation of resources, and in order to maintain

simplicity and feasibility, we opted to do simulations on a single computer, rather

than on a real network. We believe that proper P2P communication and synchroniza-

tion in a real network should be delegated to an underlying middle-ware layer that

provides an abstract communication model, similar to what MPI (Message Passing

Interface) provides for traditional parallel computing. We encourage collaboration

with researchers in distributed computing to facilitate such a P2P communication

abstraction layer.
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We also would like to point out some of the tricky issues in implementation and evalu-

ation of the experiments.

• Keyphrase extraction works on raw text data, while clustering usually is done on

vector space model data. Keeping two parallel data representations for each data set

can be cumbersome, especially when automating experiments. Usually the output of

clustering is cluster membership information (doc ID, cluster ID), which can be fed

into the cluster summarizer, which in turn uses this information to summarize the

raw document data from each cluster.

• The high-dimensional text data usually requires a large amount of memory to process,

especially in raw format (as is the case in keyphrase extraction). The DIG model uses

a few hundred megabytes for the medium collections (around 2000 documents). But

fortunately this is not a big problem for two reasons. First, the memory usage levels

off for larger collections since we only need to store the unique words in memory, along

with some sentence path information. The number of unique words grows rapidly at

the beginning (while processing documents incrementally), but later no more unique

words are encountered. Second, we usually process a cluster of documents through

DIG, not the entire collection. Clusters are usually of much smaller size than the

entire document collection.

• In distributed clustering simulations, synchronization is usually not a problem since

everything is done sequentially. Determining the sequence of operations in simulation

is easy due to the simplicity of sequential processing. However, in real networks we

may have race conditions and deadlocks, in addition to peculiarities of message pass-

ing protocols. A good simulator must be able to provide timing variations between

nodes and implement those scenarios to mimic a real network.
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• In implementation, it is recommended to separate the network handling logic (such

as node formation, links, message passing, buffer management, etc.) from the clus-

tering logic. Evaluation logic can also be separated into its own module, providing

evaluation for both centralized and distributed clustering. This abstraction provides

protection against network changes, and makes it easy to replace network implemen-

tation if the need arises.

• Two evaluation approaches can be chosen for distributed clustering, which can be

complimentary. Evaluation against a reference categorization (ground truth), and

evaluation against centralized clustering. When we evaluate against a reference cat-

egorization we are stating the absolute accuracy of the algorithm, which can be used

to compare to any other clustering algorithm. In the absence of reference catego-

rization we can only compare to the output of the centralized clustering algorithm,

which gives us relative evaluation to that algorithm only.

7.1.2 Recommendations

An overview of the contributions in this thesis, and recommendations on when and where

to use them, is illustrated in figure 7.1. Here we go through a few differentiators to decide

on the applicability of certain algorithms suitable for each situation.

An initial differentiator is the nature of data distribution. In centralized environments,

where the data is available in a central location, centralized clustering is a natural choice.

For distributed data, we differentiate between two types of computing environments. On

one hand we have parallel, grid, or cluster computing environments, where nodes are tightly

coupled in a single cluster or supercomputer. In this situation parallel clustering, such as

parallel k-means [27], is more appropriate. On the other hand we have P2P computing
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environments, where the nodes are usually loosely coupled.

In P2P environments we can differentiate the type of clusters required. For generating

local clusters, the collaborative P2P clustering scheme is recommended for its ability to

generate clusters around local data, while taking advantage of summarized cluster infor-

mation from its peers. For global clusters we can make a choice between P2P K-means

or HP2PC, depending on the network structure. For structured P2P networks, HP2PC is

more appropriate due to its superiority in accuracy over P2P K-means. For ad-hoc P2P
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networks, P2P K-means is a more appropriate choice since it can deal with arbitrary links

between nodes.

If the type of distributed clusters (local or global) is not a requirement, we differentiate

between small and large networks. For large networks, HP2PC is more appropriate due to

its scalability. For smaller networks either collaborative P2P or HP2PC can be used.

7.2 Future Work

The field of distributed data mining (DDM) is still young, only about a decade old. With

more advances in distributed computing, especially the emerging peer-to-peer and grid

computing architectures, DDM will gain more advances as the underlying distributed ar-

chitectures are further abstracted, providing a uniform and easy interface to use for higher

level data mining tasks.

In the area of keyphrase extraction from clusters, future directions include using more

features for the candidate phrases, based on heuristics of what constitutes a good phrase.

Other ranking schemes are being investigated. Also the set of top keyphrases could be

enhanced by removing spurious permutations and sub-phrases that appear in other phrases.

For distributed clustering in general, so far data partitioning has been done equally

across nodes. Different partitioning strategies can be investigated to see the effect of

unbalanced distribution of data in a network.

For collaborative clustering it would be interesting to let nodes make recommendations

based on their combined view of all peer summaries, rather than one-to-one peer recommen-

dation. Finally, it would be interesting in future work to let nodes summarize documents

by doing single-document keyphrase extraction, then utilize such summarized documents

to further enhance the clustering process through exchanging document summaries. Also
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scalability can be further analyzed for this type of P2P clustering.

For the hierarchically-distributed clustering method we plan to extend this model to

be dynamic, allowing nodes to join and leave the network, which requires maintaining a

balanced network in terms of partitioning and height. We also plan to extend it to allow

merging and splitting of complete hierarchies.

We are also investigating the possibility of improving the global clustering quality by

by allowing centroids to cross neighborhoods through higher levels; i.e. clusters at lower

level neighborhoods should be a function of higher level centroids. We believe that this

will create an opportunity for better global clustering solutions, but at the expense of

computational complexity.

Finally, the effect of HP2PC network structure and parameters on clustering accuracy

also needs to be formally analyzed to provide error estimates that can guide the distributed

clustering process. Error estimation can be done using sampling theory, which provides

analysis tools for bounding the error [8]. This will also allow for sensitivity analysis against

the various parameters, and may point out factors that need further evaluation.

7.3 List of Publications

The work in this thesis has resulted in a number of publications, as well as posters and

software demos, which are listed below.

Book Chapters

• K. Hammouda and M. Kamel, “Data Mining in e-Learning”, in Samuel Pierre (Ed.),

E-Learning Networked Environments and Architectures: A Knowledge Processing

Perspective, Springer, 2006.
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Journal Articles – Published

• K. Hammouda and M. Kamel, “Distributed Collaborative Web Document Clustering

Using Cluster Keyphrase Summaries”, Information Fusion, Special Issue on Web

Information Fusion. In Press, 2007.

Journal Articles – In Preparation

• K. Hammouda and M. Kamel, “Scalable Hierarchically-Distributed Peer-to-Peer Doc-

ument Clustering”, To be submitted to IEEE Transactions on Knowledge and Data

Engineering.

• K. Hammouda and M. Kamel, “Simultaneous Document Clustering and Cluster Sum-

marization in Peer-to-Peer Networks”, To be submitted to IEEE Transactions on

Knowledge and Data Engineering.

Conference Proceedings

• K. Hammouda and M. Kamel, “HP2PC: Scalable Hierarchically-Distributed Peer-

to-Peer Clustering”, 2007 SIAM Int. Conf. on Data Mining (SDM07), Minneapolis,

MN, April 2007. In Press.

• Christopher Brooks, Scott Bateman, Wengang Liu, Gordon McCalla, Jim Greer,

Dragan Gaevic, Timmy Eap, Griff Richards, Khaled Hammouda, Shady Shehata,

Mohamed Kamel, Fakhri Karray, Jelena Jovanovic, “Issues and Directions with Ed-

ucational Metadata”, 3rd Annual Scientific Conference of the LORNET Research

Network (I2LOR 2006), Montreal, QC, Nov 8-10, 2006.
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• K. Hammouda and M. Kamel, “Collaborative Document Clustering”, 2006 SIAM

Conference on Data Mining (SDM06), pp. 453-463, Bethesda, Maryland, April 2006.

• K. Hammouda, D. Matute, and M. Kamel, “CorePhrase: Keyphrase Extraction for

Document Clustering”, Int. Conf. on Machine Learning and Data Mining (MLDM

2005), Springer LNAI 3587, pp. 265-274, Leipzig, Germany, July 2005.

Posters and Demos

• K. Hammouda and M. Kamel, “Automatic Metadata Extractor”, Demo presented at

the 2nd Annual Scientific Conference of the LORNET Research Network (I2LOR-05),

Vancouver, BC, Nov 16-18, 2005. First Prize Award for Best Demo.

• K. Hammouda and M. Kamel, “Learning Object Similarity Ranking”, Demo pre-

sented at the 2nd Annual Scientific Conference of the LORNET Research Network

(I2LOR-05), Vancouver, BC, Nov 16-18, 2005.

• K. Hammouda and M. Kamel, “CorePhrase: Extracting Keyphrases from Docu-

ments”, Poster presented at the 2nd Annual Scientific Conference of the LORNET

Research Network (I2LOR-05), Vancouver, BC, Nov 16-18, 2005.

• K. Hammouda and M. Kamel, “Learning Object Content Summarization”, Poster &

Demo presented at the 3rd Annual Scientific Conference of the LORNET Research

Network (I2LOR-06), Montreal, QC, Nov 8-10, 2006.
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