
MAC Constructions: Security Bounds

and

Distinguishing Attacks

by

Avradip Mandal

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2007

c©Avradip Mandal, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We provide a simple and improved security analysis of PMAC, a Parallelizable MAC

(Message Authentication Code) defined over arbitrary messages. A similar kind of result

was shown by Bellare, Pietrzak and Rogaway at Crypto 2005, where they have provided

an improved bound for CBC (Cipher Block Chaining) MAC, which was introduced by

Bellare, Killan and Rogaway at Crypto 1994. Our analysis idea is much more simpler to

understand and is borrowed from the work by Nandi for proving Indistinguishability at

Indocrypt 2005 and work by Bernstein. It shows that the advantage for any distinguishing

attack for n–bit PMAC based on a random function is bounded by O(σq
2n), where σ is the

total number of blocks in all q queries made by the attacker. In the original paper by Black

and Rogaway at Eurocrypt 2002 where PMAC was introduced, the bound is O(σ2

2n).

We also compute the collision probability of CBC MAC for suitably chosen messages.

We show that the probability is Ω(`q2/N) where ` is the number of message blocks, N

is the size of the domain and q is the total number of queries. For random oracles the

probability is O(q2/N). This improved collision probability will help us to have an efficient

distinguishing attack and MAC-forgery attack. We also show that the collision probability

for PMAC is Ω(q2/N) (strictly greater than the birthday bound). We have used a purely

combinatorial approach to obtain this bound. Similar analysis can be made for other CBC

MAC extensions like XCBC, TMAC and OMAC.

iii

Acknowledgements

I would like to thank my supervisor Dr.Andris Ambainis who helped me in every aspect

during my masters degree. This work is done with Dr.Mridul Nandi. I would like thank him

for helping me writing the thesis, and for introducing me to this exciting area of research. I

would also like to thank Dr.Alfred Menezes and Dr.Douglas Stinson who agreed to become

reader of this thesis and gave me their valuable comments.

iv

Contents

1 Introduction 1

1.1 Cryptography . 1

1.2 The objectives of cryptography . 2

1.3 Attacks . 3

1.4 Provable security . 5

1.5 Message Authentication Codes . 6

1.6 Our work and previous results . 8

1.7 Chapter outline . 9

2 Cryptography basics 11

2.1 Message Authentication Codes (MAC) and its security notions 11

2.2 Distinguishing attacks . 14

2.2.1 Different notions of distances and their cryptographic significance . 14

2.2.2 Distinguisher of families of functions or random functions 18

2.2.3 A note on uniform random functions 21

3 A note on graph theory 22

3.1 Directed graphs . 22

3.2 Function graphs . 24

4 An attack on CBC-MAC 27

5 An attack on PMAC 36

v

6 Improved security analysis of PMAC 40

6.1 Definition of PMAC . 40

6.2 Improved security analysis of PMAC . 42

7 Conclusion 49

Bibliography 51

vi

List of Figures

1.1 Message Authentication Code . 7

2.1 CBC MAC . 13

2.2 PMAC with ` = 2 . 14

3.1 Unicycle function graph . 24

3.2 Tree and unicycle function graphs . 26

4.1 Possible function graphs for estimating |Fi,j,k| 31

4.2 Possible function graphs for estimating |Fi,j,k,m| 35

6.1 PMAC . 42

vii

Chapter 1

Introduction

1.1 Cryptography

Cryptography is the science of securing communications. The fundamental and classical

task of cryptography is to provide confidentiality by encryption methods. The message to

be transmitted – it can be text, numerical data, an executable program or any other kind

of information – is called plaintext. Alice encrypts the plaintext m and obtains ciphertext

c. The ciphertext c is transmitted to Bob. Bob turns the ciphertext back into the plaintext

by decryption. To decrypt, Bob needs some secret information, a secret decryption key.

The adversary Eve still may intercept the ciphertext. However, the encryption should

guarantee secrecy and prevent Eve from deriving any information about the plaintext from

the observed ciphertext.

Encryption is very old. For example, the Caesar’s shift cipher, where each plaintext

character is replaced by the character 3 to the right modulo 26, (i.e. a is replaced by d,

b by e,..., y by b, and z by c) is more than 2000 years ago. Every encryption method

provides an encryption algorithm E and a decryption algorithm D. In symmetric-key

cryptography both algorithms depend on the same secret key k. Caesar’s cipher is an

example of symmetric-key encryption scheme where the key is the offset 3. The Data

Encryption Standard (DES) is another example of symmetric-key encryption.

In 1976 W. Diffie and M.E. Hellman published their famous paper, New directions in

Cryptography [17]. There they introduced the revolutionary concept of public-key cryp-

1

tography. They also provided a solution to the long standing problem of key exchange

and pointed the way to digital signatures. Public-key encryption methods are asymmetric.

Each recipient of messages has his personal key k = (pk, sk), consisting of two parts: pk

is the encryption key and is made public, sk is the decryption key and is kept secret. If

Alice wants to send a message m to Bob, she encrypts m by use of Bob’s publicly known

encryption key pk. Bob decrypts the ciphertext by use of his decryption key sk, which is

known only to him.

Mathematically speaking public-key encryption is a so-called one-way function with

a trapdoor. Anyone can easily encrypt a plaintext using the public key pk, but the other

direction is difficult. It is practically impossible to deduce the plaintext from the ciphertext,

without knowing the secret key sk (which is called the trapdoor information).

Public-key encryption methods require more complex computations and are less efficient

than classical symmetric methods. Thus symmetric methods are used for the encryption

of large amounts of data. Before applying symmetric encryption, Alice and Bob have to

agree on a key. To keep this key secret, they need a secure communication channel. It is

common practice to use public-key encryption for this purpose.

1.2 The objectives of cryptography

Providing confidentiality is not the only objective of cryptography. Cryptography is also

used to provide solutions to other problems.

1. Data integrity: The receiver of a message should be able to check whether the

message was modified during transmission, either accidentally or deliberately. No

one should be able to substitute a false message for the original message, or for part

of it.

2. Authentication: The receiver of a message should be able to verify its origin. No

one should be able to send a message to Bob and pretend to be Alice (data origin

authentication). When initiating a communication, Alice and Bob should be able to

identify each other (entity authentication).

2

3. Non-repudiation: The sender should not be able to later deny that she sent a

message.

If messages are written on paper, the medium – paper – provides security against

manipulation. Handwritten personal signatures are intended to guarantee authentication

and non-repudiation. If electronic media are used, the medium itself provides no security

at all, since it is easy to replace some bytes in a message during its transmission over a

computer network, and it is particularly easy if the network is publicly accessible, like the

internet.

So, while encryption has a long history, the need for techniques providing data in-

tegrity and authentication resulted from the rapidly increasing significance of electronic

communication.

There are symmetric as well as public-key methods to ensure the integrity of mes-

sages. Digital signatures require public-key methods. As with classical handwritten signa-

tures, they are intended to provide authentication and non-repudiation. Note that non-

repudiation is an indispensable feature if digital signatures are used to sign contracts.

Digital signatures depend on the secret key of the signer – they can generated only by him.

On the other hand, anyone can check whether a signature is valid, by a publicly known

verification algorithm Verify, which depends on the public key of the signer. It is common

not to sign the message itself, but to apply a cryptographic hash function first and then sign

the hash value. Digital Signatures depend on the message. Different messages generate

different signatures. So they can also be used to provide message authentication.

The symmetric-key method to ensure integrity of messages is achieved by Message

Authentication Codes (MAC), which we will discuss in Section 1.5 in more detail.

1.3 Attacks

The primary goal of cryptography is to keep the plaintext secret from eavesdroppers try-

ing to get some information about the plaintext. As discussed before, adversaries may

also be active and try to modify the message. Then cryptography is expected to guar-

antee the integrity of messages. Adversaries are assumed to have complete access to the

communication channel.

3

Cryptanalysis is the science of studying attacks against cryptographic schemes. Suc-

cessful attacks may, for example, recover the plaintext (or parts of the plaintext) from the

ciphertext, substitute parts of the original message, or forge digital signatures. Cryptog-

raphy and cryptanalysis are often subsumed by the more general term cryptology.

A fundamental assumption in cryptanalysis was first stated by A. Kerkhoff in the

nineteenth century, and is usually referred to as Kerkhoff’s principle. It states that the

adversary knows all the details of the cryptosystem, including algorithms and their imple-

mentation. According to this principle, the security of a cryptosystem must be entirely

based on the secret keys.

Attacks on the secrecy of an encryption scheme try to recover plaintexts from cipher-

texts, or even more drastically the secret key. In the following we only consider a passive

attacker Eve, who does not try to modify the messages. However the attacker has access

to plaintexts and ciphertexts, and she may have control over choosing plaintexts and/or

ciphertexts. Of course she does not have access to the secret key. The possible attacks

depend on the actual resources of Eve. They are usually classified as follows:

1. Ciphertext-only attack: Eve has the ability to obtain ciphertexts. This is likely

to be the case in any encryption scenario. Even if Eve cannot perform other more

sophisticated attacks, one must assume that she can get access to the encrypted

messages. An encryption method that cannot resist a ciphertext-only attack is com-

pletely insecure.

2. Known-plaintext attack: Eve has the ability to obtain plaintext-ciphertext pairs.

Using the information from these pairs, she attempts to decrypt a ciphertext for

which she does not have the plaintext.

3. Chosen-plaintext attack: Eve has the ability to obtain ciphertexts for plaintexts

of her choosing. Then she attempts to decrypt a ciphertext for which she does not

have the plaintext. Here she has access to the encrypting device only once. This

means after she starts analysis, she cannot access the encrypting device any more.

4. Adaptively-chosen-plaintext attack: This is the same as the previous attack,

except now Eve may do some analysis on the plaintext-ciphertext pairs, and subse-

quently, get more pairs. She may switch between gathering pairs and performing the

4

analysis as often as she likes. This means that she has either lengthy access to the

encrypting device or can somehow make repeated use of it.

5. Chosen- and adaptively-chosen ciphertext attack: These two attacks are sim-

ilar to the above plaintext attacks. Eve can choose ciphertexts and gets the corre-

sponding plaintexts. She has access to the decryption device.

1.4 Provable security

It is desirable to design cryptosystems that are provably secure. Provably secure means

mathematical proofs show that the cryptosystem resists certain types of attacks. Pioneer-

ing work in this field was done by C.E. Shannon. In his information theory, he developed

a measurement for the amount of information associated with a message and the notion

of perfect secrecy. A perfectly secret cipher perfectly resists all ciphertext-only attacks.

An adversary gets no information whatsoever about the plaintext, even if his resources

in computational power and time are unlimited. Vernam’s one-time pad which encrypts

a message m by XORing it bitwise with a truly random bit string, is the most famous

perfectly secret cipher. It even resists all the passive attacks mentioned. This can be

mathematically proven by Shannon’s theory. Unfortunately Vernam’s one-time pad and

all perfectly secret ciphers are usually impractical. It is not practical in most situations to

generate and handle truly random bit sequences of sufficient length as required for perfect

secrecy.

More recent approaches to provable security therefore abandon the ideal of perfect

secrecy and the unrealistic assumption of unbounded computing power of adversary. Only

attacks that might be feasible are taken into account. Feasible means that the attacks can

be performed by an efficient algorithm. Certainly attacker algorithms with non-polynomial

running times are not efficient. Conversely algorithms with polynomial running times are

often considered efficient ones. If the attacker uses probabilistic algorithms then average

running times are taken into account.

The security of a public-key cryptosystem is based on the hardness of some computa-

tional problem. For example, the secret keys of an RSA scheme could be easily deduced if

computing the factors of a large integer was possible. However, it is believed that factoring

5

large integers is infeasible. There are no mathematical proofs for the hardness of the com-

putational problems used in public-key systems. Therefore, security proofs for public-key

methods are always conditional. They depend on the validity of underlying assumptions.

1.5 Message Authentication Codes

A message authentication code (MAC) function computes a MAC from a message and a

secret key. If the originator and the receiver share knowledge of that secret key, the receiver

can calculate the same function of the message and secret key and see if it matches the

MAC accompanying the message. If the MAC matches, then the receiver knows, within

the strength of the MAC function and key, that somebody with possession of the secret

key produced the MAC. Of course, every receiver that can verify the MAC needs to know

this secret key. Thus all the holders of that secret key can create valid MACs even if they

should only receive and verify these codes. So a MAC is a symmetric-key method to ensure

data integrity and authenticity.

A difficulty with MAC authentication in a system with multiple originators and re-

ceivers is that we must choose between two strategies, both of which have problems:

1. We could have a different secret for every pair of entities. This method is logistically

difficult because the number of keys increases with the square of the number of

entities and the keys must be securely distributed. If the system includes E number

of entities, we should have E(E − 1)/2 secret keys.

2. Share one secret among all the entities. This technique is relatively insecure. The

more entities that have a secret, the more likely the secret is to be compromised due

to loss, subversion, or betrayal. This technique also means the same secret will be

used many times; the more exposures of the uses of a secret, the easier an adversary

may find it to break that secret analytically. In addition, with this strategy any of

the entities can forge messages from any of the other entities and a recipient will be

unable to detect this fraud based on the MAC.

MACs are usually implemented through keyed hash functions. Usually a MAC is a

public algorithm with a secret compression function. In other words the secret key deter-

6

mines which compression function we should use among a family of functions. The family

can be a family of random functions or a family of random permutations.

Figure 1.1: Message Authentication Code

There are various MAC algorithms that are used in practice. A few of them are as

follows.

1. CBC MAC : Cipher Block Chaining (CBC) MACs are implemented by passing the

data through a block cipher and serially XORing the output with next block of data (Figure

2.1).

2. DAC : The Data Authentication Algorithm (DAA) is a former U.S. government

standard for producing cryptographic message authentication codes. According to the

standard, a code produced by the DAA is called a Data Authentication Code (DAC). The

algorithm is not considered secure by today’s standards. The DAA is equivalent to CBC-

MAC, with DES as the underlying cipher, truncated to between 24 and 56 bits (inclusive).

3. UMAC : A message authentication code based on universal hashing (UMAC), is a

type of message authentication code (MAC) calculated choosing a hash function from a

class of hash functions according to some secret (random) process and applying it to the

message. The resulting digest or fingerprint is then encrypted to hide the identity of the

7

hash function used. As with any MAC, it may be used to simultaneously verify both the

data integrity and the authenticity of a message. A UMAC has provable cryptographic

strength and is usually a lot less computationally intensive than other MACs.

4. HMAC : A keyed-hash message authentication code (HMAC), is a type of message

authentication code (MAC) calculated using a cryptographic hash function in combination

with a secret key. As with any MAC, it may be used to simultaneously verify both the

data integrity and the authenticity of a message. Any iterative cryptographic hash func-

tion, such as MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting

MAC algorithm is termed HMAC-MD5 or HMAC-SHA-1 accordingly. The cryptographic

strength of the HMAC depends upon the cryptographic strength of the underlying hash

function, on the size and quality of the key and the size of the hash output length in bits.

5. CMAC : Cipher-based MAC (CMAC) is a block cipher-based message authentication

code algorithm, it may be used to provide assurance of the authenticity and, hence, the

integrity of binary data. This mode of operation fixes security deficiencies of CBC-MAC

(CBC-MAC is secure only for fixed-length messages).

The core of the CMAC algorithm is a variation of CBC-MAC that Black and Rog-

away proposed and analyzed under the name XCBC [5]. The XCBC algorithm efficiently

addresses the security deficiencies of CBC-MAC. Iwata and Kurosawa proposed an im-

provement of XCBC and named the resulting algorithm One-Key CBC-MAC (OMAC) in

[9]. They later submitted OMAC1, a refinement of OMAC, and additional security analy-

sis. The OMAC1 variation efficiently reduces the key size of XCBC. CMAC is equivalent

to OMAC1.

6. PMAC : Parallelizable MAC (PMAC) was introduced by J. Black and P. Rogaway

[6]. All the incoming data blocks are passed through block ciphers parallelly, essentially

reducing the processing time (Figure 6.1).

1.6 Our work and previous results

PMAC, a Parallelizable MAC [6] was introduced by J. Black and P. Rogaway, who showed

that the security of PMAC can be upper bounded by O(σ2

N
) against chosen plain-text at-

8

tacker. In loose terms this means that if the attacker makes q queries, each with length `in,

i = 1, . . . , q, then PMAC is secure against any attacker (even computationally unbounded

ones) with σ2 = O(N), where N = 2n, and σ = Σq
i=1`i. Here n is the block length of

PMAC. If all the queries have the same length `n, then the attacker cannot succeed with

O(
√

N
`

) queries.

In our work, we have improved this upper bound. We got an upper bound of security

as O(qσ
N

) for PMAC based on random functions. This means the attacker cannot succeed

even with O(
√

N
`
) queries, where each query is of length `n. A similar kind of result was

shown by Bellare, Pietrzak and Rogaway [2] at Crypto 2005, where they have provided

improved bounds for Cipher Block Chaining (CBC) MACs [3]. Our analysis idea is much

simpler to understand and is borrowed from the work of Bernstein [4] and Nandi [13].

Our next work gives us attack algorithms for CBC-MAC and PMAC based on random

functions. We calculate the collision probability for CBC-MAC and PMAC for a set of

chosen plaintexts. Then we show that this collision probability leads to distinguishing

attacks in both cases. In the case of CBC-MAC a collision also readily leads us to a

chosen-plaintext attack or forgery attack. By collision we mean among the queries made

by the attacker, at least two of them generate the same MAC value.

In more detail, in the case of CBC-MAC we showed for a chosen set of q messages of

length `n, the collision probability is Ω(`q2

N
), where N = 2n. In the case of random oracles

we know by the birthday bound that the collision probability is bounded by O(q2

N
). This

improved probability leads to a distinguishing attack. Similarly in the case of PMAC we

showed for a chosen set of q messages of length `n, the collision probability is Ω(q2

N
), where

N = 2n. Though asymptotically the lower bound for the PMAC collision probability is

the same as the upper bound for the birthday attack, we show that the PMAC collision

probability is strictly greater than the birthday bound. In fact we show the probability

difference can be bounded by Ω(q2

N
). This also leads to a distinguishing attack.

1.7 Chapter outline

The chapters are organized as follows.

1. Introduction : A brief introduction to cryptography and our work.

9

2. Cryptography basics : Here we introduce Message Authentication Code (MACs) and

their security notions. Then we discuss random functions, different notions of distances

between random variables, and why these are significant with respect to distinguishing

attacks.

3. A note on graph theory : We state some graph theoretical preliminaries which later

become significant for the analysis of our attack on CBC-MAC.

4. An attack on CBC-MAC : We provide a detailed analysis of our attack on CBC-

MAC.

5. An attack on PMAC : We provide a detailed analysis of our attack on PMAC.

6. Improved security analysis of PMAC : We state our modified definition of PMAC

and provide its security analysis.

7. Conclusion : We discuss the significance of our work and propose some relevant open

research areas.

10

Chapter 2

Cryptography basics

2.1 Message Authentication Codes (MAC) and its se-

curity notions

Definition of MAC

A MAC is a family of functions {Fk}k∈K where Fk : M→ T , M is the message space, T is

the tag space, and k ∈ K is a secret key chosen uniformly from a key space. If t = Fk(M)

then t is called the tag of the message M . In this paper, we consider T = {0, 1}n with

a group addition + and identity element 0, and M = {0, 1}≤L ∆
= ∪i≤L {0, 1}i for a

sufficiently large integer L and a fixed integer n. A reasonable choice of parameters are

n = 128 and L = 264.

Security Notions of MAC

There are two popular security notions for Message Authentication Code, namely secu-

rity against distinguishing attack and security against forgery attack. The distinguishing

attack is a weaker attack than forgery. In other words, if a construction is secure against

distinguishing attacks then it is also secure against forgery attacks with at least the same

security level. Thus, we mainly analyze the distinguishing attack security for PMAC.

1. Distinguishing Attack : Let Adversary AO be an oracle algorithm where

11

• O = Fk, chosen uniformly from F = {Fk : M→ T ; k ∈ K} (k is uniform on K) or

• O = F , chosen uniformly from Func(M, T)
∆
= {F ; F : M→ T} (or Func only).

Remark 2.1. A random function is a probability distribution on Func(M, T). If the distri-

bution is uniform then we say that it is a uniform random function. Note that the uniform

distribution on K induces a probability distribution on Func.

The adversary can make at most q queries to the oracle O adaptively consisting of at

most σ many blocks and runs in time at most t. Finally, it returns either 1 or 0. The

advantage for distinguishing attack is computed as follows :

AdvF , Func(A)
∆
=
∣∣ Pr[AF = 1]−Pr[AFunc = 1]

∣∣,
AdvF ,Func(q, σ, t)

∆
= maxA AdvF , Func(A : q, σ, t),

where the maximum is taken over all distinguishers A with runtime at most t making at

most q queries consisting of at most σ many blocks. For simplicity, we also denote AdvF(A)

and AdvF(q, σ, t) in place of AdvF , Func(A) and AdvF ,Func(q, σ, t) respectively.

The definition of block is given later in Section 6.1. Intuitively, a padded message is

divided in n-bit components which are called blocks.

If the advantage is high then the attacker A can distinguish the uniform random func-

tions from functions in F with high probability. If it is negligible, we sometimes say that

the family F is a pseudorandom function family.

2. MAC-forgery : In case of a MAC-forgery attack, an attacker makes successive queries

Mi’s to the oracle Fk (where k is secret and chosen uniformly from K) and obtains responses

Fk(Mi)’s. Let (M1, t1 = Fk(M1)), · · · , (Mq, tq = Fk(Mq)) be all the query-responses. If the

attacker can return a pair (M, t) such that (M, t) 6= (Mi, ti) for all i and t is a valid tag

(i.e., t = Fk(M)) then we say that the attacker forges successfully. The probability of

forging successfully a message-tag pair is the advantage for a MAC-forgery attack.

If one can forge a message (say (M, t)) using this forgery attacker, then one can also

launch a distinguishing attack (same as the forgery attacker except at the end it will submit

the query M and will check whether the response is t or not). Thus a forgery attacker is

much stronger than a distinguishing attacker. Equivalently, security against distinguishing

attack is a stronger notion than security against forgery attack.

12

Examples of MACs

In this section we will briefly describe CBC-MAC [3] and PMAC [6]. Later, in Chapters

4 and 5 we will study attacks on them. Let f be a function on a group (D, +) (i.e, from

(D, +) to (D, +)) where |D| = N .

1. CBC-MAC : For a fixed ` ≥ 1, define the iterated functions recursively as follow :

f+(x1, · · · , x`) :=: f+
` (x1, · · · , x`) := f(f+

`−1(x1, · · · , x`−1) + x`),

where xi ∈ D, f+
0 () :=: f+

0 (λ) := 0 and λ is the empty string. We denote f+(x1, · · · , x`)

by CBCf (x1, · · · , x`).

Figure 2.1: CBC MAC

2. PMAC : We consider a simpler PMAC definition for fixed-length messages. For a

general definition of PMAC (for any size message input) see [6]. Let (x1, · · · , x`−1, x`) ∈
D` where each xi ∈ D and ` > 1. Compute w =

∑`−1
i=1 f(xi + ci · f(0)) where

c1, · · · , c`−1 are known constants from D. The output of PMAC is f(w + x`). For

` = 2 (Figure 2.2), the value of PMAC at (x1, x2) is

PMAC(x1, x2) = f(x2 + f(x1 + c1f(0))).

We will consider ` = 2 in our PMAC attack algorithm and will calculate the collision

probability for suitably chosen messages in Chapter 5.

13

Figure 2.2: PMAC with ` = 2

2.2 Distinguishing attacks

2.2.1 Different notions of distances and their cryptographic sig-

nificance

(1) Statistical Distance :

Let X and Y be two random variables taking values on a finite set S. We define the

statistical distance between X and Y by

dstat(X, Y) := maxT⊂S

∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣.

Note that

Pr[X ∈ T]− Pr[Y ∈ T] = Pr[Y 6∈ T]− Pr[X 6∈ T],

and hence

dstat(X, Y) = maxT⊂S(Pr[X ∈ T]− Pr[Y ∈ T]).

The statistical distance measures the distance between the distribution of the random

variables. In fact, it is really a metric or distance function on the set of all distributions

on S. It measures how close their distributions are. For identically distributed random

14

variables X and Y , dstat(X, Y) = 0 and if the random variables are disjoint1 then the

statistical distance is one. In all other cases it lies between zero and one. Now we provide

an equivalent definition of statistical distance and study some standard examples.

Lemma 2.2. dstat(X, Y) = Pr[X ∈ T0]−Pr[Y ∈ T0] = 1
2
×
∑

a∈S

∣∣Pr[X = a]−Pr[Y = a]
∣∣,

where T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.

Proof. For T0 as defined above, it is easy to see that∑
a∈S

∣∣Pr[X = a]− Pr[Y = a]
∣∣ = 2×

(
Pr[X ∈ T0]− Pr[Y ∈ T0]

)
.

For any T ⊂ S, 2× (Pr[X ∈ T]− Pr[Y ∈ T])

=
∑

a∈T

(
Pr[X = a]− Pr[Y = a]

)
−
∑

a/∈T

(
Pr[X = a]− Pr[Y = a]

)
≤
∑

a∈S |Pr[X = a]− Pr[Y = a]|.

Example 2.3. Let X and Y be uniformly distributed on S and T ⊂ S respectively. Then

by Lemma 2.2,

dstat(X, Y) =
1

2
×
(

(
1

|T |
− 1

|S|
)× |T |+ |S| − |T |

|S|

)
= 1− |T |

|S|
.

Thus, if the size of T is very close to the size of S, then the statistical distance is also very

close to zero. On the other hand, if the size of T is negligible compare to that of S, then

the statistical distance is close to one.

Example 2.4. Let S = Func(G, G) where Func(H, G) denotes the set of all functions from

H to G. Let T = Funcinj(G, G) be the subset containing all injective functions (or permu-

tations, since the domain and range are identical). We say u (or v) is a uniform random

function (or uniform random injective function) if it is uniformly distributed on S (or T

respectively). Thus from Example 2.3 we know that

dstat(u, v) = 1− N !

NN

which is very close to one for large N , where |G| = N .

1X and Y are said to be disjoint if there exists a subset T such that Pr[X ∈ T] = 1 and Pr[Y ∈ T] = 0

15

Example 2.5. Given any distinct and fixed x1, · · · , xk ∈ G, let the k-sampling output of

u be (u(x1),· · · ,u(xk)) and denoted as u[k](x1, · · · , xk). Let X = (u(x1), · · · , u(xk)) and

Y = (v(x1),· · · ,v(xk)). Here u and v are as in Example 2.4. Then we can see that

X is uniformly distributed on S = Gk and Y is uniformly distributed on T = G[k] :=

{(y1, · · · , yk) ∈ Gk : yi’s are distinct} and hence (again by Example 2.3)

dstat(X, Y) = 1− N(N − 1) · · · (N − k + 1)

Nk
≈ 1− exp−k(k−1)/2N .

Here we note that if k �
√

N then the statistical distance is very close to zero.

Next we present two results which will help to give an upper bound on the statistical

distance of two distributions. If the probability of the event {X = a} is not small compared

to that of {Y = a} for all choices of a (or on a set with high probability) then the statistical

distance is also small. More precisely, we have the following two lemmas.

Lemma 2.6. Let X and Y be two random variables taking values on S, and let ε > 0. If

Pr[X = a] ≥ (1− ε)× Pr[Y = a]

for all a ∈ S, or if

Pr[X = a] ≤ (1 + ε)× Pr[Y = a]

for all a ∈ S, then dstat(X, Y) ≤ ε.

Proof. For any subset T ⊂ S,

Pr[X ∈ T] ≥ (1− ε)× Pr[Y ∈ T]

since Pr[X = a] ≥ (1− ε)× Pr[Y = a] for all a ∈ S. So,

Pr[Y ∈ T]− Pr[X ∈ T] ≤ ε× Pr[Y ∈ T] ≤ ε

Thus, dstat(X,Y) ≤ ε. The proof of the other case is similar.

Lemma 2.7. Let X and Y be two random variables taking values on S. Let T ⊂ S be a

subset such that

Pr[Y /∈ T] ≤ ε2 and

Pr[X = a] ≥ (1− ε1)× Pr[Y = a]

for all a ∈ T . Then dstat(X, Y) ≤ ε1 + ε2.

16

Proof. Let T1 be the set

T1 = {a ∈ S : Pr[Y = a] ≥ Pr[X = a]}.

Now, dstat(X, Y) = Pr[Y ∈ T1]− Pr[X ∈ T1]

= Pr[Y ∈ T1 ∩ T]− Pr[X ∈ T1 ∩ T] + Pr[Y ∈ T1\T]− Pr[X ∈ T1\T]

≤ ε1Pr[Y ∈ T1 ∩ T] + Pr[Y ∈ T1\T]

≤ ε1 + Pr[Y /∈ T]

≤ ε1 + ε2

(2) Computational Distance

The statistical distance is also popularly known as information-theoretic distance. In

cryptography, there is another notion of distance, known as computational distance. Let

A(·) be a probabilistic algorithm which runs with an input a ∈ S and giving outputs 0 or

1. Define the A-distance between X and Y as follows:

dA(X, Y) =
∣∣Pr[A(X) = 1]− Pr[A(Y) = 1]

∣∣.
Here, A(X) means the distribution of output of A(z) where z follows the distribution of

X. Similarly for A(Y). As A is a probabilistic algorithm it can use a string r chosen from

some set R with a distribution which is independent of X and Y . So we consider A as

having two inputs r ∈ R and z ∈ S. We next state a fact which shows a relationship

between statistical and computational distances.

Lemma 2.8. For any A, dA(X, Y) ≤ dstat(X, Y). Conversely, there exists an algorithm

A0 such that dA0(X,Y) = dstat(X, Y).

Proof. The output of A is completely determined by a pair (r, z), where r is the random

string chosen from R and z is the input. Let Sr0 = {a ∈ S : A(r0, a) = 1}. Then

dA(X, Y) =
∣∣Pr[A(r, X) = 1]− Pr[A(r, Y) = 1]

∣∣
=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[A(r0, X) = 1 | r = r0]− Pr[A(r0, Y) = 1 | r = r0]

)∣∣
=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[A(r0, X) = 1]− Pr[A(r0, Y) = 1]

)∣∣
17

=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[X ∈ Sr0]− Pr[Y ∈ Sr0]

)∣∣
≤ dstat(X,Y).

The equality holds if Sr0 = T0 as in Lemma 2.2. Thus, on input z, A0 computes the

probabilities Pr[X = z] and Pr[Y = z], and outputs 1 if Pr[X = z] ≥ Pr[Y = z], otherwise

0. Hence dA0(X, Y) = dstat(X, Y).

In Lemma 2.8 note that algorithmA0 is not necessarily efficient and does not necessarily

use any random strings. One can consider only deterministic algorithm in the situation

when computational power is unbounded. Intuitively, one can perform the computation

for all random choices and then choose the random string which yields best performance.

We will show in the next section that we can ignore the random string while we distinguish

two classes of functions by using unbounded computation.

2.2.2 Distinguisher of families of functions or random functions

In this section we examine how a distinguisher can behave. We also show how the advantage

of the distinguisher can be obtained by computing the statistical distance between two

possible views of the distinguisher.

By a random function we mean some distribution on the set Func(H, G), the set of

all functions from H to G. In Example 2.4, we defined two families of random functions,

namely uniform random function and uniform random injective function. In cryptography,

these families are used as ideal candidates for some primitives. Now we follow the notations

used in Examples 2.4 and 2.5. Let f be a random function. For each x = (x1, · · · , xk) ∈
H[k], f [k](x) = (f(x1), · · · , f(xk)) follows the distribution induced by the distribution of

f . More precisely, for any y = (y1, · · · , yk) ∈ Gk,

Pr[f [k](x) = y] =
∑
f0∈I

Pr[f = f0], where I := {f ∈ Func(H, G) : f [k](x) = y}.

Let f and g be two random functions. Let D be a distinguisher that has a function oracle

which is either f or g. The distinguisher behaves as follows.

1. First it chooses a random string r from R.

2. Based on r it makes query x1 := x1(r) ∈ H and obtains y1 ∈ G.

18

3. Then it makes queries x2 = x2(r, y1) ∈ H and obtains y2 ∈ G and so on.

Even if x2 depends on x1, it is a function of r and y1 since x1 is a function of r only.

Thus, xi is a function of (r, y1, · · · , yi−1). We say that these functions x1, x2, · · · are query

functions (or x = (x1, · · · , xk) is a k-query function) and the tuple (y1, · · · , yk) ∈ Gk is

the conditional view of the distinguisher (conditioned on the random string r) where k is

the number of queries. Note that the output of D is completely determined by the chosen

random string r and the conditional view (y1, · · · , yk). We define the advantage of D to

distinguish between f and g as

Advf,g(D) = |Pr[Df = 1]− Pr[Dg = 1]|.

Define

df,g(k) = maxDAdvf,g(D),

where the maximum is taken over all oracle algorithms D which make at most k queries.

This denotes the maximum distinguishing advantage for two random functions f and g

where the attacker is making at most k queries. Note that there is no restriction on the com-

putational resources of D. We can think of D as a tuple of functions (x1, · · · , xk,A) where

the xi’s are query functions and A is the final output function which takes (r, y1, · · · , yk) as

input. The tuple (y1, · · · , yk) depends on the random string r and query functions (xi’s).

Denote this view without the random string (y1, · · · , yk) by f [k]r,x1,··· ,xk
or g[k]r,x1,··· ,xk

(in

short, f [k]r,x or g[k]r,x) for the random function f and g respectively. So basically, A
is distinguishing two families of random variables {f [k]r,x1,··· ,xk

}r∈R and {g[k]r,x1,··· ,xk
}r∈R.

Thus,

Advf,g(D) =
∣∣∑

r∈R

Pr[A(r, f [k]r,x) = 1]× Pr[r]−
∑
r∈R

Pr[A(r, g[k]r,x) = 1]× Pr[r]
∣∣

=
∑
r∈R

Pr[r]× dA(f [k]r,x, g[k]r,x)

≤
∑
r∈R

Pr[r]× dstat(f [k]r,x, g[k]r,x).

Hence, given any probabilistic distinguisher D = (x1, · · · , xk,A) one can define a deter-

ministic distinguisher D0 = (x1, · · · , xk,A0) such that Advf,g(D) ≤ Advf,g(D0). Here, D0

19

chooses a random string r0 with probability one (i.e., a deterministic algorithm) such that

dstat(f [k]r,x, g[k]r,x) = maxr∈R dstat(f [k]r,x,g[k]r,x) and A0 behaves as in Lemma 2.8.

Now we state two assumptions that will be used for the remainder of this thesis.

Assumption 1 (Distinguishers are deterministic) We assume that all distinguishing

algorithms are deterministic. Thus, x1 is a constant and xi is a function of (y1, · · · , yi−1)

for i ≥ 2.

Assumption 2 (Query functions are distinct) To avoid overly-complex notation we

use the same notation xi to denote the function as well as the output of the function. We

will assume that all outputs of xi’s (or xi as a functional value) are distinct (otherwise one

can restrict to the set of distinct values of xi).

Now we use the notation f [k]x1,··· ,xk
instead of f [k]r,x1,··· ,xk

to denote the view of the

distinguisher. We can write that

df,g(k) = maxxdstat(f [k]x, g[k]x),

where the maximum is taken over all k-query functions x = (x1, · · · , xk). Thus, to obtain

an upper bound on df,g(k), it would be enough to bound dstat(f [k]x, g[k]x) for each k-query

function x. The following theorem, due to D. J. Bernstein [4], shows how one can obtain

this.

Theorem 2.9. If Pr[f [k](a) = y] ≥ (1 − ε) × Pr[g[k](a) = y] for each a ∈ H[k] and

y ∈ Gk, then for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x) ≤ ε and hence

df,g(k) ≤ ε.

Proof. Pr[f [k]x1,··· ,xk
= (y1, · · · , yk)]

= Pr[f [k](a1, · · · , ak) = (y1, · · · , yk)] ((a1, · · · , ak) is uniquely determined by (y1, · · · , yk))

≥ (1− ε)× Pr[g[k](a1, · · · , ak) = (y1, · · · , yk)]

= (1− ε)× Pr[g[k]x1,··· ,xk
= (y1, · · · , yk)], for all (y1, · · · , yk) ∈ Gk.

The Theorem now follows from Lemma 2.6.

Remark 2.10. The above theorem implies for any adversary with oracle access to f or g,

the distinguishing advantage is at most ε.

20

2.2.3 A note on uniform random functions

Let FG denote the set of all functions from G to G. Let f be a function randomly chosen

from FG with uniform distribution. Then we call f : G → G a uniform random function.

Now we have the following straightforward but important properties of f .

1. For all x, y ∈ G, Pr[f(x) = y] = 1
|G| .

2. For all x, y, xi ∈ G, such that x 6= xifor all i ∈ {1, . . . , k}, Pr[f(x) = y|f(x1) =

y1, . . . , f(xk) = yk] = 1
|G| .

In other words the second property tells us that knowing the function on some values

does not help us guessing the output on a new value.

21

Chapter 3

A note on graph theory

In this chapter we collect some definitions and notions from graph theory that we will use

in subsequent chapters.

3.1 Directed graphs

Let G = (D, E) be a directed graph where E ⊂ D ×D and |D| = N . Denote the number

of edges by e(G). The degree of a vertex v (denoted as deg(v)) is the sum of out-degree

(or degout(v)) and in-degree (or degin(v)) of the vertex where

degout(v) = |{u : (v, u) ∈ E}| and degin(v) = |{u : (u, v) ∈ E}|.

Define V (G) = {v : deg(v) > 0}. Denote the number of vertices with positive degree

by r(G) i.e., |V (G)| = r(G). We denote ∆(G) = r(G) − e(G). This is an important

parameter of a graph. The undirected graph that corresponds to a directed graph is the

graph obtained by considering all directed edges as undirected. This undirected graph may

contain a self loop and at most two parallel edges. For a connected undirected graph G, G

is a tree if and only if ∆(G) = 1. Also for a connected undirected graph G′, G′ contains

exactly one cycle if and only if ∆(G′) = 0; these graphs are called unicycle graphs.

In this thesis we are interested in the following families of directed graphs:

1. A straight line path of length k is a directed graph G = (D, E) where E = {(x0, x1), (x1, x2),

22

· · · , (xk−1, xk)} and x0, x1, · · · , xk are distinct. Here x0 is the source node and xk is

the end point of the straight line path, and ∆(G) = 1.

2. A cycle is a directed graph G = (D, E) where E = {(x0, x1), (x1, x2), · · · , (xk−1, xk =

x0)} and x0, x1, · · · , xk−1 are distinct. Here k can be 1, in which case the cycle consists

of a single self loop (x0, x0) (note that x1 = x0). If G is a cycle, then ∆(G) = 0.

3. An s-unicycle is a directed graph G = (D, E) where E is union of a cycle C and

s1(≤ s) distinct straight line paths P1, · · · , Ps1 whose end points are vertices of the

cycle C. The paths Pi are not necessarily disjoint. Each straight line path contributes

at most one node in V (G) with in-degree zero. Thus there are at most s nodes in

V (G) with in-degree zero. If G is an s-unicycle, then ∆(G) = 0.

Let G1 = (D, E1) and G2 = (D, E2) be two directed graphs. A function α : D → D is an

isomorphism from G1 to G2 if α is bijection and (x, y) ∈ E1 if and only if (α(x), α(y)) ∈ E2.

If such a function exists we write G1
∼= G2 and say that G1 and G2 are isomorphic.

Moreover for A ⊂ D, if α is the identity on A then α is called an A-isomorphism and we

write G1
∼=A G2. G1 and G2 are said to be A-isomorphic. If there is no such A-isomorphism

then G1 and G2 are non A-isomorphic. The notion of A-isomorphism is not standard but

we need this notion in this thesis.

Example 3.1. In Figure 3.1 all graphs are isomorphic but G1 and G2 are not A-isomorphic

where A = {1, 2, 4, 5}. Clearly, G1 and G3 are A-isomorphic, where A = {1, 2, 4, 5}.

Lemma 3.2. The number of directed graphs isomorphic to a given graph G = (D, E) is at

most N(N−1) · · · (N−r+1) (which is less than N r), where r = |V (G)|. If A ⊂ V (G) has

size s, then the number of graphs A-isomorphic to G is at most (N−s)(N−s+1) · · · (N−
r + 1) (which is less than N r−s).

Proof. Let G′ = (D, E ′) be an isomorphic copy of G, and let α : G → G′ be an

isomorphism. G′ is completely determined by V (G′) and α (α determines uniquely the

edge set E ′). Now we can choose V (G′) ⊂ D in
(

N
r

)
ways. For each choice there are at

most r! isomorphisms. Thus we have at most
(

N
r

)
×r! isomorphic copies of G. Similarly, we

can prove for the second part. Note that if G′ is an A-isomorphic copy of G and A ⊂ V (G)

then A ⊂ V (G′). Thus, we can choose V (G′) in
(

N
r−s

)
ways and for each choice there are

at most (r − s)! isomorphisms.

23

3.2 Function graphs

A directed graph G = (D, E) is called a function graph if (x, y1), (x, y2) ∈ E implies that

y1 = y2. A partial function f on D can be uniquely characterized by a function graph and

vice versa by the following rule:

f(x) = y if and only if (x, y) ∈ E.

Define the domain of a function graph G as

Dom(G) = {v : degout(v) > 0}.

Since it is a function graph, Dom(G) = {v : degout(v) = 1}. Moreover Dom(G) is the

domain of the corresponding partial function. Clearly, |Dom(G)| = e(G) (map an edge

(v, w) ∈ E to v ∈ Dom(G)).

Figure 3.1: Unicycle function graph

Example 3.3. The graphs in Figure 3.1 are function graphs since there are no nodes with

out-degree greater than one. The partial function corresponding to G1 is f(1) = 3, f(2) =

3, f(3) = 7, f(4) = 6, f(5) = 7, f(6) = 7, f(7) = 8, f(8) = 9, f(9) = 9. The domain of the

graph G1 is Dom(G1) = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

24

A function f is called compatible with a function graph G = (D, E) if f(x) = y whenever

(x, y) ∈ E. Note that for a given function graph G there are NN−e compatible functions

f : D → D with G where e = |e(G)| = |Dom(G)|, namely

f(x) =

{
y, if (x, y) ∈ E (in other words x ∈ Dom(G)),

∗, otherwise.
(3.1)

Here “ * ” means that the function is defined arbitrarily. Now we know that, given an

s-set A ⊂ Dom(G), there are at most N r−s many A-isomorphic graphs where r = |V (G)|.
Thus,

|FG = {f : D → D : f is compatible with some G′ ∼=A G}| ≤ NN−s+∆,

where ∆ = ∆(G).

Now we consider a special class of function graphs called (`, A)-iterated function graphs

where A ⊂ D is an s-set. A function graph G is called an (`, A)-iterated graph (or function

graph) if there exists a function f such that the domain of G is

Dom(G) = {y : f (i)(x) = y, x ∈ A, 0 ≤ i ≤ `− 1}.

We denote by G`,A[f] the (`, A)-iterated function graph for the function f (this is un-

ambiguous since the graph is completely determined the tuple (`, A, f)). For A = {x},
we sometime write G`,x[f]. Thus G`,A[f] is the union (not necessarily disjoint) of G`,x[f],

where x ranges over all elements in A. Now G`,x[f] can be one of the following :

1. f (0)(x) = x, f (1)(x) = f(x), · · · , f (`)(x) are distinct. In this case the graph is a

straight line path.

2. f (0)(x) = x = w0, f
(1)(x) = f(x) = w1, · · · , w` = f (`)(x) are not distinct; that is

w0, · · · , wi are distinct for some i < ` and wi+1 = wj, for some j ≤ i. This is a

1-unicycle (or sometimes called ρ straight line path as the structure looks like the

letter ρ).

25

Figure 3.2: Tree and unicycle function graphs

Theorem 3.4. G`,A[f] is the union of unicycles and straight line paths. More specifically,

it is the disjoint union of trees and unicycle paths where the number of nodes in V (G`,A[f])

with zero out-degree is at most s = |A|.

Proof. We skip the proof as it is straightforward and needs some more notation. One can

see the idea of the proof by examining different examples such as in Figure 3.2.

26

Chapter 4

An attack on CBC-MAC

The only known attack on CBC-MAC is based on collisions. Suppose we know a collision

for CBC-MAC, that is X1, X2 ∈ D∗ such that CBC(X1) = CBC(X2). Then we know that

CBC(X1, x) = CBC(X2, x) for any x ∈ D. Thus we have the following forgery attack.

Make query (X1, x) and obtain the response t. Then ((X2, x), t) is a valid message-tag

pair. For distinguishing attack one can use this valid message-tag pair to distinguish. This

forgery attack can also be mounted on PMAC and many other MACs including XCBC [5],

TMAC [11] and OMAC [9].

In this chapter we will explore how efficiently (in terms of the number of queries) one can

obtain a collision for CBC-MAC. We will estimate the collision probability more closely for

suitably chosen messages. Similar techniques can be used for PMAC and other CBC-like

constructions.

Let Xi = (xi, 0, · · · , 0) ∈ D` be `-tuples such that the xi’s for 1 ≤ i ≤ q, are pairwise

distinct. Clearly, CBCf (xi, 0, · · · , 0) = f (`)(xi), where the function f (i)(x) is defined as

follows for i ≥ 0:

f (0)(x) = x and f (i)(x) =

i times︷ ︸︸ ︷
f ◦ · · · ◦ f (x) for i ≥ 1.

That is,

f (i)(x) = f(f (i−1)(x)).

27

We want to find a lower bound for the collision probability, i.e.,

Prf [CBCf (Xi) = CBCf (Xj) for some i 6= j]

= Prf [f
(`)(xi) = f (`)(xj) for some i 6= j]

= Prf [
⋃

1≤i<j≤q

Ci,j]

≥
∑
i<j

Prf [Ci,j]− 3
∑

i<j<k

Prf [Ci,j,k]−
1

2

∑
i<j,k<m

{i,j}∩{k,m}=∅

Prf [Ci,j ∩ Ck,m] (4.1)

where Ci,j denotes the event that f (`)(xi) = f (`)(xj) and Ci,j,k denotes the event that

f (`)(xi) = f (`)(xj) = f (`)(xk). The last inequality follows from Principle of Inclusion and

Exclusion. Now for any event E,

Prf [E] =
|{f : D → D|E is true }|

NN
,

since NN is the total number of functions f : D → D. Thus, this is the probability

that a uniform random function on D (or a function chosen uniformly from the set of all

functions) satisfies the event E. To have an estimate in Equation 4.1, we are interested in

computing the following bounds.

1. |Fi,j,k| ≤ 2`2NN−2 + 6`6NN−3, where

Fi,j,k = {f : f (`)(xi) = f (`)(xj) = f (`)(xk)}

and xi, xj, xk are distinct.

2. |Fi,j,k,m| ≤ NN−2`2 + NN−3(6`4 + 4`5) + 28`8NN−4, where

Fi,j,k,m = {f : f (`)(xi) = f (`)(xj), f
(`)(xk) = f (`)(xm)}

and xi, xj, xk, xm are distinct.

3. |Fi,j| ≥ `NN−1 exp(−4`2

N
), where

Fi,j = {f : f (`)(xi) = f (`)(xj)},

xi and xj are distinct and, 1 ≤ ` ≤ N
4

+ 1
2
.

28

To prove these three bounds we will use the properties of directed graphs that were

introduced in Chapter 3. If y = f(x) then (x, y) will be considered as an edge of a graph.

The events Ci,j, Ci,j,k, Ci,j ∩Ck,m can then be translated into a counting problem in graph

theory, more precisely to compute the number of non-isomorphic graphs in a special class.

We will describe these problems in more detail below. Now, we have the following main

theorem of this chapter (by using Equation 4.1 and the three bounds listed above).

Theorem 4.1. The collision probability, Prf [CBCf (Xi) = CBCf (Xj) for some i 6= j],

is at least

∆ :=

(
q

2

)
`

N
exp

(
−4`2

N

)
−3

(
q

3

)(
2`2

N2
+

6`6

N3

)
−1

2

(
q

2

)(
q − 2

2

)(
28`8

N4
+

6`4 + 4`5

N3
+

`2

N2

)
For large N , the above expression is Ω(q2`

N
)− c(q, `,N) when q2`

N
< 8

3
and ` = o(N

1
3). Also,

c(q, `,N) goes to zero when q2` = O(N), ` = o(N
1
3) and N is large.

Remark 4.2. Bellare [2] proved that CBC-MAC based on random permutations is secure

and the advantage is bounded by O(`q2/N) provided that ` = o(N1/3). Here we show that

there is an attack on CBC based on random functions with advantage Ω(`q2/N). The idea

behind our attack cannot be easily extended to CBC-MAC based on random permutations.

These observations indicate that CBC-MAC based on random permutations is more secure

than that based on random functions.

Lower Bound of Probability of Collision Events

We first present the main ideas used to prove the aforementioned bounds.

Suppose that we want to find an upper bound on Pr[E], where E is some event related

to uniform random functions and the probability is computed with respect to the uniform

random functions. (Recall that each function f ∈ Func(D, D) has equal probability that is
1

NN .) To do so, we count the number (or give an upper bound) of functions f ∈ Func(D, D)

such that the event E is true. Let F = {f : E is true}. Then Pr[E] = |F|
NN . We then

proceed as follows.

1. Associate each function f ∈ F to a function graph G ∈ G such that f is compatible

with G. Here G is some classes of function graphs.

29

2. Now for a suitable choice of s-set A, partition G by A-isomorphism. That is, G =⊔L
i=1 Gi where all elements within Gi are A-isomorphic and graphs belonging to two

distinct classes are non-A-isomorphic. Let ∆i = ∆(G) where G ∈ Gi.

3. Now we can derive an upper bound as follows. We know by Lemma 3.2 that |FG| ≤
NN−s+∆i for G ∈ Gi. We denote FG by FGi

. Note that this is well defined. Since

F ⊆
⊔L

i=1FGi
, we have |F| ≤

∑L
i=1 NN−s+∆i . If we know that there are Li many

classes whose ∆ value is i ≥ 0, then

|F| ≤
∑
i≥0

Li ·NN−s+i. (4.2)

4. Consequently it suffices to suitably associate a function to a function graph, choose

a suitable set A, and compute Li for all possible values of i.

Upper Bound on |Fi,j,k|

First consider Fi,j,k. We define A = {xi, xj, xk} and associate each f ∈ Fi,j,k to the function

graph G`,A[f] ∈ G where G = {G`,A[f] : f ∈ Fi,j,k}. Note that G ∈ G is either a tree (in

which case ∆ = 1) or a 3-unicycle (in which case ∆ = 0). Now we have to count Li, the

number of non-A-isomorphic graphs for ∆ ∈ {0, 1}. As we can see in Figure 4.1 there are

two possibilities.

1. ∆ = 1 : G is a tree. Let x be the collision node, that is f (`)(xi) = f (`)(xj) =

f (`)(xk) = x. Each tree is determined by the point of intersection of the xj path and

the xi path (` choices), and the point of intersection of the xk path and union of the

xi and xj paths (at most 2` choices because there are at most 2` edges in the union

of xi and xj paths). Thus, L1 ≤ ` · 2` = 2`2.

2. ∆ = 0 : G is a 3-unicycle graph. Each 3-unicycle graph is determined by the length of

the cycle, the distance from xi to the cycle, the location of the point of intersection

of xj path and union of xi path and the cycle, and the location of the point of

30

Figure 4.1: Possible function graphs for estimating |Fi,j,k|

intersection of xk path and union of xi path, xj path and the cycle. There are at

most ` choices for each dependency, except for the location of the point of intersection

(for xk) which has at most 2` choices. Thus L0 ≤ ` · ` · (2` · `) · (3` · `) = 6`6.

Thus, |Fi,j,k| ≤ 2`2NN−2 + 6`6NN−3.

Upper Bound on |Fi,j,k,m|

We define A = {xi, xj, xk, xm} and associate each f ∈ Fi,j,k,m to the function graph

G`,A[f] ∈ G where G = {G`,A[f] : f ∈ Fi,j,k}. As we can see in Figure 4.2, there are

various possibilities for G ∈ G depending upon the value of ∆ ∈ {0, 1, 2}.

1. ∆ = 2 : G is the disjoint union of two trees consisting of two paths each. Let

f (`)(xi) = f (`)(xj) = x and f (`)(xk) = f (`)(xm) = y. Each tree is determined by the

point of intersection of the xj and xi paths (` choices) and the point of intersection

of the xk and xm paths (` choices). Thus, L2 ≤ `2.

2. ∆ = 1 : G is either a tree consisting of four paths or the union of a 2-unicycle and a

tree consisting of two paths. In this case L1 ≤ ` ·2` · ` ·3`+2 · ` · ` · ` · ` ·2` = 6`4 +4`5.

31

(When G is union of a 2-unicycle and a tree consisting of two paths, there are 2

choices whether xi, xj is in the tree or not, ` choices for the tree, ` choices for the

cycle length, ` choices for the distance of xk from the cycle, ` choices for the distance

of xm from the cycle, 2` choices for the point of intersection of xk and xm path.)

3. ∆ = 0 : G is either a 4-unicycle graph or the union of two disjoint 2-unicycle graphs.

Hence L0 ≤ 24`8 + 4`8 = 28`8.

Thus, |Fi,j,k,m| ≤ NN−2`2 + NN−3(6`4 + 4`5) + 28`8NN−4.

Lower Bound on |Fi,j|

Let Fi,j = {f : f (`)(xi) = f (`)(xj)} for distinct xi, xj ∈ D, and let

Fk
i,j = {f ∈ Fi,j : f (k)(xi) = f (k)(xj) and f (k1)(xi), f

(k2)(xj) are distinct 0 ≤ k1, k2 ≤ k−1}

where 1 ≤ k ≤ `. That is Fk
i,j is the set of functions where all intermediate outputs are

distinct before the kth round and at the kth round we have a collision. Clearly Fk
i,j’s

are disjoint sets and Fi,j ⊇
⊔`

k=1Fk
i,j. So, |Fi,j| ≥

∑`
k=1 |Fk

i,j|. The following lemma is a

straightforward counting argument.

Lemma 4.3. For 2 ≤ k ≤ `, |Fk
i,j| = (N − 2)(N − 3)...(N − 2k + 1)NN−2k+1 and |F1

i,j| =
NN−1.

Proof. If the collision is at the first round then f(xi) = f(xj) can take N values. And the

remainder of the (N − 2) points in the domain of f can also take N values each. Hence

|F1
i,j| = N ×NN−2 = NN−1.

Now for the counting of Fk
i,j, with a similar approach (f(xi), f(xj)) can take (N−2)(N−3)

values (as f(xi), f(xj) are distinct from xi, xj), (f (2)(xi), f
(2)(xj)) can take (N − 4)(N − 5)

values, and so on. Finally (f (k−1)(xi), f
(k−1)(xj)) can take (N −2k +2)(N −2k +1) values,

and f (k)(xi) = f (k)(xj) can take N values. The remainder of the (N − 2k) points in the

domain of f can take N values each. Hence all together we have

|Fk
i,j| = (N − 2)(N − 3)...(N − 2k + 1)NN−2k+1.

32

Lemma 4.4. For 1 ≤ ` ≤ N
4

+ 1
2
, Prf [Ci,j] ≥ `

N
exp(−4`2

N
).

Proof. From Lemma 4.3 we have

|F| ≥ NN−1(1 +
∑̀
i=2

(1− 2

N
)(1− 3

N
)...(1− 2k − 1

N
)).

Hence

Prf [Ci,j] ≥

(
1 +

∑̀
k=2

(1− 2

N
)(1− 3

N
)...(1− 2k − 1

N
)

)
1

N

Replacing each term in the sum by
∏2`−1

k=1 (1− k
N

) we get,

Prf [Ci,j] ≥
`

N

2`−1∏
k=1

(1− k

N
)

≥ `

N
exp(−4`2

N
).

In the last step we have used the inequality 1−x ≥ exp(−2x) which is true for 0 ≤ x ≤ 0.5

(and hence we need that ` ≤ N/4 + 1/2).

We finally can prove Theorem 4.1.

Theorem 4.1. The collision probability, Prf [CBCf (Xi) = CBCf (Xj) for some i 6= j],

is at least

∆ :=

(
q

2

)
`

N
exp

(
−4`2

N

)
−3

(
q

3

)(
2`2

N2
+

6`6

N3

)
−1

2

(
q

2

)(
q − 2

2

)(
28`8

N4
+

6`4 + 4`5

N3
+

`2

N2

)
.

For large N , the above expression is Ω(q2`
N

)− c(q, `,N) when q2`
N

< 8
3

and ` = o(N
1
3). Also,

c(q, `,N) goes to zero when q2` = O(N), ` = o(N
1
3) and N is large.

Proof. Equation 4.1 and the upper bounds on |Fi,j,k|, |Fi,j,k,m| and Lemma 4.4 readily

give the expression for ∆. We know
(

q
2

)
≥ q2

3
,
(

q
3

)
≤ q3

6
and

(
q
2

)(
q−2
2

)
≤ q4

4
. Hence we have

∆ ≥ q2`

3N
exp

(
−4`2

N

)
− q3

2

(
2`2

N2
+

6`6

N3

)
− q4

8

(
28`8

N4
+

6`4 + 4`5

N3
+

`2

N2

)
.

33

Putting α = q2`
N

and

c(q, `,N) =
1

2

(
q2`

N

)1.5(
2`0.5

N0.5
+

6`4.5

N1.5

)
+

1

8

(
q2`

N

)2(
28`6

N2
+

6`2 + 4`3

N

)
,

we get, ∆ ≥ α(1
3
− α

8
)− c(q, `,N) when ` = o(N

1
3) and N is large. So ∆ ≥ dα− c(q, `,N),

when α ≤ 8
3
− d. Hence

∆ ≥ Ω(
q2`

N
)− c(q, `,N),

as long as q2`
N

< 8
3
. Also c(q, `,N) goes to zero when q2` = O(N), ` = o(N

1
3) and N is

large.

Exact computation of collision probability

We can use Theorem 4.1 to have a distinguishing attack and MAC-forgery. Here we will

see how the bound in Theorem 4.1 is practically meaningful. We will compute the collision

probability numerically for suitable choices of ` and q. This calculation is important as

sometimes the constant can make a real difference.

Example 4.5. MAC forgery when n = 64.

Taking q = c1N
1
3 and ` = c2N

1
3 , α = c2

1c2 we get,

∆ ≈ α

2
− α2

8
− (3α

3
2 c

9
2
2 +

7

2
α2c6

2 +
1

2
α2c3

2).

So for small c2, ∆ ≈ α
2
− α2

8
To maximize ∆ we take α = 2, and we get ∆ ≈ 0.5.

Hence taking q =
√

20 · 2 64
3 , ` = 0.1× 2

64
3 , we get ∆ = 0.499.

Example 4.6. MAC forgery when n = 128.

Taking q =
√

20 · 2 128
3 , ` = 0.1 · 2 128

3 , we get ∆ = 0.499.

To conclude here we have shown one attack on CBC-MAC (finding a collision pair),

with queries X1, · · · , Xq where Xi is an `-tuple (xi, 0, · · · , 0), xi ∈ D for 1 ≤ i ≤ q. The

success probability of the attack is at least ∆.

34

Figure 4.2: Possible function graphs for estimating |Fi,j,k,m|

35

Chapter 5

An attack on PMAC

We provide an analysis of the collision probability for PMAC for suitably chosen two block

messages, that is ` = 2. We choose messages (x1, 0), · · · , (xq, 0) ∈ D2 and want to compute

a lower bound for the collision probability for these messages. Note that, for ` = 2, PMAC

acts very similar to CBC-MAC with ` = 2. We have the following main result for PMAC.

Theorem 5.1. When ((x1, 0), (x2, 0), · · · , (xq, 0)) are the queries (xi’s are distinct and not

equal to zero), the advantage for distinguishing a PMAC oracle and a random oracle is at

least Ω(q2

N
)− q

N
, when q2

N
≤ c for some d > 0 such that q ≥ 1

d
, c ≤ N

3(1+d)
, and q ≤ N

4
.

Remark 5.2. We can think of a random oracle as a uniform random function G : {0, 1}∗ →
{0, 1}n. The PMAC oracle is a particular function F : {0, 1}∗ → {0, 1}n. PMAC uses one

random function f : {0, 1}n → {0, 1}n.

We call a k-tuple (x1, · · · , xk) a non-collision k-tuple if all xi’s are distinct for 1 ≤ i ≤ k.

If a k-tuple is not a non-collision k-tuple then it is a collision k-tuple.

Collision probability for PMAC

Let ((x1, 0), (x2, 0), ..., (xq, 0)) be the q queries to the PMAC oracle (xi’s are distinct and

not equal to zero). Let yi = xi + cf(0), wi = f(yi), zi = f(wi), for 1 ≤ i ≤ q. So the

zi’s are the output of the PMAC. We want to find a lower bound on the probability that

36

(z1, · · · , zq) is a collision k-tuple. The underlying function f is called a collision function

if the output tuple (z1, · · · , zq) is a collision k-tuple.

Now a collision can happen in one of the following two ways. (It can happen in other

ways also, but we restrict ourselves to the following cases as we are interested in finding a

lower bound.)

Case I:

(0, y1, · · · , yq) is a non collision (q + 1)-tuple and (w1, w2, · · · , wq) is a collision q-tuple,

wi 6= 0 for 1 ≤ i ≤ q.

In this case we can choose the (q + 1)-tuple (f(0), w1, w2, · · · , wq) in

(N − q)((N q −N(N − 1)(N − 2) · · · (N − q))

ways. So f is fixed at (q +1) points namely 0, y1, · · · , yq. The remainder of the (N − q−1)

points can be defined arbitrarily. Hence there are

(N − q)((N q − (N − 1)(N − 2) · · · (N − q))NN−q−1

collision functions in case I.

Case II:

(0, y1, y2, · · · , yq, w1, w2, · · · , wq) is a non collision (2q + 1)-tuple and (z1, z2, · · · , zq) is a

collision q-tuple.

In this case we can choose the (2q + 1)-tuple (f(0), w1, w2, · · · , wq, z1, z2, · · · , zq) in

(N − q)(N − q − 1)(N − q − 2) · · · (N − 2q)(N q −N(N − 1) · · · (N − q + 1))

ways. So f is fixed at (2q +1) points namely 0, y1, · · · , yq, z1, · · · , zq. The remainder of the

(N − 2q − 1) points can be defined arbitrarily. Hence there are

(N − q)(N − q − 1)(N − q − 2)...(N − 2q)(N q −N(N − 1)...(N − q + 1))NN−2q−1

collision functions in case II.

Clearly Case I and Case II are mutually exclusive. Hence we get the following result,

which we state as Lemma 5.3.

37

Lemma 5.3. There are at least (N − q)((N q−N(N −1)(N −2)...(N − q))NN−q−1 +(N −
q)(N − q− 1)(N − q− 2)...(N − 2q)(N q −N(N − 1)...(N − q + 1))NN−2q−1 many collision

functions.

We are now ready to prove Theorem 5.1.

Theorem 5.1. When ((x1, 0), (x2, 0), · · · , (xq, 0)) are the queries (xi’s are distinct and not

equal to zero), the advantage for distinguishing a PMAC oracle and a random oracle is at

least Ω(q2

N
)− q

N
, when q2

N
≤ c for some d > 0 such that q ≥ 1

d
, c ≤ N

3(1+d)
, and q ≤ N

4
.

Proof. From Lemma 5.3 we deduce that collision probability is at least

∆ = (1− q

N
)

(
1− (1− 1

N
) . . . (1− q − 1

N
)

)
+(1− q

N
) . . . (1−2q

N
)

(
1− (1− 1

N
) . . . (1− q − 1

N
)

)
.

Rearranging the above expression, we get

∆ =

(
1− (1− 1

N
)...(1− q − 1

N
)

)
− q

N

(
1− (1− 1

N
)...(1− q − 1

N
)

)

+(1− q

N
)...(1− 2q

N
)

(
1− (1− 1

N
)...(1− q − 1

N
)

)
.

We know that the collision probability in the case of a random oracle is 1−(1− 1
N

)...(1− q−1
N

).

Hence,

Adv ≥ (1− q

N
)...(1− 2q

N
)

(
1− (1− 1

N
)...(1− q − 1

N
)

)
− q

N

(
1− (1− 1

N
)...(1− q − 1

N
)

)
.

When 1
d
≤ q ≤ N

4
, we get

Adv ≥ exp

(
−3(1 + d)q2

N

)(
1− exp(

−(1− d)q2

2N
)

)
− q

N
.

When q2 ≤ N
3(1+d)

, the above expression is

≥ (
1− d

2
)(

q2

N
)

(
1− 3(1 + d)(

q2

N
)

)(
1− (

1− d

4
)(

q2

N
)

)
− q

N
.

Now if there exists a constant c such that q2

N
≤ c ≤ 1

3(1+d)
then Adv ≥ Ω(q2

N
)− q

N
.

38

Example 5.4. Distinguishing PMAC from a random oracle when n = 128.

Writing α = q2

N
, we get Adv ≈ α

2
(1− 3α

2
)(1− α

4
). This expression attains a maximum

value 0.083 at α = 0.3183. Hence if we make
√

0.3183 · 264 queries we get at least 0.083

advantage. This means that our attack can distinguish between a PMAC oracle and a

random oracle with advantage at least 0.083.

39

Chapter 6

Improved security analysis of PMAC

6.1 Definition of PMAC

In this section we will describe PMAC. In the next section we will analyze its security. We

would first like to make the following important comments to the reader. The definition

of PMAC we provide is a slight modification of the original definition. In the original

definition, the length of the message and the bitstring 10s (for a suitably chosen s) are

appended to the end of the message (this is called the padding). In this thesis, we consider

a different (in fact, a simpler) padding which does not append the length of the message.

All other padding rules and the definition of PMAC are exactly the same as the original

one. There are some advantages in considering the modified definition.

1. First of all, it is more efficient as we may need one less invocation of the underlying

pseudorandom function.

2. We do not have to store the length of the messages, resulting in a reduction of the

internal memory requirement.

3. Finally (and most importantly), our modification allows messages of any length to

be MACed. So, the message space for our version of PMAC is {0, 1}∗. However

for simplicity of our security analysis, we will take {0, 1}≤L as the memory space

where L can be any large integer. Note that in the original definition L should be

40

less than n2n. This choice of L is certainly large enough for all current applications.

But it is always advantageous if we know that the same construction can be used for

arbitrary-length messages.

Let f : {0, 1}n → {0, 1}n be a random function for some positive integer n. We write

N = 2n. Let M = {0, 1}≤L for a sufficiently large integer L and T = {0, 1}n. Now we

define a random function, known as the PMAC function, Pf : M→ T based on f . We

first define a padding rule which makes the message bitlength a multiple of n if it is not

already so:

pad(M) =

{
M ‖ 10s, if n 6 | |M |
M, otherwise

(6.1)

where s = nd(|M | + 1)/ne − |M | − 1. If n 6 | |M | then |pad(M)| = |M | + s + 1 =

nd(|M |+ 1)/ne, which is the smallest multiple of n strictly bigger than |M |.
Note that if M1, M2 are two distinct messages such that pad(M1) = pad(M2), then

exactly one of M1 and M2 has size multiple of n (say n | |M2| and n 6 | |M1|) and M2 =

pad(M1) = M1 ‖ 10s.

Algorithm PMAC Input :M, Output :Y = Pf (M)

1. Write pad(M) = x1 ‖ · · · ‖ x` ‖ z, where ` ≥ 0 and |x1| = · · · = |x`| = |z| = n. [

The xi’s and z are called blocks. If ` = 0, then pad(M) is nothing but z. Thus, `+1

is the total number of message blocks in pad(M).]

2. Compute w = f(0). [Since f is a random function and kept secret, the value of f(0)

has some distribution and can be used as a part of the key of the algorithm.]

3. Compute vi = xi + ci · w, 1 ≤ i ≤ `. [The ci’s are some fixed distinct nonzero

constants as given in [6]. For our security analysis, we only need that ci 6= 0 and

are distinct. ({0, 1}n, +, ·) is any representation of the Galois field GF (2n). One

can think of the addition operation + as bitwise exclusive-or ⊕ as it is the simplest

operation to implement in both hardware and software.]

4. Compute wi = f(vi), 1 ≤ i ≤ `.

41

5. Compute v = z + ∆ +
∑

1≤i≤` wi, where

∆ =

{
c · w, if n | |M |,
0, otherwise.

(6.2)

[Again, c is a nonzero fixed constant which is different from c1, c2, · · · , c` and is

specified in [6].]

6. Finally, Y
∆
= Pf (M) = f(v).

Figure 6.1: PMAC

6.2 Improved security analysis of PMAC

We are interested in computing the probability

Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq], yi ∈ {0, 1}n, M i’s are distinct.

This probability is assessed under the probability distribution of f , a uniform random

function, and it is known as the interpolation probability. Denote M = {M1, · · · , M q}
and `j = ‖ pad(M j) ‖ (the number of message blocks), 1 ≤ j ≤ q. For each 1 ≤ j ≤
q, we denote all variables in the computation of Pf (M

j) with a superscript j, that is,

42

xj
i , z

j, vj
i , w

j
i , ∆

j, vj, Y j, 1 ≤ i ≤ `j. Among them, xj
i and zj (sometimes ∆j when |M j|

is not multiple of n) are not random variables, but are fixed. All other variables are

random variables with a distribution induced from the distribution of the uniform random

functions. Sometime we also write them as w[f], vj
i [f], wj

i [f], vj[f], ∆j[f], Y j[f] to show the

dependency of f . We call

• 0, vj
i as intermediate inputs and vj as a final input,

• w, wj
i as intermediate outputs and Y j as a final output.

Note that the intermediate and final inputs are really inputs of f while computing

Pf (M
j), and intermediate and final outputs are outputs of f . We will show that for some

small ε, the interpolation probability Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq] ≥ (1− ε)/N q.

Definition 6.1. An m-tuple (a1, a2, . . . , am) is new in an r-tuple (b1, b2, . . . , br) if for all

1 ≤ i ≤ m and 1 ≤ j ≤ r we have ai 6= bj and the ai’s are pairwise distinct. Note that

m = 1 is allowed in which case, we say that a1 is new in (b1, b2, . . . , br).

Let us denote by D the event that all final inputs are distinct and different from all

other intermediate inputs. More precisely, (v1, · · · , vq) is new in (0, v1
1, · · · , v1

`1
, v2

1, · · · , vq
`q

).

Now we prove that the interpolation probability conditioned on D is 1/N q. Intuitively, it

is clear that the value of (f(v1), · · · , f(vq)) follows a uniform distribution conditioned on

the assumption that the vj’s do not occur as intermediate inputs (which is guaranteed by

the event D). We, next provide a more precise proof of this statement.

Lemma 6.2. Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq | D] = 1
Nq .

Proof. Let FD denote the set of all functions from F which satisfies the event D.

FD = {f0 ∈ F : (v1[f0], · · · , vq[f0]) is new in (0, v1
1[f0], · · · , vq

`q
[f0])}.

Let FD1 = {f0 ∈ F : (v1[f0], · · · , vq[f0]) is new in (0, v1
1[f0], · · · , vq

`q
[f0]) and Y j[f0] =

yj, 1 ≤ j ≤ q}. Thus, Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq | D] = |FD1|/|FD|. Now

consider the mapping α from FD to FD1 defined as follows:

α(f0)(x) =

{
f0(x), if x 6= vj[f0] for all j,

yj, if x = vj[f0] for some j.
(6.3)

43

Note that α is an N q-to-1 mapping. That is, for every f1 ∈ FD1 , there exists exactly N q

many f0’s such that α(f0) = f1. Given f1, the f0’s are exactly the same as f1 except that

it can take any of the N q possible values on vj[f1]’s. This is well defined since the values

of f1(v
j[f1])’s do not have any effect on the whole computations of Pf1(M

j)’s except the

final output. Thus, |FD| = N q|FD1| and hence, Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq | D] =
1

Nq .

Now we give a lower bound on Pr[D], or equivalently, an upper bound on Pr[D]. Let

Dj1,j2 be the event that (vj1 , vj2) is new in (0, vj1
1 , · · · , vj1

`j1
, vj2

1 , · · · , vj2
`j2

), j1 6= j2. It is easy

to check that D = ∪1≤j1<j2≤q Dj1,j2 . Thus if Pr[Dj1,j2] ≤ δ for some δ and all choices of

j1 < j2, then Pr[D] ≥ (1−
(

q
2

)
δ). Without loss of generality, we compute Pr[D1,2] for the

messages M1 and M2. We have several cases depending on the messages M1 and M2.

Lower bound on Pr[D1,2]

Case 1 : `1 = `2 = ` (say) and x1
1 = x2

1, · · · , x1
` = x2

` , z
1 6= z2.

Let us denote v1 = v1
1 = v2

1, · · · , v` = v1
` = v2

` and w1 = w1
1 = w2

1, · · · , w` = w1
` = w2

` .

Recall that wi = f(vi), vi = xi + ciw, vj = Σ`
i=1wi + zj + ∆j, for 1 ≤ i ≤ `, j = 1, 2.

To derive a lower bound on the probability of the event D1,2, i.e. (v1, v2) is new in

(0, v1, · · · , v`), we define another event A as follows. Let A be the event that v1 is new

in (0, v2, · · · , v`) and ∆1 + z1 6= ∆2 + z2. This implies that whenever event A is true, the

random variable w1 = f(v1) follows the uniform distribution. Using this fact we can easily

calculate a lower bound for Pr[D1,2 | A]. Then we can get lower bound

Pr[D1,2] ≥ Pr[D1,2 | A]Pr[A]

because A ∩D1,2 ⊆ D1,2.

• A is the event that v1 is new in (0, v2, · · · , v`) and ∆1 + z1 6= ∆2 + z2. Hence, for

2 ≤ i ≤ `, w 6= −x1
1

c1
,−x1

1−x1
i

c1−ci
, z2−z1

c
(assume that |M1| is a multiple of n and |M2| is

not; if both are or are not multiples of n then we necessarily have ∆1 +z1 6= ∆2 +z2).

So Pr[A] ≥ N−`−1
N

= 1− `+1
N

. This follows because A holds whenever w = f(0) takes

any value other than those (`+1) values listed above, as there are (`+1) restrictions

on the values of w.

44

• D1,2 is the event that (v1, v2) is new in (0, v1, · · · , v`). If event A holds, then for each

1 ≤ i ≤ ` we have,

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= vi, 0,

– w1 + z2 + (w2 + · · ·+ w2
`) + ∆2 6= vi, 0 and

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= w1 + z2 + (w2 + · · ·+ w2
`) + ∆2.

Thus we get Pr[D1,2 | A] ≥ N−2`−2
N

= (1 − 2`+2
N

). Note that w1 is the output of

v1 which is new in (0, v2, · · · , v`), and there are at most 2(` + 1) restrictions on the

values of w1.

• Hence Pr[D1,2] ≥ (1− `+1
N

)(1− 2`+2
N

) ≥ 1− 3`+3
N

.

Case 2 : `1 = `2 = ` (say) and x1
1 = x2

1, · · · , x1
` = x2

` , z
1 = z2.

This case can happen only if pad(M1) = M1 = M2 ‖ 10s = pad(M2) (there is one

more similar case where |M2| is a multiple of n and |M1| is not). We denote v1 = v1
1 =

v2
1, · · · , v` = v1

` = v2
` and w1 = w1

1 = w2
1, · · · , w` = w1

` = w2
` .

• Let A be the event such v1 is new in (0, v2, · · · , v`) and ∆1 + z1 6= ∆2 + z2. Hence,

for 2 ≤ i ≤ `, w 6= −x1
1

c1
,−x1

1−x1
i

c1−ci
, z2−z1

c
. So Pr[A] = N−`−1

N
= 1− `+1

N
.

• Let D1,2 be the event that (v1, v2) is new in (0, v1, · · · , v`). If event A holds, then for

each 1 ≤ i ≤ ` we have,

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= vi, 0,

– w1 + z2 + (w2 + · · ·+ w2
`) + ∆2 6= vi, 0 and

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= w1 + z2 + (w2 + · · ·+ w2
`) + ∆2.

Thus, we get Pr[D1,2 | A] ≥ N−2`−2
N

= (1 − 2`+2
N

). Note that w1 is the output of v1

which is new in (0, v2, · · · , v`).

• Now, A ∩D1,2 ⊆ D1,2 and hence Pr[D1,2] ≥ (1− `+1
N

)(1− 2`+2
N

) ≥ 1− 3`+3
N

.

45

Case 3 : `1 = `2 = ` (say) and x1
1x

1
2 . . . x1

` 6= x2
1x

2
2 . . . x2

` .

Without loss of generality we can assume x1
1 6= x2

1.

• Let A denote the event that (v1
1, v

2
1) is new in (0, v1

2, v
2
2, . . . , v

1
` , v

2
`).

Hence w 6= x1
1−x1

i

ci−c1
,

x2
1−x2

i

ci−c1
,

x1
1−x2

j

cj−c1
,

x2
1−x1

j

cj−c1
,−x1

1

c1
,−x2

1

c1
for 2 ≤ i, j ≤ `. So Pr[A] ≥ (1− 4`−2

N
)

• Let B1 denote the event that v1 is new in (0, v1
1, v

2
1, . . . , v

1
` , v

2
`). Hence w1

1 6= −(z1 +

w1
2 + · · ·w1

`),−(z1 + w1
2 + · · ·w1

`) + v1
i ,−(z1 + w1

2 + · · ·w1
`) + v2

i for 1 ≤ i ≤ `. So

Pr[B1 | A] ≥ (1− 2`+1
N

)

• Let B2 denote the event that v2 is new in (0, v1
1, v

2
1, . . . , v

1
` , v

2
` , v

1). Hence w2
1 6=

−(z2 + w2
2 + · · ·w2

`),−(z2 + w2
2 + · · ·w2

`) + v1
i ,−(z2 + w2

2 + · · ·w2
`) + v2

i , −(z2 + w2
2 +

· · ·w2
`) + w1

1 + (z1 + w1
2 + · · ·+ w1

`) for 1 ≤ i ≤ `. So Pr[B2 | B1 ∩ A] ≥ (1− 2`+2
N

).

• Now, A∩B1∩B2 ⊆ D1,2 and hence Pr[D1,2] ≥ (1− 4`−2
N

)(1− 2`+1
N

)(1− 2`+2
N

) ≥ 1− 8`+1
N

.

Case 4 : `1 6= `2 and x1
1 6= x2

1.

Assume `2 > `1.

• Let A denote the event that (v1
1, v

2
`2

) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1). Hence

w 6= x1
1−x1

i

ci−c1
,

x1
1−x2

j

cj−c1
,−x1

1

c1
for 2 ≤ i ≤ `1, 1 ≤ j ≤ `2 and w 6=

x2
`2
−x1

i

ci−c`2
,

x2
`2
−x2

j

cj−c`2
,−

x2
`2

c`2
for

1 ≤ i ≤ `1, 1 ≤ j ≤ `2 − 1. So Pr[A] ≥ (1− 2(`1+`2)
N

).

• Let B1 denote the event that (v1
1, v

2
`2

, v1) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1).

Hence we have w1
1 6= −(z1 + w1

2 + · · ·+ w1
`1

),−(z1 + w1
2 + · · ·+ w1

`1
) + v1

i ,−(z1 + w1
2 +

· · ·+ w1
`1

) + v2
j for 1 ≤ i ≤ `1, 1 ≤ j ≤ `2. So Pr[B1|A] ≥ (1− `1+`2+1

N
).

• Let B2 denote the event that (v1
1, v

2
`2

, v1, v2) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1).

Hence we have w2
`2
6= −(z2 + w2

1 + · · ·+ w2
`2−1),−(z2 + w2

1 + · · ·+ w2
`2−1) + v1

i ,−(z2 +

w2
1 + · · · + w2

`2−1) + v2
j ,−(z2 + w2

1 + · · · + w1
`2−1) + w1

1 + (z1 + w1
2 + · · · + w1

`) for

1 ≤ i ≤ `1, 1 ≤ j ≤ `2. So Pr[B2|A ∩B1] ≥ (1− `1+`2+2
N

).

• Now, A∩B1∩B2 ⊆ D1,2 and hence Pr[D1,2] ≥ (1− 2(`1+`2)
N

)(1− `1+`2+1
N

)(1− `1+`2+2
N

) ≥
1− 4(`1+`2)+3

N
.

46

Case 5 : `1 < `2 and x1
1 = x2

1, · · · , x1
`1

= x2
`1
.

• Let A denote the event that (v2
1, v

2
`2

) is new in (0, v2
2, · · · , v2

`2−1). Hence we have

w 6= −x2
1

c1
,−

x2
`2

c`2
,−

x2
`2
−x2

1

c`2
−c1

,−x2
i−x2

1

ci−c1
,−

x2
`2
−x2

j

c`2
−cj

for all 2 ≤ i ≤ `2 − 1, 2 ≤ j ≤ `2 − 1. So

Pr[A] ≥ (1− 2`2−1
N

).

• Let B denote the event that v1 is new in (0, v2
1, · · · , v2

`2
). Hence we have w2

1 6=
−(z1 + ∆1)− (w2

2 + · · ·+ w2
`1

),−(z1 + ∆1)− (w2
2 + · · ·+ w2

`1
) + v2

i for 1 ≤ i ≤ `2. So

Pr[B|A] ≥ (1− `2+1
N

).

• As defined before D1,2 is the event that (v1, v2) is new in (0, v2
1, · · · , v2

`2
). Hence we

have w2
`2
6= −(z2+∆2)−(w2

1 + · · ·+w2
`2−1),−(z2+∆2)−(w2

1 + · · ·+w2
`2−1)+v2

i ,−(z2+

∆2)− (w2
1 + · · ·+ w2

`2−1) + v1 for all 1 ≤ i ≤ `2. So Pr[D1,2|A ∩B] ≥ (1− `2+2
N

).

Hence Pr[D1,2] ≥ (1− 2`2−1
N

)(1− `2+1
N

)(1− `2+2
N

) ≥ 1− 4`2+2
N

.

Now we are in a position to give a lower bound for the interpolation probability.

Lemma 6.3. Let M1, · · · , M q be distinct messages from M, and let y1, · · · , yq ∈ T (not

necessarily distinct). Then

Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq] ≥ 1− ε

N q
= (1− ε)×Pr[F (M1) = y1, · · · , F (M q) = yq],

where ε = 4(q−1)σ
N

and F is a uniform random function on Func({0, 1}≤L, {0, 1}n).

Proof. From the above five cases we can say that for any two messages M j1 and M j2 ,

Pr[Dj1,j2] ≤ 4((`j1 − 1) + (`j2 − 1)) + 3

N
.

(Here `i denotes total number of blocks including z.) Thus,

Pr[D] ≤
∑

1≤j1<j2≤q

4(`j1 + `j2)− 5

N
=

4(q − 1)
∑

j `j

N
− 3q(q − 1)

2N
≤ 4(q − 1)σ

N
.

Hence by Lemma 6.2 we get

Pr[Pf (M
1) = y1, · · · , Pf (M

q) = yq] ≥ 1− ε

N q
, where ε =

4(q − 1)σ

N
.

47

The rest of the claim in the statement of the Lemma follows trivially.

Lemma 6.3 precisely gives the precondition for applying Theorem 2.9. With the help

of Remark 2.10 we get the final result of this section which we mention as Theorem 6.4.

Theorem 6.4. AdvPMAC(q, σ, t) ≤ 4(q−1)σ
N

.

To conclude the chapter, here we have shown that for any attacker (making q queries

with σ blocks in total) trying to distinguish a PMAC oracle and a random oracle the

advantage is bounded by O(qσ
N

).

48

Chapter 7

Conclusion

We have seen how counting arguments and a combinatorial approach give rise to improved

security bounds for PMAC and distinguishing attacks in the case of CBC-MAC and PMAC.

In all the cases we have assumed that the underlying compression functions in the MAC

algorithms are random functions. However in practical implementations generally random

permutations are preferred instead of random functions, mainly due to simplicity of imple-

mentations of pseudorandom permutations. Our work in the case of CBC-MAC indicates

that not only are random permutations simpler to implement, but CBC-MAC based on

random permutations tends to be more secure than than CBC-MAC based on random

functions. This is because we have shown one attack with advantage Ω(`q2

N
) for CBC-MAC

based on random functions, whereas no similar attack is known for CBC-MAC based on

random permutations. And it is not trivial to extend our attack idea to the case of random

permutations. Bellare, Pietrzak and Rogaway [2] have shown a security bound of O(`q2

N
)

in the case of CBC-MAC based on random permutations, whereas Bernstein [4] has shown

a security bound of O(`2q2

N
) in the case of CBC-MAC based on random functions. And in

the case of CBC-MAC based on random permutations the best attack known is based on

the birthday attack with advantage Ω(q2

N
). So we see that in both the cases there is a gap

between the security bound and the best attack known. It would be a nice result if that

gap can be removed.

We also have shown an improved security bound for PMAC based on random functions,

following the ideas of Bernstein and Nandi [4, 13]. The underlying idea is based on a

49

counting principle and can easily be adopted to prove security for various other MAC

constructions. Also unlike the previous case, our analysis can be extended to PMAC

based on random permutations. In fact, recently Minematsu and Matsushima [16] (to be

published in FSE-2007 proceedings) have obtained the same bound as us for PMAC based

on random permutations. But in some sense our bound is a little more general than theirs.

Their security bound is O(`maxq2

N
), while ours is O(qσ

N
). The security analysis is made on

a slight modification of PMAC (without length padding), but the analysis also holds for

the original PMAC definition. Hence one can use PMAC for arbitrary length messages.

As a future research work, we hope that our security analysis can be extended to obtain

improved bounds on a general class called PRF domain extension using directed acyclic

graph given in [10, 13].

50

Bibliography

[1] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the

Hash-CBC Constructions. Advances in Cryptology – CRYPTO 2001. Lecture Notes

in Computer Science, Volume 2139, pp 292-309, Springer-Verlag 2001.

[2] M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC MACs.

Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer Science, Volume

3621, pp 527-545, Springer-Verlag 2005.

[3] M. Bellare, J. Killan and P. Rogaway. The Security of the Cipher Block Chaining

Message Authentication Code. Advances in Cryptology – CRYPTO 1994. Lecture

Notes in Computer Science, Volume 839, pp 341-358, Springer-Verlag 1994.

[4] Daniel J. Bernstein. A Short Proof of the Unpredictability of Cipher Block Chaining

(2005). URL: http://cr.yp.to/papers.html#easycbc.

[5] J. Black and P. Rogaway. CBC MACs for Arbitrary Length Messages. Advances in

Cryptology – CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp

197-215, Springer-Verlag 2000.

[6] J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable Mes-

sage Authentication. Advances in Cryptology – Eurocrypt 2002. Lecture Notes in

Computer Science, Volume 2332, pp 384-397, Springer-Verlag 2002.

[7] J. Daemen and V. Rijmen. Resistance Against Implementation Attacks.

A Comparative Study of the AES Proposals. In Proceedings of the Second

51

AES Candidate Conference (AES2), Rome, Italy, March 1999. Available at

http://csrc.nist.gov/encryption/aes/aes home.htm.

[8] H. Krawczyk. LFSR-based Hashing and Authenticating. Advances in Cryptology –

CRYPTO 1994, Lecture Notes in Computer Science, Volume 839, pp 129-139, Springer-

Verlag 1994.

[9] T. Iwata and K. Kurosawa. OMAC : One-Key CBC MAC. Fast Software Encryption,

10th International Workshop, FSE 2003. Lecture Notes in Computer Science, Volume

2887, pp 129-153, Springer-Verlag 2003.

[10] C. S. Jutla. PRF Domain Extension Using DAG. Theory of Cryptography: Third

Theory of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science,

Volume 3876, pp 561-580, Springer-Verlag 2006.

[11] K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology -

CT-RSA 2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture Notes

in Computer Science, Volume 2612, pp 33-49, Springer-Verlag 2003.

[12] M. Luby and C. Rackoff. How to Construct Pseudo-random Permutations from

Pseudo-random Functions. Advances in Cryptology, CRYPTO’ 85, Lecture Notes in

Computer Science, Volume 218, pp 447, Springer-Verlag 1985.

[13] M. Nandi. A Simple and Unified Method of Proving Indistinguishability. Indocrypt

2006, Lecture Notes in Computer Science, Volume 4329, pp 317-334, Springer-Verlag

2007.

[14] P. Rogaway. Bucket Hashing and Its Application to Fast Message Authentication.

Advances in Cryptology, CRYPTO 1995, Lecture Notes in Computer Science, Volume

963, pp 29-42, Springer-Verlag 1995.

[15] D. R. Stinson. On the Connections between Universal Hashing, Combinatorial designs

and Error-correcting codes. Congressus Numerantium 114, 1996, pp 7-27.

52

[16] K. Minematsu and T. Matsushima. Improved Security Bounds for PMAC, TMAC,

and XCBC. Proceedings of FSE 2007, to appear.

[17] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE transactions on

Information Theory, Volume 22, pp 644-654, 1976.

53

