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Abstract

Parameterized complexity theory relaxes the classical notion of tractability and
allows to solve some classically hard problems in a reasonably efficient way. How-
ever, many problems of interest remain intractable in the context of parameterized
complexity. A completeness theory to categorize such problems has been developed
based on problems on circuits and MODEL CHECKING problems. Although a basic
machine characterization was proposed, it was not explored any further.

We develop a computational view of parameterized complexity theory based on
resource-bounded programs that run on alternating random access machines. We
develop both natural and normalized machine characterizations for the W[t] and
L[t] classes. Based on the new characterizations, we derive the basic completeness
results in parameterized complexity theory, from a computational perspective. Un-
like the previous cases, our proofs follow the classical approach for showing basic
NP-completeness results (Cook’s Theorem, in particular). We give new proofs of
the Normalization Theorem by showing that (i) the computation of a resource-
bounded program on an alternating RAM can be represented by instances of corre-
sponding basic parametric problems, and (ii) the basic parametric problems can be
decided by programs respecting the corresponding resource bounds. Many of the
fundamental results follow as a consequence of our new proof of the Normalization
Theorem. Based on a natural characterization of the W {t] classes, we develop new
structural results establishing relationships among the classes in the W-hierarchy;,
and the W{t] and L[t] classes.

Nontrivial upper-bound beyond the second level of the W-hierarchy is quite
uncommon. We make use of the ability to implement natural algorithms to show
new upper bounds for several parametric problems. We show that SUBSET SuM,
MAXIMAL IRREDUNDANT SET, and REACHABILITY DISTANCE IN VECTOR ADD-
ITION SYSTEMS (PETRI NETS) are in W([3], W[4], and W[5], respectively. In
some cases, the new bounds result in new completeness results. We derive new
lower bounds based on the normalized programs for the W{t] and L[t] classes.
We show that LONGEST COMMON SUBSEQUENCE, with parameter the number of
strings, is hard for L[t], ¢ > 1, and for W[SAT]. We also show that PRECEDENCE
CONSTRAINED MULTIPROCESSOR SCHEDULING, with parameter the number of
processors, is hard for L[t], t > 1.
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Chapter 1

Introduction

The theory of parameterized complexity has provided a useful tool to deal with
computational problems that are difficult to solve in the classical context. The
theory deals with parametric decision problems. An input to a parametric problem
is associated with a parameter. The efficiency of an algorithm deciding a parametric
problem is determined by the contribution of the parameter to the runtime. An
algorithm is considered efficient if its runtime is bounded above by f(k)n¢, where n is
the length of the input, f is any fixed function, c is a constant, and & is a parameter
associated with the input. Parametric versions of many NP-hard problems have
been shown to be decidable by algorithms having similar runtime [28].

However, the parametric versions of many classically hard problems seem to
remain difficult in the parameterized setting. It is believed that parameterized
versions of CLIQUE, DOMINATING SET, CNF-SATISFIABILITY, and NONDETER-
MINISTIC TURING MACHINE ACCEPTANCE are not decidable by deterministic al-
gorithms in time f(k)n¢, for any function f and constant c¢. Parameterized com-
plexity theory provides a framework to formalize the notion of intractability in a
parameterized setting. The theory builds upon a special form of reduction, called
fixed-parameter reduction, a collection of classes to represent different degrees of
intractability, and the notion of hardness and completeness.

Although the concepts of reduction, hardness and completeness in parameter-
ized complexity theory are parallel to those in the theory of NP-completeness, the
development of the parameterized complexity theory has been quite different than
the development of the NP-completeness theory. The parameterized complexity
theory was developed by Downey, Fellows, Abrahamson and other researchers in
early nineties [1, 25, 26]. In the original formulation, the theory centers around
a fundamental hierarchy of classes, known as the W{t] classes, for ¢ > 0. These
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classes were originally characterized in terms of a restricted version of the SATIS-
FIABILITY problem, known as the WEIGHTED SATISFIABILITY (WSAT) problem,
on different circuit families. We will present these basic concepts formally in Section
1.1. With the circuit characterization, Downey, Fellows and other co-researchers
successfully showed that many natural problems are complete for few of the classes
defined. For example, WSAT on CNF circuits with clauses of bounded size charac-
terizes the class of problems having the same parameterized complexity as CLIQUE
[25, 28]. Also, WSAT on unrestricted CNF circuits results in a class of paramet-
ric problems that have the same parameterized complexity as DOMINATING SET
[26, 28]. However, the basic completeness results were established through intricate
circuit transformations and through a sequence of complicated reductions [25, 26].

Downey, Fellows, and Regan investigated the logical characterization of the
classes of fixed-parameter intractable problems [31]. Their work was motivated by
the fact that any problem in NP can be represented in existential second order
logic (Fagin’s Theorem). A true analogue of the logical characterization of NP is
not yet known in the parameterized context. Nonetheless, Downey et al. were able
to show that the W{t| classes can be viewed as the closure of MODEL CHECKING
problem (defined in Subsection 1.1.2) on different fragments of existential second
order logic under fixed-parameter reduction [31]. This initial work on the logical
characterization of the Wt] classes were later expanded by Chen, Flum and Grohe
[19, 36]. Flum and Grohe [36] investigated the effect of having parameter dependent
quantification in the formulas, an open question raised by Downey et al. [31]. This
later work introduced two new hierarchies known as the L-hierarchy and the A-
hierarchy consisting of the L[¢] and the A[t] classes, respectively.

Based on the logical characterization, Chen, Flum and Grohe proposed a compu-
tational model for the classes of fixed-parameter intractable problems [19, 36]. The
model is an alternating version of the standard random access machines (RAM).
They characterized different classes in terms of resource-bounded programs that
run on this machine model. However, they did not investigate the usefulness of the
computational model further.

One may compare the present state of the parameterized complexity theory with
that of the theory of NP-completeness. We have at least three different character-
izations of the class NP - (i) in terms of nondeterministic Turing machines, (ii) in
terms of SATISFIABILITY problem (Cook’s Theorem), and (iii) in terms of existen-
tial second-order logic (Fagin’s Theorem). In comparison, (ii) and (iii) correspond
to the circuit characterization and logical characterization of the classes in the
parameterized complexity, respectively. Although (i) stands out in terms of impor-
tance, its analogue in the parameterized context is still in its infancy. In this thesis,



we develop a computational view of the theory of fixed-parameter intractability.
Our research focuses on developing natural variants of the computational models
for classes of fixed-parameter intractable problems, using the variants to classify
parametric problems according to their degree of intractability, and studying rela-
tionships among different classes.

In order to place the results in proper perspective, we first present the basic
concepts in parameterized complexity theory (Section 1.1). We then describe the
contributions of this thesis in Section 1.2. We end this chapter by mentioning the
organization of the rest of the thesis.

1.1 Background

In this section, we describe the basic definitions of parameterized complexity theory.
We also introduce the notation that we will use in the rest of this thesis.

Definition 1.1 A parametric problem takes a pair (x, k) as input where z is con-
sidered as the main input and k is the parameter. Both x and k are strings on some
finite alphabets 3 and T respectively.

For example, the parameterized version of VERTEX COVER is defined as follows
[25, 28].

Vertex Cover (VC)

Input: A graph G, and an integer k.
Parameter: k.
Question: Does G have a vertex cover of size k7

Parametric versions of CLIQUE and DOMINATING SET are defined in a similar
manner (the definitions are provided in the Appendix). In this thesis, we will
assume that the parameter £ is a natural number. We will use n to denote the length
of z and the notation p(n) and g(n) to represent functions that are polynomial in
|z| = n. The notation f(k), g(k), and h(k) will be used to represent arbitrary (but
fixed) functions that depend on the parameter k only (and not on the main input
x). For convenience, we will sometimes omit the arguments of these functions.



Definition 1.2 Let f be any fixed function and p be a polynomial. Given any input
of length n and a parameter k, we refer to an expression of the form f(k)p(n) as
a parametric polynomial. A parametric problem Q is said to be fixed-parameter
tractable if there exists a deterministic algorithm that can decide whether a given
input (x,k) € Q in parametric polynomial number of steps. The class of all fized-
parameter tractable problems is denoted by FPT.

For example, VERTEX COVER is in FPT (Sam Buss, reported in the article [9]).
We say that a parametric problem in F'PT is decidable by a deterministic algorithm
in parametric polynomial time. Although the notion of tractability in parameterized
complexity theory is somewhat relaxed compared with the tractability in the clas-
sical sense, not all parametric problems of interest are known to be fixed-parameter
tractable. CLIQUE and DOMINATING SET are two well-known examples of such
problems. A theory of fixed-parameter intractability has been developed to classify
the parametric problems that are believed to be hard in the context of param-
eterized complexity. A parametric version of the polynomial time many-to-one
reduction has been defined to deal with hardness and completeness issues.

Definition 1.3 A parametric problem Q, is fixed-parameter reducible to a para-
metric problem Q, if there exists an algorithm R such that the following holds.

1. R maps an instance {(x,k) of Qy to an instance (' k') of Qy such that
<ZE,I€> S Ql A <xlak/> S QQ'

2. There exists a function g such that k' < g(k).

3. R runs in deterministic parametric polynomaial time.

The intractability of parameterized problems is represented by different com-
plexity classes. The fundamental classes of fixed-parameter intractable problems
are known as the W{t] classes, ¢ > 1, forming the W-hierarchy (Downey and Fel-
lows). We will present the characterizations of these classes in subsections 1.1.1,
1.1.2, and 1.1.3. The entire W-hierarchy is contained in the class W[SAT], which
in turn is contained in the class W[P]. Thus the hierarchy of the fundamental
complexity classes in parameterized complexity looks as follows.

FPT C W[1]C W[2]C...C W[t] C...C W[SAT] C W[P]

Later, Downey et al. defined an extended version of the W{t] classes [32]. These
classes are known as the W*[t] classes, t > 0. By definition, W*[t] contains W t],
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Figure 1.1: Relationships among the classes in parameterized complexity theory

for each ¢t > 0. Downey et al. showed [27, 32] that W*[t] and Wt] are in fact equal
for t = 1,2. Whether such equality holds for ¢ > 3 is still open. However, it is
known that W*[t] C W[2t — 2] (Flum and Grohe [37], Theorem 8.54).

Recently, Chen, Flum and Grohe [19, 36] developed a new characterization
of the W{t] classes, ¢ > 0 (Subsection 1.1.2). They considered variants of the
model, obtaining two new hierarchies of classes. These hierarchies are known as
the L-hierarchy and the A-hierarchy, respectively. The L-hierarchy consists of the
L[t] classes, t > 0, while the A-hierarchy consists of the A[t] classes, ¢ > 0. By
definition, Wt] C L[t] C A[t], for each ¢t > 0. Although, W[1] = L[1] = A[1] [36],
it is not known whether equality relation holds for higher levels. In fact, showing
inequality at any level beyond the first would imply that P # NP [19]. The A-
hierarchy is contained in the class AW [x|. The relationships among the classes
are given in Figure 1.1. The results in this thesis are related to the classes in the
W-hierarchy, W*-hierarchy, the L-hierarchy, and the class W[SAT]. We present
the characterizations of these classes in detail in the following subsections. For the
definitions of the classes AW [x|, AW[SAT|, AW[P], and XP, the reader is referred
to the monograph by Downey and Fellows [28].

The rest of this section discusses the characterization of the classes in different
hierarchies in detail.



1.1.1 Circuits and Parametric Classes

The definitions presented in this section are due to Downey and Fellows [25, 26, 28].

In the classical context, NP is probably the most important class of (appar-
ently) intractable problems. NP can be viewed as the closure of SATISFIABILITY
under polynomial-time many-to-one reductions. The original definition of the W [¢]
classes [25] resembles this characterization of NP. A bounded version of the
SATISFIABILITY problem plays a central role in defining the fixed-parameter in-
tractable classes. Different classes are obtained by varying the associated circuit
complexity.

Definition 1.4 A circuit consists of and-gates, or-gates, and not-gates where each
gate performs the corresponding standard boolean operation. Let ¢ > 2 be any
constant. A gate g is called large if the number of inputs to g exceeds ¢, g is called
a small gate otherwise. The weft of a circuit is the mazimum number of large gates
in any mput-output path. The depth of a circuit is the maximum number of gates
(small or large) in any input-output path. A circuit is called a tree circuit if each
gate in the circuit has a single output.

An assignment assigns true/false values to the input variables. The weight of
an assignment is the number of true variables in the assignment. The WEIGHTED
CIRCUIT SATISFIABILITY problem is defined as follows.

Weighted Circuit Satisfiability (WCS)

Input: A circuit C' and an integer k.
Parameter: k.
Question: Does C' have a weight-k satisfying assignment?

The weft of a circuit family determines the degree of parametric intractability
of the corresponding WCS problem. The classes in the W -hierarchy are defined as
the closure of WCS on restricted circuit families under fixed-parameter reductions.

Definition 1.5 W({t] is the class of all parametric problems that are fized-parameter
reducible to the WCS problem on weft-t, depth-d circuits, where d is a constant and
t<d.



One or-gate for each
non-adjacent vertex pair One or-gate for each vertex

0
P -2

W11 W12 ... Wi W2 .. TUml TUm2
V11 V12 Vi Vi1 V2 Vij; UnlUn2 Ungn
(vi1,v52) is the ith non-adjacent vy is the Ith neighbour of v;, 1 < i <n = V]|
vertex pair, 1<i<m=|E| 1 <1< j;, ji = degree(v;)
(a) CLIQUE (b) DOMINATING SET

Figure 1.2: Let G = (V, E) be a graph and E be (V x V) \ E. (a) Representation of CLIQUE
on G by an instance of WCS on 2-CNF circuits. (b) Representation of DOMINATING SET on G
by an instance of WCS on CNF circuits.

For example, CLIQUE can be fixed-parameter reduced to WCS on 2-CNF cir-
cuits (Figure 1.2 (a)). Also, DOMINATING SET fixed-parameter reduces to WCS on
CNF-circuits (Figure 1.2 (b)). Thus CLIQUE and DOMINATING SET are in W{{]
and W|2], respectively.

The classes W[SAT] and W[P] are defined in a similar fashion [25]. The circuit
families for W[SAT| and W[P] have no restriction on the depth and weft. How-
ever, the circuit family for W[SAT] is restricted to be the family of tree circuits
(Definition 1.4) with no bound on depth and weft. As mentioned before, the W{t]
classes, t > 1, form the W-hierarchy. By definition, W[SAT] is a subset of W|[P]
and W[SAT| contains the entire W-hierarchy.

Downey and Fellows defined a normalized form of circuits, called the t-normalized
form, and proved that WCS on t-normalized circuit family is complete for W]t
(25, 28].

Definition 1.6 A boolean circuit C' is said to be t-normalized if

- C consists of t alternating levels of and-gates and or-gates with an and-gate
at the output, and

- gates at level 1 receives inputs from gates at level 1 + 1 only.
Figure 1.3 illustrates the structure of a t-normalized circuit. A circuit is called

monotone if all inputs are positive and the circuit contains no not-gate. A cir-
cuit is called antimonotone if all inputs are negated and no not-gate appears

7



level 1
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Figure 1.3: The structure of a t-normalized circuit for even t.

elsewhere. The parametric problems WEIGHTED MONOTONE CIRCUIT SATISFIA-
BILITY, WEIGHTED ANTI-MONOTONE CIRCUIT SATISFIABILITY, and WEIGHTED
t-NORMALIZED SATISFIABILITY, are subsets of WEIGHTED CIRCUIT SATISFIABIL-
ITY problem, where the corresponding circuit family is restricted to monotone,
antimonotone, and t-normalized circuits, respectively. For example, the circuits
constructed for CLIQUE and DOMINATING SET (Figure 1.2) are antimonotone and
monotone, respectively.

The definition of the W*[t] classes is analogous to that of the W{t]-classes
(Definition 1.5) with the exception that the corresponding circuits can have depth
bounded above by some function of the parameter.

Definition 1.7 The class W*[t], t > 1, consists of all parametric problems that
can be fized-parameter reduced to the WCS problem on weft-t, depth-h(k) circuit
family, where h is any function.

No circuit characterization is known yet for the L[t] and A[t] classes. These
classes were defined by Flum and Grohe [36] by extending a logical characterization
of the W|t] classes which we describe in the next subsection.

1.1.2 Logical Characterization

Descriptive complexity theory provides an alternative measure of complexity of
problems. The focus of the theory is to represent computational problems using



logical expressions. The descriptive complexity of a problem is determined by the
complexity of the expression required to represent the problem. For many impor-
tant computational complexity classes C', it has been shown that if two problems
belong to C' then they have the same descriptive complexity. Details about the
contributions of descriptive complexity theory in the classical context can be found
in the book by Immerman [39], for example. The first known investigation in the
area of logical characterization of classes in parameterized complexity theory was
done by Downey, Fellows, and Regan [31]. Flum and Grohe in a later work [36]
established a similar characterization for the W([t] classes in a more generalized
context. The L[t] and the A[t] classes were obtained by extending the logical char-
acterization of W/[t]. In the rest of this subsection, we briefly discuss the related
concepts.

Three different levels of logical language, namely propositional logic, first-order
logic, and existential second order logic, are relevant for the logical characterization
of the classes in parameterized complexity theory. Propositional logic is concep-
tually similar to tree circuits and they both have the same expressive power. The
logical characterizations of the classes of fixed-parameter intractable problems are
based on first-order logic and existential second-order logic.

As an example, let us consider the DOMINATING SET problem. The classical
version of the problem can be expressed by the second-order expression ¥pg

tps = IDS Yov Jw [~Vertex(v) V DS(v) V (Edge({w,v)) A DS(w))],

where DS is a relation variable of arity 1, also known as a monadic relation. It
turns out that expressions having second-order quantifiers over monadic relations
are powerful enough to characterize the classes of our interest (W [t], W[SAT], L[t],
and A[t]) [31, 36].

In the parameterized context, we are interested in solutions of bounded size.
There are two ways to achieve the goal. The first approach is to express the prob-
lem using second-order existential quantification over relation variables and requir-
ing that the existentially selected relation has the desired size. For example, the
parametric DOMINATING SET problem can be expressed by 1pg (as in the previous
example) and requiring that the monadic relation DS has size k. This leads to
the concept of weighted Fagin definability [36] which was originally formulated by
Downey et al. [31].

Let ¢ be a second-order expression with a single free relation variable of a fixed
arity. ¢ weighted Fagin defines a problem WEFD,, as follows.



WFD,,

Input: A structure A and an integer k.

Parameter: k.

Question: Does A have an interpretation S of the free relation variable
in ¢ such that ¢ is satisfied and size of S is k7

For example, ©pg weighted Fagin defines the DOMINATING SET problem when
the input structure is restricted to represent a graph.

A second approach is to define an expression for each value the parameter k may
take, thereby allowing the length of the expression to be a function of the parameter.
In the second approach, k-DOMINATING SET can be expressed by ¢pg

/ o k _
DS K — P i=1 1 — i, .
Ypsx = 371 Jzx Yo [=Vertex(v) VI, (z; = v V Edge(z;,v))]

This approach leads to the parameterized MODEL-CHECKING problem defined
by Flum and Grohe [36]. The problem is defined for a class C of structures and a
class L of expressions.

Model-Checking(C, £)

Input: A structure A € C and an expression @ € L.
Parameter: |¢|.
Question: Does the structure A satisfy ¢?

Note the difference between the use of the expression ¢ in WFD and MODEL-
CHECKING. For WFD), the length of ¢ is fixed and is part of the problem definition
whereas for MODEL-CHECKING ¢ is part of the input and the length of ¢ is the
parameter. For our purpose, the complexity of a logical expression is determined
by the number of quantifiers, number of alternations, and the restrictions on the
vocabulary.

Definition 1.8 A first-order expression is in prenex normal form if all the quanti-
fiers appear at the front of the expression. An expression is a 3;-expression (respec-
tiwely, T;-expression), for some t > 0, if the first quantifier is existential (respec-
tively universal) and there are t —1 alternations among quantifiers. A ¥;-expression
is a Xy, -expression if the number of quantifiers in each of the second and subsequent
quantifier block is bounded by the constant u > 0.
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The Wt] classes are characterized as follows.

Theorem 1.1 (Downey, Fellows, and Regan [31], Flum and Grohe [36]) Let F be
the class of all structures and uw > 0 be a constant. Let Zﬁu be the class of ¥,
expressions on relational vocabularies.

- W(t] is the closure of MODEL-CHECKING (F, X)) under fized-parameter re-
duction.

- WIt] is the closure of WFD,, under fived-parameter reduction, where ¢ =
S ¢'(S) such that ¢’ is a Il;-expression and S is a relation variable of fized arity.

There are two natural ways to extend the logical characterization of W{t] - (i)
by allowing unrestricted vocabularies (in particular allowing function symbols in
addition to relation symbols) and (ii) allowing parameter bounded quantifiers in
the second and subsequent quantification blocks. The origin of the L-hierarchy and
the A-hierarchy lie in extensions (i) and (ii) respectively.

Theorem 1.2 (Flum and Grohe [36]) Let F be the class of all structures and u > 0
be a constant.

- L[t] is the closure of MODEL-CHECKING(F, %, ,) under fized-parameter re-
duction.

- A[t] is the closure of MODEL-CHECKING(F, %) under fized-parameter re-
duction.

In some literature, the L[t] classes have been referred to as WMn¢[¢] classes [37].
By definition, W[1] = A[I]. Flum and Grohe showed that L[t] C A[t], t > 1
[19]. Chen, Flum, and Grohe [19, 20] translated the MODEL-CHECKING charac-
terizations into computational characterizations for the fixed-parameter intractable
classes. We describe the related ideas in the next section.

1.1.3 Alternating Random Access Machines and Paramet-
ric Classes

As mentioned in previous subsections, a class C' in parameterized complexity is

associated with a central problem Q.. A problem Q is included in C if (Typel)
an instance of (Q can be represented as an instance of the central problem Q.
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or (Type2) Q is fixed-parameter reducible to Q.. This is in contrast with the
classical complexity theory where most interesting classes are defined based on
resource-bounded computation on some computational model. Cai et al. proposed
a guess-and-check model, also known as the GC model, and tried to develop a
computational characterization of the W{t] classes based on the GC model [12].
Although the GC model characterized the Typel problems, the GC model could not
deal with the Type2 problems. The limitation was overcome in the computational
model proposed by Chen, Flum, and Grohe [19, 36]. The key idea was to incorporate
a deterministic phase at the beginning of the GC model. The resulting model can
be viewed as a prepare-guess-and-check (PGC) model [11].

Chen, Flum, and Grohe developed the machine characterization of the W{t]
classes based on the PARAMETERIZED MODEL CHECKING problem [19, 20, 36].
The underlying machine model is known as WRAM and is an alternating version
of the standard random access machine (RAM) [40]. They defined another model,
known as ARAM, as an extended version of WRAM. Also, they characterized the
classes in the L-hierarchy and the A-hierarchy, respectively, based on computations
on an ARAM.

Both WRAM and ARAM have an unbounded number of standard registers
r1,79,... and so on, and an unbounded number of guess registers ¢, gs, ... and
so on. A finite set of operations are available to the programs that run on these
models. A computation of a program terminates with a special halting instruction.
The computation is accepting if and only if the Oth standard register ry is zero.
The distinction between WRAM and ARAM lies in the kind of operations that can
be performed on the registers. Before specifying the operations, we describe some
concepts related to nondeterminism on these models. The concepts are similar to

those for the standard alternating Turing machines [18] and were adapted for the
WRAM and ARAM models by Chen, Flum and Grohe [19, 20, 36].

Definition 1.9 An operation op on a WRAM or an ARAM is nondeterministic
if op can assign any of more than one values from a given range to a register. A
nondeterministic operation results in multiple computation branches, one branch
for each wvalue in the associated range. The nondeterministic operations are of
two kinds, (1) existential and (i) universal. The computation starting with an
existential (respectively a universal) operation op accepts if and only if at least one
(respectively all) of the computation branches resulting from op accepts.

Definition 1.10 Let op; and ops be two nondeterministic operations in a compu-
tation such that no other nondeterministic operation is performed in between them.
If op1 and ops are of different kinds, they constitute an alternation.
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Definition 1.11 (Chen et al. [19, 20]) Any operation (including the ones defined
below) can be performed on the registers on an ARAM. The operations on a WRAM
are restricted to the following.

WOP1:
WOPZ2:

WOP3:

WOPJ:
WOP5:

Any deterministic operation that uses the standard registers only.

EXISTS T 7 : FEmstentially guess a value < 1y and store the value in guess
register g, .

FORALL T 7 : Unwersally guess a value < rog and store the value in guess
register gy, .

JEQUAL i j ¢ : If gr, = gr, then jump to the instruction labelled c.

JZERO i j ¢ : If T(Grigry) = 0 then jump to the instruction labelled c. Here

(-,) : Nx N — N, is any (reasonable) encoding of pair of values such that
(0,0) maps to 0.

We refer to the operations WOP1 to WOP5 as the W-operations. The classes of
fixed-parameter intractability are characterized by different subclasses of a special
class of programs, called AW -programs.

Definition 1.12 (Chen et al. [19, 20]) Let f and h be fized functions and ¢ > 0
be any constant. A program running on a WRAM or an ARAM is called an AW -
program if, on any input (x, k) with |x| = n, any computation branch of the program
satisfies the following conditions.

AW1:
AW2:

AWS3:

There are at most f(k)n® computation steps.

The computation does not store any value greater than f(k)n® in any register
at any time.

The number of nondeterministic (existential and universal) guesses is at most
h(k).

WP] is characterized by AW -programs that run on an ARAM and do not make
any universal guesses.

Theorem 1.3 (Chen et al. [19, 20]) A parametric problem Q is in W[P] if and
only if there exists an AW -program R to decide Q such that R runs on an ARAM
and all nondeterministic operations in any computation path of R are existential.
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No machine characterization for W[SAT] is known yet. The classes in the
different hierarchies are characterized by imposing additional restrictions on the
AW -programs.

Definition 1.13 An AW -program R; running on a WRAM or an ARAM is a
t-alternating program if

T1: there are at most (t — 1) alternations in any computation branch of Ry and
the first nondeterministic step is existential.

A t-alternating program, running on an ARAM is an A[t]-program if

Al: all the nondeterministic steps are among the last h(k) steps in any computa-
tion branch and the first nondeterministic step is existential.

Definition 1.14 Let u > 0 be a constant. A t-alternating program Ry, is a (t,u)-
alternating program if

TUI1: the number of nondeterministic guess steps in each of the second and subse-
quent levels of alternation is at most u.

An L[t]-program is a (t,u)-alternating program running on an ARAM such that

L1: in any computation branch, all the nondeterministic operations are among the
last h(k) steps, for some function h.

A W t]-program satisfies the constraints for an L[t|-program but runs on a WRAM.
Thus a W {t]-program is an L[t]-program that

W1: can perform only the W -operations (Definition 1.11) in any computation.

Theorem 1.4 (Chen, Flum, and Grohe [19, 20]) A parameterized problem Q is
in WIt] (respectively, L[t] or A[t]), t > 1 if and only if Q can be decided by a
W t]-program (respectively an L[t]-program or an Al[t]-program,).
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Feature Wt L[t] Alt]
Computation model WRAM | ARAM | ARAM

Access to guess registers indirect direct direct
Number of guesses in each
of second and subsequent | constant | constant h(k)

levels of alternation

Table 1.1: Comparison of resource bounds for different hierarchies

Table 1.1 presents a comparative summary of the resource bounds that distin-
guish different kinds of programs.

At this stage, we would like to point out the correspondence between the MODEL
CHECKING characterization and the computational characterization. The EXISTS
and FORALL operations correspond to universal and existential quantification in
MoDEL CHECKING. The JZERO test verifies whether the values in g,, and g,, satisfy
a relation. The constraints AW 3, T'1, and TU1 follow from the constraints on
the quantifiers in the corresponding MODEL CHECKING problems. The constraint
W1 corresponds to the fact that the vocabulary for W{t] is relational. Finally
constraints Al and L1 are motivated by the fact that the length of the expression
¢ in MODEL CHECKING is a function of the parameter.

We illustrate the use of the WRAM operations by constructing an algorithm
for DOMINATING SET (Algorithm 1.1). The WRAM code for important parts are
given in comments. The algorithm uses the JZERO test to determine whether two
existentially guessed vertices are adjacent. The adjacency matrix is constructed in
the appropriate registers in the preprocessing phase to ensure that test outcomes
are as desired.

1.2 Contributions of the Thesis

This thesis develops a purely computational view of parameterized complexity the-
ory. The work relates to the PGC model with parametric-polynomial-sized checking
phase. This includes the W|t] classes, the L[t] classes, and the class W[SAT].

A major contribution of this thesis is to develop a natural computational model
for the W{t]-classes, t > 1, constituting the W-hierarchy. The new model allows
one to implement algorithms in a natural way. For example, we show that SUBSET
SuM is in W[8] and MAXIMAL IRREDUNDANT SET is in W[{]. Although, the
algorithms we use in both cases were known before, the best known upper bound in
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Algorithm 1.1: Algorithm to decide whether a graph has a dominating set of a given
size.
DS(a graph G = (V| E), an integer k)

Construct the adjacency matrix for the input graph such that r(; ;, = 1 if and only if
the ith and jth vertices are adjacent or i = j, 1 <1i,j < |V].

Existentially guess the indices of k vertices. Let the guessed indices be i1, ... k.

/¥ 1o — |V] */

/* For all i, 1<i<k */

/* Ty 1 */

/% ExisTs T 1 */
Universally guess the index of a vertex.

/* 1o — |V] */

/* T — k +1 */

/* ForaLL T 1 */
for p=1 to k do

/* NextVertex: */

if vertices i, and i, are adjacent or same then
Accept in this branch

end
/* 11 p */
/* T2 —q */
/* Jzero 1 2 NextVertex x/
/* HALT and ACCEPT */
end
Reject
End DS

both cases was W|[P]. We also construct algorithms to show new upper bounds for
a number of parametric problems including REACHABILITY DISTANCE IN PETRI
NETs, BOUNDED DFA INTERSECTION, and WEIGHTED INTEGER PROGRAM-
MING (Definitions can be found in the appendix). Some of these upper bounds are
optimal.

The basic completeness results in parameterized complexity theory were orig-
inally derived in the context of circuit satisfiability [25, 26]. We give new and
much simpler proofs of the basic results from a computational perspective. Our
new proofs resemble the development of the theory of NP-completeness. In the
classical context, the NP-completeness of SAT (Cook’s Theorem) is established by
(i) constructing a nondeterministic polynomial-time algorithm to decide SAT, and
(ii) constructing a generic reduction from computations on a nondeterministic Tur-
ing machine to SAT. In the parameterized context, we show that (i) an appropri-
ately parameterized version of SAT can be decided by a program running on the
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new model, and (ii) the computation of a resource-bounded program can be rep-
resented by an instance of parameterized version of SAT. The basic completeness
results for different normalized forms of circuits are obtained as direct consequences
of our new proof.

We show some new structural results based on the new characterizations. In
some cases, these results hint on the computational features that actually distin-
guish the associated classes. We analyze the relationship between W[t] and L[t]
classes for ¢ > 2 and identify subclasses of L[] that are contained in W[t]. We iden-
tify the key computational feature that differentiates the W[t] and L[t] classes. Our
results indicate that the difference between programs for Wt] and L[t], in terms
of computational power, is less than what it appears to be from their definitions.
It is known that monotone- W |2t + 1] is contained in W{[2t] while antimonotone-
W2t + 2] is contained in W2t + 1], for all t > 0. We use the extended char-
acterization to identify larger subclasses of W[t + 1] that are contained in W{t].
Most of our results have the nice property that they can be extended to circuits of
parametric polynomial size.

Establishing lower bounds for parameterized problems is an important area of
research in parameterized complexity theory. In addition to providing evidence
that the problem is unlikely to be fixed-parameter tractable, the hardness results
suggest that fully polynomial time approximation schemes may not exist for the
corresponding optimization problems in the classical context. Our contribution
in this area is the development of normalized computational models for the W/t
and L[t] classes. The equivalence between the normalized and natural computation
models can be viewed as the computational analogue of the Normalization Theorem
[25, 26]. Unlike the theory of NP-completeness, the defining problems and a few
variants of them are the only problems known to be complete for classes beyond
W [2]. Thus proving lower bounds often involves construction of generic reductions.
The normalized models facilitate the construction of such generic reductions. In
addition, lower bound proofs for W[t]-classes can sometimes be extended easily
for the L[t]-classes if the proof is based on computational models. Our proof that
LONGEST COMMON SUBSEQUENCE parameterized by the number of strings is L[t]-
hard for all ¢ > 0, is a nice example of such extension technique. Since L[t]-classes
do not yet have any circuit characterization, lower bound proofs based on circuits
cannot be extended in a similar manner. Although reduction from natural problems
can be used to show lower bounds for W[1] and W{2], a generic reduction may help
improving the bound significantly. We show that the PRECEDENCE-CONSTRAINED
MULTIPROCESSOR SCHEDULING, parameterized by the number of processors, is
L[t]-hard for all ¢ > 1. The problem was known to be W{[2]-hard and the hardness
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proof was based on a reduction from DOMINATING SET. Since no natural extension
of DOMINATING SET is known for higher classes, the hardness proof cannot be
extended in any obvious way to derive the L[¢]-hardness results.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. The new characterizations of fixed-
parameter intractable classes appear in Chapter 2. Chapter 3 presents the simplified
proofs of some fundamental results in parameterized complexity theory. Some new
structural results are established in Chapter 4. We present some new hardness and
membership results in Chapter 5. Chapter 6 analyzes the degree of intractability
of various problems on finite state machines. Finally we conclude with a sketch of
our future research plan in Chapter 7. The definitions of all problems discussed in
this thesis can be found in the Appendix.
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Chapter 2

New Variants of the Computation
Model

In this chapter, we introduce new ARAM characterizations of the classes in the
W-hierarchy and the L-hierarchy. As noted in Subsection 1.1.3, the computational
characterizations proposed by Flum and Grohe closely follow the features of the
corresponding MODEL CHECKING problems. Natural implementation of algorithms
by W{t]-programs often becomes technically involved because of the associated
constraints. We will see a representative example in Section 2.3. Such limitations
motivated us to develop a more natural variant of the W{t]-programs. The L[t]-
programs do not have many of the limitations of the W{t]-programs. We further
extend the L[t]-programs to develop a new variant that can implement algorithms
in a more natural way.

Simulating computations on one model by another is an important and fre-
quently used technique in complexity theory. Also, constructing generic reductions
often involves analyzing fragments of possible computations of a machine on a
given input (Cook’s Theorem, for example). We will use similar techniques for the
W t]-programs and L[t]-programs in order to establish lower bound and structural
results. The tasks become easier if the computational model to start with is as re-
stricted as possible. These observations have motivated us to derive more restricted
variants of the W{t]-programs and the L[t]-programs.

For all variants, the number and pattern of alternations in the programs are
kept the same. Thus, the programs characterizing the level ¢ in the W-hierarchy
or the L-hierarchy are allowed to make at most ¢ alternations in any computation
branch, the first nondeterministic step being existential. The number of existential
steps in the first level of alternation is bounded by some function of the parameter
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while the total number of the remaining nondeterministic steps is bounded by
some constant. The new ARAM characterizations differ from the corresponding
original characterizations in terms of the bounds on the resources available to the
computation that follows the first set of existential guess steps. We use the following
terminology in order to distinguish among the variants. We either use no prefix
or use the prefix basic for the original characterizations. The characterization with
a relaxed set of constraints (relative to the original) is identified by the prefix
extended. The characterization with further restrictions added to the original set
of constraints is identified by the prefix normalized.

In one direction, we allow more resources (e.g. number of steps) for the compu-
tation that follows the first set of existential steps, to obtain the extended character-
izations. In the other direction, we introduce additional restrictions on the original
models to obtain the normalized characterizations. While modifying the resource
bounds, we must ensure that the classes resulting from the new characterizations
remain the same as the corresponding original class. The resources to alter and
the extent to which the corresponding bounds can be varied are the topic of this
chapter.

2.1 A New View of the Alternating RAM (ARAM)

For the purpose of developing the new characterizations, we view the ARAM model
in a different way than it was originally described [19, 20]. An ARAM has an un-
bounded number of standard registers and guess re