
Characterizing Hardness in Parameterized
Complexity

by
Tarique M. Islam

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Tarique M. Islam 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

Tarique Islam

I understand that my thesis may be made electronically available to the public.

Tarique Islam

ii

Abstract

Parameterized complexity theory relaxes the classical notion of tractability and
allows to solve some classically hard problems in a reasonably efficient way. How-
ever, many problems of interest remain intractable in the context of parameterized
complexity. A completeness theory to categorize such problems has been developed
based on problems on circuits and Model Checking problems. Although a basic
machine characterization was proposed, it was not explored any further.

We develop a computational view of parameterized complexity theory based on
resource-bounded programs that run on alternating random access machines. We
develop both natural and normalized machine characterizations for the W [t] and
L[t] classes. Based on the new characterizations, we derive the basic completeness
results in parameterized complexity theory, from a computational perspective. Un-
like the previous cases, our proofs follow the classical approach for showing basic
NP -completeness results (Cook’s Theorem, in particular). We give new proofs of
the Normalization Theorem by showing that (i) the computation of a resource-
bounded program on an alternating RAM can be represented by instances of corre-
sponding basic parametric problems, and (ii) the basic parametric problems can be
decided by programs respecting the corresponding resource bounds. Many of the
fundamental results follow as a consequence of our new proof of the Normalization
Theorem. Based on a natural characterization of the W [t] classes, we develop new
structural results establishing relationships among the classes in the W -hierarchy,
and the W [t] and L[t] classes.

Nontrivial upper-bound beyond the second level of the W -hierarchy is quite
uncommon. We make use of the ability to implement natural algorithms to show
new upper bounds for several parametric problems. We show that Subset Sum,
Maximal Irredundant Set, and Reachability Distance in Vector Add-
ition Systems (Petri Nets) are in W [3], W [4], and W [5], respectively. In
some cases, the new bounds result in new completeness results. We derive new
lower bounds based on the normalized programs for the W [t] and L[t] classes.
We show that Longest Common Subsequence, with parameter the number of
strings, is hard for L[t], t ≥ 1, and for W [SAT]. We also show that Precedence
Constrained Multiprocessor Scheduling, with parameter the number of
processors, is hard for L[t], t ≥ 1.

iii

Acknowledgments

I would like to thank my supervisor Dr. Jonathan F. Buss who guided me
through the entire Ph.D. program with utmost care. His encouragement and expe-
rienced advices have played a crucial role in the completion of this thesis. I would
like to thank the members of my thesis committee, Dr. Alex Lopez-ortiz, Dr. Bar-
bara S. Chima, Dr. Jianer Chen, and Dr. Naomi Nishimura (in alphabetical order
of first name) for their valuable suggestions that greatly helped to improve this
thesis. I would like to thank the David R. Cheriton School of Computer Science,
University of Waterloo for providing an excellent research environment.

I would like to thank my parents and my sister for their support and wishes.

I would like to thank my beloved wife for her encouragement, support, and
patience throughout my Ph.D. program.

iv

Contents

1 Introduction 1

1.1 Background . 3

1.1.1 Circuits and Parametric Classes 6

1.1.2 Logical Characterization . 8

1.1.3 Alternating Random Access Machines and Parametric Classes 11

1.2 Contributions of the Thesis . 15

1.3 Organization of the Thesis . 18

2 New Variants of the Computation Model 19

2.1 A New View of the Alternating RAM (ARAM) 20

2.2 Computational Features of the Basic Programs 24

2.3 The New Variants of the Computational Models 36

2.3.1 W [t]-programs . 37

2.3.2 L[t]-programs . 46

2.4 Equivalence Among the Variants of the Computational Model for W [t] 48

2.5 Equivalence Among the Variants of the Computational Models for L[t] 53

3 Simplified Proofs of the Basic Results in Parameterized Complex-
ity Theory 58

3.1 A Summary of the Original Proofs 58

3.2 A Simplified Proof of the Parameterized Version of Cook’s Theorem 62

3.3 A Simplified Proof of the Normalization Theorem 67

3.4 Antimonotone-W [2t] is in W [2t − 1], Monotone-W [2t + 1] is in W [2t] 76

v

4 Structural Results 78

4.1 Relations between Classes in the W -hierarchy 79

4.1.1 Number of Input Variables in the Sub-circuits at Input Level 79

4.1.2 Number of Monotone Groups and Number of Variables in
Each Monotone Group . 81

4.2 Relations between W [t] and L[t] . 84

4.2.1 Range of Values . 84

4.2.2 Height of the Assignment Graph 87

5 Categorization Techniques for Fixed-Parameter Intractable Prob-
lems 91

5.1 Membership . 91

5.1.1 Subset Sum . 92

5.1.2 Reachability Distance for Vector Addition Systems (Petri Nets) 95

5.1.3 Maximal Irredundant Set . 99

5.1.4 Weighted Integer Programming 102

5.2 Hardness . 109

5.2.1 Longest Common Subsequence 112

5.2.2 Precedence-Constrained Multiprocessor Scheduling 127

6 Finite-State Machines and Classes of Fixed-Parameter Intractable
Problems 161

6.1 Bounded Intersection Problems . 161

6.1.1 Deterministic Finite Automata 162

6.1.2 Pushdown Automata . 165

6.1.3 Remarks . 173

6.2 Bounded Membership Problem on Two-way Machines 175

7 Concluding Remarks 179

vi

List of Figures

1.1 Relationships among the classes in parameterized complexity theory 5

1.2 Representation of Clique and Dominating Set by instances of
WCS on 2-CNF and CNF circuits, respectively. 7

1.3 The structure of a t-normalized circuit for even t. 8

2.1 Different phases of computation of a basic W [t]-program and a basic
L[t]-program. 24

2.2 Structure of a computation tree of a basic W [t]-program or a basic
L[t]-program. 26

2.3 Partial computation tree of (i) a basic W [t]-program (ii) a basic
L[t]-program. 32

2.4 Structure of the partial computation trees for normalized L[t]-programs
and normalized W [t]-programs. 40

3.1 Correspondence between the partial computation tree TQ and the
t-normalized circuit C. 68

3.2 The structure of the circuit obtained after preprocessing the input
circuit (for even t). 74

5.1 The structure of the partial computation tree and an acceptance tree
of a normalized W [t]-program. 110

5.2 Padding for an existential -node. 126

5.3 Scheduling of tasks for the existential guess steps in the first non-
deterministic block . 137

5.4 Scheduling of base and constraint tasks for a universal marker sand

and an existential marker sor where sor is a child of sand. 138

vii

5.5 Scheduling of base and constraint tasks for an existential marker sor

and its l children markers. 139

5.6 Scheduling of tasks in a level-t time phase for a W [t]-program, for
odd t, t > 1 . 140

5.7 A basic scheduling of tasks in a level-t time phase for an L[t]-program,
t > 0. 146

viii

List of Tables

1.1 Comparison of resource bounds for different hierarchies 15

2.1 Summary of resource bounds for the original and new variants of the
computational models. 37

6.1 Parameterized complexity of Bounded Intersection problem for
different computation models . 174

ix

List of Algorithms

1.1 Algorithm to decide whether a graph has a dominating set of a given
size. 16

2.1 Algorithm to decide Not-too-close Dominating Set by an ex-
tended W [2]-program. 41

2.2 Algorithm to decide Not-too-close Dominating Set by a basic
W [2]-program. 43

5.1 An extended W [3]-program RSum to decide Subset Sum 93

5.2 An extended W [5]-program RRDVAS to decide Reachability Dis-
tance for Vector Addition Systems 97

5.3 A W [4]-program (also a W ∗[3]-program) RMIS to decide Maximal
Irredundant Set . 101

5.4 A normalized L[2]-program RBLIP-II to decide BLIP-II 104

5.5 A W [5]-program RBLIP-III to decide BLIP-III 107

5.6 Sequence of operations that replaces each universal guess step. 124

5.7 Padding a partial computation tree so that the size of the acceptance
tree remains the same for all choices of existential branching. 125

5.8 Construction of the basic scaffold string for normalized W [t]-programs 132

5.9 Construction of the basic scaffold string for normalized L[t]-programs 142

5.10 Construction of the extended scaffold string SL,extended for normalized
L[t]-programs . 159

6.1 An extended W [2]-program RBDFAI to decide BDFAI. 163

6.2 An L[2]-program RBDPDAI-2 to decide BDPDAI-2. 167

x

Chapter 1

Introduction

The theory of parameterized complexity has provided a useful tool to deal with
computational problems that are difficult to solve in the classical context. The
theory deals with parametric decision problems. An input to a parametric problem
is associated with a parameter. The efficiency of an algorithm deciding a parametric
problem is determined by the contribution of the parameter to the runtime. An
algorithm is considered efficient if its runtime is bounded above by f(k)nc, where n is
the length of the input, f is any fixed function, c is a constant, and k is a parameter
associated with the input. Parametric versions of many NP -hard problems have
been shown to be decidable by algorithms having similar runtime [28].

However, the parametric versions of many classically hard problems seem to
remain difficult in the parameterized setting. It is believed that parameterized
versions of Clique, Dominating Set, CNF-Satisfiability, and Nondeter-
ministic Turing Machine Acceptance are not decidable by deterministic al-
gorithms in time f(k)nc, for any function f and constant c. Parameterized com-
plexity theory provides a framework to formalize the notion of intractability in a
parameterized setting. The theory builds upon a special form of reduction, called
fixed-parameter reduction, a collection of classes to represent different degrees of
intractability, and the notion of hardness and completeness.

Although the concepts of reduction, hardness and completeness in parameter-
ized complexity theory are parallel to those in the theory of NP -completeness, the
development of the parameterized complexity theory has been quite different than
the development of the NP -completeness theory. The parameterized complexity
theory was developed by Downey, Fellows, Abrahamson and other researchers in
early nineties [1, 25, 26]. In the original formulation, the theory centers around
a fundamental hierarchy of classes, known as the W [t] classes, for t > 0. These

1

classes were originally characterized in terms of a restricted version of the Satis-
fiability problem, known as the Weighted Satisfiability (WSAT) problem,
on different circuit families. We will present these basic concepts formally in Section
1.1. With the circuit characterization, Downey, Fellows and other co-researchers
successfully showed that many natural problems are complete for few of the classes
defined. For example, WSAT on CNF circuits with clauses of bounded size charac-
terizes the class of problems having the same parameterized complexity as Clique
[25, 28]. Also, WSAT on unrestricted CNF circuits results in a class of paramet-
ric problems that have the same parameterized complexity as Dominating Set
[26, 28]. However, the basic completeness results were established through intricate
circuit transformations and through a sequence of complicated reductions [25, 26].

Downey, Fellows, and Regan investigated the logical characterization of the
classes of fixed-parameter intractable problems [31]. Their work was motivated by
the fact that any problem in NP can be represented in existential second order
logic (Fagin’s Theorem). A true analogue of the logical characterization of NP is
not yet known in the parameterized context. Nonetheless, Downey et al. were able
to show that the W [t] classes can be viewed as the closure of Model Checking
problem (defined in Subsection 1.1.2) on different fragments of existential second
order logic under fixed-parameter reduction [31]. This initial work on the logical
characterization of the W [t] classes were later expanded by Chen, Flum and Grohe
[19, 36]. Flum and Grohe [36] investigated the effect of having parameter dependent
quantification in the formulas, an open question raised by Downey et al. [31]. This
later work introduced two new hierarchies known as the L-hierarchy and the A-
hierarchy consisting of the L[t] and the A[t] classes, respectively.

Based on the logical characterization, Chen, Flum and Grohe proposed a compu-
tational model for the classes of fixed-parameter intractable problems [19, 36]. The
model is an alternating version of the standard random access machines (RAM).
They characterized different classes in terms of resource-bounded programs that
run on this machine model. However, they did not investigate the usefulness of the
computational model further.

One may compare the present state of the parameterized complexity theory with
that of the theory of NP -completeness. We have at least three different character-
izations of the class NP - (i) in terms of nondeterministic Turing machines, (ii) in
terms of Satisfiability problem (Cook’s Theorem), and (iii) in terms of existen-
tial second-order logic (Fagin’s Theorem). In comparison, (ii) and (iii) correspond
to the circuit characterization and logical characterization of the classes in the
parameterized complexity, respectively. Although (i) stands out in terms of impor-
tance, its analogue in the parameterized context is still in its infancy. In this thesis,

2

we develop a computational view of the theory of fixed-parameter intractability.
Our research focuses on developing natural variants of the computational models
for classes of fixed-parameter intractable problems, using the variants to classify
parametric problems according to their degree of intractability, and studying rela-
tionships among different classes.

In order to place the results in proper perspective, we first present the basic
concepts in parameterized complexity theory (Section 1.1). We then describe the
contributions of this thesis in Section 1.2. We end this chapter by mentioning the
organization of the rest of the thesis.

1.1 Background

In this section, we describe the basic definitions of parameterized complexity theory.
We also introduce the notation that we will use in the rest of this thesis.

Definition 1.1 A parametric problem takes a pair 〈x, k〉 as input where x is con-
sidered as the main input and k is the parameter. Both x and k are strings on some
finite alphabets Σ and Γ respectively.

For example, the parameterized version of Vertex Cover is defined as follows
[25, 28].

Vertex Cover (VC)

Input: A graph G, and an integer k.
Parameter: k.
Question: Does G have a vertex cover of size k?

Parametric versions of Clique and Dominating Set are defined in a similar
manner (the definitions are provided in the Appendix). In this thesis, we will
assume that the parameter k is a natural number. We will use n to denote the length
of x and the notation p(n) and q(n) to represent functions that are polynomial in
|x| = n. The notation f(k), g(k), and h(k) will be used to represent arbitrary (but
fixed) functions that depend on the parameter k only (and not on the main input
x). For convenience, we will sometimes omit the arguments of these functions.

3

Definition 1.2 Let f be any fixed function and p be a polynomial. Given any input
of length n and a parameter k, we refer to an expression of the form f(k)p(n) as
a parametric polynomial. A parametric problem Q is said to be fixed-parameter
tractable if there exists a deterministic algorithm that can decide whether a given
input 〈x, k〉 ∈ Q in parametric polynomial number of steps. The class of all fixed-
parameter tractable problems is denoted by FPT.

For example, Vertex Cover is in FPT (Sam Buss, reported in the article [9]).
We say that a parametric problem in FPT is decidable by a deterministic algorithm
in parametric polynomial time. Although the notion of tractability in parameterized
complexity theory is somewhat relaxed compared with the tractability in the clas-
sical sense, not all parametric problems of interest are known to be fixed-parameter
tractable. Clique and Dominating Set are two well-known examples of such
problems. A theory of fixed-parameter intractability has been developed to classify
the parametric problems that are believed to be hard in the context of param-
eterized complexity. A parametric version of the polynomial time many-to-one
reduction has been defined to deal with hardness and completeness issues.

Definition 1.3 A parametric problem Q1 is fixed-parameter reducible to a para-
metric problem Q2 if there exists an algorithm R such that the following holds.

1. R maps an instance 〈x, k〉 of Q1 to an instance 〈x′, k′〉 of Q2 such that
〈x, k〉 ∈ Q1 ⇔ 〈x′, k′〉 ∈ Q2.

2. There exists a function g such that k′ ≤ g(k).

3. R runs in deterministic parametric polynomial time.

The intractability of parameterized problems is represented by different com-
plexity classes. The fundamental classes of fixed-parameter intractable problems
are known as the W [t] classes, t ≥ 1, forming the W -hierarchy (Downey and Fel-
lows). We will present the characterizations of these classes in subsections 1.1.1,
1.1.2, and 1.1.3. The entire W -hierarchy is contained in the class W [SAT], which
in turn is contained in the class W [P]. Thus the hierarchy of the fundamental
complexity classes in parameterized complexity looks as follows.

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆ . . . ⊆ W [SAT] ⊆ W [P]

Later, Downey et al. defined an extended version of the W [t] classes [32]. These
classes are known as the W ∗[t] classes, t > 0. By definition, W ∗[t] contains W [t],

4

W ∗[1] ⊆ W ∗[2] ⊆ . . . ⊆ W ∗[t] ⊆ . . .

= = ⊇

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆ . . . ⊆ W [SAT] ⊆ W [P]

= ⊆ ⊆

L[1] ⊆ L[2] ⊆ . . . ⊆ L[t] ⊆ . . . ⊆ ⊆

= ⊆ ⊆

A[1] ⊆ A[2] ⊆ . . . ⊆ A[t] ⊆ . . . ⊆ AW [∗] ⊆ AW [SAT] ⊆ AW [P]

⊆

XP

Figure 1.1: Relationships among the classes in parameterized complexity theory

for each t > 0. Downey et al. showed [27, 32] that W ∗[t] and W [t] are in fact equal
for t = 1, 2. Whether such equality holds for t ≥ 3 is still open. However, it is
known that W ∗[t] ⊆ W [2t − 2] (Flum and Grohe [37], Theorem 8.54).

Recently, Chen, Flum and Grohe [19, 36] developed a new characterization
of the W [t] classes, t > 0 (Subsection 1.1.2). They considered variants of the
model, obtaining two new hierarchies of classes. These hierarchies are known as
the L-hierarchy and the A-hierarchy, respectively. The L-hierarchy consists of the
L[t] classes, t > 0, while the A-hierarchy consists of the A[t] classes, t > 0. By
definition, W [t] ⊆ L[t] ⊆ A[t], for each t > 0. Although, W [1] = L[1] = A[1] [36],
it is not known whether equality relation holds for higher levels. In fact, showing
inequality at any level beyond the first would imply that P 6= NP [19]. The A-
hierarchy is contained in the class AW [∗]. The relationships among the classes
are given in Figure 1.1. The results in this thesis are related to the classes in the
W -hierarchy, W ∗-hierarchy, the L-hierarchy, and the class W [SAT]. We present
the characterizations of these classes in detail in the following subsections. For the
definitions of the classes AW [∗], AW [SAT], AW [P], and XP , the reader is referred
to the monograph by Downey and Fellows [28].

The rest of this section discusses the characterization of the classes in different
hierarchies in detail.

5

1.1.1 Circuits and Parametric Classes

The definitions presented in this section are due to Downey and Fellows [25, 26, 28].

In the classical context, NP is probably the most important class of (appar-
ently) intractable problems. NP can be viewed as the closure of Satisfiability
under polynomial-time many-to-one reductions. The original definition of the W [t]
classes [25] resembles this characterization of NP . A bounded version of the
Satisfiability problem plays a central role in defining the fixed-parameter in-
tractable classes. Different classes are obtained by varying the associated circuit
complexity.

Definition 1.4 A circuit consists of and-gates, or-gates, and not-gates where each
gate performs the corresponding standard boolean operation. Let c ≥ 2 be any
constant. A gate g is called large if the number of inputs to g exceeds c, g is called
a small gate otherwise. The weft of a circuit is the maximum number of large gates
in any input-output path. The depth of a circuit is the maximum number of gates
(small or large) in any input-output path. A circuit is called a tree circuit if each
gate in the circuit has a single output.

An assignment assigns true/false values to the input variables. The weight of
an assignment is the number of true variables in the assignment. The Weighted
Circuit Satisfiability problem is defined as follows.

Weighted Circuit Satisfiability (WCS)

Input: A circuit C and an integer k.
Parameter: k.
Question: Does C have a weight-k satisfying assignment?

The weft of a circuit family determines the degree of parametric intractability
of the corresponding WCS problem. The classes in the W -hierarchy are defined as
the closure of WCS on restricted circuit families under fixed-parameter reductions.

Definition 1.5 W [t] is the class of all parametric problems that are fixed-parameter
reducible to the WCS problem on weft-t, depth-d circuits, where d is a constant and
t ≤ d.

6

f∨ f∨ f∨

mj∧
¡¡
ÃÃÃÃÃÃÃÃ

PPPPP... ...

Q
Q

Q
QQs

mj∧
¡¡
ÃÃÃÃÃÃÃÃ

PPPPP... ...

Q
Q

Q
QQs

­
­

­
­

­
­

J
J

J
J

J
J ­

­
­

­
­

­
J
J

J
J

J
J

mj∨ mj∨ mj∨
...½

½½
½

½½
½

½½

One or -gate for each

non-adjacent vertex pair One or -gate for each vertex

¬v11 ¬v12 ... ¬vi1 ¬vi2 ... ¬vm1 ¬vm2

〈vi1,vi2〉 is the ith non-adjacent

vertex pair, 1≤i≤m=|E|

(a) Clique

v11 v12 v1j1
vi1 vi2 viji

vn1vn2 vnjn

vil is the lth neighbour of vi, 1 ≤ i ≤ n = |V |
1 ≤ l ≤ ji, ji = degree(vi)

(b) Dominating Set

Figure 1.2: Let G = (V, E) be a graph and E be (V × V) \ E. (a) Representation of Clique
on G by an instance of WCS on 2-CNF circuits. (b) Representation of Dominating Set on G
by an instance of WCS on CNF circuits.

For example, Clique can be fixed-parameter reduced to WCS on 2-CNF cir-
cuits (Figure 1.2 (a)). Also, Dominating Set fixed-parameter reduces to WCS on
CNF-circuits (Figure 1.2 (b)). Thus Clique and Dominating Set are in W [1]
and W [2], respectively.

The classes W [SAT] and W [P] are defined in a similar fashion [25]. The circuit
families for W [SAT] and W [P] have no restriction on the depth and weft. How-
ever, the circuit family for W [SAT] is restricted to be the family of tree circuits
(Definition 1.4) with no bound on depth and weft. As mentioned before, the W [t]
classes, t ≥ 1, form the W -hierarchy. By definition, W [SAT] is a subset of W [P]
and W [SAT] contains the entire W -hierarchy.

Downey and Fellows defined a normalized form of circuits, called the t-normalized
form, and proved that WCS on t-normalized circuit family is complete for W [t]
[25, 28].

Definition 1.6 A boolean circuit C is said to be t-normalized if

- C consists of t alternating levels of and-gates and or-gates with an and-gate
at the output, and

- gates at level i receives inputs from gates at level i + 1 only.

Figure 1.3 illustrates the structure of a t-normalized circuit. A circuit is called
monotone if all inputs are positive and the circuit contains no not-gate. A cir-
cuit is called antimonotone if all inputs are negated and no not-gate appears

7

mj∧

mj∨ mj∨ mj∨

mj∧ mj∧ mj∧ mj∧ mj∧ mj∧

mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨

. .
.

.
.

.
.

. . . .

...
...

...
...

...
...

...
...

...
...

­
­­

­
­­

­
­­

J
JJ

J
JJ

J
JJ

SS SS SS SS SS SS SS SS SS SS¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶. .

.

.

»»»»»»»»»»

PPPPPPP
­

­­

level 1

level 2

level 3

level t

¾

¾

¾

¾

Figure 1.3: The structure of a t-normalized circuit for even t.

elsewhere. The parametric problems Weighted Monotone Circuit Satisfia-
bility, Weighted Anti-monotone Circuit Satisfiability, and Weighted
t-normalized Satisfiability, are subsets of Weighted Circuit Satisfiabil-
ity problem, where the corresponding circuit family is restricted to monotone,
antimonotone, and t-normalized circuits, respectively. For example, the circuits
constructed for Clique and Dominating Set (Figure 1.2) are antimonotone and
monotone, respectively.

The definition of the W ∗[t] classes is analogous to that of the W [t]-classes
(Definition 1.5) with the exception that the corresponding circuits can have depth
bounded above by some function of the parameter.

Definition 1.7 The class W ∗[t], t ≥ 1, consists of all parametric problems that
can be fixed-parameter reduced to the WCS problem on weft-t, depth-h(k) circuit
family, where h is any function.

No circuit characterization is known yet for the L[t] and A[t] classes. These
classes were defined by Flum and Grohe [36] by extending a logical characterization
of the W [t] classes which we describe in the next subsection.

1.1.2 Logical Characterization

Descriptive complexity theory provides an alternative measure of complexity of
problems. The focus of the theory is to represent computational problems using

8

logical expressions. The descriptive complexity of a problem is determined by the
complexity of the expression required to represent the problem. For many impor-
tant computational complexity classes C , it has been shown that if two problems
belong to C then they have the same descriptive complexity. Details about the
contributions of descriptive complexity theory in the classical context can be found
in the book by Immerman [39], for example. The first known investigation in the
area of logical characterization of classes in parameterized complexity theory was
done by Downey, Fellows, and Regan [31]. Flum and Grohe in a later work [36]
established a similar characterization for the W [t] classes in a more generalized
context. The L[t] and the A[t] classes were obtained by extending the logical char-
acterization of W [t]. In the rest of this subsection, we briefly discuss the related
concepts.

Three different levels of logical language, namely propositional logic, first-order
logic, and existential second order logic, are relevant for the logical characterization
of the classes in parameterized complexity theory. Propositional logic is concep-
tually similar to tree circuits and they both have the same expressive power. The
logical characterizations of the classes of fixed-parameter intractable problems are
based on first-order logic and existential second-order logic.

As an example, let us consider the Dominating Set problem. The classical
version of the problem can be expressed by the second-order expression ψDS

ψDS = ∃DS ∀v ∃w [¬Vertex(v) ∨DS(v) ∨ (Edge(〈w, v〉) ∧DS(w))] ,

where DS is a relation variable of arity 1, also known as a monadic relation. It
turns out that expressions having second-order quantifiers over monadic relations
are powerful enough to characterize the classes of our interest (W [t], W [SAT], L[t],
and A[t]) [31, 36].

In the parameterized context, we are interested in solutions of bounded size.
There are two ways to achieve the goal. The first approach is to express the prob-
lem using second-order existential quantification over relation variables and requir-
ing that the existentially selected relation has the desired size. For example, the
parametric Dominating Set problem can be expressed by ψDS (as in the previous
example) and requiring that the monadic relation DS has size k. This leads to
the concept of weighted Fagin definability [36] which was originally formulated by
Downey et al. [31].

Let ϕ be a second-order expression with a single free relation variable of a fixed
arity. ϕ weighted Fagin defines a problem WFDϕ, as follows.

9

WFDϕ

Input: A structure A and an integer k.
Parameter: k.
Question: Does A have an interpretation S of the free relation variable
in ϕ such that ϕ is satisfied and size of S is k?

For example, ψDS weighted Fagin defines the Dominating Set problem when
the input structure is restricted to represent a graph.

A second approach is to define an expression for each value the parameter k may
take, thereby allowing the length of the expression to be a function of the parameter.
In the second approach, k-Dominating Set can be expressed by ψ′DS,k

ψ′DS,k = ∃x1 . . . ∃xk ∀v
[¬Vertex(v) ∨k

i=1 (xi = v ∨ Edge(xi, v))
]
.

This approach leads to the parameterized Model-Checking problem defined
by Flum and Grohe [36]. The problem is defined for a class C of structures and a
class L of expressions.

Model-Checking(C,L)

Input: A structure A ∈ C and an expression ϕ ∈ L.
Parameter: |ϕ|.
Question: Does the structure A satisfy ϕ?

Note the difference between the use of the expression ϕ in WFD and Model-
Checking. For WFD, the length of ϕ is fixed and is part of the problem definition
whereas for Model-Checking ϕ is part of the input and the length of ϕ is the
parameter. For our purpose, the complexity of a logical expression is determined
by the number of quantifiers, number of alternations, and the restrictions on the
vocabulary.

Definition 1.8 A first-order expression is in prenex normal form if all the quanti-
fiers appear at the front of the expression. An expression is a Σt-expression (respec-
tively, Πt-expression), for some t > 0, if the first quantifier is existential (respec-
tively universal) and there are t−1 alternations among quantifiers. A Σt-expression
is a Σt,u-expression if the number of quantifiers in each of the second and subsequent
quantifier block is bounded by the constant u > 0.

10

The W [t] classes are characterized as follows.

Theorem 1.1 (Downey, Fellows, and Regan [31], Flum and Grohe [36]) Let F be
the class of all structures and u > 0 be a constant. Let ΣR

t,u be the class of Σt,u

expressions on relational vocabularies.

- W [t] is the closure of Model-Checking(F , ΣR
t,u) under fixed-parameter re-

duction.

- W [t] is the closure of WFDϕ under fixed-parameter reduction, where ϕ =
∃S ϕ′(S) such that ϕ′ is a Πt-expression and S is a relation variable of fixed arity.

There are two natural ways to extend the logical characterization of W [t] - (i)
by allowing unrestricted vocabularies (in particular allowing function symbols in
addition to relation symbols) and (ii) allowing parameter bounded quantifiers in
the second and subsequent quantification blocks. The origin of the L-hierarchy and
the A-hierarchy lie in extensions (i) and (ii) respectively.

Theorem 1.2 (Flum and Grohe [36]) Let F be the class of all structures and u > 0
be a constant.

- L[t] is the closure of Model-Checking(F , Σt,u) under fixed-parameter re-
duction.

- A[t] is the closure of Model-Checking(F , ΣR
t) under fixed-parameter re-

duction.

In some literature, the L[t] classes have been referred to as W func[t] classes [37].
By definition, W [1] = A[1]. Flum and Grohe showed that L[t] ⊆ A[t], t ≥ 1
[19]. Chen, Flum, and Grohe [19, 20] translated the Model-Checking charac-
terizations into computational characterizations for the fixed-parameter intractable
classes. We describe the related ideas in the next section.

1.1.3 Alternating Random Access Machines and Paramet-
ric Classes

As mentioned in previous subsections, a class C in parameterized complexity is
associated with a central problem QC . A problem Q is included in C if (Type1)
an instance of Q can be represented as an instance of the central problem QC

11

or (Type2) Q is fixed-parameter reducible to QC . This is in contrast with the
classical complexity theory where most interesting classes are defined based on
resource-bounded computation on some computational model. Cai et al. proposed
a guess-and-check model, also known as the GC model, and tried to develop a
computational characterization of the W [t] classes based on the GC model [12].
Although the GC model characterized the Type1 problems, the GC model could not
deal with the Type2 problems. The limitation was overcome in the computational
model proposed by Chen, Flum, and Grohe [19, 36]. The key idea was to incorporate
a deterministic phase at the beginning of the GC model. The resulting model can
be viewed as a prepare-guess-and-check (PGC) model [11].

Chen, Flum, and Grohe developed the machine characterization of the W [t]
classes based on the Parameterized Model Checking problem [19, 20, 36].
The underlying machine model is known as WRAM and is an alternating version
of the standard random access machine (RAM) [40]. They defined another model,
known as ARAM, as an extended version of WRAM. Also, they characterized the
classes in the L-hierarchy and the A-hierarchy, respectively, based on computations
on an ARAM.

Both WRAM and ARAM have an unbounded number of standard registers
r1, r2, . . . and so on, and an unbounded number of guess registers g1, g2, . . . and
so on. A finite set of operations are available to the programs that run on these
models. A computation of a program terminates with a special halting instruction.
The computation is accepting if and only if the 0th standard register r0 is zero.
The distinction between WRAM and ARAM lies in the kind of operations that can
be performed on the registers. Before specifying the operations, we describe some
concepts related to nondeterminism on these models. The concepts are similar to
those for the standard alternating Turing machines [18] and were adapted for the
WRAM and ARAM models by Chen, Flum and Grohe [19, 20, 36].

Definition 1.9 An operation op on a WRAM or an ARAM is nondeterministic
if op can assign any of more than one values from a given range to a register. A
nondeterministic operation results in multiple computation branches, one branch
for each value in the associated range. The nondeterministic operations are of
two kinds, (i) existential and (ii) universal. The computation starting with an
existential (respectively a universal) operation op accepts if and only if at least one
(respectively all) of the computation branches resulting from op accepts.

Definition 1.10 Let op1 and op2 be two nondeterministic operations in a compu-
tation such that no other nondeterministic operation is performed in between them.
If op1 and op2 are of different kinds, they constitute an alternation.

12

Definition 1.11 (Chen et al. [19, 20]) Any operation (including the ones defined
below) can be performed on the registers on an ARAM. The operations on a WRAM
are restricted to the following.

WOP1: Any deterministic operation that uses the standard registers only.

WOP2: exists ↑ j : Existentially guess a value ≤ r0 and store the value in guess
register grj

.

WOP3: forall ↑ j : Universally guess a value ≤ r0 and store the value in guess
register grj

.

WOP4: jequal i j c : If gri
= grj

then jump to the instruction labelled c.

WOP5: jzero i j c : If r〈gri ,grj 〉 = 0 then jump to the instruction labelled c. Here

〈· , ·〉 : N × N → N, is any (reasonable) encoding of pair of values such that
〈0, 0〉 maps to 0.

We refer to the operations WOP1 to WOP5 as the W -operations. The classes of
fixed-parameter intractability are characterized by different subclasses of a special
class of programs, called AW -programs.

Definition 1.12 (Chen et al. [19, 20]) Let f and h be fixed functions and c > 0
be any constant. A program running on a WRAM or an ARAM is called an AW-
program if, on any input 〈x, k〉 with |x| = n, any computation branch of the program
satisfies the following conditions.

AW1: There are at most f(k)nc computation steps.

AW2: The computation does not store any value greater than f(k)nc in any register
at any time.

AW3: The number of nondeterministic (existential and universal) guesses is at most
h(k).

W [P] is characterized by AW -programs that run on an ARAM and do not make
any universal guesses.

Theorem 1.3 (Chen et al. [19, 20]) A parametric problem Q is in W [P] if and
only if there exists an AW -program R to decide Q such that R runs on an ARAM
and all nondeterministic operations in any computation path of R are existential.

13

No machine characterization for W [SAT] is known yet. The classes in the
different hierarchies are characterized by imposing additional restrictions on the
AW -programs.

Definition 1.13 An AW -program Rt running on a WRAM or an ARAM is a
t-alternating program if

T1: there are at most (t − 1) alternations in any computation branch of Rt and
the first nondeterministic step is existential.

A t-alternating program, running on an ARAM is an A[t]-program if

A1: all the nondeterministic steps are among the last h(k) steps in any computa-
tion branch and the first nondeterministic step is existential.

Definition 1.14 Let u > 0 be a constant. A t-alternating program Rt,u is a (t, u)-
alternating program if

TU1: the number of nondeterministic guess steps in each of the second and subse-
quent levels of alternation is at most u.

An L[t]-program is a (t, u)-alternating program running on an ARAM such that

L1: in any computation branch, all the nondeterministic operations are among the
last h(k) steps, for some function h.

A W [t]-program satisfies the constraints for an L[t]-program but runs on a WRAM.
Thus a W [t]-program is an L[t]-program that

W1: can perform only the W -operations (Definition 1.11) in any computation.

Theorem 1.4 (Chen, Flum, and Grohe [19, 20]) A parameterized problem Q is
in W [t] (respectively, L[t] or A[t]), t ≥ 1 if and only if Q can be decided by a
W [t]-program (respectively an L[t]-program or an A[t]-program).

14

Feature W [t] L[t] A[t]
Computation model WRAM ARAM ARAM

Access to guess registers indirect direct direct
Number of guesses in each
of second and subsequent constant constant h(k)

levels of alternation

Table 1.1: Comparison of resource bounds for different hierarchies

Table 1.1 presents a comparative summary of the resource bounds that distin-
guish different kinds of programs.

At this stage, we would like to point out the correspondence between the Model
Checking characterization and the computational characterization. The exists
and forall operations correspond to universal and existential quantification in
Model Checking. The jzero test verifies whether the values in gri

and grj
satisfy

a relation. The constraints AW3, T1, and TU1 follow from the constraints on
the quantifiers in the corresponding Model Checking problems. The constraint
W1 corresponds to the fact that the vocabulary for W [t] is relational. Finally
constraints A1 and L1 are motivated by the fact that the length of the expression
ϕ in Model Checking is a function of the parameter.

We illustrate the use of the WRAM operations by constructing an algorithm
for Dominating Set (Algorithm 1.1). The WRAM code for important parts are
given in comments. The algorithm uses the Jzero test to determine whether two
existentially guessed vertices are adjacent. The adjacency matrix is constructed in
the appropriate registers in the preprocessing phase to ensure that test outcomes
are as desired.

1.2 Contributions of the Thesis

This thesis develops a purely computational view of parameterized complexity the-
ory. The work relates to the PGC model with parametric-polynomial-sized checking
phase. This includes the W [t] classes, the L[t] classes, and the class W [SAT].

A major contribution of this thesis is to develop a natural computational model
for the W [t]-classes, t ≥ 1, constituting the W -hierarchy. The new model allows
one to implement algorithms in a natural way. For example, we show that Subset
Sum is in W [3] and Maximal Irredundant Set is in W [4]. Although, the
algorithms we use in both cases were known before, the best known upper bound in

15

Algorithm 1.1: Algorithm to decide whether a graph has a dominating set of a given
size.

DS(a graph G = (V,E), an integer k)

Construct the adjacency matrix for the input graph such that r〈i,j〉 = 1 if and only if
the ith and jth vertices are adjacent or i = j, 1 ≤ i, j ≤ |V |.
Existentially guess the indices of k vertices. Let the guessed indices be i1, . . . ik.

/* r0 ← |V | */
/* For all i, 1 ≤ i ≤ k */
/* r1 ← i */
/* Exists ↑ 1 */

Universally guess the index of a vertex.
/* r0 ← |V | */
/* r1 ← k + 1 */
/* Forall ↑ 1 */

for p = 1 to k do
/* NextVertex: */
if vertices ip and iq are adjacent or same then

Accept in this branch
end
/* r1 ← p */
/* r2 ← q */
/* Jzero 1 2 NextVertex */
/* Halt and Accept */

end
Reject

End DS

both cases was W [P]. We also construct algorithms to show new upper bounds for
a number of parametric problems including Reachability Distance in Petri
Nets, Bounded DFA Intersection, and Weighted Integer Program-
ming (Definitions can be found in the appendix). Some of these upper bounds are
optimal.

The basic completeness results in parameterized complexity theory were orig-
inally derived in the context of circuit satisfiability [25, 26]. We give new and
much simpler proofs of the basic results from a computational perspective. Our
new proofs resemble the development of the theory of NP -completeness. In the
classical context, the NP -completeness of SAT (Cook’s Theorem) is established by
(i) constructing a nondeterministic polynomial-time algorithm to decide SAT, and
(ii) constructing a generic reduction from computations on a nondeterministic Tur-
ing machine to SAT. In the parameterized context, we show that (i) an appropri-
ately parameterized version of SAT can be decided by a program running on the

16

new model, and (ii) the computation of a resource-bounded program can be rep-
resented by an instance of parameterized version of SAT. The basic completeness
results for different normalized forms of circuits are obtained as direct consequences
of our new proof.

We show some new structural results based on the new characterizations. In
some cases, these results hint on the computational features that actually distin-
guish the associated classes. We analyze the relationship between W [t] and L[t]
classes for t ≥ 2 and identify subclasses of L[t] that are contained in W [t]. We iden-
tify the key computational feature that differentiates the W [t] and L[t] classes. Our
results indicate that the difference between programs for W [t] and L[t], in terms
of computational power, is less than what it appears to be from their definitions.
It is known that monotone-W [2t + 1] is contained in W [2t] while antimonotone-
W [2t + 2] is contained in W [2t + 1], for all t ≥ 0. We use the extended char-
acterization to identify larger subclasses of W [t + 1] that are contained in W [t].
Most of our results have the nice property that they can be extended to circuits of
parametric polynomial size.

Establishing lower bounds for parameterized problems is an important area of
research in parameterized complexity theory. In addition to providing evidence
that the problem is unlikely to be fixed-parameter tractable, the hardness results
suggest that fully polynomial time approximation schemes may not exist for the
corresponding optimization problems in the classical context. Our contribution
in this area is the development of normalized computational models for the W [t]
and L[t] classes. The equivalence between the normalized and natural computation
models can be viewed as the computational analogue of the Normalization Theorem
[25, 26]. Unlike the theory of NP -completeness, the defining problems and a few
variants of them are the only problems known to be complete for classes beyond
W [2]. Thus proving lower bounds often involves construction of generic reductions.
The normalized models facilitate the construction of such generic reductions. In
addition, lower bound proofs for W [t]-classes can sometimes be extended easily
for the L[t]-classes if the proof is based on computational models. Our proof that
Longest Common Subsequence parameterized by the number of strings is L[t]-
hard for all t > 0, is a nice example of such extension technique. Since L[t]-classes
do not yet have any circuit characterization, lower bound proofs based on circuits
cannot be extended in a similar manner. Although reduction from natural problems
can be used to show lower bounds for W [1] and W [2], a generic reduction may help
improving the bound significantly. We show that the Precedence-Constrained
Multiprocessor Scheduling, parameterized by the number of processors, is
L[t]-hard for all t ≥ 1. The problem was known to be W [2]-hard and the hardness

17

proof was based on a reduction from Dominating Set. Since no natural extension
of Dominating Set is known for higher classes, the hardness proof cannot be
extended in any obvious way to derive the L[t]-hardness results.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. The new characterizations of fixed-
parameter intractable classes appear in Chapter 2. Chapter 3 presents the simplified
proofs of some fundamental results in parameterized complexity theory. Some new
structural results are established in Chapter 4. We present some new hardness and
membership results in Chapter 5. Chapter 6 analyzes the degree of intractability
of various problems on finite state machines. Finally we conclude with a sketch of
our future research plan in Chapter 7. The definitions of all problems discussed in
this thesis can be found in the Appendix.

18

Chapter 2

New Variants of the Computation
Model

In this chapter, we introduce new ARAM characterizations of the classes in the
W -hierarchy and the L-hierarchy. As noted in Subsection 1.1.3, the computational
characterizations proposed by Flum and Grohe closely follow the features of the
corresponding Model Checking problems. Natural implementation of algorithms
by W [t]-programs often becomes technically involved because of the associated
constraints. We will see a representative example in Section 2.3. Such limitations
motivated us to develop a more natural variant of the W [t]-programs. The L[t]-
programs do not have many of the limitations of the W [t]-programs. We further
extend the L[t]-programs to develop a new variant that can implement algorithms
in a more natural way.

Simulating computations on one model by another is an important and fre-
quently used technique in complexity theory. Also, constructing generic reductions
often involves analyzing fragments of possible computations of a machine on a
given input (Cook’s Theorem, for example). We will use similar techniques for the
W [t]-programs and L[t]-programs in order to establish lower bound and structural
results. The tasks become easier if the computational model to start with is as re-
stricted as possible. These observations have motivated us to derive more restricted
variants of the W [t]-programs and the L[t]-programs.

For all variants, the number and pattern of alternations in the programs are
kept the same. Thus, the programs characterizing the level t in the W -hierarchy
or the L-hierarchy are allowed to make at most t alternations in any computation
branch, the first nondeterministic step being existential. The number of existential
steps in the first level of alternation is bounded by some function of the parameter

19

while the total number of the remaining nondeterministic steps is bounded by
some constant. The new ARAM characterizations differ from the corresponding
original characterizations in terms of the bounds on the resources available to the
computation that follows the first set of existential guess steps. We use the following
terminology in order to distinguish among the variants. We either use no prefix
or use the prefix basic for the original characterizations. The characterization with
a relaxed set of constraints (relative to the original) is identified by the prefix
extended. The characterization with further restrictions added to the original set
of constraints is identified by the prefix normalized.

In one direction, we allow more resources (e.g. number of steps) for the compu-
tation that follows the first set of existential steps, to obtain the extended character-
izations. In the other direction, we introduce additional restrictions on the original
models to obtain the normalized characterizations. While modifying the resource
bounds, we must ensure that the classes resulting from the new characterizations
remain the same as the corresponding original class. The resources to alter and
the extent to which the corresponding bounds can be varied are the topic of this
chapter.

2.1 A New View of the Alternating RAM (ARAM)

For the purpose of developing the new characterizations, we view the ARAM model
in a different way than it was originally described [19, 20]. An ARAM has an un-
bounded number of standard registers and guess registers, as described in Subsec-
tion 1.1.3. Any operation can be performed on the standard registers (including the
ones defined below for the guess registers). The operations on the guess registers
are limited to exists, forall, jequal, jzero, and a newly introduced assign
operation which is defined below. We extend the syntax of these operations so that
the operations may use standard registers and constants as operands. In addition
to the original parameters (Definition 1.11), the operations take as parameter a flag
that indicates the types of the operands. A flag F is set to be Fconst, Fstandard, or
Fguess to specify that the corresponding operand is a constant, a standard register,
or a guess register, respectively. Given a parameter i and a flag Fi for i, we define
val(i) as follows.

val(i) =





i, Fi is Fconst

rri
, Fi is Fstandard

gri
, Fi is Fguess

The details of the syntax of the modified operations are given below.

20

exists ↑ j F : Existentially guess a value less than or equal to the value in
r0 and store the value in rjth standard or guess register as indicated by flag
F. Here, F ∈ {Fstandard, Fguess}.
forall ↑ j F : Universally guess a value less than or equal to the value in
r0 and store the value in rjth standard or guess register as indicated by flag
F. Here, F ∈ {Fstandard, Fguess}.
jequal i j c F1 F2 : If val(i) = val(j) then jump to the instruction labelled
c. Here F1, F2 ∈ {Fconst, Fstandard, Fguess}.
jzero i j c F1 F2 : If r〈val(i),val(j)〉 = 0 then jump to the instruction labelled c.
Here 〈· , ·〉 : N × N → N, is any (reasonable) encoding of pair of values such
that 〈0, 0〉 maps to 0. Also, F1, F2 ∈ {Fconst, Fstandard, Fguess}.
assign i j l F1 F2 F3 : Assign the value of the standard register r〈val(i),val(j)〉
to the rlth standard or guess register as indicated by F3. Here F1, F2 ∈
{Fconst, Fstandard, Fguess} and F3 ∈ {Fstandard, Fguess}.
Any test on a constant number of registers such that the test outcome causes
the computation to deterministically follow one of two instructions without
altering the content of any register.

For example, a program running on an ARAM can existentially assign a value
to guess register gri

by executing the operation exists ↑ i Fguess. Likewise, a
program can test whether the value in guess register grj

is equal to some constant
d by executing the operation jequal j d c Fguess Fconst. The syntax for the W -
operations (Definition 1.11) in the original formulation is modified as follows for
the new model. Note that the semantics of the operations WOP1 to WOP5 in
Definition 2.1 remain the same as those in the original definition (Definition 1.11).

Definition 2.1 An operation on the new ARAM model is a W -operation if the
operation is one of the following.

WOP1: Any deterministic operation that uses the standard registers only.

WOP2: Exists with a guess register as target (i.e. F is Fguess).

WOP3: Forall with a guess register as target (i.e. F is Fguess).

WOP4: Jequal with guess registers as operands (i.e. both F1 and F2 are Fguess).

21

WOP5: Jzero with guess registers as operands (i.e. both F1 and F2 are Fguess).

From now on we use ARAM to refer to the modified version of the alternating
RAM (as defined above). The definitions of the basic variants of the programs
(defined in Subsection 1.1.3) essentially remain the same for the modified ARAM.
We present them again for completeness.

Definition 2.2 (Chen et al. [19, 20]) Let f and h be fixed functions and c > 0 be
any constant. A program running on a WRAM or an ARAM is called an AW-
program if, on any input 〈x, k〉 with |x| = n, any computation branch of the program
satisfies the following conditions.

AW1: There are at most f(k)nc computation steps.

AW2: The computation does not store any value greater than f(k)nc in any register
at any time.

AW3: The number of nondeterministic (existential and universal) guesses is at most
h(k).

Definition 2.3 An AW -program Rt running on a WRAM or an ARAM is a t-
alternating program if

T1: there are at most (t − 1) alternations in any computation branch of Rt and
the first nondeterministic step is existential.

A t-alternating program Rt,u is a (t, u)-alternating program if

TU1: the number of nondeterministic guess steps in each of the second and subse-
quent levels of alternation is at most u, for some constant u > 0.

All variants of W [t]-programs and L[t]-programs discussed in this thesis are
restricted (t, u)-alternating programs that run on an ARAM.

Definition 2.4 (Basic L[t]-program) An L[t]-program is a (t, u)-alternating pro-
gram running on an ARAM such that

22

BL1: in any computation branch, all the nondeterministic operations are among the
last h(k) steps, for some function h.

Note that, in the new formulation, a basic L[t]-program is allowed to assign
nondeterministically guessed values to standard registers.

Definition 2.5 (Basic W [t]-program) A basic L[t]-program R is a basic W [t]-
program if

BW1: R performs W -operations (Definition 2.1) only.

The following easy lemma states that the basic variants on the modified ARAM
model are equivalent to the corresponding original variants.

Lemma 2.1 1. The characterizations of the basic L[t]-program presented in
Definition 1.14 and Definition 2.4 are equivalent.

2. The characterizations of the basic W [t]-program presented in Definition 1.14
and Definition 2.5 are equivalent.

Proof. We prove the equivalence by showing that each constraint in the new
formulation has a counterpart in the original formulation and vice versa. All new
variants are (t, u)-alternating programs and hence satisfy the constraints AW1,
AW2, AW3, T1, and TU1. The constraints L1 and BL1 are same. For W [t]-
programs, Constraints W1 and BW1 indicate that both variants are allowed to
perform the same set of operations.

It remains to show that any operation on the new variant of L[t]-programs can
be simulated on the original variant of L[t]-programs in O(1) time, and vice versa.
Let Roriginal and Rnew be L[t]-programs that satisfy the constraints in Definition
1.14 and 2.4, respectively. Rnew can store the nondeterministically guessed values
in standard registers which allows Rnew to perform any operation (including je-
qual and jzero tests) on the nondeterministically guessed values. Thus, Rnew

can simulate any operation of Roriginal directly.

Except for the Assign operations, simulation of operations on Rnew by oper-
ations on Roriginal can be done directly. This is because, Roriginal can perform
any operation (except Assign) on the guess registers as well as on the standard
registers. Roriginal can simulate assign i j l on Rnew by computing the index
u = 〈val(i), val(j)〉 and then assigning the value in ru to grl

.

In the next section, we define some computational properties of the basic W [t]-
programs and basic L[t]-programs. The new variants will be obtained by relaxing
or restricting some of these features.

23

Preprocessing

Guessing

Checking

Operations: Any deterministic operation having
standard registers as operands

No. of Operations: f(k)nc

Operations: Any operation (W -operation) except forall for L[t] (W [t])
No. of Operations: h(k)

Operations: Any W -operation (W [t]-programs)
Any ARAM-operation (L[t]-programs)

No. of Operations:
Forall: d
Exists: d
Any other operation: g(k)

No. of Alternations: t− 2

Figure 2.1: Different phases of computation of a basic W [t]-program and a basic
L[t]-program.

2.2 Computational Features of the Basic Programs

The computational features defined in this section will be important in the remain-
ing part of the thesis.

Definitions 2.4 and 2.5 specify the constraints a program running on an ARAM
must satisfy in order to be a basic L[t]-program and a basic W [t]-program, respec-
tively. Conceptually a branch of computation of a basic program (both W [t] and
L[t]) has three phases, which we define below (Definition 2.6). We would like to
stress that computations on all variants of the programs in this thesis will have
these three conceptual phases. The term PGC model originates from this concep-
tual partition of the computation.

Definition 2.6 (Computational Phases) The preprocessing phase of a com-
putation branch consists of all deterministic steps that precede the first existential
guess step. The guessing phase starts with the first existential guess step and con-
sists of all computational steps that precede the first universal guess step in this

24

computation branch. The checking phase starts with the first universal guess step
and consists of all subsequent computational steps.

The conceptual partition of the computation in the PGC model is shown in
Figure 2.1. In a typical computation, a basic W [t]-program or a basic L[t]-program
existentially guesses a solution in the guess phase and then checks the validity of the
guessed solution in the checking phase. The program may precompute necessary
results in the preprocessing phase and then use the precomputed results during the
verification process in the checking phase. Algorithm 1.1 is an example of such
computations.

All programs discussed in this thesis are halting programs and hence perform
a finite number of operations in any computation on any input. The state of a
program at any given point of computation on any input can be represented by the
values in the relevant registers and the instruction to be executed.

Definition 2.7 (Configuration) Let l be the maximum number of steps any com-
putation branch may perform. The configuration of a program at step s in a com-
putation on a given input is represented as 〈pc, vr0 , . . . , vrl

, vg1 , . . . , vgl
〉, where pc is

the value of the program counter at time s, vri
and vgi

are the values stored in the ith
standard register and the ith guess register, respectively, before step s is performed.

We define the following notation for convenience.

- The program counter of α is denoted by PC(α).

- The operation associated with α is denoted by OP(α).

- The result of OP(α) is denoted by R(α).

- The value specified in α for the ith standard register is denoted by ST(α, i).

- The value specified in α for the ith guess register is denoted by GS(α, i).

The possible computations of a program R on a given input 〈x, k〉 can be repre-
sented by a tree of configurations. The resulting tree is called the computation tree
of R on 〈x, k〉 [37]. The structure of a configuration tree is shown in Figure 2.2.
The concepts of configurations and computation tree are similar to those defined
for standard alternating Turing machines [18].

25

Partial configurations for..

preprocessing

6

?

First nondeterministic block
(∃1-block)

6

?

Second nondeterministic block
(∀2-block)

6

?

∃f

∃f ∃f
T T

......................

......................
.......T
.......T

∀f ∀f
.......T
.......T

∀f ∀f.......T
.......T

∀f ∀f
.......T
.......T

∀f ∀f.......T
.......T

∃f ∃f
.......T
.......T

∃f ∃f.......T
.......T

∃f ∃f
.......T
.......T

∃f ∃f

`̀̀

`̀̀

`̀̀

`̀̀

`̀̀

`̀̀

....................

....................

....................

....................

....................

....................

....................

....................

T

T

T

T

T

T

T

T

Qf Qf Qf Qf

H H H H

...... : Any deterministic operation
on standard registers only

......T : Any deterministic operation
including jequal and jzero tests

∀f : Universal guess

∃f : Existential guess

Qf : Universal (existential) guess
for even (odd) level

H : Halting step

Figure 2.2: Structure of a computation tree of a basic W [t]-program or a basic L[t]-program.
The deterministic configurations following the first existential step may correspond to any deter-
ministic ARAM operation for an L[t]-program but are restricted to correspond to W -operations
for a W [t]-program.

Definition 2.8 (Computation Tree) Consider the computation of a program R
on a given input 〈x, k〉. The computation tree associated with the computation is a
tree of configurations such that the following properties hold.

- The root of the computation tree is the starting configuration of R on 〈x, k〉.
- Let α be a non-halting deterministic configuration. Also let β be the unique

configuration reachable from α in a single step. If α is included in the com-
putation tree then α has β as the only child.

- Let α be a nondeterministic configuration. Also let {β1, . . . , βl} be the set of

26

configurations that may be reached from α in a single (nondeterministic) step.
If α is included in the computation tree, then α has βi as a child, for each
i, 1 ≤ i ≤ l.

- A halting configuration α in the computation tree must be a leaf.

In addition to nondeterministic branching, the basic programs use the test op-
erations to perform deterministic branching. The outcomes of any branching oper-
ation in the (deterministic) preprocessing phase are fixed for a given input. These
test outcomes can be computed by a standard simulation of the preprocessing phase
in deterministic parametric polynomial time. Consequently, we are interested in
only those tests that appear after the first existential step. Note that a configu-
ration αtest, corresponding to a test (jequal or jzero), has a single child in the
computation tree even though the test represents a binary branching. The reason
is that the test outcome is unique once the values of the operands are fixed (i.e. the
test operations are deterministic). Since a computation branch in the computation
tree represents a fixed value for each nondeterministic guess encountered so far, a
singe configuration can be reached from αtest based on the unique outcome of the
associated test on the fixed values. Later we will introduce the partial computation
trees (Definition 2.15) which are defined on the assumption that the nondetermi-
nistic values from the guess phase are unknown. Under certain conditions, the test
configurations result in binary branching in such partial computation trees. We
will shortly discuss the partial computation trees in more detail.

We now define some terminology. Let us consider the computation of a basic
W [t]-program (or a basic L[t]-program) R on some input 〈x, k〉.

Definition 2.9 A configuration is a nondeterministic configuration if the associ-
ated operation is a nondeterministic guess operation. A nondeterministic configu-
ration is existential (respectively universal) if the associated nondeterministic oper-
ation is existential (respectively universal). Let conf1 and conf2 be two nondetermi-
nistic configurations in some branch in the computation tree such that conf1 is an
ancestor of conf2 and no other nondeterministic configuration appears in between
conf1 and conf2. We say that conf1 precedes conf2 and conf2 follows conf1.

Definition 2.10 The nondeterministic configuration corresponding to the first ex-
istential operation is at alternation level 1. Let conf1 and conf2 be two nondetermi-
nistic configurations such that conf1 precedes conf2. If conf1 and conf2 are of the
same kind then the configurations are at the same level of alternation. Otherwise,
the level of alternation of conf2 is one higher than that of conf1. A nondeterministic

27

configuration is a terminal nondeterministic configuration if it is the last nondeter-
ministic configuration in its level of alternation in some computation branch.

Definition 2.11 Let confi−1 and confi be two nondeterministic configurations such
that confi−1 is an ancestor of confi in the computation tree. Also let confi−1 and
confi be the terminal nondeterministic configurations at alternation levels i−1 and
i, respectively. All configurations (i.e. the corresponding computation steps) after
confi−1 and up to and including confi, constitute the ith nondeterministic block
in the computation branch under consideration. The first nondeterministic block
starts with the first existential configuration.

We refer to a nondeterministic block by the type of guess and the level of alter-
nation. In particular, we use ∃i (∀i) to refer to the ith existential (universal) block.
a guess register whose value has been set by an Exists step in the first nondeter-
ministic block is referred to as an ∃1-guess register. Any guess register whose value
is set in the checking phase is referred to as a checking guess register. Each com-
bination of values in the ∃1-guess registers uniquely identifies an ∃1-computation
branch. For a given ∃1-branch b∃1 , each combination of values in the checking guess
registers uniquely identifies a computation branch bcheck in the subtree for b∃1 . We
refer to each such bcheck as a nondeterministic checking branch. As we will see later,
each ∃1-branch corresponds to a parametric polynomial number of nondeterministic
checking branches (Property 2.5).

Let us focus on the deterministic simulation of computations of a W [t]-program
or an L[t]-program. Such simulations will play a central role in establishing many of
the results in this thesis. With our current knowledge, the only way to determinis-
tically simulate nondeterminism is to enumerate all possible computation branches
arising from the nondeterminism. By definition, the programs may have Ω(nh(k))
computation branches. Thus it is unlikely that a deterministic algorithm can simu-
late the computation in all branches in parametric polynomial time (this belief is of
course the basis of the theory of fixed-parameter intractability). Given the inability
to perform a complete deterministic simulation in parametric polynomial time, we
have to settle for something less. This is precisely the reason we introduce the no-
tion of partial simulation (Definition 2.15). As we will see shortly, the computation
of a W [t]-program and a variant of the L[t]-programs can be partially simulated
in deterministic parametric polynomial time. In this context, we will distinguish
between the registers whose values are dependent on the ∃1-registers in a nontrivial
way (Definition 2.12) from the remaining registers.

Definition 2.12 (∃1-operand) An operand x in an operation is an ∃1-operand if

28

- the current value of x has been set by some ∃1-guess step in the ∃1-non-
deterministic block, or

- the current value of x has been set by some operation op such that op uses
some ∃1-operand.

Any operation that uses at least one ∃1-operand is referred to as an ∃1-operation.
In particular, tests (jequal and jzero) on ∃1-operands are referred to as ∃1-tests.

Definition 2.13 (Partial Configuration) A configuration α is a partial con-
figuration (with respect to the guess phase) if α specifies the values of all registers
except the ∃1-operands. We use a special symbol t to represent the unknown values
in a partial configuration.

Definition 2.14 formalizes the notion of ‘reachable in a single step’ or ‘yields’ for
partial configurations.

Definition 2.14 Let α be a partial configuration in some computation of an AW -
program. α yields the partial configurations {β0, . . . , βm}, for some m ≥ 0, in
accordance with the following constraints.

1. If a register (standard or guess) is not the target operand of OP (α) then the
value of the register remains the same in α and βi, for all i, 0 ≤ i ≤ m.

2. If OP(α) is an ∃1-test then α yields two partial configurations β0 and β1.
Here, PC(β0) refers to the instruction that follows PC(α) while PC(β1) refers
to the branch target of OP(α).

3. If OP(α) is a test that does not involve any ∃1-operand then α yields a sin-
gle partial configuration β0. Here, PC(β0) refers to the instruction that the
computation will execute for the known outcome of the test OP(α).

4. If OP(α) is any operation other than a test and α yields a partial configuration
β, then PC(β) refers to the instruction that follows OP(α).

5. Let OP(α) be any deterministic operation other than branching. R(α) is t in
case at least one operand of α is an ∃1-operand. Otherwise R(α) equals the
result produced by OP(α).

29

(a) The index of the target operand of OP(α) is not an ∃1-operand:

α yields a single partial configuration β0. In β0, the value of the target
register of OP(α) is set to be R(α).

(b) The index of the target operand of OP(α) is an ∃1-operand:

α yields l + 1 partial configurations {β0, . . . , βl}, where [0 . . . l] is the
range of values any standard register (to be used as an index) may store.
The value of ST(βi, i) (respectively GS(βi, i)) is set to be R(α) depending
on whether the target is a standard or a guess register.

6. Let OP(α) be an existential operation in the guess phase.

(a) The index of the target operand of OP(α) is not an ∃1-operand:

α yields a single partial configuration β0. In β0, the target of OP(α) is
set to be t.

(b) The index of the target operand of OP(α) is an ∃1-operand:

α yields a l+1 partial configurations β0, . . . βl. In βi, ST(β, i) or GS(β, i)
is set to be t depending on whether the type of the target register of
OP(α) is standard or guess respectively .

7. Let OP(α) be a nondeterministic operation (∃ or ∀) in the checking phase.

(a) The index of the target operand of OP(α) is not an ∃1-operand:

α yields l + 1 partial configurations β0, . . . , βl, one partial configuration
for each possible value of the guess. Intuitively, βi corresponds to the
fact that the value i has been guessed by OP(α). In βi, the value of the
target register of OP(α) is set to be i, for each i, 0 ≤ i ≤ l.

(b) The index of the target operand of OP(α) is an ∃1-operand:

α yields (l+1)2 partial configurations {β0,0, . . . , βl,l}, where [0 . . . l] is the
range of values any standard register (to be used as an index) may store.
The value of ST(βi,j, i) (respectively GS(βi,j, i)) is set to be j depending
on whether the target is a standard or a guess register.

8. If OP(α) is the Halt instruction, then α does not yield any partial configu-
ration.

Definition 2.15 (Partial computation tree) Consider the computation of an
AW -program R on some input 〈x, k〉. A partial (with respect to the ∃1-guesses)
computation tree Tpartial of R on 〈x, k〉 is a tree of partial configurations such that

30

- the root of Tpartial is the starting configuration, and

- a partial configuration α in Tpartial has a child β if and only if α yields β
(Definition 2.14).

A partial simulation (with respect to the guess phase) of R on 〈x, k〉 is the process
of constructing the associated partial computation tree.

The partial computation tree has a different structure than the computation
tree. Figure 2.3 shows the structure of a partial computation tree for basic W [t]-
program and a basic L[t]-program. The branching nodes in a partial computation
tree are of the following three types.

BNodeType1: A nondeterministic partial configuration (corresponding to ex-
ists or forall) in the checking phase.

BNodeType2: A partial configuration such that the associated operation has
an ∃1-operand as index to the target.

BNodeType3: A partial configuration corresponding to some ∃1-test.

Nodes of the first two types arise due to nondeterminism in the guess phase and
they do not directly affect the sequence of operations that are executed. However,
each branching due to BNodeType3 nodes results in two different sequences of
operations. In an actual computation, the ∃1-values determine which sequence
gets executed. By constraint BL1 (Definition 2.4), all nondeterministic steps are
within the last h(k) steps for some function h. Thus the number of ∃1-tests is also
bounded by h(k). These O(h(k)) binary tests result in at most 2O(h(k)) different
sequences of instructions. We refer to each instruction sequence as an execution
path. Any computation of a basic program (W [t] or L[t]) must correspond to one
of these 2h(k) execution paths. Note that, the value of an operand of a particular
instruction in a given execution path may (and typically will) vary among different
nondeterministic computation branches.

Intuitively the partial computation tree represents a verifier. Plugging in the ∃1-
values into the partial computation tree, we can decide deterministically whether
the guessed values represent a valid solution in time proportional to the size of
the partial computation tree. The size of the partial computation tree plays an
important role in partial simulation and in the construction of generic reductions.

31

(i) partial computation tree of
a basic W [t]-program

..

Preprocessing

6

?
∃f..........
T

∃f....T
∀f³³³ ¡¡
PPPaaaa

aaaa
......T
Te.......Taaaa

aaaa

Qf³³³ ¡¡
PPPaaaa

aaaa
............
T

Te.......T
aaaa

...... : Any deterministic operation
on standard registers only

Te : ∃1-test

......T : Any deterministic operation
including jequal and jzero tests
(excluding ∃1-tests)aaaa : Any valid computation

op∃ : Operation with an ∃1-operand
as index to the target

∃f : Existential guess

∀f : Universal guess

Qf : Universal (existential) guess
for even (odd) level

..

Preprocessing

6

?
∃f..........
T

∃f....T
∀f³³³ ¡¡
PPPaaaa

aaaa
......T
Te.......Taaaa

aaaa

OP∃³³³ ¡¡
PPPaaaa

aaaa
aaaa
......T
Qf³³³ ¡¡
PPPaaaa

aaaa
............
T

Te.......T
aaaa

(ii) partial computation tree
of a basic L[t]-program

Figure 2.3: Partial computation tree of (i) a basic W [t]-program (ii) a basic L[t]-
program.

32

In this thesis, we are primarily concerned with programs having partial computation
trees of parametric polynomial size.

In the rest of this section, we analyze properties of the partial computation
trees for the basic models. The following property follows from the definition of the
partial computation tree and accepting partial configurations.

Property 2.2 Let x be a nondeterministic node at alternation level i, 2 ≤ i ≤ t in
a partial computation tree. Let T = {y1, . . . , ym} be the set of all nondeterministic
nodes at level i + 1 such that each yj ∈ T is the first nondeterministic node at
alternation level i + 1 along some branch and that yj is a descendant of x. For a
given set V∃ of ∃1-values, the nondeterministic node x corresponds to an accepting
partial configuration if and only if one of the following conditions hold.

1. x is a universal node and each node y in T either represents an accepting
configuration or is not reachable from x for the values V∃.

2. x is existential and there is at least one node y in T such that y represents
an accepting configuration and y is reachable from x for the values V∃.

The next theorem specifies a crucial property of the partial computation trees.

Theorem 2.16 A partial computation tree can be constructed deterministically in
time proportional to the size of the tree.

Proof. Let us consider the computation of some program R on some input
〈x, k〉. Let l = f(k) |x|c be the maximum number of steps in any computation
branch of R. The initial partial configuration can be constructed deterministically
from the input 〈x, k〉 in O(l) time. The remaining partial configurations can be
constructed in a depth-first (or breadth-first) manner. Given a partial configuration
α, each child β of α can be constructed from α in O(l) time from the constraints
in Definition 2.14.

Property 2.3 At most a parametric polynomial number of registers (standard or
guess) can be used in any computation of an AW -program. These registers are
among the first f(k)nc registers.

33

Proof. The first property follows from the facts that the number of compu-
tation steps in any computation branch of a level-t program is bounded above by
a parametric polynomial, and that each operation on ARAM involves a constant
number of registers. Each register is accessed by specifying its index which in turn
has to be stored in some register. By condition AW2 of Definition 2.2, any such
index can be at most a f(k)nc, for some function f and constant c > 0. This
implies the second part of the property.

Property 2.4 A basic W [t]-program or a basic L[t]-program has at most 2h(k)

execution paths.

Proof. Let us consider the computation of a basic W [t]-program (or a basic
L[t]-program) R on input 〈x, k〉. Let us consider a test operation performed before
the first existential step. For a given input, the outcome of the test is fixed and
the program deterministically follows one of the two branches (independent of the
nondeterministic guesses). However any test that uses the nondeterministically
guessed values as operands may cause the program to follow any of the two branches,
doubling the number of execution paths at the point of the test. Since the number
of such tests is at most h(k) (Constraint BL1 in Definition 2.4), such doubling can
occur at most h(k) times.

Property 2.5 In any computation of a basic W [t]-program or a basic L[t]-program,
the number of checking nondeterministic branches is bounded above by a parametric
polynomial.

Proof. The upper bound of the range of values for a nondeterministic step
is specified in the 0th standard register. By constraint AW2 in Definition 2.2, the
bound is a parametric polynomial. Thus each nondeterministic operation results
in a parametric polynomial number of nondeterministic computation branches. By
constraints T1 and TU1 of Definition 2.3, the number of nondeterministic guess
steps in the checking phase is bounded by a constant.

Property 2.6 The size of the partial computation tree of a basic W [t]-program for
a given input is bounded above by a parametric polynomial.

34

Proof. In a partial computation tree of a basic W [t]-program, branching
occurs due to (i) nondeterministic guess operations in the checking phase and (ii)
two-way branching based on tests on ∃1-values. Thus each leaf corresponds to
a combination of nondeterministic checking branch and an execution path. By
Properties 2.4 and 2.5, the number of such combinations is bounded above by a
parametric polynomial. By Constraint AW1 in Definition 2.2, there can be at most
a parametric polynomial number of computation steps in any computation branch.
Since any operation uses a constant number of operands, the size of each partial
configuration is bounded by a parametric polynomial.

Property 2.6 is of immense importance because the entire partial computation
tree can be constructed deterministically in parametric polynomial time (Theorem
2.16). This is useful for constructing generic reductions. Unfortunately an analogue
of Property 2.6 does not seem to hold for the basic L[t]-programs. The possibility
of using an ∃1-operand as an index to a target register may result in unbounded
branching for any operation in the checking phase. The number of such operations
may be Ω(h(k)) resulting in a partial configuration tree of size Ω(nh(k)). However,
in the next section we will develop a normalized variant of the L[t]-program having
a partial computation tree of size bounded by a parametric polynomial.

Property 2.7 (Chen, Flum, and Grohe [21]) In any computation of a basic W [t]-
program, t ≥ 2, values in standard registers are independent of the nondeterminis-
tically guessed values. In other words, the values in standard registers depend on
the execution paths only.

Proof. By constraint BW1 in Definition 2.5, a basic W [t]-program can per-
form W -operations only. Thus the nondeterministic operations must store the
guessed values in guess registers. Only jequal and jzero tests can use the guessed
values as operands and these tests do not modify the content of any register.

Note that a jzero test uses the value of some standard register to decide the
test outcome. Property 2.7 implies that a standard register can never be an ∃1-
operand in any computation of a basic W [t]-program. In other words, the value
of a standard register in a partial configuration is never t. Thus, given a test, the
pair of ∃1-values that causes the operation to branch can be computed from the
corresponding partial configuration in deterministic parametric polynomial time.

Property 2.8 As long as the values in guess registers gri
and grj

remain the same,〈
gri

, grj

〉
maps to the same standard register.

35

Proof. This is immediate as the mapping 〈· , ·〉 is deterministic.

Property 2.8 is a severe limitation of the basic W [t]-programs. In particular,
verifying whether the nondeterministically guessed values satisfy multiple relations
becomes nontrivial due to the property. Such verification can be done, though, by
partitioning the range of values in a complicated manner. An example is given in
the next section where we construct an algorithm to decide a contrived version of
Dominating Set by a basic W [2]-program (Algorithm 2.2).

A basic W [1]-program can overcome the limitation utilizing its capability to
access the nondeterministically guessed values directly. Consider the case where
a W [1]-program needs to check whether a pair of ∃1-values satisfies relations R1

and R2. In the preprocessing phase, the W [1]-program can construct two separate
lookup tables for R1 and R2, respectively. Let the lookup tables be arranged such
that rstart1+〈i,j〉 (respectively rstart2+〈i,j〉) specifies whether the value pair (i, j) sat-
isfies the relation R1 (respectively R2). In the checking phase, the W [1]-program
can compute the index u1 = start1 + 〈i, j〉 (or u2 = start2 + 〈i, j〉) in constant time.
The program then examines the value in ru1 (or ru2) to decide whether the pair
(i, j) satisfies the relation R1 (or R2).

We are now ready to present the new variants of the computational model
(Section 2.3). The equivalence among the variants is established in Section 2.4.

2.3 The New Variants of the Computational Mod-

els

In this section we introduce the new variants of W [t]-programs and L[t]-programs.
The new variants are obtained by relaxing or restricting the computational features
identified in the previous section. We also demonstrate the usefulness of the new
variants through some examples. Theoretically, any result derived using one of the
characterizations can also be obtained using any other equivalent characterization.
However, picking a suitable characterization often makes the task at hand much
easier to accomplish. For example, an extended W [t]-program may be preferred
to others for proving upper bounds (with respect to W [t] classes) because of its
capability to implement natural algorithms.

36

Model Steps Bounds on allowed Bounds on allowed
after first operations on operations on non-∃1

∃1-step ∃1-operands guess registers
Extended-L[t] f(k)nc exists - g(k), exists/forall - constant,

Any other op - g(k) Any other op - f(k)nc

Basic-L[t] g(k) exists - g(k), exists/forall - constant,
Any other op - g(k) Any other op - g(k)

Normalized-L[t] g(k) exists - g(k), exists/forall - constant,
jequal/jzero/assign - g(k) jequal/jzero/assign - g(k)

Extended-W [t] f(k)nc exists - g(k), exists/forall - constant,
jequal/jzero - g(k) + d log n Any other op - f(k)nc

Basic-W [t] g(k) exists - g(k), exists/forall - constant,
jequal/jzero - g(k) jequal/jzero - g(k)

Normalized-W [t] g(k) exists - g(k), exists/forall - constant,
jequal/jzero - g(k) jequal/jzero - g(k)

Unique accepting/rejecting
execution path

Table 2.1: Summary of resource bounds for the original and new variants of the
computational models.

2.3.1 W [t]-programs

We present two new variants of the computational model for the W [t] classes. The
first is an extension to the basic model while the second is a restricted version of
the basic model. Both the new variants are (t, u)-alternating programs (Definition
2.3). The distinction among the models comes from the nature and number of
operations that they allow after the first nondeterministic step. Properties of the
basic models and the new variants are summarized in Table 2.1.

We obtain the extended characterization of W [t], t ≥ 2 by relaxing the access
restriction on the Qi-registers, Q ∈ {∃, ∀}, 2 ≤ i ≤ t, as well as the time bound
on the checking phase. Note that W [1] equals L[1], by definition. Therefore, a
W [1]-program has complete access to the ∃1-registers. We therefore develop the
extension for higher levels only.

Definition 2.17 (Extended W [t]-program) A (t, u)-alternating program is an
extended W [t]-program, t ≥ 2, if and only if

EW1: R performs at most h(k) + O(log n) W -operations (Definition 2.1) on the
∃1-registers.

37

As was the case with the basic W [t]-programs, an extended W [t]-program can
perform the W -operations only, on the ∃1-registers. However, an extended W [t]-
program has complete access to all values that are guessed in the checking phase.
The nondeterministic instructions can appear anywhere in the computation, not
necessarily in the last g(k) steps, for some function g. The nondeterministically
guessed values from the second and subsequent blocks can be used in parametric
polynomial number of computation steps. However, the number of tests that involve
at least one existential register from the first block cannot exceed h(k)+ c log n, for
some function h and some constant c > 0. Note that the previous characterization
(Theorem 1.4) has an implicit bound of h(k) on the number of such binary tests.

Let us analyze the computational properties of the extended W [t]-programs.
Since the number of steps in any computation branch is bounded by a parametric
polynomial, the depth of the partial configuration tree is a parametric polynomial
as well. The computation tree has a similar structure as that for the basic W [t]-
programs. The number of ∃1-tests (Te) in any root to leaf path can be O(h(k) +
c log n) as opposed to h(k). This increases the number of leaves by a parametric
polynomial factor only. Thus Properties 2.5, 2.6, and 2.8 still hold. The bound
specified in Property 2.4 on the number of execution paths changes to g(k)nc, for
some function g and constant c. The checking guess registers may be used in any
operation. Thus Property 2.7 changes to ‘standard registers do not depend on the
∃1-operands’. In addition, we identify the following property that will be used later
for establishing the equivalence among the variants.

Property 2.9 The following information can be computed (without knowing the
∃1-values) from a given partial computation tree of an extended W [t]-program in
deterministic polynomial time.

I1: The value of any standard register at any given partial configuration.

I2: The number of nondeterministic steps in each nondeterministic block in each
nondeterministic checking branch.

I3: The range for each nondeterministic operation.

I4: The accepting and rejecting execution paths for each nondeterministic check-
ing branch.

I5: The pairs of values that results in a certain outcome for each test (jequal
or jzero) in each execution path for each nondeterministic checking branch.

38

Proof. The proof for I1, I2, I3, and I4 follows immediately as any partial
configuration always specifies the value of any standard register (Property 2.7,
appropriately restated as mentioned above). I5 follows from Property 2.7 (restated)
and the fact that the encoding 〈·, ·〉 can be computed deterministically.

The restricted W [t]-programs can be considered normalized forms of the original
W [t]-programs. Thus, the fact that the two forms are equivalent can be viewed as
the computational analogue of the Normalization Theorem. As we will demonstrate
later, the normalized W [t]-programs can play a role similar to t-Normalized
WCS for proving hardness results. The added advantage of starting from normal-
ized W [t]-programs is that the proofs may be extended to classes in the L-hierarchy
without much extra effort. As the t-Normalized WCS does not have an analogue
for the L[t]-classes, such extensions may not be obvious in the context of circuits.

Definition 2.18 (Normalized W [t]-program) A basic W [t] program R is a
normalized-W [t]-program, t ≥ 1, if on any input, any computation branch of R

NW1: has at most one nondeterministic step in each nondeterministic block in the
checking phase,

NW2: guesses a value from the same range in each nondeterministic step in the
checking phase,

NW3: has all deterministic operations that depend on some nondeterministically
guessed value, after all the nondeterministic steps,

NW4: has at most h′(k) tests in the checking phase such that each test involves at
most one guess register from the guess phase (for t ≥ 2, only) , and

NW5: for even t (odd t), has a unique rejecting (accepting) execution path.

The additional constraints on the normalized W [t]-programs affect the struc-
ture of the partial computation tree. Compared to that of a basic W [t]-program,
the partial computation tree of a normalized W [t]-program has a more restricted
structure (Figure 2.4). As the normalized W [t]-programs are restricted variants
of the basic W [t]-programs, the properties (2.4 to 2.7) hold for the normalized
W [t]-programs as well.

We will show the equivalence among the variants in Section 2.4. In the rest of
this section, we analyze the usefulness of the new variants of the computational
model for W [t]. We illustrate the usefulness of the extended W [t]-programs by
showing the W [2]-membership of a contrived version of Dominating Set defined
as follows.

39

..

Preprocessing

6

?

Guess

?
6

Deterministic

Checking

?

6

¾ level-2

¾ level-3

¾ level-4

¾ level-t

∃f.....
∃f.....
∀f..........
..........

∃f ∃f..........
.......

..........

.......
∀f ∀f ∀f ∀faaa

aaa
aaa

aaa
aaa

aaa
Qf Qf Qf Qf

. . .

.......TA

.......TAaaa
.......TA

AC

ACRJ

Te

Te

.......TA

.......TAaaa
.......TA

AC

ACRJ

Te

Te

Te : Binary test on ∃1-operands

AC : Halt and accept

RJ : Halt and reject

........ : Sequence of deterministic operations
on standard registers

........TA : Sequence of deterministic operations
including assign and tests that
do not involve ∃1-operands

Figure 2.4: Structure of the partial computation trees for normalized L[t]-programs. The
structure for the normalized W [t]-programs is similar with the exception that the operations in
the final checking are restricted to W -operations only.

Not-too-close Dominating Set (DS-1)

Input: A graph G = (V,E), a positive integer k, and an integer d.
Parameter: k.
Question: Is there a dominating set V ′ ⊆ V of size k such that the
length of the shortest path between any pair of vertices in V ′ is at least
d?

We can construct an algorithm to decide DS-1 by modifying Algorithm 1.1 in
the obvious way. The new algorithm works the same way as Algorithm 1.1 until
the universal step is performed. The new algorithm rejects in the final phase if the
universally selected vertex is not dominated or for some pair of vertices xi and xj,
1 ≤ i < j ≤ k, the length of the shortest path between xi and xj is less than d.
The checking corresponds to the formula ϕDS-1, defined as follows.

40

Algorithm 2.1: Algorithm to decide Not-too-close Dominating Set by an ex-
tended W [2]-program.

DS-1-Extended(a graph G = (V, E), an integer k)

/* Guess k vertices for the dominating set */
Nondeterministic block 1: Existentially guess the indices (from the range1

[1 . . . |V |]) of k vertices for the dominating set. Store the values in guess registers
g1, . . . , gk.

Nondeterministic block 2: Universally guess the index (from the range [1 . . . |V |])2

of a vertex and store it in register gk+1.

Construct a lookup table so that r〈i,j〉 is 1 if and only if the ith and jth vertices are3

apart in G.

for p = 1 to k − 1 do4

for q = p + 1 to k do5

if vertices gp and gq are not apart then6

Reject in this branch7

end8

end9

end10

Construct a lookup table so that r〈i,j〉 is 1 if and only if the ith and jth vertices are11

adjacent in G.

for p = 1 to k do12

if vertices gp and gk+1 are adjacent or gp = gk+1 then13

Accept in this branch14

end15

end16

Reject in this branch.17

End DS-1-Extended18

ϕDS-1(u) =

[
k∨

i=1

(xi = u ∨ 〈xi, u〉 ∈ E)

]
∧

[
k∧

i=1

k∧
j=i+1

apart(xi, xj)

]
,

where apart(xi, xj) is true if and only if xi, xj ∈ V and the length of the shortest
path between xi and xj is at least d.

Verification of ϕDS-1 can be easily implemented by an extended W [2]-program
RDS-1. RDS-1 existentially guesses k vertices for the solution, universally guesses
a vertex u, verifies that (a) the vertices in the solution are pairwise apart and
that (b) u is dominated by the solution. RDS-1 computes the lookup table for the
apart relation before verifying part (a). The lookup table can be constructed by

41

computing the shortest distance between each pair of vertices (using the well-known
all-pair shortest path algorithm due to Dijstra, for example) and then verifying
whether the shortest distance is at least d. Thus the construction of the lookup
table requires polynomial time and the entire construction is independent of the
values in ∃1-registers. RDS-1 completes the verification of part (a) by performing
at most

(
k
2

)
jzero tests and the newly constructed lookup table. Once this part

of the verification is done, RDS-1 replaces the lookup table by the adjacency matrix
and verifies part (b). Construction of the adjacency matrix takes polynomial time
and is again independent of the ∃1-guesses. Verification of part (b) requires 2k
additional jequal and jzero tests. The algorithm accepts in a universal branch if
and only if the universally selected vertex is dominated by the existentially guessed
solution and all the vertices in the solution are pairwise apart. The details are given
in Algorithm 2.1.

Let us analyze whether the algorithm meets the constraints for an extended
W [2]-program. Lines 1 and 2 takes O(k + 1) time. The loops from Line 4 to 10
take O(

(
k
2

)
) time. The loop from Line 12 to Line 16 takes O(k) time. Construction

of the adjacency matrix (Line 11) takes O(n2) time. Construction of the lookup
table for apart takes O(n3) time. Thus the number of steps in a computation branch
is O(n3) (Constraint AW1 Definition 2.3). In Lines 1 and 2, the algorithm needs
to store the indices to the vertices into guess registers. During the construction of
the lookup tables in Lines 3 and 11, the algorithm needs to store indices to the
lookup table entries. Each of these indices is at most a polynomial in |x|. Thus
Constraint AW2 is satisfied. The nondeterministic steps in Lines 1 and 2 satisfy
the constraints AW3, T1, and TU1 for t = 2. A total of

(
k
2

)
+k tests are performed

on the ∃1-registers (Lines 6 and 13). Thus constraint EW1 is also satisfied.

Let us now construct a basic W [2]-program in order to decide Not-too-close
Dominating Set. By Property 2.8, a basic W [2]-program always maps a given
pair 〈u, v〉 to the same standard register (i.e. into the same lookup table entry). This
introduces a difficulty in the checking process as two lookup tables need to be used
to verify ϕDS-1, one for the adjacency relation and the other for the relation apart,
to perform the checking. A solution for the basic characterization is to existentially
guess a second copy of each of the original ∃1-values such that the second copies
map to the second lookup table. In addition, the solution needs to make sure that
the two copies of corresponding ∃1-values are consistent, which in turn requires
another lookup table. We implement the idea by defining a range of value [0 . . . l]
that a register may store and then partitioning the range into several subranges in
order to represent different entities of interest. In particular, we reserve the values

- {0, 1} for special use (to be described later),

42

Algorithm 2.2: Algorithm to decide Not-too-close Dominating Set by a basic
W [2]-program.

DS-1(a graph G = (V,E), an integer k)

Construct a lookup table T as follows.

T [i, j] =





1, i = 0 and 2 ≤ j ≤ |V |+ 2
1, i = 1 and |V |+ 3 ≤ j ≤ 2 |V |+ 2
1 3 ≤ i, j ≤ |V |+ 2 and vertices i− 2 and j − 2 are adjacent
1 3 ≤ i ≤ |V |+ 2, |V |+ 3 ≤ j ≤ 2 |V |+ 2

and i and j refer to the same vertex in V (i.e. i− 2 = j − |V | − 2)
1 |V |+ 3 ≤ i, j ≤ 2 |V |+ 2

and vertices (i− |V | − 2) and (j − |V | − 2) are apart
0, otherwise

/* Initialize g1 and g2 with values 0 and 1 respectively */
Nondeterministic block 1: Existentially guess a value less than or equal to 0 and
store in g1.
Nondeterministic block 1: Existentially guess a value less than or equal to 1, store
it in g2 and ensure that g1 6= g2.

/* Guess k vertices for the dominating set */
Nondeterministic block 1: Existentially guess the indices (from the range
[2 . . . (|V |+ 1)]) of k vertices for the dominating set. Store the values in guess registers
g3, . . . , gk+2.

/* Guess second copies of the values in g3, . . . , gk+2 */
Nondeterministic block 1: Existentially guess a second copy (from the range
[(|V |+ 3) . . . (2 |V |+ 2)]) of the value in gi and store the value in guess register gk+i,
3 ≤ i ≤ k + 2.

Nondeterministic block 2: Universally guess the index (from the range
[2 . . . (|V |+ 1)]) of a vertex and store it in register g2k+3.

for p = 3 to k + 2 do
if gp and gk+p do not refer to the same vertex then Reject in this branch

end
for p = k + 3 to 2k + 2 do

for q = p + 1 to 2k + 2 do
if vertices gp and gq are not apart then Reject in this branch

end
end
for p = 3 to k + 2 do

if vertices gp and g2k+3 are adjacent then
Accept in this branch

end
end
Reject in this branch.

End DS-1

43

- [2 . . . (|V | + 1)] to represent the vertices in V , the value i representing the
vertex i− 1, and

- [(|V | + 2) . . . (2 |V | + 1)] to represent the second copies of the vertices in V ,
the value i representing the vertex (i− |V | − 1).

Intuitively, the lookup table will have two main parts, the first part represent-
ing the adjacency matrix and the second part representing the table for apart.
The table entries are arranged in such a way that a value pair 〈i, j〉, 2 ≤ i, j ≤
(|V | + 1), maps to the [i, j]th entry of the adjacency matrix while a value pair
〈|V |+ 1 + i, |V |+ 1 + j〉, 1 ≤ i, j ≤ |V |, maps to the [i, j]th entry in the table for
apart. The [0, i]th entry, 2 ≤ i ≤ (|V | + 1) and the [1, j]th entry, (|V | + 2) ≤ j ≤
(2 |V | + 1), are set to be one. These entries will be looked at to ensure that a
certain ∃1-register stores a first copy (or a second copy) of a vertex. The algorithm
is presented in detail as Algorithm 2.2. It is reasonable to ask whether the verifi-
cation can be implemented in a more natural way on the basic model. However,
existence of any natural alternative seems unlikely because of Property 2.8. We will
use this technique of partitioning the range of values once again when we establish
the equivalence among different variants of W [t]-programs.

Thus the extended characterization of the W [t] classes allow us to construct
natural algorithms for parameterized problems. We will present several new mem-
bership results in Chapter 5 where we will make extensive use of this capability.
The extended characterization is also useful for establishing new structural results.
In particular, the ability to perform O(h(k) + log n) tests on the ∃1-registers (as
opposed to O(h(k)) tests in the original characterization) allows an extended W [t]-
program to decide problems from nontrivial subclasses from higher levels of the
W -hierarchy. We will describe the techniques in detail in Chapter 4 where we
present some new structural results regarding the relationship among the classes in
the W -hierarchy and the relationship between the W [t] and L[t] classes.

The effect of the normalized W [t]-programs becomes apparent once we consider
the task of proving lower bounds. The first two levels of the W -hierarchy contain
many natural complete problems. However, in order to show lower bounds beyond
W [2], one has to choose WCS on weft-t constant depth circuits (or some variant
of it) as the starting point. The normalized W [t]-programs provide a convenient
alternative to t-Normalized WCS. In some cases, the hardness results obtained
from a normalized W [t]-program may be extended to L[t] classes. In Chapter
5, we will see examples of such extension where we show that the Precedence
Constrained Multiprocessor Scheduling parameterized by the number of
processors is hard for L[t], t ≥ 1. Since no analogue of t-Normalized WCS is

44

known for the L[t] classes, it is not obvious whether similar extensions are possible
in the context of circuits. We end this section by showing how the normalized
W [1]-programs can be used to show lower bounds for W [1]-hard problems. As
an example we construct a new W [1]-hardness proof for Clique based on the
normalized W [1]-programs. The original W [1]-hardness result was established by
Downey and Fellows [25].

Theorem 2.10 (Downey, Fellows [25]) Clique is hard for W [1].

Proof. (A new W [1]-hardness proof) Let Rnormalized be a normalized W [1]-
program. We construct a fixed-parameter reduction A that takes an input 〈x, k〉
and constructs an instance 〈x′, k′〉 of Clique such that 〈x′, k′〉 is in Clique if and
only if Rnormalized accepts 〈x, k〉. Let Rnormalized make h1(k) existential guesses
and h2(k) tests, each involving a pair of ∃1-guesses. Also, let the values stored by
Rnormalized in any register be at most (fp − 1). Note that in the checking phase
Rnormalized rejects as soon as any of the tests along the unique accepting execution
path is not satisfied. On input 〈x, k〉, the reduction A deterministically simulates
the computation of the preprocessing phase of Rnormalized on 〈x, k〉. A creates the
vertices Y〈i,j〉, 1 ≤ i ≤ h(k), 0 ≤ j ≤ (fp−1), for 〈x′, k′〉. Including a vertex Y〈i,j〉 in
the clique corresponds to specifying that the ith ∃1-guess of Rnormalized is the value
j. Since the values in the standard registers of Rnormalized are independent of the
∃1-values, A can compute those values for each computation step of Rnormalized.
Thus, given a test (jequal or jzero), and a pair of values for the registers in-
volved, A can determine whether the computation will reject or continue along the
unique accepting deterministic branch. The instance x′ includes an edge between
Y〈i1,j1〉 and Y〈i2,j2〉 if and only if the values j1 and j2, when stored in ∃1-registers gi1

and gi2 , respectively, cause the computation to continue along the unique accept-
ing execution path. No edge is included between Y〈i,j1〉 and Y〈i,j2〉, j1 6= j2. The
parameter k′ is set to h1(k). Let us assume that x′ has a clique of size h1(k). The
clique includes exactly one Y〈i,j〉 for each i, 1 ≤ i ≤ h1(k). This follows from the
construction of x′ and the requirement that the clique must have size h1(k). We
construct an accepting computation of Rnormalized on 〈x, k〉 by storing the value
j in the ith ∃1-register of Rnormalized, in case Y〈i,j〉 is included in the clique. By
construction, no such pair of values falsifies any test along the unique accepting
deterministic branch of Rnormalized. The correctness in the other direction can be
shown by applying the argument in reverse.

We would like to point out that the hardness results for other basic W [1]-
complete problems including Independent Set and Weighted Antimonotone
2-SAT can be shown in essentially the same way.

45

2.3.2 L[t]-programs

We define the new variants of L[t]-programs in this subsection. We start with the
extended characterization. A basic L[t]-program has complete access to all nonde-
terministically guessed values (Definition 2.4). However, the number of operations
that can be performed on the nondeterministically guessed values is bounded by
a function of the parameter only. The extended characterization relaxes the time
bound on the checking phase and on the number of operations on values that has
been guessed nondeterministically in the checking phase.

Definition 2.19 (Extended L[t]-program) An extended L[t]-program, t ≥ 2, is
a (t, u)-alternating program that satisfies the following condition.

EL1: In any computation branch, the number of operations that uses some ∃1-
operand is at most h(k), for some function h.

Note that an extended L[t]-program allows the nondeterministically guessed
values from the second and subsequent blocks to be used in a parametric polynomial
number of operations.

Next we define the normalized variant of the L[t]-programs. To date, the defin-
ing Parameterized Model Checking problem, having both relations and func-
tions in the associated vocabulary, is the only known L[t]-complete problem [19].
The normalized L[t]-programs can serve as an alternative starting point for showing
L[t]-hardness results.

Definition 2.20 (Normalized L[t]-program) A normalized L[t]-program, t ≥ 2,
is a basic L[t]-program such that in each nondeterministic computation branch, it

NL1: has at most one nondeterministic step in each nondeterministic block in the
checking phase,

NL2: guesses a value from the same range in each nondeterministic step in the
checking phase, and all nondeterministically guessed values are stored in guess
registers,

NL3: has all deterministic operations that depend on some nondeterministically
guessed value, after all the nondeterministic steps,

NL4: has at most h′(k) tests in the checking phase such that each test involves at
most one ∃1-operand (for t ≥ 2, only), and

46

NL5: for even t (odd t), has a unique rejecting (accepting) execution path for each
nondeterministic checking branch.

The distinguishing feature of a normalized L[t]-program is that it does not have
direct access to the values that are guessed nondeterministically. Use of these values
are restricted to tests (jequal and jzero) and assign operation only. These
restrictions on the resources result in the following computational features of the
normalized L[t]-programs.

Property 2.11 Let op be an operation performed by a normalized L[t]-program.
The index of any operand of op can be computed deterministically in parametric
polynomial time.

Proof. By definition (Section 2.1), an index to an operand of any operation
must be stored in a standard register. By Constraint NL4 all the nondeterminis-
tically guessed values are stored in guess registers. Thus, only tests and assign
operation can be performed on the nondeterministically guessed values and none
of these operations can modify the content of a standard register.

Property 2.12 The size of the partial computation tree of a normalized L[t]-
program is bounded above by a parametric polynomial.

Proof. By Constraint NL2 and the definition of the operations on ARAM, a
normalized L[t]-program can not use an ∃1-value as index. A branching node in the
partial computation tree is either a nondeterministic operation or an ∃1-test. Thus
each leaf represents a unique combination of a nondeterministic checking branch
and an execution path. By Constraints T1, TU1, NL4, and NL5 the number of
leaves is bounded by a parametric polynomial.

A nice consequence of the normalized characterization of L[t] is that the register
usage in the checking phase of any nondeterministic branch can be represented by a
directed graph of size h′(k), for some function h′. We call the graph the assignment
graph of the corresponding checking phase. Let us consider the computation of an
L[t]-program R. Let, I ′b,p be the sequence of instructions in the execution path p
for some nondeterministic checking branch b. Let, Ib,p be the subsequence of I ′b,p
consisting of all instructions such that at least one operand in each instruction in
Ib,p depends on some ∃1-operand. By Definition 2.20, each instruction in Ib,p is
an indexed assignment or a binary test instruction. The assignment graph of the
instruction sequence Ib,p is defined as follows.

47

Definition 2.21 An assignment graph for execution path p in a nondeterministic
checking branch b is a directed graph Gb,p = (Vb,p, Eb,p) whose vertex set consists of
all instructions in Ib,p and all ∃1-registers used by R in this computation path. The
edge set Eb,p is defined as follows.

Eb,p = { 〈x, y〉 | x, y ∈ Ib,p and an operand of y is computed by instruction x } ⋃
{ 〈x, y〉 | y ∈ Ib,p, x is an ∃1-register and x is an operand of y }

Gb,p is essentially a directed acyclic graph with O(h(k)+k) vertices and O(h(k)+
k) edges, where k is the number of ∃1-guesses and h(k) is the number of operations
in the final checking phase. Gb,p can be converted into a binary forest Fb,p of size
O(2h(k)) by duplicating each vertex (along with its subtree) whose outdegree is
greater than one. Each non-leaf node of Fb,p corresponds to an instruction in Ib,p

and each leaf node refers to an existential register from the first nondeterministic
block of R. Also, the root node of each tree in Fb,p corresponds to a binary test
(jequal or jzero). The assignment graph will be a key ingredient in the L[2]-
hardness proof of a version of the Bounded Deterministic PDA Intersection
problem.

2.4 Equivalence Among the Variants of the Com-

putational Model for W [t]

We now establish the equivalence among all three variants of the computational
model for W [t]. An important step of the proof of the equivalence (as well as the
proofs of most hardness and simulation results in this thesis) will be the construction
of a partial computation tree and analyzing its nodes. In this context, we will
pay particular attention to the branching nodes in the partial computation tree.
Consider a branching node x having q branching nodes as ancestor in the unique
path from the root to x. We refer to x by 〈b1, . . . , bq〉 where bi is the branch taken
for the ith branching ancestor (starting from the root) of x in order to reach x from
the root node. Also, given a branching node x = 〈b1, . . . , bq〉, we use B(〈b1, . . . , bq〉)
to denote the number of branches resulting from x.

Theorem 2.13 Let Q be a parametric problem. The following are equivalent.

1. Q is in W [t].

48

2. Q can be decided by an extended W [t]-program, t ≥ 2 and by a basic W [1]-
program for t = 1.

3. Q can be decided by a normalized W [t]-program.

Proof. (3 ⇒ 1) A normalized W [t]-program is a basic W [t]-program.

(1 ⇒ 2) A basic W [t]-program is an extended W [t]-program, for t ≥ 2.

(2 ⇒ 3) We now show that the computation of an extended W [t]-program
Rextended can be simulated by a normalized W [t]-program Rnormalized. We describe
the proof for even t, t ≥ 2. The proof for odd t, t ≥ 3 can be constructed applying
similar techniques and the property of duality.

As specified in Constraint AW2 in Definition 2.2, let g(k)nd be the maximum
value that Rextended may store in any register in any computation step. Let
Rextended make h1(k) ≤ h′(k) ∃1-guesses (Constraint AW3). Let [0 . . . (l∃ − 1)]
be the maximum range over all ∃1-guesses of Rextended. Also let u be the maximum
number of nondeterministic operations in any nondeterministic block in the check-
ing phase of Rextended (Constraint TU1 in Definition 2.3). In the first part of the
preprocessing phase, Rnormalized partially simulates the computation of Rextended on
a given input 〈x, k〉 and constructs the associated partial computation tree Cextended.
Let m be the number of branches resulting from the terminal nondeterministic nodes
in Cextended. In the second part of the preprocessing phase Rnormalized constructs a
lookup table T . The purpose of constructing T is to precompute various informa-
tion about the computation of Rextended so that all necessary checking can be per-
formed within the resource constraints of a normalized W [t]-program. Rnormalized

then starts simulating the computation of Rextended on 〈x, k〉. In order to satisfy
Constraint NW2 in Definition 2.18, any nondeterministic operation in Rnormalized

will guess a value from the same range [0 . . . l] where l denotes some parametric
polynomial whose value will be defined later. The nondeterministic computation
branches corresponding to invalid combinations of guessed values (to be discussed
later) are terminated through jzero tests in the deterministic checking phase.

As noted before (Property 2.8) Rnormalized can not use the same value to index
multiple features of Cextended. For example, distinct values are needed to refer to
the ith value in the range [0 . . . (l∃−1)] and the ith terminal nondeterministic node
in Cextended. Rnormalized therefore partitions the range of value it can work with, as
follows (the technique is similar to that used for Algorithm 2.2).

- The value 0 is reserved for special purpose.

49

- The values [1 . . . existsend] are reserved to represent the ∃1-guesses of Rextended,
where existsend = 1 + h1(k) × l∃1 . Each value in this range is interpreted as
〈i, vi〉 which represents that the ith ∃1-guess is vi, where 1 ≤ i ≤ h1(k) and
0 ≤ vi ≤ (l∃1 − 1).

- The values [(1 + existsend) . . . existspairend] are reserved to represent the com-
bination of values in pairs of ∃1-registers of Rextended, where existspairend =
existsend +

(
h1(k)

2

)
(l∃1)

2. Each value in this range is interpreted as 〈i, vi, j, vj〉
which represents that the values in the ith and jth ∃1-registers of Rextended

are vi and vj, respectively.

- The values [(1+existspairend) . . . nodeend] are reserved to represent the branches
resulting from the terminal nondeterministic nodes in Cextended, where nodeend

= (existspairend+m). Each value in this range is interpreted as 〈b2, . . . , bt′ , x〉,
such that t′ ≤ t. Here y = 〈b2, . . . , bt′〉 represents a unique terminal nondeter-
ministic branch at level t′, and x represents an execution path for y.

- The values [(1+nodeend) . . . conditionend] are reserved to refer to various con-
straints. The values in this range are interpreted either as cond〈i〉, 1 ≤ i ≤
h1(k), or as cond〈i,j〉, 1 ≤ i < j ≤ h1(k) , or as cond〈i,vi,u〉, 1 ≤ i < u ≤ h1(k),
0 ≤ vi ≤ (l∃1 − 1). Intuitively, cond〈i〉 (cond〈i,j〉) refers to the requirement
that some value is chosen for the ith ∃1-register (the pair corresponding to
ith and jth ∃1-registers) of Rextended. On the other hand, cond〈i,vi,u〉 requires
that the condition 〈i, vi〉 ⇒ 〈i, vi, u, ?〉 is satisfied. Let conditionend be equal
to

(
nodeend + h1 + (l∃1 + 1)

(
h1

2

))
.

We now describe the simulation in detail.

1. Preprocessing:

(a) Partially simulate the computation of Rextended on 〈x, k〉 and construct
the associated partial computation tree Cextended. From Cextended, com-
pute the range of each nondeterministic guess, an enumeration of the
terminal nondeterministic nodes, and an enumeration of the execution
paths for each nondeterministic checking branch.

(b) Based on the partial computation tree Cextended, construct a lookup table
T as follows (the reader may jump to step 2 and then refer back to the
description of the table entries as needed). An entry T [i, j] of the lookup
table is set to 1 if one of the following conditions holds. T [i, j] is set to
0 otherwise.

i. i = 0, existspairend + 1 ≤ j ≤ nodeend and j refers to a level-2 terminal
universal node in Cextended.

50

ii. i = 0, nodeend + 1 ≤ j ≤ conditionend.

iii. (existspairend + 1) ≤ i, j ≤ nodeend, i and j represent terminal nodes xi

and xj in Cextended, and one of the following holds.

- xi and xj are at level q and q + 1, respectively, for some q, 2 ≤
q < t, and xi is an ancestor of xj. In case xj is the last terminal
node in some branch, the execution path associated with xj must
be rejecting and be valid for the terminal node xj.

- xi is the last nondeterministic step in some branch and xi = xj.

iv. (nodeend + 1) ≤ i ≤ conditionend, and i = j.

v. 1 ≤ j ≤ existsend, j = 〈u, ?〉 and i = cond〈u〉, where ? is any value in the
range for the uth ∃1-guess of Rextended.

vi. (existsend + 1) ≤ i ≤ existspairend, i = 〈u, ?, u′, ?〉 and j = cond〈u,u′〉,
where first and second ? represent any value in the range for the uth and
u′th ∃1 guess of Rextended, respectively.

vii. 1 ≤ i ≤ existsend, i = 〈u, v′u〉 and j = cond〈u,vu,u′〉, and vu 6= v′u. In this
case the precondition of 〈u, vu〉 ⇒ 〈u, vu, u

′, ?〉 is satisfied.

viii. (existsend + 1) ≤ i ≤ existspairend, i = 〈u, vu, u
′, ?〉, and j = cond〈u,vu,u′〉.

ix. existspairend + 1 ≤ i ≤ nodeend, i = 〈〈〉, b〉, b is a rejecting execution
path, (c + 1) ≤ j ≤ existsend, j = 〈u, vu〉, and the outcome of some test
along the rejecting execution path b causes the computation to branch
away from b if the uth ∃1-guess of Rextended is vu.

x. existspairend + 1 ≤ i ≤ nodeend, i = 〈〈〉, b〉, b is a rejecting execution
path, (existsend + 1) ≤ j ≤ existspairend, and for the values represented
by j for a pair of ∃1-registers of Rextended, the outcome of some test
along the rejecting execution path b causes the computation to branch
away from b.

Let l be equal to conditionend.

2. Nondeterministic block 1:

(a) Existentially guess a value from the range [0 . . . 0] and store it in g0.

(b) Existentially guess h1(k) values from the range [0 . . . existsend] and store
them in registers g1, . . . , gh1(k), respectively.

(c) Existentially guess h2(k) =
(

h1(k)
2

)
values from the range [0 . . . existspairend]

and store them in guess registers gh1(k)+1, . . . , gh1(k)+h2(k), respectively.

51

3. Nondeterministic blocks 2 to t:

Starting with a universal guess, perform t − 1 alternating nondeterministic
steps. One value is guessed from the range [0 . . . l] in each level of alterna-
tion. Store these values in guess registers gchk+1, . . . , gchk+t−1 where chk equals
(h1(k) + h2(k)).

4. Deterministic checking:
We describe the deterministic checking for even t so that the last nondeter-
ministic step is universal.

(a) Checking for the universally guessed value at level-2:

If T [〈g0, gchk+1〉] is 0 then accept in (terminate) this universal branch.

Any branch that remains active is either a valid terminal nondeterminis-
tic branch at level-2 of Cextended (Lookup table entry type (i)) or a value
referring to some condition (Lookup table entry type (ii)).

(b) Checking for guesses at levels 3 to t: For each i, 2 ≤ i ≤ (t − 1)
verify that T [〈gchk+i−1, gchk+i〉] is 1. Accept in (terminate) this branch
otherwise. In any active branch, the value of gchk+t−1

- will be equal to gchk+1 in case gchk+1 refers to a condition (Lookup table
entry type (iv)), or

- will refer to a nondeterministic checking branch x and an execution
path b such that the nondeterministic checking branch x may compute
along b (Lookup table entry type (iii)).

(c) ∃1-tests: For each i, 1 ≤ i ≤ chk, if T [〈gchk+t−1, gi〉] is 1 then accept in
this universal branch. The following verifications are done through the
tests in this step.

Checking for consistency among the ∃1-values:

- For each i, 1 ≤ i ≤ h1, a valid 〈i, vi〉 is stored in some register gj,
1 ≤ j ≤ h1. Also the value vi is within the range of the ith ∃1-guess
of Rextended. The condition is ensured by the checking branch having
cond〈i〉 in gchk+t−1 and lookup entries of type (v).

- For each pair 〈i, j〉, 1 ≤ i < j ≤ h1, a valid 〈i, vi, j, vj〉 is stored in
some register gj, h1 + 1 ≤ j ≤ chk. Also the value vi and vj are within
the range of the ith and jth ∃1-guesses of Rextended, respectively. The
condition is ensured by the checking branch having cond〈i,j〉 in gchk+t−1

and lookup entries of type (vi).

- Verify that the value vi specified for the ith ∃1-guess of Rextended is
consistent in all gj, 1 ≤ j ≤ h1 + h2. This condition is ensured by

52

branches having gchk+t−1 = cond〈u,?,u′〉 and lookup entries of type (vii)
and (viii).

Checking for the execution paths:

Some test outcome along execution path b in Rextended for the selected
nondeterministic checking branch, causes the computation to branch
away from the rejecting execution path b in case the ith ∃1-guess of
Rextended is vi (lookup entry type (ix)), or ith and jth ∃1-guesses of
Rextended are vi and vj, respectively (lookup entry type (x)).

(d) Reject in this universal branch.

The proof for odd t follows from duality. For odd t, Rnormalized considers the ac-
cepting execution paths instead of rejecting execution paths during the construction
of the lookup table.

The normalization for W [1] can be done in a similar fashion. Let Rbasic be the
basic W [1]-program to be simulated. A normalized W [1]-program Rnormalized can
existentially guess the k values for the ∃1-phase and the entire sequence of h(k)
operations along with the associated register indices for the deterministic checking
phase of Rbasic. The rest of the computation of Rnormalized essentially corresponds
to verifying that (with appropriate lookup tables) the existentially guessed com-
putation is an accepting computation of Rbasic. We omit the details as they are
similar to what we described above.

Resource Usage: We observe that Rnormalized has a unique rejecting execu-
tion path in each nondeterministic checking branch. Rnormalized performs (h1(k) +(

h1(k)
2

)
) ∃1-tests in each nondeterministic checking branch and accepts in that branch

if and only if any of the test outcomes is 1. Also each ∃1-test involves exactly one
∃1-register.

2.5 Equivalence Among the Variants of the Com-

putational Models for L[t]

Theorem 2.14 Let Q be a parametric problem and t be a constant, t ≥ 2. The
following are equivalent.

1. Q can be decided by a basic L[t]-program.

2. Q can be decided by an extended L[t]-program.

53

3. Q can be decided by a normalized L[t]-program.

Proof. (3 ⇒ 2) Immediate as a normalized L[t]-program is also an extended
L[t]-program.

(2 ⇒ 1)

Let Rextended be an extended L[t]-program. We construct a basic L[t]-program
Rbasic to simulate the computation of Rextended on any input. The key difference
between the computation of Rextended and Rbasic is that Rextended can perform a
parametric polynomial number of operations on the guess registers whose values
have been set in second and subsequent nondeterministic blocks. However, the
number of ∃1-operations in any computation branch of Rextended is still bounded by
h(k). Define an ∃1-free block to be a maximal sequence of operations none of which
involves any ∃1-operand. By definition, each nondeterministic checking branch of
Rextended can have at most h(k) ∃1-free blocks. Rbasic simulates the computation
in all ∃1-free blocks in the preprocessing phase. Since the partial computation
tree of Rextended has a parametric polynomial number of branches and the number
of ∃1-operation in each branch is at most h(k), Rbasic can compute all necessary
values within the time bound on preprocessing phase. The state of Rextended at any
point of computation is given by the set of values in all its registers at that point of
time. Rbasic computes and stores the state of Rextended immediately before each ∃1-
operation in each nondeterministic checking branch. Rbasic now starts simulating
the computation of Rextended. All nondeterministic guess steps (existential and
universal) are simulated directly. Rbasic skips the non-∃1-operations of Rextended.
During the simulation, Rbasic keeps track of the current state of Rextended. When
Rextended is about to perform an ∃1-operation, Rbasic first retrieves from the current
state, the appropriate values for all necessary operand registers for the ∃1-operation
and then performs the simulation. Since any operation of Rextended involves a
constant number of registers, simulation of a single ∃1-operation can be done in
a constant number of steps of Rbasic. In case the ∃1-operation requires a lookup,
Rbasic retrieves the appropriate value from the current state of Rextended.

(1 ⇒ 3)

We show how Rnormalized simulates the computation of Rbasic. The key distinc-
tions between the two characterizations are as follows.

D1: Rbasic may use nondeterministically guessed values as indices to other regis-
ters, which Rnormalized is not allowed to do.

54

D2: Rbasic may perform any operation on the nondeterministically guessed values
while Rnormalized is allowed to perform jequal, jzero, and assign opera-
tions only, on these values.

D3: Rbasic may have multiple nondeterministic steps in a nondeterministic block
in the checking phase. Also, a nondeterministic checking branch of Rbasic may
have multiple accepting or rejecting execution paths.

D4: In a computation of Rbasic, deterministic operations that use the nondeter-
ministically guessed values may appear in-between the nondeterministic steps.

Rnormalized can deal with D2 by using the assign instruction with appropri-
ately constructed lookup tables. For D1, Rnormalized keeps track of the usage of
registers in the computation of Rbasic by maintaining a mapping of indices. The
rest of the proof elaborates the ideas. Rnormalized deals with D3 by merging all
nondeterministic steps in a nondeterministic block into a single (appropriately ex-
panded) nondeterministic step and guessing a deterministic checking branch as part
of the last nondeterministic step. D4 can be dealt with by deferring the simulation
of deterministic steps that uses nondeterministically guessed values until all the
nondeterministic steps are done. The details of the techniques for D3 and D4 are
similar to the proof of Theorem 2.13.

Based on the outcomes of jzero and jequal instructions, there can be at most
2h(k) execution paths for each nondeterministic checking branch of Rbasic. Each such
execution path can be described by the sequence of instructions I in that path and
the registers used in each of the instructions in I. Consider a register r used by some
instruction in I. If the value of r does not depend on any ∃1-register, Rnormalized

can compute its value deterministically by simulating the sequence of instructions.
Rnormalized replaces any such register reference with its computed value. Each of
the remaining register references stores a computed value v that depends on some
∃1-register. Rnormalized reserves a set of guess registers Greserved that will be used
as representatives of the remaining register references in I during the simulation.
In addition, Rnormalized maintains a mapping 〈timestamp, ibasic, inormalized〉 to deter-
mine which original register is being represented by which guess register in Greserved.
Note that reserving O(h(k)) registers suffice as each of the h(k) instructions in I
refers to a constant number of registers. Rnormalized initializes Greserved so that the
first ∃1-register represents itself. Whenever Rnormalized needs a new representative
register during the simulation, it picks the next available register from Greserved and
updates the mapping accordingly. An important feature to note is that the indices
of the registers in Greserved are stored in standard registers.

55

Let us consider the simulation of a computation step of Rbasic by Rnormalized.
Let the step be ri1 = ri2 op ri3 where op is any operation (ADD, for example) in
the instruction set of Rbasic. The simulation is done as follows.

- Rnormalized looks for the representatives of ri2 and ri3 in Greserved by performing
O(h(k)) jequal tests.

- If neither of the operands has a representative in Greserved then

– Rnormalized knows the values of the operands and can compute ri2 op ri3

directly.

– Rnormalized allocates a representative register for ri1 in Greserved and stores
the computed value in it.

- Otherwise, let rR(i2) and rR(i3) be the representative registers for ri2 and ri3

respectively. Rnormalized simulates ri2 op ri3 by two indexed assignments as
follows.

assign temp1 cop R(i2)

assign temp2 temp1 R(i3)

Here, cop is a constant representing the operation op. Rnormalized sets up the
lookup tables appropriately in the preprocessing phase so that the indexed
assignments compute the desired values.

Note that simulation of the jzero tests of Rbasic becomes nontrivial as Rbasic

may use the ∃1-values to alter the values in the lookup tables. Rnormalized simulates
the jzero tests as follows.

- Compute the mapping 〈gi, gj〉 by two indexed assignments.

assign temp1 cmap R(i)

assign temp2 temp1 R(j)

where gR(i) and gR(j) are the representative registers of gi and gj, respectively
and cmap is a constant representing the mapping function.

- Try to locate a representative register for rrtemp2
in Greserved.

56

- If no representative is found then simulate jzero directly.

- Otherwise, branch based on whether the representative for rrtemp2
is 0 or not.

Rnormalized simulates the standard branching instructions of Rbasic using jzero
tests in case the branching involves some ∃1-value. Simulation of each step of Rbasic

by Rnormalized involves at most two searches for representatives in Greserved followed
by O(1) steps. Since, size of Greserved is O(h(k)), simulating each step of Rbasic takes
O(h(k)) steps of Rnormalized. Thus, Rnormalized can perform the entire simulation
within the specified bounds.

57

Chapter 3

Simplified Proofs of the Basic
Results in Parameterized
Complexity Theory

In this chapter, we develop the basic results in parameterized complexity theory
from a computational perspective. These results include the Normalization Theo-
rem and the parameterized version of Cook’s Theorem. We show how the machine
characterizations can be used to construct simpler proofs of these results. The
new proof techniques resemble the classical approach used in the proof of NP -
completeness of SAT. The W [t]-completeness of Antimonotone WCS (respec-
tively, Monotone WCS) for odd (respectively, even) values of t, t ≥ 2, is obtained
as a byproduct of the proof of the Normalization Theorem.

3.1 A Summary of the Original Proofs

Nondeterministic Polynomial-Time Turing Machine Acceptance is the
basic problem in NP . In the classical context, Cook’s Theorem states that
Satisfiability is NP -complete. In parameterized complexity theory, the ana-
logues of these two problems are Bounded Turing Machine Acceptance and
c-CNF Weighted Circuit Satisfiability for constant c, respectively [25].

Bounded Turing Machine Acceptance

Input: A nondeterministic Turing machine M , a string x, a positive
integer k.

58

Parameter: k.
Question: Does M accept x in at most k steps?

c -CNF Weighted Circuit Satisfiability

Input: A c-CNF circuit C, a positive integer k.
Parameter: k.
Question: Does C have a weight-k satisfying assignment?

The parameterized version of Cook’s Theorem states that both these problems
are complete for W [1].

Theorem 3.1 (The parameterized analogue of Cook’s Theorem, Downey and Fel-
lows [25]) Bounded Turing Machine Acceptance and c-CNF Weighted
Circuit Satisfiability are complete for W [1].

Downey and Fellows identified the Weighted t-Normalized Satisfiability
as a basic complete problem for W [t], t ≥ 2. This result is stated formally by the
Normalization Theorem.

Theorem 3.2 (The Normalization Theorem, Downey and Fellows [25])

Weighted t-Normalized Satisfiability is W [t]-complete, for t ≥ 2.

We give an overview of the original proofs. The reader is referred to the ar-
ticles [25], [26] and the monograph [28] for details. Recall that the W [t] classes
are defined as the closure of WCS on weft-t, constant depth circuits, under FPT
reduction. The proofs of both theorems focus on converting weft-t, constant depth
circuits into the corresponding normal form, with weight of truth assignment ad-
justed appropriately.

Proof sketch. (Parameterized analogue of Cook’s Theorem.) (Downey and
Fellows [26], [28])

The proof goes through several intermediate steps which are described below.
W [1]-hardness of several other parametric problems are obtained during the course
of the proof.

59

1. Constructing a fixed-parameter reduction to reduce WCS on weft-1, constant
depth circuits to WCS on weft-1, depth-2 c-CNF circuits, for some constant
c > 1. The reduction starts by converting the input circuit into an equivalent
tree circuit and moving the not-gates to the inputs by applying DeMorgan’s
law. The resultant circuit is converted into an equivalent normal form of
depth-4. The desired weft-1, depth-2 c-CNF form is obtained by multiple
change of variables and by introducing additional large and -gates for consis-
tency checking.

2. Constructing a fixed-parameter reduction to reduce WCS on weft-1, depth-
2 c-CNF circuits to WCS on weft-1, depth-2 antimonotone c-CNF circuits.
This step introduces the Bounded Degree Red/Blue Nonblocker prob-
lem. An instance of the problem on a graph of maximum degree c can be
represented by an antimonotone c-CNF circuit, with the same solution size.
The purpose of this step is to show that the Bounded Degree Red/Blue
Nonblocker problem is hard for WCS on antimonotone c-CNF circuits.

3. Constructing a fixed-parameter reduction to reduce WCS on antimonotone
c-CNF circuits to WCS on antimonotone 2-CNF circuits. The reduction
essentially makes a change of variables and adjusts the weight of the truth
assignment.

4. Constructing a fixed-parameter reduction to reduce WCS on antimonotone
2-CNF circuits to Clique (via Independent Set).

5. Constructing a fixed-parameter reduction to reduce Clique to Bounded
Turing Machine Acceptance. Given an instance 〈x, k〉 of Clique, the
reduction constructs a nondeterministic Turing machine M that accepts the
empty string in h(k) steps if and only if the input graph has a clique of size k.
M nondeterministically guesses k vertices and checks that they form a clique,
in h(k) deterministic steps, for some function h.

As is evident from the proof sketch, the focus of the reductions is on the intrinsic
details of circuit manipulation and related combinatorics. Based on the W [1]-
programs, we give a more direct proof that WCS on antimonotone 2-CNF circuits
is hard for W [1]. We also show how a basic W [1]-program can decide WCS on
c-CNF circuits.

60

Proof sketch. (The Normalization Theorem.) (Downey and Fellows [25],
[28])

The membership of Weighted t-Normalized Satisfiability in W [t] fol-
lows trivially from the circuit characterization. The hardness result is shown by
constructing an FPT reduction to transform a circuit Cin of weft t and constant
depth into an equivalent t-normalized circuit Ct. The major steps of the reduction
are as follows.

1. Converting Cin into a tree circuit. Since the depth of Cin is a constant d ≥ t,
this conversion increases the size of Cin by an O(nd) factor. Also, the not
gates are moved to the inputs by applying DeMorgan’s law.

2. Arranging the large gates so that the output is a large and gate and the
remaining large gates are arranged in (t − 1) alternating levels. Subcircuits
consisting of small gates only may appear in-between the alternating levels of
large gates. We call them small-intermediate-subcircuits.

3. Converting each small-intermediate-subcircuit Csmall into DNF or CNF form
depending on the type of the large gate to which the output of Csmall is
connected.

4. Merging small gates with large gates of the same type. For other small gates,
applying distributive law moves the large gates towards the output. After this
rearrangement, any large and gate receives inputs only from large or gates
at the next level, and vice versa. The large gates, closest to the input level,
receive inputs from small gates only. We number the levels of large gates so
that the output and gate is at level 1 and a large gate at level i receives input
from large gates at level (i + 1), 1 ≤ i < t.

5. Converting each subcircuit of small gates that appears between a large gate at
level t and the inputs, into an equivalent normal form (CNF or DNF) of depth
two. The output gates of the normal form is merged with the corresponding
large gate at level t.

6. Eliminating the extra level of small gates at the input level by introducing
new variables and constructing additional circuits to ensure consistency.

The later steps are intricate and they involve multiple change of variables in a
complex manner. A significant part of the circuit transformations is related to the

61

subcircuits between the input level and the large gates that are closest to the input
level.

In the next section, we show how to represent computations on a W [t]-program
by an instance of Weighted t-Normalized Satisfiability. The constructed
circuits are monotone for even levels and antimonotone for odd levels of the hierar-
chy. We also construct W [t]-programs that decide Weighted Weft- t Depth-
d Circuit Satisfiability. The (t − 1) alternating nondeterministic blocks in
the checking phase of the W [t]-programs deal with the (t− 1) levels of large gates
(starting from the output) of an weft-t circuit. The remaining level of large gates
and the small subcircuits that provide inputs to them, are dealt with in the deter-
ministic part of the checking phase. Necessary lookup tables are constructed in the
preprocessing phase of the W [t]-programs so that the number of steps in the deter-
ministic checking part remains within the bounds. Although, the W [t]-programs
apply some of the early transformations from the original proof, the remaining part
of the computation is significantly simpler than the corresponding circuit transfor-
mations.

Before getting into the details, we would like to define some features of a circuit
that will be important for the results in this chapter and Chapter 4.

Definition 3.1 (Antimonotone group and monotone group) The antimonotone
group of a sum Csum = (vi1 ∨ . . . ∨ vij ∨ ¬vij+1

∨ . . . ∨ ¬vim) is the sum of all
negative literals (¬vij+1

∨ . . . ∨ ¬vim) appearing in Csum. The monotone group of a
product Cprod = (vi1 ∧ . . . ∧ vij ∧ ¬vij+1

∧ . . . ∧ ¬vim) is the product of all positive
literals (vi1 ∧ . . . ∧ vij) appearing in Cprod.

3.2 A Simplified Proof of the Parameterized Ver-

sion of Cook’s Theorem

The completeness for Bounded Turing Machine Acceptance was shown by
Chen et al. [20]. The completeness for Weighted Antimonotone 2-CNF SAT
was shown via Bounded Turing machine acceptance by Cai et al. [13]. These
proofs closely follow the classical approach for proving the basic NP -completeness
results. We reproduce the proofs here as our new proof of the Normalization The-
orem will be based on them.

Proof.(Parameterized analogue of Cook’s Theorem) Let Q be any problem in
W [1]. By definition, there exists a W [1]-program RQ that decides Q. The first

62

part of the proof describes how to construct a nondeterministic Turing machine M
such that RQ accepts an input 〈x, k〉 if and only if M accepts the empty string
in g(k) steps, for some function g. The remaining part of the proof is a modified
version of the NP -completeness proof of SAT (the Cook’s Theorem) and describes
how to represent the (bounded) computation of a nondeterministic Turing machine
by an instance of Antimonotone 2-CNF Weighted Circuit Satisfiability.

We start by constructing a fixed-parameter reduction A1 to prove the W [1]-
hardness of Bounded NTM Computation. Given an input 〈x, k〉, A1 determin-
istically simulates the computation in the preprocessing phase of RQ on 〈x, k〉. This
part of the simulation takes parametric polynomial time and it ends when RQ is
about to make the first existential guess. Note that the rest of the computation of
RQ (in any nondeterministic branch) can have at most h(k) steps, for some function
h. A1 constructs the NTM M to represent the remainder of RQ’s computation. M
contains a parametric polynomial number of states to remember the values that
RQ would have in the standard registers at the end of preprocessing phase. M
has some additional states to store the instructions of RQ. The transition function
of M is constructed in such a way that M nondeterministically guesses k values
at the beginning. This part corresponds to the first existential block of RQ. M
then simulates the computation of RQ on the nondeterministically guessed values.
Whenever the value of a standard register is needed for the first time, M retrieves
the value from the corresponding state and writes it on the worktape for future
use. M accepts if and only if RQ accepts. Simulation of each step of RQ takes
g′(k) steps, for some function g′. Thus, M accepts the empty string in g(k) steps,
for some function g, if and only if RQ accepts 〈x, k〉. This part of the proof was
originally given by Chen, Flum and Grohe [20].

The second part of the proof is essentially a fixed-parameter reduction from
Bounded NTM Computation to WCS on Antimonotone 2-CNF circuits.
This part of the proof was originally developed by Cai et al. [13]. The reduction
A2 is a modified version of the classical NP -completeness proof of SAT. Given
the description of an NTM M and a parameter k, A2 constructs an antimonotone
2-CNF circuit C such that M accepts the empty string in k steps if and only if
C has a satisfying assignment of weight k2. Instead of specifying valid transitions,
C represents all the inconsistent transitions of M and checks that none of the
inconsistent transitions is taken by M during the computation. Thus, each clause
of C is of the form (¬α ∨ ¬β) (i.e. α ⇒ ¬β) where α and β are configurations
of M (defined later), such that configuration β cannot follow configuration α. C
is constructed as a large product of these antimonotone sums of two literals. We
consider the tableau, having k rows and k columns, associated with the computation

63

of M (for k steps). Let Q be the set of states of M and Σ be the working alphabet.
A configuration of M is represented as Ytphqσ, where

1 ≤ t ≤ k, 1 ≤ p ≤ k, 1 ≤ h ≤ k, q ∈ Q, σ ∈ Σ.

A configuration Ytphqσ represents the fact that at time t, M is in state q, the head
is at position h, and the p-th cell stores the symbol σ. Each input variable of C
is some configuration Ytphqσ of M . A weight k2 assignment for C is intended to be
a description of the tableau of M such that each true variable in the assignment
corresponds to a unique cell in the tableau. The clauses in C are of three types.
Clauses of the first type are related to the mapping of true variables to cells in
the tableau. The second type of clauses are related to transitions of M and they
ensure that the true variables do not represent an inconsistent tableau (i.e. they
represent a valid computation of M). The third type of clauses specify the accepting
conditions.

The following formula ϕ1 is an example of the first type of clauses, where ϕ1

expresses that M cannot be in two different states at any particular time t.

ϕ1 =
∏

1≤p,p′≤k

∏

1≤h,h′≤k

∏

σ,σ′∈Σ

∏

q 6=q′∈Q

(¬Ytphqσ ∨ ¬Ytp′h′q′σ′) .

The following conditions are expressed in a similar manner.

- At time t, the head can not be in two different positions.

- At time t, a given cell can not store two different symbols.

An example of the second type of clauses is ϕ2, which states that if at time t
the head is not in position p, then the symbol in that position must be the same at
time t + 1.

ϕ2 =
∏

1≤p≤k

∏

q,q′∈Q

∏

σ,σ′∈Σ
σ 6=σ′

∏

1≤h,h′≤k,
h 6=p

(¬Ytphqσ ∨ ¬Y(t+1)ph′q′σ′
)
.

The following conditions are expressed in a similar manner.

- If at time t, the state of the machine is q, and symbol under head is σ, and
there is no transition rule of the form (q, σ) → (q′, σ′, d′), then

- the next state can not be q′,

64

- the symbol under head can not be σ′ at time t + 1, and

- the head position can not be h + d′ at time t + 1.

The third type of clauses specify that the computation must end in an accepting
state, i.e. q must be an accepting state.

The size of C is parametric polynomial, and A2 can construct it in parametric
polynomial time. By construction, C has a satisfying assignment of weight k2 if
and only if M accepts the empty string in k steps. A satisfying assignment of
weight k2 must set exactly one variable Ytphqσ to true, for each pair of t and p.
This is ensured by the first type of clauses. The second type of clauses ensure that
the true variables do not represent any invalid transition. Finally the third type
of clauses ensure that the machine ends in an accepting state. Thus a satisfying
assignment of weight k2 implies that M accepts the empty string in k steps. For the
reverse direction we note that, given an accepting computation of M , a satisfying
assignment of weight-k2 can be constructed from the content of the tableau.

Theorem 3.3 A basic W [1]-program can decide Weighted d-CNF SAT, where
d is a constant.

Proof. Let C be a d-CNF circuit on m input variables and we want to deter-
mine whether C has a satisfying assignment of weight k. We construct a basic W [1]-
program for the purpose. Recall that for a clause (x1 ∨ . . . ∨ xi ∨ ¬xi+1 ∨ . . . ∨ ¬xd)
of C, (¬xi+1 ∨ . . . ∨ ¬xd) (or equivalently ¬ (xi+1 ∧ . . . ∧ xd)) is the antimonotone
group of the clause (Definition 3.1). For a given truth assignment, we say that an
antimonotone group is active if all its variables are set to true (i.e. the antimono-
tone group is false as a whole). Let us consider an antimonotone group y and the
set of clauses Sy having y as the antimonotone group. If y is active for a given
assignment then each clause in Sy must be satisfied by some true variable x such
that x appears positively in the clause. There are at most d choices for x as C is
a d-CNF circuit. Thus, there can be at most d k combinations of up to k variables
each of which may satisfy all clauses in Sy by the positive literals. We refer to each
such combination as a deactivating combination for the antimonotone group y.

In order to decide WCS on C, the program existentially guesses the true vari-
ables, the active antimonotone groups, and the deactivating combinations. In the
checking phase, the program verifies that each active antimonotone group is deac-
tivated by some combination of true variables. In order to perform the checking
within the resource bounds, the program constructs necessary lookup tables in

65

the preprocessing phase. The lookup tables specify whether (i) an antimonotone
group is deactivated by a combination of variables, (ii) a given variable appears in
an antimonotone group, and (iii) a given variable appears in a given deactivating
combination. The details are as follows.

1. Preprocessing:

(a) Enumerate all possible antimonotone groups consisting of up to d vari-
ables. There are O(md+1) different antimonotone groups for C.

(b) Enumerate all deactivating combinations for all antimonotone groups.
There are O(d k md+1) such deactivating combinations in total. It is
important to note that only a parametric polynomial number of combi-
nations (out of O(nk) possible combinations of size k are of interest for
any given circuit.

(c) Construct lookup tables to specify (i) consistency among variables and
antimonotone groups, (ii) consistency among variables and deactivat-
ing combinations, (iii) whether a combination of variables appear as an
antimonotone group in C, and (iv) whether a deactivating combination
deactivates an antimonotone group.

2. Nondeterministic block 1:

(a) Existentially guess k true variables, and l =
(∑d

i=1 ki
)

antimonotone
groups.

(b) Existentially guess 2k deactivating combinations (possibly with repeti-
tion) that are satisfied by the k true variables.

3. (a) Verify that the existentially guessed antimonotone groups and the de-
activating combinations are consistent with the k true variables. The
program needs to use multiple lookup tables to perform the consistency
checking. Since a basic W [1]-program has complete access to ∃1-values,
this can be done in a straightforward way.

(b) For each existentially guessed antimonotone group y, repeat the follow-
ing.

i. Check whether y is deactivated by any of the existentially guessed
deactivating groups. Use the lookup tables to perform each checking
in constant time.

ii. If the antimonotone group is not deactivated, then reject. Continue
with the next antimonotone group otherwise.

66

(c) Accept.

Correctness: In step 3(b), the program ensures that any active antimonotone
group (that may falsify some clause) is deactivated by some combination of true
variables. The program accepts only if each active antimonotone group is deacti-
vated which implies that no clause in C is falsified.

Resource Usage: The nondeterministic steps in Step 2 satisfy Constraints
AW3, T1, and TU1 for t = 1. The verification in Step 3 can be done in O(2kkd)
time. The construction of the lookup tables take parametric polynomial time.
Thus Constraints AW1 and BL1 are satisfied. The registers need to store indices to
input variables, antimonotone groups, and combinations of up to d variables. Each
of these values is bounded by some parametric polynomial. Thus Constraint AW2
is also satisfied.

3.3 A Simplified Proof of the Normalization The-

orem

The proof of the Normalization Theorem is constructed in two steps. First, we
construct a generic reduction based on the extended W [t]-programs to show that
Weighted t-Normalized Satisfiability is W [t]-hard, t ≥ 2. We then con-
struct an extended W [t]-program to decide Weighted Weft-t Depth-d Cir-
cuit Satisfiability.

Lemma 3.4 (Downey, Fellows [25]) Weighted t-Normalized Satisfiability
is hard for W [t], t ≥ 2.

Proof.(A new proof based on the extended W [t]-programs) We construct a
generic fixed-parameter reduction A to show the desired result. Let Q be any
problem decidable by an extended W [t]-program R. A takes an input 〈x, k〉 and
constructs a t-normalized circuit C such that R accepts 〈x, k〉 if and only if C has a
weight-k′ satisfying assignment. A starts by constructing the partial computation
tree TQ corresponding to the computation of R on 〈x, k〉 and then constructs the
circuit C based on TQ.

Let S be the set of all nondeterministic nodes x in TQ such that x is the first
nondeterministic node at some level of alternation along some branch of TQ. Also let

67

.............
∃f..........
T

∃f....T
∀f³³³ ¡¡
PPPaaaa

aaaa
......T
∀f³³³ ¡¡
PPPaaaa

aaaa
......T
Te.......Taaaa

aaaa
∃faaaaaaaaaaaa
Qf³³³ ¡¡
PPPaaaa

aaaa
Qf³³³ ¡¡
PPPaaaa

aaaa

aaaa

............
T

Te.......T
aaaa

6

f∧
¡

¡
¡

¡
¡

¡
¡

¡

¢
¢

¢
¢

¢
¢

¢
¢

@
@

@
@

@
@

@
@

.

f∨ f∨ f∨
¡¡ @@ ¡¡ @@¡¡..........

@@

¦¦......
¡¡ @@ ¡¡ @@

?

?

?
Qf³³³ ¦
¦
PPP

Cb

¡¡ @@¡¡ @@

Partial computation tree TQ

t-normalized circuit C

Figure 3.1: Correspondence between the partial computation tree TQ and the t-
normalized circuit C.

L be the set of all nondeterministic nodes y such that y is the last nondeterministic
node along some branch of TQ. C is constructed from TQ as follows. Figure 3.1
illustrates the correspondence between the partial computation tree TQ and the
components in the circuit C.

1. C includes a subcircuit Cb for each branch b resulting from a node x ∈ L.
The subcircuits Cb are constructed so that they satisfy the following lemma.

Lemma 3.5 Cb is satisfied if and only if one of the following holds.

(a) The nondeterministic step starting b is existential and the computa-
tion follows some accepting execution path for nondeterministic checking
branch b.

68

(b) The nondeterministic step starting b is universal and the computation
does not follow any rejecting execution path for nondeterministic check-
ing branch b.

We describe the construction of Cb later.

2. C includes one gate for each node in S. Let x and y be two nodes in S such
that x and y are at alternation levels i and i+1 in TQ. Let gates gx and gy in C
correspond to nodes x and y, respectively. The output of gy is connected as an
input to gx in case x is an ancestor of y. If x is at the last level of alternation
along some branch in TQ then each input of x is connected to the output of
some Cb, where b is a branch resulting from a terminal nondeterministic node
y that is a descendent of x.

3. The input variables of C are of two kinds. Variables of the first kind are of
the form Yij, 1 ≤ i ≤ h1(k) and 0 ≤ j ≤ (fp − 1). The variable Yij, when
set to true, means that the ith ∃1-register of R is the value j. Thus, guessing
h1(k) values in the ∃1-block of R corresponds to setting h1(k) variables of the
first kind to true.

Variables of the second kind are of the form Yiji′j′ , 1 ≤ i < i′ ≤ h1(k) and
0 ≤ j, j′ ≤ (fp − 1). The variable Yiji′j′ , when set to true, means that the
values in the ith and i′th ∃1-registers of R are j and j′, respectively.

We now describe the construction of the subcircuits Cb. The t − 1 levels of
alternation in the checking phase of RQ results in a weft-(t − 1) subcircuit whose
inputs are connected to the output of Cb subcircuits. Since C has to be t-normalized,
the weft of Cb can be at most 2, provided that the output of Cb and the gate to
which Cb is connected to, are of the same type. If the last level of alternation for
b is existential (respectively universal), Cb is constructed as a 2-normalized DNF
(respectively CNF) circuit.

In addition, Cb must satisfy the conditions in Lemma 3.5. Whether the compu-
tation follows a given execution path p depends on the outcomes of the binary tests
(jequal or jzero) along p. The computation does not follow p in case at least
one test outcome causes the computation to branch away from p. On the other
hand, the computation follows p if each test outcome causes the computation to
continue along p. Cb specifies these facts in terms of the input variables. Given a
desired outcome for a test T along some execution path p for some nondeterministic
checking branch b, Cb lists all variables whose corresponding values or value-pairs
result in the desired test outcome. For test T , we define a DNF subcircuit σT and a

69

CNF subcircuit πT as follows. Both σT and πT are constructed in such a way that
they are true if and only the outcome of test T causes the computation to branch.

T is jequal i j c :
If gri

is not an ∃1-register but grj
is, let

σT = Yrjgri
and πT =

∏

` 6=gri

¬Yrj` .

The reduction computes the value of gri
from TQ and construct σT and πT

accordingly.

If both gri
and grj

are ∃1-registers, let

σT =
∑

0≤`≤fp

Yri` rj` and πT =
∏

0≤` 6=`′≤fp

¬Yri` rj`′ .

T is jzero i j c :
If gri

is not an ∃1-register and grj
is an ∃1-register, let

σT =
∑

{
` | r〈gri ,`〉=0

}
Yrj` and πT =

∏
{

` | r〈gri ,`〉 6=0
}
¬Yrj` .

The reduction computes the sets
{

` | r〈gri ,`〉 = 0
}

and
{

` | r〈gri ,`〉 6= 0
}

from the partial configuration corresponding to T (Property 2.9 I5).

If both gri
and grj

are ∃1-registers, let

σT =
∑

{
`,`′ | r〈`,`′〉=0

}
Yri` rj`′ and πT =

∏
{

`,`′ | r〈`,`′〉 6=0
}
¬Yri` rj`′ .

The reduction computes the sets
{

`, `′ | r〈`,`′〉 = 0
}

and
{

`, `′ | r〈`,`′〉 6= 0
}

from the partial configuration corresponding to T (Property 2.9 I5).

In case Cb needs to specify that the outcome of test T does not cause the
computation to branch, the reduction uses the subcircuits σ¬T = ¬πT and π¬T =
¬σT instead of σT and πT .

For a nondeterministic checking branch b whose last level of alternation is uni-
versal, the subcircuit Cb is constructed as follows.

70

Cb =
∏

rejecting execution
path p for b

∑
test T along

execution path p

ψT

where

ψT =

{
σT if outcome 0 for T causes branching
σ¬T otherwise

The subcircuit for the other case (i.e. the last level of alternation is existential)
has the following form.

Cb =
∑

accepting execution
path p for b

∏
test T along

execution path p

ψT

where

ψT =

{
πT if outcome 0 for T causes branching
π¬T otherwise

In addition, C has to ensure that (i) at least one Yij is true for each i, 1 ≤
i ≤ h1(k), (ii) at least one Yiji′j′ is true for each pair i, i′, 1 ≤ i < i′ ≤ h1(k), and
(iii) the Yij and Yiji′j′ variables are consistent among themselves. For (i) and (ii) C
includes a subcircuit Coccurrence. For even t, Coccurrence is constructed as a monotone
CNF circuit as follows.

Coccurrence =


 ∏

1≤i≤h1(k)

∑

0≤j≤(fp−1)

Yij


 ∧


 ∏

1≤i<i′≤h1(k)

∑

0≤j,j′≤(fp−1)

Yiji′j′




For odd t, Coccurrence is constructed as an antimonotone 2-CNF circuit as follows.
In this case, the constraints are specified in the form Yij ⇒ ¬Yij′ , for all j′ 6= j.




∏
1≤i≤h1(k)

0≤j≤(fp−1)

∏

0≤j′≤(fp−1)

j 6=j′

(¬Yij ∨ ¬Yij′)


∧




∏

1≤i<i′≤h1(k)

0≤j,j′≤(fp−1)

∏

0≤v,v′≤(fp−1)

v 6=j or v′ 6=j′

(¬Yiji′j′ ∨ ¬Yivi′v′)




For (iii) C ensures that the variable Yuvu′v′ is true only if both Yuv and Yu′v′ are
true (later we show that the if direction follows from other conditions). For odd t,
an antimonotone 2-CNF subcircuit Cconsistency is constructed for this purpose.

71

Cconsistency =
∏

1≤i<i′≤h1(k)

∏

0≤j,j′,l,l′≤(fp−1)

j 6=l,j′ 6=l′

[¬Yiji′j′ ∨ ¬Yil] ∧ [¬Yiji′j′ ∨ ¬Yi′l′]

For even t, Cconsistency is constructed as a monotone CNF subcircuit by replacing
each negated literal in the expression above by a disjunction of positive literals, as
follows.

∏
1≤i<i′≤h1(k)

∏
0≤j,j′,l,l′≤(fp−1)

j 6=l,j′ 6=l′

[∑
u,v,u′,v′, u6=i,

u′ 6=i′,v 6=j,v′ 6=j′
Yuvu′v′ ∨

∑
u,v,u6=i

v 6=l
Yuv

]

∧
[∑

u,v,u′,v′, u6=i,
u′ 6=i′,v 6=j,v′ 6=j′

Yuvu′v′ ∨
∑

u,v,u6=i′
v 6=l′

Yuv

]

Finally, the output and -gates of Coccurrence and Cconsistency are merged with the
output and -gate of C. This finishes the construction of C. The instance of WCS

asks for a weight-
(
h1(k) +

(
h1(k)

2

))
satisfying assignment for C.

Correctness: By construction, the t − 1 levels of alternation in the checking
phase of RQ results in t − 1 levels of alternation in C (Figure 3.1). Each Cb is
constructed as a 2-normalized circuit and the output gate of Cb is merged with the
gate that receives input from Cb. The output and -gates of Coccurrence and Cconsistency

are merged with the output gate of C and hence Coccurrence and Cconsistency do not
increase weft beyond t. Altogether, C is a t-normalized circuit as required. In
addition, the size of C is a parametric polynomial.

The monotone CNF form of Coccurrence requires that at least one Yij is true
for each i, 1 ≤ i ≤ h1(k) and at least one Yiji′j′ is true for each pair of i and i′,
1 ≤ i < i′ ≤ h1(k). The antimonotone DNF form of Coccurrence requires that at most
one variable is true from each group mentioned above. These requirements together

with the fact that a satisfying assignment must be of weight-
(
h1(k) +

(
h1(k)

2

))
en-

sure that exactly one variable is true from each group. Thus a satisfying assignment
uniquely corresponds to a set of h1(k) values for the ∃1-guesses of RQ.

Next we show by induction that satisfaction of C corresponds to an accepting
computation of RQ. Lemma 3.5 forms the base case.

Proof.(Proof of Lemma 3.5) Satisfaction of Cb implies that the computation
for nondeterministic checking branch b follows some accepting execution path for

72

b or does not follow any rejecting execution path (i.e. the computation accepts for
b). In the reverse direction, if RQ accepts along some execution path for b, then
the corresponding product of Cb is satisfied in the DNF form or all sums of Cb are
satisfied in the CNF form.

Let us consider a gate g at level i in C, where 1 ≤ i ≤ t− 2. By construction, g
corresponds to the first nondeterministic node x at alternation level i + 1 in some
branch of the partial computation tree TQ. Let us consider the case when g is an
and -gate. By construction, x corresponds to an universal partial configuration. g is
satisfied if and only if all subcircuits Cg,j providing inputs to g are satisfied. Each
Cg,j corresponds to the computation starting from a node yj in TQ such that yj is
the first existential node at (i + 1)th level of alternation along some branch and x
is an ancestor of yj. Inductively, satisfaction of Cg,j implies that yj is an accepting
partial configuration. By property 2.2 satisfaction of g implies x is an accepting
partial configuration.

Thus the output gate of C is satisfied only if RQ accepts for the ∃1-values
represented by the true Yij variables.

In the other direction, an accepting computation of RQ results in a weight-(
h1(k) +

(
h1(k)

2

))
satisfying assignment for C. The assignment is computed by

setting Yij to true if and only if ith ∃1-guess of RQ is the value j. Also, Yiji′j′ is set
to true if and only if the i-th and i′th ∃1-guesses of RQ are j and j′, respectively.
The assignment satisfies Coccurrence and Cconsistency. Each Cb is also satisfied as the
∃1-values corresponding to the true variables cause the computation to follow some
accepting execution path for b or to branch away from all rejecting execution paths
for b.

Remark. Note that the t-normalized circuits, constructed by the reduction
A, are monotone for even t and are antimonotone for odd t, t ≥ 2. Thus the
construction serves as a proof of the W [t]-hardness of Weighted Monotone
Circuit Satisfiability (Weighted Anti-monotone Circuit Satisfiabil-
ity) for even (odd) t, t ≥ 2.

We now show that an extended W [t]-program can decide Weighted Weft-t
Depth-d Circuit Satisfiability, t ≥ 2. Note that t-normalized circuits are
special forms of weft-t, constant depth circuits.

Lemma 3.6 Weighted Weft-t Depth-d Circuit Satisfiability can be de-
cided by an extended W [t]-program, t ≥ 1.

73

mj∧

mj∨ mj∨ mj∨

mj∧ mj∧ mj∧ mj∧ mj∧ mj∧

mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨ mj∨
f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧ f∧

. .
.

.
.

.
.

. . . .

...
...

...
...

...
...

...
...

...
...

­
­­

­
­­

­
­­

J
JJ

J
JJ

J
JJ

SS SS SS SS SS SS SS SS SS SS¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶ ¶¶. .

.

.

»»»»»»»»»»

PPPPPPP
­

­­

level 1

level 2

level 3

level t

¾

¾

¾

¾

Figure 3.2: The structure of the circuit obtained after preprocessing the input
circuit (for even t).

Proof. We construct an extended W [t]-program RWCS-t-d to decide Weighted
Weft- t Depth- d Circuit Satisfiability. Let Cin be the input circuit. RWCS-t-d

transforms Cin into an equivalent tree circuit where the large gates are arranged in
alternating levels (starting from the output) with small subcircuits appearing at the
input level. Figure 3.2 illustrates the structure of the circuit after the preprocess-
ing is done. This transformation is similar to the first part (Steps 1-3 in the proof
sketch) of the original proof (Theorem 3.2) and is performed in the preprocessing
phase of RWCS-t-d. After the transformation, Cin has an and -gate at the output,
followed by (t−1) alternating levels of large or -gates and large and -gates arranged
as in a t-normalized circuit. The large gates closest to the input level receive inputs
from small subcircuits. We number the levels of large gates so that the output
and -gate is at level 1, the large gates that are closest to the input, are at level
t, and a large gate at level i receives input from the large gates at level (i + 1),
1 ≤ i < t. Each input to a large gate at level t is either a product of c literals or a
sum of c literals, where c > 0 is a constant.

RWCS-t-d existentially guesses the k true variables in the first existential block.
With the remaining t−1 alternations, RWCS-t-d can select a c-CNF (c-DNF) subcir-
cuit at the input level, for odd (even) t. RWCS-t-d needs to verify that the ∃1-guesses
satisfy (or do not falsify) the selected subcircuit in the final deterministic checking
phase. The techniques to deal with c-CNF subcircuits have already been described
in the proof of Theorem 3.3. Since an extended W [t]-program, t ≥ 2 can con-

74

struct multiple lookup tables in the deterministic checking phase, the construction
of Theorem 3.3 can be implemented directly by an extended W [t]-program. The
techniques for c-DNF subcircuits essentially follow from duality. However, we de-
scribe them for completeness. Let D be a c-DNF subcircuit at the input level,
and (in some nondeterministic checking branch) RWCS-t-d needs to verify whether
the ∃1-guesses satisfy D. Let (x1 ∧ . . . ∧ xi ∧ ¬xi+1 ∧ . . . ∧ ¬xc) be a product in D.
Here (x1 ∧ . . . ∧ xi) is the monotone group of the product (Definition 3.1). The
subcircuit D is satisfied if at least one of its products is satisfied. A product is
satisfied if all variables in its monotone group are true and the remaining variables
(in this product) are false. As before (proof of Theorem 3.3), we say that, for a
given truth assignment, a monotone group is active if all its variables are true in
the assignment. Let Sy be the set of products having y as their monotone group.
A product in Sy is not satisfied if there is a variable x that appears as a negative
literal in the product and x is set to true. Since D is a c-DNF circuit, there are
at most c ways to falsify a product having an active monotone group. Thus, there
are O(ck) ways to falsify all products in Sy by their negative literals. As before,
we refer to each falsifying combination of variables as a deactivating combination
for y. RWCS-t-d decides Weighted Weft-t Depth-d Circuit Satisfiability
as follows.

1. Preprocessing:

(a) Transform input circuit C ′ into an equivalent circuit C so that C consists
of at most t alternating levels of large gates with (possibly) an additional
level of small gates at the input level.

(b) Enumerate all monotone (or antimonotone) groups. For each such group,
enumerate the associated deactivating groups.

2. Nondeterministic block 1: Existentially guess k true variables, necessary
monotone (antimonotone) groups, and the deactivating combinations.

3. Checking:

(a) Nondeterministic block 2 - t: Nondeterministically select a c-CNF
(or c-DNF) subcircuit at the input level using at most t− 1 alternating
nondeterministic blocks.

(b) Verify that (i) the ∃1-guesses are consistent among themselves, (ii) the
antimonotone groups (monotone groups) together with the deactivat-
ing combinations satisfy all clauses (some product) in the chosen c-CNF

75

(c-DNF) subcircuit. Construct lookup tables as needed during the veri-
fication.

The correctness of the algorithm follows from arguments similar to that in the
proof of Theorem 3.3 and the discussion above.

3.4 Antimonotone-W [2t] is in W [2t − 1], Monotone-

W [2t + 1] is in W [2t]

The monotone (antimonotone) collapse at odd (even) levels of the W -hierarchy is
a fundamental structural result in parameterized complexity theory.

Theorem 3.7 (Downey and Fellows [28])

(i) Monotone-W [2t + 1] = W [2t], t ≥ 0.

(ii) Antimonotone-W [2t + 2] = W [2t + 1], t ≥ 0.

Once again, the original proofs of the results were constructed in the context of
circuits and involved circuit manipulations similar to the case of the Normalization
Theorem [28]. Here we present new proofs of the same results. The extended
machine characterization allows us to construct the proofs from an algorithmic
point of view.

Proof.(A new proof in the context of machine characterization) We describe
the proof for part (i). The proof for part (ii) follows from duality. Let C ′ be
the monotone weft-(2t + 1) input circuit and we want to decide whether C ′ has a
satisfying assignment of weight k. As was done in the proof of Theorem 3.6, C ′

can be transformed into an equivalent circuit C having at most (2t+1) alternating
levels of large gates with an and -gate at the output and an additional level of small
or -gates at the input level. Let the fan-in of any small or -gate is bounded by the
constant c > 0. Consider a CNF subcircuit C∧ at the input level, where C∧ consists
of a large and -gate and unbounded number of small or -gates having positive literals
only.

C∧ =

fp∧
i=1

(xi,1 ∨ . . . ∨ xi,ci
) , ci ≤ c

76

All the sums in C∧ must be satisfied in order to satisfy C∧. Any given sum
can be satisfied by setting one of its (at most) c literals to true. Thus, there
are O(ck) ways to satisfy C∧ by a weight-k assignment. Enumerate the satisfying
combinations for all such CNF subcircuits at the input level of C (there are O(ckn)
of them). Consider a subcircuit consisting of a large or -gate g∨ at level 2t and all
c-CNF subcircuits providing an input to g∨. The or -gate g∨ can be satisfied by
satisfying one of its input c-CNF subcircuits which in turn can be satisfied by one
of O(ck) associated satisfying combinations. An extended W [t]-program can decide
whether C ′ has a weight-k satisfying assignment by (i) constructing a lookup table
to specify the combinations that satisfy a given or -gate at level 2t, (ii) existentially
guessing k true variables and the associated combinations, (iii) selecting a large
or -gate at level 2t using at most (2t− 1) additional alternations, and (iv) verifying
whether the selected or -gate is satisfied by the combinations guessed in the ∃1-
block. We omit the details as they are similar to that in the proof of Lemma 3.6.

77

Chapter 4

Structural Results

In this chapter, we present some new structural results based on the machine charac-
terization of the W -hierarchy and the L-hierarchy. The results presented in Section
3.4 are the only known structural relationships between W [t] and W [t + 1], t ≥ 1.
Our first set of results show that certain nontrivial subclasses of W [t ′] are contained
in W [t], 2 ≤ t < t′. The remaining results place certain nontrivial subclasses of
L[t] into W [t], t ≥ 2. We use the extended W [t]-programs to implement some
algorithmic techniques in a natural way to show the containment results. Although
it is possible to establish the same results using the original circuit characteriza-
tion or the basic W [t]-programs because of the equivalence among the models, the
extended W [t]-programs make the process much easier.

The following theorem gives an important bound that we will use frequently in
the rest of the thesis.

Theorem 4.1 (Downey et al. [24]) Let f and h be fixed functions, α be a nonde-
creasing function, and c be a constant. The expression nc/f(k)+h(k)/α(n) is bounded
above by a parametric polynomial.

Cai and Juedes investigated the effect of the existence of algorithms having
similar upper bounds [15]. Our motivation for considering such upper bound comes
from the following lemma.

Lemma 4.2 Let f , g, and h be fixed functions, α be a nondecreasing function, and
c be a constant. Let R be an extended W [t]-program such that R makes at most
f(k) ∃1-guesses in any computation branch. Let L be a list containing at most
g(k)nc/f(k) + h(k)/α(n) values. A computation branch of R can determine which of the
values in L have been guessed in the ∃1-guess steps.

78

Proof. Let us consider the computation along some nondeterministic branch
of an extended W [t]-program R. Let f(k) be the maximum number of ∃1-guesses
performed by R in any computation branch and L be a list as specified in the
lemma. R sorts L and performs a binary search in L in order to determine whether
the ith ∃1-guess occurs in L, for each i, 1 ≤ i ≤ f(k). R constructs a lookup table
T to specify whether a given value is greater than or less than the jth element in
L (after sorting). Formally, an entry of T is defined as

T [〈v, j〉] =

{
1, if v ≤ L[j]
0, otherwise

where 1 ≤ j ≤ |L| and v is any value that R may store in a register. R now imple-
ments the standard binary search algorithm. During the search, R uses jzero tests
with T as the lookup table to perform comparisons. The total number of ∃1-tests
is bounded above by f(k) log (g(k)nc/f(k)+ h(k)/α(n)) which is O(f(k) log (g′(k)nd) by
Theorem 4.1, for some suitable function g′ and constant d.

4.1 Relations between Classes in the W -hierarchy

The results in this section show that WCS on certain restricted families of weft-
t′ constant-depth circuits can be decided by extended W [t]-programs, where 2 ≤
t < t′. The results, therefore, imply that the corresponding subclasses of W [t ′] are
contained in W [t]. We restrict various properties (number of variables, for example)
of the subcircuits at the input level and show that the degree of intractability under
the restrictions is lower than that in the unrestricted case.

4.1.1 Number of Input Variables in the Sub-circuits at In-
put Level

Theorem 4.3 Let nv = {nc/k + h(k)/α(n)}, where c > 0 is a constant, h be any
function, and α be any unbounded nondecreasing function. Let F1[2] be the family
of circuits of the form (C1 ∧ . . . ∧ Cm) such that each sub-circuit Ci has at most
f(k)nv variables as input, where f is any function. The parameterized problem
WCS on F1[2] is in W [2].

Proof. Let C be a circuit in F1[2]. An extended-W [2]-program can decide WCS
on C as follows.

79

1. Nondeterministic block 1: Existentially guess k true variables {v1, . . . , vk}
for C.

2. Nondeterministic block 2: Universally select a sub-circuit Ci.

3. Form a sorted list Li of the f(k)nv variables of Ci.

4. Perform a binary search in Li for each vj, 1 ≤ j ≤ k, to determine whether
vj appears in Li. Mark variable found in Li as true; mark each of the other
variables as false.

5. Deterministically evaluate the circuit Ci on the truth assignment computed
for the variables in Li.

Correctness: By construction, the algorithm accepts if and only if the checking
phase accepts for all subcircuits Ci, 1 ≤ i ≤ m. For each variable v appearing in
Ci, Step 4 of the algorithm determines the truth value of v based on the guesses
made in Step 1. Step 5 accepts if and only if Ci is satisfied by the truth assignment.
Thus the algorithm accepts the input if and only if C = (C1 ∧ . . .∧Cm) is satisfied
by the existentially guessed weight-k assignment.

Resource Usage: Let us analyze the resource requirements for the algo-
rithm described above. The nondeterministic operations in Steps 1 and 2 satisfy
the constraints AW3, T1, and TU1 for t = 2. Only Step 4 requires the use of
jzero tests. Each binary search requires log (f(k)nv) ∃1-tests, resulting in a total
of k log f(k) + k log nv ∃1-tests. Since

k log nv = k

(
c

k
log n +

h(k)

α(n)
log n

)

= c log n + kh(k) · log n

α(n)

≤ c log n + h′(k) + log n,

where h′(k) =
kh(k)

α(nk)
log nk, nk = α−1(kh(k)) ,

the program meets the required bound on the number of ∃1-tests (Constraint EW1).
Step 3 and Step 5 can be done in parametric polynomial time using operations that
do not access the ∃1-registers. Thus the algorithm satisfies the Constraint AW1.
The algorithm needs to store indices to the input variables, subcircuits, and the

80

lists Li and each such index is at most a parametric polynomial (Constraint AW2).

Remark. Note that the program does not have sufficient resources to check
separately at each occurrence of a variable in Ci whether that variable was guessed
true—to do so would require too many accesses to the guess registers. The program
does have time to try each possible assignment to the variables in Li, to determine
whether Ci is satisfiable, but to do so would not solve the problem at hand, which
requires a common assignment to satisfy all sub-circuits.

The extended W [2]-program described in the proof above does not use any
property that is specific to W [2]. Thus the result extends to higher classes in the
W -hierarchy.

Corollary 4.4 For t ≥ 2, let the circuit family F1[t] consist of the circuits of the
form ∧

i1

∨
i2

. . . Qit C(i1, i2, . . . , it),

where each C(i1, i2, . . . , it) is a circuit of unbounded size with at most f ′(k)nv input
variables, Qit is an and-gate for even t and an or-gate for odd t. An extended
W [t]-program can decide WCS on F1[t].

4.1.2 Number of Monotone Groups and Number of Vari-
ables in Each Monotone Group

We start by showing the desired result for the special case of t = 3. We then
extend the result for higher levels. Let C = (C1 ∧ . . . ∧ Cm) be a 3-normalized
circuit. Consider a DNF subcircuit C∨ of C. Let (l1 ∧ . . . ∧ lr ∧ ¬lr+1 ∧ . . . ∧ ¬lm′),
where 1 ≤ r ≤ k, be a product appearing in C∨ 1. We say that (l1 ∧ . . . ∧ lr) is the
monotone group of the product (Definition 3.1).

Theorem 4.5 Let h be an arbitrary function and let α be any unbounded non-
decreasing function. Let F2[2] be the family of 3-normalized circuits of the form
(C1 ∧ . . . ∧ Cm), m ≤ n such that each DNF circuit Ci, 1 ≤ i ≤ m, separately
satisfies the following conditions.

1Products with more than k positive literals cannot be satisfied by a weight-k truth assignment.

81

1. The number of distinct monotone groups (of any size) appearing in Ci is
bounded by nc/2k + h(k)/α(n).

2. For each monotone group x, there are at most nc/k + h(k)/α(n) variables appear-
ing in all products with monotone group x in Ci.

The parameterized problem WCS on F2[2] is in W [2].

Proof. Let C be a circuit in F2[2]. We construct an extended W [2]-program to
decide WCS on C, as follows.

1. Preprocessing: Construct an enumeration M of all monotone groups ap-
pearing in the input circuit C. Note that the number of such monotone groups
(|M |) is bounded by the length of the input.

2. Nondeterministic block 1: Existentially guess k true variables. Let Vp be
the set of these k variables.

3. Nondeterministic block 1: Existentially guess the number l ≤ 2k of mono-
tone groups that are satisfied by the variables in Vp .

4. Nondeterministic block 1: Existentially guess l ≤ 2k monotone groups
from M , that are satisfied by the assignment. Let M ′ ⊆ M be the set of
these monotone groups. Ensure consistency between Vp and M ′ by performing
O(k2k) ∃1-tests and an appropriately constructed lookup table.

5. Nondeterministic block 2: Universally select a monotone group x ∈ M .

6. Nondeterministic block 2: Universally select a subcircuit Ci.

7. Deterministically check that either (i) x is in M ′ or (ii) x is inconsistent with
the variables in Vp (i.e., ensure that M ′ is maximal). If x is not in M ′ and
x is consistent with the variables in Vp, then accept in (i.e. terminate) this
computation branch. Checking (i) can be done using jequal tests. For
checking (ii), the program computes at most k variables that constitute x,
and then checks that at least one of these variables is not included in Vp.

8. Let Mi ⊆ M be the list of monotone groups that appear in Ci. Perform l
binary searches on Mi to identify the satisfied monotone groups in Mi. Let
Si be the set of monotone groups in Mi that are satisfied by the existentially
guessed assignment (Si = Mi ∩M ′).

82

9. For each monotone group y in Si, let Viy be the set of input variables that
appear in any product of Ci with y as the monotone group.

(a) Perform k binary searches to determine which of the k variables in Vp

are members of Viy.

(b) Evaluate the products with monotone group y on the (partially) com-
puted assignment. Accept if any such product is satisfied.

Correctness: By the universal selection of a subcircuit Ci in Step 6, the pro-
gram accepts if and only if the checking phase accepts for all subcircuits Ci in C.
Satisfying any product in Ci is sufficient as Ci is a DNF circuit. Step 8 identifies
the set of monotone groups of Ci that has been satisfied by the existentially guessed
weight-k assignment. Step 9 tries to determine whether any product whose mono-
tone group has been satisfied is not falsified by the negated literals. If at least one
such product is found then the checking phase accepts. The verification in Steps
5 and 7 ensures that M ′ includes exactly those monotone groups that are satisfied
by the existentially guessed weight-k assignment. Thus the checking phase accepts
if and only if some product in Ci has its monotone group satisfied and has all of
the negated variables in the product set to false. This is a necessary and sufficient
condition for satisfaction of the DNF subcircuit Ci.

Resource Usage: The nondeterministic operations satisfy the Constraints
AW3, T1 and TU1 for t = 2. The construction of enumeration M in Step 1
takes polynomial time as the number of monotone groups (i.e. |M |) is O(n). The
checking in Step 7 can be done using O(l + k2) ∃1-tests. Note that the univer-
sally guessed value x is accessed directly in order to compute the variables that
constitute x. The l binary searches in Step 8 requires c log n + o(lh(k) log n) ∃1-
tests as |Mi| is nc/2k + h(k)/α(n). The O(kl) binary searches in Step 9(a) require
lc log n + o(lkh(k) log n) ∃1-tests as |Viy| ≤ nc/k + h(k)/α(n) and at most l monotone
groups can be satisfied by a weight-k assignment. Evaluation of a subcircuit Ci in
Step 9(b) can be done in polynomial time without performing any ∃1-test. Thus
the program satisfies Constraints AW1 and EW1. The program needs to store in-
dices to variables, subcircuits, and the monotone groups. As each of these indices
is bounded by n, Constraint AW2 is also satisfied.

In order to extend the results for odd levels in the W -hierarchy, we use the
notion of antimonotone groups (Definition 3.1).

Corollary 4.6 Let h be any arbitrary function and α be any unbounded nonde-

83

creasing function. Let F2[t], t ≥ 3, be a family of circuits of the form
∧
i1

∨
i2

. . . Qit−2 C(i1, i2, . . . , it−2),

such that for even t (respectively, odd t), Q is an and-gate (respectively, or-gate)
and C(i1, i2, . . . , it−2) is a DNF circuit (respectively, CNF circuit) satisfying the
following conditions.

1. The number of distinct monotone groups (anti-monotone groups) appearing
in C(i1, i2, . . . , it−2) is bounded by nc/2k + h(k)/α(n), for even t (odd t).

2. For each monotone group (anti-monotone group) x, there are at most
nc/k + h(k)/α(n) variables appearing in all products (sums) in C(i1, i2, . . . , it−2)
with monotone group (anti-monotone group) x, for even t (odd t).

The parameterized problem WCS on F2[t] is in W [t].

Proof. The W [2]-program, constructed in the proof of Theorem 4.5, can be
easily adapted for higher (even) levels in the W -hierarchy. Only Step 7 needs to
be changed to deal with the additional levels of alternation (instead of a single
universal branching). The result for odd levels follows from duality.

4.2 Relations between W [t] and L[t]

4.2.1 Range of Values

Theorem 4.7 Let RL be a basic L[t]-program such that in any computation of
RL, the ∃1-operations are restricted to tests and assign only. An extended W [t]-
program RW can simulate any computation of RL, if the value computed by any
assign operation in the computation of RL is at most f(k)nh(k)/α(n), where h is
any fixed function and α is any unbounded, nondecreasing function.

Proof. We prove the result for t = 2 by constructing an extended W [2]-
program to simulate the computation of a restricted L[2]-program (as specified in
the theorem). Generalization to higher levels is straightforward.

Given any input 〈x, k〉 the extended W [2]-program RW simulates the compu-
tation of the restricted L[2]-program RL on 〈x, k〉 as follows.

84

1. Preprocessing: Simulate the preprocessing phase of RL directly. Also con-
struct the partial computation tree CL of RL for the given input.

2. Nondeterministic block 1: Simulate the first existential block directly. Let
V∃1 be the set of existentially guessed values.

3. Nondeterministic block 1: Existentially guess all possible pairs of values
resulting from V∃1 . Check for consistency with appropriate lookup tables. Let
V∃1-pair be the set of pairs of values.

4. Nondeterministic block 2: Simulate the universal guesses directly.

5. By definition of the assign operation, the values in the standard registers
specify the result of the operation for any pair of values in its operands. Thus,
from the partial computation tree CL, RW can determine the value that RL

would compute by an assign operation on any pair of values. RW constructs a
lookup table Tassign to store individual bits of the results of assign operation,
as follows.

Tassign[b, 〈u, v〉] =





0, if the b-th bit of the result of assign operation
on values u and v is 0

1, if the b-th bit of the result of assign operation
on values u and v is 1

Also, Tassign[b, 〈u, v〉] is the same as Tassign[〈b, u〉, v] and Tassign[u, 〈b, v〉]. Here,
the value of b is at most (log f(k) + h(k) log n/α(n)).

6. Directly simulate all operations, except assign operations in the checking
phase.

7. Simulate each assign operation by log f(k) + h(k) log n/α(n) jzero tests,
each computing one bit of the result.

- Let the assign operation be performed on two ∃1-registers storing the
values u and v, respectively. A register g in V∃1-pair stores the value 〈u, v〉
(Step 3). RW performs a jzero test on b and 〈u, v〉 to retrieve the b-th
bit of the result of assign from Tassign.

- Let, between the operands of the assign operation, at least one (say
register r) is not an ∃1-operand. Let the value in r be u. RW changes2

2RW has direct access to any register that is not an ∃1-operand.

85

the value of r to 〈b, u〉 and then performs a jzero test on r and the
other operand in order to retrieve the b-th bit of the result of the assign
operation.

Combine the computed bits to construct the complete result of the assign
operation.

Correctness: RW simulates all but the assign operations of RL directly. The
result of each assign operation of RL is computed one bit at a time and then
combined to construct the complete result (Step 7). Thus RW accepts a given
input 〈x, k〉 if and only if RL accepts 〈x, k〉.

Resource Usage: The nondeterministic operations in steps 2, 3, and 4 satisfy
the Constraints AW3, T1, and TU1 for t = 2. The simulation of the preprocess-
ing phase of RL and the construction of the partial computation tree CL takes
parametric-polynomial time (Property 2.12). Let l be the maximum value that RL

may store in any register at any point of computation. The lookup table T has
O((log f(k)+h(k) log n/α(n))l2) entries each storing one bit’s worth of information.
Each entry can be computed from the corresponding partial configuration in O(1)
time. Thus the construction of the entire table takes parametric polynomial time.
Simulation of each assign operation require (log f(k) + h(k) log n/α(n)) jzero
tests. Thus, all assign operations can be simulated using at most h′(k)(log f(k) +
h(k) log n/α(n)) jzero tests, where h′(k) is the number of steps in the final check-
ing phase of RL. The remaining steps (2, 3, 4 and 6) take O(h′(k)) time. Thus
Constraints AW1 and EW1 are satisfied. Finally, Constraint AW2 is also satisfied
as the maximum value that RW needs to store is an index to T .

For the general case, Step 4 needs to be modified so that the program simulates
all nondeterministic operations at multiple levels of alternation (as opposed to uni-
versal operations at second level of alternation only).

Corollary 4.8 Let τ be a vocabulary with binary relations and binary functions
such that the range of each function is a set of size at most f(k)nh(k)/α(n). For all
t ≥ 1, the parameterized Model Checking problem on vocabulary τ and the class
of all Σt,u formulas is in W [t].

Proof. The restricted version of the parameterized Model Checking problem
(as specified in the corollary) can be decided by a restricted L[t]-program RL such

86

that the value computed by any assign operation is at most f(k)nh(k)/α(n). RL

uses tests (jequal and jzero) and assign operations to compute the relations
and the functions respectively. The bound on the range of the functions implies a
corresponding bound on the values computed by the assign operations. The result
in the corollary follows from Lemma 4.7.

4.2.2 Height of the Assignment Graph

Theorem 4.9 Let c be a constant, h be any function, and α be any unbounded
nondecreasing function. Also let t be greater than one. An extended W [t]-program
can simulate the computation of a normalized L[t]-program if the height of the as-
signment graph for any execution path in any computation branch of the normalized
L[t]-program is at most log (c + h(k)/α(n)).

Proof. Let RL be a normalized L[t]-program satisfying the required proper-
ties. Let Gb,nb be the assignment graph for the computation in a nondeterministic
checking branch nb along execution path b. Let Fb,nb be the corresponding binary
forest and T be a tree in Fb,nb. Recall that the root node of T represents a test, each
leaf represents an ∃1-register, and each of the remaining nodes represents an as-
sign operation. By the restrictions, T involves at most (c+h(k)/α(n)) ∃1-registers.
Thus, at most f(k)nc+h(k)/α(n) combinations of values for these ∃1-registers need to
be examined for each tree T in each assignment graph, for some suitable function f .
Altogether, analyzing a parametric polynomial number of combinations of values
suffices for all trees in all assignment graphs. Based on this observation we con-
struct an extended W [t]-program RW to simulate the computation of RL on any
input 〈x, k〉.

1. Preprocessing:

(a) Simulate the preprocessing phase of RL directly.

(b) Perform a partial simulation of the checking phase of RL and construct
the assignment graphs for all execution paths in all nondeterministic
checking branches.

(c) Enumerate all combinations of up to (c+h(k)/α(n)) values. As explained
before, the number of such combinations is bounded by a parametric
polynomial. Let C be the resultant enumeration.

87

2. Nondeterministic block 1: Simulate the ∃1-steps of RL, directly.

3. Nondeterministic block 1: Existentially guess all combinations from C
(possibly with repetition) satisfied by the ∃1-guesses from previous step.
There will be

(
k
b

)
such ∃1-guesses, where b = c + h(k)/α(n).

4. Nondeterministic block 2 to t: Simulate the nondeterministic steps of
RL directly. Let nb be the nondeterministic checking branch that has been
selected by the nondeterministic operations in this step. Also let b be the
unique accepting (rejecting) execution path for nb for odd (even) t.

5. (a) Construct a lookup table Tvalid to specify how a value in an ∃1-register
of RL affects the computation along b for nb. Let i be an index to an ∃1-
register of RL and vi be a value that RL may store in the ith ∃1-register.
Tvalid[〈〈nb, b, i〉, vi〉] is set to 1 if one of the following holds.

- The last nondeterministic operation in nb is universal, b ends in
rejection, and the outcome of at least one test along b causes the
computation to branch away from b if vi is stored in the ith ∃1-
register of RL.

- The last nondeterministic operation in nb is existential, b ends in
acceptance, and no test outcome causes the computation to branch
away from b if vi is stored in the ith ∃1-register of RL.

Tvalid[〈〈nb, b, i〉, vi〉] is set to 0 otherwise.

(b) Perform the following verification using Tvalid as a lookup table.

For even t, verify whether at least one value guessed in Step 2 causes the
computation to branch away from the unique rejecting execution path.

For odd t, verify whether all values guessed in Step 2 cause the compu-
tation to continue along the unique accepting execution path.

6. (a) Construct a lookup table Tconsistent as follows. The entry Tconsistent[〈x, y〉]
is set to 1 if and only if x is a tree in the assignment forest corresponding
to the computation along b for nondeterministic checking branch nb,
y ∈ C, and the test at the root of x is satisfied by the combination y.

In particular, Tconsistent[〈x, y〉] is set to 1 if one of the following holds.

- The last nondeterministic operation in nb is universal, b ends in
rejection, and the outcome of the test represented by the root of x
causes the computation to branch away from b if the values at the
leaves of x are as specified in y.

88

- The last nondeterministic operation in nb is existential, b ends in
acceptance, and the outcome of the test represented by the root of
x causes the computation to continue along b if the values at the
leaves of x are as specified in y.

Tconsistent[〈x, y〉] is set to 0 otherwise.

(b) Perform the following verification using Tconsistent as a lookup table.

For even t, verify that the test outcome for at least one existentially
guessed combination in the ∃1-block causes the computation of RL to
branch away from the rejecting execution path b.

For odd t, verify that, with the existentially guessed combinations in the
∃1-block, all test outcomes along b are such that the computation of RL

continues along the accepting execution path b (and eventually accept).

Correctness: All but the assign steps of RL are simulated directly by RW.
Since RL is a normalized L[t]-program, all the assign operations are performed
after all the nondeterministic operations. Thus the simulation of RL’s computation
until the last nondeterministic operation in any computation branch is performed
verbatim. The computation for any nondeterministic checking branch of RL accepts
if and only if

COND1: t is odd and all test outcomes along the unique accepting execution path
causes the computation to continue along the unique accepting execution
path, or

COND2: t is even and some test outcome along the unique rejecting execution path
causes the computation to branch away from the unique rejecting execution
path.

Step 5 of RW verifies that the values guessed for the ∃1-registers of RL (in Step
1) satisfy COND1 or COND2, whichever is appropriate. Step 6 verifies the same
for ∃1-operands. However, instead of computing the ∃1-operands through assign
operations (which an extended W [t]-program is not allowed to perform) RW simply
guesses the combination of values that affect the ∃1-operand.

Resource Usage: The simulation of the preprocessing phase of RL (Step 1(a))
takes parametric polynomial time. The partial simulation of RL also takes para-
metric polynomial time (Property 2.12). The number of combinations in the enu-
meration C is f(k)nc+h(k)/α(n) which is bounded by some parametric polynomial

89

(Theorem 4.1). Thus construction of C takes parametric polynomial time. The
number of entries in Tvalid is O(klt+1) and each entry can be computed in O(1) time
from the corresponding partial configuration. Let nAG be the number of assignment
graphs corresponding to the computation of RL on 〈x, k〉. The size of the lookup
table Tconsistent is bounded by |C| nAG. Each of these entries can be computed in
O(h(k)/α(n)) time. Thus the construction of the lookup table Tconsistent can be
done in parametric polynomial time. The verifications in Steps 5(b) and 6(b) can
be performed in O(k +

(
k
b

)
) steps. Thus the extended W [t]-program satisfies the

Constraint AW1. The nondeterministic operations in Steps 2, 3, and 4 satisfy the
Constraints AW3, T , and TU1. Only Steps 5(b) and 6(b) perform ∃1-tests. Thus
the number of ∃1-tests is at most h′(k) for some function h′ (Constraint EW1). In
addition to the values stored in the registers of RL, the W [t]-program needs to store
the indices to entries in Tvalid and Tconsistent. Thus any value stored in the registers
of the extended W [t]-program is at most parametric polynomial (Constraint AW2).

Note that Theorem 4.9 does not restrict the number of assign operations in the
checking phase. The checking phase is still allowed to compute O(h(k) log n) bits
from the ∃1-values. Only the number of ∃1-values that contribute to a single bit by
means of the assign operations, is restricted to be O(c + h(k)/α(n)). Theorems
4.7 and 4.9 give lower bounds on certain computational features of normalized L[t]-
programs. Unless L[t] = W [t], (i) the values computed by assign operations in a
normalized L[t]-program cannot all be O(f(k)nh(k)/α(n)), and (ii) at least one test in
some computation branch of a normalized L[t]-program is performed on some value
that is computed by a sequence of assign operations involving Ω(h(k)) ∃1-registers.
The bounds also translate to Parameterized Model Checking problem where
the corresponding features are the range of functions and the number of existentially
quantified variables from the first block that are involved in a relation in the matrix.

90

Chapter 5

Categorization Techniques for
Fixed-Parameter Intractable
Problems

In this chapter, we present some new membership and hardness results. The partic-
ular problems we consider include Subset Sum, Reachability Distance for
Vector Addition Systems, Maximal Irredundant Set, Integer Linear
Programming, Longest Common Subsequence, and Precedence Con-
strained Multiprocessor Scheduling. The new lower bounds for Longest
Common Subsequence implies new lower bounds for other problems including
Domino TreeWidth, Feasible Register Assignment, Module Alloca-
tion, and Intervalizing Colored Graphs. The definitions of all these prob-
lems can be found in the appendix.

5.1 Membership

Two approaches are commonly taken to show that a problem Q is in some class C :
(a) constructing an algorithm A to decide Q such that A satisfies the associated
resource-bounds, and (b) constructing an appropriate reduction from Q to some
problem Q′ that is known to be in C . The circuit framework (due to Downey,
Fellows and other co-researchers) and the model-checking framework (due to Chen,
Flum, and Grohe) both suffer from the lack of a computational model. This rules
out approach (a). A precondition for applying approach (b) is to have a collection
of reference problems already known to be in the target class. Unfortunately, other

91

than the defining problems, natural complete problems beyond the fourth level of
the W -hierarchy have not been identified yet. Thus, proving membership results is
a nontrivial task in both these frameworks.

The ARAM characterization, given by Chen, Flum and Grohe, allow us to
construct algorithms for showing membership results. However, the computation
following the nondeterministic steps is extremely restrictive. One needs to be par-
ticularly careful to make sure that the algorithm actually satisfies all the required
resource-bounds. The task of satisfying the restrictions often overshadows the nat-
ural flow of the actual algorithm.

The extended W [t] characterization, developed in Chapter 2, is a significant
advance in this context. An extended W [t]-program essentially is a t-alternating
program that runs for parametric polynomial time. Only the number of steps
involving the ∃1-operands is bounded. The extended characterization allows us to
deal with parametric problems from the algorithmic point of view without worrying
much about the precise details of the computational model. The extended W [t]-
programs play a key role in all the membership proofs in this chapter.

In the rest of this section we present the new membership results.

5.1.1 Subset Sum

The parametric problem Subset Sum is defined as follows.

Subset Sum

Input: A set of integers X = {x1, . . . , xm}, integers s and k.
Parameter: k.
Question: Is there a set X ′ ⊆ X such that |X ′| = k and sum of all the
integers in X ′ is exactly s?

The problem has been shown to be W [1]-hard by Downey and Fellows [26].
Fellows and Koblitz have shown that the problem is in W [P] [35]. We show that
Subset Sum is in W [3].

Theorem 5.1 Subset Sum is in W [3].

Proof. We construct an extended W [3]-program RSum to decide Subset
Sum. We assume that all numbers in X are positive. In case X contains negative
numbers, RSum adds the smallest negative number xsmallest to all the numbers in X

92

and adds k×xsmallest to the target sum s, in the preprocessing phase. Let b = 2dlog ke.
Also let lmax be the maximum number of bits in the binary representation of xi,
over all i, 1 ≤ i ≤ m, or the target sum s (after the preprocessing). Conceptually,
RSum works in two major steps. In the first step, RSum considers the k existentially
selected integers as base-b numbers. RSum adds them (without considering the
carries) to produce two integers ssum and scarry - the first containing the sum digits
(in base-b) and the second containing the carry digits (in base-b). In the second
step, RSum performs a binary addition of ssum and scarry to produce sresult and checks
that sresult and s are same. The details are given as Algorithm 5.1. For notational
convenience, we use xb[p] (x[p]) to denote the base-b digit (bit) at position p in
number x.

Algorithm 5.1: An extended W [3]-program RSum to decide Subset Sum

Input: A set of integers X = {x1, . . . , xm}, a target sum s, an integer k.
Preprocessing:1

Make sure that all numbers are positive by adding appropriate offsets (if2

necessary) to all input numbers and the target sum.
Construct a lookup table T from the input numbers so that given the3

index of a number and a bit position, the corresponding bit can be
determined (by a jzero test) in constant time.

T [〈i, j〉] =

{
1, if the jth bit of the ith number is 1
0, otherwise

where 1 ≤ i ≤ m and 0 ≤ j ≤ lmax − 1.

Nondeterministic block 1: Existentially select indices i1, . . . , ik to k4

integers from X. Let the indices be stored in registers g1, . . . , gk, respectively.
Nondeterministic block 2: Universally guess a bit position p of the5

target sum s and store the bit position in register gk+1.

Let bit position p correspond to digit position pb in the base-b interpretation.6

Extract all base-b digits from the k selected numbers at position pb and pb−1

and compute the base-b digits of ssum and scarry at position pb assuming a
zero carry-in (in base-b) at position pb−1.
/* Compute the required carry-in from pb−1th position. This

carry must be 1 or 0 */

cb ← sb[pb]− (sb
sum[pb] + sb

carry[pb]) mod b /* Computation in base-b */7

if cb is not 0 or 1 then8

Reject in this branch9

end10

93

/* RSum continued */

Let c2 be the (binary) carry-in required at bit position p.11

c2 ← |s[p]− (ssum[p]− scarry[p]) mod 2| /* Computation in binary */

if c2 is 1 then12

Nondeterministic block 2: Universally guess a bit position p ′,13

0 < p ′ < p.

Compute the base-b digits of ssum and scarry for the base-b digit position14

corresponding to bit position p ′ (as in Step 6). Compute the bits ssum[p ′]
and scarry[p

′] from the base-b digits.

if (binary) carry is generated or propagated at position p′ then15

Accept in this branch.16

else17

Nondeterministic block 3: Existentially guess a bit position18

p ′′, p ′ < p ′′ < p.
Compute the bits ssum[p ′′] and scarry[p

′′] as in Step 14.19

if a carry is generated at bit position p′′ then Accept in this branch.20

else Reject in this branch.
end21

else22

Nondeterministic block 2: Universally guess a position p ′,23

0 < p ′ < p.
Compute the bits ssum[p ′] and scarry[p

′] as in Step 14.24

if no carry is generated at position p ′ then25

Accept in this branch.26

else27

Nondeterministic block 3:28

Existentially guess a position p ′′, p ′ < p ′′ < p29

Compute the bits ssum[p ′′] and scarry[p
′′] as in Step 14.30

if no carry is propagated through position p ′′ then31

Accept in this branch.32

else33

Reject in this branch.34

end35

end36

end37

94

Correctness: The correctness of the arithmetic involved is easy to verify. We
therefore argue that the algorithm RSUM correctly implements the arithmetic. Step
5 of RSUM universally selects a bit position p of the target sum. The computation
in each resulting universal branch verifies that the pth bits of the target sum and
the sum of the existentially selected numbers agree. By the universal choice of Step
5, RSUM accepts if and only if the verification succeeds for all bit positions. During
the verification RSUM computes the pth bit of the partial sum (Steps 6-7) and
the required carry-in (Steps 8-11) based on (deterministic) arithmetic as explained
before. In the final step, RSUM ensures that the required carry-in is obtained at bit
position p using nondeterminism. For a carry-in of 1, RSUM verifies (Step 13) for
each bit position p′ < p that either a carry is generated or propagated at position
p′ (Step 14-16) or a carry is generated at some bit position p′′, p′ < p′′ < p (Step
18-21). The verification for a required carry-in of 0 is symmetric.

Resource Usage: In any given computation branch either Steps 12-21 or Steps
22-36 are executed. Thus, the nondeterministic operations (Steps 4, 5, 13, 18; or
Steps 4, 5, 23, 28) satisfy the constraints AW3, T1, and TU1 for t = 3. Step 2
in the preprocessing phase can be done in polynomial time. The lookup table T
has mlmax entries, each entry representing one bit’s worth of information. Thus
the time needed to construct T is a polynomial in n. Most of the remaining steps
are trivial and require constant time. Step 6 can be implemented using 2k log b
∃1-tests using the table T for lookup. The same number of ∃1-tests are needed in
each of Steps 14, 19, 24, and 30. No other step uses ∃1-tests. Thus RSum satisfies
Constraint EW1. RSum needs to store the indices to the numbers, indices to the bit
positions in a number, sums of at most k bits, and indices to the entries in T during
the construction of the lookup table. Each of theses values is at most a polynomial
in n. Thus the program satisfies the constraint AW2.

5.1.2 Reachability Distance for Vector Addition Systems
(Petri Nets)

C. A. Petri introduced Petri nets to represent concurrent processes in a formal
way. Karp and Miller introduced the vector addition system to analyze a particu-
lar model of parallel computation. It turned out that the vector addition system
was mathematically equivalent to Petri nets. Decidability of various properties
of Petri nets has been of interest since the early development of Petri nets [34].
In this subsection, we analyze the complexity of a parameterized version of the
Reachability problem (defined below). Although, a precise degree of intractabil-

95

ity for the problem is not known in the classical context, Lipton showed that the
problem is EXPSPACE -hard [16].

Reachability Distance for Vector Addition Systems (Petri Nets)

Input: A set {~x1, . . . , ~xm} of m vectors, each consisting of l integers,
a non-negative starting vector ~s = (s1, . . . , sl), a non-negative target
vector ~t = (t1, . . . , tl), a positive integer k.
Parameter: k.
Question: Is there a set of k indices i1, . . . , ik such that ~t = ~s+

∑k
j=1 ~xij

and each of the l integer components in each of the k intermediate sums
is non-negative?

The problem is known to be W [1]-hard [28, 29]. However, no membership
result is known. We show that the problem is in W [5]. Our result builds upon the
W [3]-membership of Subset Sum, presented in the preceding subsection.

Theorem 5.2 Reachability Distance for Vector Addition Systems is
in W [5].

Proof. We construct an extended W [5]-program RRDVAS (Algorithm 5.2) to
establish the upper bound. RRDVAS starts by existentially selecting the indices of the
k vectors to add. It then universally selects an intermediate step and a component
position in the sum vector. The sums of positive and negative components at
the selected position are computed separately and compared to ensure that the
sum of negative components does not exceed the sum of the positive components.
The computation of the intermediate sums uses the algorithm for Subset Sum
described before. As was done in the proof of Theorem 5.1, we use sb[p] (s[p]) to
denote the base-b digit (bit) at position p of the integer s. The details are given in
Algorithm 5.2.

Correctness: By the universal selection in Steps 3 and 4, RRDVAS accepts if
and only if the verification succeeds for each component position at each interme-
diate step. By the existential selection of a bit position at Step 5, the verification
accepts if the sum of positive numbers exceeds the sum of negative numbers starting
at some (existentially selected) bit position. The rest of the verification involves
computation of the sums as in Algorithm 5.1. The correctness of the computation
of sum bits (Steps 8 and 9) follows from arguments similar to those for Algorithm
5.1.

96

Algorithm 5.2: An extended W [5]-program RRDVAS to decide Reachabil-
ity Distance for Vector Addition Systems
Input: m vectors ~x1, . . . , ~xm each consisting of l integers, a non-negative

starting vector ~s = (s1, . . . , sl), a non-negative target vector
~t = (t1, . . . , tl), a positive integer k.

Preprocessing: Let lmax be the maximum number of bits in the binary1

representation of any number in the input. Construct lookup table T such
that given the index of a number and a bit position, the value of the
corresponding bit of the number can be retrieved in constant time.

T [〈i, j〉] =

{
1, the jth bit of the ith number in input is 1
0, otherwise

where 0 ≤ j ≤ lmax − 1 and 1 ≤ i ≤ l(m + 2).

Nondeterministic block 1: Existentially guess the indices i1, . . . , ik of2

the k vectors for the solution.

Nondeterministic block 2: Universally guess the jth intermediate step,3

1 ≤ j ≤ k.
Nondeterministic block 2: Universally guess the component position y4

of the sum to be verified, 1 ≤ y ≤ n. Let Vj,y be the set of the yth
components of the first j vectors among those selected in Step 1, i.e.

Vj,y =
{

yth component of ~xij′ | 1 ≤ j′ ≤ j
}

.

Nondeterministic block 3: Existentially guess the bit position pdiff ,5

0 ≤ pdiff ≤ l where the sum of positive components first differ (starting from
the most significant bit) from the sum of negative components.

/* Start of Subset Sum */

Nondeterministic block 4: Universally guess a bit position p of the6

component sum.
if p < pdiff then Accept in this branch.7

/* Compute the sums for positive and negative numbers in Vj,y

separately */

Let bit position p correspond to digit position pb in the base-b interpretation.8

Extract all base-b digits at position pb and pb−1 from the positive numbers in
Vj. Compute the base-b digits of s+

sum and s+
carry at position pb.

Similarly, compute the base-b digits at position pb of s−sum and s−carry for the9

negative numbers in Vj.

97

/* RRDVAS continued */

(Constant-size Existential Block) Existentially guess the carries c+ and10

c− (00, 01, 10, and 11).
/* If the combination of c+ and c− is inconsistent with s+

sum[p]
and s−sum[p] then terminate this branch. */

if p > pdiff then11

if (s+
result[p] + c+) mod 2 6= (s−result[p] + c−) mod 2 then12

Reject in this branch13

else14

/* p = pdiff by Step 7 */

if (s+
result[p] + c+) mod 2 6= 1 or (s−result[p] + c−) mod 2 6= 0 then15

Reject in this branch16

end17

Nondeterministic block 4: Universally select a carry-in c from {c+, c−}.18

if c is 1 then19

Nondeterministic block 4: Universally guess a bit position p ′,20

0 < p ′ < p.
if carry is generated or propagated at position p′ then21

Accept in this branch22

else23

Nondeterministic block 5: Existentially guess a bit position24

p ′′, p ′ < p ′′ < p
if a carry is generated at bit position b′′ then Accept in this branch25

else Reject in this branch.
end26

else27

Nondeterministic block 4:28

Universally guess a position p ′ < p29

if no carry is generated at position p ′ then30

Accept in this branch31

else32

Nondeterministic block 5:33

Existentially guess a position i, p ′ < i < p34

if no carry is propagated through position i then Accept in this branch35

else Reject in this branch36

end37

end38

98

By the existential selection of the carries in Step 10 and subsequent verification
in Steps 11-17, the verification accepts if and only if a consistent pair of carries
is generated for the selected bit position. The correctness for the verification of
desired carry-ins (Steps 19-38) follows from the same of Algorithm 5.1.

Resource Usage: Starting from Step 6 Algorithm 5.2 essentially implements
the checking phase of Algorithm 5.1. the Steps 10 to 17 are new and they require
O(1) time. Step 1 requires polynomial time while steps 2 to 5 can be performed in
O(h(k)) steps for some function h. Also, any value used in the computation in Steps
1 to 5, and in Steps 10 to 17 is at most parametric polynomial. Thus Constraints
AW1, AW2, EW1 are satisfied. The nondeterministic steps satisfy Constraints AW3
and TU1. The number of alternations is 5 except for the presence of an existential
guess from a constant range (Step 10). By applying distributive law (implemented
through a different interpretation of values in the associated guess registers) the
existential step in Step 10 can be pushed down to nondeterministic block 5. Thus
Constraint T1 is also satisfied for t = 5.

5.1.3 Maximal Irredundant Set

Let G = (V, E) be a graph, V ′ a subset of the vertices, and u ∈ V ′. A private
neighbour of u with respect to V ′ is a vertex u′ that is adjacent to u and to no
other vertex in V ′. The parameterized version of the Maximal Irredundant
Set is defined as follows.

Maximal Irredundant Set

Input: A graph G = (V,E), a positive integer k.
Parameter: k.
Question: Is there a set V ′ ⊆ V such that (1) each vertex u ∈ V ′ has
a private neighbour, and (2) V ′ is not a proper subset of any other set
V ′′ ⊆ V that also has this property?

Maximal Irredundant Set is known to be W [2]-hard [8] and in W [P] [17].
In this section, we show that Maximal Irredundant Set is in W [4] by con-
structing an extended W [4]-program to decide the problem. The algorithm is
essentially the same as Cesati’s algorithm [17]. We only show that the algorithm
can be implemented by an extended W [4]-program.

99

Theorem 5.3 Maximal Irredundant Set is in W [4].

Proof. We construct an extended W [4]-program RMIS to decide Maximal
Irredundant Set. RMIS existentially guesses an irredundant set V ′, and the k
private neighbours of the vertices in V ′. RMIS then checks that V ′ indeed form
an irredundant set in the input graph G = (V,E). To ensure maximality, RMIS

universally guesses another vertex w, and verifies that V ′∪{w} is not an irredundant
set. The details are given in Algorithm 5.3. For notational convenience, we use N [v]
to denote the closed neighbourhood of a vertex v where the closed neighbourhood
of v includes v and all vertices that are adjacent to v.

Correctness: In addition to guessing k vertices for the solution V ′ (Line 2)
RMIS existentially guesses a private neighbour pi for the ith vertex in V ′ (Line 3), for
each i, 1 ≤ i ≤ k. In Lines 4 to 9, RMIS verifies that vpi

is indeed a private neighbour
for the ith vertex in V ′. This checking ensures that V ′ forms an irredundant set.
RMIS ensures the maximality of V ′ by verifying that V ′∪{v} is not an irredundant
set for any choice of v 6∈ V ′. By the universal selection of vu in Line 10 and the
checking in Lines 11 to 13, RMIS accepts if and only if the remaining computation
(Lines 14 to 22) accepts for all choice of vu 6∈ V ′. In this part of the checking,
RMIS existentially selects a vertex vij in V ′ (Line 14) and verifies that any vertex in
N [vij] is also in N [vij′] for some j′ 6= j, 1 ≤ j′ ≤ k + 1. In other words Lines 16 to
21 ensure that vij does not have any private neighbour with respect to V ′ ∪ {vu}.
Thus RMIS accepts if and only if (the existentially guessed) V ′ is an irredundant
set and V ′ ∪ {v} is not an irredundant set for any v 6∈ V ′.

Resource Usage: Construction of the adjacency matrix in Step 1 takes poly-
nomial time. The nondeterministic operations in Lines 2, 3, 10, 14, and 15 take
O(k) time. Each checking for inclusion in a closed neighbourhood can be done using
a jzero test and the lookup table constructed in the preprocessing phase. Thus
the loops from Line 4 to 9 take O(k2) time. By similar arguments, the operations
from Line 11 to 13 and from Line 16 to 21 take O(k) time. Thus the program sat-
isfies Constraint AW1. The program needs to store the indices to the vertices and
indices to the lookup tables. All these indices are bounded by n2. Thus Constraint
AW2 is also satisfied. The nondeterministic operations in Lines 2, 3, 10, 14, and
15 satisfy the Constraints AW3, T1, and TU1 for t = 4. jzero and jequal tests
on the ∃1-registers are performed in Lines 5, 7, 12, 16, and 19. The number of such
tests is (k2 + 2k). No other operation uses any ∃1-operand. Thus Constraint EW1
is also satisfied.

Corollary 5.4 Maximal Irredundant Set is in W ∗[3].

100

Algorithm 5.3: A W [4]-program (also a W ∗[3]-program) RMIS to decide
Maximal Irredundant Set

Input: A graph G = (V, E), an integer k
Preprocessing: Construct a lookup table from the input graph G so that1

r〈i,j〉 is 1 if and only if vj ∈ N [vi].

Nondeterministic block 1: Existentially guess the indices i1, . . . , ik to2

the vertices that form the irredundant set V ′.

Nondeterministic block 1: Existentially guess the indices p1, . . . , pk to3

the private neighbours for the vertices v1, . . . , vk, respectively.

/* Verify that V ′ is an irredundant set */

for x = 1 to k do4

if vpx 6∈ N [vix] then Reject5

for y = 1 to k and y 6= x do6

if vpx ∈ N [viy] then Reject7

end8

end9

Nondeterministic block 2: Universally guess the index ik+1 to a vertex10

to extend the irredundant set V ′.
/* Verify that vik+1

6∈ V ′ */

for x = 1 to k do11

if vix = vik+1
then Accept12

end13

/* Guess a vertex in V ′ ∪ {
vik+1

}
that witnesses that V ′ ∪ {

vik+1

}
is not an irredundant set */

Nondeterministic block 3: ((k + 1)-way branching) Existentially14

guess an index j from {1, . . . , k + 1}.
/* Verify that vij does not have a private neighbour with respect

to V ′ ∪ {
vik+1

}
*/

Nondeterministic block 4: Universally guess the index u to a vertex in15

V .
if vu 6∈ N [vij] then Accept16

else17

for x = 1 to k and x 6= j do18

if vu ∈ N [vix] then Accept19

end20

end21

Reject22

101

Proof. This follows from the fact that the range of values for the third existential
quantifier is [1, k + 1].

5.1.4 Weighted Integer Programming

In this section, we show new membership results for different versions of Weighted
Integer Programming problem. Downey and Fellows analyzed the fixed-
parameter complexity of a binary version of the problem whose definition is given
below.

Weighted Binary Integer Programming

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are binary.
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations? Here the weight of a solution is the number of variables set
to 1.

Downey and Fellows showed that the problem is W [2]-complete [25, 28]. We
consider extended versions of the problem where the matrix A and the vector b may
not be binary. Let c ≥ 1 be a constant, f and h be any fixed functions, and α be any
unbounded nondecreasing function. We define three versions of the problem and
show that they are contained in W [2], L[2], and W [5], respectively. The versions
differ in the bound on the coefficients in the constraints.

Weighted Binary Linear Integer Programming - I (BLIP-I)

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are at most f(k)nc/k+h(k)/α(n).
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Weighted Binary Linear Integer Programming - II (BLIP-II)

102

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are at most f(k)nh(k).
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Weighted Binary Linear Integer Programming - III (BLIP-III)

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X.
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

The W [2]-hardness of Weighted Binary Integer Programming implies
that BLIP-I, BLIP-II, and BLIP-III are all W [2]-hard. We prove the upper
bounds in the rest of this section.

Theorem 5.5 BLIP-II is in L[2].

Proof. In order to decide BLIP-II, we construct a basic-L[2]-program RBLIP-II

that performs assign operations only, on the ∃1-registers. Construction of an un-
restricted basic L[2]-program would have been easier. However, we choose the
restricted version in order to obtain the upper bound for BLIP-I by a direct ap-
plication of Theorem 4.7.

RBLIP-II existentially guesses the k variables xi1 , . . . , xik to be set to 1 and then
universally guesses a constraint cu to verify. As we are interested in binary solutions,
only the coefficients of xi1 , . . . , xik and the constant term of cu determine whether
cu has been satisfied. Let Su be the set of these k + 1 coefficients of interest from
cu. As part of the verification, RBLIP-II computes two separate sums. The first is
the sum of the positive numbers in Su while the second is the sum of the negative
numbers in Su. By definition of BLIP-II, any coefficient in a constraint is at most
f(k)nh(k). Each such coefficient can be represented by (log f(k) + h(k) log n) bits.
Thus, a coefficient can be stored in h(k) registers, with b = (log f(k)/h(k) + log n)
bits in each register. Any operation (addition or comparison) on the coefficients,
therefore, involves O(h(k)) registers. Once the sums are computed RBLIP-II checks

103

Algorithm 5.4: A normalized L[2]-program RBLIP-II to decide BLIP-II

Input: Variables x1, . . . , xm, linear constraints c1, . . . , cl, an integer k

Preprocessing: Arrange the coefficients into a two-dimensional lookup1

table Tcoeff such that Tcoeff [〈x, i〉, y] stores bits ((i− 1)b + 1) to i× b of the
(signed) coefficient associated with the variable x in constraint y.

Nondeterministic block 1: Existentially guess the k variables2

{xi1 , . . . , xik} to be set to 1. Let registers g1, . . . , gk store these values,
respectively.

Nondeterministic block 2: Universally select an index u to the3

constraint cu and store the index in gk+1.

/* Initialize the registers that will store the sum of positive

coefficients */

Initialize gk+2, . . . , gk+1+h to be 04

/* Initialize the registers that will store the sum of negative

coefficients */

Initialize gk+2+h, . . . , gk+1+2h to be 05

if the constant in cu is positive then6

Set gk+2 . . . gk+1+h to represent the constant in cu7

else8

Set gk+2+h . . . gk+1+2h to represent the constant in cu9

end10

/* Compute the sums */

for s = 1 to k do /* for the sth ∃1-guess */11

carry ← 012

if coefficient of xis in cu is positive then offset ← 013

else offset ← h14

for j = 1 to h do15

/* for each of the h(k) parts of the coefficient */

Update gk+j+offset and carry from the sum16

gk+j+offset + Tcoeff [〈xis , j〉, cu] + carry
end17

end18

/* Verify that cu is satisfied */

if the computed sums are consistent with cu then Accept19

else Reject20

104

whether the relation between the sums is as required by cu. The details are given
in Algorithm 5.4.

Correctness: By the universal selection of a constraint in Line 3, RBLIP-II

accepts if and only if the remaining part of checking phase accepts for all constraints.
During the verification, RBLIP-II evaluates the constraint cu on the existentially
guessed solution to ensure that cu has been satisfied. Thus RBLIP-II accepts if and
only if all constraints are satisfied by the existentially guessed solution of weight-k
(Line 2).

Resource Usage: The size of the lookup table Tcoeff is h(k)ml and each entry
can be initialized in O(n) time (O(1) time in case the input is given in a suitable
format). Thus Step 1 can be done in O(h(k)mln) time. The initializations in Lines 4
to 10, and the comparisons in Line 19 require O(h(k)) time as they are performed on
operands that spans h(k) registers. The operation in Line 16 takes O(1) time. Thus
the loops from Line 11 to Line 18 takes O(kh(k)) time. The remaining operations
can be done in O(k) time. Thus RBLIP-II satisfies Constraint AW1. The registers
need to store the indices to the variables, indices to the constraints, indices to the
lookup table entries, and at most (log f(k)/h(k) + log n) bits of a coefficient. Each
of these values is bounded by above by max(h(k)mln, (f(k))1/h(k)n) (Constraint
AW2). The nondeterministic operations in Lines 3 and 4 satisfy Constraints AW3,
T1, TU1, and BL1 for t = 2.

Corollary 5.6 BLIP-I is in W [2].

Proof. Given an input 〈x, k〉, the restricted L[2]-program RBLIP-II from pre-
vious theorem can be used to decide whether 〈x, k〉 is in BLIP-I. However, each
coefficient can now be stored in a single register. Also, each value computed by an
assign operation is at most f(k)nc/k+h(k)/α(n). By Theorem 4.7, the computation
of RBLIP-II on 〈x, k〉 can be simulated by an extended W [2]-program.

Theorem 5.7 The exact version of BLIP-III, where all constraints are equality
constraints, is in W [3].

Proof. An extended W [3]-program RE-BLIP-III can be constructed from the ex-
tended W [3]-program RSum (Theorem 5.1) to decide the exact version of BLIP-III.
We give an outline of the algorithm.

105

1. Nondeterministic block 1: Existentially select k variables to be set to 1.

2. Nondeterministic block 2: Universally select a constraint ci.

3. (Start of Subset Sum)

(a) Simulate RSum to compute the sum S+ of the positive coefficients in ci

whose indices have been selected in the ∃1-block. Include all positive
constants of ci in the sum.

(b) Simulate RSum to compute the sum S− of the negative coefficients in ci

whose indices have been selected in the ∃1-block. Include all negative
constants of ci in the sum.

(c) Verify that the computed sums S+ and S− are equal.

It is not obvious whether the general version of BLIP-III can be decided by an
extended W [3]-program. Checking for bitwise-equality (Step 3(c)) is not sufficient
for the general version. However, an extended W [5]-program can be constructed
using algorithmic techniques from the proof of Theorem 5.2 to decide BLIP-III.

Theorem 5.8 BLIP-III is in W [5].

Proof. The extended W [5]-program RBLIP-III is similar to RRDVAS. The
program existentially guesses the k variables xi1 , . . . , xik to be set to 1, universally
guesses a constraint cj, and verifies that cj is satisfied by the existentially guessed
binary solution.

RBLIP-III performs the verification by retrieving the coefficients of xi1 , . . . , xik in
cj. Let Vj be the set of the retrieved coefficients and any constant in cj. RBLIP-III

computes the sums s+ and s− of positive numbers and negative numbers in Vj,
respectively. Finally, RBLIP-III checks whether s+ and s− are consistent with cj.
As was done in Algorithm 5.1, RBLIP-III interprets the numbers as base-b numbers,
for b = dlog (k + 1)e and computes the sum digits and carry digits separately. The
details are given in Algorithm 5.5.

106

Algorithm 5.5: A W [5]-program RBLIP-III to decide BLIP-III

Input: Variables x1, . . . , xm, linear constraints c1, . . . , cl, an integer k

Let lmax be the maximum number of bits in the binary representation of any1

number in the input. Construct lookup table T such that given the index of
variable, an index of a constraint, and a bit position, the value of the
corresponding bit can be retrieved in constant time.

T [〈i, 〈p, j〉〉] =

{
1, the pth bit of xi in cj is 1
0, otherwise

where 1 ≤ j ≤ l, 0 ≤ p ≤ pmax, and 1 ≤ i ≤ m.
Nondeterministic block 1: Existentially guess the indices i1, . . . , ik of2

the k variables which are to be set to 1.
Nondeterministic block 2: Universally select a constraint cj, 1 ≤ j ≤ l.3

if cj is an inequality then4

Nondeterministic block 3: Existentially guess the bit position pdiff ,5

0 ≤ pdiff ≤ l where the sum of positive components first differ (starting
from the most significant bit) from the sum of negative components.

else6

Set pdiff to be −17

end8

/* Start of Subset Sum */

Nondeterministic block 4: Universally guess a bit position p of the9

component sum.
if p < pdiff then Accept in this branch.10

/* Compute the sums for relevant positive and negative

coefficients in cj separately */

Let bit position p correspond to digit position pb in the base-b interpretation.11

Extract all base-b digits at position pb and pb−1 from the positive coefficients
in cj. Compute the base-b digits of s+

sum and s+
carry at position pb.

Similarly, compute the base-b digits at position pb of s−sum and s−carry for the12

negative numbers in cj.

107

/* RBLIP-III continued */

(Constant-size Existential Block) Existentially guess the carries c+ and13

c− (00, 01, 10, and 11).
/* If the combination of c+ and c− is inconsistent with s+

sum[p]
and s−sum[p] then terminate this branch. */

if p > pdiff then14

if (s+
result[p] + c+) mod 2 6= (s−result[p] + c−) mod 2 then15

Reject in this branch16

else17

/* p = pdiff by Step 7 */

Set op be < or > as appropriate for cj.18

if (s+
result[p] + c+) mod 2 op (s−result[p] + c−) mod 2 then19

Reject in this branch20

end21

Nondeterministic block 4: Universally select a carry-in c from {c+, c−}.22

if c is 1 then23

Nondeterministic block 4: Universally guess a bit position p ′,24

0 < p ′ < p.
if carry is generated or propagated at position p′ then25

Accept in this branch26

else27

Nondeterministic block 5: Existentially guess a bit position28

p ′′, p ′ < p ′′ < p
if a carry is generated at bit position b′′ then Accept in this branch29

else Reject in this branch.
end30

else31

Nondeterministic block 4:32

Universally guess a position p ′ < p33

if no carry is generated at position p ′ then34

Accept in this branch35

else36

Nondeterministic block 5:37

Existentially guess a position i, p ′ < i < p38

if no carry is propagated through position i then Accept in this branch39

else Reject in this branch40

end41

end42

108

Correctness: The argument for correctness is similar to that for Algorithm
5.2.

Resource Usage: The satisfaction of the resource constraints follows from
arguments similar to those for Algorithm 5.2.

5.2 Hardness

The usual approach to show that some problem Q is hard for some class C is
either to reduce some C -hard problem to Q or to construct an appropriate generic
reduction to Q. The classes W [1] and W [2] are now reasonably populated with
natural complete problems. Thus showing hardness results for them may not be
difficult. Recently Chen and Zhang showed that certain Product Covering
problems in 3-tier supply chain model are complete for W [3] and W [4], respectively
[23]. However, the defining problems (restricted versions of WCS and Model
Checking) and a few variants of them are the only problems known to be complete
for classes above W [4] in the W -hierarchy. Thus showing hardness results beyond
W [4] involves the construction of generic reductions. The WCS problem on t-
normalized circuits has been the starting point of these generic reductions. Chen,
Flum, and Grohe have provided the Model Checking problem as an alternative
to WCS on t-normalized circuits. The normalized computational characterizations,
proposed in Chapter 2, serve as yet another alternative for the W [t] classes. The
added advantage of working with the later two characterizations is that hardness
results can be generalized to higher levels in the W -hierarchy or to the L-hierarchy
with little extra effort.

In the rest of this section, we show new hardness results for Longest Common
Subsequence and Precedence Constrained Multiprocessor Schedul-
ing. Before presenting the hardness results, we define some computational features
of the normalized programs that will be used in the hardness proofs. In Section
2.3 we defined the partial computation tree of a normalized W [t]-program and a
normalized L[t]-program. Consider the computation of a normalized W [t]-program
RW on 〈x, k〉. Let CW be the partial computation tree of RW for input 〈x, k〉. Fig-
ure 5.1 presents the structure of CW . Starting from the first universal step, the
d-th branching node in CW corresponds to the d-th nondeterministic step in the
computation of RW, 1 ≤ d ≤ t− 1. Recall that a node in the partial computation
tree is universal (existential) if it corresponds to a universal (existential) step in

109

∀

∃

∃

∀

∃ ∃ ∃ ∃
...

...
...

...

Preprocessing (deterministic)

... level 1

level 2

level 3

level t
Deterministic
Checking

Checking
Phase

.

∀

. . .
∃ ∃

∀

. . .

∃ ∃

∀

. . .

∃ ∃

...
...

...
...

TestSet1 TestSet
lbt/2c

(b) Structure of the acceptance tree(a) Structure of the computation tree

¾

¾

¾

¾

? ?

Figure 5.1: The structure of the partial computation tree and an acceptance tree
of a normalized W [t]-program.

the computation of RW. An edge in the partial computation tree is a universal
(an existential) edge if its parent is a universal (an existential) node. An accepting
computation of RW can be represented by a sub-tree CW,accept of CW where CW,accept

consists of a minimal set of computation paths witnessing the acceptance of 〈x, k〉
by RW.

Definition 5.1 Let the h(k) ∃1-guesses of RW be the values V∃1 =
{
v1, v2, . . . , vh(k)

}
,

respectively. An acceptance tree, corresponding to the given ∃1-values, is a subtree
CW,accept of CW such that the following holds.

W1. The root of CW,accept is the universal node at alternation level 2 of CW .

W2. If a universal node u of CW is included in CW,accept, then all children of u in
CW are also included in CW,accept.

W3. If an existential node e of CW is included in CW,accept, then exactly one of the
children of e in CW is included in CW,accept.

W4. The depth of CW,accept is t− 1.

W5. Each leaf node x of CW,accept is labelled by a subset TestSetx of the tests
(jequal or jzero) in the unique accepting execution path for odd t and
the unique rejecting execution path for even t. A test is included in TestSetx

if and only if it is an ∃1-test and the test outcome for the given ∃1-values{
v1, v2, . . . , vh(k)

}
causes the computation to accept for even t and to continue

along the unique accepting execution path for odd t.

110

W6. For each leaf node x of CW,accept, size of TestSetx must be at least one for even
t and h′(k) for odd t, where h′(k) is the number of ∃1-tests along the unique
accepting execution path.

If RW accepts 〈x, k〉, then a witness can be constructed by (i) specifying a list
of values V∃1 =

{
v1, . . . , vh(k)

}
for the ∃1-registers, and (ii) listing the nodes of the

computation tree CW that constitute an acceptance tree CW,accept for V∃1 . Also,
given such a witness, we can construct an accepting computation of RW on 〈x, k〉.

Let us now consider the computation of a normalized L[t]-program RL on some
input 〈x, k〉. By Definition 2.20, the structure of the partial computation tree CL of
RL is similar to that of CW up to alternation level t. However, the presence of assign
operations differentiates the computations after that. In particular, the operands
of a test in a normalized L[t]-program may be computed from the ∃1-values by a
sequence of assign operations. We define the acceptance tree CL,accept of the L[t]-
program RL by modifying Definition 5.1 to incorporate the information about the
assignment graphs. The acceptance tree CL,accept must satisfy the (appropriately
restated) properties W1 to W4 of Definition 5.1. For the remaining two conditions,
we make use of the concept of the ∃1-operand (Definition 2.12). For conditions L5
and L6, we consider each ∃1-test i.e. each test performed on some ∃1-operand. In
addition to the TestSet, the label of each leaf includes a set of values, one for each
node in the assignment graph of the corresponding computation branch. Let g(k)
be the maximum number of nodes in any assignment graph.

The new conditions L5 and L6 are given below.

L5. Each leaf node x of CL,accept is labelled by a subset TestSetx of the tests
(jequal or jzero) in the unique accepting execution path for odd t and
the unique rejecting execution path for even t. In addition, the label of x
includes a set of values Vassign =

{
vx,1, . . . , vx,g(k)

}
. Vassign specifies that, for

the given ∃1-values, the value computed for the i-th node in the corresponding
assignment graph is vx,i. The values in Vassign must be consistent with the
relationships among the nodes of the assignment graph.

A test is included in TestSetx if and only if the test is an ∃1-test and the test
outcome for the given ∃1-values

{
v1, v2, . . . , vh(k)

}
and the values in Vassign

causes the computation to accept for even t and to continue along the unique
accepting execution path for odd t.

L6. For each leaf node x of CL,accept, size of TestSetx must be at least one for even
t and h′(k) for odd t, where h′(k) is the number of ∃1-tests along the unique
accepting execution path.

111

Both hardness proofs in this section involve construction of witness-based generic
reductions. In this technique, the hardness of a problem Q with respect to some
program R is established by mapping a witness of an accepting computation of
R to a solution of Q, and vice versa. Note that the branches of the computation
tree that are included in the acceptance tree may vary depending on the corre-
sponding existential guesses. However, by conditions NW3 and NL3, the size of the
acceptance tree (and hence the length of the witness) remains the same for all such
choices.

Property 5.9 For a given normalized W [t]-program (or a normalized L[t]-program)
R and an input 〈x, k〉 the length of the witness of an accepting computation of R is
unique.

Property 5.9 is crucial for witness-based reductions as some feature of Q (the
solution size, for example) needs to be specified uniquely, based on the length of
the witness.

5.2.1 Longest Common Subsequence

The Longest Common Subsequence problem takes a set of strings (on a com-
mon alphabet) as input and asks for a common subsequence of a particular length.
Different parametric versions of the problem have been defined based on the selec-
tion of the parameter.

Longest Common Subsequence (LCS)

Input: An alphabet Σ, a set of strings S = {s1, . . . , sm}, an integer k.
Parameter:
m (LCS-1).
k (LCS-2).
m, k (LCS-3).
m, |Σ| (LCS-4).
Question: Is there a string x of length k such that x is a subsequence
of each string in S?

LCS-2 is known to be W [2]-hard and in L[2] [3, 37]. LCS-3 is known to be
W [1]-complete [3]. Bodlaender et al. showed that the problems LCS-1 and LCS-
4 are W [t]-hard for all t > 0 [3]. In this section, we show that the parametric
problems LCS-1 and LCS-4 are hard for

112

(a) L[t], for all t ≥ 1, and

(b) W [SAT].

We base our hardness proof on a new class of programs which we define below.

Definition 5.2 An AW program R running on an ARAM is an L[SAT]-program
if R satisfies the following conditions.

LS1: There are at most h(k) nondeterministic guess steps in the first nondetermi-
nistic block and these guessed values are stored in guess registers.

LS2: The size of the partial computation tree is bounded by a parametric polynomial.

LS3: In any computation branch, the number of operations that use an ∃1-operand
is at most h′(k), for some function h′ and all such operations are performed
after all the nondeterministic operations. Furthermore, any ∃1-operation is
restricted to be one of jequal, jzero, or assign.

Note that the L[SAT]-programs may have unbounded alternations in some com-
putation branch. However the ranges for the nondeterministic operations are such
that the size of the partial computation tree remains bounded by a parametric
polynomial. Thus a deterministic algorithm can construct the partial computa-
tion tree of a given L[SAT]-program on a given input in parametric polynomial
time. Also any operation can be performed on the values that are guessed nonde-
terministically after the first existential block. We define the acceptance tree of an
L[SAT]-program analogous to the acceptance tree of a normalized L[t]-program.
The only difference is that the acceptance tree of an L[SAT]-program may have
unbounded depth. We use the concept of acceptance tree of an L[SAT]-program in
our hardness proofs.

Proving hardness of LCS-1 with respect to the L[SAT]-programs is sufficient
for our purpose because of the following theorem.

Theorem 5.10 Let Q be a parametric problem.

1. If Q is in L[t] then Q can be decided by an L[SAT]-program.

2. If Q is in W [SAT] then Q can be decided by an L[SAT]-program.

113

Proof. (1) Immediate as a normalized L[t]-program is also an L[SAT]-program.

(2) Let C be a tree circuit with unbounded weft and depth. We first show that
WCS on C can be decided by an L[SAT]-program RWFSAT. RWFSAT constructs
lookup tables to indicate which variables satisfy (or does not falsify) a given input
gate of C. RWFSAT then existentially guesses the k true variables. In the checking
phase, RWFSAT selects an input gate of C using unbounded alternation, making
a universal guess (existential guess) for each and -gate (or -gate). Finally, RWFSAT

uses k jzero tests to determine whether the selected input gate is satisfied (or is
not falsified) by the existentially guessed assignment. Since the number of gates in
the tree circuit C is bounded by n, the size of the resulting partial computation
tree of RWFSAT is bounded by a parametric polynomial.

By definition, any problem Q in W [SAT] can be fixed-parameter reduced to
WCS on the family of tree circuits. Thus, Q can be decided by an L[SAT]-program
that performs the reduction in the preprocessing phase and then simulates RWFSAT

on the output of the reduction.

We now show that any problem Q, decidable by an L[SAT]-program, can be
fixed-parameter reduced to LCS-1.

Theorem 5.11 LCS-1 is hard for the class of problems decidable by L[SAT]-
programs.

We prove Theorem 5.11 in two steps. First we show the hardness result with
respect to L[SAT]-programs whose acceptance tree for a given input has a unique
size (Lemma 5.12). Later we show that for any L[SAT]-program, there exists an
equivalent L[SAT]-program whose acceptance tree has the desired property (Lemma
5.17).

Lemma 5.12 LCS-1 is hard for problems decidable by L[SAT]-programs whose
acceptance tree has a unique size for each fixed input.

Proof. Let, Q be a parameterized problem decidable by an L[SAT]-program
RQ as specified in the lemma. We construct a generic reduction that takes an input
〈x, k〉 and constructs an instance 〈x′, k′〉 of LCS-1 such that RQ accepts 〈x, k〉 if and
only if 〈x′, k′〉 is in LCS-1. Let us assume that RQ makes h∃(k) existential guesses
in the first existential block and performs at most hop(k) additional ∃1-operations
in any computation branch (as specified in Definition 5.2). Let hpath(k) ≤ 2hop(k) be

114

the maximum number of execution paths in any nondeterministic checking branch.
Let q be the maximum number of nondeterministic operations in any computation
branch of RQ. Also let l be the maximum value that RQ may store in any register
at any point of computation. The reduction can compute all these bounds by
constructing the partial computation tree of RQ for input 〈x, k〉.

Recall that we can uniquely identify a branching node y in the partial com-
putation tree by 〈b1, . . . , bq′〉, where y has q′ branching ancestors and bi is the
branch taken at the ith branching ancestor of y to reach y from the root. Also,
given a branching node 〈b1, . . . , bq′〉, B(〈b1, . . . , bq′〉) denotes the number of branches
generated from the branching node. Consider the computation (starting from
the first ∃1-step) along execution path x for a nondeterministic checking branch
b = 〈b1, . . . , bq′〉. Let Ib,x be the ordered (by step number) set of indices to the
registers used or modified by some ∃1-operation in the computation under consid-
eration. Let g(k) ≤ h∃ + 3hop be the size of Ib,x. We assume that Ib,x attaches the
step number to the indices so that multiple assignments to the same register result
in different entries in Ib,x. Let Ib,x[j] be the jth member in Ib,x.

In what follows, we use
⊙

to denote repeated concatenation of strings, where the
order of repetition is specified with the operator

⊙
. Given two strings s1, s2 ∈ Σ∗,

we use s1 · s2 to denote the concatenation of s1 and s2. The input alphabet Σ of
LCS-1 consists of three kinds of symbols.

[Type1]: The first kind of symbols are of the form 〈i, vi〉, 1 ≤ i ≤ h∃, 0 ≤ vi ≤ l.
The symbol 〈i, vi〉 represents the fact that the ith guess in the first existential block
is the value vi.

[Type2:] Symbols of the second kind are of the form 〈b1, . . . , bq′ , x, i, vi, j, vj〉,
where 〈b1, . . . , bq′〉, for some q′ ≤ q, is the last nondeterministic node along some
branch and

1 ≤ x ≤ hpath,

1 ≤ i < j ≤ g

0 ≤ vi, vj ≤ l,

1 ≤ bu ≤ B (〈b1, . . . bu−1〉)
for each u, 1 ≤ u ≤ q′ − 1

The symbol 〈b1, . . . , bq′ , x, i, vi, j, vj〉 corresponds to the computation in the non-
deterministic checking branch 〈b1, . . . , bq′〉 along the execution path x, with values
vi and vj in the ith and jth registers in I〈b1,...,bq′〉,x, respectively.

[Type3:] Symbols of the third kind are of the form

〈b1, . . . , bq′ , x, y, y1, vy1 , y2, vy2 , y3, vy3〉

115

where 〈b1, . . . , bq′〉, for some q′ ≤ q, is the last nondeterministic node along some
branch and

1 ≤ x ≤ hpath,

1 ≤ y ≤ hop,

1 ≤ y1, y2, y3 ≤ g,

0 ≤ vy1 , vy2 , vy3 ≤ l,

1 ≤ bu ≤ B (〈b1, . . . bu−1〉)
for each u, 1 ≤ u ≤ q′ − 1

The symbol 〈b1, . . . , bq′ , x, y, y1, vy1 , y2, vy2 , y3, vy3〉 corresponds to the computation
in the nondeterministic checking branch 〈b1, . . . , bq′〉 along the execution path x,
such that the yth assign operation has the y1th and y2th members of I〈b1,...,bq′〉,x as

operands and the y3th member in I〈b1,...,bq′〉,x as target. The values in the operands

are vy1 and vy2 , respectively, and vy3 is the result of the assign operation.

The strings are constructed based on the following easy observations which are
due to bodlaender et al. [3].

Observation 5.13 Let S1 be a string where all the symbols are distinct. Let S2 be
the reverse string of S1. The length of any common subsequence of S1 and S2 is at
most one.

Observation 5.14 Let S1, . . . , Sm be strings such that each Si has at least one
distinguished symbol that does not appear in any other string Sj, i 6= j. Any
common subsequence of S1 ·S2 · . . . ·Sm−1 ·Sm and Sm ·Sm−1 · . . . ·S2 ·S1 can include
distinguished symbols from at most one Si, 1 ≤ i ≤ m.

We now construct the strings of the LCS instance. Let us denote the common
subsequence (if it exists) by CS. We start by defining some helper strings that will
be used to construct the actual strings.

The first two strings consist of Type1 symbols only.

C1 =

h∃⊙
i=1

l⊙
vi=0

〈i, vi〉

C ′
1 =

h∃⊙
i=1

0⊙

vi=l

〈i, vi〉

116

We define the following strings to represent the computation in the checking
phase of any given nondeterministic checking branch 〈b1, . . . , bq′〉 along a given
execution path x.

CHECKW (〈b1, . . . , bq′〉, x) =

g⊙
i=1

l⊙
vi=0

g⊙
j=i+1

l⊙
vj=0

〈b1, . . . , bq′ , x, i, vi, j, vj〉

CHECKL (〈b1, . . . , bq′〉, x) =
hop⊙
y=1

g⊙
y1=1

l⊙
vy1=0

g⊙
y2=1

l⊙
vy2=0

g⊙
y3=1

l⊙
vy3=0

〈b1, . . . , bq′ , x, y, y1, vy1 , y2, vy2 , y3, vy3〉

CHECK (〈b1, . . . , bq′〉, x) = CHECKW (〈b1, . . . , bq′〉, x) · CHECKL (〈b1, . . . , bq′〉, x)

C2 =
l⊙

b1=0

B(〈b1〉)⊙

b2=0

. . .

B(〈b1,...,bq′−1〉)⊙

bq′=0

hpath⊙
x=1

CHECK (〈b1, . . . , bq′〉, x)

For the next string C ′
2, we define the functions S and E each of which takes

a nondeterministic node x of the partial computation tree as argument. S and E
return the starting and ending values, respectively, for the index of the

⊙
operator

that corresponds to the branching from x.

S(〈b1, . . . , bj〉) =

{
1, if 〈b1, . . . , bj〉 is a universal node
B(〈b1, . . . , bj〉), if 〈b1, . . . , bj〉 is an existential node

E(〈b1, . . . , bj〉) =

{ B(〈b1, . . . , bj〉), if 〈b1, . . . , bj〉 is a universal node
1, if 〈b1, . . . , bj〉 is an existential node

The string C ′
2 is constructed from C2 by reversing the index of all

⊙
operator

that correspond to existential guess operations.

117

C ′
2 =

l⊙

b1=0

E(〈b1〉)⊙

b2=S(〈b1〉)
. . .

E(〈b1,...,bq′−1〉)⊙

bq′=S(〈b1,...,bq′−1〉)

1⊙

x=hpath

CHECK (〈b1, . . . , bq′〉, x)

The instance 〈x′, k′〉 includes (2g(k)+3) strings denoted by S1, . . . S2g(k)+3. The
first string S1 enumerates all symbols in Σ in canonical order.

S1 = C1 · C2

The second string S2 is constructed as follows.

S2 = C ′
1 · C ′

2

The second string S2, together with S1, ensures that CS satisfies the conditions
in the following lemma whose proof will be given later.

Lemma 5.15

- CS includes at most one 〈i, vi〉, for each i, 1 ≤ i ≤ h∃(k).

- For any existential node x in the partial computation tree, CS includes sym-
bols from at most one subtree Tx,i, for some i, 1 ≤ i ≤ B(x), where Tx,i is the
subtree rooted at the ith child of x.

- For any two symbols 〈b1, . . . , bq′ , x, ?, ?, ?, ?〉 and
〈
b′1, . . . , b

′
q′′ , x

′, ?, ?, ?, ?
〉

(here
? denotes any value in the corresponding range) in CS, x = x′ whenever
q′ = q′′ and bi = b′i for all i, 1 ≤ i ≤ q′.

The first condition translates to the fact that at most one value is specified for
each ∃1-register. The second condition corresponds to the fact that an acceptance
tree includes at most one child of an existential node. The third condition corre-
sponds to the fact that the acceptance tree represents the computation along at
most one accepting execution path for each nondeterministic checking branch.

Next we define two strings S2u+1 and S2u+2 for the uth operand, used in the
checking phase by some ∃1-operation, 1 ≤ u ≤ g(k). These two strings ensure
that the following holds for each execution path in each nondeterministic checking
branch.

118

Lemma 5.16 Given a nondeterministic checking branch b = 〈b1, . . . , bq′〉, and an
execution path x for b, the symbols in the common subsequence CS specify the same
vu in all places where the uth member in Ib,x is referred to.

The proof of the lemma will be given after we describe the construction of the
strings. Let us consider the computation along the execution path x for some non-
deterministic checking branch b = 〈b1, . . . , bq′〉. Given a condition ϕ and a string S,
we define restrict(S, ϕ) to be the maximal subsequence S ′ of S such that each symbol
in S ′ satisfies the condition ϕ. For example, RESTRICT (C1, (i = u) =⇒ (vi = x))
will result in the following string.

RESTRICT (C1, [(i = u) =⇒ (vi = x)]) =[
u−1⊙
i=1

l⊙
vi=0

〈i, vi〉
]
· 〈u, x〉 ·

[
k⊙

i=u+1

l⊙
vi=0

〈i, vi〉
]

Let ϕ be defined as follows.

ϕ(b, x, u, vu) = [(i = Ib,x[u]) ⇒ (vi = vu)]
∧ [(j = Ib,x[u]) ⇒ (vj = vu)]
∧ [(y1 = Ib,x[u]) ⇒ (vy1 = vu)]
∧ [(y2 = Ib,x[u]) ⇒ (vy2 = vu)]
∧ [(y3 = Ib,x[u]) ⇒ (vy3 = vu)]

The strings S2u+1 and S2u+2 are defined as follows.

S2u+1 =
l⊙

vu=0

l⊙

b1=0

B(〈b1〉)⊙

b2=0

. . .

B(〈b1,...,bq′−1〉)⊙

bq′=0

hpath⊙
x=1

RESTRICT(CHECK(b,x), ϕ(b,x,u,vu))

S2u+2 =
0⊙

vu=l

l⊙

b1=0

B(〈b1〉)⊙

b2=0

. . .

B(〈b1,...,bq′−1〉)⊙

bq′=0

hpath⊙
x=1

RESTRICT(CHECK(b,x), ϕ(b,x,u,vu))

where b = 〈b1, . . . , bq′〉.
The last string S2g(k)+3 is constructed as the longest subsequence of S1 by remov-

ing from S1 all symbols σinvalid that are inconsistent with the partial computation
tree. Any remaining symbol σ in S2g(k)+3 satisfies one of the following conditions.

119

• σ is of the form 〈i, vi〉.
• σ is of the form 〈b1, . . . , bq′ , x, i, vi, j, vj〉, the execution path x for the non-

deterministic checking branch 〈b1, . . . , bq′〉 ends in acceptance, and no test
outcome causes the computation to branch away from x if the values vi and
vj are stored in the ith and jth members in I〈b1,...,bq′〉,x respectively.

• σ is of the form 〈b1, . . . , bq′ , x, y, y1, vy1 , y2, vy2 , y3, vy3〉, the execution path x
for the nondeterministic checking branch 〈b1, . . . , bq′〉 ends in acceptance, and
the assign operation associated with the yth node in the assignment graph
has (i) the y1th, y2th, and y3th members in I〈b1,...,bq′〉,x as the first operand, the

second operand, and the target respectively, and (ii) the operation computes
the value vy3 if the values in the operands are vy1 and vy2 , respectively. Note
that for a given 〈b1, . . . , bq′ , x, y〉 the values of y1, y2, and y3 are fixed.

This ends the construction of the strings in 〈x′, k′〉. The length of the target

common subsequence k′ is set to be h∃+ lacc

((
g(k)
2

)
+ hop

)
, where lacc is the number

of leaves in the acceptance tree of RQ.

We now prove the correctness of the construction. We start with the proofs of
Lemma 5.15 and 5.16.

Proof.(Proof of Lemma 5.15) For a given i, the symbols 〈i, vi〉 are stored in
increasing order of vi in S1 and in decreasing order of vi in S2. Let us assume that
the common subsequence CS contains two symbols 〈i, vi〉 and 〈i, v′i〉, vi < v′i, and
〈i, vi〉 appears before 〈i, v′i〉 in CS. In this case, CS cannot be a subsequence of S2

as 〈i, vi〉 appears after 〈i, v′i〉 in S2 (Observation 5.14).

For the second condition, we observe that the indices for any given existential
node x varies in increasing order in C2 and in decreasing order in C ′

2. Thus any
symbol in CS must have a unique value for x by Observation 5.14.

Similarly, the third condition follows from Observation 5.14 and the fact that
the indices of the execution paths of any given nondeterministic checking branch
varies in increasing order in C2 and in decreasing order in C ′

2.

Proof.(Proof of Lemma 5.16) By construction of S2u+1, any symbol σu,vu spec-
ifying value vu for the uth guess register appear before any symbol σu,v′u specifying
value v′u for the same register, vu < v′u. On the other hand, The σu,vu appears after
σu,v′u in S2u+2. By Observation 5.14, the symbols in CS must specify a unique value
for the uth register used in the checking phase in some nondeterministic checking
branch.

120

We claim that RQ accepts 〈x, k〉 if and only if the strings in x′ have a common

subsequence of length k′ = h∃ + lacc

((
g(k)

2

)
+ hop

)
. First we show that any such

common subsequence CS of the strings in x′ can be translated back into an accept-
ing computation of RQ on 〈x, k〉. CS has at most one 〈i, vi〉 (a symbol from C1) for
each i, 1 ≤ i ≤ h∃ (this constraint is enforced by strings S1 and S2). Consider the
Type3 symbols in CS that correspond to a particular nondeterministic checking
branch b = 〈b1, . . . , bq′〉 and execution path x. By construction of the last string
S2g(k)+3 and the consistency imposed by the strings S3 to S2g(k)+2, CS can include

at most hop such symbols for each combination of b and x. At most
(

g(k)
2

)
quadru-

ples 〈i, vi, j, vj〉 can be consistent with the Type1 and Type3 symbols in CS for the
combination of b and x (strings Sj, 3 ≤ j ≤ (2g(k) + 2) ensure this constraint).
Hence, for each combination of a nondeterministic checking branch b and execution
path x, CS can contain at most

(
g(k)

2

)
Type2 symbols. The second parts of strings

S1 and S2 ensure that all Type2 and Type3 symbols in CS have a unique x for a
given b.

All these facts, together with the requirement that CS must contain k′ symbols,
imply that CS satisfies the following conditions.

• CS contains exactly one symbol 〈i, vi〉, 1 ≤ i ≤ h∃. This translates to the
fact that the ith ∃1-guess, in the computation of RQ, is vi.

• CS contains exactly hop symbols of Type3 for each nondeterministic checking
branch b. Also all these symbols correspond to some unique execution path
x for b. The last string ensures that the values specified for the operands and
the result of each ∃1-operation are consistent with the corresponding partial
configurations.

• CS contains exactly
(

g(k)
2

)
Type2 symbols for a nondeterministic checking

branch b. Also all these symbols correspond to some unique execution path
x for b. The last string ensures that execution path x ends in acceptance for
b and none of the test-outcomes along x causes the computation to branch
away from x.

Thus, existence of a common subsequence of length k′ for the strings in x′ implies
that RQ accepts 〈x, k〉.

For the reverse direction, we construct a common subsequence CS of the re-
quired length from an acceptance tree of RQ as follows.

121

• We include the h∃ symbols of C1 (in canonical order) that represent the h∃
existential guesses of R.

• For each leaf in the acceptance tree, we choose hop Type3 symbols, the yth
symbol representing the values of the operands and result of the yth assign
operation. These values can be obtained from the corresponding nodes in the
assignment graph, the specified ∃1-values, and the labels on the leaves of the
acceptance tree.

• Let, A be the set of
(

g(k)
2

)
quadruples 〈i, vi, j, vj〉 that are consistent with

the symbols chosen in the previous steps. For each leaf of the acceptance
tree, we include

(
g(k)
2

)
symbols from C2 (in canonical order) that represent

the quadruples in A for an accepting execution path in the corresponding
nondeterministic checking branch.

Lemma 5.17 For any L[SAT]-program R1, there exists another L[SAT]-program
R2 such that

Pad-L1: the size of the acceptance tree of R2 for any given input is unique, and

Pad-L2: R1 accepts 〈x, k〉 if and only if R2 accepts 〈x, k〉.

Proof. The L[SAT]-program R2 is constructed as follows.

Step-1 In the preprocessing phase, construct the partial computation tree C1 that
represents the computation of R1 on 〈x, k〉.

Step-2 Convert C1 into a partial computation tree C2 for input 〈x, k〉 such that any
acceptance tree for C2 has a unique size and the root of C2 is accepting if and
only if the root of C1 is accepting.

Step-3 Compute according to C2.

The rest of the proof presents the details of Step-1 and Step-2.

[Step-1]: R2 can construct the root of C1 from 〈x, k〉. R2 constructs the rest of
C1 by computing the partial configurations reachable from a given partial configu-
ration. The entire construction of C1 takes parametric polynomial time as the size
of the partial computation tree is bounded by some parametric polynomial.

122

[Step-2]: As a first step R2 ensures that along any branch, (i) any pair of existen-
tial partial configurations has at least one universal partial configuration between
them and (ii) the last nondeterministic operation in any computation branch is
universal. These restrictions facilitate the next phase of the construction. Let
conf1 and conf2 be two existential partial configurations in C1 such that conf2 is a
descendent of conf1 and no nondeterministic node appears in the path from conf1
to conf2 (i.e. conf1 and conf2 violate (i)). R2 inserts an universal configuration
conf3 immediately before conf2. The operation associated with conf3 universally
guesses a value equal to zero and stores it in some guess register that is not used
by any computation step of R1. Thus the operation has no effect on the accep-
tance of 〈x, k〉 by R1. Violations of condition (ii) are dealt with similarly. Let
C ′

1 be the partial computation tree obtained after the entire partial computation
tree C1 has been processed as above. Introduction of each new universal configu-
ration increases the number of partial configurations in the tree by one and does
not increase the number of branches. Thus the size of C ′

1 remains bounded by a
parametric polynomial.

Construction of C2 from C ′
1 is the most important part of the proof. New

branches are added to certain nodes in C ′
1 (described later) so that the number

of leaves in the acceptance tree rooted at a given existential node remains the
same irrespective of the choice of an existential branch. We refer to such addition
of branches as padding. New operations are included to immediately terminate
any branch that arises due to padding. Thus padding branches do not affect the
correctness of the computation. Formally, C2 is constructed in such a way that
R2 performs the sequence of operations in Algorithm 5.6 whenever R1 makes a
universal guess. Let lpad − 1 be the maximum value that R1 may store in any
register at any point of computation. For the purpose of terminating the padded
branches, the lookup table is constructed so that r〈v1,v2〉 is 0 for any value v1 as
long as v2 ≥ lpad. With this formulation, the task of padding reduces to computing
the padded range of values for each universal node (i.e. PaddedRange[curnode] in
Algorithm 5.6). The rest of the proof describes the computation in detail.

Let x be an existential node in C ′
1 and let Tx,i and Tx,j be the subtrees rooted

at the ith and jth child of x, respectively. Also let the size of the acceptance
trees (after padding) for Tx,i and Tx,j be li and lj, respectively. Let us consider
the scenario where li > lj. In this case R2 modifies Tx,j to T ′

x,j so that the size
of the acceptance tree of T ′

x,j equals li for any input. The key idea is to increase
the number of branches for the root of Tx,j in such a way that the acceptance
conditions are not affected and that the overall size of the tree remains bounded by
a parametric polynomial.

123

Algorithm 5.6: Sequence of operations that replaces each universal guess
step.

Assumptions:

- curnode refers to the universal configuration in C ′ whose operation is to be
replaced.

- lpad − 1 is the maximum value that R1 may store in any register .

1. rtemp ← r0

2. r0 ← PaddedRange[curnode]

/* (forall ↑ j) */

3. grj
← Universally guess a value from [0 . . . PaddedRange[curnode]]

4. glimit ← OriginalRange[curnode]

5. If glimit < grj
then

6. grj
← grj

+ lpad

7. For each ∃1-register gi

8. If r〈gi,grj〉 = 0 then terminate (accept in) this branch

9. EndFor

10. Reject in this branch.

11. Endif

12. r0 ← rtemp

Algorithm 5.7 presents the construction of C2. The padding is done by traversing
the partial computation tree C ′

1 in postorder. Let us consider an existential partial
configuration x and the subtree Tx of C ′

1 rooted at x. Let Tx,i be the subtree
rooted at the ith child of x. No padding is needed for x in case it is the only (and
hence last) nondeterministic operation in the subtree rooted at x. The reason is
that the acceptance tree for Tx always includes a single leaf (computation branch)
from Tx. For the general case, let us assume that the subtrees Tx,i s have been
padded so that the acceptance tree for Tx,i always includes li leaves. If all li s
are not the same, padding has to be done for x (Lines 17-28). Let lmax be the
maximum of the lis, 1 ≤ i ≤ B(x). For each Tx,i, the padding algorithm adds
lmax − li additional (padding) branches to the universal node in Tx,i that follows
x (Figure 5.2). After the padding, the size of the acceptance tree for Tx is always
lmax independent of computation branch selected by the existential guess. Let us
now consider a universal node y. If the subtrees Ty,i satisfy property Pad-C1, y

124

Algorithm 5.7: Padding a partial computation tree so that the size of the
acceptance tree remains the same for all choices of existential branching.

ComputeRange
Input: A partial computation tree C, a node x in C, a list PaddedRange.
Output: Integer.
After the computation PaddedRange[i] is set to the number of branches that
node i in C should have after padding.
/* Base cases: No padding is needed for x */

if x is a leaf then1

PaddedRange[x] = 1 Return 12

end3

if x is a non branching node then4

PaddedRange[x] = ComputeRange(C,y), where y is the child of x5

Return PaddedRange[x]6

end7

/* Recursive cases: */

MaxLeafCount ← 08

LeafCount ← 09

if x is a universal node then10

for i = 1 to B(x) do11

Let xi be the ith child of x12

LeafCount ← LeafCount + ComputeRange(C,xi)13

end14

PaddedRange[x] ← LeafCount15

Return LeafCount16

else17

for i = 1 to B(x) do18

Let xi be the ith child of x19

LeafCount ← ComputeRange(C,xi)20

if LeafCount > MaxLeafCount then MaxLeafCount ← LeafCount21

end22

for i = 1 to B(x) do23

Let ui be the first universal node in the subtree for the ith child of x24

PaddedRange[ui] ← MaxLeafCount25

end26

Return MaxLeafCount27

end28

125

∃

∀ ∀ . . .
¡

¡¡

@
@@

³³³³³³³³

¤
¤
¤
¤
¤
¤

C
C
C
C
C
C

¤
¤
¤
¤

C
C
C
C

∃

∀ ∀ . . .
¡

¡¡

@
@@

³³³³³³³³

¤
¤
¤
¤
¤
¤

C
C
C
C
C
C

¤
¤
¤
¤

C
C
C
C

l1 leaves

x

C
C
CCO

no nondeterminism
l2 leaves

l1 > l2

Before padding After padding

∀

x
...

b
bb@@

XXXXXX...
J
J

HHHH

bbbb
bbbb

B
B
B
B
B
BB

££
££

A

A

££
A R

B
B
B
B
B
BB

££
££

A

A

££
A R

B
B
B
B
B
BB

££
££

A

A

££
A R

B
B
B
B
B
BB

££
££

A

A

££
A R

Figure 5.2: Padding for an existential -node.

also satisfies Pad-C1. This is because all subtrees Ty,i must be satisfied in order to
satisfy y. The padding algorithm simply returns to the parent of y in such cases
(Lines 2 and Lines 10-15).

It is important to note that the effect of padding is confined to a single level
and does not propagate downwards. Thus, padding for an existential node x at any
level increases the size of the circuit by at most B(x)×(l−1), where l is the number
of leaves in the original partial computation tree. Since the number of existential
nodes is bounded by n, padding for all existential nodes increases the size of the
circuit by a polynomial factor only.

Let us now analyze the runtime of the padding algorithm. The non-recursive
part of processing a universal node takes constant time. Non-recursive part of
processing an existential node x involves adding at most (l − 1) padding branches
to at most B(x) universal nodes. Thus padding for an existential node requires
O(B(x)× (l− 1)) time. The postorder traversal performs the non-recursive part of
the processing for each node in C ′

1 once. Thus C2 can be constructed in polynomial
time.

Correctness: The padding branches are terminated without affecting the com-
putation in other sibling branches. Any newly introduced nondeterministic oper-
ation stores the guessed value in a register that was not used by R1. Thus the
padding does not affect the correctness of the original computation of R1 on 〈x, k〉.

126

Corollary 5.18 The following parametric problems are hard for L[t], t ≥ 1, and
W [SAT].

• Longest Common Subsequence, parameterized by the number of strings
and the size of the alphabet.

• Bounded DFA Intersection parameterized by the number of DFA.

• Bounded DFA Intersection parameterized by the number of DFA and
the alphabet size.

• (Directed) Colored Cutwidth.

• Domino Treewidth.

• Feasible Register Assignment.

• Module Allocation.

• I/O Deterministic FST Composition parameterized by number of trans-
ducers.

• I/O Deterministic FST Intersection parameterized by number of trans-
ducers.

• Intervalizing Colored Graphs.

• Triangulating Colored Graphs.

Proof. LCS-1 can be fixed-parameter reduced to each of the problems men-
tioned above [2, 3, 7, 41].

5.2.2 Precedence-Constrained Multiprocessor Scheduling

The Precedence-Constrained Multiprocessor Scheduling problem is de-
fined as follows.

Precedence-Constrained Multiprocessor Scheduling (PCMS)

127

Input: A set of unit length tasks T , a partial order ≺ on the tasks in T ,
an integer D specifying the deadline, an integer k specifying the number
of processors.
Parameter: k.
Question: Is there a mapping A : T → {1, . . .D} such that for all
t1, t2 ∈ T , t1 ≺ t2 ⇒ A(t1) < A(t2), and for all i, 1 ≤ i ≤ D, |A−1(i)| ≤
k?

The parameterized complexity of the problem was analyzed by Bodlaender and
Fellows [5]. They showed that the problem is W [2]-hard by constructing a fixed
parameter reduction from Dominating Set. The main result presented in this
section is the following.

Theorem 5.19 Precedence-constrained Multiprocessor Scheduling is
hard for L[t], for any t > 0.

We construct a generic reduction to show the hardness result. Our construc-
tion builds upon the original proof by Bodlaender and Fellows [5] and uses new
combinatorics to deal with the additional levels of alternation as well as the com-
putational features of a normalized L[t]-program. We construct the proof in three
steps. First we show how the computation of a normalized W [t]-program can be
represented by a scheduling of tasks. We then extend the construction to incorpo-
rate the computational features of a normalized L[t]-program. This gives us one
direction of the hardness proof. For the other direction, we extend the construction
for L[t] to ensure that any valid scheduling represents an accepting computation of
the corresponding normalized L[t]-program. The rest of this section presents the
details of the construction.

5.2.2.1 From an Accepting Computation to a Scheduling of tasks

We start with the description of the basic components of the construction and some
terminology. Let us consider the computation of a normalized W [t]-program RW

on some input 〈x, k〉. Let us assume that RW makes h(k) existential guesses in the
first nondeterministic block. Each of the subsequent nondeterministic blocks has
one nondeterministic step (existential or universal) as RW is a normalized W [t]-
program. Note that the bound h(k) implies that RQ performs at most h(k) ∃1-tests,
each involving one ∃1-register. Also we assume that the range of values that any
register may store is [0 . . . l − 1], where l is bounded above by some parametric

128

polynomial. In the remainder of this section, we refer to the nondeterministic steps
in the computation by the level of alternation. For example, the first existential
steps are at level 1, the universal step that follows them is at level 2, the next
existential step is at level 3 and so on.

We now define the terminology for scheduling. The definitions apply to both
W [t] and L[t] unless stated otherwise. We refer to a unit of time as a time slot. Since
each task is of unit length, a task is scheduled in exactly one time slot. A sequence
of consecutive time slots is referred to as a time phase. The precise definitions of the
number and length of the time phases will be given later. We say that an edge in
the computation tree is at level j if the associated parent node corresponds to j-th
level of alternation, 2 ≤ j ≤ t. Each edge, from level 2 to level t in the computation
tree, corresponds to a unique time phase. Thus, each node in the computation
tree corresponds to l time phases determined by the associated edges. We label
the time phases by the level of the edge they correspond to. Thus a level-j edge
in the computation tree corresponds to a unique level-j time phase, 2 ≤ j ≤ t.
The time phases for different levels are organized to represent the structure of the
computation tree. The time span, consisting of all time slots except the first (l−1),
is divided into l non-overlapping level-2 time phases, one time phase for each level-2
edge in the computation tree. In general, each level-j time phase is refined into l
non-overlapping level-(j + 1) time phases, 2 ≤ j ≤ (t− 1). The refinement is done
in such a way that, for any pair of time phases p1 and p2 corresponding to edges e1

and e2 in the computation tree, respectively, the following holds.

1. If e2 appears in the subtree rooted at the child node associated with e1, then
time phase p1 begins before p2 begins and p1 ends after p2 ends (i.e. p1

contains p2).

2. If e1 and e2 have the same parent, and e1 appears before e2 in depth first
traversal of the computation tree, then p1 and p2 are non-overlapping and p1

ends before p2 starts.

While the time phases are defined based on the structure of the computation
tree, the set of unit length tasks is constructed based on the structure of the ac-
ceptance tree. We start with the definitions of tasks for W [t] and describe the
additional tasks for L[t] later. Note that the actual nodes of the computation tree
CW that constitute an acceptance tree may vary depending on the ∃1-values. For
the purpose of defining the tasks, it is sufficient to know the structure of the ac-
ceptance tree and the required number of tests in the testsets at the leaves of the

129

acceptance tree, both of which are independent of the ∃1-values. We view the con-
struction of the acceptance tree CW,accept from the computation tree CW as placing a
set of markers on the edges of the computation tree. In this context, the acceptance
tree consists of the marked edges (and associated nodes) of the computation tree.
A total of lbj/2c markers are available to mark the edges at level j, 2 ≤ j ≤ t. As
before, we refer to the markers by the level of alternation and say that a marker is
universal (existential) if the corresponding level of alternation is even (odd). The
markers are related by parent-child relationship. Also, we assume that all sibling
markers are canonically ordered. Let 〈x′, k′〉 be the instance of PCMS being con-
structed. Each marker is represented by a distinguished set of base tasks in 〈x′, k′〉.
The fact that a marker y is placed on an edge x at level j of the computation tree is
represented by scheduling all base tasks for y in the level-j time phase correspond-
ing to x. In the reverse direction, if all tasks from the base set of a level-j marker
y are scheduled in a single level-j time phase corresponding to some edge x in the
computation tree, we interpret the fact as x being included in the acceptance tree
at position y.

A separate set of base tasks is included for each ∃1-register. The fact that the i-
th ∃1-register is assigned the value vi is represented by scheduling the corresponding
base tasks consecutively starting from the vi-th time slot. For each node at level t
of the computation tree, additional tasks are included to represent the effect of the
values in the ∃1-registers on the ∃1-tests in the corresponding computation branch.
In addition, a set of test-tasks are included to represent the ∃1-tests corresponding
to a level-t-marker. The number and precedences of these tasks are defined so that
under certain conditions, a scheduling is possible if and only if the corresponding
computation branch accepts.

The computation tree and an acceptance tree for a normalized L[t]-program
differs from those for a normalized W [t]-program from level-t. Thus the concepts
of markers and definitions of tasks apply to a normalized L[t]-program as well.
However, for an L[t]-program, the construction of an acceptance tree involves the
selection of a consistent set of values for the nodes in the assignment graph. g(k)
additional base sets of tasks are included for each leaf of the computation tree
to represent the selection of values for the nodes in the corresponding assignment
graph. Each of these base sets is functionally similar to the base set of an ∃1-
register. However, the effect of the base tasks for a node in the assignment graph
are confined to a single level-t time phase.

Although the ideas, mentioned above, allow us to construct a valid scheduling
from an accepting computation, they are not sufficient to ensure that the proof
works in the reverse direction. A valid scheduling may schedule the base tasks for

130

a level-j marker in more than one level-j time phases. In such cases, we can not
construct a valid witness from the scheduling. In order to deal with such issues,
we include additional time phases and constraint tasks so that a valid scheduling
always represents a valid witness.

In the next two subsections, we describe how to map an accepting computation
of a normalized W [t]-program and a normalized L[t]-program, to valid schedulings.
In these steps, we describe a basic organization of tasks that closely follow the
structure of the associated computation trees and acceptance trees. In the last
step, we will extend the basic construction in order to make the proof work in the
reverse direction.

5.2.2.2 Representing Computation of a W [t]-program by a Scheduling

Let us consider a parametric problem Q in W [t], t ≥ 1. By Theorem 2.13, there
exists a normalized-W [t]-program RQ to decide Q. The generic reduction A takes
an input 〈x, k〉 and computes 〈x′, k′〉 such that 〈x′, k′〉 is in PCMS if and only if
RQ accepts 〈x, k〉. The key idea of the construction is to represent the witness
of an accepting computation by a particular scheduling of tasks under a given set
of precedence rules. Our goal is to ensure that any accepting computation of RQ

results in an arrangement of tasks such that all the given precedence conditions are
respected and the number of processors required for any time slot does not exceed
a given bound.

We start by constructing a string SW , which we call the scaffold, by performing
a depth-first traversal (up to level t) of the computation tree CW . Algorithm 6.1
describes the construction of the scaffold SW . Based on the scaffold SW , we define
the length of the time phases for different levels of alternation 1. The deadline D
is set equal to the length of the scaffold (i.e. D = |SW |). In the construction, the
i-th symbol in SW corresponds to the i-th time slot, 1 ≤ i ≤ |SW |. The level-j
time phase for a level-j edge x in CW starts at the time slot corresponding to startx

and continues until the time slot corresponding to endx. The lengths of the time
phases, therefore, follows from the positions of start and end symbols in SW and
are defined as follows.

1The length of time phases, and the number of unit length tasks will be different in the final
construction to be described in the next subsection. In order to explain the basic organization of
tasks, we mark these function with a prime (PhaseLen′, for example) in this section.

131

Algorithm 5.8: Construction of the basic scaffold string for normalized W [t]-programs

DFT-MAIN-W

Output l − 1 buffer symbols buffer∃1

DFT-W(rootC ,2)

End DFT-MAIN-W

DFT-W(node x,level j)

foreach child y of x do
Output symbol start〈x,y〉
if x is at level t then

Output l padding symbols pad〈x,y〉
Output l value symbols val〈x,y〉

else

DFT-W(y,j + 1)
end
Output symbol end〈x,y〉

end

End DFT-W

PhaseLen′(j) =





2 + 2l, j = t

2 + l × PhaseLen′(j + 1), 2 ≤ j ≤ (t− 1)

Thus a level-j time phase is large enough to contain l level-(j + 1) time phases,
one for each of the l computation branches generated from the corresponding non-
deterministic step at the j-th alternation level of RQ, where 2 ≤ j ≤ (t − 1). A
level-j phase includes two additional time slots to schedule two distinguished tasks
(Start and End) that indicate the beginning and ending of the scheduling in the
level-j time phase. We say that a time slot in a level-t time phase is a padding time
slot if the time slot corresponds to one of the pad symbols in the scaffold.

Let h′(k) be the number of ∃1-guesses made by RQ. The number of processors
nprocessor is defined as follows.

132

nprocessor =





2h′(k) + 3(t− 2)/2 + 1, for even t

2h′(k) + 3(t− 1)/2, for odd t

The reason for choosing these numbers will become clear once we describe the
scheduling techniques.

The Set of Tasks

We now define the set of tasks. The precedences will be defined later. Let T be
the set of unit length tasks in x′. T consists of several distinguished subsets Ti (the
bound on i is a parametric polynomial on |x| and t).

• A base set of tasks T〈base,s〉 is included in T for each marker s. The number

of such sets is
∑t

i=2 lbi/2c. The number of base tasks for a level-j marker is
PhaseLen′(j), 2 ≤ j ≤ t. Two of the tasks in base set T〈base,s〉 are distinguished
as starts and ends to indicate the starting and ending time slots, respectively,
for the base tasks.

• Let sor be an existential marker for level j, 3 ≤ j ≤ (t− 1), and j is odd. A
constraining set of tasks T〈constraint,sor〉 is included in T for sor. The purpose
of including the constraining tasks is as follows.

– If sor represents an l-way branching, there will be l designated time
phases when the base tasks for sor may start. A scheduling of the tasks
T〈base,sor〉 that starts at the i-th of these time phases signifies that the
i-th computation branch is taken for sor. The tasks T〈constraint,sor〉 ensure
that the base tasks T〈base,sor〉 are scheduled starting from the beginning
of one of these time phases.

The number of constraint tasks for each level-j existential marker is defined
as follows.

CnstCount′(j) =





0, j = t

nprocessor − h′(k)− 3(j − 1)/2, 2 ≤ j ≤ (t− 1)
and j is odd

133

• Let sand be a universal level-j marker for some j, 2 ≤ j ≤ (t−1), and j is even.
A constraining set of tasks T〈constraint,sand〉 is included in T for sand. The tasks
in T〈constraint,sand〉 together with the constraining tasks for the child existential
markers of sand ensure that the tasks for the child existential markers are
arranged starting from a desired time slot. The number of constraint tasks
for a level-j universal marker is defined as follows.

CnstCount′(j) =





0, j = t

PhaseLen′(j)− 1, 2 ≤ j ≤ (t− 1) and j is even

• A set of tasks T〈test,st〉 is included for each level-t marker st to represent the
associated ∃1-tests. If st is universal, T〈test,st〉 includes a single task. If st is
existential, the number of tasks in T〈test,st〉 equals the number of ∃1-guesses.

• A base set of tasks T〈base,s∃1〉 is included for each existential guessing step s∃1

in the first existential block. We refer to these base sets as the ∃1-base sets
in order to distinguish them from the base sets for markers. Each ∃1-base set
contains (D− l + 1) tasks. The ∃1-base tasks are scheduled in all level-t time
phases and the scheduling is independent of the scheduling of tasks for the
markers.

• A set of tasks T〈invalid,s∃1〉 is included for each ∃1-step s∃1 . These tasks repre-

sent the values that (when stored in the target ∃1-register of s∃1) would force
the computation to continue along the unique rejecting branch for even t and
to reject for odd t. We refer to these tasks as ∃1-invalid tasks.

Let, gj be the j-th ∃1-register, 1 ≤ j ≤ h′(k). Also, let v be a value in [0 . . . l]
that gj may store and b be a computation branch corresponding to level-t
node in the computation tree CW . The set T〈invalid,s∃1〉 includes a task for

each value v and each computation branch b of RQ if one of the following
conditions holds.

– t is even and no test is performed on gj in the checking phase of b.

– t is even, a test is performed on gj in branch b and the value v, if stored
in gj, would force the computation to continue along the unique rejecting
branch.

– t is odd, a test is performed on gj in branch b and the value v, if stored
in gj, would force the computation to take a rejecting branch.

134

• Finally, a set of l−1 padding tasks are included to represent the l−1 buffer∃1

symbols in the scaffold. We refer to them as ∃1-buffer tasks.

The Precedences of the Tasks

The precedence rules restrict the ways the tasks can be scheduled. We use the
following terminology in the construction of the precedence rules.

Definition 5.3 A sequence of tasks X = {x1, x2, . . . , xm} is said to have a total
order if given any pair of tasks x1 and x2, either x1 ≺ x2 or x2 ≺ x1 holds.

Observation 5.20 Let a sequence X of unit length tasks be totally ordered. In any
scheduling, at most one task from X can be scheduled in any particular time slot.

Definition 5.4 Let X = {x1, . . . , xm} be a set of tasks such that the tasks have a
total order. A scheduling of the tasks in X is interval-free if the tasks are scheduled
in |X| consecutive time slots in accordance with the total order.

Observation 5.21 Let the tasks in the set X = {x1, . . . , xm} have a total order.
Let y be another task such that xi−1 ≺ y ≺ xi+1, for some i, 1 < i < m. If X has
an interval-free scheduling (i.e. xi−1, xi, and xi+1 are scheduled in consecutive time
slots), then y must be scheduled in the same time slot when xi is scheduled.

We say that the task y has the same precedence as the task xi with respect to
the total order of x1, . . . , xm in case xi−1 ≺ y ≺ xi+1, for some i, 1 < i < m.

We define the precedence rules such that the following holds.

• The ∃1-base tasks in T〈base,s∃1〉, for each ∃1-step s∃1 , have a total order. The

number of tasks in each ∃1-base set is |S| − l + 1. We consider that the i-th
task in the ordered sequence corresponds to the (l + i − 1)-th character of
the scaffold S. Based on this correspondence, we view the ordered sequence
of tasks in T〈base,s∃j〉 as consisting of l t segments with some padding tasks

in between the segments. An ∃1-base task is included in a segment if the
task corresponds to some symbol bufferx or valx in the scaffold S, where
x is some level-t node of C. By construction of the scaffold, each segment
consists of 2 + 2l ∃1-base tasks that are consecutive in the total order. Any
∃1-base task that is not part of a segment is a padding task. The padding
tasks correspond to the start and end symbols in S. In the construction, each
segment corresponds to a level-t node in the computation tree C.

135

• For an ∃1-step s∃1 , let x〈v,b〉 ∈ T〈invalid,s∃1〉 be a task representing an invalid

value v for the computation branch b. The task x〈v,b〉 is assigned the same
precedence as the v-th ∃1-base task in segment b of T〈base,s∃1〉.

• The tasks in the base set for a marker have a total order.

• For a marker s, the tasks starts and ends have the lowest and the highest
precedence, respectively, among all the tasks in T〈base,s〉.

• For markers schild and sparent, such that sparent is the parent of schild, the
precedence of any base task for schild is higher (respectively lower) than the
precedence of startsparent (respectively endsparent).

• For sibling markers s1 and s2 such that s1 appears before s2 in canonical
order, ends1 has lower precedence than starts2 .

• The precedence of any constraint task for a universal marker sand is higher
than the precedence of startsand

and lower than the precedence of endsand
.

• The constraint tasks for a universal marker have a total order.

• No constraint task for a universal marker sand has the same precedence as the
second base task in T〈base,sand〉.

• All constraint tasks for an existential marker have the same precedence as
the second base task (in the total order) for the same existential marker.

• All tasks in T〈test,st〉, for some level-t marker st, have the same precedence as
the (l + 2)-th base task (in the total order) for st.

• The (l − 1) ∃1-buffer tasks have a total order defined on them. Also, the
precedence of any ∃1-buffer task is defined to be lower than the precedence of
the first base task for the first level-2 marker.

We now describe the rules for scheduling the tasks in T .

Scheduling Tasks for Existential Steps in the First Nondeterministic
Block

Two types of tasks are defined for each ∃1-step - (i) a set of ∃1-base tasks, and (ii)
a set of ∃1-invalid tasks. The following rules specify how the tasks are scheduled
for a given witness.

136

. . .

Level-t time phases
-

Phase 1 Phase 2 Phase lt

∃1-B1

∃1-B2

∃1-Bh

∃1-I1

∃1-I2

∃1-Ih

...
...

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

Figure 5.3: Scheduling of tasks for the existential guess steps in the first nondeterministic block
in the computation of RQ. The base (respectively invalid) tasks for the j-th ∃1-step are scheduled
on the processor marked ∃1-Bj (respectively ∃1-Ij), 1 ≤ j ≤ h(k).

Rule 1: The ∃1-base tasks in T〈base,s∃j〉 are scheduled consecutively starting from

the (l−vj+1)-st time slot in order to signify that the j-th ∃1-guess is the value
vj. Note that this arrangement assigns the (l + vj)-th task in each segment of
T〈base,s∃j〉 to the (l + 2)-th time slot in the corresponding level-t time phase

(Figure 5.3).

Rule 2: Let x〈v,b〉 be a task in T〈invalid,s∃1〉 and x〈v,b〉 corresponds to value v and

computation branch b. x〈v,b〉 is scheduled in the same time slot where the v-th
task in the b-th segment of T〈base,s∃j〉 is scheduled. Note that the time slots

for the tasks in T〈invalid,s∃1〉 become fixed due to the precedence rules and the

interval-free scheduling of the tasks in T〈base,s∃j〉.

Scheduling of Tasks for Nondeterministic Steps in the Checking Phase

We now consider the scheduling of base and constraint tasks for the markers at
level j, 2 ≤ j ≤ t. Recall that a marker at any even level of alternation (i.e. j is
even) is universal while a marker is existential at odd levels.

137

S E

S E

. . .

...

One level-(j − 1) phase for sand
¾ -

1st level-j

phase for sor

2nd level-j

phase for sor

l-th level-j

phase for sor

: T〈base,sor〉 : T〈base,sand〉 : T〈constraint,sor〉 : T〈constraint,sand〉
S : startsor E : endsor S : startsand

S : startsand

Figure 5.4: Scheduling of base and constraint tasks for a universal marker sand and an existential
marker sor where sor is a child of sand.

Rule 3: Let us assume that a level-j marker sj is placed on a level-j edge xj in the
computation tree. The base tasks for sj are scheduled in all time slots, one
task per slot, in the level-j time phase allocated for x. The scheduling order
of the tasks match their order of precedence, with startsj

and endsj
scheduled

in the first and last of these time slots, respectively.

Although Rule 3 does not differentiate between universal and existential mark-
ers, the distinction in the scheduling of base tasks becomes apparent once we con-
sider them in the context of the structure of the acceptance tree. Let u and e be a
universal and an existential node, respectively, in the computation tree. If a branch
from u is marked, then all l branches originating from u must be marked whereas
exactly one existential branch from e has to be marked in case e is included in the
acceptance tree (Definition 5.1). If u is included in the acceptance tree, then base
tasks are scheduled in all l time phases associated with u. On the other hand, base
tasks are scheduled in exactly one of the l time phases for e in case e is included in
the acceptance tree. In particular, the base tasks are scheduled in the i-th of the l
time phases to represent the fact that RQ accepts along the i-th existential branch
originating from e (i.e. a marker is placed on the i-th edge from e in CW).

138

S E

S E

. . .

S E

. . .

S E

. . .

S E

. . .

. . .

...

One level-(j − 1) phase for sor
¾ -

level-j time

phase for s1
and

level-j time

phase for s2
and

level-j time

phase for sl
and

: T〈base,sor〉 : T〈base,sand〉 : T〈constraint,sor〉 : T〈constraint,sand〉
S : startsor E : endsor S : startsand

S : startsand

Figure 5.5: Scheduling of base and constraint tasks for an existential marker sor and its l children
markers. Here si

and is the i-th child marker of sor, 1 ≤ i ≤ l.

Note that Rule 3, when applied to level-2 universal markers, imply that a base
task for some level-2 marker is scheduled in the i-th time slot, for each i, l ≤ i ≤ D.
By the precedence rules, the (l − 1) ∃1-buffer tasks must be scheduled in the first
(l−1) time slots, the j-th of them being scheduled in the j-th time slot, 1 ≤ j ≤ l−1.
The scheduling of the ∃1-buffer tasks will be fixed in this way by the other rules in
all our constructions. We therefore, do not specify a separate rule for them.

The scheduling of constraint tasks are done differently for universal and exis-
tential markers.

Rule 4: Consider a level-j universal marker sand and all time slots where a base
task for sand has been scheduled. Let startsand

be scheduled in time slot
TimeStartsand

. A constraint task for sand is scheduled in all these time slots
except the time slots of the form (TimeStartsand

+ 2 + i× PhaseLen′(j + 1)),
0 ≤ i < l. Thus, no constraint task is scheduled in every PhaseLen′(j + 1)-th
time slot starting from (TimeStartsand

+ 2) (Figure 5.4).

Rule 5: All constraint tasks for an existential marker sor are scheduled in the
same time slot where the second base task (in the total order) for sor has
been scheduled (Figure 5.5).

139

∃1-B1

∃1-B2

∃1-Bh

∃1-I1

∃1-I2

∃1-Ih

...

One level-t time phase¾ -

l time slots¾ - l time slots¾ -

S E

− − −−− − −

− − −−− − −

− − −−− − −

− : Invalid tasks : Test tasks : Segment tasks : Padding tasks : Marker-base tasks

Figure 5.6: Scheduling of tasks in a level-t time phase, for odd t, t > 1 (i.e. the level-t marker is
an existential marker). The base (respectively invalid) tasks for the j-th ∃1-step are scheduled on
the processor marked ∃1-Bj (respectively ∃1-Ij), 1 ≤ j ≤ h(k). All h(k) test tasks are scheduled
in the (l +2)-th time slot. One test task is scheduled on processor ∃1-Ij , for each j, 1 ≤ j ≤ h(k).
The scheduling is possible only if no invalid task is scheduled in the (l + 2)-th time slot of the
level-t time phase under consideration.

Scheduling of Tasks in a Level-t Time Phase

Let us consider a level-t time phase corresponding to edge x in C. Let the base
tasks of a level-t marker st has been scheduled (as described before) in this time
phase. The test tasks associated with st remain to be scheduled.

Rule 6: All test tasks in T〈test,st〉 are scheduled in the same time slot where the
(l + 2)-th base task (in the total order) for st is scheduled (Figure 5.6).

5.2.2.3 Representing Computation of a Normalized L[t]-program by a
Scheduling

We now extend the previous construction for W [t] to incorporate the computational
features of a normalized L[t]-program. Let Q′ be any problem that can be decided
by a normalized L[t]-program RQ′ . We construct an instance 〈x′, k′〉 of PCMS to
represent the computation of RQ′ on a given input 〈x, k〉. As noted before, the

140

structure of the acceptance tree CL,accept for RQ′ differs from CW,accept only at the
labelling of the leaves. In addition to a TestSet, each leaf of the acceptance tree
CL,accept represents (existential) selection of values for the nodes in the corresponding
assignment graph.

Let us consider the assignment graphs for all nondeterministic checking branches
of RQ′ . For our construction, we are interested in the nodes in the assignment graph
that are neither roots nor leaves. We refer to each such node in the assignment
graph as an intermediate node. Let g(k) be the maximum number of intermediate
nodes in any assignment graph. Let us consider the computation of RQ′ along
some execution path for some nondeterministic checking branch. We view the
computation as if RQ′

1. existentially guesses up to g(k) values for the intermediate nodes in the as-
signment graph,

2. verifies that the guessed values for the intermediate nodes are consistent
among themselves,

3. and verifies that all necessary tests are satisfied by the nondeterministically
guessed values (both the original ones and the newly guessed values).

Since the computation up to the last nondeterministic operation (along any
branch) of a normalized L[t]-program is similar to that of a normalized W [t]-
program, the construction for the nondeterministic steps at level i, 2 ≤ i ≤ (t− 1)
needs no modification (except that each time phase now contains more time slots
than before). The construction for all level-t markers needs to be modified in order
to incorporate the new computational features described above.

The new scaffold string SL is generated by DFT-MAIN-L. The scaffold SL con-
tains g(k)l3 new symbols (denoted as assign symbols in the algorithm) for each
level-t node in the computation tree. The number of time slots in each level-t time
phase is increased, accordingly. The lengths of the time phases for levels j < t also
increase as a consequence.

PhaseLen′L(j) =





2 + 2l + g(k)l3, j = t

2 + l × PhaseLen′L(j + 1), 2 ≤ j ≤ (t− 1)

Since the number of base tasks is defined in terms of the length of the phases,
the number of tasks in each base set increases accordingly. As before, a total

141

Algorithm 5.9: Construction of the basic scaffold string for normalized L[t]-programs

DFT-MAIN-L
Output l − 1 buffer symbols buffer∃1

DFT-L(rootC , 2)
End DFT-MAIN-L

DFT-L(node x, level j)

foreach child y of x do
Output symbol start〈x,y〉
if x is at level-t then

Output l padding symbols pad〈x,y〉
Output l value symbols val〈x,y〉
foreach p = 1 to g(k) do /* each intermediate node in this assignment graph */

foreach u = 0 to l − 1 do /* each value for the left operand of p */
foreach v = 0 to l − 1 do /* each value for the right operand of p */

Output l assign symbols assign〈〈x,y〉,p,u,v〉
end

end
end

else
DFT-L(y,j + 1)

end

Output symbol end〈x,y〉
end

End DFT-L

order is defined on all tasks in a given base set (including the base sets for the
new computational features). New tasks are included to represent computational
information about the assign operations. We want the scheduling to represent

E1: the existential selection of values for targets of assign operations, and

E2: the existential selection of valid value-pairs for the operands of assign oper-
ations.

For E1, a base set of tasks is included for each assign operation in each non-
deterministic checking computation branch. We refer to each such base set as an
assign-base set. Functionally the tasks in an assign-base set are similar to the
tasks in an ∃1-base set, both representing existential selection of values. However,
the effect of each assign-base set is confined to a single level-t phase (i.e. to a

142

single nondeterministic computation branch in the checking phase) as opposed to
all level-t time phases.

For E2, we refine the time slots starting from the (2l + 2)-th in a level-t time
phase, into g(k)l2 assign-time phases. Each assign-time phase is of length l
and corresponds to a particular assign operation p, and a value-pair 〈u, v〉 for
its operands. For existential selection of a pair of values for the operands of p,
we include a set of selector tasks. These tasks are scheduled in a single block
〈p, u, v〉 to represent that the value of the target of the p-th assign operation is
computed from values u and v. New invalid tasks, referred to as the assign-invalid
tasks, are included to ensure that the selected value-pair is consistent with the
computation. The assign-invalid tasks are functionally similar to the ∃1-invalid
tasks in the previous construction.

The details of the extensions to the construction for W [t] are described below.

1. A segment in an ∃1-base set includes g(k)l3 new tasks. Each of these new
tasks corresponds to an assign〈·〉 symbol in the scaffold. The inclusion of
these new tasks makes the length of each segment equal to the number of
time slots in a level-t time phase. We view the new tasks in the segment
as divided into g(k)l2 blocks, each of length l. Each block corresponds to a
combination of values for the two operands of a particular assign operation.
An expanded segment has the following structure.

...P B...B︸︷︷︸
Buffer

V ...V︸︷︷︸
value

A〈1,0,0〉...A〈1,0,0〉︸ ︷︷ ︸
Block〈1,1,1〉

A〈1,0,1〉... A〈p,u,v〉...A〈p,u,v〉︸ ︷︷ ︸
Block〈p,u,v〉

... A〈g(k),l,l〉...A〈g(k),l,l〉︸ ︷︷ ︸
Block〈g(k),l,l〉

...

2. The number of base tasks for a level-j marker is set equal to PhaseLen′L(j),
for all j, 2 ≤ j ≤ t. The base tasks for a level-t marker have a structure
similar to a segment in an ∃1-base set.

3. g(k) new base sets of tasks are added for each level-t node in the computation
tree. We call them the assign-base sets. Each assign-base set corresponds
to a particular assign operation in a nondeterministic checking branch (i.e.
an intermediate node in the corresponding assignment graph). Each assign-
base set contains (PhaseLen′L(t)− l− 2) tasks having a total order defined on
them.

The precedences of the assign-base tasks need to be defined so that they are
scheduled in a level-t time phase. However, assign-base tasks are scheduled
in each level-t time phase even if no base task for a level-t marker is scheduled

143

in those time slots. Thus, the precedences of the assign-base tasks cannot
be defined with respect to the base tasks for level-t markers. Instead, we
need tasks which are scheduled in fixed time slots in any valid scheduling.
Let us consider the set of tasks Tref consisting of the base tasks for all level-2
markers and the l − 1 buffer∃1 tasks. The total number of tasks in Tref is D
and the precedence rules imply a total order on all these tasks. In any valid
scheduling, each task from Tref is scheduled in a fixed time slot. The tasks in
Tref , therefore, can be used to indicate the starting and ending of each time
phase. The precedences of the assign-base tasks for a level-t node st are
defined with respect to the tasks in Tref that correspond to startst and endst ,
respectively.

All tasks in an assign-base set are scheduled consecutively in a single level-t
time phase. The time slot when the scheduling starts represents the value
computed for the target by the assign operation.

4. g(k)l2(l− 1)+2l assign-constraint tasks are included for each level-t marker
m. Each assign-constraint task corresponds to a base task x of m and
is assigned the same precedence as x. No constraint task is included for
the second base task in each assign-block of m. Functionally the assign-
constraint tasks are similar to constraint tasks for an universal marker.

5. New selector tasks are introduced to represent existential selection of a value-
pair (an assign-block) for the operands of an intermediated node in the
assignment graphs. Two types of tasks are included for each intermediate
node; (i) l + 1 selector-base tasks constituting a selector-base set, and
(ii) h′(k) + g(k) + 1 selector-constraint tasks. These tasks are scheduled
the same way the base and constraint tasks for an existential marker are
scheduled in the time phase for its parent. In this context, tasks of type (i)
and (ii) correspond to base and constraint tasks for an existential marker.
Together with the assign-constraint tasks, the selector-constraint tasks
ensure that the selector-base tasks are scheduled in a single assign-block
in any interval-free scheduling.

6. The number of processors is increased by 2g(k) + 2 in order to allow the
scheduling of assign-base tasks, assign-invalid tasks, assign-constraint tasks,
and selector-base tasks.

nL
processor =





2h′(k) + 2g(k) + 3(t− 2)/2 + 3, for even t

2h′(k) + 2g(k) + 3(t− 1)/2 + 2, for odd t

144

7. The number of constraint tasks for a level-j universal marker is set to be
PhaseLen′L(j) − 1, for all even j, 2 ≤ j < t. The number of constraint tasks
for a level-j existential marker is increased to nL

processor − h′(k) + 3(j − 1)/2,
for all odd j, 3 ≤ j < t. The precedence rules remain the same as before.

8. The number of test tasks for a level-t marker is increased by g(k) + 1 for odd
t and by 1 for even t.

9. New ∃1-invalid tasks are included to specify how an ∃1-value affect an assign
operation. An invalid task is included for an ∃1-value i and a block 〈p, u, v〉
if the ∃1-register is the first (respectively second) operand of p and i 6= u
(respectively i 6= v).

10. A set of assign-invalid tasks is included for each assign block in each level-t
segment of each assign-base set. Let us consider an intermediate node p
in the assignment graph. The inclusion of an assign-invalid task x〈p,u,v〉,i
indicates that the value computed by the p-th assign operation can not be
i if the values of the first and second operands are u and v, respectively. On
the other hand, including an invalid task x〈p′,u,v〉,i, p′ 6= p, for p, indicates that
p is the left (or right) operand of p′ and i 6= u (or i 6= v). An assign-invalid
task is given the same precedence as the corresponding assign-base task.

The ∃1-tasks, tasks for all markers, and all test tasks are scheduled as before.
Rules 1 to Rule 6 are applied to schedule these tasks. In addition, the following
rules are applied to schedule the newly introduced tasks. The scheduling rules are
illustrated in Figure 5.7.

Rule 7: assign-base and assign-invalid tasks are scheduled in all level-t time
phases. The assign-base tasks are scheduled consecutively starting from the
(l+1− i)-th time slot in a level-t time phase to represent that the value of the
corresponding intermediate node is i. This scheduling assigns the i-th base
task in each assign-block to the first time slot in the corresponding assign
time phase. The interval-free scheduling of the assign-base tasks fixes the
positions of the assign-invalid tasks.

Rule 8: assign-constraint tasks are scheduled in a level-t time phase if a marker
is placed there. An assign-constraint task is scheduled in the same time slot
where the corresponding base task for the level-t marker has been scheduled.

Rule 9: Let p be an intermediate node in the assignment graph for some compu-
tation branch b. Let the witness specifies the values vp, u and v for p, p’s

145

. . . S E . . .

.

.

One level-t time phase¾ -

Assign-blocks -
.

...

...

...

MB

AC

SB

AB1

AI1

ABg

AIg

∃1B1

∃1I1

∃1Bh

∃1Ih

ABi: Assign-base tasks for the i-th intermediate node AIi: Assign-invalid tasks for the i-th intermediate node

∃1Bi: ∃1-base tasks for the i-th intermediate node ∃1Ii: ∃1-invalid tasks for the i-th intermediate node

MB: Base tasks for level-t marker AC: Assign-constraint tasks for level-t marker

SB: Selection-base tasks : Test tasks

: Selector-constraint tasks

Figure 5.7: A basic scheduling of tasks in a level-t time phase for an L[t]-program, t > 0.

left operand, and p’s right operand, respectively. Except for the first task
in the total order, all tasks in a selector-base set for p and branch b are
scheduled in the assign time phase 〈p, u, v〉, one task in each time slot. The
first selector-base task in the set is scheduled in the time slot immediately
preceding the assign time phase.

Rule 10: selector-constraint tasks are scheduled in the time slot where the sec-
ond task from the corresponding selector-base set is scheduled.

5.2.2.4 Witness of an Accepting Computation Gives a Valid Scheduling

We next show that a valid scheduling can always be constructed from a given
witness by applying the rules. The arguments for the tasks related to the markers
and the ∃1-steps apply to both W [t]-programs and L[t]-programs. The reason is

146

that (i) the corresponding rules (Rules 1-5) are independent of the actual number
of time slots in a time phase, (ii) the difference between the number of processors
nL

processor and the number of constraint tasks for an existential marker remain the
same as before, and (iii) all tasks related to the assign operations are scheduled
within a level-t time phase, and hence cannot affect the scheduling of constraint
tasks for existential markers. However, the argument for scheduling in level-t time
phases for an L[t]-program differs from that for a W [t]-program.

Lemma 5.22 Let T∃1 be the set of all tasks (base and invalid) related to the h′(k)
∃1-steps. At least h′(k) and at most 2h′(k) tasks from T∃1 are scheduled in the i-th
time slot, for each i, l ≤ i ≤ (D − l + 1).

Proof. The tasks in each of the h′(k) base sets for the ∃1-steps have a total
order. Also, a total order is defined on each of the ∃1-invalid sets. Therefore, at
most one ∃1-base task and one ∃1-invalid task for each of the h′(k) ∃1-steps can
be scheduled at any given time slot. This gives the upper bound of 2h′(k). The
(D− l +1) tasks in each ∃1-base set require (D− l +1) consecutive time slots. The
first of these ∃1-base tasks can be scheduled in the l-th time slot at the latest while
the last can be scheduled at the (D− l + 1)-th time slot at the earliest. Therefore,
a base task from each ∃1-base set is scheduled in each time slot in the range l to
(D − l + 1). This gives the lower bound of h′(k).

Lemma 5.23 Let sj be a level-j marker and let sor be an existential marker such
that sj is a descendant of sor. If the first base task startsj

for sj is scheduled in time
slot TimeStartsj

, then the constraint tasks for sor are scheduled in TimeStartsj
or

before.

Proof. Let us consider the time slots when the base tasks for sor are scheduled.
Let t1 and t2 be the first and second of these time slots. Any base task for a
descendant marker of sor is scheduled after startsor and hence at time slot t2 or
later (by Rule 3 and the definition of time phases). By Rule 5, all constraint tasks
for sor are scheduled in the time slot t2.

Lemma 5.24 Let s be any marker and let sor be an existential marker such that s
is not an ancestor or a descendant of sor. Let starts and ends be scheduled in time
slots TimeStarts and TimeEnds, respectively. Then the constraint tasks for sor are
scheduled before TimeStarts or after TimeEnds.

147

Proof. Let sp
or and sp be the ancestors of sor and s, respectively, such that

sp
or and sp are at the same level of alternation and sp

or is not the same as sp. By
definition, the time phases for sp and sp

or are non-overlapping. The constraint tasks
for sor are scheduled in the time phase for sor which is in turn contained in (or
the same as) the time phase for sp

or. On the other hand, all base tasks for s are
scheduled within the time phase for s which is contained in (or the same as) the
time phase for sp.

Corollary 5.25 Let st be a level-t marker. No constraint task for any existential
marker is scheduled in the time slots occupied by the second to penultimate base
tasks (in order of precedence) for st.

Proof. The result follows from Lemma 5.23 and 5.24 and the fact that no
constraint task is included for a level-t marker.

The following lemma is stated for W [t]-programs only. The corresponding result
for the L[t]-programs can be obtained simply by replacing nprocessor with nL

processor.

Lemma 5.26 Let sj be a level-j marker and let the base tasks in T〈base,sj〉 be sched-
uled in the time slots from TimeStartsj

to TimeEndsj
. The number of base or

constraint tasks for any level-j′ marker, 2 ≤ j′ ≤ j scheduled in time slot i,
TimeStartsj

≤ i ≤ TimeEndsj
is as follows.

noccupied(i, j) =





nprocessor − h′(k)− 1, j is odd and i =
(
TimeStartsj

+ 1
)

3(j − 1)/2, j is odd and i 6= (
TimeStartsj

+ 1
)

nprocessor − h′(k), j is even and i = TimeStartsj

3(j − 2)/2 + 1, j is even and i = TimeStartsj
+ 1

3(j − 2)/2 + 2, j is even and i > TimeStartsj
+ 1

Proof. By Rule 3, the base tasks for any given marker are scheduled consecu-
tively. By Rule 4, the constraint tasks for each universal marker are also scheduled
consecutively, except at the second time slot in the corresponding time phase. Thus,
the following tasks, related to any level-j′ marker, 2 ≤ j′ ≤ j, are scheduled in each
time slot in the range under consideration.

148

- A base task for each ancestor of sj.

- A constraint task for each universal ancestor of sj.

- A constraint task for sj if sj is a universal marker and the time slot is not the
second one in the level-j phase.

The total number of such tasks in each time phase is 3(j− 1)/2 in case j is odd
and is 3(j− 2)/2 + 2 if j is even and i is not the second time slot. If i is the second
time slot and sj is universal, then no constraint task for sj is scheduled in time slot
i.

If j is odd and i = TimeStartsj
+ 1 then all constraint tasks for the existential

marker sj are also scheduled in time slot i. The number of such constraint tasks is
nprocessor−h′(k)− 3(j− 1)/2. However, no constraint task for level-(j− 1) ancestor
of sj is scheduled in time slot i. The total number of tasks scheduled in time slot i
in this case is 3(j − 1)/2 + nprocessor− h′(k)− 3(j − 1)/2− 1 = nprocessor− h′(k)− 1.

If j is even and i = TimeStartsj
, all constraint tasks for the level-(j − 1) ex-

istential ancestor of sj are scheduled in time slot i. By the previous argument,
nprocessor − h′(k) − 1 processors are occupied by the tasks from all ancestors of sj.
An additional processor is needed for startsj

.

Corollary 5.27 Let st be a level-t marker and the base tasks in T〈base,st〉 are sched-
uled in the time slots from TimeStartst to TimeEndst. The number of base or
constraint tasks for any level-j′ marker, 2 ≤ j′ ≤ t scheduled in time slot i,
TimeStartst + 1 ≤ i ≤ TimeEndst is as follows.

noccupied(i, t) =





3(t− 1)/2, t is odd

3(t− 2)/2 + 1, t is even

Lemma 5.28 and Theorem 5.29 apply to W [t]-programs only. The analogous
results for L[t] are given by Lemma 5.31 and 5.32.

Lemma 5.28 Let the base tasks for a level-t marker st be scheduled in a level-t
time phase that corresponds to the nondeterministic checking branch b. Let, for odd
t, a total of 3(t− 1)/2 (a total of 3(t− 2)/2+1, for even t) base or constraint tasks
related to any marker be scheduled in any of these time slots. If the normalized
W [t]-program RQ accepts in the computation branch b then the test tasks for st can
be scheduled according to Rule 6.

149

Proof. Since all test tasks in T〈test,st〉 have the same precedence as the (l+2)-th
base task in T〈base,st〉, scheduling according to Rule 6 does not violate the precedence
condition for the test tasks. By the hypothesis, the number of base and constraint
tasks for the markers scheduled in the same time slot is at most 3(t−1)/2 for odd t
and 3(t−2)/2+1 for even t. h′(k) additional processors are occupied by a task from
each of the h′(k) sets T〈base,s∃1〉. This leaves h′(k) processors available for scheduling

the test tasks and the ∃1-invalid tasks in the time slot under consideration. Let
nfree be 0 for odd t and h′(k)− 1 for even t. According to Rule 6, all test tasks in
T〈test,st〉 are scheduled in the same time slot leaving nfree processors for scheduling
the invalid tasks (if any exists). Thus we must ensure that the number of invalid
tasks that are required to be scheduled in this time slot (by the precedence rules)
does not exceed nfree. We consider the following cases.

(t is even): In this case, the last nondeterministic step is universal and T〈test,st〉
contains a single task. Thus nfree equals (h′(k) − 1). The outcome of at
least one test must cause the computation to branch away from the unique
rejecting execution path. Thus the values in at most (h′(k)− 1) ∃1-registers
may cause the computation to continue along the unique rejecting execution
path. In other words, there will be at most (h′(k) − 1) invalid tasks to be
scheduled in the time slot under consideration.

(t is odd): In this case, the last nondeterministic step is existential and there is
a unique accepting execution path in the corresponding final checking phase.
In the context of scheduling, T〈test,st〉 contains h′(k) tasks and nfree is 0. Since,
none of the ∃1-values causes the computation to branch away from the ac-
cepting execution path, no invalid task is required to be scheduled by the
precedence rule, in the time slot under consideration.

Hence the desired scheduling in the level-t time phase is always possible if the
corresponding leaf node in the computation tree of RQ accepts.

Theorem 5.29 If the normalized W [t]-program RQ accepts 〈x, k〉, then a valid
scheduling for 〈x′, k′〉 can be constructed from the witness of an accepting computa-
tion of RQ.

Proof. Given an acceptance tree for RQ for input 〈x, k〉 we apply Rules 1
to 6 to construct a scheduling for 〈x′, k′〉. In order to prove that the constructed

150

scheduling is valid we show that (i) all precedences are satisfied, and (ii) the number
of processors needed at any time slot does not exceed nprocessor.

(Part i): All tasks in any given base set (for a marker or for an ∃1-step) are
scheduled according to the associated total order. Thus the inter-set precedences of
the base tasks are respected. The base tasks for a level-j marker are scheduled in
one of the level-j time phases corresponding to the marker. The arrangement of the
time phases correspond to the structure of the computation tree. Thus the intra-
set precedences of the base tasks for all markers are also respected. No additional
precedence rule (other than those defining the total order) is associated with the
∃1-base tasks. The precedence of any given constraint task is the same as a specific
base task. Rules 4 and 5 schedules the constraint tasks in the same time slot where
the corresponding base tasks are scheduled. The same holds for the test tasks (Rule
6). The precedence of an ∃1-invalid task is defined to be the same as the precedence
of a unique ∃1-base task both of which are scheduled in the same time slot (Rule
2).

(Part ii): An important fact to note is that the ∃1-invalid tasks are scheduled
in level-t time phases only. In other words, no ∃1-invalid task is scheduled in a
padding time slot. Thus, the number of processors required for a padding time
slot (which is not contained in any level-t time phase) is at most nprocessor. This
follows from Lemma 5.26 and the fact that h′(k) additional ∃1-base tasks for the
h′(k) ∃1-steps may be scheduled in those time slots. Since the markers represent
an acceptance tree, all level-t markers are placed on accepting level-t nodes in the
computation tree. By Corollary 5.27 and Lemma 5.28, the number of processors
needed for any time slot in any such level-t time phase is at most nprocessor.

Theorem 5.29 established the forward direction of the W [t]-hardness proof. We
now extend the construction for the L[t]-programs. Lemma 5.31 and Theorem 5.32
corresponds to the construction for normalized L[t]-programs. In what follows, we
use the term assign-tasks to refer to any task related to assign operations, in
general (assign-base, assign-invalid, assign-constraint). Similarly, we use the
term selector-tasks to refer to selector-base and selector-constraint tasks
in general.

Lemma 5.30 The number of assign-base and assign-invalid tasks scheduled in
any time slot i, (l + 2) ≤ i ≤ (PhaseLenL(t)− l) in a level-t time phase is at least
g(k) and at most 2g(k).

151

Proof. The proof is similar to the proof for the ∃1-base and ∃1-invalid tasks
(Lemma 5.22).

Lemma 5.31 Let the base tasks for a level-t marker st be scheduled in a level-t
time phase that corresponds to the nondeterministic checking branch b. Let, for odd
t, a total of 3(t− 1)/2 (a total of 3(t− 2)/2+1, for even t) base or constraint tasks
related to any marker be scheduled in any of these time slots. If the normalized L[t]-
program RQ′ accepts in the computation branch b then the test-tasks, assign-tasks
and selector-tasks, for st can be scheduled according to Rules 6-10.

Proof. Scheduling according to Rules 6-10 respects the precedences of the
tasks involved. At most one assign-constraint task and one selector-base task
are scheduled in each time slot in a level-t time phase (Rules 8 and 9). Together with
the assign-base and assign-invalid tasks, they occupy at most 2g(k)+2 processors
(Lemma 5.30) in any time slot in a level-t time phase. Scheduling of these tasks
is always possible in all time slots where the test tasks and selector-constraint
tasks have not been scheduled (Corollary 5.27). Thus it suffices to show that the
scheduling of the tasks in time slots where the test tasks and selector-constraint
tasks are scheduled does not require more than nL

processor.

The argument for scheduling of test tasks are similar to that in the proof of
Lemma 5.28. Let tl+2 be the (l + 2)-th time slot in the level-t time phase for b. By
Rule 6, all test tasks are scheduled in tl+2. As before, we analyze the cases for odd
t and even t separately.

(t is odd): The base and constraint tasks for markers, the ∃1-base tasks, the as-
sign-base tasks, and the assign-constraint tasks occupy a total of h′(k) +
g(k) + 3(t − 1)/2 + 1 processors in time slot tl+2. The number of test tasks
occupy h′(k) + g(k) + 1 additional processors. Since the computation accepts
in branch b, the outcomes of all tests on the ∃1-registers and targets of assign
operations cause the computation to continue along the accepting execution
path. Thus, no ∃1-invalid or assign-invalid task needs to be scheduled in
tl+2.

(t is even): The number of test tasks in this case is 2. Thus the number of pro-
cessors occupied by the test tasks, the base and constraint tasks for markers,
the ∃1-base tasks, the assign-base tasks, and the assign-constraint tasks is
h′(k) + g(k) + 3(t − 2)/2 + 4. As t is even, at least one test outcome along

152

the unique rejecting branch causes the computation to accept. Thus, no in-
valid task is scheduled in tl+2 for at least one ∃1-step or one of the assign
operations.

It remains to show that the selector tasks can be scheduled by the specified
rules. This part of the argument applies to both even and odd t. Let us consider
an intermediate node p in the assignment graph corresponding to the level-t time
phase under consideration. Let the witness specify that the value of p is vp and the
values of the operands of p are u and v, respectively. By Rule 7, the assign-base
tasks for p are scheduled consecutively from the vp-th time slot in this level-t time
phase. Similarly, the base tasks (∃1-base or assign-base) for the left (respectively
right) operand of p are scheduled consecutively starting from the u-th (respectively
v-th) time slot in the level-t time phase. Since the values u and v are consistent
with the value vp (by definition of the acceptance tree) no assign-invalid task for
p will be scheduled in the first time slot of the assign-block 〈p, u, v〉. Also, by the
precedence rules, no invalid task for the operands is scheduled in the first time slot of
the assign-block 〈p, u, v〉. The selector-base tasks for p are scheduled in all time
slots in assign-block time phase 〈p, u, v〉 and the time slot immediately preceding
the block (Rule 9). By Rule 10, all selector-constraint tasks are scheduled in
the first time slot of block 〈p, u, v〉. The scheduling is possible as no invalid task is
scheduled in the time slot. The scheduling of all remaining selector tasks can be
done in a similar manner.

Theorem 5.32 If the normalized L[t]-program RQ′ accepts 〈x, k〉, then a valid
scheduling for 〈x′, k′〉 can be constructed from the witness of an accepting com-
putation of RQ′.

Proof. The result can be proved by arguments similar to the proof of Theorem
5.29 and using the results from Lemma 5.31.

5.2.2.5 From a Scheduling to an Accepting Computation

We now extend the basic construction to ensure that existence of a valid scheduling
always implies the existence of a witness of an accepting computation. We describe
the extension for L[t]-programs only.

The arguments presented in the previous section are reversible if the base tasks
from any given base set have an interval-free scheduling. This follows from Lemma
5.33 and 5.34.

153

Lemma 5.33 1. Let sor be an existential marker at level j, 3 ≤ j ≤ t. Let si

be the i-th child marker of sor. If the base tasks for sor have an interval-free
scheduling in a single level-j time phase Pj, then the base tasks for si must
have an interval-free scheduling in the i-th level-(j + 1) time phase in Pj.

2. Let sand be a universal marker at level j − 1 and sor be the existential child
marker of sand, for some j, 3 ≤ j ≤ t. Let the tasks in each ∃1-base set, each
Assign-base set, base set for sor, and base set for each of its ancestors have
interval-free scheduling. The tasks in T〈base,sor〉 must be scheduled in a single
level-j time phase.

Proof. (Part i) The number of base tasks for sor is 2 + l × PhaseLen′L(j + 1)
whereas the number of base tasks for a child marker of sor is PhaseLen′L(j+1). The
base tasks of all children of sor form a total order such that the first base task for
the i-th child has higher precedence than the last base task of the (i− 1)-th child.
All these base tasks have to be scheduled after startor and before endsor . The result
follows from the fact that the number of ordered base tasks for all l children of sor

equals the number of time slots available for them.

(Part ii) Since the base tasks for sor have an interval-free scheduling, all con-
straint tasks for sor must be scheduled in the same time slot where the second
base task for sor has been scheduled. We show that the second base task must be
scheduled in the second time slot of some level-j time phase under the specified
constraints. This is sufficient for our purpose, as the number of base tasks for sor

is the same as the length of a level-j time phase.

Let t2 be the time slot where the second base task (and hence all the constraint
tasks) for sor are scheduled. We prove the result by induction.

Base Case: The base case for induction corresponds to level 3. The base
and constraint tasks for a level-2 universal marker always have fixed interval-free
scheduling in a single level-2 time phase. No level-2 constraint task is scheduled
in the second time slot of any level-3 time phase. A total of nL

processor − h′(k) − 3
constraint tasks for sor are scheduled in time slot t2. Thus, nL

processor − 1 processors
are needed at t2 to schedule any task that is not related to the level-2 ancestor of
sor. The number of processors occupied by the tasks related to level-2 universal
markers is 1 at the second time slot in each level-3 time phase, and 2 at other time
slots. Thus, t2 must be the second time slot of some (appropriate) level-3 time
phase.

Hypothesis: We use the result from part (i), in the induction hypothesis. We
assume that the base tasks for the level-j′ ancestor of sor are scheduled in a single
level-j′ time phase, 2 ≤ j′ < j.

154

Induction Step: By induction hypothesis, the base tasks for sand have an
interval-free scheduling in a single level-(j − 1) time phase. Let Pj−1 be the level-
(j − 1) time phase. Thus, no constraint task for sand is scheduled in the second
time slot of any level-j time phase in Pj−1.

A total of nL
processor− h′(k)− 3(j− 1)/2 constraint tasks for sor are scheduled at

time slot t2. The base and constraint tasks for all ancestors of sor are also scheduled
in all time slots in Pj−1. The number of such tasks is 3(j − 3)/2 + 1 for the second
time slot in any level-j time phase, and 3(j − 3)/2 + 2 for the others (follows from
the proof of Lemma 5.26). The total number of base tasks for all l child markers of
sor is exactly PhaseLen′L(j)−2 and all of them must be scheduled after startsor and
before endsor . One base task for a child marker will be scheduled at t2. For time
slot t2, a total of nL

processor − 3(j − 1)/2 + 2 processors are needed for scheduling all
tasks that are not related to any ancestor of sor. Thus, t2 must coincide with the
second time slot in some level-j time phase in Pj−1.

Let P be a level-t time phase such that the base tasks for some level-t marker
have an interval-free scheduling in P . Lemma 5.33 states that, if the base tasks in
each base set have an interval-free scheduling, then the base tasks for a given level-j
marker must be scheduled in a single level-j time phase. Under these conditions,
the number of base and constraint tasks that are scheduled in any time slot of P
is given by Corollary 5.27.

Lemma 5.34 Let y be a level-t node in C and let Py be the corresponding level-t
time phase. RQ′ accepts in branch y if the following conditions hold.

1. The base tasks for some level-t marker have an interval-free scheduling in Py.

2. The ∃1-base tasks for each ∃1-step have an interval-free scheduling.

3. The assign-base tasks and the selector-base tasks for each intermediate
node of the assignment graph for y have an interval-free scheduling.

4. The number of base and constraint tasks for any marker that are scheduled in
any time slot of Py is 3(t− 1)/2, for odd t and 3(t− 2)/2 + 1, for even t.

Proof. Let m be the level-t marker whose base tasks are scheduled in Py.
Since the base tasks for m have an interval-free scheduling, the i-th base task for
m is scheduled in the i-th time slot of Py, 1 ≤ i ≤ PhaseLen′(t). Also, by the
precedence rules, all test tasks are scheduled in the (l + 2)-th time slot of Py. We
consider the cases for odd t and even t separately.

155

t is odd: The number of processors occupied in the (l + 2)-th time slot of Py is

h′(k)︸ ︷︷ ︸
∃1-bases

+ h′(k) + g(k) + 1︸ ︷︷ ︸
test tasks

+ g(k)︸︷︷︸
assign-bases

+ 1︸︷︷︸
assign-constraint

+ 3(t− 1)/2︸ ︷︷ ︸
marker-tasks

.

Thus, no invalid task is scheduled in the (l + 2)-th time slot of Py as there is
no processor available for them. This fact implies that the outcome of each
test along the unique accepting execution path for y causes the computation
to continue along the accepting execution path.

t is even: The number of processors occupied in the (l + 2)-th time slot of Py is

h′(k)︸ ︷︷ ︸
∃1-bases

+ 2︸︷︷︸
test tasks

+ g(k)︸︷︷︸
assign-bases

+ 1︸︷︷︸
assign-constraint

+ 3(t− 2)/2 + 1︸ ︷︷ ︸
marker-tasks

.

Thus, at most h′(k)+g(k)−1 invalid tasks can be scheduled at the second time
slot of Py. This fact implies that, in the nondeterministic checking branch
corresponding to y, the outcome of at least one test causes the computation
to accept.

The consistency among the values for the assign operations follow from the
scheduling of the selector-tasks. By the hypothesis, all selector-base tasks
for an assign operation x are scheduled consecutively. Thus, all of the associated
selector-constraint tasks are scheduled in the same time slot where the second
of these selector-base tasks is scheduled. By an argument similar to that for
Lemma 5.33 part (ii), the selector-constraint tasks must be scheduled in the
first time slot t1,〈x,u,v〉 of assign time phase 〈x, u, v〉, for some u, v, 0 ≤ u, v ≤ l−1.
The number of processors occupied in t1,〈x,u,v〉 (for even t) is as follows.

h′(k)︸ ︷︷ ︸
∃1-bases

+ h′(k) + g(k) + 1︸ ︷︷ ︸
selector-constraints

+ g(k)︸︷︷︸
assign-bases

+ 1︸︷︷︸
selector-bases

+ 3(t− 2)/2 + 1︸ ︷︷ ︸
marker-tasks

Hence, no invalid task is scheduled in time slot t1,〈x,u,v〉. This ensures that the
values represented by the scheduling for the operands of x are consistent with the
value represented for x. The argument for odd t is similar.

However, our basic construction does not guarantee that the base tasks of each
base set have interval-free scheduling in a given valid scheduling. We, therefore,
extend the basic construction to ensure that any valid scheduling represents an

156

accepting computation of R on 〈x, k〉. The extension is based on the following idea
originally used by Bodlaender and Fellows [2].

Let X = {x1, x2, . . . , xm} be a set of tasks in the basic construction such that
the tasks in X have a total order defined on them. Also, let a total of DX time
slots be available for scheduling all tasks in X, for some DX > |X|. In the extended
characterization we create (DX−m+1) copies of the set X, each containing exactly
m tasks. Let Xj =

{
x〈j,1〉, x〈j,2〉, . . . , x〈j,m〉

}
, 1 ≤ j ≤ (D −m + 1), be the copies of

X. The i-th element x〈j,i〉 of Xj is interpreted as the j-th copy of the i-th element
xi of the original set X, for each j, 1 ≤ j ≤ (DX −m + 1). A total of DX −m sets
of padding tasks Pj =

{
p〈j,1〉, p〈j,2〉, . . . , p〈j,DX−m〉

}
, 2 ≤ j ≤ (DX −m + 1) are also

added to the set of tasks. Thus the j-th padding set together with the j-th copy
Xj of X contains a total of DX tasks. The precedence of the padding tasks in a
set Pj are defined so that (i) the tasks in Pj have a total order, (ii) the precedence
of any task in Pj is higher than that of any task in Xj−1, and (iii) the precedence
of any task in Pj is lower than the precedence of any task in Xj. The purpose of
introducing the padding tasks is to ensure that the first task in Xj is scheduled at
least DX time slots later than the first task of Xj−1, 2 ≤ j ≤ (DX −m + 1). Let
Xextended be the set of all these tasks, i.e.

Xextended =

DX−m+1⋃
j=1

Xj ∪
DX−m+1⋃

j=2

Pj.

A time phase P, consisting of DX time slots, was allocated for scheduling the
tasks in X in the basic scheduling. The corresponding time phase Pextended in
the extended scheduling consists of (DX −m + 1)DX time slots. Thus a total of
((DX −m + 1)DX − (DX −m)) tasks from Xextended are to be scheduled in (DX −
m+ 1)DX time slots. We view Pextended as consisting of (DX −m+1) copies of the
time phase P, each copy consisting of DX time slots as before.

Lemma 5.35 There exists at least one copy Pj of P such that each of the DX time
slots in Pj has one task from Xextended.

Proof. Since the tasks in Xextended have a total order, any time slot in
Pextended can have at most one task from Xextended. The tasks in Xextended occu-
pies ((DX −m + 1)DX − (DX −m)) time slots leaving (DX −m) empty time slots
in Pextended. Hence, at most (DX−m) copies of P can have a time slot not occupied
by some task from Xextended.

157

Let 〈x′′, k′′〉 be the modified instance that incorporates the extended scheduling
features. The total number of base tasks for l sibling universal markers equals
the number of time slots available for them, in case the base tasks for the parent
existential marker have an interval-free scheduling. Thus, copying is not needed for
universal markers (i.e. at even levels of alternation). On the other hand, the number
of base tasks for existential markers (i.e. at odd levels of alternation) is always less
than the number of time slots available to schedule them. Thus copying is needed
at all odd levels of alternation. Copying is needed for the ∃1-bases, assign-bases
and selector-bases as well.

For convenience, we use Lengtht to denote the number of time slots in a level-t
time phase in the new context.

Lengtht = [(l − 1)g(k) + 1]︸ ︷︷ ︸
copies for Assign-base

×


2 + 2l + g(k)l3 × (

g(k)l3 − l + 1
)

︸ ︷︷ ︸
copies for Selector-base




The phase lengths in the extended scheduling is defined as follows.

PhaseLenL(j) =





Lengtht, j = t

2 + l × PhaseLenL(j + 1), 2 ≤ j ≤ (t− 1), j is odd

2 + l((l − 1)PhaseLenL(j + 1) + 1)PhaseLenL(j + 1),
2 ≤ j ≤ (t− 1), j is even

We also define the number of copies required for a level-j time phase.

NoOfCopiesL(j) =





1, j is even

(l − 1)× PhaseLenL(j) + 1, j is odd

The total number of processors remains the same as before. However, the num-
ber of time slots, the number of time phases, and the number of base sets of tasks
for markers and ∃1-steps change as a result of the extension.

The extended scaffold SL,extended is generated by DFT-MAIN-L-EXT. The dead-
line D is defined as |SL,extended|. Note that

158

Algorithm 5.10: Construction of the extended scaffold string SL,extended for normalized
L[t]-programs

DFT-MAIN-L-EXT
Output l − 1 padding symbols Pad∃1

foreach i = 1 to (h′(k)× (l − 1) + 1) do /* copying for ∃1-steps */

DFT-L-EXT(rootC , 2, 〈i〉)
end

End DFT-MAIN-L-EXT

DFT-L-EXT(node x, level j, copy c = 〈c1, c2, . . . , cj〉)
foreach child y of x do

Output symbol start〈〈x,y〉,c〉
for i = 1 to NoOfCopies(j) do

if x is at level-t then
for r = 1 to (l − 1)g(k) + 1 do /* copies for assign-base tasks */

Let c′ = 〈c1, . . . , cj , i, r〉
Output l padding symbols pad〈〈x,y〉,c′〉
Output l value symbols val〈〈x,y〉,c′〉
for r′ = 1 to g(k)l3 − l + 1 do /* copies for selector base tasks */

Let c′′ = 〈c1, . . . , cj , i, r, r
′〉

for p = 1 to g(k) do
/* for each intermediate node in this assignment graph */
for u = 0 to l − 1 do

/* for each value for the left operand of p */
for v = 0 to l − 1 do

/* for each value for the right operand of p */
Output l assign symbols assign〈〈x,y〉,c′′,p,u,v〉

end
end

end
end

end
else

DFT-L-EXT(y,j + 1,〈c1, . . . , cj , i〉)
end

if j is odd then
Output NoOfCopies(j)− 1 padding symbols BasePad〈〈x,y〉,〈c1,...,cj ,i〉〉

end
end
Output symbol end〈〈x,y〉,c〉

end
End DFT-L-EXT

159

|SL,extended| = l − 1 + ((l − 1)h′(k) + 1)l × PhaseLen(2).

The copying at the top level is needed to ensure that the tasks in each of the
h′(k) base sets for the ∃1-steps, have an interval free scheduling in at least one copy.

Lemma 5.36 If RQ′ accepts 〈x, k〉 then a valid scheduling for 〈x′′, k′′〉 can be con-
structed from any given witness.

Proof. Theorem 5.29 states that a basic scheduling can always be constructed
for 〈x′, k′〉 from a witness. In the extended scheduling, the basic scheduling may be
repeated for all copies with the padding tasks placed in the time slots in-between.
This becomes straightforward as the number of padding tasks is exactly equal to
the number of corresponding time slots.

Lemma 5.37 If 〈x′′, k′′〉 has a valid scheduling then an accepting computation of
RQ′ can be constructed from the scheduling.

Proof. The result follows from Lemma 5.33, 5.34 and 5.35, and the fact that
the level-2 base tasks always have an interval-free scheduling.

Theorem 5.38 RQ′ accepts 〈x, k〉 if and only if 〈x′′, k′′〉 has a valid scheduling.

Proof. The result follows from Lemma 5.36 and 5.37.

160

Chapter 6

Finite-State Machines and Classes
of Fixed-Parameter Intractable
Problems

In this chapter, we analyze the fixed-parameter complexity of two kinds of problems
on finite-state machines. We first analyze the Intersection problem which asks
for a common input string that is accepted by all finite-state machines in a given
collection. We then analyze the Membership problem which asks whether there
exists an input string of a certain length that is accepted by a given finite-state
machine in a specified number of steps. The definitions of the relevant finite-state
machines can be found in the appendix.

6.1 Bounded Intersection Problems

The Intersection problem takes a set of machines as input and asks for a
common input string that is accepted by all of them. We analyze the fixed-
parameter complexity of the Intersection problem for various machine mod-
els including finite automata, pushdown automata, and (multi-tape) Turing ma-
chines. We show that certain parameterized versions of the problems are complete
or hard for different levels of the L-hierarchy. We consider the L[2]-hardness of
Bounded Deterministic Pushdown Automata Intersection (defined later)
as the most significant among these results. The results for other machine models
build upon this L[2]-hardness result.

161

We start with the Intersection problem on deterministic finite-state au-
tomata and on I/O-deterministic finite state transducers.

6.1.1 Deterministic Finite Automata

The Bounded DFA Intersection problem takes the descriptions of multiple
deterministic finite automata (DFA) as input and asks for a string (if there exists
any) that is accepted by all the DFA. The problem has different versions depending
on the choice of the parameter. The version we are interested in is the following.

Bounded DFA Intersection (BDFAI)

Input: An input alphabet Σ, a set A of m DFA A = {A1, . . . , Am} on Σ,
a positive integer k. Let Qi be the set of states of DFA Ai, 1 ≤ i ≤ m.
Also, let q be max { |Qi| | 1 ≤ i ≤ m }.
Parameter: k, q.
Question: Is there a string x ∈ Σk such that x is accepted by all DFA
A1, . . . , Am?

BDFAI is known to be W [2]-hard and in W [P] [17, 41]. We show that BDFAI
is in W [2] and hence is W [2]-complete.

Theorem 6.1 BDFAI is W [2]-complete.

Proof. Since the hardness result is already known [41], proving that BDFAI
is in W [2] is sufficient for our purpose. We construct an extended W [2]-program
RBDFAI to decide BDFAI. RBDFAI existentially guesses the common input string
of length k, universally selects a DFA Ai, and simulates the computation of Ai on
the existentially guessed string. RBDFAI accepts in the checking phase if and only if
Ai accepts the existentially guessed input string. The algorithm is essentially the
same as the one described by Cesati [17]. We present the details as Algorithm 6.1.

Correctness: By the universal selection of a DFA at Step 3, RBDFAI accepts if
and only if the checking phase accepts for all DFA Ai, 1 ≤ i ≤ m. By Step 4(b),
RBDFAI accepts in the checking phase if and only if the simulation of DFA Ai on
the existentially guessed input string ends in acceptance in exactly k steps.

Resource Usage: The nondeterministic guess operations satisfy the Con-
straints AW3, T1, and TU1 for t = 2. The size of the transition table T is q log q |Σ|

162

Algorithm 6.1: An extended W [2]-program RBDFAI to decide BDFAI.

1. Preprocessing: Set aside O(q log q |Σ|) space for constructing the
transition table of a single DFA later in the computation.

2. Nondeterministic block 1: Existentially guess k symbols (representing
a string of length k) from the alphabet Σ and store them in guess registers
g1, . . . , gk, respectively.

3. Nondeterministic block 2: Universally guess a DFA Ai from A.

4. (a) Construct the transition table Ti for Ai in the space reserved during
the preprocessing phase. Let u, u′ be states in Qi, v be a symbol in Σ.
Since |Qi| ≤ q, each state can be coded by log q bits. For each bit
position b, 1 ≤ b ≤ log q, the value of Ti[〈u, b〉, v] is set to 1 if Ai, while
at state u and reading input symbol v, makes a transition to state u′

and b-th bit of the coding of u′ is 1. Ti[〈u, b〉, v] is set to 0 otherwise.
The construction of Ti can be done in parametric polynomial time and
independent of the ∃1-values.

(b) Simulate Ai on the existentially guessed string of length k. Let the
guess register gk+1 contain the universally guessed value that refers to
DFA Ai. To begin with, RBDFAI assigns the coding of the start state of
Ai to the ∀2-register gk+1.

Repeat the following k times.

i. Let u be the present state stored in gk+1 and the input symbol to
be read by Ai is in ∃1-register gj, for some j, 1 ≤ j ≤ k.

ii. Compute the log q bits for the next state u′. In order to retrieve
bit b, RBDFAI modifies the value in gk+1 so that it represents 〈u, b〉.
The b-th bit of u′ is obtained by performing a jzero test on gk+1

and gj.

iii. Construct the next state u′ from the computed bits and assign u′

to gk+1.

If Ai reaches an accepting state after k iterations then accept in this
branch, and reject otherwise.

163

which is bounded by a polynomial in n. The computation for each entry in T takes
O(1) time. Thus the entire transition table can be constructed (Step 4(a)) in poly-
nomial time. Step 4(b) simulates k steps of the selected DFA Ai. Simulation of
each step of Ai takes O(log q) steps. Thus the number of steps in any computation
branch is bounded by a parametric polynomial time (Constraint AW1). RBDFAI

needs to store indices to the table T , indices to the DFA Ai, and symbols from Σ.
Each of these values is at most n and hence Constraint AW2 is also satisfied. Only
Step 4(b-ii) uses jzero tests to retrieve the bits of the next state from T . The
number of such tests is O(k log q). Since both k and q are parameters, Constraint
EW1 is satisfied.

The proof of Theorem 6.1 shows how the extended characterization of W [t]
classes can be utilized to construct natural algorithms to decide parametric prob-
lems. The relaxed time bound on the checking phase gives R enough time to
construct the transition table after the universal branching. Moreover, direct ac-
cess to the universally guessed value allows R to simulate the computation of the
selected DFA in a natural way.

A straightforward modification of the proof of Theorem 6.1 shows that the
Intersection problem on I/O-deterministic finite state transducers (FST) is
W [2]-complete.

I/O-deterministic FST Intersection

Input: A set of i/o-deterministic finite state transducers A = {A1, . . . , Am}
such that all of them have common input and output alphabets Σi and
Σo, respectively, a string sin ∈ Σ+

i . Let Qi be the set of states of FST
Ai.
Parameter:

m, |sin|, |Σi| (FST-I-1).

|sin|, |Σi|, q = max(|Qi| , 1 ≤ i ≤ m) (FST-I-2) .

Question: Is there a string sout ∈ Σ
|sin|
o such that each FST Ai ∈ A

accepts sin/sout?

Wareham has shown that FST-I-1 and FST-I-2 are W [1]-hard and W [2]-hard,
respectively [41]. However, no membership results are known for these problems.
We show that FST-I-1 is in W [1] and FST-I-2 is in W [2].

164

Corollary 6.2 FST-I-2 is W [2]-complete.

Proof sketch. An extended W [2]-program RFST-I-2 can be constructed to
decide FST-I-2 in a similar way as RBDFAI was constructed in Theorem 6.1. The
only difference is that RFST-I-2 uses the universal register to store both the current
state and the current input symbol in sin.

Corollary 6.3 FST-I-1 is in W [1] and hence is W [1]-complete.

Proof sketch. We construct a W [1]-program RFST-I-1 to decide FST-I-1.
RFST-I-1 works in the same way as RFST-I-2. In the checking phase, RFST-I-1 computes
the next state directly as it has complete access to the ∃1-values. Also, instead of
universally selecting an FST, RFST-I-1 simulates the FSTs one at a time. Since the
number of FSTs is also a parameter, RFST-I-1 can perform the simulation within
the time bound.

An extended W [2]-program RFST-I-2 can perform (c log n + h log n/α(n)) ∃1-
tests in the checking phase, where c > 0 is a constant, α is any unbounded non-
decreasing function, and h is any function dependent on the parameters only. Since
each nondeterministic computation branch simulates |sin| computation steps of the

corresponding FST, RFST-I-2 can perform (c log n+h log n/α(n)
|sin|) ∃1-tests per simulated

step, allowing q to be as large as f(k)n
c+h/α(n)

|sin| . Similar argument holds for the
BDFAI problem, as well. We do not know whether the problems remain in W [2]
if we allow q to be unbounded. In the next subsection, we show that the intersection
problem on deterministic pushdown automata with unbounded state set is in L[2].
Thus, the corresponding problems on DFA and I/O-deterministic FST are in L[2]
and are W [2]-hard.

6.1.2 Pushdown Automata

We first consider the Bounded Intersection problem on deterministic push-
down automata (DPDA). Later we extend the results for nondeterministic PDA.
The problem can be parameterized in several ways, as follows.

165

Bounded Deterministic PDA Intersection

Input: A set A = {A1, . . . , Am} of deterministic PDA over a common
input alphabet Σ, a common stack alphabet Γ, and a positive integer
k.
Parameter:
m (BDPDAI-1).
k (BDPDAI-2).
m, k (BDPDAI-3).
m, |Σ| (BDPDAI-4).
Question: Is there a string s ∈ Σk such that s is accepted by all PDA
in A?

The problems BDPDAI-1 and BDPDAI-4 are hard for L[t], t ≥ 1, and
W [SAT]. These follow from the corresponding hardness results for the Bounded
DFA Intersection problem, parameterized by the number of DFA and the al-
phabet size (Corollary 5.18). BDPDAI-3 is W [1]-complete. The hardness result
follows from the W [1]-hardness of the corresponding Intersection problem on
DFA [41]. The membership result follows from Corollary 6.5 and the fact that L[1]
equals W [1]. Here, we show that BDPDAI-2 is L[2]-complete.

Lemma 6.4 BDPDAI-2 is in L[2].

Proof. We construct a basic L[2]-program RBDPDAI-2 to decide BDPDAI-2.
The program existentially guesses the symbols in the common string s, universally
selects a DPDA Ai ∈ A, and finally simulates the computation of Ai on s determin-
istically. In order to simulate each step of Ai in constant time, RBDPDAI-2 organizes
the transition table of Ai in a suitable format. The details are given in Algorithm
6.2.

Correctness: By the universal selection of a DPDA at Step 3, RBDPDAI-2

accepts if and only if the checking phase accepts for all Ai, 1 ≤ i ≤ m. The
checking phase (Step 4) for Ai accepts if and only if the simulation of Ai on s
(guessed existentially in Step 2) ends in acceptance.

Resource Usage: Construction of the lookup tables for all DPDA (Step 1)
can be done in polynomial time. The remaining steps (Steps 2-4) can be performed
in O(k) time. Thus RBDPDAI-2 satisfies Constraints AW1 and BL1. The nondeter-
ministic operations (Steps 2 and 3) satisfy the Constraints AW3, T1, and TU1 for
t = 2. RBDPDAI-2 needs to store the indices to the transition tables, the indices to

166

Algorithm 6.2: An L[2]-program RBDPDAI-2 to decide BDPDAI-2.

1. Preprocessing: Organize the transition rules of each DPDA into a lookup
table so that given a state, the next input symbol and the symbol on top of
stack; the next state and the next action of the DPDA (with regard to the
stack) can be determined in constant time. Arrange the transition tables of
all DPDA in a canonical way.

2. Nondeterministic block 1: Existentially guess the k symbols in the
string s. Let the guess registers g1, . . . , gk store the symbols, respectively.

3. Nondeterministic block 2: Universally select a DPDA Ai ∈ A.

4. Simulate the computation of Ai on s as follows.

(a) Reserve registers rb, . . . , rb+k, starting from some appropriate index b,
to simulate the stack of Ai.

(b) Reserve a standard register rtop to represent the stack pointer.

(c) Reserve a standard register rin to represent the input head of Ai.

(d) Reserve a register rcur to represent the current state. Set rcur to be the
initial state of PDA Ai.

(e) Repeat the following computation at most |s| = k times.

i. Retrieve the next state and the next action based on the current
state rcur, next input symbol grin

, and the symbol rrtop currently on
top of the stack. Update rcur, rin, rrtop , and rtop accordingly. Note
that the existentially guessed value grin

is accessed directly in this
computation step.

(f) Accept in this universal branch if and only if Ai accepts s.

167

the PDA, the head positions for a selected PDA, and symbols and states of a PDA.
As each of these values is bounded by a polynomial, RBDPDAI-2 satisfies Constraint
AW2.

Corollary 6.5 BDPDAI-3 is in L[1].

Proof. The membership result for BDPDAI-3 is obtained by replacing the
universal selection of a DPDA by a loop that selects the m DPDA one by one for
simulation. Since m is a parameter, the number of steps in the checking phase
remains within the bound.

Lemma 6.6 Bounded Deterministic PDA Intersection, parameterized by
the length of the common string, is hard for L[2].

Proof. We construct a generic reduction A to prove the hardness result. Let
Q be any parametric problem in L[2]. By Theorem 2.14, there exists a normalized
L[2]-program RQ to decide Q. Given an input 〈x, k〉, the reduction A constructs
an instance 〈x′, k′〉 of BDPDAI-2 such that RQ accepts 〈x, k〉 if and only if 〈x′, k′〉
is in the language of BDPDAI-2. Let h be the function that bounds the number
of steps in the checking phase of RQ.

The reduction A works as follows.

1. A simulates the preprocessing phase of the computation of RQ on 〈x, k〉 in
parametric polynomial time.

2. Let us assume that RQ makes k existential guesses, each from the range
[0 . . . (fp− 1)]. A constructs an alphabet

Σ = {t} ∪ {σij | 1 ≤ i ≤ k, 0 ≤ j ≤ (fp− 1) }
for 〈x′, k′〉. The symbol σij signifies that the ith existential guess is the value
j. The symbol t represents a blank whose significance will be explained later.

3. Let us consider the computation along some universal checking branch nb
of RQ. Let b be the unique rejecting execution path for nb. The reduction
A constructs a deterministic PDA Dnb,b to represent the computation in the
nondeterministic branch nb along execution path b. The construction of Dnb,b

is described later.

168

4. A constructs k additional DPDA D∃,j, 1 ≤ j ≤ k, one for each ∃1-register, to
ensure that the string s has the desired structure. We give the description of
the DPDA D∃,j later.

We now describe the construction of the deterministic PDA Dnb,b that corre-
sponds the computation of RQ on 〈x, k〉 along execution path b in universal branch
nb. Since, b is a rejecting execution path, Dnb,b rejects if and only if all tests
(jequal or jzero) along b cause the computation to continue along b. Recall that
the computation along b for a universal branch nb can be represented by an assign-
ment graph Gnb,b (Definition 2.21). The reduction A constructs the DPDA Dnb,b so
that Dnb,b performs a depth-first traversal of the binary forest Fnb,b corresponding
to Gnb,b. Dnb,b stores the value of the universal guess in its state and replaces each
reference to the universal guess register in Fnb,b by the corresponding universally
guessed value 1 during the computation. Dnb,b resolves each reference to an exis-
tential register by reading the existentially guessed value from the input string s.
Dnb,b uses its stack to store information for backtracking. Let g be a node in Fnb,b.
After finishing the traversal of the left subtree of g, Dnb,b pushes the computed
value vg,left into the stack and starts the traversal of the right subtree of g. Once
the traversal of the right subtree of g is complete, Dnb,b pops vg,left and combines
it with the value computed for the right subtree to determine the value at node g.
We provide the details of the construction below for completeness.

For each internal node g of Fnb,b, DPDA Dnb,b includes the following states in
its state set.

• {〈g, ↓〉}: This state indicates that internal node g has been reached for the
first time during the depth-first traversal of Fnb,b.

• { 〈g, vr,↖〉 | 0 ≤ vr ≤ (fp− 1) }: The state 〈g, vr,↖〉 indicates that the depth-
first traversal of the right subtree of g has ended and the value computed for
the right operand of node g is vr.

• { 〈g, vl,↗〉 | 0 ≤ vl ≤ (fp− 1) }: The state 〈g, vl,↗〉 indicates that the depth-
first traversal of the left subtree of g has ended and the value computed for
the left operand of node g is vl.

For each leaf node gleaf of Fnb,b, Dnb,b includes a single state 〈gleaf , ↓〉 which indi-
cates that the depth-first traversal has reached gleaf for the first time. In addition,
Dnb,b includes the following states.

1A knows the values in all universal guess registers.

169

• qaccept: This is the unique accepting state of Dnb,b.

• qreject: This is the unique rejecting state of Dnb,b.

A constructs the transition function δnb,b of Dnb,b, as follows.

• δnb,b(〈g, ↓〉,t, ε) → 〈〈gl, ↓〉, ε〉 : Here, g is an internal node of Fnb,b and gl is
the left child of g. When Dnb,b reaches an internal node g for the first time,
it starts a depth-first traversal of the subtree rooted at gl.

• δnb,b(〈g, vl,↗〉,t, ε) → 〈〈gr, ↓〉, vl〉 : Here, g is an internal node of Fnb,b and gr

is the right child of g. The state 〈g, vl,↗〉 indicates that Dnb,b has finished the
traversal of the subtree rooted at the left child of g and the value computed
for the left operand of g is vl. Dnb,b pushes vl onto the stack and begins the
depth-first traversal of gr.

• δnb,b(〈g, vr,↖〉,t, vl) → 〈〈gparent, vg,↗〉, ε〉 : Here, both g and gparent are in-
ternal nodes of Fnb,b and g is the left child of gparent. The state 〈g, vr,↖〉
indicates that the traversal of the subtree rooted at the right child of g has
finished and the value computed for the right operand of g is vr. The symbol
vl on the stack indicates that the value of the left operand of g is vl (computed
before). Let, vg be the value computed at node g with left and right operands
vl and vr, respectively. Dnb,b backtracks to gparent with vg as the value of the
left operand of gparent.

• δnb,b(〈g, vr,↖〉,t, vl) → 〈〈gparent, vg,↖〉, ε〉 : This is similar to the previous
scenario. The only difference is that g is the right child of gparent.

• δnb,b(〈gleaf , ↓〉, σij, ε) → 〈〈gparent, vj,↗〉, ε〉: Here, gleaf is a leaf node of Fnb,b

and is the left child of its parent gparent. Let us assume that gleaf corresponds
to the ith existential register. The input symbol σij indicates that the ith
existential guess is the value j. PDA Dnb,b backtracks to gparent with vj as the
value of its left operand.

• δnb,b(〈gleaf , ↓〉, σij, ε) → 〈〈gparent, vj,↖〉, ε〉: This is similar to the previous case
with the exception that gleaf is the right child of gparent.

• δnb,b(〈gtest, vr,↖〉,t, vl) → 〈〈gnext, ↓〉, ε〉 : The internal node gtest represents a
binary test (jequal or jzero) and the test-outcome for the value-pair 〈vr, vl〉
causes the computation to continue along b. Dnb,b starts the traversal of the
subtree rooted at gnext which immediately follows gtest in depth-first traversal
order of Fnb,b.

170

• δnb,b(〈gtest, vr,↖〉,t, vl) → 〈qaccept, ε〉 : Here, the test-outcome for the value-
pair 〈vr, vl〉 causes the computation to branch away from the rejecting execu-
tion path b. Dnb,b moves to the accept state qaccept.

• δnb,b(〈glast, vr,↖〉,t, vl) → 〈qreject, ε〉 : Here, glast corresponds to the last bi-
nary test along b and the outcome of the test for value-pair 〈vr, vl〉 causes the
computation to continue along b and reject eventually. Dnb,b moves to the
reject state qreject.

• δnb,b(qreject, σ ∈ Σ, ε) → 〈qreject, ε〉: Once entered, PDA Dnb,b remains in the
reject state until the entire input is read.

• δnb,b(qaccept, σ ∈ Σ, ε) → 〈qaccept, ε〉: Once entered, PDA Dnb,b remains in the
accept state until the entire input is read.

In any other situation (for example, Dnb,b expects a t at the input but the input
head reads some other symbol), PDA Dnb,b moves to the rejecting state qreject.

The constructions of the remaining k PDA D∃,i, 1 ≤ i ≤ k are straightforward.
Each D∃,i scans the entire input s and ensures that the following conditions are
satisfied.

• All σij, appearing in s, have the same j value.

• A σij, for some j, appears exactly where the DPDA Dnb,b expects a σij, for
some j, in s.

Since the size of Fnb,b is at most 2h(k), PDA Dnb,b needs to compute for O(2h(k))
steps. The length of the common string s, therefore, is O(2h(k)). The number of
DPDA is at most (fp+k) while the number of states and the length of the transition
function description for each DPDA are bounded by some parametric polynomial.
Hence, the reduction A can construct the instance of BDPDAI-2 in parametric
polynomial time.

The construction described above shows that Dnb,b accepts if and only if some
test-outcome causes the computation in nb to branch away from the rejecting ex-
ecution path b. Thus, a string s is accepted by all DPDA in D if and only if s
represents a valid assignment to the existential registers of RQ (ensured by DPDA
D∃,i, 1 ≤ i ≤ k) and none of the rejecting execution paths in any universal branch
is taken (ensured by DPDA Dnb,b, for all nb and b). This happens exactly when the
L[2]-program RQ accepts.

171

Theorem 6.7 Bounded Deterministic PDA Intersection is L[2]-complete.

Proof. This follows from Lemma 6.4 and Lemma 6.6.

Note that the proof of Lemma 6.4 can be modified in a straightforward way to
show that the Bounded Multi-tape DTM Intersection problem, parameter-
ized by the length of the common input string and the maximum number of tapes
in a DTM, is in L[2]. A multi-tape deterministic Turing machine can simulate
the computation on a single-tape deterministic Turing machine or a deterministic
PDA in proportional time. Thus the Bounded Intersection problem on DPDA,
DTMs and multi-tape DTMs (with appropriate parameters) are all L[2]-complete.
Unfortunately, a precise degree of parameterized intractability is not known for the
corresponding problem on DFA. The problem is known to be W [2]-hard [41] and
in L[2] (Lemma 6.4). Whether the problem is L[2]-hard or is in W [2] remains as
an interesting open question.

We now analyze the Bounded Intersection problem on nondeterministic
machines. For nondeterministic machine models, we include the bound on the
number of computation steps as part of the definition. The reason is that, unlike
the deterministic case, a nondeterministic machine M may have ε-transitions. Thus,
the bound on the length of the common input string does not necessarily bound the
number of computation steps in an accepting computation of M . The Bounded
Intersection problem on nondeterministic pushdown automata, for any fixed
function h, is defined as follows.

h-bounded PDA Intersection

Input: A set A = {A1, . . . , Am} of PDA over a common input alphabet
Σ, a common stack alphabet Γ and a positive integer k.
Parameter:
m (h-BPDAI-1).
k (h-BPDAI-2).
m, k (h-BPDAI-3).
m, |Σ| (h-BPDAI-4).
Question: Is there a string s ∈ Σk such that s is accepted by all PDA
in A in at most h(k) steps?

The L[t]-hardness of the Intersection problem on deterministic PDA implies
that h-BPDAI-1 and h-BPDAI-4 are L[t]-hard. An important consequence of
the proof of Lemma 6.6 is that h-Bounded PDA Intersection, parameterized
by the length of the common string, is hard for L[3].

172

Corollary 6.8 h-Bounded PDA Intersection, parameterized by the length of
the common input string (h-BPDAI-2), is hard for L[3].

Proof. We modify the reduction A, constructed in the proof of Lemma 6.6,
to show the L[3]-hardness of h-BPDAI-2. Let Ah-BPDAI-2 be the new reduction.
Ah-BPDAI-2 works exactly like A until A is about to construct a deterministic PDA
Dnb,b for execution path b in universal branch nb. Ah-BPDAI-2 constructs a nondeter-
ministic PDA Nnb, instead, so that Nnb represents the rest of the computation in
the universal branch nb. Let us consider a modified version of Dnb,b, denoted by
Dnb,i,b which is constructed as follows. Dnb,i,b assumes the existence of an ∃3-register
whose value is set to i. The computation of Dnb,i,b is similar to Dnb,b otherwise.
Ah-BPDAI-2 constructs a nondeterministic PDA Nnb such that it can simulate any
DPDA Dnb,i,b, 0 ≤ i ≤ (fp− 1). Nnb nondeterministically selects a Dnb,i,b and then
simulates Dnb,i,b deterministically. The nondeterministic step of Nnb corresponds to
the ∃3-guess in the universal branch nb.

However, it is not obvious whether h-BPDAI-2 can be decided by an L[3]-
program. The difficulty arises from the fact that a nondeterministic PDA can
make h(k) existential guesses whereas a universal branch in the computation of an
L[3]-program can make a constant number of existential guesses only. However
h-BPDAI-2 can be decided by an A[3]-program as such programs can have h(k)
∃3-steps. By similar arguments, one can show that h-bounded Intersection
problem on nondeterministic Turing machines, with parameter the length of the
common string and the maximum number of tapes, is L[3]-hard and in A[3].

6.1.3 Remarks

Table 6.1.3 summarizes the fixed-parameter complexity of the Intersection prob-
lem on different computation models for different choice of parameters. It is in-
teresting to note the common structure of all the reductions in this subsection.
The reduction essentially constructs a machine (FA, PDA, TM) for each nondeter-
ministic branch in the checking phase. The operation (intersection, in this case)
corresponds to the universal branching in case of W [2] or L[2]. The actual machine
model differs depending on the nature of computation in the final part of the check-
ing phase. Other generic reductions also follow a similar pattern. For example, in
the case of the LCS problem, the reduction constructs one string for each nondeter-
ministic branch. The universal step of the corresponding AW -program translates
to the verification that the solution is a subsequence of all the constructed strings.

173

Finite-state Parameter Parameter Parameter Parameter
machine k, q k m m , Σ

DFA W [2]-complete W [2]-hard L[t]-hard L[t]-hard
in L[2] t ≥ 1 t ≥ 1

NFA W [2]-complete L[t]-hard L[t]-hard
I/O-deterministic W [2]-complete L[t]-hard L[t]-hard

FST
DPDA L[2]-complete L[t]-hard L[t]-hard
PDA L[3]-hard, L[t]-hard L[t]-hard

in A[3]
DTM L[2]-complete L[t]-hard L[t]-hard
NTM L[3]-hard L[t]-hard L[t]-hard

in A[3]

Table 6.1: Parameterized complexity of Bounded Intersection problem for
different computation models

In general, the reduction constructs an object for each nondeterministic checking
branch and defines an operation that corresponds to the universal step (for W [2]
or L[2]). The constructed objects may be graphs, matrices and so on.

The results related to automata can be extended to higher levels in two ways.
We can either define a new operation that takes care of the additional levels of
alternation or we can construct machines that have the additional alternation as
part of their computation. The later observation suggests that the higher levels of
both the W -hierarchy and the L-hierarchy can be related to parametric problems
on alternating finite automata. Note that the reductions cannot be extended to
A[2] (or A[t]) classes in a naive way. The number of nondeterministic steps in
an A[2]-program can be Ω([fp]k), in general. A fixed-parameter reduction cannot
construct Ω([fp]k) automata in parametric polynomial time. However, this does not
rule out the possibility that the defined operation (DFA intersection for example)
on the constructed objects may involve k universal steps.

Another interesting aspect of the hardness results related to intersection problem
on finite automata is the size of the state set. In case of DFA and I/O-deterministic
FST, the Bounded Intersection problems are W [2]-complete as long as the
number of states is O(f(k)nc/k+h(k)/α(n)). This follows from extending the member-
ship proofs of Theorem 6.1 and Corollary 6.2, where the sizes of the state sets were
parameters. We can also view these results as restrictions of the L[2]-membership

174

proofs of the corresponding versions with unbounded state sets. We believe that
similar properties exist for other parametric problems, as well. This result is stated
formally in Theorem 4.7.

6.2 Bounded Membership Problem on Two-way

Machines

Given a finite state machine M , the Bounded Membership problem asks for
a string that is accepted by M in a bounded number of steps. In this section,
we analyze the complexity of the Bounded Membership problem on finite state
machines having two-way input tapes. We define the problem for any fixed function
h, as follows.

h-Bounded 2DFA Membership

Input: A two-way DFA M , an input alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in h(k) steps?

h-bounded Membership problem for PDA with two-way input tape and for
NTMs, with number of tapes bounded by the parameter, can be defined similarly.
We show that all these problems are W [1]-complete. In contrast, the correspond-
ing problem for one-way DFA can be solved in deterministic polynomial time. We
begin by showing that h-bounded NTM Membership is in W [1]. The W [1]-
membership of the corresponding problems on 2DFA and 2PDA, follow immedi-
ately.

Lemma 6.9 h-bounded NTM Membership is in W [1].

Proof. We construct a W [1]-program RNTM to show the membership result,
as follows.

1. Preprocessing:

Reorganize the transition function of the input NTM M so that the next
action of M can be computed in constant time from the current state, current
input symbol, and the current symbol on the worktape.

175

2. Nondeterministic block 1:

Existentially Guess k symbols for the string x, h(k) symbols for the non-
deterministic choices in the computation of M .

3. Simulate M on x for h(k) steps with the existentially guessed symbols as the
witness (if needed).

In the other direction, proving W [1]-hardness of h-bounded 2DFA Member-
ship will suffice as the computation of a 2DFA can be simulated by the other
machines in proportional time.

Lemma 6.10 h-bounded 2DFA Membership (h-B2DFAM) is W [1]-hard.

Proof. Let Q be a problem in W [1]. By Theorem 2.13, there exists a nor-
malized W [1]-program RQ to decide Q. We construct a fixed-parameter reduction
A that takes an input 〈x, k〉 and constructs an instance 〈x′, k′〉 of the h-B2DFAM
such that RQ accepts 〈x, k〉 if and only if 〈x′, k′〉 is in h-B2DFAM. Let M be
the constructed 2DFA. M considers the k symbols in the input string as the k
existential guesses of RQ, the ith symbol being the ith ∃1-guess of RQ. M stores
the values in the standard registers of RQ in its states. During the computation,
M verifies that each test along the unique accepting branch of RQ is satisfied by
the corresponding symbol pair in the input string x. M scans x back and forth to
retrieve the required pair of symbols.

We include a brief description of how M verifies that a test is satisfied. Among
others, M includes the following states.

- q〈jeq−start,i,j〉: This state signifies that a jequal test on ∃1-registers i and j
needs to be performed.

- q〈jeq−find1,i,j,c〉: This state signifies that the ith symbol of the input string needs
to be read and the input head is currently on the c-th symbol.

- q〈jeq−restore1,i,j,vi,c〉: This state signifies that the ith symbol of the input string
is vi, the input head is currently on the c-th symbol, and the head needs to
be moved to the first input symbol.

176

- q〈jeq−find2,i,j,vi,c〉: This state signifies that the ith symbol of the input string is
vi, the jth input symbol needs to be read and the input head is currently on
the c-th symbol.

- q〈jeq−restore2,i,j,vi,vj ,c〉: This state signifies that the ith and the jth input symbols
are vi and vj, respectively, the input head is currently on the c-th symbol,
and the head needs to be moved to the first input symbol.

- q〈jeq−success,i,j〉: This state signifies that the jequal test on ∃1-registers i and
j is satisfied by the ith and jth symbol in the input string.

Simulation of jequal i j d is performed as follows.

- M starts the simulation while in state q〈jeq−start,i,j〉, with the input head on
the first input symbol.

- M goes through the i−1 states, q〈jeq−find1,i,j,c〉, 1 ≤ c ≤ i−1, each time moving
the head one position to the right, until it reaches the state q〈jeq−find1,i,j,i〉.

- If the ith input symbol is vi, M moves to state q〈jeq−restore1,i,j,vi,i〉 and starts
moving the input head back to the first position.

- M goes through the states q〈jeq−restore1,i,j,vi,c〉, i ≥ c > 1, each time moving the
head one position to the left, until state q〈jeq−restore1,i,j,vi,1〉 is reached.

- M moves to state q〈jeq−find2,i,j,vi,c〉, moves the head to the jth input symbol,
read the symbol, and move the head back to the leftmost position, as before.
If the jth input symbol is vj, M moves to state q〈jeq−restore2,i,j,vi,vj ,1〉 at the end
of this phase.

If 〈vi, vj〉 falsifies the test, M rejects. Otherwise, M starts simulating the next
test. M accepts if all tests are satisfied. Since the number of tests in the unique
accepting branch is at most h(k), the entire computation takes time h′(k), for some
function h′.

Corollary 6.11 h-Bounded Two-way DFA Membership, h-Bounded Two
-way PDA Membership, and h-Bounded Single-tape NTM Membership
are W [1]-complete.

177

We also analyze the complexity of the following unbounded version of the mem-
bership problem, which is defined for some fixed function f and constant c.

(f, c)-Short 2DFA Membership

Input: A two-way DFA M , an input alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in f(k)nc

steps?

Theorem 6.12 Short 2DFA Membership is W [SAT]-hard and in W [P].

Proof. It suffices to construct an AW -program RS2DFAM for an ARAM to
show the membership result (Theorem 1.3). Given the description of a 2DFA as
input, and k as the parameter, RS2DFAM existentially guesses k symbols for the
input string and then simulates the 2DFA for f(k)nc steps. Since RS2DFAM runs on
an ARAM, it can access all ∃1-values directly. This allows RS2DFAM to perform the
simulation in a straightforward way.

In order to show the hardness result, we construct a generic reduction from
Weighted Formula SAT 2. Given a tree-circuit (or a formula) C, we construct
a 2DFA M such that C has a weight k satisfying assignment if and only if M
accepts some string of length k in f(k)nc steps.

M considers the k symbols in the input string as the k true variables in a truth
assignment for C, the ith symbol representing the ith true variable. M performs a
depth-first traversal on C. At each leaf, M verifies whether any of the true variables
satisfy the literal at the leaf in case the literal is positive. For negative literals, M
needs to ensure that none of the true variables falsify the negative literal.

The construction for the depth-first traversal is similar to that in the proof of
Lemma 6.6. The construction for the checking at the leaves is similar to that in
Theorem 6.10.

2No machine characterization for W [SAT] is known.

178

Chapter 7

Concluding Remarks

In this thesis, we have developed a computational view of parameterized complexity
theory. The major contributions of this thesis are (i) a natural machine character-
ization for the W [t] classes, t ≥ 2, (ii) a normalized machine characterization for
the W [t]-classes, t ≥ 1 and (iii) a normalized machine characterization for the L[t]
classes, t ≥ 2.

The basic results in parameterized complexity theory have been reestablished
in the computational framework in a much simpler and more intuitive way. The
new proof techniques are similar to those in the theory of NP -completeness. For
example, the W [1]-completeness proof of Weighted Antimonotone 2-CNF
SAT resembles the NP -completeness proof of SAT (Cook’s Theorem). The proof
of the Normalization Theorem is constructed as a direct extension to the W [1]-
completeness proof. In addition, new structural results have also been derived using
the computational models. The new results significantly strengthen the previous
fundamental results. For example, we have shown that under certain restrictions,
WCS on circuits of unbounded size and depth can be decided by W [2]-programs.

The natural characterization of W [t] allows us to establish upper bounds by
constructing natural algorithms. Nontrivial upper bounds beyond W [2] for nat-
ural problems have been rare. With the new characterization, we have been able
to show new membership results for levels 2 to 5 of the W -hierarchy. The new
upper bounds are significantly stronger than the previous known bounds and in
many cases, they match the corresponding lower bounds, giving new completeness
results. For example, we have shown that Subset Sum is in W [3] and Maximal
Irredundant Set is in W [4] (and in W ∗[3]), significantly improving the previous
upper bound of W [P] in both cases. We have also shown that the Reachability
Distance in Vector Addition Systems (Petri Nets) is in W [5]. No upper

179

bound was known previously, for this problem. We have shown that the exact and
general versions of Binary Integer Linear Programming are in W [3] and
W [5] respectively. These upper bounds are important as many natural problems
can be reduced to Subset Sum or Binary Integer Linear Programming
(Exact Cheap Tour, and Short Cheap Tour, for example).

On the other hand, the normalized variants of the computational models are
useful for proving lower bounds. Proving lower bounds beyond the second level of
the W -hierarchy and beyond the first level of the L-hierarchy require the construc-
tion of generic reductions. The normalized variants of the computational models
provide a uniform starting point for the generic reductions for all levels of the W -
hierarchy and the L-hierarchy. Because of the uniformity, generic reductions based
on the normalized programs can easily be extended to higher levels. Thus, one may
start by establishing lower bounds for classes at the bottom level of the hierarchy
and then extend the proof to higher levels to establish stronger lower bounds. The
idea has been utilized in the L[t]-hardness proofs for LCS and PCMS. Our re-
sults related to the L[t]-hardness and L[2]-completeness are the first such results
known for problems other than the defining Model Checking problems. The
new W [SAT]-hardness result for LCS shows that most of the problems previously
known to be W [t]-hard, are in fact W [SAT]-hard (Corollary 5.18).

Partial simulation of the checking phase of a program is the key ingredient of all
generic reductions in this thesis. Unfortunately, the technique does not extend to
the A[t] classes. The reason is that an A[t]-program may have Ω(nk) nondetermi-
nistic checking branches and a deterministic algorithm cannot generate all of them
in parametric polynomial time. As mentioned in Chapter 7, A[t]-hardness results
may be derived by defining operations or properties that deal with the parameter-
bounded alternation in the checking phase. For example, the A[2]-complete prob-
lem Clique Dominating Set [19] deals with the ∀2-guess steps by requiring a
solution verifier to check that some property holds for all cliques of a certain size.
We would like to address the A[t]-hardness issue in our future work.

Our categorization results reveal an interesting phenomenon exhibited by many
natural problems including Bounded DPDA Intersection (BPDAI) and
Weighted Binary Integer Programming -II. The parameterized complexity
of these problems vary if the upper bound on certain properties of the problems are
varied, keeping the solution space as it is. For example, BPDAI, with no bound
on the state set and the size of the stack alphabet, is L[2]-complete. If the size of
the state set and stack alphabet have upper bounds of the form f(k)nc/k+h(k)/α(n),
the problem becomes W [2]-complete.

A motivation behind the development of the theory of parameterized complexity

180

was to refine the classical measure of intractability. With the new computational
models, we believe that precise categorization of parametric problems will become
much easier. The next logical step would be to investigate whether the intractable
problems belonging to the bottom levels of the hierarchies are “easier to solve”
than those belonging to higher levels. Can we develop new techniques to deal with
problems in, say W [1] or W [2], in parametric polynomial time? Of course, a
prerequisite of analyzing such questions is to formalize the notion of “solution” and
“easiness”.

For the purpose of answering such questions, we have started developing a frame-
work for parametric approximation. Independently, the same framework has been
proposed in several recent works [14, 22, 30]. In this framework, the parametric
optimization (minimization, in particular) version of a problem Q is defined as
follows.

f(k, n)-min Q

Input: 〈x, k〉.
Parameter: k.
Output: Either (i) a solution for Q of cost at most f(k, n), or (ii) a
statement that the cost of the minimum solution is strictly greater than
k.

Downey and Fellows showed that the Minimum Independent Dominating
Set cannot be approximated to any fixed ratio (in the parameterized framework)
unless W [2] = FPT [30]. Similar hardness of approximation results with respect to
W [1] were shown for other problems including Minimum Turing Machine Ac-
ceptance, and Minimum Weighted Circuit SAT for a slightly different notion
of parameterized approximation [22]. In the other direction, Cai and Xuang showed
that all problems in MaxSNP are fixed-parameter tractable in this new framework
[14]. We are interested in finding similar positive results. The motivation comes
from the fact that the optimization version of the W [2]-complete problem Domi-
nating Set and Set Cover can be approximated to an approximation ratio of
log n in deterministic polynomial time. We would like to investigate whether fixed-
parameter approximation algorithm with f(k, n) ≤ O(k log n) can be constructed
for other problems in W [2], based on the previous approximation results. Fixed-
parameter reductions in general are not approximation-preserving. Thus, W [2]-
membership of a problem Q does not necessarily imply that Q is fixed-parameter
approximable to O(log n) ratio. We would like to characterize fixed-parameter in-
tractable problems (problems in W [2], in particular) based on their fixed-parameter
approximation property.

181

We conclude by mentioning that our computational framework is complemen-
tary to the existing characterizations. The original circuit characterization by
Downey, Fellows, and other co-researchers laid the foundation for the theory of
parameterized complexity. The recent work by Chen, Flum, and Grohe presents a
logical view of the framework in terms of Model Checking problems. The com-
putational model allows us to approach the problems from an algorithmic point of
view. We believe that all three views (circuit, model-checking, and computational)
will co-exist, each providing its own advantages, and all working together for the
advancement of the theory of fixed-parameter intractability.

182

Appendix

Finite State Machines

We briefly present the definitions of different finite state machines that are
relevant to the results in this thesis. Details can be found in any standard text
such as the book by Hopcroft and Ullman [38] and the article by Wareham [41].

Finite Automaton

A finite automaton is a 5-tuple (Q, Σ, δ, q0, F), where

- Q is a finite set of states,

- Σ is the input alphabet consisting of a finite number of input symbols,

- q0 ∈ Q is the starting state,

- F ⊆ Q is the set of final states,

- δ is a transition function from Q×(Σ ∪ {ε}) to 2Q (the power set of Q), where
ε denotes the empty string.

At each step, a finite automaton (FA) reads the next input symbol (or do not
read any input symbol at all keeping the input head in the same place) and changes
its state as allowed by the transition function. An FA accepts an input string if
and only if the FA is in one of the final states when the end of input is reached.

An FA as defined above is also known as a nondeterministic finite automaton
(NFA). A standard finite automaton can read its input once. In other words, the
input head of a standard finite automaton is not allowed to move backwards. A

183

two-way nondeterministic finite automaton (2-NFA) is a nondeterministic finite
automaton whose input head can move in both directions. The transition function
of a 2-NFA is a mapping from Q× Σ to 2Q×{left,right}.

A finite automaton is deterministic if the transition function maps Q×Σ to Q.
A deterministic finite automaton (DFA) is a two-way deterministic finite automaton
(2-DFA) if the input head can move in both directions.

Finite State Transducer

The output from a finite automaton is either accept or reject. In contrast, a
finite state transducer can produce a string as output. Formally, a finite state
transducer is a 6-tuple (Q, Σin, Σoutδ, q0, F), where

- Q is a finite set of states,

- Σin is the input alphabet consisting of a finite number of input symbols,

- Σout is the output alphabet consisting of a finite number of output symbols,

- q0 ∈ Q is the starting state,

- F ⊆ Q is the set of final states,

- δ is a transition function from Q×Σ?
in to 2Q×Σ?

out (the power set of Q×Σ?
out).

A finite state transducer is I/O-deterministic if for each state q ∈ Q, each
(sub)string xin ∈ Σ?

in, and each (sub)string xout ∈ Σ?
out, there can be at most one

state q′ ∈ Q such that (q′, xout) is in δ (q, xin).

Pushdown Automata

A pushdown automaton (PDA) is an extension to finite automaton. In ad-
dition to all the components of an FA, a PDA includes a stack to store infor-
mation during the computation. Formally, a pushdown automaton is a 6-tuple
(Q, Σin, Σstackδ, q0, F), where

- Q is a finite set of states,

- Σin is the input alphabet consisting of a finite number of input symbols,

- Σstack is the stack alphabet consisting of a finite set of symbols,

184

- q0 ∈ Q is the starting state,

- F ⊆ Q is the set of final states,

- δ is a transition function from Q× (Σin ∪ {ε})×Σstack to 2Q×Σstack (the power
set of Q× Σstack), where ε denotes the empty string.

Similar to an FA, at each step, a PDA reads the next input symbol (or does not
read any input symbol at all), changes its state in accordance with the transition
function. In addition, a PDA can insert a symbol on the top of stack, or update or
delete the symbol currently on top of stack. A PDA is deterministic if the transition
function δ is a mapping from Q× Σin × Σstack to Q× Σstack.

Definitions of Parametric Problems with Associ-

ated Bounds

Vertex Cover

Input: A graph G = (V,E), and an integer k.
Parameter: k.
Question: Does G have a vertex cover of size k? A vertex cover for G
is a subset S of V such that each edge has at least one of the adjacent
vertices in S.

Bounds: In FPT , by S. Buss, reported by J. Buss and J. Goldsmith [9] .

Clique

Input: A graph G, and an integer k.
Parameter: k.
Question: Does G have a clique of size k? A clique for G is a subset S
of V such that all vertices in S are pairwise adjacent in G.

Bounds: W [1]-complete, Downey and Fellows [26].

185

Dominating Set (DS)

Input: A graph G, and an integer k.
Parameter: k.
Question: Does G have a dominating set of size k? A dominating set
for G is a subset S of V such that each vertex in V is either included
in S or is adjacent to some vertex in S.

Bounds: W [2]-complete, Downey and Fellows [25].

Longest Common Subsequence (LCS)

Input: An alphabet Σ, a set of strings S = {s1, . . . , sm}, an integer k.
Parameter:
m (LCS-1).
k (LCS-2).
m, k (LCS-3).
m, |Σ| (LCS-4).
Question: Is there a string x of length k such that x is a subsequence
of each string in S?

Bounds: (for LCS-2 and LCS-3)

LCS-2: W [2]-hard (Bodlaender et al. [3]), in L[2] (Flum and Grohe [37]).

LCS-3: W [1]-complete (Bodlaender et al. [3]).

LCS-1 and LCS-4:

Previous lower bound:

W [t]-hard for all t > 0, by Bodlaender et al. [3].

New lower bound:

L[t]-hard for all t > 0, W [SAT]-hard, Theorem 5.11.

Precedence-Constrained Multiprocessor Scheduling (PCMS)

Input: A set of unit length tasks T , a partial order ≺ on the tasks in T ,
an integer D specifying the deadline, an integer k specifying the number
of processors.
Parameter: k.
Question: Is there a mapping A : T → {1, . . .D} such that for all
t1, t2 ∈ T , t1 ≺ t2 ⇒ A(t1) < A(t2), and for all i, 1 ≤ i ≤ D, |A−1(i)| ≤
k?

186

Previous lower bound: W [2]-hard, by Bodlaender and Fellows [5].

New lower bound: L[t]-hard for all t > 0, Theorem 5.19.

Previous upper bound: None.

New upper bound: None.

Bounded DFA Intersection

Input: An input alphabet Σ, a set A = {A1, . . . , Am} of m DFA on Σ, a
positive integer k. Let Qi be the state set of DFA Ai, 1 ≤ i ≤ m. Also,
let q = max { |Qi| | 1 ≤ i ≤ m }.
Parameter:
m (BDFAI-1).
k (BDFAI-2).
m, k (BDFAI-3).
m, |Σ| (BDFAI-4).
k, q (BDFAI-5).
Question: Is there a string x ∈ Σk such that x is accepted by all DFA
A1, . . . , Am?

BDFAI-2:

Lower bound: W [2]-hard, by Wareham [41].

Previous upper bound: In W [P], by Cesati [17].

New upper bound: In L[2], follows from Lemma 6.4 .

BDFAI-3:

Bounds: W [1]-complete. (Hardness by Wareham [41], membership by Ce-
sati [17]).

BDFAI-1 and BDFAI-4:

Previous lower bound: W [t]-hard for all t > 0, by Wareham [41].

New lower bound: L[t]-hard for all t > 0, W [SAT]-hard, Corollary 5.18.

187

BDFAI-5:

Lower bound: W [2]-hard, by Wareham [41].

Previous upper bound: In W [P], by Cesati [17].

New upper bound: In W [2] (Theorem 6.1).

I/O-deterministic FST Intersection

Input: A set of i/o-deterministic finite state transducers A = {A1, . . . , Am}
such that all of them have common input and output alphabets Σi and
Σo respectively, a string sin ∈ Σ+

i . Let Qi be the state set of FST Ai.
Parameter:

m, sin, |Σi| (FST-I-1)

|sin|, |Σi|, Q = max(|Qi| , 1 ≤ i ≤ m) (FST-I-2)

m, |Σi|, |Σo| (FST-I-3).

Question: Is there a string sout ∈ Σ
|sin|
o such that each FST Ai ∈ A

accepts sin/sout?

FST-I-1:

Lower bound: W [1]-hard, by Wareham [41].

Previous upper bound: None.

New upper bound: In W [1], Corollary 6.3.

FST-I-2:

Lower bound: W [2]-hard, by Wareham [41].

Previous upper bound: None.

New upper bound: In W [2], Corollary 6.2.

FST-I-3:

Upper bound: None.

Previous lower bound: W [t]-hard, for all t > 0, by Wareham [41].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary
5.18.

188

I/O Deterministic FST Composition

Input: A set A = {A1, . . . , Ak} i/o-deterministic finite state transducers
having the same input and output alphabet Σ, an order {i1, . . . , ik}
specifying how these FSTs need to be composed, and a string u ∈ Σ+..
Parameter: k.
Question: Is there a sequence of strings {s1, . . . , sk} with s0 = u and
si ∈ Σ|u| such that Aij accepts sj−1/sj?

Upper bound: None.

Previous lower bound: W [t]-hard, for all t > 0, by Wareham [41].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Bounded Deterministic PDA Intersection

Input: A set A = {A1, . . . , Am} of deterministic PDA having a common
input alphabet Σ and a common stack alphabet Γ, and a positive integer
k.
Parameter:
m (BDPDAI-1).
k (BDPDAI-2).
m, k (BDPDAI-3).
m, |Σ| (BDPDAI-4).
Question: Is there a string s ∈ Σk such that s is accepted by all PDA
in A?

BDPDAI-2:

Previous lower bound: W [2]-hard, follows from W [2]-hardness of BDFAI-
2 (Wareham [41]).

Previous upper bound: None.

New bounds: L[2]-complete, by Lemma 6.6 and 6.4.

BDPDAI-3:

Bounds: W [1]-complete. Hardness follows from W [1]-hardness of BDFAI-
3 (Wareham [41]), membership by Corollary 6.5.

189

BDPDAI-1 and BDPDAI-4:

Previous lower bound: W [t]-hard for all t > 0, by Wareham [41].

New lower bound: L[t]-hard for all t > 0, W [SAT]-hard, follows from the
hardness results for BDFAI-1 and BDFAI-4, respectively (Corollary 5.18).

h-bounded PDA Intersection

Input: A set A = {A1, . . . , Am} of PDA over a common input alphabet
Σ, a common stack alphabet Γ and a positive integer k.
Parameter:
m (h-BPDAI-1).
k (h-BPDAI-2).
m, k (h-BPDAI-3).
m, |Σ| (h-BPDAI-4).
Question: Is there a string s ∈ Σk such that s is accepted by PDA Ai,
for all i, in at most h(k) steps?

h-BPDAI-2:

Previous bounds: None.

New lower bound: L[3]-hard, by Corollary 6.8.

New upper bound: In A[3], follows from Lemma 6.4 and the discussion
following Corollary 6.8.

h-BPDAI-3:

Bounds: W [1]-complete, by Corollary 6.11.

h-BPDAI-1 and h-BPDAI-4:

Previous lower bound: W [t]-hard for all t > 0, by Wareham [41].

New lower bound: L[t]-hard for all t > 0, W [SAT]-hard, follows from the
hardness results for BDFAI-1 and BDFAI-4, respectively (Corollary 5.18).

190

h-Bounded Single-tape NTM Membership

Input: A single-tape nondeterministic Turing machine M with input
alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in h(k) steps?

Previous bound: None.

New bound: W [1]-complete, Corollary 6.11.

h-Bounded Two-way DFA Membership

Input: A two-way DFA M with input alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in h(k) steps?

Previous bound: None.

New bound: W [1]-complete, Corollary 6.11.

h-Bounded Two-way PDA Membership

Input: A two-way PDA M with input alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in h(k) steps?

Previous bound: None.

New bound: W [1]-complete, Corollary 6.11.

Maximal Irredundant Set

Input: A graph G = (V,E), a positive integer k.
Parameter: k.
Question: Is there a set V ′ ⊆ V such that (1) each vertex u ∈ V ′ has
a private neighbour, and (2) V ′ is not a proper subset of any other set
V ′′ ⊆ V that also has this property?

191

Previous lower bound: W [2]-hard, by Bodlaender and Fluiter [8].

New lower bound: None.

Previous upper bound: in W [P], by Cesati [17].

New upper bound: In W [4] (Theorem 5.3), in W ∗[3] (Corollary 5.4).

Reachability Distance for Vector Addition Systems (Petri Nets)

Input: A set T = (~x1, . . . , ~xm) of m vectors, each consisting of n integers,
a non-negative starting vector ~s = (s1, . . . , sn), a non-negative target
vector ~t = (t1, . . . , tn), a positive integer k.
Parameter: k.
Question: Is there a set of k indices i1, . . . , ik such that ~t = ~s+

∑k
j=1 ~xij

and each of the n integer components in each of the k intermediate sums
is non-negative?

Previous lower bound: W [1]-hard, Downey et al. [29].

New lower bound: None.

Previous upper bound: None.

New upper bound: In W [5], Theorem 5.2.

Short 2DFA Membership

Input: A two-way DFA M , an input alphabet Σ, an integer k.
Parameter: k.
Question: Is there a string s ∈ Σk such that M accepts s in parametric
polynomial time?

Previous lower bound: None.

New lower bound: W [SAT]-hard, Theorem 6.12.

Previous upper bound: None.

New upper bound: In W [P], Theorem 6.12.

192

Subset Sum

Input: A set of integers X = {x1, . . . , xm}, an integer s .
Parameter: A positive integer k.
Question: Is there a set X ′ ⊆ X such that |X ′| = k and sum of all the
integers in X ′ is exactly s?

Previous lower bound: W [1]-hard, Downey and Fellows [26].

New lower bound: None.

Previous upper bound: In W [P], Fellows and Koblitz [35].

New upper bound: In W [3], Theorem 5.1 .

Weighted Binary Integer Programming

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are binary.
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Bounds: W [2]-complete, Downey and Fellows [25, 28].

Weighted Binary Linear Integer Programming - I (BLIP-I)

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are at most f(k)nc/k+h(k)/α(n).
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Previous lower bound: W [2]-hardness follows from the hardness of
Weighted Binary Integer Programming, Downey and Fellows [25, 28].

New lower bound: None.

Previous upper bound: None.

New upper bound: In W [2], Corollary 5.6.

Weighted Binary Linear Integer Programming - II (BLIP-II)

193

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X, an integer k, such that the
coefficients in the constraints are at most f(k)nh(k).
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Previous lower bound: W [2]-hardness follows from the hardness of
Weighted Binary Integer Programming, Downey and Fellows [25, 28].

New lower bound: None.

Previous upper bound: None.

New upper bound: In L[2], Theorem 5.5.

Weighted Binary Linear Integer Programming - III (BLIP-III)

Input: A set of variables X = {x1, . . . , xm}, a set of linear constraints
C = {c1, . . . , cl} on the variables in X.
Parameter: k.
Question: Is there a binary solution of weight-k to the system of linear
equations?

Previous lower bound: W [2]-hardness follows from the hardness of
Weighted Binary Integer Programming, Downey and Fellows [25, 28].

New lower bound: None.

Previous upper bound: None.

New upper bound: In W [5], Theorem 5.8.

(Directed) Colored Cutwidth

Input: A graph G = (V, E), an edge coloring c : E → {1, . . . , r}, a
positive integer k.
Parameter: k.
Question: Is there a 1:1 linear layout f : V → {1, . . . , |V |} such that
for each color j ∈ {1, . . . , k} and for each i, 1 ≤ i ≤ |V | − 1, we have
|{uv : c(uv) = j and f(u) ≤ i and f(v) ≥ i + 1}| ≤ r?

194

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [6, 7].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Domino Treewidth

Input: A graph G = (V,E), a positive integer k.
Parameter: k.
Question: Is the domino treewidth of G at most k?

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [4].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Feasible Register Assignment

Input: A directed acyclic graph G = (V, E), a positive integer k, a
register assignment r : V → {R1, . . . , Rk}.
Parameter: k.
Question: Is there a linear ordering f of G, and a sequence S0, S1, . . . S|V |
of subsets of V , such that S0 = ∅, S|V | contains all vertices of in-degree
0 in G, and for all i, 1 ≤ i ≤ |V |, f−1(i) ∈ Si, Si \ {f−1(i)} ⊆ Si−1

and Si−1 contains all vertices u for which (f−1(i), u) ∈ E, and for all j,
1 ≤ j ≤ k, there is at most one vertex u ∈ Si with r(u) = Rj?

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [4].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Module Allocation on Graphs of Bounded Treewidth

Input: A set of modules M = {1, . . . , m}, a set of processors P =
{1, . . . , p}, a cost function e : (M × P) → R which specifies the cost
of executing a module on a processor, a communication cost function
C : (M × P × M × P) → R such that C(x, p, x′, p′) represents the
communication cost when modules x and x′ are assigned to processors p
and p′ respectively, a communication graph G = (M, E), and a positive
real number l.
Parameter: treewidth(G) = k.
Question: Does there exist an assignment of modules to processors such
that the total cost of execution is less than or equal to l?

195

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [4].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Intervalizing Colored Graphs or DNA Physical Mapping

Input: A graph G = (V,E) and a coloring c : V → {1, . . . , k}.
Parameter: k.
Question: Does there exist a supergraph G′ = (V,E ′) of G which is
properly colored by c and which is an interval graph?

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [7].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

Triangulating Colored Graphs or Perfect Phylogeny

Input: Graph G = (V,E), a coloring c : V → {1, . . . , k}.
Parameter: k.
Question: Does there exist a supergraph G′ = (V,E ′) of G which is
properly colored by c and which is triangulated?

Previous lower bound: W [t]-hard, for all t > 0, by Bodlaender et al. [7].

New lower bound: L[t]-hard, for all t > 0, and W [SAT]-hard, Corollary 5.18.

196

Bibliography

[1] K.A. Abrahamson, R.G. Downey, and M.R. Fellows,“Fixed-parameter
Tractability and Completeness IV: On Completeness of W [P] and PSPACE
Analogs,” Annals of Pure and Applied Logic 73 (1995), 235-276.

[2] H.L. Bodlaender, R.G. Downey, M.R. Fellows, M. T. Hallett, and H. T. Ware-
ham,“Parameterized complexity analysis in computational biology,” CABIOS
Computer Applications in the Biosciences 11, 1 (1994), 49 - 57.

[3] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H. T. Wareham,“The param-
eterized complexity of sequence alignment and consensus,” Theoretical Com-
puter Science 147, 1-2 (1995), 31 - 54.

[4] H.L. Bodlaender and J. Engelfriet,“Domino Treewidth,” Technical Report UU-
CS-1994-11, Department of Computer Science, Utrecht University, Utrecht, the
Netherlands.

[5] H.L. Bodlaender and M.R. Fellows,“ W[2]-hardness of precedence constrained
K-processor scheduling,” Operations Research Letters 18, 2 (1995), 93-97.

[6] H.L. Bodlaender, M.R. Fellows, and M.T. Hallett, “Beyond NP -completeness
for Problems of Bounded Width: Hardness for the W -hierarchy (extended ab-
stract)”, STOC 26, 1994, 449–458.

[7] H.L. Bodlaender, M.R. Fellows, M.T. Hallett, H.T. Wareham, and T.J. Warnow,
“The Hardness of Perfect Phylogeny, Feasible Register Assignment and Other
Problems on Thin Colored Graphs”, Theoretical Computer Science 244, 1-2
(2000), 167 - 188.

[8] H.L. Bodlaender and B. de Fluiter, “Intervalizing k-colored graphs”, Proceedings
of the 22th International Colloquium on Automata, Languages, and Program-
ming (ICALP95), Lecture Notes in Computer Science, 944, 1995, 8798.

197

[9] J. Buss and J. Goldsmith, “Nondeterminism within P ,” SIAM Journal on Com-
puting 22, (1993) 560–572.

[10] J. Buss and T. Islam, “Simplifying the Weft Hierarchy,” Theoretical Computer
Science 351, (2006) 303–313.

[11] J. Buss and T. Islam, “Algorithms in the Weft Hierarchy,” Theory of Comput-
ing Systems, 2006.

[12] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows, “On the Structure of Param-
eterized Problems in NP”, Information and Computation 123, (1995), 38–49.

[13] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows, “The Parameterized Com-
plexity of Short Computation and Factorization,” Proceedings of the Sacks Con-
ference 1993, in Archive for Math Logic, 1997.

[14] L. Cai and X. Huang, “Fixed-parameter Approximation: Conceptual Frame-
work and Approximability Results,” in Proceedings of the International Work-
shop on Parameterized and Exact Computation (IWPEC 2006), Lecture Notes
in Computer Science 4169, 2006, 96–108.

[15] L. Cai and D. Juedes, “On the Existence of Subexponential Parameterized
Algorithms”, Journal of Computer and System Sciences 67 (2003), 789–807.

[16] E. Cardoza, R. Lipton, A.R. Meyer,“Exponential space complete problems for
Petri nets and commutative semigroups (Preliminary Report)”, Proceedings of
the eighth annual ACM symposium on Theory of computing, 1976, 50–54.

[17] M. Cesati, “The Turing Way to Parameterized Complexity,” Journal of Com-
puter and System Sciences 67, 4 (2003) 654–685.

[18] A.K. Chandra, D. Kozen, and L.J. Stockmeyer, “Alternation”, Journal of the
ACM 28, 1 (1981), 114–133.

[19] Y. Chen and J. Flum, “Machine Characterization of the Classes of the W-
hierarchy,” in Computer Science Logic: CSL 2003, Lecture Notes in Computer
Science, Springer, 2003, 114–127.

[20] Y. Chen, J. Flum and M. Grohe, “Bounded Nondeterminism and Alternation
in Parameterized Complexity Theory,” in 18th Ann. IEEE Conf. Computational
Complexity, 2003, 18–29.

[21] Y. Chen, J. Flum and M. Grohe, “Machine-based Methods in Parameterized
Complexity Theory,” Theoretical Computer Science 339, 2 (2005), 167–199.

198

[22] Y. Chen, M. Grohe, and M. Grüber, “On Parameterized Approximability,” in
Proceedings of the International Workshop on Parameterized and Exact Compu-
tation (IWPEC 2006), Lecture Notes in Computer Science 4169, 2006, 109–120.

[23] J. Chen and F. Zhang, “On Product Covering in 3-tier Supply Chain Models:
Natural Complete Problems for W [3] and W [4]”, Theoretical Computer Science
363, (2006), 278–288.

[24] R.G. Downey, V. Estivill-Castro, M.R. Fellows, E. Prieto, F.A. Rosa-
mond,“Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut
and Related Problems,” Electronic Notes in Theoretical Computer Science 78,
(2003), 205–218.

[25] R.G. Downey and M.R. Fellows,“Fixed-Parameter Tractability and Complete-
ness I: Basic Results,” SIAM Journal on Computing 24, 4 (1995), 873 - 921.

[26] R.G. Downey and M.R. Fellows,“Fixed-Parameter Tractability and Complete-
ness II: On Completeness for W [1],” Theoretical Computer Science 141, 1-2
(1995), 109 - 131.

[27] R.G. Downey and M.R. Fellows,“Threshold Dominating Sets and an Improved
Characterization of W [2],” Theoretical Computer Science 209 (1998), 123 - 140.

[28] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer, New
York, 1999.

[29] R.G. Downey, M.R. Fellows, B. Kapron, M.T. Hallet, and H.T. Ware-
ham,“Parameterized Complexity of Some Problems in Logic and Linguistics
(extended abstract)”, In Proceedings of the 2nd Workshop on Structural Com-
plexity and Recursion-theoretic Methods in Logic Programming, 1993, Lecture
Notes in Computer Science 813, 1994, 89-101.

[30] R.G. Downey, M.R. Fellows, and C. McCartin, “Parameterized Approximation
Problems,” in Proceedings of the International Workshop on Parameterized and
Exact Computation (IWPEC 2006), Lecture Notes in Computer Science 4169,
2006, 121–129.

[31] R.G. Downey, M.R. Fellows, and K. Regan, “Descriptive Complexity and the
W -hierarchy,” in P. Beame and S. Buss, editors, Proof Complexity and Feasible
Arithmetic, AMS-DIMACS Volume Series 39 (1998), 119–134.

199

[32] R.G. Downey, M.R. Fellows, and U. Taylor,“On the Parametric Complexity of
Relational Database Queries and a Sharper Characterization of W [1],” Com-
binatorics, Complexity and Logic, Proceedings of DMTCS ’96, Springer-Verlag
(1996), 194 - 213.

[33] R.G. Downey, M.R. Fellows, A. Vardy, and G. Whittle,“The Parameterized
Complexity of Some Fundamental Problems in Coding Theory,” SIAM Journal
on Computing 29, 2 (1999) 545 - 570.

[34] J. Esparza and M. Nielsen,“Decidability Issues for Petri Nets - a survey”, J.
Inform. Process. Cybernet. EIK 30, 3 (1994), 143–160.

[35] M. Fellows and N. Koblitz, “Fixed Parameter Complexity and Cryptography,”
Proeedings of the Tenth International Symposium on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes (AAECC’93), Lecture Notes in Com-
puter Science 673, Springer-Verlag (1993) 121–131.

[36] J. Flum and M. Grohe, “Fixed-Parameter Tractability, Definability, and
Model-Checking,” SIAM J. Computing 31,1 (2001), 113–145.

[37] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[38] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1979.

[39] N. Immerman, Descriptive Complexity, Springer-Verlag, 1999.

[40] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[41] H. T. Wareham, “The Parameterized Complexity of Intersection and Compo-
sition Operations on Sets of Finite-State Automata,” International Conference
on Implementation and Application of Automata, Lecture Notes in Computer
Science 2088, Springer (2000), 302–310.

200

