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Abstract

Estimating tail risk measures such as Value at Risk (VaR) and Conditional Tail Ex-

pectation (CTE) is a vital component in financial and actuarial risk management.

The CTE is a preferred risk measure, due to coherence and a widespread acceptance

in actuarial community. In particular we focus on the estimation of the CTE using

both parametric and nonparametric approaches.

In parametric case the conditional tail expectation and variance are analytically

derived for the exponential distribution family and its transformed distributions.

For small i.i.d. samples the exact bootstrap (EB) and the influence function are

used as nonparametric methods in estimating the bias and the the variance of the em-

pirical CTE. In particular, it is shown that the bias is corrected using the bootstrap

for the CTE case. In variance estimation the influence function of the bootstrapped

quantile is derived, and can be used to estimate the variance of any bootstrapped

L-estimator without simulations, including the VaR and the CTE, via the nonpara-

metric delta method. An industry model are provided by applying theoretical findings

on the bias and the variance of the estimated CTE.

Finally a new capital allocation method is proposed. Inspired by the allocation

of the solvency exchange option by Sherris (2006), this method resembles the CTE

allocation in its form and properties, but has its own unique features, such as manager-

based decomposition. Through a numerical example the proposed allocation is shown

to fail the no undercut axiom, but we argue that this axiom may not be aligned with

the economic reality.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Equipped with advances in quantitative techniques and computing technology, the

methodology for determining an appropriate level of required capital or risk capital

of a company has recently received much attention and has been actively investigated

by both academics and practitioners. The importance of this topic lies in the fact

that risk capital is a cushion against unexpected loss that can lead to insolvency. A

company needs to hold adequate capital in order to keep the probability of insolvency

as low as possible, while staying competitive in the capital market. Quantifying the

degree of adequacy and determining the capital amount is thus an important question

to be answered in practical risk management. In the financial industry the parties in-

terested in the determination of risk capital include the management of insurers and

banks, regulators, rating agencies, and investors. Policyholders are also concerned

with the capital level of insurers.

1



Ch. 1 Introduction 2

Currently different countries use different methods to regulate the capital level of

insurers and each different method has its own characteristics. In North America, the

regulatory required capital formulas take the bottom-up approach, meaning that the

total capital is computed by combining risk capital for each line, with certain com-

bining methods to reflect diversification of risks. For example the US has the Risk

Based Capital (RBC) system where the combining method is based on the square-root

formula. Table 1.1 shows the RBC formula for US life insurers. The formula varies

across different insurance classes, but all adopt similar square root formulas; see the

report by the Academy joint RBC task force of AAA Academy Joint RBC Task Force

(2002) for details on this. Also refer to Butsic (1993) or Butsic (1994) for the devel-

opments of the original RBC formula for P&C insurers and Feldblum (1996) for a

general discussion.

From a mathematical perspective the RBC formula recognizes the dependence of

component risks through the square root rule but it is based on specific simplifying

parametric assumptions; in particular it employs a normal loss assumption along with

the (co)variance as the underlying risk measure. These assumptions are criticized

as unrealistic in that the loss distribution often has fatter tails than the normal

distribution and the covariance can only measure linear relationships whereas in

the real world we tend to observe more complicated dependencies. Also each risk

component is calculated by multiplying a risk charge factor to the nominal value of

each asset1; this does not effectively consider the tail region of risks where extreme

1For example, interest risk component C3a in Table 1.1 is computed by policy reserves multiplied

be prescribed factors. These factors are expressed in percentages and vary depending on the risk

characteristics of underlying product.
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C0: Insurance affiliate investment and (non-derivative) off-balance sheet risk

C1cs: Invested common stock asset risk

C1o: Invested asset risk, plus reinsurance credit risk except for assets in C1cs

C2: Insurance risk

C3a: Interest rate risk

C3b: Health provider credit risk

C4a: Business risk - guaranty fund assessment and separate account risks

C4b: Business risk - health administrative expense risk

RBC = C0 + C4a+
√

(C1o+ C3a)2 + (C1cs)2 + (C2)2 + (C3b)2 + (C4b)2

Table 1.1: US RBC framework for life insurer

losses tend to occur. Since its first introduction the RBC system has evolved to reflect

risks more realistically and it is expected that stochastic modeling will be required in

the next version of RBC system, so called C-3 Phase II for variable annuity guarantees;

see, e.g., the report of Life Capital Adequacy Subcommittee (2005) of the American

Academy of Actuaries.

Canada uses the “Minimum Continuing Capital and Surplus Requirements” (or

MCCSR in short) to determine the solvency margin of insurers. The MCCSR of a life

insurer is determined by applying factors for each of five risk components to specific

assets or liabilities and by adding the results (see Table 1.2 for the five components).

Then it is compared to the insurer’s capital which is composed of two tiers; core cap-

ital and supplementary capital. For details, refer to the MCCSR guideline published
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1. Asset default risk (C-1 risk)

2. mortality/morbidity/lapse risks

3. Interest margin pricing risk

4. Changes in interest rate environment risk (C-3 risk)

5. Segregated funds guarantees risk

Required Capital = 1+2+3+4+5

Table 1.2: Canada MCCSR framework

by the Office of the Superintendent of Financial Institutions (2003) of Canada. The

OSFI is currently using stochastic modelling to determine the capital requirements

of the segregated fund guarantees. Stochastic modelling methods for guarantees of

insurance and investment products including segregated funds are discussed in Hardy

(2003).

A survey of different risk capital systems for other countries can be found in

KPMG (2002) or Chapter 10 of Atkinson and Dallas (2000).

International efforts in developing a set of rules for accounting and capital require-

ments for insurance companies have been initiated by the actuarial and accounting

professions and insurance regulators; similar efforts are made on the banking indus-

try as well. One of the basic ideas is to develop a new framework that measures

the inherent risks of companies more realistically, by moving to stochastic model-
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ing. By a stochastic model we mean that the dynamic of a company is captured by

a quantitative model, rather than from traditional factor-based or accounting-based

methods. These approaches have been described by the Basel Committee on Banking

Supervision, the International Association of Insurance Supervisors, the International

Organization of Securities Commissions, and the International Accounting Standards

Board, to name a few. The Society of Actuaries (SoA) has formed the Risk Man-

agement Task Force and the risk management section to develop risk management

resources for actuaries in both traditional and non-traditional fields. A recent book

by McNeil et al. (2005) provides an excellent introduction to the financial risk reg-

ulatory framework of the past and the future, as well as an extensive coverage on

quantitative methods used in risk management.

1.2 Challenges

There are generic challenges around the required capital determination under stochas-

tic modeling. Let us suppose a multi-line insurer has n different business lines with

random losses denoted by X1, X2, . . . , Xn, respectively. It is a convention throughout

this thesis unless otherwise specified that random loss (or variable) covers one period,

i.e., the realization of loss occurs at the end of period, with the period defined to be

a suitable time frame for business cycle and planning, such as one year. Then the

aggregate loss of the company is S = X1 +X2 + . . . +Xn. Statistically the required

capital can be expressed as a functional of the loss, or ρ(S). Typically, assuming loss

is represented by positive number, the required capital will be a number in the right

tail region of the distribution to keep Pr(S > ρ(S)) small, so that the company’s

solvency is assured at some acceptable level. The first challenge is to define a suitable
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functional ρ() that can be reliable and consistent in some sense. We will formally

define the risk measure and give a further discussion on its desirable properties later

in this chapter.

Next, we should be able to properly model the aggregate loss S. Because the

dynamic of S depends on the distribution of random vector (X1, X2, . . . , Xn), or the

multivariate loss distribution, the dependency structure plays a critical role in under-

standing the behavior of the aggregate loss. There have been two major directions on

the parametric side to solve this problem. The first one is to use a class of simple mul-

tivariate distributions that is flexible enough to be applied to long-tailed and skewed

data. The elliptical distribution class and mixtures of, such as the normal, distribu-

tions would be examples. The other approach is to split the multivariate distribution

into the dependency structure and the marginal, and model the former separately.

This is commonly known as the copula method. Additional difficulty arises from the

fact that there is a demand for a more accurate modeling in the tail region, rather

than the part around the centre of the distribution. If one brings in time as another

variable, because much of market information is time-indexed, the problem extends

to multivariate process.

Another interesting problem is the allocation of the capital to each business unit.

Determining the allocated capital for a line is similar to determining the total capital

of company in a sense that both try to do the same thing for a given business entity;

one for a business unit, the other for the whole company. They can be however

quite different because capital allocation is an ex post process, given the total capital.

Given the total capital of an insurer, ρ(S), the capital allocation determines how to
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split this into smaller pieces to be assigned to each business unit. Mathematically,

ρ(S) =
n∑

1

ACi,

where ACi is the allocated capital for line i. Thus the capital allocation is a rule to

determine each ACi given ρ(S). As in the risk measure case, there have been active

research on allocation methods that are reasonable and consistent with some criteria.

We elaborate this topic further in Section 1.6 and Chapter 6.

In the remaining sections in this chapter we provide a brief discussion on each of

these challenging issues, to prepare for the developments throughout this thesis.

1.3 Risk measure as required capital

A risk measure, based on a loss random variable, is designed to tell how risky one’s

business (or random loss) is. In particular it is expressed by a number representing

the risk embedded in the given random variable, or loss. Mean, higher moments,

or quantiles are simple examples. Actuaries have long used various risk measures in

setting adequate premium to charge for insurable risks to cover both expected and

unexpected loss; see, e.g., Bühlmann (1980) and Wang et al. (1997). Recently risk

measures have received attention for another reason, that is, for setting the required

capital of a financial company. The capital is defined as the assets less the liabilities

and serves as the cushion to protect the company from bankruptcy in adverse business

events. So the task of computing an adequate premium for a loss is logically equivalent

to that of determining an adequate capital amount for a company, if the company’s

operation is characterized by a random variable, even though there will be other

economic or practical considerations in its setting. Mathematically a risk measure or
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required capital of a loss random variable S is defined as a function that maps the

random loss to a real number.

Definition 1.1 (e.g., McNeil et al. (2005), pp.238) A risk measure or risk cap-

ital2 of random variable S is a mapping ρ:

ρ : S → R. (1.1)

In the actuarial context, it is natural to think a risk measure as a mapping from a

nonnegative random loss to a nonnegative real value. Since there is no mathematical

restriction on ρ(S) there can be many specific risk measures satisfying the above

definition. For example, see Dhaene et al. (2006) and references therein for a survey

of different risk measures currently used and their properties. Here we present some

popular ones. One could use the expected loss with some additional padding as a risk

measure, that is,

ρ(S) = E(S) + k
√
V ar(S),

with a suitable k prescribed by management. When S is multivariate normal this

leads to a similar framework to the current RBC system. Another example is the

Dutch risk measure, defined by

ρ(S) = E(S) + kE[(S − αE(S))+], 0 ≤ k ≤ 1, α ≥ 1,

which originated from the Dutch premium principle; see Kaas et al. (1994).

The most two popular and widely-accepted risk measures in current risk man-

agement endeavor are the quantile and the conditional tail expectation (CTE). The

2Some authors, e.g., Dhaene et al. (2006), define the risk capital as ρ(S) − P (S) where P (S) is

the value of liability. We are content with our definition as long as there is no confusion.
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α−th quantile, also called the Value at Risk at confidence level α (or VaRα) in finance

literature, is defined by

ρ(S) = Qα(S) = inf{x ∈ R|P [X ≤ x] ≥ α}. (1.2)

In practice α is a number close to 1, such as α = 0.95. When the random variable is

absolutely continuous this reduces to Qα(S) = F−1
S (α).

The conditional tail expectation (CTE), also known as the tail conditional ex-

pectation (TCE), expected shortfall (ES), or TailVaR (TVaR) 3, has received much

attention recently as a preferred coherent risk measure in the sense of Artzner et al.

(1999). The CTE at confidence level α is defined as the expected value of the random

loss when the loss exceeds the threshold quantile:

ρ(S) = CTEα(S) = E[S|S > Qα(S)], (1.3)

when S is continuous at Qα(S)4. While the list of different risk measures is not

exhaustive, some risk measures are said to be better than others based on certain

criteria.

In this regard, recent academic research has revealed many valuable concepts and

extended our knowledge on risk measures and capital requirement. For example,

Wang et al. (1997) discussed desirable properties of risk measures in connection with

3Dhaene et al. (2006) give slightly different definitions for the ES and the TVaR
4In the more general case the CTE with confidence level α is calculated as follows. Let β′ =

max{β : Qα = Qβ}

then CTEα(X) =
(1 − β′)E[X |X > Qα] + (β′ − α) Qα

1 − α

This complication is automatically managed when the CTE is estimated by simulation.
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risk pricing. Most notably Artzner et al. (1999) proposed a set of axioms to define

the coherence of risk measures for a single period of time frame; later Artzner et al.

(2006) extended the criteria to multi-period of time and Hardy and Wirch (2004)

proposed the Iterated CTE as an example of the multi-period model.

Definition 1.2 (Coherent risk measure; Artzner et al. (1999)) A risk measure

ρ satisfying the following four axioms is called coherent:

1. Subadditivity: For all random losses X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y )

2. Monotonicity: If X ≤ Y for each outcome, then ρ(X) ≤ ρ(Y )

3. Positive homogeneity: For positive constant b, ρ(bX) = bρ(X)

4. Translation Invariance: For positive constant c, ρ(X + c) = ρ(X) + c

The subadditivity axiom means that the required capital amount of sum of the

losses are not bigger than the sum of required capital of each loss. The monotonicity

axiom indicates the capital must be greater for a loss which is always bigger than

another. Positive homogeneity requires that risk capital must be independent of a

currency change. Translation invariance means that adding a sure risk increases the

risk capital by the same amount. Coherence properties have been well accepted in

academic community and provided an important basis for recent research on risk

management. In practice the list of these axioms is used to examine a specifically

chosen risk measure, rather than to produce a new specific risk measure.

It is useful to define the distortion function and the distortion risk measure to

discuss the coherence of risk measures. The distortion risk measure was introduced
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by Wang (1996) to the actuarial community. Let g : [0, 1] → [0, 1] be an increasing

function with g(0) = 0 and g(1) = 1. Then the transform g(F (x)), where F (x) is the

distribution function of the random loss in question, defines a distorted probability

distribution, and g is called a distortion function.

Definition 1.3 (Distortion risk measure) For a real-valued loss random variable

X a distortion risk measure ρg is defined as the mean value under the distorted prob-

ability function g(F (x)) :

ρg(X) = −
∫ 0

−∞

[1 − g(F̄ (x))]dx+

∫ +∞

0

g(F̄ (x))dx, (1.4)

where F̄ (x) = 1 − F (x).

When X is non-negative, the first term of the right hand side disappears. An alter-

native expression of (1.4) provided g is differentiable is, due to, e.g., Jones and Zitikis

(2003),

ρg(X) =

∫ 1

0

Q1−α(X)dg(α) =

∫ 1

0

Qα(X)g′(1 − α)dα. (1.5)

The distortion risk measure in general satisfies translation invariance, positive ho-

mogeneity, monotonicity, and additivity for comonotonic5 losses. Moreover, if g is

concave, the risk measure becomes coherent by satisfying subadditivity as well; see

Wirch and Hardy (2000) and Dhaene et al. (2006).

Using the distortion risk measure approach, we can easily express some popular

risk measures through corresponding distortion function g. For instance, the distor-

tion functions that correspond to VaR and CTE are, respectively,

5See (1.7) for definition
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gV aR(t) =





1 if t > 1 − α

0 if t < 1 − α

and

gCTE(t) =





1 if t > 1 − α

t
1−α

if t < 1 − α

For the CTE case, as an example, one can obtain CTEα(X) for a nonnegative

loss X using gCTE(t) and (1.4):

∫ ∞

0

gCTE(F̄ (x))dx =

∫ Qα

0

1dx+

∫ ∞

Qα

1 − F (x)

1 − α
dx

= Qα +
1

1 − α

∫ ∞

Qα

(1 − F (x))dx

=
1

1 − α

∫ ∞

Qα

xf(x)dx

= E[X|X > Qα(X)]

Wang (2000) proposed an alternative risk measure by arguing that both the VaR and

the CTE give no considerations to losses below the threshold α, making risk managers

overlook medium-level losses. The Wang transform (WT) risk measure is defined by

gWT (t) = Φ(Φ−1(t) − Φ−1(α)),

where Φ() is the distribution function of the standard normal. It is easy to see that the

CTE and the WT are coherent whereas the VaR is not because gV aR is not concave.

Another observation is that the WT measure reflects the risk characteristics over the

whole domain of the risk random variable as well as the tail region as suggested by

his original paper.
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1.4 The Conditional Tail Expectation

VaR has been particularly popular in the past decade partly due to its simplicity.

Jorion (1997) offers a comprehensive discussion on VaR; it also has been employed

by regulatory bodies including the Basel committee on Banking Supervision and the

SEC, as well as some commercial risk management systems such as the RiskMetrics

by J.P. Morgan and RAROC by Bankers Trust.

Despite its widespread use, recent developments on risk measures identified a

problem associated with VaR. In particular it can be super-additive, which means

that the VaR of the sum of component risks can be greater than the sum of VaRs

of each component; see Wirch and Hardy (1999) for details. In contrast, the CTE,

another simple tail measure, is known to be superior to VaR based on the coherency

criteria, as shown in Artzner et al. (1999). The CTE has becomes a new standard in

both regulation and risk management. For example, the Canadian statutory balance

sheet provisions on segregated funds (known as variable annuities in the US) is now

computed based on the CTE at 95%.

From an academic perspective however there still is much room for research on the

CTE at various fronts. On the parametric side, for example, we need to know how to

compute the CTE for a fitted distribution. If we cannot compute the CTE analytically

then large-scale Monte Carlo simulations will be needed to estimate this risk measure

accurately because we are concerned with the tail of loss distributions. Several papers

derive the analytic CTE formulas for various distributions. Panjer (2002) developed

CTE formula and its decomposition for the normal case, Landsman and Valdez (2003)

generalized the CTE formula to elliptical distributions. Hardy (2003) provided CTE
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formula for the regime-switching lognormal (RSLN) model. The CTE formulas for

the exponential dispersion model and a multivariate gamma model are developed by

Landsman and Valdez (2005) and Furman and Landsman (2005), respectively. Note

that because the quantile threshold must be computed first to get the CTE, as indi-

cated by its definition, simulations are inevitable for the quantile (or VaR) part if it

is not available analytically.

On the nonparametric side we are concerned with accurate estimation of the CTE

and its variability. Even though the empirical CTE will converge to the true one

as one increases the sample size, actuaries often find themselves left with relatively

small samples in practice. This might be due to the nature of the data such as rare

natural disaster events. Small sample situations also arise even though parametric

models are available if models are large and complicated. Risk management in life

insurance requires stochastic simulations using an office model. If the company’s

portfolio consists of millions of policies, which is not unusual for large insurers, these

simulations may be too slow to use a large number of scenarios; it is not uncommon

that projecting future cash flows for one scenario takes about 30 minutes for a sin-

gle block of product in practice, and aggregating several blocks takes proportionally

longer6. The practical constraints on the feasible number of Monte Carlo simulations

are well known in the actuarial industry (see Christiansen (1998) and Chueh (2002)

for example), and consequently estimating tail risk measures from small samples is of

interest to actuaries in practice. A more detailed explanation on this issue is given in

the first section of Chapter 3 and 5. For small samples, there are statistical techniques

available to estimate the CTE and its variance, where no parametric information on

6In Chapter 5 we support this evidence with a real industry model.
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the parent distribution is required. The bootstrap or the kernel density estimation

would be examples in this category.

The insurance regulatory framework is moving from a rule-based format to a

principle-based one, and from book values to market values, making quantitative

risk management techniques more relevant than ever. Considering its simplicity, co-

herency, and popularity the CTE seems set to become the standard risk measure in

the insurance sector.

1.5 Modelling Dependency

In illustrating risk capital in the first section the aggregate loss has been defined as

S = X1 + . . . +Xn where Xi represents the loss of i−th business line. No specific as-

sumptions, such as independence or identical distribution has been made on the Xi’s.

In practice they are hardly independent or identically distributed; rather we observe

dependence among risks everyday in the financial world. For instance, different busi-

ness units are exposed to the common factor of economic recession or inflation; two

individuals, if married, can be subject to the same accident in insurance; and a single

big event can have a huge impact on several different business units as the events of

9/11 showed us. Therefore both the marginals and the dependence among them needs

to be studied in order to compute the risk capital, such as ρ(S) = E[S|S > Qα(S)]

under the CTE risk measure.

For a risk capital discussion, studying dependency among marginal risks has some
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challenging aspects. In practice the joint distribution of component losses are unavail-

able in most cases while marginal distributions are relatively easy to obtain. Thus

we need techniques that allows us to construct the joint distribution from known

marginal distributions. One way to do this is to use copulas. Another issue is that

we are generally more interested in the right tail region than we are in the middle re-

gion because insolvency occurs only when the aggregate loss exceeds a certain, usually

fairly large, threshold. There are some parametric distribution classes where the CTE

of the aggregate loss can be analytically expressed; see, e.g., Landsman and Valdez

(2003) and Landsman and Valdez (2005). If the given data does not fit into this class

one would rely on other methods such as copulas.

In this section several well-known mathematical concepts are presented including

copulas, comonotonicity, and tail dependence for future discussions.

A n-dimensional copula is defined to be a cumulative distribution function (c.d.f.)

C : [0, 1]n → [0, 1] with uniform marginal distributions. If the joint distribution

F (X1, . . . , Xn) and each marginal Fi(Xi) is given, the dependence structure between

Xi’s are described through the copula function C and the copula is independent of

the marginal distributions:

F (X1, . . . , Xn) = C(F1(X1), . . . , Fn(Xn)) (1.6)

When the marginal distributions are continuous, C is unique, from Copulas have

been proved to be an effective tool in understanding and solving dependence prob-

lems. Standard texts include Nelsen (1999) and Joe (1997); also see Embrechts et al.

(2003) and Frees and Valdez (1998) for the application of copulas in risk management

and insurance, respectively.
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In connection with copulas, the comonotonicity concept is useful for dependence

studies. We call an array of random variables (X1, . . . , Xn) comonotonic if there exists

a random variable Z and increasing functions hi(x) such that

(X1, . . . , Xn) = (h1(Z), . . . , hn(Z)), (1.7)

where the equality holds in distribution. When we consider the sum of (depen-

dent) individual losses S =
∑
Xi the worst scenario is that the joint distribution is

comonotonic. In other words, the risk is greatest when all the individual losses have

a comonotonic copula. The research on comonotonicity is an active field in actuarial

profession and is still expanding. Some recent papers include Dhaene et al. (2002b),

Dhaene et al. (2002a), and Dhaene et al. (2006). The last paper proposes bounds

(and therefore an approximation) for the dependent random sum.

1.6 Capital Allocation

Once a capital requirement has been established based on a risk measure, one of

the following tasks is to allocate it back to each business unit or risk component.

The allocation of the capital seems to be the natural reverse process of the total

required capital calculation but it has its own challenges, mostly due to the nature

of the dependence structures of the combined risks. In the business world, breaking

down the total capital into its components can be of interest to the managers of each

business line and the executives of the company, though it is not the primary concern

of regulators. The main motivations for capital allocation are the following, which

are mutually not exclusive:
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Absolute comparison Since capital is costly to hold, it is natural to allocate it to

each line to redistribute its cost across lines. This view implies different returns

on capital for each line and the management is often able to answer if a line

is worth to keep or not by comparing, say, the return on capital of a line to

company’s hurdle rate

Relative comparison As capital is defined as a tail risk measure of the whole com-

pany, one may wish to split this capital to assess the riskiness of each line’s

position and compare one to another.

Diversification study The allocation also can serve as a tool to study the diversifi-

cation effect. For example, adding or dropping a line will affect all the other lines

and the direction and the magnitude of the changes can give useful information

on the dependency structure

Compensation scheme Allocation of capital may provide the basis of each man-

ager’s performance, which in turn is linked to their compensations

Pricing basis Insurers may want to use the allocation in pricing, even though there

are other considerations in pricing such as market competition and company’s

strategic planning. A line with an excessive capital would have to produce a

larger profit by increasing the product margin.

Probably the most prominent use of capital allocation is the calculation of return on

capital (ROC) measured by line where the ROC is defined to be the ratio of the line’s

profit to the line’s allocated capital. The ROC can be used in comparing relative

profitability, e.g., which line is more profitable?, as well as in the absolute profitabil-

ity of a line, e.g., is this line a value-adder? Compensations of line managers can be
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linked to the ROC in the same context; a line manager who achieved a higher return

will receive a larger bonus.

Consider again a multi-line insurer whose aggregate loss is given by S =
∑n

1 Xi.

The allocation problem is the task to assign the total capital, denoted by ρ(S), to

each business line using a suitable rule. Mathematically, an allocation is a mapping

from a n-dimensional random vector to a n-dimensional real-valued vector.

In responding to the need to construct sensible capital allocation methods, re-

searchers have proposed a set of axioms that any desirable allocation method is ex-

pected to satisfy. The list of axioms themselves are however still under scrutiny be-

cause the capital allocation itself is a relatively new phenomenon. Different authors

have proposed different sets of axioms, while some axioms appear repeatedly. For ax-

iomatic approach to capital allocation see Denault (2001), Hesselager and Anderson

(2002), and Kalkbrener (2005). Axioms below are adapted from Valdez and Chernih

(2003), which in turn were elaborated from Denault (2001) and Hesselager and Anderson

(2002).

Definition 1.4 (Fair allocation axioms) Suppose that a company has n business

lines and each line’s loss is represented by Xi, i = 1, . . . , n, with the aggregate loss

S =
∑n

1 Xi. If the allocated capital for line i, denoted by ACi, satisfies the following

axioms, the allocation rule is said to be fair.

1. Full allocation The allocated capitals add up to the total capital.

ρ(S) =
n∑

1

ACi (1.8)
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2. No undercut Let {X ′
1, X

′
2, . . . , X

′
k} be an arbitrary subset of {X1, X2, . . . , Xn},

and AC ′
i, i = 1, . . . , k, be the allocated capital based on this subset. Then

k∑

1

AC ′
i ≤ ρ(

k∑

1

X ′
i) (1.9)

3. Symmetry If two lines have the same allocated capital for any collection of lines

within the company, those two lines should have the same allocated capital under

the whole company.

4. Consistency The allocated capital for one line should not depend on the level at

which allocation occurs.

Axioms above are defined rather informally for a quick introduction, and the symme-

try and the consistency can be confusing without further explanations. We provide

more formal definitions with explanation in Chapter 6, because a new allocation

method developed therein will be examined in detail against these axioms.

There are various specific allocation methods available; some satisfy all the axioms

while others do not. For example, the CTE of the aggregate loss, E[S|S > Qα(S)],

can be decomposed in a simple additive manner:

E[S|S > Qα(S)] =
n∑

1

E[Xi|S > Qα(S)],

which was first observed by Overbeck (2000). Thus the allocated capital for line i is

ACi = E[Xi|S > Qα(S)]

This allocation is also known to satisfy the first three axioms; see Panjer (2002)

for its properties7. The reason why this allocation looks natural is that the alloca-

tion rule is inherent in the risk measure CTE. Actually this allocation is an example

7We show that it also satisfies the consistency axiom in Chapter 6.
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of the Euler allocation principle, which also gives a similar decomposition for the

aggregate VaR; see Section 6.3 of McNeil et al. (2005) and references therein. Ex-

plicit expression of the CTE allocation for parametric multivariate models have been

derived by several authors. Panjer (2002) showed this for the multivariate normal

case and related it to the CAPM. Landsman and Valdez (2003) provided the CTE

allocation for the elliptical distribution class which contains the normal as a special

case. Furman and Landsman (2005) and Cai and Li (2005) derived the CTE alloca-

tion formula for a multivariate gamma distribution and the Phase-type distribution

class, respectively.

There are other allocation methods available. For instance, Wang (2002) recom-

mended an allocation using the exponential tilting. More recently Valdez and Chernih

(2003) extended Wang’s idea to the elliptical distribution class. Note that all these

methods, including the CTE allocation, depend on the property of the risk measure

ρ(). This is however not a mandate condition for an allocation and there is an allo-

cation method that is independent of ρ() (the only information needed is the total

capital amount), as explained in Goovaerts et al. (2005).

1.7 Overview of Thesis

In this chapter we have motivated the need for a good risk measure as a tool to deter-

mine the risk capital of financial entities. Recognizing the conditional tail expectation

(CTE) as a preferred risk measure, we focus on this risk measure throughout the the-

sis. We have also observed that there are challenging and interesting topics around

quantitative modeling, including copula and capital allocation. There are other tools
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that can be, and are being, used for this purpose, such as extreme value theory (EVT)

and financial time series models. We decided to forego their introduction in this chap-

ter because they are not directly related to this thesis.

In Chapter 2 the conditional tail expectation and its higher order moments are

derived for the exponential distribution family (EF) class and its transformed distri-

butions.

Chapter 3 is devoted to nonparametric estimation of the CTE and VaR, and

their biases using the bootstrap method, for small sample sizes. For variability of

the estimated risk measure, Chapter 4 provides an alternative technique using the

influence function of the bootstrapped L-estimator. Numerical examples are presented

to illustrate the theoretical findings. Together these two chapters give us a new

method to estimate the mean squared error for the bootstrapped CTE, and this is

examined through an industry-scaled model in Chapter 5.

Inspired by the solvency exchange option idea, a new capital allocation method

is proposed in Chapter 6. This new method is similar to the CTE in its form, but

is independent of the risk measure used for the total capital determination. A closer

look on the proposed method prompts a critique on one of the fair allocation axioms;

in particular, we argue that the no undercut axiom may not be well-aligned with the

economic reality.



Chapter 2

Conditional tail moments of the

EF and its related distributions

2.1 Introduction

When a random variable X is continuous the conditional tail expectation (CTE) of

T (X), with threshold Qα = F−1
X (α), is defined as

CTEα(T (X)) = E(T (X)|X > Qα) =

∫ ∞

Qα
T (X) f(x)dx

F̄ (Qα)
, (2.1)

when it exists, with F̄ (x) = 1 − F (x). This form is more general than the usual

CTE definition given in (1.3) and is employed here for later developments. T (X)

is assumed to be a monotone continuous function of X; it does not need to be an

increasing function in theory. For instance, setting T (X) = X produces the usual

CTE and T (X) = Xk gives the k-th moments for integral k. For a discrete random

variable X with probability mass function f(x) taking values on x = 0, 1, . . . , the

23
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CTE is similarly defined by

CTEα(T (X)) = E(T (X)|X > Qα) =

∞∑

k=Qα+1

T (k)f(k)

∞∑

k=Qα+1

f(k)

, (2.2)

where quantile Qα is an integer satisfying Qα = inf{x|FX(x) ≥ α}
The conditional tail variance of T = T (X) and its covariance can be defined by

CTV arα(T ) = E[(T − CTEα(T ))2|X > Qα]

= CTEα(T 2) − (CTEα(T ))2,

and

CTCovα(Ti, Tj) = E[(Ti − CTEα(Ti))(Tj − CTEα(Tj))|X > Qα]

= CTEα(TiTj) − CTEα(Ti)CTEα(Tj)

respectively, where each T, Ti and Tj is a function of X. The same quantities for

discrete random variables can be defined similarly.

Knowing the analytic expression of the CTE for a given parametric distribution

is important because otherwise one must rely on Monte Carlo simulation to compute

this risk measure, which may be costly. Thus finding the conditional tail expecta-

tion for parametric distributions has been an active topic in risk management and

actuarial science. Landsman and Valdez (2003) derived the CTE formula for ellip-

tical distributions, which is a class containing the normal distribution. Later the

same authors developed CTE formula for the exponential dispersion model (EDM)

in Landsman and Valdez (2005). Hardy (2003) provided the CTE for the regime-

switching lognormal (RSLN2) model, and the CTE for a multivariate gamma model
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was developed by Furman and Landsman (2005). All the discussion in these papers,

however, have been focused on the first moment, or CTE. The second tail moment

was considered in Valdez (2004) as a variability index for tail area beyond quantiles.

It can also be motivated through variance of the CTE. When the threshold is constant

the CTE is closely linked to the mean excess loss, defined by E[X − d|X > d], thus

higher tail moments can be used in the pricing of insurance with a deductible; see

Section 2.6 of Klugman et al. (1998).

This chapter proposes a new formula for the conditional tail moments for the

exponential family (EF) class and its transformed distributions. Both the EF and

the EDM extend the natural exponential family class, and they share many common

distributions such as Normal, Gamma, Poisson, to name a few, there are members in

the EF class but not in the EDM class, such as the Lognormal distribution. Together

with the transformed distributions discussed in Section 4 we have conditional tail

moments for a wide coverage of distributions used for actuarial modeling.

Section 2 introduces and summarizes some properties of the exponential family; in

Section 3 formulas are derived for the conditional tail moments of the EF; conditional

tail moments of other transformed distributions are illustrated in Section 4 through

examples.

2.2 The Exponential Family

The exponential family (EF) of distributions is commonly used in statistical estima-

tion and decision theory. It includes many familiar distributions such as the Normal,

multivariate Normal, Gamma, Inverse Gaussian, Poisson, and Binomial distributions.
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The lognormal distribution is also included in the exponential family. Standard texts

on the EF include Casella and Berger (2003), Lehmann (1983), and Brown (1986).

Following the notation in Lehmann (1983), the density of an s-parameter exponential

family with parameter vector θ = (θ1, . . . , θs) is defined by

f(x; θ) = exp

{ s∑

i=1

ηi(θ)Ti(x) − B(θ)

}
c(x) (2.3)

with respect to the Lebesgue measure and the counting measure for continuous and

discrete distributions, respectively. The function c(x) does not depend on parameters

θi.

Often the density in (2.3) is converted to a canonical form through reparameterization,

ηi(θ) = ηi, to result in

f(x; η) = exp

{ s∑

i=1

ηiTi(x) − A(η)

}
c(x) (2.4)

where η = (η1, . . . , ηs) is the natural parameter vector and T = (T1, . . . , Ts) is a

natural sufficient statistic. A(η) is a constant assumed to be differentiable. Note

that c(x) in (2.3) and (2.4) are identical. One of the properties of the canonical

parametrization is that the set

H =

{
η = (η1, . . . , ηs) :

∫ ∞

−∞

exp

[
s∑

i=1

ηiTi(x) − A(η)

]
c(x) <∞

}

is convex. (The integral is replaced by a summation for discrete cases) Also, it is

known that if there are linear constraints among ηi’s or Ti’s, the number s in (2.4)

can be reduced. For the theoretical development of the EF, however, the presentation

(2.4) is most convenient when it is minimal, that is there should be no linear con-

straints among ηi’s or Ti’s. These are important properties for standard estimation

procedures but are not our primary concern here. This chapter focuses on conditional
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tail moments for distributions known to be in the EF. Let us take the normal distri-

bution as an example.

Example 2.1 (Normal distribution) The density of the normal distribution with

mean µ and variance σ2 is

f(x;µ, σ) =
1√
2π

exp

{
− (x− µ)2

2σ2

}
, −∞ < x <∞,

or, in the canonical form,

f(x; η1, η2) = exp

{
η1 x

2 + η2 x+
η2

2

4η1
+

1

2
log(−2η1)

}
1√
2π,

(2.5)

with following parameterization:

η1 = −1/(2σ2), η2 = µ/σ2; T1(X) = X2, T2(X) = X; c(x) = 1/
√

2π;

A(η) = µ2/(2σ2) + log σ = − η2
2

4η1
− 1

2
log(−2η1).

The natural parameter space is given by H = {η = (η1, η2) : η1 < 0,−∞ < η2 < ∞},
which is convex, and there is no linear constraint either between η1 and η2, or between

T1 and T2.

When expressed in the canonical form, we have the following well known results of

the EF; see e.g., Lehmann (1983).

1. The order of integration and differentiation can be switched:

∂

∂ηi

∫
f(x)dx =

∫
∂

∂ηi
f(x)dx,

where f(x) = f(x; η) defined in (2.4). In fact
∫
f(x)dx has derivatives of all

orders and these can be obtained by differentiating inside the integral sign.
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2. For any i = 1, . . . , s we have

E(Ti) =
∂

∂ηi
A(η), (2.6)

which is finite whenever A(η) is differentiable. Often one of Ti’s equals to X, so

that we get E(Ti) = E(X), but this is not always true, as seen in the Lognormal

case.

3. For any i, j = 1, . . . , s

Cov(Ti, Tj) =
∂2

∂ηi∂ηj
A(η). (2.7)

If i = j this reduces to

V ar(Ti) =
∂2

∂η2
i

A(η).

4. Assuming the moment generating function (m.g.f.) exists for a given random

loss in some neighborhood
∑
u2

i < δ, the mgf of T in the exponential family is

MT (u) = eA(η+u)−A(η) and the cumulant generating function (c.g.f.) is KT (u) =

log(MT (u)) = A(η + u) − A(η).

For the normal distribution case it is easy to verify these properties using the canonical

form in (2.5). For instance,

E(T1) = E(X2) =
∂

∂η1

A(η) =

(
η2

2η1

)2

− 1

2η1

= µ2 + σ2,

E(T2) = E(X) =
∂

∂η2
A(η) = − η2

2η1
= µ,

and

V ar(T2) = V ar(X) =
∂2

∂η2
2

A(η) = − 1

2η1

= σ2.

With some algebra we can also verify, for fixed σ, that

MT (u) = eA(η+u)−A(η) = exp(µu+ σ2u2/2).
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2.3 Conditional tail moments of the EF

2.3.1 When generating function exists

In this section we give a general formula to calculate the conditional tail moments of

a member of the EF using the moment generating function (m.g.f.) and the cumu-

lant generating function (c.g.f.) provided that they exist. Denote T = (T1, . . . , Ts)
t

and u = (u1, . . . , us) in this section. We define the conditional tail m.g.f. and the

conditional tail c.g.f. by, respectively,

M∗
T (u|d) = E(euT |X > d) (2.8)

and

K∗
T (u|d) = logE(euT |X > d), (2.9)

where d is a given threshold. The conditional tail generating functions exist whenever

the original generating functions do.

Lemma 2.2 Suppose that X, a member of the EF defined in (2.4), has the condi-

tional tail c.g.f. defined in (2.9). Then, for a given d, it is expressed by

K∗
T (u|d) = A(η + u) − A(η) + log F̄ (d; η + u) − log F̄ (d; η). (2.10)

Proof:

M∗
T (u|d) =

1

F̄ (d; η)

∫ ∞

d

eu1T1+...+usTs e
P

ηiTi−A(η)c(x)dx

=
eA(η+u)−A(η)

F̄ (d; η)

∫ ∞

d

e
P

(ηi+ui)Ti−A(η+u)c(x)dx

= MT (u)
F̄ (d; η + u)

F̄ (d; η)
, or

=
eA(η+u) F̄ (d; η + u)

eA(η) F̄ (d; η)
.
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The result follows immediately by taking the logarithm of the last equality in the

above equation. Q.E.D.

We can now generate the conditional tail moments of any order by repeated dif-

ferentiation at u = 0. We focus on the first two conditional moments because it is

hard to motivate the usage of higher moments. We cannot, however, apply this for

distributions which do not have m.g.f.’s (e.g., the Lognormal distribution).

In particular the CTE and CTCov (and thus CTV ar) are determined by setting

d = Qα,

∂

∂ui

K∗
T (u|Qα)

∣∣
u=0

= CTEα(Ti)

and
∂2

∂ui∂uj

K∗
T (u|Qα)

∣∣
u=0

= CTCovα(Ti, Tj).

The following formulas provide explicit expressions for CTE and CTCov when

the corresponding conditional tail c.g.f.’s exist.

Lemma 2.3 Suppose that X is a member of the EF and has a conditional tail c.g.f..

Then the CTE of Ti(X) is given by

E[Ti|X > Qα] =
∂

∂ηi
A(η) +

∂

∂ηi
log F̄ (x; η)

∣∣
x=Qα

Proof: Using the identity

∂

∂ui

A(η + u) =
∂

∂ηi

A(η + u),
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we have

∂

∂ui
K∗

T (u|d)
∣∣
u=0

=
∂

∂ui

[
A(η + u) − A(η) + log F̄ (d; η + u) − log F̄ (d; η)

]∣∣
u=0

=
∂

∂ηi
A(η) +

∂

∂ηi
log F̄ (d; η)

The assertion follows by setting d = Qα. Q.E.D.

We choose expression ∂
∂ηi

log F̄ (x; η)
∣∣
x=Qα

instead of ∂
∂ηi

log F̄ (Qα; η) to make it

clear that the differentiation should be done before evaluating at x = Qα. If the

order is switched one gets a totally different result because Qα is generally a function

of η.

Using the identity in (2.6) one could express the CTE alternatively as

E[Ti|X > Qα] = E(Ti) +
∂

∂ηi
log F̄ (x; η)

∣∣
x=Qα

The result is similar to the CTE formula of the exponential dispersion model

(EDM) developed by Landsman and Valdez (2005). They treated the quantile as a

constant in the proof of Theorem 1, but that is incorrect because a quantile is a func-

tion of the unknown parameters. Their result holds nevertheless. Also their proof of

Theorem 1 can be shortened by defining the conditional m.g.f. of the EDM, which

can be obtained easily, for both reproductive and additive form.

If we define the loss as the left side of the distribution, which is a standard practice

in banking industry, the corresponding CTE formula becomes

E[Ti|X < Qα] = E(Ti) +
∂

∂ηi
logF (x)

∣∣
x=Qα

.

In fact the trimmed mean can be similarly derived for the whole EF class.
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Lemma 2.4 Suppose X is a member of the EF and K∗
T (u|d) exists for X. Then

CTCov(Ti, Tj) can be expressed as

CTV arα(Ti, Tj) =
∂

∂ηj

∂

∂ηi

A(η) +
∂

∂ηj

∂

∂ηi

log F̄ (x; η)
∣∣
x=Qα

.

Proof:

∂2

∂ui∂uj
K∗

T (u|d)
∣∣
u=0

=
∂2

∂uj∂ui

[
A(η + u) − A(η) + log F̄ (d; η + u) − log F̄ (d; η)

]∣∣
u=0

=
∂

∂ηj

[ ∂

∂ηi
A(η + u) +

∂

∂ηi
log F̄ (d; η + u)

]∣∣
u=0

=
∂

∂ηj

∂

∂ηi
A(η) +

∂

∂ηj

∂

∂ηi
log F̄ (d; η).

Again setting d = Qα gives the result. If i = j, the formula reduces to the conditional

tail variance. Q.E.D.

As for the first moment, there is an alternative expression for the conditional tail

covariance using (2.7):

CTV arα(Ti, Tj) = Cov(Ti, Tj) +
∂

∂ηj

∂

∂ηi
log F̄ (x; η)

∣∣
x=Qα

.

Example 2.5 (Normal distribution (continued)) From (2.5), we take the deriva-

tive with regard to η2 to get CTE(X|X > Qα) since T2 = X. First note that

∂
∂η2

f(x) = (x+ η2

2η1

)f(x) for the normal density f(x). To calculate ∂
∂η2

log F̄ (x),

∂

∂η2
F̄ (x) =

∂

∂η2

∫ ∞

x

f(t)dt =

∫ ∞

x

∂

∂η2
f(t)dt

=

∫ ∞

x

(t+ η2/(2η1))f(t)dt

=
1

2η1

∫ ∞

x

(2η1t+ η2)f(t)dt

=
1

2η1
f(t)

∣∣∞
x

= − 1

2η1

f(x).
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Thus

∂

∂η2
log F̄ (x)

∣∣
x=Qα

=
−1

2η1
f(Qα)

/
F̄ (Qα)

= σ2hX(Qα),

where hX(x) is the hazard function of N(µ, σ2). Therefore for the normal distribution

CTEα(T2) = CTEα(X) = µ+ σ2hX(Qα),

or in the standardized form, µ+σhZ(zα), where Z = (X−µ)/σ and zα = (Qα−µ)/σ.

This result agrees with Panjer (2002) and Landsman and Valdez (2003).

For the CTV ar,

∂2

∂η2
2

log F̄ (x) =
∂

∂η2

(
∂

∂η2
log F̄ (x)

)

=
∂

∂η2

(−1

2η1

f(x)
/
F̄ (x)

)

= − 1

2η1

∂

∂η2

(
f(x)

/
F̄ (x)

)

= − 1

2η1

∂
∂η2

f(x) F̄ (x) − f(x) ∂
∂η2

F̄ (x)

F̄ (x)2

= − 1

2η1

[
(x+ η2

2η1

)d(x)
]
F̄ (x) − f(x)

[
−1
2η1

f(x)
]

F̄ (x)2

= − 1

2η1

[
(x+

η2

2η1

)hX(x) +
1

2η1

hX(x)2

]

= σ2

[
(x− µ)hX(x) − σ2hX(x)2

]
,

and from (2.4)

CTV arα(X) = V ar(X) +
∂2

∂η2
2

log F̄ (x)
∣∣
x=Qα

= σ2

[
1 + (Qα − µ)hX(Qα) − σ2hX(Qα)2

]
.
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If the standardized version is preferred,

CTV arα(X) = σ2

[
1 + zαhZ(zα) − hZ(zα)2

]
,

where Z = (X − µ)/σ and zα = (Qα − µ)/σ.

Example 2.6 (Exponential distribution) Consider X ∼ Exp(β), with density

f(x; β) = β−1 exp(−x/β). Due to its memoryless property, it is clear that CTEα(X) =

Qα + E(X) = Qα + β and CTV arα(X) = V ar(X) = β2. The density, expressed in

the canonical form in (2.4), is

f(x; η) = exp
(
ηx+ log(−η)

)
,

where T (X) = X, η = −1/β, c(x) = 1 and A(η) = − log(−η). Using F (x) =

1 − exp(ηx),

CTEα(X) =
∂

∂ηi
A(η) +

∂

∂η
log F̄ (x; η)

∣∣
x=Qα

= −1/η +Qα = β +Qα

and

CTV arα(X) =
∂2

∂η2
A(η) +

∂2

∂η2
log F̄ (x; η)

∣∣
x=Qα

= 1/η2 = β2,

as expected.

Example 2.7 (Poisson distribution) The Poisson probability function with mean

λ is f(x) = e−λλx 1
x!

, x = 0, 1, . . . , which rearranges to f(x) = exp(x log λ − λ) 1
x!

=

exp(xη − eη) 1
x!

. Hence the canonical form is obtained by parametrization η = log λ.
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The mean is of course A(η)′ = eη = λ. Then from basic calculus, we have

∂

∂η
F̄ (x) =

∂

∂η

[ ∞∑

k=x+1

exp(kη − eη)
1

k!

]

=

∞∑

k=x+1

exp(kη − eη)
1

k!
× (k − eη)

=
∞∑

k=x+1

exp(kη − eη)
1

(k − 1)!
− eη

∞∑

k=x+1

exp(kη − eη)
1

k!

= eη

∞∑

k=x+1

exp((k − 1)η − eη)
1

(k − 1)!
− eη

∞∑

k=x+1

exp(kη − eη)
1

k!

= eηF̄ (x− 1) − eηF̄ (x)

= eηf(x).

Noting that there is no explicit form for the distribution function of the Poisson, we

define a discrete hazard function by h(x) = f(x)/F̄ (x), x = 0, 1, . . . . Then

∂ log F̄ (x)

∂η
=

∂F̄
∂η

(x)

F̄ (x)
=
eηf(x)

F̄ (x)
= eηh(x).

The CTE of the Poisson with integer threshold d is then

E[X|X > d] = E(X) +
∂ log F̄ (x)

∂η

∣∣∣∣
d

= eη + eηh(d)

= λ+ λh(d).

This is identical to the normal case when µ = σ2 = λ. For the second moment we

first note that, from its canonical density form,

∂

∂η
f(x) = (x− eη)f(x).
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Then

∂2

∂η2
log F̄ (x) =

∂

∂η

[
∂ log F̄ (x)

∂η

]

=
∂

∂η

[
eηf(x)

F̄ (x)

]

=
[eηf(x) + eη ∂

∂η
f(x)]F̄ (x) − eηf(x) ∂

∂η
F̄ (x)

(F̄ (x))2

=
[eηf(x) + eη(x− eη)f(x)]F̄ (x) − eηf(x)eηf(x)

(F̄ (x))2

= (xeη + eη − e2η)
f(x)

F̄ (x)
− e2η

(
f(x)

F̄ (x)

)2

= (xeη + eη − e2η)h(x) − e2ηh(x)2

= (xλ+ λ− λ2)h(x) − λ2h(x)2

Finally we have

CTV ard(X) = λ+ (dλ+ λ− λ2)h(d) − λ2h(d)2

= λ[1 + (d+ 1 − λ)h(d) − λh(d)2],

which is a similar, but not identical, form to the normal case.

While the first conditional moments of all these examples are also given in Landsman and Valdez

(2005) because they belong to the exponential dispersion family as well, the expres-

sions for the moments of the second order are new.

2.3.2 When no generating function exists

In this subsection we prove that the same results hold for a member of the EF even

when K∗
T (u|d) does not exist. Thus the following two lemmas are more general results
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than Lemma 2.3 and 2.4, but their proofs are longer because no generating function

is assumed. For notational simplicity we suppress η and set f(x; η) = f(x) and

F (x; η) = F (x) throughout this subsection.

Lemma 2.8 Suppose X is a member of the EF given in (2.4). Then the CTE of

Ti(X) is given by

E[Ti|X > Qα] =
∂

∂ηi

A(η) +
∂

∂ηi

log F̄ (x)
∣∣
x=Qα

Proof:

First it should be noted that the threshold does not have to be a quantile and it can

be any function of η = (η1, . . . , ηs) or a constant. We start with

∫ ∞

d

f(x)dx = F̄ (d), (2.11)

and take the derivative with respect to ηi of both sides of this equation, assuming d

is a constant.

Because the order of integration and differentiation can be switched for the EF,

the left hand side becomes

∂

∂ηi

∫ ∞

d

f(x)dx =

∫ ∞

d

∂

∂ηi
f(x)dx

=

∫ ∞

d

∂

∂ηi
log f(x) f(x)dx,

leading to a new equation

∫ ∞

d

∂

∂ηi

log f(x) f(x)dx =
∂F̄ (d)

∂ηi

. (2.12)

If both sides are divided by F̄ (d),
∫ ∞

d
∂

∂ηi
log f(x) f(x)dx

F̄ (d)
=

1

F̄ (d)

∂F̄ (d)

∂ηi

,
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which in turn, by definition of the CTE, becomes

E
( ∂

∂ηi
log f(X)|X > d

)
=

∂

∂ηi
log F̄ (d).

Now, because ∂
∂ηi

log f = Ti − ∂
∂ηi
A(η) for the exponential family defined in (2.4),

the preceeding equation reduces to

E
(
Ti −

∂

∂ηi
A(η)|X > d

)
=

∂

∂ηi
log F̄ (d),

or

E
(
Ti|X > d

)
=

∂

∂ηi
A(η) +

∂

∂ηi
log F̄ (d).

Finally setting d = Qα completes the proof. Note that whenever E(Ti) is finite, so is

E(Ti|X > Qα). The discrete case can be similarly proved. Q.E.D.

Lemma 2.9 Suppose X is a member of the EF given in (2.4). Then CTCov(Ti, Tj)

can be expressed as

CTCovα(Ti, Tj) =
∂2

∂ηi∂ηj
A(η) +

∂2

∂ηi∂ηj
log F̄ (x)

∣∣
x=Qα

(2.13)

Proof:

The task here is to differentiate equation (2.12), this time with respect to ηj . The

left side then becomes
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∫ ∞

d

∂

∂ηj

[
∂

∂ηi
log f(x) f(x)

]
dx

=

∫ ∞

d

∂2

∂ηj∂ηi
log f(x) f(x)dx+

∫ ∞

d

∂

∂ηj
log f(x)

∂

∂ηi
log f(x)f(x)dx

=

∫ ∞

d

∂2

∂ηj∂ηi
A(η) f(x)dx+

∫ ∞

d

(Tj −
∂

∂ηj
A(η))(Ti −

∂

∂ηi
A(η))f(x)dx

= − ∂2

∂ηj∂ηi

A(η)

∫ ∞

d

f(x)dx+

∫ ∞

d
(Tj − ∂

∂ηj
A(η))(Ti − ∂

∂ηi
A(η))f(x)dx

F̄ (d)
F̄ (d)

= − ∂2

∂ηj∂ηi

A(η)F̄ (d) + E[(Tj −
∂

∂ηj

A(η))(Ti −
∂

∂ηi

A(η))|X > d]F̄ (d)

= −F̄ (d)

(
∂2

∂ηj∂ηi
A(η) − E[(Tj −

∂

∂ηj
A(η))(Ti −

∂

∂ηi
A(η))|X > d]

)
,

where µj = ∂
∂ηj
A(η) = E(Tj), as given in (2.6).

Hence taking the derivative of (2.12) with respect to ηj yields

− F̄ (d)

(
∂2

∂ηj∂ηi
A(η) −E[(Tj − µj)(Ti − µi)|X > d]

)
=

∂2

∂ηj∂ηi
F̄ (d),

or

E[(Tj − µj)(Ti − µi)|X > d] =
∂2

∂ηj∂ηi
A(η) +

1

F̄ (d)

∂2

∂ηj∂ηi
F̄ (d).

By setting d = Qα, we have

CTEα[(Tj − µj)(Ti − µi)] =
∂2

∂ηj∂ηi

A(η) +
1

F̄ (Qα)

∂2

∂ηj∂ηi

F̄ (x)

∣∣∣∣
x=Qα

. (2.14)



Ch. 2. Conditional tail moments of EF and its related distribution 40

As the final step,

CTCovα(Ti, Tj) = CTEα[(Ti − CTEα(Ti))(Tj − CTEα(Tj))]

= CTEα[(Ti − µi −
∂

∂ηi
log F̄ (x)|Qα

)(Tj − µj −
∂

∂ηj
log F̄ (x)|Qα

)]

= CTEα[(Ti − µi)(Tj − µj)] −
∂

∂ηi
log F̄ (x)|Qα

× ∂

∂ηj
log F̄ (x)|Qα

=
∂2

∂ηi∂ηj

A(η) +
∂2

∂ηj∂ηi

log F̄ (x)

∣∣∣∣
x=Qα

.

The last line is justified by (2.14) and the following equation:

∂2

∂ηj∂ηi
log F̄ (x) = − ∂

∂ηi
log F̄ (x) × ∂

∂ηj
log F̄ (x) +

1

F̄ (x)

∂2

∂ηj∂ηi
F̄ (x).

Note that when i = j we recover the conditional tail variance formula

CTV arα(Ti) = V ar(Ti) +
∂2

∂η2
i

log F̄ (x)

∣∣∣∣
x=Qα

. (2.15)

Q.E.D.

The conditional tail moments of the Lognormal distribution are interesting for two

reasons. First, T (X) 6= X and therefore it does not belong to the exponential dis-

persion family discussed in Landsman and Valdez (2005). Secondly there is no m.g.f.

available. The Lognormal however is a member of the EF and plays an important role

in risk management and finance because of its link to geometric Brownian motion in

asset price modeling.

Example 2.10 (Lognormal distribution) The density of the Lognormal distribu-

tion in canonical form is

f(x) = exp

{
η1 (log x)2 + η2 log x+

η2
2

4η1

+
1

2
log(−2η1)

}
1

x
√

2π
,
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with the following parameterization:

η1 = −1/(2σ2), η2 = µ/σ2; T1(X) = (logX)2, T2(X) = logX; c(x) =
1

x
√

2π
;

A(η) = µ2/(2σ2) + log σ = − η2
2

4η1
− 1

2
log(−2η1),

∂

∂η2
A(η) = − η2

2η1
= µ, and

∂2

∂η2
2

A(η) = − 1

2η1

= σ2.

Now using Lemma 2.8 and Lemma 2.9 we can obtain CTEα(T1) = E((logX)2|X >

Qα) or CTEα(T2) = E(logX|X > Qα). Let us try CTE(T2) for this example.

To start with, it can be easily verified that f ′(x) = 1
x
(2η1 log x + η2 − 1)f(x) and

∂
∂η2

f(x) = ( η2

2η1

+log x)f(x) for the Lognormal density. To calculate ∂
∂η2

log F̄ (x), first

∂

∂η2
F̄ (x) =

∫ ∞

x

∂

∂η2
f(t)dt

=

∫ ∞

x

(log t+ η2/(2η1))f(t)dt

=
1

2η1

∫ ∞

x

(2η1 log t+ η2)f(t)dt

=
1

2η1

[ ∫ ∞

x

(2η1 log t+ η2 − 1)f(t)dt+

∫ ∞

x

f(t)dt
]

=
1

2η1

[ ∫ ∞

x

tf ′(t)dt+ F̄ (x)
]

= − 1

2η1
xf(x).

Thus

∂

∂η2
log F̄ (x)

∣∣∣∣
Qα

=

∂
∂η2

F̄ (x)

F̄ (x)

∣∣∣∣
Qα

=

−1
2η1

QαF (Qα)

f̄(Qα)
= σ2QαhX(Qα),

where hX(x) is the hazard function of LN(µ, σ2). Therefore we have CTEα(T2) =

CTEα(logX) = µ+ σ2yhX(x).
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For the second moment,

∂2

∂η2
2

log F̄ (x) =
∂

∂η2

(
∂

∂η2
log F̄ (x)

)

=
∂

∂η2

(−x
2η1

F (x)
/
F̄ (x)

)

= − x

2η1

∂

∂η2

(
F (x)

/
F̄ (x)

)

= − x

2η1

∂
∂η2

F (x) F̄ (x) − F (x) ∂
∂η2

F̄ (x)

F̄ (x)2

= − x

2η1

[
(log x+ η2

2η1

)F (x)
]
F̄ (x) − F (x)

[
−x
2η1

F (x)
]

F̄ (x)2

= − x

2η1

[
(log x+

η2

2η1

)hX(x) +
x

2η1

hX(x)2

]

= σ2

[
(log x− µ)xhX(x) − σ2x2hX(x)2

]
,

and from (2.15)

CTV arα(logX) = V ar(logX) +
∂2

∂η2
2

log F̄ (x)

∣∣∣∣
Qα

= σ2

[
1 + (logQα − µ)QαhX(Qα) − σ2Q2

αhX(Qα)2

]
.

There are two comments for this specific example. First, unlike many cases with one

of Ti’s being equal to X, the formulas lead to CTE(logX) or CTE((logX)2), instead

of CTE(X) or CTE(X2). This is somewhat disappointing because we are usually

more interested in the conditional tail moments of X rather than a function of X.

In the next section CTE(Xk) = E(Xk|X > Qα) for the lognormal will be calculated

using a different method.

Secondly although direct calculation has been used to get CTE(T2) and CTV ar(T2),

there is an easier way to calculate these quantities in this example as following.
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Since W = logX ∼ N(µ, σ2),

CTE(T2) = E(logX|X > Qα) = E(logX| logX > logQα)

= CTElog Qα
(W )

= µ+ σ2hW (logQα)

= µ+ σ2QαhX(Qα).

E((logX)2|X > Qα) can be determined in a similar fashion. Actually this type of

technique provides an efficient way to determine the conditional tail moments for

various distributions and will be further illustrated in the next section.

2.4 Transformed Distributions

Suppose we are interested in the conditional tail moments of Y , where Y is a function

of X. In other words Y = g(X) for some function g. If we assume g to be monotonic

and increasing, then

α = Pr[Y ≤ Qα(Y )] = Pr[g(X) ≤ Qα(Y )]

= Pr[X ≤ g−1(Qα(Y ))] = Pr[X ≤ Qα(X)].

The last equality holds because the probability should equal α for X as well. Thus

the quantile is preserved under the transformation in the sense that g−1(Qα(Y )) =
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Qα(X). Using this the conditional tail moment of Y is easily computed1 as

CTEα(Y k) = E[Y k|Y > Qα(Y )]

= E[g(X)k|X > Qα(X)]

= CTEα(g(X)k), k = 1, 2, . . . ,

provided the moments exist. If g is a monotonic decreasing function, then

E[Y k|Y > Qα(Y )] = E[g(X)k|X < Q1−α(X)].

This simple tool is useful to compute the CTEs of various distributions transformed

from the EF class where the CTEs are easily determined. For example, the Lognormal

is a distribution transformed from the normal distribution; the transformed gamma

distribution is from the gamma distribution; the Pareto distribution (with known

location parameter) is from the shifted exponential distribution, to name a few. See

the appendix of Klugman et al. (1998) for a survey of these transformed distributions.

In this section selected examples in this type of distributions are provided for

illustration purposes.

Example 2.11 (Linear transformation) When Y = g(X) = aX + b, a > 0, the

1We use E[Y k|Y > Qα(Y )] rather than E[Y k|X > Qα(X)] because often Y itself is a familiar

random variable.
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conditional tail moments of Y are calculated as follows:

CTEα(Y k) = E((aX + b)k|aX + b > Qα(Y ))

= E(
k∑

i=0

(
k

i

)
aiX ibk−i|X >

Qα(Y ) − b

a
)

=
k∑

i=0

(
k

i

)
aibk−iE(X i|X > Qα(X))

=
k∑

i=0

(
k

i

)
aibk−iCTEα(X i), k = 1, 2, . . . .

If X is a standardized random variable with no parameter involved (e.g., standard

normal), this equation is convenient in that one standard table of CTE(X i) can be

used to calculate CTE(Y k) for any fixed a and b.

Example 2.12 (Lognormal distribution-revisited) To determine the conditional

tail moments of Y ∼ LN(µ, σ2), consider X = log Y . It follows that X ∼ N(µ, σ2)

and

CTEα(Y k) = E(Y k|Y > Qα(Y )) = E(ekX |eX > Qα(Y ))

= E(ekX |X > logQα(Y )) = E(ekX |X > Qα(X)).

This is directly related to the conditional tail m.g.f. of X defined in (2.8), that is, it

can be calculated as follows:

E(euX |X > d) =
1

F̄ (d)

∫ ∞

d

eux 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
dx

=
1

F̄ (d)

∫ ∞

d

1√
2πσ

exp
(
− (x− µ− σ2u)2

2σ2

)
dx× exp

(
µu+

σ2

2
u2

)

=
F̄ (d− σ2u)

F̄ (d)
exp

(
µu+

σ2

2
u2

)
.
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Since X ∼ N(µ, σ2) the conditional tail moments of Y = eX are therefore given by

CTEα(Y k) = E(ekX |X > Qα(X))

=
F̄ (Qα(X) − σ2k)

F̄ (Qα(X))
exp

(
µk +

σ2

2
k2

)

=
Φ̄(zα − σk)

Φ̄(zα)
exp

(
µk +

σ2

2
k2

)
, k = 1, 2, . . . ,

where Φ is the c.d.f. of N(0, 1), and zα = (Qα(X)− µ)/σ. In particular the first two

moments are

CTEα(Y ) = E(Y |Y > Qα(Y ))

=
Φ̄(zα − σ)

Φ̄(zα)
exp

(
µ+

σ2

2

)

and

CTV arα(Y ) = E(Y 2|Y > Qα(Y )) −
(
CTEα(Y )

)2

=
Φ̄(zα − 2σ)

Φ̄(zα)
exp

(
2µ+ 2σ2

)
−

[
Φ̄(zα − σ)

Φ̄(zα)
exp

(
µ+

σ2

2

)]2

.

Example 2.13 (Pareto distribution) The distribution function of Pareto is given

by

FY (y) = 1 − (
c

y
)a, y ≥ c,

and the density function, expressed in the canonical form, becomes

f(y) =
aca

ya+1

= exp(a log c+ log a− (a+ 1) log y)
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Thus the Pareto distribution belongs to the EF when c is known2, but it suffers from

the same shortcoming as the lognormal distribution; that is, the formula will produce

CTE(T ) = CTE(log Y ), not CTE(Y ).

Now consider the distribution function of Y = g(X) = eX . It turns out that

FX(x) = Pr(log Y ≤ x) = Pr(Y ≤ ex)

= 1 − cae−xa, X ≥ log c,

which is Exp(1/a) shifted by log c. Therefore for any Qα(Y ) ≥ c,

CTEα(Y k) = E(Y k|Y > Qα(Y ))

= E(ekX |X > Qα(X))

=

∫ ∞

Qα(X)

ekx acae−xadx
/
F̄X(Qα(X))

=
aca

a− k
e−(a−k) Qα(X)

/
cae−aQα(X)

=
a

a− k
ekQα(X)

=
ack

a− k
(1 − α)−k/a, k = 1, 2, . . . .

The CTV ar can be obtained by using CTV arα(Y ) = CTEα(Y 2) − CTEα(Y )2.

Example 2.14 (Generalized Pareto distribution) The Generalized Pareto dis-

tribution (GPD) has been widely studied in connection with the extreme value theory

in insurance and finance. The distribution of GPD is defined as

FY (y) = 1 −
[
1 +

ξ

β
y

]−1/ξ

+

, β > 0.

2When a distribution’s support depends on unknown parameters the distribution fails to be an

EF.
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So the domain is y ≥ 0 if ξ > 0, or 0 ≤ y ≤ −β/ξ if ξ < 0; when ξ = 0 this reduces

to the exponential distribution with mean β. Note that the GDP is not a member of

the EF because its support depends on the parameters. Since X = log(1 + ξ
β
Y ) has

the exponential distribution with mean ξ, the conditional tail moments of GPD, for

ξ > 0, are given by

CTEα(Y k) = E(Y k|Y > Qα(Y ))

= E
[(β
ξ
(eX − 1)

)k∣∣β
ξ
(eX − 1) > Qα(Y )

]

=
(β
ξ

)k
E

[
(eX − 1)k

∣∣X > Qα(X)
]

=
(β
ξ

)k 1

F̄X(Qα(X))

∫ ∞

Qα(X)

(ex − 1)k 1

ξ
e−1/ξdx

=
(β
ξ

)k 1

1 − α

∫ ∞

Qα(X)

(ex − 1)k 1

ξ
e−x/ξdx.

Using a binomial expansion (ex − 1)k =
∑k

j=0

(
k
j

)
ejx(−1)k−j, the integration term of

the above equation becomes

∫ ∞

Qα(X)

(ex − 1)k 1

ξ
e−x/ξdx =

k∑

j=0

(
k

j

)
(−1)k−j 1

ξ

∫ ∞

Qα(X)

e−(1/ξ−j)xdx

=
k∑

j=0

(
k

j

)
(−1)k−j 1

ξ

1

1/ξ − j

[
1 − e−(1/ξ−j)x

]∞

Qα(X)

=
k∑

j=0

(
k

j

)
(−1)k−j 1

1 − jξ

(
1 − α

)1−jξ
.

Note that we need 1/ξ − j > 0 for all j = 0, 1, . . . , k to get the finite value for the

integration. This is equivalent to ξ < 1/k.

Finally we have

CTEα(Y k) =
(β
ξ

)k 1

1 − α

k∑

j=0

(
k

j

)
(−1)k−j (1 − α)1−jξ

1 − jξ
, ξ < 1/k.
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For the first moment,

CTEα(Y ) =
(β
ξ

) 1

1 − α

1∑

j=0

(
1

j

)
(−1)1−j (1 − α)1−jξ

1 − jξ

=
β

ξ

(
(1 − α)−ξ

1 − ξ
− 1

)
, ξ < 1.

For the variance, with a little algebra, we get

CTV arα(Y ) =
β2(1 − α)−2ξ

(1 − 2ξ)(1 − ξ)2
, ξ < 1/2.

Example 2.15 (Weibull distribution) The distribution function of Weibull dis-

tribution is

FY (y) = 1 − exp[−(
y

β
)τ ], β, τ > 0. (2.16)

The Weibull distribution does not belong to the EF since in the exponential term it has

(w
β
)τ that cannot be broken into ηT form (parameter multiplied by a statistic) as in

the densities of the EF. The distribution of X = (Y/β)τ , however, has the exponential

distribution with mean 1, recognized directly from (2.16). Therefore

CTEα(Y k) = E(Y k|Y > Qα(Y ))

= E(βkXk/τ |βX1/τ > Qα(Y ))

= E(βkXk/τ |X > (
Qα(Y )

β
)τ )

= βkE(Xk/τ |X > Qα(X))

= βk

∫ ∞

Qα(X)
xk/τe−xdx

1 − α

= βk Γ(1 + k/τ)
(
1 − Γ(1 + k/τ ; (− log(1 − α)/β)τ)

)

1 − α
, k = 1, 2, . . . ,

where the gamma and the incomplete gamma functions are respectively defined by
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Γ(α) =

∫ ∞

0

tα−1e−tdt

and

Γ(α; z) =
1

Γ(α)

∫ z

0

tα−1e−tdt.

2.5 Conclusion

In this chapter the simple formulas to calculate the first two moments of the condi-

tional tail measure have been proposed for the exponential family. These formulas

are based on the canonical form of the density and can be obtained by differentiating

with respect to the corresponding canonical parameter. Also the conditional tail mo-

ment (and cumulant) generating function has been derived for the exponential family,

which can be used to produce the moments of any order.

Another technique to get these moments for distributions transformed from the expo-

nential family has been illustrated, which can help calculate conditional tail moments

otherwise considered difficult to handle. Since the exponential family contains a wide

range of distributions its conditional tail moment formulas derived in this chapter can

be useful for risk management purposes.



Chapter 3

Bias correction of risk measures

using the bootstrap

3.1 Introduction and motivation

Among other risk measures introduced in the first chapter the VaR in (1.2) and the

CTE in (1.3) are the most used ones in practice for the required capital determination.

In particular, the CTE has been widely accepted in the insurance field, having been

prescribed both by the Canadian Institute of Actuaries for Segregated Fund Contracts

(CIA, 2001) and by the American Academy of Actuaries in its ‘C3 Phase 2’ report

(AAA, 2005).

There has been an considerable work on estimating the VaR and the CTE in both

finance and actuarial science side with different methods and under different contexts.

Landsman and Valdez (2003), Landsman and Valdez (2005), Cai and Li (2005), and

the previous chapter of the thesis considered CTE estimation in certain paramet-

ric families. Commercial products such as RiskMetrics, KMV, and CreditMetrics

51
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provide the VaR value using internal models. Gourieroux et al. (2000) and Scaillet

(2004) use a kernel method to estimate the tail measures, which can be classified

as a semi-parametric method. Extreme value theory is an alternative technique to

estimate the tail risk measures; see, e.g., Chapter 7 of McNeil et al. (2005). On the

non-parametric side, Dowd (2001) used order statistics to estimate the VaR. If we

use the mean squared error (MSE) as the standard tool to assess the estimator’s un-

certainty, both the bias and the variance matter. Recent papers by Inui et al. (2005),

Bao and Ullah (2004), and Berkowitz and O’Brien (2002) address the topic of mea-

suring the bias of the estimated VaR.

Using a parametric approach, estimating these measures, like other statistical

modelings, involves the model error and parameter error, where these uncertainty

would gradually decrease as sample size gets larger in general. There is however

another important consideration arising in practice. Insurance companies typically

have an in-house or commercial model implemented for cash flow validations and

predictions based on various product variables (e.g., mortality, lapse, tax, and other

expenses) and economic factors (e.g., interest rate, stock price, and inflation) fueled

from past historical data. The model is often very complicated so that it requires a

significant time1 to simulate cash flows for each scenario, especially with a massive

business volume, leaving the managers with a small sample size to estimate the VaR

or the CTE of a whole business block. Since extreme events are rare, estimating

these tail risk measures gets even harder. This sampling constraint is well known

in industry and recognized by the effort to use variance reduction techniques (see

1It is not uncommon that simulating cash flows for each scenario takes 30 minutes for a single

block of business in practice.
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Glasserman et al. (2000) for the VaR; Manistre and Hancock (2005) for the CTE) or

to find so called representative scenarios in hope to reduce the number of simulations

in actuarial applications; see, e.g., Christiansen (1998) and Chueh (2002) for details.

To this end we consider a situation where the tail risk measure is to be estimated

from a small i.i.d.2 sample of a distribution using a Monte Carlo simulation. In

particular, in this chapter, we investigate the magnitude and direction (positive or

negative) of the bias, and assess the advantages and disadvantages of using boot-

strap techniques to correct the estimates for bias, with no reference to the parent

distribution. The issue of the bias can be a generic statistical problem but it also

has a particular implication in connection to the insurance regulation. The current

Canadian regulation, as specified in the report on segregated fund investment guaran-

tees by CIA Task Force (2002), prescribes the CTE 95% as the measure to determine

the segregated fund investment guarantee’s required capital using the Monte Carlo

simulation. In detail the Total Gross Capital Requirement (TGCR) computes the

aggregate CTE by adding the estimated CTE values for each exposure (policy). The

report also recognizes that this approach would overstate the true value because the

CTE is subadditive, that is, the sum of the CTEs is larger than the CTE of the sum.

If there is bias in the estimated CTE for each contract, however, it will accumulate

(because it is systematic) over a large portfolio to make the sum substantially bi-

ased. This effect then further extends to the whole industry as well, which could be

a concern of the regulator. Coupled with the small sample size, the bias of tail risk

measures thus is an interesting problem with practical implications for actuaries.

This chapter starts with defining the empirical VaR and CTE and noting that they

2independent and identically distributed.
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are generally biased. We then introduce the bootstrap method as a nonparametric

tool to estimate (and potentially correct) the bias, along with a new finding that,

unlike the VaR, the empirical CTE is systematically biased. Numerical examples

show that while the CTE bias may be corrected, doing so may result in an increase

in the variance. At the end of the chapter a practical algorithm is proposed, which

systematically selects the estimate with the smallest MSE among the empirical, the

bootstrapped, and the bias-corrected CTE estimates.

3.2 Estimating VaR and CTE using finite sample

Consider a random variable X and its c.d.f.3 F , which is assumed to be continuous.

Suppose that the Monte Carlo simulation generates an i.i.d. random sample X =

(X1, . . . , Xn) from F . The ordered sample is denoted by (X(1), . . . , X(n)).

For the sample quantile , Q̂α, there are several suggestions for possible estimators.

The simplest candidate is X(r) where (r− 1)/n < α ≤ r/n. A slightly more sophisti-

cated approach uses an interpolation between X(r−1) and X(r) if (r−1)/n < α < r/n.

Both of these estimators are biased, in finite samples, but are asymptotically unbiased.

Another adjustment is the use of X(α (n+1)), using some form of interpolation if

α (n+ 1) is not an integer. For more discussion of these estimators, See for example,

Hyndman and Fan (1996) and Klugman et al. (1998).

Given the same random sample X = (X1, . . . , Xn) the sample CTE estimate for

confidence level α is generally taken as:

ĈTEα =
1

n(1 − α)

n∑

i=[nα]+1

X(i), (3.1)

3cumulative distribution function.
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where the X(i) is the i-th ordered value of X, and [ ] is the floor function.

These estimators for the CTE and VaR take the form of a linear combination of

order statistics which is commonly called L-estimators (assuming any interpolation

required is also linear).

When the quantile estimator is biased, the corresponding CTE estimator is also

biased because in general

CTE = EX [X|X > Qα] 6= E bQα
[EX(X|X > Q̂α)] = E[ĈTE]. (3.2)

The bias will tend to zero as the sample size gets larger since Q̂α is a consistent

estimator of the true quantile, but will materially affect the accuracy of the CTE

estimate for small sample sizes.

We illustrate the general problem with a simple analytic example.

Example 3.1 Consider a uniform random variable X ∼ U(0, 1). Suppose that we

are interested in α such that nα is an integer. The true VaR here is α, while the two

simple estimators are X(nα) and X(nα+1).

Now, for a sample size of n the expected value of r-th ordered value is given by

r/(n+ 1), 1 ≤ r ≤ n.

If we set Q̂α = X(nα), the bias is −α/(n+ 1). On the other hand if Q̂α = X(nα+1)

the bias is (1−α)/(n+ 1). In this example the latter choice yields much smaller bias

in absolute terms in the right tail region, where α is close to 1.

This example shows that the direction and the magnitude of VaR bias depends

on the choice of estimating function, the location of the quantile (for example, how

big is α? and, which tail?), as well as the underlying distribution shape and the

sample size. For non-negative loss random variable, negative bias of VaR could result
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in inadequacy of reserve or capital, and positive bias could cause inefficient use of

capital.

Example 3.2 For the same uniform distribution X ∼ U(0, 1) the true CTE value

is (1 + α)/2. Assuming again that nα is an integer the expected value of the sample

CTE estimate is

E[
1

n(1 − α)

n∑

i=nα+1

X(i)] =
1

n(1 − α)

n∑

i=nα+1

E[X(i)]

=
1

n(1 − α)

n∑

i=nα+1

i

n + 1

=
n(1 + α) + 1

2 (n+ 1)
.

So, the bias is − α
2(n+1)

, meaning that the sample CTE tends to underestimate the true

CTE in this example.

We will see in the following section that the negative bias of the empirical CTE,

given in (3.1), is a general observation.

3.3 Bias of sample estimates of VaR and CTE

We first focus on estimates using a single sample value X(r). We define the following

two estimates and name them respectively the lower side estimate and the upper side

estimate:

Q̂L(α) = X(r), if (r − 1)/n < α ≤ r/n (3.3)

Q̂U(α) = X(r), if (r − 1)/n ≤ α < r/n (3.4)
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These are identical except when nα is integer. For example if n = 100 and α = 0.95,

Q̂L(0.95) = X(95) whereas Q̂U(0.95) = X(96).

As we saw in the Uniform example, we may find a better estimator to lie between

the low side and high side. There are many versions of estimators based on both the

low side and high side of the sample values, as discussed in Hyndman and Fan (1996).

Here we choose the one recommended by them which is:

Q̂HF (α) = (1 − γ)X(g) + γX(g+1), (3.5)

where g = [(n + 1/3)α + 1/3] and γ = (n + 1/3)α + 1/3 − g, derived from the ap-

proximation of the incomplete beta function ratio. A slightly modified version of

this estimate is also found in Klugman et al. (1998), termed the smoothed quantile

estimate.

There are estimators for the quantile that use more than two values of X(j).

Harrell and Davis (1982) proposed:

Q̂HD(α) =
n∑

j=1

wjX(j), (3.6)

where

wj =

∫ j/n

(j−1)/n
t(n+1)α−1(1 − t)(n+1)(1−α)−1dt

B[(n + 1)α, (n+ 1)(1 − α)]

with B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. This estimate is actually the exact bootstrap es-

timate of E(X((n+1)α)), even for non-integer (n+ 1)α, as noted by Hutson and Ernst

(2000). We discuss the exact bootstrap in more detail in the following section.

Mausser (2001) shows that Q̂HD(α) performs better than Q̂U(α) for the marginal
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VaR determination of some financial asset portfolios.

It is interesting to examine the bias of a single order statistic (that is, X(r) for

integer r) against the true quantile when nα is integer. For example, is E(X(95))

larger or smaller than the true quantile Q(0.95)? Sometimes this type of question

can be tackled using the quantile bounds. There are different bounds available for

the expected value of one order statistic expressed as a function of parent popula-

tion’s quantile; see Section 4.4 of David (1981) and references therein. Those bounds

are nonparametric but additional information, such as convexity of the distribution

function, often leads to better bounds. A few useful bounds for an i.i.d. sample can

be derived by the c-ordering equivalence as follows, where F (x) = Pr[X ≤ x] is the

c.d.f. of X and n is the sample size.

1. F [E(X(r))] ≤ (≥)
r

n + 1
if F is convex (concave)

2. F [E(X(r))] ≤ (≥)
r − 1

n
if 1/F is concave (convex)

3. F [E(X(r))] ≤ (≥)
r

n
if 1/(1 − F ) is convex (concave)

It is possible for a distribution to satisfy more than one criterion above. These

bounds can serve as an informal guideline if applied to the empirical distribution. For

example if 1/F is concave, E(X(nα+1)) ≤ Q(α) and E(X(nα)) ≤ Q(α−1/n), indicating

that Q̂L(α) = X(nα) is a bad choice since it makes the bias worse. For many common

distributions, including the Normal, the Exponential, the Pareto, and the Gamma, for

certain parameters, the (nα)th order statistic can be shown to be negatively biased, or

E(X(nα)) ≤ Q(α), by the convexity of 1/(1− F ). While this underestimation of VaR

is observed in many fat-tailed financial data there are examples with positive bias.
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Consider a special case of the Inverse Weibull, also known as the Fréchet distribution,

with c.d.f.

F (x) = exp[−x−a], a > 0, x > 0. (3.7)

It can be shown that 1/(1−F ) is concave in the right tail region for any 0 < a < 1, thus

E(X(nα)) ≥ Q(α) when α is close to 1. This implies that the VaR based on historical

data may actually exceed the true VaR for some very fat-tailed distributions. We

finally note that the recent result on the bias of the VaR estimator by Inui et al.

(2005) is equivalent to the first criterion above. Defining the VaR as a left side

tail risk measure, they proved that E[X((n+1)α)] converges to Q(α) from below, or

E[X((n+1)α)] ≤ Q(α) in the left tail area where F is convex. However, for nonnegative

distributions whose c.d.f.s are concave, such as the exponential distribution, the result

does not hold.

Turning to the CTE, we have a result that the sample CTE estimate is always

negatively biased. The CTE is a form of trimmed mean – where we trim the lower nα

values of the sample of n losses. Rychlik (1998) showed that for any identically (but

not necessarily independently) distributed random sample (X1, . . . , Xn) the trimmed

mean has the following upper bound:

E

[
1

k + 1 − j

k∑

i=j

X(i)

]
≤ n

n+ 1 − j

∫ 1

(j−1)/n

Q(α) dα,

Where Q(α) is the α-quantile of the distribution of X. Plugging in k = n and

j = nα + 1, assuming nα is an integer, gives the upper bound for the sample CTE

E

[
1

n(1 − α)

n∑

i=nα+1

X(i)

]
≤ 1

1 − α

∫ 1

α

Q(x)dx = E [X|X > Q(α)] .

Interestingly, if we set j = k = nα + 1 the upper bound for expected value of the

sample VaR, Q̂U (α), becomes CTEα, for an identically distributed sample. There
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is also a lower bound available, which is not considered here; see the reference for

details.

We have shown in this section that common estimators for quantile and CTE risk

measures are biased in general. One method for estimating and correcting for bias is

through the bootstrap technique.

3.4 The bootstrap

3.4.1 Overview

The bootstrap methodology is particularly useful for non-parametric statistical infer-

ence. It has been widely applied by financial practitioners and actuaries as well as

statisticians. For a comprehensive treatment, see standard textbooks such as Hall

(1992), Efron and Tibshirani (1993), Shao and Tu (1995) or Davison and Hinkley

(1997).

The core idea of the bootstrap is to create pseudo-samples by resampling (with

replacement) from the original sample. The relationship of the pseudo-samples to the

original sample replicates many features of the relationship of the original sample to

its underlying distribution.

The basic procedure of the bootstrap can be sketched as follows. Suppose we have

an i.i.d. random sample X = (X1, . . . , Xn) from an unknown distribution, with c.d.f.

F , and we are interested in a parameter t(F ) such as a quantile or CTE. Pseudo-

samples are generated by sampling, with replacement, generating a new sample of

the same size n as the original, from the empirical distribution function (e.d.f.) F̂ .

The generated sample, denoted by X∗, is called a bootstrap sample; the capital letter

states that this too is a random sample, but from the e.d.f., indicated by superscript ∗.
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The statistic of interest using this generated sample then is denoted by T ∗ = T (X∗).

We repeat the exercise R times for R different bootstrap samples X∗
1, . . . ,X

∗
R, each

of size n. From each sample we generate the statistic of interest, that is, T ∗
k from

the k-th bootstrap sample, giving T ∗
j = T (X∗

j), j = 1, . . . , R. Finally the bootstrap

estimate of the statistic T is given by

E(T |F̂ ) = E∗(T ∗) ≈ 1

R

R∑

j=1

T ∗
j , (3.8)

following the notation in Davison and Hinkley (1997). Here the condition F̂ in the

first term indicates that the expectation is taken with respect to the e.d.f.; the true

parameter value is expressed by E(T |F ). It is sometimes possible to compute E(T |F̂ )

analytically without actually performing the simulation. Usually, however, the resam-

pling simulation, referred to the ordinary bootstrap (OB), is inevitable. In these cases

the estimate is subject to sampling error. The difference between the true bootstrap

estimate and the estimated one, called the resampling (simulation) error, decreases

as the resampling size R gets larger. We denote R−1
∑
T ∗

j by T
∗

and call this the

standard bootstrap estimator.

The unknown bias E(T |F )− t(F ) is approximated by its bootstrap estimate B =

E(T |F̂ ) − t(F̂ ), thus the bootstrap bias estimate under R resamplings is

BR = T
∗ − t(F̂ ) = T

∗ − T. (3.9)

Note that the bootstrap bias BR converges to the true bias B as R → ∞. If this is

achieved the remaining uncertainty is only attributed to the original statistical error,

i.e., to the fact that the empirical F̂ does not perfectly represent the true F . The

statistical error can be reduced when the sample size n gets larger or one has more
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information on F such as its parametric properties, neither of which might be feasible

in practice.

We know that the estimator (e.g. for VaR or CTE) T is, in general, biased for

finite sample sizes, so we could use a new bias-corrected estimator

t(F̂ ) − BR = 2T − T
∗

(3.10)

In practice, there is a trade-off between the improvement in the bias through using

bias correction and the variability of the estimate in bootstrap. When the efficiency

of the estimator is measured by the mean squared error (MSE) which is the sum of

the squared bias and the variance of the estimator, this means that the bias correction

may reduce the contribution of the first term, but could increase the second. Whether

the resulting MSE will be smaller after bias correction depends on the underlying dis-

tribution as well as on the estimator itself; see for example Jeske and Sampath (2003).

We will show some examples in the next section.

While the bootstrapping procedure is straightforward, one should be aware that

there are applications where the standard bootstrap can fail. For example, if the data

is incomplete or dependent then it is known that the bootstrap won’t work in general.

In estimating tail risk measures, it is possible for the true VaR or CTE to lie beyond

the data maximum; e.g., CTE 99% estimate cannot be obtained from a sample of

size 100. To prevent this problem we assume that the tail risk estimates are less

than the data maximum, making the bootstrap a sensible tool for our purpose. Also

bootstrapping the tail side data does not pose problems under parametric simulations,

as long as the model is correct, because rare events in this case are due to the model’s

nature, and not from undetected errors.
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3.4.2 Bootstrapping L-estimators

For the quantile and CTE risk measures we can utilize results available on bootstrap

estimation of L-estimators. Throughout this subsection we assume the statistic of

interest, T , is an L-estimator, that is a linear combination of order statistics:

T =
n∑

i=1

ciX(i). (3.11)

It is evident that the sample VaR and the CTE are special cases of this form with an

appropriate selection of the coefficients ci, 1 ≤ i ≤ n. Hutson and Ernst (2000) de-

rived the formula for the exact bootstrap (EB) mean and variance of the L-estimator.

The bootstrap is exact in the sense that the resampling error is completely eliminated

in the procedure; this is equivalent to bootstrapping at R = ∞. We show here how

to apply the exact bootstrap to the quantile measure.

Theorem 3.3 (Hutson and Ernst (2000)) The exact bootstrap (EB) of the esti-

mate of E(X(r)|F ), 1 ≤ r ≤ n is

E(X(r)|F̂ ) =

n∑

j=1

wj(r)X(j),

where

wj(r) = r

(
n

r

)[
B

(
j

n
; r, n− r + 1

)
− B

(
j − 1

n
; r, n− r + 1

)]
,

and

B(x; a, b) =

∫ x

0

ta−1(1 − t)b−1dt.

Some wj(r) values are presented in Figure 3.1.

The weights are spread around the sample estimate, with heavier weights around

X(r) and gradually smaller weights for distant observations. The Harrell-Davis quan-

tile estimator, introduced in Section 3, is equivalent to the EB of E(X((n+1)α)|F̂ ).
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Figure (a): Weights for the EB of 50th order statistic
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Figure (b): Weights for the EB of 95th order statistic
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Figure (c): Weights for the EB of 100th order statistic

Figure 3.1: The weights of the EB for several order statistics when n = 100
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Its weights can be compared to those of the EB at each order statistic. Figure

3.2 compares the 95% and 99% quantile weights. We can see from the figure that

Q̂EB
L < Q̂HD < Q̂EB

U with Q̂HD close to Q̂EB
U .

There are several advantages of the EB over the OB with actual resamplings.

The EB formula takes a simple analytic form and thus no simulations are involved.

The simple form is easy to implement and significantly reduces the computing time

compared to the OB. Since no resampling error is involved in the EB, we expect the

the EB to be better than its OB counterpart in terms of variance on average. Finally

the EB weights can be used for any samples with the same size because they are

independent of the data. In the next section the EB is compare with the OB for both

the VaR and the CTE using some parametric models.

Using Theorem 3.3 we now present several bootstrap-related quantities of the L-

estimator in matrix form which is convenient in notation and useful for programming

in matrix-based software such as Matlab. For a sample with size n, define X:n =

(X(1), . . . , X(n))
′ and c to be a column vector of size n. Then any L-estimator can be

expressed as T = c′X:n. For the CTE at confidence level α, for instance, we take

c = (n(1 − α))−1(0, . . . , 0, 1, . . . , 1)′

with zeros for the first nα elements, to get the sample CTE estimate c′X:n. Therefore

the EB of T , an L-estimator, is

E(T |F̂ ) = E(c′X:n|F̂ ) = c′E(X:n|F̂ ) = c′w′X:n, (3.12)

where the matrix w = {wi(j)}n
i,j=1 comes from the EB weights for each element of

X:n.
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Figure 3.2: Comparisons of the weights: HD vs. EB estimators when n = 100.
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Now the EB bias estimate is expressed by

B = E(T |F̂ ) − t(F̂ ) = c′w′X:n − c′X:n (3.13)

Thus the bias-corrected estimator defined in (3.10) then is

t(F̂ ) − B = c′X:n − (c′w′X:n − c′X:n) = c′(2I − w′)X:n. (3.14)

Even though we have an analytic expression for the EB bias, we still need to see

whether bias correction using the EB actually corrects the bias for the tail risk mea-

sures. The answer to this question is positive for the CTE as shown in the following

theorem.

Theorem 3.4 The empirical CTE estimator defined in (3.1) is always bigger than

the EB of the CTE estimator, at any α such that nα is an integer. That is, mathe-

matically,

c′w′X:n < c′X:n,

for any given sample X, where c = (n(1− α))−1(0, . . . , 0, 1, . . . , 1)′ with zeros for the

first nα elements.

Proof: To start with, let us show that the weight matrix w = {wi(j)}n
i,j=1 is doubly

stochastic, meaning that the sum over each row and each column equal one. From

Theorem 3.3, the (j, r)-th element of matrix w is defined by

wj(r) = r

(
n

r

)[
B

(
j

n
; r, n− r + 1

)
− B

(
j − 1

n
; r, n− r + 1

)]

We turn this into a different expression, which is

wj(r) =
1

B(r, n− r + 1)

[
B

(
j

n
; r, n− r + 1

)
− B

(
j − 1

n
; r, n− r + 1

)]

=
n∑

k=r

(
n

k

)
(
j

n
)k(1 − j

n
)n−k −

n∑

k=r

(
n

k

)
(
j − 1

n
)k(1 − j − 1

n
)n−k
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from a well known characteristic of the incomplete beta function ratio; see, e.g.,

Johnson et al. (1992). If we define two binomial random variables Y1 ∼ Bin(n, j
n
)

and Y2 ∼ Bin(n, j−1
n

), the last expression becomes Pr(Y1 ≥ r) − Pr(Y2 ≥ r). Thus

the sum of j-th row elements of w is

n∑

r=1

wj(r) =
n∑

r=1

Pr(Y1 ≥ r) −
n∑

r=1

Pr(Y2 ≥ r)

= E(Y1) − E(Y2) = n
j

n
− n

j − 1

n
= 1.

The sum over each column equals one by the definition of the weights, thus matrix

w has been proved to be doubly stochastic. Now put c′w′X:n =
∑n

i=1 biX(i) where

bi = (n(1 − α))−1
∑n

j=nα+1wi(j). Note that for each i we have

0 < bi < (n(1 − α))−1

and
n∑

i=1

bi = 1,
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because w is doubly stochastic. Thus

c′X:n − c′w′X:n =
n∑

i=nα+1

(n(1 − α))−1X(i) −
n∑

i=1

biX(i)

=

n∑

i=nα+1

(n(1 − α))−1X(i) −
nα∑

i=1

biX(i) −
n∑

i=nα+1

biX(i)

=
n∑

i=nα+1

[(n(1 − α))−1 − bi]X(i) −
nα∑

i=1

biX(i)

>

n∑

i=nα+1

[(n(1 − α))−1 − bi]X(nα) −
nα∑

i=1

biX(nα)

= X(nα)

[ n∑

i=nα+1

[(n(1 − α))−1 − bi] −
nα∑

i=1

bi

]

= X(nα)

[ n∑

i=nα+1

(n(1 − α))−1 −
n∑

i=1

bi

]
= X(nα)[1 − 1] = 0.

We comment that the inequality in the middle of above expression holds for any ran-

dom sample defined on the real line, not just positive ones. Q.E.D.

Note that this result also holds for the ordinary bootstrap with sufficiently large

resampling size R because the EB is the limit value of the ordinary bootstrap.

Coupled with the result of Rychlik (1998) the above theorem gives

E(c′w′X:n|F ) < E(c′X:n|F ) < CTEα(X),

for c = (n(1 − α))−1(0, . . . , 0, 1, . . . , 1)′ with zeros for the first nα elements. This

implies that the bootstrap bias correction for CTE works in the right direction because

the unknown bias E(c′X:n|F ) − CTEα(X) is estimated by c′w′X:n − c′X:n.

There is no similar result for the VaR case.
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3.5 Simulations

3.5.1 Examples

Three different examples are used to compare the performance of various estimators

for the VaR and the CTE using Monte Carlo simulations; the empirical, the OB with

resamplings, the EB. For each bootstrap method the bias corrected estimator has also

been computed. To assess the performance of the different estimators we repeat this

with different generated samples and obtain the MSE values.

The first example is a 10-year European put option with the price return based

on the Lognormal (LN) distribution. The initial price of the asset is set at $100 and

strike price is $180, and the risk free rate is assumed 0.5% monthly effective. The

LN parameters of the P-measure are µ = 0.00947 and σ = 0.04167 which are derived

from the monthly S&P 500 data during 1956-2001, as shown in Chapter 3 of Hardy

(2003). Put options are often discussed in the cost of investment guarantees such

as the segregated funds and variable annuities, where the strike price represents the

guaranteed payment at maturity to customers. The put option here can be said to be

at the money from insurer’s perspective because the expected level of the fund in 10

years under the risk neutral measure is around $182. We focus on the VaR and the

CTE of the put option liability at different confidence levels. We assume no hedging

here.

In the second example we consider the identical put option except that the under-

lying asset follows the Regime Switching Log-Normal distribution with two regimes

(RSLN2) this time. See Hardy (2003) for details. The parameters are derived from the

same S&P data: µ1 = 0.0127, µ2 = −0.0162, σ1 = 0.0351, σ2 = 0.0691, p12 = 0.0468,
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and p21 = 0.3232. Since the left tail of the RSLN2 is fatter than the LN the risk

measure associated with the guarantee cost is known to be significantly greater under

the former model than those under the latter, and this is exactly what we observe in

our simulations.

The final model is a fat-tailed Pareto distribution which has been popular in con-

nection with extreme value theory in financial risk management, and is also used in

property and casualty applications. The parameters are β = 10 and ξ = 0.2 where

the c.d.f. of Pareto is

F (x) = 1 −
(

β

β + ξx

)1/ξ

, x > 0, (3.15)

following the notation of Manistre and Hancock (2005). The mean and the variance

of this distribution are respectively 12.5 and 260.42 under our parameter choice. Note

that the Pareto has fatter tail than the other two models.

In each model, we estimate the VaR using the Q̂L, Q̂U , Q̂HF , and their various

bootstrap versions using the OB with 100 resamplings as in (3.8), the EB as in

(3.12), and the bias corrected ones given in (3.10) and (3.14) respectively. This

results in fifteen different estimators. Also we included Q̂HD in which case there is no

bootstrapping. For the CTE estimation we compare the empirical estimate, the OB,

the EB, with and without bias correction; in total five estimators.

3.5.2 Estimating the 99% Quantile risk measure

For the simulations we have simulated 20,000 samples of two sizes, 200 and 1000, from

the given liability models. For each sample, we have calculated the lower quantile

estimate, Q̂L from equation (3.3), the upper estimate Q̂U from equation (3.4), the HF
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estimate, Q̂HF from equation (3.5) and the HD estimate Q̂HD from equation (3.6).

In addition, for the first three measures, for each sample, we have calculated revised

estimates using the ordinary bootstrap and the exact bootstrap, before and after bias

correction.

The resulting values give the average bias and the average root mean square error,

rMSE, associated with each measure. In Table 3.1, 3.2, and 3.3 show these values

along with estimated standard errors4 of these averages expressed in percentage of

the true values.

From these tables we note:

1. The tail measure from the sample is quite inaccurate even for sample size 1000,

which would be on the high side in many actuarial applications.

2. The overall accuracy, as measured by the rMSE is improved by using the exact

bootstrap, without bias correction. However we have no evidence that this

would be true for quantiles in general.

3. Bias correction may increase the bias and substantially increase the rMSE –

and in fact does so for the lognormal and RSLN models, for the Q̂U and Q̂HF .

The usefulness of the bootstrap bias correction is limited because of the non-

smoothness of the estimator, Q̂U = X(0.99 n), and further because we are near

the bounds of the e.d.f. sample space. To illustrate more clearly, for the 99.5%

quantile, Q̂U would be the maximum value from the sample, which we expect

4Let θ̂i be the estimate from i-th sample, with i = 1, 2, . . . , m (here we have m = 20, 000). Then

the variance of the average bias is estimated by σ̂2/m, where σ̂2 =
∑

(θ̂i − ¯̂
θ)2/(m − 1) and the

variance of the variance is estimated from the normal approximation 2(σ̂2)2/(m − 1). The same

formulas are used for simulation result throughout Chapter 3 and 4.
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Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

Q̂L -7.59%(0.12%) 16.7%(1.11%) 18.34% -1.58%(0.06%) 7.91%(0.25%) 8.07%

Q̂OB
L -9.34%(0.1%) 14.66%(0.85%) 17.38% -1.94%(0.05%) 7.37%(0.22%) 7.62%

Q̂OB.bc
L -5.84%(0.14%) 20.44%(1.66%) 21.26% -1.21%(0.06%) 9.01%(0.32%) 9.09%

Q̂EB
L -9.33%(0.1%) 14.55%(0.84%) 17.28% -1.94%(0.05%) 7.32%(0.21%) 7.57%

Q̂EB.bc
L -5.85%(0.14%) 20.36%(1.65%) 21.18% -1.22%(0.06%) 8.96%(0.32%) 9.04%

Q̂U 4.69%(0.13%) 18.25%(1.32%) 18.84% 0.98%(0.06%) 8.05%(0.26%) 8.11%

Q̂OB
U 1.84%(0.11%) 15.75%(0.99%) 15.86% 0.58%(0.05%) 7.5%(0.22%) 7.52%

Q̂OB.bc
U 7.54%(0.16%) 22.81%(2.07%) 24.02% 1.38%(0.06%) 9.19%(0.34%) 9.29%

Q̂EB
U 1.84%(0.11%) 15.63%(0.97%) 15.74% 0.59%(0.05%) 7.45%(0.22%) 7.47%

Q̂EB.bc
U 7.55%(0.16%) 22.71%(2.05%) 23.93% 1.37%(0.06%) 9.14%(0.33%) 9.24%

Q̂HF 0.56%(0.12%) 16.93%(1.14%) 16.94% 0.12%(0.06%) 7.92%(0.25%) 7.92%

Q̂OB
HF -1.92%(0.11%) 15.23%(0.92%) 15.35% -0.27%(0.05%) 7.45%(0.22%) 7.45%

Q̂OB.bc
HF 3.04%(0.14%) 19.83%(1.56%) 20.06% 0.5%(0.06%) 8.84%(0.31%) 8.86%

Q̂EB
HF -1.92%(0.11%) 15.13%(0.91%) 15.25% -0.26%(0.05%) 7.4%(0.22%) 7.4%

Q̂EB.bc
HF 3.04%(0.14%) 19.74%(1.55%) 19.98% 0.5%(0.06%) 8.8%(0.31%) 8.81%

Q̂HD 1.72%(0.11%) 15.61%(0.97%) 15.71% 0.56%(0.05%) 7.45%(0.22%) 7.47%

True Value 39.7202

Table 3.1: 99% Quantile estimators for the Lognormal example
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Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

Q̂L -6.06%(0.09%) 13.25%(0.91%) 14.57% -1.27%(0.04%) 6.29%(0.21%) 6.42%

Q̂OB
L -7.58%(0.08%) 11.61%(0.7%) 13.87% -1.57%(0.04%) 5.84%(0.18%) 6.05%

Q̂OB.bc
L -4.55%(0.11%) 16.21%(1.36%) 16.83% -0.97%(0.05%) 7.18%(0.27%) 7.24%

Q̂EB
L -7.58%(0.08%) 11.53%(0.69%) 13.8% -1.57%(0.04%) 5.81%(0.17%) 6.02%

Q̂EB.bc
L -4.54%(0.11%) 16.14%(1.35%) 16.77% -0.96%(0.05%) 7.15%(0.26%) 7.21%

Q̂U 3.5%(0.1%) 14.27%(1.06%) 14.69% 0.74%(0.05%) 6.41%(0.21%) 6.45%

Q̂OB
U 1.21%(0.09%) 12.33%(0.79%) 12.39% 0.42%(0.04%) 5.92%(0.18%) 5.94%

Q̂OB.bc
U 5.79%(0.13%) 17.76%(1.64%) 18.68% 1.05%(0.05%) 7.35%(0.28%) 7.42%

Q̂EB
U 1.22%(0.09%) 12.25%(0.78%) 12.31% 0.42%(0.04%) 5.89%(0.18%) 5.91%

Q̂EB.bc
U 5.78%(0.12%) 17.68%(1.62%) 18.6% 1.05%(0.05%) 7.31%(0.28%) 7.39%

Q̂HF 0.28%(0.09%) 13.31%(0.92%) 13.31% 0.06%(0.04%) 6.3%(0.21%) 6.3%

Q̂OB
HF -1.75%(0.08%) 11.98%(0.74%) 12.1% -0.25%(0.04%) 5.89%(0.18%) 5.89%

Q̂OB.bc
HF 2.31%(0.11%) 15.57%(1.26%) 15.74% 0.37%(0.05%) 7.07%(0.26%) 7.08%

Q̂EB
HF -1.75%(0.08%) 11.91%(0.74%) 12.04% -0.25%(0.04%) 5.86%(0.18%) 5.86%

Q̂EB.bc
HF 2.31%(0.11%) 15.49%(1.25%) 15.66% 0.37%(0.05%) 7.04%(0.26%) 7.05%

Q̂HD 1.12%(0.09%) 12.24%(0.78%) 12.29% 0.4%(0.04%) 5.89%(0.18%) 5.9%

True Value 51.8618

Table 3.2: 99% Quantile estimators for the RSLN2 example
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Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

Q̂L -5.86%(0.15%) 21.01%(3.34%) 21.81% -1.36%(0.07%) 10.24%(0.79%) 10.33%

Q̂OB
L -4.01%(0.14%) 20.03%(3.03%) 20.43% -1.02%(0.07%) 9.7%(0.71%) 9.76%

Q̂OB.bc
L -7.71%(0.18%) 26.03%(5.12%) 27.15% -1.71%(0.08%) 11.58%(1.01%) 11.71%

Q̂EB
L -3.99%(0.14%) 19.84%(2.97%) 20.23% -1.01%(0.07%) 9.64%(0.7%) 9.7%

Q̂EB.bc
L -7.73%(0.18%) 25.82%(5.04%) 26.95% -1.71%(0.08%) 11.51%(1%) 11.64%

Q̂U 11.9%(0.22%) 30.65%(7.1%) 32.88% 1.99%(0.08%) 11.03%(0.92%) 11.2%

Q̂OB
U 13.38%(0.21%) 29.85%(6.74%) 32.71% 2.4%(0.07%) 10.42%(0.82%) 10.69%

Q̂OB.bc
U 10.43%(0.28%) 39.61%(11.86%) 40.96% 1.59%(0.09%) 12.53%(1.19%) 12.63%

Q̂EB
U 13.4%(0.21%) 29.63%(6.64%) 32.52% 2.41%(0.07%) 10.35%(0.81%) 10.63%

Q̂EB.bc
U 10.4%(0.28%) 39.4%(11.74%) 40.75% 1.58%(0.09%) 12.46%(1.17%) 12.56%

Q̂HF 5.92%(0.18%) 26.12%(5.16%) 26.78% 0.86%(0.08%) 10.64%(0.86%) 10.68%

Q̂OB
HF 7.52%(0.19%) 26.2%(5.19%) 27.26% 1.25%(0.07%) 10.17%(0.78%) 10.24%

Q̂OB.bc
HF 4.32%(0.22%) 31.48%(7.49%) 31.77% 0.48%(0.08%) 11.83%(1.06%) 11.84%

Q̂EB
HF 7.55%(0.18%) 26.02%(5.12%) 27.09% 1.25%(0.07%) 10.1%(0.77%) 10.18%

Q̂EB.bc
HF 4.3%(0.22%) 31.29%(7.4%) 31.58% 0.47%(0.08%) 11.76%(1.05%) 11.77%

Q̂HD 13.19%(0.21%) 29.49%(6.57%) 32.3% 2.37%(0.07%) 10.35%(0.81%) 10.61%

True Value 75.5943

Table 3.3: 99% Quantile estimators for the Pareto example
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to be positively biased for the models under consideration. But a bootstrap

estimate of a sample maximum could never be positively biased.

4. Even in cases where the bias correction reduces the average bias, there is a

concurrent increase in the standard error of the estimator for these examples.

5. The exact bootstrap (EB) is always more efficient than the ordinary bootstrap

(OB) as we would expect, even though the improvement is marginal. The

improvement is not statistically significant, but the systematic reduction in

error is due to the elimination of bootstrap sampling volatility, thus it is strongly

recommended to use the EB instead of the OB whenever possible.

6. The Q̂HF and Q̂EB
HF estimators perform well in all cases; if the estimator efficiency

is important, this may be a good default selection.

7. Note that Q̂HD performs well and often ranks the second best followed by Q̂HF ,

but its performance is worsened when Q̂EB
HF fails to be the best. As expected,

we can see that Q̂EB
L < Q̂HD < Q̂EB

U , and Q̂HD is close to Q̂EB
U throughout the

simulations.

3.5.3 Estimating the 95% CTE

Following a similar process to the quantile results above, we simulated 20,000 samples

of 200 values, and 20,000 samples each with 1,000 values. For each sample, we

estimated the 95% CTE directly from the sample, (as the mean of the largest 5%

of simulated loss values) and then again using the ordinary bootstrap (with 100

bootstrap replications) and the exact bootstrap, without and with bias correction.
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Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

ĈTE -2.68%(0.12%) 16.89%(0.89%) 17.1% -0.52%(0.05%) 7.42%(0.17%) 7.44%

ĈTE
OB

-5.38%(0.12%) 16.62%(0.86%) 17.47% -1.06%(0.05%) 7.43%(0.17%) 7.5%

ĈTE
OB.bc

0.01%(0.12%) 17.36%(0.94%) 17.36% 0.02%(0.05%) 7.5%(0.18%) 7.5%

ĈTE
EB

-5.37%(0.12%) 16.55%(0.86%) 17.4% -1.06%(0.05%) 7.39%(0.17%) 7.47%

ĈTE
EB.bc

0%(0.12%) 17.27%(0.93%) 17.27% 0.02%(0.05%) 7.46%(0.17%) 7.46%

True Value 31.2552

Table 3.4: 95% CTE estimators for the lognormal example

The results are then averaged over the 20,000 simulations, and the final averages are

shown in Tables 3.4, 3.5, and 3.6.

1. We notice that, as expected from Section 3.3 the sample estimates of the CTE

are negatively biased, and the bias correction for the CTE does reduce the bias

in all cases on average, unlike the quantile cases. However, in some cases the

reduction in bias is outweighed by the resulting increase in variance, to give a

slightly higher overall rMSE.

2. The use of the EB over the OB is again evident in these cases due to the

elimination of the resampling error.

3. The case for using the bootstrap is not clear; the sample alone gives about

the same accuracy as the bootstrapped variations, on average. In general, we

find the EB with bias correction offers a very similar rMSE to the standard
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Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

ĈTE -2.08%(0.09%) 12.68%(0.69%) 12.85% -0.4%(0.04%) 5.62%(0.14%) 5.64%

ĈTE
OB

-4.17%(0.09%) 12.51%(0.67%) 13.18% -0.83%(0.04%) 5.62%(0.14%) 5.68%

ĈTE
OB.bc

0.01%(0.09%) 13.01%(0.73%) 13.01% 0.02%(0.04%) 5.69%(0.14%) 5.69%

ĈTE
EB

-4.16%(0.09%) 12.44%(0.67%) 13.12% -0.82%(0.04%) 5.6%(0.13%) 5.66%

ĈTE
EB.bc

0.01%(0.09%) 12.95%(0.72%) 12.95% 0.01%(0.04%) 5.65%(0.14%) 5.65%

True Value 42.9634

Table 3.5: 95% CTE estimators for the RSLN-2 example

Sample Size 200 Sample Size 1000

Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

ĈTE -1.32%(0.13%) 17.99%(2.06%) 18.03% -0.33%(0.06%) 8.1%(0.42%) 8.11%

ĈTE
OB

-2.71%(0.13%) 17.75%(2.01%) 17.95% -0.6%(0.06%) 8.11%(0.42%) 8.13%

ĈTE
OB.bc

0.08%(0.13%) 18.41%(2.16%) 18.41% -0.06%(0.06%) 8.17%(0.43%) 8.17%

ĈTE
EB

-2.69%(0.12%) 17.67%(1.99%) 17.88% -0.6%(0.06%) 8.07%(0.42%) 8.09%

ĈTE
EB.bc

0.06%(0.13%) 18.31%(2.14%) 18.31% -0.06%(0.06%) 8.13%(0.42%) 8.13%

True Value 63.7853

Table 3.6: 95% CTE estimators for the Pareto example
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estimator, but with a smaller bias, which may be preferable. Also note that the

bias-corrected one never achieves the lowest MSE, but there is no theoretical

foundation to believe that this is true for all cases.

4. The situation in a practical context is that the risk manager has a single sample,

and the only (non-parametric) way to estimate the bias to assess how much of

a problem it might be is to bootstrap.

As a guideline as to whether to apply the bias correction, Efron and Tibshirani

(1993) suggest that the ratio of the bootstrap bias estimate to the bootstrap standard

error should be considered. If the ratio is bigger than 0.25 the bias correction is worth

using.

If the bias is not large relative to the standard error, it may be worth using the

EB estimate even without bias correction rather than the empirical estimator. We

see from the tables that in some cases the EB estimate is preferred, at other times

the empirical estimator has smaller rMSE. An interesting question is how an actuary

with a single sample from an unknown underlying distribution should decide whether

applying the exact bootstrap will improve the estimator of the CTE or not. To help

with this decision we have developed a guideline which is described in the following

section.

3.6 A practical guideline

In the previous section the true risk measure values was available in comparing dif-

ferent estimators’ performances, but one would have only a single sample with no

information on the true value. We propose a practical guideline for the CTE estima-

tion that can be used to select the CTE estimator with the smallest MSE among three
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candidates: the empirical one (ĈTE), the EB one (ĈTE
EB

), and the bias-corrected

one (ĈTE
EB.bc

). The MSE for estimator θ̂ of a parameter θ is defined by

MSE(θ̂) = (E(θ̂) − θ)2 + V ar(θ̂) (3.16)

The proposed guideline is based on an approximation to the true MSE using one

sample, which is given by

̂
MSE(θ̂) = (θ̂ − θ̃)2 +

̂
V ar(θ̂), (3.17)

where θ̃ is the benchmark that is considered to be close to θ and the variance estimate

is computed by the ordinary resamplings. Based on findings in the previous two

sections that the bias correction is theoretically valid for the CTE and numerical

examples show that the bias-corrected estimate is fairly close to the true CTE on

average, we set θ̃ = ĈTE
EB.bc

= c′(2I− w′)X:n. For the empirical CTE estimator

the approximated MSE therefore is given by

M̂SE(c′X:n) = (c′X:n − c′(2I − w′)X:n)2 + c′V̂R(X:n)c, (3.18)

where V̂R(X:n) is the bootstrap estimate of the covariance matrix, V (X:n) with

Cov(X(i), X(j)) for each element, using R resamplings. Similarly, for the EB esti-

mator of CTE and the bias-corrected CTE estimator the approximation gives

M̂SE(c′w′X:n) = (c′w′X:n − c′(2I− w′)X:n)2 + c′w′V̂R(X:n)wc, (3.19)

and

M̂SE(c′(2I −w′)X:n) = c′(2I −w′)V̂R(X:n)(2I − w)c, (3.20)

respectively. Note that the bias is zero for the bias-corrected CTE estimator. So the

guideline is simply to select the one that has the smallest approximate MSE among
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three different CTE estimators for a given sample. Actually one could slightly modify

the MSE approximation formula given in (3.17) by replacing the bias term (θ̂− θ̃)2 by

(E(θ̂|F̂ ) − θ̃)2 with the expectation taken with respect to the empirical distribution

using the bootstrap. We did not take this form however because θ̃ actually is an

estimator from sample, rather than a true parameter, so both θ̂ and θ̃ will have

biases. Taking expectation on only θ̂ using the bootstrap therefore would distort the

true bias. Since our goal is to provide an approximate rule of thumb, we keep the

proposed guideline to avoid further theoretical difficulties.

To illustrate this, we generated 10,000 samples, each with 200 values of the the

same three models to estimate 99% CTEs. For each sample, we computed (3.18),

(3.19), and (3.20) and chose the estimate with the smallest value. Resampling size

of 1000 was used to estimate the covariance matrix for each sample. The selected

estimate is labeled ‘Mixed’ in Table 3.7. The tables illustrate that using the guide-

line gives an average rMSE that is near the lowest of the three, consistently being

ranked in the second place throughout examples, without referring to the true CTE

value. Because we generally assume the underlying model is unknown in practice, and

only one sample is available, the proposed guideline can be useful to actuaries who

estimate the CTE from a small sample generated from complicated industry-scaled

models. In the Pareto case, the exact bootstrap offers a lower MSE, and in the LN

and the RSLN case the empirical estimates are better.

Looking at the bias column we see that the mixed estimator tends to pick up the

bias-corrected estimator quite often. This would be partly due to the fact that bias

term of the bias-corrected one is set zero for the MSE approximation. This is some-

what different from the simulation results in the previous section where bias-corrected
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estimator never achieved the lowest MSE value across the three examples. However,

as explained earlier, we cannot exclude the bias-corrected one from the list of candi-

dates based on several examples. Moreover choosing the bias-corrected one may have

a good advantage in practice when similar CTE estimations are repeated on a large

volume of business to produce their sum because the CTE bias will accumulate if not

corrected.

3.7 Concluding remarks

We investigated the bias of two risk measures, the quantile and the CTE, in finite

samples. For the quantile, different estimators are compared with bootstrapped and

bias corrected bootstrapped ones. Simulations show that the exact bootstrap has

definite advantage over the ordinary resampled bootstrap. The bootstrap bias cor-

rection however should not be applied to tail quantiles. The exact bootstrap offers a

reasonably efficient estimator in many cases.

For the CTE we found the sample estimate is negatively biased from both theo-

retical prediction and numerical examples, and the bias correction works reasonably

well for small sample size, though increase in variance may decrease the efficiency of

the estimator with bias correction. In both VaR and CTE, the EB proves to be better

than the OB in terms of the computational and theoretical efficiency, as expected.

Later we propose a practical guideline to help determine the optimal estimator by

approximating the MSE among three: the empirical, the EB, and the bias-corrected

one. In light of the current Canadian regulation, we can say that adding individually
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CTE 99% in the Lognormal model

CTE = 47.7281; sample size n=200

Method Estimate Bias (s.e.) Std (s.e.) rMSE

Empirical 45.31 -2.41(0.07) 7.24(0.74) 7.63

EB 42.91 -4.82(0.07) 6.60(0.62) 8.17

EB.bc 47.72 0.00(0.08) 8.02(0.91) 8.02

Mixed 46.38 -1.35(0.08) 7.86(0.87) 7.98

CTE 99% in the RSLN put model

CTE = 59.9989; sample size n=200

Method Estimate Bias (s.e.) Std (s.e.) rMSE

Empirical 57.66 -2.34(0.07) 7.39(0.77) 7.75

EB 55.15 -4.85(0.07) 6.79(0.65) 8.34

EB.bc 60.16 0.16(0.08) 8.14(0.94) 8.14

Mixed 58.80 -1.20(0.08) 8.02(0.91) 8.11

CTE 99% in the Pareto model

CTE = 106.993; sample size n=200

Method Estimate Bias (s.e.) Std (s.e.) rMSE

Empirical 101.31 -5.68(0.34) 34.48(16.81) 34.94

EB 94.52 -12.47(0.30) 30.01(12.74) 32.50

EB.bc 108.10 1.10(0.39) 39.13(21.65) 39.14

Mixed 101.47 -5.52(0.34) 33.56(15.93) 34.01

Table 3.7: Application of MSE test to the three examples, 99% CTE.
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estimated CTEs to produce the aggregate CTE will not be as conservative as one

may think because the bias will systematically accumulates. However the exact offset

between the bias effect and the diversification effect is largely unknown, because the

latter depends on the dependency structure of different provisions.

Finally we comment that the examples in this chapter show that the variance is

dominating in the MSE of tail risk measure and thus the bias correction exercise is

just part of the whole story; in particular, the variance could easily compromise the

risk reduction through the bias correction.

In the next chapter we focus on the variance estimation. In particular the vari-

ance of the bootstrapped L-estimator class is provided using the nonparametric delta

method. It will be seen that the advantages of the EB of the L-estimator goes beyond

the computational and theoretical efficiency; it provides a basis for influence function

of the bootstrapped L-estimators.



Chapter 4

Variance estimation of

bootstrapped risk measures

4.1 Introduction

Estimating the variance of a statistical estimator provides a logical way to assess

its variability across various samples from the same distribution and, therefore, the

uncertainty associated with individually computed estimates. For example if we have

statistics θ̂ and σ̂θ, a standard error of θ̂, and a parameter θ such that (θ̂ − θ)/σ̂θ

converges to the standard normal in distribution as the sample size n→ ∞, then the

approximate confidence interval for θ at α is given by

[θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂]

according to the Central Limit Theorem together with Slutsky’s Theorem.

In the previous chapter we considered estimating the bias of two tail risk mea-

85



Ch. 4. Variance estimation of bootstrapped risk measures 86

sures, VaR and CTE, based on a small sized sample using the bootstrap method.

This chapter is a continuation of the previous chapter, where we now assess the un-

certainty of tail risk measures estimates by focusing on the variance. For an estimator

relying on the tail region of a distribution, the variance is typically higher than an

estimator from the center of a distribution. The estimated variance of a risk measure

provides the information on the accuracy of the estimate, and also, in our context, on

whether the number of scenarios is adequate to produce a reliable capital requirement.

We focus on the CTE as the statistic of interest, although the main result applies

to any L-estimator, which is a linear combination of order statistics.

Under the parametric approach, for a given i.i.d. random sample, the variance of

the ordinary CTE estimate T = c′X:n is

V ar(c′X:n) = V ar[
1

n(1 − α)

∑
XiI(Xi > Q̂α)]

= V ar bQα
[EX(T |Q̂α)] + E bQα

[V arX(T |Q̂α)]. (4.1)

where Q̂α = X(nα), the (nα)th order statistic, provided that nα is an integer. The

outer expectation and the variance are taken with respect to the order statistic. The

second term of (4.1) represents the additional uncertainty due to the variability of the

order statistic; in principle this becomes larger where quantiles are hard to estimate.

This expression also motivates the conditional tail moments of higher orders, as dis-

cussed in Chapter 2 for the exponential distribution family. While it is possible to

express the variance in explicit forms for some distributions, in most cases numerical

methods are used for the actual evaluation due to analytic difficulty.

In the nonparametric context estimating the variance of the CTE estimate is also
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possible, which is the topic of this chapter. As discussed in Chapter 3, a risk manager

may prefer the bootstrapped CTE over the empirical CTE for a given sample, after

applying the proposed practical guideline. Therefore we are not only concerned with

the variance of the empirical CTE, V ar(c′X:n), but also the variance of the boot-

strapped CTE, V ar(c′w′X:n).

There are two popular nonparametric methods in variance estimation: the boot-

strap and the nonparametric delta method using the influence function. For example,

Manistre and Hancock (2005) use the nonparametric delta method to estimate the

variances of the VaR and CTE. While the bootstrap is straightforward in estimating

the variance of any estimate, there has been no discussion on its relative efficiency

compared to the nonparametric delta method counterpart in the actuarial context. In

this chapter both methods are discussed and compared to each other in a simulation

study. Most notably the influence function of the bootstrapped quantile is derived,

which in turn can be used to estimate any bootstrapped L-estimator including the

bootstrapped CTE, or V ar(c′w′X:n). Note that for small samples the variance of any

estimator will be different from that of the bootstrapped counterpart, even though

both converge to the same quantity as the sample size increases.

For the simulation study we consider small sample sizes for this problem, say

n ≤ 1000, using different nonparametric methods. The sample size of less than 1000

is common in actuarial loss modelling and in operational or credit risk modelling.
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4.2 The bootstrap

The simplest estimate of V ar(T ), where T = c′X:n, is the empirical one:

∑n
i=nα+1(X(i) − T )2

(n− nα)(n− nα− 1)
(4.2)

This is an unbiased estimate of the variance, given the quantile Q̂α, recognizing that

T is the mean of an ordered sample (X(nα+1), X(nα+2), . . . , X(n)) with size n − nα.

In the Monte Carlo simulation this quantity represents the last term E[V ar(T |Q̂α)]

in (4.1). Hence the quantile variability component, V ar[E(T |Q̂α)], is systematically

missing, which in turn makes estimate (4.2) always less than the true value because

variance is nonnegative.

As in the case of estimating the CTE itself in the previous chapter, the bootstrap

can be used to estimate the variance of the CTE. Using the resampling with replace-

ment scheme, with R resamplings, the bootstrap estimate of the variance is given

by

VR =

R∑

j=1

[T ∗
j − T

∗
]2/(R− 1). (4.3)

where T
∗

j is the CTE computed from j−th resample and T
∗

is the bootstrap estimate

of the CTE, or the average of T
∗

j , 1 ≤ j ≤ R. Along with the bootstrap mean

Hutson and Ernst (2000) provides the exact bootstrap (EB) result for the bootstrap

variance of the L-estimator as follows.

Theorem 4.1 (Hutson and Ernst (2000)) The exact bootstrap of estimate of σ2
r:n
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and σ2
rs:n, (1 ≤ r ≤ n and r < s) are

σ̂2
r:n = V ar(Xr:n|F̂ ) =

n∑

j=1

wj(r)(Xj:n − µ̂r:n)
2,

σ̂rs:n = Cov(Xr:n, Xs:n|F̂ ) =

n∑

j=2

j−1∑

j=1

vij(rs)(Xi:n − µ̂r:n)(Xj:n − µ̂s:n)

+
n∑

j=1

vjj(rs)(Xj:n − µ̂r:n)(Xj:n − µ̂s:n)

where the weights are

vij(rs) =

∫ j/n

(j−1)/n

∫ i/n

(i−1)/n

frs:n(ur, us)durdus,

vjj(rs) =

∫ j/n

(j−1)/n

∫ us

(j−1)/n

frs:n(ur, us)durdus,

and frs:n(ur, us) = nCrsu
r−1
r (us − ur)

s−r−1(1 − us)
n−sis the joint distribution of two

uniform order statistics Ur:n and Us:n with nCrs = n!/(r − 1)!(s− r − 1)!(n− s)!.

Hutson and Ernst (2000) also provide alternative expressions for the weights using

the binomial series expansion of (us − ur)
s−r−1. Then the weights become

vij(rs) = nCrs

s−r−1∑

k=0

(
s− r − 1

k

)
(−1)s−r−1−k

∫ i/n

(i−1)/n

us−k−2
r dur

∫ j/n

(j−1)/n

us(1 − us)
n−sdus

= nCrs

s−r−1∑

k=0

(
s− r − 1

k

)
(−1)s−r−1−k

s− k − 1

[(
i

n

)s−k−1

−
(
i− 1

n

)s−k−1]

×
[
B

(
j

n
; k + 1, n− s+ 1

)
− B

(
j − 1

n
; k + 1, n− s+ 1

)]

(4.4)
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and

vjj(rs) =n Crs

s−r−1∑

k=0

(
s− r − 1

k

)
(−1)s−r−1−k

s− k − 1

{
B

(
j

n
; s, n− s+ 1

)
− B

(
j − 1

n
; s, n− s+ 1

)

−
(
j − 1

n

)s−k−1[
B

(
j

n
; k + 1, n− s+ 1

)
−B

(
j − 1

n
; k + 1, n− s + 1

)]}
,

(4.5)

with

B(x; a, b) =

∫ x

0

ta−1(1 − x)b−1dt.

We provide an alternative expression of the above formula in matrix form. Let

D(wr) be the diagonal matrix with (i, i)-th element equal to i-th element of wr =

(w1(r), w2(r), . . . , wn(r))
′, the EB mean weight vector of the r-th order statistic defined

in Theorem 3.3. Also denote the upper-triangular matrix {vij(rs)}i≤j by v(rs). Then

V ar(Xr:n|F̂ ) = (X:n − µ̂(r))
′D(wr) (X:n − µ̂(r))

= (X:n −w′
r
X:n)′D(wr) (X:n − w′

r
X:n),

for r = 1, 2, . . . , n, and

Cov(Xr:n, Xs:n|F̂ ) = (X:n − µ̂(r))
′ v(rs) (X:n − µ̂(s))

′

= (X:n −w′
r
X:n)′ v(rs) (X:n −w′

s
X:n),

for r < s. Note that each (co)variance term of order statistic(s) is a quadratic form;

D(wr) and v(rs) are independent of samples, so they are recyclable for other samples

of the same size.
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Now let us further define the EB covariance matrix of order statistics by:

V̂(X:n) = {Cov(X(r), X(s)|F̂ )}n
i,j=1. (4.6)

Then the EB variance estimate of the empirical CTE estimate, the bootstrapped CTE

in (3.12), and the bias-corrected CTE in (3.14) are, respectively,

V ar(c′X:n|F̂ ) = c′V̂(X:n)c, (4.7)

V ar(c′w′X:n|F̂ ) = c′w′V̂(X:n)wc, (4.8)

and

V ar(c′(2I − w′)X:n|F̂ ) = c′(2I− w′)V̂(X:n)(2I− w)c. (4.9)

This implies that we can estimate the variance of any L-estimate, including the boot-

strapped ones with no additional effort, as long as we have the EB covariance estimate

matrix V̂(X:n). As seen so far the matrix expression presents the formulas in a more

appealing way; it is also highly beneficial in computation if the computer software,

such as Matlab, handles matrices efficiently.

A closer look at this EB variance however prompts a computational issue which

Hutson and Ernst (2000) did not discuss. First notice that V̂(X:n) in (4.6) is a n×n

matrix but computing each element of this matrix involves another n×n matrix. The

total number of computations is of order O(n4) 1; the computational burden increases

exponentially as the sample size gets larger. Secondly if each v(rs) is to be stored for

future recycling, a huge storage capacity is required2. Thirdly, even if these have been

1For instance, when n = 400 the number of computations is about 1.28×1010 and the computing

time takes more than a week in Matlab using a high-performance Unix machine.
2Hard disk space needs almost 6GB when n = 200; more than 200GB when n = 400 in Matlab.
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stored for sample size n, one should recalculate all these matrices as the sample size

changes. For these reasons we recommend approximating V̂(X:n) by V̂R(X:n) which

is the estimate using the ordinary bootstrap approach with R bootstrap samples. In

the following section we derive a recursive formula that reduces the computing time

substantially.

4.2.1 Improvement using recursion

We have just seen that the EB variance computation gets impractical as one increases

the sample size. One, of course, can rely on the ordinary bootstrap with resampling

despite its less satisfactory accuracy. In this section two recursive formulas are pre-

sented which substantially reduce the EB variance computation.

Let us denote the k-th component inside the summation of (4.4) and (4.5) to be

ψij(rs)(k), k = 0, 1, . . . , s− r − 1, for given r and s; i.e.,

ψij(rs)(k) =

(
s− r − 1

k

)
(−1)s−r−1−k

∫ i
n

i−1

n

us−k−2
r dur

∫ j

n

j−1

n

uk
s(1 − us)

n−sdus, (4.10)

when i < j, and

ψjj(rs)(k) =

(
s− r − 1

k

)
(−1)s−r−1−k

∫ i
n

i−1

n

us−k−2
r dur

∫ us

j−1

n

uk
s(1 − us)

n−sdus, (4.11)

when i = j. Then we have the following lemma.

Lemma 4.2 The EB variance weight matrices defined in (4.4) and (4.5) satisfy the

following recursive formula:

vij(r+1,s) = −s− r − 1

r
vij(rs) +

nCrs

s− r − 1

s−r−1∑

k=0

kψij(rs)(k)
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Proof: Applying a binomial coefficient relation

(
s− r − 2

k

)
=

(
s− r − 1

k

)
− k

s− r − 1

(
s− r − 1

k

)
, k = 0, 1, . . . , s− r − 2,

to (4.10) and (4.11) leads to the following recursive form for ψij(r,s):

ψij(r+1,s)(k) = −ψij(rs)(k) +
k

s− r − 1
ψij(rs)(k), k = 0, 1, . . . , s− r − 2,

and i ≤ j. Finally plugging this result back in (4.4) and (4.5), and rearranging yields

the lemma. Q.E.D.

Simulation studies show that this recursive formulation reduces computing time

by approximately 80% over computing with no recursion for sample size 400. Another

recursion presented below involves frs:n defined in Theorem 4.1.

Lemma 4.3 Define nCrs = n!/(r − 1)!(s− r − 1)!(n− s)!. Then for

frs:n(ur, us) = nCrsu
r−1
r (us − ur)

s−r−1(1 − us)
n−s,

the following recursive equation holds.

(s− r)fr−1,s:n + (n− s+ 1)fr−1,s−1:n + (r− 1)fr,s:n = n(n− s− 1)fr−1,s−1:n−1 (4.12)
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Proof:

fr−1,s:n(ur, us)

nCr−1,s
= ur−2

r (us − ur)
s−r(1 − us)

n−s

= ur−2
r (us − ur)

s−r−1(us − ur)
1(1 − us)

n−s

= ur−2
r us(us − ur)

s−r−1(1 − us)
n−s − ur−1

r (us − ur)
s−r−1(1 − us)

n−s

= ur−2
r us(us − ur)

s−r−1(1 − us)
n−s − fr,s:n(ur, us)

nCrs

= −ur−2
r (1 − us − 1)(us − ur)

s−r−1(1 − us)
n−s − fr,s:n(ur, us)

nCrs

= −ur−2
r (us − ur)

s−r−1(1 − us)
n−s+1

+ ur−2
r (us − ur)

s−r−1(1 − us)
n−s − fr,s:n(ur, us)

nCrs

= −fr−1,s−1:n(ur, us)

nCr−1,s−1

+
fr−1,s−1:n−1(ur, us)

n−1Cr−1,s−1

− fr,s:n(ur, us)

nCrs

,

which, setting fr,s:n(ur, us) = fr,s:n,

fr−1,s:n

nCr−1,s
+
fr−1,s−1:n

nCr−1,s−1
+
fr,s:n

nCrs
=
fr−1,s−1:n−1

n−1Cr−1,s−1
, (4.13)

which becomes (4.12). Q.E.D.

One can compute vij(rs), i < j, from this recursion, by taking a series of integra-

tions to both sides of (4.12) over each interval generated by Pn−1 ∪ Pn with respect

to both i and j, where

Pn−1 = {0, 1

n− 1
,

2

n− 1
, . . . ,

n− 2

n− 1
, 1}

and

Pn = {0, 1

n
,
2

n
, . . . ,

n− 1

n
, 1}

This scheme handles different intervals embedded in vij(rs) for different n automati-

cally. The formula allows both backward and forward recursion. For instance if all
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vij(rs), r < s, values are known for sample size n, we can compute vij(rs) for sample

size n − 1, n − 2, . . . , 2, 1, recursively. The forward recursion states that when all

vij(rs), r < s, values are known for sample size n, vij(rs), for n + 1 can be computed

by recursion provided that the first row of matrix vij(rs) is specified for n+ 1. We do

not seek further developments in this direction because even though this recursion is

computationally more efficient than non-recursive formula, its storage cost remains

unchanged, which is impractical considering the price of current computer storage;

we will leave this result for future generations to implement.

4.3 Nonparametric delta method

An alternative way to estimate the variance of an estimator is using the nonparametric

delta method which employs the influence function of the estimator. Estimating

variance through the nonparametric delta method is well known and can be found in

standard texts such as Staudte and Sheather (1990) or Hampel et al. (1986).

Consider the von Mises expansion of any statistical functional t(G) at F . The first

order approximation is

t(G) ≈ t(F ) +

∫
Lt(x|F )dG(x). (4.14)

Here the first derivative of t at F , Lt, is called the influence function (IF). The IF is

a function of x given F and t, and defined by

Lt(x|F ) = lim
ǫ→0

t[(1 − ǫ)F + ǫHx] − t(F )

ǫ
. (4.15)

with Hx is c.d.f. of a degenerated random variable at x, or commonly referred to the

heaviside function. The IF measures the relative influence on T (F ) of a very small

amount of contamination at x and also can be used to estimate the variance of T .
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For our purpose of estimating the variance from the sample, we set G = F̂ , which is

a choice that makes the approximation reasonably accurate as n increases, and the

approximation becomes

t(F̂ ) ≈ t(F ) +

∫
Lt(x|F )dF̂ (x) = t(F ) +

1

n

n∑

i=1

Lt(xi|F ) (4.16)

Now by applying the central limit theorem, T = t(F̂ ) has asymptotic normality:

t(F̂ ) − t(F )
d−→ N(0, vL(F )), (4.17)

where vL(F ) = n−1V ar(Lt(X)) = n−1
∫
L2

t (x|F )dF (x).

Assuming no information on F in practice, we estimate this variance using the

sample version:

vL(F̂ ) ≡ 1

n2

n∑

j=1

L2
t (xj |F̂ ), (4.18)

where xj is the j−th observation of the sample. Lt(xj |F̂ ) is often called the empirical

influence value.

Let us consider some well-known examples of IFs for our discussion. When t(F ) =
∫
xdF (x), the mean, it is easy to see that t[(1 − ǫ)F + ǫHx] = ǫ(x − t(F )) so that

the IF of the mean is Lt(x|F ) = x− t(F ) from (4.15). The following is the IF of the

α−th quantile:

Lemma 4.4 (e.g., Staudte and Sheather (1990)) The influence function of t(F ) =

F−1(α) = Qα is given by

Lt(x|F ) =





α− 1

f(Qα)
, if x < Qα

0, if x = Qα

α

f(Qα)
, if x > Qα

(4.19)
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One comment on the IF of the quantile is that estimating the variance of any quantile

gets difficult because its IF involves the density of the unknown distribution, making

(4.18) hard to compute with samples. Although there are nonparametric tools avail-

able allowing us to estimate the density, such as kernel density estimation, it may

not produce satisfactory values for tail regions, especially when the given sample is

subject to skewness or (and) kurtosis, which is often true for financial and actuarial

data. In practice therefore, using the nonparametric delta method to estimate the

variance of VaR, a tail quantile risk measure, can be problematic.

The IF of the CTE is also available by the following lemma. The proof is provided

here because the result was stated in Manistre and Hancock (2005) without proof.

The derivation is essentially adapted from the IF of the trimmed mean as shown in,

e.g., Section 3.2.2 of Staudte and Sheather (1990).

Lemma 4.5 The influence function of t(F ) = (1 − α)−1
∫ ∞

Qα
xdF is given by

Lt(x|F ) =





x− αQα

1 − α
− t(F ) if Qα < x

Qα − t(F ) if Qα ≥ x
(4.20)

Proof:

T (F ) =

∫ ∞

F−1(α)

y

1 − α
dF (y) =

∫ ∞

F−1(α)

y

1 − F (F−1(α))
dF (y) (4.21)

Therefore by defining Fǫ(y) = (1− ǫ)F (y)+ ǫH(y−x), with H(y−x) = Hx(y) being

the heaviside function,
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T (Fǫ) =

∫ ∞

F−1
ǫ (α)

y

1 − Fǫ(F−1
ǫ (α))

dFǫ(y)

=

∫ ∞

F−1
ǫ (α)

y

1 − α
dFǫ(y)

=

∫ ∞

F−1
ǫ (α)

y

1 − α
d
(
(1 − ǫ)F (y) + ǫH(y − x)

)

=
1 − ǫ

1 − α

∫ ∞

F−1
ǫ (α)

ydF (y) +
ǫ

1 − α

∫ ∞

F−1
ǫ (α)

ydH(y − x)

=
1 − ǫ

1 − α

∫ ∞

F−1
ǫ (α)

ydF (y) + ǫ
x

1 − α
I(F−1

ǫ (α) < x)

Differentiating with respect to ǫ gives

∂

∂ǫ
T (Fǫ(y)) =

−1

1 − α

∫ ∞

F−1
ǫ (α)

ydF (y)− 1 − ǫ

1 − α
F−1

ǫ (α)f(F−1
ǫ (α)) · ∂

∂ǫ
F−1

ǫ (α)

+
x

1 − α
I(F−1

ǫ (α) < x)

Finally taking ǫ = 0 and plugging the quantile influence function into above equation

completes the proof. Q.E.D.

Unlike the quantile case no density is involved in the IF of the CTE, so that we can

easily estimate the variance either using (4.18) or the sample version of the following

form:

vL(F ) =
1

n

∫
L2

t (x)dF (x)

=

∫ Qα

0

(x− E[X|X > Qα])2dF +

∫ ∞

Qα

(x− αQα

1 − α
− E[X|X > Qα]

)2
dF (x)

=
V ar(X|X > Qα) + α(E[X|X > Qα] −Qα)2

n(1 − α)
,
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Figure 4.1: IF of mean, quantile, CTE for U(0, 1) , α = 80%

as noted in Manistre and Hancock (2005). Numerically both methods will produce

identical values.

For illustration, Figure 4.1 sketches the IFs of the mean, the quantile, and the

CTE from top to bottom, respectively, for U(0, 1) with α = 0.8. Note that the graph

of the CTE IF is a negative constant up to Qα, followed by a linear function with

positive slope. It is continuous but unbounded from above. This indicates that the

CTE estimator is negatively influenced by a contamination at x when x < Qα; but its

influence is constant, meaning that the CTE value becomes smaller if there is a small

contamination at x but is not affected by the location of x as long as it is below the

threshold. This is consistent with the definition of the CTE. On the other hand it is

positively influenced by outliers exceeding the threshold; one infinite outlier will push
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the value of CTE to infinity, unlike the VaR case where the IF function is bounded

both from above and below, but is discontinuous at the quantile in question. In the-

ory, if the IF is bounded and continuous the estimator will be qualitatively robust;

however no estimators in the graph fall in this category.

Before closing this section we validate the similarity between the IF approach and

the bootstrap approach in estimating the variance of an arbitrary statistic T = t(F̂ ),

using a linear approximation of the bootstrap estimator. This means that as sam-

ple size increases one would expect similar numbers from both methods. While this

connection is already known (see, for example, Section 2.7.4 of Davison and Hinkley

(1997)) we explain this because we will use both methods in the numerical example

later in this chapter.

The bootstrap analogy to (4.16) can be expressed by:

t(F̂ ∗) ≈ t(F̂ ) +
1

n

n∑

i=1

Lt(x
∗
i |F̂ ) = t(F̂ ) +

1

n

n∑

i=1

f ∗
i Lt(xi|F̂ ) (4.22)

where F̂ ∗ is the e.d.f. of an bootstrap sample and x∗i is its j-th element. fi is the

number of times that x∗i equals xi, for 1 ≤ i ≤ n. Note that only f ∗
i will vary on each

resampling. By repeating resampling with replacement one can see that

V ar(T |F̂ ) ≈ 1

n2

n∑

i=1

n∑

j=1

Cov(f ∗
i , f

∗
i |F̂ )Lt(xi|F̂ )Lt(xj |F̂ ), (4.23)

where the left side is the bootstrap variance of T . Since f ∗
i is multinomial for a given

sample with probability of 1/n for each i, Cov(f ∗
i , f

∗
i |F̂ ) = 1− 1/n if i = j and −1/n
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otherwise. Therefore a simpler expression is possible as follows.

V ar(T |F̂ ) ≈ 1

n2

n∑

i=1

n∑

j=1

Cov(f ∗
i , f

∗
i |F̂ )Lt(xi|F̂ )Lt(xj |F̂ )

=
1

n2

[ n∑

i=1

L2
t (xi|F̂ ) − 1

n
(

n∑

i=1

Lt(xi|F̂ ))2

]

≈ 1

n2

n∑

i=1

L2
t (xi|F̂ )

= vL(F̂ )

Thus we observe that the bootstrap variance estimate V ar(T |F̂ ) and the empirical

influence driven variance estimate vL(F̂ ) in (4.18) would produce close numbers as n

increases.

Finally we note that while the IF approach illustrated in this section works well

for the empirical CTE estimator, it cannot be applied directly to the bootstrapped

or bias-corrected CTE estimators because these are not empirical estimates of some

continuous functionals. In the next section we will elaborate further on this.

4.4 IF of bootstrapped L-estimator

Even though the variances of the empirical VaR and CTE are obtained through the

IFs, given in (4.19) and (4.21) respectively, we found in the previous chapter that the

EB estimators are often preferred to the empirical ones in terms of the mean squared

error. So a natural question would be how to compute the variance of the ‘boot-

strapped’ tail risk measure. In this chapter we answer this question and propose a

method that can compute the variances of the EB L-estimators and the bias-corrected
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L-estimators. In particular we first derive the IF of the exact bootstrap r-th order

statistic using the fact that the weight vector wr = (w1(r), . . . , wn(r)) is continuous and

bounded. This result then directly extends to the whole L-estimator class, including

the CTE.

We already defined an L-estimator class by

c1X(1) + c2X(2) + . . . + cnX(n), (4.24)

where weights c1, . . . , cn are implicitly assumed to be mass weights. For example, the

empirical VaR and CTE estimators belong to this class. Noting that the bootstrapped

and the bias-corrected L-estimators again belong to the same L-estimator class, we

examine the IF of an L-estimator at a more general level, where an L-estimator is

defined by

t(G) =

∫ ∞

−∞

xJ(G(x))dG(x) =

∫ 1

0

J(u)G−1(u)du, (4.25)

where G is the distribution function and J(u) is called the score function defined

on [0, 1]. Depending on whether the score function is discrete or not the resulting

IF becomes quite different.3 When the score function is discrete (4.25) reduces to a

linear combination of order statistics in (4.24). The CTE is a good example to explain

the difference, and to illustrate what J looks like. First note that we differentiate the

CTE and its empirical estimator, though both belong to the L-estimator class defined

in (4.25). The CTE at α, by definition, is

t(F ) = E[X|X > Qα] = (1 − α)−1

∫ ∞

Qα

xdF (x) = (1 − α)−1

∫ 1

α

F−1(u)du

3If J is bounded and continuous a.e. Lesbesgue and a.e. F−1, then t(F ) is called Fréchet

differentiable. Quantiles, however, are not Fréchet differentiable. See, e.g., Appendix B of

Staudte and Sheather (1990) or Chapter 1 of Rieder (1994) for details.
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and the corresponding score function is a step function given by

J(u) =





0 if u ≤ α

(1 − α)−1 if u > α

The ‘empirical CTE’ estimator however is an average of high side order statistics and

can be expressed by

t(F̂ ) =

∫ 1

0

J(u)F̂−1(u)du = (n− nα)−1
n∑

nα+1

X(i),

for integer nα, and the score function is a discrete mass function given by

J(u) =





0 for u = 1/n, 2/n, . . . , α

(1 − α)−1 for u = α + 1/n, α+ 2/n, . . . , 1

The following lemma shows that if the score function consists of discrete masses, its

IF necessarily involves the density form.

Lemma 4.6 (e.g., pp.21 of Rieder (1994)) Consider an L-estimator with discrete

weights,
∑n

1 ciX(i). Write αi = i/n, i = 1, . . . , n. Then the IF is given by

n∑

i=1

ci
f(F−1(αi))

[αi −H(F−1(αi) − x)],

where H(F−1(αi) − x) is the unit step function jumping 0 to 1 at x = F−1(αi). The

asymptotic variance of the L-estimator is

vL(F ) = E(IF 2)

=

n∑

j=1

n∑

i=1

cicjEF [(αi −H(F−1(αi) − x))(αj −H(F−1(αj) − x))]

f(F−1(αi))f(F−1(αj))

= c′ΣIFc,

where

ΣIF =

{
min(αi, αj) − αiαj

f(F−1(αi))f(F−1(αj))

}i,j=n

i,j=1

. (4.26)
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The implication of this result is that one should be able to estimate f(F−1(αi)) to

obtain the variance, but it might be impractical because estimating the value of den-

sity at a large α from the given sample is not easily available, as discussed in the

previous section.

Recalling however that we are interested in estimating the variance of boot-

strapped CTE, a closer look at the EB formula given in Theorem 3.3 sheds a new

light. From this theorem we first note that the EB quantile again belongs to the

L-estimator class given in (4.25). Secondly, since each weight wi(r) is a small piece of

a Beta density function, the score function J(u) for the EB quantile is smooth (con-

tinuous and bounded) for EB quantiles. This observation suggests that the IF of the

bootstrapped quantile may not involve the density term, allowing a direct estimation

of the variance using the given sample. The following shows that this indeed is the

case.

Lemma 4.7 The IF of the bootstrapped α−th quantile, E(X(r)|F̂ ) = w′
r
X:n, α =

r/n, is given by

1

B(r, n− r + 1)

[ ∫ x

−∞

F (y)r−1(1 − F (y))n−rdy −
∫ ∞

−∞

F (y)r−1(1 − F (y))n−r+1dy

]

(4.27)

Proof:

From Theorem 3.3, the EB quantile is defined by

t(F ) =

∫ 1

0

J(u)F−1(u)du, (4.28)

where J(u) = ur−1(1 − u)n−r/B(r, n− r + 1). Then the IF of t(F ) is
∫ 1

0

J(u)Lt(x|F )du =

∫ 1

0

J(u)

[
u−H(F−1(u) − x)

f(F−1(u))

]
du,
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from Lemma 4.6. Using the variable transformation y = F−1(u), this becomes

∫ ∞

−∞

J(F (y))(F (y)−H(y − x))dy

=

∫ x

−∞

J(F (y))dy −
∫ ∞

−∞

(1 − F (y))J(F (y))dy.

Replacing J(u) = ur−1(1 − u)n−r/B(r, n − r + 1) completes the proof. It is easy to

verify that the expected value is zero using differentiation. We emphasize that the IF

is a function of x. Q.E.D.

The importance of this result lies in the fact that it shows the exact influence curve

of the bootstrapped quantile which in turn can be extended to any bootstrapped L-

estimator; note that the final form does not involve the density f , leading to easy

implementation with a sample. In the nonparametric setting, (4.27) is computed by

replacing F with F̂ , and x with xj , the j-th observation of the sample:

1

B(r, n− r + 1)

[ No.obs≤xj∑

i=1

(X(i) −X(i−1))

(
i

n

)r−1(
1 − i

n

)n−r

−
n∑

i=1

(X(i) −X(i−1))

(
i

n

)r−1(
1 − i

n

)n−r+1]
.

where X(0) is taken as 0 for non-negative loss data. For implementation the following

approximation4 is recommended:

∫ i
n

i−1

n

ur−1(1 − u)n−rdu ≈ 1

n

(
i

n

)r−1(
1 − i

n

)n−r

(4.29)

and therefore the empirical version of the bootstrapped quantile’s IF (4.27) is com-

4The right side of (4.29) often produces 0 for large n and r in mathematical software whereas

the left side is computed by the incomplete beta function which is more reliable.
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Figure 4.2: IF of quantile: Empirical (top) vs. EB (bottom) for U(0, 1) , α = 80%

puted from sample as

n

B(r, n− r + 1)

[ No.obs≤xj∑

i=1

(X(i) −X(i−1))

∫ i
n

i−1

n

ur−1(1 − u)n−rdu

−
n∑

i=1

(X(i) −X(i−1))

∫ i
n

i−1

n

ur−1(1 − u)n−r+1du

]
,

(4.30)

for each xj , j = 1, . . . , n. Figure 4.2 compares the IF of a quantile before and af-

ter bootstrapping. The bootstrap indeed makes the quantile estimator qualitatively

robust because the IF is now continuous and bounded. The above result is easily ex-

tended to the whole L-estimator class, giving a powerful way to estimate the variance

of any bootstrapped L-estimator because any L-estimator is a linear combination of

single order statistics. Furthermore the influence function of the bias-corrected sam-

ple quantile can be readily computed in a similar fashion. The following corollary is

immediate from the above lemma.
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Corollary 4.8 The IF of the bootstrapped L-estimator c′w′X:n, with c = (c1, . . . , cn)
′,

is given by

n∑

k=1

ck
B(k, n− r + 1)

[ ∫ x

−∞

F (y)k−1(1−F (y))n−kdy−
∫ ∞

−∞

F (y)k−1(1−F (y))n−k+1dy

]

Proof: First note that

c′w′X:n =
n∑

k=1

ckw
′
k
X:n.

Each term w′
k
X:n on the right side is the bootstrapped quantile. The result follows

immediately from (4.27). Q.E.D.

As an example, the IF of the bootstrapped CTE at α is obtained by setting

c = (n− nα)−1(0, . . . , 0, 1, . . . , 1)′ and given by

n∑

k=nα+1

(n− nα)−1

B(k, n− r + 1)

[ ∫ x

−∞

F (y)k−1(1−F (y))n−kdy−
∫ ∞

−∞

F (y)k−1(1−F (y))n−k+1dy

]

Again, one can use (4.30) to compute each term in the summation. Figure 4.3

compares the IF of the CTE and the bootstrapped CTE. The sharp edge has been

smoothed out in the EB case. However the CTE itself is not robust by definition. We

are not able to comment on its systematic behavior change after bootstrapping.

We note that even though the IF of the bootstrapped L-estimator is developed to

estimate the variance of the bootstrapped L-estimator, one can use this to estimate

the variance of ordinary (non-bootstrapped) L-estimator as well.

Consider a functional t(F ). The key idea of the nonparametric delta method in

(4.18) states that Lt(x|F ) can be estimated by Lt(x|F̂ ), based on the convergence of
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Figure 4.3: IF of CTE: ordinary CTE (top) vs. EB (bottom) for U(0, 1) , α = 80%

F̂ to F . Since F̂EB also converges to the true F , estimating Lt(x|F ) using Lt(x|F̂EB)

can be likewise justified. This gives a powerful alternative way to estimate the vari-

ance of a statistic t where applying the nonparametric delta method is difficult. For

example in estimating the variance of a (non-bootstrapped) quantile there is no prac-

tical way to compute its empirical IF due to the density form involved; we can use the

IF of the EB quantile to estimate the variance, which is straightforward. Similarly in

estimating the variance of the CTE one can use the IF of the CTE in (4.21) which

can be easily computed; one may instead choose to use the IF of the EB CTE in

(4.31) to estimate the same variance.
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4.5 Numerical example

For the simulation study we consider the same three parametric models discussed in

the previous chapter, namely, the LN put, RSLN2 put, and the Pareto loss. Since our

focus is on the nonparametric estimation of the bootstrapped L-estimator, we consider

V ar(ĈTE
EB

), with the CTE level set at 95%, for each model. In particular, the

influence function (IF) based nonparametric delta method developed in the previous

section is compared with the variance estimate using the ordinary bootstrap (OB)

using 1,000 resamplings for each sample, under the MSE criterion. We report the

results for sample sizes 200 and 1,000, respectively along with standard errors (s.e.),

using 4,000 sets of simulations; Table 4.1 shows the numbers in percentage of the true

variance of each model.

From the result we make the following comments.

• For samples of size 1,000 or less, the bootstrap method is preferred to the IF

method, except for the Pareto case with sample size 1,000; but the differences

get smaller as the sample size increases, as we expect.

• The Pareto loss model, the heaviest tail among three examples, shows that, as

sample size increases from 200 to 1,000, the actual rMSE values decrease, but if

expressed in percentage of the true variance, rMSE gets larger. This indicates

that for the CTE variance estimate, the convergence of its variance is slower

than that of the estimate as sample increases. The rMSE values under both

methods indicate the variance estimate for this model is highly unstable.

• In all cases the MSE of these variance estimators are large even for samples of

size 1,000, making both methods less than satisfactory for use in practice. This
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LN put Model Using OB Using IF

n True val. Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

200 26.0479 -5.55%(0.64%) 40.65%(9.62%) 41.02% 3.59%(0.73%) 46.43%(12.56%) 46.56%

1000 5.3614 -1.14%(0.33%) 21.15%(0.54%) 21.18% 0.55%(0.34%) 21.36%(0.55%) 21.37%

RSLN put Model Using OB Using IF

n True val. Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

200 28.4564 -4.07%(0.64%) 40.48%(10.43%) 40.69% 4.20%(0.72%) 45.84%(13.37%) 46.03%

1000 5.8420 -1.01%(0.33%) 20.94%(0.57%) 20.97% 0.63%(0.34%) 21.30%(0.59%) 21.31%

Pareto loss Using OB Using IF

n True val. Bias (s.e.) Std (s.e.) rMSE Bias (s.e.) Std (s.e.) rMSE

200 132.8100 -9.33%(2.24%) 141.74%(596.67%) 142.04% -2.96%(2.31%) 146.07%(633.74%) 146.10%

1000 26.8802 2.63%(3.08%) 194.48%(227.37%) 194.50% 3.50%(2.86%) 180.92%(196.77%) 180.96%

Table 4.1: Variance of the EB CTE 95% for three examples
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is because the estimator is in the tail region. However, as we discuss in Chapter

5, using more simulation is often not feasible in practice.

• We repeated the same exercise for CTE 99% and found the same message,

only this time the variance estimates are more unstable, leading to much bigger

MSEs.

Since both nonparametric methods presented here rely on the same asymptotic ar-

gument, we generally cannot consider one over the other without a theoretical jus-

tification, and as far as we know there is no such one. Considering that the OB for

variance needs more bootstrap resamplings than for mean, we believe that the IF

method can sometimes be advantageous because it does not involve any simulation.

The numerical examples shown in this section basically show that both the OB and

the proposed IF method work reasonably well, and confirm that estimating the CTE

variance requires more simulations for fat tailed distributions, although increasing the

sample size may not be feasible in practice.

4.6 Concluding remarks

In this chapter we derived the influence function (IF) of the EB quantile estimate and

showed it exists in an analytic form where no density function needs to be computed.

The result directly extends to the whole L-estimator class. Using the finding we

estimated the variance of the bootstrapped CTE and compared it against the ordinary

resampling method (OB), through numerical examples.

These examples indicate that, if the model’s tail is reasonably heavy, the OB

method may be preferred over the IF method for the variance of the bootstrapped
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CTE, even though its superior performance for small sample is unknown in princi-

ple. The result also indicates that the estimated variance in both methods are quite

unstable in terms of its MSE, warranting further research on this topic. A possible

improvement could be obtained by bringing in the second term of the von Mises ex-

pansion, though the second functional derivative of the CTE is unknown at this time.

Alternatively a semi-parametric approach, such as kernel density, can be investigated

to estimate the CTE and its variance, with no reference to the true distribution.

It should be noted that even though the finding has been used for variance of

the bootstrapped L-estimator, it can also be applied to non-bootstrapped empirical

estimator because both F̂ and F̂EB converge to F . In particular, since we verified

that the bootstrap indeed makes an empirical quantile estimator qualitatively robust

in the sense of, e.g., Staudte and Sheather (1990)(see Section 3.2.4), one can use the

bootstrapped quantile’s IF instead of the empirical quantile’s IF, which is discontinu-

ous and involves the density function of the population. If the quantile is around the

centre of a distribution, such as median, we conjecture that this method can produce

a more reliable result.



Chapter 5

A simulation study

5.1 Introduction

This chapter is devoted to a simulation study by applying the theoretical findings in

the previous two chapters to a real industry sized numerical example. Let us briefly

explain the usage of the stochastic simulation in life insurance business. By stochastic

simulation actuaries mean that the uncertainty or risk associated with a certain prod-

uct is assessed using scenario-based Monte Carlo simulations, rather than through the

factor-based formula described in the first Chapter. One can easily appreciate the

advantages of the simulation approach over the factor-based one in principle, and

this is the trend of the current risk management practice across different industries.

However the stochastic approach requires accurate models for both asset and liability

projection. The setup of a well-functioning system can be costly as well, because the

uncertainty can be best measured only when all the separate models - asset, liability,

113



Ch. 5. A simulation study 114

administration, etc - are incorporated1.

When it comes to cash flow projection to assess the risk and capital requirement

for a life insurance portfolio, typically the following four steps are taken:

1. Random economic scenario sets are generated from a specified model. There are

many models available to describe the long-term behavior of various economic

variables, such as stocks, bonds, inflation, etc. Models could be in parametric

form, with parameters estimated from historical data, or they could simply sam-

ple the historical data itself. Sometimes regulators provide a set of pre-packaged

scenarios for insurers without expertise to do the stochastic simulation; see, e.g.,

the Report of Life Capital Adequacy Subcommittee (2005) of the AAA.

2. Each generated scenario is input to the insurance product model. The product

model consists of a huge number of variables. It would include pricing variables,

valuation variables, reinsurance treaties, taxes, and other regulations, for each

specified cohort. For the inforce business each policy’s information will be fueled

through the administration system and for new business some suitable assump-

tions are made. Except for some variables dependent to economic environment,

such as lapse, the product model is often deterministic because insurance li-

ability risks are assumed diversifiable, though modifications are common for

sensitivity analysis or regulatory reporting.

3. Running the product model under the given scenario will generate output values,

1Typically insurers have different IT systems for different products and purposes. If a company

acquires a business blocks from other insurers or regulations change, the current system needs to be

updated as well.
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i.e., future cash flows streams, such as surplus, profits, tax amounts, embedded

values, and the return on capital, etc. This is the most time-consuming step.

4. Repeat the above steps as necessary with a new random scenario set. A sample

obtained after repetitions is then considered to be i.i.d. and can be used for

further statistical inference.

One of the problems, as explained in the previous chapter, assuming that the

scenario generating model and liability model are reasonably accurate, is that simu-

lating future cash flows can take a significant amount of time for each scenario. This

prevents actuaries from generating large enough samples for accurate estimation, par-

ticularly for tail risk measures. The issue of heavy computation and slow simulation

run times are well recognized in actuarial community; see the attempts by, e.g., Chueh

(2002) and Christiansen (1998) to get around this problem by using “representative

scenarios”. The Report of Life Capital Adequacy Subcommittee (2005) of the AAA

provides a guideline to use the representative scenarios. However this technique is

not proven; it is easy for one representative scenario to become a scenario that is not

representative any more with a slight change in any model.

In the previous two chapters we presented small-scaled numerical examples by

applying the theoretical findings on the CTE bias in Chapter 3, and on the vari-

ance estimation of the bootstrapped CTE in Chapter 4. In this chapter we take

an industry-scaled model to repeat the same exercise incorporating both chapters’

findings simultaneously. The example presents a typical challenge for actuaries in

practice, thus becomes a good illustration of the work in the practical context of

small i.i.d. simulation sample.

Another problem is about the model itself. If the assumed models fail to represent
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the true risk of the company or the economic variables, statistical inferences based

on the model-generated sample are basically wrong, not because of specific inference

methodology, but because the estimates will not produce what they are supposed to.

This aspect of risk is discussed later in this chapter in general terms.

5.2 The model

For our simulation study we consider a block of segregated fund of an anonymous

Canadian life insurer, implemented using AXIS. Segregated funds, also known as

variable annuities in the US, are hybrid contracts of insurance and investment. Un-

der the basic contract, the single premium is invested in mutual funds and monthly

administration fees are deducted from the fund. Many segregated funds offer a Guar-

anteed Minimum Maturity Benefit (GMMB) at the end of the contract term and a

Guaranteed Minimum Death Benefit (GMDB) during the contract term, with guar-

antee level being commonly set at between 75% and 100% of the underlying fund’s

initial value. There are other guarantees and modifications to this product such as a

guaranteed reset, a guaranteed minimum income; see Chapter 1 of Hardy (2003) for

further details.

AXIS2, the dominating actuarial system for life insurers in Canada, is used for

pricing and product development, as well as financial projections, surplus adequacy

testing, valuation and asset/liability modeling. The implemented block is basically

a collection of model points called ‘cells’ in AXIS. Each cell represents different co-

2AXIS is the product of Gilliland, Gold and Young (GGY), based in Toronto. It is currently

used in over 80 companies worldwide (See www.ggy.com), and was named one of most frequently

used cash flow testing softwares in North America; see an SoA survey by Zhang et al. (2005).
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hort (or segment) of segregated fund policyholders; for instance a certain cell might

represent the following characteristics:

• Mail smoker in age band 45-55

• Single premium under 1 million dollars

• 75% GMDB and 100% GMMB

• The premium is invested in 30% bond, 40% TSX index, and 30% S&P 500 with

a specified reinvestment strategy throughout the contract term

• Resets are allowed at the end of each 3 years

In fact, within each cell hundreds of assumptions are built in to employ various pric-

ing and business characteristics including the above profile. Since there are so many

different combinations possible, a dataset representing one product block ends up

involving several hundred cells. Figure 5.1 shows two screen shots of AXIS at a cell

level for illustration. In this study we focus on the GMMB guarantee cost and set

the guarantee level at 100%3 of the initial fund value.

AXIS has a deterministic structure for the liability side except for some economic-

dependent variables such as lapse or reinvestment strategy, but it allows users to

choose from several long-term stochastic asset models to project future cash flows

distribution. Among these we chose economic scenarios from Wilkie stochastic model;

see, for original papers, Wilkie (1986) and Wilkie (1995). The Wilkie model is suitable

for long-term economic variables prediction and is widely used in the UK and else-

where. It uses so called the cascading structure where one variable is integrated with

3For confidentiality, we made this override for all cells.
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Figure 5.1: Cell assumption screen (top) and cash flow projection (bottom)
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other variables plus random fluctuations; see Hardy (2003) and Panjer et al. (2001)

for an introductory description of the model. We selected the Wilkie model derived

from Canadian data, as implemented in the AXIS model, to generate scenarios. The

generated scenarios are then used as an input to the liability model to project future

cash flows, one scenario at a time, which is the most time-consuming step.

5.3 Simulation backgrounds

For this specific block, it took approximately 25 minutes to project cash flows for one

scenario, based on pilot simulations; 1,000 scenarios would require about 416 hours

on a personal computer. If several blocks are to be combined the run would take

proportionately longer. For this reason we reduced the number of policies significantly

to produce the simulation result in a manageable run time. The run time for this

reduced model, which consists of 1,055 policies, is approximately 30 seconds for each

Wilkie model scenario. We obtained 2,000 scenario runs -which we will call the ‘full

data’ - and computed the empirical CTE at 95% of the GMMB guarantee cost which

will be considered to be the benchmark value for our analysis.

Note that all the simulations in this chapter have been performed at the headquarters

of the GGY. The computer used has a Pentium 4 2.53GHz processor with 1GB of

RAM. While AXIS has a function that allows computing on more than computer

simultaneously, which can significantly reduce the simulation times, it is not always

possible to have extra computers available in practice. Also it is not hard to speculate

that the complexity of models will always keep up with the improvement in computers.



Ch. 5. A simulation study 120

Mean 95.31

Variance 8,699.20

Stand. dev. 93.27

Skewness 4.49

Kurtosis 33.98

Minimum 10.23

Maximum 1,206.90

Empirical CTE 95% 408.04

Table 5.1: Basic statistics based on the full data (Unit: CDN dollar)

5.4 Analysis

Table 5.1 and Figure 5.2 show some basic information from the full data. Each ob-

servation represents the cost of the GMMB liability for each scenario run. From its

histogram it is evident that it is right skewed, like many loss distributions that actu-

aries manage.

We started with 200 scenario runs to estimate the CTE 95% using the proposed

guideline for three candidates as in Chapter 3: the empirical estimator (ĈTE), the

EB estimator (ĈTE
EB

), and the bias-corrected estimator (ĈTE
EB.bc

). We repeated

the same exercise adding additional 200 runs each time, up to 1,000, which would be

around the maximum number of simulations used in practice.

For each sample, the bias and the variance (and thus the rMSE) are estimated using

the guideline proposed in Section 3.6. A separate set of variance estimates based on

the influence function (IF) was also computed, based on the developments in Chapter

4. It is assumed that the true CTE is unknown. The results are presented in Table
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Figure 5.2: Histogram of GMMB loss based on the full data
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5.2 along with standard errors4.

A few comments on the result follows:

• The optimal estimator among the three candidates would be the ĈTE
EB

for

sample size 200 and 400. The standard deviation derived from both IF and OB

show the same relative rankings.

• As the sample size gets larger the best estimator switches, and the two methods,

IF and OB, indicate different estimates.

• Also as the sample size increases, the difference between the two methods starts

to disappear; at sample size 1,000 the two methods produce very similar rMSE

values, even though the winners are different.

• One can see that the estimated CTE dramatically changes in between sample

size 400 and 600 due to one extreme value. Actually, even at size 1,000 the esti-

mated CTE is still well off the benchmark CTE value 408.04, and the estimated

standard deviation does not look small enough.

5.5 Alternative model

Assuming that the model is adequately correct the bootstrap seems to give a rea-

sonable method to estimate the tail risk measures with no reference to the true loss

distribution, especially when the structure of the model and its input is unknown and

hard to interpret. From the analytic form of the EB of L-estimator, we can think of

4This is computed by normal approximation.
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Sample size: 200

Estimator Estimated Estimated Est. std. Est. rMSE

value bias OB (s.e.) IF (s.e.) OB IF

ĈTE 428.929 -6.660 80.913 (55.55) 89.405 (61.38 ) 81.187 89.653

ĈTE
EB

422.269 -13.321 78.127 (53.64) 84.976 (58.34) 79.255 86.014

ĈTE
EB.bc

435.589 0 83.782 (57.52) 94.025 (64.56) 83.782 94.025

Sample size: 400

ĈTE 394.995 -2.163 55.461 (31.59) 57.085 (32.52) 55.503 57.125

ĈTE
EB

392.832 -4.326 54.672 (31.14) 56.038 (31.92) 54.843 56.205

ĈTE
EB.bc

397.158 0 56.265 (32.05) 58.163 (33.13) 56.265 58.163

Sample size: 600

ĈTE 471.868 -2.268 59.636 (30.56) 59.756 (30.62) 59.679 59.799

ĈTE
EB

469.600 -4.536 59.287 (30.38) 59.650 (30.57) 59.460 59.822

ĈTE
EB.bc

474.136 0 59.992 (30.74) 59.874 (30.68) 59.992 59.874

Sample size: 800

ĈTE 462.519 -1.248 47.339 (22.53) 46.675 (22.21) 47.356 46.692

ĈTE
EB

461.271 -2.497 47.248 (22.48) 46.816 (22.28) 47.314 46.883

ĈTE
EB.bc

463.767 0 47.436 (22.57) 46.542 (22.15) 47.436 46.542

Sample size: 1000

ĈTE 440.938 -1.411 39.438 (17.73) 39.574 (17.79) 39.464 39.599

ĈTE
EB

439.527 -2.821 39.382 (17.70) 39.389 (17.70) 39.483 39.490

ĈTE
EB.bc

442.348 0 39.498 (17.75) 39.764 (17.87) 39.498 39.764

ĈTE
GPD

Estimated CTE: 443.89 Estimated s.e. of CTE: 86.33

Table 5.2: Simulation result of the Seg. fund model
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the CTE bootstrapping as a special way of smoothing. In this section, we consider

an alternative parametric model, as another way of smoothing, to estimate the CTE

based on the first 1,000 scenario runs, which we will call the ‘data’ throughout this

section. This exercise may give us a further insight on the data (e.g., tail behavior),

and allow us to identify and translate the scenarios linked to the extreme outputs.

In the presence of other guarantee options, different driving forces and their interac-

tions will affect the output, making it harder to translate the corresponding scenarios.

First, recognizing its thick tail, let us consider a log transform. In Figure 5.3 the

Q-Q plot of the transformed data shows that the tail is substantially heavier than the

normal. So, for example, fitting Lognormal to the original data would result in signif-

icant underestimation of tail risk measures. In parametric approach one can choose

to fit the whole data with a list of known heavy tailed distributions5, in which case

estimated models using standard parameter estimations such as maximum likelihood

or method of moments, however well they fit, generally show a better fit around the

center of the distribution than in tails. Alternatively one could fit the tail region only

for a given model, e.g., using likelihood of truncated distribution. Instead of taking

this path, we try to fit the tail region directly using a tool in Extreme Value Theory

(EVT). By using this technique, we implicitly assume that the tail events can be con-

sidered separately from the other sample values, thus we can ignore the observations

below a certain threshold, from which tail starts. A successful application of EVT

however needs some specific assumptions on the underlying distribution’s tail behav-

ior that can be hardly observed or justified in practice; see for example McNeil et al.

(2005) or Embrechts et al. (1997) for technical details. This is a general issue with

5This exercise needs a well-defined model selection procedure, such as the SBC or AIC criterion.
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Figure 5.3: Standardized Q-Q plot after log transform

tail estimation and there is still no definite solution to it.

In EVT, Generalized Pareto Distribution (GPD) has been widely utilized to fit

exceedances over threshold. Here we adopt this model to fit the tail of the data as

an alternative model among other methods to fit tails. The distribution of GPD is

defined as

FX(x) = 1 −
[
1 +

ξ

β
x

]−1/ξ

+

, β > 0.

So the domain is x ≥ 0 if ξ > 0, or 0 ≤ x ≤ −β/ξ if ξ < 0; when ξ = 0 this reduces

to the exponential distribution with mean β. It is well known that the mean excess
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function with threshold u, defined by e(u) = E(X − u|X > u), of GPD is a linear

function of u:

e(u) =
β + ξu

1 − ξ

Further for any v ≥ u, we have

e(v) =
ξ v

1 − ξ
+
β − ξu

1 − ξ
,

which is again linear on v. The sample mean excess function is thus used to assess the

tail linearity and to identify the threshold. Figure 5.4 gives the sample mean excess

function of the data. The picture indicates that except the last few observations the

tail region seems to be close to linear6 from around 200. We set the threshold equal

to the VaR 95% of the data, of which empirical estimate is 258.04, that is u = 258.04.

Using the maximum likelihood method, the fitted parameters are ξ̂ = 0.248 and

β̂ = 139.74 with estimated covariance matrix

Σ̂ =


 0.0393 −4.629

−4.629 1134.300


 ,

indicating a heavy tail7. The fitted exceedances of the data given in Figure 5.5 shows

the selected model reasonably fits the data except the last few points. Since the

threshold is set at the VaR 95%, The CTE 95% of the data is computed by

E(X −Q0.95|X > Q0.95) +Q0.95 = 185.85 + 258.04 = 443.89,

6It is common to omit the final few points from graphical consideration due to their highly

unstable nature. In our case one should go back to the corresponding scenarios and investigate the

source of extreme outcomes, but this task is impossible for our case.
7In GPD E(Xk) is infinite for k > 1/ξ for ξ > 0, thus only the first four moments may exist for

the data if we take ξ̂ as being correct. In practice, there will be a maximum limit, however big it is,

for any insurance liability, leading to finite moments of all orders.
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where the mean excess term is the mean of the fitted GPD. The estimated standard

error of the CTE is 86.33. The estimated CTE value is very close to the empirical

(440.94) and bootstrapped value (439.53) with sample size 1,000 as shown in Table

5.2, even though the standard error seems bigger.

Since there are many other possible methods to fit the whole data or tail region,

our comment is necessarily general. We saw that the tail of real actuarial data can

be significantly heavy and it would be hard to find the best single model that can

produce an accurate estimation of the CTE. Generally both parametric and nonpara-

metric models have their strengths and weaknesses, and they can supplement each

other. In our example, a detailed data analysis revealed more information on the data

such as the tail thickness and a few points that are exceptionally extreme, leading

to a possible identification of the driving forces of extremes. This information could

give actuaries opportunities to qualitatively assess the risk within the product model

as well as the model itself; this is something that a blind use of the nonparametric

method, such as the bootstrap, could not offer.

There always are source of errors in modeling. Model error, parameter error,

and in our context sampling error also plays an important role due to simulation

constraint. Recognizing these uncertainties, insurance regulators in many cases use

naive empirical approach and add extra cushion to make the estimate conservative,

rather than prescribe certain parametric constraints. In the next section we discuss in

general terms the uncertainty around the selected model and parameters as a warning

to the audience about the potential significance of these risks in practice.
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5.6 Model and parameter uncertainty

So far in chapter 3, 4, and 5 the focus is on the outputs simulated from the given

liability model. The given model and the economic scenarios fused into the model

have implicitly assumed to be correct by using the i.i.d. sample from an unknown true

distribution F (therefore the the economic scenarios generator too has been assumed

to be so). In reality F is a combination of a complicated liability model combined

with the economic scenario model, both of which are man-made machineries. In prin-

ciple there is no correct model in the sense that every model is a proxy or simplified

version of reality, however well it fits the data, so there will be errors.

Consider our case study for example. For the economic scenario generator, there

are alternative models to forecast future economic factors other than the Wilkie

model, and we cannot have an absolute confidence in one model and thus in its

outputs. Similarly, for the liability model to which the generated Wilkie scenarios

are fused there is a risk that the product and company level variables are incorrectly

or inadequately modeled. These uncertainties are called model error. Even in the

case where the given model is proved to be the best for a specific purpose there still

are many parameters to be estimated in the model which represents another source

of error, called parameter error. These two errors are generic in any modeling pro-

cedure and could affect the quantity of interest depending on the problem in hand.

In our case the uncertainty in the estimated tail risk measure could be a fair concern

in this regard since both CTE and VaR involve the tail region where the events are

rare by definition; the lack of available observations makes the problem harder since

simulation ability is limited, as seen in this chapter. Thus in practice examining the

underlying models and parameter sets is as important as estimating the tail risk mea-
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sure under the assumption of an i.i.d. sample, because the accuracy of the estimated

risk measures eventually depends on the accuracy of the model used to represent the

true risk of the company.

To assess the sensitivity of the desired quantity to model and parameter errors,

one generally needs to examine different models and parameter sets and see the vari-

ation of the result. To examine parameter uncertainty one can do the sensitivity

analysis or scenario testing by changing parameter values, within the given model. If

the model is highly complicated however the ability to do sensitivity analysis will be

limited as well, as shown in our example. The model error however can be difficult

to investigate unless alternative models are simple to implement and compare. In

insurance practice these uncertainties are recognized and sometimes prescribed by

regulators, e.g., the provision for adverse deviation (PfAD) of the individual life and

annuity products and the segregated fund calibration requirement (see, e.g., Hardy

(2003) Chapter 4). These are designed to produce a conservative result by padding

additional cushions against variation of model and parameters. At the business line or

the corporate company level, however, comparing different liability models has largely

been ignored. This is because the insurance liabilities are often assumed deterministic

through the law of large numbers; also building alternative models for complicated

liabilities seems infeasible because of its large scale.

Finally we comment on tail behavior under model and parameter uncertainty.

Using the Bayesian approach, Cairns (2000) and Hardy (2002) show actuarial ex-

amples where model and parameter uncertainty make a significant difference in the

final quantity of interest. For the examples in these papers it is also shown that
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incorporating these uncertainties tend to fatten the tail of loss distribution. In par-

ticular, the latter paper illustrates that the CTE of the segregated fund guarantee

costs can be substantially higher for certain guarantees if parameter uncertainty is

incorporated. If we think tail thickness as the degree of uncertainty of the quantity

of interest, which is a random variable, it would be reasonable to say this observation

would hold in general. This indicates that the true tail risk measure of a loss could

be substantially larger than what we obtain from the sample generated through the

single model, simple or complex, currently in place, leading to a risker position of the

company due to less capital than needed. Related to this, another important issue

is to identify the drivers of extreme outputs in the model. We already mentioned

that simulation is often the only way to understand the dynamics of insurance office

models due to their complexity. There could however be dominant input factors in

the model that drive extreme loss outputs depending on product, such as interest

rate, stock prices, or lapse. Therefore it would be interesting to construct a statis-

tical model that could mimic the behavior of the real insurance office model using

relatively small, but important, input and output variables; a regression could be a

feasible candidate for this purpose. For instance, the input factors could be predictor

variables and would replace the whole liability model, and outputs, typically cash

flow paths or some important financial indices, can be thought to be the response

variables. While translation of input and output values into the regression frame-

work needs care and more investigation due to its multivariate and time-dependent

structure, the advantages of this modeling, if successful, can be beneficial in risk

management; it can reveal the driving force of main risks of company’s business and

thus give much more information about the tail behavior of outcomes using a much

simpler model than the original company model.
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5.7 Concluding remarks

If we had known the exact distribution of the loss, we would have been able to select

the optimal estimator. In practice, we need to estimate the CTE with only one sam-

ple from an unknown distribution, and often there is no definite winner, as seen in

our example.

In this chapter we estimated the CTE 95% based on a small sized sample from

an industry segregated fund model. In particular the bias and the variance has been

estimated for the MSE approximation through both the bootstrap and the nonpara-

metric delta method, for three different CTE estimators. We found that the optimal

estimator based on the proposed guideline changes over sample size, though the two

different variance estimates become closer as the sample increases, which supports

that the two methods are consistent. We also found that even a size of 1,000 may not

be big enough for an accurate CTE estimation for this specific model.

Through this example we justified the small i.i.d. sample situation and showed

how the proposed guideline can be applied to a real industry data. Considering that

in practice the true CTE value is unknown and the ability for large simulations is

limited, the guideline offers a theoretically sound and economical way for actuaries to

estimate the CTE by selecting the optimal estimator with a high probability. If the

company’s aggregate CTE is computed by adding the CTEs of each block of business,

as the current regulation prescribes, the impact of the accumulation of the CTE bias

will also be alleviated via the guideline, because bias already is a part of consider-

ation in its mechanism. The bias, unlike the variance, cannot be reduced through

diversification.
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However, actuaries should be aware of the risks attached to the selected model

itself and its parameters because the true tail risk measure could be significantly larger

than what one obtains from the sample through the model in place due to misspecified

model and (or) parameters, as discussed in the previous section. If one incorporates

model and parameter uncertainty in stochastic modeling at corporate level, there will

be no CTE aggregation and these uncertainties would serve as dominant factors in

CTE estimation. The proposed guideline is still recommended in this context, but

the impact could be marginal compared to the value change in tail risk measures in

the presence of model and parameter uncertainty.



Chapter 6

A new capital allocation method

6.1 Introduction

Insurers, like other financial entities, balance two financial considerations; minimiz-

ing risk and maximizing return. In insurance business these can be translated into

managing solvency and maximizing the embedded value. In the middle of these two

conflicting objectives lies capital determination and its management. Excessive cap-

ital will protect policyholders at a safer level, but it will inevitably be detrimental

to the profitability of shareholders and the value of the company as a financial in-

vestment. On the other hand, inadequate capital would increase the profitability for

shareholders at the cost of a high risk of bankruptcy of the insurer, which would be a

devastating consequence for policy holders. In general policy holders and regulators

place constraints on value-maximizing strategies by capping the risk of the insurer,

leading to different perspectives than that of the shareholders on how the capital is

set and managed.

135
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From a theoretical point of view these two different perspectives can be related

to different probability measures; the P measure and the Q measure. Understanding

and differentiating these measures can be important because they are used for dif-

ferent purposes and will produce different numbers even from the same business book.

Another important aspect of capital is its allocation to each line of business. Cap-

ital allocation can be useful in assessing the risk of each business line and is widely

used in practice for many insurers. In particular the management of a company uses

allocated capital as the basis of profitability and strategic planning for different busi-

ness blocks within multi-line company; see Section 1.6 for details. Determining the

allocated capital for a line is similar to determining the total capital of company in

a sense that both try to do the same thing for a given business entity. They can

be however quite different because capital allocation is an ex post process, given the

total capital. While there are several popular allocation methods available, this topic

is fairly new and there is no universal agreement on how to allocate the required

capital and researchers still actively try to find the optimal allocation as part of the

developments of risk management.

In this chapter we first review the idea of the two different probability measures

and their application to valuation and risk management. Then we propose a new

allocation method which is inspired by the notion of the solvency exchange option

of the company. The proposed method has some interesting properties but it also

violates one of the widely accepted allocation axioms. After a close examination we

argue that this violation is not as bad as one might think, and further that the axiom

itself is not aligned with economic reality.
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6.2 Value vs. Risk

6.2.1 Two measures

The P measure, also referred to as the physical measure, states the real world prob-

ability. The P measure is the ordinary measure that we call “probability” everyday

and becomes the basis of our model of the future behavior of the uncertain outcomes

and risks attached to them. The P measure is used in most risk management actions

including the projections of the company’s future cash flows, the solvency position

testing, and the determination of required capital and its allocation.

The Q measure, also known as the equivalent martingale measure or the risk neu-

tral measure, has been developed to assist in setting the no arbitrage price of financial

assets. It is an artificial probability measure based on cash flow replications. It is,

generally, not the same as the P measure, so it does not model the uncertain future

outcomes for the risk. It is designed to produce current values of financial assets,

not to predict their future behavior. The risk neutral measure is thus utilized in

valuation of derivatives and also the valuation of a financial liability consistent with

no arbitrage principle.

In theory the no-arbitrage condition of a market is actually equivalent to the

existence of at least one risk neutral probability measure in the market. We also

know that the uniqueness of the risk neutral measure is equivalent to the completeness

of the market; see, e.g., Panjer et al. (2001). Here the complete market means the

market where any cash flow can be replicated by constructing a suitable portfolio.

This relationship reversely indicates that it is possible to have a series of different Q
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measures if the market is incomplete, which is the case for most insurance business.

These are among central concepts in financial economics.

Even though it has been said that the Q measure is used to price, the P measure

can also be used in pricing. In fact, P measure pricing, using equilibrium pricing,

is the only pricing method if the desired cash flows are not replicable using traded

securities. P measure pricing takes risk directly into consideration through the use of

utility function, whereas with the Q measure the risk adjustment is needed to reflect

the constructed portfolio’s risk free characteristic.

In insurance business two main issues shared by its stake holders would be val-

uation and solvency. The current trend of accounting principles is to move toward

a market value (MV), or fair value basis, which means that the valuation process is

naturally related to the Q measure. On the other hand solvency is dealt with by using

real world probabilities, reflecting the actual distribution of surplus, which leads to

the estimated insolvency risk of the company.

6.2.2 Valuation perspective

The valuation of assets is relatively easy and well established because items on the

asset side of the balance sheet are mostly tradable securities including stocks, bonds,

and mortgage backed securities. For most insurance liabilities (or products) however

the secondary market does not exist; exceptions would be reinsurance, transactions of

a business block between insurers, securitized insurance products, and viatical settle-

ments1, all of which do not trade everyday, so MVs are not easily established. Because

1A viatical settlement is the sale of life insurance policy by the policy holder at discounted face

amount for immediate cash settlement.
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they are not traded, insurance liability cash flows cannot in general be replicated by

other securities in the market, making the insurance market incomplete. Hence de-

termining the unique Q measure for insurance liability is generally not possible.

Assuming the Q measure is available for the given liability model, let us consider a

company, which just started its business, and characterized by the following financial

variables. For simplicity the model is examined over a single time period, that is time

0 to time 1:

• The insurance loss (or liability) will be realized at time 1 by random variable L

and its risk neutral value is set at V (L) at time 0.

• We assume that the MV of the whole asset at time 0, V (A), is the sum of pre-

mium collected and shareholder’s capital and is invested in a series of different

financial securities at a random rate of return. At time 1 the asset amount will

be realized by random variable A.

Table 6.1 shows the ordinary form of the insurer’s balance sheet at time 0 and 1.

Throughout this chapter we differentiate between the capital and the surplus, even

though they are used interchangeably in many practical situations. The surplus is

the profit from the insurer’s operation and is defined by the premium plus investment

income less the loss payout. The capital is the amount of money that is provided by

the shareholders. Shareholders consider the surplus as the profit from their capital

investment and expect it to be distributed (or at least part of it) as dividends.

Recalling that the values at the end of time period are random we can think of

two possible outcomes at time 1; the insurer stays solvent, A ≥ L, or it becomes

insolvent, A < L. If the insurer is solvent at the end of the period, the liability L is
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Time 0 Time 1

Asset V (A) A

Liability V (L) L

Capital and surplus V (A) − V (L) A− L

Table 6.1: Ordinary balance sheet of an insurer

Shareholders get Policy holders get

When solvent (A ≥ L) A− L L

When insolvent (A < L) 0 A

Table 6.2: Entitlements of shareholders and policy holders at time 1

expected to be fully paid and the excess amount of asset over liability, A−L > 0, will

belong to shareholders. On insolvency the liability is not fully paid and this affects

both policyholders and shareholders. The insurer would liquidate the asset A and

distribute it to the policy holders; the shareholders get nothing but they are not li-

able to pay any further loss either. Hence policy holders get something less than they

expected - they expected to get L but only get A, which is less than L - and share-

holders lose everything they invested in the insurer. Table 6.2 describes this situation.

This limited liability to policy holders indicates that the actual liability payoff

-which we call the economic liability from now on - should be less than the gross-up

liability L because it is possible for the insurer to fail to pay all L. The economic

liability thus can be expressed in a conditional form with conditioning on solvency

status:
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Time 0 Time 1

Asset V (A) A

Liability V (L) − V (D) L−D = min(A,L)

Capital and surplus V (A) − V (L) + V (D) A− L+D = max(A− L, 0)

Table 6.3: Economic balance sheet of an insurer

L− max(L−A, 0) = L− (L−A)+ =




L, if A ≥ L

A, if A < L

(6.1)

Since (L − A)+ is nonnegative the economic liability is less than the gross-up

liability L. The fair price at time 0 of this economic liability requires the use of

option pricing techniques, using the Q measure, as seen from its resemblance to a call

option payoff, written on L with strike at A. The quantity

D = (L−A)+ (6.2)

in particular is referred to the solvency exchange option because it swaps the asset

and the liability depending on the solvency status of the insurer, as shown in (6.1).

The price of this option is, assuming a constant risk-free rate r,

V (D) = e−rEQ[(L− A)+], (6.3)

which can be uniquely determined under the complete market assumption.

Table 6.3 shows the economic balance sheet of the insurer including the solvency

exchange option. Note that the capital and surplus account increased due to the

addition of V (D), reflecting the limited liability of the shareholders.
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6.2.3 Solvency perspective

Focusing on the CTE, among other tail risk measures, to ensure the solvency of

insurers, there are two possible methods in setting the economic capital. The first

one is based on liability side of risk with capital given by

EP [L|L > Qα(L)] − Π(L), (6.4)

where Π(L) is a value of liability prescribed in regulations2 or determined internally

using, say, the mean of the loss. The obtained capital will be discounted to produce its

current value using, say, the hurdle rate set by the management. There has been much

literature devoted in finding the first term of (6.4) for many parametric models; see,

e.g., Landsman and Valdez (2003), Landsman and Valdez (2005), Cai and Li (2005),

and the developments in Chapter 2 of this thesis, but this type of CTE can be limited

in its usage because the asset side plays no role in the capital determination here.3

The second method would involve

EP [L− A|L− A > Qα(L− A)] (6.5)

This form is especially suitable where asset is correlated to the liability, because L−A,

the net loss, represents the true risk of the company. For example the segregated fund

fees collected periodically, the asset of the balance sheet, will be a certain portion of

the fund amount, which in turn is a crucial input for guarantee liability payoff at

maturity. If one relies on (6.5) in setting the capital the optimal amount of asset

would satisfy the equation

EP [L− A|L− A > Qα(L− A)] = 0 (6.6)

2In the segregated fund business in Canada, for example, Π(L) is set at approximately the 75-th

percentile of the distribution of L by regulation.
3All the CTE formulas for nonnegative random variables implicitly use this method.
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which is typically solved through changing the capital amount - which will change

the whole asset amount - heuristically. Note that the dynamics of liability and the

remaining asset portion do not change. When the whole asset is already defined,

the risk manager will compute the value of (6.5) to see its sign and the magnitude

to assess the capital adequacy; a small negative number signals adequate but not

excessive capital. However the CTE risk measure does not reflect the limited liability

of the shareholders.

6.3 Allocation review

In Section 1.5 we introduced the motivation of capital allocation, and briefly discussed

some proposed allocation axioms and simple examples. In this section, we revisit the

axioms and examples to obtain a further insight needed for later developments. As

before, we consider a multi-line P&C insurer with aggregate loss4 given by

X =
n∑

i=1

Xi,

where Xi represents each line’s loss. To introduce the fair allocation axioms more for-

mally we cautiously develop a notation, aligned with that used in Valdez and Chernih

(2003), that can help understand the concept of allocation more easily. As mentioned

earlier we can see a similarity and difference between the capital allocation and the

total capital determination. Suppose that the capital is determined by a risk measure

ρ(). Then the total capital amount of the P&C insurer is given by ρ(
∑n

1 Xi). Now

4In Chapter 1 the aggregate loss was denoted by S to stand for the “sum”, but we use X

throughout this chapter to minimize the use of different capital letters.
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an ex post5 capital allocation follows. We denote the set of all lines (or the whole

portfolio) by

Ω = {X1, . . . , Xn} (6.7)

and define the allocated capital for line i by

ρ(Xi|Ω), (6.8)

where the use of Ω in the condition indicates that the allocated capital for line i

has been allocated after the total capital has been computed based on Ω, or the

whole portfolio. Similarly if we define a subportfolio H ⊂ Ω, ρ(Xi|H) represents the

allocated capital where the total capital has been computed based on lines in H. Thus

in general ρ(Xi|Ω) and ρ(Xi|H) have different meanings and different values. Putting

conditions inside the risk measure notation thus enables us to tell subtle differences

in allocation process.

Even though we use the same letter ρ for both total capital and the allocated one

because of conceptual similarity, they are not meant to be the same mathematical

function and often there is no analytic resemblance between them. One equation

however should always hold by definition, that is, for any subportfolio H ⊂ Ω,

ρ(
∑

H

Xi|H) = ρ(
∑

H

Xi),

where
∑

H

Xi ≡
∑

Xi⊂H

Xi

Now we are ready for the axioms. Axioms below are adapted from Valdez and Chernih

(2003), and are mathematically elaborated from the literature including Denault

5We assume that capital allocation always occurs after the total capital is determined.
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(2001) and Hesselager and Anderson (2002). We have slightly modified the presenta-

tion in Valdez and Chernih (2003) for an easier exposition.

Definition 6.1 (Fair allocation axioms) Suppose that a company has n business

lines, and each line’s loss is represented by Xi, i = 1, . . . , n. ρ() is the risk measure

for capital and ρ(|) is the capital allocation rule as explained above. An allocation ρ(|)
is said to be fair if the following four properties hold.

Full allocation For Ω = {X1, . . . , Xn},

ρ(
∑

Ω

Xi) =
∑

Ω

ρ(Xi|Ω) (6.9)

No undercut For any H ⊂ Ω,

∑

H

ρ(Xi|Ω) ≤ ρ(
∑

H

Xi|H) = ρ(
∑

H

Xi) (6.10)

Symmetry Select arbitrary two linesXi, Xj (i 6= j) and create H such that {Xi, Xj} ⊂
H ⊂ Ω (but H 6= Ω). If ρ(Xi|H) = ρ(Xj |H) holds for every such set H, we

must have

ρ(Xi|Ω) = ρ(Xj |Ω) (6.11)

Consistency For any H ⊂ Ω,

∑

H

ρ(Xi|Ω) = ρ(
∑

H

Xi|{
∑

H

Xi} ∪ Hc), (6.12)

where Hc = Ω −H.

Let us briefly explain each axiom. The full allocation means that the sum of the

allocated capital equals the capital of the sum of the risks. The no undercut is anal-

ogous to the subadditivity of a risk measure. It means that the capital allocated to a
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group of lines, given the full lines Ω, is less than the capital allocated if the group is

offered on a stand-alone basis. The symmetry and the consistency are a little more

subtle to understand. The symmetry means that if two different lines have the same

allocated capital amount given any subset lines H ⊂ Ω (H 6= Ω), those two lines

should have the same allocated capital given the full lines Ω. As Denault (2001)

pointed out in the original paper, the symmetry property ensures that a portfolios

allocation depends only on its contribution to risk within the firm, and nothing else.

Finally the consistency states that the allocated capital amount is independent of the

hierarchical structure of the company. For example, suppose that the company has

a few divisions, and each division holds some individual lines under its supervision.

The collection of all lines across all divisions makes Ω, of course. The consistency

compares capital allocation at the division level with that at the individual line level.

This axiom means that the allocated capital amount for one division, the right side

of (6.12), should be the same as the sum of the allocated capital amounts of the each

line in the division, the left side of (6.12).

Along with the developments of general allocation principles, there have been

much effort to find specific allocation methods by academics and practitioners. Some

methods are aligned with the proposed axioms and others fail to meet them all. The

relative allocation

ρ(Xi|Ω) =
ρ(Xi)

ρ(X1) + ρ(X2) + . . . + ρ(Xn)
(6.13)

is a simple example. Valdez and Chernih (2003) shows that this allocation method

satisfies the full allocation and the symmetry axioms, but fails the other two axioms.
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They considered another example

ρ(Xi|Ω) =
Cov(Xi, X)

V ar(X)
× ρ(X) (6.14)

and proves that this method meets all fair allocation axioms. We remark however

that the proof is partly incorrect and it actually fails the no undercut axiom6. The

allocated capital in this example is directly linked to its correlation to the whole

portfolio of the company. The third example is the famous CTE allocation, found in

Overbeck (2000) and Panjer (2002):

ρ(Xi|Ω) = E[Xi|X > Qα(X)] (6.15)

Panjer (2002) reported that this method satisfies the first three axioms, but consis-

tency was not in his list. However we note that it also satisfies the consistency axiom.

The CTE allocation under the full portfolio Ω, given on the left side of (6.12), is based

on the aggregate loss
∑n

1 Xi =
∑

ΩXi, and similarly the allocation under portfolio

{∑
H
Xi} ∪Hc, the left side of (6.12), is based on

∑
H
Xi +

∑
Hc Xi. Since we always

have
∑

Ω

Xi =
∑

H

Xi +
∑

Hc

Xi,

for any H ⊂ Ω, both sides measure the same aggregate loss. Finally, the first sum-

mation on the right side of (6.12) can be put in front due to additivity of the CTE,

making the CTE allocation consistent. This argument is also relevant to the consis-

tency of the allocation method to be introduced later.

For other allocation methods and discussion, readers are referred to, for example,

Dhaene et al. (2003), Wang (2002), Tasche (1999) and Myers and Read Jr. (2001).

6In the proof of Theorem 1 (pp.522) the second inequality
∑

σ(Xi) ≤ σ(
∑

Xi) should be reversed.

We also present a numerical example to support this finding in Section 6.6.
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Goovaerts et al. (2005) argue that the allocation problem can largely take two dif-

ferent forms. The first approach is called the risk measure approach that uses the

properties of the given risk measure. A simple example is the CTE allocation given

in (6.15). By denoting X =
∑n

1 Xi, the allocation satisfies

E[X|X > Qα(X)] =

k∑

i=1

E[Xi|X > Qα(X)] (6.16)

The second approach is based on the insolvency event. In this approach the

residual risk defined by (X − u)+, where u is the total capital amount, is to be

somehow split onto each line. A unique aspect of this approach is that the allocation

rule depends on the amount of the total capital u = ρ(X), but is independent of

analytic form of ρ(). To obtain the allocated capital in this approach one solves the

equation

minE[
n∑

i=1

(Xi − ui)
+], (6.17)

with respect to (u1, . . . , un), the vector of the allocated capital, under constraint
∑
ui = u = ρ(X). The second method is the preferred one in their paper and the

solution (u∗1, . . . , u
∗
n) is given by

u∗i = F−1
Xi

(1 − s),

where s is determined as FXc
i ,Xc

2
,...,Xc

n
(u) = 1 − s, in which FXc

i ,Xc
2
,...,Xc

n
is the c.d.f. of

the comonotonic random vector (Xc
i , X

c
2, . . . , X

c
n) with the same marginal distribution

functions as (Xi, X2, . . . , Xn).

In the next section we derive a new allocation method that is independent of

analytic form of ρ() like the second approach but has some similarity to the first one

as well.
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Shareholders get Amount liable to policyholder

When solvent (A ≥ L) Ai − Li Li

When insolvent (A < L) 0 Li

L
A

Table 6.4: Entitlements of shareholders and policy holders at time 1 for line i

6.4 A new allocation

The idea of including the insolvency exchange option in the balance sheet to deter-

mine the economic liability value is not new. In fair valuation framework this is

translated to the issue of reflecting company’s own credit risk, and this has been a

controversial issue among regulators; including the option would effectively reduce

liability and increase the capital in the financial statement; see Section 1 of Girard

(2002) for a brief discussion and further references.

In the financial economics literature, there has been several papers focusing on the

allocation of optionD, defined in (6.2). Merton and Perold (1993) and Myers and Read Jr.

(2001) fall into this category. Later Sherris (2006) derived a way to allocate D in an

additive manner based on the equal priority of each line on insolvency. To briefly

review the allocation idea of Sherris, we start with Table 6.4 which is similar to Table

6.2 but this time focused on i-th line. (No specification on how to obtain Ai, the asset

allocated to line i, is given yet). Assume again that each policy holder ranks equally

for the liquidating asset on insolvency, which is a standard procedure in practice. The

economic liability of line i at time 1 then can be defined by

Li − Li max(1 − A

L
, 0) = Li − Li

(
1 − A

L

)+
=




Li, if A ≥ L

Li

L
A, if A < L,

(6.18)
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as shown in Table 6.2. Sherris denotes Li

(
1− A

L

)+
, the option payoff to to the i-th line

in the event of insurer default, by Di and uses this to allocate the solvency exchange

option D. That is,

D = (L−A)+ =
k∑

i=1

Di, (6.19)

where the equality is trivial, and the corresponding option prices are

V (D) =

k∑

i=1

V (Di), (6.20)

where V (D) is given in (6.3) and

V (Di) = e−rEQ[Li

(
1 − A

L

)+
] (6.21)

Observe that Di is a function of Li and A, but there is no need to specify Ai. This

raises the important point of his paper that the allocation of the asset plays no role

in either valuing or allocating the solvency exchange option; asset allocation can be

arbitrary in the following sense, as quoted from Sherris (2006):

“There is no unique way to do this since the allocation of assets to line of

business is an internal insurer allocation that will have no impact on the

payoffs or risks of the insurer since assets are available to meet the losses

of all lines of business.”

Recognizing however the need of asset allocation in management’s decision making,

he considers two alternatives; making each line either have the same solvency ratio

or have the same expected return on capital. The allocation of assets is equivalent

to the allocation of the capital in this framework because the capital and surplus at

time 1 is A− L+D and so far both L and D have been allocated, but A has not. If
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Time 0 Time 1

Asset u+ P ueru + PerP

Liability V (L) − V (D) L−D

Capital and surplus u+ P − V (L) + V (D) ueru + PerP − L+D

Table 6.5: Economic balance sheet of an insurer with premium inflow

Ai is determined, the capital and surplus for i-th line would be Ai − Li +Di.

We now propose a new asset allocation method. Unlike other methods, this one

explicitly accommodates the capital reduction due to the shareholders’ limited liabil-

ity. For this new method first we keep the same one period model and further split

the asset into premium and capital. More specifically,

• A premium amount of Pi is collected at time 0 for each line in exchange for

uncertain loss at time 1, with the total premium P =
∑n

i=1 Pi. The insurer

invests P in securities that produce a random return rate of rP over the period.

• The shareholders inject an initial capital amount of u at time 0 to safeguard

the company from extreme liability outcomes where loss exceeds premium. It

is assumed that the capital is invested at a random rate ru.

We assume rP and ru to be random for a more general framework; the final result

would be the same even if the rates are constant. Table 6.5 is the revision of Table

6.3 using these new variables. Note that in the table all variables except u can be

allocated to each line directly with no difficulty.

The construction of the new allocation method starts with considering the follow-
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ing trivial equality where A = ueru + PerP .

(L− ueru − PerP )+ = (L−A)+ =

k∑

1

Di, (6.22)

where

Di = Li

(
1 − A

L

)+

=





0, if A ≥ L

Li − Li

L
A, if A < L,

is the payment shortfall to the i-th line policy holders in the event of insurer’s default,

due to Sherris (2006). Next we take the expectation of equation (6.22) under the P

measure. We use the P measure because capital allocation, like the risk measure, is

designed to assess the true risk. Here the new method considers actual occurrence

of insolvency and the physical behavior of the net loss under insolvency scenarios,

rather than its fair price. Thus

EP [(L− ueru − PerP )+] =
k∑

1

EP [Di]

To solve this equation with respect to u, the right side is modified to

k∑

1

E[Di] =

k∑

1

E

[
Li(1 − A

L
)+

]
= Pr(L > A)

k∑

1

E

[
Li(1 − A

L
)|L > A

]

and similarly for the left side,

E[(L− ueru − PerP )+] = Pr(L > A)E[Li − uie
ru − Pie

rP |L > A],

noting that the two events L − ueru − PerP > 0 and L > A are equivalent in that

both represents insolvency. Hence equation (6.22) reduces to

E[L− ueru − PerP |L > A] =
k∑

1

E

[
Li −

Li

L
A|L > A

]
,
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for i = 1, . . . , k. Before proceeding further we note that on the left side the allocations

of the total premium P and liability L to each line are trivial but the same task for

capital u is not because capital is available to all lines in case of adverse outcomes.

We choose here, among other methods, to allocate u in such a way that each term of

both sides matches for each line. That is, for each i,

E[Li − uie
ru − Pie

rP |L > A] = E

[
Li −

Li

L
A|L > A

]
, (6.23)

where ui represents the allocated capital to the i-th line. Matching both sides for each

i means that, in the event of insurer default, the allocated capital should make each

line’s average net loss, which is the left side, equal to the average payment shortfall to

the line’s policy holders, which is the right side. This equation is actually exploiting

the fact that insolvency is the only situation where asset allocation is clearly defined

through the equal priority for all lines, as shown in Table 6.4.

Finally we rearrange equation (6.23) to obtain the allocated capital

ui =

E

[
Li

L
A− Pie

rP |L > A

]

E[eru|L > A]
(6.24)

If the capital is invested in a risk free bond at r, which is a reasonable assumption

where the liability is positively linked to rP , the allocated capital is

ui = e−rE

[
Li

L
A− Pie

rP |L > A

]
(6.25)

In the next section we examine some interesting properties of this allocation method,

along with its advantages.
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6.5 Properties of the new allocation

Generally, for any insurance business, we expect the capital to be an increasing func-

tion of the liability loss and a decreasing function of premium collected, because

the real risk lies in the loss exceeding the premium, or the net loss. The allocation

method proposed here is aligned with this principle. From (6.24), when the line’s loss

share Li/L increases, with L, A, and Pi unchanged, the allocated capital increases;

the remaining lines will get less capital. Similarly the allocated capital decreases if

Pi increases with L, A, and Li kept fixed. This allocation is also consistent with

the idea of different level of implied leverage by line; each line will have different

expected rates of return depending on premium adequacy of that line. The impact

of higher allocation is that the line will be required to earn more profit, to maintain

the same rate of return as other lines, because the line’s business carries more risk,

either through an inadequate premium or a riskier liability.

Another feature of the proposed allocation method is that it is independent of

how the total capital is computed and only requires the amount of the total capital u.

The allocation is then based on insolvency scenarios, L > A, and insolvency scenarios

alone; solvent scenarios make no contributions in allocating the capital. In fact the

allocation (6.24) involves a type of conditional tail expectation, with a little different

form than the usual CTE. The similarity to the CTE however turns out to provide

several desirable technical advantages just as the CTE allocation does.
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6.5.1 Fairness of the allocation

First of all, the allocation ‘adds up’, meaning that it satisfies the full allocation axiom

because

k∑

i=1

ui =
1

E[eru|L > A]

k∑

i=1

E

[
Li

L
A− Pie

rP |L > A

]

=
1

E[eru|L > A]
E

[∑k
i=1 Li

L
A−

k∑

i=1

Pie
rP |L > A

]

=
1

E[eru|L > A]
E[A− PerP |L > A]

=
1

E[eru|L > A]
E[ueru|L > A]

=
u

E[eru|L > A]
E[eru|L > A]

= u

To prove symmetry, suppose that lines i and j have been arbitrarily picked and the

assumption of the axiom is met for any H ⊃ {Xi, Xj}. Then we should have

E

[
Li

LH

AH − Pie
rP |LH > AH

]

E[eru|LH > AH]
=

E

[
Lj

LH

AH − Pje
rP |LH > AH

]

E[eru |LH > AH]
,

where AH represents the aggregate asset of lines in set H, and similarly for LH. This

equation holds only if Li = Lj (in distribution) and Pi = Pj whenever LH > AH.

Because H can be any strict subset of Ω, lines i and j must be identical in loss and

premium for any situation. Therefore the allocated capital for both lines should be

the same under the full portfolio Ω as well, because the proposed allocated capital

produces the same amount as long as the loss and premium are identical. The pro-

posed allocation method is also consistent and the argument is identical to that of
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the CTE allocation discussed earlier.

However this method fails the no undercut axiom as shown by an example later

in this chapter. We resume our discussion on this in Section 6.7 for a further investi-

gation.

6.5.2 Further decomposition

Here we provide three alternative ways to interpret the allocated capital by further

decomposing it into smaller components. These decompositions give the management

and line managers more information about the structure of the allocated capital and

could also promote a better communication among the various stakeholders. For sim-

plicity we set ru = r, the risk free rate, and substitute A with uer + PerP .

Decomposition I

The first decomposition breaks the allocated capital into two pieces: the capital

based on the gross-up loss and the premium adjustment. Under this decomposition

the allocated capital (6.24) becomes

ui = e−rE

[
Li

L
(uer + PerP ) − Pie

rP |L > A

]

= e−rE

[
Li

L
uer + erP (

Li

L
P − Pi)|L > A

]

= uE

[
Li

L
|L > A

]
+ e−rE

[
erP (

Li

L
P − Pi)|L > A

]

Here the first term is the capital allocation due to each line’s gross up loss and is

always positive for all lines. The second term is the adjustment due to each line’s
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premium collection and can be negative or positive depending on the relative premium

adequacy of the line; a line with adequate premium will have a negative adjustment.

The sum of the first term across the lines is equal to the total capital and the sum of

the second term is zero.

Decomposition II

The second decomposition of the allocated capital is

ui = e−rE

[
Li

L
(uer + PerP ) − Pie

rP |L > A

]

= e−rE

[
Li

L
(uer + PerP − L+ L) − Pie

rP |L > A

]

= e−rE

[
Li

L
(uer + PerP − L) + (Li − Pie

rP )|L > A

]

= e−rE

[
Li

L
(A− L) + (Li − Pie

rP )|L > A

]

= e−rE

[
Li

L
(A− L)|L > A

]
+ e−rE

[
Li − Pie

rP |L > A

]

The first term, being always negative due to its condition L > A, represents the

policyholder loss on insolvency, as noted from Table 6.4 because

e−rE

[
Li

L
(A− L)|L > A

]
= e−rE

[
Li

L
A− Li|L > A

]

Thus this term always reduces the allocated capital amount and reflects the limited

liability of the shareholders. The second term represents the capital due to premium

inadequacy of the line, again on insolvency. The premium, even though reasonable

at time 0, can be inadequate at the end of period for two reasons: poor investment

performance on the asset side and worse than expected loss on the liability side.
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Employing this idea, we can further decompose the second term into three pieces.

e−rE[Li − Pie
rP |L > A] = e−r

(
{E[Li|L > A] − E[Li]}

+ {E[Pie
rP ] −E[Pie

rP |L > A]}

− {E[Pie
rP ] − E[Li]}

)

Putting these components together the allocated capital becomes

ui = e−r

(
{E[Li|L > A]−E[Li]} + {E[Pie

rP ] −E[Pie
rP |L > A]}

− {E[Pie
rP ] −E[Li]} − E[

Li

L
(L−A)|L > A]

)
(6.26)

and each of the four terms has a unique meaning as elaborated below.

1. E[Li|L > A] − E[Li] represents the need for capital due to insolvency loss

over expected loss, with insolvency loss computed by the average loss under

insolvency scenarios

2. E[Pie
rP ] − E[Pie

rP |L > A]7 represents the need for capital due to poor in-

vestment performance over expected investment income, with poor investment

performance computed by the average cumulative premium under insolvency

scenarios

3. −{E[Pie
rP ] −E[Li]} represents a reduction of the capital due to profit loading

for the line on average; and

4. −E[Li

L
(L − A)|L > A] represents a reduction of the capital due to the limited

liability of shareholders.

7This reduces to Pi(E[rP ]−E[rP |L > A]) when the premium payment is known, but it is possible

that premium is random, if it is charged as percentage of the underlying fund, for example.
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The last term, as mentioned before, represents a capital reduction due to the limited

liability of shareholders in the event of insolvency, sum of which across all lines is

denoted by as V (D) in the time-0 capital and surplus account of Table 6.3 and 6.5.

This is a unique feature of this allocation method that other methods do not have,

and in this sense it is more aligned with economic reality. Inclusion of this component

in the capital allocation explains how much each line’s policy holders lose when the

insurer goes bankrupt.

Decomposition III

In the third decomposition, we try to attribute risks to different stakeholders in-

volved in the company operation, namely, the liability manager (LM), the investment

manager (IM), and the corporate risk manager (RM). Here the LM and the IM are

assumed to have no control on the dependency structure of the whole company, and

the capital is assigned as such. The RM is the one who is responsible for all of the

dependency issues on both liability and investment sides. This is analogous to sepa-

rating a multivariate density into the marginals and the copula. The main advantage

of this decomposition is that the management is able to see each manager’s risk ac-

countability. The allocated capital for line i has the following decomposition under

this approach:

ui = e−r

[
LMi + IMi +RMi −E[

Li

L
(L− A)|L > A]

]
(6.27)

The first three terms represent components under each manager’s responsibility. The

last term again represents a capital reduction due to the limited liability of sharehold-

ers and it is rather an output of the company’s business than an input that managers

should control and optimize.
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LMi: E[Li|Li > ρ(Li)]−Pie
r represents the capital amount needed for line i’s liability

manager on a stand alone basis. No uncertainty is assumed in the investment

side. ρ can be any tail risk measure but the consistent risk measure with the

total capital setting is recommended for conceptual agreement. For instance, if

the total solvency capital is computed by the CTE at level α, the same applies

to ρ. The liability manager would be encouraged to minimize this quantity. If

necessary LMi can be split into two pieces:

{E[Li|Li > ρ(Li)] − E[Li]} + {E[Li] − Pie
r},

where the second term is the profit loading.

IMi: Pie
r − E[Pie

rP |PerP < −ρ(−PerP )] represents the capital amount for the in-

vestment manager on a stand alone basis. The nested negative signs in the

condition of the second term reflects the fact that the asset side risk, unlike

the liability side, is concentrated on cases where the earned rate is below than

expected. Note that the condition is on the whole investment side because only

one investment manager is assumed here; the manager is responsible for the

investment of all lines, not just line i. The manager would be encouraged to

minimize the sum of this quantity across all lines, or
∑
IMi. If different invest-

ment managers are hired for different lines, one can easily adapt the method by

replacing the condition.

RMi: {E[Li|L > A]−E[Li|Li > ρ(Li)]}+{E[Pie
rP |PerP < −ρ(−PerP )]−E[Pie

rP |L >
A]} represents a reduction in the capital due to liability and investment diver-

sification of the company. The sum of each term across all lines should be

negative even though some can be positive indicating risk concentration. A
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larger negative value of this quantity means a more efficient risk reduction for

the line.

The function of the risk manager, in this framework, is to interact with the other

managers by monitoring each RMi and their sum
∑
RMi; the former provides an

understanding of each lines dependency among lines and the latter gives the total

amount of capital reduction due to diversification. Overall, the corporate risk manager

should minimize
∑
RMi, maintaining a healthy tension between each RMi.

6.6 Numerical example

In this section we provide a numerical example to apply the proposed allocation

method. The example uses simplified life insurance products for illustration. The

goal is to compare different allocation methods to see if they properly accommodate

well-known profitability indices. Also we will examine the implication of including

the solvency option in these measures.

Consider company A with two business lines. The liability of both lines is the

guaranteed minimum maturity benefit of a segregated fund with 1 year contract

terms. In particular, line 1’s liability is defined by (G1 − Ft)
+, ignoring mortality,

where Ft is the fund value at maturity and guarantee level G1 is set at 90% of the

initial fund value, or G1 = 0.9F0. Line 2 has the identical underlying fund but

different guarantee level at G2 = 1.0F0.

All contracts are one year and have the identical underlying fund. The fund value

at any time is determined by

Ft = F0
St(1 −m)t

S0
(6.28)



Ch. 6. A new capital allocation method 162

where m is the annual management charge and St is the underlying asset at time t.

In our example the monthly management charge is set at 1% of the assets and the

assets follow a geometric Brownian Motion with monthly parameters µ = 0.00947,

σ = 0.04167, derived from the TSE 300 data during 1956-2001. The company thus

effectively consists of two put options written on the same underlying fund with

different strike prices. We also consider a separate company B which is a mono-line

insurer specializing in equity indexed annuity (EIA) products. For simplicity, we

bring in a simplified version of the equity linked annuity, of which liability is defined

by (Ft − G3)
+ where G3 = 1.0F0; all other dynamics are kept the same as company

A including management charge. So company B effectively has a call option.

Since we deal with the allocation issue, no dynamic risk management such as

hedging is assumed. On the other side of the balance sheet, we define the premium

by the management charge; the collected monthly premiums are assumed to be in-

vested at risk free 5%/12 = 0.0042% monthly effective rate. By assuming the same

management charge for all three lines we have the same premium dynamics. For the

details of how these products work in practice, see Chapter 6 and 13 of Hardy (2003).

Since we adopt the geometric Brownian Motion dynamics, the Q measure is de-

fined uniquely, which allows a fair valuation of the company. The complete market

assumption however does not fit fully this model since the premium charged is not the

market value of premium. Table 6.6 shows basic valuation results for both companies.

Now suppose that these two companies merge to establish a multiline insurer called

ANB. We can create a similar valuation table for ANB , which is presented in Table

6.7. There are two notable impacts of the merger. First the required capital decreases

significantly, reflecting that the aggregate risk has been reduced due to diversification.
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Company Company A Company B

Line Seg Fund 1 Seg Fund 2 Total EIA Total

Nominal liability V (Li) 3.28 8.48 11.76 2.93 2.93

Premium V (Pi) 11.52 11.52 23.04 11.52 11.52

Nominal surplus V (Pi) − V (Li) 8.24 3.04 11.28 8.59 8.59

Option price V (Di) 0.191 0.274 0.465 0.033 0.033

Capital u @CTE 95% 19.12 18.47

Capital & surplus (incl. option) 30.87 27.09

Table 6.6: Valuations of company A and B

Company Company ANB

Line Seg Fund 1 Seg Fund 2 EIA Total

Nominal liability V (Li) 3.28 8.48 2.93 14.69

Premium V (Pi) 11.52 11.52 11.52 34.56

Nominal surplus V (Pi) − V (Li) 8.24 3.04 8.59 19.87

Option price V (Di) 0.185 0.265 0.001 0.451

Capital u @CTE 95% 9.35

Capital & surplus (incl. option) 29.67

Table 6.7: Valuations of the merged company ANB
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Alloc. method Seg fund 1 Seg fund 2 EIA Total capital

Covariance 2.93 4.69 1.72 9.35

CTE 3.62 12.26 -6.54 9.35

Proposed 4.79 12.45 -7.90 9.35

Table 6.8: Capital allocations to each line of company ANB

With a minimal difference in the capital and surplus account, before and after the

merger, this would make the ROC of the merged company much higher than that

of the original two companies. The second impact is the reduction in the solvency

exchange option value for each line. This means that there is a benefit to the policy

holders due to risk reduction of the aggregated risk. These impacts however cannot

be guaranteed to occur for any merger in general.

Now we allocate the total capital u of ANB into its three lines using the covari-

ance, the CTE, and the proposed allocation methods. For the first two methods the

allocation is applied to the end of period and discounted at the risk free rate. Unlike

the covariance allocation, the CTE and the proposed methods show that the EIA

line is providing a natural hedge for the other lines by negative allocation. In fact

the EIA is countermonotonic to the segregated fund lines. Negative capital can be

problematic for ROC calculation in practice but properly indicates its risk position

nonetheless. Table 6.9 shows detailed components of the allocated capital using three

different decomposition methods developed in the previous section. In this example,

the premiums collected are random based on the fund value at each month. In de-

composition III, for instance, we would have the following observations by looking at

each component:
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• In an increasing order, line 1 has the least liability risk, following by line 2 and

3, on a stand alone basis. The premium loading also shows that line 3 has the

smallest margin.

• The risk accountable to the investment manager is the same across all lines

because the premiums have been identically collected and invested.

• The corporate risk manager enjoys the diversification benefit on both the lia-

bility and the investment sides. The liability side reduction indicates that line

3 contributes the greatest value toward diversification.

• The capital reduction component due to the limited liability of the shareholders

indicates that the line 2 gets the most benefit. However, one can also say that

line 2 is to be blamed most, then line 1 and line 3, when the company is insolvent.

So this component gives an idea of each line’s contribution to insolvency.

One can derive a similar decomposition for the CTE allocation, but the capital re-

duction component due to limited liability of the shareholders will not be available,

and thus information on each line’s risk attribution under insolvency scenarios will

be hardly known. Another difference is that the proposed method fails on the no

undercut axiom and we deal with this problem in the next section.

6.7 No undercut axiom

In this section we show an example where the proposed allocation does not satisfy the

no undercut axiom. However violating this property may not be as bad as one might

think. Let us go back to the example given in the previous section and suppose that

company A wants to add another line of segregated fund product instead of merging
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Type Attribution Corresponding formula Seg fund 1 Seg fund 2 EIA

I Loss-based uE[Li

L
|L > A] 3.56 5.37 0.42

Prem. adjust. e−rE[erP (Li

L
P − Pi)|L > A] 1.23 7.08 -8.31

II Excess liab. loss e−r{E[Li|L > A] − E[Li]} 16.39 21.81 -2.96

Excess inv. loss e−r{E[Pie
rP ] − E[Pie

rP |L > A]} 1.58 1.58 1.58

Prem. loading −e−r{E[Pie
rP ] − E[Li]} -10.18 -6.60 -6.26

Limited liab. −e−rE[Li

L
(L − A)|L > A] -3.00 -4.34 -0.25

III LM(loss) e−r{E[Li|Li > ρ(Li)] − E[Li]} 17.05 22.89 33.59

LM(Prem. load.) −e−r{E[Pie
r] − E[Li]} -10.18 -6.60 -6.26

IM e−r{E[Pie
r] − E[Pie

rP |PerP < −ρ(−PerP )]} 2.03 2.03 2.03

RM(liab. divers.) e−r{E[Li|L > A] − E[Li|Li > ρ(Li)]} -0.66 -1.08 -36.55

RM(inv. divers.) e−r{E[Pie
rP |PerP < −ρ(−PerP )] − E[Pie

rP |L > A]} -0.44 -0.44 -0.44

Limited liab. −e−rE[Li

L
(L − A)|L > A] -3.00 -4.34 -0.25

All Total allocated capital for each line (same for all three types) 4.79 12.45 -7.90

Table 6.9: Different decompositions of the allocated capital (ρ is set at CTE 95%)
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Alloc. method Seg fund 1 Seg fund 2 Total capital

Covariance 6.87 12.25 19.12

CTE 4.85 14.27 19.12

Proposed 5.54 13.58 19.12

Alloc. method Seg fund 1 Seg fund 2 Seg fund 3 Total capital

Covariance 7.86 14.76 20.19 42.81

CTE 4.85 14.27 23.69 42.81

Proposed 6.03 14.27 22.51 42.81

Table 6.10: Capital allocations of company A, before and after adding Seg fund 3.

with company B. The added line shares the same dynamic as the existing two lines,

but has a different guarantee level set at G3 = 1.1F0; the new line is comonotonic

to the existing lines. The values are compared in Table 6.10; note that the capital

amount for Seg fund 3 is 23.69 on a stand alone basis at CTE 95%. The covariance

and the proposed methods apparently violate the no undercut axiom by showing in-

creased allocated capital for each line after adding the third segregated fund line.

It would be appropriate to discuss the rationale behind the no undercut axiom

at this point. The motivation of the axiom is that if one line has more capital as-

signed by the corporate management than it would have on a stand alone basis, the

line manager would rather leave the company and go solo, because there is no point

staying in a team if the required capital increases by doing that. The axiom therefore

implicitly carries the notion that the assigned capital is owned by line manager.
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We believe that this rationale is weak. In particular, an attempt to link the

allocated capital to the line manager’s ownership is not aligned with the economic

reality. The decision of whether a line is staying in the company or not is made by

the shareholders, not by the line manager because the shareholders are the owner of

the capital and the company. For the shareholders the decision is solely based on

the total capital value change after adding (dropping) a line; as long as the total

capital measure is subadditive no further restriction on allocation is needed in terms

of internal reallocation of the capital from the shareholders point of view. For the line

managers the allocated capital is a phantom fund, and no line manager can actually

claim the right on the allocated capital; they are hired by the shareholders and work

for them.

Let us take a closer look at what has happened. First there is no capital reduc-

tion for a company as a whole through diversification for this merger since the newly

added line is comonotonic - or perfectly dependent - to the existing lines. Actually the

required capital, set at CTE 95%, of the merged company 42.81 equals the sum of two

capitals before the merger, which are 19.12 and 23.69 respectively; this indicates that

the risk concentration8, rather than diversification, has happened here. Upon this

event, for the CTE method the allocated capitals of line 1 and 2 are not affected by

adding the 3rd line, and line 3 holds the same capital after joining the company. On

the other hand the covariance and the proposed method reallocates the total capital

in such a way that the existing lines 1 and 2 are loaded more and the new third line

benefits from capital reduction, indicating that line 3 distributes some of its risk to

8Note that due to the coherency of the CTE measure the total capital does not exceed the sum

of each capital requirement.
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existing lines due to its comonotonicity. We know that all lines benefit from capital

reduction in most mergers as long as the merger involves risk reduction, or positive

diversification. Here the question is what should happen if there is no capital reduc-

tion on merger. If the answer is that each existing line’s capital should not change in

this case, then it effectively means that, from the no undercut perspective, adding a

comonotonic line is equivalent to adding nothing to the portfolio, and line managers

should not be affected at all. If the answer is that each line’s capital should increase

to reflect the increase of the company’s risk concentration and each line managers

should participate in the total risk increase, it means that the no undercut axiom can

be dropped.

Even though we do not have a definite answer to this, this question seems to lead

us to the fundamental role of capital allocation. What do we expect from allocation?

Where can we use it? Despite several motivations noted in Section 1.6, the capital

allocation methodology has mainly been developed based on a list of axioms rather

than on motivation, and little has been researched on how the given capital allocation

can be used in light of its motivations. The main reason for this gap is the fact that

it is not easy to translate the economic motivations into equivalent mathematical

conditions; it may be that satisfying all the motivations would be too constraining to

give any reasonable allocation method. There is evidence that many available alloca-

tion methods are rather weakly connected to the original motivation. For example,

we find negative amount of capital is allowed in the CTE allocation, even though

this is not useful in assessing the profitability of the line or line manager. Even if

allocated capital is positive, using it directly for manager’s compensation cannot be

justified because interdependency of the allocation necessarily awards or penalizes
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line managers based on the line’s position within the company, rather than their own

performance.

6.8 Concluding remarks

In this chapter we reviewed the valuation of a company in the market context using

the Q measure and introduced a new capital allocation method that is aligned with

the notion of limited liability of the shareholders under the P measure. The proposed

method can further decompose the allocated capital, so that each stakeholder can

have a clearer understanding of their contribution. Since the proposed method is

based on the P measure, it can be applied to incomplete markets, where most in-

surance businesses belong. We also challenged one of the widely accepted allocation

axioms, namely the no undercut axiom, and argued that this axiom may not be too

convincing in some situations, in particular, when the risks are comonotonic. As

Sherris (2006) says, if “allocation is just internal matter”, the no undercut axiom is

merely a property that an allocation method may or may not satisfy. Many prac-

titioners use the capital allocation to get various insights from it, and it does give

valuable information on each lines risk position among the company. But it is also

not clear what we can obtain from a general capital allocation algorithm.



Chapter 7

Discussion and future work

7.1 Summary and discussion

Throughout this thesis different topics in the actuarial risk management have been

explored. In Chapter 2 the conditional tail expectation (CTE) and its higher order

moments were derived for the exponential family (EF) distribution class. Later in

the chapter the same quantity was provided for other distributions which are trans-

formed from the EF class. Since the EF class and its transformed distributions cover

many known distributions, we are able to analytically compute the conditional tail

moments for a wide range of distributions, without relying on simulation. Since the

conditional tail moments take unique forms for each distribution, it will be interesting

to use this technique to fit a given loss data. Therefore in the next section we present

an example for this idea.

Turning to the nonparametric approach, Chapter 3 and 4 make one package in

estimating tail risk measures; in particular, the bias and the variance, respectively.

171
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Focusing mainly on the CTE we found that the exact bootstrap (EB) technique pro-

vides a reasonable bias estimate for small i.i.d. samples based on both theoretical

findings and numerical examples. In Chapter 4 the influence function of the boot-

strapped quantile is derived. Even though the focus is on the CTE the theoretical

result is extended to the whole L-estimator class, making the result applicable to

many other problems.

On the theoretical side, the findings in these two chapters help us understand the

implications of double (or further iterated) bootstrapping of the L-estimator class.

For example the double bootstrapping is well-known for its heavy computation, but

in the L-estimator class it simply is expressed by

E[E(c′X:n|F̂ ∗)|F̂ ] = E[c′w′X∗
:n|F̂ ] = c′(w2)′X:n

and can be used for further bias correction, because the bias estimate B given in

(3.13) is itself biased. So the adjusted bias is shown to be

Badj = B − (c′(w2)′X:n − 2c′w′X:n + c′X:n) (7.1)

= 3c′w′X:n − 2c′X:n − c′(w2)′X:n (7.2)

The variance of the (adjusted) bias-corrected estimate is expected to be higher than

the other estimators and a further research will be needed. Another interesting aspect

is to examine the bootstrap of the L-estimator from a Markovian perspective. There

already is a rich literature connecting the doubly stochastic matrix with the Markov

chain. We conjecture that the bootstrap of the order statistics could be translated

into the state change in the Markov chain, with each state representing the order of

an observation.

The findings in these chapter can also be applied to practical problems. For ex-
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ample, it can be used in the variance of the median, and in estimating the quantile

variance without estimating the density value. It will be interesting to compare the

proposed method to the ordinary bootstrap in estimating variance of a quantity that

lies in the middle of the distribution, rather than the tail side. In Chapter 5, to

justify our motivation of assuming the small i.i.d. sample and to demonstrate how

to estimate the CTE in a practical context, we brought in a industry-scaled actuarial

data and applied the algorithm developed in Chapter 3 and 4.

A relatively new topic in the actuarial literature, capital allocation problem is

investigated in Chapter 6. Inspired by the idea of the allocation of the solvency

exchange option under the Q-measure by Sherris (2006), a new capital allocation

method is proposed under the P-measure. This method satisfies most fair allocation

axioms and provides further decomposition, which would be useful for financial stake-

holders to understand the structure of the allocated capital. At the end of Chapter

6 the no undercut axiom was questioned. There are two possible future extensions

for the proposed method. First we can extend it to a multi-period setting. By doing

this we should consider the release of current liability over time. Secondly we can

develop a new metric based on the allocated capital decompositions. If properly done,

this would provide a user friendly information sheet that describes a company’s risk

position, not just capital structure. For example, actuaries can translate a specified

copula into the tabulated values, which could be a useful addition to the executive

report for the management.
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7.2 Future ideas

In this section we briefly describe some specific ideas for future research emerging

from the topics discussed in the thesis. Some of them have already been elaborated

to produce preliminary results.

7.2.1 CTE Comparison: parametric vs. nonparametric

The examples considered in Chapter 3 and 4 do not have analytic forms for the CTE.

It would be interesting to see apply these techniques to the EF class where the CTE

is analytically available from Chapter 2. For a given sample, we can estimate the

MLEs (or moment based estimators) for most EF distributions and therefore the

CTE becomes a function of estimated parameters. In context of the nonparametric

CTE estimate, such as empirical or EB, there will be sampling error involved in the

parametric approach even when the model is correct. Generally we would expect that

the parametric approach to be better than the nonparametric one, but we do not know

its relative efficiency for the tail risk measures. Also if the model is misspecified in

the parametric approach, it is possible that the nonparametric CTE could outperform

the parametric one.

7.2.2 The Shifted Power Transform

Kernel density (KD) estimation is another useful nonparametric method to estimate

the CTE or other tail risk measures. The KD is defined by

f̂h(x) =
1

nh

n∑

i=1

K(
x−Xi

h
), (7.3)
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where Xi is i−th observation of the sample, and KD distribution function is

F̂h(t) =

∫ t

−∞

f̂h(x)dx. (7.4)

Basically this technique tries to mimic the unknown density function with a given

data. The kernel K is usually assumed to be the normal (or gaussian) for its easy

convolution. Problems with using standard symmetric kernels for the nonparametric

density estimation of these data are two-fold; it violates the domain boundary by

placing some weight in negative values. Also one global bandwidth cannot repre-

sent ideal smoothing in both left and right tails of skewed data. Wand et al. (1991)

proposed to apply the ordinary kernel after transforming the data which is skewed

or(and) positively distributed, which is the case for many actuarial data. In particu-

lar, they proposed the shifted power (SP) transformation with two parameters, given

by

g̃λ(x) = g̃λ1,λ2
(x) =





sign(λ2)(x+ λ1)
λ2, λ2 6= 0

ln(x+ λ1), λ2 = 0

Then Y , the transformed data, is defined as

Y = (σX/σỸ )Ỹ = gλ1,λ2
(X) (7.5)

This transform basically turns the given skewed data into a normal-like shaped one

(in unimodal case). Then the kernel estimate of Y becomes

f̂Y,h(t;λ1, λ2) = n−1

n∑

i=1

Kh(t− Yi) (7.6)

where Kh is the normal kernel in our case. Bolance et al. (2003) showed this transfor-

mation performs better than non-transformed kernel method, using some actuarial

data. We believe that the same would be true in estimating tail risk measures as
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well, such as the VaR and the CTE. Moreover it can estimate beyond the maximum

data, where the bootstrap can do nothing. It will be interesting to compare these

two approaches for some actuarial models.

7.2.3 Bootstrap after transformation

Using the above SP transform, we obtain a normal-like data, as long as it is unimodal.

An alternative to the KD technique, after the transform, is to apply the bootstrap to

obtain the confidence interval. In the normal case the CTEα(X) is given by

µ+ σhZ(zα),

where hZ is the hazard function of the standard normal and zα is its α quantile.

One of the standard bootstrap methods is to use the pivotal quantity to get the

confidence interval. Since the CTE of the normal has two pivotal quantities µ and σ,

its standardized one, hZ(Qα), is independent of the parameters. Thus the confidence

interval can be obtained in a simpler and easier manner; see Davison and Hinkley

(1997) or Casella and Berger (2003) for example. The computed interval then can

be back-transformed to give the required interval in terms of the original data. This

technique is related to the confidence interval of the CTE than its point estimate.

7.2.4 A semi-parametric method for CTE estimation

In estimating tail risk measures it is possible to combine the bootstrap with other

parametric models. Lee (1994) proposed the use of an estimator of the form

ǫt(Fn) + (1 − ǫ)t(Fξ̂)

in the univariate setting, where Fn is the empirical distribution function (or the

bootstrap sample), Fξ̂ is the estimated parametric d.f., and ǫ is the weight constant in
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(0, 1), derived from data. The author argues that this would asymptotically produce

the optimal MSE under some conditions.

Based on this argument we can estimate Fξ̂ by the transformed kernel introduced

in the previous section, making the combined estimator totally nonparametric. This

could be an alternative way of estimating the VaR or the CTE. It is also possible to

extend this to multivariate setting as well.

7.2.5 Fitting the GPD for Tail Region

This idea is inspired from the findings of Chapter 2. In Extreme Value Theory the

Generalized Pareto Distribution (GPD) is often used to fit the tail of a sample, under

some distributional assumptions. That is, the k largest values of the sample can be

assumed to follow the GPD. The starting point of the tail, called the threshold, or

the choice of k, is not easy to determine and it has been a problem of interest to

actuaries. From Chapter 2, the distribution of GPD is defined as

FY (y) = 1 − (1 +
ξ

β
y)−1/ξ,

where the domain is y ≥ 0 if ξ ≥ 0, or 0 ≤ w ≤ −1/ξ if ξ < 0. In that chapter we

derived its CTE:

CTEα(Y ) =
β

ξ

(
(1 − α)−ξ

1 − ξ
− 1

)
, ξ < 1.

The choice of k affects the value of estimated parameters and there is no univer-

sally agreed method to find the optimal k (thus ξ and β as well) so far. Typically

one should determine k first, and then estimate MLE’s of ξ and β for a fixed k.
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We can tackle this problem differently using the relation between the CTE and

the conditional tail variance (CTVar). Again from Chapter 2 the CTVar is given by

CTV arα(Y ) =
β2(1 − α)−2ξ

(1 − 2ξ)(1 − ξ)2
, ξ < 1/2.

Equating the CTVar with the CTE then gives, after some algebra,

CTEα(Y ) =

√
(1 − 2ξ)CTV arα(Y ) + β

ξ
,

for any α, 0 < α < 1. This indicates that the (
√
CTV ar, CTE) forms a straight line

with slope
√

1 − 2ξ/ξ and intercept at β/ξ, for the largest k order statistics. We can

investigate the following issues:

1. Graphical determination of k.

2. Estimating ξ and β using the least square estimation, rather than the MLE,

due to its similarity to the linear regression problem

3. Advantages using the relation of CTE and CTVar over using just CTE, in

parameter estimation.

7.2.6 Allocation via Bootstrap

This idea is related to the capital allocation. We consider the bivariate case for the

purpose of this discussion but higher dimensional cases can be handled in the same

fashion with no additional requirements. Suppose that the company has only two

business lines or risk components, Y and Z, with S = Y + Z. The CTE allocation

states

E(S|S > F−1
S (α)) = E(Y |S > F−1

S (α)) + E(Z|S > F−1
S (α)), (7.7)
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where S = Y + Z. Provided that there is an i.i.d. random sample with size n, from

this company’s past records, X1 = (Y1, Z1), . . . ,Xn = (Yn, Zn), the sample estimate

of the allocation is computed as follows, using a formal matrix notation for later de-

velopments.

We first create Si = Yi + Zi, i = 1, . . . , n, and sort them in an ascending order so

that S(1) ≤ S(2) ≤ . . . ≤ S(n) and let S:n = (S(1), . . . , S(n))
′ , n×1 vector containing the

ordered aggregate losses. Next we order the given sample (Yi, Zi), 1 ≤ i ≤ n, based on

the order of Si. This ordered sample makes a n×2 matrix whose i−th row is denoted

by (Y S
(i), Z

S
(i)), with Y S

(i) + ZS
(i) = S(i). The superscript emphasizes the criterion of the

ordering, which is the aggregate loss S. We can call this matrix XS

:n in the spirit of

this naming convention. If we denote the first column of XS

:n by YS

:n = (Y S
(1), . . . , Y

S
(n))

′

and the second by ZS

:n = (ZS
(1), . . . , Z

S
(n))

′, we have XS

:n = [YS

:n ZS

:n].

Using this notation the sample version of (7.7) becomes

1

n(1 − α)

n∑

i=nα+1

S(i) =
1

n(1 − α)

n∑

i=nα+1

Y S
(i) +

1

n(1 − α)

n∑

i=nα+1

ZS
(i) (7.8)

The sum of two terms of the right side is equal to the aggregate capital since S(i) =

Y S
(i) + ZS

(i) for each i, satisfying the full allocation. This equation can be expressed in

matrix form as

c′S:n = c′YS

:n + c′ZS

:n, (7.9)

where c = 1
n(1−α)

(0, . . . , 0, 1, . . . , 1)′ with first nα elements being zeros. Note that

both (7.8) and (7.9) are equivalent to the sample version of (7.7)

Turning to the bootstrap technique, we can create a bootstrap sample (or a resam-

ple) of size n from the original sample {X1, . . . ,Xn} with replacement. The created

resample, {X∗
1
, . . . ,X∗

n
}, is then used to compute the total and allocated capitals,
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just as in (7.9):

c′S∗
:n = c′YS∗

:n + c′ZS∗
:n .

Repeating this bootstrap simulation R times we ultimately get the bootstrap estimate

of the total and allocated capitals by averaging the bootstrapped results over the

R repetitions. In fact the exact bootstrap result can be applied to this allocation

problem.

Lemma 7.1 The exact bootstrap estimate of Y S
(r), 1 ≤ r ≤ n, is given by

E(Y S
(r)|F̂ ) =

n∑

j=1

wj(r)Y
S
(j),

where

wj(r) =

∫ j/n

(j−1)/n
tr−1(1 − t)n−rdt

B(r, n− r + 1)
and B(a, b) =

∫ 1

0

ta−1(1 − x)b−1dt.

Corollary 7.2 Using the notation given above the bootstrapped CTE capital alloca-

tion for two risk components is given by

c′w′S:n = c′w′YS

:n + c′w′ZS

:n, (7.10)

where each term of the right side represents each line’s allocated capital.

Equipped with this tool one can easily estimate the bias and variance of the

allocated capital for each business line. For example consider line Y . Since there

exists c̃ = (c̃1, . . . , c̃n)′ such that c′YS

:n = c̃′Y:n by rearranging the elements, the bias

estimate is

c̃′(w′ − I)Y:n

and the variance estimate is

c̃′(w′ − I)Σ(Y:n)(w − I)c̃,
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where Σ(Y:n) is the bootstrap estimate of the covariance matrix with each element

Cov(Y(i), Y(j)).



Bibliography

Academy Joint RBC Task Force (2002). Comparison of the NAIC life, P&C and

health RBC formulas. Report, American Academy of Actuaries.

http://www.actuary.org/pdf/finreport/jrbc_12feb02.pdf (accessed Febru-

ary 8, 2007).

Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. (1999). Coherent measure of

risk. Mathematical Finance, pages 203–228.

Artzner, P., Delbaen, F., Eber, J. M., Heath, D., and Ku, H. (November 15, 2006).

Coherent multiperiod risk adjusted values and Bellman’s principle. Annals of Op-

erations Research (online version).

http://www.springerlink.com/content/1572-9338/ (accessed in February 8,

2007).

Atkinson, D. B. and Dallas, J. W. (2000). Life insurance products and finance. The

Society of Actuaries, Schumburg, IL.

Bao, Y. and Ullah, A. (2004). Bias of a Value-at-Risk estimator. Finance Research

Letters , 1, 241–249.

182

http://www.actuary.org/pdf/finreport/jrbc_12feb02.pdf
http://www.springerlink.com/content/1572-9338/


Bibliography 183

Berkowitz, J. and O’Brien, J. (2002). How accurate are value-at-risk models at com-

mercial banks? Journal of Finance, 57, 1093–1111.

Bolance, C., Guillen, M., and Nielson, J. O. (2003). Kernel density estimation of

actuarial loss functions. Insurance: Mathematics and Economics, 32(1), 19–36.

Brown, L. (1986). Fundamentals of statistical exponential families , volume 9 of Lecture

note - Monograph series. IMS.
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