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Abstract

Multiple classifier system has shown to be an effective technique for classification.
The success of multiple classifiers does not entirely depend on the base classifiers
and/or the aggregation technique. Other parameters, such as training data, feature
attributes, and correlation among the base classifiers may also contribute to the
success of multiple classifiers. In addition, interaction of these parameters with each
other may have an impact on multiple classifiers performance. In the present study,
we intended to examine some of these interactions and investigate further the effects
of these interactions on the performance of classifier ensembles.

The proposed research introduces a different direction in the field of multiple
classifiers systems. We attempt to understand and compare ensemble methods from
the cooperation perspective. In this thesis, we narrowed down our focus on cooper-
ation at training level. We first developed measures to estimate the degree and type
of cooperation among training data partitions. These evaluation measures enabled
us to evaluate the diversity and correlation among a set of disjoint and overlapped
partitions. With the aid of properly selected measures and training information, we
proposed two new data partitioning approaches: Cluster, De-cluster, and Selection
(CDS) and Cooperative Cluster, De-cluster, and Selection (CO-CDS). In the end, a
comprehensive comparative study was conducted where we compared our proposed
training approaches with several other approaches in terms of robustness of their
usage, resultant classification accuracy and classification stability.

Experimental assessment of CDS and CO-CDS training approaches validates
their robustness as compared to other training approaches. In addition, this study
suggests that: 1) cooperation is generally beneficial and 2) classifier ensembles that
cooperate through sharing information have higher generalization ability compared
to the ones that do not share training information.
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Chapter 1

Introduction

1.1 Background

The field of Multiple Classifier Systems (MCS) falls within the supervised learning
paradigm. This task orientation assumes that a set of training patterns has been
given to the system. These training patterns are presented by feature vectors. Each
training pattern is labeled with a class target, which is a member of a finite set of
class labels. The goal of supervised learning is to predict the class labels of unseen
patterns and to do the task accurately and efficiently.

It is a well-known fact that in supervised learning a good performance on train-
ing data does not necessarily mean accurate generalization ability for unseen data
patterns. Several classifiers can have similar training performances, but they may
not have similar generalization performances. In fact, it has been observed that
although one design may outperform the others, the patterns that are misclassified
by different classifiers are not necessarily the same [61]. This observation suggests
that the use of multiple classifiers can reduce the risk of using a poor performing
classifier. The use of multiple classifiers may or may not outperform the best classi-
fier in the ensemble, but it reduces the chances of selecting an inaccurate classifier.
This approach is common in everyday human life. Asking for the opinion of several
experts is a common practice in our everyday life. We seek the opinion of several
users on the quality of a product, or consult several doctors for a diagnosis.

There have been numerous studies in the field of MCS. A great number of meth-
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ods for combining classifiers have been proposed in the past [81, 59, 60]. Some re-
searchers have concentrated on solving particular problems [3, 7, 58, 64, 82, 97, 99].
Few of these studies have explicitly focused on sequential pattern recognition prob-
lems such as time series [19], speech recognition [78] and hand recognition [62].
These approaches usually differ from each other with respect to the specific pro-
cedure used for generating individual classifiers, and/or the strategy employed for
combining the classifiers. Only a few researchers have considered the theoretical
issues behind these developments [61, 72, 101].

1.2 Objective and Approach

The primary interest of this research was to study cooperation in MCSs. Our inten-
tion was to examine the impact and gain in the efficiency, when various components
of MCS cooperate. Some important questions originally motivated this project:

• Does combination of classifiers always result in higher accuracy?

• What criteria should the MCS meet in order to improve the accuracy over the
best single classifier?

• What type of cooperation among the components is the most effective?

• How can cooperation in MCS be evaluated?

Discussions on issues regarding cooperation such as type, effectiveness, and mea-
sures are the focal point of this study.

Although the issue of cooperation in MCS have been previously raised by other
researchers (e.g. [91]), there is dearth of studies in the literature that have in-
vestigated cooperation in a systematic manner. We distinguished four levels of
cooperation: decision, architecture, feature, and training. The degree and method
by which classifier ensembles “share” resources was used as measures of coopera-
tion. We narrowed down our focus on the training level and examined the effects
of sharing training patterns and sharing training information on the performance of
multiple classifiers. We focused on the training level since this is considered to be
the most important step in the construction of MCSs. The importance of this level
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stems from the fact that generalization ability of the ensemble highly depends on
the performance of the individual classifiers.

We first developed measures to assess cooperation (sharing) among training data
partitions. Furthermore, we examined the advantages of cooperation through shar-
ing training information. With the aid of properly selected measures and training
information, we developed two new MCS training methods. In the end, a compre-
hensive comparative study was conducted where we compared our proposed training
methods with several other existing methods in terms of classification accuracy and
classification stability. The findings of this comparative study suggest that, first,
cooperation is generally beneficial and, second, classifier ensembles that cooperate
through sharing information are more accurate and stable.

In general, the importance of this research is threefold: 1) we introduce a differ-
ent direction in which the ensemble methods are categorized and studied from the
cooperation perspective, 2) novel evaluation measures are proposed with which the
type and degree of cooperation among training partitions can be estimated, 3) a
new classifier ensemble training technique, in which training information is utilized
to obtain sub-optimal training partitions, is developed and empirically evaluated.

1.3 Thesis Overview

Chapter 2 provides an overview of the multiple classifier system field. This in-
cludes a discussion of different design criteria, introduction to various MCS design
approaches, and a review of the current categorization schemes.

In Chapter 3, a novel categorization of MCS techniques is proposed. In this
categorization, MCS techniques are grouped based on their type of cooperation into
four levels of training, feature, architecture and decision. Each of these levels is
discussed in detail.

The proposed approach is discussed in Chapter 4. A number of evaluation
measures and partitioning strategies are introduced. Two new training partitioning
methods are proposed.

A comprehensive comparative analysis of different MCS training approaches is
presented in Chapter 5. MCS training approaches are compared using different
criteria. The experimental results are presented in the same chapter.
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Chapter 6 highlights the conclusion with a discussion of the contributions made
in this study and discusses the future work.

Appendix A provides detailed information about the datasets and additional
results.
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Chapter 2

Multiple Classifier Systems

Information fusion refers to the fusion of data from multiple sources. The goal of
information fusion is to provide knowledge and to improve the accuracy that is not
achievable from individual sources [24, 25]. Exponential growth of information and
data in the recent years has immensely contributed to the popularity of information
fusion and the proposed methodologies. Technological and societal developments
have increased the need for information fusion, filtering or extraction. Various re-
search areas have recently emerged from information fusion including sensor fusion,
image fusion, decision fusion, knowledge fusion, and classifier fusion. The focus of
this study is on classifier fusion.

Several lines of evidence suggest that combining individual classifiers is an ef-
fective technique for improving accuracy of classification [1, 2, 16, 52, 61, 93, 105].
The interest in multiple classifier systems (MCSs) stems from the fact that the clas-
sical approaches for designing pattern recognition systems were primarily focused
on searching for the best individual classifier [53]. This approach has some serious
drawbacks. The main drawback is that the best individual classifier for the classi-
fication task at hand is very difficult to find, unless there is some prior knowledge
about the problem. In addition, with the use of single best classifier, the chance of
loss of information is high. MCSs have the promise of reducing these caveats of stan-
dard classification approaches. MCS is referred to by a variety of names including
classifier ensembles [93], combination of multiple classifiers [61, 75], classifier fusion
[41], multiple experts, mixture of experts [55, 56], dynamic classifier selection [43],
divide-and-conquer classifiers [38, 40], composite classifier system [95], committees
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of classifiers, decision combination, and consensus aggregation [68].

2.1 Multiple Classifier Systems Design Criteria

Three general criteria have been employed in the design of multiple classifiers: 1)
accuracy of the individual classifiers, 2) diversity of the individual classifiers, and 3)
efficiency of the entire MCS [95]. In the following sections, we discuss each of these
criteria in more details.

2.1.1 Accuracy

The accuracy of the individual classifier is an important criterion for MCS design.
A great deal of effort usually goes in training the individual classifiers. In the
past, some studies have emphasized on the construction of highly accurate, but
independent, classifiers [88, 92], while a few others have investigated the combination
of weak classifiers [37, 54].

It is expected that each individual classifier misclassifies some of the data pat-
terns. Kittler et al. [61] showed that the patterns misclassified by different classifiers
are not necessarily the same. This important observation suggests that combining
the prediction of several classifiers can be beneficial, if the impact of errors made
by the classifiers is minimized. It has been previously proven by Tumer and Ghosh
[101] that by increasing the number of distinct base classifiers L, the MCS error
(ErrorMCS) decreases. They showed that MCS error is related to the Bayesian
error as

ErrorMCS =
1 + σ(L− 1)

L
Eadded + Ebayes (2.1)

where Ebayes is the Bayesian error, Eadded is the added error due to the specific
classifier, and σ is the correlation factor. As the correlation factor σ decreases, the
MCS performance improves. For example, if σ = 1, the ensemble performance is
similar to a single classifier. Therefore, there is no advantage in combining base
classifiers that are highly correlated. If σ = 0, the ensemble error decreases. It can
also be concluded that combining the prediction of base classifiers with high error
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rates is not beneficial either. If base classifiers are highly correlated because of their
poor performances, the combined prediction will also be inaccurate. MCSs are most
useful if the base classifiers make independent errors and the error rates are less
than 50% [94].

There are several ways to generate classifiers with different generalization abil-
ity. The commonly used methods are mostly based on manipulation of training
parameters such as initial conditions, the training data, classifier topology, and the
training algorithm. These methods are briefly reviewed in the next section.

2.1.2 Diversity

The idea of “diversity of failure” can be used to improve the performance of MCS.
It is obvious that there is no advantage of combining classifiers that show identical
behaviour. Some studies [94, 96] have shown that a good classifier combination
system is the one where individual classifiers are both accurate and make their
errors on different parts of the input space. This property is known with many
names in the literature including: disagreement, diversity, and independence.

Diversity among the classifiers in the MCS has been recognized as an important
criterion and it has been well studied and addressed in the literature [67, 70]. A set
of diverse classifiers may be generated by utilizing different methods:

• Different initializations: In some classifiers (e.g. Neural Networks), different
training initializations may result in diverse classifiers.

• Different parameter choices: Classifiers such as Decision Trees, Neural Net-
works, and k-nearest neighbour are parameter-dependent. Change of param-
eters in these classifiers can generate diverse classifiers.

• Different architectures: Changes in the architecture can produce diverse clas-
sifiers. For example, different size of hidden nodes or hidden layers can result
in diverse neural network committee.

• Different types of classifiers: Training different types of classifiers on the same
dataset is one of the popular techniques in producing diversity in MCS.
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• Different training sets: The most commonly used method for construction of
individual classifiers is training data alteration. A diverse pool of classifiers
may be generated by training each individual classifier on different subsets of
the data (e.g. boosting, bagging and k-fold crossvalidation).

• Different feature sets: In some applications, training classifiers on random
subsamples of a large feature set has been shown to be a successful method
for generating diversity.

Measuring Diversity

Kuncheva and Whitaker [70] provide an overview of eight diversity measures. They
have empirically studied the relationship between the majority vote combination
method and different diversity measures. Two categories of diversity measures ex-
ist: pairwise and non-pairwise. In the pairwise measure, diversity between two
classifiers is estimated. An overall estimate is obtained by averaging the diversity of
all pairs. In the non-pairwise measure, however, diversity among all the classifiers
is calculated. In this section, two diversity measures, Q statistic and Entropy, are
introduced.

Q statistics

This is the pairwise symmetrical measure of diversity. For two classifiers Ci and
Cj where i, j ∈ 1, ..., L, Q statistic is defined as

Qij =
N11N00 −N01N10

N11N00 + N01N10
(2.2)

where N11 is the number of patterns that both Ci and Cj correctly classify,
N10 is the number of patterns that Ci correctly classifies and Cj misclassifies,
N01 is the number of patterns that Cj correctly classifies and Ci misclassifies,
N00 is the number of patterns that both Ci and Cj misclassify,
and N11 + N01 + N10 + N00 = N (Table 4.4).

For statistically independent classifier Qij = 0; Q varies between -1 and 1. The
higher the absolute value of Q , the less diverse the team of classifiers.

Entropy
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Table 2.1: Q Statistic Measure

Classifiers Cj correct Cj wrong
Ci correct N11 N10

Ci wrong N01 N00

Entropy is an information-theoretic measure that captures the variability of clas-
sifiers decisions. This method is a non-pairwise measure defined as

E =
1
n

n∑

j=1

1
(L− dL

2 e)
min{l(xj), L− l(xj)} (2.3)

where n is the number of patterns, xj is a data pattern, and l(xj) is the number of
classifiers that correctly classifies xj . E varies between 0 and 1, where 0 indicates
no difference and 1 indicates the highest possible diversity.

2.1.3 Efficiency

Avoiding costly classifiers has been considered as a design goal. If all other parame-
ters are similar, it is preferred to have 1) fewer classifiers over more, and 2) compu-
tationally inexpensive classifiers or algorithms over more expensive ones. Clearly, if
they all perform equally, fewer classifiers is preferable, since training and costs will
be lower.

Although it has been theoretically proven that large ensemble size results in
lower error, this may not be feasible for real-world problem domains. Availability of
large and complex datasets is a common characteristic of most real-world domains.
As a result, training a large pool of base classifiers for these problems can be a costly
process. This issue has not been closely examined previously, however, some studies
have indirectly addressed the problem. Distributed leaning type approaches have
been proposed [18, 76] in which training subset sizes and the number of classifiers
are adjusted according to the datasets and learning computation cost. In addition,
selection of classifier type based on the application in hand can effectively reduce
the cost of such systems.

Not only the computational resources of the base classifiers, but also the com-
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plexity of aggregation rule or the MCS architecture can cause problems. This issue
is in particular more evident where the MCS architecture consists of several layers
of multi-layer perceptron classifiers, e.g. error-correcting output code [30]. Little
attention has been given to this issue. Amongst a few, feature-based decision fu-
sion algorithm [104] tackles the problem of reducing the computational resources by
generating weak learners in the initial steps, and reusing and adjusting algorithm
parameters throughout the retraining iterations.

2.2 Data Decomposition

One of the popular techniques in MCS construction is data decomposition methods.
In some of the techniques, multiple hypotheses are generated by modifying the
dataset in three levels of training patterns, features, and output patterns. In each
one of these levels, data patterns are partitioned into smaller sets or new patterns
are added to the old ones to make the problem simpler or to reduce correlation
among classifiers. Some of these techniques are discussed in the following sections.

2.2.1 Training Partitioning

Training data partitioning is a popular method for constructing MCS. Classifiers,
in this approach, are each trained with a different subset of the training examples.
As stated before, ensemble of diverse classifiers may have a better potential to
outperform a single best classifier. By training classifiers with different subsets of
training patterns, highly correlated classifiers can be avoided. Some of the well-
known data sampling techniques, Bagging, Boosting, and k-fold-crossvalidation, are
discussed in more detail.

Bagging

One of the popular ways of manipulating the training set is called Bagging [17].
On each run, Bagging presents the classifiers with a training set that consists of a
sample of training examples selected randomly with replacement from the original
training set. Such a training set is called a bootstrap replicate of the original training
set. Each bootstrap replicate contains, on average, 63.2% of the original training

10



set, with several training examples appearing multiple times. Bagging modifies the
training dataset, builds classifiers on these modified training sets and then combines
them into a final decision.

Ada-Boosting

Ada-Boosting, proposed by Freund and Schapire [37], is a technique to combine a
set of weak classifiers, with the objective of obtaining a classification algorithm with
a better performance. In Ada-boosting, classifiers and training sets are obtained
in a deterministic way. At each step, weights are assigned to data patterns in
such a way that more weight is placed on training examples that are misclassified
by classifiers and less weight on examples that are correctly classified. This way,
classifiers get focused on more difficult learning problems in each step. Boosting
modifies the training dataset, trains the classifiers on these modified training sets
and then combines them into a final decision.

k-fold-crossvalidation

In k -fold-crossvalidation, the training set is randomly divided into k subsets. Then,
k-1 of these overlapping subsets are used to train the classifiers and results are tested
on the subset that is left out of the training. By changing the subset that is left out
of the training process, k classifiers can be constructed, each of which is trained on
a different training set [85].

2.2.2 Feature Decomposition

The use of different feature subsets, for training classifiers, has been recognized as
a promising design method for the MCS. Feature space may be partitioned by ran-
dom selection, genetic algorithm, input decimation, or other statistical approaches.
Tumer and Oza [100] applied an input decimation technique to select features and
reduce correlation between classifiers. In their proposed approach, classifiers were
trained on an equal number of feature partitions. Input decimation applies principle
component analysis to the feature space to generate subsets that each correspond
to a specific class. Windridge and Kittler [106] investigated prior selection of fea-
tures via forward selection technique applied to the classifiers that were functioning

11



individually or as a team. They also examined the backward selection technique
examined on the individually optimized feature sets. Kuncheva and Jain [73] sug-
gested genetic algorithm (GA) for selection of features. They implemented two
versions of GA algorithms to select disjoint and overlapping feature subsets as well
as types of individual classifiers. Rodriguez et al. [86] proposed a MCS construction
method called rotation forest. Similar to input decimation, rotation forest utilizes
principle component analysis to obtain diverse and accurate classifier. This method
consists of generating several random feature subsets, in the first step, and regen-
erating these feature subsets by applying principle component analysis on each of
them separately.

Instead of using feature subset selection techniques, some researchers have sug-
gested a reconstruction scheme for the feature space by the addition of new at-
tributes. Cascade generalization, [42], is an example of such techniques. Cascade
generalization combines classifiers in an iterative way. At each iteration, a classifier
is generated. The feature space is extended with new attributes.

2.2.3 Output Decomposition

Another level of data manipulation is on the output patterns. When the number
of classes in the problem is larger than 2, they can be broken down into multiple
sub-problems. The main motivation for this methodology is that the sub-problems
are typically much simpler than the original problem. In the machine learning
community, an output space decomposition method called error-correcting output
coding is introduced by Dietterich and Bakiri [30]. In this method, each member of
an ensemble solves a 2-class problem obtained by partitioning the original classes
into two groups based on error correcting codes. Error correcting code method
codes the classes to binary strings and assesses the redundancy in the resulting
coding to optimize classification performance. Error correcting code works best for
small training sizes.

2.3 Architectures

An alternative approach to MCS construction is in terms of architecture topology.
Categorization of combination methods, in this level, can be made according to
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Figure 2.2: Sequential Topology

the way classifiers interact. Architecture topologies can be classified as parallel,
sequential, hierarchical, and conditional [74].

2.3.1 Parallel Topology

This is the most commonly used topology in the MCS and has been studied, both
empirically and theoretically [61, 59, 72, 81, 103]. In this category, classifiers first
operate in parallel to predict label for an unknown pattern. Subsequently, their
decisions are combined for the final prediction (Figure 2.3.1). Parallel combinations
can be implemented using different strategies and the type of information produced
by the classifiers. Combination schemes may vary from simple ones such as maxi-
mum, minimum, sum, product, median, majority vote, and averaging to the more
complicated ones such as fuzzy integrals, weighted averaging, decision templates,
and logistic regression (Section 2.4).

2.3.2 Sequential Topology

Classifiers in this topology are applied in sequence where each classifier produces a
modified set of possible classes for each dataset. Through this process, a complicated
problem is progressively reduced to simpler ones (Figure 2.2).

An example of this approach is discussed in [107]. Stacked Generalization is
a framework for classifier combination in which different layering may be created
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by iteration. Each layer is used to combine the predictions of the classifiers at
the immediately lower layer. A single classifier at the top-most level will do the
final prediction. The information passed from layer to layer may take the form of
vectors of predictions, confidence values, or other data. Another example of this
architecture is Cascade generalization [42]. The basic idea behind this architecture
is to use classifiers in sequence, with the difference of using an extension of training
data for the upper levels. At each iteration, new attributes are added to the training
patterns. These new attributes represent the probability that patterns belong to
specific classes. The single layer at the final level will make the decision.

2.3.3 Hierarchical Topology

In this topology, the system has multiple layers and for each layer, classifiers produce
a reduced set of possible classes for each pattern. This way, classifiers become more
focused on the problems (Figure 2.3). An example of this topology is Hierarchical of
Mixtures of Experts (HME) [55, 56]. The HME has a tree structure and classifiers
sit at the nodes of the tree, in which the input space is divided into sets of regions.
Division of regions are done recursively and regions have soft boundaries which
means that data points may lie in different sections. Part of the HME learning
process is to assign experts (classifiers) to the different regions and then to use a
gating method to decide which classifier should be used to assign the label. Kumar
and co-workers [64] propose a modular learning system based on and automatically
generated binary hierarchy of the classifiers. Each of the classifiers solves a two-class
problem with a specific feature space that belongs to those classes. The dataset is
first partitioned into two disjoint subsets. These disjoint sets are further partitioned
recursively until each partition is reduced to one of the original classes. The output
of the classifiers are combined based on some weights which can depend on the input
or predictor.

2.3.4 Conditional Topology

Under this structure, a primary classifier is first applied to the data. If the classi-
fication is made with low confidence, another classifier is utilized. This structure
has the advantage of computational efficiency when the initial classifier is a low cost
type and the second one can be more sophisticated for difficult patterns. Asker and
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Maclin [4] propose a method which is based on a simple estimation of each classifiers
performance. The classifiers are grouped into an ordered list where each classifier
has a corresponding threshold. In the classification phase, the first classifier on the
list is consulted. If the prediction confidence of that classifier is above the predefined
threshold, then that classifier is used for final decision making. Otherwise, the next
classifier and its threshold is considered. If none of the predictions made by the
classifiers is above the threshold, then averaging technique will be performed on all
the predictions.

2.4 Aggregation

In addition to methods that focus on architectures and data decomposition, a dis-
tinction can be made among methods that manipulate outputs of the base classifiers.
The type of information provided by base classifier’s outputs can be categorized into
three levels: abstract (or crisp), ranked and measurement [98]. Abstract-level clas-
sifier generates a unique predefined class label for each input pattern. Ranked-level
classifier ranks all the labels in a queue with a label at the top being the most
probable class. On the other hand, measurement-level classifier estimates a set of
confidence values, each belonging to a different class, for an input pattern. Each
classifier ensemble method uses a different type of output level. In general, two clas-
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sifier combination strategies are identified: classifier selection and classifier fusion
[68].

2.4.1 Fusion

Classifier fusion assumes that all classifiers are equally experienced in the whole fea-
ture space and the decisions of all classifiers are taken into account to assign label to
an unknown pattern. Two sets of classifier fusion methods have been distinguished:
fixed and trained. In the fixed aggregation scheme, the outputs of individual clas-
sifiers are considered as a clear interpretation of the decision [103]. While in the
trained aggregation scheme, outputs are considered as input to a second-level clas-
sifier in some intermediate feature space [33].

Fixed Aggregation Scheme

Fixed combiners have been extensively studied (e.g. [1] and [72]). In the fixed
scheme, outputs of the classifiers are directly used in prediction of label for an
unknown pattern. The following sections summarize some of the well known simple
fixed rules.

Let X ∈ Rm be the data-space and yi be a set of class labels ∀yi ∈ Ω = 1, 2, ..., k.
We consider a training set

S = {(x1, y1), ..., (xn, yn)}, (2.4)

of size n drawn form an unknown distribution D. Let C = C1, C2, ..., CL be a
set of classifiers. For each classifier trained with S, the output is a k dimensional
vector of Ci(x) = [ci,1(X), ci,2(X), ..., ci,k(X)], where cij(X) is the confidence value
of classifier Ci for class j and for a given input pattern X. The entry cij can be
either crisp cij ∈ Ω or a confidence value estimated as:

cij(x) = P (yj |x). (2.5)

• Product Rule
Qj(x) =

∏

i

cij(x)
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where j represents the classes and i represents the classifiers. The final predic-
tion of combined classifier Q is made by hardening the decision using maximum
membership formula. Product rule works well with independent classifiers [61].
However, achieving independency among classifiers that are trained with the
same data, is hardly ever possible.

• Sum Rule

Qj(x) =
L∑

i=1

cij(x) (2.6)

The final prediction of combined classifier Q is made by hardening the decision
using maximum membership formula. The sum rule is equivalent to product
rule for small deviations in the classifier outcomes. This rule may be used
to improve classification using similar classifiers with independent behaviour
[61].

• Maximum Rule

Qj(x) = maxi{cij(x)} (2.7)

The maximum rule selects the classifier with higher training accuracy. This
may seem reasonable. However, there is always a chance that some classifiers
might be more overtrained than others. In this case, they will dominate the
outcome without having a better performance.

• Minimum Rule

Qj(x) = mini{cij(x)} (2.8)

The minimum rule will select the outcome of the classifier that has the least
objection against a certain class. This rule has the same drawback as the
maximum rule.

• Majority Vote

The majority rule is the most popular way of combining classifiers. The fi-
nal decision is made by selecting the label that is most represented by the
individual classifiers.
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• Average Vote

This method averages the individual outputs of the classifiers for each class.
The final decision is the class that has the highest average value.

Qj(x) = maxj{ 1
L

L∑

i=1

cij(x)}

Trained Aggregation Schemes

Instead of using fixed rules, a training rule can be used to adapt the MCS to the
classification problem. Outputs of the individual classifiers can be treated as the
input to a second-level learner. The advantages of trained approaches have been
previously demonstrated in [33, 83, 98]. Two different strategies can be employed
for training of the combiner. One is to use the original training data to train both
base classifiers and the combiner. Another strategy is to use a different set, referred
to as validation set, to train the combiner.

Neural Network classifiers have been widely used as a second level combiner.
Wanas and Kamel [104] propose a novel trained aggregation rule that makes the
decision fusion a more adaptive process. In their proposed method, the aggregation
scheme is divided into two phases: a learning phase, and a decision making phase.
In the learning phase, a multi-layer perceptron is used to assign a weight factor to
each prediction to support each decision maker. This weighting factor represents a
confidence in the output of each classifier. These confidences are then aggregated
using fixed classifier-combining methods. Behavior-Knowledge Space (BKS), Deci-
sion Template, and Bayesian rule [68] are other examples of such trained aggregation
schemes.

• Weighted Average:

This method is similar to the average vote, with the exception that the output
of base classifiers are multiplied by a weight. Combination of various classifiers
is constructed by forming weighted sums of the classifier outputs.

Qj(x) = maxj{ 1
L

L∑

i=1

wicij(x)} (2.9)
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The combination weights, wi, are obtained by minimizing the mean squared
error of the classifiers on the training data.

• Fuzzy Integral: Two basic types of fuzzy integrals have been proposed: Sugeno
and Choquet [46]. Let H be a fuzzy set on C. The Sugeno fuzzy integral with
respect to a fuzzy measure g is obtained by

Qg = maxα{min(α, g(Hα))} (2.10)

where Hα is the α-cut of H, and g is called a λ-fuzzy measure. The fuzzy
measure g can be calculated from a set of L values gj , representing the indi-
vidual importance of D1, ...DL. The value of λ is obtained as the unique real
root greater than −1 of the polynomial

λ + 1 = ΠL
j=1(1 + λgj) (2.11)

the value of g can be computed recursively as follows:

g(t) = git + g(t− 1) + λgitg(t− 1) for 1 < i < L. (2.12)

The final degree of support of class yj can be calculated by

Qj = maxL
i=1{min(cij(x), g(t))}. (2.13)

• Behaviour-Knowledge Space (BKS): Every possible combination of class labels
is an index which is represented as a cell in the look up table. The class label
most often encountered amongst the elements of this table during training is
selected for the cell. The decisions generated by each classifier are compared
against this lookup table. The decision for unknown pattern is made based on
the class stored in the cell [?].

• Decision Templates (DT): Similar to the BKS, the DT approach generates a
template for a given combination of classifier decision outputs. Each classifier
in the ensemble outputs a degrees of support for each data pattern x. These
outputs are first organized into a decision profile, in which the columns repre-
sent the support from all classifiers for a specific class, and the rows represent
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the support from a particular classifier for all classes. The decision templates
(DT) are then obtained for each class j as the average decision profile among
all class j instances of the training data:

DTj =
1

Nj

∑

Xj∈Ω

Xj (2.14)

where Nj is the number of class j and Xj is a set of training patterns that
belong to true class Ω. For a given unknown pattern, a similarity measure is
used to compare the decision of the classifiers for the unknown input to the
templates previously generated. The most common similarity measure applied
in decision template approach is squared Euclidean distance.

• Bayesian Rule: This method assumes that all base classifiers are mutually
independent [109]. Let

∑L
i=1 cij denote the total number of data that are

assigned class j and cc
ij denote the number of data with actual class j. Then,

the soft label for class yj is calculated by

P (yj |x) =
cc
ij∑L

i=1 cij

. (2.15)

2.4.2 Selection

The assumption about the classifier selection is that each classifier is “an expert”
in some local area of the feature space. When a pattern vector is submitted for
classification, the classifier responsible for the given pattern is given the highest
credit to label. Either exactly one classifier or more than one local expert can be
nominated to make the decision. Two types of classifier selection systems have been
distinguished: static and dynamic [71].

Static

In this system, selection regions are specified during the training phase, prior to the
final step (classification of unlabelled data). In the operation phase, two strategies
can be utilized: 1) the region may be partitioned into different sections, then, an
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appropriate classifier is assigned to that region, or 2) based on the classifier, a region
is found where each classifier has its best performance [71].

Static classifier selection has been discussed in several studies [71, 103]. The
entire data space is partitioned into several regions using a clustering technique, i.e.
fuzzy c-mean or frequency-sensitive competitive. Then, the reference point in each
region is found by simply considering the center of the clusters or other methods.
The accuracy of all the individual classifiers in each region is estimated, and the
classifier with the highest accuracy is assigned to the region.

Dynamic

The choice of selection of a classifier to label the unknown pattern is made during the
operation phase. The choice is made based on the certainty of the classifier decision
in a region. The classifier with higher certainty would be nominated for labelling the
unknown patterns [43]. Woods and co-workers [108] proposed a method for dynamic
classifier selection based on classifier local accuracy estimates. For each classifier,
an estimate of the accuracy in local regions of feature space around the unknown
sample is computed. Local regions are defined in terms of k -nearest neighbours in
the training data. The classifier with higher accuracy in training is nominated to
assign a label to the unknown data.

The idea of combining fusion and selection approaches has also been discussed
in Kuncheva and Rodriguez [65]. Random linear oracle works as following. Each
classifier is substituted by a mini-ensemble of a pair of classifiers and an oracle.
Oracle acts as a random linear function. The base classifiers are first trained by
resampling or reweighting of the training patterns. In the classification phase, the
oracle for the respective classifier decides which classifier in the mini-ensemble to
use for classification of an unseen pattern. It has been claimed that this approach
encourages extra diversity in the ensemble.

2.5 Methods for Designing Multiple Classifier Systems

Although some of the current design methods have shown to be very successful,
a clear guideline for choosing the best design method is not yet available. There
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have been some efforts in this direction. An “overproduce and choose” [88] (or “test
and select” [92]) method has been proposed in order to design a MCS that has the
optimal accuracy for the task at hand. The basic idea in this proposed paradigm is
to produce a large set of initial classifiers using bagging or boosting (overproduction
phase), and to select the subset of classifiers that can be combined to obtain optimal
accuracy (choice phase). The optimal subset of classifiers can be selected using one
of these four evaluation rules/functions:

• Heuristic Rules: “Choose the best” technique has been proposed as a heuristic
rule by Partridge and Yates [84]. “Choose the best” technique selects n most
accurate classifiers from the initial pool of classifiers, where n is a predefined
value. Partridge and Yates also proposed another technique, referred to as
“choose the best in the class”. In this method, for each classifier type, the most
accurate one is selected. For example, if we generate a large pool of classifiers
of three different types, such as multi-layer perceptron, k nearest neighbor, and
linear quadratic classifier, based on “choose the best in the class” technique, a
subset of three different classifiers with the highest accuracy is selected. Such
heuristic rules reduce the computational cost of selecting optimal classifiers,
however, their efficiency can not be validated.

• Diversity Measure Criteria: Diversity can also be employed as an evaluation
criterion to select the base classifiers. Various diversity measures have been
proposed, such as Q-statistics, Entropy, within-set generalization diversity [67,
70, 84] (Section 2.1.2).

• Search Algorithms: Search algorithms can be used to select base classifiers.
Sharkey et al. [92] proposed an exhaustive search algorithm with the assump-
tion of having a small pool of classifiers. As effective as exhaustive search
algorithms can be, they can be computationally costly when dealing with a
large pool of candidate classifiers. Feature selection search algorithms can
be adopted for the purpose of classifier selection. Forward search, backward
search and tabu search are examples of such algorithms. Diversity measures
and the accuracy assessed by the majority voting rule have been used as eval-
uation functions [88].

• Clustering Methods: An effective searching technique, with limited computa-
tional effort, can be achieved by clustering the pool of classifiers into several
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disjoint subsets [88]. This method is based on the assumption that the error
correlation between any two classifiers belonging to the same subset is greater
than the one between any two classifiers belonging to different subsets. Based
on this assumption, classifiers are clustered using a diversity measure (see
Section 2.1.2) into several disjoint subsets. In each iteration of clustering, an
ensemble is created by selecting one classifier from each cluster that has the
largest distance with the other classifier members in the same cluster. Classi-
fiers are combined with majority voting rule.

2.6 An Overview of the Current Categorization Schemes

Combination of multiple classifiers is a rich research area that can be considered
from many different perspectives and combination techniques can be grouped and
analyzed in different ways. There have been several attempts to classify and com-
pare different types of MCS. These categorizations are based on different design
techniques, methods of creation of ensemble and modular structures, implementa-
tion and topology of the architecture, and type of aggregation schemes. This section
reviews some of these categorizations.

Classifier combination methods can be classified either as the ensemble combina-
tion of classifiers or the modular combination of classifiers [93]. The term ensemble
is commonly used for combining redundant classifiers. The redundancy occurs be-
cause each classifier provides a solution to the same problem. This is in contrast
to the modular approach, in which the problem is decomposed into a number of
sub-tasks. Each module is concerned with completing a solution for a sub-task. To
complete the whole task, each component is expected to contribute. In addition
to modular-ensemble, top-down and bottom-up systems are identified [91]. In the
top-down method, the outputs of the component modules are not used to make
the final decision, while in the bottom-up system the outputs are applied. Most
parallel architectures are bottom-up, whereas modular systems with control switch
are top-down.

Ho [49] categorized the methods for creation of ensemble into generating cover-
age optimization and decision optimization. In the coverage optimization, a large
set of weak classifiers, each trained on a different proportion of training data is cre-
ated. Bagging and Boosting are two common methods for generating such systems.
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Alternatively, decision optimization method focuses on the design of the combina-
tion rule. It assumes a given set of already trained classifiers and tend to find an
optimal combination method. In addition to this categorization, discriminators fu-
sion and selection is used to categorize the way in which the components of MCS
are combined [71]. Selection scheme was further subdivided into static and dynamic
structure and also the fusion scheme into fixed and trained methods. Sharkey [91]
also made the same distinction using different terms, competitive and cooperative
instead of selection/fusion. Duin [33] provides an introduction into combination
schemes and makes distinction between fixed and trained methods.

Auda and Kamel [5] provided a survey of the Modular Neural Networks (MNN)
design. In this study, different motivations for the construction of MNN were dis-
cussed and three general steps in the design of MNN were identified. These steps
were task decomposition, training, and multi module decision-making. Further-
more, decoupled, cooperative, and competitive decision-making were distinguished
and discussed. In this study, the advantages and disadvantages of the surveyed
methods are pointed out, in addition to some recommendations for future designs.

MCS can be categorized based on their dependence on the data [57]. Kamel
and Wanas categorized data dependency into implicit and explicit. Fuzzy inte-
gral, weighted averaging, boosting, modular approaches, and stacked generalization
methods are identified as implicit data dependent approaches. While dynamic clas-
sifier selection methods, HME (hierarchical mixture of experts), and feature based
decision [55, 104, 108] are explicitly data dependent techniques. In the implicit data
dependent approaches, the performance of each classifier is considered based on all
of the data space or in comparison to each other. On the other hand, explicit data
dependency is recognized by the local superiority of certain classifiers.

MCS has also been categorized based on the method of mapping between the
input and output of the fusion module. This mapping may be linear or non-linear.
Linear combinations are the simplest approaches, in which a weighting factor is
assigned to the output of each expert being combined. This weighting factor can
be specific to the input pattern, or can be specific to the expert. Weighted average
and fuzzy integrals are among the linear combination methods. Non-linear methods
include approaches such as, majority or maximum votes. The feature-based decision
fusion approach [104], stacked generalization [107], or rank based methods [52],
which involve a more complex mapping of the input, also use a nonlinear mapping
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in the combining method.

Base classifiers arrangement can be viewed as another categorization scheme, in
which two basic categories are: serial and parallel architecture [68]. The parallel
architecture consists of a set of classifiers that are consulted in parallel. The decision
of the various experts are combined by an aggregation function. On the other hand,
the serial architecture consists of a set of classifiers arranged in series, or in tandem.
This architecture is designed to deal with situations where the different experts have
a ternary decision scheme.

Lam [74] discussed the combinations from an entirely different perspective. Their
proposed categorization is based on the topologies and structures used for imple-
mentation of the combination methods. These topologies are classified as multiple,
conditional, hierarchical, and hybrid. Construction of ensemble in the machine
learning has been reviewed by Dietterich [28]. Construction methods applied to
different learning algorithms are classified as Bayesian voting, manipulating the
training patterns, manipulating the features, manipulating the output targets, and
injecting randomness.

2.7 Linear and Quadratic Classifiers

Statistical classifiers are popular techniques in the field of pattern recognition. Lin-
ear Discriminant [90] and Quadratic Discriminant classifiers [39] have been widely
used in the MCS as the base classifiers [72]. The linear discriminant analysis method
consists of a search for a linear combinations of selected variables which provide the
best separation between the classes of the problem in hand. These different com-
binations are called discriminant functions. The linear discriminant function F for
true mean vector µ and covariance matrix Σ may be obtained by

Fi(x) = (x− µi)T Σ−1
i (x− µi). (2.16)

where i is a class or group and x is unknown pattern. In some cases, the linear
separation of patterns in the feature space is not adequate and a nonlinear separation
is needed. Quadratic classifier is based on the normal class-conditional probability
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densities.

Fi(x) = ln | Σi | +(x− µi)T Σ−1
i (x− µi)− 2lnpi. (2.17)

where pi is a prior probability associated with class i.

2.8 Multi-Layer Perceptron

Multi-layer perceptron (backpropagation) is the a popular supervised neural network
that is based on the error correcting method. This network has successfully been
used in many different problems. Given enough training data, appropriate initial
conditions and architecture, multi-layer perceptron has been shown to be capable of
learning the mapping of any function to satisfactory accuracy [48]. Neural network
classifiers have been extensively used in the area of combining classifiers. Many data
decomposition techniques, such as boosting and bagging, have demonstrated their
best performances using multi-layer perceptron.

2.9 Fuzzy C-Means Clustering

Fuzzy c-means clustering is a popular clustering technique. The origins of fuzzy
c-means can be found in Bezdek et al. [11]. Fuzzy c-means determines the class
prototypes for an existing data set and a specified number of classes. Each of the
so-called cluster centers represents the typical object for one class. The Fuzzy c-
means algorithm assigns a classification of 0 to 1 between each object to be classified
and each class. The fuzzy c-means algorithm is based on minimizing the following
objective function:

Jq(U, V ) =
n∑

j=1

k∑

i=1

(uij)qd2(Xj , Vi) (2.18)

where V is a set of k centroides and q > 1. d is any inner product metric (distance
between Xj and Vi), U is fuzzy k-partitioned data set, uij is the degree of member-
ship of Xj in the ith class, Xj is the jth m-dimensional feature vector and Vi is the
centroid of ith cluster. k is number of clusters and n is number of data patterns. Vi
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and uij are calculated as following:

Vi =

∑n
j=1(uij)qXj∑n

j=1(uij)q
(2.19)

and

uij =
[ 1
d2(Xj ,Vi)

](1/q−1)

∑k
h=1[

1
d2(Xj ,Vh)

](1/q−1)
(2.20)

2.10 Measure of Entropy

Entropy is the basic concept of information theory. The entropy of a random variable
can be interpreted as the degree of information that the variables provide. Entropy
permits assessment of the partial or total information content of a random variable
or event. Entropy is denoted by

E = −
x∑

p(a) log p(a) (2.21)

where p(a) is the probability of occurrence of a. The more unpredictable and un-
structured (random) the variable is, the larger its entropy will be. This measure
evaluates the information contained in a single random event. The mutual informa-
tion [22] I provided by a pattern aj ∈ Rn, j = 1, 2, ..., n, about class yi, i ∈ Ω, is
calculated as

I(yi; aj) = log
p(yi|aj)
p(yi)

. (2.22)

2.11 Summary

In this chapter, a review of relevant MCS design strategies and techniques has been
presented. We have discussed three design criteria, four MCS construction strategies
including data decomposition, architectures, and aggregation approaches, along with
several algorithms and architectures. In addition, a brief overview of the proposed
categorizations has been provided. In the following chapter, we propose a novel
categorization scheme where we study cooperation in MCSs. We categorize MCS
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techniques and design approaches with respect to the type of cooperation among
their components.

28



Chapter 3

Cooperative Multi-Classifiers

Classifier ensembles has been proposed with the goal of improving the accuracy
and reliability of classification results. In the past decade, various methods and
architectures have been reported. Most of the efforts have focused on development
of novel combining methods that achieve higher or equal accuracy compared to
a single classifier. Few others have introduced new training method that result
in diverse classifiers. Other aspects of MCSs have also been investigated such as
different architectures, new categorizations, and novel applications. A summary of
these studies has been discussed in the previous chapter.

Despite all the accomplishments, no attempt has been made to understand and
compare combination methods from the cooperation perspective. In general, the
structure of a system is shaped by the actual relations among its components. As a
result, in order to understand a system, it is essential to study interactions among
the components of that system on a larger scale. A thorough understanding of
the system allows reasoning about the inter-component interactions and provides
guidelines for optimization. For example, systematic investigation on statistical
characteristics of the training data and its impact on the performance of individual
classifiers and the entire system can provide insight into MCS training techniques
and achieving better performance. One way of looking at the issue of cooperation
is the concept of sharing. A clear picture of the behaviour of MCS may emerge
by identification of the resources and the analysis of the gains and drawbacks of
sharing between the resources. This knowledge will increase our ability to design
and implement a system that is more reliable and flexible for different problems.
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The main aim of this research is to have an in-depth investigation and discussion of
sharing in MCS.

Given the lack of comprehensive studies of different combination schemes from
the sharing point of view, the objectives of this research are: 1) to develop an initial
vocabulary and a set of terms with which MCS can be described and categorized, 2)
to advance schemes that motivate comparison of different types of structures, 3) to
obtain insights into how a new system can be constructed, and finally 4) to develop
a new MCS based on the findings in the initial experiments.

In the following sections, first, some definitions and terminologies are presented.
This will be followed by promoting a new categorization on the MCS based on the
new definitions. In each category, some of the ensemble methods, that are used
throughout this study, are discussed in detail.

3.1 Definitions

• System S: A system is considered to be any entity that maps inputs to
outputs. A system may be composed of subsystems. A Multiple Classifier
System is a system in which converts a set of input patterns into a set of
predictions. The MCS are composed of a set of classifiers C = (C1, C2, ..., CL)
where each classifier, Ci, is a system itself.

• Resource R: A multiple classifier system consists of a number of resources.
These resources can be listed as follows:

– Input feature: an attribute of the data which is denoted by x. Multiple
variables are denoted by xi, x ∈ R, i = 1, 2, ...,m.

– Input pattern: a set of feature variables forms an input pattern X =
(x1, x2, ..., xm).

– Class (target): each input pattern is associated with a class, yi, i =
1, ..., c. A class has a set of possible values Ω = (1, 2, ..., c).

– Training data: a set of feature variables along with their associated class
forms a training pattern. A combination of n training patterns form the
training data X = (X1, X2, ..., Xn), X ∈ Rn.
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– Classifier output: prediction of a classifier for a given input pattern X

corresponding to its class target yj , j ∈ Ω, can be denoted as cji =
p(yj |X), where i = 1, ..., L. cji can either be restricted within the interval
of [0,1], soft label, or belong to the set of {0, 1}, crisp label.

• Sharing: Resource R of a system is being shared if, and only if, R is used by
more than one component of the system.

• Level of Sharing: Sharing in the MCS may take place at four different levels
of Decision, Architecture, Feature and Training.

3.2 Levels of Sharing

3.2.1 Decision Level

Let the prediction of classifiers Ci, i = 1, ..., L for a given input pattern X be
denoted as a vector Ci(x) = [c1i(x), ..., cki(x)]. Resources (R) at this level are the
base classifier’ outputs cji. Then, sharing at this level may be distinguished by
combining method (G) denoted as

Q(X) = G(Ci(X)) (3.1)

that makes the final decision

• according to individual classifiers prediction. These methods make use of the
fact that the outputs of the base classifiers are a clear interpretation of the
final decision (e.g. majority vote, maximum, minimum).

• based on a function that processes the predictions of classifiers into a final de-
cision (e.g. averaging, decision template, and trainable aggregation methods).

3.2.2 Architecture Level

The next level is sharing at the architecture level. Sharing at this level may be
distinguished by:
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• Using homogeneous classifiers: many parallel architecture designs use homoge-
nous classifiers (Section 2.3.1).

• Using information that is passed from one layer to the next: stacked general-
ization and cascade generalization ([107] and [42]) are two popular methods
in which classifiers are arranged in sequence and pass information from one
layer to the next. In these methods, the first classifier generates possible
recognition indices about the classes and passes the information to the next
classifier. Hierarchical mixture of experts ([55] and [40]) are another example
of this scheme where a prior knowledge of behaviour of the classifiers is passed
through the layers. Each classifier at the lowest level is an expert in a local
area of the feature space. A prior knowledge of the behaviour of the classi-
fiers is passed through the layers and a gating method is used to decide which
classifier should assign the label.

• Using classifiers that work in parallel but exchange information about their
individual task. Auda and Kamel [6] developed a novel modular architecture,
Cooperative Modular Neural Networks (CMNN) in which classifiers are uti-
lized to cooperate by forcing them to exchange information about each others
task. Unlike other modular approaches in which classifiers focus on predicting
their own task, in CMNN, classifiers are forced to learn about other modules
tasks at the same time. In this approach, classifiers are trained with a subset
of data that consists of subset of patterns belonging to predetermined set of
classes. If the unknown pattern does not fit in the range of the classifiers
responsibility, the classifier will point out the other responsible classifiers with
the output unit that is in charge of doing that.

3.2.3 Feature Level

The next potential level of sharing occurs in the input feature space. Different
patterns of generalization can be achieved by modification of the feature space. For
a given high dimensional data set, there are various types of features which can be
extracted from the data for the same classification task. Feature partitioning has
been shown to be an effective way to produce diverse classifiers. MCS construction
methods on this level may share feature instances instead of using totally disjoint
instances.
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Random Subspace Method (RSM) is a combining technique proposed by Ho
[51]. In this method, features are randomly divided into subspaces and classifiers are
built on different training feature sets. Other techniques designed for feature space
modification are genetic algorithm, input decimation, and different selection schemes
[73, 86, 100, 106]. In the input decimation techniques, each classifier is trained on
a subset of input features that correspond to a specific class. This method aims
at reducing the dimensionality of the data as well as correlation between classifiers.
Forward and backward selections methods add/delete one feature to/from the set at
a time in order to reduce correlation among classifiers. Genetic algorithm performs
a feature selection procedure in which the classifiers produce the highest accuracy as
a combination and individually. In other words, individual fitness and group fitness
are applied simultaneously.

Let each training object Xi, i = 1, ...n in the training data X be a m dimensional
vector Xi = (xi1, xi2, ..., xim), described by m features. The features can be divided
to N different partitions. The modified training set XN = (XN

1 , XN
2 , ..., XN

n ) con-
sists of r-dimensional training objects XN

i = (xN
i1 , x

N
i2 , ..., x

N
ir ) where r < m and

i = 1, 2, ..., n. The N partitions may be disjoint or overlapped. Several feature
modification approaches have been proposed in the field of MCS.

3.2.4 Training Level

This is the most basic level of sharing which occurs in the training process. Classifier
combining methods in this level may share:

• Training patterns: most of the current MCS in the literature concentrate on
the use of shared or identical training data. More training data may result in
higher accuracy for individual classifiers. However, many popular techniques
in MCS have been designed based on division or modification of the training
data. There are several reasoning behind these approaches: 1) to achieve
different patterns of generalization, 2) to be able to work with large datasets
(time and cost), 3) to obtain classifiers that are experts in specific part of the
data space. Classifiers that are trained on different training sets have a higher
chance to display different patterns of generalization than the ones that are
trained on the same data. Even in the case of neural network classifiers, initial
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conditions or different algorithms may not be able to induce different patterns
of generalization.

Training data modification is a popular method for constructing MCS. Bagging
is, perhaps, the most well-known sampling approach. The bagging algorithm,
relies on varying the data, through the bootstrap sampling procedure [17].
Each training set is generated by randomly selecting, with replacement, n

examples. Many of the original examples may be repeated in the resulting
training set while others may be left out. Each individual classifier in the
ensemble is generated with a different random sampling of the training set.
Bootstrapping is based on random sampling with replacement. Bootstrap
replicates X = (Xb

1, X
b
2, ..., X

b
n) of the training set X = (X1, X2, ..., Xn) and

build a classifier on each of them. In bagging, bootstrapping and aggregating
techniques are implemented in the following way.

1. Repeat for b = 1, ..., L.

(a) Take a bootstrap replicate Xb of the training dataset X.

(b) Construct a classifier Cb(x) on Xb.

2. Combine classifiers Cb(x), b = 1, ..., L, by the simple Majority vote to a

final decision rule β(x) =

{
+1 if

∑
b sgn(cb(x)) > 0

-1 otherwise

Rvote, a variation of pasting small votes [15], is similar to bagging and has
been designed for large datasets. In Rvote, a large dataset is partitioned into
smaller subsets, referred to as bites, each of which is used to train a classifier
in a different processor. Rvote requires creations of very small size bags,
randomly, and is a fast and simple approach.

The general principle of divide-and-conquer is based on partitioning the train-
ing data. Frosyniotis et al. [38] proposed a divide-and-conquer method in
which training data is partitioned into overlapping clusters using fuzzy c-
means and greedy-EM. Classifiers are assigned to overlapping regions from
the beginning, and are trained with data sets that are representative of the
regions that they are assigned to.

The idea of partitioning the training data using clustering has also been applied
to building classifier selection methods, where classifiers are trained on the
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same training set and are subsequently assigned to different regions according
to their accuracy [71]. Classifier selection based on hard boundary points
has been proposed by Lipnickas [77]. In this method, the entire data space
is partitioned into several regions using a clustering technique. Then, hard
boundary points are selected as reference points. Hard boundary points are
generated based on the misclassified patterns by base classifiers. The accuracy
of all the individual classifiers in each region is estimated using the reference
points, and the classifier with the highest accuracy is assigned to the region.

Prototype Reduction Scheme (PRS) [58] has also been applied to combine a
pool of individual classifier. Prototype Reduction Scheme is a way of reducing
the number of training vectors while performing as well as or similar to the
original data. Various PRS methods have been proposed including condensed
nearest neighbor, random selection, genetic algorithm, and search techniques.
Other techniques designed to produce different training sets include non-linear
transformations, injection of noise, and data from different sensors [94]. These
methods involve changing the patterns in a training set such that classifiers
approximate different functions for the same problem.

• Training information, instead of being trained individually and independently:
Wanas et al. [104] proposed an evolving training algorithm where classifiers
share the outcome of an aggregation method in order to perform an adaptive
training process. The algorithm can determine if further training is needed
by evaluating the result in the aggregation layer. This method directs the
training of each of the classifiers by partitioning the training patterns based
on the performance of the ensemble. This way, classifiers share the aggregation
results which helps to retrain and improve the quality of the training. Liu and
Yao [79] proposed a cooperative ensemble learning system (CELS) in which
classifiers are encouraged to learn different parts or aspects of the training
data. This method emphasizes interaction among individual base classifiers
and utilizes an unsupervised penalty term in the error function to produce
biased neural networks that are negatively correlated.

In the Boosting algorithm [37], successive classifiers are trained on input-
output pairs that have been filtered by previous classifiers. The sampling
of training data patterns is in such a way that misclassified patterns have a
higher likelihood to be selected for the next step. AdaBoost algorithm works

35



as follows:

1. Initialize the parameters, weights wi i = 1...N , ensemble C = 0, size of
ensemble L

2. Repeat this step L times

– Take a sample Sb from X and train classifier Cb

– Calculate the weighted ensemble error at step k

εb =
N∑

j=1

wb
j l

j
b ljb =

{
1 if x is misclassified
0 otherwise

(3.2)

– Calculate

βb =
εb

1− εb
(3.3)

– Update the weights after classification

wb+1
j =

wb
jβ

(1−ljb)

b )
∑N

i=1 wb
iβ

(1−lib)

b

j = 1, ..., N. (3.4)

3. Calculate the output for class yj

Qj(X) =
k∑

j=1

ln(
1
βb

) (3.5)

4. Select the class with maximum support.

Ivote is another variation of pasting small vote which has been designed for
large databases [15]. Ivote is similar to Adaboosting in a sense that the training
data (bite) of each subsequent classifier relies on the performance of previous
classifier. The sampling of training patterns rely on the out-of-bag error, where
the classifiers are tested on the patterns that they have not been trained on. If
a pattern in the training subset is misclassified by a majority vote of the out-
of-bag classifiers, it will be selected for the next training subset. If not, then it
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is rejected with the probability et
1−et

, where et is the error at step t. Cascade
generalization is another example of methods that share training information.

The first step in the construction of classifier ensembles, or any classification
system, is to train the base classifiers. In some studies, this is considered the most
important step since generalization ability of the ensemble highly depends on the
performance of the individual classifiers. For example, some approaches have focused
on construction of diverse base classifiers [67, 69], while few others were concerned
with generation of a large pool of base classifiers with different characteristic, e.g.
learning method [92]. Despite all the effort, the issue of cooperation at this level
has been overlooked. This study focuses on the training level and various aspects of
cooperation at this level. In order to achieve reliable assessment of the cooperation
at training level, we minimized the impact of other external parameters including
cooperation at other three levels.

3.3 Summary

The goal of this chapter was to highlight the needs to investigate cooperation among
MCS resources. We identified one of the principal types of cooperation, sharing, and
categorized ensemble techniques into four levels of sharing including aggregation,
architecture, feature and training. It is important to note that some of the methods
mentioned above cooperate at different levels. For example, in boosting techniques,
sharing is at the architecture level as well as the decision level. The feature-based
decision fusion approach [104] is another example where sharing happens at all levels.
Cooperation in MCS, as defined in this chapter, is a new concept that has not been
studied before. In this thesis, we focus on training level cooperation and investigate
the advantages and disadvantages of sharing data and training information. The
following chapters present the details of methodologies and findings at the training
level.
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Chapter 4

Cooperation at Training Level

When the use of multiple classifiers is considered, different strategies can be adopted
to train the base classifiers. Identical training sets can be used by all the base
classifiers, or modified subsets may be generated for training. The main objective of
training data partitioning is to improve the training of MCSs, and their performance.
This objective can be achieved in two ways. One approach may be achieved by
directly sharing the training information of the base classifiers or by the aggregation
method in the training data partitioning process. While in the other approach,
the training data partitioning is a pre-classification process, where partitions are
generated prior to training of the individual classifiers and without sharing training
information. With this analogy, we categorize MCSs training methods into two
groups: methods that are independent of classifiers and methods that share training
information. This chapter provides a detailed analysis of these two categories.

Despite research in the area and a significant number of empirical studies, the
advantages offered by different MCS training methods are still not clear. In addition,
no analysis or measurement of training methods effectiveness has been discussed in
the literature. The main objective of this work is to shed some light on these and
closely related issues. The present study introduces a new direction for the training
of multiple classifier systems.

The primary contribution of this work is the development of novel data parti-
tioning evaluation measures. The intent is to investigate how training patterns are
utilized in MCSs and to investigate the advantages and disadvantages of sharing
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training information. We propose two categories of evaluation measures: class-
based and feature-based. The class-based measures only consider the distribution
of classes among training partitions. Feature-based measures evaluate training sub-
sets with respect to classes (or training partitions) correlation. Feature-based and
class-based evaluation measures enabled us to estimate the degree and type of in-
formation provided by a set of disjoint and overlapped partitions for the training
of MCSs. Moreover, we empirically assessed both types of measures using several
benchmark databases. The findings allowed us to reason about interactions be-
tween training partitions and MCS performance, and provided guidelines for the
generation of sub-optimal partitions. We proposed two approaches for generation
and selection of sub-optimal training partitions. One approach is a pre-classification
process where training information is not utilized in selection of sub-optimal train-
ing partitions, while in the other approach, training information is used to select
sub-optimal training partitions. We compare these two approaches as well as other
existing MCS training approaches using several benchmark datasets.

4.1 Cooperation without Sharing Training Information

In some of multiple classifier training methods, training subsets are partitioned be-
fore individual classifiers are trained (Figure 4.1). Bagging [17] is a well-recognized
training method that partitions data before constructing the base classifiers. Bag-
ging has been shown to be very effective for unstable classifiers, since small changes in
the training data produces a large change in the output. Another method that helps
force diversity, is by using k-fold cross validation. A more deterministic partitioning
approach has been proposed in [38], where original training data is partitioned us-
ing clustering techniques. Each cluster is then used to train a new classifier. Other
training data modification methods belonging to this category are random forests,
pasting votes, and static classifier selection [14, 29].

Ensemble methods that do not share training information are less expensive and
the selection of the architecture and base classifiers does not have to be made in
advance. In addition, classifiers will not be engaged in partitioning and selection
procedures which result in lower computational cost. However, the difficulty with
these approaches is that all the parameters and their interactions should be consid-
ered. Sophisticated functions are needed to evaluate all the parameters and their
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Figure 4.1: Cooperation without Sharing Training Information

impact on the multiple classifiers performance.

When classifiers do not share training information, selection and optimization
of the training partitions become a pre-classification process and cannot be accom-
plished automatically. Therefore, appropriate tools and measures are required to
generate and optimize training subsets. Currently, only a few of the existing ensem-
ble methods optimize their partitioning processes, e.g. divide-and-conquer method
[38]. Most of the popular training methods operate using random partitioning, e.g.
bagging. Instead of randomly distributing data patterns among training subsets,
prior knowledge about the training partitions, data attributes (e.g. distribution)
and their impact on the classification performance is needed to obtain sub-optimal
partitions and boost training of base classifiers. To achieve this goal, we have pro-
posed several measures with which interdependency and correlation of the training
partitions were estimated. By applying these measures, we examined the impact of
the type and degree of information provided by the data on the training of classifier
ensembles and the resultant accuracy.
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4.2 Evaluation Measures

A fundamental aspect of data partitioning, that remains overlooked by random se-
lection, is the use of information in the data itself. With the use of properly selected
measures, we will gain better insight about the data which leads to the development
of more sophisticated methods to explore the correlation between cooperation and
accuracy.

We aimed to develop several measures to examine and rank various types of
training partitioning based on MCS performance. As previously discussed, we were
concerned with pre-classification partitioning methods. Therefore, it was necessary
to take into account many parameters: the number of classes, number of data parti-
tions, diversity within each partition and total diversity of a set of training subsets,
interdependency among these subsets, information shared by them, the amount of
overlap among partitions, correlation between classifiers, the type of classifiers, and
decision fusion methods were examples of such parameters. Since examining all
these parameters and their impact is beyond the scope of this study, we narrowed
our focus to class diversity and the data/information correlation distributed across
training partitions. To draw reliable conclusions, we had to investigate one factor
at a time, and hold constant the remaining parameters which include: the type of
classifiers, number of classifiers, and size of partitions. We conducted the analy-
sis in two stages, one for disjoint partitions (0% overlap) and one for overlapped
partitions.

In the following, we use the following terminologies and rules. Partitioning of
the training data means dividing the data space into m subsets. Every partition
is associated to one classifier. Every partitioning scheme covers the whole training
space. Since we are concerned with disjoint partitions, for every training pattern,
there exists one and only one partition to which this pattern belongs to. In the
present work, the number of partitions is assumed to be equal to the number of
base classifiers. Every set of partitions is used to train a multi-classifier system,
in such a way that each partition trains one and only one base classifier. A set of
partitions consists of:

• a pattern xij that belongs to class i in partition j

• kj
i , the ith class in the jth partition
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• Pj , the jth partition

• ki, class i in the training data

• the whole training data which is divided into m partitions. In this study, we
refer to each set of partitions as a solution.

We employed a procedure to generate a set of sub-optimal training partitions.
This procedure had two essential components, (i) a large pool of solutions (or sets
of training partitions), and (ii) a set of evaluation measures by which we could rank
all the solutions. In this study, we examined the impact of the two parameters: class
diversity and correlation. For these two parameters, we introduced several measures
and grouped them into two main categories of feature-based and class-based. For
the class-based measures (or class diversity), information provided by the feature
space is not considered and only class labels of the patterns are incorporated into
the measure. While for feature-based methods, the measures are calculated with
respect to feature attributes (correlation).

Feature-based and class-based measures can be constructed differently, given the
class and location of data patterns xij . Subsequent to the partition of the training
data, data patterns may locate:

• in one partition intra-partition, among the members of one class intra-class

• in one partition intra-partition, among member of two or more classes inter-
class

• among two or more partitions inter-partition, among members of one class
intra-class

• among two or more partitions inter-partition, and all the classes inter-class.

These conditions are summarized in Table 4.1.

4.2.1 Class-based Measures

While classifier diversity has been extensively discussed in the MCS community,
the issue of class diversity (among training partitions) has been largely overlooked.
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Table 4.1: Four different conditions for location of data patterns
same partition different partitions

same class intra-class intra-partition intra-class inter-partition
different classes inter-class intra-partition inter-class inter-partition

In this study, we plan to address this issue through a systematic and analytical
procedure. We define a partition with a high degree of diversity as a subset in which
all data patterns belong to one class. Obviously, a less diverse partition contains
a low information content. A partition with a higher degree of diversity is more
informative and represents a larger area of the space associated with the training
data. The class diversity of a partition or a set of partitions can be estimated with
different techniques, including Berger-Parker, entropy, and standard deviation.

The following notations are used in this section: nij is the size of class i in
partition j, Mj is the size of partition j, m is the number of partitions, N is the size
of training data, k is number of classes, and Ni is the size of class i in the training
data.

• Berger-Parker Measure: One of the simplest diversity measures is the
Berger-Parker index [9]. This measure is mostly used for estimating biological
diversity,

bpj = max(pij), pij =
nij

Mj
. (4.1)

The overall measure of diversity for a solution (m partitions) can be calculated
as:

boverall =
m∑

j=1

Mj

N
bpj . (4.2)

• Entropy: The Shannon’s diversity index, mostly referred to as entropy, is ap-
plied to measure the information content of the training partitions. Generally,
the use of such information theoretic measures are very popular in partition-
ing, and sub-space clustering [20]. According to the information theory, higher
probability for a class in a partition, or less diverse partitions, represents a
lower entropy and, consequently, a lower information content. Two different
strategies can be employed to estimate entropy: within one partition among
different classes (inter-class, intra-partition) or within one class distributed
among several partitions (intra-class, inter-partition). Intra-partition entropy,
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hpj , estimates the information content or diversity of the jth partition

hpj = −
k∑

i=1

pijlog(pij), pij =
nij

Mj
. (4.3)

Inter-partition, intra-class diversity can be estimated by

hki = −
m∑

j=1

pijlog(pij), pij =
nij

Ni
. (4.4)

For both entropies, the overall measure of diversity can be calculated by

Hp =
m∑

j=1

hpj , Hk =
k∑

i=1

hki . (4.5)

• Standard Deviation: Another measure of diversity is standard deviation,
which, again, can be viewed in both inter-class/intra-partition and intra-
class/inter-partition level.

spj = (
k∑

i=1

|nij − Mj

k
|)1/2, sci = (

m∑

j=1

|nij − Ni

m
|)1/2. (4.6)

The overall class diversity for a solution based on standard variation is calcu-
lated by

Sp =
m∑

j=1

spj , Sk =
k∑

i=1

ski . (4.7)

4.2.2 Feature-Based Measures

Unlike class-based measures, feature-based measures make use of feature space to
qualitatively estimate similarities/differences among two or more partitions in a so-
lution set. In this section, we introduce models which can be applied to estimate
distances of two or more objects. By object, we refer to patterns, classes, or par-
titions. Obviously, to compute the distance between two data patterns, the use of
feature attributes is inevitable. Therefore, all the proposed measures of this type are
referred to as feature-based. We employed Euclidean, Bhattacharyya, Mahalanobis,
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and Patrick-Fisher distance measures to estimate the similarity (difference). The
lack of studies on data distribution and MCS accuracy has prompted us to examine
several distance measures.

• Euclidean Distance: The most popular and simple distance measure is the
Euclidean distance [32]. Defining a metric space, the Euclidean measure is
denoted as:

dE =
√

(x̄− ȳ)T (x̄− ȳ) (4.8)

where x̄ and ȳ are two sample means selected from a predefined data space.
Each vector has m features, representing the dimension of the feature space.

• Mahalanobis Distance: One drawback of the Euclidean distance is its sen-
sitivity to features that have different scales and variances. Mahalanobis dis-
tance overcomes this problem by expressing the distance between two vectors
in units of their covariances. The Mahalanobis distance between two sample
means x̄ and ȳ is represented as:

dM =
√

(x̄− ȳ)T Σ−1(x̄− ȳ) (4.9)

where Σ is the covariance matrix of two samples. Σ is defined as

Σ =
(nx − 1)Σx + (ny − 1)Σy

nx + ny − 2
(4.10)

where, nx and ny are the sizes of matrixes Σx and Σy are the covariance
matrices of x and y accordingly. Mahalanobis distance is the same as Euclidean
Distance if Σ is the identity matrix.

• Bhattacharyya Distance: Similar to Mahalanobis, Bhattacharyya distance
measure is widely used as a measure of class separability, because of its preci-
sion and relation to the Bayes error [32].

dB =
1
8

√
(x̄− ȳ)T (

Σx + Σy

2
)−1(x̄− ȳ) +

1
2
ln(

|(Σx + Σy)/2|√|Σx|.|Σy|
). (4.11)

• Patrick-Fisher Distance: Patrick-Fisher measure [32] was also considered
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to measure correlation between classes and partitions.

dPF = (
Σx + Σy

2
)−1(x̄− ȳ) (4.12)

The aforementioned measures calculate the distance between two vectors. In
the present study, we calculated distances between two vectors from the following
categories (see Table 4.1):

• identical classes in one partition (Figure 4.2: dc1)

• different classes in one partition (Figure 4.2: d(c1,c2))

• identical classes in two different partitions (Figure 4.2: dc2
(P1,P2))

• two different classes in two different partitions (Figure 4.2: d(P1,P2)).

Figure 4.2 depicts the possible scenarios between two partitions P1 and P2,
where µ1 and µ2 are the means of these partitions respectively.

Figure 4.2: Feature-Based Evaluation Measures: dc1 Intra-class distance/Inter-
partition, d(c1,c2) Inter-class/Intra-partition distance, dc2

(P1,P2) Intra-class/Inter-
partition distance, and d(P1−P2) Inter-class/Inter-partition distance

These proposed distance measures were each designed to satisfy a different ob-
jective. For example, intra-class/intra-partition distance computes and evaluates
class compactness in a partition. On the other hand, the intra-class/inter-partition
distance formulates a criterion for the compactness of a class distributed across a
set of partitions. Inter-class/intra-partition distance assesses class separability in
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each training subset. While inter-class/inter-partition distance evaluates similarity
between two or more training subsets.

Using the weighted average of all pairwise distances among two or more objects,
a quantitative value was derived for a set of partitions. The pair-group centroid,
center of the objects, was used because of its simplicity. This simplification reduced
the number of operations. All the measures were weighted to take into consideration
the difference in the size of objects.

The following notations are used in this section: µj
i represents the mean (center)

of the ith class in the jth partition, µi represents the mean of the jth class, µj is
the mean of the jth partition, ν is the mean of the training data, xj

k,i is considered
the kth sample of ith class in the jth partition, and d(x, y) represents the distance
between x and y data patterns. In addition, Dj

i is the correlation among the ith

class in partition j, Di is the correlation among class j, and finally, Dj is the
correlation of the th partition. Proposed evaluation measures are discussed bellow,
and summarized in Table 4.2.

Intra-class, Intra-partition Distance: In this category, distances among
patterns from the same class are calculated. This measure can also be referred to
as density. This distance is calculated as

D =
m∑

j=1

k∑

i=1

pki

nij∑

k=1

d(xj
k,i, µ

j
i ), pki =

nij

Mj
. (4.13)

Inter-class, Intra-partition Distance: Here, correlation among two or more
classes in a partition is considered. Instead of a class centroid, we can also consider
mean of the partition as follows

D =
m∑

j=1

k∑

i=1

pkid(µj , µj
i ), pki =

nij

Mj
. (4.14)

Intra-class, Inter-partition Distance: The distribution of one class among m

partitions is the basis of this evaluation. It is important to note that instead of the
mean, µ, actual patterns can be considered as well

D =
k∑

i=1

m∑

j=1

ppjd(µi, µ
j
i ), ppj =

nij

Ni
. (4.15)
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Table 4.2: Summary of the Measures
Data Patterns Location/Measure Class-based Feature-based

intra-class/intra-partition – D =
∑m

j=1

∑k
i=1 pki

∑nij
k=1 d(xj

k,i, µ
j
i )

intra-class/inter-partition ski
= (

∑m
j=1 |nij − Ni

m
|)1/2 D =

∑k
i=1

∑m
j=1 ppj d(µi, µ

j
i )

hki
= −∑m

j=1 pij log(pij)

inter-class/intra-partition spj = (
∑k

i=1 |nij − Mj

k
|)1/2 D =

∑m
j=1

∑k
i=1 pki

d(µj , µj
i )

hpj = −∑k
i=1 pij log(pij)

boverall =
∑m

j=1
Mj

N
bpj

inter-class/inter-partition – D =
∑m

j=1

∑k
i=1 d(νj

i , µj
i )

Inter-class, Inter-partition Distance: The overall correlation of a solution of
partitions is calculated by considering the distances of the centers of all partitions
from the overall mean

D =
m∑

j=1

d(ν, µj). (4.16)

4.3 Description of Datasets

This section provides an overview of the datasets that were used in this study.
We gathered 13 benchmark databases from different sources from different sources
UCI [12], and ELENA project [35]. These data sets were collected because of their
diverse statistical and distributional characteristics. To provide more information
about the data sets, Table 4.3 summarizes some of their properties. We applied a
coefficient measure to highlight data complexity in terms of data size, dimensionality
and the number of classes (Equation 4.17). Column #5 illustrates the results for
this complexity measure.

datacoef =
data size

(number of features) . (number of classes)
. (4.17)

Class imbalance is another factor that is demonstrated in Table 4.3 in column
six, where one represents equal class sizes.

imbalance =
smallet class

largest class
. (4.18)
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Table 4.3: Summary of the Data Sets
Data Sets # of Classes # of Features Size datacoef imbalance Source

Low
Clouds 2 2 5000 1250 0 [35]
Concentric 2 2 2500 625 0.58 [35]
Iris 3 4 150 12.5 0 [12]
Ionosphere 2 34 351 5.61 0.56 [12]
Glass 6 10 214 0.12 0.19 [12]
Wine 3 13 178 0.68 0.61 [35]
Wisconsin Breast Cancer 2 9 699 0.59 [12]

Low
20 Class Gaussian 20 2 2000 50 1 [104]
German 2 20 1000 25 0.43 [12]
Phoneme 2 5 5404 54.04 0.41 [35]
80-D Gaussian 2 80 1000 6.25 1 [71]
Pima Indian Diabetes 2 8 768 48 0.54 [12]
Satimage 6 36 6435 29.79 0.41 [35]
Vehicle 4 18 846 11.75 0.91 [12]
Vowel 11 13 990 6.92 1 [12]

The Self-organizing Map [63] has been applied to all the datasets to highlight
complexity of the data in terms of class compactness, isolation or linear class sepa-
rability in a two dimensional space (see Appendix A.1).

4.4 Disjoint Partitioning

We grouped the experiments into disjoint partitioning and overlapped partitioning.
With this distinction, we were able to study cooperation through sharing training
patterns in classifier ensembles. This section highlights the results and discussion for
the proposed class-based and feature-based measures on disjoint training partitions.

4.4.1 Empirical Assessment of Class-based Measures

We carried out a set of experiments to examine the proposed class-based measures.
In these experiments, we first generated a large population of solutions, and then
calculated class diversity for each set of training partitions and ranked them accord-
ing to their impact on MCS performance. This section highlights a summary of the
important observations.

An ensemble of Naive Bayesian classifiers [34] was used for empirical evaluation
of the proposed measures. For each data set, we used a different number of ensemble
members. The selection of ensemble sizes was based on the size and complexity of
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the data. The use of disjoint training subsets prohibited us from applying large
ensemble sizes. The product of the estimated posterior probabilities by the base
classifiers was used as combining rule [68].

Training Solutions Generation Scheme

The goal was to generate partitions with different degrees of class diversity. As a
result, an initial set of partitions Si

1 was obtained in such a way that each partition
contained only one class. If the number of classes was smaller than the number of
partitions, larger classes were distributed among two or more subsets. Furthermore,
if the number of classes was larger than the number of partitions, two or more classes
were grouped into one training subset, depending on the size of the classes. These
sets remained the baseline for the generation of succeeding set of solutions. We
referred to this method as decoupled strategy (Figure 4.3).

Figure 4.3: a) Decoupled Strategy

By randomly selecting a certain amount of patterns from the training data and
distributing these among initial subsets, new subsets were generated (Algorithm 1).
The size of training partitions remained balanced throughout the experiments.

Subsequent to the generation of a pool of solutions, these solutions were used
to train classifier ensembles (Algorithm 2). We applied class-based measures to
estimate the degree of information provided by each set. These estimates were used
as criteria to rank and evaluate training subsets according to the performance of the
constructed ensemble.
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Algorithm 1 Disjoint Training Partition Generation Scheme

Xtrain: training data
Xtest: test data
Si

1: an initial set of training partitions generated in iteration i
Si

t : a set of training partitions
M and b : are predefined integer values
r : is a predefined integer between 1 to 10
m: number of partitions

for i=1:b
generate Xi

train and Xi
test

generate Si
1 = P i

1, ..., P
i
m using decoupled strategy

initialize frac% to an integer between 0 to 100
t = 2
while frac ≤ 100

for n = 1 : M
generate Xrandom by randomly selecting frac% from Xi

train

generate Si
t by distributing Xrandom among Si

1 subsets
t = t+1

end for
frac = frac + r

end while
end for

Algorithm 2 Evaluation of Training Data Partitions

construct ensembles on all Si

calculate the class-based measure for all Si

estimate mean of ensemble error and the class-based measure for n iterations
rank Si according to the performance of constructed ensembles
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Figure 4.4: 20-class Gaussian (Disjoint): a) Berger-Parker, b) Shannon Entropy

Results & Discussion

A large number of solutions and MCSs were generated using Algorithms 1 and 2 for
class-based related experiments. These experiments were carried on all datasets (see
4.3); however, the results for only 80-D Gaussian and 20-class Gaussian datasets are
highlighted, since all of these showed identical behavior. Test error rates, shown on
the y-axis, against class diversity, shown on the x-axis, are summarized in Figures
4.4-4.5 and Figures A.9-A.10 in Appendix A.2. The presented results have been
averaged over 10 training partitioning iterations, as well as 25 different sets of parti-
tions (solutions). Standard deviation over these error points has been added to the
plots.

Overall, Berger-parker, entropy, and standard deviation measures (Equations
4.1-4.7) illustrated that by increasing the degree of class diversity among training
partitions, classifier ensemble error decreases. This observation yields an important
conclusion; multiple classifiers that are built on partitions containing diverse classes
result in a better generalization ability. This is due to the fact that partitions
with less diverse classes could not cover the entire information space associated
to the training data. By distributing classes among all subsets and increasing the
degree of diversity, a better estimate of the posteriori class probabilities is calculated.
Increasing the accuracy of individual classifiers resulted in overall improvement in
the system.
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Figure 4.5: 20-class Gaussian (Disjoint): a) STD Inter-class/intra-partition b) STD
Intra-class/inter-partition

4.4.2 Empirical Assessment of Feature-based Measures

Empirical assessment of feature-based measures were also conducted on all datasets
introduced in Section 4.3. In these experiments, a large population of training sub-
sets with different class distributions and distances were generated. These subsets
were evaluated according to their impact on MCS performance.

Training Solutions Generation Scheme

In the feature-based set of experiments, the training solutions generation scheme
was similar to our class-based experiments (Algo. 1). However, the generation of
an initial set of training partitions was completely different. Since we were mainly
concerned with data distance (correlation), we had to play with the feature space
of the data instead of the class space. We developed two strategies to generate the
initial set, which we called Slice and Contour. Our aim in both proposed strategies
was to obtain highly uncorrelated training partitions. These sets remained the
baseline to generate succeeding sets of solutions.

1. We aimed on initializing highly separable partitions. This objective was
achieved by employing a k-means clustering method to cluster each class to m

sub-clusters (slice strategy). Then, pairwise distances of each sub-cluster from
other sub-clusters located in nonidentical classes were calculated and sorted.
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Sub-clusters with the largest distances were located in one partition (Figure
4.6 (a)). This set of partitions has remained the baseline for constructing
additional sets of partitions using Algorithm 1.

2. Training sets were generated based on distances of the data patterns from
the center of their classes. We first sorted the patterns based on distances.
Then, we distributed the sorted patterns in such a way that the first partition
contained the largest distanced patterns, the second partition contained the
second largest distanced patterns, and so on (Figure 4.6(b)). By randomly
selecting training patterns and dividing them across partitions, new sets of
solutions were generated (Algorithm 1). It is important to note that, in this
method, class distribution was kept fixed throughout the generation procedure.

Figure 4.6: a) Slice Strategy, b) Contour Strategy

Subsequent to the generation of the solutions pools, these training sets were used
to construct classifier ensembles (Algorithm 2). For base classifiers this time, in
addition to Naive Bayesian classifiers, we examined the use of an unstable classifier:
Multilayer Perceptron (MLP) [48]. MLP is known to be sensitive to the data, which
is suitable for our purpose. We intended to apply MLP to gain insight into the effect
data that distribution has on the combination of such classifiers. Furthermore, we
applied both the product combining rule as well as a dynamic classifier selection
(DCS) method.
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Results & Discussion

As we discussed, we applied Euclidean, Mahalanobis, Bhattacharyya, and Patrick-
Fisher distances, Equations 4.8-4.12, to estimate the distances among the training
sets. Among these measures, Euclidean distance has shown to have the largest
inconsistency and fluctuations, while the other three were more stable. Since feature
attributes do not have the same variance in each dimension, it is necessary to use
a normalized distance measure. Mahalanobis distance has this property, as well as
being a good representation of the Bayes error. The results presented in this section
are based on this measure.

Two classes are called highly separable if the distance between the features within
a class is minimum, and the distance between any two classes is maximum. By ap-
plying the aforementioned generation schemes (Algorithms 1 and 2) and partitioning
strategies, we aimed to generate highly separable classes within the partitions in a
solution. We increased the correlation among the partitions by randomly selecting
and distributing data patterns among partitions. Relationships between the error
rates of generated MCS and proposed distance measures (Equations 4.13-4.16) are
highlighted in Figures 4.7-4.14 as well as Figures A.11-A.14 in Appendix A.2. Since
all datasets showed similar trends, we only illustrate the results for 20-class Gaus-
sian, Vehicle, Breast Cancer, and German datasets. The test error rates, shown on
the y-axis, have been averaged over 10 training data partitioning iterations, as well
as 25 different sets of solutions. First set of data partitions had been generated by
contour strategy.

In Figures 4.7 (a) and 4.9 (a), the intra-class distance evaluates the compactness
of a class in each partition. As we have shown, the smaller the distances between the
patterns and their class mean, the less accurate were the recognition rates. A simi-
lar investigation was carried out on intra-class/inter-partition measure. This time,
the pairwise distances among identical classes distributed across the set of parti-
tions were calculated (Figures 4.8 (a) and 4.10 (a)). The error tended to increase
as the sum of the distances of a class distributed among the partitions increased.
These behaviors are likely due to the fact that generated ensembles were tested
on a subset of the original data which had a similar distribution to the training
data. When we distributed the training data among disjoint sets and forcing well-
separable classes to accumulate in one subset, even though partitions with dense

55



3.8 4 4.2 4.4 4.6 4.8
14.5

15

15.5

16

16.5

17

17.5

18

E
rr

o
r 

%

Intra−class, Intra−partition Distance
4.65 4.7 4.75 4.8

14.5

15

15.5

16

16.5

17

E
rr

o
r 

%

Inter−class, Intra−partition Distance

(a) (b)

Figure 4.7: 20-class Gaussian (Disjoint): a) Intra-class/Intra-partition, b) Inter-
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Figure 4.9: Vehicle (Disjoint): a) Intra-class/Intra-partition, b) Inter-class/Intra-
partition
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Figure 4.10: Vehicle (Disjoint): a) Intra-class/Inter-partition b) Inter-class/Inter-
partition
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classes were obtained, they were not the actual representatives of the original train-
ing data. Individual classifiers trained on these subsets did not have an accurate
view of the test subset and were biased towards their own training subset. Fur-
thermore, we considered inter-class, intra-partition distance measures (Figures 4.7
(b) and 4.9 (b)). The overall trend in these cases showed that training partitions
with smaller inter-class distances outperformed the ensembles generated on large
distances. This is due to the aforementioned analogy, where base classifiers trained
on partitions with similar distribution to the testing set resulted in higher accuracy.
With inter-partition/inter-class measures (overall collection), we examined the dis-
tances among training partitions. The results suggested that a smaller distance
among the means improves MCS classification accuracy, which is consistent with
our other observations (Figures 4.8 (b), 4.10 (b)).

We ran the similar set of experiments using a pool of Multi-Layer Perceptron
classifiers, instead of stable classifiers. Figures 4.11 and 4.12 depicts the result
for the Vehicle dataset. As shown in this figure, the type of individual classifiers
has not affected the trend of the classification error. Regardless of the type of
classifiers, MCSs performed better when base classifiers have an accurate view of the
problem space. Other than classifiers, combining rules can also be data dependent
[57]. Dynamic classifier selection (DCS) methods are examples of such rules. We
implemented Woods et al.’s DCS method, in which the local accuracy is utilized to
select the classifier of choice for a presented input pattern. In this method, when
an unknown pattern is presented, it is clustered with the closest training patterns,
and the most accurate classifier is selected for classification. The results presented
in Figures 4.13 and 4.14 depicts the error for a dynamic selection of a pool of Multi-
Layer Perceptron classifiers. Although the accuracy was improved, the pattern of
change for all feature-based measures was the similar to ones that were combined
with a fixed combining rule. We observed the same behavior for all other datasets.
Comparing Slice and Contour strategies, we found that Slice strategy outperformed
or showed identical performance to Contour strategy in almost all cases.

4.5 Overlapped Partitioning

Similar experiments to disjoint partitioning were performed on overlapped training
subsets. The experimental setup was similar in such a way that, first, a large
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Figure 4.11: Vehicle using Backpropagation (Disjoint): a) Intra-class/Intra-
partition, b) Inter-class/Intra-partition
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Figure 4.12: Vehicle using Backpropagation (Disjoint): a) Intra-class/Inter-partition
b) Inter-class/Inter-partition
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Figure 4.13: Vehicle using Backpropagation & Dynamic Classifier Selection (Dis-
joint): a) Intra-class/Intra-partition, b) Inter-class/Intra-partition
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Figure 4.14: Vehicle using Backpropagation & Dynamic Classifier Selection (Dis-
joint): a) Intra-class/Inter-partition b) Inter-class/Inter-partition
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population of overlapped subsets were generated with different class distribution
and correlations. Then, class-based and feature-based measures were calculated
for each set of partitions and their impacts on MCS performance were examined
and ranked. The main difference was in the initial training partitions as well as
overlapping partition generation method.

An ensemble of seven Naive Bayesian classifiers was used for all the datasets.
The product of the estimated posterior probabilities by the base classifiers was used
as combining rule.

4.5.1 Empirical Assessment of Class-based Measures

Training Solutions Generation Scheme

The goal was to generate overlapped partitions with different degrees of class diver-
sity. Similar to disjoint partitioning, an initial set of partitions was obtained in such
a way that each partition contained only one class (decoupled strategy). Unlike dis-
joint partitioning, however, elements of each partition were randomly selected and
added to the partition until the size of each partition was equal to the size of the
original training data. Importantly, there was no overlap between this initial set of
partitions (Figure 4.15 (a)). These sets remained the baseline for the generation of
succeeding set of solutions.

Figure 4.15: a) Decoupled Strategy, b) Generating x% random overlapping partition
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By randomly selecting a certain amount of patterns from the training data,
the overlapping partition was generated (Figure 4.15 (b)). The same overlapping
partition was added to all the training partitions. The size overlapping partitions
varied between 1%-100%; 100% overlap represents identical training partitions. The
size of training partitions was constant throughout the experiments and was equal
to the size original training data (Algorithm 3).

Algorithm 3 Overlapped Training Partition Generation Scheme

Xtrain: training data
Xtest: test data
Si

1: an initial set of training partitions generated in iteration i
Si

t : a set of training partitions
m: number of partitions
Pji : training partition j generated in iteration i
M and b : are predefined integer values
r : is a predefined integer between 1 to 10
Xrandom: overlapping partition

for i=1:b
generate Xi

train and Xi
test

generate Si
1 = P i

1, ..., P
i
m using decoupled strategy

for j = 1 : m
adjust size(P i

j )=size(Xi
train), where j = 1, ..., m

end for
initialize overlap% to an integer between 0 to 100
t = 2
while overlap ≤ 100

for n = 1 : M
generate Xrandom by randomly selecting overlap% from Xi

train

generate Si
t = P i,t

1 , ..., P i,t
m by combining Xrandom with all Si

1 subsets
adjust size(P i,t

j )=size(Xi
train), where j = 1, ..., m

t = t + 1
end for
overlap = overlap + r

end while
end for

Subsequent to the generation of a pool of training solutions, they were used
to train classifier ensembles (Algorithm 4). Class-based measures were applied to
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Figure 4.16: 20-class Gaussian (Overlapped): a) Berger-Parker, b) Shannon Entropy

rank and evaluate training subsets according to the performance of the constructed
ensembles.

Algorithm 4 Evaluation of Training Data Partitions

construct ensembles on all Si

calculate the feature-based measure for all Si

estimate mean of ensemble error and the feature-based measure for n = 25 iterations
rank Si according to the performance of constructed ensembles

Results & Discussion

A large sets of training partitions and ensembles were generated using Algorithms
2 and 3 for class-based related experiments. These experiments were carried out on
all datasets (see 4.3). Since all of the datasets demonstrated identical patterns of
change, we highlight the results for the same datasets in Section 4.4. Figures 4.16-
4.17 and A.15-A.16 in Appendix A.2 depict the error rates verse represents class-
based measures. Each error point represents mean of 25 different sets of partitions
(solutions) for one size of overlap (between 1%-100%), repeated 10 times. Error
bars represent standard deviation of mean.

Overlapped partitioning results were similar to those of disjoint partitioning.
By increasing the degree of class diversity among training partitions, performance
of classifier ensembles improved accordingly.
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Figure 4.17: 20-class Gaussian (Overlapped): a) STD Inter-class/intra-partition b)
STD Intra-class/inter-partition

4.5.2 Empirical Assessment of Feature-based Measures

Empirical assessment of feature-based measures was also conducted on overlapped
partitions.

Training Solutions Generation Scheme

For overlapped partitioning feature-based analysis, construction of the training par-
titions was different from the the disjoint partitioning. The main difference was in
the way overlapping partitions were generated. Our aim in the proposed strategies
was to generate overlapping partitions that represent different parts of the data-
space so that MCS performance can be evaluated with respect to various types of
training data distribution. The initial set of partitions was generated using the pre-
viously discussed strategies: decoupled, slice and contour. Overlapping partitions
were generated according to the following strategies:

1. Overlapping partitions of different sizes, 1%-100% of the training data, were
constructed by randomly selecting a certain percentage of the training pat-
terns. Selection of training patterns was accomplished with respect to the
original distribution of the classes. This strategy is referred to as Random-
Overlap strategy (RAN-OVR) (Figure 4.18 (a)).
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2. A k-means clustering method was used to group each class to sub-clusters.
Overlapping partitions of different sizes, 1%-100% of the training data, were
constructed by randomly selecting a certain percentage of the training pat-
terns. Selection of training patterns was accomplished with respect to the
original distribution of the classes. This strategy is referred to as Slice-Overlap
strategy (SLC-OVR) (Figure 4.18 (b)).

3. Overlapping sets were generated based on distances of the data patterns from
the center of their classes. We first sorted the patterns based on their distances
to the center. Then, gradually, a certain percentage of the farthest patterns
from the center of the class was selected to construct overlapping partitions.
Selection of training patterns was accomplished with respect to the original
distribution of the classes. Because of the similarity of this strategy to contour
strategy, we refer to it as Class Center Contour Overlap (CC-CNT) (Figure
4.19 (c)).

4. This strategy was similar to the Decoupled Class Center Contour Overlapping
strategy. The main difference was that instead of selecting farthest patterns
from the class center, this time, we selected the nearest patterns to the class
center to construct overlapping partitions. We refer to this strategy as Class
Border Contour Overlap (CB-CNT) (Figure 4.19 (d)).

5. The initial set of training partitions was generated using the slice strategy
(Figure 4.6 (a)). This set remained the baseline for the generation of the suc-
ceeding set of solutions. Overlapping partitions of different sizes, 1%-100% of
the training data, were constructed by randomly selecting a certain percentage
of the training patterns. Selection of training patterns was accomplished with
respect to the original distribution of the classes. This strategy is referred to
as Slice-Random Overlap (SLC-RAN).

6. This strategy was similar to the Slice-Random Overlapping. The only differ-
ence was that the initial set of training solution was generated using contour
strategy (Figure 4.6 (b)). This strategy is referred to as Contour Random
Overlap (CNT-RAN)

Training solution creation algorithm was similar to the one presented in Algo-
rithm 3. However, construction of the overlapping partitions varied based on the
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Figure 4.18: a) Random-Overlap (RAN-OVR), b) Slice-Overlap (SLC-OVR)

Figure 4.19: c) Class Border Contour Overlap (CB-CNT), d) Class Center Contour
Overlap (CC-CNT)

66



220 225 230 235 240 245 250
20

25

30

35

40

45

50
E

rr
or

 %

Intra−class, Intra−partition Distance 
5 7.5 10 12.5 15 17.5 20

20

25

30

35

40

45

50

E
rr

or
 %

Inter−class, Intra−partition Distance

(a) (b)

Figure 4.20: Vehicle (Overlapped): a) Intra-class/Intra-partition, b) Inter-
class/Intra-partition

strategies discussed above.

Subsequent to the generation of pool of training partitions, they were used to
construct classifier ensembles (Algorithm 2). For base classifiers, in addition to
Naive Bayesian classifiers, we examined the use of an unstable classifier: Multilayer
Perceptron (MLP) [48]. Furthermore, we applied both the product combining rule
as well as a dynamic classifier selection (DCS) method.

Results & Discussion

Decoupled, slice and contour strategies were designed to generate highly separable
classes within the partitions in the first solution. Overlapping strategies, however,
were designed to gradually increase correlation among training partitions by pre-
senting overlapping patterns from different parts of the data space. We measured
this correlation using feature-based distance measures introduced in Equations 4.13-
4.16. Mahalanobis distance (Equation 4.10) was applied to calculate feature-based
measures. MCSs error rates against feature-based measures are highlighted in Fig-
ures 4.20-4.27 as well as Figures A.17-A.20 in Appendix A.3. In these figures, the
first set of training solutions was generated with contour strategy.

Once again, the trend of MCS error rates changes with respect to feature-based
measures was similar to the trend observed for disjoint partitioning. In Figures
4.20 (a) and 4.22 (a), the smaller the distances between the patterns and their
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Figure 4.21: Vehicle (Overlapped): a) Intra-class/Inter-partition b) Inter-
class/Inter-partition
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Figure 4.22: 20-class Gaussian (Overlapped): a) Intra-class/Intra-partition, b)
Inter-class/Intra-partition
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Figure 4.23: 20-class Gaussian (Overlapped): a) Intra-class/Inter-partition b) Inter-
class/Inter-partition

class mean, the less accurate the recognition rates. For intra-class, inter-partition
distance (Figures 4.21 (a) and 4.23 (a)), the error tended to increase as the sum of
the distances of a class distributed among the partitions increased. These results
verified our previous observations for disjoint partitioning that training partitions
with dense classes were not the accurate representatives of the original training and
test data. Consequently, classifiers constructed on these biased training partitions
were not able to perform accurately. Results in Figures 4.20 (b), 4.22 (b), 4.21 (b)
and 4.23 (b) confirmed our previous observation, where base classifiers trained on
partitions with similar distribution to the testing set resulted in higher accuracy.

For large overlap sizes, we were expecting lower error rates compared to disjoint
partitions since classifiers were trained with larger training sets. However, that was
not the case for most of the datasets used in this study. Disjoint partitions with
large class diversity demonstrated a similar performances to overlapping partitions.

An important observation from Figures 4.20-4.23 is that classifier ensembles with
the lowest error rates were mostly trained with overlap sizes between 65% to 96%
(marked by black arrows in the figures). Identical training data (100% overlap)
did not always result in lower error. To validate this observation and to make sure
that this behavior was not due to the use of stable classifiers, we ran a similar set of
experiments using a pool of Multi-Layer Perceptron classifiers. Figures 4.24 and 4.25
depicts the results for the Vehicle dataset. We also applied a different combining
method than product rule, Dynamic Classifier Selection method [108], and searched

69



37.5 40 42.5 45 47.5 50 52.5 55
15

20

25

30

35

40

45

50

E
rr

o
r 

%

Intra−class, Intra−partition Distance
60 70 80 90 100 110 120 130

15

20

25

30

35

40

45

E
rr

o
r 

%

Inter−class, Intra−partition Distance

(a) (b)

Figure 4.24: Vehicle using Backpropagation (Overlapped): a) Intra-class/Intra-
partition, b) Inter-class/Intra-partition

for the best performing classifier ensembles (Figures 4.26 and 4.27). Interestingly,
the type of individual classifiers or combining method did not change the trend of
the classification error. Regardless of the type of the algorithm, MCSs performed
better when base classifiers had an accurate view of the problem space. The best
performing ensembles were constructed on overlapping partitions of size 65% to 96%
of the training data. This is an important finding that could shed new light on the
effectiveness of some of the existing MCS training techniques (e.g. bagging) as well
as construction of nearly optimal training partitions.

We examined the impact of overlap sizes on ensemble accuracy by assessing base
classifier diversity for each of generated ensembles. Measure of Entropy (Equation
2.3) was applied to calculate classifier diversity, where 0 indicates no difference and
1 indicates the highest possible diversity. Classifier diversity versus error rate for
Vehicle, 20-class Gaussian, and Breast Cancer is highlighted in Figures 4.28 and 4.29.
As illustrated in these figures, stable classifiers resulted in lower diversity compared
to unstable classifier such as multi-layer perceptron (MLP) (Figure 4.28 (a) and
(b)). This behavior was expected because of the randomness in MLP parameters.

There was a general trend shown in all these figures by the boosted ensembles,
where lower diversity meant generally higher accuracy. This behavior was due to
the distribution of training partitions and the base classifier performance that were
constructed on biased partitions. Although highly diverse base classifiers were gen-
erated using biased partitions, most of these classifiers performed poorly on the test
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Figure 4.25: Vehicle using Backpropagation (Overlapped): a) Intra-class/Inter-
partition b) Inter-class/Inter-partition
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Figure 4.26: Vehicle using Backpropagation & Dynamic Classifier Selection (Over-
lapped): a) Intra-class/Intra-partition, b) Inter-class/Intra-partition
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Figure 4.27: Vehicle using Backpropagation & Dynamic Classifier Selection (Over-
lapped): a) Intra-class/Inter-partition b) Inter-class/Inter-partition

set. As a result, their combination could not improve the overall generalization
ability either. A common pattern in all these figures is that, for large overlap sizes,
no consistent trend between classifier diversity and ensemble error can be observed.
This behavior suggests that the diversity generated by biased training partitions is
not beneficial for the MCSs. The most useful diversity is achieved by perturbing
a small subset of original training data instead of imposing larger variations. In
bagging, each bootstrap replicate contains 63.2% of the original training set. The
same type of functionality is common among other popular MCS training methods.

4.6 Training Multiple Classifier Systems

Results in the previous sections illustrated that a high degree of class diversity
in a training partition improves classifier accuracy. Another conclusion was that
MCS error is non-linearly correlated with the proposed feature-based measures.
These observations suggest that class-based and feature-based measures provide the
objective functions which can be used to find sub-optimal training data partitions
through an optimization procedure. Therefore, we expect to generate sub-optimal
training partitions using these measures, where MCS performance is at its best.
To verify this assumption, a combined analysis of feature-based and class-based
measures with respect to ensemble performance was performed. The key goals of
this analysis was to: 1) to examine the functionality of feature-based and class-
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Figure 4.28: Classifier Diversity: a) Vehicle dataset using stable base classifiers b)
Vehicle dataset using MLP base classifiers

(a) (b)

Figure 4.29: Classifier Diversity: a) 20-Class Gaussian dataset using MLP base
classifiers b) Breast Cancer using MLP base classifiers
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based measures and their rules as objective functions and 2) to investigate how
these measures can be utilized to generate sub-optimal training partitions.

To achieve the first goal, we plotted a class-based measure (class diversity)
against inter-class/inter-partition distance (Figure 4.30). We refer to this two-
dimensional space, represented by class d iversity and d istance, as CDD-space. We
then divided CDD-space into four regions. Each region is characterized according
to class diversity and distance values. For example, region (1,1) represents low di-
versity and small distance area, while region (2,2) depicts high diversity and large
distance area. Based on our observations from the previous sections, we expected
to see MCS best performances in the high class diversity and small distance region
(2,1).
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Figure 4.30: Training Partitions Class Diversity vs Distance

Training and overlapping partitions strategies proposed in Section 4.5 were all
used to generate a diverse and large pool of training solution. We calculated the
Shannon Entropy measure and the inter-class/intra-partition distance and plotted
the CDD-space. Figures 4.31-4.36 (a) highlight CDD-space for Vehicle, Breast Can-
cer and 80-D Gaussian datasets. The training solutions were used to train MLP
base classifiers and their outputs were combined using product rule as well as the
dynamic classifier selection method. We then ranked the solutions according to the
MCS performance and selected the top 150 solutions with lowest MCS error. Top
150 solutions are highlighted on CDD-space with dark triangles (in red) for product
rule (Figures 4.31 (b), 4.33 (b), and 4.35 (b)) and the dynamic classifier selection
method (Figures 4.32 (b), 4.34 (b), and 4.36 (b)).
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Figure 4.31: Vehicle: a) CDD-space, b) best MCS performances using Product Rule
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Figure 4.32: Vehicle: a) CDD-space, b) best MCS performances using Dynamic
Classifier Selection
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Figure 4.33: Breast Cancer: a) CDD-space, b) best MCS performances using Prod-
uct Rule
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Figure 4.34: Breast Cancer: a) CDD-space, b) best MCS performances using Dy-
namic Classifier Selection

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

In
te

r−
cl

as
s,

 In
tr

a−
pa

rt
iti

on
 D

is
ta

nc
e

Shannon Entropy Diversity Measure
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

16

In
te

r−
cl

as
s,

 In
tr

a−
pa

rt
iti

on
 D

is
ta

nc
e

Shannon Entropy Diversity Measure

(a) (b)

Figure 4.35: 80-D Gaussian: a) CDD-space, b) best MCS performances using Prod-
uct Rule
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Figure 4.36: 80-D Gaussian: a) CDD-space, b) Best MCS performances using Dy-
namic Classifier Selection

The results illustrated in Figures 4.31-4.36 confirmed and extended the findings
in the previous sections. Our first observation was that, as expected, the top 150
selected solutions were located in region (2,1); which again shows the best partitions
for training MCS should be highly diverse with small feature distances. Another
important observation was that the top 150 selected solutions for DCS method were
more spread out in the CDD-space rather than being clumped together as they were
in the case of the product combining rule. This phenomenon can be explained by the
fact that classification of the test patterns in DCS does not depend on the output
of all classifiers. Therefore, even if one classifier possesses the best performance,
then that may be sufficient for DCS method to outperform other classifier ensemble
methods. It is important to note, however, that even for DCS method, most of the
top 150 partitions were located in the same (2,1) region.

Although the aforementioned findings confirmed our assumption and provided
insight into the class-based and feature-based measures and their rule as objective
functions, they did not satisfy our second goal. We know that the sub-optimal
solutions will locate in region (2,1), but we do not have the tools to recognize and
select them. To this end, we developed the distance array as depicted in Figure
4.37. Distance array contains four feature-based values and their corresponding
MCS error.
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Figure 4.37: Distance Array

We used the same pool of solutions that we generated for previous experiments
and constructed the distance array for each set of training solution set. We then used
a Self-Organizing Feature Map (SOM) [48] to cluster the distance arrays obtained
from training partition solutions. The same top 150 solutions, discussed above, were
again located and highlighted on the SOM map. The three dimensional SOM for
Vehicle, Breast Cancer and 80-D Gaussian are depicted in Figures 4.38-4.40. The
dark circles (in red), in these figures, show the top 150 solutions and light triangles
(in green) illustrate the remaining solutions.

Figures 4.38-4.40 illustrate that, for all the datasets and combining methods,
we obtained two distinct clusters located side-by-side. In the case of the product
combining rule, clusters were clearly separated, while for the DCS method, clusters
were slightly overlapped but completely distinguishable. This again confirms our
previous observation regarding the DCS method and its functionality. Based on
these observations, we can conclude that all top 150 solutions should have some
features in common in order to be grouped in one cluster.

We looked closely at the training partitions and checked their distance arrays.
We took the average of the distance arrays for all the datasets and examined for
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Figure 4.41: Vehicle: Empirical assessment of proposed partitioning strategies
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Figure 4.42: Breast Cancer: Empirical assessment of proposed partitioning strate-
gies

the trend. We found that the average value for all 150 solutions was the lowest
amongst all the solutions in the pool. This finding largely satisfied our second goal
mentioned above. However, we still do not know whether any of the proposed train-
ing partition generation strategies has a superior performance over the others and
which one results in the highest accuracy. Training partition generation strategies
were empirically analyzed and the results are presented in Figures 4.41, 4.42, and
4.43. These figures display the best-fitted curves of the ensemble error versus the
feature-based distance.

The first conspicuous observation from Figures 4.41 to 4.43 is that all parti-
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Figure 4.43: 80-D Gaussian: Empirical assessment of proposed partitioning strate-
gies

tioning strategies behaved similarly with respect to the increase of overlap sizes. It
is difficult to distinguish which strategy outperformed the rest in the existence of
large overlaps. However, it can be concluded that contour (CTN-RAN) and slice
(SLC-RAN) strategies outperformed other strategies in the presence of small size
overlaps. Amongst these two strategies, SLC-RAN performed slightly better than
CTN-RAN.

4.6.1 Cluster, De-cluster, and Selection Approach

We pooled all the observations from the previous section together and developed a
new data partitioning technique called the Clustering, De-clustering and Selection
(CDS) method (Algorithm 5). In this algorithm, training partitions are generated
through three steps: clustering, de-clustering, and selection. In the first step, we
initialize a set of training subsets by slice strategy where we cluster the classes
and distribute them among partitions. Resultant partitions contain classes with
high density and low correlation, and are highly diverse. We then replicate the
patterns in each partition to the point that the size of partition is equal to the
original training data. In the de-clustering step, we randomly select 70% of the
training data and generate an overlapping partition. The overlapping partition is
added to all the partitions in each step to construct a new set of training solution.
Overlapping partition is added in such a way that the union of all the training
partitions, j = 1, ..., m, in a solution i is equal to the original training data:
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Xtrain =
m⋃

j=1

Pij .

This step is repeated until a stopping criterion, M , is met. Finally, a set of
training partitions with the smallest distance-array is selected and used to train
an ensemble. The choices of overlap sizes (70%) and slice partitioning strategy are
made based on our findings discussed in previous sections.

Algorithm 5 Clustering, De-clustering, Selection (CDS) Algorithm

Initialize:
Xtrain: training data Xtest: test data
Pij : jth partition in the ith training solution k: number of classes
M : predefined number of iterations DA: distance array
m: number of partitions size(Pij): size of partition Pij

1. Clustering:
Slice strategy:

for j = 1 ≤ k
cluster class j ⊂ Xtrain to m disjoint subsets

end for
for j = 1 ≤ m

select one cluster from each class and construct P1j

adjust size(P1j)=size(Xtrain)
end for

2. De-clustering:
for i = 1 ≤ M

f = 70
construct T by randomly selecting f% of Xtrain

adjust size(Pij) so that size(Pij)+size(T )=size(Xtrain)
add T to all partitions of Pi to construct P(i+1)

construct distance-array (DA) for each Pi

end for
3. Selection:

for i = 1 ≤ M
calculate Ai =

∑
(DAi)

end for
select s = index(min(A))
train m MLP with Ps and use product rule to build the ensemble E
test E on Xtest
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It is important to note that the proposed CDS approach is a pre-classification
process, where training information is not utilized to select sub-optimal training
partitions. In the next section, we propose another approach to optimize selection
of training partitions. We compare our proposed approaches to several existing MCS
training approaches using several benchmark datasets in the following chapter.

4.7 Cooperation through Sharing Training Information

One type of cooperation at training level is through sharing training information.
In this type of cooperation, training subsets are evaluated and partitioned based on
the output of the base classifiers or aggregation rule before making the final decision
(Figure 4.44). Boosting and Adaboosting, proposed by Freund and Schapire [37], are
popular training methods that fall into this category. Schapire demonstrated that
a series of weak learners can be converted to strong learners as a result of training
the members of an ensemble on previously modified patterns. These patterns are
modified by trained members of the ensemble. Boosting requires a large training
data. As a result, Freund and Schapire [37] have proposed an algorithm, Adaboost,
that largely avoids this problem. Essentially, in Adaboost, the training sets are
adaptively re-sampled, so that the weights in the re-sampling rates are increased for
those cases which are most often misclassified. Kamel and Wanas [104] proposed
an evolving training algorithm (feature-based decision fusion) where base classifiers
utilize the outcome of an aggregation method to rearrange the training subsets. In
this method, repartitioning of the training data is not only dependent on the output
of the base classifiers, but also it depends on the prediction of the aggregation rule.
Some other techniques have been discussed in Chapter 3. Liu and Yao [79] proposed
a cooperative ensemble learning system (CELS) which emphasizes interaction among
individual base classifiers. CELS utilizes an unsupervised penalty term in the error
function to produce biased neural networks that are negatively correlated.

The most obvious benefit of the this type of cooperation is that it automatically
considers all the parameters and interactions that may influence system perfor-
mance, including interdependency and correlation among data partitions, without
any prior knowledge or users’ intervention. The wrapper approach has three draw-
backs, however: 1) it can be time demanding and expensive since the population
of partitions has to be evaluated and optimized step by step before finalizing the
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Figure 4.44: Cooperation through Sharing Training Information

training process, 2) decisions on base classifier and the MCS architecture have to
be made in advance, and 3) a powerful architecture and/or base classifiers may be
traded off by the weakness of selected partitions.

4.7.1 A Cooperative Approach to Optimization of Classifier En-

semble Training

We optimized the proposed sub-optimal training partition generation algorithm
(Clustering, De-clustering, and Selection) by adding additional steps which incor-
porate training information into the selection of the training partitions. In other
words, we enforced cooperation by sharing the output of the base classifiers with the
other modules in the system, e.i. “selection” module, to improve training partition
generation process. The rationale behind enforcing such cooperation is to direct the
system toward generating more optimal training sets. We refer to this approach as
Cooperative Clustering, De-clustering, and Selection (CO-CDS) algorithm.

CO-CDS works as follows: similar to CDS, in the clustering step, partitions
with high class diversity and low correlation are generated. This training solution
is de-clustered by randomly, with respect to class distribution, selecting 70% of the
training data and generating a new set of training partitions. This is done in such
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a way that the union of all the training partitions, j = 1, ..., m, in a solution i is
equal to the original training data:

Xtrain =
m⋃

j=1

Pij .

This step is repeated M times. M is an integer that can be set to any predefined
number by the user. By the end of de-clustering the step, the algorithm generates
M training solutions. Distance-array DAi is generated for all the training solutions.
The selection step is designed to aim at finding sub-optimal training partitions.
This step is optimized in CO-CDS and incorporates training information in the
process. First, all distance-arrays DAi i = 1, ...,M are used to cluster the training
solutions into two disjoint or overlapping clusters CL1 and CL2, similar to the
training partition cluster space presented in Figures 4.38 to 4.40. Any clustering
technique such as SOM, fuzzy c-means or kmeans can be applied. Then, between
two clusters, the one with the smallest distance-arrays is selected as the candidate
for further improvement

CL∗ = mini(
∑

(DACi)) CLi = 1, 2.

For each training solution belonging to cluster CL∗, there are m partitions.
These training partitions are used to train a single classifier. This classifier is then
tested on the “out-of-bag” training patterns. Out-of-bag data patterns are the ones
that do not appear in the training partition. All training subsets in a solution have
70% overlap. The chances are that the 30% or less of the training patterns do not
appear in each partition. The union of these patterns are referred to “out-of-bag”
subset Xob, and the classifiers tested on Xob as out-of-bag classifier Cob. The training
solution with the smallest out-of-bag error eob is selected as the sub-optimal set of
partitions

s = index(min(
m∑

i=1

ei,ob))

where
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ei,ob = 1− P (c|Xi,ob) Xi,ob ⊂ Xtrain.

Base classifiers are constructed on Ps and combined with product rule. The
resultant ensemble is tested on Xtest. CO-CDS steps is presented in Algorithm 6.

The overall process of the CO-CDS algorithm is illustrated in Figure 4.45. CO-
CDS and CDS were implemented and compared along with several other existing
MCS training techniques. It was expected that CO-CDS outperforms CDS. Results
are presented in the next section.
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Algorithm 6 Cooperative Clustering, De-clustering, and Selection (CO-CDS) Algorithm

Initialize:
Xtrain: training data Xtest: test data
Pij : jth partition in the ith training solution k: number of classes
M : predefined number of iterations DA: distance array
m: number of partitions size(Pij): size of partition Pij

Cob: out-of-bag classifier ei,ob: error rate of out-of-bag classifier

1. Clustering:
Slice strategy:

for j = 1 ≤ k
cluster class j ⊂ Xtrain to m disjoint subsets

end for
for j = 1 ≤ m
select one cluster from each class and construct P1j

adjust size(P1j)=size(Xtrain)
end for

2. De-clustering:
for i = 1 ≤ M

f = 70
construct T by randomly selecting f% of Xtrain

adjust size(Pij) so that size(Pij)+size(T )=size(Xtrain)
add T to all partitions of Pi to construct P(i+1)

construct DA for each Pi

end for
3. Selection:

cluster DA space into two clusters CL1 and CL2

select CL∗ as mini(
∑

(DACLi)), i = 1, 2
train Cob on all CL∗ training partitions
select s = index(min(

∑m
i=1 ei,ob))

train m MLP with Ps and use product rule to build the ensemble E
test E on Xtest
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4.8 Summary

In this chapter, we examined various aspects of cooperation at training level. A
summary of the findings is provided in the following:

• Class-based and feature-based measures: These measures enabled us to ex-
amine relationship between training data distribution and MCS performance.
They provided the means to estimate class diversity and correlation for a set
of training partition and to evaluate them with respect to classifier ensemble
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performance. The empirical results suggested higher class diversity is always
beneficial, regardless of the type of the base classifier or aggregation methods.
Furthermore, we noticed that class diversity was not sufficient to obtain effi-
cient training partitions. Training partitions should provide an accurate view
of the problem space to the base classifiers. Training partitions that were gen-
erated using slice and contour strategies were highly uncorrelated. However,
base classifiers trained with those subsets were biased and were not able to
generalize well individually and collectively in an ensemble. This behavior was
observed for both disjoint and overlapped partitions.

• Training Partitioning Strategies: Several training partitioning strategies were
proposed and evaluated on different datasets. Contour and slice strategies
outperformed the other strategies for smaller size overlaps, because of the
highly diverse partitions they generate in the “clustering” step. For large
overlaps, they demonstrated identical performances.

• Overlap size and the issue of classifier diversity: Empirical results illustrated
that MCS error is non-linearly correlated with the feature-based measures.
We also observed that best performed ensembles were not necessarily trained
with identical training subsets (100% overlap). For many of the datasets, the
best ensembles were constructed on overlapping partitions of size 65% to 96%
of the training data. We also examined classifier diversity and its relationship
with respect to training subsets distribution and ensemble generalization error.
Although highly uncorrelated training partitions transferred extra diversity to
the ensemble, resultant ensembles did not perform well. The most useful
diversity was achieved by perturbing a small subset of original training data
(less that 35%). This type of functionality is common among the most popular
MCS training methods. This important finding provided us with the guidelines
for developing new training partitioning algorithms: CDS and CO-CDS.
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Chapter 5

Comparative Study and Results

We proposed two novel MCS training methods, CDS and CO-CDS, in the previous
chapter. This chapter presents the results of a comprehensive comparative study of
different MCS training methods. These training methods were compared based on
three criteria: generalization ability, stability, and robustness to different degree of
problem difficulty.

5.1 Experimental Objectives

Our experiments were aimed at the following objectives:

• evaluating the effectiveness of the proposed MCS training approaches: CDS
and CO-CDS

• comparing CDS and CO-CDS training approaches with other existing ap-
proaches

• evaluating the stability of various MCS training approaches

• investigating the advantages of cooperation through sharing training informa-
tion against other types of cooperations at training level.

The first and second objectives were satisfied by implementing our proposed
CDS and CO-CDS approaches as well as several other MCS training approaches.
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Effectiveness of these approaches was evaluated and compared with respect to their
generalization ability. Generalization ability is the ability to correctly classify unseen
data. This the most common evaluation criterion for the performance of classifica-
tion algorithms.

For the third objective, we examined reproducibility of the classification results
(stability). A classifier is considered stable if it is capable of producing repeatable
results for the same problem [36]. We considered a pair-wise method to estimate
stability: measure of similarity or agreement [66]. Let D1, ..., Dr be a set of multiple
classifier systems. Then, we measure the stability index among a pair of Di and Dj

as

Sij =
1
t

t∑

k=1

agree(Di(xk), Dj(xk))

where t is the number of test samples, and agree is 1 if classifier ensembles i

and j agree on the class of test sample xk and 0 otherwise. An overall measure of
stability among ensembles can be obtained by averaging the degree of agreement
across the pairs. S varies between 0 and 1, where 0 represents the lowest degree of
stability and 1 the highest.

It is a well known fact that the robustness and effectiveness of any pattern
recognition problem is dependent on the data. Therefore, we collected 15 datasets
with different statistical characteristics and used them to evaluate MCSs training
approaches. A summary of datasets and their attributes can be found in Section 4.3
and in Appendix A.1. We grouped the MCS approaches based on their functionality,
whether they cooperate with or without sharing training information, and compared
them with respect to datasets level of difficulty.

5.2 Experimental Setup

The size of ensembles (or partitions) was set to m = 7 for all experiments. Each
base classifier was a one-hidden layer multi-layer perceptron. These classifiers were
trained using the error backpropagation algorithm. The number of hidden units
for the classifiers was set to 6, 7, 8, 9, 10, 11, and 12 for each base classifier in
the ensemble. The original dataset was divided into two subsets of training and
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test using the holdout method. This was accomplished with respect to the original
distribution of the classes. We ran each experiment 10 times for each dataset and
for each ensemble technique. It is important to note that, in this study, we are
mostly interested in to investigate the effectiveness of the training approach used
for construction of the ensemble techniques, rather than comparing the ensemble
techniques in terms of their architectures.

The following ensemble methods were implemented and compared in these ex-
periments. Approaches that cooperated without sharing training information were:

• Majority Vote (Maj): Classifiers were trained independently on an identical
training data. Then, majority vote aggregation rule was used to combined
base classifiers output.

• Product Rule (Prod): Classifiers were trained independently on an identical
training data. Then, product aggregation rule (Equation 2.4.1) was used to
combined base classifiers output.

• Average Rule (Ave): Classifiers were trained independently on an identical
training data. Then, average vote aggregation rule (Equation 2.4.1) was used
to combined base classifiers output.

• Bagging (Bag): In this method, multiple versions were formed by making
bootstrap replicates of the training data and using these new sets to train the
classifiers. Bagging algorithm is discussed in detail in Section 3.2.4.

• Divide-and-Conquer (DAC): Divide-and-conquer method proposed in [38] was
implemented in this study. Fuzzy c-means clustering method was applied to
partition the training data (see Section 3.2.4).

• Random Partitioning (RP): In this method, m training partitions were gener-
ated by random sampling. Sampling was performed without considering the
original class distribution. The size of partitions was equal to the size of the
original training data, where some data patterns appeared several times in a
partition and few others did not. The union of the training partitions was
identical to the original training data. Partitioning was repeated 100 times.
Training sets with the smallest distance-array were selected to construct an
ensemble.
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• Stratified Partitioning (SP): In this method, m training partitions were gen-
erated by random sampling. Sampling was performed with respect to original
class distribution. The union of the training partitions was identical to the
original training data. Partitioning was repeated 100 times. Training sets with
the smallest distance-arrays were selected to construct an ensemble.

• Clustering, De-clustering, and Selection (CDS): This algorithm is discussed
in detail in Section 4.6.1. Fuzzy c-means clustering algorithm was used to
generate the initial set of training solutions.

Approaches that cooperated through sharing training information were:

• Ada-boosting (A-BST): Training data sampling is done is in such a way that
misclassified patterns have a higher likelihood to be selected for the next step.
Ada-boosting algorithm is discussed in Section 3.2.4.

• Feature-based decision fusion (FBDF): Feature-based decision fusion approach
has been discussed in [104]. For this algorithm, average rule was used for
final decision making. Detector and aggregation module were similar to the
individual classifiers and had 6 hidden units. For each set of FBDF ensembles,
detector and aggregation module were trained four time.

• Cooperative Clustering, De-clustering, and Selection (CO-CDS): This algo-
rithm is discussed in details in Section 4.7.1. Fuzzy c-means clustering algo-
rithm was used to generate the initial set of training solutions. Fuzzy c-means
algorithm was also used to cluster distance array into two groups. A simple
linear classifier was applied to generate out-of-bag classifiers.

• Cooperative ensemble learning system (CELS): CELS method proposed in [79]
was implemented for this comparative study. CELS emphasizes cooperation
among individual base classifiers and utilizes an unsupervised penalty term
in the error function to produce negatively correlated neural networks (see
Section 3.2.4).

To decrease the likelihood of external factors, all the experiments were set up
using the same computing platform and language. All neural networks parameters
were similar, for the same dataset, and all utilized the standard backpropagation
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scheme. The same training and test sets were used to generate and evaluate the
ensemble methods in each iteration. For CDS and CO-CDS methods, all steps were
identical, except the “selection” step.

5.3 Results

5.3.1 Generalization Error

Tables 5.1 and 5.2 summarize the test results for 12 different methods and the
single best classifier. The error results reported in these tables are averaged over 10
iterations. Standard deviations are also highlighted in parentheses for each mean
value. Table 5.1 illustrates the results for low difficulty datasets and Tables 5.2 &
5.3 illustrate the results for high difficulty datasets. Each table is divided into two
sections based on the type of cooperation: “Cooperation Without Sharing Training
Information” and “Cooperation With Sharing Training Information”. The lowest
error rate for each dataset is underlined.

As stated before, one of the objectives of these experiments was to examine and
compare CDS and CO-CDS effectiveness. We assessed the “performance” based
on generalization error. This criterion was tested with respect to levels of problem
difficulty. CO-CDS outperformed CDS almost for all problems, except for satimage
and vowel. Considering CDS and CO-CDS only operated differently in the last
step of the algorithm (selection step), it can be concluded that superiority of CO-
CDS is mostly due to the use of training information in the selection of sub-optimal
training partitions. CDS significantly outperformed bagging in 40% of the cases and
bagging only outperformed CDS in 13% of the cases. For the other datasets, their
performances were almost identical. Performances of A-BST and CO-CDS were
comparable for 53% of the datasets. CO-CDS had the lowest error rates in 27% of
the cases when compared to A-BST, while A-BST outperformed on the remaining
20% of the datasets.

Overall, amongst all the approaches used in this study, CO-CDS had the best
generalization error. This approach significantly outperformed the other approaches
for 27% of datasets, with the average error rate of 4.6% for low-difficulty datasets
and 12.56% for high-difficulty datasets. A-BST was the second best with the average
error rate of 5.11% for low-difficulty datasets and 14.15% for high-difficulty datasets.
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Table 5.1: Test Error (%) and Standard Deviation for various MCS methods and
low difficulty datasets

Methods Clouds Concentric Iris Ionosphere Glass Wine B Cancer

SB 15.33(4.11) 1.01(0.45) 5.07(3.51) 11.2(2.16) 10.43(6.43) 3.9(1.44) 3.74(0.8)

Cooperation Without Sharing Training Information

Maj 11.96(1.18) 0.68(0.33) 4.53(2.82) 10.06(2.34) 8.12(3.25) 2.38(1.73) 3.38(0.81)

Ave 11.96(1.18) 0.71(0.28) 4.8(2.92) 10.26(2.08) 8.12(2.98) 2.03(1.85) 3.38(0.81)

Prodc 12.14(1.57) 0.71(0.34) 6.2(3.94) 9.03(2.2) 9.86(4.27) 3.79(3.77) 2.45(0.56)

Bag 12.22(0.52) 0.84(0.37) 5.33(4.52) 11.66(1.18) 6.96(2.38) 2.41(0.94) 3.24(0.16)

DAC 14.65(2.92) 1.16(0.39) 6.8(6.3) 11.09(1.6) 9.36(3.78) 3.79(2.72) 3.66(1.61)

RP 16.45(5.47) 3.82(1.18) 9.47(7.75) 13.74(6.13) 13.06(7.07) 5.41(2.54) 5.7(1.57)

SP 13.45(3.47) 0.73(0.68) 4.97(5.17) 9.94(2.73) 7.06(3.07) 3.45(1.07) 3.9(0.75)

CDS 13.69(1.27) 0.98(0.23) 4.53(3.12) 9.71(0.94) 5.8(1.67) 1.85(0.75) 3.18(0.25)

Cooperation With Sharing Training Information

A-BST 11.22(1.3) 0.75(0.21) 4.53(1.93) 8.91(1.81) 6.25(3.69) 1.72(1.72) 3.52(0.52)

FBDF 11.35(0.22) 0.95(0.26) 5.07(1.12) 10.74(1.63) 5.35(2.51) 2.41(1.48) 3.59(0.54)

CO-CDS 12.21(1.57) 0.79(0.28) 1.33(1.33) 9.37(1.66) 4.35(2.91) 1.52(1.58) 2.62(0.6)

CELS 12.51(1.19) 0.78(0.35) 4.53(1.79) 9.43(2.52) 7.93(3.76) 1.72(1.72) 3.31(0.47)
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Table 5.2: Test Error (%) and Standard Deviation for various MCS methods and
high difficulty datasets

Methods 20-Class German Phoneme 80-D Gauss

SB 16.4(0.9) 24.6(1.02) 19.16(1.64) 12.06(2.16)

Cooperation Without Sharing Training Information

Maj 14.64(0.9) 22.6(1.98) 17.82(1.82) 9.4(1.11)

Ave 15.3(0.9) 22.6(2.02) 17.82(1.21) 9.52(1.1)

Prodc 15.04(0.9) 22.6(2.8) 16.98(1.59) 9.4(0.65)

Bag 14.48(0.7) 23.44(0.88) 17.35(1.93) 12.53(1.5)

DAC 14.56(0.71) 23.88(1.22) 17.84(1.11) 12.99(2.08)

RP 16.04(6.8) 26.32(3.9) 20.36(3.1) 13.77(4.38)

SP 15.1(1.11) 23.32(1.9) 17.79(1.17) 9.77(1.38)

CDS 14.76(0.58) 24.1(0.9) 17.09(0.82) 8.25(1.03)

Cooperation With Sharing Training Information

A-BST 13.86(0.86) 21.92(1.02) 16.37(1.5) 10.18(1.12)

FBDF 15.26(0.72) 22.1(0.92) 16.45(0.48) 10.18(0.78)

CO-CDS 14.65(0.46) 21.96(1.04) 16.17(0.84) 7.95(0.85)

CELS 14.64(0.9) 22.6(1.02) 17.54(0.86) 9.7(0.69)

Fixed aggregation methods such Maj, Prod, and Ave performed surprisingly well
in comparison to Bag and DAC. This observation was particularly interesting since
these fixed aggregation approaches were trained on identical training data. The only
source of diversity was different parameters of the base classifiers. Bagging generally
performed better for high-difficulty datasets.

We noticed that amongst all the approaches, RP had the worst generalization
accuracy. This behavior is consistent with our findings in Section 4.6, since class
distribution was ignored when generating the training partitions. The resultant
training partitions had low class-diversity. Although we implemented the same
strategy as CDS for sub-optimal training partitioning selection, ensemble methods
trained with these biased partitions were not able to generalize well the unseen data.
Stratified partitioning approach, on the other hand, performed equally as well as
bagging and, to some extent, CDS. Unlike the findings presented in [38], divide-and-
conquer approach had the second worst error rates after RP. This could be due to
the differences in experimental setup of our study and Frosyniotis et. al.
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Table 5.3: Test Error (%) and Standard Deviation for various MCS methods and
high difficulty datasets

Methods Diabetes Satimage Vehicle Vowel

SB 24.71(2.08) 15.67(1.55) 21.29(2.9) 13.94(3.82)

Cooperation Without Sharing Training Information

Maj 22.59(1.39) 14.23(1.27) 19.48(2.96) 13.94(2.24)

Ave 22.07(1.38) 14.29(1.2) 18.25(2.79) 13.94(3.38)

Prodc 22.06(1.28) 14.42(0.99) 19.27(2.28) 13.94(3.49)

Bag 21.17(1.58) 14.54(0.81) 19.81(1.12) 13.94(2.32)

DAC 24.67(1.08) 15.3(1.39) 19(2.68) 14.89(2.83)

RP 26.1(4.41) 19.49(3.94) 25.97(4.08) 18.91(4.77)

SP 22.1(1.41) 14.8(1.26) 19.12(3.45) 14.18(2.66)

CDS 23.92(1.16) 12.67(1.08) 19.34(3.36) 12.04(1.97)

Cooperation With Sharing Training Information

A-BST 21.19(1.88) 12.98(1.17) 17.35(2.9) 13.18(3.49)

FBDF 23.25(0.8) 12.84(0.51) 18.01(2.23) 13.94(3.15)

CO-CDS 21.4(0.87) 12.69(0.82) 18.01(2.49) 12.57(2.59)

CELS 22.11(1.05) 14.39(0.83) 18.53(2.84) 13.94(1.82)
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Overall performances of MCS training methods categories are depicted in Figures
5.1 and 5.2. We averaged the error rates for all the datasets and displayed them
as dot plots for each category: cooperation without sharing training information,
cooperation with sharing training information. Results for low and high difficulty
datasets are plotted in two separate charts. In addition to presenting the error for
each individual approach in Figures 5.2 and 5.2, we averaged the error rates of all
approaches in each category and displayed the mean values in the graphs.

An important observation that stands out is that average error rates for ap-
proaches that cooperated through sharing training information were lower than
those that did not. This observation holds true for both types of datasets. The
dotted line represents the median value of the error rates for all the categories. It
appears that most or all of training methods that cooperated without sharing train-
ing information are grouped around or above the line, while the training methods
that cooperated through sharing training information are located under the line.
This again validates the advantages of using training information. No concrete
conclusion can be drawn regarding the differences between the two categories with
respect to data complexity. As discussed, in both Figures 5.1 and 5.2, the lowest
error rate was obtained by CO-CDS and the highest error rate by RP.

Figure 5.1: Mean error rates (%) for MCS training approaches categories (low-
difficulty datasets)
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Figure 5.2: Mean error rates (%) for MCS training approaches categories (high-
difficulty datasets)

5.3.2 Ensemble Stability and Generalization Error

The scatter plot of standard deviations and error rates for each ensemble method on
a plane is depicted in Figures 5.3 and 5.4. Each point on these graphs represents the
average error rate and standard deviation of all datasets, in a specific data category,
for an ensemble approach. We treated RP as an outlier, since it had the highest
error rate and standard deviation, and excluded it from these graphs.

In these Figures 5.3 and 5.4, we considered standard deviation as an indicator of
variability of the results. Lower standard deviation shows less variability, or in other
words, better ability of showing repeatable results. An interesting observation is
that, for low-difficulty datasets, most of the training methods that operated through
sharing information are clustered in the left corner of the scatter-plots (Figure 5.3).
The left corner represents multiple classifier methods with more stable behavior.
FBDF was the most stable training method and CO-CDS was the second stable
approach. A-BST, Maj, and Ave were more stable for low-difficulty datasets than
high-difficulty problems. Overall, three out of four training methods that cooperated
by sharing training information presented stable behavior.
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Figure 5.3: Scatter-plot of mean ensemble error rates (%) and standard deviation
(low-difficulty datasets)

Figure 5.4: Scatter-plot of mean ensemble error rates (%) and standard deviation
(high-difficulty datasets)
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An accurate approach for evaluating MCS stability is using Equation (5.1). As
mentioned before, we repeated the experiments 10 times for each ensemble approach.
Using Equation 5.1, we examined the ability of generating identical classes for similar
patterns in each iteration. We measured stability between two ensembles that were
generated in sequence. Results for this analysis is presented in Figures 5.5 to 5.7
for Vehicle, Breast Cancer and 80-D Gaussian datasets. Each point in these figures
indicates the mean, minimum and maximum value of stability measure for each
ensemble approach. Error rates are depicted on x-axis.

Figure 5.5: Stability vs Error for various ensemble methods (Vehicle dataset)

CDS was the most stable approach. This is most likely due the fact CDS ap-
proach selects the sub-optimal training partitions, in a large population of solutions,
based on low distance-array values. The resultant training partitions have similar
statistical characteristics compared to other random partitioning approaches. CO-
CDS was the second stable approach. Since selection of sub-optimal training parti-
tions in CO-CDS is dependent on out-of-bag classifier performance, this dependency
results in extra instability among ensembles generated in different iterations. FBDF
has also shown to be stable compared to other approaches. The reason for this sta-
bility lies in the way FBDF partitions the training data. FBDF partitions data by
assigning a weight to each training pattern. Weights are calculated based on the
performance of individual classifiers and the aggregation rule. Repartitioning of the
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Figure 5.6: Stability vs Error for various ensemble methods (Breast Cancer dataset)

Figure 5.7: Stability vs Error for various ensemble methods (80-D Gaussian dataset)
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Table 5.4: Test error (%) and standard deviation for various training methods
(Breast Cancer datasets)

Aggregation Schemes Fixed Trained

Training Methods Maj Prodc Ave SG DT Bay

Identical 3.38(0.81) 2.45(0.56) 3.38(0.81) 3.41(0.81) 3.39(0.65) 3.3(0.79)

Bootstrapping 3.24(0.16) 3.16(0.75) 3.33(0.69) 3.17(0.78) 3.04(0.95) 3.19(0.79)

CDS 3.1(0.31) 3.18(0.25) 2.97(0.33) 2.86(0.46) 2.55(0.41) 3.34(0.58)

CO-CDS 2.67(0.52) 2.62(0.6) 2.8(0.49) 2.31(0.67) 2.46(0.77) 3.08(0.77)

Table 5.5: Test error (%) and standard deviation for various training methods (Ve-
hicle datasets)

Aggregation Schemes Fixed Trained

Training Methods Maj Prodc Ave SG DT Bay

Identical 19.48(2.96) 19.27(2.28) 17.75(2.79) 18.65(2.62) 16.81(3.11) 18.2(2.38))

Bootstrapping 19.81(1.12) 17.88(3.2) 19.37(2.61) 16.92(2.57) 18.72(2.7) 18.48(2.41)

CDS 19.03(2.04) 19.34(3.36) 18.59(2.41) 17.1(1.98) 15.87(2.41) 18.01(2.03)

CO-CDS 18.12(2.39) 18.01(2.49) 17.83(2.65) 18.03(2.44) 16.58(2.61) 15.4(2.66)

data is performed several times until a stoping criterion is met. SB was the most
unstable approach, but its difference from Maj, DAC, Bag, and A-BST was not
significant.

5.3.3 Robustness and Efficiency

The robustness of some of the training methods used in this study was further
explored by examining their impact on the performance of several ensemble methods.
We considered three fixed ensemble methods including majority vote (Maj), product
rule (Prodc), and average rule (Ave) as well as three trained ensemble methods:
stacked generalizations, decision template and bayesian rule (see Section 2.4). The
base classifiers in these ensemble methods were trained using identical training data,
bootstrapping with replacement, CDS and CO-CDS. Experimental results for Breast
Cancer, Vehicle and 80-D Gaussian datasets are presented in Tables 5.4 to 5.6. The
lowest error rates for each aggregation scheme is underlined.

An obvious observation is that training the base classifiers with CO-CDS ap-
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Table 5.6: Test error (%) and standard deviation for various training methods (80-D
Gaussian datasets)

Aggregation Schemes Fixed Trained

Training Methods Maj Prodc Ave SG DT Bay

Identical 9.4(1.11) 9.4(1.15) 9.52(1.1) 8.73(1) 8.99(0.79) 9.3(0.81)

Bootstrapping 12.53(1.5) 9.69(0.9) 9.29(0.97) 9.61(0.81) 8.17(1.13) 9.03(0.94)

CDS 8.43(0.9) 8.25(1.03) 8.13(0.81) 7.53(0.95) 7.22(1.01) 7.83(0.82)

CO-CDS 7.93(0.96) 7.95(0.85) 8.22(1.08) 6.32(0.99) 7.89(0.85) 8.02(0.97)

proach resulted in lower generalization error for both fixed and trained aggregation
schemes. This observation was even more evident in the case of 80-D Gaussian
dataset. Ensemble methods trained with CDS approach also illustrated better per-
formances compared to the ones constructed on identical or bootstrapped training
data. This finding demonstrates another advantage offered by CO-CDS and CDS
approaches. Unlike some of the MCS training approaches such as A-BST, DAC
and CELS, CO-CDS and CDS have the flexibility of being applied to any ensemble
method.

5.4 Summary

The purpose of the comparative study presented in this chapter was to explore the
strengths and the weaknesses of different MCS training methods. A summary of
our observations is listed in the following.

• CDS approach: CDS performance was significantly better than divide-and-
conquer, random partitioning, and stratified partitioning. In addition, its
performance was slightly better than bagging and fixed combining approaches.
This behavior could be related to the fact that CDS encourages extra classifier
diversity, as compared to Bag, Maj, or other methods, while allowing high
accuracy for the individual ensemble members. This extra classifier diversity
can be related to non-overlapping data patterns (30% of each partition) that
are highly uncorrelated in terms of class distribution. CDS approach does
not depend on the classifier and it is simply a method for forming training
partitions. Furthermore, it can be used to construct any ensemble method.
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• CO-CDS approach: The process of selecting training partitions in CO-CDS
is dependent on the output of a classifier. Unlike CELS, FBDF and A-BST,
however, CO-CDS is a pre-classification process and does not depend on the ar-
chitecture or the individual classifiers of the ensemble. CO-CDS only requires
a computationally inexpensive classifier such as linear discriminant to generate
out-of-bag classifiers. Our prime conclusion is that CO-CDS is a promising
approach for generating sub-optimal training partitions on the datasets that
we experimented with.

The increase in accuracy using CO-CDS as compared to CDS was interesting.
Although CO-CDS is computationally more demanding than CDS, this find-
ing emphasizes that utilizing training information in the selection of training
partitions pays off in terms of reduced generalization error. CO-CDS outper-
formed most of the MCS training approaches compared in this study. The
combined effects of good data space coverage, efficient data sampling, and
classifier diversity boosted CO-CDS generalization ability in comparison to
other approaches. CO-CDS approach has the flexibility of training different
ensemble method.

• Cooperation through sharing training patterns: The most obvious conclusion
is that cooperation through sharing training patterns is vital to achieving
accurate classifiers and ensemble systems. Such cooperation can be in any
form of sharing training patterns, sharing the type of classes, or a combination
of both.

• Cooperation through sharing training information: The advantages and dis-
advantages of employing training information for building MCS have been
empirically investigated. Approaches that cooperate through sharing training
information (A-BST,CO-CDS, FBDF, and CELS) were able to outperform
other approaches on 11 of the 15 datasets. The presented results suggest that
although some of the simple aggregation techniques have been shown to be
effective, they are vulnerable to the incorrect information provided by the mis-
classified patterns. By sharing training information, such vulnerability may
be avoided.
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Chapter 6

Conclusions and Future Work

6.1 Contributions

In this thesis, we studied classifier ensemble from a new perspective “cooperation”.
We distinguished four levels of cooperation: decision, architecture, feature, and
training. The degree and method by which classifier ensembles “share” resources
were used as measures of cooperation. We narrowed down our focus on the training
level and examined the effects of sharing training patterns and sharing training
information on the performance of multiple classifiers. It is expected that this
analysis will contribute to the advancement of our current understanding of MCS,
its components and their interactions.

We developed two sets of measures to estimate class diversity and correlation
among training partitions: class-based and feature-based. These evaluation mea-
sures enabled us to evaluate the degree and type of sharing among a set of disjoint
and overlapped partitions. Class-based measures examine the issue of class diver-
sity among training partitions. We empirically assessed the measures using several
benchmark datasets. The results suggested that MCSs constructed on highly di-
verse training partitions have more accurate generalization ability. Feature-based
measures, on the other hand, examine the correlation among training partitions.
We developed and implemented several training partitioning strategies. Our aim
in these proposed strategies was to generate overlapping partitions that represent
different parts of the data-space so that MCS performance can be evaluated with
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respect to various types of training data distribution. Empirical assessment of the
feature-based measures showed that the combination of base classifiers which have
a more accurate view of the problem space result in a superior performance.

These findings allowed us to reason about the interactions between training par-
titions and ensemble performance, and provided guidelines for the generation of
sub-optimal partitions. With the aid of properly selected measures and training in-
formation, we proposed two new data partitioning approaches: CDS and CO-CDS.
In CDS, training partitions are selected based on their close correlation. While in
CO-CDS, in addition to correlation, performance of out-of-bag classifiers was also
taken into consideration. A comprehensive comparative study was conducted where
we compared our proposed training approaches with several other ensemble training
methods. CO-CDS and A-BST (Ada-boosting) were among the best training ap-
proaches. Performance of CDS was marginally better than bagging and was similar
to that of many fixed decision combining methods.

We categorized CDS, CO-CDS, and several existing MCS training approaches
into two groups and compared them in terms of classification accuracy, classification
stability, and their robustness for training different ensemble methods. Training
approaches were categorized based on their functionality; whether they take into
account training information provided by the classifier or the aggregation rule when
training partitions are generated. The results of this comparative study suggest
that cooperation is generally beneficial. Furthermore, it was shown that most of the
ensemble approaches that cooperate through sharing information are firstly more
accurate in terms of their ability of generalizing unseen data and secondly are more
stable in terms of reproducing similar results. Among training approaches studied
in this thesis, CDS and CO-CDS have shown to be more robust and efficient.

6.2 Future Work

The following issues remain open to future explorations:

• Despite various advantages of cooperation through sharing information, these
approaches can be computationally more demanding. The trade-off between
accuracy and computational efficiency of different approaches needs to be ex-
plored in future studies.
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• While the success of CDS and CO-CDS validates the robustness of these train-
ing approaches, more research needs to be conducted to better understand and
improve this behavior.

• Feature-based and class-based measures along with training information can
be used as fitness functions for guiding the “selection” of sub-optimal training
partitions using genetic algorithm. This approach can be compared with CO-
CDS and other MCS training approaches.

• As pointed out previously, classifier diversity that is achieved by highly uncor-
related training partitions does not improve classifier ensemble performance.
However, findings of this study suggest that there is a sweet spot for training
partitions correlation at which classifier diversity is at its best. This issue can
be explored further.

As discussed in Chapter 3, we distinguished four levels of cooperation in MCS.
We only covered cooperation at training level in this thesis. Other levels and types
of cooperations can be the future direction of this research:

• Cooperation at feature level: Feature partitioning has been shown to be an
effective way to produce diverse classifiers. The same type of analysis at
training level should be transferable to study cooperation at the feature level.
Evaluation measures can be developed to estimate correlation among disjoint
and overlapped feature subsets. The findings of such evaluation can be used
to generate sub-optimal feature subsets for training MCS base classifiers.

• Cooperation at decision level: Decision level is perhaps the most extensively
studied level among the other three. There has been some attempt to com-
pare different decision combination techniques. However, none has examined
combining methods from the cooperation perspective. A comparative study
needs to be conducted to evaluate relative effectiveness of techniques that do
not share classifier outputs (such as: maximum, minimum, and majority vote)
versus techniques that share outputs (such as: averaging, weighted majority
vote, decision template, and trained methods).

• Cooperation at architecture level: Since the significance of the above qualities
may depend on the architecture used, they should be studied in conjunction
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with several architectures. Sharing at training, feature and decision levels can
be considered with different architectures to examine the circumstances under
which they are most effective.
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Appendix A

Additional Results

A.1 Data Difficulty

We applied Self-organizing Map [63] to all the datasets to highlight complexity
of the data in terms of class compactness, isolation or linear class separability in
a two dimensional space (Figs. A.1-A.8). We grouped the datasets according to
their degree of difficulty into high and low (Table 4.3).The degree of difficulty was
determined based on data dimensionality, number of classes, and class separability
highlighted in Figures A.1-A.8. Regardless of data dimensionality, all the datasets
were projected in a two dimensional SOM space, some datasets happened to have
highly separable classes (e.g. Clouds, Iris, and Concentric), while some others did
not such as Phoneme, German, and Vowel.
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Figure A.1: Datasets: a) Clouds, b) Concentric
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Figure A.2: Datasets: a) IRIS, b) Ionosphere
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Figure A.3: Datasets: a) Glass, b) Wine
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Figure A.4: Datasets: Breast Cancer

113



−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−10

−5

0

5

−6
−4

−2
0

2
4

−5

−4

−3

−2

−1

0

1

2

3

4

(a) (b)

Figure A.5: Datasets: a) 20 Class Gaussian, b) 80-D Gaussian
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Figure A.6: Datasets: a) German, b) Pima Indians Diabetes
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Figure A.7: Datasets: a) Phoneme, b) Satimage
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Figure A.8: Datasets: a) Vowel b) Vehicle

A.2 Disjoint Partitioning

A.2.1 Class-based Results
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Figure A.9: 80-D Gaussian (Disjoint): a) Berger-Parker, b) Shannon Entropy
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Figure A.10: 80-D Gaussian (Disjoint): a) STD Inter-class/intra-partition b) STD
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A.2.2 Feature-based Results
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Figure A.11: Breast Cancer (Disjoint): a) Intra-class/Intra-partition, b) Inter-
class/Intra-partition
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Figure A.12: Breast Cancer (Disjoint): a) Intra-class/Inter-partition b) Inter-
class/Inter-partition
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Figure A.13: German (Disjoint): a) Intra-class/Intra-partition, b) Inter-class/Intra-
partition
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Figure A.14: German (Disjoint): a) Intra-class/Inter-partition b) Inter-class/Inter-
partition
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A.3 Overlapped Partitioning

A.3.1 Class-based Results
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Figure A.15: 80-D Gaussian (Overlapped): a) Berger-Parker, b) Shannon Entropy
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Figure A.16: 80-D Gaussian (Overlapped): a) STD Inter-class/intra-partition b)
STD Intra-class/inter-partition
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A.3.2 Feature-based Results

215 220 225 230 235 240 245
6

8

10

12

14

16

18

20

22

E
rr

o
r 

%

Intra−class, Intra−partition Distance

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1

7.5

10

12.5

15

17.5

20

22.5

25

E
rr

o
r 

%

Inter−class, Intra−partition Distance

(a) (b)

Figure A.17: Breast Cancer (Overlapped): a) Intra-class/Intra-partition, b) Inter-
class/Intra-partition
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Figure A.18: Breast Cancer (Overlapped): a) Intra-class/Inter-partition b) Inter-
class/Inter-partition
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Figure A.19: German (Overlapped): a) Intra-class/Intra-partition, b) Inter-
class/Intra-partition
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Figure A.20: German (Overlapped): a) Intra-class/Inter-partition b) Inter-
class/Inter-partition
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