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Abstract

Software monitoring and logging is one of the most important tools a software

engineer has when faced with the challenge of auditing or analysing a software

system. However, the difficulty in effectively monitoring a system, managing its

logs and cross referencing them with source code makes software re-engineering a

rigorous and complex task. This thesis aims to address this issue by providing

a framework that enables pattern matching between a software log and an event

pattern expression that is based on a monitoring policy. The framework consists of

parsers and annotators that facilitates transformation of a monitoring policy into

a Petri Net as well as source code annotation for gathering data through logged

events. It further expands upon this work by proposing an adaptive logging frame-

work that will greatly improve the quality of log management by autonomically

adjusting the amount of information logged based on the application’s operational

environment. Finally, a prototype system of the policy driven monitoring frame-

work is implemented and tested with applications of different scales as a proof of

concept for the proposed framework.
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Chapter 1

Introduction

Over the last decade we have witnessed the evolution of large industrial soft-

ware systems from a single server application to component-based collaborating

applications deployed over both local and wide-area networks. The distributed na-

ture of these component-based systems provides significant benefits with respect to

software quality, development time and deployment costs. However, such systems

also pose significant challenges with respect to system monitoring, logging, auditing,

and diagnosing. Specifically, these collaborating applications often consist of com-

ponents that were developed independently, and thus utilize heterogeneous event

logging and diagnostic techniques as well as diverse log management and system

monitoring policies. In this context, an interesting challenge is to devise software

engineering techniques to amalgamate and integrate the heterogeneous logging and

monitoring processes so that such software systems may still be analyzed, audited

and diagnosed in an effective and efficient manner.
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Chapter 1. Introduction 2

1.1 Motivation

A log is a record of the events, operations and other associated data that oc-

curred within a software system. Logs can contain a variety of information, such

as data related to system performance, security, resource usage and even person-

ally identifiable information. While traditionally logs have been primarily used for

debugging and troubleshooting, nowadays logs are one of the most important tools

a software engineer uses to optimize system performance, recording user’s actions,

and providing information for investigating and preventing security breaches and

other malicious activities. These logs can be generated by many different sources,

including:

• performance monitoring software such as statistical profilers, task managers,

CPU and memory usage analyzers;

• security software such as firewalls, antivirus softwares, worm detection and

phishing protection systems;

• operating systems on servers, workstations and networking equipment;

• other applications that need to keep track of user data and history, such as

an Internet browser.

Because of the widespread deployment of distributed applications on networked

servers, workstations and other devices, the size of logs generated for a system has

multiplied many-fold. Coupled with the many sources and purposes that logs serve
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as mentioned above, the volume of logs for a software system has increased greatly.

This calls for the need for a system monitoring framework which:

1. analyzes a software system and gathers the appropriate logging data in suffi-

cient detail pertaining to a particular problem or investigation;

2. models appropriately these logged data; and

3. interprets the logged data according to some policies as guidelines to deter-

mine whether a threat or a deviation from the system’s functional or non-

functional requirements has been observed.

1.2 Problem Description

While many organizations recognize the need of logging in their software sys-

tems, many fail to manage, analyze and make use of the information logged. One

of the biggest causes of this may be that log analysis — the study of log entries to

identify events of interest — has become a non-trivial task for the software engineer

due to the sheer volume of logs as well as the lack of software tools to effectively

analyze the logs for events of interest.

Currently, most software monitoring tools use the concept of logging levels,

which is typically a parameterized input to the software system, to dictate the

amount of information the software system records in its logs. At arbitrarily defined

levels, the amount of information logged may easily be too little or too specific for

the issue under investigation. Furthermore, even with the appropriate amount of
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information in the logs, correlating the sequence of logged events to their origins in

the source code proves to be a challenging problem.

Traditionally, most logs have not been analyzed in a dynamic or real-time

manner. As such, many software engineers regard log analysis as a reactive rather

than a proactive solution to problems. They see log analysis as something that

has to be done after a problem is identified via other means rather than using

logging and system monitoring to identify ongoing activity and look out for signs of

imminent problems. Without the proper tools and framework, a software engineer

that wishes to perform log analysis will have to manually parse through source

code and log files to correlate the cause and effect of the events logged. In large

distributed software systems, this task becomes gargantuan and next to impossible

for a human to perform. Thus, the lack of proper tools and framework to monitor a

system and analyze its logs significantly reduces the role of logging in investigating

and identifying issues within a software system.

1.3 Thesis Contribution

This thesis aims to address the aforementioned problem by proposing a frame-

work that consists of tools and techniques to facilitate the analysis, design and

deployment of logging and monitoring processes for legacy component-based ap-

plications. The framework proposed identifies spots in source code to be logged,

defines and formulates monitoring policies, and captures events from the source

code to match against the monitoring policies. The framework assumes that these

applications have well-defined system requirements, architecture and logging re-
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quirements. System requirements define the purpose of the application and the

functionalities it supports. Logging requirements define the purposes for logging

(e.g., security, diagnosis, auditing) as well as other constraints. The major contri-

butions of this thesis are:

1. A conceptual model and language for specifying logging and monitoring re-

quirements — logging and monitoring requirements can be specified in a pol-

icy language which conforms to a specific domain model presented in UML

and is transformable to a Petri Net for application and analysis;

2. A mechanism for parsing, analysing and annotating source code for monitor-

ing — the source code is parsed to instantiate a domain model that parallels

that of the policy domain model. Lines of code that are of potential moni-

toring interest are annotated for comparison;

3. A pattern matching framework that locates the logging and monitoring re-

quirements within the annotated source code — the pattern matcher compares

the policy with the annotated source code and applies concepts from dynamic

programming to identify the best match of the source code to the monitoring

policy;

4. A plug-and-play architecture for insertion and modification of monitoring

probes that takes advantage of Artificial Intelligence theories to facilitate

adaptive logging — the aforementioned process is applied to an architecture

where monitoring probes can be defined and revised on-the-fly, and using a

blackboard design pattern, the monitoring framework can dynamically adjust
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and adapt to these new changes and requests.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides a survey of ex-

isting research in areas related to the work presented in this thesis, which includes a

discussion on system monitoring, source code analysis and instrumentation, pattern

matching and adaptive logging. Chapter 3 presents a high-level overview of the pro-

posed policy-driven software monitoring system. Chapter 4 provides a conceptual

model and a language for specifying the monitoring requirements. Chapter 5 de-

scribes the parsing of the monitoring policy and the tree representation it generates.

Chapter 6 discusses the parsing and analysis of source code in order to annotate

it for instrumentation. Chapter 7 presents a pattern matching algorithm to locate

areas in the source code that matches the monitoring requirements. Chapter 8

presents an architecture for adaptive logging that allows monitoring probes to be

dynamically inserted. Chapter 9 describes the experiments performed with a pro-

totype system that implements the presented framework and the feasibility studies

performed. Finally, Chapter 10 presents the conclusions and discusses avenues for

future work.



Chapter 2

Related Work

The area of software logging and monitoring has been investigated over the

years by numerous researchers. However, the constant change of software plat-

forms, operating environments, software system deployment topologies and compo-

nent communication protocols require continuous work in this area. In light of such

work, this chapter presents existing research and papers related to this dissertation.

This chapter is divided into three subsections. Section 2.1 will present an overview

of existing monitoring systems found in existing literature. Section 2.2 will discuss

logging tools and frameworks currently in use in the industry. Section 2.3 will sur-

vey well known Artificial Intelligence techniques in pattern matching and dynamic

programming that can be applied to software monitoring.

7
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2.1 Monitoring

System monitoring is the observation of specific activities or events that oc-

cur in an information system as specified by a predefined set of rules or policies.

Related work in the area of monitoring information systems can be classified into

five major areas, namely monitoring frameworks, monitoring to facilitate program

understanding, monitoring through code instrumentation, monitoring for quality

assurance and dynamic monitoring.

In the area of monitoring frameworks, Mansouri-Samani and Sloman presents

in [1] a flexible technique that can be used to process and disseminate events for

many different applications such as networked, distributed and event based applica-

tions. The technique models composite events as rules. A dissemination technique

allows for the appropriate monitoring of components to be distributed close to

where events are generated. This allows for network traffic reduction caused by

event generation in large systems. In [2], Sosnowski and Poleszak propose a col-

lection of monitoring systems that occur at three levels of abstraction, namely the

operational, low architecture and high architecture level. These are integrated with

available hardware and software mechanisms for commercial-off-the-shelf (COTS)

based systems. Depending on monitoring objectives, the appropriate level of ab-

straction for logging is selected. Gwadera, Atallah and Szpankowski describes in [3]

a statistical technique to minimize the number of false alarms when a pattern of sus-

picious events is detected. The technique aims to quantify the probability of such a

pattern occurring in a large log database within a specific window size. Given this

probability, the technique determines an alarm threshold so that the probability of
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false alarms is bounded by a given constant. Finally, Bertino, Ferrari and Guerrini

proposes in [4] an event-based temporal object model that keeps track of selected

values within the history of a data object. The paper also proposes techniques for

querying a database with incomplete temporal information. The objective of this

work is to support software monitoring applications so that events causing changes

to particular objects are recorded. Moreover, the proposed technique stores the

history of data items only when certain specified events occur.

In the area of monitoring for program understanding, Goldman describes a

monitoring program called Smiley in [5] that can selectively log calls to functions

exported from shared libraries of the operating system as they are made by an

application. By selecting library calls to monitor, software engineers may obtain an

understanding of an application’s implementation. This logging technique can also

be used as an aid in comprehending the implementation of COTS software. Sefika,

Sane and Campbell discusses in [6] a monitoring approach that integrates logic-

based static analysis and dynamic visualizations such as multiple code views and

perspectives to validate a software system. This approach determines a system’s

design-implementation congruence by studying coding guidelines, design patterns,

connectors and subjective design principles like high cohesion and low coupling.

Lastly, Ulrich et al. in [7] presents a tracing-based analysis technology to test

the trustworthiness of the requirements of a distributed system. The technique is

based on a model checker that compares a model of the event logs collected during

a system run with the specification of the system. The result of such a comparison

is a visualization of fulfilments and violations of intended system behavior.
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In the area of monitoring through code instrumentation, Kishon, Hudak and

Consel introduces in [8] the concept of monitoring semantics, a model of program

exeuction that captures monitoring activity as those found in debuggers, profilers,

tracers, daemons etc. Monitoring semantics forms a practical basis for instrument-

ing code into programs by embedding monitoring actions into the program. Moore,

McGregor and Breen compares in [9] two system monitoring methods: passive

network monitoring and kernel instrumentation. The comparison points out that

kernel instrumentation has the potential to give an exact record of what occured in

the system kernel. Passive network monitoring, however, is being used as a replace-

ment for kernel instrumentation in some situations, despite the fact that it performs

poorly as a direct replacement. This is partially due to the non-intrusive nature

of passive network monitoring, which is particularly valuable when the source code

for the kernel that needs to be monitoried is unavailable. Robinson presents in [10]

a general framework that monitors the requirements of software as it executes. The

framework relies on instrumented code such as assertions and model checking to

inform the monitor of the software system’s execution.

In the area of monitoring for quality assurance, Lin and Siewiorek offers in [11]

a proactive approach to failure-prediction by a heuristic called the Dispersion Frame

Technique (DFT). The DFT is based on the shape of the inter-arrival time function

of intermittent errors observed from actual error logs. The DFT aims to minimize

error-log entry points required by statistical methods for failure prediction in dis-

tributed applications. With regards to monitoring deployed software to allow for a

prompt reaction to failures, Bowring, Orso and Harrold presents the technique of

software tomography in [12], which splits monitoring tasks across many instances
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of the software by collecting partial information from users through light-weight

instrumentation and then merging these data to get the complete monitoring in-

formation. Peng, Wu and Sun discusses in [13] an online monitoring method that

uses a distributed event-driven hybrid monitor system with a synchronous clock

system. The resulting prototype online monitoring program OM proves to be use-

ful in efficiently testing and debugging parallel and distributed applications and

systems.

In the area of dynamic monitoring, Robinson presents in [14] an implementa-

tion of rule-based monitors derived from system requirements. Robinson’s ReqMon

research project uses the KAOS language and the Dwyer temporal patterns to de-

fine the monitoring requirements. ReqMon’s monitoring is dynamic in the sense

that a requirement’s satisfaction status is dynamically updated after an event oc-

curs, but is not adapative in the sense that monitors do not change dynamically on

which level and what to monitor according to received events.

2.2 Logging

Logging is the creation of a record of events occuring within an organiza-

tion’s systems and networks [15]. There are a number of existing logging tools

currently in use in the industry. Sun Microsystems develop a Solaris-based tracing

facility known as DTrace [16]. DTrace provides an infrastructure for dynamically

logging a system’s behaviour which allows software engineers and system admin-

istartors to observe, debug and optimize system behaviour. To facilitate dynamic

tracing, DTrace uses the D language for DTrace to specify the variables for trac-
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ing. DTrace programs work by setting up and enabling probes; whenever a probe

fires because the condition for the probe is met, the action associated with the

probe in the DTrace program is executed. Similarly, the Unicenter tool [17] by

Computer Associates supports tracking and monitoring system configurations and

events. Unicenter consists of an Event Management System (EMS), an Advanced

Event Correlation (AEC), and an Alert Management System (AMS). These com-

ponents allow for monitoring and consolidating event activity from a variety of

sources, grouping associated events for further processing, initiating actions based

on specific policies and managing the highest severity events. Microsoft also pro-

duces its own logging framework known as Microsoft Operations Manager (MOM)

[18]. It monitors multiple servers in an enterprise environment by placing MOM

agents on the computer to be monitored. The MOM agent collects events from

several sources on that computer, such as the Windows Event Log, and forwards

them to the MOM management server. The server places those events into the

MOM database for further processing by using rules to identify issues that affect

the operations of the whole system. These rules can trigger a variety of actions,

such as sending notification to a human via e-mail or a pager message, generating

a network support ticket, or even trigger a workflow that resolves the error causing

the alerting event in the first place.

There are also a number of open source logging frameworks available. The

Business Intelligence Reporting Tool (BIRT) [19] is an Eclipse-based open source

reporting system, intended primarily for web applications based on Java and J2EE.

BIRT has two main components: a report designer based on Eclipse, and a runtime

component that can be added to an application server. An interesting applica-
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tion of BIRT is the creation of monitoring reports by obtaining data from different

logging systems applied to a given software application. Another open source log-

ging framework also related to Eclipse is the Eclipse Test and Performance Tools

Platform (TPTP) Project [20]. TPTP contains a number of tracing, monitoring

and profiling tools, including the Log and Trace Analyzer (LTA) [21] which is an

Eclipse plug-in editing tool that can build symptom catalogs for an application. The

information specified in the symptom catalogs is used to assist problem analysts

in debugging and resolving problems occurring during deployment and operation

of an application. This package also includes an Eclipse plug-in editing tool for

Generic Log Adapter parser rules, which operates on both Linux and Windows.

IBM also offers a Linux kernel debugging tool called Kprobes [22] that logs debug-

ging information such as the kernel stack trace, kernel data structures and registers

by dynamically inserting breakpoint instructions at a given address in the running

kernel. Execution of the instruction results in a breakpoint fault and Kprobes hooks

on to the breakpoint handler to collect the appropriate information. Another open

source logging framework is Systemtap [23]. Systemtap allows software engineers

to create scripts to name events such as entering or exiting a subroutine or a timer

expiring etc. and give them handlers that specify the actions to be taken when

the event occurs. It works by translating the scripts to C and compiling it into a

kernel module. Loading the module activates all the probes by hooking them to

the kernel, and thus when an event occurs the compiled handlers will run. The

handlers normally extracts contextual data from the event, store them into other

variables, or outputs them to a file or to the screen.

Finally, with respect to event languages for logging, IBM has contributed the
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Common Base Event [24] specification language in this facet for defining mecha-

nisms for managing events in business enterprise applications. The purpose of the

Common Base Event is to establish a new standard to facilitate the effective inter-

communication among disparate enterprise components through log record man-

agement, problem determination and repair within an enterprise. An interesting

application of the Common Base Event specification is seen in the communication

of self-healing actions within IBMs autonomic computing model [25].

Several logging frameworks and protocols have also been proposed from aca-

demic research as well. Barga, Chen and Lomet proposed in [26] an enhanced

logging framework prototype for component-based software systems. Rather than

force logging all events from intercomponent method calls and returns, the enhanced

logging prototype only logs information required to remove nondeterminism, and

only force log when an event commits a component’s state to the other parts of the

system. Kongmunvattana and Tzeng proposed in [27] the lazy logging protocol for

software distributed shared memory (SDSM) systems. The lazy logging protocol

works by minimizing failure-free overhead by logging only the data necessary for

recovery, hence effectively reducing the number of meassges logged and the amount

of log data. They further expanded on this concept in [28] by introducing a similar

logging protocol for adaptive software distributed shared memory (ADSM) systems

known as adaptive logging.

In the area of logging for system verification, Andrews and Zhang reports in

[29] the application of log file analysis techniques to check test results for a broad

range of testing tasks, such as unit-level and system-level testing, testing against
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requirements for critical and non-critical systems, and the use of log file analysis

techniques with other conventional testing methods. To perform these different

testing tasks, a logging framework that can adhere to a well-defined logging policy

which details what the software under test should log under what precise conditions

must exist. This can be facilitated either through standard code review and inspec-

tion procedures or through automatic code instrumentation as this dissertation

shall discuss.

In a related area of log file analysis, Vaarandi presented in [30] a Simple Log-

file Clustering Tool (SLCT) that uses a data clustering algorithm for log data sets

to determine frequent patterns from log files, build log file profiles and identify

anomalous lines from log files. By comparing against an expected profile of opera-

tion, faults in a system can be detected as they would show up as anomalies in the

log files. Stearley shows in [31] a novel apporach of using the bioinformatic-inspired

Teiresias algorithm to automatically classify system log messages. The occruence

statistics and results are found to be comparable to those from Vaarandi’s SLCT

mentioned above.

Finally, there are a number of other applications of logging and log analysis.

A common scenario is the study of logs to determine user patterns for a website

or a web service. For example, Lin and Hadingham use log analysis to track the

frequently traversed spots in a web site [32]. Similarly, Koch, Ardö and Golub

presents in [33] a case study of using log analysis techniques to improve a distributed

web service Renardus by analyzing usage patterns and activities as well as other

parameters such as entry points, exit points, referrals and points of failures within a
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session. Logging and log analysis is also important in studies of user behaviour and

human computer interaction. Maeda, Sugiyama and Mase presents a log analysis

of human behaviour on interactive amusement media in [34]. Lastly, log analysis

techniques can also be applied in the analysis of audit trails for access logs. Rostad

and Edsberg present in [35] a study of access control requirements for healthcare

systems. Since access logs are often huge in size and the use of uninformative

reasons for access is frequent, it is difficult to manually audit the log for misuse.

With the aid of logging analysis techniques and a proper logging framework, access

logs can be better analyzed to reduce exceptional accesses and minimize misuse.

By studying logs of the user’s manipulations and the protocols used during their

manipulations of the interactive media, better user interfaces can be designed.

2.3 Artificial Intelligence Techniques

To facilitate code instrumentation, the source code must be first parsed and

transformed into a model of code representation, such as an Abstract Syntax Tree

(AST). To pinpoint the location where the code should be instrumented, the AST

needs to be matched against a pre-defined policy which can also be represented as a

tree. In the area of tree representation, Knuth presents in his classical work [36] sev-

eral representations of trees that is helpful in tree comparison. Tree representation

techniques such as sequential memory, preorder sequential, family-order sequential,

level-order sequential and postorder with degrees are all useful representations for

tree comparison, manipulation and transformation.

Single keyword matching refers to finding all occurrences of a specific pattern in
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a given input text string [37]. There are four major approaches to solving the single

keyword matching problem. Davies and Bowsher presents in [38] a comparison of

these algorithms in terms of theoretical and experimental time and deteremined

there is no overall ‘best’ algorithm. Their results for each of the algorithms are

briefly discussed below.

The simplest technique for single keyword matching is the brute-force or naive

algorithm, which scans the text and checks the pattern against the input text string

character by character. If the length of the pattern is m and the lenght of the input

text string is n, then the brute-force method has a runtime of O(mn). Knuth,

Morris and Pratt presents an improvement of this techinque in [39]. Their method,

commonly known as the KMP algorithm, scans the text progressively and uses

knowledge of the already compared characters to determine the next position to

compare the pattern against. It does this by constructing a next function table

that determines the number of characters to slide the pattern to the right in case of

a mismatch during the pattern matching process. The KMP algorithm has a the-

oretical behaviour of O(n+m) while the next function table occupies O(m) space.

The fastest pattern matching algorithm for single keyword matching is proposed

by Boyer and Moore [40] and is known as the BM algorithm. The BM algorithm

compares the pattern against the text in the reverse direction from right to left. If a

mismatch occurs, a pattern shift is computed. To speed up the process, the pattern

is preprocessed to produce the shift tables. While the theoretical behaviour of the

BM algorithm is identical to that of the KMP algorithm, experimental results show

that the BM algorithm is practically faster than the KMP algorithm. Lastly, Karp

and Rabin presents the KR algorithm in [41]. The KR algorithm takes up memory
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space by treating each possible m-character sections of the text as a keyword in

a hash table, computing the hash function of it and checking whether it equals

the hash function of the pattern. While the KR algorithm theoretically behaves

linearly, the substantially higher running time of hash function computation makes

it unfeasible for pattern matching in strings.

In the area of matching sets of keywords, Aho and Corasick proposes the well

known AC algorithm in [42] by constructing a finite state pattern matching machine

from a given set of keywords and then using the finite state machine to process the

text string in a single pass. Aoe, Yamamoto and Shimada further improves this

algorithm in [37] by detecting and removing redundant operations from the AC

finite state machine.

While the techniques discussed above deal with exact string pattern match-

ing problems, an extension to these problems is the approximate string matching

problem. The approximate string matching problem arises in a number of areas

in artificial intelligence research like speech recognition and image processing such

as the work listed in [43]. It is also seen in areas like molecular biology, spelling

correction, file comparison etc. Hall and Dowling presents a survey of this problem

and its solutions in [44]. The simplest approach to solving the exact string pattern

matching problem as discovered independently by many researchers [37] is to use

a simple dynamic programming algorithm to find the edit distance, which is the

smallest number of editing transformations required to change one file to match

another. There are two common edit distance measures, namely the Hamming dis-

tance and the Levenshtein distance. The Hamming distance measure the number
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of positions with mismatching characters in two strings of equal lenght. The Lev-

enshtein distance, on the other hand, measures the minimum number of character

changes, insertions and deletions required to transform one string to another, where

both strings do not have to be of identical length.

Applying these techniques discussed to broader fields, string pattern match-

ing algorithms can be used in multidimensional matching problems from pictures

and graphs to protein structures and nucleic acids. Of particular interest in this

area is the tree pattern matching problem, as it is a recurring problem in many

programming tasks such as interpreter and compiler design, code optimization and

symbolic computation. Hoffmann and O’Donnell in [45] reviews the relationship

between string and tree pattern matching techniques and evalutes a number of tree

matching techniques for linear patterns. Just as the brute force method in string

pattern matching takes O(mn) time, the naive tree pattern matching approach,

which involves traversing a tree in preorder and recursively comparing against the

pattern at each node visited, also executes at the order of O(mn) for a pattern tree

of size m and an input text tree of size n. For linear patterns, there are two general

pattern matching techniques, namely bottom-up and top-down. In the bottom-up

approach, the subject tree is traversed and all patterns and parts of the patterns

are matched at each point. A table is built to determine whether a matching node’s

children also match with the matching pattern node’s children. Once the tables are

precomputed, the matching time is O(n); but the preprocessing time and memory

space required to create these tables are intensive. In contrast to the bottom-up

approach, the top-down approach treats each root-leaf path of the pattern as a

string representation and then preprocesses these strings using the AC approach to
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determine all instances of path strings in the input subject tree. The preprocess-

ing time of this top-down approach requires only O(m) time. Wuu in [46] extend

this top-down approach by further reducing this tree matching problem to a string

matching problem and applies the KMP string-matching algorithm to tree patterns.

A number of optimizations have also be performed on these tree pattern match-

ing algorithms. Kosaraju in [47] explores the possibility of finding a better algo-

rithm than the naive approach to the classic open problem on tree pattern matching,

where don’t care symobls and linear string max-min convlution are also treated.

Dubiner, Galil and Magen improves upon Kosaraju’s algorithm in [48] and designed

an even faster simple tree pattern matching algorithm. Valiente in [49] presents the

Berztiss Tree Pattern Matching algorithm and establishes its correctness and ef-

ficiency. Ejnioui and Ranganathan explores two systolic algorithms using VLSI

approaches in [50] which shows a significant improvement over previous implemen-

tations.

Just as the exact string matching problems can be applied to tree pattern

matching, the approximate string matching techniques can be used to apply to

approximate tree pattern matching problems. Wang et. al demonstrates an im-

plemented solution to this approximate tree pattern matching problem with the

Approximate-Tree-By-Example (ATBE) system in [51]. Given a pattern, the ATBE

system allows users to retrieve approximately matching trees to the pattern from a

database, using a two-dimensional query language.

A noteworthy application of these tree pattern matching techniques is demon-

strated by Aho, Ganapathi and Tjiang in [52]. They present a tree-mainpulation
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language known as twig to construct efficient code generators such as lexical ana-

lyzer generators and parser generators. The key idea of twig is that it combines the

top-down tree pattern matching approach as presented by Hoffmann in [45] with

dynamic programming to transform a tree-translation scheme into a code genera-

tor. The dynamic programming algorithm is a simplication of Aho and Johnson’s

optimal code-generation algorithm [53] used in several compilers. On a similar line

of research, Chen, Lai and Shang demonstrate in [54] how a simple tree pattern

matching algorithm can be used to optimize compile time. Inherent in the compiler

is a tree pattern matching problem that matches the intermediate code with the

tree-rewriting rules of the instruction description which describes the target sys-

tem architecture to generate the corresponding assembly code. By using a hashing

function, the tree pattern matching problem becomes a simple number comparison,

which significantly speeds up the compilation time.

Furthermore, Ramesh and Ramakrishnan discusses in [55] methods of matching

non-linear tree patterns. If a pattern contains variables and each variable occurs

only once, then the pattern is linear; otherwise the pattern is said to be non-

linear. Similarly to the top-down approach, a finite state machine is constructed

for matching, but the automaton may contain cycles and extra pre-processing is

required.

The application of pattern matching to system monitoring is not new. A num-

ber of intrusion detection systems (IDS) have been proposed over the past few years

which identify patterns of security threats and vulnerabilities and monitors system

activites to recognize when a system is under attack or when the vulnerabilities are
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being exploited. Denning in [56] presents a model of a real-time intrusion detec-

tion expert system that identifies security violations by monitoring a system’s audit

records for abnormalities in system usage. The model includes profiles and statisti-

cal models of normal system usage so that anomalous behaviour can be picked out.

Similarly, Moore, Ellilson and Linger illustrates an approach for documenting sys-

tem attacks in a structured and reusable format in [57]. Security analysts can use

this information to identify and prevent common recurring attack patterns in infor-

mation systems. For example, Shieh and Gilgor proposes in [58] a pattern-oriented

intrusion detection model that tracks data flow through a software system to detect

intrusions and security violations. Their model is reliant on a predefined represen-

tation of various types of intrusion patterns that [57] and [56] may have identified.

Dharmapurikar and Lockwood suggests in [59] a hardware implementable pattern

matching algorithm for content filtering applications such as a network IDS. Their

approach is particularly suitable for implementation on network equipment such as

routers. Lastly, Xu and Nygard in [60] proposes a threat-driven approach of soft-

ware design that models security threats and functions as Petri Nets. The threat

mitigations are modeled by Petri Net-based aspects to facilitate the crosscutting

nature of security solutions. Their approach is applicable in securing a software

system by reducing design-level vulnearabilities in a software system.



Chapter 3

Architectural Overview

This section discusses how the proposed policy driven software monitoring

system can be broken down into different components and demonstrates the inter-

actions between them. From a high level perspective, the system can be broken

down into four major components, namely the Source Code Parser, Source Code

Annotator, Monitoring Policy Parser and the Pattern Matcher. The block diagram

presented in Figure 3.1 outlines the interaction of these different components and

artifacts.

The use case diagram presented in Figure 3.2 illustrate at a high level what

actions an user can perform and how they relate to each other in satisfying the

user’s end goal of locating source code statements that correspond to a sequence of

events defined in a monitoring policy.

The policy-driven software monitoring takes two objects as inputs - the source

code file and the monitoring policy file. For the purpose of the prototype presented

23
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Figure 3.1: Block Diagram Outlining the Workflow of the Policy Driven Software
Monitoring System
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Figure 3.2: Use Case Diagram of the Policy Driven Software Monitoring System

in this paper, the source code file is written in C; however, the architecture pre-

sented in this paper is general and can be easily modified for different programming

languages. The monitoring policy file provides the specification on what to monitor

in the software system according to the monitoring policy domain model presented

in Chapter 4. These two input objects go through two separate processing paths,

produce different artifacts along the way, and merge at the end to generate the final

output.

The source code file first goes through the static code parser which generates

a modified abstract syntax tree as an intermediate output. This modified abstract

syntax tree is passed to the code annotator where C source code is annotated di-

rectly into the source code to produce an annotated source code file. This annotated
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source code file is compiled and executed and its output is used to determine the

dynamic runtime path of the system. The static code parser and code annotator

are described in detail in Chapter 6.

On the other processing path, the monitoring policy goes through the monitor-

ing policy parser, which generates a monitoring policy tree. This tree representation

is then transformed into a Petri Net representation as discussed in Chapter 5, which

is used to match against the output of the annotated source code to determine the

location of lines of code that matches the sequence of events specified by the mon-

itoring policy. The workings of the pattern matcher are discussed in Chapter 7.

Figure 3.3 presents the activity diagram that pictorially describes these two

processing paths.

Figure 3.3: Activity Diagram for the Policy Driven Software Monitoring System

Figure 3.4 presents the sequence diagram that demonstrates how the artifacts

generated by the different components interact with each other.



Chapter 3. Architectural Overview 27

Figure 3.4: Sequence Diagram for the Policy Driven Software Monitoring System



Chapter 4

Monitoring Policy Event

Language

The first step in the policy-driven software monitoring process is to define the

policy that dictates what needs to be monitored. This chapter discusses the struc-

ture and syntax of the language used to create a policy for the proposed framework

by presenting the semantics, the domain model and the grammar for the policy

language. This chapter will conclude with a few example policies demonstrating

the language in application.

4.1 Monitoring Policy Model Definitions

This section will provide formal definitions to some important terms used

throughout this chapter with regards to the monitoring policy event language. Def-

28
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initions will be provided for the terms atomic events, composite events, monitoring

policy, log, logging system and monitoring system for the purpose of this thesis.

Definition 1: Atomic Event

An atomic event represents the occurrence of an action, such

as an user initiating a login procedure, or a state, such as a

TCP/IP socket is open on port 80.

Definition 2: Composite Event

A composite event consists of several atomic events that consti-

tute a certain behavioural or logical pattern. For example, three

unsuccessful logins from the same computer within one minute

may constitute a composite event SuspiciousLogin.

Definition 3: Monitoring Policy

A monitoring policy is a meaningful sequence of events that sig-

nifies a predefined behaviour worthy of monitoring, such as a

performance requirement or a security breach. For example, a

monitoring policy on a brute force attack of an user authenti-

cation system may be compromised of repeated SuspiciousLogin

events due to incorrect passwords of increasing lengths.

Definition 4: Log

A log is a record of an event that is generated by the instrumen-

tation of a probe in a logging system.
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Definition 5: Logging System

A logging system comprises of probes that are instrumented

when triggered by an event. The instrumentation of a probe

generates log records.

Definition 6: Monitoring System

A monitoring system gathers data through a logging system and

interprets the log data to recognize significant atomic or com-

posite events for diagnostic and auditing purposes.

4.2 Monitoring Policy Domain Model

The monitoring policy domain model specifies the concepts and relations be-

tween different objects found in a policy. A monitoring policy can be simplified

by breaking it down into two major components – patterns and operators. A pat-

tern is a common code structure that is of monitoring interest due to security or

peformance reasons. Some common code constructs include:

• File Operations – Code that opens, closes, reads from or writes to a file. In C,

these operations are characterized by the keywords fopen, fclose, fscanf

and fprintf.

• Function Call – Code that invokes another function in the same file or code

module with or without parameters.

• Memory Allocation – Code that performs dynamic memory allocation from

the heap by explicitly specifying the size of the block of memory required. In
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C, these operations are characterized by the keywords malloc, calloc and

realloc.

• Memory Deallocation – Code that explicitly releases a block of memory pre-

viously allocated. In C, this operation is characterized by the keyword free.

• Socket Opening – Code that opens a socket for communication (eg. a TCP/IP

socket). In C, this operation is characterized by the keyword socket.

• Socket Closing – Code that closes a socket previously opened for commu-

nication. In C, this operation is characterized by the keywords close and

shutdown.

• Socket Data Operations – Code that reads or writes data to a socket previ-

ously opened for communication. In C, this operation is characterized by the

keywords read and write.

• Wildcard – Any of the above common code structures.

On the other hand, an operator defines the temporal and logical ordering of two

patterns. There are three operators available:

• Sequence – this operator defines a temporal ordering of two patterns, specif-

ically the first pattern occurs before the second pattern. This operator is

represented by the “;” symbol.

• Choice – this operator defines a logical choice between two patterns and is

typically stated as the boolean OR operator in literature. This operator is

represented by the “+” symbol.
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• Concurrency – this operator defines a temporal ordering of two patterns,

in that the two patterns should occur simultaenously as parallel threads or

processes. This operator is represented by the “|” symbol.

The combination of two patterns and one operator forms a simple atomic expression.

Multiple atomic expressions and pattern can be further combined to form aggregate

expressions. The formal structure and relationships of these different elements of

the policy domain model is presented in Figure 4.1 as a formal UML class diagram.

Table 4.1 summarizes the attributes of each object presented in Figure 4.1.

Figure 4.1: Monitoring Policy Domain Model
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Table 4.1: Object Table for Policy Domain Model

Object Policy

Parent None

Children Aggregate Expression, Atomic Expression

Attributes id : integer

Object PolicyExpression

Parent None

Children Sequence Expression, Concurrent Expression, Choice Ex-

pression

Attributes id : integer

policy1 : Policy

policy2 : Policy

Object SequenceExpression

Parent PolicyExpression

Children None

Attributes None

Object ConcurrentExpression

Parent PolicyExpression

Children None

Attributes None
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Object ChoiceExpression

Parent PolicyExpression

Children None

Attributes None

Object AggregateExpression

Parent Policy

Children None

Attributes subexpression : Policy

Object AtomicExpression

Parent Policy

Children FUNC CALL Pattern, FILE Pattern,

SOCKET OPEN Pattern, SOCKET CLOSE Pattern,

SOCKET DATA Pattern, MEM ALLOCATE Pattern,

MEM DEALLOCATE Pattern, Wildcard Pattern

Attributes caller : Function

clrline : int

clrcol : int

Object FUNC CALL Pattern

Parent Atomic Expression

Children None

Attributes callee : Function
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Object FILE Pattern

Parent Atomic Expression

Children None

Attributes l : Library

f : Filename

b : Buffer

Object SOCKET OPEN Pattern

Parent Atomic Expression

Children None

Attributes source : PID

targetIP : IP

targetPort : Port

Object SOCKET CLOSE Pattern

Parent Atomic Expression

Children None

Attributes s : Socket

Object SOCKET DATA Pattern

Parent Atomic Expression

Children None

Attributes l : Library

s : Socket

b : Buffer
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Object MEM ALLOCATE Pattern

Parent Atomic Expression

Children None

Attributes l : Library

size : MemSize

t : Variable

Object MEM DEALLOCATE Pattern

Parent Atomic Expression

Children None

Attributes l : Library

Object Wildcard Pattern

Parent Atomic Expression

Children None

Attributes None

Object Buffer

Parent None

Children None

Attributes name : string

Object Filename

Parent None

Children None

Attributes filename : string
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Object Function

Parent None

Children None

Attributes name : string

defline : int

defcol : int

Object IP

Parent None

Children None

Attributes IP : String

Object Library

Parent None

Children None

Attributes policy1 : Policy

policy2 : Policy

Object Memsize

Parent None

Children None

Attributes policy1 : Policy

policy2 : Policy
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Object PID

Parent None

Children None

Attributes pid : int

Object Port

Parent None

Children None

Attributes port : int

Object Socket

Parent None

Children None

Attributes sid : int

Object Variable

Parent None

Children None

Attributes type : string

4.3 Language Grammar

While the previous section detailed the constructs for a monitoring policy,

this section will discuss the grammar and syntax of the monitoring policy. Table

4.2 presents the grammar for the monitoring policy language in EBNF (Extended

Backus-Naur Form). It is noteworthy that this grammar is recursive and hence
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allows for nested structures. Because of this possibility of nested structures, the

associativity of each operator will be explicitly defined using parentheses.

Table 4.2: EBNF Grammar for Monitoring Policy Language

Policy = (PolicyExpression)+
PolicyExpression = AtomicExpression | AggregateExpression
AggregateExpression = SequenceExpression | ChoiceExpression |

ConcurrentExpression
SequenceExpression = “(” Policy “;” Policy “)”
ConcurrentExpression = “(” Policy “|” Policy “)”
ChoiceExpression = “(” Policy “+” Policy “)”
AtomicExpression = Pattern “(” Parameter List “)” | Pattern | null
Pattern = “FUNC CALL PATTERN” |

“SOCKET OPEN PATTERN” |
“SOCKET CLOSE PATTERN” |
“SOCKET DATA PATTERN” |
“FILE PATTERN” |
“MEM ALLOCATE PATTERN” |
“MEM DEALLOCATE PATTERN” |
“*”

Parameter List = Parameter (“,” Parameter)+
Parameter = identifier | null

4.4 Language Semantics

This section discusses in detail the meaning of the patterns that the monitoring

policy language defines. The semantics of each pattern will be described in prose

as well as in mathematical notation.
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4.4.1 Atomic Policies

Atomic policies are the fundamental building blocks of a monitoring policy

and is represented by a simple atomic expression. There are eight atomic policies

defined for the monitoring policy language that represents different code constructs,

namely function call patterns, file operation patterns, memory allocate and deallo-

cate patterns, socket open, close and data transferral patterns as well as a wildcard

pattern.

A FUNC CALL PATTERN defines the code construct where one function calls an-

other function in its function definition. The function that invokes the function

call is known as the caller, whereas the function that is being called is known as

the callee. The FUNC CALL PATTERN takes two parameters, namely the name of the

caller function followed by the name of the callee function. Mathematically, this is

shown as:

δ(FUNC CALL PATTERN(α, β)) −→ { ε = “α calls β” s.t. ε is an event,

∃ (α:function, β:function),

α is calling β in α’s function definition}

A FILE PATTERN defines the code construct where a function performs an open,

read, write or close operation on a file. This pattern takes four parameters in the

following order: the caller function name, the library used to invoke the file opera-

tion (eg. fopen, fclose, fscanf etc.), the name of the file that is being operated

on, and the buffer or file handle used to make reference to the file. Mathematically,

this is represented as:
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δ(FILE PATTERN(α, β, γ, ζ)) −→ { ε = “α calls β on γ using ζ” s.t. ε is an

event, ∃ (α:function, β:library, γ:filename,

ζ :buffer), α is invoking the β library γ on

file via buffer ζ }

A MEM ALLOCATE PATTERN defines the code construct that dynamically allo-

cates memory from the heap to be used by the program. This pattern takes four

parameters in the following order: the caller function name, the library used to

invoke the dynamic memory allocation (eg. malloc, calloc, realloc etc.), the

size of the memory allocated, and the variable type the block of memory is casted

to for dereferencing. Mathematically, this is represented as:

δ(MEM ALLOCATE PATTERN(α, β, γ, ζ)) −→ { ε = “α calls β to allocate

γ bytes of memory casted

as ζ” s.t. ε is an event,

∃ (α:function, β:library,

γ:memsize, ζ :variable),

α is invoking the β library

to allocate memory of size γ

casted as variable type ζ }

A MEM DEALLOCATE PATTERN defines the code construct that deallocates mem-

ory on the heap previously allocated. This pattern takes two parameters, namely

the caller function name followed by the library used to deallocate memory alloca-

tion (eg. free etc.). Mathematically, this is represented as:
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δ(MEM DEALLOCATE PATTERN(α, β)) −→ { ε = “α calls β to deallocate

memory” s.t. ε is an event,

∃ (α:function, β:library),

α invokes the β library to

deallocate memory previously

allocated.}

A SOCKET OPEN PATTERN defines the code construct that opens a socket for

communication such as a TCP/IP socket. This pattern takes four parameters in

the following order: the caller function name, the Process ID of the source process

opening the socket, the receiver’s IP, and lastly the receiver’s port with which the

socket is communicating with. Mathematically, this is represented as:

δ(SOCKET OPEN PATTERN(α, β, γ, ζ)) −→ { ε = “α on β opens a socket

to γ:ζ” s.t. ε is an event,

∃ (α:function, β:PID, γ:IP,

ζ :port), α running on process

with PID β opens a socket

to γ on port ζ }

A SOCKET DATA PATTERN defines the code construct that uses an opened com-

munication socket to transmit and receive data. This pattern takes four parameters

in the following order: the caller function name, the library used for communica-

tion, the socket used for communication and the buffer used for reading and writing

data. Mathematically, this is represented as:
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δ(SOCKET DATA PATTERN(α, β, γ, ζ)) −→ { ε = “α calls β to communi-

cate over ζ using γ” s.t. ε is an

event, ∃ (α:function, β:library,

γ:socket, ζ :buffer), α invokes

library β and uses buffer ζ to

communicate over socket γ }

A SOCKET CLOSE PATTERN defines the code construct that closes a previously

opened communication socket. Aside from the caller function name, this pattern

takes the socket to be closed as the second parameter. Mathematically, this is

represented as:

δ(SOCKET CLOSE PATTERN(α, β)) −→ { ε = “α closes β” s.t. ε is an

event, ∃ (α:function, β:socket),

α closes socket β }

A WILDCARD PATTERN is represented by the asterisk (*) symbol. The wildcard

pattern does not take any parameters and can represent any of the aforementioned

patterns.

4.4.2 Composite Policies

While the atomic policies define important event patterns for the purposes of

monitoring, it is often necessary to combine multiple atomic expressions to form
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a meaningful and useful monitoring policy. Composite policies introduce opera-

tors which can combine multiple atomic policies introduced above in a logical or

temporal fahsion.

A Sequence operator between two atomic policies defines a temporal ordering

of the two atomic policy. Mathematically, this is shown as:

δ(α ; β −→) { ε = “α β” s.t. ε is an event,

∃ (α:atomic policy, β:atomic policy),

α temporally occurs before β }

A Choice operator between two atomic policies defines a logical OR choice

between the two atomic policy. Mathematically, this is shown as:

δ(α + β −→) { ε = “α” or ε = “β” s.t. ε is an event,

∃ (α:atomic policy, β:atomic policy),

either α or β occurs }

A Concurrent operator between two atomic policies defines a temporal paral-

lelism between the two atomic policy. Mathematically, this is shown as:

δ(α | β −→) { ε = “α β” or ε = “β α” s.t. ε is an event,

∃ (α:atomic policy, β:atomic policy),

α occurs simultaneously with β }
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4.5 Examples of Monitoring Policies

This section will present some examples of the monitoring policies described

in this chapter. The simplest type of policy is the single term policy, which consists

of only one simple pattern, such as those listed below.

• func call pattern(foo, bar) - Function foo calls Function bar

• file pattern(foo, fopen, input.txt, fp1) - Function foo opens input.txt

with buffer fp1

• mem allocate pattern(foo, malloc, 200, int) - Function foo uses mal-

loc to allocate 200 bytes of memory casted as integers

These monitoring policies, however, will only find the first occurence of such pat-

terns in the source code for monitoring. To find all occurences of the patterns, the

wildcard pattern needs to be applied in sequence with the pattern. For example,

to find all occurences where Function foo calls Function bar, the monitoring policy

would look like this:

( * ; func call pattern(foo, bar) )

The above policy also demonstrates the use of the sequencing (;) operator. Note

that the entire sequencing expression must be surrounded by parentheses to indicate

associativity in cases of nested expressions. Examples of other operators are as

follow:



Chapter 4. Monitoring Policy Event Language 46

• (socket data pattern(foo, read, sa, sb) |
func call pattern(bar, check)) - A socket read occurs concurrently with

the function call

• (file pattern(foo, fopen, input.txt, fp1) +

func call pattern(foo, params in)) - Function foo either opens

input.txt with buffer fp1 or calls function params in

• (mem allocate pattern(foo, malloc, 8, char) ;

mem deallocate pattern(foo, free)) - Function foo uses malloc to

dynamically allocate memory then frees it afterwards

Note that for the last example, while the policy strictly specifies the memory deal-

location to happen immediately after the memory allocation (with no other code

patterns in between), an imperfect match will still occur even if other code pat-

terns do exist in between the first and second patterns of the sequencing operator.

However, just as with single term policies, without a wildcard pattern only the

first matching code pattern is picked out for monitoring. To illustrate this concept,

consider the following code fragment for function foo:

(1) int *a = (int*) malloc(10 * sizeof (int));

(2) int *b = (int*) malloc(10 * sizeof (int));

(3) free(a);

(4) free(b);

which maps to the following sequence of code patterns for function foo:

1. mem allocate pattern(foo, malloc, 40, int)
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2. mem allocate pattern(foo, malloc, 40, int)

3. mem deallocate pattern(foo, free)

4. mem deallocate pattern(foo, free)

With a monitoring policy of

(mem allocate pattern(foo, malloc, 8, char) ;

mem deallocate pattern(foo, free)),

only patterns (1) and (3) from function foo will be matched. To find all instances of

memory allocation followed by memory deallocation in function foo, the monitoring

policy should be defined as:

((mem allocate pattern(foo, malloc, 8, char) ; * ) ;

mem deallocate pattern(foo, free))),

which would match with all four combinations of memory allocation followed by

memory deallocation, namely (1) then (3), (1) then (4), (2) then (3) and (2) then

(4).

The previous monitoring policy example also demonstrated the use of nesting

in defining a monitoring policy and showed why the parentheses are important

in determining the operator’s associativity. The following are examples of some

possible complex nested monitoring policies:

• (func call pattern(foo, bar) ; (file pattern

(bar, FOPEN, barin.txt, barbuf) ; socket close pattern(foo,

s1)))
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• (func call pattern(foo, bar) ;

(socket open pattern(foo, sf, 128.0.0.1, 80) ;

(func call pattern(check, bar) ;

(socket close pattern(check, sf) ;

socket data pattern(bar, read, sf, buff1)))))

• (mem allocate pattern(foo, calloc, 8, int) ;

(file pattern(foo, fopen, input.txt, fp1) +

func call pattern(foo, params in)))



Chapter 5

Monitoring Policy Operational

Model

After forming a syntatically correct monitoring policy, the next step is to

parse the text based policy into a useful representation for further processing. This

chapter discusses the monitoring policy parser developed using JavaCC as well as

the tree representation and the Petri Net representation of the monitoring policy

as an output of the monitoring policy parser. This chapter will conclude with a few

examples demonstrating the parsing process.

5.1 JavaCC Generated Parser

JavaCC (Java Compiler Compiler) [61] is an open source parser generator for

the Java programming language licensed under the Berkeley Software Distribution

49
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(BSD) License. Given an EBNF grammar, JavaCC generates a top-down parser

in Java source code. However, top-down parsers are limited to the LL(k) class

of grammars, and in particular, left recursion cannot be used in the grammar.

To circumvent this restriction, JavaCC supports token stream look ahead, and

thus offers both semantic and syntactic lookahead. This feature is particularly

important here as nesting and recursion is a significant element of the monitoring

policy grammar.

Although conceptually speaking, JavaCC does take an EBNF grammar as in-

put and will generate a top-down parser in Java source code as output, the actual

input provided to JavaCC is in fact slightly more complicated. First of all, looka-

head statements must be added to resolve any choice conflicts that arise between

two EBNF productions in the grammar. For example, for the monitoring policy’s

EBNF grammar listed in Table 4.2, it is important to add a lookahead of 3 for the

AggregateExpression statements. By looking ahead 3 tokens in the token stream

and seeing the operator, the parser can determine whether the current token belongs

to a SequenceExpression, a ChoiceExpression or a ConcurrentExpression.

Strictly speaking, running the JavaCC generated parser on a monitoring policy

only checks the policy for its syntactic correctness. However, the objective of the

monitoring policy parser is more than verification - it needs to convert the text-

based monitoring policy into a meaningful representation for further processing.

By adding semantic actions to the grammar file itself, code statements will be

triggered during parsing. Depending on the grammar production exercised, code

blocks containing different data structure constructor statements are executed and
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a data structure representation of the policy can be built in dynamic memory. The

following subsection will present how such semantic actions are used to generate a

tree representation of the monitoring policy.

5.2 Tree Representation

As with any language parsers, a natural representation of a language input

statement is to use a tree structure. As a simple example, consider the simple

monitoring policy of α ; β, where α and β are event patterns. The corresponding

tree structure will be depicted in Figure 5.1 below. As seen, the operator is the

Figure 5.1: Tree Representation of a Simple Monitoring Policy

parent node with its left and right children corresponding to the event patterns the

operator joins together. However, for all practical purposes, monitoring policies are

usually more complicated with nested structures and repeated notes. Moreover,

the event patterns also have parameters that are not accounted for in the previous

simple example.

To handle parameters for the event patterns, a hash table is built to store

all parameters found in the monitoring policy, and the event patterns in the tree
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structure will have pointers pointing to the appropriate parameters. Since these

parameters are static and will not change, only one copy of duplicate parameters

are stored in the hash table where multiple pointers can make reference to it. For

example, for the simple monitoring policy above, if α takes parameters θ and λ and

β takes parameters λ and φ, then the corresponding tree structure would look like

Figure 5.2 below.

Figure 5.2: Tree Representation of a Simple Monitoring Policy with Parameters

To handle nested structures, each node of the tree representation can be either

a event pattern or an operator, and in the latter case, the node must have two

children node. Therefore, a nested monitoring policy such as ((α + β) | γ) would

look like Figure 5.3 below (parameters are not displayed for simplicity).

Event patterns, like parameters, are also stored in a hash table where the tree

nodes can make reference to via pointers. This addition layer of referencing is

necessary to avoid cycles in the tree, which would happen if the event patterns are

stored directly in the tree data structure. Consider the example policy of ((α ;
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Figure 5.3: Tree Representation of a Nested Monitoring Policy

β) + ((α | β)). Figure 5.4 below clearly exemplifies the need of the additional

layer of referencing. Storing the event patterns directly into the tree nodes will

result in the tree to the left, whereas having the tree nodes make reference to the

event patterns stored in a hash table will generate the desired tree representation

as shown in the tree to the right.

Figure 5.4: Tree Representation of a Monitoring Policy with Repeated Nodes

Ultimately, the entire tree is stored in a binary tree data structure where each

node has a left child and a right child (which can be null for leaf nodes). The binary
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tree data structure also maintains the head node of the tree by checking if a new

node contains the most children every time a node is added to the tree.

5.3 Petri Net Representation

The tree representation is only a preliminary representation of the monitoring

policy in dynamic memory. For purposes of pattern matching, this tree representa-

tion of the monitoring policy needs to be transformed into a Petri Net representa-

tion. The Petri Net representation is used very much like a state machine for the

purposes of pattern matching, as discussed in Chapter 7; however, since the execu-

tion of Petri Nets is non-deterministic, it is well suited for modeling the concurrent

behaviour of a software system.

A place in a Petri Net represents a event pattern in the monitoring policy

whereas a combination of places, transitions and directed arcs represent an oper-

ator. Figure 5.5 presents the mapping between a monitoring policy operator and

its corresponding Petri Net representation. These three Petri Net templates are

the building blocks of the Petri Net representation of any monitoring policy. The

transformation from a tree representation to a Petri Net representation of a mon-

itoring policy relies on building and substituting these three Petri Net templates

into each other. The transformation algorithm can be summarized as follows:

Step 1: Traverse the tree in a pre-order fashion.

Step 2: Upon reaching an operator node, build the corresponding Petri Net rep-

resentation for the operator, leaving the places empty to be filled in later. If
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Figure 5.5: Mapping Between Monitoring Policy Operators and Petri Net Repre-
sentations
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an event pattern rather than an operator is reached, then a leaf node of the

tree is reached and there is no need to recurse further down the tree.

Step 3: After the corresponding Petri Net template has been constructed for the

operator, go to step 1 for its left subtree to populate the first place, and then

repeat for the right subtree to populate the second place.

As a simple visual example demosntrating this process, consider the tree rep-

resentation of the monitoring policy ((α ; β) ; γ) shown in Figure 5.6 below,

where α, β and γ are all event patterns. Following the algorithm, the tree is tra-

Figure 5.6: Sample Tree Representation of a Monitoring Policy

versed in a pre-order fashion, and the first node encountered is the head node,

which is a ; operator. The corresponding Petri Net template is constructed with

the two places empty. The left subtree is then traversed, and the node encountered

is also a ; operator, and the corresponding Petri Net template is also constructed.

The left subtree is traversed again, only this time the event pattern α is reached

and the first place in the preceeding Petri Net template is populated. The right

subtree is now traversed, and likewise the event pattern β is reached and the sec-

ond place is populated. Since this subtree is now completely traversed and the
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Petri Net template is fully populated, this entire template is substituted into the

original Petri net template’s first place, which has been left empty. Now the right

subtree of the head node is traversed, and since the event pattern γ is reached, the

second place of the Petri net is populated, and the entire tree has been traversed

and has been transformed into its corresponding Petri Net representation. Figure

5.7 summarizes this process.

Figure 5.7: Transformation of a Tree Representation to a Petri Net Representation
of a Sample Monitoring Policy

5.4 Example of Monitoring Policy Parsing

This section will walk through an example of transforming a monitoring policy

from its textual representation to a tree representation through parsing and then

to a Petri Net transformation using the algorithm mentioned above. Consider the

following monitoring policy:
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( ( (file pattern(foo, fopen, input.txt, fb1) +

socket open pattern(foo, sf, 128.0.0.1, 23) ) ;

func call pattern(foo, bar) ) |
( mem allocate pattern(bar, malloc, 8, char) +

func call pattern(bar, getmem) ) )

Putting this monitoring policy through the parser will yield the tree represen-

tation shown in Figure 5.8. For simplicity, the event patterns and the parameters

it references will be substituted by a Greek letter each as indicated. Once the tree

representation has been established, the Petri Net transformation algorithm is ap-

plied to the head node of the tree. Figure 5.9 demonstrates this transformation and

the final Petri Net representation of the monitoring policy.
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Figure 5.8: Tree Representation of the Example Monitoring Policy
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Figure 5.9: Petri Net Representation of the Example Monitoring Policy



Chapter 6

Source Code Annotation

While on one end of the process is to transform the text-based monitoring

policy into a Petri Net representation for pattern matching purposes, another aspect

of the process is to prepare the source code for pattern matching as well. The

preparation of the source code can be divided into two major steps — source code

parsing and source code annotation. The end goal of source code preparation is to

execute the annotated source code to discover the exeuction path of the piece of

code, upon which pattern matching can occur to locate the areas in the source code

that corresponds to the patterns defined in the monitoring policy. This chapter will

outline the two major steps in detail and demonstrate how this end goal of source

code preparation can be reached. While the discussion in this chapter mainly

pertains to the C programming language, it will be shown that these concepts can

be easily applied to any other programming language.

61
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6.1 C Code Parser

Just as the monitoring policy parser is built with JavaCC, the C code parser

is also built with JavaCC. However, there are a number of grammar files publicly

available for the C programming language such as from [61], and hence there is no

need to analyze and redevelop the grammar file for C. As a proof of concept, the C

grammar definition created by Doug South and later modified by Tom Copeland is

used. It is also noteworthy that grammar files for different languages such as C++

or Java are also publicly available and hence it is very easy to adapt the concepts

disucssed in this chapter to a different programming language.

The C code parser created with JavaCC has the limitation of parsing ANSI

C code only. In particular, function calls must be made to functions that are

previously defined before the call or has a function prototype declared. Taking

advantage of this restriction, a hash table is used to keep track of all functions

declared in the source code during parsing to identify all function calls made in the

source code.

Similar to the monitoring policy parser, semantic actions are added to the C

grammar file to create a data structure that reflects the structure of the source code.

Normally semantic actions will be added to all grammar productions to produce a

full Abstract Syntax Tree (AST), but for the purposes of system monitoring, only

specific types of function calls are of interest and hence only data related to function

declarations and function calls are stored. Specifically, semantic action is added for

the grammar productions for function declaration, function calls and their corre-

sponding parameter lists. The domain model for the data stored is similar to the
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one used for the monitoring policy; in fact, the code patterns in the monitoring pol-

icy domain model are reused in the source code parser. Specifically, upon reaching

a primary expression during parsing, the token is first compared against a list of

function names for the code patterns such as file pattern or mem allocate pattern.

If a match is found, the corresponding code pattern object is constructed and stored

in order in a vector along with the function call’s line and column number. This

information is critical in relocating the function call during source code annotation.

If it is not a match, then the token is compared against the hash table of existing

functions in the source code to determine if it is a func call pattern, upon which

a func call pattern will be created and stored in the vector as well. If the token

does not match with the hash table either, then the function call must be a sys-

tem call that is not in the domain model of the monitoring policy and therefore is

disregarded.

As a simple example demonstrating the data structures generated by the source

code parser, consider the following function:

(01) void foo(int* i, int count)

(02) {

(03) int *iptr = malloc(10 * sizeof (int));

(04) printf("%d: Hello World from foo", count);

(05) count--;

(06) if (count > 0) {

(07) foo(iptr, count);

(08) }

(09) }

Upon parsing this function, the source code parser will first recognize the
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function definition in line 1, check if the function name foo is already in the hash

table of existing user function names (possibly due to a function prototype earlier

on in the code), and add it to the hash table if this is the first encounterance of the

function foo. In line 3, the parser encounters a function call to malloc, compares it

against the list of predefined functions relevant to monitoring and discovers malloc

is one of the functions to monitor. The parser invokes the semantic action to create

a mem allocate pattern object with the corresponding parameters and appends it to

the vector of previously constructed nodes. Proceeding to line 4, the parser identifies

a function call to printf. However, printf is not on the list of predefined functions

relevant to monitoring, nor is it in the hash table of existing user function names,

hence the parser takes no action. Lines 5 and 6 do not contain any explicit function

call statements so the parser continues to line 7, where a function call to foo is seen.

While foo is not in the list of predefined functions relevant to monitoring, it is in

the hash table of existing user function names (either from a function prototype

or from the insertion in line 1) and hence the corresponding semantic action is

invoked. A func call pattern object with foo as both the caller and callee functions

at line 7 is constructed, and added to the vector of previously constructed nodes.

The parser completes parsing the function with no further additions to the data

structures. The result of parsing the above function foo is the addition of two code

pattern nodes to the vector, as well as a possible addition (if not already added) of

the function foo to the hash table of existing user functions.
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6.2 Code Annotator

After the source code has been parsed and a vector of nodes containing all rele-

vant monitoring code patterns in the source code has been created, the source code

can then be annotated. As a proof of concept for this thesis, the code annotation

are based on simple printf statements that will collectively reflect the execution

path of the source code along with the annotated output; however, in future work,

more complex annotations can be made using this technique, as discussed in Chap-

ter 10. The format of the annotation will be the stamp *Annotated* followed by

an epoch timestamp and then the pattern type and details regarding the pattern.

The annotation will end with the line and column number of where the pattern is

located. An example of one such annotation will be as follow:

*Annotated*915784682 FunctionCall - Function foo declared at

32:5->Function bar declared at 72:8@36:9

The algorithm with annotation is fairly simple and straightforward. Since

the nodes in the vector are organized in sequential order of the source code, the

annotating process can be completed in one pass by iterating through all the nodes

in the vector, annotating the line, and advancing the file pointer to the location

specified by the next node in the vector. The only exception is when there are two

nodes that reference the same line of source code, upon which the file pointer does

not need to be advanced.

Once the correct line in the source code has been reached, the exact position of

the function call is located. The annotator then traces backwards to the previous
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semicolon or start of line, which is the position for the code annotation to occur.

This step of annotating before the entire function call statement is taken due to a

number of considerations. While it may be easiest to perform the code annotation at

the end of line of where the function call is located, there are several problems with

this approach. Firstly, since the annotated code only executes after the function

call completes, the annotated code may in fact never be executed if the flow of

execution does not return from the function call due to a program failure or even

a graceful exit in the function called. Secondly, annotation at the end of the line

may cause compilation errors in a program. Consider the following code fragment,

where foo is the name of a function that takes variable i as a valid parameter.

(01) if (foo(i) > 0)

(02) {

(03) //block of code

(04) }

Annotating the function call to foo at line 1 at the end of the line will result

in a compile error as a opening brace ({) is expected after the if condition. For a

similar reason, the the code annotation cannot be placed immediately preceeding

the function call, as annotating the function call to foo at line 1 in this manner

will lead to the annotation to appear in the if condition and most likely result in

a compile error. Therefore, it is most appropriate to place the code annotation

at the start of the line where the function call takes place. However, consider the

following code fragment that has been validly condensed into one line:
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(01) if (foo(i) > 0) bar(i);

Since there are two function calls on the same line, if the annotation algorithm

was to simply place the annotation at the beginning of the line, the annotation for

bar will come before foo, since foo is first annotated and bar’s annotation will

preceed foo’s. This results in an improper order of annotation that does not reflect

the execution path of the source code. Therefore, the annotation algorithm tracks

back to the closest preceeding semicolon from the function call to place the code

annotation, and only when no preceeding semicolons are found is the annotation

placed at the beginning of the line.

6.3 Example of Source Code Annotation

As an example of how the source code parser and annotator works, consider

the following C source code as the input to the source code parser and annotator.

(01) void display(int, const char*);

(02) int main()

(03) {

(04) int a = 42;

(05) display(a, "Hello World");

(06) return 0;

(07) }

(08) void display(int i, const char* b)

(09) {

(10) printf("%s %d\n", b, i);

(11) }
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The source code parser recognizes the first line as a function prototype and

stores the function display in the existing function hash table. Similarly, it recog-

nizes the second line as a function definition’s header, and stores the function main

in the existing function hash table. The parser proceeds to recognize lines 3 and 4

as valid C syntax but is insignificant to the purposes of policy-based system moni-

toring, and hence no semantic actions are invoked. Upon reaching line 5, a function

call is recognized by the parser and it compares the function name display against

its list of system functions to monitor for but does not find a match. However, it

finds a match for the function name display against the existing function hash ta-

ble, and hence forms a func call pattern object with caller main and callee display

and stores it in the vector of created nodes. The parser then proceeds through lines

6 and 7 but finds nothing special, but upon reaching line 8 it recognizes a function

definition’s header. However, it matches the function name of display to the ex-

isting function hash table and hence no further action is taken by the parser. Upon

reaching line 10, the parser again recognizes a function call, but this time it fails to

match printf to the list of system functions to monitor nor the existing function

hash table, and hence the parser takes no action. The parser finishes parsing the

source code file with the following output indicating the objects in the hash table

followed by a listing of nodes currently in the vector.

(01) {Functionmain=Function main declared at 2:5, Functiondisplay=

Function display declared at 1:6}

(02) [FunctionCall-Function main declared at 2:5->Function display

declared at 1:6@5:9]

As a result of the source code parsing, a vector containing the func call pattern
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object is passed to the source code annotator. The source code annotator iter-

ates through the vector and moves the file pointer to line 5 as specified by the

func call pattern object. It locates the function name display on line 5 and

traces backwards to find the immediately preceeding semicolon or the start of

line. Since there are no semicolons preceeding the function call, the annotation

for a func call pattern is made at the start of line. After this annotation, there

are no more objects in the vector and hence the annotator exits with the following

annotated source code.

(01) void display(int, const char*);

(02) int main()

(03) {

(04) int a = 42;

(05) printf("*Annotated*%d FunctionCall - Function main declared

at 2:5->Function display declared at 1:6@5:9\n", time((time_t

*) NULL)); display(a, "Hello World");

(06) return 0;

(07) }

(08) void display(int i, const char* b)

(09) {

(10) printf("%s %d\n", b, i);

(11) }

Executing the above annotated source code will yield the following program

output that can be used for pattern matching.

(01) *Annotated*1175736001 FunctionCall - Function main declared at

3:5->Function display declared at 1:6@6:9

(02) Hello World 42



Chapter 7

Pattern Matching

The final step in the entire process is to match the monitoring policy against

the source code. The purpose of this step is to identify where intrusive monitors

can be added into the source code in an automated fashion. The pattern matcher

requires two inputs: the Petri Net representation of the monitoring policy and the

annotated source code’s output. This chapter will describe the basic pattern match-

ing process and present an example of the process. It will then discuss how this

process’ underlying algorithm can be improved with concepts taken from Artificial

Intelligence theories such as dynamic programming.

7.1 Basic Process

The basic idea behind the pattern matching process is to treat the Petri Net

representation of the monitoring policy as an automaton that takes the annotated

70
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source code’s output (i.e. logged events) as its input. Paths through the Petri Net

are explored and assigned a score based on the number of deletions required from

the input to formulate a match. The path with the lowest score indicates the closest

match to what is specified in the monitoring policy and the path’s precise location

in the source code can be retrieved from the data provided in the annotated source

code’s output.

The algorithm which explores the paths through the Petri Net is similar to

the class of informed search algorithms found in literature on Artificial Intelligence.

The basic process treats the Petri Net as a specification guide to a branch and

bound search problem. The fundamental idea behind the pattern matching process

is to find the optimal alignment between the Petri Net model that represents the

monitoring policy and the sequence of logged events. The process for matching the

Petri Net representation of the monitoring policy to the annotated source code’s

output is described below.

Algorithm: Pattern Matching Algorithm for the Policy Driven Software

Monitoring Framework

Purpose: To correlate the sequence of events defined in the monitoring

policy to the location in the source code

Input: Annotated source code output, Petri Net representation of

monitoring policy

Output: Solution paths indicating the location of source code for each

pattern in the monitoring policy

Step 1: Take the starting node from the Petri Net and add it to the queue of
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feasible nodes for expansion.

Step 2: Make a copy of the queue for comparison (hereafter known as the queue

copy). This is necessary as modifications are made during the queue during

the comparison and it will be incorrect to make comparisons against the new

modifications.

Step 3: Compare the first relevant line of input (from the annotated source code’s

output) against each node of the queue copy. If the input matches with the

node in the queue copy, then the node is consumed, upon which all directly

reachable places from the place in the Petri Net which corresponds to the node

that was consumed is added to the original queue and the score is carried over

to these new nodes. The consumed node is also removed from the original

queue. On the other hand, if the input does not match with the node in the

queue copy, then a pre-determined penalty score is added to the corresponding

node in the original queue.

Step 4: Repeat steps 2 and 3 until the entire set of input from the annotated source

code’s output has been matched. Once all the input has been exhausted, what

is left in the queue are the feasible solutions to the pattern matching problem.

All nodes in the queue that correspond to the end place of the Petri Net

represent a complete path through the Petri Net. In other words, a match has been

found between the monitoring policy and the source code. It is possible that there

are multiple nodes in the queue that correspond to the end place of the Petri Net at

the end of the algorithm. In this case, the node with the lowest score represent the
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path containing the closest match between the monitoring policy and the source

code, although other nodes in the queue that correspond to the Petri Net’s end

place are also feasible solutions. Nodes that are in the queue but do not correspond

to the end place of the Petri Net are not complete paths through the Petri Net and

hence are not solutions, regardless of the score the node has.

While an ending place node in the queue indicates a solution exists, the actual

solution path is the important data that helps the software engineer determine

where to place intrusive monitors in the source code. The simplest solution to keep

track of the solution path is to keep a pointer to the preceeding node each time

a node is added to the queue and the preceeding node consumed. This effectively

forms a linked list between the queue nodes. By tracing backwards from the end

node, the complete path in the source code matching the monitoring policy can be

recovered. For example, the final output of the pattern matcher may be as follow:

(01) +++SOLUTION+++

(02) MemAllocate-foo using malloc allocating 42 for int at 505:27

<--> MemDeallocate-foo using free deallocating at 523:11

(03) 1 Solution(s) found.

This output indicates a match has been found between the source code and the

monitoring policy at lines 505 and 523 with regards to the mem allocate pattern

and the mem deallocate pattern respectively.

One important exception to the algorithm is the treatment of wildcards in the

monitoring policy. The wildcard code pattern should be treated as a special case

in the algorithm, and in particular the wildcard node should never be consumed,
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since it can match with any number of code patterns. In other words, if input

is compared against a wildcard node in step 3 of the algorithm above, then it is

considered a match and all directly reachable places from the wildcard place in

the Petri Net is added to the original queue and the score of the wildcard node

is carried over to these new nodes, except the wildcard node is not removed from

the original queue. Furthermore, since the wildcard can represent zero as well as

multiple code patterns, upon adding reachable nodes from the Petri Net to the

queue, if a wildcard node is added, then all directly reachable places from that

wildcard place in the Petri Net must also be added to the queue as well. The

example in the following section will provide a demonstration of the operation of

the pattern matcher with wildcard nodes.

7.2 Example of Pattern Matching

As an example of how the pattern matcher works, consider the following inputs

for the pattern matcher. The following is the annotated source code for a simple C

program that contains four functions: main, increment, decrement and display.

(01) void display(int, const char*);

(02) int increment(int a);

(03)

(04) int main()

(05) {

(06) int a = 3;

(07) printf("*Annotated*%d FunctionCall - Function main declared

at 4:5-> Function display declared at 1:6@7:9\n", time(

(time_t *)NULL)); display(a, "Hello World");
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(08) return(a);

(09) }

(10)

(11) int decrement(int j)

(12) {

(13) return j-1;

(14) }

(15)

(16) int increment(int j)

(17) {

(18) return j+1;

(19) }

(20)

(21) void display(int i, const char* b)

(22) {

(23) printf("*Annotated*%d FunctionCall - Function display

declared at 21:6-> Function decrement declared at 11:5@23:

13\n", time((time_t *)NULL));printf("*Annotated*%d FunctionCall

- Function display declared at 21:6-> Function increment

declared at 2:5@23:33\n", time((time_t *)NULL)); if (

decrement(i) > 0 && increment(5) > 0) {

(24) printf("%s %d\n", b, i);

(25) printf("*Annotated*%d FunctionCall - Function display

declared at 21:6->Function decrement declared at 11:5@25:21\n",

time((time_t *)NULL)); i = decrement(i);

(26) printf("*Annotated*%d FunctionCall - Function display

declared at 21:6->Function display declared at 1:6@26:17\n",

time((time_t *)NULL)); display(i, b);

(27) }

(28) }

Executing the above source code will yield the following output that will be

used as input to the pattern matcher.

(01) *Annotated*1175739269 FunctionCall - Function main declared at

4:5->Function display declared at 1:6@7:9
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(02) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function decrement declared at 11:5@23:13

(03) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function increment declared at 2:5@23:33

(04) Hello World 3

(05) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function decrement declared at 11:5@25:21

(06) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function display declared at 1:6@26:17

(07) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function decrement declared at 11:5@23:13

(08) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function increment declared at 2:5@23:33

(09) Hello World 2

(10) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function decrement declared at 11:5@25:21

(11) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function display declared at 1:6@26:17

(12) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function decrement declared at 11:5@23:13

(13) *Annotated*1175739269 FunctionCall - Function display declared

at 21:6->Function increment declared at 2:5@23:33

It is noteworthy to mention that there may be normal program output (such

as lines 4 and 9) mixed in with the annotated source code output; however, these

output will not interfere with the pattern matcher as long as it does not begin with

the annotation tag of *Annotated*.

Suppose the monitoring policy is as follow:

(01) (func_call_pattern(display, display);

(02) (* ; (func_call_pattern(display, display)+

(03) func_call_pattern(display, increment))))
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Parsing this monitoring policy yields the tree representation and Petri Net as

shown in Figure 7.1, where α represents func call pattern(display, display) and β

represents func call pattern(display, increment).

Figure 7.1: Tree and Petri Net Representations of the Sample Monitoring Policy
Demonstrating Pattern Matching

Table 7.1 details the operation of the pattern matching algorithm in a step by

step manner. The number in square brackets beside each queue item represents the

score for that queue node. Function Call Pattern has been abbreviated to FC, and

a penalty score of p is assigned to each non-matching input.

At the beginning of the algorithm (iteration 0), the queue is initialized to the

first node of the Petri Net, which is represented by FC(display, display) and has a

score of 0. The next four inputs do not match with this code pattern and hence

the score for this queue node increments by p each iteration. The fifth input of

FC(display, display) matches with the only node on the queue, upon which the

node is expanded by placing all its successors in the Petri Net into the queue

and carrying over the score while removing the node. Since the node placed on

the queue is a wildcard node, its successors must be placed on the queue as well.
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Table 7.1: Operations of the Pattern Matcher on Sample Inputs

Iteration Input Queue
0 FC(display, display)[0]
1 FC(main, display) FC(display, display)[p]
2 FC(display, decrement) FC(display, display)[2p]
3 FC(display, increment) FC(display, display)[3p]
4 FC(display, decrement) FC(display, display)[4p]
5 FC(display, display) *[4p]; FC(display, display)[4p]; FC(display,

increment)[4p]
6 FC(display, decrement) *[4p]; FC(display, display)[4p]; FC(display,

increment)[4p]; FC(display, display)[5p];
FC(display, increment)[5p]

7 FC(display, increment) *[4p]; FC(display, display)[4p]; FC(display,
increment)[4p]; FC(display, display)[5p];
null[4p]; FC(display, display)[6p]; null[5p]

8 FC(display, decrement) *[4p]; FC(display, display)[4p]; FC(display,
increment)[4p]; FC(display, display)[5p];
FC(display, increment)[5p]; FC(display, dis-
play)[6p]; null[5p]; FC(display, display)[7p];
null[6p]

9 FC(display, display) *[4p]; FC(display, display)[4p]; FC(display,
increment)[4p]; null[4p]; FC(display, in-
crement)[5p]; null[5p]; FC(display, in-
crement)[6p]; null[6p]; null[6p]; null[7p];
null[7p]

10 FC(display, decrement) *[4p]; FC(display, display)[4p]; FC(display,
increment)[4p]; FC(display, display)[5p];
FC(display, increment)[5p]; null[5p];
FC(display, increment)[6p]; null[6p];
FC(display, increment)[7p]; null[7p];
null[8p]; null[7p]; null[8p]

11 FC(display, increment) *[4p]; FC(display, display)[4p]; FC(display,
increment)[4p]; FC(display, display)[5p];
null[4p]; FC(display, display)[6p]; null[5p];
null[6p]; null[6p]; null[7p]; null[7p]; null[8p];
null[8p]; null[9p]; null[9p]
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This is necessary to handle the case when the wildcard matches with nothing.

These queue operations result in three nodes on the queue at the end of the fifth

iteration, all with the score of 4p. The sixth input does not match with anything

on the queue, and hence normally all queue nodes will have their score incremented

and no new nodes will be added to the queue. However, since the wildcard node

matches with everything, a match in fact occurs and the wildcard node as well as

its two immediate successor nodes are again added to the queue, carrying over their

previous score of 4p. This results in five nodes on the queue at the end of the sixth

iteration. The seventh input of FC(display, increment) matches with some of the

nodes, and these nodes are expanded accordingly. In this case, it is important to

point out that the successors to the matching nodes are the ending node of the

Petri Net, and hence a null node is inserted to represent a solution has been found.

The way the wildcard nodes and the non-matching nodes are treated is identical to

the previous iterations. In the eighth iteration, the input of FC(dispaly, decrement)

does not match with any of the queue nodes (except for the wildcard node) and

hence the score of all these non-matching nodes are incremented by p. Note that

the score for the null nodes are also incremented, despite the fact that these nodes

represent a solution. This is because the solution path found does not account

for the extraneous input after the solution has been found, and hence is penalized

accordingly.

This process is repeated until the eleventh iteration, upon which all the input

is exhausted. The pattern matcher then traverses the queue looking for null nodes

that represent solution paths. The following is the solution output for the pattern

matcher, with a penalty score of 1 assigned.
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(01) +++SOLUTION+++

(02) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls display at 26:17 <--> Score: 8

(03) +++SOLUTION+++

(04) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls increment at 23:33 <--> Score: 4

(05) +++SOLUTION+++

(06) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls increment at 23:33 <--> Score: 6

(07) +++SOLUTION+++

(08) FunctionCall-display calls display at 26:17 <-->

FunctionCall-display calls increment at 23:33 <--> Score: 9

(09) +++SOLUTION+++

(10) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls display at 26:17 <--> Score: 6

(11) +++SOLUTION+++

(12) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls increment at 23:33 <--> Score: 5

(13) +++SOLUTION+++

(14) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls increment at 23:33 <--> Score: 7

(15) +++SOLUTION+++

(16) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls display at 26:17 <--> Score: 7

(17) +++SOLUTION+++

(18) FunctionCall-display calls display at 26:17 <--> * <-->

FunctionCall-display calls increment at 23:33 <--> Score: 8

(19) +++SOLUTION+++

(20) FunctionCall-display calls display at 26:17 <-->

FunctionCall-display calls display at 26:17 <--> Score: 9

(21) 10 Solution(s) found.

As seen, the ten solution paths outputted by the pattern matcher corresponds

to each of the ten null nodes in the queue after the last iteration in Table 7.1

The path with the lowest score, which in this case is 4, is the closest match to

the specifications made by the monitoring policy. This path is highlighted in the
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annotated source code output as well as the source code in Figure 7.2.

7.3 Algorithm Optimization

The algorithm for pattern matching can be optimized by modifying the way the

penalty score is assigned. The aforementioned algorithm assigns a constant score

for each deletion made to the input in order to achieve a perfect match between the

annotated source code output and the monitoring policy. This algorithm effectively

does an exhaustive search throughout the Petri Net and hence all the possible

solution paths are found at the cost of speed and performance. By adding an

admissiable heuristic to the penalty score assignment function and implementing

pruning in the algorithm, the pattern matcher can achieve optimality by finding the

best matching path at a much better performance. This in essence, is to implement

an A* search algorithm from the starting node to the ending node of the Petri

Net. It is helpful to borrow concepts from dynamic programming to visualize this

optimization. Consider mapping the example monitoring policy and input from

the previous section into a 2-dimensional grid as shown in Figure 7.3. The bottom

left coordinate (origin) will be the starting point and the coordinate where the last

input and the last monitoring policy item intersects will be the goal.

A solution for the pattern matcher is a path that travels from start to goal

heading in the positive x and y directions. A match between an input and an

element in the monitoring policy is represented by a diagonal segment on the path.

The score for a node arises from travelling in the positive x-direction, with the

exception of if the y-value of the node is a wildcard node. Figure 7.4 maps the
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Figure 7.2: Best Matching Path of the Sample Inputs Demonstrating Pattern
Matching
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Figure 7.3: 2-Dimensional Grid Visualization of Pattern Matching Sample Problem

optimal solution path from the previous section’s example in this 2-dimensional

grid.

The sum of the horizontal distances (excluding the horizontal distances trav-

elled at the y-value of the wildcard node) is 4p, which corresponds to the score of

the optimal path. Furthermore, the algorithm can be modified to prune suboptimal

paths in the search tree. Consider the two paths in Figure 7.5. Both paths reach the

same coordinate on the 2-dimensional grid; however, the top path reaches it with

a cumulative score of 4p while the bottom path reaches it with a cumulative score

of 6p. Since they are at the same point in the graph, therefore it is impossible for

the bottom path to obtain a lower score than the top path, and hence the bottom

path can be pruned.

Implementation speaking, pruning can be achieved by assigning each place in

the Petri Net an unique identifier, and every time an addition needs to be made to



Chapter 7. Pattern Matching 84

Figure 7.4: Visualization of Optimal Solution Path to Sample Pattern Matching
Problem

the queue, the new node is compared against the rest of the queue to see if a node

with an identical identifier exists. If that is the case, then their scores are compared

and the node with the lowest score should be on the queue. Hence depending on

the comparison, the addition to the queue may not occur if the existing node on

the queue contains a lower score. Pruning will reduce the size of the search tree

which translates to the number of nodes on the queue and thus will significantly

speed up computation as there are less nodes to traverse during each iteration.

In essence, the pattern matching problem can been visualized and treated as a

graphing problem where the A* search algorithm can be applied which guarantees

optimality at the best performance.
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Figure 7.5: Pruning Suboptimal Paths in the Sample Pattern Matching Problem



Chapter 8

Adaptive Logging

While the framework proposed and demonstrated in the previous chapters en-

hances system monitoring by effectively managing logs through correlating logging

output and source code via pattern matching, another effective approach to man-

aging logs is to analyze and improve the way logs are generated. The challenge

in log generation is the identification of the proper level of logging and analysis.

A software system that logs extensively on every operation and event that occurs

will yield rich information about the system but at a high cost of processing com-

plexity, whereas a software system that logs generally on events may be limited in

the amount of information they provide for the purposes of system analysis, audit-

ing or optimization. Adaptive logging aims to achieve the right amount of logging

detail so that the information provided is useful enough to serve different needs.

This chapter will propose the adaptive logging framework and architecture for this

purpose.

86
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8.1 Objectives

As its name implies, the salient idea behind adaptive logging is for the logger to

respond adaptively by logging data based on different signals or other environment

parameters. For the logging framework to behave adaptively, a feedback control

loop will be required to adjust the monitoring intensity as needed. The behaviour

of the adaptive logging framework is analgous to a policeman keeping watch in

a neighbourhood at night. Initially the policeman will be travelling around the

neighbourhood at a low level of awareness but keeping an eye out for anything

abnormal happening. Upon hearing the sound of shattering glass, for example, the

policeman may become slightly more alerted and may head towards the sound to

investigate further. Upon discovering the source of the sound is from a television,

the policeman’s awareness level decreases back to normal and resumes his regular

routine. On the other hand, if during his investigation he hears a muffled cry for

help followed by a gunshot, the policeman will become alerted and may even need

to call for backup. Similarly, an adaptive logging framework will normally log data

about a software system at a low level of awareness, until an abnormal event occurs

which may trigger the framework to do more detailed logging in a specific area.

Further triggers may cause the adaptive logging framework to log in even more

extensive detail or return back to a low level of awareness where minimal logging

is done.

The adaptive logging framework must therefore know how to process and react

to a variety of triggers and events through different event handlers. Because of the

wide range of events that may occur throughout the operation of a software system,
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event handlers should be able to register dynamically with the adaptive logging

framework such that the way events are handled are dynamically modifiable to

match changing logging requirements. In other words, event handlers should be

able to “plug and play” into the adaptive logging framework, such that given a

requirement (eg. security) an appropriate event handling scheme can be applied to

the framework dynamically.

The adaptive logging framework should be aware of a few plausible concerns.

Firstly, the adaptive logging framework should have minimal overhead in terms of

system resources. The design and implementation of the framework should be done

in a manner that minimizes its impact on the operational profile of the system as

a whole. As more monitors or probes are added to the adaptive logging framework

due to a higher awareness level, the signature of the adaptive logging framework

should be constant or increase sub-linearly. Secondly, the feedback nature of the

framework makes it prone to the snowball effect of progressive logging. For exam-

ple, suppose certain issues with a network firewall application has resulted in slow

network behaviour. The firewall may recognize this and trigger the adaptive logging

framework to investigate the delay, but the addition of more monitors and probes

into the network traffic may slow the network down even more. Therefore, event

handlers must be designed in a way to prevent the snowball effect from happening

with progressive logging. Lastly, the adaptive logging framework should have min-

imal, if any, modification to the source code of the application under monitoring.
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8.2 Architectural Overview

Based on the objectives and requirements mentioned above, two architectural

styles and patterns are seen to be appropriate for the adaptive logging framework.

Firstly, the implicit invocation architecture style where different event logging mon-

itors can dynamically register their interest to specific types and categories of events

may be useful in establishing the plug and play architecture as well as minimizing

the amount of modification needed on the application. This can be achieved by

having the adaptive logger running on another process on the system and allowing

the application to communicate with the logger process via system signals. Sec-

ondly, a blackboard architecture style is considered. The knowledge sources for the

blackboard will be a library of awareness policies that are designed to raise or lower

the awareness level as well as perform the appropriate logging actions based on the

triggering event. The blackboard itself consists of the awareness level as well as

the state of the system itself, as both of these contribute to the amount of events

triggered. The application may need to be slightly annotated to emit signals as

triggers to the adaptive logger process, and thus behaves as the control shell of the

blackboard system. Figure 8.1 demonstrates the associations between these three

components of the adaptive logging framework designed as a blackboard system.

Also, in this context, a hierarchical structure for the awareness policies where

new monitors can be activated when specific system states have been reached or

specific composite events have been observed will be necessary. One possibility

is to define the hierarchy of awareness policy using a State design pattern, where

the appropriate awareness policy is referenced and the corresponding event handler
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Figure 8.1: Blackboard Architectural Style for the Adaptive Logging Framework

called based on the awareness level of the system. For example, in Figure 8.2,

the Adaptive Logger maintains the awareness level of the logging framework, and

depending on the incoming trigger identifier and the current awareness level of the

system, the appropriate awareness policy class is instantiated and its event handler

is called.

An extension to this hierarchical concept is to have a corresponding hierarchy

of events and triggers that maps to a hierarchy of awareness policies. Consider

the hierarchy presented in Figure 8.3. At awareness level 1, which would be the

lowest awareness level, only events with the triggerID of 1 will be handled by an
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Figure 8.2: State Design Pattern for the Hierarchy of Awareness Policies

event handler, precisely that of AwarenessPolicy1. Events that correspond to a

higher awareness level, which would have triggerIDs such as 1.1 or 1.1.1, will be

disregarded. However, suppose the event handler of AwarenessPolicy1 raises the

awareness level to 2, then the awareness policies that correspond to this awareness

level such as AwarenessPolicy1.1 and AwarenessPolicy1.2 will be activated and their

respective event handlers will execute based on the incoming triggers. Moreover,

their parent’s event handler will also be executed. For example, at awareness level

2, if the incoming event has a triggerID of 1.2, then the event handlers for Aware-

nessPolicy1 and AwarenessPolicy1.2 will be executed. Likewise, at awareness level

3, if the incoming event has a triggerID of 1.2.1, then the event handlers for Aware-

nessPolicy1, AwarenessPolicy1.2 and AwarenessPolicy1.2.1 will be executed. This

hierarchical structure allows for nested subclasses to have more refined or additional

actions taken to investigate the issue at hand in their event handlers.
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Figure 8.3: Hierarchy of Awareness Policies that Corresponds to a Hierarchy of
Triggers

8.3 Design and Implementation

The architecture mentioned in the previous section can be roughly divided into

three components, namely the annotated source code that provides the events, the

adaptive logger process that manages the library of awareness policies and event

handlers, and the actual awareness policies themselves. This section will discuss

possible implementation approaches to each of these components.

The source code annotator component’s purpose is identical to the source

code annotator used for pattern matching as discussed in Chapter 6. As such, the

techniques and design of the source code annotator can be applied in this situation

as well. However, the design decision remains as to how much to annotate and

what to annotate.

In terms of how much to annotate, there are two possible paths to pursue:

the annotations can trigger all events regardless of the awareness level and leave it
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up to the adaptive logger to filter and discard useless signals, or alternatively, the

annotations can check against the awareness level and only trigger events at the

current awareness level. Both approaches have their advantages and disadvantages;

the former generates a large amount of traffic for the adaptive logger to handle,

whereas the latter shifts the computation to the application. Because of the ob-

jective to minimize modification to the application as well as the impact on its

operational profile, the former approach is deemed more appropriate.

In terms of what to annotate, this design decision deals with the means of

communiation between the application and the adaptive logger. One way for events

to be generated by source code annotations is to use exceptions. Consider the code

annotation presented in Figure 8.4. Suppose function foo is of monitoring and

logging interest and has been selected for annotation. By surrounding the function

call to foo with a try-catch block and forcing a self-defined exception to be thrown,

the logic of the application will remain intact. However, a significant downside of

this approach is its high operational profile and impact on the application. The

execution path of the application is affected and the fact that the management of

the awareness policy needs to happen as part of the application makes this approach

an undesirable one.

An alternative approach is to use signals as the method of communication

between the application and the adaptive logger. The adaptive logger will then

be a thread or process running parallel to the application on the same machine

waiting for these system signals from the application. Figure 8.5 presents the code

annotation for the same piece of source code previously presented using signals.
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Figure 8.4: Source Code Annotation with Exceptions

The kill command in C sends a system signal to the process with PID ALPID

with signal number FOOID. The adaptive logger process will receive these signals

by registering signal handlers with the system function signal. However, there are

only 32 valid signals allowed in a UNIX system, which may not be robust enough

for the adaptive logging framework. This limitation can be circumvented by using

other technologies along this line of thought such as using mailboxes (mbox), named

pipes (mknod or mkfifo) and other inter-process communication mechanisms to

communicate the events to the adaptive logger.

Figure 8.5: Source Code Annotation with Signals

As discussed in the previous section, the adaptive logger itself will follow a

state design pattern. The adaptive logger process will keep track of the awareness
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level and based on this awareness level and the incoming signal from the application,

the appropriate concrete awareness policy will be instantiated and its event handler

called. To facilitate the capability to plug and play different awareness policies, the

event handlers should not be hard coded as part of the adaptive logger; rather, the

event handlers should be a function in the awareness policy class which is invoked by

the adaptive logger via reflection. The awareness policies can therefore be modified

and recompiled anytime without disrupting the adaptive logger or the application.



Chapter 9

Case Studies

This chapter will present an implementation of the policy driven software mon-

itoring framework with the pattern matcher. The structure and layout of the frame-

work will be described using standard UML package and class diagrams. The im-

plementation will then be used to demonstrate the functionality of the policy driven

software monitoring framework with three software applications of varying scale. A

timing analysis will also be presented to evaluate the performance and scalability

of the framework. This chapter will end with a brief feasibility study on the ideas

presented for the Adaptive Logging Framework.

9.1 Overall Framework Structure

As mentioned in Chapter 3, the policy driven software monitoring system

can be broken down into four major components, namely C Code Parser, Code

96
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Annotator, Monitoring Policy Parser and the Monitoring Policy Pattern Matcher.

Furthermore, these four functional components interact with two components that

contain the domain model of the artifacts generated by the parsers and annotators,

namely the monitoring policy model and the Petri Net model. Figure 9.1 presents

the relationship between these different components in a UML package diagram.

Figure 9.1: Package Diagram of the Policy Driven Software Monitoring System

The following sections will detail the classes within each of these components.

9.1.1 Monitoring Policy

The monitoring policy component contains the classes that define the domain

model of a monitoring policy and is used by the source code parser, the monitoring

policy concrete model and the pattern matcher to reference a monitoring policy in
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dynamic memory. The classes for the monitoring policy model closely reflects the

basic blocks of a monitoring policy as depicted in Figure 4.1 and therefore the class

diagram for the monitoring policy component will not be presented here again.

9.1.2 Petri Net

The Petri Net component contains the classes that define the domain model

of the Petri Net generated by the monitoring policy parser and used by the pattern

matcher. The classes for the monitoring policy model closely reflects the primary

elements of a Petri Net. Figure 9.2 presents the class diagram for the Petri Net

component.

Figure 9.2: Class Diagram of the Petri Net Component

9.1.3 Monitoring Policy Parser

The Monitoring Policy Parser component contains the classes that are used

to parse a textual representation of a monitoring policy into a tree representation
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and then transform it into a Petri Net representation. It therefore imports the

monitoring policy model component and the Petri Net component. Figure 9.3

presents the class diagram for the Monitoring Policy Parser component.

Figure 9.3: Class Diagram of the Monitoring Policy Parser Component

9.1.4 C Code Parser

The C Code Parser component contains the classes that are used to parse

C source code and generate a partial Abstract Syntax Tree containing elements

pertinent to a monitoring policy. It therefore imports the monitoring policy model

component. Figure 9.4 presents the class diagram for the C Code Parser component.

9.1.5 Source Code Annotator

The Source Code Annotator component contains the classes that are used to

annotate source code that has been parsed by the C Source Code Parser. The Source
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Figure 9.4: Class Diagram of the Source Code Parser Component

Code Annotator contains one class only. Figure 9.5 presents the class diagram for

the Source Code Annotator component.

Figure 9.5: Class Diagram of the Source Code Annotator Component

9.1.6 Pattern Matcher

Lastly, the Pattern Matcher component contains the classes that take a Petri

Net representation of a monitoring policy and the output of the annotated source

code to locate the points for monitoring in the source code. It therefore imports

both the monitoring policy model and the Petri Net model. Figure 9.6 presents the
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class diagram for the Pattern Matcher component.

Figure 9.6: Class Diagram of the Pattern Matcher Component

9.2 Examples of the Policy Driven Software Mon-

itoring Framework

This section will apply the presented framework to three C applications of

different scale and demonstrate that the framework is scalable and is capable of

handling source code of different complexity. The framework will first be applied

to a simple file merger application that is publicly available at [62]. The simple file

merger application combines two sorted files of strings and consists of approximately

100 lines of code. The annotated source code’s output for a small sample input

resulted in 124 lines of output which consists of a number of function calls and file

patterns. A small snippet of the output is presented below; the complete list of

output is reproduced in Appendix A.

(1) *Annotated*1175739682 FunctionCall - Function main declared at 81:5– Func-
tion stringMerge declared at 26:5@86:41

(2) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@1690726,null,null@36:12
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(3) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@5483cd,null,null@40:12

(4) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@9931f5,null,null@44:12

(5) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@49:9

(6) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@50:9

(7) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(8) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(9) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(10) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(11) ...

The first monitoring policy that is used to test the framework is a simple

atomic policy as follow:

file pattern (stringMerge, fprintf, stringout, null)

This simple monitoring policy finds the first occurence where the function string

Merge calls the system library fprintf to write to file stringout. The results of

running the pattern matcher with the given inputs yields the following output.

(01) +++SOLUTION+++

(02) File-stringMerge fprintf-ing stringout at 57:7 <--> Score: 122

(03) 1 Solution(s) found.

A slightly more complex monitoring policy can be used to test the accuracy

and effectiveness of the framework in finding all instances of an event pattern as
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specified by the monitoring policy in the source code. The monitoring policy listed

below finds all instances of the function call to fopen from stringMerge.

(* ; file pattern(stringMerge, fopen, null, null))

The output is listed below:

(01) +++SOLUTION+++

(02) File-stringMerge fopen-ing stringout at 44:12 <--> Score: 122

(03) +++SOLUTION+++

(04) * <--> File-stringMerge fopen-ing stringout at 44:12 <-->

Score: 121

(05) +++SOLUTION+++

(06) * <--> File-stringMerge fopen-ing stringout at 44:12 <-->

Score: 120

(07) +++SOLUTION+++

(08) * <--> File-stringMerge fopen-ing stringout at 44:12 <-->

Score: 119

(09) 4 Solution(s) found.

While there are only 3 fopen file patterns listed in the annotated source code

output, a total of 4 paths are found. This is due to the use of the wildcard pattern

at the start of the pattern. The first solution found, as the output path indicates,

does not use the wildcard pattern at all in its match against the monitoring policy.

In other words, the wildcard pattern represents nothing, and hence the first path

takes a penalty from the mismatch of the first line, matches with the fopen file

pattern found on the second line, and takes penalty for the rest of the output. This

is clearly not an optimal path and is reflected by the highest score of 122 amongst

all 4 solution paths found. The other 3 solution paths represent the wildcard
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pattern consuming the first line, the first and second lines, and the first, second

and third lines of the annotated source code output respectively. These 3 solution

paths matches with the first, second and third fopen file patterns found in the

annotated source code output respectively, and hence all of the fopen file patterns

are recovered, and all solution paths retrieved are correct.

After a positive test has been done, a negative test is also done to ensure the

framework does not identify false positives if in fact there are no matches. The

monitoring policy listed below is used to test the framework for this purpose.

(((file pattern(stringMerge, fopen, null, null) +

file pattern(stringMerge, fprintf, null, null)) +

func call pattern(stringMerge, getline)) ;

func call pattern(main, stringMerge))

Since the function call from main to stringMerge is the first event pattern, there

should be no paths that contains any event pattern preceeding this function call.

Therefore, no solution paths should be found if this monitoring policy is used with

the previous annotated source code output by the pattern matcher. The pattern

matcher’s output is as follows, which matches what is expected.

(01) 0 Solution(s) found.

Lastly, a complicated monitoring policy involving multiple terms is used to test

the policy driven software monitoring framework’s abillity to handle complexity.

The monitoring policy used is listed below.
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((((func call pattern(main, stringMerge) +

file pattern(stringMerge, fopen, null, null)) ;

file pattern(stringMerge, fprintf, null, null)) ;

*) ; file pattern(stringMerge, fclose, null, null))

The pattern matcher executed successfully and discovered a total of 232 solution

paths. This is largely due to the different permutations possible with the wildcard

pattern. Removing the wildcard pattern from the monitoring policy yields the

following output, which finds the first matching instance of the event patterns

specificed in the monitoring policy.

(01) +++SOLUTION+++

(02) FunctionCall-main calls stringMerge at 86:41 <--> File-string

Merge fprintf-ing null at 57:7 <--> File-stringMerge fclose-ing

null at 75:3 <--> Score: 120

(03) +++SOLUTION+++

(04) File-stringMerge fopen-ing null at 36:12 <--> File-stringMerge

fprintf-ing null at 57:7 <--> File-stringMerge fclose-ing null

at 75:3 <--> Score: 120

(05) 2 Solution(s) found.

Table 9.1 summarizes the different tests performed on the aforementioned in-

puts to verify the correctness of the policy driven software monitoring framework.

Similar experiments were performed successfully on two larger applications

developed in C. The first application is a Blackjack game which has approximately

1000 lines of code, and the second application is the open source BASH shell [63]

which contains over 50000 lines of code. Due to the sheer volume of output, the
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Table 9.1: Summary of Tests Performed to Verify the Policy Driven Software Mon-
itoring Framework

Test Name Test Description Solutions Found
Basic Test Verify the framework is operational 1
Positive Test Verify the framework correctly identifies all

locations in the source code that matches
with the monitoring policy

4

Negative Test Verify the framework does not identify any
false positive locations in the source code

0

Robustness Test Verify the framework can handle complex
monitoring policies and identify multiple
solutions

232

results of these experiments will not be reproduced here, but it is important to point

out the robustness of the framework in handling software applications of different

scales.

9.3 Timing Analysis

This section evaluates the performance and scalability of the policy driven soft-

ware monitoring framework by analyzing the time it takes for the pattern matcher

to execute with varying complexity in the monitoring policy. As additional event

patterns are added to the monitoring policy, its Petri Net representation will in-

crease in size and consequently affecting the performance of the algorithm.

For the purposes of this timing analysis, the string merging program above

is used with two large input files, resulting in 3075 lines of annotated source code

output to match with the Petri Net. Monitoring policies of varying length and
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complexity are applied to the pattern matcher with this annotated source code

output and the pattern matcher’s execution time is recorded. In the first test, the

monitoring policies will consist of only file patterns and function call patterns which

are combined with a choice operator. The results are shown in Figure 9.7 below.

As seen, the performance of the pattern matcher is related linearly to the number

of choice expressions found in the monitoring policy.

Figure 9.7: Timing Analysis of the Pattern Matcher with Varying Monitoring Poli-
cies Using Choice Operators

Similarly, a second test is performed with monitoring policies where file pat-

terns and function call patterns are combined with a sequence operator. The results

are shown in Figure 9.8 below. As seen, the performance of the pattern matcher is

constant regardless of the number of sequence operators in the monitoring policy.

This is because in the pattern matching algorithm, a sequence expression does not
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add extra nodes to the queue; in other words, the queue size is always 1. As the

pattern matcher traverses through the input, the one node in the queue is compared

against in each iteration and hence the performance of the pattern matcher is not

affected by the number of sequence operators in the monitoring policy. On the

other hand, the size of the queue is directly proportional to the number of choice

expressions in the monitoring policy, as each possible choice is entered as a node in

the queue, which has a direct effect on the performance of the pattern matcher in

each iteration.

Figure 9.8: Timing Analysis of the Pattern Matcher with Varying Monitoring Poli-
cies Using Sequence Operators

The third test is performed with monitoring policies where file patterns and

function call patterns are combined with a concurrent operator. Since the concur-

rent operator translates to a combination of sequence and choice operators, each
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concurrent operator adds an additional layer of complexity to the monitoring policy

as each choice will map exponentially to multiple choices once the concurrent op-

erator is expanded. Therefore, it is expected that the execution time will increase

exponentially with the addition of more concurrent expressions. The results shown

in Figure 9.9 is consistent with this explanation. Note the different scales used on

the axis for this figure.

Figure 9.9: Timing Analysis of the Pattern Matcher with Varying Monitoring Poli-
cies Using Concurrent Operators

The last test is performed with the addition of a wildcard pattern at the start of

the monitoring policy. Table 7.1 previously demonstrated the presence of a wildcard

node in the monitoring policy adds significant complexity to the algorithm as the

wildcard node is never removed from the queue and consequently its successor

nodes are added to the queue each iteration. Therefore, it is expected that the
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addition of the wildcard pattern to the monitoring policy will significantly affect

the performance of the pattern matcher. For this analysis, the wildcard pattern

is combined with other file patterns with sequence operators, as is the typical

usage of the wildcard pattern. The results are shown in Figure 9.10 below. While

the performance is significantly slower when compared against the tests without

a wildcard pattern, the performance of the pattern matcher still increases linearly

with the number of patterns to match in the monitoring policy.

Figure 9.10: Timing Analysis of the Pattern Matcher with Varying Monitoring
Policies with a Wildcard Pattern
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9.4 Feasiblity Study of Adaptive Logging Frame-

work

To investigate the feasibility of the proposed adaptive logging framework in

Chapter 8, two simple experiments were performed to determine the functional fea-

sibility of using signals [64] and named pipes [65] as the interprocess communication

protocol between the application and the adaptive logger. Both experiments involve

two processes, namely a sender and a receiver, establishing a uni-directional (half

duplex) channel of communication. Both experiments are conducted in a UNIX

environment with source code written in C.

The first experiment deals with using signals to communicate between two

processes. The sender and receiver processes execute code from sigsend.c and

sigrcv.c respectively. The following is the source code listing for sigsend.c. It

takes the PID of the receiver as an input argument and sends three signals via the

system command kill to the receiver process.

(01) // sigsend.c

(02) #include <stdio.h>

(03) #include <signal.h>

(04)

(05) int main(int argc, char *argv[])

(06) {

(07) int pid;

(08)

(09) if (argc != 2) {

(10) printf("Usage : %s <pid of receiver>\n", argv[0]);

(11) exit (1);

(12) }
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(13)

(14) pid = atoi(argv[1]);

(15)

(16) printf("SENDER: sending 15 to %d\n", pid);

(17) kill(pid, 15);

(18) sleep(3); /* pause for 3 secs */

(19)

(20) printf("SENDER: sending 16 to %d\n", pid);

(21) kill(pid, 16);

(22) sleep(3); /* pause for 3 secs */

(23)

(24) printf("SENDER: sending 17 to %d\n", pid);

(25) kill(pid, 17);

(26) sleep(3);

(27) }

The following is the source code listing for sigrcv.c. It registers three signal

handlers for signal numbers 15, 16 and 17. The signal handler for 17 exits the

process.

(01) // sigrcv.c

(02) #include <stdio.h>

(03) #include <signal.h>

(04)

(05) // Routines called upon sigtrap

(06) void f15();

(07) void f16();

(08) void f17();

(09)

(10) int main()

(11) {

(12) // register signal handlers

(13) signal(15,f15);

(14) signal(16,f16);

(15) signal(17,f17);
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(16) for(;;); // loop forever

(17) }

(18)

(19) void f15() {

(20) printf("RCVproc: I have received a signal 15\n");

(21) }

(22)

(23) void f16() {

(24) printf("RCVproc: I have received a signal 16\n");

(25) }

(26)

(27) void f17() {

(28) printf("RCVproc: I have received a signal 17. Exit now.\n");

(29) exit(0);

(30) }

The following program output demonstrates that the receiver has successfully

received the three signals sent from the sender and executes the corresponding event

handler in the correct order.

(01) bash-2.05b$ ./sigrcv &

(02) [1] 20721

(03) bash-2.05b$ ./sigsend 20721

(04) SENDER: sending 15 to 20721

(05) RCVproc: I have received a signal 15

(06) SENDER: sending 16 to 20721

(07) RCVproc: I have received a signal 16

(08) SENDER: sending 17 to 20721

(09) RCVproc: I have received a signal 17. Exit now.

(10) [1]+ Done ./sigrcv

A significant limitation of sending system signals is that signal numbers can

only range from 0 to 31. For a robust adaptive logging framework this may not be

acceptable, and hence another interprocess communication method is explored.
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The second experiment uses named pipes as a method of interprocess commu-

nication. Aside from the sender and receiver which are named np sender.c and

np receiver.c respectively, there is also a header file named halfduplex.h that

contains the location of the half duplex named pipe and the maximum buffer size.

The following is the listing for the header file.

(01) #define HALF_DUPLEX "/tmp/halfduplex"

(02) #define MAX_BUF_SIZE 255

The following is the source code listing for np receiver.c. It creates the

named pipe and then opens it for reading, and outputs to the screen what was

read.

(01) // np_receiver.c

(02) #include <stdio.h>

(03) #include <errno.h>

(04) #include <fcntl.h>

(05) #include "halfduplex.h" // this header file specifies the

location of the named pipe

(06)

(07) int main(int argc, char *argv[])

(08) {

(09) int fd, ret_val, count, numread;

(10) char buf[MAX_BUF_SIZE];

(11)

(12) // Create the named pipe

(13) ret_val = mkfifo(HALF_DUPLEX, 0666);

(14)

(15) if ((ret_val == -1) && (errno != EEXIST)) {

(16) perror("Error creating the named pipe!");

(17) exit (1);
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(18) }

(19)

(20) // Open the pipe for reading

(21) fd = open(HALF_DUPLEX, O_RDONLY);

(22)

(23) // Read from the pipe

(24) numread = read(fd, buf, MAX_BUF_SIZE);

(25)

(26) buf[numread] = ’\0’;

(27)

(28) // Output what was read

(29) printf("Named Pipe Reader: Read From the pipe : %s\n",

buf);

(30) printf("Named Pipe Reader: Total Characters Read : %d\n",

numread);

(31) }

Lastly, the following is the source code listing for np sender.c. It takes one

parameter, which is the string to be sent to the receiver through the named pipe,

and writes it to the named pipe.

(01) // np_sender.c

(02) #include <stdio.h>

(03) #include <fcntl.h>

(04) #include "halfduplex.h" // this header file specifies the

location of the named pipe

(05)

(06) int main(int argc, char *argv[])

(07) {

(08) int fd;

(09)

(10) if (argc != 2) {

(11) printf("Usage : %s <string to be sent to the receiver>

\n", argv[0]);

(12) exit (1);
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(13) }

(14)

(15) // Open the pipe for writing

(16) fd = open(HALF_DUPLEX, O_WRONLY);

(17)

(18) // Write to the pipe

(19) write(fd, argv[1], strlen(argv[1]));

(20) }

The following program output demonstrates that the receiver has successfully

received the string written to the named pipe by the sender. It is therefore possible

to expand on this method as a channel of communication between the application

and the adaptive logger.

(01) bash-2.05b$ ./np_receiver &

(02) [1] 21142

(03) bash-2.05b$ ./np_sender feasibility_test

(04) Named Pipe Reader: Read From the pipe : feasibility_test

(05) Named Pipe Reader: Total Characters Read : 16

(06) [1]+ Exit 1 ./np_receiver

(07) bash-2.05b$



Chapter 10

Conclusions and Future Work

Software monitoring and logging is one of the most important tools a software

engineer has when faced with auditing or analysing a software system. However, one

of the challenges software engineers face in software re-engineering is the difficulty

in effectively monitoring a system, managing its logs and cross referencing them

with source code. This thesis aimed to address this issue by providing a framework

that enables pattern matching between a software log and source code based on

a monitoring policy. It further expands upon this work by proposing an adaptive

logging framework that will greatly improve the quality of log management.

10.1 Thesis Overview and Findings

This thesis has proposed a policy driven monitoring architecture, which con-

sists of a domain model of event expressions that are used to specify the monitoring

117
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policy, a monitoring policy parser, a source code annotator and a pattern matcher.

Firstly, the objects to be monitored are described by a monitoring policy expression

that is used to represent important event patterns. The monitoring policy expres-

sions are able to define objects of monitoring interest both logically and temporally

through a combination of event expressions, which are represented after parsing as

a binary tree, and then consequently transformed into a Petri Net representation.

Secondly, the source code annotator parses the C source code and generates

a partial Abstract Syntax Tree. The annotator then makes annotations to the C

source code based on the results from the source code parser. Executing the source

code with the annotations will yield output that reveals the program’s events with

respect to the objects that need to be logged.

The emitted events and the Petri Net representation of the monitoring policy

together serves as the input to the Pattern Matcher. The pattern matcher associates

a monitoring policy with source code by matching the annotated source code output

against the Petri Net like an automaton. The underlying algorithm involves a

branch-and-bound search from the start to the end place of the Petri Net, but

the algorithm can be improved by adapting concepts from Artificial Intelligence

literature such as using pruning, A* search and dynamic programming to guarantee

optimality and performance. The pattern matcher is particularly useful when a

software engineer is trying to pinpoint the location in the source code that may cause

performance or security problems when the only knowledge regarding the issue is

a sequence of events that happen dynamically in the operation of the application.

The thesis then discusses extensions to the policy driven software monitoring
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framework by outlining a proposal for an adaptive logging framework. The adaptive

logging framework dynamically and autonomously adjusts the logging level of the

system so that the appropriate amount of information is logged. The adaptive

logging framework comprises of a feedback loop that determines the logging level

of the system by signals and events generated by the application and transferred via

a form of interprocess communication mechanism as well as a hierarchy of awareness

policies that dictate how the adaptive logger should react based on the input and

how the logging level of the system should be adjusted. Further experiments were

performed to demonstrate that named pipes is a feasible and scalable method of

interprocess communication for the adaptive logging framework.

10.2 Future Work

The framework and ideas presented in this thesis has opened the doors to a

few avenues of future work. Aside from the optimizations in the pattern matching

algorithm mentioned in Chapter 7, improvements can be made to the monitoring

policy in terms of expanding the amount of event patterns available as well as

allowing a more detailed specification of the function parameters in the monitoring

policy. Furthermore, an investigation on the possibility of having if-conditions in

the monitoring policy will prove to be interesting; the implementation will not

deviate significantly from the proposed framework as the Guard conditions of the

Petri Net can be used to handle the if-conditions.

The adaptive logging framework is also inspirational on a number of possible

paths to pursue for future work in this subject area. Right now the proposed frame-
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work contains awareness policies that are stagnant; a more powerful and robust ar-

chitecture will involve the design and development of complex composite awareness

policies that can embed conditions dictating when policies will be triggered. These

complex composite awareness policies will take full advantage of object oriented

concepts such as inheritance in the taxonomy of awareness policies.

Lastly, the monitoring techniques presented in this paper are all intrusive tech-

niques which require modification and recompilation of the source code, which may

be a time consuming process for large scale legacy systems. The investigation of

non-intrusive monitoring techniques by taking note of the application’s circumstan-

tial surroundings such as memory usage and other operative system primitives will

be a significant contribution to this area of study. Such work will be especially useful

when the software engineer is not provided with the source code to the application

and must perform black box monitoring and auditing.



Appendix A

Program Output for Example in

Case Study

(1) *Annotated*1175739682 FunctionCall - Function main declared at 81:5– Func-
tion stringMerge declared at 26:5@86:41

(2) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@1690726,null,null@36:12

(3) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@5483cd,null,null@40:12

(4) *Annotated*1175739682 FilePattern -with fopen Function stringMerge de-
clared at 26:5–model.Library@9931f5,null,null@44:12

(5) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@49:9

(6) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@50:9

(7) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(8) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(9) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

121
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(10) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(11) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(12) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(13) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(14) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(15) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(16) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(17) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(18) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(19) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(20) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(21) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(22) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(23) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(24) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(25) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(26) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(27) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(28) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(29) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
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clared at 26:5–model.Library@1f1fba0,null,null@57:7
(30) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(31) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(32) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(33) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(34) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(35) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(36) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(37) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(38) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(39) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(40) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(41) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(42) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(43) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(44) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(45) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(46) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(47) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(48) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
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(49) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(50) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(51) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(52) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(53) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(54) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(55) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(56) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(57) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(58) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(59) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(60) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(61) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(62) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(63) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(64) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(65) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(66) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(67) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(68) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
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Function getline declared at 10:5@58:13
(69) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(70) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(71) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(72) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(73) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(74) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(75) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(76) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@55:13
(77) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(78) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@55:13
(79) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(80) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@55:13
(81) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(82) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@58:13
(83) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(84) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@55:13
(85) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(86) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–

Function getline declared at 10:5@55:13
(87) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
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(88) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(89) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(90) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(91) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(92) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(93) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(94) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@58:13

(95) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(96) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(97) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@19ee1ac,null,null@54:7

(98) *Annotated*1175739682 FunctionCall - Function stringMerge declared at 26:5–
Function getline declared at 10:5@55:13

(99) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(100) *Annotated*1175739682 FunctionCall - Function stringMerge declared at
26:5–Function getline declared at 10:5@58:13

(101) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(102) *Annotated*1175739682 FunctionCall - Function stringMerge declared at
26:5–Function getline declared at 10:5@58:13

(103) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(104) *Annotated*1175739682 FunctionCall - Function stringMerge declared at
26:5–Function getline declared at 10:5@58:13

(105) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
clared at 26:5–model.Library@1f1fba0,null,null@57:7

(106) *Annotated*1175739682 FunctionCall - Function stringMerge declared at
26:5–Function getline declared at 10:5@58:13

(107) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-
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clared at 26:5–model.Library@19ee1ac,null,null@54:7
(108) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@55:13
(109) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(110) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@55:13
(111) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(112) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@58:13
(113) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@1f1fba0,null,null@57:7
(114) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@58:13
(115) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(116) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@55:13
(117) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@19ee1ac,null,null@54:7
(118) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@55:13
(119) *Annotated*1175739682 FilePattern -with fprintf Function stringMerge de-

clared at 26:5–model.Library@14b7453,null,null@70:7
(120) *Annotated*1175739682 FunctionCall - Function stringMerge declared at

26:5–Function getline declared at 10:5@71:11
(121) *Annotated*1175739682 FilePattern -with fclose Function stringMerge de-

clared at 26:5–model.Library@c21495,null,null@75:3
(122) *Annotated*1175739682 FilePattern -with fclose Function stringMerge de-

clared at 26:5–model.Library@1d5550d,null,null@76:3
(123) *Annotated*1175739682 FilePattern -with fclose Function stringMerge de-

clared at 26:5–model.Library@c2ea3f,null,null@77:3
(124) We have 57 merged records
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