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Abstract

A number of models of nature incorporate dimensions beyamabserved four. In this the-
sis we examine some examples and consequences of classtediilities that emerge in the
higher-dimensional theories of gravity which can desctitsr low energy phenomenology.

We first investigate a gravitational instability for bladkisgs carrying momentum along
an internal direction. We argue that this implies a new typsaution that is nonuniform
along the extra dimension and find that there is a boost dgme¢edtical dimension for which
they are stable. Our analysis implies the existence of atogoas instability for the five-
dimensional black ring. We construct a simple mode of thelbtang to aid in applying these
results and argue that such rings should exist in any nunflsgragze-time dimensions.

Next we consider a recently constructed class of nonsupenatric solutions of type 11B
supergravity which are everywhere smooth and have no hari¥de demonstrate that these
solutions are all classically unstable. The instabilityaigeneric feature of horizonless ge-
ometries with an ergoregion. We consider the endpoint &f itigtability and argue that the
solutions decay to supersymmetric configurations. We absonecent on the implications of
the ergoregion instability for Mathur’s ‘fuzzball’ propals

Finally, we consider an interesting braneworld cosmologye Randall-Sundrum scenario
constructed using a bulk space-time which correspondshamed AdS black hole. In partic-
ular, these solutions appear to ‘bounce’, making a smoatisition from a contracting to an
expanding phase. By considering the space-time geomeiry caoefully, we demonstrate that
generically in these solutions the brane will encountengudarity in the transition region.
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Chapterl

Introduction

The writing of this thesis marks nearly one hundred yearsesthe publication of Einstein’s
general theory of relativity. His theory dramatically mivelil the prevailing notions of space
and time. Since then, the scientific community has ofteniedgh kind by modifying Ein-
stein’s notion of space-time in the continuing search foulimate theory of nature.

One of the earliest of these modifications, the addition abdra dimension beyond the ob-
served fout, was suggested by Kaluza [3] only five years after generafivéty was introduced
[4]. He found, by what he interpreted as a purely formal catsion, that four-dimensional
Einstein-Maxwell theory could be obtained as the dimeraioeduction of pure gravity in five
dimensions. To arrive at this result required the assumghat the extra coordinate was a
Killing vector for the five-dimensional space, and that theger length of the extra dimension
was a constant. This simple idea was the seed for many frygfars of research up to and
including writing of this thesis. For a description of thagtory, we follow the excellent review
given by Appelquist, Chodos, and Freund [5].

!Note, however, this was not the first gravitational theorintmrporate extra dimensions. In fact, even before
general relativity, Gunnar Nordstrom had proposed a stladmry of gravity [1]. He was able to unify his theory
with Electromagnetism by adding an extra dimension andtifyémg the fifth component of the gauge field with
the scalar [2].
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It was later, in 1926, that Klein [6] and Mandel [7] indepentlg rediscovered Kaluza’s
theory. Klein came closer to interpreting the extra dimensis having physical significance,
discussing higher harmonics of scalar fields in the intedialension leading to quantized
charge. Einstein and Bergmann [8] continued in this dioggtadvancing the idea closer to our
modern interpretation that the extra dimension should tezpneted as physical, but compact-
ified on a circle sufficiently small so as to require exceelyihggh energy to excite derivatives
of the fields in that direction. This, it could be said, was s$tert of the paradigm of study-
ing higher-dimensional theories of gravity as a route taltbe unification of gravity with the
other forces in nature.

Progress in this direction included the generalizationaio-abelian gauge fields [9—15] by
adding even more dimensions. These constructions suffesadan important problem not
found in the five-dimensional theory. While the simple s@lniconsisting of four-dimensional
Minkowski space and a flat internal circle was a solution ofuga-Klein theory in five di-
mensions, the same could not be said of these higher-dioraistonstructions with non-
abelian gauge groups. One finds that when the gauge fieldshyarguiring both the higher-
dimensional and four-dimensional spaces be flat impliestti®internal space has no curva-
ture. This, however, is inconsistent with the requiremdntanm-trivial structure constants for
the non-abelian gauge group which must have their origiherctirvature of the internal space.

What was needed was a method of “spontaneous compactifitatihereby the theory
contained solutions corresponding to a four-dimensionalkibwski base times an internal
compact space. Cremmer and Scherk [16] first addressed abéepr by pointing out that
such solutions could exist if one included Yang-Mills andlac matter fields in the higher-
dimensional theory. This was later generalized by Luciaddi [to a larger class of internal
spaces.

While the additions suggested by Cremmer and Scherk werpatdee from the original
Kaluza-Klein idea of pure gravity in higher dimensions rthis a natural arena where they find
a home. In eleven dimensions there is a unique supergra8iy the bosonic sector of which
consists solely of a graviton and a four-form field strengkhoreover, there are no matter
or Yang-Mills supermultiplets in eleven dimensions. Thenpactification of gravity theories
in d dimensions containing a-form field strength have been studied by Freund and Rubin
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[19]. They observed that there were preferred compaciificatod — p andp dimensions that
arose when looking for configurations in which the uncomifiadtpart of the space-time was
maximally symmetric. In a sense then the extension of theizéaKlein idea to supergravity
is quite natural in eleven dimensions where the observeddmoensions of space-time arise
as a consequence.

This, however, is not the only context in which eleven dimens has appeared. Witten
realized [20] that in order to obtain, by compactificatiomealistic model containing the stan-
dard model gauge group, the minimum dimensionality of therimal space was seven. Further,
simply producing the required gauge group is not suffici@mte needs chiral fermions, which
were shown to be impossible to obtain in the eleven dimeasicompactifications [20]. In
fact, this result was later extended to arbitrary dimengi, showing that although higher
dimensions may be an important part of a potential theoriy#&Klein theory alone will be
insufficient to produce the known phenomenology.

Around the time pure Kaluza-Klein theory was shown to be fiitsant for producing re-
alistic phenomenology, string theory was developing astaryial theory of quantum gravity
which unified all known forces. The bosonic theory was onlggistent in twenty-six dimen-
sions, but its spectrum contained a tachyon. This causedtath to shift to the superstring
where the requirement of supersymmetry in the target spajegbed the tachyon out of the
spectrum. Again, consistency of the theory requires thexigt in a critical dimension, this
time ten.

More recently, superstring theory received a boost as dtrefsthe progress being made
in understanding the microphysics of black holes. The disgoin the 1970’s of the laws of
black hole mechanics — for a review see [22] — and their forsnailarity to the laws of
thermodynamics led Bekenstein [23] to conjecture that auddcassociate to a black hole an
entropy proportional to its horizon area. Strength wag lgiteen to this conjecture by Hawking
who showed that particle creation took place near horizansiog them to effectively radiate
as a blackbody and thus could be associated with a tempef@4dir. The next logical step,
as it was in the transition from thermodynamics to sta@tnechanics, was to find a micro-
scopic description of the black holes in which the entropynted the number of degenerate
microstates that are indistinguishable on a macroscopét.le
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In 1995, it was discovered that string theory is not just athef strings, but also con-
tains D-branes [25], extended objects upon which stringsecal. As they are endowed with
tension, bringing together many D-branes can result inamadtion of an event horizon. For
certain (nearly) supersymmetric black holes, one is ab$tov that the Bekenstein-Hawking
entropy as computed in the strongly-coupled supergra@gecdption, can be reproduced as a
statistical entropy in a weakly-coupled D-brane desariptis the degeneracy of the relevant
microstates [26] — for reviews, see [27-29]. The AdS/CFTrespondence [30, 31] provides
further insights into these issues by providing a dictignatating the geometric description
of the physics in the near-horizon region of many coincide+iiranes with the physics of a
dual conformal field theory — see [32] for a review. In partisuthe AJS/CFT indicates that
Hawking evaporation should be a unitary process, in keepitigthe basic tenets of quantum
theory.

As noted earlier, it has not just been the search for a unifiedryy which has led to extra
dimensions. While the standard model of particle physicstie®en hugely successful, there
are indications that it is incomplete. For example, recdasieovations of neutrino oscillations
[33] imply that they have mass, but Majorana mass terms n#utrinos are forbidden in the
standard model by B-L symmetry [34]. One may obtain a Majanasass for the neutrinos by
including a dimension-five operator, but this implies wewddmnly regard the standard model
as an effective low-energy theory. Indeed, one could alsgeaat such a conclusion from
purely theoretical considerations as QED is not asymlhyidree, implying its interactions
must become strong at some scale. Ensuring that the quadnatiing of the Higgs mass does
not interfere with the electroweak symmetry breaking magm places the scale of the new
physics on the order of a few TeV [35].

While the UV completion of the standard model is not yet knpimereasingly the phe-
nomenology community has been turning to models that pasia @limensions to address
many of its outstanding puzzles. Braneworlds [36—40] faregle, have generated an enor-
mous amount of interest in higher-dimensional space-tiamesng particle theorists. Inspired
by D-branes, a key ingredient in these brane models is tieastdmdard model particles re-
main confined to a (3+1)-dimensional brane, while only trergational excitations propagate
through the full space-time. Such scenarios provide a namdivork in which to address
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many longstanding puzzles in particle physics, such asi#rariechy problem. The cosmology
community has also shown an increasing interest in brands/ft1-62], since this is another
field where brane models have the potential to provide naletisns to many of the perennial
guestions.

In all these braneworld scenarios, the size of the extrakinas are larger than the fun-
damental Planck scale. Their low energy behavior will therdbscribed by classical general
relativity. It is in this arena that we may understand muchhef phenomenology of these
models.

It seems then, whether one’s interest lies in unification lermenology, the study of
higher-dimensional relativity will be important. One ottmost striking results of such studies
is that general relativity in dimension greater than fous Bamuch richer structure than its
lower-dimensional counterpart. Studying black holes ighler dimensions, for example, it
has been discovered that a large number are unstable atatwcell level. The prototypical
example of this being the black string: the direct produa &chwarzschild black hole and a
flat circle. One finds that for a sufficiently large internatée, the solutions are unstable against
a class of perturbations to the metric that grow expondwtialtime [63, 64]. The discovery
of such instabilities by Gregory and Laflamme suggestecethere previously undiscovered
black hole solutions, which were nonuniform along the inédimension, to be found [65,
66]. Such solutions were later constructed both in pertiwbaheory [67] and in a fully
nonlinear regime [68].

These new nonuniform black hole solutions were not the oely black hole solutions
waiting to be found in higher dimensions. Even before theumifiorm solutions were con-
structed any hope of extending black hole uniqueness threofieom four [69—-72] to higher
dimensions was dashed by the discovery of a second type ofstically flat black hole
solution in five dimensions [73]. The new solution was a blang, a black hole with horizon
topology S? x S! in five dimensions. The angular momentum supports the riminagcol-
lapse by the tension and also the gravitation self-attvadir4]. There is a range of angular
momentum such that there are two solutions which have er@rdangular momentum that is
degenerate with a five-dimensional black hole spinning im axis. If one additionally allows
the ring to carry a dipole charge, this discreet degeneracgrnes a continuous, infinite one
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[75]. Though there is no upper Kerr bound on the angular maomerior the black ring, it
appears one may be dynamically enforced by instabilitiasdbcur for larger spin [74].

Further, a recent proposal by Mathur and collaborators fatetstanding black hole en-
tropy has been advanced, for a review see [76,77]. They atgiandividual microstates
correspond to smooth, horizon free geometries that diffiér out to a distance corresponding
to the horizon size. The black hole is dual to an ensemble edethmicrostates, and so the
horizon only emerges in a coarse grained average over tlmmerpal number of microstates.
For this proposal to be true, there must be families of newsot solutions of gravity which
form the ensemble of microstates. Though of course if theseé microstates must also exist in
four dimensions. Such microstate geometries have beetrootes] for supersymmetric black
holes [78-93], and more recently the first steps have beem tavard their construction for
nonsupersymmetric black holes [94].

The focus of this thesis will be one of the very common prolsleéhat occur in higher-
dimensional theories: instabilities arising at the cleaisievel. We begin in Chapter 2 by
examining the Gregory-Laflamme instability for black sgggsncarrying momentum along an
internal direction. We demonstrate a simple kinematidati@n between the thresholds of the
classical instability for the boosted and static blackngfsi We argue that this implies a new
type of solution and find that there is a boost dependentalitimension for which these
solutions are stable. Our analysis implies the existene@m@nhalogous instability for the five-
dimensional black ring of Emparan and Reall. We also useesuits for boosted black strings
to construct a simple model of the black ring and argue thett sings exist in any number of
space-time dimensions.

Next, in Chapter 3, we turn our attention to the Mathur pr@pasd the nonsupersymmetric
microstate geometries which have recently been consttyed. It is found that these also
suffer from a classical instability, though its nature istgualifferent than that occurring for the
boosted strings. It is a generic feature of horizonless gdes with an ergoregion. We argue
that this instability holds strong implications for the Mat proposal.

Finally, before giving some concluding remarks, we consideChapter 4 an aspect of
the braneworld description of cosmology. Recently, a mbdsl been constructed within the
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Randall-Sundrum scenario of a codimension-1 brane in tbhkgraund of an AdS-Reissner-
Nordstrom black hole, producing a cosmological evolutidrich appeared to result in a non-
singular bounce between contracting and expanding phd&ggonsidering the space-time
geometry more carefully, we demonstrate that the evolutiotinis solution will always en-
counter a curvature singularity in the transition regiosuténg from an exponential flux of
perturbations generated in the external space-time.



Chapter?2

Black Rings, Boosted Strings and Gregory-Laflamme

There has been a great deal of activity studying “black dbjen higher dimensions, particu-
larly in string theory [95-98]. There is clear evidence that four-dimensional intuition leads
us astray in thinking about the physics of event horizonsigiér-dimensional gravity. For
example, an interesting corollary of the early theoreticegstigations of black holes in four
dimensions was that each connected component of a statibodzon must have the topology
of a two-sphere [99]. However, this result is easily evadekligher dimensions. As a simple
example, consider the four-dimensional Schwarschild imetrmbined with a flat metric on
R™. This space-time is an extended black hole solution of Einstequations in 4+ dimen-
sions, and the topology of the horizon§8 x R™. Clearly, this straightforward construction
is easily extended to constructing many other higher-dsiweral black holes whose horizons
inherit the topology of the “appended” manifoldThese solutions describe extended objects
in that the geometry is not asymptotically flat in allz34spatial directions and so one might
have conjectured that all localized black objects wouldetegpherical horizon. However, this
hope was eliminated by Emparan and Reall [73], who congtduah explicit five-dimensional
metric describing a black ring with horizon topology x S!. The circle direction in these
solutions is supported against collapse by the angular mamrecarried in this direction, as
was anticipated much earlier in [104].

1Similar solutions arise for four dimensions in the presasfcenegative cosmological constant [100-103].

8
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These black ring solutions also eliminated any possibalitgxtending the usual black hole
uniqueness theorems beyond four dimensions. In four-dsioaal general relativity, work on
black hole uniqueness theorems began with the pioneerimg @fdsrael [69, 70]. The no-
hair results are now rigorously established for Einsteavigy coupled to Maxwell fields and
various other simple matter systems [71, 72]. While in gttimeory, we study more compli-
cated matter field couplings (as well as space-time dimesgieyond four), the plethora of
new solutions [95-98] still respected the spirit of the r@xttheorems in that the black hole
geometries are still completely determined by some smalbfseharges. However, the black
rings [73] explicitly provided two solutions for which theass and spin were degenerate with
five-dimensional spinning black holes [104]. This nonurigess was further extended to a
continuous degeneracy with the introduction of dipole geaf{75].

One open question is whether or not such black rings existarerthan five dimensions.
One argument suggesting that five dimensions is specialsfra considering the scaling of
the Newtonian gravitational and centripetal forces. I3 gense, five dimensions is unique in
that it is only forD = 5 that these forces scale in the same way and can be stablybdlaDf
course, this is purely a classical argument which need noitieen the fully relativistic theory,
and further it ignores the tension of the ring. It is part af foal of this chapter to address this
question.

In considering spinning black holes and rings, four dimensiis also distinguished from
higher dimensions by the Kerr bound. While there is an uppentd on the angular momen-
tum per unit mass of a four-dimensional black hole, no suamdaexists for black holes in
dimensions higher than five [104]. The five-dimensional bidegs also remove this bound in
higher dimensions [73].

Even more strikingly, in contrast to the stability theoreprsven for four-dimensional
black holes [105—-108], Gregory and Laflamme [63, 64] havevsitbat extended black branes
are unstable. The spectrum of metric perturbations camtaigrowing mode that causes a
ripple in the apparent horizon. The endpoint of the insiigbis not completely clear, how-
ever, a fascinating picture is emerging [66]. Interesgnglwas shown in [109] the Gregory-
Laflamme instability dynamically enforces the “Kerr bourfd? D > 6. Perhaps a stability
criterion will restore some of the restrictions which arers¢o apply to black holes in four
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dimensions.

In the present chapter, we investigate the Gregory-Laflanmstability for black strings
carrying Kaluza-Klein (KK) momentum. These solutions aasily constructed by boosting
the static black string metrics. We begin in Section 2.1 iteview of the Gregory-Laflamme
instability for static black strings. The discussion of btaml black strings begins in Section 2.2,
where we first present the solutions carrying KK momentumtaed consider their stability
with global thermodynamic arguments. We then adapt theluswaerical analysis of the
Gregory-Laflamme instability to these boosted solutions.démonstrate a simple kinematical
relation between the thresholds of the instability for ledsnd static black strings with a fixed
horizon radius. Comparing the numerical results with tlexjous global analysis, we find that
Sorkin’s critical dimension [110] depends on the boost e#jo In Section 2.3, we apply our
results to a discussion of the stability of the black ringuiohs of Emparan and Reall [73]. As
already anticipated there, we find that large black ring$ suffer from a Gregory-Laflamme
instability. Our analysis allows us to argue that black simgll exist in any dimension higher
than five as well.

2.1 Gregory-Laflamme instability

The detailed calculation of the instability of the boostdachk strings will be an extension
of the original analysis of Gregory and Laflamme [63, 64]. eewe begin here by reviewing
theprovide no barrier stability analysis for static blattkgs? For the static string ith = n+4
dimensions, the background metric is an extrema of the &msiilbert action

1 D
I = 167rG/d v/ —gR,
and can be written as
2 2 dr? 2 12 2
ds* = —f(r)dt* + —— +r°dQ; , +dz*, (2.2)

f(r)
2Note, however, that our gauge fixing follows [111] which dif§ from that in the original analysis of [63, 64].

The present gauge fixing [111] has the advantages that iesdsdn completely fixing the gauge and it is well-
behaved in the limit of vanishing.
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whered2?2. | is the metric on a unitn + 1)-sphere and

flr)=1- (E)” . 2.2)

,
The event horizon is situated at= r, and we imagine that the direction is periodically
identified withz = 2z 4+ 27 R.

Now we seek to solve the linearized Einstein equations faupeations around the above
background (2.1). The full metric is written as

Guv = g,uzz + huu ) (23)

whereg,, is the background metric (2.1) aridl, is the small perturbation. We will restrict
the stability analysis to th&wave sector on thex(+ 1)-sphere as it can been be proven that
modes with? # 0 are all completely stable. This is apparent following thmee lof argument
originally presented in [112]. Assume the threshold for arsgability corresponds to a time-
independent mode. This mode could then be analyticallyicoed to a negative mode of the
Euclidean Schwarzschild solution. However, by a direatwation involving an expansion in
scalar, vector and tensor spherical harmonics, Grossy Rad Yaffe [113] have shown that
the existence of such a mode is unique to $heave sector. Recently, this stability has also
been proven by a more direct analysis [114]. Hence we wrég#rturbations as

hu,, = Re [thszaw(T)] , (2.4)

where(2 andk are assumed to be real ang, is chosen to respect the spherical symmetry,
e.g., a,y = 0. Hence solutions witk) > 0 correspond to instabilities of the static black string.
The above ansatz (2.4) can be further simplified with infgiteal diffeomorphisms. Using a
diffeomorphism with the sameandz dependence as above, the perturbation may be reduced
to a form where the only nonvanishing components,gfare:

A = ht(r) s Apy = hr(/r) 5 Ayr = hz(r) 5
ag = Qhy(r),  ay = —ikh,(r) . (2.5)

Note that even thougtyy = 0 = a4, these perturbations can cause rippling in the position of
theapparent horizon along the internal direction [64].
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The linearized Einstein equations give a set of coupledtamnsdetermining the four radial
profiles above. However, we may elimindtg h, andh; from these equations to produce a
single second order equation flor:

Wl(r) 4+ p(r)h(r) + q(r) ho(r) = Q2w(r)h.(r) (2.6)
1 no 4(2 + n) k*r?
p(ff’) = , <1+ f(r) 2k2r2+n(1—|—n) (r%)n)
r) = 1 _k2r2 2k%*? —n(3+n) (’%)n
1 72 f(r) 2k2r2 +n(1+n) (%*)n
1
w(r) = [{E (2.7)

Next we must determine the appropriate boundary conditons, () at the horizon and
asymptotic infinity for a physical solution. First near theriaon, the radial equation (2.6)
simplifies considerably yielding solutions

h, = Ae®™ + Be 9 (2.8)

Herer, is the tortoise coordinate defined &y, /dr = 1/ f and with which the horizon appears
atr, — —oo. Now in principle, we would choose initial data for the pebation on a Cauchy
surface extending to the future horizon and demand thatatheanbation be finite there. Hence
we require thaf3 = 0 for physical solutions.

Eq. (2.6) also simplifies as— oo. The asymptotic solutions behave differently depending
on whethem = 1 orn > 2. Forn = 1, the regular solutions take the form

h, ~ e hTp2 S (2.9)
wherep? = Q% + k2. Forn > 2, they are
h, ~ e hTps (2.10)

with the same definition for. Hence we expect that the unstable perturbations are zechli
near the horizon with a characteristic sjze'.

3While the present argument is somewhat superficial, a moedutareatment yields the same result [63, 64].
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n 1 2 3 4 5
kmaxr+ | 0.876 | 1.269 | 1.581 | 1.849 | 2.087

Table 2.1: Maximum wavenumber corresponding to the mallginastable mode of the static
black string in various dimensiors = n + 4.

The instabilities can be determined as follows: For a fixddevaf k&, we choos«? and
set the asymptotic conditions according to eq. (2.9) orQR.The radial equation (2.6) is in-
tegrated in numerically to ~ r,. Here we match the numerical solution to the near-horizon
solution (2.8) which determines the rati$y A for the chosen value d@. By varying (2, we
may tune this ratio to satisfy the physical boundary cooditit the horizoni.e.,, B = 0. We
find solutions for a range df from 0 up to a maximum valué,, ... Figure 2.1 shows the re-
sulting solutions for various space-time dimensions. Titeal valuek,,., corresponds to the
threshold of the Gregory-Laflamme instability and is setloy only dimensionful parameter
in the background;, , up to a factor of order one. Table 2.1 tabulatgs, for different values
of n.

Figure 2.1: Unstable frequencies and wavenumbers for #tie stiack string.

When the coordinate along the string is periodic, the altbwedues oft: are discretei.e.,
for 2 = z + 27 R, k = n/R with n an integer. Hence for smalt, the system is stable when
kmax > 1/R. However, forR > 1/k...x, the lowest wavenumber, allowed by periodicity, falls



2. Black Rings, Boosted Strings and Gregory-Laflamme 14

in the unstable range and the black string is unstable.

2.2 Boosted black strings

Our focus at present is “boosted black strings’, stationary black string solutions carrying
momentum along their length. Such solutions can be obtaiyesimply boosting the static
solution (2.1) along the direction

2
ds* = —dt* + % +72dQ2,  +d2? + (1 — f)cosh® B (dt +tanh 3 d2)* ,  (2.11)
r

where the boost velocity is given by= tanh 3, and as before

fr)=1- (E)" . (2.12)

r

Again, we assume that in the new solution thdirection is periodically identified with = z+
27 R. This solution has an event horizon situatedaand an ergosurface at= . cosh?" 3,
whered; becomes spacelike.

To see quantitatively that this solution carries both maskraomentum, we calculate the
ADM:-like stress tensor for the string with the following aspgtotic integrals [115]

1

Ty =
"7 167G

7{ A1 P 0 [Ny (00, + OibY; — O;0,) — Bihay) (2.13)

Heren' is a radial unit vector in the transverse subspace@and- g,,, — 1., is the deviation of
the asymptotic metric from flat space. Note that the indegl&b b, ¢ € {t, z}, while, j run
over the transverse directions. To apply this formula, 8yargtotic metric must approach that
of flat space in Cartesian coordinates. This is accomplishiécthe coordinate transformation
r=7(1+ (r./7)™/2n) which yields

ds® ~ — (1 - (%)ncosh2 ﬁ) dt? + 2 <%)nsinhﬂcoshﬂ dtdz (2.14)

+ (1 + (Q*)nsmlf 5) 422 + (1 + % (E)”) doidz; |

T T
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n+2

keeping only the leading order corrections. Hete= """ *(z%)%. Hence applying eq. (2.13),
we find the stress energy for the boosted black string is:

Qn—i—l 2
Ty = i h 1
tt 167TGT+(nCOS p+1),
Q
T,, = 16’;:5& n cosh 3 sinh 3, (2.15)
Qn—i—l n .
T,, = 167TGT+(nsmh2ﬂ -1),

where(2,,,, is the area of a unitn + 1)-sphere. Integrating over, the total energy and
momentum of the string are then

QR

Egs = 82’ r(n cosh? 3+ 1), (2.16)
Q,

Pps = SZR r n cosh 3 sinh 3 . (2.17)

The limit of maximal boosts — oo results in divergenEgs, Pgs, but these can be kept
finite if », vanishes sufficiently fast. In particular taking the largdimit while holding
i cosh? /3 fixed produces finite charges. However, the limiting backgrbhas a naked null
singularity at the center of a finite-size ergosphere.

2.2.1 Comparing black strings and black holes

Gregory and Laflamme [63, 64] originally gave a simple arguiniavoring instability of the
static black string by comparing its entropy to that of a syaé black hole with the same
energy. This argument also plays a role in deducing the fudisp structure of black strings
and black holes in a compactified space-time [66,116]. So eginbhere by extending this
discussion of the global thermodynamic stability to thedied black string. The analysis for
the case at hand becomes slightly more complicated becasisell as matching the energy,
we must also explicitly match the KK momentum along tharcle in our comparison.

We compare the boosted black string solution (2.11) fo-dimensional spherical black
hole of radius”’, moving along the: axis with velocityv’ = tanh 3’. At rest, the energy of
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the spherical black hole is [104]

(TL + 2>Qn+2 7 n+1
16:C o (2.18)

Now to a distant observer, the spherical black hole behakeslpoint particle and so when

MBH =

boosted, its energy and momentum are given by
EBH = MBH COShﬂl s PBH = MBH sinhﬁ' . (219)

Equating the above to those for the black string given in €386) and (2.17), the black hole
must have:

n cosh 3 sinh 3
1 + ncosh? 8

! n+1 __ n
, T = 27rl

\/1+n(n+2)cosh259 —
R n

tanh 8’ = .
o 6 n+2 Qn—i—2

(2.20)

It is interesting to note that with the usual relation= tanh 3, the first expression above can

be rewritten as
, n

Tl —
Hence we always hawé < v, with " approaching (from below) asv — 1.

(2.21)

We now need to calculate the horizon entragpy= A/4G for each configuration. For the

boosted string, we find
WRQ"'H n+1

206+
The cosh  dependence arises here because proper length aloagithection at the horizon

Sps = cosh 3 . (2.22)

expands with increasing, as can be seen from eq. (2.11). In contrast, the horizondadrea
the black hole is invariant under boosting. This invariaisceasily verified in the the present
case by explicitly applying a boost along thelirection to the black hole metric in isotropic
coordinates. However, this is a general result [117]. Héorcthe boosted black hole, we have

QTL n
Spy = 2 "2 (2.23)

SettingSpn/Ses = 1 and solving forR, we find

Ty (n+2)"+2 Qo
2mcosh 8 (n(n 4 2) + cosh™2 B)V/2H1 Q4

Rmin - (2 . 24)
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Hence we might expect that the boosted black string is ulestabR > R,.;,. Fixingr,, Ruin
scales likel / cosh 3 for large5. It should be remembered that the laygémit with r, fixed
has divergent energy. Rescaling while taking the larges limit can make the energy finite,
but this causes$,.;, to vanish even more quickly. In any event, this naive analgsiggests
that the instability will persist foff — oo. Again, note that the black string horizon becomes
a null singularity in this limit.

2.2.2 Instability of boosted strings

Turning now to the instability of boosted strings, a natwfabice of coordinates in which to
perform the analysis are those for which the string appdaesa

t=coshft+sinhfz, Z=coshfz+sinhf3t. (2.25)

In the following we shall refer to this as the “static framaid our original frame (2.11) having
periodic boundary conditions iy will be called the “physical frame”.

Let us begin in the static frame with perturbations havingfional formexp(Qf + ik2).
Now transforming back to the physical frame, this becomesg¢ + ikz) where

Q=coshfQ+isinhfBk, k=coshfBk—isinh3Q. (2.26)

For realk and(?, the imaginary part of induced by the boost is inconsistent with the periodic
boundary conditions oawhich are imposed in the physical frame. Hence consistesguyires
that we add an imaginary part tg i tanh 3, which ensures that the resultitigs real. In
practice, finding solutions also requires adding a smalbjimary part to — see below. Hence
in the static frame, our perturbations have adependence of the form

exp[(Q +i@)t +i(k +itanh 3Q)3] (2.27)

whereQ, @, k are all real. In the physical frame, thez dependence of the perturbations
becomesxp(2t) exp i(wt + kz) where

Q=Q/coshf, w=coshB&+sinhBk, k=coshfk+sinhfa. (2.28)
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Again all of the above are real numbers. Provided we enswektis a multiple of1/R,
this ansatz is now consistent with the periodicityzofAs before, solutions witl > 0 will
correspond to instabilities.

Including the complex pariw, in the near-horizon form of the solution (2.8) turns theter
respectively into in and outgoing modes at the future-ekierizon. Wher() > 0, regularity of
the solution requires that we sBt= 0, as before. For the special case thatanishes, neither
solution diverges on the future-event horizon, howevaes, litmit of the second is undefined
there. In this case, we continue to impdse= 0 as our boundary condition fét = 0 as this
corresponds to a boundary condition of purely ingoing madéie future-event horizon.

Hence the problem of finding instabilities of the boostethgtreduces to finding instabili-
ties of the static string with the complex frequencies defimg (2.27). With these frequencies,
the perturbations have a time dependent phase. The boucwiadition must therefore be im-
posed on both the real and imaginary parts of the unknowrtifumcThis means that for each
value of k there are two constraints that must be solved on the horja@tjsely matching
the number of free parametebs(). Apart from these complications, the solutions were found
numerically using the method outlined in Section 2.1.

The numerical results for the frequenci@sand® in the static frame are displayed as a
function of & in Figure 2.2 forn = 1. The results in other dimensions are similar. On the left,
we see thaf)(l%) is almost independent of the boost veloaityT his result might be interpreted
as arising because even when= 0, ) is suppressed relative foand so making nonzero
(but small) only yields a small perturbation on the unbodsesults. Further, we note that the
behavior of2(k) neark = 0 andk.., is independent of — a point we return to below.

More dramatic differences are seen when the results arsforamed to the the physical
frame with eq. (2.28). We display(k) in Figure 2.3a for. = 1. Again, the behavior for other
values ofn is similar. We might note that the comparison is made herbdosted strings with
a fixed value of-, . Hence the total energy (2.16) increases with the boostitgland diverges
asf — oo.

In fact, one can predict the threshold for the Gregory-Lafteninstability of the boosted
string without the numerical analysis above. The reviseshtm(2.27) in the static frame was
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Figure 2.2: Frequenci&(i%) andaj(l%) leading to instabilities, as observed in static] frame,
forn =1.

introduced to accommodate the time dependence of thesesmpda boosting to the physical
frame. However, the threshold mode is defined as that fortwihie timescale of the instability
divergesj.e,, Q = 0. Hence there is no obstruction to boosting the thresholdenuoigjinally
found by Gregory and Laflamme. Hence there is a simple kinealatlation between the
thresholds for the boosted and static black strings. In thysipal frame, this marginal mode
has

Eax = €0Sh 3 kmax ;@ = sinh 3 kpax (2.29)

wherel...... is the threshold for a static black string, listed in Table. Hence these threshold
modes are travelling waves in thedirection having precisely the same speed as the boosted
string.

One may ask whether there are more general modesWith 0, but nonzeray. For
example an exactly marginal mode in the physical frame weedgire that) = 0 and® =
— tanh 3%, butin fact such a solution is inconsistent with the equretiof motion. The linearity
of (2.7) allows us to arbitrarily choose a normalization inigh /.. is real at a point. When we
set() = 0, the real and imaginary parts bf decouple, implying that, is real everywhere. If
@ is nonzero, the only choice of and B in the near-horizon solution (2.8) consistent with
real isA = B*, so that the boundary conditid® = 0 is not possible. We then conclude that
the only solution withQ) = 0 is time-independent in the static frame £ 0), which is then a
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Figure 2.3: Plot of physical frequenci€gk) andw(k) leading to boosted string instabilities
for fixed horizon size, at various boost velocities and with 1.

travelling wave of constant amplitude in the physical frame

To close this section, we observe that in the static frain&) shows some interesting
structure, as shown in Figure 2.2b. The zero® gkem to be independent@af The vanishing
at ko (andl?; = 0) is understood from the discussion above, but there is alised interme-
diate zero which seems to coincide with the maximum valu@.ofVe do not have a physical
explanation for the latter.

Using eq. (2.28), the phase velocity of the unstable modékarphysical frame can be

written as ~
v/k
S L L O

= = + e 2.30
ko 14+0v0/k (2:30)

= &

The last approximation uses our numerical result that gesibr ©/k < 1. Hence we see
that to a good approximation all of the perturbations tratehg the string with the boost
velocity — a result which is verified by the numerical resutt$-igure 2.3b. However, given
&(k) in Figure 2.2b, we see that the deviations from this rule ach shat the long (short)
wavelength modes travel with a phase velocity that is dyghster (slower) tham. Of course,

the threshold mode moves along thdirection with precisely the boost velocity.
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2.2.3 Comparing black strings and black holes, again

The threshold mode sets a minimum radius of the compacedioclwhich the boosted black
string is unstable. Hence from eq. (2.29) above, we have

(Rmin) = L = L (2.31)
BS

T4 (Fmax 7+ )BS B cosh 3 l%max T

where agairk,... is the static string threshold, given in Table 2.1. This lestght be com-
pared to that in Section 2.2.1. Recall that there we comptedntropy of the boosted black
string to that of a small black hole boosted along tkdirection. In this case, we found

(Rmin) o 1 . 1 (n + 2)n+2 Qn+2 (2 32)
e Jag (kmax7i)Br  2mcosh B (n(n+ 2) + cosh™2 B)W/2+1 Q,yy '

Hence the simple scaling with/ cosh 3 in eq. (2.31) is modified here by corrections in pow-
ers of 1/ cosh? 3. The two results are plotted together in Figure 2.4 for usispace-time
dimensions.

(Knax )
1.2+

11
0.8
0.6¢
0.4F
0.2

Figure 2.4: Comparison of the threshold wavenumber caiedlaumerically (2.31) (solid line)
to that predicted by global entropy considerations (2.82%fed) forD = 5,7, 10, 20

Considering the static resultisg, v = 0 or cosh § = 1), Figure 2.4 shows thaf?,,;,)gs >
(Rmin)su for smaller values oD, but (R, )ss < (Rumin)pu for larger values. Sorkin [110]
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first observed this transition occurs betwden= 12 andD = 13. This result seems to indicate
that there is an interesting phase diagram [66, 116], fodlsmawith a regime(R,,i,)ps >

R > (Rumin)su Where the black string is locally stable, but the black haleitson is a global
maximum of the entropy. These global considerations thggesst that in this regime, the two
solutions are separated by an unstable nonuniform blaiciggihase [68] — this structure has
been verified with numerical calculations for= 6 [118], and more recently fab = 5 [119].

In contrast, for largeD, it appears that the nonuniform black string becomes stafiecan
appear as the end state of the decay of the uniform blaclgstrithe regime R,,i,)ps < R <
(Rmin)Bu- Interestingly, one may actually construct the nonunifetnmngs perturbatively for
R near( Ry, )ss [110] and the critical dimension at which the nonuiformregis become stable
is found to be slightly higher than predicted by the aboveiargnt, occuring betweeh = 13
andD = 144

Now we observed thatR,,i,)gs and (R )sr in €gs. (2.31) and (2.32) do not have the
same dependence on the boost velocity. This leads to amstitey effect which we observe
in Figure 2.4. In the regimé® < 13, we start with(R,in)Bs > (Rmin)su for small cosh 3,
but there is a transition tOR,,i,)ss < (Rumin)su fOr large boosts. Figure 2.5 displays the
critical boost velocity (for the uniform black strings) ahigh this crossover occurs in various
dimensions. This behavior can also be verified using theydo@pproximation for the static
threshold provided in [110], which yields

(Rmin) o 1 - 1 < 167ra'y”+4 )l/n (2 33)
r+ Jps  (kmax7i)Bs  2mcosh 3\ (n+ 1)Qupy :

wherea ~ 0.47 and~ ~ 0.686 are constants.

To visualize these phases, it is perhaps more intuitive aonéxe the known solutions on a
phase diagram. For static solutions, Harmark and Obers-{lI23] have suggested a diagram
constructed from the mass and tension. By deriving a Smamuia for an arbitrary solution
one is immediately able to completely determine the thegmathics from such a plot. For
boosted solutions, we must also take into consideratiomii@entum in the circle direction,
P. In the supplementary material for this chapter, we giveravdon of the Smarr formula in
this case.

4The precise value of the critical dimension may depend othienodynamic ensemble considered [120].
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Figure 2.5: The critical boost at which nonuniform blackrgis become stable in various (low)
dimensions. (The curve is simply a guide to the eye.)

In Figure 2.6, we have plotted a phase diagram for the bogstetions in five dimensions.
The analogous diagrams for the solutions in other numbediménsions less than 13 are
similar. On the vertical axis we plot the dimensionlessx&ti M/, which is bounded physically
above and below byP/M| < 1 for any solution. However, since it is symmetric abéut= 0
we need only consider the upper half plane. While extendigplot into three dimensions
by adding a direction proportional to the tension would\allene to better resolve the two
dimensional surfaces corresponding to different phases,not necessary to do so for the
heuristic arguments we present here.

The uniform strings fill this diagram from/ = 0 up to arbitrarily high masses. For
black holes, on the other hand, the finite size of the intecitale will put an upper bound
on the allowed mass. We indicate this by the alternatingdast line in Figure 2.6. It is
an approximation derived by setting the size of the blacle It ) equal to the size of the
internal circle in the static frame&{ R cosh (), and calculating the energy and momentum
using egs. (2.18) and (2.19). The allowed region for bladkithen sits above and to the left of
this line and the forbidden region is labeled E. Finally tbkdsline, which we describe shortly,
marks the precise beginning of a phase of nonuniform sttingsextends, approximately, to
the boundary of region E. Below we shall explore further tlubgl argument suggesting this
new nonuniform phase.
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Note that it is not simply the approximation made above whaelds us to treat region E as
an approximate bound on the nonuniform string phase. Infd@wn one considers the phases
at zero boost in the fully nonlinear regime, it is found thred honuniform string phase appears
to connect to the black hole phase at a mass smaller than tkienoma allowed value for a
black hole, but larger than that for which the uniform strarmgl the black hole have the same
entropy — see [118,119]. In other words, the nonuniform preggpears to end between the
dashed and dot-dashed lines in the region labelled C. lidiv@noted, however, that the exact
structure near the point where the nonuniform string andkdhmle phases appear to meet is
still an open question. In the original construction it agueel that one phase would connect to
the other at a cusp [118], however a more recent construftit®] appears to show that the
mass of the nonuniform string also reaches at least one niaxibefore it may join onto the
black hole phase.

On diagrams such as Figure 2.6, the expressiondi#gy, )ss and( Roin )gH, are constraints
defining curves that each divide the phase diagram into twboses. In Figure 2.6 the solid
curve is defined by eq. (2.31). It divides the phase spacetwiaregions according to the
stability of the uniform strings. Below the curve the stsrage stable, while above they are un-
stable due to the Gregory-Laflamme instability. Recall thatmode defined byR, i, )ss was
a time-independent perturbation of the uniform string. ¢tethere are static strings precisely
on this line which are nonuniform along the internal dimensi

The second, dashed, curve defined By,:,)su, corresponds to black holes which have the
same energy, momentum and entropy as a uniform black stfihgs curve then subdivides
the phase diagram into a different set of sections. Belowd#dshed curve a black hole with
the same mass and momentum as a black string will have lesgpgnand above it will have
more. In13 dimensions and above, this line sits completely to the letthe solid line and the
two no longer cross.

A consideration of the region of phase space above or beltlvdoves is what Gregory
and Laflamme originally had in mind when they presented ttlt@rmodynamic argument
predicting the instability [63, 64]. For example, abovelbourves in the area labeled A, a
uniform black string is likely unstable in the microcanaliensemble because a black hole
would have more entropy. A heuristic sketch of the entroshiswn in Figure 2.7. At the far
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Figure 2.6: Phase diagram for boosted black strings. The kot is the marginally unstable

black string and the dashed are black holes constrainedviotha same energy, momentum
and entropy as a uniform black string. The alternating dathdline is the boundary of the
disallowed region, E, for black holes.

left is the uniform boosted string and at the right is the klacle. In this situation there can
be no other solutions between these two as new extrema colyidhe added in pairs. Similar
arguments hold for the region labeled C in which the unifotmmg is a global maximum of the
entropy and is therefore stable. In region E, the disallokegibn for black holes, the uniform
black string should be the single global maximum for theamytr

To discuss the new nonuniform string phase we focus attewotiothe region between the
two curves. The region labeled D is the situation above wWhBtg,)gs > R > (Ruin)BH-
Since the uniform string is stable and the black hole has raot®py they must be separated
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Figure 2.7: Speculative sketches of the entropy for vargnlations corresponding to the
different regions in Figure 2.6. In each case, the uniforatkistring is on the far left and the

C

black hole is on the right.

by a local minimum of the entropy,e., there is a new unstable phase that separates the two
known solutions. This situation is again depicted in FigRré. A similar argument applies

in the region labeled where the uniform black strings are locally unstable, bwehgreater
entropy than black holes with the same momentum and mass.né@wesolution separating
these phases is therefore a stable maximum of the entrophwhn be reached as a result of
the decay of an unstable uniform black string or black hole.

The point where these two regions meet may be a critical aiaghich point the nonuni-
form strings change from unstable to stable. From the censitn of static solutions, we
know that as the mass increases, these arguments only rexipdabehavior of the various
phases approximately. So, while the arguments we havergesseere global in that they in-
volved the black hole phase, we expect them to be most aedaradescribing the nonuniform
string phase very near the point where it meets the uniforas@hNote that this is the context
in which the critical dimension was first discovered [110].

Of course, this argument in favor of a boost dependent afiticnension strongly depends
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on there actually being a crossing point for the two curvete @nalysis in Section 2.2.1
leading to eq. (2.32) treats the black hole as being spHeaittiag inside a fixed internal circle.
For very small black holes this is an acceptable approxonatiut as the size increases, the
interactions with the ‘image’ black holes in the coveringsp become important and lead to
mass-dependent corrections for the entropy of black ha@&${128]. However, a8 increases,

so too does the proper separation of the black hole and itgam@long the direction) in their
static framej.e., AZ = 27 R cosh 3’ where the boost factors are related as in eq. (2.20) but for
large boosts;osh ' ~ cosh 3. Naively, eq. (2.20) shows that the size of the black holesvgr

at a much slower rate g@sincreases. However, near the boundary whigjige = Sgs, one finds
thatr’, grows ascosh (3 for large3, precisely the same rate As’.

In Figure 2.8, we have plotted the size of the horizon redatty the size of the internal
dimension in the static frame when we set the energy, momeahd entropy as for the dashed
line in Figure 2.6. We see that at no point is the black holellsrlative to the internal circle.
In fact, the black hole grows in size relative to the extraahsion as the boost is increased.
Generally then we expect the size of the corrections with giow with the boost.

2r.,’
2 1tRCosh 3’

0.725
0.7
0.675
0. 65
0. 625

0. 575

Figure 2.8: Size of the black hole with the same energy, moumerand entropy as a black
string relative to the size of the internal circle in the istétame.

It seems then we should take into account the correctionsebalt when the black hole is
placed in a compactified space time. Of course, incorpayatia compactification corrections
for small black holes [124—-128] will allow one to produce armaccurate value for the critical
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boost in various dimensions [129]. For now we instead folkk@l and Sorkin [130], and
assume that the entropy for the black hole is larger thanathatSchwarzschild solution by a
factor(1 +¢), i.e,

Seu = (1 + €)Ssehw - (2.34)

Now if we set the mass, momentum and entropy for the black églal to that of a black
string, we find that the critical boost at which the two curuegigure 2.6 cross is strongly
dependent or. In fact, there is a range of only a few percent for which aicaltboost
exists. In Figure 2.9 we have plotted the resulting critmabst as we vary the value efised.
While we have allowed for both positive and negative values, dhe results of [124-128]
seem to indicate that positive valuescodire to be expected. Interestingly, positive values of
e imply larger values of the critical boost which, as we haveady observed, implies larger
corrections.

Berit

Figure 2.9: Variation of the crossing point between Gregaaflamme and black hole lines
with the variation of the size of entropy corrections for biack hole.

All of these results seem to imply that although it works wieH predicting the critical
dimension in the static case, the naive evaluation of thekbleole entropy may be giving
misleading results about the stability zones in the boasted. However, tentatively our results
show that the critical dimension discovered in [110] degead the boost velocity and in
fact disappears for large values @fsh 5. Of course though, these are just simple heuristic
arguments which are no substitute for an actual constmdither perturbatively following
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the method of Gubser, [67] or in a fully nonlinear regime sastwas done by Wiseman [68].
At present, however, this remains a work in progress [129].

2.3 Blackrings

The question of black hole uniqueness in dimension grelager four was answered decisively
by Emparan and Reall with the construction of an explicitrderexample [73]. Their solution
is completely regular on and outside a horizon having tappl? x S*, a black ring. For the
metric, we consider the form presented in [131]:

ds® = —% (dt+R\/ﬁ(1+y)dw)2 (2.35)
i _F(x 2 M 2 2 dx? G(x) 2
o | (Gt ) ror (G + R
where
F&)=1-X and G(&)=(1-€)(1-we). (2.36)

Requiring the geometry be free of conic singularities wiiear G vanish determines the
periods of the angleg and to be

1+ A
Ap = A =2 2.37
6= Ay =2mi——"=, (2:37)
and sets the value ofto one of two possibilities
v plack ring,
A= T n9 (2.38)
1 black hole.

With the former choice(z, ¢) parameterize a two-sphere whileis a circle. Whenm\ = 1,
1 joins with x and ¢ to parameterize a three-sphere and the solution is a fiverdifanal
Myers-Perry black hole [104] spinning in one plane.

The family of black ring solution is therefore described tptfree parameters; and R.
The first,, can be chosen in the range frono 1 and roughly describes the shape of the black
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ring. Forv — 0, the ring becomes increasingly thin and large. In the oppdsnit, v — 1,
the ring flattens along the plane of rotation, becoming a daike singularity atz = 1. R can
be roughly thought of as the radius of the ring in a mannenitiabecome apparent shortly.

The ADM energy and spin, as well as the horizon area, are fomubd

STRZA(1+ )\)

M= 4G 14+v 7 (2.39)
TR ()2 (1 + \)°/2
— 2.4
/ 2G (1+v)? ’ (2:40)
1/2 _ o N3/2
A = gept VA=) (2.41)

(14+v)2(1—v)

A more convenient set of variables for visualizing the vasiphases of these solutions are the
reduced spin;?, and areag,,, defined by

o 2mr W plack ring (2.42)
32G M3 % black hole
3 \/§ A 2y/v(1 —v) blackring (2.43)
TV T@MPE T ) 2,22 black hole '

We plot the corresponding quantities in Figure 2.10. No# tihe black holes are described by

ap, = 24/2(1 — 52). The black rings lie on two branches, labeled “large” and&8mwhich
meet at the critical point = 1/2.

The “large” branch corresponds to solutions where the madiuthe ring grows more
quickly than it’s thickness, locally approaching the getmef a boosted string. To see this
explicitly, we may takekR — oo, v — 0 while keepingRv fixed. In this limit, we introduce
[131]

vR = rysinh?*3, AR =r,cosh’s, (2.44)
r = —R—F;y) , cosb=x, z=Ry,

and obtain precisely the metric of the boosted black sti2ntl(). The similarity is in fact more
than just local, comparing the horizon area of the black inrthis limit we find that it matches



2. Black Rings, Boosted Strings and Gregory-Laflamme 31

an

‘. black hole

| arge bl ack

smal | bl ack

ring ring

Figure 2.10: Reduced spin and area for the black ring (sol@) land black hole (dashed)
solutions described by the metric (2.35).The large (smialt) branch corresponds to< 1/2
(v >1/2).

the boosted string result (2.22), implying that we shoulderd takeR? as a measure of the
radius of the ring.

Given the similarity between boosted black strings and lage black rings, Emparan and
Reall expected that the latter should be subject to a Grelgaitgmme type instability [73].
Using (2.29), the wavenumber for the marginal mode of thediveensional boosted string is
kmax T+ =~ 0.876 cosh . Translating this result to the black ring variables usiag4) yields

0876 AV 1239

kmax ~ R ()\ _ V)3/2 ~ RV ) (245)

where the last expression applies only for- 0. Now k.., = 1/R should be the condition
for the Gregory-Laflamme instability to appear in the blairlgP Hence the above result
confirms that the black ring is unstable in the vicinity of dma Further, considering the
second expression above for arbitraryne finds thak.,.. > 1/R everywhere which suggests
that all of the black rings are unstable. However, we shooldtiink these calculations are
reliable for all values of’. We consider this question in more detail below by studyisggple
model of the black ring.

S|t is important here that the unstable mode is localized treahorizon, which is a point we return to later.
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2.3.1 From black strings to black rings

Here we would like to construct a simple model of the black timat captures its important fea-
tures. To identify these, we consider the ratio of the madsspim of the ring from egs. (2.39)
and (2.40). For small, this ratio approaches a constant

@ = % [1—2v+ 47+ 0]
3
3 V2GJ 2G2 ]2 V2GJ
- > 1-2 — +10 s +O<TR3> : (2.46)

where implicitly we have expanded the dimensionless qya2G .J /7 R? = v+3024+0(v?).
Our goal is to reproduce this expression with a simple stmioglel. So let us assume we have
a spinning loop of string where the loop has a radiuand the string has a linear “rest mass”
density\. Then we expect that, up to a boost-dependent factor, thdéspgiven by.J ~ AR
This allows us to identify the origin of the most importannadbutions to the energy of the
black ring by reexpressing the contributions in term3 aihd R.

The constant term in eq. (2.46) corresponds to a contribiitidhe total energy R, linear

in both factors. Hence remembering to include the boost rdgece, this leading term is
simply a combination of the string’s rest mass and a kinatergy. That this term dominates
may have been expected since we are considering a limit iohathie radius of the ring is
large. The next term in the expansion givesfaimdependent contribution coming from the
gravitational self-energy of the ring in five dimensions;;\2. The final term in eq. (2.46)
yields al/R potential which would keep the string from shrinking to zerpe when formed
in a ring. We can interpret such a contribution as due to itigif the string.

Rigidity has appeared before in various string models. tiqadar, it was argued to be
necessary to successfully model the QCD string and wagintexd by modifying the Nambu-
Goto action by a term dependent on the extrinsic curvatutieeofvorldsheet [132, 133]. It was
suggested that such a term can emerge when the string iswdsstas the compactification
of a higher-dimensional brane [134]. Compactifying a tHbegne on a two-sphere of radius
p and forming a loop of string with radiuB yields a configuration where the ratio between
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the tension and rigidity energies 1#°/p?. Comparing this to the ratio of the first and third
terms in (2.46) implies thatr\ ~ p, whereas for a boosted black string in five dimensions,
we haveGT,, ~ r, from eq. (2.15). This intriguing coincidence suggests thatrigidity of
black strings may be accommodated by an extension of the hreeme paradigm” [135, 136]
to higher dimensions.

Hence we have argued that the gravitational self-intesacind rigidity of the black string
play a minor role in determining the configuration for largegs. Now we would like to
proceed further in modelling the behavior of such a largelblang by approximating the
latter as a loop of black string and using our results for thergy and momentum densities
given in eq. (2.15). For a loop of string with radiis these yield a mass and spin

2
M=2rRT, = znriR (cosh 26+ 1+ —) , (2.47)
n

J=2rR’T,, = xnr?R*sinh24, (2.48)

where for notational convenience, we have introduced theteot: = €2,,,1/16G. Hence we
see that our model has three independent parameiers; and 3, which correspond to the
size and thickness of the loop and the tangential boost Mglathich determines its angular
velocity. Given a configuration with fixed/ and.J, the above equations give two relations
between these parameters but one is left free. Our approdotirtg this last parameter will
be demanding that the ring configure itself to maximize itsagy:

S = % =8raxrit'R (2.49)

This is a straightforward although somewhat tedious egerdiience we only show the salient
steps below.

First, we find it useful to replac& by the dimensionless parameter

J sinh 23
MR cosh2ﬁ+1+%

(2.50)

Y

where the last expression comes from combining eqs. (27 248). One then determines
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(G andr, in terms ofy as

Y(14+2) 4+ /1+2(1+2)2
e = ( ) V ( ) , (2.51)

Hz_wﬁ(Hi)yz]. 252
n n n

From these expressions, one can also see that physicabsslatre restricted to the range
0 < y < 1. Substituting these expressions into eq. (2.49) then yigld). Plotting the

wo_ M2y
T P S —
- 4rJ 14+

entropy, one finds that it vanisifesty = 0 and 1 and that it has a single maximum in between.
The value ofy,,., can be determined analytically to be:

Y R R e e B
4(1+ '

ym ax

(2.53)

Now we would like to compare our results to those for the fireahsional solution (2.35).
Forn = 1, eq. (2.53) yields/,..x ~ .375 for our loop of black string while eq. (2.46) yields
y =~ /2/3 =~ .471 for the large radius limit of the exact solution. Hence ourdeicdoes not
precisely reproduce the leading result for the large riogvdver, the discrepency is only of the
order 0f20%. Given the simplifying assumptions of our black string mipdeseems to work
surprisingly well.

We have found another interesting verification of our moddgb#lows: In the limit of large
n, eq. (2.53) yields/?, ~ 1/2n and further egs. (2.51) and (2.52) indicate that 1/v/2n
andr” o 1/+/2n, respectively. Hence in this limit (of a large space-timmelnsion), the string
loop is very large and thin while its tangential velocity iea&l. Therefore it seems reasonable
to treat the loop as a nonrelativistic mechanical string sehequilibrium configuration can
be analysed with Newton’s lawiwv/R = T,,;/R where the right-hand side is the centripetal
acceleration of a small element of string with a linear motaendensityp while the force on
the left-hand side is determined by the total tension. Noghapg a nonrelativistic limit to the

6This vanishing occurs becausg vanishes at these points, as can be seen in eq. (2.52).
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stress tensor of the black string (2.15) yields

L. = pv, (2.54)
T.. = —T+p?,

where we distinguish the mass densitgnd the tensioff’ of the string. For the black string,
eq. (2.15) gived” = p/n = Q,4177% /167G and so we note that we halfe < p for largen,
as expected for a nonrelativistic string. Now setting: 7}, and7;,, = —17.., the force law
yieldsv? = T'/2p = 1/2n which precisely matches the model result quoted above.

Hence it seems that we already have a fairly reliable modgleoblack string. Further this
model is constructed for an arbitrary space-time dimenaiahso we conclude that black rings
also exist in dimensions higher than five. In fact, for largmehsions, it seems that a large
black ring will be spinning nonrelativistically.

Of course, our simple string model will only capture the legdehavior of eq. (2.46) and
not the gravitational or rigidity corrections. While we dotro so here, one could try improv-
ing our calculations to take these effects into accountadm, fone indication of the importance
of these effects comes from the black ring solution itselfité\that it has been observed [131]
that in the limit of large radius, the five-dimensional blackgs are fairly relativistic in that
sinh? 3 — 1, in contrast to our results for large dimensions above. imteresting that this
boost corresponds precisely to where the tension (2.13)efite-dimensional black string
vanishes [131]i.e, T, = 0. Further, however, looking at (2.44) more carefully, we find

1 2
RILSDUS IR (2.55)

inh” 3 = ~
sinh” 3 e

and the black ring actually seems to approaath? 5 = 1 from above ass — 0, where
the tension of the string would be negative. Of course, oudehonly results in a boost
where the black string tension is positive and so can st&bilie spinning loop. However,
the implication of eq. (2.55) is that the stress tensor oflilaek string (2.15) must receive
“rigidity” corrections,e.g., 1/R? terms, as in [132, 133], when the string is drawn into a loop
so that the tension remains positive in this limit. Simiathe gravitational self-interaction
may play a more important role here.
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We can also use the black string model to extend our resulté&Gregory-Laflamme
instability of boosted black strings to black rings. In pautar, the string loop will be subject
to a Gregory-Laflamme instability whén, .. R < 1. Using eq. (2.29) and Table 2.1, we have
Kmax = cosh (3 l%max ~ 876 cosh 3/r.. Further, evaluating these expressions with egs. (2.51—
2.53) withn = 1 gives an instability for

4% 2 239, (2.56)

where;? is the reduced spin introduced in eq. (2.42). There we alewst that for the five-
dimensional black ring, the minimum value wgs, = 27/32 ~ .844 atv = 1/2. Hence in
accord with the result at the end of the previous sectiorgettoalculations seem to indicate
that all of the black ring solutions will be unstable. Howeweir model calculations need not
be reliable for small values gt, i.e., for small black rings.

Before addressing the latter question, let us considegatgfidifferent approach to eval-
uating the threshold for the instability of the black ringeVWconsider our model of a loop of
black string with three independent parameters. As aboedjwhe mass and angular mo-
mentum which leaves one free parameter, which we take todeattius of the loop. Now
rather than extremizing the entropy, here we require treptbper area of the horizons be the
same. Again this gives three equations determining the hpaatametersR,,.cqc1, 7, 5, NOW
in terms of the two free parameters of the black ringndv.

This system of equations fixes the rapidity to be
sinh=1. (2.57)

It is interesting that this corresponds to the boost for Wwhie five-dimensional black string
becomes tensionlesse., T... = 0, as is appropriate for the large-ring limit. Note here thoug
that we have not explicitly taken such a limit. The remainagameters are found to be

(14 v)?
-~ 2.
Rmodel 1 —|—I/2 Ra ( 58)
1 _ 12
ry = YY" R, (2.59)
1+12

Note thatR,,.,qc @and R agree in the large-ring limit; — 0, but in generalR,,,,qe1 > R.
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Returning to the Gregory-Laflamme instability, the stringp will suffer from the insta-
bility when k. Rioqel =~ 1 With

1.239 1+ 1?2
vR /1 — 1?2

where again we have used the five-dimensional result,for. Let use consider this threshold

Fmax = Kmax cosh § = (2.60)

more carefully here. The validity of this model calculati@nd that above) requires that the
unstable modes are localized near the horizon on a scale smalter than the size of the ring.
This is, of course, because our calculations for the inktaloif the boosted string assumed
an asymptotically flat metric and so we may only apply theselts here if the perturbation
is insensitive to the geometry at the antipodal points orritige Here we are considering the
characteristic size of the modes in the direction orthogtméhe string and hence orthogo-
nal to the boost direction. Therefore this profile is indegent of the boost velocity and for
the threshold mode, we can again use the results from SeztlonThe radial falloff of this
2 = kmax Since vanishes for the
threshold mode. Given the boost factor (2.57) is order dreewavelength and the radial ex-
tent of the threshold mode are about the same’skzence to be confident of our calculations
for the black ring instability, the estimate above must hesed tok,, . Rmodel = 1, Which is

perturbation was determined by the scale= /2 + k2

equivalent to

vv1—12
—_— 1.239 . 2.61
T+ © (2.61)
Notice that the expression on the left-hand side has a mawiof.192 atv = 1/2 and hence
we can be confident that this inequality will be satisfied ineyal.

To summarize then, for any black ring on either branch in F@g210, one can find a
corresponding black string model that has the same engrgyaad area. This version of the
calculation again suggests that the black rings are urestatii a Gregory-Laflamme instability
for any value of the parameters. However, we must note thstcticulation is not always
reliable. Recall that our underlying assumption was thatdbminant black ring dynamics
were simply determined by the rest energy and tension oftthrygs While this is indeed valid

"Note that we expect the threshold mode has the least rad@itexf the unstable modes.
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for the large black ring (sma#l), eq. (2.46) clearly shows that this assumption becomesithv
whenv grows. In particular, there is no reason that it should bstédiwhens > 1/2 where

the gravitational self-interaction will be important. Foconservative bound, we might require
that ignoring the gravitational correction introducesslésan al0% error in the total energy,
which means that we requite < 0.05. Of course, this bound is subject to the reader’s taste
in the admissible error and in any event, it only represertteund on one’s confidence in
the validity of our model. However, these calculationsa&iaty do indicate the black rings in
Figure 2.10 already experience a Gregory-Laflamme indtiaiihen the reduced spijt is of
order one.

2.4 Discussion

We have considered the Gregory-Laflamme instability fordbed black strings. In the static
frame, the results are largely unchanged compared to thesility of a static black string, al-
though the boundary conditions required a complex frequeriih a small imaginary compo-
nent. However, the instability is strongly dependent orlathest velocity in the physical frame,
as shown in Figure 2.3a far= 1. Since the threshold mode is by definition time-independent
the mode found for the static black string is also a solutadisfy/ing the appropriate boundary
conditions in the static frame of the boosted string. As altefor a fixed horizon size, there
is a simple kinematical relation (2.29) between the threka@venumber of the static and
boosted black strings. For the boosted black string, thestiold mode is a travelling wave
moving in thez direction with precisely the same speed as the boostedjstrin

In the static case, Sorkin [110] showed th@ble black strings and small black holes on a
compact circle only coexist below a critical space-time elision, of approximately 13. For
the boosted case, in which there is internal momentum initbke direction, we seem to find
that the critical dimension is boost dependent and in fagisvees for large boosts. This result
is illustrated in Figure 2.4 by the crossing of the curvestf@ minimal radius found from
the Gregory-Laflamme analysis and from a comparison of tivegy of the black holes and
strings.



2. Black Rings, Boosted Strings and Gregory-Laflamme 39

Sorkin’s result has interesting implications for the phdsegram for black objects in a
compactified space-time [66,116]. For< D < 13, there is a regime where black holes
and stable black strings coexist. These families of sahgtiare connected by a family of
unstable and nonuniform black strings. Hor> 13, the stable black strings and black holes
do not coexist and the family of nonuniform black stringsmecting these two phases is now
expected to be stable.

Interest in the nonuniform black strings alluded to abowgamewith the discussion of [65].
Such nonuniform solutions were first constructed pertivbgtby Gubser in five dimensions
[67] and this construction is straightforwardly extendedhy number of space-time dimen-
sions. Wiseman used numerical techniques to find such stiing fully non-linear regime in
six dimensions [68]. A similar construction has recentlgmgerformed in five dimensions
[119]. Here we observe that these nonuniform strings candostbd to carry KK momen-
tum in the internal direction. First, note that these sohsiare static and periodic in, say,
the 2 direction with period2rR. Hence one can compactify these solutions by imposing the
identification:

(t,2) = (f + 2nRtanh 3,2 + 27 R) . (2.62)
Now upon boosting as in eq. (2.25), one arrives in a booseddrwhere the identification
is now (¢, z) = (t,z + 2rR) whereR = R/ cosh 3. Hence in the physicak(z) frame, one
has a nonuniform string moving with velocitynh 3 along thez direction. Note, however,
that we would not compare nonuniform and uniform black ggiwith the same boost factor.
As in Section 2.2.1, any comparison would fix the total massKK momentum, as well as
the circle radius, and since the ratio of the energy densitiitansion of the nonuniform and
uniform strings is different so would be the boost factorsefach.

Now our observation on the boost dependence of the critioaision would have inter-
esting implications for the nonuniform strings. As in thatit case, it would seem that for
D > 13 these strings are stable for any value of the boost. On thex btind fors < D < 13,
the nonuniform strings would apparently be unstable fordales of the boost, however, they
become stable for large boosts. Note that in contrast toriferm string which has a contin-
uum of unstable modes, the static nonuniform string is ebgobaf have a single unstable mode
below the critical dimension reflecting the periodicity bétsolution [66]. While imposing the
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“boosted” boundary condition (2.62) did little to modifyettspectrum of unstable modes for
the uniform black string, it seems to be enough to remove tiséable mode in the nonuniform
case. It would be interesting then that these nonunifornsteabblack strings may form the
end state for the decay of the uniform black strings with KKnnemtum.

We also applied our results for the instability of boostethgs to consider the analogous
instability of the black rings of Emparan and Reall [73]. Babe naive discussion around
eq. (2.45) and the more detailed analysis in Section 2.®fnsdo indicate that the entire
branch of large-ring solutions is unstable. However, tregeboth expected to be reliable
for small » and so one must limit the application of our calculations.wideer, our results
certainly indicate that Gregory-Laflamme instabilitiedlafflict the black rings already when
the reduced spir? is of order one. Hence it seems that this instability willece a Kerr-like
bound on this particular family of solutions. This is themsar to the results of [109] where it
was argued that the Gregory-Laflamme instability playedeairodestabilizing ultraspinning
black holes inD > 6, i.e, the only stable spinning black hole solutions in higher disiens
would haveJ"*! S GM"*2,i.e, j2 S 1 for D = 5. There it was also argued that the five-
dimensional spinning black holes may also become unstalaleih= 1 since there exist large
black rings with the same spin and mass but a larger horizes dRecently, it has also been
argued that the small-ring branch is unstable using a th@ymaomic treatment [137-139]. This
result may have been anticipated since again there are sisyagning black holes and large
rings with the same mass and angular momentum but a largeoharea.

Regarding the internal KK momentum as a charge, it is interg$o compare our insta-
bility results with those for black strings carrying a gatgarge [64, 140]j.e., an electric
three-form charge or a magnetie+1)-form. In common with the gauge-charged string, the
maximum value of the growth rate of the unstable modes decreases (in the physical frame)
as the KK momentum is increased, as illustrated in Figura. Z®wever, one should actually
think of the boosted strings as becoming more unstable asKkhmmomentum grows, since the
physical threshold wavenumbky,... grows as the boost factor is increased, as described above.
In contrast, increasing the gauge-charge makes the blank store stable by decreasing the
wavenumber of the threshold mode and it is expected to bdwbbostable in the extremal
limit [140]. Note that the boosted string does not have aneexal limit asv — 1, rather the



2. Black Rings, Boosted Strings and Gregory-Laflamme 41

horizon becomes a null singularity in this limit.

We may also contrast our results with those in [111, 141-1Bich study the Gregory-
Laflamme instability for various black branes in string thewith DO-brane charge smeared
over their worldvolume. In this case, the DO charge is intiatl by lifting the black brane
from ten to eleven dimensions and boosting in the extra d&wan In contrast to the present
case, there the boost direction and the directions alonghwthie unstable modes form are
orthogonal. In accord with the discussion here then, thestiold for the boosted solution
is unchanged from that for the original solutiare., with and without the DO charge [141].
Similar boosts of nonuniform black strings have also beersiciered to generate new brane
solutions in string theory [144].

Both ¢ andz remain Killing coordinates for the gauge-charged strings$ i&is straightfor-
ward to consider boosting these solutions to form blackgsricarrying both KK momentum
and gauge-charge. In this case, the threshold for the Grdgdtamme instability would again
satisfy the same kinematical relation (2.29) with that far $tatic string, if we fix the positions
of the inner and outer horizons,. Hence the extremal string ( = »_) will remain stable
even after boosting. One should note that just as boostorgases the energy density of the
static string, it also increases the gauge-charge density.

The stability of the latter is then relevant for the largeiuadimit of the “dipole-charged”
black rings [75]. The latter are five-dimensional black smgyoviding a local source for an
electric three-form charge. This dipole charge is not a eoresl charge and so these solutions
introduce an infinite degeneracy of solutions with the saraesand angular momentum [75].
Given the above comments, we expect that introducing a éiglwhrge on the black rings will
make them more stable. In particular, there should be a yaofiextremal rings which are
exactly stable for any radius. If one adds further monopb&eges, there also exist supersym-
metric black rings [87, 145-148] which must also be absolgble.

Unlike the vacuum solutions, there are no dipole-chargedsrifor which.J? /G M? be-
comes arbitrarily large [75]. Hence the stability of theskigons does not rule out the possi-
bility of a dynamical Kerr-like bound holding in general. Wever, if there is such a bound in
higher dimensions, it must be a more refined version of Keanldp perhaps defined in terms
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of angular momentum confined to a finite-size system. Cdytthire is no problem producing
configurations with an arbitrarily large (orbital) angutaomentum by taking slowly moving
bodies with very large separation, even in four dimensibas, of course, we do not expect
any such Kerr bound to apply to such systems.

While our discussion has focused on the Gregory-Laflammebiigy affecting black
rings, it is possible that these solutions may suffer froimeotinstabilities as well. For ex-
ample, rapidly rotating stars (as modelled by self-graiwiteincompressible fluids) are subject
to non-axisymmetric “bar-mode” instabilities when theigatf the kinetic and gravitational
potential energies is sufficiently large [149]. Given theadission of Section 2.3.1, large black
rings are certainly in this regime and so one may suspecthiegtsuffer from a similar in-
stability. It might be that such instabilities restore therkbound for black rings with dipole
charges but they can not play this role in general, as agaisupersymmetric black rings must
be absolutely stabfé.

To consider bar-mode instabilities, one might extend teewision of Section 2.3.1 to pro-
duce a model of the black ring which is not inherently axisyetmae. The analysis of Section
2.2 yields the energy density and tension of a boosted blaickjgand so one might consider a
model in which the black ring is described by a loop of stririthwhe same mechanical prop-
erties — this is essentially our model for a uniform spinrimgp. However, this information is
insufficient to model general non-axisymmetric loops. Balty, one still requires an equation
of state for the string. For example, the mechanical strmgd:be considered a relativistic
string characterized by its fundamental tension plus saortenal degrees of freedom. How-
ever, there are many possibilities for the lateg., massive or massless excitations, which
would lead to different equations of state but which couildl statch the same properties for
a uniform boosted string. Hence progress in this directemuires a greater understanding of
the dynamical properties of the black string.

80ne can consider non-axisymmetric deformations of thersypemetric black rings [87] but one finds that
the resulting solutions do not have smooth event horizob8][1
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2.5 Supplementary material for Chapter 2

2.5.1 A Smarr formula for boosted solutions

Harmark and Obers [121-123] have proposed that one may c@mily visualize the phases
of black objects in @-dimensional compactified space-time in terms of the totdsal/, and

the tensiony = —T... Note that, in contrast to the rest of the text, we have caliedension
here~, as we will soon usé&’ to denote the temperature. Then, the Smarr formula deriyed b
Harmark and Obers takes the form

(n+2)TS=(n+1)M —-27R~, (2.63)

where, as before, we take= D — 4.

The first law of black hole thermodynamics for the most gelnsslution would contain a
term~ dR to account for the energy stored in tension. However, thegeessions will only be
used in situations where we fix the size of the internal cjirstewe shall drop this term. The
first law for solutions with an internal space of fixed sizehisrefore

TdS = dM . (2.64)

One may then use the Smarr formula (2.63) to eliminate th@éeature from the first law to
obtain the differential equation

dlogS n+ 2
dlogM ~— (n+1) —2nR~y/M

(2.65)

Using these, one can determine all the thermodynamic piiepaf an arbitrary solution sim-
ply by considering a plot od/ vs~/M.

As a first step in a similar direction we may derive a Smarr fdanfor an arbitrary boosted
solution on a cylinder. We start in the static frame and ck@rsansatz of the form

ds? = —e2Agi2 4 2B (dr2 + dZQ) T ezcrdeiH : (2.66)

whereds,,; is the metric on a unitn + 1)-sphere. We then boost into the physical frame,
where we shall perform all calculations, by making the cowté transformation in egs. (2.25).
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The modes of the function$, B andC carrying KK momentum are exponentially damped
at infinity and therefore will not contribute to the asymjtantegrals in eq. (2.13) for the total
energy and momentum. Inserting the ansatz (2.66) into &mistequations, assuming the
unknowns have only radial dependence and linearizing leadscoupled first order equations
for the derivatives ofA and B. The constants may always be chosen to vanish by a rescaling
of the coordinates, so we set them to zero. The remainindisolis therefore

A

A~ L= (2.67)
/r:TL

B ~ Bx (2.68)
,,an

The first derivative of” is described by a first order equation sourced by derivatves
andB. Hence there will be three terms in the solution: a constdm¢hwve again set to zero;
a solution of the homogeneous equation; and a term to acéoutite source. The solution is

then given by:

G
r
The coefficientC, labels the solution of the homogeneous equation. It is theihg behavior

C==4+0C.Cr). (2.69)

at larger and smallC' of the diffeomorphisnC' = log (M) which shifts the origin of the

coordinate- by an amount’y. We may therefore always arrange that this term also vasishe
a choice of coordinates. The second term results from thesgby A andB. It's coefficient,
C, is thus uniquely determined. The exact form, however, dépen the dimension

C=< . (2.70)

L (1 -n)0x = A + 2B

e

{1& Coo = Au + 2B

As before, we calculate the interesting physical quasthigusing the asymptotic integrals
of eq. (2.13). Asymptotically, we make the change of cocatin

n

i, (1 N M@(T)) , (2.71)
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and the corrections to the flat metric become

hy = —%(Aoo + (A — Bso) sinh? ) | (2.72)

hey = —%(AOO — By,)sinh Gcosh 3, (2.73)

h,, = %(Bm — (Ay — By)sinh? ), (2.74)

hi = — 2n (As + Bso) . (2.75)
nr

The energy and momentum density as well as the tension argjien by

2Qn+1

J— _ — ] 2

Ty = oo (0 DA+ Boo +n(Ax — Bu) sinh? §) (2.76)
- 2nQn+1 - |

T, = — e (Ase — Bso) sinh fcosh 3, (2.77)
- QQn—i-l inh2

T.,. = T (A + (n+1)Bo — n(As — Boo) sinh® 3) . (2.78)

Following Harmark and Obers [121], we now consider the feiteg Komar integral:

1 a¢b
I= _167TG/stabv ¢ (2.79)

whereY is anS™*! x S! hypersurface anél = 9, + tanh 59.. We may evaluate this integral
on anS™*! of any radius since

1 1
dS,, Vet — da“b:—/da agh 2.80
WG(/E SV /E/Sbvg) oG [ asvive (2.80)

whereV is the(D — 1)-dimensional volume bounded Byandy’. Since¢ is a Killing vector,

V, Vel = R%£P which vanishes because we are considering vacuum soluifdBimstein’s
equations.

Since this integral is the same on any surface, we evaludetlit at infinity and on the
horizon and equate the two values. At the horizon, the réeskitown to be [121, 151]

I, =TS. (2.81)

If the solution was uniform in the direction,d;, ando, would individually be Killing vectors
and we could express the integral at infinity in terms of ifdlial Komar integrals for these
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vectors, giving contributions dependent on the total massraomentum of the space-time.
For the general solution this is no longer possible, but wkrdw the asymptotic behavior of
the solutions. Using these we may evaluate the integral to be

_ Qn—l—l
I, = — e (2mR) 2nA , (2.82)
2R
= 5[+ 1) (T — tanh fTi;) + T, — tanh T3] . (2.83)

In the last line we have inverted egs. (2.76—2.78) to eliteing, in favor of the components
of the stress tensor.

We can simplify this further by noting that the combinations
Ty =Ty —tanh 5Ty, T:: =T,, +tanh 87T, , (2.84)

are simply the components of the stress tensor for an undxestution. In terms of these, the

integral becomes
(n+ )Tz + 15

I, =21R
n+ 2

(2.85)

Finally, equating the values of the integral when evaluatethe horizon and at infinity we
have
(n+2)TS = (n+1)27RT; + 2nRT:; . (2.86)

When written this way, the Smarr formula is very similar tattfor static solutions (2.63). This
is no coincidence. On general grounds, we expect that tlemnis invariant under boosting
[117]. The temperature, on the other hand, will gain a faofot/ cosh 5 when we apply a
boost. For the right-hand side we recall that the size ofikermal circle differs between the
physical and static frames such that

R
R = )
cosh 3

(2.87)

Hence the remaining combinations appearing on the righttisade of the Smarr formula, for
example2r R Ty; = 2n RT%;/ cosh 3, are simply the variables appearing in eq. (2.63) evaluated
in the static frame then divided by a factorckh j.



Chapter3

Instability of Nonsupersymmetric Smooth Solutions

In recent years, Mathur and collaborators have advancedieataevision of the stringy de-
scription of black holes — for a review, see [76, 77]. Theyuarghat each of the CFT mi-
crostates corresponds to a separate space-time geom#trmavihorizon. The black hole is
dual to an ensemble of such microstates and so the black kolmejry only emerges in a
coarse-grained description which ‘averages’ ovekttte microstate geometries. In particular,
this averaging should produce an effective horizon at aisadihere the individual microstate
geometries start to ‘differ appreciably’ from one anoth&8,[L52]. Therefore in this scenario,
guantum gravity effects are not confined close to the blad& kimgularity, rather the entire
interior of the black hole is filled’ by fluctuating geomets — hence this picture is often
referred to as the ‘fuzzball’ description of black holeseTinst support for this proposal came
from finding agreement between the propagation time of atoits in the throat of certain mi-
crostate geometries and in the dual brane description 533, 1A further remarkable feature,
that has drawn attention to these ideas, is that there isiggogvidence that the microstate
geometries may be smooth, as well as horizon-freethe case of the D1-D5 system, smooth
asymptotically flat geometries can be constructed corradipg to all of the RR ground states
in the dual CFT [78-83]. Despite their large degeneracy, tiho-charge system will not pro-

*Smooth’ means the curvature is finite everywhere up to otbisingularities. The curvatures in the throat
may also be very large.

a7
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duce a macroscopic black hole horizon. However, a largezborcan be produced by intro-
ducing a third charge, Kaluza-Klein momentum [154-157]cdely progress has been made
in constructing smooth microstate geometries in the D1FD&y¢stem [84—-89]. While large
families of such solitons are now known, a complete undedste of the three-charge case
remains to be found. Further, preliminary work on the fouarge system of D1-D5-P-KK has
also appeared [90-93].

In general, the preceding discussion connecting micrestaith smooth geometries fo-
cuses on supersymmetric configurations. This raises teeesting question of how the fuzz-
ball proposal would be extended to nonsupersymmetric btetés. In particular, are there
nonsupersymmetric versions of the smooth horizon-freengdides corresponding to non-BPS
microstates? Remarkably, Jejjala, Madden, Ross and Tiechi®4] recently extended the
known set of D1-D5 microstate geometries by adding a familpansupersymmetric solu-
tions, hereafter referred to as JIMaRT solitons. The JIMaRTisas comprise a five-parameter
family of nonsupersymmetric smooth geometries which ayenasotically flat? These solu-
tions may be parameterized by the D1-brane and D5-brangefiahe (asymptotic) radius of
the internal circle with Kaluza-Klein momentum, and by tvnbeigersn andn which fix the
remaining physical parameters. These integers also dieeaspectral flow in the CFT which
allows the underlying microstate to be identified. ko= n + 1, the IMaRT solitons reduce
to supersymmetric solutions found previously in [79-85].

An important feature which distinguishes the JMaRT sobtinom any of the analogous
supersymmetric solutions is the presence of an ergoredisma consequence, in these non-
supersymmetric geometries, there is an inner region (tkttahds to the origin) where states
of negative energy are allowed. This then leads naturaltiieaqquestion of whether or not the
ergoregion produces an instability of the background. Quesibility is that the ergoregion
may lead to superradiant scattering which can produce atoapédic instability in some situa-
tions [158—-160]. However in the present case, this podsilsleasily dismissed [94] because
the solutions are horizon-free. Since the seminal work déideich [161, 162] on superradiant
amplification of electromagnetic waves incident upon armgiag cylinder, it has been known

2By considering orbifolding, this family can extended by adfinteger [94] but we will focus on the original
five-parameter solutions.
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that key ingredients for superradiance are the existenaa efgoregiomnd an absorbing sur-
face. For black holes, the horizon plays the latter roleckufainly the IMaRT geometries lack
such a surface.

Quite interestingly, there is another class of instalesifiwhich we simply refer to as ‘er-
goregion instabilities’, that generically afflict spacer¢ geometries with an ergoregion, but
no horizon. These instabilities were first discovered bgdiman [163], who provided a very
general discussion. Explicit computations of the instgbWere later made in [164, 165] for
the case of rotating stars with an ergoregion. There théemds of this instability was explic-
itly verified for a free scalar field in the background of a twtg star. According to Friedman’s
general arguments however, the instability should alsstdar electromagnetic and gravita-
tional waves. Since the JMaRT solutions [94] have an ergonelgut no horizon, one might
suspect that a similar ergoregion instability would aristhese geometries. The present chap-
ter explicitly verifies the presence of an ergoregion initglior the IMaRT backgrounds with
a variety of techniques. Further, we consider the endpditiitsoresulting decay and argue that
it should be a smooth supersymmetric solution.

Our results have immediate consequences for the endpoiatieyon decay discussed in
[166]. There, Ross extended the discussion of [167] to DBRBk strings for which he iden-
tified tachyonic string modes in a particular winding sectde argued that the condensation
of these tachyons would transform the space-time to a JMaRibrs. In conjunction with
the above results, we see that these solutions cannot bexétherfidpoint of these decays but
rather they should end with a supersymmetric microstatengéy. Our analysis and the er-
goregion instability may also have interesting implicaidor Mathur’s fuzzball proposal more
generally.

The remainder of this chapter is organized as follows: 8a@il provides a brief exposi-
tion on Friedman’s analysis [163]. In Section 3.2, we briedflyiew some of the features of the
JMaRT solutions and present the main equations used in tieegquent analysis, namely the
radial and angular equations for a free massless scalardeldell as some of their properties.
In Section 3.3 we compute the details of the instability geirWKB approach [164]. We show
explicitly that the instability exists for a general nonstgymmetric geometry of [94], and that
it disappears for supersymmetric objects, as expected.edtid® 3.4, we use an alternative
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method, that of matched asymptotic expansions, to invagtidpe instability and its properties.
The methods of Sections 3.3 and 3.4 are complementarytheir regime of validity is differ-
ent. We then perform a numerical analysis of the wave equati®ection 3.5 to complement
the analytical calculations. We find that the results of kathlytical analyses agree remark-
ably well with the numerical results. In Section 3.6, aftamsnarizing the main properties
of the ergoregion instability, we discuss various relatguds: the endpoint of this instability;
its consequences for Ross’s tachyon condensation [166&rgeimplications for the fuzzball
picture of black holes.

3.1 Ergoregion instabilities

There are two classes of instabilities that are of potemttalest for the IMaRT backgrounds
[94] (or nonsupersymmetric geometries in general), namély superradiant instability, and

the ergoregion instability. In this section, we demonstrahy superradiance is not present in
these geometries, as first noted in [94]. Then we introduegdmeral argument of [163] which

suggests an ergoregion instability is present in the JIMaiRitisns.

3.1.1 Geometries with an ergoregion and horizon: superra@nce

For a stationary, asymptotically flat black hole, the edratidescribing a masslésspin-s

fields may be written as
d*U
dr?

wherew was introduced with a Fourier transform with respect to thyngptotic time coordi-

+V(w, r) ¥ =0, (3.1)

nate:¥(t) = e "W (w). The radius-, is a convenient tortoise coordinate and in one finds:

(3.2)

{r*wr, V o~ w? asr — 00,

e~ (r—ry), Ve (w—=0)?2 asr — 1y,

3\We stress massless here, as it is only for such fields thaefraation of variables and asymptotic behavior
of the potential (3.2.) is guaranteed.
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where « is a positive constant. The potential can be a rotational potential (in the Kerr
geometryd = mS2, with m an azimuthal number, arfdlthe angular velocity at the horizon) or
a chemical potential (in the Reissner-Nordstrom geométry: ¢, whereq is the charge of
the field and? the charge of the black hole).

For a wave scattering in this geometry, eq. (3.1) yields dfleing asymptotic behavior:

T _ —ia(w—>®) N
. { (r—ry) asrT — Ty, (3.3)

R ewr 4 g—wr asr — oo .

These boundary conditions correspond to an incident wauaibmplitude from+oo giving
rise to a reflected wave of amplitu@®going back to+-oo and a transmitted wave of amplitude
7T at the horizon — the boundary condition allows only ingoingves at the horizon. Now
assuming a real potential, the complex conjugate of thetisolW; satisfying the boundary
conditions (3.3) will satisfy the complex-conjugate boandconditions:

Rre ™" + er asr — 00.

Now, these two solutions are linearly independent, and tdredsard theory of ordinary differ-
ential equations tells us that their Wronskidi,= V0, ¥, — ¥,0, ¥4, is a constant (inde-
pendent of-). If we evaluate the Wronskian near the horizon, we fifid= —2i(w — ®)|7|?,
and near infinity we findV = 2iw(|R|* — 1). Equating the two we get

w —

d
RIP=1- IT)?. (3.5)

w

Now, in genera|R|? is less than unity, as is to be expected. HoweverJfer ® < 0 we have
that|R|? > 1. Such a scattering process, where the reflected wave hadlptieen amplified,
is known as superradiance. Of course the excess energy iieftbeted wave must come from
that of the black hole, which therefore decreases.

Superradiant scattering can lead to an instabilitg. @,, we have a reflecting wall surround-
ing the black hole that scatters the returning wave backratee horizon. In such a situation,
the wave will bounce back and forth, between the mirror aedollack hole, amplifying itself
each time. The total extracted energy grows exponentiaity finally the radiation pressure
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destroys the mirror. This is Press and Teukolsky’s blacle tamb, first proposed in [158].
This instability can arise with an effective ‘mirror’ in anaty of situations: a scalar field with
massu > w in a Kerr background creates a potential that can cause flseatber back toward
the horizon [168]; infinity in asymptotically AdS spacesmjsovides a natural wall [169] that
leads, for certain conditions, to an instability; a wavegagating around rotating black branes
or rotating black strings may similarly find itself trapped’D].

3.1.2 Geometries with an ergoregion but no horizon: ergoregn insta-
bility

Suppose now there is no horizon in the background spacé:tifiee boundary conditions
must therefore be modified since there is no longer a surtaserbing the ingoing modes. In
this case, the absorption boundary condition (3.3) at thizdwo is replaced by some kind of
regularity condition at the origin. We suppose the radia@rdmater now ranges from zero to
infinity and we impose the following boundary condition:

U~ AF(r), 7 =0, (3.6)

where f(r) is some well-behavexkal function. This ansatz encompasses for instance typical
regularity requirements whereg., one chooseg (r) ~ ? with 3 > 0. Repeating the above
calculation, one find$R|*> = 1. Therefore the absence of a horizon, which precludes any
absorption, prevents superradiance and hence the suip@trastability.

Nevertheless, geometries with an ergoregion but withotizbps are the arena of another
class of instability. This ergoregion instability was disered by Friedman [163]. Even though
his discussion was made in four dimensions only, it is thitaaextend it to any number of
dimensions. The instability arises because of the follgWir63]: Given the test field energy-
momentum tensdf*®, we can associate a canonical energy

Eg = / t*T,%dS, (3.7)
S

“4In fact, one can be slightly more general here as the ergumegstability has also been found to exist for
some models of 2-D black holes in which there is a horizon ithatusally disconnected from the ergoregion
[171]. However, since the JMaRT solutions are horizon-fveeshall only concern ourselves with this situation.
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wheret® is the background Killing vector which generates time ttatisns in the asymptotic
geometry. Now, becaugé is space-like within an ergosphere, initial data can be eham

a Cauchy surface S which makg&s negative. Moreover, it is shown in [163] that the energy
can be negative only when the test field is time dependentn,T$iace the field is time de-
pendent and only positive energy can be radiated at fututendinity, the value of€s must
decrease from one asymptotically null hypersurfac® another, says’, in the future ofS.
Thus the energys will typically grow negative without bound. This instalyliwas computed
analytically using a WKB approximation in [164] for rotagjrstars. There it was shown that
the instability timescale is usually very large (typicdlyger than the age of the universe). The
analysis of [164] was improved in [165] where further detai the instability were computed
numerically.

A key assumption above is that the system can not settle do\amegative energy con-
figuration which, while time dependent, is nonradiativeieiman [163] was able to rule out
such marginal cases whefg is negative but constant for a four-dimensional masslesiaisc
or electromagnetic fields. However, in fact, one is able émtdy negative energy bound states
for the IMaRT backgrounds — see the supplementary materidl3- and so a more thorough
analysis is called for. Hence in the following, we apply ai@gr of techniques to explicitly
show that these microstate geometries suffer from an eggorénstability.

3.2 Formalism

We now consider wave propagation of a free massless scdthirfithe JMaRT backgrounds
[94], and in subsequent sections identify an ergoregidiaility. As the IMaRT solutions are
guite complicated, we provide a brief discussion of soméeirtproperties here, but refer the
reader to [94] for more detail.

The JMaRT solitons are solutions of type IIB supergravityresponding to three-charge
microstate geometries of the D1-D5-P system. The systewnigpactified to five dimensions
onT* x S* with the D5-branes wrapping the full internal space and thebBanes and KK
momentum on the distinguished. In the construction of these solitons, one begins with the
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general solutions of [156, 157] which contain eight pararset a mass parametey/, spin
parameters in two orthogonal planes, a,, three boost parameters,, ds, 6,, fixing the D1-
brane, D5-brane and KK momentum charges, the radius aof th&, and the volume of the
T*. In the string frame, the geometry is described by the sixetisional line element [94]

1
ds® = S {
V HHj
—(f = M) [dt — (f — M)~"M cosh 6; cosh d5(a; cos® fdy) + as sin® t9dgz§)]2
+f [dy + f~'M sinh §; sinh 65(as cos® dy) + ay sin® 0dg)] 2}

W/ H | rid? + de?
15 (r2 +a?)(r2 + a3) — Mr?

+(f(f = M) [(f(f = M)+ fassin®0 — (f — M)a7 sin® 6) sin® Odp*
+2Mayay sin? 0 cos® Odipdg

+ (f(f — M)+ fa% cos? 0 — (f — M)ag cos® «9) cos® Qd@bﬂ } ) (3.8)
The dilaton is given by .
e*® = 4 , (3.9)
Hs
and the 2-form gauge potential sourced by the branes is
M cos? 0
Cy = 7 [(agc1s5¢, — ars1658,)dt 4 (a151¢5¢, — axcr85,)dy] Adyp (3.10)
1
M sin? 6
+ 7 [(a1c185¢, — ags1¢58,)dt + (a2s1c5¢, — a1¢1855p)dy] A do
1
_ M8101

M
1 A dy — 5505 (12 + a2 + Ms?) cos 0dp A dop |
1 1

wheref(r) = 72 4 a?sin® 0 + a3 cos? 6 > 0 and H,(r) = f(r) + Ms?,i = 1,5.

One then imposes a series of constraints to ensure thatlthsas are free of singularities,
horizons and closed time-like curves. In particular, oreuf®s on a low-mass regimy,? <
(a1 — az)?, in which no black holes exist. Then one finds solitonic sohg where they circle
shrinks to zero at the origin and the constraints ensurdhishappens smoothly. Firsy/ and
R can be fixed in terms of the remaining parameters — see ed5%) @nd (3.20) of [94]. Two
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quantization conditions constrain the remaining pararseteterms of two integers:, n [94]:

1 ; —1

I+ =m-n, J ) =m-+n, (3.11)
s+ st s —s1
wherej = | /%2 < lands = % < 1. We are using the notation here that= cosh ¢; and

s; = sinh ¢;. Without loss of generality, one assumgs> a, > 0 which impliesm > n > 0.
We also note here that the special case- n + 1 corresponds to supersymmetric solutions.

This leaves a five-parameter family of smooth solitonic Bohs. We can think of the
independent parameters as the D1-brane and D5-brane sh@ig€s; the (asymptotic) radius
of they-circle, R; and the two integersy andn, which fix the remaining physical parameters

as [94]
1Qs Jo— _ Q1Qs I, = Q1Qs 3.12
R2 ? ¢ — m R ) v — n R . ( ' )

Of course, depending on the specific application, it may beerappropriate and/or simpler to

Qp=nm

describe the solutions using a different set of quantitiesour case, when we make explicit
calculations of the ergoregion instability, we will fix thagameters:, m, a,, c; andcs or c,,.
As we are interested in nonsupersymmetric backgrounds,Iseeimposem > n + 2. To
conclude our discussion of notation, we add that the roog& ot andr_, will also appear in
the following but they are determined By and the spin parameters — see eq. (3.2) of [94].

The key ingredient producing the instability in the JMaRTusions is the existence of an
ergoregion. To verify the presence of the ergoregion, okestas usual the norm of the Killing
vectorV = 9, and using eq. (2.12) of [94], calculates

g VIVY = —f;MC’% : (3.13)
. VHH;

It is then clear that” = 9, becomes space-like fgi(r) < M and thus an ergosphere appears
at f(r) = M. An inspection of the metric also allows one to conclude thengetry rotates
along¢, v andy sinceg,, # 0, g1, # 0 andg, # 0. The supersymmetric limit of the IMaRT
solitons corresponds to the limif — 0 andd; — oo, while keeping the other parameters
fixed, including the conserved charg@s = Ms;c; [94]. So, in the supersymmetric limit the
norm becomes$V |> = —f/+/ H,Hs, which is always negative and thus the ergoregion is not
present.
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Now consider the Klein-Gordon equation for a massless sdiga propagating in the

JMaRT geometries,
1 0

NertiT <\/—_gg“”%\p) =0. (3.14)
We are using the string-frame metric in which case one cauk ibii eq. (3.14) as the linearized
equation of motion for the Ramond-Ramond scalar. As desdrédbove, these backgrounds
can be thought of as special cases of the general D1-D5-Bswdiound earlier [156, 157] and
so one may apply separation of variables following [172{tdducing the following ansatz

U = exp [—iw% — i)\% + imyt) + im¢¢:| x(0) h(r), (3.15)

one obtains an angular equation

L d <sin29 d—X)—i-

sin 26 d6 do

mzzb mi w? — N 2 2 2 2 (3.16)
{ iy Ry + 7 (a7 sin® 6 + aj cos 0)} x=0,

and a radial equatién

1d [g(r)d (W =N, 2 2 o M

bl FACWRCAYA [V DA S V) =

rdr{ —, ] h+[ 7 (r* 4+ Msj + Ms;) + (we, + Asp) IE h 61
_ 2 _ 2 :

_ 2 —r%)()\ nmy, + mmsy) Bt (2 _r%)(ngt)\ﬂ nmy + mmy,) h=0.

(7=

whereg(r) = (r? — r2)(r> — r2), andy/—g = rsinf cos0\/ H, H; (the determinant of the
metric in eq. (3.8) ). If we introduce a dimensionless vdaab

(r2 —r2)

’/‘2 — ’f‘i_
=+ 3.18
v r2 —r2’ (3.18)
we can rewrite the radial equation in the form
8[93(:5—1—1)0h]+1 /{2$+1—V2—|—§—2—<—2 h=0 (3.19)
v * 4 r+1 =z ’ '

SNote that the negative sign farcorrects a typo found in [94]
®Note the factofr2 —r2 ) that appears in the two last terms of the left-hand side aff(@which are necessary

for dimensional consistency, corrects the typo appeanrg)i (6.4) of [94]
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with
r2 —r?
K,2 — (w2 _ )\2) +R2 7
§=wo+ A —mgn +mym,
C:)\—mwn—i—m(bm,
Re2e? — $252s?
N §1C1S5Csx
2.2 2.2
=25 "% . (3.20)
51€185C5
and 2 )2 u
w JR—
V2:]_+A—T(Ti‘i‘MS%‘i‘MSg)—(wcp+>\8p)2ﬁ. (321)

The quantitiesv, A, m,, m, are all dimensionless — the last three being integers. Agan
refer the reader to [94] for a detailed account of the quiastiippearing above. The reader
should take note that our notation is not in complete accatl that of [94]. That is, to
simplify our formulae in the following, we have defined= 1/0, the inverse of the quantity
used there.

Of critical importance in characterizing the solutions lo¢ radial equation is the sign of
k2. The termzx? dominates at large, determining the asymptotic behavior of the solution.
In this chapter we will mainly be interested in outgoing m®de we choose? to be positive.
The two remaining possibilities:> = 0 andx? < 0, will be considered in the appendices.

The angular equation (3.16) (plus regularity requiremleista Sturm-Liouville problem.
We can label the corresponding eigenvaldewith an indexl, A(w) = A;,(w) and there-
fore the wavefunctions form a complete set over the intégém the general case, the prob-
lem at hand consists of two coupled second order differeatjaations: given some bound-
ary conditions, one has to compudienultaneously both values ofv and A that satisfy these
boundary conditions. However, for vanishingwe get the (five-dimensional) flat space re-
sult, A = [(I + 2), and the associated angular functions are given by Jactpmaqmials. For
nonzero, but smak"=" a? we have

2_)\2
A=m+m+o(@“m ). (3.22)
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The integerl is constrained to bé > |m,| + |m,|. We will always assuma?‘”QR‘Q*Q <
max(m3,, mj) (with i = 1,2), thusA ~ I(l + 2). Making this assumption implies we may
neglect the terms proportional &g in the angular equation, but given the wayandw appear

in the radial equation, the corrections Aomay not be negligible when we determine To
ensure that fixing\ = [(I + 2) is consistent in both the angular and radial equations we mus
additionally require

a} < max (|r3 + M(s; + s2)], Mcg) : (3.23)
so that the contribution to from thea; dependent corrections df are negligible (see (3.21)).

Taking the complex conjugate of eq. (3.16) we can see thahet solution to the angular
equation has the symmetry
A (—w0™) = A (w) . (3.24)

With this symmetry, one can also check the following:

(V) (w, \) = V(—w*, =), (3.25)
(52)*((‘07 A, My, m¢) = 52(_(“)*7 —A, My, _md>) ) (3-26)
(C2>*()‘> My, m¢) = C2(_)‘> —My, _md>> : (3-27)

Therefore, from the wave equation (3.19) it follows that ifs an eigenvalue for given values
of my,, mg, A with eigenfunctiom, then—w* is an eigenvalue for-m,,, —mg, —\ with eigen-
function h*. Furthermore, ifhe~** is outgoing unstable, so se™ ‘. Since the symmetry
simultaneously flips all the signs of,,, m,, A, without loss of generality, we can only fix the
sign of oneg.g., Re(w) < 0.

To conclude this section, we point out that the angular egun#8.16) can be recast in the
somewhat more familiar form:

1 d d Lomy m; 2\
(sin@cos@—x)—i-{/\ v 0 4 (a3 —a?)cos?f|x =0,

sin 0 cos 6 df do " cos2f  sinZh R?
(3.28)
where 2 y2
A=as+ 2 A2 (3.29)

RQ
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This is just the equation for a five-dimensional scalar spidat harmonic [173-176] which
arisesg.g., in the separation of Klein-Gordon equation in the backgdboifra five-dimensional
rotating black hole [104].

3.3 WKB analysis

We now explicitly show that the IMaRT geometries [94] suffem an ergoregion instability.
As described above, this instability is due to the fact thatgeometry has an ergoregion but
no horizon. We shall identify modes of the scalar field thatragular at the origin, represent
outgoing waves at infinity and grow with time. In this sectiare follow the WKB analysis
of [164] and show that it applies to the nonsupersymmetriaRBMsolutions, with the same
qualitative conclusions.

To begin, we want to write the radial equation in the form ofedfective Schidinger

equation. In order to do so, we first transform to a new ‘wanefion’ H defined by
1
hr) = ———H(x). 3.30
(@) = s 1) (3.30

Inserting this in (3.19), we get
~?H+UgH=0, (3.31)

where
R+ (11— + D2+ (1 -2+ & - Po+1 -3

Ut = —
i 422(1 + x)?

(3.32)

Now in order to simplify our analysis, we choosk:= 0, ms = 0, and largemn,,. With
A # 0, the waves see a constant potential at infinity and thus thmitaisle of the outgoing
waves can be suppressed there. We also conkiden,, modes, which are expected to be the
most unstable. Modes with>> m,, must be similar to modes wit.,, = 0 for somel and
these are not unstable. With these choices, we have

r2 —r
K2 = w2 +R2 =, C=n'mi, &€=m’mj+w’0"+ 2wommy, (3.33)

o173 + Mst + Ms?+ Mc,
R? '

(3.34)

1—v" ~ —mi#—w
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Instead of working directly with the frequency of the waweyill be convenient to work with
the pattern speed along theedirection, which is the angular velocity at which surfacds o
constant phase rotate. This velocity is proportional to
p=—, (3.35)
My
where the proportionality constaRt! is always positive. It is important to compare the sign

of the pattern speed along with the sign of the angular velocity of the geometry alahg
defined, as usual, By

0, — 9w _ _2Msyc, cos®0 R/n
o= —

G VH Hs 9w

2Q), cos® 6 cos? OR/n
VH Hs v

whereQ, = M s, c, is the Kaluza-Klein momentum charge. So, wh&nis negative, the wave

<0, Vx>0, (3.36)

is propagating in the same sense as the geometry.

Now it is useful to introduce the polynomial
P = B2’ + (A+ B)2* + (o* + A)z, (3.37)

which is positive definite in the range of interest (positiyeWe also define

T_—Z—i%f, AETi_‘_M(S;:_S%_‘_Cg), BE%. (3.38)
Then, we can write the effective S¢linger equation (3.31) as
#ZH~+miTH=0, (3.39)
i P 2omax 2?2 —x(m?* —n? —1) +n?
T = preTganr L+ =3, — (3.40)

/P Y

"Note that the geometry rotates simultaneously along/the¢ andy directions. We find,, using of (2.1),
(3.17) and (3.19) of [94].
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where we have dropped certain small contributioriB.foNow it is straightforward to factorize
the potentiall’ and write it in the form

)
= m(zw = Vi) (Ey = Vo), (3.41)
with
_ omx omz\2 x*—x(m? —n?—1)+n? 2

For generain , n the behavior of the potentialg. andV_ (see Figure 3.1) is exactly the same
as the one studied in [164], so we do expect an instabilityigeaas will be shown below.
However, and this is a key point, for the case= n + 1 which is the supersymmetric case, we
have
omzx omz\2 (z—mn)? 3

V+:_T+[<T> +773 } , m=n-+1, (3.43)
which is always positive. Thus this WKB analysis indicatesttthe supersymmetric solutions
are stable, as expected.

Hence our radial equation has been reduced to as8tiger equation (3.39) with a poten-
tial dependent on the pattern speed given by eq. (3.41). fdt#gm of finding the unstable
modes thus becomes tuniy, in order that a ‘zero-energy’ solution can be found with the
appropriate boundary conditions: regularity at the orayiial outgoing at infinity. Note that in
a region wherez,, is abovel/, or belowV_ (allowed regions), the solutions have an oscilla-
tory behavior. In those intervals whe¥g, is in between the curves &f, andV_ (forbidden
regions), the solutions have a real exponential behavior.

We proceed following [164] and study the scattering of wawvethe effective potential
constructed above. Consider a wave that comes from infinity an amplitude’},,, scatters
in the ergoregion and returns to infinity with an amplitudg;. In particular, we introduce the
scattering amplitude defined as

(3.44)

8More precisely, we have dropped a telmmjp). This remains a very good approximation in the high-
limit in which we are working. As an example, far = 10 andm,, = 10 the factor that we dropped i) ~*
smaller than the last term of (3.40).



3. Instability of Nonsupersymmetric Smooth Solutions 62

Figure 3.1: Qualitative shape of the potentiglsandV_ for the case in which an instability
is present. An example background that yields these kingotehtials is described byn =
14,n=10,a = 32,¢; = 5,¢, = 5). The unstable modes are those whose pattern spged
is negative and approach the minimumiaf from above. Thus they are nearly bound states of
the potential well inl/, that can however tunnel out to infinity througth. Choosing\ = 0,

the potentials/, andV_ approach zero a8 — oo, which makes a tunnelling through-
easier.

The presence of a pole #(i.e., of a resonance) signals the existence of an instabilityeédd

a pole inS occurs wher(;, = 0 andC,,; # 0, and this means that we have finite outgoing
radiation for zero incoming radiation. Near the pole freugyey,,, the scattering amplitude can
be written to lowest order as [164]

*
W wp

S ~ 2 (3.45)

Y
W — wp

whered, is a constant scattering phase shift arjds the complex conjugate af,. Note that
this expression guarantees that when the frequency of the iwaeal, one haS(w)[S(w)]* =

1, as required by energy conservation. Generically, we cée tre pole or resonant frequency
as

Wp = wy +1/7, (3.46)
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wherew, and1/7 are, respectively, the real and imaginary parts,ofWith this convention, a
mode with positiver represents an instability, and< 0 represents a damped mode, since the
time dependenéef the resonant wave is given lay™rt = e~rtet/7 \We can then write

S~e .
w—w, —1i/T

(3.47)

To relate the amplitudes;, andC,,; we apply a WKB analysis. As we shall learn later on,
the unstable modes are those whose pattern spgésinegative and approaches the minimum
of V. from above (see Figure 3.1). The scattering problem has finendistinct regions,
namely: I, the innermost forbidden regioh € = < xy); I, the allowed region wher&’, is
belowX, (zo < z < 1), lll, the potential barrier region whefé, is aboveX,, (1 < x < x9);
and finally the external allowed region whexg is belowV_ (z; < z < o0). The unstable
modes are those that ha¥g, < 0. Thus they are nearly bound states of the potential well in
V. that can tunnel out to infinity througii_. In region I, the WKB wavefunction that vanishes
at the origint =0 is

1 exp {—mw /IO \/de} , (3.48)

1= "5
mw/ \T|1/4

where (] is a constant. Then, the usual WKB wavefunctions and cormorefbrmulae —
see Section 3.7.1 — allow us to relatg to the wavefunctions in the other regions and, in
particular, with the incoming and outgoing contributiorighee wavefunction in region IV:

Hyy ~ Cs T % exp {zmw/ \/70[33] ——————exp {—zmw/ fdx} . (3.49)

1/2T m1/2T /4

The WKB analysis yields the relation between the amplitudgs”; andCy:

. 1 1
v ), -
Cie 5 {(217—1— 277) Ce+1 ( n 277) 07}

. 1 1

90ur conventions differ slightly from those of [164]. Therawes carry a time dependenge® while we
follow [94] which introduces the separation ansatz (3.16ha time dependence *.
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where

v = mw/ \/de—%, (3.51)

Inn = mw/ VIT|dx . (3.52)

The identification of the ingoing and outgoing contribugan (3.49) depends on the sign of
¥,. Indeed, one ha¥ o e “!Hyy(z). If X, is negative the ternse—*“*=7@) represents
the ingoing contribution, while the terdi;e—““+7(*)) describes the outgoing contribution (if
¥, > 0, the terms proportional t6’s andC; in Hyy(x) represent, respectively, the outgoing
and ingoing modes). Henceforth we considerihe< 0 case (since this will be the unstable
case), for which the scattering amplitude can be written as
CCr AP = 1) + (P + 1)e

=— = . — . 3.53
Cs (A4 e —i(4n? — 1)e ™ (3.53)

The resonance peaks in the scattering amplitude occureqiagncyw y for whiche ™ +ie?” =
0, i.e, whenvy(w) = vy where

yw(wy) = N7+ % (3.54)

with NV being an integer usually referred to as the ‘harmonic’. Tésest way to see that the
resonance peaks must be near these (real) frequenciesasetthatS(~y) = —i while for

n — oo, one hasS(v # vn) = +i. So when) — oo, one has generally(~) = +:, but when
~v = vy a peak occurs that changes the valué éfom +i to —i.

We can now perform a Taylor expansion of the functions thpeapinS aroundy = .
Defining

_dy
C dw

«

d [ [
- { / O \/de} | (3.55)

W=wN Y=Yy N

the scattering amplitude can be written as

—a(w —wy) + # —1 [a(w—wN) + #]

S ~ (3.56)

—a(w—wN)+#+i[a(w—wN)+#
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which, using(1 +¢)/(1 — i) = 4, can be cast in the form

W—wy + i
Soj N e (3.57)

-1
W—WN—Z%—QQ

This result takes the form (3.47). Hence the discrete spectif resonance frequencieg is
selected by condition (3.54). Further, comparing (3.4Th\{8.57), one has that the growth or
damping timescale is given by

T =4n’a. (3.58)
n

Now, o defined in (3.55) is always positive since Hs increases so does and~y defined

in (3.51) (the area of the region in between the line and thel. curve, and in between

¥y line and thel_ curve both increase when,, increases). So, we are guaranteed to have a
positiver and thus the negative, modes are unstable. If we redo the computations to consider
the 3, > 0 case, the only difference is that in (3.49) the ingoing anthoing waves are
given instead by the terms proportionakie andCj, respectively. This changes the scattering
amplitude fromS to S—* and thusr to —7 implying that the positivé:,, modes are damped.

Though the resonance frequencies and growth timescaldsecammputed with numerical
methods from (3.54) and (3.58), we can still make some fugphegress analytically by ap-
proximating the well ofi’, by a parabola. Near the well, the potential behaves generally
as

(x - xm>2

V. ~
+ P

+ (3.59)

with a,, < 0. The boundaries, andz, are the roots ot, — V.., namely:zy = z, — [P (Xy —
am)]V? andz; = xy, + [P (Zy — am)]/?. Sincey/T vanishes at these boundaries one has

V2 dr. (3.60)

a_/m dv'T
 Say ATy

0
Moreover, near the bottom of the well, oy, — V.. varies significantly withz, and we can
assume that all the other quantities that appear in theraitefn are approximately constants
given by their value at = z,, (the accuracy of this assumption increaseXasapproaches
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an). One then has

) + oMTm 1 1
¢ T Plam) P(2m) / 2, — V]2 de, (3.61)

o X~
\/Ew — V_(xm) 2xm(1 + .Tm) )

with V. given by (3.59), which yields fox the value

_ OMTy _ ~1/2 P(2m)
a=1v/Pn {Ew + 7P(xm)} Xy — V_(2m)] ot 1) (3.62)

Let us illustrate the use of the WKB method we have describebis section to compute
the instability parameters in a particular configuratioakd,

m = 14; n=10; a1 =32; ¢1 =5; ¢, =5; (3.63)

By approximating the well i/, by a parabola, as in (3.59), we get
am = —0.17894: ., = 9.1537; P, = 2759.4. (3.65)

The resonant frequencies are those that satisfy condBi&d ) with~(w) given by (3.51). For
the fundamental harmoniéW( = 0), we get

Sy = —0.173. (3.66)

The growth timescale of the instability is given by (3.58}w(wy) given by (3.52). Again,
for N = 0 we get

T~ 10%7. (3.67)

Independently of the details of the geometry, we note thatagrows,>,, approaches,,,,
the value of thé/, at its minimum. For the particular geometry parametersrilesd in (3.63)
we have (forA = m, = 0):

my = 10 : Ew = —0173,

my = 20 : Ew = —0176,
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This feature can be proven analytically, as was done in [164]

Let us verify consistency of our results. We have assumetdift3" < 1 in order to
make the approximatiof =~ {(/+2). Now, for the cases listed above one hag =" ~ 102,
which is inside the range of validity for the approximatidrtiee angular eigenvalue.

To conclude this section, we consider the regime of validitthe WKB approximation
in more detail. A standard analysis of eq. (3.31) suggesgtSNKB approximation is valid
for |0,Ues| < |Uee|?, Which can be rewritten ag),7/7*(z)| < m,. So, for largem,, the
WKB approximation seems to be valid quite generally. Howewe must sound a note of
caution. As we already remarked, eq. (3.68) shows that,agrows,%,, approaches,,, the
value of theV,. at its minimum — this can be proved analytically [164]. So whe, becomes
very large, the two turning points are very close and the WIKBIgsis breaks down because
T(x) — 0. So we conclude that the WKB approximation used in this eacthould be valid
in a regime with largen,,, but not exceedingly large. In any event, it is clear thaiiséability
is strongest for small values ot,,, when the WKB analysis is certainly not valid. So, in the
next two sections we will compute the features of the insitsthising complementary methods
valid for small values ofn,.

3.4 Matched asymptotic expansion analysis

The WKB analysis described in the last section appears tarbegest when describing so-
lutions for whichx=! ~ (, &, but in general this corresponds to solutions with high #agu
momentum. In the sense that the timescale of the instalility to these modes is largest,
they are the least unstable. Conversely, the matched astimpxpansion that we use in this
section becomes valid whert! > (. ¢, they are the dominant decay modes. As an additional
bonus, the eigenvalues are determined explicitly througebaaic constraints. Having both
approximations at our disposal allows us to accuratelyutate the eigenvalues for most of the
allowed parameters.

We follow a matching procedure introduced in [177-179],ahhthas previously been used
for studying scalar fields in three-charge geometries bg®iMathur and Saxena [86—89], in
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the JMaRT backgrounds [94] and also in [160, 168-170, 186 dpace is divided into two
parts: a near-regiom, < (3, and a far-regiony > «, such thatx < . The radial equation is
then solved approximately and the appropriate boundarglitons applied in each of the two
regions. Finally, we match the near-region and the fareregolutions in the area for which
they are both validy < r < . This gives a set of constraints, the solution of which gihes
eigenvalues. Performing this analysis for the radial équdB.19), we shall see that the only
solutions which are regular at the origin and purely outgahinfinity are finite ax — oo,
and lead to instabilities. Except when otherwise statedlatialysis in this section will hold for
general values af,,, m, and\.

3.4.1 The near region solution

In the near-regions?z < |1 — 12|, one can neglect the’z term, and the radial equation (3.19)
is approximated by

1 £ ¢
2 2
(1 +2)0ih + (1 + 2x)0,h + 1 1—v"+ 1 2 h=0. (3.69)

With the definitionh, = z/51/2(1 + x)¢/2 w, the near-region radial equation becomes a standard
hypergeometric equation [181] of the form

z(1+ 2)0%w + [c+ (a + b+ 1)2]0,w + abw = 0, (3.70)
where
1 1
a:§(1+|d+§+u), b:§(1+\<|+5—u), c=1+1C]. (3.71)

The solution to the above in terms of hypergeometric fumatiallows us finally to write the
solution of the radial equation in the near region as
h = Azl 4+ 2)¥2F(a,b, ¢, —x)
+B2 (1 4 2)?F(a—c+1,0—c+1,2 —¢,—x). (3.72)
At this point we impose the first boundary condition: the solu must be regular at = 0

since the geometry is smooth at the origin of the “core”. Téwent proportional tar—/<!/?
diverges at: = 0, and must be discardeide,, its coefficient,B, is set to zero.



3. Instability of Nonsupersymmetric Smooth Solutions 69

To perform the matching we need to know the largeehavior behavior of the regular near-
region solution. To this end, one uses the- 1/x transformation law for the hypergeometric
function [181]

F(a,b,c,—x) = EEZ??E[Z : Z% x *Fla,1—c+a,1-b+a,—1/x)
+% 2 F(b1—ctb1—ath,—1/z),  (3.73)

and the property'(a, b, ¢,0) = 1. Note that this expression for the transformation is onlidva
whena — b = v is non-integer. This is an assumption we will continue to entikoughout
this section. In the end, we shall derive a condition deteimmgi the allowed eigenvalues that
will not be dependent upon this assumption and therefore ayeaxtend our results to integer
values ofv by continuity.

The larger behavior of the near-region solution is then given by

I'(—-v) -7
h~ AT(1+[¢]) TR+l +e—nTEa+C -] "
N F(V) xu;l

T3+ K+E+v)|T[5+[C]—E+v)]
(3.74)

3.4.2 The far region solution

In the far-regionsaz? > max{¢? — 1, (%}, the termst2/(x + 1) and¢?/x can be neglected,
and the radial equation becomes

kK2 -1

O%(zh) + [— —} (xh) =0. (3.75)

4y 4?2

The most general solution of this equation whers non-integer is a linear combination of
Bessel functions of the first kind [181],

h=x2[CJ,(kVZ) + DJ_,(kV7)] . (3.76)
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This form does not lend itself easily to application of theubdary conditions. Instead, for
large+/z, the solution may be expanded as [181]

£—3/4

e

h ~ VT (CeF + DY) eV (CF + DT E) | (3.77)

2Tk

As in the WKB analysis, we assume that the real pact @fnegative, and therefore the positive
and negative sign exponentials give, respectively, ingaimd outgoing waves. We require that
there be purely outgoing waves at infinity and so impose tmstcaint that the coefficient of
the positive exponential vanishes, yielding

C = —De™. (3.78)

Whenw becomes complex, so too doesSince the sign of the real part ofis negative, the
definition of x (3.20) implies that its imaginary part has a sign opposi& tt the imaginary
part ofw. Therefore, requiring additionally that the solution batérasz — oo implies that

the imaginary part ol must be positive. This is precisely the sign for the imagirzart of

the frequency that leads to instabilities. Thus we see ihgilg requiring the solutions with
complex frequency be finite at infinity automatically gudess they lead to instabilities.

Now, to do the matching in the overlapping region, we willdié@know how the far-region
solution behaves for small values:afMore specifically, for smalt\/x, and considering only
the dominant terms, the solution behaves as [181]

h~D (2/K)_V ”771 Ty (2/’1)1/ —VTH ) (379)

R A— J— T

T(l+v) " T(1— )

3.4.3 Matching the solutions

We will now determine the frequencies that can appear whemgydometry is perturbed by a
scalar field. The frequency spectrum is not arbitrary: ombse values that satisfy the matching
conditions between the near-region and the far-regionlloeed. We shall see that there are
two solutions of the matching equations, yet only one wdldéo instabilities.
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Matching the powers of between the near (3.74) and far-region solutions (3.79), an
taking a ratio to eliminate the amplituddsand D, yields

D= 0) _ T0) T v+ [0+ O) TR~y +1d - ©)
S ) T T TAAH v 4 ) ThA T v v =gy 80

The problem of finding the outgoing modes thus boils down baisg the single transcendental

equation (3.80); we will do so by iteration. Note that thelependence on the left hand side
means that it is suppressed. For the equation to hold, aasisippression must also occur on
the right hand side. This is only possible if one of the gamomefions in the denominator of
the right side is large. Since the gamma function divergesnats argument is a non-positive
integer, we take as a first iteration the choice

v+ -&=—-(2N+1), (3.81)

where the non-negative integ&rwill again be referred to as the harmonic. Note that we could
also have chosen the above relation, but with the oppogjtefer £. While this does indeed
lead to a solution, one finds that the imaginary part of thguescy is always negativee., the
modes are exponentially damped in time.

This first estimate is obviously not the end of the story asauld cause the right side
to completely vanish. To go beyond this approximation, werite eq. (3.80) in terms ok,
then perturbN — N + N, wheredN < N. This deformation appears at leading order
only for theT" function in the denominator on the right hand side that djger it may be
neglected in all other factors. More concretely, to extast from theI" function we use
['(2)['(1 — z) = 7/ sin(7z), and sine function identities to obtain the expansion

1

['(—N —0N)~ —[(-1)"NIN] . (3.82)

Substituting this into (3.80), and using a numberTofunction identities, we solve for the
imaginary part of the first correction

Tm(5N) = W(;é (23) WIn Wlnaicl (3.83)

wherela],, = []}_,(1+a/i). SinceN is O(1) andd N ~ x?”, we see that we may stop after the
first iteration. As a function of, this can have a single maximum near . In general we
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will have k < 1 andv ~ 1 + [, so we will always be in a region where this is a monotonically
decreasing function af. For fixedv, the last two factors make this an increasing function of
N and|(], but the general behavior will be dominated by the effectshaingingy.

The equation (3.81) uniquely determiniagcan be exactly solved

2
(e+0*)w=— ()\spcpM + gc) + \/()\spcpM + gc) —(e+0¥)(c2—12), (3.84)

RQ

where
1

ézﬁ(riJrM(sf—i-sgchi)), c=& —|¢] - (2N +1), (3.85)
and a variable with a subscriptédneans we have set= 0. Note that as long as. > n + 2,
one can show — see Section 3.7.3 — that*> < 1 and both quantities are positive. When
m — n + 1, though,e — —oo (sinceM — 0, 3 — —oo and R? stays finite), ensuring that
there can be no instability for the supersymmetric soliobhis extends to arbitrary modes

the conclusion from the discussion associated to equ&lid3) for modes withn, = A = 0.

When evaluated on a solutianjs given byr = wp+c. Since we are interested in solutions
for which w is negative, this means> 0. Then, requiring that be negative and real, gives
three more conditions. The first ensures that the resultaiswhile the second requires that
the first term of (3.84) is negative. Finally, the condititiatt appears to be the most difficult
to satisfy ensures the contribution from the square roos ot make the total result positive,
i.e.,

A—12>0. (3.86)

When)\ # 0, these conditions must also be supplemented by the reqgiitetimato? — \? > 0,
which ensures the asymptotic behavior of the solution iseobr With these satisfied, we may
determine the effect of the correction.

The imaginary contribution t&/ is taken as resulting from a small imaginary correction to
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w. Then, the two are related through

ow d
N = ——(€—
0 2 dw(g w)
ow 9 9
= 35, [(g + e)w + (Aspe,M/R +Qc)]

N

- S JhM L ) v e - 387)
= 3, JE oc e+ 0?)(c®— 1) . .

In the final line we have used the solution (3.84) to show thatsign ofo NV determines the
sign of the correction tw. SinceZm(JN) is always positive when evaluated on the solution
of (3.81), the corresponding imaginary partofs positive.

To summarize, whenever the constraints, in particular6)3.8re satisfied there is a cor-
responding outgoing mode of the scalar field equation. Eurtthe imaginary part of the
frequency of this mode is guaranteed to be positive, ingligahat it leads to an instability.
The timescale for the instability generated by the mode i®aatonically increasing function
of v, which is given by

M
(e+0*)v = ec— )\Qspcpﬁ (3.88)

M\° M
—l—\/(ec — )\gspcpﬁ) + (e + 92)(209)\spcpﬁ +130% —ec?) .

A similar argument, based on the solution of equation (3.Bd) with the opposite sign faf
would lead to a set of outgoing modes with an amplitude theagein time.
As an example, consider the particular background geonagidyscalar field solution de-
scribed by
m = 5;n=1;a,=191; ¢; =5; ¢, =1.05;
A=my=0; l=my =2, (3.89)

The first two iterations withV = 0 gives

w = —28717,
T =Im(bw) = 4.42x107", (3.90)
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The results obtained here are consistent with the WKB aizabfsthe last sectioni.e.,
there are outgoing modes that rotate in the same sense aadkgrund geometry whose
amplitude grows exponentially in time. What we have gairseghi explicit set of relations that
allows the unstable mode frequencies to be calculated.rtitpkar, one can now make definite
statements about the relative timescales for unstable srjadeby looking at equation (3.88).
We leave the precise details of this to Section 3.7.3 andgustthe results here. The most
unstable modes are those which minimize&Sinces < ? this generally means that the modes
which maximizec or minimizer, will be the most unstable. In general this means we should
consider the lowest possibléor which the constraints can be satisfied when setting= [,
my = 0andN = 0.

A second benefit of this analysis is an improvement in acgufacthe most unstable
modes. For comparison, performing the WKB analysis and egtatting any terms in the
potentials or approximating the bottom of the well with agiaola giveso = —3.129 +4.00 x
1019, From the full numerical solution, which we discuss nexthagew = 2.8718 4 4.46 x
10~'14. For values ofv in this range we have—2 ~ 1900, so we are well within the regime
for which we may trust this solution. As™! approachesax(|(|, €), this analysis begins to
break down, but it appears that the WKB approach becomesasiigly accurate. In the next
section we will present a more detailed list of eigenvaluasesponding to instabilities and
discuss the results.

3.5 Numerical results

We will now solve the radial equation (3.19) numerically tdract the instability. We begin
with a description of the numerical algorithm. The only appmation used in this section
concerns the angular eigenvalue, which we assume to be well described by (3.22). At
the end of the calculation we always make sure the resulttisanmegime of validity of this
approximation. Note, however, solutions can still be foewen if outside this range. The
easiest way to do this is by treating the eigenvalue probliemg andw separately. The
coupled system may then be solved by first assuming the ajppaitirn to hold and solving
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the radial equation faw, this is then fed into the angular equation which is solvedHtain
an improved value ol. This process may be iterated until the desired level of emyence is
achieved. We shall give an example of this process in Se8tin2.

3.5.1 Numerical procedure

The method of finding solutions of the radial equation nuo@ly is very much like perform-
ing the matched expansions. We use eqgs. (3.72) and (3.7&)tteefinitial conditions for two
integrations of the exact radial equation. Since the egnaif motion is linear, we may im-
mediately match the two solutions at a point in the interggion by rescaling. This leaves
two more conditions to be satisfied, those matching the atver of the real and imaginary
parts. Fixing all other parameters, we vary the real and inzag parts ofw to satisfy these
conditions.

Given the small size of the expected imaginary part, it is tnstrmightforward to use a
package like Mathematica [182], with its software basedtraty precision, to perform the
calculations. Solving the matching conditions can be dgneedating the difference in deriva-
tives at the interior point as a complex valued functioofA root may then be searched for
using the built-in functiori ndRoot which, for a function without explicit derivatives, looks
for the solution by constructing secants for the equatiaisgsolved.

Since the imaginary part is expected to be far smaller thameél, gradients of the match-
ing function in the imaginaryw direction will be large only when very near a solution, but
negligible elsewhere. The initial guesses at the solutieriteerefore very important for ensur-
ing that iterations of the root finding procedure converge $olution. It was found empirically
that solutions could consistently be found by choosing &t she search in a region around
the real value ol for which the inner solution vanishes at the matching pdamall changes
in the imaginary part ofo near this point appear to be sufficient to bring about corarerg.
In Figure 3.2 we show an example solution obtained in thismaeanThe solid line is the full
numeric solution, composed on either side of the dot by thegnations which start at large
and smallk:. The dashed lines are the near (3.72) and far (3.76) appadixins used to set the
initial conditions for integrating the exact radial eqoati The fact that the imaginary part of
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Figure 3.2: An example of an unstable mode of the scalar fietdvérg vanishing as both

rz — 0andz — oo.

w is in general very small raises non-trivial problems realatethe number of digits of preci-
sion used and the exact way in which boundary conditionsgpéeal. A discussion of these
aspects is deferred to the supplementary material in $e8tib2.

3.5.2 Numerical results

Our numerical results are summarized in Figure 3.3 and Taltlein Figure 3.3 on the left we
present the numerical solutions obtained for

m=5,n=1,c =11, =152, a; =262.7, A=my =0. (3.91)

We consider only the lowest harmoni] = 0, but varyl = my. Atl = 1, k=1 ~ 40,
indicating the matched solution is valid. Agyrows so dot, ¢ while =t shrinks, meaning
the approximation should soon break down. (At 5, k2 ~ 10 and the approximation is
becoming no longer valid. Finally, whén= 13, =2 ~ 1 and differences between the matched
and numerically determined eigenvalues are starting torheapparent. In Figure 3.3 on the
right, we use the same parameters as before, but nalnfixn,, = 4 and vary the harmonic
from N = 0 up to4. IncreasingV leads to smaller values af and therefore smaller values
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of k, so that the matched solutions are valid throughout. It lEhalso be noted that if the

approximation?w?/ R? < mj is valid for a givenmn,, then it should be valid for ath,,. This

is because scales withn,,, as we observed within the WKB approximation.
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Figure 3.3: On the left we choose the lowest harmonic andivaryn,, from 2 to 13 from upper
right to lower left. The solid circles represent the numentutions, while the triangles are the

results of the WKB analysis and the unfilled circles corresptm the matched expansion. On
the right we fixl = m,, = 4, and vary the harmonic from 0 to 4 from upper left to lower tigh

In Table 3.1 we present and compare the numerical resultstivitse obtained through

the approximate analytical approaches. The values lalal®KB stand for values obtained
using the WKB approximation, formulae (3.51), (3.52), 3.and (3.58), and the parabolic

approximation for the potential (3.59)-(3.62).

Notice first that all the different approaches yield very iamresults: they are all rather
accurate in their own regime of validity. As predicted by #malytic approaches, and verified

numerically, the real part of the frequency scales wity whereas the logarithm of the imag-

inary part scales withn,,, 9., see eq. (3.52). Thus the instability timescale increagasdlya

as a function ofn,,.



3. Instability of Nonsupersymmetric Smooth Solutions

78

3
<

Numeric

WKB

Matching

—0.184 + 3.83 x 107%

—0.184 + 3.83 x 107%

—0.744 + 2.51 x 1078

—0.826 + 1.89 x 10~ 74

—0.744 + 2.64 x 1078

—1.312 4 3.73 x 107%

—1.371 + 1.48 x 1078

—1.312 4 3.53 x 107%

—1.883 4 3.69 x 1071%

—1.932 + 1.17 x 107

—1.882 4 3.63 x 1071%

—2.456 + 3.55 x 1074

—2.499 +9.39 x 10~14

—2.454 +3.39 x 1074

—3.030 + 3.22 x 10712

—3.072 4 7.62 x 10712

—3.028 4+ 3.02 x 1072

—3.605 +2.77 x 10713

—3.647 +6.23 x 10713

—3.602 +2.63 x 10713

—4.180 + 2.47 x 10714

—4.216 + 4.88 x 107

—4.176 + 2.24 x 10744

Ol |IN|oOO|O || W|IN|EF

—4.755 4+ 2.05 x 10715

—4.794 4+ 4.03 x 107154

—4.751 + 1.89 x 10715

=
o

—5.331 + 1.76 x 1071%;

—5.369 + 3.26 x 10716;

—5.326 + 1.58 x 1071%;

=
=

—5.907 + 1.49 x 107175

—5.947 4+ 2.65 x 107173

—5.902 + 1.32 x 107175

=
N

—6.483 + 1.22 x 1071%;

—6.516 4+ 2.07 x 1071%;

—6.477 + 1.09 x 1071%;

=
w

—7.059 + 1.04 x 10719

—7.102 +1.81 x 10719

—7.053 4+ 8.97 x 1072%

Table 3.1: Some numerical values of the instability for teemetry described by (3.91), and

[ = my. In the second column, we have the results of the full nurakaoalysis. In the

third column, labeled as WKB, the values obtained from theBA#falysis, are given. In the
final column, we present the results of the matching proae(®i81),(3.83). Notice the close
agreement between all the different methods. fkor= [ = 1 and for these particular values

of the parameters, the WKB analysis breaks down. Indeednfor= 1, the potential’, has
no minimum.
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3.6 Discussion

In this chapter, we have shown that the nonsupersymmet@dINolitons [94] are classically
unstable. The relevant instabilities are quite genericptace-times which have an ergore-
gion but are horizon-free [163]. However, as noted in SecHd..2, the general proof does
not strictly apply to the JIMaRT solutions since the lattgymurt nonradiative negative energy
modes as shown in Section 3.7.4. Hence we have explicitiwishbat the ergoregion insta-
bilities are active in the IMaRT geometries using threesdifit approaches, which in the end
show a remarkable agreement — see Figure 3.3 and Table 3hagRethe most physically
intuitive method is the WKB analysis carried on in Sec. 3.Bislapproach allows us to clearly
identify the nature and physical properties of the instgbiHowever, this analysis is only ex-
pected to be valid for large angular momentum quantum nusnber m,, > 0, which is not
where the instability is strongest. The more unstable medee studied using the matched
asymptotic expansion method [177-179] in Sec. 3.4. As a @ioakistency check of these
analytical results, we made a numerical analysis of the wguation in Sec. 3.5.

In passing we note by considering orbifolds, the IMaRT smhstwere extended to a six-
parameter family which includes a third integecharacterizing the orbifold group, [94].
Of course, it is straightforward to adapt our instabilityabsis so that the modes respect this
orbifold symmetry in the covering space and so one concltliggsthe ergoregion instability
arises in these orbifold geometries as well.

Let us now summarize some of the features of the ergoregistability found for the
JMaRT solutions:

(i) The general shape of the WKB potenti&ls are sketched in Figure 3.1 for the case in which
an instability is present. The key point is that when the exgimn is present the bottom of the
potential well inV, reaches negative values. The unstable modes are those pditesa speed
¥, is negative and approaches the minimunvoffrom above (see Figure 3.1). Thus they are
nearly bound states of the potential welllin that can however tunnel out to infinity through
V_.

(if) The fact that the unstable modes are those with negphese velocityy,, < 0, has a clear
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physical interpretation. As in the discussion of egs. (Ba8% (3.36), modes with,, < 0 are
those that propagate in the same sense as geometry’s ndtatioTherefore at infinity these
modes carry positive angular momentum (same senQg)asis well as positive energy. Hence
by conservation of energy and angular momentum, with thetasf¢he ergoregion instability,
the JMaRT solutions are shedding both energy and angularemiomm by an amount that
increases exponentially.

(i) The instability can be quite strong, depending on theticular combination of parameters
that define the geometry. More importantly, the instabibtyobust, in the sense that it exists
for a wide range of parameters.

(iv) With m = n + 1, the IMaRT solutions are supersymmetric and so must beesttil a
consistency check of our analysis then that we find no inityabi this case. As commented
in Section 3.3, whem» = n + 1 the potentiall’,, as given by eq. (3.43), is always positive.
Hence there are no negati¥g, modes which could intersect the potential welllaf and the
SUSY geometry is stable as required.

In our analysis, we have focused on the special case 0 andm, = 0, to simplify
the relevant equations. In fact, the ergoregion instaiyilérsists when either or both of these
parameters are nonvanishing. A discussion of the geneuat®in is given in Section 3.7.3.
The result is most simply understood from the point of viewthef WKB approach. Then all
of the additional contributions to the effective potential32) introduced by a nonvanishing
mg Or A are suppressed by inverse powersf and so can certainly be neglected in the limit
of largem,,. One can further check that the instability exists over soamge even whem,,
does not dominate the other two. One distinguishing feattihke# 0 is that asymptotically the
scalar modes have an effective mass in five dimensions. lamalysis, this is reflected in the
fact that asymptotically. — £|\/m,,| and so there is an additional barrier for the modes to
tunnel out to infinity. However, for sufficiently large,,, such tunnelling is possible. One other
interesting point about the large,, regime is that unstable modes appear with either sign of
mg andX. Hence, while the modes on which we have focused lead to &abitfisy ‘powered’
by J, resulting in its decrease, there are unstable modes whighatrthe same time increase
|.J5| and/orP.
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Adding a mass for the scalar field modifies the potentialsn essentially the same way
as having nonvanishing. Hence we expect the ergoregion instability will even apgea
massive fields, at least in modes with sufficiently large #amgmmomentum. As described in
Section 3.1.2, the arguments given by Friedmann [163] aite general and so we expect the
ergoregion instability to appear for higher spin fields a#i.vie particular, we expect the fields
of the low energy type IIB supergravity will generically eeqence this instability. Having said
that the ergoregion instability is robust, we must also dddd it can be suppressed in certain
parameter regions. In particular, one finds that the instylimescale becomes extremely
long in the regime wher@; and(@; are much larger than the other scales. Further, we add that
in the decoupling limit where one isolates an asymptotycAllS; core [94], the ergoregion
instability is absent. The simplest way to understand tasult is that the Ad$Score has a
globally timelike Killing vector [94] and so there is a ‘rdilag’ frame where we can define all
energies to be positive. One can also explicitly verify theemce of an ergoregion instability in
the core solutions by directly applying the analysis usethismichapter to those backgrounds.

The JMaRT geometries (both supersymmetric and nonsupersiic) also have damped
modes,i.e., modes (3.15) for which the imaginary part ©fis negative. As per the WKB
analysis, these are modes with positiug below the local maximum of’, that tunnel out to
infinity throughV, — see Figure 3.4.

vV

Figure 3.4: Damped modes are those that have positive
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As emphasized previously, we can also find purely boundssfaés nonradiative modes)
with k2 oc w?—\% < 0. With some fine-tuning, it may also be possible to find geoieetwhich
support bound states with= 0. These nonradiative modes are described in the supplergenta
material. The typical situation for such modes is sketchme#igure 3.5. As already noted
above whem\ # 0, asymptoticallyVy — =£|\|/m,, and so there is a finite potential barrier
at infinity. If this barrier is sufficiently large relative @, = w/m,,, bound states can arise.
These bound states can also be negative energy states, las saen with the energy integral
(3.7). The absence of such negative energy modes which dadiate at infinity was central
to Friedman’s general argument for the ergoregion instgbiln [163], he did not find any
such nonradiative modes because he only considered thdeswméiglds for which there is
no potential barrier at infinity. Note, however that the eatrsituation is more complicated
because the KK momentum of the background, as well as thdanmgomenta, contribute to
the presence of the ergoregion.

\

Figure 3.5: Qualitative shape of the potentitlsandV_ whenw? — A\? < 0. These are the
purely bound states that are discussed in Section 3.7.4.

The appearance of negative energy states in the presenceenfi@egion can be antic-
ipated from a geodesic analysis [164]. By definition, thdiKgj vectort®, which generates
asymptotic time translations, becomes space-like ingideetgosphere. Hence (time-like or
null) geodesics can have either positive or negative energy—t - u, in this region. However,
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asymptotically only positive energy.€., future-oriented) geodesics are physical. Therefore
any negative energy geodesics must be confined to circulttenthe ergoregion. Of course,

in a black hole background, such geodesics would ‘disappelimd the event horizon. How-
ever, for horizon-free geometries, such as the JMaRT swolsitithey are stable bound orbits
and so it is natural to find bound states in the context of a fleédry analysis. However, the
question then becomes whether the analogous modes of théifiehside the ergoregion or
whether they ‘leak’ out to infinityi.e., whether a negative energy bound state or an ergoregion
instability results. A more thorough examination of the hdwstates shows that the negative
energy bound states are characterized by ha¥jng w/A < 0 while the ergoregion instability

is associated with modes whetg, = w/m,, and/orL, = w/m, are negative — see Sections
3.7.3 and 3.7.4. Hence as the geodesic analysis would dithgesegative energy modes have
a negative pattern speed or phase velocity, and the KK mamemiodes tend to lead to bound
states while the spinning modes are related to instalsilitie

The presence of negative energy bound states can also betexpe enhance the decay
of these horizon-free geometries. The analysis of the egjon instability (considered in
this chapter) is only at the level of linearized test fielden€rically any theory coupling to
gravity will also have nonlinear interactions.d., even the free scalar considered here has
nonlinear couplings with gravitons). These nonlinear dimggs might be expected to lead to
processes, where positive energy modes are radiated atyinfinile negative energy modes
are populated within the ergoregion. However, one should tiat the negative energy modes
are exponentially decaying at large radius — see Sectiod 3-7while the positive energy
modes are power-law suppressed inside the ergoregion.eHbamverlap of these modes is
expected to be small, which will suppress this nonlineatrdoution to the decay.

We now turn to consider the endpoint of the ergoregion inktials. As emphasized before,
the presence of these instabilities relies on two key ingread, namely, the geometry has an
ergoregion but it does not have an event horizon. Hence thdtireg decay process could
be terminated either by the disappearance of the ergoregitime appearance of a horizon.
However, the unstable modes radiate with a positive eneegwgity asymptotically which is
compensated for by a negative energy density inside theeggpm — as could be seen in
eg. (3.7). Hence the onset of the ergoregion instabilitydpoes a(n exponential) build-up
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of negative energy near the core of the JMaRT solutions. éfber it seems unlikely that
an event horizon will form since the latter is typically asisbed with a large build-up of
positive energy density. This reasoning then suggestshibraiecay must terminate with the
disappearance of the ergoregion. The supersymmetric DP-Bicrostate geometries [79-89]
are all free of an ergoregion and hence it is natural to suptita these are at the endpoint of
the ergoregion instabilities. Of course, these solutidfes a huge family of possible endpoints
and the precise one that forms will depend on the detailssofiéitay process, beyond the linear
regime considered here — although as we are only considdrenglassical evolution, it is in
principle possible given a certain set of initial condigorOf course, we can expect that the
final mass should be close to the BPS mass determined by thgeshaf the initial IMaRT
solution,i.e,, £ = /4G5 Q1 + Q5 + Qp]. Although even here, we can only say ‘close’ as
we know that the unstable modes with# 0 (andeither sign of \) occur which may modify
the final value of()p. Similar comments apply for the angular momenta,and J,. We
also observe that there is no reason to expect that the deceggs will lead to an endpoint
within the family of supersymmetric JIMaRT solutions. Of cee} at the level of the present
discussion, we cannot rule out that the endpoint is only alyweapersymmetric solution (or
that this would be the effective endpoint). Our expectatsothat such solutions will have a
‘small’ ergoregion and that the instability might be eliraiad (or strongly suppressed) before
the ergoregion precisely vanish¥s.

The stability analysis of the JIMaRT solitons [94] is releiviam the stringy tachyon decays
discussed recently in [166]. Originally, [167] considetadhyon condensation in certain D1-
D5 black string backgrounds where tachyonic string windimages can occur if one chooses
antiperiodic boundary conditions for the fermions aroumel ¢ircle on which the black string
is compactified. The latter choice necessarily restriokssttenario to a nonsupersymmetric
sector of string theory which already suffers from varionustabilities [183—-185]. Ref. [166]
considered adding angular momentum to the black stringghifncase, it was shown that

10We should note that the JMaRT solutions begin in a low-magsn@whereM? < (a; — as)?, however,
if the ergoregion instability sheds the background monmmngéficiently then the system will evolve to a regime
where black holes can form. Hence we can not rule out the appea of an event horizon — we thank Simon
Ross for correspondence on this point.
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string modes winding certain compact circles near the barizan be tachyonic even when
the asymptotic fermion boundary conditions are supersyimenerhe relevant point for the
present discussion is that the endpoint of the tachyon cwadi®n is in general one of the
nonsupersymmetric JMaRT solitons. Now, in this chapterhase shown that these solitons
are themselves unstable and so they will not be the final endpbthese decays. Instead,
the ergoregion instability will continue the decay procasd as suggested above, will likely
terminate with a supersymmetric microstate geometry.

We would now like to consider the implications of ergoregiastabilities for Mathur’s
fuzzball program of describing black holes in terms of areemsle of microstate geometries.
If this program is to succeed it must supply a descriptionathlsupersymmetric and also non-
supersymmetric black holes. At first sight, it may appeat¢bastructing non-BPS microstate
geometries is not possible. In particular, non-BPS statkslacay and so it is not clear that
there should be stationary geometries to describe themekawthe JIMaRT solutions provide
an explicit example indicating that this is not really a gesb. In fact, the decay of non-BPS
microstates was already considered in the D-brane deseript nonextremal black holes [27—
29]. In that context, it was seen as a success of the strimgdhie approach as this instability
had an interpretation in terms of Hawking radiation [1863{1&®f course, Hawking radiation
is a quantum effect in the black hole background and so preserobstacle to the construction
of classical supergravity solutions which are static otiGtery.

It is perhaps useful to remind ourselves as to how this distin arises. The classical
limit can be understood as the limit in which the string cangl, is vanishingly small [187].
However, the interesting classical solutions are thosechvborrespond to states where the
various quantum numbers are extremely large. Thatjisys o< 1/gs andn,, Jy, Js o< 1/g>
while g, — 0. These scalings are chosen to ensure that the gravitatfoogirint’, i.e., Q1,
Qs, Qp, a; anda,, associated with each of these quantum numbers remaires fifdwever,
in this limit, the ADM energy of the system diverges with o< 1/g2. As the energy is a
dimensionful quantity, this can be accommodated by chayifiie scale to which energies are
compared in the classical limit. Essentially, this diverge is associated with the divergence
of the Planck mass, which does not serve as a useful refeseatein classical gravity. Now
the decay rate of the nonextremal D1-D5-P black holes cambmputed in a straightforward
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manner [187-189]. The key point, however, is that the finplression forl £ /dt is expressed
in terms of geometric quantities and is independent,offo see the implications of this, it is
somewhat more intuitive to consider the fractional raterwfrgy loss,E~'dE/dt. Its inverse
defines a characteristic time scale for the decay of the syst&erefore in the classical limit,
the time scale of the decay diverges when measured agaiBttitial scale established for
classical physics,e., E(dE/dt)™" oc g;2 — oc.

We note that the ‘straightforward’ calculations of the decate referred to above can be
performed either in the framework of a microscopic D-braeespective or of the gravitational
perspective of Hawking radiation. The suprising resulthigttthe results of both analyses
agree precisely [187-189], including greybody factorsleast in the so-called ‘dilute gas’
approximation [156, 190]. However, even though suggestigements can be made in this
regime [191], this remarkable agreement remains poorlersidod. As the JIMaRT solutions
are horizon-free, the gravitational calculation of thealecate would have to be modified.
Using the connection between absorption and emission, ritess possible that absorption
calculations along the lines of those presented in [94]dtel extended to yield the desired
decay rate. On the other hand, the underlying microscogiestor the JMaRT solutions were
already identified in [94]. Hence one can use microscopiutiggies to estimate the decay rate
expected for these solutions. The resultis/dt ~ Q,Qs(m —n)®/R% and again this quantity
remains finite ag, — 0. Therefore we can again ignore this decay channel for tresiclal
JMaRT solutions.

However, the ergoregion instability investigated in thgter is a classical instability and
so should not be associated with the decay discussed abevehdMId also note that the form
of these two instabilities differs. Above one is considgrihe spontaneous decay of the sys-
tem while the classical instability really corresponds tdezay that results when the initial
data does not precisely match that of the IMaRT solutionsoOifse, in the quantum regime,
the same modes associated with the ergoregion instabilitgme rise to spontaneous decay
due to quantum fluctuations of the backgrodhéHowever, the latter will again be suppressed
in the g, — 0 limit. This reflects the fact that the background can be megbavith arbitrarily

n [94] it was erroneously assumed that all of these geosstrave an AdScore to argue that such emissions
would not occur.
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accurate precision in the classical limit and so it shoulgbssible to produce an arbitrary
suppression of ergoregion instability. Alternatively,nkiag in the classical limit, we can re-
gard the ergoregion instability as a property of how the JMa&lutions interact with external
sources. That is, generically if an external wave packetnggs on one of the nonsupersym-
metric JMaRT configurations, it will produce a dramatic decé the original background.
Hence this instability seems to present a major challengthéofuzzball description of black
holes.

We have argued that the ergoregion instability is a robwitife of the nonsupersymmetric
JMaRT solutions over a wide range of parameters. Given geaeguments along the lines
of [163], we also expect that this instability will be a geioeieature of any smooth horizon-
free geometries which describe microstates which are Me&-8nd carry significant angular
momentum (and hence have a macroscopic ergoregion). bheréfa nonextremal D1-D5-
P black hole is to be described by a coarse-grained enseoedbdll, it seems that that the
classical black holes must suffer from an analogous ingtabivhile the presence of an event
horizon eliminates the possibility of an explicit ergor@ginstability, there are, in fact, a num-
ber of potential instabilities which might afflict these titaholes and possibly reproduce the
same physics:

a) Superradiant Instability : Spinning nonextremal black holes will exhibit superradiscat-
tering, where an incident wave packet can be reflected withoager amplitude. Superradi-
ance by itself does not provide a classical instability,douinstability can arise if the scattered
modes are reflected back to rescatter, as described in 88clio This scattering was consid-
ered for higher-dimensional spinning black branes [170@] tere it was found that when the
noncompact space has more than four dimensions, this ilitgtdbes not arise. Explicitly an-
alyzing the present D1-D5-P black string again seems tec#@tdithe absence of an instability
[192].

b) Gyration Instability : Considering supersymmetric D1-D5-P black strings, it feasd that
above a certain critical angular momentum a straight blawhkgsis unstable towards carrying
the angular momentum in gyrations of the horizon [193]. Thstability should also appear
in nonsupersymmetric configurations and so would preseimtsaability at large values of the
angular momentum.
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c) Gregory-Laflamme Instability: The relevant configurations are black strings and so are
expected to suffer from the Gregory-Laflamme instability,[64] in two ways. The first is the
usual instability of long wavelength modes along the stri@f course, this instability can be
eliminated by reducing the radius of the compactificatimmglthe string. For a fixed radius,

it is also suppressed by the boosting along this directiorthvimduces the KK momentum
[74]. This instability is not related to the angular momentcarried by the black string or the
presence of an ergoregion, but we list it here for completgene

d) Ultraspin Instability : In six or higher space-time dimensions, one can find bladk ho
solutions with an arbitrarily large spin per unit mass [104{owever, it was argued [109]
that a Gregory-Laflamme-like instability will arise to dynecally enforce a Kerr-like bound in
these cases. While this analysis does not directly applyéndimensions, entropy arguments
suggest an analogous instability still exists and will l&athe formation of a black ring if the
angular momentum is too large [73].

While there are several possibilities for instabilitiesadblack string in six dimensions, it
seems that none of these can reproduce the physics of thegigoinstability which will af-
flict the non-BPS microstate geometries. This observattias on the fact that these instabil-
ities have a different character at a very basic level. Theregion instability might be termed
a radiative instability, in that, the instability is by defion connected to modes that radiate
at infinity. In contrast, the four instabilities consideraobve for black strings can be termed
internal instabilities. That is, these instabilities aremarily associated with a rearrangement
of the internal or near-horizon structure of the black strinvhile these instabilities will be
accompanied with some radiation at infinity, this will be as®dary effect with these instabil-
ities. Therefore it seems that emulating the ergoregiaiaimbéty in a nonextremal black string
background will require the discovery of a new kind of ingtigh While we are performing
a detailed analysis of the nonextremal D1-D5-P black string preliminary results indicate
that no such instability arises [192].

We also note in passing that at the same time the microstateegees should be able to
emulate any instabilities found in the black string backgds. In particular, the Gregory-
Laflamme instability is a robust instability that will afftithese backgrounds for sufficiently
large R. In the microstate geometries, one should then find unstabties carrying KK mo-
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mentum which are confined near the core of the soliton. We bwied bound states for a
test field in the JIMaRT solutions, as described in Sectiod3V¥hile the modes we identified
only arise for nonvanishing KK momentum as desired, theyalirstable,i.e., they have real
frequencies. Hence they can not serve as the analog of tlgogreaflamme instability in
the nonsupersymmetric JMaRT solutions. However, therlattaild be a gravitational insta-
bility, i.e., it should not be expected to appear as a scalar test field pathtsgjuestion requires
further investigation.

A possible reconciliation of these ideas with the fuzzbatigmsal would be that the mi-
crostate geometries could provide an accurate descriptiarlack hole, but only over a long
but finite time. In the context of the AJ&CFT, duality, some evidence for such a picture has
recently been found [194]. With this new point of view, a kayegtion is to determine the
timescale over which microstate geometries cannot bendisshed from black holes. One
suggestion [194] is that it should be of the order of the nemoe time, which would be expo-
nential in the relevant quantum numbers. An alternativgeation might be that the timescale
is associated with Hawking evaporation which would invaiveerse) powers of the quantum
numbers. However, note that both of these suggestiongy@ivethe classical limit. Hence the
ergoregion instability found here seems to be in conflichwibth of these suggestions. While
the instability timescale is certainly very long in certgiarameter regimes, it is a classical
timescalej.e, it is finite in the classical limit. Hence our results wouldygest that spinning
microstate geometries and black holes should be distihghle on a large but classically finite
timescale.

However, one must ask how characteristic our results fodMaRT solutions will be of
generic microstate geometries. In particular, we notetteCFT states corresponding to the
JMaRT solutions are exclusively in the untwisted sectot §85195]. On the other hand, the
majority of microstates accounting for the entropy of thachl strings are expected to be in a
(maximally) twisted sector [76,77]. From a geometric pahtiew, we would observe that
the JMaRT solutions have all the same Killing symmetrieshad11-D5-P black holes, while
the generic microstate geometry is expected to have a camplesymmetric core. Therefore
it is not unreasonable to expect that the ergoregion ingiathmescales found for the IMaRT
solutions will not be characteristic of the microstate getmas that make up ‘most’ of the
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black hole.

One possibility might be the generic non-BPS geometriesaddave ergoregions despite
the fact that they carry angular momentum. However, we atgaesuch a scenario is im-
plausible as follows: The fuzzball description would nowuie that both the horizon and
the ergosphere arise as effective surfaces in ‘coarsaiggai However, quantum fluctuations
must then extend out to the ergosphere. In particular, thestiations extend to regions of
the space-time which should be causally accessible to asyimpbservers on finite classical
timescales. Hence it seems inconsistent to say that thelyimdemicrostate geometries are
hidden from asymptotic observers in this scenario.

Hence as argued above, if the non-BPS microstate geomateelorizon-free with an
ergoregion, they should expect an ergoregion instabilitgwever, it may be that instability
timescales calculated for the JMaRT solutions are not sgmtative of those for typical mi-
crostate space-times. In particular, the latter shoulé lsamplicated throats — as seen in their
supersymmetric counterparts [78-83, 153] — which would latetthe absorptive behavior of
a black hole horizon. Hence it might be expected that thevaelketimescales are extremely
long. An important question is then whether the instabtlityescale is classically finite or not.
That is, will this timescale diverge as the quantum numbeyw@s described above. Certainly
finding more generic non-BPS microstate geometries is aanéasstep towards resolving this
issue.

In closing, we note that in the context of the AAS/CFT, a catgtiescription has been pro-
duced for half-BPS microstate geometries with AfB6-198] and Ad$[199-201] asymp-
totics. This framework has given rise to an interesting progof semi-classical quantization
[194, 202—-204] and a coarse-graining description of spiace-geometry [205—-209]. With this
program in mind, it is useful to recall the role of the smoodhion-free microstate geometries
in Mathur’s ‘fuzzball’ program [76, 77].

The BPS microstate geometries for the D1-D5 system can leeddry studying the F1-
P geometries and applying a series of duality transformat{@9—-83]. There the winding
and wavenumbers might be quantized by the geometry buticddlgsthe amplitudes of the
string excitations are continuous variables. Solutionenelselect modes are excited with a
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large amplitude can then be seen as ‘coherent states’ oftherlying quantum theory. Such
solutions may be further useful to understand certain ptigseof typical microstate.g.,
their transverse size [76,77]. However, ultimately a genstate will have a vast number
of modes excited with very few quanta and hence the correBpgrspace-time’ will not be
accurately described by a classical geometry. Howevefathdy of classical geometries still
serve as a guide to the classical phase space which must bezedd202—-204]. Of course,
this quantization remains a work in progress at present.
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3.7 Supplementary material for Chapter 3

3.7.1 WKB matching formulae

In this section we use the usual WKB wavefunctions and WKBneation formulae at the
turning points to relate the amplitude of the wavefunctionthe four distinct regions of the
scattering problem and, in particular, to derive (3.50)e Tdur WKB regions are (see Figure
3.1): Region I, the innermost forbidden regidh{ = < x,); Region Il, the allowed region
whereV is belowX, (zo < x < z;); Region lll, the potential barrier region whevg is
aboveX, (r; < x < z3); and Region IV, the external allowed region wherg is belowV_
(2 < z < 00). The WKB wavefunctions in region | and in region 1V were aldg written in
(3.48) and (3.49), respectively, and in regions Il and Iéytkare given by

Hy ~ ! {C'Qexp {zmw / VT daz}JrCy,exp {—me / VT d@ﬂ, (3.92)

1/2T1/4
1
Hy ~ W {04 exp {—mu,/ VIT] dx} + C5exp {mw/ VIT| dx} }(.3.93)
mw 1 1
Using the WKB connection formulae in each turning poiry, 1 andx,, we can find the
relations between the amplitud€ss (i = 1, - - - , 7) of the several regions, yielding:
Cy=C1e, C3=Cie™. (3.94)
1 , , . .
Ci=3 (Coe™ ™% 4+ C3e'™*) | C5 =i (Coe™™* — C3e'™*) | (3.95)
Co= (o i) einit, = (=52 4 o) e, (3.96)
2n 2n

with v andn defined in (3.51) and (3.52), respectively. Finally, connogthese three sets of
relations yields (3.50).
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3.7.2 Details of the numerical analysis

In this section we discuss some issues related to the nushenmputation of the unstable
modes. First, we return to the approximation we have usexuitiirout this chapter that the
solution to the angular equation (3.16) is well describedh®yscalar spheroidal harmonics
with eigenvalues\ = [(/ + 2), wherel is an integer such that> |m,;| + |m,|. After showing
that this approximation is indeed sufficient, we discusthierrdetails related to the precision
of our results.

If wis treated as fixed, we can actually solve the angular equatidte easily since it is
defined on a compact interval. By the symmetry— = — 6, we may reduce the range of
integration tod € [0, /2], so that the angular equation is only singular on the boueslar
The boundary conditions at the edges of this interval arerdehed by the values of,, and
mg chosen. Ag) — 0 with my # 0, finiteness of the solution requires thaid) = 0, and
we may normalizey’(0) = 1, by linearity. At the other boundary, nonzerq, requires that
x vanishes. When either of, or m, vanish we must modify our boundary conditions as
finiteness of the solution requires thaapproaches a constant. To find the eigenvaluee
start nea¥) = 0 where Cauchy data is specified for the solution. The anggjaatson is then
integrated t&? ~ 7/2 where we check the value of the boundary condition. By aitjgst
until thed = 7/2 boundary condition is satisfied, we arrive at the desiredreiglue.

The coupled eigenvalue problem defined by (3.16) and (3.4®)e solved iteratively by
treating the equations as separate eigenvalue problemwilMgarameterize\ asA = [(I+2),
but no longer assume thatis an integer. To start the solution process, however, we wil
assume thatis indeed given by an integer and call;it This value is then substituted into the
radial equation which is solved according to the methodmedlin Section 3.5.1, to obtain the
eivenvalue which we call;. Then'’th iteration results from substituting_, into the radial
equation to solve fow,. This new value is then used in the angular equation whichlised
as above to obtain the improved valug, The first iteration, consisting af;,w;) are the
solutions we have presented elsewhere in this chapter.

In Figure 3.6, we show that the convergence of this itergareeedure is in fact exponential.
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Figure 3.6: Convergence, as defined in eq. (3.97) of theikermethod for solving the coupled
eigenvalue problem.

There, we have plotted the amount of convergence in eadtigar which we have defined by

2 2

b= lima : (3.97)

li—l

Wi — Wi—1

7

Wi—1

as a function of iteration number. Notice that the convergeat the second iteratione., the
corrections to the numerical solutions we have presentedisnchapter, is already of order
~ 1%, this appears to be a general feature of the numerical enkitiHence, we are justified
in our usage of only the first iteration.

Even though the very small imaginary parts.oére well described by both the WKB and
matched asymptotic approximations, for completeness we shat they are not a numerical
artifact due to loss of precision in our numeric routines by-groduct of using the approximate
solutions to specify the boundary conditions. In Figure\8e7plot the imaginary part ab for
several values of the number of digits of precision used endilculation. We use the same
parameters as before and 8ét= 0, [ = m,, = 4. We see, as one would expect if the imaginary
part were actually nonzero, that the eigenvalue convemgasonstant value when the number
of digits is larger than the size of the imaginary part.
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Figure 3.7: Effect of increasing digits of precision usedimaginary part of eigenvalue for
outgoing modes.

With only the asymptotic form of the solutions to specify timundary conditions we are
not actually setting the coefficient on the divergent termdwm. Instead, there will always be
some amount of the divergent solution in the numericallyrafisolution. The suppression
of the divergent term is dependent on how deep into the astiropegion we choose to apply
the boundary condition. To ensure that these small diveérigems are not causing any errors
we study the effect of varying the point at which we apply tb@fddary conditions. This has
been shown in Figure 3.8 on the left and right. In both casesagain see that the eigenvalue
converges to a constant value as we increase the accurduy cdlculation.

3.7.3 Detailed analysis of the instability

The existence of a solution to the matching procedure caedheced to the requirement that
a number of constraints be satisfied. The difficulty one rms when trying to discuss the
general properties of these solutions is that while all theameters appearing in the various
equations are uniquely determined by the{set, Qs, R, m,n}, it is difficult to write explicit
expressions for them. In this sense, the fact that the paeas8.12) can be written in such
a simple form is really quite surprising since all are prajporl to M, which can at best be
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Figure 3.8: On the left, we vary the point at which the inneurdary condition is applied. We
parameterize this point by the integerand apply the boundary condition at the painthich

is a solution of(zx?)/(¢?/z) = 107>, On the right, we do the same for the outer boundary
condition, though now is defined via(zx?)/(¢%/z) = 103+".

defined implicitly in terms of the above parameters.

Hence it is useful to have an approximation fdrthat allows one to understand the general
behavior of the various parameters. Surprisingly, therpiite a simple approximate solution
given by

M =~2(s! —s) = ang%) , (3.98)
where we recall thaf), = nmQ;Qs/R*. For most parameter values, this expression is ac-
curate on the order of a few percent. When one of the D-braameh, say);, grows much
larger than); ~ R? this approximation can break down, though only by a few pertimes

(m — (n + 1)). Similar problems appear whet? > Q; ~ Qs, in this case the error appears
to be of the same order. The important thing to note is thawvésgthe correct scaling of/

with the various parameters in all situations. In most casesept those noted previously when
m > n, it also gives the correct order of magnitude. Treatim@s a continuous parameter,

the approximation appears to produce the approach to tlessupmetric limit exactly.

Using this, one can approximate, or at least bound, the peEamappearing in the solu-



3. Instability of Nonsupersymmetric Smooth Solutions 97

tions.
¢ = c%cgi;isgsz ~ 5_1; ’ (1 + nm%) (3.99)
o< (@ (i- 1))
~ % (Ql Qs+ @t 7125% [n:Z((f__;;))(zl; 8;)D (3.100)
9 < Q?gs Q1+ Qs + M)

Qp @ 9 Q:z% s —s
Qs 1Q51 + nm%

2
|
_I_
|
_l’_

(3.101)

In the above, the inequalities result from writigg< s;c; = Q;/M, in particular they become
exact for the supersymmetric limit. From the expressiorefone sees that it is finite, and in
fact positive for allm > n + 2. It is only in the supersymmetric limit that — —oo, which
precludes any possible instability. One may also check fimese forms that/o? < 1 for all
values of the parameters, which can be verified numericallgéts of parameters in which the
approximations are less trustworthy. In what follows thenwill neglect= where consistent.

The timescale of the instability is an increasing functién avhich, given the above con-
siderations, is given by

L@ Q Q £

Unfortunately, we cannot make any definite statements abeusize ofQ),/oR?* like we did
previously fore since it can be made arbitrarily large or small just by vagyih At this point

we could use the explicit forms fo andc to discuss the general properties of the solutions.
Instead we will for now sek = 0 to make the discussion more transparent. Nonxemd! not
change the general features of the solutions.

Setting\ = 0, the above expression forsimplifies quite a bit

v 1R — ;& . (3.103)
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We are now in a position to discuss the behavior of the timledoa various different solu-
tions. Recall that the timescale for the instability is destlwhenv is smallest. Therefore the
instability will be strongest when, = [ + 1 is smallest. This, of course, does not mean that
we should necessarily consider solutions with 0, in fact we shall see in a moment that such
solutions are not possible. More precisely, the minimurealf/ for which all the constraints
can be satisfied will lead to the most unstable solution.

Similarly, whenc? or £/ ¢? is largest the instability will be the strongest. We shalldeith
¢ next, but for now it is sufficient to note that it is only depentionm andn. Observe from
(3.101) that for fixedr, £/ ¢* varies roughly like the inverse of the charges, thereforemdne
considers limits in which the charges grow, the timescalthefinstability diverges. Similar
arguments hold wher is vastly different from the charges, we find thdb? shrinks and the
lowering effect ofc? is diminished. It appears then that the instability will be®egest when
Ql ~ QS ~ R2-

To discuss the relative effect ofwe should return to the constraints. These also simplify
when we sef\ = 0 and we may consider the simpler constraint v, > 0. The exact form
thatc takes is dependent on the signfoBy studying the constraints, it turns out that solutions
with ¢ > 0 will in general exist, but for larger values éfthan when{ < 0. Given the
considerations above, the effect of these modes will be@ubthnt. We therefore focus on
¢ = —nmy + mmg < 0 which implies thatn,, > m,. One can then write the constraint as

c—vy = [(m—n)(my+my)— 2N +1)] —[1+1] (3.104)
= (m—(n+1))(my+my) — (L —my —my) —2(N+1)>0. (3.105)

Further, it can be shown that when this is satisfied, the abestraints follow automatically.
The last two bracketed terms in the final line are positive solution requires that., +m, >

0, implying thatm,, must be positive. This is a general result that is also obthwhen > 0
or A # 0. Whenc is largest, the timescale will be shortest, therefore theeki harmonic
N = 0 will lead to the strongest instability. One can also makarge by choosingn,, and
mg as large as large as possible, + m, = [, but taking! large will not necessarily give us
a very unstable mode because as noted before it will capserise which has an opposing
effect. Since:? enters weighted by/¢?, the more important contribution will be that from
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and the net effect is a less unstable mode. Finally, noteithandm,, appear symmetrically
in ¢, so that the value aof will be independent of the partition éfinto m, andm,,. This does
not mean that the timescale will be independent of this fpamtsince it is a weakly shrinking
function of || for fixed ». When|(| is maximized the timescale will be the shortest, which is
the case whem,, = [, my = 0.

To summarize then, for a fixed mode that solves the constraihe instability will be
strongest whel)); ~ Q5 ~ R2. On the other hand, when we fix a particular background, the
instability with A = 0 will be strongest wheh= m,, is as small as possible ang, = 0.

Finally then we may discuss the solutions for which# 0. It turns out that the various
scalings of the other parameters appears not to be changdakn YW=+ 0, the constraint
c? — 12 > 0 becomes easier to satisfy sincpicks up a contribution proportional to\ while
the contribution ta/, is smaller. The tougher constraint to satisfy is then thetbaeimplies
w? > A2, When all other parameters are fixed, this places upper amer loounds oni(e.,
we allow negative\) \. We will not go into detail here, but instead note one can génfand
solutions with nonzera by going to sufficiently large angular momentuim,

When studying the characteristic time for the instabgitiene finds that the timescale de-
creases as is raised, but reaches a minimum shortly before reachingiiper bound. For
negative values, on the other hand, the timescale is a cardgareasing function of. As
mentioned, solutions with nonzeiaequire larger values dfthan whem\ = 0. Though larger
[ tends to increase the timescale, the overall effect of gmit@rger/ to accommodate nonzero
A can still lead to shorter timescales.

3.7.4 Bound states

The general radial dependence of the scalar field at lar¢gndiss from the core is determined
by the sign of?. When it is positive, the solution oscillates with a powawlfalloff. This is
the behavior that led to the in and outgoing waves at infinityolv we have already discussed.
The other two possibilities, where? is zero or negative, can lead to quite different behavior.
For the former there is an exact solution, while the lattey mgain be solved with a matched
expansion.
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Marginally bound states: k2 = 0

By considering the special mode witk = \?, both the angular and radial equations simplify
sufficiently that an exact solution may be found. Such a @o&noves allu dependence
from the angular equation allowing it to be solved indepertige The result is the eigenvalue
equation for the harmonics on &d. The exact eigenvalue is = (I + 2).

For the radial equation, this choice of mode removesktheterm; the same condition
that previously led to the simplification in the near regidie previous solution in the near
region (3.72) therefore becomes the exact solution in thieeespace-time. This means that
asymptotically the equation has a basis of solutions in gesfr—'*". Ignoring for now the
part dependent on the KK momentum, these becdmaedr—2-!. These are simply the terms
one expects from a Laplace series in four flat spatial dinogrssivhere the angular momentum
creates an effective radial potential.

Asymptotic regularity requires that the'™ component vanish whenever> 1, leaving
a field that falls off ag—!~*. The natural generalization of Friedmann’s analysis ofergion
instabilities to five dimensions would involve studying fisthat fall off as-—2, therefore these
modes will evade that analysis as longias 1. The requirement that removes the divergent
term is similar to that for outgoing modes, except now it ig&act result

v+ || FE = —(2N+1), (3.106)

whereNN is a non-negative integer. Here, however, we allow for eitti¢hel” functions in the
denominator to diverge in eq. (3.74), leading to both polssés for the sign beforé. This is

in contrast to the search for unstables modes in which wedameglect one of the possibilities
since it was found to corresponded to ingoing damped moaeteel, since (3.106) contains
terms linear in both andw, one must consider both possibilities in order to be coestswith
the symmetry under flipping signs as in equation (3.25).

In total then we have three constraints that must be satifiethese modes. The first,
w? = \?, fixesw to be an integer, meaning that there are no remaining cantlparameters
characterizing the scalar field. For a general backgroued this unlikely that the remain-
ing constraints, in particular the one defining can be solved by a judicious choice of the
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integer eigenvalues. On the other hand, fixing theisgtm, and, there may be families of
backgrounds for which these marginally bound states exist.

Bound states:k2? < 0

The final possibility for solutions of the radial equation.i < \?, or x? < 0. As in the case
wherex? is positive, we are unable to find an exact solution, thouglymss can be made
through approximation. In particular, since the effecths sign ofx is only relevant at large
distances from the core, we need only make slight modifinatio the matched asymptotic
expansion analysis presented earlier.

To begin, we factor out the sign af by redefinings — ix, giving solutions that are real
valued exponentials asymptotically. Requiring regwatiiterefore leaves only the exponen-
tially damped “bound states”, localized near the core megixplicitly, after having made the
redefinition in (3.75), a convenient basis of solutions iteiis of modified Bessel functions
of the first and second kind.

h = %[Ally(fi\/f)—i—AQKV(m\/E)}. (3.107)

The first of these diverges at largeand so we requirel; = 0 for regularity. For now though,
we leaveA; arbitrary, setting it to vanish only after we have perfornieel matching.

In the matching region expandidg and K, in thez*"/? basis gives

1 (F(Al N AQF(—V)) (\/Eff)”+ AL(v) (ﬁ’i)_yl . (3.108)

h~—
NG

Note that/, contains both of these powers.ofvhen expanded in the overlap region. While

1+ v) 2 2 2 2

the contribution of the positive power 1§, is relatively small, we will keep this contribution
until after we perform the matching so that we may see how pipgcximate solution comes
about.

By construction, the solution in the near region (3.72) iaftetted by the redefinition of.
Immediately then we may proceed to matching the coefficientsowers ofr in the overlap
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region. Settingd = 1 in the near region solution, we determine the coefficiehtsA, in the
outer region

Ai(k/2)" _ T@)()  T*(=v)D(c)(k/2)*
I'1+v)  TI(a)l(c—b) F(w) L) (c—a) ’ (3.109)
AQF(V) _ F(_V)F(C) (3110)

2(k/2)¥ L'b)(c—a)’
As before, finding the spectrum of solutions now requires$ wWwfind values of the free pa-
rameters for which these equations are consistent withabhadmary conditions. In particular,
we now setd; = 0 and therefore ask that the right hand side of (3.109) varishgain, rather
than find such parameters numerically there is an accurgtexd@mation that comes from not-
ing that consistency requires, be nonzero. This implies that the second term in (3.109) must
be nonzero and therefore any solution must come from caticell between the two terms.
Since the second term is suppressed by the faétgra comparable suppression must occur in
the first term, again requiring the divergence df &unction in the denominator. This gives a
guantization condition similar to that found previously

v+ FE=—2N +1). (3.111)

Here again, the terms linear in and \ implicit in the above equation — see definitions in
ed. (3.20) — imply that both possibilities are required fonsistency with the symmetry
(3.25), though in practice both may not lead to solutionsafbichw? < \2.

Whenv is real, this appears to give solutions fowhich are purely real. Note, however,
we must be careful in solving the constraint since, giverrigjg combination of background
chargesy? could become negative. For an arbitrary frequency in thigeaed. (3.109) will
be complex so solutions whetg has both real and imaginary parts may be possible. Such
solutions cannot be found with the sort of perturbative espan used in studying the outgoing
modes since now it is the real part @fwhich gains a small correction, while the imaginary
part is large. We can therefore no longer consider the behaear the pole on the negative
real axis defined by the real part of eq. (3.111). Instead,ave hesorted to searching for these
solutions by solving (3.109) numerically.

Generically, the root finding algorithm will produce a complvalue ofw that sets the
equation to zero within a specified precision. Since the imag part is many orders of
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magnitude smaller than the real part one should ensure ttheally is nonzero and not a
numerical artifact. In Figure 3.9 we show the variation ie ®ize of the imaginary part as
a function of the tolerance used in finding the root of (3.10Bjom this plot we see that
the imaginary contribution is indeed just an artifact ofiigyto solve the complex equation.
Surprisingly then it appears we can satisfy (3.109) witha value ofw, even if that value
causes? < 0. That value corresponds to the solution of the equatioritiegdrom taking the
real part of the quantization conditions (3.111).

Logyp [Im w]
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Figure 3.9: Variation of the size of the imaginary partatesulting from the numerical solution
of (3.109) as the precision is increased.

Since the condition (3.111) is the same as for the outgoindesiomuch of the analysis
in Section 3.7.3 about the existence of solutions applielBe Jituation is somewhat more
complicated in that one now allows modes with positivend there are two possible solutions
corresponding to the two signsin (3.111), but the genelalasteristics of the solutions are the
same. In particular, for the outgoing modes it was foundtiete are upper and lower bounds
on the allowable values of beyond whichu? — A2 changes sign. In light of these bound states,
we see that the full space of solutions may be considerediasgpdistinct regions based on
the value of\. There is a small\| regime, in which one finds the outgoing unstable modes.
This is surrounded, at larger values|&f, by a regime where the bound states arise.

This separation of the two types of modes according to tharpater\ makes clear the
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difference in their origin. In particular, one can alwaygifioutgoing unstable modes that do
not carry KK momentum, they need only be supplied with sudficiangular momentum. This
is in accord with our interpretation of these solutions a&sithstable modes predicted by Fried-
man which result from the existence of the ergoregion. Inresh, bound states will always
result as long aB\| is large enough. This includes modes which carry no angutenemtum,
thus indicating the important characteristic of these tsmhs is their KK momentum and the
effective five-dimensional mass it induces.

Having established the existence of these bound states audstpuestion just how close
to the core region they are bound. The solutions are dampezhextially and so have charac-
teristic size

(3.112)

Q1Qs
(571 + 8)R*(R? +nm(Q1 + Qs))

Q

2(\% — w?) (3.113)

To arrive at the final line we have used the approximation\fog3.98) found in Section 3.7.3.
The boundary of the ergoregion, on the other hand, is givehéyanishing of the norm of the
Killing vector 9, (3.13). We ignore the,, a; dependent contributions appearingfirio give
an outer bound on the size of the ergoregion, given apprdgisnby r2 ~ Mcg. In terms of
the variabler this means

x>

er n~v

P P (3.114)
WheneverQ, and ;s are much smaller tha®&?, the size of the bound state scales as

z;, ~ Q1Q5/R* < 1. On the other hand, for largg; andQ; we haver;,! ~ Q;/R? where

Q; is the smaller of the two. In other words, the size of the bastatk is strongly dependent on

the background. When the charges are large, the bound sthbewnostly contained within

the ergoregion, while for small charges the exponentifbfaihe bound state can extend far

outside.

Finally we can consider the possibility that the bound stéi@ve negative energy, which
requires a detailed analysis of the energy integral (3. Ranfitning the integrand evaluated
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on bound state solutions, we see that it may become negaarewhere the modulus of the
scalar field peaks if the latter occurs inside the ergoregidrough there are bound states for
arbitrarily large values of\|, the total energy will not be negative for all of these. lastethe
modes that tend to exhibit negative energy densities (irfp@region) only appear for a limited
range of|\|, which is just beyond the smalM regime discussed above. That is, for values of
A near where the ergoregion instability appears. When thiseésase, the maximum of the
modulus of the scalar field is inside the ergoregion and tlas@lvelocity in the compactified
direction¥, = w/X\ is negative,.e, in the direction opposite to which the background is
boosted.



Chapter4

Bouncing Braneworlds Go Crunch!

In the present chapter, we will focus on one small aspecteobtaneworld description of cos-
mology. In particular, we are interested in a certain fanofycosmological solutions [210]
which were recently proposed in the context of the RandafieBum (RS) scenario [39, 40].
Recall that the RS model introduces a codimension-one brdoea five-dimensional bulk
space-time with a negative cosmological constant. Theitgtaonal back-reaction due to the
brane results in gravitational warping which produces meassggraviton excitations localized
near the brane. Fine tuning of the brane tension allows tleetefe four-dimensional cos-
mological constant to be zero (or nearly zero). Brane cosgies where the evolution is es-
sentially that of a four-dimensional Friedmann-Robert§dadker (FRW) universe can be con-
structed with a brane embedded in either AdS [41-56] or an#d&k hole [57-62, 211, 212].

In either of the above cases, however, the cosmologicaliBealon the brane is modified
at small scales. In particular, if the bulk space is takeretatn AdS black holaith charge, the
universe can ‘bounce’ [210]. That is, the brane makes a dmtoansition from a contracting
phase to an expanding phase. From a four-dimensional pbwiew, singularity theorems
[99] suggest that such a bounce cannot occur as long asrceniaigy conditions apply. Hence
a key ingredient in producing the bounce is the fact that thilk geometry may contribute a
negative energy density to the effective stress-energyerbtane [213]. At first sight these

106
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bouncing braneworlds are quite remarkable, since theyigeaw context in which the evolu-
tion evades any cosmological singularities yet the dynarare still controlled by a simple
(orthodox) effective action. In particular, it seems thae@an perform reliable calculations
without deliberating on the effects of quantum gravity a tietails of the ultimate underlying
theory. Hence several authors [214—221] have pursuedefuditvelopments for these bounc-
ing braneworlds. In particular, ref. [221] presents a caitiexamination of the phenomenology
of these cosmologies.

In the following we re-examine these bouncing brane cosgief paying careful attention
to the global structure of the bulk space-time. We find thategeally these cosmologies are
in fact singular. In particular, we show that a bouncing leramust cross the Cauchy horizon
in the bulk space. However, the latter surface is unstablenvarbitrarily small excitations
are introduced in the bulk space-time. The remainder of Hapter is organized as follows:
We review the construction of the bouncing braneworld cdegies in Section 4.1. Section
4.2 presents a discussion of the global structure of thefifidtdimensional space-time and
the instability associated with the Cauchy horizon. We amhe in Section 4.3 with a brief
discussion of our results.

4.1 Construction of a bouncing braneworld

We consider a four-dimensional brane coupled to five-dinoeas gravity with the following
action

12 1.1 3
4

/ d’z\/—g {R5+— — -F 47TG5)\/d4x\/_+/d4x\/_£ 4.1)

167TG5

Here, R; denotes the Ricci scalar for the bulk metrig,, and F),, is the field strength of a
bulk gauge field. The (negative) bulk cosmological consisugiven byA; = —6/L?, while

the brane tension & = 2.
following analysis. The induced metric on the brane is deddity~,,. With the last term in

The length scaleg and\ are introduced here to simplify the

the action (4.1), we have allowed for the contribution ofraxteld degrees of freedom which
are confined to the braneg., the standard model fields in a RS2 scenario [40].
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The bulk equations of motion are satisfied by the five-dinmaicharged AdS black hole
solution with metric

dr?
dsi = =V (r)dt* + Vi) + r2d¥? | (4.2)
where ) )
r K q

and the gauge potential i$, = ;4. In the metric abovedX; denotes the line element on
a three-dimensional sphere, flat space or hyperbolic plang £ +1,0 or —1, respectively
(with unit curvature for the casds= +1). The parameterg andq appearing in the solution
are related to the ADM mass and charge of the black hole —esge[221, 222]. Note that
this solution contains a curvature singularityrat= 0, but if i is large enough, there are
two horizons at radir = 1. solvingV'(r.) = 0. A Penrose diagram illustrating the maximal
analytic extension of such a black hole space-time is ginéfigure 4.1. In different parameter
regimes, the positions of these two horizons may coincidedpoish,i.e., r+ become complex)
to produce an extremal black hole (or a naked singularityd Vi not consider these cases in

the following.

The brane is modelled in the usual thin-brane approximafidrat is, its worldvolume is
a hypersurfacel3, which divides the bulk space-tim@/, into two regions. At this hypersur-
face, the bulk metric is continuous but not differentiablésing the standard Israel junction
conditions [223] (see also [224]), the discontinuity in &erinsic curvature is interpreted as
a d-function source of stress-energy due to the brane. Thdmingthe discontinuity in the
extrinsic curvature acrogsasX,, = K, — K, the surface stress-tensor is given by

1
_87TG5

Sab (lcab — Yab lCcc) . (44)

In the case of an empty brane with only tensiog.(a brane on which no internal degrees of
freedom are excited), one h8s, = —T"y,.

The construction of the braneworld cosmology [211, 212htpeoceeds by taking two
copies of the AdS black hole geometry, identifying a fourrdnsional hypersurface= a(7),
t = b(7) in each, cutting out the space-time regions beyond theserbygdaces and ‘gluing’
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Figure 4.1: Penrose diagram for maximally extended AdSdReisNordstrom black hole.
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the two remaining space-times along these surfaces. W&ylmmetric constructions are pos-
sible (seeeg., [221]), we will focus on the case where the two bulk spacestgaometries are
characterized by the same physical parameterg, (.). With this choice, the calculation of
the surface stress-tensor simplifies, sikige = 2K,. Note, however, that the gauge fields are
chosen with opposite signs on either side of the brane. Tineflux lines of the bulk gauge
field extend continuously over the brane, starting from atpe$y-charged black hole on one
side and ending on the negatively-charged one on the othethid case, the brane carries
no additional charges. We will return to consider a chargeshé in the discussion section.
Since the black hole geometry includes two separate, agjicaity AdS regions, an econom-
ical approach to this construction would be to glue togetiwermirror surfaces in each of the
asymptotic regions.

Of course, the hypersurface described above must be detirto consistently solve the
Einstein equations (or alternatively, the Israel junctommditions (4.4)) for a physically rea-
sonable surface stress-tensor. Here we follow the anadysisf. [211, 212]. Identifying the
time coordinate on the brane as the proper timdixes

V(a)b® = +1. (4.5)

The induced metric then takes a standard FRW form:
ds® = g dz’da’® = —d7® + a(7)2d%} . (4.6)

Again, the brane worldvolume in the bulk space-time (4.2)i&n byr = a(7) andt = b(7)
and so the Israel junction conditions (4.4) imply

(V(a)+a)"* 1 4xGs

- 4.7
- Nt P (4.7)

where the ‘dot’ denote8,, and we have included a homogeneous energy densdy brane
matter. Stress-energy conservation would imply that thterlsatisfies + 3% (p+p) =0,
wherep is the pressure due to brane matter.

INote that this periodic construction is distinct from thelRBodels [39]g.g., there is a single positive tension
brane here, rather than two branes one of which has a netgtisien.
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A conventional cosmological or FRW constraint equationtfa evolution of the brane is
produced by squaring eq. (4.7):
LN\ 2 2 2
a k 1 n q 1 9
b A R — ] (2T . 4.8
<a) +a2 €2+a4 3a6+<T)\) (Tp+77) (4.8)
Here, we have defined a ‘vacuum’ curvature scale on the bmne a
1 1 1
—==—-=. (4.9)
Implicitly, ¢? is assumed to be positive here, which leads to the cosmallogiolution being
asymptotically de Sitter. However, this assumption is neamuential for analysis of the cos-
mological bounce which follows. We can also write out theetiive cosmological and Newton
constants in the four-dimensional braneworld as

3 1 T A\’ G
M=gar=2 (1 - (z) ) ’ Gi=7 (4.10)

where the latter comes from matching the term in eq. (4.8alinn p to the conventional

FRW equation in four dimensioni%)2 + £ =881, Of course, the FRW constraint in this

braneworld context also comes with an unconventional taradcatic inp [41-56].

The bulk geometry introduces various sources importartténcosmological evolution of
the brane. The mass term/a*, behaves like a conventional contribution coming from mass
less radiation. The charge termg?/a®, introduces a more exotic contribution witmegative
energy density. This is another example of the often-nagsdlt that the bulk contributions to
the effective stress-energy on the brane [225, 226] may pative — seee.g., [213].

Many exact and numerical solutions for the Friedmann eqng#.8) can be obtained in
various situations.g., [214—-220]. However, one gains a qualitative intuition floe solutions
in general by rewriting eq. (4.8) in the following form:

0=a*+U(a), (4.11)
where
a2
Ula) = vmy—ﬁ- (4.12)
2 2
S A



4. Bouncing Braneworlds Go Crunch! 112

V(a)
Ua) =V(a) - &

Figure 4.2: Effective potential/(a), appearing in eq. (4.11) for the evolution of the scale
factor,a(7). The turning pointga,, occurs inside the Cauchy horizen.

and for simplicity we have assumed an empty brame,p = 0. In this form, we recognize
the evolution equation as the Hamiltonian constraint folagsical particle with zero energy,
moving in an effective potentidl (a). In this case, the transition regions where the braneworld
cosmology ‘bounces’ are identified with the turning pointshe effective potential. We have
also expressed the latter in terms of the metric funciign) in eq. (4.12) because we will
want to discuss the position of the turning points relativéhe position of the ‘horizonsi,e,,

r+. Recall that we assume the bulk solution corresponds tock biale with a nondegenerate
event horizon. That is, we will assume that there are twardissolutions, ., to V(r) = 0.
Then, there are two physically distinct possibilities fdyaunce.

The first only occurs withk = +1, i.e., with a spherical brane world, and positi¥e (or
equivalentlyA, > 0). In this case, at large, the effective potential becomes large and negative.
The next most important contribution at larges the constant termh and hence ik = +1,
the potential may have a zero at lakgeThis bounce is typical of those one might find in a de
Sitter-like space-timeg.g., [227,228]. It is driven by the spatial curvature and occr$oag
as the effective energy density from the bulk black hole Gbuations or braneworld degrees
of freedom is not too large. The turning point occurs at soangda,s and in particular, it is
not difficult to show that,;s > . That is, the brane bounces before reaching the black hole.
In fact the presence of the black hole with or without chasgeally irrelevant to this kind of
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Figure 4.3: Penrose diagram for a bouncing braneworld meileingoing modes at the event
and Cauchy horizons. The grey areas are those regions cé-ipae that are cut out in the
construction, with identification performed along the bdary.

bounce. For example, settipng= 0 = ¢ in eq. (4.12) produces a de Sitter cosmology on the
empty brane.

The second type of bounce is generic for a wide range of paeamelt occurs at small
a Where the positive? /a* term dominates the potential (4.12)., where the exotic negative
energy dominates the Friedmann constraint (4.8). As ig éteen the first line of eq. (4.12),
U(a) < V(a) and therefore the turning point occursagt inside the position of the Cauchy
horizon,i.e, a, < r_, as illustrated in Figure 4.2. The latter result will be edse in the
following discussion.

The Penrose diagram for the bouncing braneworld cosmaagighown in Figure 4.3. In
the ‘cut and paste’ procedure outlined above, the singulari the right side of the first black
hole is cut out, but the singularity on the left remains. Hetiee remaining portion of the
r = r_ surface is still a Cauchy horizon.
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Note that in Figure 4.3, the brane trajectory enters theorefgetween the horizons across
the segmen#d B and exits across the opposite segnm@&Rt One can verify that this occurs in
all cases using egs. (4.7) and (4.5). From the latter, we fiad t

) a 1  4nGs
t=4+ — ) 4.13
v (35 ) @19
If the brane tension and the energy densifyare both assumed to be always positive, then the

last factor is always positive. Furthermore, far < a < r,, V(a) < 0. Hence the right hand
side above is nonzero and has a definite sign for the entigeran < a < r,.. Thereforet
cannot change sign along the brane trajectory within thekiilale interior. It then follows that
if a trajectory starts at a point oA with (¢,7) = (oo, ry), then it must run across the black
hole interior to a point 06D with (¢,r) = (—oo,r_) — see Figures 4.1 and 4.3.

4.2 Instability analysis

In the previous section, we reviewed the construction ofaatrfamily of bouncing brane-
world cosmologies [210]. A key result was that the turningnpdor the brane’s trajectory
in the bulk geometry was inside the Cauchy horizon of the gddwAdS black hole. How-
ever, previous studies in classical general relativitynfibthat the Cauchy horizon is unsta-
ble when generic perturbations are introduced for chardacklholes in asymptotically flat
[108, 229, 230], or de Sitter [231-233] spaces. Below, wé stibw that the same instability
arises in the asymptotically AdS case as well. This is prolkic for the bouncing braneworld
cosmologies, as generically the contracting brane wilthea curvature singularity before it
begins re-expanding.

In the following, we demonstrate the instability of the Claytiorizon to linearized pertur-
bations in the bulk. Our approach will be two-fold. We begyndxamining linearized fluctu-
ations of a massive Klein-Gordon field propagating in thekemund. Secondly, we consider
gravitational and electromagnetic perturbations. In bz#kes, it is found that an observer
crossing the Cauchy horizon would measure an infinite flumftbese modes. The expecta-
tion is then that the full nonlinear evolution, includingetback-reaction on the background
metric, will produce a curvature singularity.
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Many of the expressions appearing in the linearized armlysblve the surface gravities
of the two horizons in the background. The surface graviresgiven, as usual, by

1|dV

= |— 4.14
2| dr ( )

K+

r=r4

An important observation in the following is that /x_ < 1, which follows fromr_ < r,.
Now it will be convenient to define the event and Cauchy harizinplicitly by reexpressing
the metric function (4.3) as

(r2 = r3)(r* = 2)(r2 + 13)
V(r) = + 34 o (4.15)
This expression also definesas determining the complex rootsé{r). Further, the analysis
is facilitated by introducing some new coordinates to dbsahe background geometry (4.2).

In particular, we define the radial tortoise coordinate

1 — 1 —r_ 32
2k 4 log |: + ::‘ 2k lo |: + :_‘ (r2 + rgo)(rg +7r?) tanh ™" 7“10 ’ (4.16)
which is chosen to satisfyr. = dr/V(r). The focus of the following analysis will be the
behavior of linearized perturbations in the range< r < r, (i.e, region Il in Figure 4.1).
In this region, we have, — +oo asr — ry. Finally, it will be useful to work with null
coordinates,

u=r,—1t, v="r.+t, (4.17)
with which the line element becomds® = V (r)du dv + r*d3;.

The massive Klein-Gordon equation in the charged black hatkground (4.2) may be
expanded as
vir)af(b + V(r)0*® + f—ga’“ (V=9 V(r)) oo+ %Vﬁ@ —~M*®=0, (4.18)
where we writeV? for the Laplacian on the three-dimensional spageappearing in the line
element (4.2). The eigenvalue problemsd#randV? each have known solutions with eigen-
values, say—~w? and —ni. Hence by separation of variables, the Klein-Gordon equais
reduced to a single ordinary differential equationdgr),

5 2 ! ~ ~
—2®+V(r) (% + M?+ 32‘; - %) d=wd, (4.19)
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where we have introduced the tortoise coordinate (4.16yeschledd = r3/2.

As we approach the Cauchy horizon, the second term on thedefi side of eq. (4.19)
vanishes, leading to oscillatory solutiong (+iwr,). Now, the flux seen by an observer freely
falling across the horizon, with five-velocity#, is proportional to the square of the scalar
F = U"9,®. F then includes a contribution proportionakto-“d, ® near the Cauchy horizon.
Since the solutions of eq. (4.19) are oscillatory-as> r_, we have that this term, and hence
F, diverges. Similar divergences appear in the observedygrdansity for these linearized
perturbations, and so the expectation is that when badkiogais included, the metric will
develop a curvature singularity.

Next we proceed to a more rigorous analysis of metric and Midbdreld perturbations,
following the method of Chandrasekhar and Hartle [108, 239]. We are simply establishing
the existence of unstable modes and so, for simplicity, wé fix 0 and consider an “axial”
perturbation of one of the flat space coordinates. Howeflierektension of this analysis to
general perturbations and backgrounds is straightforward

The unperturbed bulk metric (4.2) is

dr? r’ 2 2 2

Vi) + ﬁ(daz +dy* + dz7) (4.20)
whereV/ (r) is as given in eq. (4.3) with = 0. We now focus on a class of perturbations where
this metric is modified by replacing

ds* = =V (r)dt* +

dz — dz + q(t,r)dt + q,.(t,r)dr . (4.21)

Similarly for the Maxwell field, we introduce perturbation®' = (f,. (¢, r)dt+ f,..(¢t,r)dr) A
dz. The linearization of the bulk Einstein and Maxwell equat@bout the background solu-
tion may be reduced to a single Schrodinger-like equation:

e, V(i V V'
= W) F. (4.23)

In this equation, we have defingd= r'/2 f,, and assumed asT*“* dependence for all fields.
To apply the standard results of scattering theory belovg ilmportant to note that the ef-
fective potential IV, is bounded, negative and integrable throughout the bladd interior.
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Further, we note that the effective potential vanishescag+r..r.) for r, — Foo. The other
components of the perturbation are related'tby

_ 1/2
fe = La(Eirn),

qL?
w2t

Qw = —4i (4.24)

whereQ;, = 9;q, —0,q;. Note that the linearized equations only fix the metric pidtions g,
andg,, up to infinitesimal coordinate transformationszebut @), provides a gauge invariant
combination which is completely determined.

To simplify our notation we will rename = r,. We then introduce a solutiorf, to
eg. (4.23) normalized so that near the event horizen,x — —oco, we have

Fy(z,w) = ™", (4.25)

representing a mode that falls in through the event horizof@ The Wronskian of any two
solutions of the Schrodinger equation is conserved, so agexaluate

[Fi(z,w), Fi(z, —w)] = 2iw (4.26)

near the horizon. This second solutidn, (z, —w) is then linearly independent df, (z,w),
and represents an outgoing mode at the event horizon. Usasg tparticular solutions as a
basis, we may write the full solution to (4.23) as
> dw hu - —iwt
Flo,t) = [ 5 W @F(@,—0)+ W @)F (r,0)] e (4.27)
At present, we are only interested in the ingoing modes aldagwhose profile is determined
by I/?/ (w). The outgoing modes may be similarly dealt with, but extralgsis would be

required to show they lead to a divergent flux. We will retwihis point near the end of the
section.

We are free to choose any reasonable initial profile for tigeiimg modes. However, one
restriction which we impose on the initial frequency dl:mnioan/ (w) of ingoing modes is
that an observer falling across the event horizad Btmeasures a finite flux. The flux for such
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an observer contains a terfi ~ e “+“9,F. Hence considering eq. (4.27), we require that
W (w) have at least one pole wifm(w) < —k,.

The initially-ingoing modes are scattered by the potentiakgion Il, leading to both in-
going and outgoing modes at the Cauchy horizon. It is usagrefore to have another basis
of solutions that describes purely in and outgoing moddseaCauchy horizon. As before, we
normalize our solutions so that when— oo

F_(z,w) =e ™", (4.28)

is purely ingoing at the Cauchy horizon. The second independolution is taken to be
F_(z,—w), and represents an outgoing mode.

Since both sets of modes form a basis for the full solutiosy thust be linearly related. In
particular, there must be at(w) and B(w) such that

Fi(r,w) = AW)F_(r,—w)+ Bw)F_(z,w) . (4.29)

The full solution then becomes

Fla,t) — /Ood
- [

=1

(W) [A(W)F_ (2, —w) + B(w)F_(x,w)] e ™" (4.30)

\E M\E

%1

( et B(w)e‘i“”’] , (4.31)

near the Cauchy horizon.

Clearly, the dominant contribution to the flux at the Cauchyizon results from

F ~ e“"/ dww W (w)A(w)e™™ . (4.32)

[e.9]

In terms of the Schrodinger equation describing the pledtions, it is the modes that are
“transmitted” across the potential that constitute thiteptially-divergent flux. These modes
skim along just outside the Cauchy horizon heading towdrdstane. This integral may be
computed by closing the contour in the upper-half-planedd@so requires a knowledge of the
the analyticity ofA(w) in the upper half plane, which can be achieved using argusrsmiilar
to those in [108, 229, 230, 234].
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By calculating the Wronskian of’, with /'~ and evaluating near the Cauchy horizon we
can write

[Fi(zr,w), F(z,w)] = 2iwA(w), (4.33)
[Fy(z,w), F (z,—w)] = —2iwB(w). (4.34)

Investigating the analytic properties then comes down tasiclering the analyticity of the
solution F (z,w) and F_(z, +w). We will do so by transforming the Schrodinger equation
into an integral equation that can be solved iterativelyquReng that the iterates be analytic
will give the desired boundary on the domain of analyticity.

We'll deal exclusively with?', (z,w), though the other solutions will be similar. Using the

Green'’s function . ,
G(x —2) = Smw(wwe(x —a'), (4.35)

the Schrodinger equation becomes an inhomogeneous No#quation

? sinw(x — ')

Fy(r,w) ="+ / W(z')Fy(w,z') dz’ . (4.36)

— 00

o

Equations such as this can be solved by an iterative proed¢tat will break-down where the
solution is no longer an analytic function ©f Specifically, we take our solution to be

=Y F(z,w) (4.37)
n=0
WhereFJ(ro) = exp(iwz) and
FOww) = [ Sy ) r 0D, (4.38)

T Tn—1

= (_€2iw>n /_g: dzy .. / dzx,, 1:[ { [€—2iw(mi—1—xi) _ 1] V(xz)} (439)

—00

To find the domain in whicl#, is analytic, we use a theorem from analysis [234] that states
a function expressed as
F(w) = / G(w, ") dz’ (4.40)
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will be analytic inz if the integrand is analytic i, continuous i’ and the integral is uni-
formly convergent for large negative Clearly, Ffro) is analytic inw and continuous in’, so

one need only show that the integral definiﬁﬂ) is uniformly convergent for large negative

to proveF'" is analytic inw. Having shown this, one may proceed by induction to show that
all the F™ are analytic.

Proving analyticity requires the integral converge umity, but only in the limitz — —oo.
It is precisely in this limit that the potentidll’(x), takes a particularly simple form that allows
the convergence to be demonstrated. In factzftarge and negative we haVg (z) ~ e**+2,
but this behavior is common to all the previous studies ofdBgithorizon instabilities [108,
229, 230, 234]. The details of the proof of uniform conveiggem [230, 234] are quite involved
so we do not reproduce them here. It suffices to note thatatlishrequired of the potential
is the exponential vanishing near the event horizon alremdgd and that it be bounded and
integrable in the interior. With these conditions satisfibeir results apply immediately.

The crux of the argument leading to analyticity is to notibattin the iterates there are
terms proportional texp(—2iw(z;_1 — z;)) ~ exp(2iwz) at large negative. WhenZm(w)
is positive this can lead to divergences in the integralsriey not be sufficiently damped by
the vanishing of the potential. This places a bound

Im(w) < Ky (4.412)

on the domain for which the integral converges. Using contotation, analyticity can be
extended to the entire plane with the exception of a cut opdséive imaginary axis starting
at ix, and extending upward [234]. In fact, this argument can béhéurrefined to show
that there is a series of poles on the imaginary axis at inx,, wheren = 1,2, ... [230].
Obviously, similar arguments will hold when one considés functionsF' (z, +w), though
of course uniform convergence must now be checked near theh@dnorizon. The result is
that F_(z,w) is an analytic function ob in the entire plane with the exception of poles along
the positive imaginary axis at = inx_.

Finally then we are in a position to consider the analyticityAd(w). SinceA(w) is just
given by the Wronskian of', (x,w) andF_ (z,w), it's domain of analyticity is just given by the
intersection of the domains for the two functions. In paute, it's range of analyticity extends
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upward tow = ik, Where there is a pole. For simplicity, we’ll further assuﬂnatv?/ (w)is
analytic in the strig0, i~ | and that it is nonzero fop = ix,. With these assumptions, the
leading term in (4.32) is from the residue of the polevat ix ,:

F o~ elio—rsu {m+ W (iky )2mi Res(A(m+))} . (4.42)

Sincex_ > k4, this flux always diverges as — oo. Relaxing our assumptions on the
analyticity ofvT/ (w) in the upper half plane could lead to additional divergemttdbutions to
the flux, but we will not consider those here.

Note that the brane and boundary conditions at the braneglayg role in the scattering
analysis above. While the brane will affect the completétedag of modes inside the event
horizon, the basic source of the instability is the samengilip of infalling modes on the
Cauchy horizon found in previous examples [108, 229-232nd¢ we disregard the details
of the scattering of modes at the brane, just as the origiisalidsion of the instability for
the Reissner-Nordstrom black hole [108, 229, 230] igndhedpresence of a collapsing star
forming the black hole.

However, for completeness, let us briefly discuss the bayndanditions which must be
imposed on the perturbations at the brane. First, the megiiturbations must be matched
across the brane surface so that no additional contriteiao@ induced in the surface stress-
energy (4.4). In particular, the axial perturbation (4.2dhsidered above induces a néw,
component in the extrinsic curvature, and this componerst imel continuous across the brane.
Similarly, continuity is imposed on the Maxwell field strehgMore precisely, to ensure that
no electric charges or currents are implicitly induced anlthane, we require that all compo-
nentsn*F,,t" are continuous, where” and¢” are the unit normal and any tangent vector to
the brane. Finally, since we are working with perturbatitmghe field strength directly, and
not the gauge potential, we must demand continuity of thgeatial components; £, t5, to
ensure there are no magnetic charges or currents indueedF = 0.

We close this section with a discussion of the initiallyguihg modes defined by the dis-
tribution ﬁ_/ (w) in eq. (4.27). In Figure 4.3, we will primarily consider madentering the
interior region on the left through the lower portion 3. In this case, to contribute to the
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instability at the Cauchy horizofiD, these modes must be reflected by the curvaiuee iy
the effective potential in eq. (4.23) to become ingoing)isBtattering leads to a different ana-
lytic structure in eq. (4.31) foA(w), describing thei-dependent modes at the Cauchy horizon.
In the “un-cut” space-time with no brane in place, this stwue is identical to that obtained
for the contribution of the initially-ingoing modes #8(w). Of course, inserting the brane in
the black hole interior produces a more complicated s¢atfgaroblem, the details of which
would depend on the precise brane trajectory. For exanmpbepaitgoing flux would receive
additional contributions from perturbations transmitenioss the brane from the right hand
side of Figure 4.3, as well as from initially-ingoing modekigh are back-scattered by the
brane. We did not attempt a detailed study of these conioilsit

Now, following the standard analysis with no brane in plage,find the contribution to
the flux of ingoing modes by considering the WronskianFof z, —w) and F_(x,w). This
leads to analyticity in the semi-infinite strip-ix. ,ix_). If we assume thaﬁ_/ (w) is analytic
in the strip (0, ix_), then we would find, upon closing the contour in the uppef-piane,
that the contribution to the flux is finite. However, it is catent with the requirement that
an observer crossinglC measure a finite flux, to allowy’ (w) to have poles in the range
k+ < Im(w) < k_. With such a choice, there will be divergent contributioagtie flux,
provided that the residue ¢f is nonzero at these poles. This effect differs from thatudised
above in that the leading contribution to the flux comes fropole in the initial frequency dis-
tribution rather than the scattering coefficietitv). A similar discussion played an important
role in demonstrating the instability of the Cauchy horizdrde Sitter-Reissner-Nordstrom
black holes over the entire range of physical parametef3][23

4.3 Discussion

One of the most interesting features of the braneworld ctsyes presented in ref. [210] is
that, while they seem to evade any cosmological singudatitheir evolution is still determined
by a simple effective action, albeit in five dimensions. Heareour present analysis indicates
that instabilities arise in the five-dimensional spaceeti@nd that the brane will generically



4. Bouncing Braneworlds Go Crunch! 123

encounter a curvature singularity before bouncing. Thedsaential observations leading to
this result were: i) the turning point for the brane cosmglogcurs inside the Cauchy horizon
of the maximally-extended geometry of the charged AdS btextk and ii) a standard analysis
within classical general relativity shows that the Caucbsizon is unstable against even small
excitations of the bulk fields.

Our analysis was at the level of linearized perturbatiors laence did not take into ac-
count any back-reaction. We therefore cannot conclusisayywhether the infinite flux will
actually cause a curvature singularity to form near the Gatlnorizon. In a series of papers,
Poisson and Israel [235-237] addressed this question twrdionensional solutions with an
inner Cauchy horizon. They found that the presence of iefinitlueshifted modeand an ar-
bitrarily small flux of modes falling across the Cauchy horizauses a classically unbounded
inflation of the effective internal gravitational-mass.igmass inflation causes curvatures to
grow without bound in a vicinity of the Cauchy horizon. Thex#s studied by Poisson and
Israel had their origin in the radiative tail produced in gravitational collapse which formed
the black hole. The bouncing brane models are construabed éternal black holes so would
not have this particular source, however the main propedienass inflation are insensitive to
the precise nature of the blueshifted flux [238], so on careiie same conclusion to follow.

Note that from these results we cannot conclude that theeltaas not bounce, but rather
due to the appearance of curvature singularities, the ggalaan not be reliably studied with
the original low energy action (4.1). Of course, one maym#iiely have reached this conclu-
sion since the full bulk space-time still includes a curvatsingularity at- = 0 — see Figure
4.3. However, while the latter remains distant from the brahose at the Cauchy horizon are
of more immediate concern as they intersect the brane&ctajy.

In the discussion of metric and gauge field perturbationseicti6n 4.2, we fixedc = 0
and limited ourselves to modes that depended onlyamdr to simplify the discussion. One
may be concerned by the fact that these modes have infingatartthe three-dimensional flat
space and so we present a brief discussion of the full asal@&@neralizing our results to the
most general perturbation is straightforward but tedidtcs. an arbitrary linearized perturba-
tion, the separation of variables would naturally lead tosidering Fourier components in the
(z,y, z) directions with a factoexp (i7i - ¥). Since we require a superposition of these modes
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for many differentsi to localize the perturbation, we cannot simply rotate inftaespace to
remove the dependence on one of the spatial coordinates. thgeneral analysis necessar-
ily involves an ansatz for the perturbations dependentidivalcoordinates, which, of course,
requires extending the perturbations to additional coreptsof both the metric and gauge
field. Appropriate linear combinations of these pertudiaiwould decouple, giving a set of
Schrodinger-like equations, similar to that found abdwhile the potentials in each of these
equations is different, there are typically simple relasioips between them implying relations
between the solutions — for further discussion of thesdicgla, see [108, 229, 230]. Then it
is sufficient to solve only one of the equations, and the aigland the results, are essentially
the same as presented above

Of course, our preliminary analysis with massive Klein-@&mor modes included all of the
spatial modes, and further applied for all of the possiblees of k&, specifying the spatial
curvature on the brane. In all cases, there was an infinitedlukese modes at the Cauchy
horizon. While further analysis of the full scattering anasbibdary conditions would be re-
quired to make this consideration of fluxes rigorous, theresdlt would be the same. Hence
we are confident that the results for the metric and gauge fiettirbations withk = 0 also
carry over fork = £1.

Recall that, as discussed in Section 4.1, an apparenthoetoal approach to constructing
these bouncing cosmologies would be to cut and paste alomgntiwor surfaces in each of
the separate asymptotically AdS regions of the black hotergdry. In such a periodic con-
struction the nature of the singular behavior would be slygthifferent. As discussed around
eq. (4.13), the brane trajectory is unidirectional in therdinate time¢. Hence in Figure 4.3,
if a brane enters the event horizon to the right of the biftlcasurfaceA, then it must exit
through the Cauchy horizon to the left ®%. However, the same result requires that a brane
trajectory entering to the left o4 exits to the right ofD. Therefore in the periodic construction
above, the two mirror trajectories must cross at some poitite region_ < r < r, as illus-
trated in Figure 4.4. Hence the evolution is singular in thatfifth dimension collapses to zero
size in a finite proper time. One redeeming feature of thilpsk is that the curvature remains
finite, and hence one might imagine that there is a simplamaation of the evolution in which
this ‘big crunch’ is matched onto a ‘big bang’ geometry. Sancollapsing geometries have
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been a subject of great interest in the string theory comiypuecently — seee.g., [239-254].
Resolving precisely how the space-time evolves beyond aubig crunch’ is an extremely
difficult question and as yet string theory seems to haveumed no clear answer. In particu-
lar, it seems that these geometries are also subject tagfianial instabilities [255—-257] not
dissimilar to those found here. In the present context, itlu@tson is further complicated as
the precise matching procedure for the background geornseatlyscure. Naively, one might be
tempted to continue beyond the collapse pdintith the doubly shaded region in Figure 4.4.
However, a closer examination shows that the brane would Aawegative tension in this ge-
ometry. The other natural alternative is to match the cratéhto the big bang emerging from
F, but the gap in the embedding geometry would seem to conlaray attempts to make
this continuation precise. In any event, it is clear thateoagain these knotty questions can not
be resolved using the low energy action (4.1) alone buteratine would have to embed this
scenario in some larger framewosgkg., string theory.

Much of our discussion has focused on bouncing cosmologgesmsing from an empty
four-dimensional brane, but the analysis and the resudteasily extended to other cases. One
simple generalization would be for higher-dimensionaheokgies followinge.g., [219, 220].
The instability found here would also appear in the asymimewnstructions discussed in
ref. [221].

A more interesting generalization to consider is addingtenagxcitations on the brane.
As long as the energy density is positive, such matter dautians will not affect the result
that the brane crosses the Cauchy horizon. At first sightpitlvalso seem that reasonable
brane matter cannot prevent the bounce. The negative ecengsybution arising from the bulk
charge is proportional tb/aS. For a perfect fluid (in four dimensions), this would reqttine
stiffest equation of state consistent with causality [258)], p = p. For example, a coherently
rolling massless scalar field would yieddx 1/a5. Hence it would seem that the teray? /a®
would dominate the contribution coming from brane matter and a bounce wouldéeiable.
However, ref. [221] recently pointed out thé contribution in the FRW constraint (4.8) can
prevent a bounce. In fact, with any equation of siate wp with w > 0, this contribution can
dominate the bulk charge contribution. Hence with a suffityelarge initial energy density
on the brane, a big crunch results on the brane. This cruncésponds to the brane trajectory
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Figure 4.4: Penrose diagram for periodic construction efittaneworld cosmology.
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falling into the bulk singularity at = 0. It then follows that the brane must cross the Cauchy
horizon in this case as well, and we expect singularitiesetigelbp there with generic initial
data.

More broadly, mirage cosmologies [57-62] are induced byniodion of a brane in a
higher-dimensional space-time. A general warning whihgtesent analysis holds for these
models is that Cauchy horizons are quite generally unstance if a particular solution
involves a brane traversing such a surface in the bulk spaee-one should expect that these
cosmologies will encounter singularities for genericialitiata.

At this point, we observe that in the literature much of thecdssion of these brane cos-
mologies treats the brane as a fixed point df,aorbifold, rather than making a symmetric
construction as discussed in Section 4.1. As discussed,tbae must flip the sign of the
gauge potential in the background solution on either sida@brane in order that the brane is
transparent to field lines. In contrast foZaorbifold, the field lines end on the brane. As there
is no natural coupling of a one-form potential to a threaabran five dimensions, the model
must be extended to include charged matter fields on the b&amecomment is that as the ac-
tion (4.1) does not explicitly include these degrees ofdoae or their coupling to the Maxwell
field, we cannot be sure that the analogous constructionatoptiesented in Section 4.1 will
yield a consistent solution of all of the degrees of freedddmne might also worry that the
simplest solutions would have additional instabilities@sated with having a homogeneous
charge distribution throughout the brane.



Chapter5

Conclusion

While instabilities may seem to be ubiquitous in higher-elivsional theories of gravity, their
existence need not be viewed negatively. Indeed, it is gftehlems such as these that are the
impetus for the new directions in physics that lead to imgurtliscoveries. A classic example
of this are the singularity theorems of Hawking and Penroséora review see [259] — in
which the development of singularities., points in space-time where general relativity breaks
down are a common prediction of general relativity itselieTquest for a theory that resolves
these singularities has fueled some of the progress irggtiegory and quantum gravity.

Likewise, though in a more modest sense, one is led in newetdires by the results we
have presented here. The discovery of instabilities ofcsiddick strings led to many insights,
including the existence of new nonuniform static solutiohgeneral relativity [65,67, 68].
The same can be said of the unstable boosted solutions eoeditch Chapter 2. The con-
struction and interpretation of the corresponding norarmfboosted solutions is an ongoing
project [129]. However, these are not the only new solutexpected.

One of the interesting observations of Section 2.3.1 wasdlhbeast in the large-ring limit,
the black ring configuration is essentially determined eyghergy density and tension of the
static black string. Hence this invalidates argumentsiotstg black rings to five dimensions
based on the interplay of the gravitational potential anctrgeetal barrier, which have the

128
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same radial dependence in precisely five dimensions. Riatheuld seem that there should be
black ring solutions in any number of dimensions greaten foar. This confirms the original
intuition presented in [104] that the existence of blackgsidid not depend on the dimension of
the space-time (as long as> 4). Of course, explicitly constructing these solutions remaa
challenging open problem. It seems these are simply oneopartich multitude of solutions
and physics which remains to be discovered in higher dinoessi

The fuzzball proposal of Mathur and collaborators [76, &7&n interesting approach to
understanding black hole entropy. To provide a satisfgotxplanation for black holes in
general we wish to go beyond the BPS sector where the programuch less developed. In
particular, one must understand the analog of the erganegstability presented in Chapter 3
in the geometry dual to a coarse grained ensemble of the JMaBmetries.

Further, we face the challenge of constructing a more ordeswgplete family of microstate
geometries. The existence of the IMaRT solutions inditetedt least certain non-BPS states
can be described by classical geometries. However, it igtralt clear how large a class of non-
supersymmetric smooth horizon-free geometries existtigdmeyond the present special class
of solutions will probably call for the development of newwgmn-generating techniques, but
the JIMaRT geometries offer hope that a broader class of pensymmetric solutions can be
found. This will certainly be an intriguing direction forriner research and will undoubtedly
lead to interesting new insights and discoveries.

Bouncing cosmologies have long been of interest [260, 2BlLich of their appeal lies in
their potential to provide a calculable framework to ddsethe origins of the universe. Apart
from those discussed in Chapter 4, braneworlds and higineerdiions have inspired many
attempts to model a bouncing cosmology, including: predagg cosmology [262]; cyclic
universes [263—-265] based on a Lorentzian orbifold modg®{248]; braneworld cosmolo-
gies induced by cyclic motion in more than one extra dimems{@66, 267} universes with
higher form fluxes [269—-282], which are related to S-brarlatems [283-286]; braneworld
cosmologies [287] with an extra internal time direction8§2289]. However, as well as the

'Ref. [268] gives a closely related construction embeddestring theory. Note, however, that from the point
of view of the Einstein frame in four dimensions, there areoorces of negative energy density and the universe
is static.
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model discussed, none of these works has yet provided a diamypcheme which is free of
pathologies or obstructions to prediction. We may takecsofeom the absence of any simple
bounce models in that it appears that understanding thg earterse and, in particular, the
big bang singularity demands that we greatly expand our nsteleding of quantum gravity
and string theory.
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