
Specification and Implementation
of Workflow Control Patterns In

 Reo

by

Seyedeh Elham Mousavi Bafrooi

A thesis

 presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

 Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

© Seyedeh Elham Mousavi Bafrooi 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

 ii

Abstract

Coordination models and languages are relatively new methods in modeling

component-based software systems. These models and languages separate the

communication aspect of systems from their computation aspect, and hence enable the

modeling of concurrent, distributed, and heterogeneous systems. In this thesis, our goal is

to show that Reo, a channel-based exogenous coordination language, is powerful enough

to be used in the area of workflow management. In order to achieve this goal, we

consider a set of workflow control patterns. We implement each of these patterns in terms

of a Reo circuit and show that these Reo circuits capture the behavior of the

corresponding workflow control patterns. We believe that the patterns we choose in this

thesis are enough to show the strength of Reo as a workflow language.

We explain our approach in four steps. In the first step, we specify the general

definition of workflow control patterns in terms of some Point Interval Temporal Logic

formulas. In the second step, we convert each PITL formula to a constraint automaton. In

the third step, we implement each workflow control pattern by a Reo circuit; each Reo

circuit consists of a set of components and a set of connectors that connect and coordinate

those components and provide its behavior as a relation on timed data streams; a timed

data stream is a twin pair of a data stream and a time stream. In the forth step, we

compositionally derive the constraint automata of that Reo circuit and finally, in the fifth

step, we show the equivalence of the two constraint automata.

 iii

Acknowledgments

I would like to thank my advisor Professor Farhad Mavaddat for his knowledge

and constructive criticisms and suggestions throughout this research.

I wish to express my sincere appreciation and gratefulness to my professor Dr.

Marjan Sirjani for her insight, valuable guidance, and continuous encouragement

throughout my study. Indeed, my gratitude to her can not be expressed in a few words

and it is my honor to be her student.

I am thankful to Dr. Farhad Arbab and Dr. Paulo Alencar for their useful

comments.

I would also like to take this opportunity to thank the School of Computer

Science for supporting me financially and providing me with their facilities.

Last but not the least, a world of thanks goes to my sister Mojgan Daneshmand

and my brother Pedram Mousavi who with their open arms welcomed me into their warm

home from which I was able to conduct my studies. Their continuous support and

kindness is unforgettable.

 iv

To my parents:

For their unconditional love, and endless effort,

I am always grateful to them

 v

Table of Contents:

Abstract .. iii

Acknowledgments ... iv

Table of Contents... vi

List of Tables .. x

List of Figures .. xi

Chapter 1 Introduction .. 1

1.1. Goal .. 1

1.2. Approach .. 1

1.3. Structure of the Thesis.. 2

Chapter 2 The Reo Coordination Language ... 3

2.1. Introduction .. 3

2.2. Basic Concepts ... 4

2.3. Timed Data Stream... 7

2.4. Reo Primitive Channels .. 8

2.4.1. The sync Channel... 9

2.4.2. The filter Channel.. 10

2.4.3. The lossySync Channel... 10

2.4.4. The syncDrain Channel... 11

2.4.5. The syncSpout Channel... 11

2.4.6. The fifo and fifo1 Channels .. 12

2.4.7. The asyncDrain Channel .. 13

2.4.8. The asyncSpout Channel .. 13

2.4.9. The replicator Connector ... 14

2.4.10. The merger Connector... 15

2.5. Reo Operations ... 16

 vi

2.5.1. The Read Operation... 16

2.5.2. The Take Operation... 17

2.5.3. The Write Operation .. 17

2.6. Reo Patterns.. 17

2.7. Composing Connectors .. 18

2.8. Constraint Automata: An Operational Model for Reo 19

Chapter 3 Workflow Management Systems ... 21

3.1. Introduction .. 21

3.2. Basic Concepts ... 22

3.2.1. Workflow ... 23

3.2.2. Workflow Management System... 23

3.2.3. Business Process, Process Definition, and SubProcess 23

3.2.4. Activity... 24

3.2.5. Instance (of a Process or an Activity) .. 24

3.3. Workflow Control Patterns... 24

Chapter 4 Specification and Implementation of Workflow Patterns 25

4.1. Introduction .. 25

4.1.1. The Delay Connector ... 28

4.2. Specification and Implementation of Basic Patterns.. 32

4.2.1. Sequential Routing ... 32

4.2.1.1. Workflow Sequential Routing ... 32

4.2.1.2. Reo Sequential Routing ... 34

4.2.2. AND-Split .. 35

4.2.2.1. Workflow AND-Split .. 35

4.2.2.2. Reo AND-Split .. 36

4.2.3. AND-Join ... 38

4.2.3.1. Workflow AND-Join ... 38

4.2.3.2. Reo AND-Join ... 39

4.2.4. XOR-Split .. 40

 vii

4.2.4.1. Workflow XOR-Split... 41

4.2.4.2. Reo XOR-Split... 42

4.2.5. XOR-Join ... 43

4.2.5.1. Workflow XOR-Join.. 44

4.2.5.2. Reo XOR-Join.. 44

4.3. Specification and Implementation of Advanced Synchronization Patterns 46

4.3.1. OR-Split ... 46

4.3.1.1. Workflow OR-Split.. 46

4.3.1.2. Reo OR-Split.. 48

4.3.2. Synchronizing Merge ... 49

4.3.2.1. Workflow Synchronizing Merge ... 50

4.3.2.2. Reo Synchronizing Merge ... 51

4.3.3. Multi Merge ... 53

4.3.3.1. Workflow Multi Merge.. 53

4.3.3.2. Reo Multi Merge.. 54

4.3.4. Discriminator.. 55

4.3.4.1. Workflow Discriminator.. 55

4.3.4.2. Reo Discriminator.. 57

Chapter 5 Conclusion.. 59

5.1. Summary and Conclusions ... 59

Appendix A: Other Workflow Control Patterns... 61

A.1. Specification and Implementation of Structural Patterns 61

A.1.1. Arbitrary Cycles .. 61

A.1.1.1. Workflow Arbitrary Cycles .. 61

A.1.1.2. Reo Arbitrary Cycles .. 62

A.2. Specification and Implementation of Patterns Involving Multiple Instances.. 64

A.2.1. Multiple Instances without Synchronization....................................... 64

A.2.1.1. Workflow Multiple Instances without Synchronization 65

A.2.1.2. Reo Multiple Instances without Synchronization 66

A.2.2. Multiple Instances with Design Time Knowledge.............................. 67

 viii

A.2.2.1. Workflow Multiple Instances with Design Time Knowledge 68

A.2.2.2. Reo Multiple Instances with Design Time Knowledge 68

A.2.3. Multiple Instances with Run Time Knowledge................................... 70

A.2.3.1. Workflow Multiple Instances with Run Time Knowledge..... 70

A.2.3.2. Reo Multiple Instances with Run Time Knowledge............... 71

A.2.4. Multiple Instances without Run Time Knowledge 73

A.2.4.1. Workflow Multiple Instances without Run Time Knowledge 73

A.2.4.2. Reo Multiple Instances without Run Time Knowledge.......... 74

A.3. State-based Patterns ... 77

A.3.1. Deferred Choice .. 77

A.3.1.1. Workflow Deferred Choice... 77

A.3.1.2. Reo Deferred Choice... 78

A.3.2. Interleaved Parallel Routing.. 79

A.3.2.1. Workflow Interleaved Parallel Routing 79

A.3.2.2. Reo Interleaved Parallel Routing .. 81

A.3.3 Milestone.. 83

A.3.2.1. Workflow Milestone ... 83

A.3.2.2. Reo Milestone ... 85

A.4. Cancellation Patterns ... 87

A.4.1. Cancel Activity.. 87

A.4.1.1. Workflow Cancel Activity.. 87

A.4.1.2. Reo Cancel Activity.. 88

A.4.2. Cancel Case ... 89

A.4.1.1. Workflow Cancel Case ... 89

A.4.1.2. Reo Cancel Case ... 90

Appendix B: Overview of Point Interval Temporal Logic........................... 91

B.1. Basic Concepts... 91

References... 94

 ix

List of Tables

Table 2-1 Primitive channels .. 9

Table 2-2 Reo operations. ... 16

Table 2-3 Primitive channels and their constraint automata... 20

 x

List of Figures

Figure 2-1 Reo circuits.. 5

Figure 2-2 Nodes in Reo... 6

Figure 2-3 replicator connector... 14

Figure 2-4 merger connector... 15

Figure 3-1 The relationship among basic concepts... 22

Figure 4-1 exclusiveRouter connector .. 29

Figure 4-2 The Delay connector ... 31

Figure 4-3 workflow Sequential Routing pattern ... 33

Figure 4-5 Reo Sequential Routing... 34

Figure 4-7 workflow AND-Split pattern... 35

Figure 4-10 Reo AND-Split.. 37

Figure 4-13 workflow AND-Join pattern ... 39

Figure 4-14 Reo AND-Join connector.. 40

Figure 4-15 workflow XOR-Split Pattern... 41

Figure 4-16 Reo XOR-Split connector ... 42

Figure 4-17 workflow XOR-Join pattern.. 44

Figure 4-18 Reo XOR-Join connector .. 45

Figure 4-19 workflow OR-Split pattern.. 47

Figure 4-20 Reo OR-Split connector .. 48

Figure 4-21 workflow synchronizing merge pattern .. 50

Figure 4-22 Reo Synchronizing Merge connector.. 52

Figure 4-23 workflow Multi Merge pattern.. 53

Figure 4-24 Reo Multi Merge connector .. 55

Figure 4-25 workflow discriminator pattern... 56

Figure 4-26 Reo Discriminator Connector ... 58

Figure 4-27 n out of m join in Reo ... 58

Figure A-5-1 Workflow Arbitrary Cycles .. 62

Figure A-5-2 Reo Arbitrary Cycle example ... 63

Figure A-5-3 Workflow Multiple Instances without Synchronization 65

 xi

Figure A-5-4 Reo MI without synchronization connector.. 66

Figure A-5-5 Workflow Multiple Instances with Design Time Knowledge 68

Figure A-5-6 Reo MI with Design Time Knowledge connector 69

Figure A-5-7 Workflow Multiple Instances with Run Time Knowledge......................... 71

Figure A-5-8 Reo MI with Run Time Knowledge connector... 72

Figure A-5-9 Workflow Multiple Instances without Run Time Knowledge.................... 74

Figure A-5-10 Reo MI without Run Time Knowledge connector.................................... 75

Figure A-5-11 Workflow Deferred Choice... 78

Figure A-5-12 Reo Deferred Choice connector.. 79

Figure A-5-13 Workflow Interleaved Parallel Routing .. 80

Figure A-5-14 Reo Interleaved Parallel Routing connector ... 81

Figure A-5-15 Workflow Milestone ... 84

Figure A-5-16 Reo Milestone connector .. 85

Figure A-5-17 workflow Cancel Activity... 88

Figure A-5-18 Reo Cancel Activity connector ... 89

Figure A-5-19 Workflow Cancel Case ... 90

 xii

Chapter 1

Introduction

1.1. Goal

In this thesis, our goal is to show that the control mechanisms of the Reo

coordination language are powerful enough to handle and implement workflow control

patterns. To achieve this goal, we consider a set of workflow control patterns. We

implement each of these patterns in terms of a Reo circuit and show that these Reo

circuits capture the behavior of the corresponding workflow control patterns.

1.2. Approach

In this section we explain our approach to accomplish this goal. For each workflow

control pattern, we follow the four following steps.

1. Write a Point Interval Temporal Logic definition of the control pattern,

2. Convert that formula to a constraint automaton,

3. Develop an equivalent Reo circuit for that pattern,

4. Develop the timed data stream model of Reo circuit,

 1

5. Develop the constraint automaton of that Reo circuit, and

6. Finally, show that the two constraint automata are equivalent.

1.3. Structure of the Thesis

The goal and approach of this thesis are outlined earlier in this chapter. In Chapter 2

we introduce Reo, a coordination language for component composition and timed data

streams as coalgebraic formalism to describe Reo circuits.

In Chapter 3, we introduce workflow management systems and basic terms used in

this context.

In chapter 4, we present basic and advanced workflow control patterns, their

specification in PITL and implementation in Reo.

Chapter 5 summarizes and concludes the thesis.

 2

Chapter 2

The Reo Coordination Language

2.1. Introduction

Modern information systems rely increasingly on combining concurrent,

distributed, mobile, reconfigurable and heterogeneous components. New models,

architectures, languages and verification techniques are necessary to cope with the

complexity induced by such systems. Coordination languages have emerged as a

successful approach, in that they provide abstractions that cleanly separate behavior from

communication, therefore increasing modularity, simplifying reasoning, and ultimately

enhancing software development.

Coordination is the process of building programs by gluing together active pieces

[4]. Active pieces here can mean processes, objects with threads, agents, or whole

applications.

The Reo coordination language is proposed for composition of software

components based on the notion of channels [13]. Reo is a channel-based exogenous1

coordination model that separates the computation part and coordination part of a

software system. The Reo coordination language provides the following features as

mentioned in [26]:

1 Exogenous coordination models and languages enable third-party entities to yield coordination
 control over the interaction behavior of mutually anonymous entities involved in a collaboration from
 outside of its participants. They provide a basis for the development of effective glue-code
 languages [10].

 3

• loose coupling among components,

• support for distribution and mobility of components,

• exogenous coordination,

• dynamic reconfigurability, and

• formal semantics based on a coinductive calculus of flow and

(alternatively) on constraint automata1.

In this chapter we explain Reo and timed data streams (TDS) as a coalgebraic

formalism to capture the behavior of Reo circuits.

2.2. Basic Concepts

Reo is an exogenous coordination model for orchestrating communication among

computational entities in a concurrent and distributed component-based software system

[13]. The main building blocks of Reo are a set of primitive channels, a set of

components to be coordinated and a set of nodes. We explain each of these next.

Figure 2.1 shows three Reo circuit samples in which boxes are components, straight

lines are channels, and small filled circles are nodes. The set of channels enclosed in

dashed lines are a set of cooperating channels called connectors. In addition, Reo also

provides a set of operations for components to manipulate connector topology and

input/output data [13].

1 Constraint Automata has been introduced in [13].

 4

Figure 2-1 Reo circuits; connectors are shown by dashed lines; (a) a 3-way connector; (b) a 6-way

connector; (c) two 3-way and one 6-way connectors [13].

Components A component is an abstract type that describes the properties of its

instances. A component instance is a set of active entities that can be processes, threads,

passive or active objects, a piece of code or even other component instances that are

coordinated using Reo connectors. The active entities communicate with the environment

using a set of input/output operations provided by Reo. Reo is not aware of the

communication and synchronization mechanisms that active entities inside a component

instance use to cooperate with each other.

Channels and Connectors Channels are primitive media for communication

among component instances. Channels are atomic connectors in Reo. They are

dynamically created and automatically garbage collected. Each channel has exactly two

ends; source end on which data enters the channel and sink end from which data leaves

the channel. Channel ends can be attached to only one component instance at any time.

Reo allows compositional construction of a connector out of primitive channels and other

simpler connectors. In subsection 2.3 we introduce primitive channels offered by Reo in

more detail.

Nodes A node is a logical construct. In Reo, there are three types of nodes: source,

sink and mixed.

• Source node: A node is a source node if all channel ends that coincide on it

are source channel ends (figure 2.2(c, d)). It acts as a replicator; a write

 5

operation to a source node succeeds only if all source channel ends

coinciding on this node can accept the data item; thus the data item

replicates to all channel ends.

• Sink node: A node is a sink node if all channel ends that coincide on it are

sink channel ends (figure 2.2(a, b)). A sink node acts as a merger1; a read

(or take)2 on this node succeeds only if any of the sink channel ends

coinciding on this node have a data item ready. If more than one channel

end provides data, the sink node will choose one nondeterministically.

• A mix node: A node is a mix node if the set of channel ends that coincide

on it are a combination of source and sink channel ends (figure 2.2(e)). A

mix node nondeterministically chooses one data item from one of the sink

channel ends coinciding on it and replicates it to all the source channel ends

coinciding on it in an atomic step. ■

Figure 2-2 Nodes in Reo. Figures (a) and (b) show two source nodes with respectively two and three

sink channel ends coinciding on them. Figures (c) and (d) show two sink nodes with respectively two

and three source channel ends coinciding on them. Figure (e) shows a mix node with three sink

channel ends and two source channel ends coinciding on it [13].

1 A sink node does not actually merge the data items; it dispenses one data item at a time.
2 The read operation is nondestructive which means it copies the data item and does not remove it from a
 channel. On the other hand, take is destructive which means it removes the data from a channel.

 6

2.3. Timed Data Stream

In Reo, connectors are modeled as relations on timed data streams, i.e. timed data

streams are coalgebraic formal semantics for Reo connectors [11]. In a timed data stream

〉〈 a,α the time stream specifies for each integer the time moment at which

the nth data element

a 0≥n ()na

()nα

{ }{ }| : 0,1,DS Dα α= →…

 is being input or output.

Let D be an arbitrary set of data items; the set DS is defined as

and contains data streams (() () ())0 , 1 , ..., nα α α α= . We call ()0α

the initial value ofα . The derivative () (())α ′ of the stream α is defined as 1 , ...,α α α′ =

+\

{ }{ }| : 0,1,TS a a a′= <… \

n .

Again, assume is the set of non-negative and real numbers, and its elements

represent particular time moments; the set TS is defined as

and contains time streams, a+→ ()(() ())naaa ...,,1a ,0= in which

we call ()0a the initial value of and the derivative aa ′ of the stream is defined as

. With this definition, TS consists of increasing time

moments: . Moreover, let

a

() ())1a a a n′ =

() () ...21 << a

(, ...,

()0 < aa ≤ and < respectively be the regular

“strictly smaller” and “smaller” relations on +\ , so for any two time streams

 and ()aa 0= () ()()naa ...,,1, () () ()()nbbb ...,,1,0=b we have:

() () () ()0, , 0,a b n a n b n a b n a n b n< ≡ ∀ ≥ < ≤ ≡ ∀ ≥ ≤

TSDS

The set TDS of timed data streams is defined as TDS ×= which contains

pairs () () ()()nα〉〈 a,α consisting of a data stream ααα ,,1,0 …= in DS and a time stream

 in TS. () (aa 1,0) ()()naa ...,,=

In next section, we introduce Reo primitive channels and represent their behavior as

relations on timed data streams.

 7

2.4. Reo Primitive Channels

Reo supports a collection of predefined channel types, each with its own well-

defined behavior. The behavior of a channel, among other parameters, may depend on

• synchronization properties,

• its source and sink ends,

• the size of its buffer,

• its ordering scheme, and

• its loss policy [13].

Generally, Reo channel can be either synchronous or asynchronous. Besides, they

may be lossy or not. In a synchronous channel the two operations pending on each end of

the channel succeed simultaneously. In an asynchronous channel, data items may be

buffered in a (un)bounded buffer and the channel may or may not impose any order on

those data items. In a lossy channel, the data item may be delivered, from source to sink

end, synchronously, or lost by the channel.

Table 2.1 shows the graphical representations of eight primitive channels provided

by Reo. Next, we explain each of those eight channels.

 8

Channel Type Graphical Representation

sync

Filter(pat)

lossySync

syncDrain

syncSpout(pat)

fifo

asyncDrain

asyncSpout(pat)

 Table 2-1 Primitive channels

2.4.1.The sync Channel

A sync channel represents the typical synchronous channels. A read (or take)

operation on the sink end of this channel succeeds only if there is a write operation

pending on the source end of this channel; moreover, the type of data item offered by the

write operation should match that of the read (or take) operation. A write

operation, on the other hand, succeeds only if there is a take operation pending on the

sink end of the channel and the data types of both operations match. Note that the take

operation is destructive, as opposed to the read operation, which is non-destructive.

As a TDS relation, the sync channel is defined, for timed data streams , aα〈 〉

,b

and β〈 〉

, ,a b a b

, by

α β α β〈 〉 〈 〉 ≡ = ∧ =sync

 9

This channel inputs the data stream α at times , and outputs the data stream a β at

times so that αb β= a b=

, a

 and .

2.4.2. The filter Channel

A filter channel with the signature filter(pat) is a lossy synchronous

channel that has a special pattern, pat, for data items it can accept. If a data item matches

with the pattern pat, the channel behaves in the same way as sync channel; otherwise,

corresponding write operation succeeds and the data item will be lost and the read (or

take) operation remains pending.

As a TDS relation, the filter(pat) channel is defined, for timed data streams

α〈 〉 ,b and β〈 〉 ,by

() () () ()0 0 0 0a b

f

α β⎧ = ∧ = ∧

, , , ,
, ,

a b a b if
a b i

α β α β
α β

⎪
′ ′ ′ ′〈 〉 〈 〉 ≡ 〈 〉 〈 〉⎨

⎪ ′ ′〈 〉 〈 〉 ¬⎩

filter(pat) filter(pat) pat

filter(pat) pat

It inputs the data stream α at times , and outputs the data stream a β at timesb so

that if pattern of α matches pat, then α β= ; if not, input data element α is simply

discarded and its respective write operation succeeds. The it continues with the

remainder of the streams.

2.4.3. The lossySync Channel

A lossySync channel is a lossy synchronous channel in which a write operation

on its source end always succeeds. If there is a read (or take) operation pending on

the sink node of this channel and their data types match, that data will be removed from

the channel and both write and read (or take) operations succeed immediately, like

a normal synchronous channel; otherwise the write operation succeeds and the data

item will be lost.

 10

As a TDS relation, the lossySync channel is defined, for timed data streams

, aα〈 〉 ,b and β〈 〉

, ,

0) (0)

a b
b
b

, by

α
 (0) (0) , , (0) (0)

, , (
a b if a

a b if a

β〈 〉 〈 〉 ≡lossySync

α β α β
α β

′ ′ ′ ′= ∧ 〈 〉 〈 〉 =⎧
⎨ ′ ′〈 〉 〈 〉 <⎩

lossySync

lossySync

It inputs the data stream α at times , and outputs the data stream a β at timesb so

that if a , then (0) (0)b= (0) (0)α β= ; after that it continues with the remainder of the

streams as before. If , then input stream (0) (0)a b< (0)α is simply discarded and the

channel proceed with , aα ′ ′〈 〉 on its input and ,bβ〈 〉

, a

on its output end .

2.4.4. The syncDrain Channel

A syncDrain is a lossy synchronous channel that has two source ends. Two

write operations pending on its source ends succeed only simultaneously and all written

values are lost. This channel synchronizes the two write operations on its two source

ends.

As a TDS relation, the syncDrain channel is defined, for timed data streams

α〈 〉 ,b and β〈 〉

, ,a b a b

, by

α β〈 〉 〈 〉 ≡ =syncDrain

The corresponding data elements in the streams α and β enter the two input ends

of this channel simultaneously, a b= , and then disappear.

2.4.5. The syncSpout Channel

A syncSpout channel with the signature syncSpout is an unbounded source of

data items that can be taken from its two sink ends simultaneously and

 11

nondeterministically. The data items taken by the two read (or take) operations

pending on its sink ends are independent of each other, although the operations are

synchronized by the channel.

As a TDS relation, the syncSpout channel is defined, for timed data streams

, aα〈 〉 ,b and β〈 〉

1 2, ,a b d d a b

, by

α β α β〈 〉 〈 〉 ≡ = ∧ = ∧ =syncSpout

1d 2d

Where and are independent data streams that copied into streams α and β ,

respectively and simultaneously, a b= .

2.4.6. The fifo and fifo1 Channels

A fifo channel is an unbounded asynchronous channel with one source and one

sink end. A write operation on a fifo channel always succeeds, since the buffer is

unbounded. A read (or take) operation on it remains pending until the first item in the

buffer matches with the read (or take) operation pattern. A fifo1 channel is a

bounded asynchronous channel. The suffix 1 represents the capacity of the buffer (we can

also have fifon channel, in which n is an integer greater than zero). A write operation

in a fifo1 channel succeeds only if the buffer is empty.

As a TDS relation, the fifo1 channel is defined, for timed data streams , aα〈 〉

,b

and β〈 〉

, ,a b a b a

, by

α β α β ′〈 〉 〈 〉 ≡ = ∧ < <1fifo

This is a 1-bounded first-in-first-out buffer. It inputs the data stream α at times ,

and outputs the data stream

a

β at times so thatα β= andb a b< . Moreover, at any

moment the next data item can be input only after the present data item has been output:

. b a′<

 12

2.4.7. The asyncDrain Channel

An asyncDrain channel is a lossy asynchronous channel with two source ends.

The two writes on its two ends could never succeed simultaneously. The data item of

the two ends is lost after the write succeeds.

As a TDS relation, the asyncDrain channel is defined, for timed data streams

, aα〈 〉 ,b and β〈 〉

, , (0) (0)
(0) (0)

a b if a b
a

α β′ ′〈 〉 〈 〉 <⎧ asyncDrain

, by

, , (0) (0)
, ,

a b a b
a b if b

α β
α β

〈 〉 〈 〉 ≡ ≠ ∧ ⎨ ′ ′〈 〉 〈 〉 <⎩
asyncDrain

asyncDrain

The corresponding data elements in the streams α and β never enter the two input

ends of this channel simultaneously, (0) (0)a b≠ and when they enter they disappear; it

handles the remainder of the streams in the same manner.

2.4.8. The asyncSpout Channel

An asyncSpout channel with the signature asyncSpout(pat)is an unlimited

source of data items. It is an asynchronous channel with two sink ends. The two read

(or take) operations could never succeed simultaneously; they only succeed one at a

time when the data item matches the pattern of the read (or take). The data items are

not related to each other.

As a TDS relation, the asyncSpout channel is defined, for timed data streams

, aα〈 〉 ,b and β〈 〉

, ,a b

, by

1

2

(0) , , (0) (0)
(0) (0)

(0) , , (0) (0)
d a b if a b

a b
d a b if b a

α β〈 〉 〈 〉 ≡asyncSpout

α α β
β α β

′ ′= ∧ 〈 〉 〈 〉 <⎧
≠ ∧ ⎨ ′ ′= ∧ 〈 〉 〈 〉 <⎩

asyncSpout

asyncSpout

 13

Where and are independent data elements that copied into streams α and1d 2d β ,

respectively but never simultaneously, i.e. (0) (0)a b≠ , then it handles the remainder of

the streams in the same manner.

Now, we introduce two useful connectors in Reo, replicator and merger

connectors and show their behavior as relations on timed data streams.

2.4.9.The replicator Connector

The replicator connector is shown in figure 2-3. A write on node A of

replicator succeeds only if both channels AB and AC are capable of consuming a

copy of the written data. However, if even one is not prepared to consume the data, the

write suspends.

Figure 2-3 replicator connector

 This connector is a ternary relation with one input end and two output ends. As a

TDS relation, the replicator connector is defined, for all timed data streams

, , , ,a bα β〈 〉 〈 〉 , cand γ〈 〉 ,by

(), , , , ,replicator a b c a b cα β γ α β γ 〈 〉 〈 〉 〈 〉 ≡ = = ∧ = =

This connector replicates the data stream α at times a to data streams β and γ at

times and , respectively, so that b c α β γ= b c and a = . = =

 14

2.4.10. The merger Connector

The merger connector is shown in figure 2-4. A read (or take) from node C

delivers a data value out of channels AC or BC. The data is chosen nondeterministically

if both channels have data to write. Thus, the merger connector produces a

nondeterministic merge of the values that arrive on A and B.

Figure 2-4 merger connector

The connector merge is a ternary relation with two input and one output end, and

is defined, for timed data stream , , , ,a bα β〈 〉 〈 〉 , cand γ〈 〉

(

, by

)

()
()

(0) (0)

(0) (0) (0) (0) , , , , , (0) (0)
(0) (0) (0) (0) , , , , , (0) (0)

a b

a c a b c if a b
b c a b c if b a

α γ α β γ
β γ α β γ

≠ ∧

′ ′ ′ ′⎧ = ∧ = ∧ 〈 〉 〈 〉 〈 〉 <⎪
⎨ ′ ′ ′ ′= ∧ = ∧ 〈 〉 〈 〉 〈 〉 <⎪⎩

merger

merger

, , , , ,a b cα β γ〈 〉 〈 〉 〈 〉 ≡merger

α and β on its input end into a stream This connector merges the two data streams

γ on its output end. The data that is handled first is the first one arrives (whether

 or) never at the same time (a(0) (0)a b< (0) (0)b a< (0) 0)b(≠). After that, the connector

handles the remainder of the streams in the same manner again.

One can use any number of above channels and builds new connectors out of them.

It is also possible to define new primitive channels (for more explanation you may see

[13]).

 15

2.5. Reo Operations

Reo provides a set of operations to be used by active entities inside a component

instance. Table 2-2 shows the operations provided by Reo. Here we introduce three

operations, read, take, and write that we will use in our implementations.

Channel Name Description

create Creates a new channel and returns the identifiers of two ends.

forget Changes the value of a channel end so that it does not refer to that channel end
anymore.

move Moves a channel end to a new location.

connect Connects a channel end to the component instance performing this operation.

disconnect Disconnects a channel end from the component instance performing this operation.

wait Succeeds when its related boolean condition becomes true.

join Joins two channel ends.

split Splits the node attached to the channel end perform this operation into two new
nodes.

hide Hides the node attached to the channel end perform this operation so that it cannot be
modified by any operation.

read Copies the data item from the channel end without removing it from the channel end.

take Copies the data item from the sink channel end and removes it from the channel end.

write Writes a data item to a source channel end if the channel end can accept it.

Table 2-2 Reo operations.

2.5.1. The Read Operation

The read operation, with signature read([t,]inp[,v[,pat]]), succeeds if

the sink channel end inp has a data item ready that matches the pattern pat; if so, the

data item will be copied to variable v. The read operation is not destructive, so the data

 16

item will not be removed from the channel end. The optional parameter t indicates a time

out value greater than or equal to zero. If the operation does not succeed within the

specified time, a failure notification is returned.

2.5.2. The Take Operation

The take operation, with signature take([t,]inp[,v[,pat]]),succeeds if the

sink channel end inp has a data item ready that matches the pattern pat; if so, the data

item will be copied to variable v. The take operation is destructive, so the data item will

be removed from the channel end. The optional parameter t indicates a time out value

greater than or equal to zero. If the operation does not succeed within the specified time,

a failure notification is returned.

2.5.3. The Write Operation

The write operation, with signature write([t,]outp,v),succeeds if the

source channel end outp, can accept the data item offered by the write operation; if so

the content of variable v will be consumed by channel end e. The optional parameter t

indicates a time out value greater than or equal to zero. If the operation does not succeed

within the specified time, a failure notification is returned. ■

In implementing workflow patterns with Reo we assume that activities perform

only take operation, so that the respective write operation can always succeed.

2.6. Reo Patterns1

Reo uses patterns to regulate channel input/output operations [13]. A pattern is an

expression that matches a data item when it flows through a channel. The operations

take and read can specify patterns that must match the items they read. Moreover,

1 We use the term pattern in two different context throughout this thesis; one in the context of Reo
 operations and the other in the context of workflow management. We will clearly distinguish these two
 usages of pattern by explicitly indicating Reo operation patterns and workflow control patterns.

 17

some channel types may require patterns as their creation parameters to influence their

behavior (e.g. filter(pat) and syncSpout(pat)channels).

Atomic patterns identify types such as int, real, string, number, etc.; they match

with any one of their instances. Patterns can be composed into tuple structures using " "<

and" . Moreover, a pattern can be augmented with additional conditions in square

brackets. For instance, the pattern

">

[] []int , , int 3x string a b c y y x< + ∗ > ≥ ∗

"c

)
, , , , , , , ,a sync c c sync b a sync c c sync b

 matches triplets

consisting of two integers, x and y, a string, where the second argument is greater than or

equal to 3 times the first one, and the string consists of one or more occurrences of " "

followed by zero or more occurrences of " with a single " at its end.

a

"b

2.7. Composing Connectors

Since connectors are relations, their composition can be modeled by relational

composition [10]. We present an example to illustrate how connectors are composed. The

following relations show the composition of two sync channels.

α

() (
, ,

a c b c
a b a sync b

γ γ β α γ γ β〈 〉 〈 〉 〈 〉 〈 〉 ≡ 〈 〉 〈 〉 ∧ 〈 〉 〈 〉

α γ γ β

α β α β

≡ = ∧ = ∧ = ∧ =

≡ = ∧ = ≡ 〈 〉 〈 〉

D

The composition is obtained by simply applying logical rules to TDS formulas. The

general definition of the composition of an arbitrary n-ary connector R and m-ary

connector T, is essentially the same. One has to identify and connect an input end from R

to an output end from T. It is also possible to connect a single output of R to several

inputs ends from T at the same time, or reversely, connect several input ends from T to a

single output end from R. The results of the last two compositions are replicator and

merger connectors, respectively, which were introduced in the previous section.

 18

2.8. Constraint Automata: An Operational Model for Reo

Constraint automata are an operational model for Reo. It is a formalism to describe

the behavior and possible data flow in Reo circuits (coordination models in general) and

provides a basis for formal verification of those circuits. In a constraint automaton of any

Reo circuit, the automata states represent the possible configurations and the automata

transitions represent the possible data flow and the effect of them on configurations.

Table 2-3 shows the constraint automata for Reo primitive channels. Constraint automata

also serve as acceptors for timed data streams or TDS-languages. It observes the data at

some input/output ports of components and either changes its state or rejects the data if

there is no corresponding transition to be fired by that data. So, constraint automata are

also a formalism to describe TDS-languages.

Constraint automata use a finite set N of names, e.g., { }1, , nN A A= …

"dA d=

1 2:: | | |Ag true d d g g

 where Ai

stands for the i-th input/output port of a connector or component. The transitions of

constraint automata are labeled with pairs consisting of a non-empty subset N of {A1, …,

An} and a data constraint g. Data constraints can be viewed as a symbolic representation

of sets of data-assignments. Formally, data constraints are propositional formulae built

from the atoms " where data item d is assigned to port A. Data constraints are

given by the following grammar: g= = ∨

()0, , ,

¬ .

Definition 1: A constraint automaton (over the data domain Data) is a tuple

A Q Names Q= →

2NamesQ DC Q

 where

• Q is a set of states,

• Names is a finite set of names,

• → is a subset of × × ×

0Q Q⊆

, called the transition relation of A,

• is the set of initial states.

 19

We call N the name-set and g the guard of the transition. For every transition

(,N gq p⎯⎯→ 0N we require that: (1) ≠ , and (2) ⎯),g DC N Data∈

(), , ,A Q Names Q= →

. A is called finite iff

Q, → and the underlying data domain Data are finite. In a similar way, we may define

the natural join for TDS-languages with other name-sets. Thus, join as an operator for

TDS-languages can be regarded as a generalization of intersection. It is realized on the

automata-level by a product-construction.

Definition 2: The product-automaton of the two constraint automata

and1 1 1 1 0,1 ()2, , ,A Q Names Q= →

(), , ,A A Q Q Names Names Q Q∞ = × → ×∪

2 2 2 2 0, ,is:

where → is defined by the following rules:

1 2 1 2 1 2 0,1 0,2

, ,1 1 2 21 1 1 2 2 1, ,N g N gq p q p N Names N Names
1 2

1 2 1 2

1 2
,

1 2 1 2, ,N N g gq q p p
⎯⎯⎯⎯→ ⎯⎯⎯⎯→

∧

=

〈 〉 ⎯⎯⎯⎯⎯→〈 〉∪

∩ ∩

Channel Type Constraint Automata

sync {A, B}
dA = dB

Filter(pat) {A, B}
 dA = dB {A}

lossySync {A, B}
 dA = dB {A}

syncDrain {A, B}

syncSpout(pat) {A, B}

fifon
{B}
dB = d

{A}
d = dA

asyncDrain
{B}{A}

asyncSpout(pat)
{B}{A}

Table 2-3 Primitive channels and their constraint automata

 20

Chapter 3

Workflow Management Systems

3.1. Introduction

Workflow Management Systems are used to automate business processes. They

control the flow of work through a company, thus providing the right person the right

task at the right point of time. This helps in streamlining the business processes for a

company and has the potential to improve the productivity of recurring tasks by a

significant amount. The introduction of workflow management systems results in a gain

in efficiency and productivity, increased security, clear progress reports as well as quality

and cost control benefits.

Workflow management deals with supporting business processes in organizations;

it involves managing the flow of work through an organization [12]. Workflows are a

collection of coordinated tasks designed to carry out a well-defined complex process

[11]. A workflow management system is a generic information system that supports

modeling, execution, as well as the management and monitoring of workflows. Such a

system operates on a workflow specification, a description of the business processes in

the organization that should be supported.

Workflow modeling is the task of creating workflow specifications. Such

specifications will usually be used as input to a workflow management system. A set of

workflow control patterns has been introduced in [37]. In this thesis, we consider those

patterns. In the following sections, we define basic concepts of workflow management

 21

systems that we use throughout this thesis and describe the workflow control patterns as

categories by [37].

3.2. Basic Concepts

In this section, we define some of the terms in the context of workflow

management that we will use in this thesis. These definitions are mostly from WfMC

Coalition, Terminology and Glossary [39]. Figure 3-1 shows the relationship between

basic concepts we define in this section1.

Figure 3-1 The relationship among basic concepts [39].

1 All the explanations given in this section are not necessary for understanding this thesis; they are given
 for the sake of completeness.

 22

3.2.1. Workflow

Workflow is the automatic routing of business processes. Responsible participants

and users receive their desired documents and information and perform some form of

processing on the documents based on procedural rules. The documents may be

physically moved over the network or maintained in a single database with the

appropriate users given access to the data at the required times.

3.2.2. Workflow Management System

Workflow management deals with modeling and controlling the execution of

application processes in an organizational or technical environment [3]. A workflow

management system is a software system working on a workflow engine and is

responsible for storing the process definitions, creating and executing workflow instances

(i.e. automated parts of business processes), managing the interaction among workflow

instances and participants, among other applications. These systems may also provide

some administrative functions such as work reassignment.

3.2.3. Business Process, Process Definition, and SubProcess

Business processes are sets of activities involved within or outside an organization

that work together to produce a business outcome for an organization. A business process

is typically associated with operational objectives and business relationships. It may

consist of automated activities, capable of workflow management, and/or manual

activities, which lie outside the scope of workflow management.

The process definition consists of a network of activities and their relationships,

criteria to indicate the start and termination of the process, and information about the

individual activities, such as participants, associated IT applications and data, etc. It is

defined to specify which activities need to be executed and in what order. The process

definitions are instantiated for different cases. A subprocess is useful for defining

reusable components within other processes. It has its own process definition, and may

 23

include parameters passed on its initiation and completion. Multiple levels of subprocess

may be supported.

3.2.4. Activity

An activity is an atomic (and the smallest) piece of work (i.e. executed in one

logical step). They are connected together using transitions. Activities may be automated

(workflow activity) or manual; the automated activity is one that can be computerized

and the manual activity is the one that does not support automation and relies outside the

scope of workflow management. Activities require human and/or computer resources in

order to be executed.

3.2.5. Instance (of a Process or an Activity)

Process instance is the representation of a single enactment of a process. Activity

instance is the representation of an activity within a process instance. Both are created

and managed by a workflow management system for each separate invocation of the

process or activity. Each instance represents a separate thread of execution of the process

or activity, which may be controlled independently and will have its own internal state.

Both process instance and activity instance are created, managed and (eventually)

terminated by a workflow management system, in accordance with the process definition.

3.3. Workflow Control Patterns

The set of control flow patterns that we use in this thesis is the one introduced by

van der Aalst et al. [37], based on the various features available in existing systems and

common recurring business requirements. The “control flow patterns” are divided in

several groups: basic patterns, advanced branching patterns, structural patterns, multiple

instance patterns, state-based patterns, and cancellation patterns. In chapter 4 and

Appendix A we introduce some of the patterns with their specification in PITL and their

implementation in Reo.

 24

Chapter 4

Specification and Implementation of

Workflow Patterns

4.1. Introduction

In this chapter, we present the specification and implementation of workflow basic

and advanced synchronization patterns. Specification and implementation of other

patterns, i.e. structural patterns, patterns with multiple instances, state based patterns, and

cancellation patterns are presented in Appendix A.

In this chapter, for each workflow pattern, we first provide the specification of the

general concept of that pattern in a point interval temporal logic (PITL) formula. The

explanation of the point interval temporal logic is presented in Appendix B. Then, we

present the implementation of the pattern in Reo. Next, for each implemented circuit, we

present the behaviour of that Reo circuit as a timed data stream relation.

To show that the specification of a pattern in PITL and its implementation in Reo

are equal, our approach is as follow. For one pattern, we convert the specification of that

pattern in PITL to a constraint automaton. Then, we provide the constraint automaton for

the Reo circuit that implements that pattern and finally show that these two constraint

automata are equal. We follow this approach for two patterns, Sequential Routing and

AND-Split, for the rest of the patterns the approach is the same and we do not provide it

in this thesis.

 25

Each workflow case consists of several paths to be taken and each path has one or

more activities that will be executed in some orders. Obviously, if two paths have the

same number of activities with a particular ordering, those paths are identical. Moreover,

if two workflow cases have identical paths those workflow cases are equal in terms of

showing the same behavior. In this thesis, we show paths as a set of activities with some

ordering denoted by time and show that these paths are identical so the corresponding

workflow cases are identical as well. Next we explain why we have chosen the notion of

time for the specifications and correctness of the implementations.

What a particular control pattern is trying to do, given a workflow case consisting

of several activities, is to control the execution order and synchronization of those

activities. By execution order we mean that the control pattern decides which activities

should become enabled after the completion of what other activities and in what order.

The control pattern is not concerned with how an enabled activity will be executed and

whether it works as it is supposed to or not. The control flow pattern considers each

activity as a black box and the only observable behavior which the pattern is concerned

about is when the activity becomes enabled and when it finishes executing. Or more

accurately, what should happen after an activity finishes its execution and what should

have happened before an activity becomes enabled. Obviously, the words before and

after both represent time semantics.

By synchronization we mean that after completion of an activity the control pattern

decides whether the execution thread should split into multiple threads and whether all of

these threads should be executed in parallel or they are required not to be executed in

parallel. Furthermore, it determines how these multiple threads should be merged;

whether all of them should be synchronized so that the next activity can become enabled

or it is sufficient that certain number of them completes and be synchronized. Again, it is

obvious that synchronization implicitly poses some timing order on the execution of the

activities in a workflow case.

Here are some definitions in the context of specification of workflow patterns with

PITL and in the context of implementing patterns in Reo and their formalization in TDS.

 26

1. In the contest of specifying workflow patterns with PITL, let A be an

activity. We refer to the interval during which activity A is enabled and

being executed by A. This interval is defined as []es AAA ,= , in which As is

the start point of interval A; it is the moment at which activity A becomes

enabled. Ae is the end of interval A; it is the moment at which activity A

finishes executing. Moreover, we assume that always s eA A< , which means

that interval A is a non-zero length interval (see Appendix B for definition

of zero and non-zero length intervals).

2. In the contest of implementing workflow patterns with Reo, for each

activity A we have:

• : Let A() (),I Id A Aτ〈 〉 I be the input node of activity A. This tuple means

that A performs a take operation on AI and takes data stream ()Id A ;

thus, ()IAτ is the moment at which activity A becomes enabled.

() (),O Od A Aτ〈 〉 : Let AO be the output node of activity A. This tuple

means that A performs a write operation on AO and writes data

stream ; thus, ()Id A

•

()OAτ is the moment at which activity A finishes

executing.

(()• Furthermore, we assume that)I OA Aτ τ<

()

.

From definitions 1 and 2 it is obvious that for each activity A,

 (() eOsI AAAA = τ =τ)14 −

(

Consider the TDS formula below which represents a sync channel.

) () () () () () () (), ,d A A d B B d A d B A Bτ τ τ τ〈 〉 〈 〉 ≡ = ∧ =sync

 27

() ()Recall from section 2.3 that the d A d B= statement indicates that the data

written on node A is taken on node B required that the type of data on node A matches the

expected type at node B. If we assume that the take operation does not restrict the type

of data it takes, then it can accept any type of data; this way the () ()d A d B= statement

always is true, which means that eventually writing and taking the data from the source

and sink nodes always happens successfully.

Besides, recall that in the context of modeling workflow control patterns we are

only interested in the execution ordering of activities not on the data they pass to each

other to perform their tasks.

Considering the above explanations, the () ()d A d B= statement does not have any

impact on modeling workflow control patterns. Hence, when we want to show that the

specification and the implementation of patterns are identical, we only consider the time

sequence part of the TDS formula (e.g. () ()Aτ = Bτ). But in specifying the behaviour of

connectors that implement workflow patterns we represent the complete TDS formula.

Next, we introduce a Reo connector that we are going to use to implement our

circuits with.

4.1.1. The Delay Connector

In this section, we introduce a new connector, Delay, which we use to connect and

coordinate the activities in this chapter and Appendix A. In Reo, as we mentioned in

chapter 2, there are three sets of channels: synchronous, asynchronous, and lossy

channels. If we use only synchronous channels to connect the activities, finishing of one

activity and enabling of the next activity always happen simultaneously. If we use

asynchronous channels, on the other hand, finishing of one activity and enabling of the

next activity always happen with a delay. None of these cases is desired alone in the

context of workflow. In a workflow case, finishing of one activity and enabling of the

 28

next activity can happen either simultaneously or with some delay. So, we must define a

new connector that allows both behaviours.

We use the exclusiveRouter connector to build the Delay connector. The

detailed explanation of exclusiveRouter is presented in [10]. Figure 4.1(a) shows

the structure of this connector. In this connector, when a data arrives at node a, it flows

through the circuit and is finally written on either node b or node c, but not both. We use

the notation in figure 4.1(b) to represent the exclusiveRouter connector. In the

following paragraph we compositionally derive the behaviour of this connector as a timed

data streams relation.

Figure 4-1 exclusiveRouter connector

1. For the lossySync channel between nodes a and l we have:

() () () ()

() () () () () () () ()
() () () () () ()

0 0 0 0

0 0

, ,

, ,

d a d l d a a d l l if a l

d a a d l l if a l

τ τ τ

τ τ τ

⎧ ′ ′ ′ ′= ∧ 〈 〉 〈 〉 =⎪
⎨

′ ′⎪〈 〉 〈 〉 <⎩

lossySync

lossySync

, ,d a a d l lτ τ

τ

τ

〈 〉 〈 〉 ≡lossySync

(

2. For the lossySync channel between nodes a and m we have:

) () () ()

() () () () () () () ()
() () () () () ()

0 0 0 0

0 0

, ,

, ,

d a d m d a a d m m if a m

d a a d m m if a m

τ τ τ

τ τ τ

⎧ ′ ′ ′ ′= ∧ 〈 〉 〈 〉 =⎪
⎨

′ ′⎪〈 〉 〈 〉 <⎩

lossySync

lossySync

, ,d a a d m mτ τ

τ

τ

〈 〉 〈 〉 ≡lossySync

 29

3. For the syncDrain channel between nodes a and i we have:

() () () () () () , ,τ τ τ τ〈 〉 ≡ =syncDraind a a d i i a i

(

〈 〉

4. For the merger consists of nodes l, m, and i we have:

() () () () () () () ())

() () () () () () () () () ()

() () () () () () () () () (

0 0 0 0

0 0 0 0

, , , , ,

, , , , ,

d i d l d l l d m m d i i if l m

d i d m d l l d m m d i i if m l

τ τ τ τ

τ τ τ τ

⎧ ⎛ ⎞′ ′ ′ ′= ∧ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞′ ′ ′ ′⎪ = ∧ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪ ⎝ ⎠⎩

merger

merger)

0 0, , , , ,d l l d m m d i i l mτ τ τ τ τ

τ

τ

〈 〉 〈 〉 〈 〉 ≡ ≠ ∧merger

(

5. For the sync channel between nodes l and b we have:

) () () () () () () () , ,syncd l l d b b d l d b l bτ τ τ τ〈 〉 ≡ = ∧ =

(

〈 〉

6. For the sync channel between nodes m and c we have:

) () () () () () () () , ,syncd m m d c c d m d c m cτ τ τ τ〈 〉 ≡ = ∧ =〈 〉

Now by composing the above six formulas and following the approach in section

2.7 we have:

() () () () () ()()
() () () ()() () () () ()() ()4 2τ τ τ τ= ∧ = ⊗ = ∧ = −d a d b a b d a d c a c

, , , , ,τ τ τ〈 〉 〈 〉 〈 〉 ≡exclusiveRouter d a a d b b d c c

Figure 4.2(a) shows the Delay connector. We used sync and fifo1 channels and

the merger and exclusiveRouter connectors to build this connector. The sync

and fifo1 channels are connected to output nodes b and c of exclusiveRouter

connector, respectively. This way, when a data item is being output by the

exclusiveRouter connector, it will flow through either the sync channel or the

fifo1 channel, but not both. To summarize the behaviour of the delay connector, we

 30

can say that when a data item arrives at node a, it will be written to node d

simultaneously or buffered in the fifo1 channel first and then written to node e. Then,

that data will be written to node f of the merger connector, which consists of nodes d, e,

and f.

Figure 4-2 The Delay connector

From now on, we will use the notation in figure 4.2(b) whenever we want to show

the Delay connector. Now we compositionally obtain its behaviour as a timed data

streams relation:

1. For the sync channel between nodes b and d we have:

() () () () () () () () , ,syncd b b d d d d b d d b dτ τ τ τ〈 〉 ≡ = ∧ =

() () () () () () () () (), ,d c c d e e d c d e c e eτ τ τ τ τ ′〈 〉 ≡ = ∧ < <fifo

(

〈 〉

2. For the fifo1 channel between nodes c and e we have:

 〈 〉 1

3. For the merger consisting of nodes d, e, and f we have:

() () () () () () () ())

() () () () () () () () () ()

() () () () () () () () () ()

0 0 0 0

0 0 0 0

, , , , ,

, , , , ,

d d d f d d d d e e d f f if d e

d e d f d d d d e e d f f if e d

τ τ τ τ

τ τ τ τ

⎧ ⎛ ⎞′ ′ ′ ′= ∧ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞′ ′ ′ ′⎪ = ∧ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪ ⎝ ⎠⎩

merger

merger

0 0, , , , ,d d d d e e d f f d eτ τ τ τ τ

τ

τ

〈 〉 〈 〉 〈 〉 ≡ ≠ ∧merger

 31

 Note that since we have used the exclusiveRouter, the condition

 () ()0 0d eτ τ≠

(

is always satisfied.

Now by composing the formulas (1) to (3) following the approach in section 2.7 we

have:

) () () () () () () (), ,Delayd a a d f f d a d f a fτ τ τ τ〈 〉 ≡ = ∧ ≤ 4 3−〈 〉 () ■

In this section, in addition to introduction of a new connector, Delay, we

explained our approach to compositionally derive the timed data stream formulas for

connectors, which we are following throughout this thesis. Henceforth, we present the

specification and implementation of workflow patterns.

4.2. Specification and Implementation of Basic Patterns

In the following section, we present the specification and implementation of

workflow basic patterns.

4.2.1. Sequential Routing

This pattern represents a situation in a workflow where a sequence of activities is

executed one after another in a single thread of execution. This means that each activity

becomes enabled only when the previous activity completes. This pattern is also known

as Sequence. As an example, in an online book ordering system, sending the bill is

performed after shipping books.

4.2.1.1. Workflow Sequential Routing

Figure 4-3 represents workflow Sequential Routing pattern in which activity B is

executed after the completion of activity A.

 32

Figure 4-3 workflow Sequential Routing pattern

Formula represents the PITL formula for this pattern. (4 - 4)

() () ()4 4e s e s e sA B A B A B A B A B∨ ≡ < ∨ = ≡ ≤ −Before Meets

e s

The above formula states that activity A should always be completed either some time

before or at the same time activity B becomes enabled. We, now, convert the above

formula into a constraint automaton.

• A B= : since the end of activity A happens at the same time with the start

of activity B there is only one transition to the same state that has both

,e sA B as label.

 { },e sA B

• e sA B< : since the end of activity A happens before the start of activity B,

one transition goes to a waiting state until another transition fires when

activity B starts.
{Ae}

{Bs}

 33

The resulting constraint automata for e sA B≤ by applying the composition is:

 {A } e

{Ae,Bs }

{Bs}

4.2.1.2. Reo Sequential Routing

Figure 4-4 represents the implementation of Sequential Routing pattern in Reo. We

implemented this pattern by simply connecting the output node of activity A to the input

node of activity B using a Delay connector.

Figure 4-5 Reo Sequential Routing

Now we present the TDS behavior of the above connector. From formula (we

have:

)4 - 3

() () () () ()
() () () () () () () (), ,τ τ τ〈 〉 〈 〉 ≡ = ∧ ≤DelayO O I I O I O Id A A d B B d A d B A B

, , 4 5τ τ

τ

〈 〉 〈 〉 ≡ −SequentialRoutingO O I Id A A d B B

The constraint automaton for the above circuit by compositing the constraint

automata for the primitive channels is:

{AO,BI }

{AO}

{BI}

 34

which is obviously equal to the constraint automaton of workflow Sequential Routing.

4.2.2. AND-Split

This pattern represents a situation in a workflow where a single thread of control

splits into multiple parallel threads so that two or more activities can be executed in

parallel or in any order. This pattern is also known as Parallel Split. As an example, in an

online book ordering system, after the customer pays the amount of order, books will be

shipped and the receipt will be sent to the customer.

4.2.2.1. Workflow AND-Split

Figure 4-5 represents workflow AND-Split pattern in which after completion of

activity A, both activities B and C should become enabled.

Figure 4-7 workflow AND-Split pattern

Formula represents the PITL formula for this pattern. (4 - 6)

() () () ()
[] [] ()4 6e s e s e s e s e s e sA B A B A C A C A B A C< ∨ = ∧ < ∨ = ≡ ≤ ∧ ≤ −

A B A B A C A C⎡ ⎤ ⎡ ⎤∨ ∧ ∨ ≡⎣ ⎦ ⎣ ⎦Before Meets Before Meets

The above formula states that activity A should always be completed some time

before or at the same time activity B becomes enabled and, also, some time before or at

 35

the same time activity C becomes enabled. We, now, convert the above formula into a

constraint automaton.

• e sA B≤

e s

: using the same approach that we used for workflow Sequential

Routing, we have:

 {AO,BI }

{BI}

{AO}

• A C≤

e s e s

: using the same approach that we used for workflow Sequential

Routing, we have:

{AO,CI }

{CI}

{AO}

The resulting constraint automata for A B A C∧ ≤ is: ≤

{AO, BI}

{BO}

{CI}

{AO, CI}

4.2.2.2.Reo AND-Split

Figure 4-6 represents the implementation of AND-Split pattern in Reo. We

implemented AND-Split using Reo’s replicator and Delay connectors. When

activity A finishes its execution, it writes the control data on its output node which

 36

replicates to both nodes i and j simultaneously. By using the Delay, activities B and C

both become enabled either at the same time or in any order.

Figure 4-10 Reo AND-Split

Now we present the TDS behavior of the AND-Split connector.

1. For the replicator connector consisting of nodes AO, i, and j we have:

() () () () () ()(), , , , ,tor O O

O O

d A A d i i d j j

d A d i d j A i j

τ τ τ

τ τ τ

〈 〉 〈 〉 〈 〉 ≡

= = ∧ = =() () () () () ()
relica

2. For the Delay channel between nodes i and BB

(

I we have:

) () () () () () () () , ,Delay I I I Id i i d B B d i d B i Bτ τ τ τ〈 〉 ≡ = ∧ ≤

(

〈 〉

3. For the Delay channel between nodes j and CI we have:

) () () () () () () () , ,Delay I I I Id j j d C C d j d C j Cτ τ τ τ〈 〉 ≡ = ∧ ≤〈 〉

By composing three formulas above, we obtain the following TDS formula for Reo

AND-Split connector:

 37

() () () () () ()(), , ,AND-Split , ,O O I I I Id A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 ≡

() () () () () () () ()4 7O I I O I O Id A d B d C A B A Cτ τ τ τ= = ∧ ≤ ∧ ≤ −

The constraint automaton for the above circuit is:

{AO, BI}

{BO}

{AO, CI}

{CI}

This is obviously equal to the constraint automata of workflow AND-Split.

4.2.3.AND-Join

This pattern represents a situation in a workflow where multiple parallel activities

converge into one thread and are synchronized. This pattern is also known as

Synchronization. Patterns AND-Split and AND-Join together are known as Parallel

Routing. As an example, in an online ticket ordering system after the tickets are sent and

the payment is received then the information of the sold tickets will be archived.

4.2.3.1. Workflow AND-Join

 Figure 4-7 represents an instance of workflow AND-Join pattern in which after

completion of both activities A and B, activity C should become enabled.

 38

Figure 4-13 workflow AND-Join pattern

Formula represents the PITL formula for this pattern. (4 - 8)

() () () ()
[] [] ()4 8e s e s e s e s e s e sA C A C B C B C A C B C< ∨ = ∧ < ∨ = ≡ ≤ ∧ ≤ −

A C A C B C B C⎡ ⎤ ⎡ ⎤∨ ∧ ∨ ≡⎣ ⎦ ⎣ ⎦Before Meets Before Meets

The above formula states that activities A and B should always be completed either

some time before or at the same time activity C becomes enabled.

4.2.3.2. Reo AND-Join

Figure 4-8 represents the implementation of AND-Join pattern in Reo. We

implemented AND-Join using the syncDrain channel and Delay connector.

Depending on which A or B finishes executing first, its respective write operation on its

output node will remain pending until the other activity finishes its execution and

becomes ready to perform write on its output node. Then all writes will be performed

simultaneously and succeed. Then, according to Delay connector, activity C will

become enabled whether immediately or later.

 39

Figure 4-14 Reo AND-Join connector

Now we present the TDS behavior of the AND-Join connector.

1. For the syncDrain channel between nodes AO and BB

(

O we have:

) () () () () () , ,O O O O O Od A A d B B A Bτ τ τ τ〈 〉 ≡ =syncDrain〈 〉

2. For the Delay channel between nodes BB

(

O and CI we have:

) () () ()
() () () ()O I Od B d C B Cτ τ= ∧ ≤

, ,DelayO O I I

I

d B B d C Cτ τ〈 〉 〈 〉 ≡

(

By composing two above formulas, we obtain the TDS formula for Reo AND-Join

connector:

() () () () () ()), , ,D-Join , ,O O O O I I

O I O I O I

d A A d B B d C C

d B d C A C B C

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

= ∧ ≤ ∧ ≤ −() () () () () () ()4 9

AN

4.2.4. XOR-Split

This pattern represents a situation in a workflow where among several alternative

activities, one is chosen based on some conditions or control data. This pattern is also

known as Exclusive Choice. As an example, in an insurance claim processing system, the

 40

evaluation of the claim is followed by either paying the damage or contacting the

customer, but not both.

4.2.4.1. Workflow XOR-Split

Figure 4-9 represents workflow XOR-Split pattern in which after completion of

activity A, based on whether condition cond1 or cond2 is true, either activity B or activity

C becomes enabled, respectively. Note that we assume cond1 and cond2 are zero-length

intervals at which conditions cond1 and cond2 become true, respectively.

Figure 4-15 workflow XOR-Split Pattern

 Formula ()4 -10

(

represents the PITL formula for this pattern. Note that cond1 and

cond2 are exclusive conditions.

() () ())
() () ()

() ()
() ()

2

1 2

1 2
e e s e s e e s e s

e e s e e s

cond A A C A C

A cond A B A B A cond A C A C

A cond A B A cond A C

⎡ ⎤→ ∨ ≡⎣ ⎦
⎡ ⎤ ⎡ ⎤= → < ∨ = ∧ = → < ∨ = ≡⎣ ⎦ ⎣ ⎦

= → ≤ ∧ = → ≤

Finishes Before Meets

1 4 10cond A A B A B⎡ ⎤→ ∨ ∧⎣ ⎦ −Finishes Before Meets

The above formula states that if at the time activity A is completed, cond1 is true

then the completion of activity A happens some time before or at the same time activity B

becomes enabled; but if at the time activity A is completed, cond2 is true then the

 41

completion of activity A happens some time before or at the same time activity C

becomes enabled.

4.2.4.2. Reo XOR-Split

Figure 4-10 represents the implementation of XOR-Split pattern in Reo. We

implemented the XOR-Split pattern using the Delay connector and two filter

channels. When activity A finishes its execution, it replicates the token on both filter

channels connected to its output node. If the data written by A matches with the patterns

of any of the filter channels, the corresponding activity attached to that channel will

become enabled and the other channel will lose the data. It is the designer’s task to

specify complete and exclusive patterns.

Figure 4-16 Reo XOR-Split connector

Now we present the TDS behavior of the XOR-Split connector.

1. For the filter channel between nodes AO and i we have:

() () () ()
() () () ()

() () () ()

() () () ()

, ,

, ,

O O

O O

O O

d A d i A i
if

d A A d i i

d A A d i i if

τ τ

τ τ

τ τ

⎧ = ∧ = ∧
⎪
⎪ ′ ′ ′ ′〈 〉 〈 〉⎨
⎪

′ ′⎪〈 〉 〈 〉⎩

, ,O Od A A d i iτ τ〈 〉 〈 〉 ≡

¬

filter(pat1)

pat1
filter(pat1)

filter(pat1) pat1

 42

2. For the filter channel between nodes AO and j we have:

() () () ()
() () () ()

() () () ()

() () () ()

0 0 0 0

, ,

, ,

O O

O O

O O

d A d j A j
if

d A A d j j

d A A d j j if

τ τ

τ τ

τ τ

⎧ = ∧ = ∧
⎪
⎪ ′ ′ ′ ′〈 〉 〈 〉⎨
⎪

′ ′⎪〈 〉 〈 〉⎩

, ,O Od A A d j jτ τ〈 〉 〈 〉 ≡

¬

filter(pat2)

pat2
filter(pat2)

filter(pat2) pat2

3. For the Delay channel between nodes i and BB

(

I we have:

) () () () () () () () , ,Delay I I I Id i i d B B d i d B i Bτ τ τ τ〈 〉 ≡ = ∧ ≤

(

〈 〉

4. For the Delay channel between nodes j and CI we have:

) () () () () () () () , ,Delay I I I Id j j d C C d j d C j Cτ τ τ τ〈 〉 〈 〉 ≡ = ∧ ≤

() ()

Note that we assume that pat1 and pat2 are exclusive conditions. By composing

four formulas above, we obtain the TDS formula for Reo XOR-Split connector:

() () () ()() ()
() () () ()
() () () ()

pat1

pat2
O I O I

O I O I

d A d B A B if
d A d C A C if

τ τ
τ τ

⎧ = ∧ ≤⎪
⎨ = ∧ ≤⎪⎩

, , , 4 11XOR -Split , ,O O I I I Id A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 ≡ −

4.2.5. XOR-Join

This pattern represents a situation in a workflow when one out of several alternative

branches completes. It is assumed that branches are never executed in parallel. This

pattern is also known as Simple Merge. As an example, in an insurance claim processing

system, archiving the claim is done after either paying the damage or contacting the

customer.

 43

4.2.5.1. Workflow XOR-Join

Figure 4-11 represents workflow XOR-Join pattern in which after completion of

either activities A or B, activity C should become enabled.

Figure 4-17 workflow XOR-Join pattern

Formula ()4 -12 represents the PITL formula for this pattern. There is an

assumption that A and B never being executed in parallel.

) ()() () () (
[] []e s e s e s e s e s e sA C A C B C B C A C B C< ∨ = ∨ < ∨ = ≡ ≤ ∨ ≤

4 12A C A C B C B C⎡ ⎤ ⎡ ⎤∨ ∨ ∨ ≡⎣ ⎦ ⎣ ⎦ −Before Meets Before Meets

The above formula states that completion of any of activities A or B happens some

time before or at the same time activity C becomes enabled.

4.2.5.2. Reo XOR-Join

Figure 4-12 represents the implementation of AND-Join pattern in Reo. We

implemented the XOR-Join pattern using Reo’s merger and Delay connectors. In this

circuit, node CI will take the token provided by either A or B, or if they both have their

token ready, it will choose one nondeterministically. In this pattern, we assume that

activity A and B are never executed in parallel; the designer is responsible for this

assumption.

 44

Figure 4-18 Reo XOR-Join connector

 Now we present the TDS behavior of the XOR-Join connector.

1. For the Delay channel between nodes AO and CI we have:

() () () ()() () () () , ,DelayO O I I O I O Id A A d C C d A d C A Cτ τ τ τ〈 〉 ≡ = ∧ ≤〈 〉

2. For the Delay channel between nodes BB

(

O and CI we have:

) () () ()() () () () , ,DelayO O I I O I O Id B B d C C d B d C B Cτ τ τ τ〈 〉 ≡ = ∧ ≤〈 〉

3. For the merger consisting of nodes AO, BB

(

O, and CI we have:

()) () () () () (() ())
() () () ()

() () () () () () () ()

() () () ()

() () () () () () () ()

0 0 0 0

0 0

0 0 0 0

0 0

, , , , ,

, , , , ,

O I O I

O O O O I I O O

O I O I

O O O O I I O O

d A d C A C

d A A d B B d C C if A B

d B d C B C

d A A d B B d C C if B A

τ τ

τ τ τ τ

τ τ

τ τ τ τ

⎧ = ∧ ≤ ∧

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

⎨
= ∧ ≤ ∧

⎛ ⎞′ ′′′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

merger

merger

⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪⎩

0 0, , , , ,O O O O I I O Od A A d B B d C C A Bτ τ τ τ τ

τ

τ

〈 〉 〈 〉 〈 〉 ≡ ≠ ∧merger

By composing two formulas above and definition of merger connector, we

obtain the TDS formula for Reo XOR-Join connector:

 45

() () () () () ()() ()

)

, , , 4 13O O O O I Id A A d B B d C Cτ τ τ

τ

〈 〉 〈 〉 〈 〉 ≡ −XOR-Join , ,

)

() ()
() () () ()

() () () () () () () (

() () () ()

() () () () () ()

0 0

0 0 0 0

0 0

0 0 0 0

, , , , ,

, , , , ,

O O

O I O I

O O O O I I O O

O I O I

O O O O I I

A B

d A d C A C

d A A d B B d C C if A B

d B d C B C

d A A d B B d C C if

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ

≠ ∧

= ∧ ≤ ∧

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

= ∧ ≤ ∧

⎛ ⎞′′ ′ ′〈 〉 〈 〉 〈 〉⎜ ⎟
⎝ ⎠

XOR-Join

XOR-Join () (0 0O OB Aτ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ <
⎪⎩

4.3. Specification and Implementation of Advanced Synchronization

Patterns

In the following section, we present the specification and implementation of

workflow advanced synchronization patterns.

4.3.1. OR-Split

This pattern represents a situation in a workflow when, based on some conditions

or control data, various numbers of branches among several alternatives are chosen. This

pattern is also known as Multi Choice. As an example, in an insurance claim processing

system, after evaluating the damage, then the fire department or insurance company will

be contacted. At least one of these activities is executed. However, it is also possible that

both need to be executed.

4.3.1.1. Workflow OR-Split

Figure 4-13 represents workflow XOR-Split pattern in which after completion of

activity A, based on whether condition cond1 or cond2 or both are true, either activity B

or C or both become enabled, respectively. Note that we assume cond1 and cond2 are

zero-length intervals at which conditions cond1 and cond2 become true, respectively.

 46

Figure 4-19 workflow OR-Split pattern

Formula ()4 -14 represents the PITL formula for this pattern. Note that cond1 and

cond2 are inclusive conditions.

() () () ()1 4 13⎡ ⎤→ ∨ ∧ −⎣ ⎦cond A A B A BFinishes Before Meets

)

() () ()
()()

() ()() () ()()

() ()

2

1 2

1 2

1

⎡ ⎤→ ∨ ∧⎣ ⎦
⎡ ∧ →⎣

⎤∨ ∧ ∨ ≡⎦

⎡ ⎤ ⎡ ⎤= → < ∨ = ∧ = → < ∨ = ∧⎣ ⎦ ⎣ ⎦

= ∧ =

e e s e s e e s e s

e e

cond A A C A C

cond cond A

A C A C A B A B

A cond A B A B A cond A C A C

A cond A con

Finishes Before Meets

Finishes

Before Meets Before Meets

() ()()

() () (

2

1 2 1 2

⎡ ⎤→ < ∨ = ∧ < ∨ = ≡⎣ ⎦

= → ≤ ∧ = → ≤ ∧ = ∧ = → ≤ ∧ ≤

e s e s e s e s

e e s e e s e e e s e s

d A B A B A C A C

A cond A B A cond A C A cond A cond A B A C

The above formula states that if at the time activity A is completed, cond1 is true

then the completion of activity A happens some time before or at the same time activity B

becomes enabled; if at the time activity A is completed, cond2 is true then the completion

of activity A happens some time before or at the same time activity C becomes enabled.

Finally, if at the time activity A is completed, both cond1 and cond2 are true, then the

completion of activity A happens some time before or at the same time both activities B

and C become enabled.

 47

4.3.1.2. Reo OR-Split

Figure 4-14 represents the implementation of OR-Split pattern in Reo. We used the

same structure to implement the OR-Split pattern as the one we used for the XOR-Split

pattern. The only difference here is that patterns for filter channels should be complete

and inclusive.

Figure 4-20 Reo OR-Split connector

Now we present the TDS behavior of the above connector.

1. For the filter channel between nodes AO and i we have:

() () () (), ,O Od A A d i iτ τ〈 〉 〈 〉 ≡

¬

filter(pat2)

() () () ()

() () () ()

() () () ()

0 0 0 0

0 0

0 0

, ,

, ,

O O

O O

O O

d A d i A i
if

d A A d i i

d A A d i i if

τ τ

τ τ

τ τ

⎧ = ∧ = ∧
⎪
⎪ ′ ′ ′ ′〈 〉 〈 〉⎨
⎪

′ ′⎪〈 〉 〈 〉⎩

pat2
filter(pat2)

filter(pat2) pat2

2. For the filter channel between nodes AO and j we have:

 48

() () () (), ,O Od A A d j jτ τ〈 〉 〈 〉 ≡

¬

filter(pat2)

() () () ()

() () () ()

() () () ()

0 0 0 0

, ,

, ,

O O

O O

O O

d A d j A j
if

d A A d j j

d A A d j j if

τ τ

τ τ

τ τ

⎧ = ∧ = ∧
⎪
⎪ ′ ′ ′ ′〈 〉 〈 〉⎨
⎪

′ ′⎪〈 〉 〈 〉⎩

pat2
filter(pat2)

filter(pat2) pat2

3. For the Delay channel between nodes i and BB

(

I we have:

) () () () () () () (), ,Delay I I I Id i i d B B d i d B i Bτ τ τ τ〈 〉 ≡ = ∧ ≤

(

〈 〉

4. For the Delay channel between nodes j and CI we have:

) () () () () () () (), ,Delay I I I Id j j d C C d j d C j Cτ τ τ τ〈 〉 ≡ = ∧ ≤

(

〈 〉

Note that we assume that pat1 and pat2 are inclusive conditions. By composing

the four formulas above, we obtain the TDS formula for Reo OR-Split connector:

) () () () () ()() ()
() () () ()
() () () ()
() () () () () () ()

pat1

pat2

pat1 pat2

O I O I

O I O I

O I I O I O I

d A d B A B if
d A d C A C if
d A d B d C A B A C if

τ τ
τ τ

τ τ τ τ

⎧ = ∧ ≤
⎪ = ∧ ≤⎨
⎪ = = ∧ ≤ ∧ ≤ ∧⎩

, , , 4 14OR -Split , ,O O I I I Id A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 ≡ −

4.3.2. Synchronizing Merge

This pattern represents a situation in a workflow when several branches converge

into one single thread. If more than one branch is active, it synchronizes the active

branches and merges other branches. Deciding when to merge and when to synchronize is

a runtime decision. It is assumed that a branch that has already been activated cannot be

activated again while the merge is still waiting for other branches to complete. As an

example, in an insurance claim processing system, one or both contacting the fire

department and insurance company have been completed, a report will be submitted.

 49

4.3.2.1. Workflow Synchronizing Merge

Figure 4-15 represents workflow Synchronizing Merge pattern in which if after

completion of activity A, only one of activities B or C becomes enabled, then, after its

completion activity D becomes enabled. If after completion of activity A, both activities

B and C become enabled, then they should be synchronized so that activity D can be

enabled next. In figure 4-15, we used the OR-Join pattern to show that either activity B,

or C or both can become enabled.

Figure 4-21 workflow synchronizing merge pattern

Formula represents the PITL formula for this pattern. (4 -15)

() ()() () () ()4 15A B A B C B D B D⎡ ⎤∨ ∧ ¬ → ∨ ∧ −⎣ ⎦Before Meets Before Meets

)

() ()() () ()

() ()() () ()()
() ()() () ()()

() ()
()

e s e s e s e s

e s e s

A C A C B C D C D

A B A B A C A C

B D B D C D C D

A B A B C B D B D

A C A C

⎡ ⎤∨ ∧ ¬ → ∨ ∧⎣ ⎦
⎡ ∨ ∧ ∨ →⎣

⎤∨ ∧ ∨ ≡⎦

⎡ ⎤< ∨ = ∧¬ → < ∨ = ∧⎣ ⎦

< ∨ =

Before Meets Before Meets

Before Meets Before Meets

Before Meets Before Meets

()
() ()() () ()()

() () () (()

e s e s

e s e s e s e s e s e s e s e s

e s e s e s e s e s e s e s e s

B C D C D

A B A B A C A C B D B D C D C D

A B C B D A C B C D A B A C B D C D

⎡ ⎤∧ ¬ → < ∨ = ∧⎣ ⎦
⎡ ⎤< ∨ = ∧ < ∨ = → < ∨ = ∧ < ∨ = ≡⎣ ⎦

≤ ∧ ¬ → ≤ ∧ ≤ ∧¬ → ≤ ∧ ≤ ∧ ≤ → ≤ ∧ ≤

The above formula represents three situations for Synchronizing Merge patterns:

 50

• The case when activity B becomes enabled but not activity C: if completion

of activity A happens some time before or at the same time with activity B,

then completion of B happens some time before or at the same time with

activity D.

• The case when activity C becomes enabled but not activity B: if completion

of activity A happens some time before or at the same time with activity C,

then completion of C happens some time before or at the same time with

activity D.

• The case when both activities B and C become enabled: if completion of

activity A happens some time before or at the same time with both activities

B and C, then completion of B and C should happen some time before or at

the same time with activity D.

4.3.2.2. Reo Synchronizing Merge

The problem with synchronizing merge is that we need to decide when to

synchronize and when to merge. This decision should be made at run time. We

implement the synchronizing merge pattern by using AND-Split, AND-Join, and

Delay connectors. Figure 4-16 represents the implementation of Synchronizing Merge

pattern in Reo.

 51

Figure 4-22 Reo Synchronizing Merge connector

When activity A finishes its execution, it replicates the token through the AND-

Split connector. If only one of the activities should become enabled, e.g. B, the other

activity, e.g. C will consider that token as a dummy data and will write it on its output

node without being executed. After activity B finishes executing, both B and C will be

synchronized using the AND-Join connector. Then, activity D will become enabled

either simultaneously or later.

 Now we present the TDS behavior of the Synchronizing Merge connector:

1. For the AND-Split connector consists of nodes AO, BB

()

I, and CI we have:

() () () () ()()
)

, , ,-Split , ,O O I I I I

O I I O I O I

d A A d B B d C C

d A d B d C A B A C

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

= = ∧ ≤ ∧ ≤

(

() () () () () () (
AND

2. For the AND-Join connector we have:

() () () () () ())
() () () () () () ()

, , ,-Join , ,O O O O I I

O O I O I O I

d B B d C C d D D

d B d C d D B D C D

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

= = ∧ ≤ ∧ ≤

AND

 52

By composing two formulas above, we obtain the TDS formula for Reo

Synchronizing Merge connector:

() () () () () ()(()
() () () () () ())

() () () () () () ()
() () () () () () ()

, , ,, ,O O O O I I

O I I O I O I

O O I O I O I

d B B d C C d D D

d A d B d C A B A C

d B d C d D B D C D

τ τ τ

τ τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

⎡ ⎤= = ∧ ≤ ∧ ≤ ∧⎣ ⎦
⎡ ⎤= = ∧ ≤ ∧ ≤⎣ ⎦

, , , , 4 16syncMerge , ,O O I I I Id A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 −

4.3.3. Multi Merge

This pattern represents a situation in a workflow when several branches converge

into one single thread. The activity following this merge construct, e.g. C, will be

executed once for every completion of every active branch so allow us to present activity

C only one time and avoid redundant appearance of activity C. As an example, two

activities auditing and processing an application are performing in parallel and both

should be followed by closing case.

4.3.3.1. Workflow Multi Merge

Figure 4-17 represents workflow Multi Merge pattern in which after completion of

activities A and B, activity C becomes enabled once.

Figure 4-23 workflow Multi Merge pattern

 53

Formula represents the PITL formula for this pattern. (4 -17)

() () () () ()
() ()() () ()()

[] [] () ()

() () ()

e s e s e s e s e s e s e s e s

e s e s e s e s

A C A C B C B C

A C A C B C B C A C A C B C B C

A C B C A C B C

⎡ ⎤∨ ∧ ∨ ≡⎣ ⎦

⎡ ⎤< ∨ = ∨ < ∨ = ∨ < ∨ = ∧ < ∨ = ≡⎣ ⎦

≤ ∨ ≤ ∨ ≤ ∧ ≤

Before Meets Before Meets

4 17A C A C B C B C⎡ ⎤ ⎡ ⎤∨ ∨ ∨ ∨ −⎣ ⎦ ⎣ ⎦Before Meets Before Meets

() () () () () ()(

The above formula states that completion of either activity A or B or both is

followed either some time before or at the same time by enabling of activity C. From this

formula it is obvious that after completion of each of A or B, activity C will become

enabled once.

4.3.3.2. Reo Multi Merge

Figure 4-18 presents the implementation of Multi Merge pattern in Reo. We

implemented this pattern using Reo’s merger and Delay connectors and in the same

way we implemented XOR-Join pattern. The only difference here is that activities A and

B can be executed in parallel. So we have the same TDS formula.

) ()

)τ

)

() ()
() () () ()

() () () () () () () (

() () () ()

() () () () () ()

0 0

0 0 0 0

0 0

0 0 0 0

, , , 4 18

, , , , ,

, , , , ,

O O O O I I

O O

O I O I

O O O O I I O O

O I O I

O O O O I I

d A A d B B d C C

A B

d A d C A C

d A A d B B d C C if A B

d B d C B C

d A A d B B d C C

τ τ τ

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ

〈 〉 〈 〉 〈 〉 ≡ −

≠ ∧

= ∧ ≤ ∧

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

= ∧ ≤ ∧

⎛ ′′ ′ ′〈 〉 〈 〉 〈 〉⎜
⎝

MultiMerge , ,

MultiMerge

MultiMerge () (0 0O Oif B Aτ τ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪

⎞⎪ <⎟⎪ ⎠⎩

 54

Figure 4-24 Reo Multi Merge connector

4.3.4. Discriminator

This pattern represents a situation in a workflow when several branches converge

into a single thread. The activity following this merge construct will be executed once for

the first activity that completes; then it waits for other alternative branches to complete

and ignores them.

The Discriminator pattern can easily be generalized for the situation when an

activity should be triggered only after n out of m incoming branches have been

completed. Similar to the basic discriminator all remaining branches should be ignored.

As an example, to improve query response time, a complex search is sent to two different

databases over the Internet. The first one that comes up with the result should proceed the

flow. The second result is ignored.

4.3.4.1. Workflow Discriminator

Figure 4-19 represents workflow Discriminator pattern in which if only one of

activities A or B is executing or both of them are executing, then after completion of one

of them, whichever finishes sooner, activity C becomes enabled only one time; the other

one, in case of execution, will be completed and ignored.

 55

Figure 4-25 workflow discriminator pattern

Formula ()4 -19 represents the PITL formula for this pattern.

() () () () ()
() () () () ()
() () () () (

() () () (s s s e e e s s e e s s e e e s

B A B A B A B C B C

A B B A A B A C A C

A B B A A B A B A B A B A B A C

⎡ ⎤∨ ∨ → ∨⎣ ⎦
⎡ ⎤∨ ∨ → ∨⎣ ⎦

⎡ < ∧ < ∧ < ∨ = ∧ < ∨ > ∧ < → ≤

Overlaps Starts During Before Meets

Finishes Finishes Equals Before Meets

() () () (
() () () ()

() () () ()4 19

s s s e e e s s e e s s e e e s

s s s s s s e e e s

e e e s e e e s e e e s

B A A B B A A B A B B A B A B C

B A B A B A B A A C

A B A C B A B C A B A C

⎤ ∧⎣ ⎦
⎡ ⎤< ∧ < ∧ < ∨ = ∧ > ∨ > ∧ < → ≤ ∧⎣ ⎦
⎡ ⎤≤ ∨ ≥ ∨ = ∧ = → ≤ ⇒⎣ ⎦

< → ≤ ∧ < → ≤ ∧ = → ≤ −

)

)

A B A B A B A C A C⎡ ⎤∨ ∨ → ∨ ∧⎣ ⎦
∧

≡

Overlaps Starts During Before Meets

)

In the above formula we show the behaviour of Discriminator pattern considering

the ordering of activities A and B. That formula represents three cases in which each case

consists of three parts itself regarding completion time of each of two activities;

Case 1 in which activity A finishes before activity B; activity C becomes enabled

for activity A once:

1. A Overlaps B: it means that A started earlier than B but finishes sooner.

 56

2. A Starts B; it means that A started at the same time with B but finishes

sooner.

3. A During B; it means that A started later than B but finishes sooner.

Case 2 in which activity B finishes before activity A; activity C becomes enabled

for activity B once:

1. B Overlaps A: it means that B started earlier than A, but finishes sooner.

2. B Starts A; it means that B started at the same time with A, but finishes

sooner.

3. B During A; it means that B started later than A, but finishes sooner.

Case 3 in which activities A and B finish at the same time; then, activity C becomes

enabled only once:

1. A Finishes B: it means that A started earlier than B, but both finish at the

same time.

2. B Finishes A; it means that B started earlier than A, but both finish at the

same time.

3. A Equal B; it means that both A and B start and finish at the same time.

4.3.4.2. Reo Discriminator

Figure 4-20 represents the implementation of Discriminator pattern in Reo1. This

circuit works as follow. If activity A finishes before activity B it will writes the token to

1 The implementation of this pattern has been taken from http://homepages.cwi.nl/~proenca/webreo/.

 57

the AOi and ml buffers. These buffers can only be emptied if both activities B and C

finish their execution.

Figure 4-26 Reo Discriminator Connector

Figure 4-27 shows the “n out of m join” construct in Reo.

Figure 4-27 n out of m join in Reo

 58

Chapter 5

Conclusion

In this chapter we present the conclusions of this thesis.

5.1. Summary and Conclusions

In this thesis, we assessed Reo and its control mechanisms as a workflow modeling

language. Our goal was to show the Reo is powerful language that can be applied in

various areas and workflow modeling has been chosen as one of them.

In order to achieve our goal, first, we specified the general definition of workflow

control patterns in terms of some Point Interval Temporal Logic formulas. In the second

step, we converted each PITL formula to a constraint automaton. In the third step, we

implemented each workflow control pattern by a Reo circuit. In the forth step, we

compositionally derived the constraint automata of that Reo circuit and finally, in the

fifth step, we showed the equivalence of the two constraint automata.

The reason that we used notion of time in our specifications and implementations

was that in our opinion control flow can be best captured in terms of time since it is about

ordering and synchronization that both have implicit semantics of time.

Following we briefly describe some of the advantages and useful mechanisms of

Reo:

• Reo allows defining of new connectors out of primitive channels using

composition rules. This makes Reo an adaptable language that can be well

 59

suited in different areas. As an example, we defined the Delay connector

using exclusiveRouter connector and sync and fifo1 primitive

channels.

• Moreover, defining new connectors compositionally, each new connector

also has well defined semantics that can be used for reasoning purposes.

• Reo provides a set of operations and patterns for the data used by

operations.

• Reo connectors are defined as relations on timed data streams. Having the

notion of time, it is possible to specify temporal constraints and verify Reo

connectors.

• Besides the formal semantics, Reo provides graphical representations for its

primitive channels and connectors, which makes it easier to use and

understand.

 60

Appendix A: Other Workflow Control Patterns

In this appendix we present Reo specification and implementation of structural,

multiple instances, state-based, and cancellation patterns.

A.1. Specification and Implementation of Structural Patterns

In the following section, we present the specification and implementation of

workflow structural pattern; Arbitrary Cycles pattern. We do not discuss Implicit

Termination pattern here, since this pattern does not need any implementation at all.

A.1.1. Arbitrary Cycles

This pattern represents a situation in a workflow when one or more activities are

executed repeatedly. As an example, in an insurance claim processing system, evaluating

damage and producing report might be needed to be performed several times; sometimes

the cycle should start over from evaluating the damage and sometimes it should start

again from producing the report.

A.1.1.1. Workflow Arbitrary Cycles

Figure A-1 represents workflow Arbitrary Cycles pattern. In the workflow case of

figure A-1, activity B may require to be executed multiple times.

 61

Figure A-5-1 Workflow Arbitrary Cycles

Formula represents the PITL formula for this pattern. ()A -1

() ()A B A B⎡ ⎤∨ ∧⎣ ⎦

⎤ ≡⎦

⎤⎦

Before Meets

() () () (){ }

() () ()

() () () ()1

e s e s e s e s e s e s

e s e s e s

B B B B B C B C

A B A B B B B B B C B C

A B B B B C A

⎡ ⎤ ⎡∨ ∨ ∨⎣ ⎦ ⎣

⎡ ⎤ ⎡< ∨ = ∧ < ∨ = ∨ < ∨ = ≡⎣ ⎦ ⎣

⎡ ⎤≤ ∧ ≤ ∨ ≤⎣ ⎦ −

Before Meets Before Meets

In the above formula, activity B follows A and C follows B. After execution of

activity B, it is possible to enable activity C or start again with activity B.

A.1.1.2. Reo Arbitrary Cycles

Figure A-2 represents the Reo implementation of Arbitrary Cycles pattern in Reo.

In order to implement this pattern in Reo, we use Reo’s XOR-Split and XOR-Join

connectors.

 62

Figure A-5-2 Reo Arbitrary Cycle example

Now we present the TDS behavior of the Arbitrary Cycles connector:

1. For the XOR-Join connector consisting of nodes AO, BB

() () () () () ()()

)

, , ,O O I Id A A d B B d i iτ τ τ

τ

〈 〉 〈 〉 〈 〉 ≡

<

XOR-Join , ,

I, and i we have:

 () ()
() () () ()

() () () () () () () (

() () () ()

() () () () () () () ()

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, , , , ,

, , , , ,

O

O I O I

O O I I O

I I

O O I I O

A i

d A d B A B

d A A d i i d B B if A i

d i d B i B

d A A d i i d B B if i A

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ τ

≠ ∧

⎧ = ∧ ≤ ∧
⎪

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉⎜ ⎟
⎝ ⎠

⎨
= ∧ ≤ ∧

⎛ ⎞′′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

XOR-Join

XOR-Join

⎪
⎪⎪

⎪
⎪
⎪
⎪⎩

2. For the XOR-Split connector consisting of nodes BB

()

O, CI, and j we have:

() () () () ()(), , ,O O I Id C C d D D d j jτ τ τ〈 〉 〈 〉 〈 〉 ≡XOR-Split , ,

(

() () () ()
() () () ()

O O

O I O I

d C d j C j
d C d D C D

τ τ
τ τ

⎧ = ∧ ≤⎪
⎨ = ∧ ≤ ¬⎪⎩

if pat

if pat

3. For the sync channel consisting of nodes i and j we have:

) () () () () () () () , ,d j j d i i d j d i j iτ τ τ τ〈 〉 ≡ = ∧ =sync〈 〉

By composing the three formulas above, we obtain the TDS formula for Reo

Arbitrary Cycles connector:

 63

() () () () () ()(), , , , ,d A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 ≡Cyc

() ()
() () () ()
() () () ()
() () () ()

() ()

() () () () () ()

() () () ()
() () ()

0 0

0 0 0 0

0 00 0 0 0

0 0 0 0

0 0 0 0

0 0 0

, , , , ,

O O I I I I

O

O I O I

OO O

O I O I

O O I I I I

I O

O O

A i

d A d B A B

if i Ad B d i B i if
d B d C B C if

d A A d B B d C C

d i d B i B

d B d i B

τ τ

τ τ

τ ττ τ
τ τ

τ τ τ

τ τ

τ

≠ ∧

= ∧ ≤ ∧

<⎧ = ∧ ≤⎪
⎨ = ∧ ≤ ¬⎪⎩

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉⎜ ⎟
⎝ ⎠

= ∧ ≤ ∧

= ∧ ≤

 pat

 pat

Cyc

()
() () () ()

() () () () () ()

() ()

()

0 0

0

0 0 0 0

, , , , ,

A - 2

O

O I O I

O O I I I I

if i A

i if
d B d B B C if

d A A d B B d C C

τ τ

τ
τ τ

τ τ τ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪ <⎪
⎪⎧⎪⎪⎨ = ∧ ≤ ¬⎪⎪⎩
⎪

⎛ ⎞′ ′ ′ ′⎪ 〈 〉 〈 〉 〈 〉⎜ ⎟⎪ ⎝ ⎠⎩

 pat

 pat

Cyc

A.2. Specification and Implementation of Patterns Involving Multiple

Instances

In the following section, we present the specification and implementation of

workflow patterns that involve multiple instances.

A.2.1. Multiple Instances without Synchronization

This pattern represents a situation in a workflow when multiple instances of one

activity should be created and executed in parallel. Each of these execution threads is

independent of each other and there is no need to synchronize them. As an example, a

customer ordering a book from an electronic bookstore such as Amazon may order

multiple books at the same time. Many of the activities (e.g., billing, updating customer

records, etc.) occur at the level of the order. However, within the order multiple instances

need to be created to handle the activities related to one individual book (e.g., update

stock levels, shipment, etc.). If the activities at the book level do not need to be

synchronized, this pattern can be used.

 64

A.2.1.1. Workflow Multiple Instances without Synchronization

Figure A-3 represents workflow Multiple Instances without Synchronization

pattern in which n instances, b1, …, bn, of activity B are created. Then, activity C

becomes enabled; the instances of activity B should not be synchronized in order for

activity C to become enabled. It is also possible that no instance is created at all; in that

case after completion of activity B, activity C will become enabled.

Figure A-5-3 Workflow Multiple Instances

without Synchronization

()Formula A - 3 represents the PITL formula for this pattern.

() () () ()
() ()() () ()()

[] []
()() ()()

()

1 1

1.. : 1.. :

1.. :

e s e s e s e s

s s s e e e s s e e

e s e s s s

A B A B B C B C

B b B bn B b B bn

A B A B B C B C

i n B bi bi B B bi i n B bi bi B

A B B C n B bi A

⎡ ⎤ ⎡ ⎤∨ ∧ ∨ ∧⎣ ⎦ ⎣ ⎦
⎡ ⎤∧ ∧ ∨ ∧ ∧ ≡⎣ ⎦

< ∨ = ∧ < ∨ = ∧

⎡ ⎤∀ = < ∧ < ∧ < ∨ ∀ = < ∧ < ≡⎣ ⎦

≤ ∧ ≤ ∧ ∀ = < −

… …

Before Meets Before Meets

Overlaps Overlaps During During

()3

 65

In the above formula, multiple instances are created while activity B has been

enabled and will finish their execution either some time after activity B completes or

before activity B finishes; but they are not synchronized.

A.2.1.2. Reo Multiple Instances without Synchronization

Figure A-4 represents the implementation of Multiple Instances without

Synchronization pattern in Reo. In order to implement this pattern in Reo, we use Reo’s

AND-Split connector. After component instance B receives the execution control, it

works as follows: (1) creates multiple instances by writing the token on its output node

BBO1; (2) passes the execution control to activity C by writing on its output node BO2B ,

regardless of states of instances.

Figure A-5-4 Reo MI without synchronization connector

Now we present the TDS behavior of the above connector.

1. For the Delay connector between nodes AO and BB

(

I we have:

() () () () () () ()), ,DelayO O I I O I Od A A d B B d A d B A B Iτ τ τ τ〈 〉 ≡ = ∧ ≤〈 〉

2. For the AND-Split connector consists of nodes BBO1 and bi we have:

 66

() () () () () ()()
1O

≡

() () () () () () ()
1 1

1 1

, , 1 , 1 , , 1 , 1

1 1
O O

O O

d B B d b b d b b

d B d b d bn B b B bn

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉

= = = ∧ ≤ ∧ ∧ ≤

AND-Split …

… …

3. For the Delay connector between nodes BB

(

O2 and CI we have:

) () () ()() () () ()2 2 2 2, ,O O I I O I Od B B d C C d B d C B CIτ τ τ τ〈 〉 ≡ = ∧ ≤Delay

() () ()

〈 〉

By composing three formulas above, we obtain the TDS formula for Reo Multiple

Instances without Synchronization:

() () ()(() (), , , , , , ,d A A d B B d B B d B Bτ τ τ τ〈 〉 〈 〉 〈 〉 〈 〉MI_1

() () () () () ())

() () () ()() () () () ()()
() () () ()() ()

1 1 2 2

2 2

1 1

1 , 1 , , , , ,

1.. : 4

O O I I O O O O

I I I I

O I O I O I O I

O I O I

d b b d bn bn d C C

d A d B A B d B d C B C

i n d B d bi B bi A

τ τ τ

τ τ τ τ

τ τ

〈 〉 〈 〉 〈 〉 ≡

= ∧ ≤ ∧ = ∧ ≤ ∧

∀ = = ∧ ≤ −

…

() ()Furthermore, we assume that 1 2O OB Bτ τ< ; it means that multiple instances are

created before activity B releases the token for activity C. Note that if no instances have

to be created, activity B will only write the token to node BBO2.

A.2.2. Multiple Instances with Design Time Knowledge

This pattern represents a situation in a workflow when multiple instances of an

activity should be created and executed in parallel. The number of instances required is

known at design time. This pattern requires that multiple instances be synchronized

before the next activity becomes activated. As an example, the requisition of hazardous

material in a factory requires three different authorizations.

 67

A.2.2.1. Workflow Multiple Instances with Design Time Knowledge

Figure A-5 represents workflow Multiple Instances with Design Time Knowledge

pattern in which the number of required instances, n, is known at design time. In this

pattern, when activity B becomes enabled, the required number of instances will be

created, i.e. bi, …, bn, and after those instances finishes executing, activity C becomes

enabled.

Figure A-5-5 Workflow Multiple Instances with Design Time Knowledge

()Formula A - 5 specifies the behaviour of this pattern.

() ()
() ()() () ()()
() ()() () ()()

[] () (

1 1

1 1

1.. : 1.. :

1.. :

e s e s e s e s e s e s

e s e s

A B A B

B b B bn B b B bn

b C bn C b C bn C

A B A B i n B bi B bi i n bi C bi C

A B i n B bi bi

⎡ ⎤∨ ∧⎣ ⎦
⎡ ⎤∧ ∧ ∨ ∧ ∧ ∧⎣ ⎦
⎡ ⎤∧ ∧ ∨ ∧ ∧ ≡⎣ ⎦

⎡ ⎤ ⎡< ∨ = ∧ ∀ = < ∨ = ∧ ∀ = < ∨ =⎣ ⎦ ⎣

≤ ∧ ∀ = ≤ ∧

… …

… …

Before Meets

Before Before Meets Meets

Before Before Meets Meets

()() ()5e sC A≤

)⎤ ≡⎦

−

A.2.2.2. Reo Multiple Instances with Design Time Knowledge

Figure A-6 represents the Reo implementation of Multiple Instances without

Synchronization pattern in Reo. Since the number of required instances is known at

 68

design time, those instances are created using AND-Split and are synchronized using

AND-Join.

Figure A-5-6 Reo MI with Design Time Knowledge connector

Now we present the TDS behavior of the above connector.

1. For the Delay connector between nodes AO and BB

(

I we have:

) () () ()() () () (), ,DelayO O I I O I Od A A d B B d A d B A BIτ τ τ τ〈 〉 〈 〉 ≡ = ∧ ≤

2. For the AND-Split connector consisting of nodes BB

(

O and biI we have:

) () () () () ()()
I

〉 ≡

(

() () () () () () ()
, , 1 , 1 , , ,

1 1
O O I I I I

O I I O I O

d B B d b b d bn bn

d B d b d bn B b B bn

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈

= = = ∧ ≤ ∧ ∧ ≤

AND-Split …

… …

3. For the AND-Join connector consisting of nodes biO and CI we have:

) () () () () ()()
() () () ()() () () () ()()1

1 , 1 , , ,

1
O O O O I I

O I O I O I O I

d b b d bn bn d C C

d b d C b C d bn d C bn C

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉

= ∧ ≤ ∧ ∧ = ∧ ≤

AND-Join , ,…

…

≡

By composing three formulas above, we obtain the TDS formula for Reo

Multiple Instances with Design Time Knowledge:

 69

() () () ()() () () ()(, , , , , , 1 , 1 , ,O O I I O Od A A d B B d B B d b bτ τ τ τ〈 〉 〈 〉 〈 〉 〈 〉

() () () ())

() () () ()() () () () ()()
() () () ()() ()

, , ,

1.. :

1.. : 6

I I

O I O I O I O I

O I O I

d bn bn d C C

d A d B A B i n d B d bi B bi

i n d bi d C bi C A

τ τ

τ τ τ τ

τ τ

〈 〉 〈 〉 ≡

= ∧ ≤ ∧ ∀ = = ∧ ≤ ∧

∀ = = ∧ ≤ −

MI_2 …

A.2.3. Multiple Instances with Run Time Knowledge

This pattern represents a situation in a workflow when multiple instances of an

activity should be created and executed in parallel. The number of instances required is

known at run time and before the time instances have to be actually created. This pattern

requires that multiple instances be synchronized before the next activity becomes

activated. As an example, in the review process of a scientific paper submitted to a

journal, reviewing a paper is instantiated several times depending on the content of the

paper, the availability of referees, and the credentials of the authors. Only if all reviews

have been returned, processing is continued.

A.2.3.1. Workflow Multiple Instances with Run Time Knowledge

Figure A-7 represents workflow Multiple Instances with Run Time Knowledge

pattern in which the number of required instances, n, is known at run time.

 70

Figure A-5-7 Workflow Multiple Instances with Run Time Knowledge

Formula specifies the behaviour of this pattern. ()A - 7

⎤⎦

() ()
() ()() () ()()
() ()() () ()()

() ()

1 1

1 1

1.. : 1.. :

1.. :

e s e s e s e s e s e s

e s e

A B A B

B b B bn B b B bn

b C bn C b C bn C

A B A B i n B bi B bi i n bi C bi C

A B i n B bi

⎡ ⎤∨ ∧⎣ ⎦
⎡ ⎤∧ ∧ ∨ ∧ ∧ ∧⎣ ⎦
⎡ ⎤∧ ∧ ∨ ∧ ∧ ≡⎣ ⎦

⎡ ⎤ ⎡< ∨ = ∧ ∀ = < ∨ = ∧ ∀ = < ∨ = ≡⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣

≤ ∧ ∀ = ≤

… …

… …

Before Meets

Before Before Meets Meets

Before Before Meets Meets

()() ()7s e sbi C A∧ ≤ −

A.2.3.2. Reo Multiple Instances with Run Time Knowledge

Figure A-8 represents the Reo implementation of Multiple Instances with Run Time

Knowledge pattern in Reo. We implement this pattern as follows. The multiple instances

are created using an AND-Split connector. For synchronizing the instances we introduce

a new helper activity B1 and use the Multi Merge connector. After each instance of

activity B finishes, activity B1 becomes enabled once and decides whether all instances

have finished their execution or not. If all have finished, B1 will enabled activity C;

hence synchronize the instances. If they have not finished yet, it waits for other instances

to complete.

 71

Figure A-5-8 Reo MI with Run Time Knowledge connector

Now we present the TDS behavior of the Multiple Instances with Run Time

Knowledge connector.

1. For the Delay connector between nodes AO and BB

(

I we have:

) () () ()() () () (), ,DelayO O I I O I Od A A d B B d A d B A BIτ τ τ τ〈 〉 ≡ = ∧ ≤〈 〉

2. For the AND-Split connector consisting of nodes BB

(

O and biI we have:

) () () () () ()()
I

〉 ≡

()

() () () () () () ()
, , 1 , 1 , , ,

1 1
O O I I I I

O I I O I O

d B B d b b d bn bn

d B d b d bn B b B bn

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈

= = = ∧ ≤ ∧ ∧ ≤

AND-Split …

… …

3. For the Multi Merge connector consisting of nodes biO and B1I we have:

() () () () ()()

)

1 , 1 , , 1 , 1d b b d bn bn d B Bτ τ τ

τ

〈 〉 〈 〉 〈 〉 ≡

(

() ()
() () () ()

() () () () () (

() () () () () ()

0 0

0 0

0 0

1.. , 1.. :

1 1

1 , 1 , , ,

, , , , , 1 , 1

O O O O I I

O O

O I O I

O O O O O O

O O O O I I

i n j n bi bj

d bi d B bi B

d b b d bi bi if bi bj

d bj bj d bn bn d B B

τ τ

τ τ

τ τ τ

τ τ τ

∀ = = ≠ ∧

= ∧ ≤ ∧

⎛ ′ ′〈 〉 〈 〉 <⎜
⎝

⎞′ ′〈 〉 〈 〉 〈 〉 ⎟
⎠

MultiMerge , ,

MultiMerge

,

…

… …

4. For the Delay connector between nodes B1O and CI we have:

) () () ()
() () () ()1 1

DelayO O I I

O I Od B d C B Cτ τ= ∧ ≤

1 , 1 ,

I

d B B d C Cτ τ〈 〉 〈 〉 ≡

 72

By composing three formulas above, we obtain the TDS formula for Reo Multiple

Instances with Run Time Knowledge:

() () () () (() ()() ()) ()(, , , , , , 1 , 1 , 1 , 1 ,O O I I O O I I O Od A A d B B d B B d B B d B Bτ τ τ τ τ〈 〉 〈 〉 〈 〉 〈 〉 〈 〉MI_3

〉

() () () () () ())
() ()

() () () () () () () ()
() () () () () () () ()

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

1 , 1 , , , , ,

1.. , 1.. :

1 1

1 1

I I

I I

O I O I O I O I

O I O I I I O I

d b b d bn bn d C C

i n j n bi bj

d A d B d B d bi d bi d B d B d C

A B B bi bi B B C

τ τ τ

τ τ

τ τ τ τ τ τ τ τ

〈 〉 〈 〉 〉 ≡

∀ = = ≠ ∧

= ∧ = ∧ = ∧ = ∧

≤ < ≤ < ≤ < ≤

…

() ()

() () () () () () () () () ()

() () () () () () () () ()

0 0

, , , , , , 1 , 1 , 1 , 1 ,

1 , 1 , ..., , , , , , A - 8

I I

O O I I O O I I O O

I I

if bi bj

d A A d B B d B B d B B d B B

d b b d bi bi d bn bn d C C

τ τ

τ τ τ τ τ

τ τ τ τ

<

⎛ ′ ′ ′ ′ ′ ′′ ′ ′ ′〈 〉 〈 〉 〈 〉 〈 〉 〈⎜
⎝

⎞′ ′〈 〉 〈 〉 〈 〉 〉 ⎟
⎠

MI_3

…

A.2.4. Multiple Instances without Run Time Knowledge

This pattern represents a situation in a workflow when multiple instances of an

activity should be created and executed in parallel. The number of instances required is

not known at run time and even before the time instances have to actually be created.

Thus, it is possible that when some of the instances are being executed and some of them

are completed, more instances need to be created and executed in parallel. In addition,

this pattern requires that multiple instances be synchronized before the next activity

becomes activated. As an example, for the processing of an insurance claim, zero or more

eyewitness reports should be handled. The number of eyewitness reports may vary. Even

when processing eyewitness reports for a given insurance claim, new eyewitnesses may

surface and the number of instances may change.

A.2.4.1. Workflow Multiple Instances without Run Time Knowledge

Figure A-9 represents workflow Multiple Instances without Run Time Knowledge.

 73

Figure A-5-9 Workflow Multiple Instances without Run Time Knowledge

Formula specifies the behaviour of this pattern. ()A - 9

⎤⎦

⎤⎦

() ()
() ()() () ()()

[] () ()

()

1.. : 1.. :

1.. : 1.. :

1.. : 1.. , 1.. :

e s e s e s e s e s e s

e s e si ei s si sj s

A B A B

i n B bi B bi i n bi C bi C

A B A B i n B bi B bi i n bi C bi C

A B i n B b b C i n j n b b b

⎡ ⎤∨ ∧⎣ ⎦
⎡ ⎤ ⎡∀ = ∨ ∧ ∀ = ∨ ≡⎣ ⎦ ⎣

⎡ ⎤ ⎡< ∨ = ∧ ∀ = < ∨ = ∧ ∀ = < ∨ = ≡⎣ ⎦ ⎣

≤ ∧ ∀ = ≤ ∧ ≤ ∧ ∀ = = ≤ ∨

Before Meets

Before Meets Before Meets

()() ()9i sjb A≥ −

A.2.4.2. Reo Multiple Instances without Run Time Knowledge

Figure A-10 represents the Reo implementation of Multiple Instances without Run

Time Knowledge in Reo. We implement this pattern using AND-Split, Multi Merge,

XOR-Split, and XOR-Join connectors. After the completion of activity A, activity B

becomes enabled and creates the required instances using the AND-Split connector. We

introduce a helper activity, B1, which is, as in previous pattern, responsible for

synchronizing the multiple instances. Activity B1 works as follows: whenever any of the

instances finishes executing, according to Multi Merge connector, B1 becomes enabled; it

checks whether new instances should be created or not. If new instances are required, by

using the XOR-Split connector, activity B becomes enabled again and creates more

instances. If new instances are not required, B1 will waits for all instances to be

 74

completed and synchronize them. Then, it will enable activity C using XOR-Split

Connector.

Figure A-5-10 Reo MI without Run Time Knowledge connector

Now we present the TDS behavior of the Multiple Instances without Run Time

Knowledge connector.

1. For the XOR-Join connector consists of nodes AO, j, and BB

() () () () () ()(

I we have:

)
() ()
() () () ()

() () () () () () () ()

() () () ()

() () () () () () ()

0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

, , , , ,

, , , , ,

, , , , ,

O O I I

O

O I O I

O O I I O

I I

O O I I O

d A A d j j d B B

A j

d A d B A B

d A A d j j d B B if A j

d j d B j B

d A A d j j d B B if j A

τ τ τ

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

≠ ∧

= ∧ ≤ ∧

⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

= ∧ ≤ ∧

⎛ ⎞′′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

XOR-Join

XOR-Join

XOR-Join ()0

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

0τ

τ

2. For the AND-Split connector consists of nodes BBO and biI we have:

() () () () () ()

() () () () () () (
1 1, , , , , ,

1 1
O O I I In In

O I I O I O

d B B d b b d b b

d B d b d bn B b B bn

τ τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉

= = = ∧ ≤ ∧ ∧ ≤

AND-Split …

… …
()

)I

≡

3. For the Multi Merge connector consists of nodes biO and B1I we have:

 75

(() () () () () ())
() ()

() () () ()

() () () () () (

() () () () () ()

0 0

0 0

0 0

1.. , 1.. :

1 1

1 , 1 , , ,

, , , , , 1 , 1

O O O O I I

O O

O I O I

O O O O O O

O O O O I I

i n j n bi bj

d bi d B bi B

d b b d bi bi if bi bj

d bj bj d bn bn d B B

τ τ

τ τ

τ τ τ

τ τ τ

∀ = = ≠ ∧

= ∧ ≤ ∧

⎛ ′ ′〈 〉 〈 〉 <⎜
⎝

⎞′ ′〈 〉 〈 〉 〈 〉 ⎟
⎠

MultiMerge , ,

MultiMerge

,

…

… …

)

1 , 1 , , 1 , 1d b b d bn bn d B Bτ τ τ

τ

〈 〉 〈 〉 〈 〉 ≡

()

4. For the XOR-Split connector consists of nodes B1O, i and CI we have:

() () () () ()

()τ τ τ〈 〉 〈 〉 〈 〉 ≡

() ()(() ()

() () () ()
() () () ()

1 , 1 , ,

1 1
1

O O I I

O O

O I O I

d B B d i i d C C

d B d i B i if
d B d C A C if

τ τ
τ τ

⎧ = ∧ ≤⎪
⎨ = ∧ ≤ ¬⎪⎩

XOR -Split , ,

pat

pat

By composing four formulas above, we obtain the TDS formula for Reo Multiple

Instances with Run Time Knowledge:

() () () (() ()), , , , , , 1 , 1 , 1 , 1 ,O O I I O O I I O Od A A d B B d B B d B B d B Bτ τ τ τ τ〈 〉 〈 〉 〈 〉 〈 〉 〈 〉MI_4

,

() () () () () ()) () ()
() () () () () ()
() () () () () () ()

() ()

0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0

1 , 1 , , , , , 1.. , 1.. :

1

1 1

1

I I O O

O I O I O I

O I O I O I O

O O

d b b d bn bn d C C i n j n A j

d A d B d B d bi d bi d B

A B B bi bi B B

d B
bi bj

τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ

〈 〉 〈 〉 〉 ≡ ∀ = = ≠

= ∧ = ∧ = ∧

≤ < ≤ < ≤ < ∧

≠ ∧

…

() () () ()
() () () ()

() ()

() () () () () ()
() () () () () () ()

() () () () () ()
() () () ()

0 00 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0
0 0

0 0 0 0

1
1 1

1

1 1

1 1
1 1

O OO O O O

O I O I

O I O I O I

O I O I O I O

O O O O
O O

O I O I

if A jd j B j if
d B d C B C if

d j d B d B d bi d bi d B

j B B bi bi B B

d B d j B j if
bi bj

d B d C B C if

τ ττ τ
τ τ

τ τ τ τ τ τ τ

τ τ
τ τ

τ τ

<⎧ = ∧ ≤⎪
⎨ = ∧ ≤ ¬⎪⎩

= ∧ = ∧ = ∧

≤ < ≤ < ≤ < ∧

= ∧ ≤
≠ ∧

= ∧ ≤ ¬

pat

pat

pat

() ()

() () () () () () () () () ()

() () () () () () () () ()

0 0

, , , , , , 1 , 1 , 1 , 1

1 , 1 , ..., , , , , , A -10

O O

O O I I O O I I O O

I I

if j A

d A A d B B d B B d B B d B B

d b b d bi bi d bn bn d C C

τ τ

τ τ τ τ τ

τ τ τ τ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ <⎪
⎪ ⎧⎪⎪ ⎨⎪ ⎪⎩⎩

⎛ ′ ′ ′ ′ ′ ′′ ′ ′ ′∧ 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉⎜
⎝

⎞′ ′〈 〉 〈 〉 〈 〉 〉 ⎟
⎠

pat

MI_4

…

Note that whenever the pattern pat is true, then more instances should be

created.

 76

A.3. State-based Patterns

In the following section, we present the specification and implementation of

workflow state-based patterns.

A.3.1. Deferred Choice

This pattern represents a situation in a workflow when, among several alternative

branches, one is chosen and the others are withdrawn. The difference with XOR-Split

pattern is that the choice is not made explicitly (based on some conditions or control

data); some alternatives are offered to the environment and the environment activates one

of the branches (e.g. sending a signal to the activity). It is important to note that the

choice is delayed until the processing in one of the alternative branches is actually

started, i.e. the moment of choice is as late as possible. This pattern is also known as

Deferred XOR-Split. As an example, in an organization, after receiving products there are

two ways to transport them to the destination department. The selection is based on the

availability of the corresponding resources. Therefore, the choice is deferred until a

resource is available.

A.3.1.1. Workflow Deferred Choice

Figure A-11 represents workflow Deferred Choice pattern in which after

completion of activity A, based on the signal received from the environment of the

workflow case, signal1 or signal2, either activity B or C becomes enabled, respectively.

 77

Figure A-5-11 Workflow Deferred Choice

Formula represents the PITL formula for this pattern. ()A -11

() () ()
() () ()

()
() ()

2

11
11

22
e e se e s e s

e e se e s e s

signal A A C A C

A signal A BA signal A B A B
A

A signal A CA signal A C A C

≡⎨ → ∨⎪⎩

⎧ = → ≤= → < ∨ = ⎧⎪ ≡ −⎨ ⎨ = → ≤= → < ∨ =⎪ ⎩⎩

Starts Before Meets

1signal A A B A B⎧ → ∨⎪ Starts Before Meets

The above formula states that if at the time activity A is completed signal1 is

received, then activity B follows; but if at the time activity A is completed signal2 is

received, then activity C follows A. In the above formula, signal1 and signal2 are zero-

length intervals at which signal1 and signal2 are received, respectively.

A.3.1.2. Reo Deferred Choice

Figure A-12 represents the implementation of Deferred Choice pattern in Reo. In

order to implement this pattern, we model the environment as an activity called

Environment; this activity is responsible for receiving the signals from the actual

environment. After the execution of A, control transfers to Environment. Then, it decides

which one of activities B or C should be executed next. According to this decision, the

XOR-Split connector enables either B or C.

 78

Figure A-5-12 Reo Deferred Choice connector

(The TDS formula for this pattern is the same as formula)4 11− for XOR-Split

connector. The only difference here is that the conditions in Deferred Choice connector

are actually signals from the environment. Formula ()12A−

()

 represents the TDS formula

for this connector.

() () () () ()(), , ,d E E d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉 ≡DeferredChoice , ,

() () () ()
() () () () ()12

O O I I I I

O I O I

O I O I

d E d B E B if
A

d E d C E C if
τ τ
τ τ

⎧ = ∧ ≤⎪ −⎨ = ∧ ≤⎪⎩

signal1

signal2

A.3.2. Interleaved Parallel Routing

This pattern represents a situation in a workflow when several activities have to be

executed in an arbitrary order. The order of execution is determined at run time for each

workflow instance. It is assumed that no two activities are executed in parallel. This

activity is also known as Unordered Sequence. As an example, the Navy requires every

job applicant to take two tests: physical test and mental test. These tests can be conducted

in any order but not at the same time.

A.3.2.1. Workflow Interleaved Parallel Routing

Figure A-13 represents workflow Interleaved Parallel Routing pattern in which

after completion of activity A, activities B and C become enabled after each other in an

 79

arbitrary order; the fact that which activity should be enabled first depends on some

condition at run time.

Figure A-5-13 Workflow Interleaved Parallel Routing

() Formula A -13

(

represents the PITL formula for this pattern.

) ()() (() ())A B A B B C B C⎡ ∨ ∧ ∨ ∧⎣ Before Meets Before Meets

() ()()
() ()() () ()()
() ()()

() () ()
() () ()

e s e s e s e s e s e s

e s e s e s e s e s e s

e s e

C D C D

A C A C C B C B

B D B D

A B A B B C B C C D C D

A C A C C B C B B D B D

A B B C

⎤∨ ∨⎦
⎡ ∨ ∧ ∨ ∧⎣

⎤∨ ≡⎦

⎡ ⎤< ∨ = ∧ < ∨ = ∧ < ∨ = ∨⎣ ⎦
⎡ ⎤< ∨ = ∧ < ∨ = ∧ < ∨ = ≡⎣ ⎦

≤ ∧ ≤

Before Meets

Before Meets Before Meets

Before Meets

() () ()13s e s e s e s e sC D A C C B B D A∧ ≤ ∨ ≤ ∧ ≤ ∧ ≤ −

The above formula states that if the completion of activity A happens either some

time before or at the same time activity B becomes enabled (which means activity B is

executed before activity C), then, completion of B happens some time before or at the

same time activity C becomes enabled and completion of C happens some time before or

at the same time activity D becomes enabled. But if the completion of activity A happens

either some time before or at the same time activity C becomes enabled (which means

 80

activity B is executed before activity B), then, completion of C happens some time before

or at the same time activity B becomes enabled and completion of B happens some time

before or at the same time activity D becomes enabled.

A.3.2.2. Reo Interleaved Parallel Routing

Figure A-14 represents the Reo implementation of Interleaved Parallel Routing in

Reo. We model this pattern in the context of a loop. After execution of A, one of the

activities B or C will be executed according to some condition at run time (the decision is

made by the Deferred Choice connector). Assume that B becomes enabled first. After B

finishes executing, the XOR-Split connector checks whether all activities, i.e. here B and

C, have been executed or not. If not, the loop continues with the Deferred Choice

connector and activity C becomes enabled. After C finishes executing, activity D will

become enabled. If there are more than two activities, then among the rest of activities,

one is chosen in Deferred Choice and the flow will continue until all activities are

executed in an arbitrary order.

Figure A-5-14 Reo Interleaved Parallel Routing connector

Now we present the TDS behavior of the Interleaved Parallel Routing connector.

1. For the XOR-Join connector consisting of nodes AO, l, and i we have:

 81

() () () () () ()

() ()
() () () ()

() () () () () () () (

() () () ()

() () () () () () () ()

0 0

0 0 0 0

0 0

0 0 0 0

0 0

, , , , ,

, , , , ,

, , , , ,

O O

O

O O

O O O

O O O

d A A d l l d i i

A l

d A d i A i

d A A d l l d i i if A l

d l d i l i

d A A d l l d i i if l A

τ τ τ

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

≠ ∧

⎧ = ∧ ≤ ∧
⎪

⎛ ⎞⎪ ′ ′ ′ ′〈 〉 〈 〉 〈 〉⎜ ⎟⎪⎪ ⎝ ⎠
⎨

= ∧ ≤ ∧⎪
⎪ ⎛ ⎞′′ ′ ′⎪ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪ ⎝ ⎠⎩

XOR-Join

XOR-Join

XOR-Join

()

)τ<

2. For the Deferred Choice connector consisting of nodes i, BBI and CI we

have:

(() () () () () ())
() () () ()
() () () ()

, , ,DeferredChoice , ,

signal1

signal2

I I I I

I I

I I

d i i d B B d C C

d i d B i B if
d i d C i C if

τ τ τ

τ τ
τ τ

〈 〉 〈 〉 〈 〉 ≡

⎧ = ∧ ≤⎪
⎨ = ∧ ≤⎪⎩

3. For the XOR-Join connector consisting of nodes BB

() () () () () ()()

)

)

τ

τ

(

O, CO, and j we have:

 () ()
() () () ()

() () () () () () () (

() () () ()

() () () () () () () (

0 0

0 0 0 0

0 0

0 0 0 0

0 0

, , , , ,

, , , , ,

, , , , ,

O O O O

O O

O O

O O O O O O

O O

O O O O O O

d B B d C C d j j

B C

d B d j B j

d B B d C C d j j if B C

d C d j C j

d B B d C C d j j if C B

τ τ τ

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ

〈 〉 〈 〉 〈 〉 ≡

≠ ∧

⎧ = ∧ ≤ ∧
⎪

⎛ ⎞⎪ ′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪⎪ ⎝ ⎠
⎨

= ∧ ≤ ∧

⎛ ⎞′′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟
⎝ ⎠

XOR-Join

XOR-Join

XOR-Join

⎪
⎪
⎪
⎪⎩

4. For the XOR-Split connector consists of nodes j, k, and DI we have:

) () () () () ()()τ τ τ〈 〉 〈 〉 〈 〉 ≡

() () () ()
() () () ()

, , ,XOR -Split , , I I

I I

d j j d k k d D D

d j d k j k if another activity has to be enabled
d j d D j D if both activities have been completed

τ τ
τ τ

⎧ = ∧ ≤⎪
⎨ = ∧ ≤⎪⎩

By composing four formulas above, we obtain the TDS formula for Reo Interleaved

Parallel Routing:

 82

() () () () () ()(, , , , , ,O O I I I Id A A d B B d C Cτ τ τ〈 〉 〈 〉 〈 〉IPR

() () () () () ()) ()
() () () ()
() () () () () ()
() () () () () ()

() () () () ()

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

, , , , , 14

,

O O O O I I

O O O

O I O I O

O I O I O

O I O I O

d B B d C C d D D A

A l B C

d A d B A B if A l
d A d C A C if A l

d B d D B D d A

τ τ τ

τ τ τ τ

τ τ τ τ
τ τ τ τ

τ τ

〈 〉 〈 〉 〈 〉 ≡ −

≠ ∧ ≠ ∧

⎧ = ∧ = ≤ ∧⎪ ∧⎨ = ∧ = ≤ ∧¬⎪⎩

′= ∧ ≤ ∧ 〈

milestone

milestone

IPR () () () () ()

() () () () () () () ()

() () () () () ()

() () () () () () () () () ()

0 0

0 0 0 0 0 0

0 0 0 0

, , , , ,

, , , , ,

, , , , , ,

O I I I I

O O O O I I O O

O O O O

O I O I O O I I I I

A d B B d C C

d B B d C C d D D if B C

d B d l B l if B C

d C d D C D d A A d B B d C C

d B

τ τ τ

τ τ τ τ τ

τ τ τ τ

τ τ τ τ τ

⎛ ′ ′ ′〉 〈 〉 〈 〉⎜
⎝

⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 ≤ ∧⎟
⎠

= ∧ ≤ ≤ ∧

⎛ ′ ′ ′ ′= ∧ ≤ 〈 〉 〈 〉 〈 〉⎜
⎝

〈

no more activity

more activties

IPR

() () () () () () () ()

() () () () () ()
0 0

0 0 0 0 0 0

, , , , ,O O O O I I O O

O O O O

B d C C d D D if C B

d C d l C l if C B

τ τ τ τ τ

τ τ τ τ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ⎞′ ′ ′ ′⎪ 〉 〈 〉 〈 〉 ≤ ∧⎟

⎠⎪
⎪ = ∧ ≤ ≤ ∧¬⎩

no more activity

more activties

A.3.3 Milestone

This pattern represents a situation in a workflow when enabling of an activity

depends on the case being in a specified state, i.e. the activity is only enabled if a certain

milestone has been reached which did not yet expire. As an example, in a travel agency,

flights, rental cars, and hotels may be booked as long as the invoice is not printed.

A.3.2.1. Workflow Milestone

Figure A-15 represents workflow Milestone pattern in which after completion of

activity A, based on a milestone, milestone, either activity B or C becomes enabled,

respectively.

 83

Figure A-5-15 Workflow Milestone

()Formula A -15

(

represents the PITL formula for this pattern.

) () ()
() () ()
() () ()
() () ()

()e e s e s e

milestone A A C A C

milestone B B B B B

milestone B B C B C

A milestone A B A B A miles

⎡ ⎤¬ → ∨ ∧⎣ ⎦
⎡ ⎤→ ∨ ∧⎣ ⎦
⎡ ⎤¬ → ∨ ≡⎣ ⎦

⎡ ⎤= → < ∨ = ∧ = ¬⎣ ⎦

Finishes Before Meets

Finishes Before Meets

Finishes Before Meets

()
() (

() ()
() () ()15

e s e s

e e s e s e e s e

e e s e e s

e e s e e s

tone A C A C

B milestone B B B B B milestone B C B C

A milestone A B A milestone A C

B milestone B B B milestone B C A

⎡ ⎤→ < ∨ = ∧⎣ ⎦
⎡ ⎤ ⎡= → < ∨ = ∧ = ¬ → < ∨ =⎣ ⎦ ⎣

= → ≤ ∧ = ¬ → ≤ ∧

= → ≤ ∧ = ¬ → ≤ −

milestone A A B A B⎡ ⎤→ ∨ ∧⎣ ⎦Finishes Before Meets

)s ⎤ ≡⎦

The above formula states that if at the time activity A is completed, milestone has

been met, then the completion of activity A happens either some time before or at the

same time activity B becomes enabled; but if at the time activity A is completed,

milestone has been expired, then the completion of activity A happens either some time

before or at the same time activity C becomes enabled. On the other hand, if at the time

activity B is completed, milestone has been again met, activity B becomes enabled again;

otherwise, activity C becomes enabled. Note that in the above formula, milestone is a

zero-length interval at which a particular milestone is met.

 84

A.3.2.2. Reo Milestone

Figure A-16 represents the Reo implementation of Milestone in Reo. We

implement the Milestone pattern in Reo using the Deferred Choice connector. In

Deferred Choice, according to some milestone, the decision is made whether activity B or

C should be executed after activity A. If the milestone has not been met, the Deferred

Choice will decide that activity C should be executed next. But if the milestone has been

met, activity B will become enabled. Activity B will be executed continuously as long as

that milestone has not expired. The milestone will be checked after each execution of B.

When the milestone expires then activity C will become enabled.

Figure A-5-16 Reo Milestone connector

Now we present the TDS behavior of the Milestone connector.

1. For the sync connector consisting of nodes AO and i we have:

() () () () () () () (), ,O O O Od A A d i i d A d i A iτ τ τ〈 〉 〈 〉 ≡ = ∧sync τ=

2. For the XOR-Join connector consisting of nodes i, l, and j we have:

 85

() () () () () ()()τ τ τ

τ

τ

〈 〉 〈 〉 〈 〉 ≡

() ()
() () () ()

() () () () () () () ()

() () () ()

() () () () () () () ()

0 0

0 0 0 0

0 0

0 0 0 0

0 0

, , , , ,

, , , , ,

, , , , ,

d i i d l l d l l

i l

d i d j i j

d i i d l l d j j if i l

d l d j l j

d i i d l l d j j if l i

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ τ

≠ ∧

⎧ = ∧ ≤ ∧
⎪

⎛ ⎞⎪ ′ ′ ′ ′〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪⎪ ⎝ ⎠
⎨

= ∧ ≤ ∧⎪
⎪ ⎛ ⎞′′ ′ ′⎪ 〈 〉 〈 〉 〈 〉 <⎜ ⎟⎪ ⎝ ⎠⎩

XOR-Join

XOR-Join

XOR-Join

3. For the Deferred Choice connector consisting of nodes j, k and CI we

have:

(() () () () () ())
() () () ()
() () () ()

, , ,DeferredChoice , , I I

I I

d j j d k k d C C

d j d k j k if milestone
d j d C j C if milesotne

τ τ τ

τ τ
τ τ

〈 〉 〈 〉 〈 〉 ≡

⎧ = ∧ ≤⎪
⎨ = ∧ ≤ ¬⎪⎩

4. For the sync connector consisting of nodes k and BB

(

I we have:

) () () () () () () (), , τ τ τ τ〈 〉 ≡ = ∧ =sync I I I Id k k d B B d k d B k B〈 〉

5. For the sync connector consisting of nodes BB

(

O and l we have:

() () () ()) () () () , ,τ τ τ τ〈 〉 〈 〉 ≡ = ∧ =d B B d l l d B d l B lsyncO O O O

By composing five formulas above, we obtain the TDS formula for Reo Milestone:

 86

() () () () ()() () ()() (), , , , , , , 16O O I I O O I Id A A d B B d B B d C C Aτ τ τ τ〈 〉 〈 〉 〈 〉 〈 〉 ≡ −Milestone

() ()

() () () ()
() () () ()
() () () () () ()

() () () () () ()

0 0

0 0 0 0

0 0 0 0
0 0

0 0 0 0

, , , , , ,

O O

O O

I I
O O

I I

O O I I O O

A B

d A d j A j

d j d B j B if milestone
if A B

d j d C j C if milesotne

d A A d B B d B B

τ τ

τ τ

τ τ
τ τ

τ τ

τ τ τ

≠ ∧

= ∧ ≤ ∧

⎧ = ∧ ≤⎪ ∧ <⎨ = ∧ ≤ ¬⎪⎩

′ ′ ′ ′′ ′〈 〉 〈 〉 〈 〉Milestone () ()

() () () ()
() () () ()
() () () () () ()

() () () () () () () ()

0 0 0 0

0 0 0 0
0 0

0 0 0 0

,

, , , , , , ,

I I

O O

I I
O O

I I

O O I I O O I I

d C C

d B d j B j

d j d B j B if milestone
if B A

d j d C j C if milesotne

d A A d B B d B B d C C

τ

τ τ

τ τ
τ τ

τ τ

τ τ τ τ

⎧
⎪
⎪
⎪
⎪
⎪ ⎛ ⎞⎪ 〈 〉⎜ ⎟

⎝ ⎠⎪⎪
⎨
⎪ = ∧ ≤ ∧⎪
⎪ ⎧ = ∧ ≤⎪⎪ ∧ <⎨⎪ = ∧ ≤ ¬⎪⎩⎪
⎪ ⎛ ⎞′ ′ ′ ′〈 〉 〈 〉 〈 〉 〈 〉⎜ ⎟⎪ ⎝ ⎠⎩
Milestone

A.4. Cancellation Patterns

A.4.1. Cancel Activity

This pattern represents a situation in a workflow when an enabled activity is

disabled by another activity or an external event. This means that the thread which is

waiting for the execution of that activity is removed. It is assumed that the cancellation of

an activity refers to a single instance of that activity. As an example, normally, a design is

checked by two groups of engineers. However, to meet deadlines it is possible that one of

these checks is withdrawn to be able to meet a deadline.

A.4.1.1. Workflow Cancel Activity

Figure A-17 represents workflow Cancel Activity pattern in which after completion

of activity A, based on a signal from environment, activity C will be withdrawn, although

it has been enabled.

 87

Figure A-5-17 workflow Cancel Activity

()Formula A -17 cancelrepresents the PITL formula for this pattern. is the time

point at which cancel signal is sent from environment. ()withdraw C

(

 is the time point at

which activity C is withdrawn.

()) ()
()s eC cancel C withdraw C cancel< < → =

17cancel C withdraw C cancel A→ ≡ −During Equal

The above formula states that if the cancel is received during the execution of

activity C, then activity C is withdrawn and the time point it is withdrawn is equal to the

point of time the cancel signal has been received.

A.4.1.2. Reo Cancel Activity

Figure A-18 represents the Reo implementation of Cancel Activity in Reo. Since

Reo is not aware of what happens inside component instances and does not have any

control over them, when an activity becomes enabled, we cannot stop or cancel it

directly. So we have to implement this pattern indirectly by using a shadow activity and

the Deferred Choice pattern. Both the main activity and the shadow activity are preceded

by a Deferred Choice. Assume that in a workflow case, activity C should be executed

after activity A and there is the possibility that according to some cancel signal from the

environment, the execution of activity C be canceled. We introduce the shadow activity B

for this example. So, whenever activity C should be canceled, in the Deferred Choice

 88

connector, activity B becomes enabled instead of C (the execution of activity B is not a

real execution since it is a shadow activity).

Figure A-5-18 Reo Cancel Activity connector

The TDS formula for Reo Cancel Activity is:

() () () () () ()() ()
() () () ()()
() () () ()()

, , , , , 18O O I I I I

O I O I

O I O I

d A A d B B d C C

d A d B A B if cancle

d A d C A C if cancel

Aτ τ τ

τ τ

τ τ

〈 〉 〈 〉 〈 〉 ≡

⎧ = ∧ ≤⎪
⎨

= ∧ ≤ ¬⎪⎩

−CancelActivity

The above formula looks the same as Deferred Choice pattern: here the milestone

is the cancellation signal from environment and activity B is not a real activity; it is just a

shadow activity to cancel the execution of activity C.

A.4.2. Cancel Case

This pattern represents a situation in a workflow when the whole workflow instance

is cancelled by an activity or an external event. For the cancellation of an entire case, all

instances of each activity are cancelled. As an example, in an insurance processing

system, a customer withdraws an insurance claim before the final decision is made.

A.4.1.1. Workflow Cancel Case

Figure A-19 represents workflow Cancel Case pattern in which, based on a signal

from environment, the whole workflow case should be cancelled.

 89

Figure A-5-19 Workflow Cancel Case

()Formula A -19 cancelrepresents the PITL formula for this pattern. is the time

point at which cancel signal is sent from environment. ()withdraw w

(

 is the time point at

which workflow case w is withdrawn.

()) ()
()s ew cancel w withdraw w cancel< < → =

19cancel w withdraw w cancel A→ ≡ −During Equal

The above formula states that if the cancel is received during the execution of

workflow instance w, then w is withdrawn and the time point it is withdrawn is equal to

the point of time the cancel signal has been received.

A.4.1.2. Reo Cancel Case

We implement the Cancel Case pattern using the Cancel Activity pattern. Each

activity in the workflow case that may have the possibility to be canceled is preceded by

a cancel activity pattern. When the whole case should be canceled, a message will be

send to all activities and all shadow activities in the workflow case will become enabled

instead of the real activities.

 90

Appendix B: Overview of Point Interval Temporal

Logic

Point interval temporal logic (PITL) [40][42] is an extension of Allen’s interval

logic [19][20] that involves both descriptions of points and intervals of time. In interval

logic introduced by Allen the primitive notion of time is an interval which is a non-zero

length of time [20]. In PITL, intervals with zero lengths, i.e. points, are also introduced.

B.1. Basic Concepts

Now we represent the basic definitions of PITL [40][42].

Interval: An interval is denoted by a symbol, which can be a letter or a digit, and is

defined as [],X sx ex= sx ex sx≥, where and are positive integers and ex . In this

definition denotes “start ofsx x ” and denotes “end ofex x ”. The two bounds are abstract

notions and may not have numerical values assigned to them. The intervals considered

are closed intervals.

[],X sx ex= |, denoted by|Interval Length: The length of an interval X , is defined

as | | ex sx= − . X

Point: An interval X with| | 0X = is a point interval; or point, denoted as[]px . In

a system description, a point may be used to signify an occurrence or an event.

 91

Temporal Relation : The temporal relation is a truth functional binary

relation defined as:

Ri Ri

{ }: I× → ,Ri I T F where I is the set of intervals and T and and are

the Boolean values, true and false.

F

Set of Temporal Relations R : R represents the set of temporal relations and is

given as

Ri

{ }= Before, Meets, Ov arts, During, Finishes, EqualsR erlaps, St .

The definition of temporal relations for both zero length and non-zero length

intervals is given in figure B-1.

 I. [] [], , ,X sx ex Y sy ey= =
 X Before Y ex sy≡ <
 X Meets Y ex sy≡ =
 X Overlaps Y , ,sx sy sy ex ex ey≡ < < <
 X Starts Y ,sx sy ex ey≡ = <
 X During Y ,sx sy ex ey≡ > <
 X Finishes Y ,sy sx ex ey≡ < =
 X Equals Y ,sx sy ex ey≡ = =

II. [] [],X px Y py= =
 X Before Y px py≡ <
 X Equals Y px py≡ =

III. [] [], ,X px Y sy ey= =
 X Before Y px sy≡ <
 Y Before X ,sx sy ex ey≡ = =
 X Starts Y px sy≡ =
 X During Y sx px ey≡ < <
 X Finishes Y px ey≡ =

Figure B-1 Point Interval Temporal Logics Operators

We may have combinations of zero length or non-zero length intervals related to

each other by the seven operations above. Figure B-1 shows the possible relationships.

The first case which is shown in part one of the figure B-1 is that both intervals are non-

zero length; all relationships are applicable to these intervals with the given definition.

 92

The second case is that both intervals are zero length; they are points of time. Only

Before and Equals operations are applicable; other relations are obviously nonsense

in case of points of time. The third case is when one is a point of time and the other is a

non-zero length interval; the possible relations are Before, Starts, During, and

Finishes.

 93

References

[1] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of
the EATCS, 62:222--259, 1997. Available at URL: www.cwi.nl/#janr.

[2] B. Kiepuszewski, A.H.M. ter Hofstede, W.M.P. van der Aalst. Fundamentals of
Control Flow in Workflows. In QUT Technical report, FIT-TR-2002-03.
Queensland University of Technology, Brisbane. 2002.

[3] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow
management: from process modeling to workflow automation infrastructure.
Distrib. Parallel Databases, 3(2):119– 153, 1995.

[4] David Gelernter and Nicholas Carriero. Coordination Languages and their
Significance. Communications of the ACM, 35(2):96.107, February 1992.

[5] David Hollingsworth. Workflow Management Coalition, The Workflow Reference
Model. Document Number TC00-1003. Document Status - Issue 1.1. 19-Jan-95.

[6] Dong Yang, Shen-sheng Zhang: Modeling Workflow Process Models with
Statechart. ECBS 2003: 55-61.

[7] E. A. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume Volume B, Formal Methods and
Semantics, pages 995-1072. Elsevier Science Publishers and The MIT Press, 1990.

[8] Eshuis, R. and R. Wieringa, Verification support for workflow design with UML
activity graphs, in: Proc. 24th Intl. Conf. on Software Engineering (ICSE) (2002),
pp. 166–176.

[9] Eyal Oren, Armin Haller. Formal Frameworks for Workflow Modeling. Technical
Report. Digital Enterprise Research Institute (DERI). 2005.

[10] Farhad Arbab, Christel Baier, Jan J. M. M. Rutten, Marjan Sirjani. Modeling
Component Connectors in Reo by Constraint Automata: (Extended Abstract).
Electr. Notes Theor. Comput. Sci. 97: 25-46, 2004.

[11] Farhad Arbab, Jan J. M. M. Rutten: A Coinductive Calculus of Component
Connectors. WADT 2002: 34-55.

 94

[12] Farhad Arbab. A Behavioral Model for Composition of Software Components.

[13] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science 14(3): 329-366, 2004.

[14] G. A. Papadopoulos and F. Arbab, 'Coordination Models and Languages',
Advances in Computers, Academic Press, Vol. 46: The Engineering of Large
Systems, pp. 329-400. September 1998.

[15] G. Alonso, D. Agrawal, A. Abbadi, C. Mohan: Functionality and Limitations of
Current Workflow Management Systems, IEEE Expert Vol. 12, No. 5, 1997.

[16] H. Davulcu, M. Kifer, C. Ramakrishnan, and I. Ramakrishnan. Logic based
modeling and analysis of workflows. In ACM Symposium on Principles of
Database Systems, pp. 25–33. 1998.

[17] J. Wainer, Logic representation of processes in work activity coordination,
Proceedings of the ACM Symposium on Applied Computing, Coordination Track.
203-209. 2000.

[18] James F Allen. Time and Time Again: The Many Ways to Represent Time.
International Journal of Intelligent Systems, 6(4): pp341-355, July 1991.

[19] James F. Allen and George Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531-579, October 1994.

[20] James F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26:832-843, 1983.

[21] Li, H., Yang, Y., Chen, T.Y.: Resource Constraints Analysis of Workflow
Specifications. The Journal of Systems and Software, Elsevier, in press

[22] M. Dumas and A. ter Hofstede. UML Activity Diagrams as a Workflow
Specification Language. In Proc. of the International Conference on the Unified
Modeling Language (UML). Toronto, Canada, October 2001. Springer Verlag.

[23] M. Fowler, K. Scott, UML distilled, 2nd Edition, AddisonWesley, Harlow, 2000.

[24] Mashhood Ishaque, Abbas K. Zaidi. TIME-SENSITIVE PLANNING USING
POINT-INTERVAL LOGIC. Student Paper, 10th International Command and
Control Research and Technology Symposium, The Future of C2, McLean, VA.
June 2005.

 95

[25] N. R. Adam, V. Atluri, W. Huang. Modeling and analysis of workflows using Petri
nets. Journal of Intelligent Information Systems (JIIS), Special Issue on Workflow
and Process Management, 10(2):131–158, March/April 1998.

[26] Nikolay K. Diakov, Farhad Arbab. Compositional Construction of Web Services
Using Reo. WSMAI 2004: 49-58.

[27] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell.
Pattern-based Analysis of UML Activity Diagrams. (PDF, 149 Kb).
BETA Working Paper Series, WP 129, Eindhoven University of Technology,
Eindhoven, 2004.

[28] R. Eshuis and J. Dehnert. Reactive petri nets for workflow modeling. In W. M. P.
van der Aalst and E. Best, (eds.) Application and Theory of Petri Nets 2003, vol.
2679 of Lecture Notes in Computer Science, pp. 295–314. Springer-Verlag, Berlin,
Berlin, 2003.

[29] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture and Implementation. Int. Thomson Press, 1996.

[30] S. Mukherjee, et al. Logic-based approaches to workflow modeling and
verification. In J. Chomicki, R. van der Meyden, and G. Saake, (eds.) Logics for
Emerging Applications of Databases, chap. 5, pp. 167–202. Springer-Verlag,
Berlin, 2004.

[31] T. Murata, "Petri nets - properties, analysis, and applications"; Proc. IEEE, vol.77,
no.4, pp.541-580, 1989.

[32] W. M. P. van der Aalst and A. H. M. ter Hofstede. Workflow patterns: On the
expressive power of (Petri-net-based) workflow languages. In K. Jensen, (ed.)
Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2002). 2002.

[33] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[34] W. M. P. van der Aalst. Making work flow: On the application of petri nets to
business process management. In J. Esparza and C. Lakos, (eds.) 23rd International
Conference on Applications and Theory of Petri Nets, vol. 2360 of Lecture Notes
in Computer Science, pp. 1–22. Springer-Verlag, Berlin, 2002.

[35] W. M. P. van der Aalst. The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

 96

[36] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

[37] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workow Patterns. QUT Technical report, FIT-TR-2002-02 (to appear in
Distributed and Parallel Databases), Queensland University of Technology,
Brisbane, 2002. http://www.tm.tue.nl/it/research/patterns.

[38] W.M.P. van der Aalst, M. Weske, G. Wirtz. Advanced Topics in Workflow
Management: Issues, Requirements, and Solutions. Journal of Integrated Design
and Process Science. Volume 7, Number 3. Austin: Society for Design and Process
Science 2003.

[39] Workflow Management Coalition, Terminology and Golossary, WfMC (1999).
Document Number WFMC-TC-1011, Document Status - Issue 3.0.

[40] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, NEW York, pp.1816, 258-261, 1992.

[41] Zaidi, A. K. 2002. A Temporal Programmer for Time-Sensitive Modeling of
Discrete-Event Systems. In Proceedings of IEEE - Systems, Man, and Cybernetics
Society 2000 Meeting. Nashville, TN.

[42] Zaidi, A., 1999. On temporal logic programming using petri nets. IEEE
Transactions on Systems, Man, and Cybernetic s, Part A: Systems and Humans 29
(3), 245–254.

 97

	1.1. Goal
	1.2. Approach
	1.3. Structure of the Thesis
	2.1. Introduction
	2.2. Basic Concepts
	2.3. Timed Data Stream
	2.4. Reo Primitive Channels
	2.4.1. The sync Channel
	2.4.2. The filter Channel
	2.4.3. The lossySync Channel
	2.4.4. The syncDrain Channel
	2.4.5. The syncSpout Channel
	2.4.6. The fifo and fifo1 Channels
	2.4.7. The asyncDrain Channel
	2.4.8. The asyncSpout Channel
	2.4.9. The replicator Connector
	2.4.10. The merger Connector
	2.5. Reo Operations
	2.5.1. The Read Operation
	2.5.2. The Take Operation
	2.5.3. The Write Operation

	2.6. Reo Patterns
	2.7. Composing Connectors
	2.8. Constraint Automata: An Operational Model for Reo
	3.1. Introduction
	3.2. Basic Concepts
	3.2.1. Workflow
	3.2.2. Workflow Management System
	3.2.3. Business Process, Process Definition, and SubProcess
	3.2.4. Activity
	3.2.5. Instance (of a Process or an Activity)

	3.3. Workflow Control Patterns
	4.1. Introduction
	4.1.1. The Delay Connector

	4.2. Specification and Implementation of Basic Patterns
	4.2.1. Sequential Routing
	4.2.2. AND-Split
	
	4.2.3. AND-Join
	4.2.4. XOR-Split
	4.2.5. XOR-Join

	4.3. Specification and Implementation of Advanced Synchronization Patterns
	4.3.1. OR-Split
	4.3.2. Synchronizing Merge
	4.3.3. Multi Merge
	4.3.4. Discriminator

	5.1. Summary and Conclusions
	
	A.1. Specification and Implementation of Structural Patterns
	A.1.1. Arbitrary Cycles

	A.2. Specification and Implementation of Patterns Involving Multiple Instances
	A.2.1. Multiple Instances without Synchronization
	A.2.2. Multiple Instances with Design Time Knowledge
	A.2.3. Multiple Instances with Run Time Knowledge
	A.2.4. Multiple Instances without Run Time Knowledge

	A.3. State-based Patterns
	A.3.1. Deferred Choice
	A.3.2. Interleaved Parallel Routing
	A.3.3 Milestone

	A.4. Cancellation Patterns
	A.4.1. Cancel Activity
	A.4.2. Cancel Case

	B.1. Basic Concepts

