
On the Near-Optimality of List Scheduling

Heuristics for Local and Global Instruction

Scheduling

by

John Michael Chase

A thesis

presented to the University of Waterloo
in fulfillment of the

thesis requirement for the degree of
Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006
c© Michael Chase 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Modern architectures allow multiple instructions to be issued at once and have
other complex features. To account for this, compilers perform instruction schedul-
ing after generating the output code. The instruction scheduling problem is to
find an optimal schedule given the limitations and capabilities of the architecture.
While this can be done optimally, a greedy algorithm known as list scheduling is
used in practice in most production compilers.

List scheduling is generally regarded as being near-optimal in practice, provided
a good choice of heuristic is used. However, previous work comparing a list sched-
uler against an optimal scheduler either makes the assumption that an idealized
architectural model is being used or uses too few test cases to strongly prove or
disprove the assumed near-optimality of list scheduling. It remains an open ques-
tion whether or not list scheduling performs well when scheduling for a realistic
architectural model.

Using constraint programming, we developed an efficient optimal scheduler ca-
pable of scheduling even very large blocks within a popular benchmark suite in a
reasonable amount of time. I improved the architectural model and optimal sched-
uler by allowing for an issue width not equal to the number of functional units,
instructions that monopolize the processor for one cycle, and non-fully pipelined
instructions. I then evaluated the performance of list scheduling for this more
realistic architectural model.

I found that when scheduling for basic blocks when using a realistic architectural
model, only 6% or less of schedules produced by a list scheduler are non-optimal,
but when scheduling for superblocks, at least 40% of schedules produced by a
list scheduler are non-optimal. Furthermore, when the list scheduler and optimal
scheduler differed, the optimal scheduler was able to improve schedule cost by at
least 5% on average, realizing maximum improvements of 82%. This suggests that
list scheduling is only a viable solution in practice when scheduling basic blocks.
When scheduling superblocks, the advantage of using a list scheduler is its speed,
not the quality of schedules produced, and other alternatives to list scheduling
should be considered.

iii

Acknowledgments

I would like to thank my supervisor, Peter van Beek, for his guidance, mentoring,
and support throughout my work as an undergraduate and graduate student with
him. Thanks to Tyrel Russell and Abid Malik for their many contributions in the
discussions we had as a research group. I am also appreciative of Farhad Mavadat
and Ondrej Lhotak for serving on my committee.

I would also like to thank my family and friends, and especially my wife, Jen,
for encouraging and supporting me in my research and also helping me to balance
between school and other aspects of my life.

This work was made possible by IBM Corp. and by the facilities of the Shared
Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca).

iv

Dedication

This work is dedicated to Jen, for her constant support and love and for all that
she did in order to allow me to pursue this degree.

v

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Overview . 3

2 Background 4

2.1 Scheduling Units . 5

2.2 Instruction DAGs . 7

2.3 The Instruction Scheduling Problem 9

2.4 List Scheduling . 11

2.4.1 Scheduling Heuristics and Features 13

2.5 Register Pressure . 16

2.6 Constraint Programming . 17

3 Related Work 19

3.1 Theoretical Results . 19

3.2 Empirical Results . 20

3.2.1 Idealized Architectures . 20

3.2.2 Realistic Architectures . 23

3.2.3 Summary of Empirical Results 26

vi

4 Local Instruction Scheduling 29

4.1 Initial Model . 29

4.1.1 The Constraint Programming Model 30

4.1.2 Latency Constraints . 30

4.1.3 Distance Constraints . 32

4.1.4 Dominance Constraints . 32

4.1.5 Predecessor and Successor Constraints 33

4.1.6 Functional Unit Constraints 34

4.2 Architectural Improvements . 34

4.2.1 Issue Width . 34

4.2.2 Non-Fully Pipelined Processor 35

4.2.3 Serializing Instructions . 38

4.2.4 Architectural Features Not Modelled 41

4.3 Evaluation . 41

4.3.1 Experimental Setup . 42

4.3.2 The Optimal Scheduler . 44

4.3.3 Results for Initial Architectural Models 47

4.3.4 Results for Improved Architectural Models 57

4.4 Summary of Results . 68

5 Global Instruction Scheduling 69

5.1 Initial Model . 69

5.2 Architectural Improvements . 70

5.3 Evaluation . 70

5.3.1 Experimental Setup . 70

5.3.2 The Optimal Scheduler . 71

5.3.3 Results for Initial Architectural Models 72

5.3.4 Results for Improved Architectural Models 73

5.4 Summary of Results . 89

vii

6 Conclusions and Further Work 90

6.1 Further Work . 91

viii

List of Tables

2.1 Local instruction scheduling heuristics, showing rank of features for
each heuristic. For a pair of instructions, the instruction with the
better value for the feature ranked number 1 is selected. If the two
instructions have the same value for that feature, the instruction
with the better value for the rank 2 feature is selected, and so on. . 15

3.1 Results of experiments comparing list scheduling to optimal methods 27

3.2 Architectural models used in experiments comparing list scheduling
to optimal methods . 28

4.1 Architectural models used in scheduling experiments 43

4.2 Local instruction scheduling for the initial architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 50

4.3 Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule over the best heuristic sched-
ule, and (b) the optimal scheduler failed to complete within a 10-
minute time limit, for various architectures. 51

ix

4.4 Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule over the best heuristic sched-
ule, and (b) the percentage of basic blocks with improved schedules,
for various architectures. 52

4.5 Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule over the best heuristic sched-
ule, and (b) the percentage of basic blocks with improved schedules,
for various architectures. 52

4.6 Local instruction scheduling for the initial architectural model before
register allocation. Average and maximum percentage improvements
in schedule length of optimal schedule over the best heuristic sched-
ule, for various architectures. The average is over only the basic
blocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 53

4.7 Local instruction scheduling for the initial architectural model after
register allocation. Average and maximum percentage improvements
in schedule length of optimal schedule over the best heuristic sched-
ule, for various architectures. The average is over only the basic
blocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 53

4.8 Local instruction scheduling for the initial architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over Shieh and Papachristou’s
heuristic, and (b) Shieh and Papachristou’s heuristic resulted in an
improved schedule over critical path, for various architectures. . . . 54

4.9 Local instruction scheduling for the initial architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over Shieh and Papachristou’s
heuristic, and (b) Shieh and Papachristou’s heuristic resulted in an
improved schedule over critical path, for various architectures. . . . 54

x

4.10 Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found a schedule with lower register pressure than both
heuristic schedules, and (b) a heuristic schedule had lower register
pressure than the optimal schedule, for various architectures. . . . 55

4.11 Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found a schedule with lower register pressure than both
heuristic schedules, and (b) a heuristic schedule had lower register
pressure than the optimal schedule, for various architectures. . . . 55

4.12 Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the critical
path schedule had lower register pressure than Shieh and Papachris-
tou’s schedule, and (b) Shieh and Papachristou’s schedule had lower
register pressure than the critical path schedule, for various archi-
tectures. 56

4.13 Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the critical
path schedule had lower register pressure than Shieh and Papachris-
tou’s schedule, and (b) Shieh and Papachristou’s schedule had lower
register pressure than the critical path schedule, for various archi-
tectures. 56

4.14 Local instruction scheduling for the improved architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 61

4.15 Local instruction scheduling for the improved architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 62

xi

4.16 Local instruction scheduling for the improved architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the percentage of basic blocks with improved sched-
ules, for various architectures. 63

4.17 Local instruction scheduling for the improved architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the percentage of basic blocks with improved sched-
ules, for various architectures. 63

4.18 Local instruction scheduling for the improved architectural model be-
fore register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the ba-
sic blocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 64

4.19 Local instruction scheduling for the improved architectural model af-
ter register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the ba-
sic blocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 64

4.20 Local instruction scheduling for the improved architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over Shieh and Papachristou’s
heuristic, and (b) Shieh and Papachristou’s heuristic resulted in an
improved schedule over critical path, for various architectures. . . . 65

4.21 Local instruction scheduling for the improved architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over Shieh and Papachristou’s
heuristic, and (b) Shieh and Papachristou’s heuristic resulted in an
improved schedule over critical path, for various architectures. . . . 65

xii

4.22 Local instruction scheduling for the improved architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found a schedule with lower register pressure than
both heuristic schedules, and (b) a heuristic schedule had lower reg-
ister pressure than the optimal schedule, for various architectures. 66

4.23 Local instruction scheduling for the improved architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found a schedule with lower register pressure than
both heuristic schedules, and (b) a heuristic schedule had lower reg-
ister pressure than the optimal schedule, for various architectures. 66

4.24 Local instruction scheduling for the improved architectural model be-
fore register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the crit-
ical path schedule had lower register pressure than Shieh and Pa-
pachristou’s schedule, and (b) Shieh and Papachristou’s schedule had
lower register pressure than the critical path schedule, for various ar-
chitectures. 67

4.25 Local instruction scheduling for the improved architectural model af-
ter register allocation. Number of basic blocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the crit-
ical path schedule had lower register pressure than Shieh and Pa-
pachristou’s schedule, and (b) Shieh and Papachristou’s schedule had
lower register pressure than the critical path schedule, for various ar-
chitectures. 67

5.1 Global instruction scheduling for the initial architectural model be-
fore register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 75

xiii

5.2 Global instruction scheduling for the initial architectural model af-
ter register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 76

5.3 Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule over the best heuristic sched-
ule, and (b) the percentage of superblocks with improved schedules,
for various architectures. 77

5.4 Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found an improved schedule over the best heuristic sched-
ule, and (b) the percentage of superblocks with improved schedules,
for various architectures. 77

5.5 Global instruction scheduling for the initial architectural model be-
fore register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the su-
perblocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 78

5.6 Global instruction scheduling for the initial architectural model af-
ter register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the su-
perblocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 78

5.7 Global instruction scheduling for the initial architectural model be-
fore register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over DHASY, and (b) DHASY
resulted in an improved schedule over critical path, for various ar-
chitectures. 79

xiv

5.8 Global instruction scheduling for the initial architectural model af-
ter register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over DHASY, and (b) DHASY
resulted in an improved schedule over critical path, for various ar-
chitectures. 79

5.9 Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found a schedule with lower register pressure than both
heuristic schedules, and (b) a heuristic schedule had lower register
pressure than the optimal schedule, for various architectures. . . . 80

5.10 Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the optimal
scheduler found a schedule with lower register pressure than both
heuristic schedules, and (b) a heuristic schedule had lower register
pressure than the optimal schedule, for various architectures. . . . 80

5.11 Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the critical
path schedule had lower register pressure than DHASY’s schedule,
and (b) DHASY’s schedule had lower register pressure than the crit-
ical path schedule, for various architectures. 81

5.12 Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 bench-
mark suite with more than two instructions where (a) the critical
path schedule had lower register pressure than DHASY’s schedule,
and (b) DHASY’s schedule had lower register pressure than the crit-
ical path schedule, for various architectures. 81

5.13 Global instruction scheduling for the improved architectural model
before register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 82

xv

5.14 Global instruction scheduling for the improved architectural model
after register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the optimal scheduler failed to complete within a
10-minute time limit, for various architectures. 83

5.15 Global instruction scheduling for the improved architectural model
before register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the percentage of superblocks with improved sched-
ules, for various architectures. 84

5.16 Global instruction scheduling for the improved architectural model
after register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found an improved schedule over the best heuristic
schedule, and (b) the percentage of superblocks with improved sched-
ules, for various architectures. 84

5.17 Global instruction scheduling for the improved architectural model be-
fore register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the su-
perblocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 85

5.18 Global instruction scheduling for the improved architectural model af-
ter register allocation. Average and maximum percentage improve-
ments in schedule length of optimal schedule over the best heuristic
schedule, for various architectures. The average is over only the su-
perblocks in the SPEC 2000 benchmark suite for which the optimal
scheduler found an improved schedule. 85

5.19 Global instruction scheduling for the improved architectural model
before register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over DHASY, and (b) DHASY
resulted in an improved schedule over critical path, for various ar-
chitectures. 86

xvi

5.20 Global instruction scheduling for the improved architectural model
after register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) critical
path resulted in an improved schedule over DHASY, and (b) DHASY
resulted in an improved schedule over critical path, for various ar-
chitectures. 86

5.21 Global instruction scheduling for the improved architectural model
before register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found a schedule with lower register pressure than
both heuristic schedules, and (b) a heuristic schedule had lower reg-
ister pressure than the optimal schedule, for various architectures. 87

5.22 Global instruction scheduling for the improved architectural model
after register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the op-
timal scheduler found a schedule with lower register pressure than
both heuristic schedules, and (b) a heuristic schedule had lower reg-
ister pressure than the optimal schedule, for various architectures. 87

5.23 Global instruction scheduling for the improved architectural model
before register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the crit-
ical path schedule had lower register pressure than DHASY’s sched-
ule, and (b) DHASY’s schedule had lower register pressure than the
critical path schedule, for various architectures. 88

5.24 Global instruction scheduling for the improved architectural model
after register allocation. Number of superblocks in the SPEC 2000
benchmark suite with more than two instructions where (a) the crit-
ical path schedule had lower register pressure than DHASY’s sched-
ule, and (b) DHASY’s schedule had lower register pressure than the
critical path schedule, for various architectures. 88

xvii

List of Figures

2.1 (a) DAG for a basic block from the SPEC 2000 compiler benchmark;
(b) One possible schedule for a single-issue processor, where NOP
denotes a cycle in which no instructions are scheduled; (c) An optimal
schedule. 7

2.2 (a) DAG for a superblock from the SPEC 2000 compiler benchmark;
(b) Branch probabilities for side exits and the final exit; (c) Exit
probabilities for side exits and the final exit. 8

4.1 Example DAG used to illustrate constraints in the initial model.
Text beside each node denotes functional unit as integer (INT) or
floating point (FP) and lower and upper bounds. 31

4.2 Example DAG with additional nodes B1 and B2 corresponding to
pipeline variables. 37

4.3 Example DAG with serial instruction B. 40

xviii

Chapter 1

Introduction

Modern architectures are capable of issuing and executing multiple instructions
at once, as well as having many other interesting properties. The code genera-
tion phase of a compiler produces a straight-line sequence of code which must be
scheduled in order to execute multiple instructions at once and take advantage of
other architectural features. This process, known as instruction scheduling, is per-
formed in practice by a non-optimal, greedy algorithm known as the list scheduling
algorithm.

List scheduling is widely assumed to be nearly optimal with an appropriate
choice of heuristic with which to rank instructions that are ready to be issued.
However, any previous work that compares the list scheduling algorithm against an
optimal scheduler either uses a small set of test data, producing inconclusive results,
or makes many simplifying assumptions about the architectural model upon which
the scheduled code will be executed. It is an open question whether or not list
scheduling is nearly optimal when scheduling for a realistic architectural model.
Especially for embedded processors with limited computing power, it is essential
that the compiled code be as efficient as possible. If the list scheduling algorithm
does not provide good enough schedules, it may be necessary to consider other
scheduling algorithms.

In this thesis, I take an optimal scheduler that initially assumes the same sim-
ple architectural model as list scheduling and improve the model, making it more
realistic. I then compare the schedules produced by the list scheduling algorithm
against those produced by the optimal scheduler. By using a realistic architectural
model and evaluating with a sufficiently large set of test data, I provide conclusive
evidence that speaks to the near-optimality of list scheduling. When scheduling for
basic blocks, the list scheduling algorithm produces optimal schedules at least 94%

1

of the time for the target architectures on which it was evaluated. When scheduling
for superblocks, list scheduling produces optimal schedules between 47% and 60%
of the time. The difference between the list scheduler and optimal scheduler is
also significant: improved blocks cost between 5% and 8% less on average, with a
maximum improvement of 82%.

These results suggest that list scheduling performs sufficiently well on more
complex architectures for local instruction scheduling only, and that global instruc-
tion scheduling algorithms must be given further consideration in order to produce
better overall schedules.

1.1 Contributions

The most significant contribution of this thesis is that list scheduling is proven to be
far from optimal when scheduling superblocks when the target architectural model
is complex, although list scheduling basic blocks produces near-optimal results for
a complex architectural model. When scheduling basic blocks, the list scheduling
algorithm was optimal over 98% of the time for an idealized architectural model
and over 94% of the time for a realistic architectural model. However, the list
scheduler performs poorly when scheduling superblocks for a realistic architectural
model, with between 39.9% and 52.3% of schedules produced being non-optimal
and an average improvement of 5.3%-8.1%. These results are important because
superblocks are frequently executed sequences of instructions, and any speed im-
provement on these will almost certainly result in a speed improvement for the
whole program.

This thesis contains some other relevant contributions. When comparing a
heuristic given by Shieh and Papachristou [35] against the more common critical
path heuristic, Shieh and Papachristou’s heuristic generally performed better. As
both heuristics use critical path as the primary feature, this suggests that the
choice of secondary features is important to instruction scheduling heuristics, which
provides motivation for a re-evaluation of existing heuristics. There is also little
difference in terms of register usage between schedules produced by a list scheduler
and our optimal scheduler. This is significant as it shows that not only does list
scheduling produce near-optimal schedules, it also produces schedules with similar
register requirements as an optimal scheduler and there is thus little purpose for
using an optimal scheduler.

2

1.2 Overview

This thesis is divided into six chapters. In Chapter 2, I formalize the instruc-
tion scheduling problem and the list scheduling algorithm, present directed acyclic
graphs for instruction scheduling, discuss heuristics and features for list schedul-
ing, and provide an introduction to constraint programming. Chapter 3 surveys
work done evaluating the optimality of the list scheduling algorithm. In Chapter
4, I examine instruction scheduling for basic blocks, presenting the initial architec-
tural model as well as several improvements to it. I compare the list scheduler to
an optimal scheduler for several architectures using both the initial and improved
architectural models in order to evaluate the optimality of the list scheduling algo-
rithm. In Chapter 5, I repeat the work done in Chapter 4 but I instead consider
instruction scheduling for superblocks. I conclude in Chapter 6, summarizing the
results found in this thesis and discussing possibilities for future work.

3

Chapter 2

Background

The code generation phase in a compiler typically produces a straight-line sequence
of code. The code generation phase is often followed by an instruction scheduling
phase which rearranges the code to achieve better performance on modern archi-
tectures.

Modern architectures have multiple functional units, processing units dedicated
to a specific type of instruction, such as integer or branch instructions. In addition,
some architectures allow multiple instructions to be issued in a single cycle. The
maximum number of instructions that can be issued in one cycle is known as the
processor’s issue width. The issue width for a particular architecture must be less
than or equal to the number of functional units.

Each instruction on a particular architecture has an execution time and a la-
tency. Execution time is the number of cycles for which an instruction locks up a
functional unit to the exclusion of all other instructions. The latency of an instruc-
tion is the number of cycles needed after an instruction is issued before its result
is available to other instructions. An instruction’s latency is always greater than
or equal to its execution time. An instruction can also be fully pipelined : if its
execution time is 1, the functional unit is only occupied by the instruction for the
cycle in which the instruction was issued. Instructions with execution times greater
than one are said to be not fully pipelined.

Modern architectures are pipelined : an instruction with a latency greater than
one need not tie up the functional unit on which it is executing until the result is
ready [18]. Architectures use pipelining to overlap the execution of instructions. If
an instruction with an execution time of 2 and a latency of 5 is issued in cycle 1,
another instruction can be issued on the same functional unit as early as cycle 3,

4

even though the result from the first instruction is not available for use until cycle
6.

As an example of an architecture with all these properties, consider the PowerPC
604 [19]. It has six functional units: a branch unit, two integer units for simple
instructions, an integer unit for more complex instructions, a floating point unit,
and a load/store unit for data transfer to and from memory. The PowerPC 604
has an issue width of 4, so not every functional unit will begin executing a new
instruction every cycle. Most instructions are fully pipelined, and thus the PowerPC
604 can often dispatch a new instruction for execution each cycle on the same
functional unit. However, some instructions are not fully pipelined and monopolize
a functional unit for the entire duration of their execution. One such example for
the PowerPC architecture is divw, one of many integer division instructions. It has
an execution time of 19 cycles on the PowerPC 604 and has a latency of 20 cycles.
There is thus one cycle occurring after the issue of a divw instruction for which the
instruction is not executing but its result is unusable.

2.1 Scheduling Units

The most common straight-line unit of code is the basic block, a code sequence
having a single entry point and a single exit point [29], where the only branching
that occurs is a branch from the exit instruction to another basic block, or to the
same basic block in order to create a loop. Not all compilers produce basic blocks
having a single entry point, but this can be remedied by inserting a “dummy”
instruction with zero execution time, and forcing all existing entry point instructions
to follow the dummy instruction. A similar method can be used to ensure that basic
blocks all have a single exit point.

The other common scheduling unit used in compilers is the superblock [11, 20].
A superblock consists of a series of basic blocks B0, B1, . . . , Bn such that:

• Each basic block either branches out of the superblock or branches to the
next basic block in sequence (i.e. for k = 0, . . . , n− 1, Bk branches out of the
superblock or branches to Bk+1)

• There are no branches from any block Bi to any other block Bj, for j 6= 0,
other than the branch from Bi to Bi+1. (i.e. there are no cycles in the
superblock that do not pass through block B0)

5

• There are no branches into any basic block within the superblock except for
branches to B0. These disallowed branches are known as side entrances.

Branch instructions in a superblock that both transfer control from the su-
perblock and occur before the final instruction are known as side exits, and the
final instruction in the superblock is known as the final exit. Superblock scheduling
often makes use of profiling information for the program being compiled. Each side
exit in a superblock can be assigned a probability that the side exit is taken. If
the side exit is not taken, control proceeds to the following basic block. The final
exit is always taken if it is reached. Branch probabilities are given in the form
branch(i) = (P (i), 1 − P (i)), for 0 ≤ P (i) ≤ 1, where P (i) is the percentage of
times the branch was taken given that the branch condition is evaluated. In other
words, if a side exit has branch probability (0.3, 0.7), then the branch is taken 30%
of the time the branch instruction is executed and not taken 70% of the time.

The formula for evaluating schedule length for superblocks given in Section 2.3
requires a cost coefficient for each exit i. This coefficient is the probability that
branch i is taken given that branches 0 ≤ i−1 were not taken. For example, suppose
a superblock has two side exits. The first has branch probability (0.2, 0.8), and the
second has branch probability (0.6, 0.4). The cost coefficient for the first side exit
is 0.2, since there is a 20% chance the first branch is taken. The cost coefficient for
the second side exit is 0.8 × 0.6 = 0.48, since the first branch is not taken 80% of
the time and the second branch is taken 60% of the time. The final exit is always
taken if it is reached, and so its cost coefficient is 1− 0.2− 0.48 = 0.32: a side exit
is taken 68% of the time, and so the final exit must be taken the remaining 32% of
the time.

Throughout this thesis, I refer to the probability that a branch is taken given
that the branch instruction is executed as the branch probability, and the probability
that a branch is taken given that all previous branches in the superblock were not
taken as the exit probability. I use branch(i) and exit(i) to denote the branch and
exit probabilities respectively for instruction i.

While basic blocks are considered to be local scheduling units and superblocks
are labelled as “global” scheduling units, they are not global in the sense that they
incorporate an entire program. Superblocks are formed by first finding a trace
[12]: a region of instructions identical to superblocks except that side entrances
are permitted. To eliminate side entrances from the trace, the code following a
side entrance is duplicated, known as tail duplication [20]. The side entrances
branch to the old copy of the code, and the trace branches to the new copy of
the code. When all side entrances are removed in this manner, the trace is now a

6

superblock. Superblocks are preferable to traces in that traces require a significantly
more complex compiler implementation in order to deal with side entrances, while
superblocks do not [11].

For simplification, this thesis refers to a block when the context allows for both
basic blocks and superblocks without distinction.

2.2 Instruction DAGs

A common conceptual view of an instruction scheduling problem is a directed
acyclic graph, or DAG (see [29]), also known as a Program Dependence Graph
or Data Dependence Graph in the compiler literature. Figure 2.1 shows a sample
DAG from a basic block selected from our testing data, and Figure 2.2 shows a
DAG for a superblock, also selected from testing data. In an instruction DAG,
each node corresponds to an instruction from the original straight-line basic block
or superblock. Nodes are labeled alphabetically, beginning with A. Nodes are also
assigned a sequence number 1 through n, with node i being the ith instruction in
the order given in the original block. If instruction i must be completed before
instruction j in the original block, an edge is added between nodes i and j. This is
known as a precedence constraint : i has precedence over j, and must be scheduled
first in any correct schedule.

2 2

1

C

A B

D

(a)

1. (A) or. gr1, gr2, gr2
2. (B) addis gr3, 0, 15
3. nop

4. (C) stw gr4, 424(gr3)
5. (D) bc 2, cr0, 132

(b)

1. (B) addis gr3, 0, 15
2. (A) or. gr1, gr2, gr2
3. (C) stw gr4, 424(gr3)
4. (D) bc 2, cr0, 132

(c)

Figure 2.1: (a) DAG for a basic block from the SPEC 2000 compiler benchmark;
(b) One possible schedule for a single-issue processor, where NOP denotes a cycle
in which no instructions are scheduled; (c) An optimal schedule.

Edges in the DAG are also assigned a weight. If an instruction j must execute at
least l(i, j) cycles after instruction i begins execution, edge (i, j) is assigned weight

7

 0

0
0 0

2

2

0

0 0

0

C

A B

D

E F G

H

 I

 J

(a)

1. (D) 0.5
2. (I) 0.8
3. (J) 1.0

(b)

1. (D) 0.5
2. (I) 0.4
3. (J) 0.1

(c)

Figure 2.2: (a) DAG for a superblock from the SPEC 2000 compiler benchmark;
(b) Branch probabilities for side exits and the final exit; (c) Exit probabilities for
side exits and the final exit.

l(i, j). This is known as a latency constraint, and l(i, j) is said to be the latency
[29] of instruction i. If l(i, j) = 1, instruction j can begin execution in the cycle
immediately following instruction i. Other instructions can be issued between the
cycles in which instructions i and j begin, provided all constraints are satisfied

On the PowerPC 604 architecture, most instructions have a latency of 1 or 2,
and the maximum latency of any instruction is 32. Only floating point instructions
have a latency over 10; the majority of instructions produce their results in very
few cycles. However, many edges with long-running instructions as the source
node, including the 32-cycle fdiv instruction, have low latencies. This phenomenon
is explained by Smotherman et al. [37]. Suppose an instruction i has an execution
time of 3 cycles and a latency of 4 cycles. Any instruction j needing to read the
result of i must wait at least 4 cycles after i begins execution to assure that i has
written its result. This is known as a read-after-write or RAW dependency, and
edge (i, j) would have weight 4. Suppose instead that j writes to a register r that

8

i must read. If i takes only one cycle to read from r, j may be issued in the cycle
following i, and so edge (i, j) would have weight 1: this is known as a write-after-
read or WAR dependency. Edges may not reflect the true latency of an instruction
for other reasons as well, and it is not the case that every edge in a DAG has the
latency of the first node as its weight.

There is also one other type of scheduling constraint that is not explicitly cap-
tured in a DAG, because they are general constraints for the target architecture,
not specific constraints for a particular block. Resource constraints [29] are any
constraints caused by the number and type of resources on a processor. For exam-
ple, if a processor has two integer units, at most two integer instructions can begin
execution each cycle. Resource constraints cannot be reflected in a DAG since a
family of architectures may have the same latencies for each instruction but have
different resources. Thus, if a DAG is scheduled on several different architectures,
schedules of different lengths may be produced.

2.3 The Instruction Scheduling Problem

To make the most of the advanced features of modern architectures, compilers per-
form instruction scheduling as an optimization after code generation. The goal
of instruction scheduling is to find a minimum-cost schedule for a straight-line se-
quence of code, subject to several types of constraints [11, 29]. I present two versions
of the instruction scheduling problem: the local instruction scheduling problem for
basic blocks and the global instruction scheduling problem for superblocks. As men-
tioned in Section 2.1, the latter is not truly global. As the two differ only slightly, I
first give a general version of the instruction scheduling problem adapted from [38],
and refine it to account for the differences between the two scheduling problems.
The definition of the instruction scheduling problem makes the assumptions that all
instructions are fully pipelined and that either the machine has an infinite number
of registers or that register allocation has taken place before instruction scheduling.

Definition 1 (Instruction Scheduling Problem) Consider a DAG G = (V, E)
representing a block, where each edge (i, j) has weight l(i, j). The target architec-
ture has a global issue width W and a set of functional units U . There is a set
T of types of functional units, and each unit is of some type t ∈ T . There are
f(t) functional units of type t ∈ T , and each instruction i is of type u(i), where
u(i) ∈ T . Let yik be a binary variable that takes on the value 1 if and only if
instruction i is scheduled in cycle k. A feasible schedule S specifies an issue time

9

S(i) for all instructions i. S(i) and yik are related: ∀i∀k, yik = 1 iff S(i) = k.S
must also satisfy the following constraints:

• ∀k, W ≥
∑n

i=1 yik (global issue width constraint)

• ∀k, t ∈ T, f(t) ≥
∑

u(i)=t yik, 1 ≤ i ≤ n (functional unit constraints)

• ∀(i, j) ∈ E, S(j) ≥ S(i) + l(i, j) (latency constraints)

The Instruction Scheduling Problem is to find a schedule S for which a cost
function cost(S) is minimized.

There are several cost measures for the instruction scheduling problem. The
actual execution time on a physical architecture is one such measure, although it
is hard to evaluate while scheduling is performed. For basic blocks, the common
metric is schedule length. The sooner all instructions in a DAG finish executing,
the shorter the schedule will be. Schedule length can be thought of as the latest
cycle in which an instruction is issued: that is, cost(S) = maxi∈V {S(i)}. Figure
2.1 (b) shows a valid schedule for the DAG in Figure 2.1 (a), but schedule (b) is
clearly suboptimal as a better schedule is presented in Figure 2.1 (c).

Definition 2 (Local Instruction Scheduling Problem) The Local Instruction
Scheduling Problem is to solve the Instruction Scheduling Problem where the DAG
G represents a basic block, minimizing cost function cost(S) = maxi∈V {S(i)}.

When scheduling superblocks, the measure of evaluation is the expected number
of cycles executed within the superblock before a branch is taken or the final exit
is reached.

Definition 3 (Superblock Schedule Cost) Let exit(i) be the exit probability
for node i in the DAG, where 0 ≤ exit(i) ≤ 1 and exit(i) = 0 when node i is not
a side exit or the final exit. For a schedule S, cost(S) =

∑n

i=1 exit(i)S(i).

Definition 4 (Global Instruction Scheduling Problem) The Global Instruc-
tion Scheduling Problem is to solve the Instruction Scheduling Problem where the
DAG G represents a superblock, minimizing cost function cost(S) =

∑n

i=1 exit(i)S(i).

10

2.4 List Scheduling

Finding an optimal solution to both the local and global instruction scheduling
problems is NP-complete [17]. The emphasis of scheduling research has been on
approximation algorithms. Hennessy and Gross [17] made an early attempt at
developing a polynomial algorithm for instruction scheduling. Their algorithm had
a worst-case runtime of O(n4). Gibbons and Muchnick [14] were able to refine
the algorithm to provide a worst-case runtime of O(n2), although the quality of
schedules produced is not necessarily as good. This refined algorithm, known as
the list scheduling algorithm, has become the most popular instruction scheduling
algorithm, and is used almost exclusively in production compilers.

The list scheduling algorithm is so-called because of its use of a ready list.
The algorithm iterates through machine cycles sequentially, and at each cycle it
populates the ready list with the set of all candidate instructions which could begin
execution in the current cycle. It then selects the best instructions from the ready
list to begin execution in the current cycle, subject to resource constraints [29].
The algorithm also makes use of an execution list : whenever an instruction is
issued, it is placed on the execution list, a list of all instructions currently being
executed. When an instruction i finishes executing, any successor j of i becomes
a candidate instruction as long as all other predecessors of j have also finished
executing. The execution list is used to easily identify instructions that finish
executing, so it can quickly be determined if j may be added to the ready list.
Selection is made according to a heuristic independent of the core list scheduling
algorithm. In Algorithm 1, I present a formal representation of the list scheduling
algorithm, adapted from the presentation in [34].

The method selectBestInstruction encapsulates the particular heuristic used
in an implementation of list scheduling. For each instruction in the ready list in
descending order of priority according to the heuristic, it determines whether or
not the instruction can be executed in the current cycle. In other words, it checks
whether there is an available functional unit of the instruction’s type and whether
or not the number of instructions scheduled to begin in the current cycle is less
than or equal to the global issue width. If there is an available functional unit and
the global issue width will not be exceeded by issuing the current instruction, that
instruction is returned. If there is no instruction on the ready list that can begin
execution in the current cycle, selectBestInstruction returns null.

It is worth pointing out that the list scheduling algorithm pays no attention to
any other architectural features or hazards besides available functional units and
issue width. In particular, instruction cache and data cache misses are ignored,

11

Algorithm 1: List Scheduling

input : A DAG G = (V, E), global issue width W , number of functional
units f(t)

output: A valid schedule satisfying the precedence constraints of G and the
architectural constraints of W and f(t)

cycle = 0;
ready-list = all source nodes in G;
execution-list = empty;
while (ready-list or execution-list are not empty) do

opi = selectBestInstruction(ready-list);
while (opi is not null) do

remove opi from ready-list and add to execution-list;
for all instructions opj such that (opi, opj) ∈ E do

Add opj to ready-list if opj is ready to be executed;

opi = selectBestInstruction(ready-list);

cycle = cycle + 1;
for (opi = all nodes in execution-list) do

if (opi finishes in cycle cycle) then
remove opi from execution-list;
for all instructions opj such that (opi, opj) ∈ E do

Add opj to ready-list if opj is ready to be executed;

and the algorithm assumes all instructions are fully pipelined. These assumptions
do not affect the correctness of the schedules produced, as architectures are able
to introduce appropriate stalls when necessary. It is possible that better sched-
ules might be obtained if these assumptions were accounted for in the algorithm.
However, the list scheduling algorithm employed in many, if not all, production
compilers is essentially the same as Algorithm 1. The main difference is the choice
of heuristic used in selectBestInstruction.

Algorithm 1 has a worst-case runtime of O(n2), demonstrated by the analysis
presented in [34]. Each of the n instructions in the DAG is added once to the ready
list, and is chosen once by selectBestInstruction. Assuming the ready list is
implemented using a heap-based priority queue and that only static features are
used (see Section 2.4.1), selectBestInstruction has a runtime of O(log n), and
the code preceding the second for loop runs in O(n log n) time. Within the second
for loop, each instruction is removed once from the execution list, and for each
instruction, all outgoing edges must be checked. The DAG contains E edges, and

12

so checking all outgoing edges can be done in O(E) time. The overall runtime of
the algorithm is thus O(E + n log n), which can be O(n2) in the worst case (as |E|
can be O(n2)). In practice, however, DAGs are usually sparse, and the runtime is
closer to O(n + n log n). In our work, we use an iterative scan of the ready list,
instead of a priority queue. Scanning the ready list thus has a worst case runtime
of O(n2) in our implementation, but since in practice the ready list is usually short,
we achieve acceptable performance, especially when the list scheduler is compared
to our optimal scheduler, which has a much higher computational time than list
scheduling for any basic block.

2.4.1 Scheduling Heuristics and Features

When the list scheduler chooses an instruction to be scheduled in the current cycle,
it uses a heuristic to choose the best instruction on the ready list if there is more
than one instruction that can be scheduled [29]. Each instruction has a set of
features, where a feature is a significant property of the instruction. Features may
be static, meaning that their value never changes over the course of scheduling, or
they may be dynamic, indicating that their value may change during scheduling. A
list scheduling heuristic is a function that takes as input a pair of instructions, and
based on the features of those instructions, gives a preference of one instruction
over the other. It need not be the case that all possible features for instructions
are used in a heuristic; if two instructions agree on every feature in the heuristic,
one is chosen arbitrarily.

Smotherman et al. [37] provide a survey of common scheduling heuristics used
for local instruction scheduling. They also describe a large number of features that
can be used for both local and global instruction scheduling. I describe the features
used in the heuristics we compare against here; the reader is referred to [37] for
coverage of other features.

Critical Path Distance to Sink: The critical path distance between two
nodes in a DAG is defined as the maximum length path between the two nodes,
where path length is the sum of latencies encountered along the path. Critical path
distance to sink refers to the distance between any node and the sink in the DAG.
This feature is what is generally meant by “critical path,” and is labelled as such
throughout the remainder of this thesis. For example, the critical path distance
from node B to node D in the DAG in Figure 2.1 is 3.

Dependence Height: The dependence height of a node in a DAG is the
number of nodes on the longest path from the node to the sink [13].

13

Earliest Starting Time: A static estimate of the earliest cycle in which an
instruction can begin execution. The root node has an EST of 1, the first cycle for
scheduling. Any other node j has an EST of max{l(i, j) + EST (i)} for any parent
i of j.

Instruction Type: There is no clear notion of a “best” or “worst” instruction
type. In our critical path heuristic (refer to Table 2.1), we favour floating point
instructions above all other instructions and treat remaining instructions equally
with respect to their instruction type, as done in [3].

Maximum Latency: This feature is simply the maximum latency of an edge
from a DAG node to any other DAG node. Maximum latency can also be thought
of as the longest possible time that any other node in the DAG will have to wait
for a result from the current node once the current node begins execution.

Number of Successors: The total number of nodes reachable by following a
single edge from the current node.

Local Instruction Scheduling Heuristics

In my work on basic block scheduling, I compare against two heuristics. The first is
a critical path heuristic based on the one used in IBM’s TOBEY Compiler [3]. The
second heuristic is one presented by Shieh and Papachristou [35]. Critical Path Dis-
tance is widely accepted as the most significant feature among standard instruction
features for heuristic-based scheduling in the literature (for example, [3] and [29]),
but the choice of less-significant features for tie-breaking varies widely. Shieh and
Papachristou’s heuristic relies on secondary features that differ significantly from
other common critical path distance-based heuristics, and I included it to compare
the performance of critical path-based heuristics using different secondary features.
Table 2.1 shows the ranking of the features used in these heuristics.

Global Instruction Scheduling Heuristics

I compare two list scheduling heuristics against an optimal scheduler, as I did for
local instruction scheduling. One heuristic is the critical path heuristic presented
previously, and the other is Dependence Height and Speculative Yield (DHASY)
[5].

DHASY is based on a combination of the Dependence Height and Speculative
Yield features suggested first by Fisher [13]. Dependence Height is defined in Sec-
tion 2.4.1, and Fisher’s speculative yield function is equivalent for superblocks to

14

Table 2.1: Local instruction scheduling heuristics, showing rank of features for each
heuristic. For a pair of instructions, the instruction with the better value for the
feature ranked number 1 is selected. If the two instructions have the same value for
that feature, the instruction with the better value for the rank 2 feature is selected,
and so on.

Critical Shieh and
Feature Path Papachristou
Critical Path Distance 1 1
Earliest Starting Time 3
Instruction Type 2
Maximum Latency 2
Number of Successors 3

the exit probability described in Section 2.1 [8]. The DHASY value is calculated
for each instruction i, and the instruction with the highest value is selected for
scheduling. Deitrich and Hwu [8] formalize DHASY mathematically as follows:

dhasy(i) =
∑

b∈Bi

(exit(b)(cp(1, n) + 1 − (cp(1, b) − cp(i, b)))

where Bi is the set of all branches that are descendants of i, and cp(i, j) is the
critical path distance from i to j.

Some other heuristics that were considered were Balance Scheduling [9], G* [6],
Speculative Hedge [8], and Successive Retirement [6]. DHASY performed better
than G* and Successive Retirement both theoretically [9] and in our experience
[32], although Shobaki and Wilken [36] have experimental results suggesting Suc-
cessive Retirement outperforms DHASY. Balance Scheduling is reported to perform
better than DHASY [9], as is Speculative Hedge [8, 9]. However, Russell [32] found
that when a larger benchmark suite was used for comparison, in this case the com-
plete SPEC 2000 benchmark suite, DHASY ended up being a better heuristic than
Speculative Hedge. While Balance Scheduling still performed better, his imple-
mentation of Balance Scheduling ran significantly slower than his implementation
of DHASY and was much more complicated. I selected DHASY as the second
heuristic for comparison because of its superior performance, both in terms of ex-
ecution time and schedule cost, when compared to other heuristics which account
for side exits and their impact on schedule cost.

15

Critical Path was chosen as it is a standard heuristic for superblocks, even
though it does not explicitly consider the cost function and may select other in-
structions when a side exit is on the ready list. As the critical path heuristic
predates the superblock, newer heuristics should provide better performance than
critical path. Selecting critical path as a heuristic for comparison thus provides a
standard with which to evaluate the quality of other heuristics.

2.5 Register Pressure

Instruction scheduling cannot be done in isolation. Most instructions use one or
more registers, either as source registers containing values used in a computation
or as destination registers which store the results of a computation. The code gen-
eration phase of most compilers produces an instruction sequence using an infinite
number of virtual registers. As there are a limited number of physical registers on
an architecture, a compiler must perform register allocation to assign each virtual
register to a physical register.

Register allocation and instruction scheduling are subject to a phase-ordering
problem. If instruction scheduling is performed first, the resulting schedule may re-
quire more physical registers than those available. This in turn forces some spilling
to occur: the values in one or more registers must be copied, or spilled, to memory
so the registers are available for use, possibly lengthening the schedule [29]. Alter-
nately, if register allocation is performed first, the limitations on available registers
may adversely impact the quality of the schedule produced.

The live range of a register in a given schedule is the set of cycles for which
the register is active and contains a single value. In other words, a register is live
from the cycle in which it is assigned a value and remains live until the last cycle
in which that value is used. This makes the assumption that values are not live
across block boundaries, an assumption that must be made for my purposes as I
do not have data indicating which registers are live across block boundaries. The
live range of a register need not be a contiguous set. This situation arises when a
variable is assigned a value more than once in a block. The register does not remain
live between the last use corresponding to the first value and the assignment of the
second value, as the first value is no longer needed after its last use. As an example,
the live range {1, 2, 3, 7, 8, 9, 10} indicates that the corresponding register is assigned
a value in cycle 1 which is last used in cycle 3, and that the same register is reused
to store a different value in cycle 7, which is last used in cycle 10.

In Figure 2.1, register gr3 is live for 3 cycles in both schedules given. In the

16

non-optimal schedule, the live range of gr3 is {2, 3, 4}; in the optimal schedule, its
live range is {1, 2, 3}.

The register pressure of a schedule is the maximum number of registers that are
simultaneously live. In other words, if k is the value that occurs most frequently
in the live ranges of all registers used in the schedule, the register pressure is the
number of registers that contain k in their live range. The register pressure of a
schedule is also the minimum number of physical registers that must be available
for the schedule in order to avoid spilling.

I do not look directly at register allocation in this thesis, nor have I modelled
register usage or incorporated any register-related information into the list scheduler
or optimal scheduler, as that is beyond the scope of this thesis. However, this thesis
does examine the register pressure of the schedules produced so the list scheduler
can be evaluated compared to our optimal scheduler both for schedule cost and
register pressure.

2.6 Constraint Programming

In our work, we also model an instruction DAG as a constraint satisfaction problem
(CSP). The process of solving a CSP is known as constraint programming ; for an
appropriate model of a DAG, this allows us to find a valid schedule corresponding
to the DAG.

A CSP consists of a set of n variables {X1, X2, . . .Xn}, and a set of m constraints
{C1, C2 . . . Cm} [31]. For each variable Xi, there is a set of values dom(Xi) that
can be assigned to Xi. The object of constraint programming is to find a solution
to the CSP, where a solution is a valid assignment for each variable. That is, a
solution is an assignment {X1 = v1, X2 = v2, . . .Xn = vn} where vi ∈ dom(Xi) for
all i. Some constraint problems also have an objective function: a function of some
or all variables that must be minimized or maximized by the assignment.

A constraint is an expression limiting the values of one or more variables. For a
constraint C, I define vars(C) to be the set of variables used in that constraint. For
a constraint Cj and a value k ∈ dom(Xi), where Xi ∈ vars(Cj), there is a support
for k in Cj if there exists a value for all other variables X ∈ vars(Cj) − {Xi} such
that Cj is satisfied, where the value for each other variable X, the value is selected
from dom(X).

Unary constraints, such as X2 < 5, affect only one variable, and binary con-
straints, such as X6 ≥ X5 + 9, constrain two variables. Another common type of

17

constraint is a global constraint [30]: a constraint on many or all variables. The
best-known global constraint is the all different constraint, which specifies that no
pair of variables in a set can share the same value (see [1]).

A special form of global constraint is a global cardinality constraint [30]. Global
cardinality constraints take the form gcc(X1, . . . , Xm, cv1

, . . . , cvm′
). This definition

involves m variables X1, . . . , Xm and m′ count variables cv1
, . . . , cv′

m
. The set of

variables is any subset of variables from the CSP, and each count variable cvi
has

an associated value vi. The global cardinality constraint is a concise way to state
that for each value vi, there must be exactly cvi

variables from the set X1, . . . , Xm

that are assigned value vi for some value in dom(cvi
). The alldifferent constraint

mentioned above is a special case of the global cardinality constraint where each
count variable has domain dom(cvi

) = {0, 1}.

CSPs are generally solved using a backtracking search algorithm. At each
branching point, a variable is selected for branching, and the variable is assigned
a value from its domain. Before choosing another variable, constraints are propa-
gated : knowing the value of one variable may make it possible to exactly determine
the value of other variables or to reduce their domains [31]. For example, if X1 has
domain {1, 2, 3, 4, 5}, and X2 has domain {1, 2, 3}, and X1 is assigned the value 3,
we can use the constraint X1 > X2 to reduce the domain of X2 to {1, 2}. If, at
any point, a variable has an empty domain, constraint propagation would find that
the current partial solution is inconsistent. In this case, the algorithm backtracks,
trying to assign a different value to the last assigned variable.

18

Chapter 3

Related Work

This chapter examines two areas of related work. List scheduling is now widely
accepted as being both efficient and near-optimal, which was caused in part by
theoretical work placing bounds on the quality of schedule produced. A more
current technique is to evaluate the optimality of list scheduling by comparing
schedules against those produced by an optimal scheduler. Although no single paper
presents definitive results that rigorously justify the popularity of list scheduling
in compilers, this chapter surveys both theoretical and empirical results that lend
evidence to this wide-spread opinion.

3.1 Theoretical Results

Under certain conditions, list scheduling is known to be within a factor of two of
optimality. R. L. Graham [15] describes an instance of a multi-processing system
with n identical processors, P1, . . . , Pn, a set of tasks T = {T1, . . . , Tr}, and an
ordered priority list L = (Ti1 , . . . , Tir) containing each task in T . Each task Tj has
a processing time of µ(Tj), and each processor must fully complete a task before
beginning another task; Graham’s system allows for no preemption. There is also
a set of precedence constraints ≺ such that if Ti ≺ Tj, task Ti must be processed
before task Tj. Cast as an instruction scheduling problem, this corresponds to a
processor with n identical functional units without any pipelining, and a static
ready list. Under these conditions, Graham proves an upper bound of 2 − 1/n on
the ratio of schedule length to optimal schedule length.

Graham then considers the implications of a dynamic priority list, and proves
upper bounds using two heuristics. In the first heuristic, whenever a processor

19

must choose a task, it chooses the task that heads the maximum-length chain of
unscheduled tasks, namely critical path distance. The second heuristic selects the
task Ti for which µ(Ti) +

∑
Ti≺Tj

µ(Tj) is maximal. In both cases, upper bounds

are proven to be 2 − 2/(n + 1).

Bernstein and Gertner [2] present a polynomial algorithm that exactly solves
the instruction scheduling problem for the special case where the maximum latency,
m, of any instruction is 2. Their algorithm labels vertices from leaves to root using
a heuristic related to maximum successors, and then they invoke list scheduling to
produce a schedule using the labels in descending order as a heuristic. Their result
also acts as an approximation algorithm when m > 2, with the schedule produced
having length within 2 − 2/m times that of an optimal schedule.

3.2 Empirical Results

Many previous papers have empirically examined the quality of schedules produced
by list schedulers. The most significant and most common question asked is how list
schedulers compare in practice to the optimal schedule for real problems. Thus, a
common metric used when examining optimal schedulers is to compare against list
scheduling, giving concrete evidence of the quality of list scheduling. This chapter
examines two classes of experiments: those that assume a simplistic architectural
model and those that assume a more complex architectural model or that model
an actual architecture. Each paper mentioned in this section refers to basic block
scheduling only unless otherwise noted.

3.2.1 Idealized Architectures

Many experiments involving optimal instruction schedulers adopt a simplified archi-
tectural model. One rationale for this decision is that if a cumbersome but optimal
technique it not efficient enough for simpler models, there is little point adapting
the model for more complicated architectures. An idealized architecture contains
assumptions that differ from physical architectures. The most common assump-
tions are that the architecture is fully pipelined, that the issue width and number
of functional units are the same, and that each instruction can be run on only one
type of functional unit. This thesis classifies architectures that make assumptions
of this nature as idealized architectures; those that do not are considered realistic
architectures.

20

Wilken et al. [39] evaluated the optimality of critical-path list scheduling by
comparing against a highly refined integer programming solution embedded in the
Gnu Compiler Collection (GCC). They tested with the SPEC95 Floating Point
benchmark, which yielded basic blocks with sizes up to 1,000 when compiled with
GCC’s highest level of optimization. The target architecture was a single issue, fully
pipelined processor, with a maximum instruction latency of 3. Their work shows
that integer programming techniques alone are quite slow. As well, an integer pro-
gramming approach may not scale well when more complicated architectural models
are used or when multiple-issue architectures are considered. They were eventually
able to schedule all basic blocks optimally, but relied on many complicated graph
transformations and reductions to determine optimal schedules in place of using in-
teger programming. Integer programming was only necessary for 0.30% of the basic
blocks, those for which all other attempted methods were suboptimal or for which
optimality could not be proven. They evaluated their work against a critical-path
list scheduler and found that only 0.39% of basic blocks were improved over list
scheduling with respect to static schedule length.

Van Beek and Wilken [38] ran another experiment using the same set of basic
blocks, compiler, optimizations, and target architecture. This time, instead of using
integer programming and other enhancements, the instruction scheduling problem
was cast as a constraint satisfaction problem. Constraint programming led to a
simpler, more efficient solution. All basic blocks were optimally scheduled, and
0.39% of basic blocks were improved over list scheduling, as in [39]. While these
results seem positive, Wilken’s motivation for using this target architecture was that
it is the simplest architecture for which no optimal polynomial algorithm exists, so
optimal methods will only have a hope of being successful on other architectures
if they succeed on this one. This in turn suggests that list scheduling will produce
the best schedules on this architecture, but may be increasingly outperformed by
optimal methods on increasingly complex architectures.

Heffernan and Wilken [16] examine the quality of list scheduling while using
graph transformations to reduce the work required for the scheduler. They evaluate
using the SPEC 95, SPEC 2000, and MediaBench benchmarks, compiled by GCC
with the highest level of optimization. They target single-issue, 2-issue, and 4-
issue processors with a maximum latency of 4, with an even split between integer
and floating point functional units on the multiple-issue architectures. For each
basic block, they compute a lower bound and use critical path list scheduling. For
“non-trivial” blocks where the lower bound and schedule length do not match, they
employ two sets of graph transformations, using critical path list scheduling after
each. They found that up to 13.2% of the non-trivial basic blocks were improved

21

after graph transformations were used, but only a small percentage of the evaluated
basic blocks were non-trivial. Their research reinforces the near-optimality of list
scheduling on simple architectures.

Malik, McInnes, and van Beek [27] extend the constraint programming methods
of [38] to a more complicated set of architectures. They examine four architectures,
each fully pipelined, having either 1, 2, 4, or 6 functional units. The issue width on
each is equal to the number of functional units, and there are up to four unique types
of functional units. Instructions had a maximum latency of 38. They evaluated
against a large number of basic blocks produced by IBM’s TOBEY compiler, and
performed instruction scheduling both before and after register allocation.

Basic blocks were scheduled using a constraint programming approach aug-
mented with the graph transformation techniques of [16]. They used the SPEC
2000 benchmark suite, and scheduled 168,999 basic blocks before register alloca-
tion and 183,112 after register allocation. A time limit of 10 minutes was enforced,
though the authors noted that decreasing the time limit to 100 seconds caused at
most 10 more timeouts per architecture. With the larger time limit, the maximum
number of timeouts for a single architecture was 22. They found that 98.9%-99.6%
of basic blocks were scheduled optimally by list scheduling when scheduling was per-
formed before register allocation, and 97.7%–98.8% of basic blocks were scheduled
optimally when list scheduling was invoked after register allocation.

Shobaki and Wilken [36] designed the first optimal scheduler for superblocks
using enumeration with several pruning techniques for efficiency. They scheduled
for four fully pipelined architectures, with 1, 2, 4, or 6 functional units of up to 4
different types. The maximum latency on any instruction is 9, and the issue width
on each architecture equals the number of functional units. Their test data was
the majority of the SPEC 2000 benchmark suite, excluding a few benchmarks that
would not compile in GCC 3.4 and those written in Fortran 90. They first evaluated
the performance of three heuristics on the floating point benchmarks to determine
which of the three led to the most schedules being provably optimal (having lower
and upper bounds equal) before invoking their optimal schedule. Successive Retire-
ment [6] gave the tightest bounds, performing better than DHASY [5] and critical
path. In the best case, critical path yielded provably optimal schedules 92% of the
time, compared to 96% for successive retirement. In the worst case, critical path
was provably optimal 51% of the time, compared to 88% for successive retirement.

They selected the Successive Retirement heuristic to provide an upper bound on
schedule length and compared against an optimal schedule. Their results ranged
from 92.8% of blocks being scheduled optimally by Successive Retirement for a
single-issue architecture to 98.3% for the architecture with 6 functional units and

22

an issue width of 6. Compared to results presented previously for basic blocks, their
experiments suggest that the critical path heuristic is designed for basic blocks and
that a better-performing heuristic for superblocks must account for side exits.

3.2.2 Realistic Architectures

I now examine results concerning list scheduling using architectural models that
either model a physical architecture exactly or are quite similar. Unlike the idealized
architectures in the preceding section, the models mentioned here must be nearly
identical to a physical architecture, though they need not be realistic in every
aspect.

Ertl and Krall [10] developed an approach to instruction scheduling using con-
straint programming. Their methods were targeted to the Motorola 88100 pro-
cessor, a multiple-issue RISC processor with a maximum latency of six. They
compared their results against the schedules produced by GCC 1.37, presumably
a list scheduler, and found 81% of the basic blocks to be optimal. Their bench-
mark suite consisted of five relatively small applications with under ten thousand
operations in total between the five. While their work does not provide significant
analysis on the quality of list scheduling, it does hint that list scheduling could be
near-optimal.

Schielke [34] examined the optimality of list scheduling by comparing critical-
path list scheduling to several stochastic scheduling techniques. Compilation was
performed on a research compiler that employed a number of optimizations, none
of which significantly enlarged basic blocks. Some of the scheduled basic blocks
were taken from popular benchmarks, but most come from undisclosed sources. He
targets three architectures, obtaining similar results for each. The Simple VLIW
architecture has five functional units and full pipelining. The c60 architecture has
eight fully-pipelined functional units. The PPC750 architecture has six functional
units and an issue width of two, and only the integer and floating point units are
fully pipelined.

Schielke’s methodology begins with calculation of a lower bound for scheduling
problems by combining critical path length with unavoidable hardware delays. He
then uses a list scheduler to obtain an upper bound. If the two bounds match, the
list scheduler must be optimal. If not, two stochastic methods described earlier in
his thesis are used to search for a better solution. If none can be found, the problem
is cast as an integer programming problem and the CPLEX solver is invoked with
three minutes in which to find the best possible solution. If CPLEX can find an

23

optimal solution with schedule length identical to the list scheduler’s upper bound,
list scheduling is clearly optimal for the given scheduling problem. If either the
stochastic methods or CPLEX find better solutions, list scheduling is suboptimal,
and if no method is able to produce better results or CPLEX times out, no conclu-
sion is drawn concerning the optimality of list scheduling with respect to the given
problem. Schielke finds list scheduling to be optimal with respect to static schedule
length for 95–99% of all basic blocks for most benchmark programs.

Schielke’s results appear to be convincing, assuming that he scheduled a rep-
resentative sample of basic blocks. However, despite an explicit claim otherwise,
the chosen programs seem hand-picked. He selects a few programs each from sev-
eral sources instead of using a standardized benchmark suite such as the SPEC
benchmark. Schielke also says nothing about the range of sizes of the basic blocks
in his selected benchmark programs. Only one of the twenty-six programs has an
average basic block size over 20 instructions per block, and none have more than
30 instructions per block on average. This allows for the results to be inflated by a
high number of trivial basic blocks consisting of only a few instructions. Schielke
claims that a few programs have some “large” basic blocks; what remains unclear
is whether his chosen set is representative of basic block size in general. He also
fails to examine any relationships between basic block size and the optimality of
list scheduling.

Kästner and Winkel [25] examine an integer programming solution on the Intel
Itanium architecture. Itaniums have 9 pipelined functional units and an issue width
of 6. Each instruction type can be executed on one or more types of functional unit.
The maximum latency of any instruction is 24 cycles. Kästner and Winkel solve
scheduling problems optimally using a two-phase integer programming formulation,
and compare its performance against list scheduling.

Their work was done in the Intel Itanium C++ compiler, and they tested against
nine benchmark applications, most of them from the SPEC 95 suite. Their basic
blocks were likely small in size; no exact quantities were given but the average length
of basic block for each benchmark is under 10. They evaluated their methods by
performing list scheduling, using a highest-level first heuristic, and comparing their
schedule length against a calculated lower bound. For 87% of their basic blocks, the
lower bound and schedule length matched. For the other 13%, integer programming
was invoked. Overall, only 4% of their benchmark basic blocks were improved over
list scheduling.

The strength of these results lies in the close correlation between their integer
programming model and the actual Itanium architecture. It would seem that list
scheduling performed well, even with an uncommon heuristic, for a complicated

24

architectural model. This is mitigated by the small size of the basic blocks being
scheduled, and the small total number of basic blocks, 1,787. Their results clearly
attest to the near-optimality of list scheduling for schedules with few instructions,
even with a complex architectural model, but the results do not necessarily scale
to large basic blocks.

Liu and Chow [26] present a scheduler developed by Cognigine for the VISC
architecture, an embedded processor for network hardware. VISC chips have two
pairs of identical functional units, each capable of executing two operations concur-
rently, for an issue width of size eight. In order to represent eight operations in a
64–bit instruction, the VISC architecture uses a custom dictionary of limited size.
Both the instruction schedule and the contents of the dictionary corresponding to a
basic block are produced by the compiler’s scheduling phase, and a feasible schedule
must be small enough to fit in the dictionary in addition to respecting data and
resource constraints. The architecture runs in a five-stage pipeline and has several
atypical constraints placed on scheduling, such as one bank of registers that can
only be accessed once per operation.

The scheduler was implemented in a variation of SGI’s Pro64 compiler, and uses
bounded enumeration to find a near-optimal schedule. Liu and Chow compared
their scheduler to a list scheduler with a benchmark of five network application de-
veloped in-house by Cognigine. A total of 487 basic blocks were scheduled, with an
overall average of 9 operations per block. The enumeration scheduler was guided by
a critical path heuristic, and ties were broken by choosing the instruction involved
in the most constraints and then the instruction with the highest number of succes-
sors. The list scheduler used the same heuristic as the enumeration scheduler. Liu
and Chow found that their enumeration scheduler outperformed the list scheduler,
producing 13.2-14.6% fewer cycles over an entire benchmark application. No metric
is given to indicate the range of savings over individual basic blocks.

Of prime importance in Liu and Chow’s work is their claim that list scheduling
and other heuristic approaches are nearly optimal only for simple architectures, and
that irregular data and resource constraints on more complex architectures cause
heuristic approaches to obtain suboptimal solutions. Their results differ from those
previously presented in that Liu and Chow’s benchmarks are all similar programs
instead of a more diverse set of benchmarks. They also do not study a large enough
sample of basic blocks for their results to be accurately compared with the other
presented results.

No papers have yet been published that evaluate the performance of any list
scheduling heuristics for superblocks against an optimal scheduler for a realistic
architecture.

25

3.2.3 Summary of Empirical Results

Tables 3.1 and 3.2 summarize the results discussed in this chapter. Table 3.1
displays the number of blocks and percentage of blocks solved optimally by list
scheduling for each experiment mentioned in the chapter. Table 3.2 presents the
relevant properties of the architectural models used in each experiment.

The work presented in this chapter leads to several conclusions. List scheduling
has been shown to be near-optimal on idealized architectures for any size of basic
block or superblock that appears in practice, provided an appropriate heuristic is
selected. On more realistic architectures, list scheduling has proven to be near-
optimal only for very small basic blocks or simple or limited benchmark suites. It
is an open question, which I address in this thesis, whether or not list scheduling
is near-optimal on realistic architectures for superblocks, large basic blocks, and
benchmark suites that properly represent the full range of basic blocks compiled on
an architecture.

26

Table 3.1: Results of experiments comparing list scheduling to optimal methods
% of Scheduling

blocks solved before
optimally by register

Authors Year # Blocks list scheduling allocation?
K. Wilken, J. Liu, and
M. Heffernan

2000 7,402 99.61% No

P. van Beek and K. Wilken 2001 7,402 99.61% No
M. Heffernan and K. Wilken 2005 Unspecifieda 86.8%b No
A. Malik, J. McInnes,
and P. van Beek

2005 168,199 98.9%–99.6% Yes

A. Malik, J. McInnes,
and P. van Beek

2005 183,112 97.7%–98.8% No

G. Shobaki and K. Wilken 2004 7,961 92.8%-98.3% Unspecified
M. A. Ertl and A. Krall 1991 9,124 81% No
P. Schielke - SLVIW 2000 21,496 88.2%–100.0% Yes
P. Schielke - c60 2000 21,496 88.2%–100.0% Yes
P. Schielke - PPC750 2000 21,496 88.2%–100.0% Yes
D. Kästner and S. Winkel 2001 1,787 96% Unspecified
J. Liu and F. Chow 2002 487 85.4%–86.8% Yes

aThe benchmarks used are SPEC 95, SPEC 2000, and MediaBench, which contain a significant

number of basic blocks.
bThis value is for non-trivial basic blocks: those not provably optimal by list scheduling.

27

Table 3.2: Architectural models used in experiments comparing list scheduling to
optimal methods

Fully # Functional Issue Max
Authors Year Pipelined? Units Width Latency
K. Wilken, J. Liu, and
M. Heffernan

2000 Yes 1 1 3

P. van Beek and K. Wilken 2001 Yes 1 1 3
M. Heffernan and K. Wilken 2005 Yes 1, 2, 4 1, 2, 4 3
A. Malik, J. McInnes,
and P. van Beek

2005 Yes 1, 2, 4, 6 1, 2, 4, 6 38

G. Shobaki and K. Wilken 2004 Yes 1, 2, 4, 6 1, 2, 4, 6 9
M. A. Ertl and A. Krall 1991 No 3 3 6
P. Schielke - SLVIW 2000 Yes 5 5 20
P. Schielke - c60 2000 Yes 8 8 16
P. Schielke - PPC750 2000 No 6 2 31
D. Kästner and S. Winkel 2001 Yes 15 6 24
J. Liu and F. Chow 2002 Yes 4 8 1

28

Chapter 4

Local Instruction Scheduling

In this chapter, I evaluate the performance of the list scheduling algorithm against
an optimal scheduler when solving the local instruction scheduling problem. Many
simplifying assumptions about the target architecture are made by both the list
scheduler and the optimal scheduler, and I incrementally remove assumptions from
the optimal scheduler, producing a more accurate architectural model. This chapter
presents the initial model and discusses each improvement made, giving a formal
representation of each successive improvement. It also contains results for com-
parison experiments between the optimal scheduler and the initial and improved
models.

4.1 Initial Model

Malik, McInnes, and van Beek [27] developed the optimal scheduler and initial
model. Their scheduler, and the architectural assumptions it makes, was a starting
point for this thesis.

Many simplifying assumptions are made in their initial architectural model. All
instructions have an execution time of one cycle, and so the model processor is
fully pipelined. The issue width is equal to the number of functional units. The
model processor has an infinite number of registers and data cache misses never
occur. Each instruction executes on only one type of functional unit. Lastly, each
basic block has full resources available before the block begins executing, meaning
that all registers are available for use in the basic block instead of containing values
from a previous basic block and that no functional unit is executing any instruction
when the current basic block begins execution.

29

Also of note is an assumption that is not made. There is no restriction on the
number of functional units, nor is it necessary to have certain types of functional
units. This provides the flexibility to model many potential architectures, such as a
single-issue processor with only one functional unit or the Intel Itanium with nine
functional units of four different types and an issue width of six.

The initial constraint programming model and each type of constraint used is
described in the following subsections. The reader is referred to [27] for more de-
tails on the constraint programming model and optimal scheduler. All constraints
that are not latency or resource constraints, such as functional unit or issue width
constraints, are non-essential: their removal does not lead to an incorrect solution.
However, they are added in order to reduce the domains of variables, improving
performance by requiring less branching while performing backtracking search. Fig-
ure 4.1 is a DAG that has examples of every type of constraint in the constraint
programming model.

4.1.1 The Constraint Programming Model

In our constraint programming model, each DAG node i has a corresponding vari-
able Xi, for 1 ≤ i ≤ n. Assigning a value d to a variable Xi means that in the
schedule produced, instruction Xi will be issued in cycle d. Each variable Xi has
bounds [ai, bi], where dom(Xi) = {ai, ai + 1, . . . , bi − 1, bi}. Our optimal scheduler
uses bounds consistency [30] to ensure that each variable has at least one possible
value that can be assigned to it. A constraint C is bounds consistent if for each
variable Xi ∈ vars(C), both ai and bi have a support in C. When a value is
assigned to a variable, any constraints in which that variable is involved may no
longer be bounds consistent. Bounds consistency can be reestablished by removing
unsupported values from the domains of each variable, tightening the variable’s
bounds.

4.1.2 Latency Constraints

Latency constraints are binary constraints of the form Xj ≥ Xi + l(i, j), where
l(i, j) is the latency between instructions i and j. The weighted edges in the DAG
translate directly into latency constraints.

Example 1 For the DAG in Figure 4.1, there are 10 latency constraints added
to the constraint programming model, one for each edge in the DAG. Two such
latency constraints are B ≥ A + 1 and C ≥ A + 2.

30

2 2

INT [5, 7]

1 1

FP [2, 5] FP [3, 5]

FP [3, 6] FP [4, 6]

FP [6, 8] FP [6, 8]

INT [8, 10]

INT [1, 3]

2

1 1

1 1

1

A

B C

D E

F

G H

 I

Figure 4.1: Example DAG used to illustrate constraints in the initial model. Text
beside each node denotes functional unit as integer (INT) or floating point (FP)
and lower and upper bounds.

31

4.1.3 Distance Constraints

Distance constraints are similar in nature to latency constraints but are essential
to reducing the cost of backtracking search. Distance constraints, like latency
constraints, are binary constraints of the form Xj ≥ Xi + d(i, j), where d(i, j) is
the “distance” between i and j. The distance between two nodes i and j is defined
as the number of cycles that must pass after i has been issued before j has been
issued due to resource availability. Let onpath(i, j, t) be the set of instructions of
type t that lie on a path between i and j, and let r1(i, j, t) be the minimum critical
path distance from i to any node in onpath(i, j, t). There are f(t) functional units
of type t, and so it will take a minimum of r2(i, j, t) = d|onpath(i, j, t)|/f(t)e cycles
to execute those instructions, where f(t) is the number of functional units of type
t. Lastly, let r3(i, j, t) be the minimum critical path distance from any node in
onpath(i, j, t) to j. It takes at least r1(i, j, t)+r2(i, j, t)+r3(i, j, t) cycles to execute
all instructions of type t, and so the lower bound on distance due to resources is
derived, d(i, j) = maxt{r1(i, j, t) + r2(i, j, t) + r3(i, j, t)}.

Example 2 Consider the region of the DAG in Figure 4.1 with source A and sink
F . There are four other nodes that lie on any path between A and F : B, C, D, and
E. All four nodes are floating point nodes. The minimum critical path distance
from A to one of the four nodes is 1, and the minimum critical path distance from
one of the four nodes to F is also 1. Assuming the target architecture has a single
floating point functional unit, d(A, F) = 1 + d4/1e + 1 = 6, and the bounds for F
are tightened from [5, 7] to [6, 7].

4.1.4 Dominance Constraints

Heffernan and Wilken [16] introduce a set of graph transformations that reduce
the cost of finding an optimal solution to the instruction scheduling problem. In
our constraint programming model, we add constraints instead of performing the
transformations [27]. These constraints, known as dominance constraints, are safe:
if the constraint model was solvable before the constraints are added, it will remain
solvable after the constraints are added. The following theorem, presented in [27],
both defines dominance constraints and describes when it is safe to add them.

Theorem 1 (Heffernan and Wilken [16]) Let A and B be disjoint, isomorphic
subgraphs induced from the DAG with vertex sets V (A) = {a1, . . . , ar} and V (B) =
{b1, . . . , br}. If,

(a) ai is neither a predecessor nor a successor of bi, 1 ≤ i ≤ r

32

(b) for all predecessors k of ai such that k /∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r

(c) for all successors k of bi such that k /∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤ i ≤ r

(d) for any edge (bi, aj), l(bi, aj) ≤ cp(ai, bj),

the constraints ai ≤ bi, 1 ≤ i ≤ r can safely be added to the constraint programming
model.

Example 3 The subgraphs induced from the DAG in Figure 4.1 with vertex sets
{B, D} and {C, E} are isomorphic. B is neither a predecessor nor successor of C
and D is neither a predecessor nor successor of E, so condition (a) holds. B has
one predecessor, A, and l(A, B) = 1 ≤ cp(A, C) = 2, so condition (b) holds. E has
one successor, F , and l(E, F) = 1 ≤ cp(D, F) = 1, so condition (c) holds. Lastly,
there are no edges from C or E to B or D, so condition (d) holds trivially. Thus,
by Theorem 1, the dominance constraints B ≤ C and D ≤ E can be added to the
constraint programming model.

4.1.5 Predecessor and Successor Constraints

Predecessor and successor constraints are added to the constraint programming
model to estimate the distance due to resource availability between a node and
its immediate predecessors or successors. I describe predecessor constraints here;
successor constraints are intuitively similar.

Let pred(i, t) be the set of immediate predecessors of node i that are of type t.
For every type t and every subset P of pred(i, t) where |P | > f(t), the following
constraint can be added:

ai ≥ min{ak | k ∈ P} + d|P |/f(t)e − 1 + min{l(k, i) | k ∈ P}

In other words, from the earliest cycle in which any instruction in P can be
issued, there must be enough cycles to execute all predecessors of i of type t in
addition to accommodating the latency between any instruction in P and i.

Example 4 Consider node I from the DAG in Figure 4.1. I has two predecessors,
G and H. Both are floating point instructions. Assuming one floating point func-
tional unit, there is only one set P of size greater than one: the set {G, H}. Both
G and H have a lower bound of 6, and the latency between either node and I is 2.
The predecessor constraint for I is I ≥ 6 + d2/1e − 1 + 2 = 9. The bounds for I
are tightened from [8, 10] to [9, 10] due to this constraint.

33

4.1.6 Functional Unit Constraints

Functional unit constraints are global cardinality constraints, one for each unique
type of functional unit. Functional unit constraints take the form gcc(Xi1, . . . , Xik,
cv1

, . . . , cvm
). Each variable in the constraint is of type t, and every variable of type

t must be included. There is one count variable for each cycle from 1 to some upper
bound m, and the domain of each count variable is {0, 1, . . . , f(t)}, where f(t) is
the number of functional units of type t. Definition 1 illustrates a functional unit
constraint over a single cycle; a global cardinality constraint is merely a compact
way of representing a large number of these single-cycle constraints.

Example 5 For the DAG in Figure 4.1, the functional unit constraint for integer
instructions will be gcc(A, F, I, c1, . . . , c10), as there is an upper bound of 10 cycles
on the final instruction, and thus on the schedule length. The domains dom(ci) of
the count variables ci, 1 ≤ i ≤ 10 are all {0, 1, 2}, assuming two integer functional
units on the architecture.

4.2 Architectural Improvements

The initial model presented in Section 4.1 is a starting point towards the devel-
opment of an optimal scheduler that accurately models a physical processor. The
next portion of this chapter discusses each improvement made to the initial model,
describing each formally. Experimental results are presented only for the complete
set of improvements to avoid any bias that might occur due to the order in which
improvements were added.

4.2.1 Issue Width

On many architectures, such as the IA-64 [25] and PowerPC [19], the issue width
does not equal the number of available functional units. On the IA-64, of which
the Intel Itanium is an example, instructions are encoded in bundles of 128 bits
containing three instructions each [18]. Two bundles can be issued simultaneously,
for a total issue width of six instructions. However, the IA-64 has nine functional
units.

There are several reasons for having an issue width that is smaller than the
number of functional units. If the architecture is not fully pipelined, and many

34

instructions have a execution time of more than one cycle, there is less of an ad-
vantage in being able to issue as many instructions as there are functional units,
as there will often be cycles when a functional unit is already occupied and cannot
accept another issued instruction. Similarly, in many blocks, various constraints
on the order of instructions limits the number of instructions that can be issued si-
multaneously, and especially on machines with a large number of functional units,
like the IA-64, there is little need to be able to issue as many instructions each
cycle as there are functional units. Indeed, for even the ppc603 processor from the
PowerPC family, which has only four functional units and an issue width of two,
there were many basic blocks scheduled over the duration of this work for which the
schedule produced has cycles in which one instruction or no instructions are issued.
If a larger issue width is not needed in many cases, a processor manufacturer can
reduce costs by providing a smaller issue width. Issue width also impacts the clock
rate, logic complexity, and power consumption of an architecture [18].

Adding issue width constraints is a straight-forward modification to the initial
model. The initial model already uses global cardinality constraints to ensure that
the number of instructions of any type t issued each cycle does not exceed f(t), the
number of functional units of that type. To ensure that solutions are consistent
with respect to the issue width, I added a global cardinality constraint involving
all variables.

Definition 5 (Issue Width Constraint) ∀k, W ≥
∑n

i=1 yik

Example 6 The issue width constraint for the DAG in Figure 4.1 is gcc(A, . . . , I,
c1, . . . , c10), as there is an upper bound of 10 cycles on the final instruction, and
thus on the schedule length. If the target architectural model has an issue width
of 4, the domains dom(ci) of the count variables ci, 1 ≤ i ≤ 10 are all {0, . . . , 4}.

4.2.2 Non-Fully Pipelined Processor

Almost all modern architectures are not fully pipelined, including the Intel Pentium
and Itanium and the PowerPC architectures. A fully pipelined architecture requires
every instruction to have an execution time of 1, which is only worthwhile if there
is very little variance, if any, in required processing time for each instruction in
the instruction set. On most architectures, some instructions require significantly
more processing time than the majority. For example, compare integer addition
with floating point square root on the PowerPC 604: addition takes one cycle while
square root takes 32. In order for every instruction to have an execution time of
one cycle, the cycle time would have to be long enough for the longest instruction

35

in the architecture to complete. In each cycle where one of those long instructions
was not scheduled, computing power would be wasted. Suppose for simplicity that
the PowerPC ran at a frequency of one cycle per second, and so addition takes
one second to complete and square root takes 32 seconds. If the PowerPC 604
was converted to a fully pipelined architecture, each cycle would require 32 seconds
of time, and it would take 32 seconds to perform integer addition when only one
second was required.

To be more efficient, most architectures are not fully pipelined, and so there
will be cycles in which instructions cannot be issued on a particular functional
unit, since the unit will still be executing a previously-issued instruction. To model
this feature, I introduce pipeline variables, special variables that are added to the
CSP.

Definition 6 (Pipeline Variables) Suppose an instruction i with corresponding
CSP variable Xi has bounds [ai, bi] and execution time e(i), with e(i) > 1. Insert
variables pi,j into the CSP, for 1 ≤ j ≤ e(i) − 1. Each variable pi,j is of functional
unit type u(i). pi,j has bounds [ai + j, bi + j]. Also add all pipeline variables of
type t to the functional unit constraint for type t (see Section 4.1.6).

Since the bounds of pi,j are related to the bounds of Xi, this forces the pipeline
variables to be scheduled in sequence following Xi. In particular, when ai = bi, pi,j

has bounds [ai + j, ai + j], and a pipeline variable for instruction Xi is forced to
execute in the next e(i) − 1 cycles following the cycle in which Xi was issued.

While I do not augment the DAG with additional nodes in practice, another
way to conceptualize pipeline variables is that each corresponds to an imaginary
node added to the DAG, forming a chain of nodes with edge weights of 1 between
the initial node y that is not fully pipelined and the final pipeline node z. In this
scenario, there need be no edge between z and any successor of y. Some successors
of y have edges with weights much less than the execution time of y since some
DAG edges do not correspond to read-after-write dependencies, so adding an edge
between z and some successors would unnecessarily lengthen the schedule produced.

Example 7 The DAG in Figure 4.2 has nodes B1 and B2 added to illustrate the
use of pipeline variables. Suppose the target architectural model has one floating
point functional unit and that instruction B is scheduled in cycle 2. As nodes B1

and B2 correspond to pipeline variables, they must be issued on the floating point
unit in cycles 3 and 4, and instruction C cannot be issued until instruction 5.

In every model, the latencies used were those in the data, not those in the table
of instructions found in [19]. In many cases, successors of variables corresponding

36

3

1 1

1

1

1

INT [5, 6]

FP [4, 7]

FP [3, 6]

FP [2, 5] FP [2, 5]

B2

A

B C

D

B1

INT [1, 1]

Figure 4.2: Example DAG with additional nodes B1 and B2 corresponding to
pipeline variables.

37

to multi-cycle instructions had latencies that would prevent the successors from
executing until the multi-cycle instruction completed execution. Reasons why the
latencies would be less than the multi-cycle instructions’ execution time were dis-
cussed previously in Section 2.2. The main difference between the initial model and
the non-fully pipelined model is that in the initial model, an instruction could be
issued the cycle after a multi-cycle instruction was issued on the same unit as the
multi-cycle instruction. In the non-fully pipelined model, this cannot be done, as
any instructions issued on the same unit as the multi-cycle instruction before the
multi-cycle instruction completes would conflict with one of the pipeline variables.
The pipeline variables effectually lock a functional unit for the full execution time
of a multi-cycle instruction.

There are two major ways in which pipeline variables differ from regular vari-
ables. Pipeline variables can never be selected as the branching variable in the
backtracking algorithm. Allowing the selection of a pipeline variable would in-
crease the number of candidate branching variables with no particular benefit, as
the bounds of pipeline variables are fixed in relation to the bounds of the root vari-
ables. Pipeline variables are also not counted towards the issue width, since they
correspond to a previously-issued instruction that is executing in some cycle after
the issue cycle, not a new instruction being issued.

Pipeline variables are considered when global cardinality constraints on the
number of available functional units of one type are propagated, as they contribute
towards the availability of the functional units.

4.2.3 Serializing Instructions

While performing instruction scheduling, the schedule must always be equivalent to
a serial schedule produced by the compiler’s instruction generation phase. A serial
schedule is a schedule in which only one instruction is issued per cycle and no two
instructions execute at the same time. Compilers produce serial schedules in the
code generation phase, and most, if not all, high-level programming languages are
serial languages, with the exception of those that allow concurrency. Even then,
individual concurrent units, such as threads, are executed in a serial order, with
one high-level instruction following another.

Instruction scheduling may produce non-serial schedules when scheduling for
architectures with an issue width greater than one, but the behaviour of the sched-
uled code must be exactly equivalent to the behaviour of a serial schedule. Access
to architectural resources may force a schedule to be partially serialized, or for only

38

one instruction to be issued in a given cycle if the instruction has certain proper-
ties. For example, architectures may have only one of a particular resource, such
as the condition register on the PowerPC 604 [21], and need to ensure that only
one instruction is accessing that resource at a time. Some architectures may en-
force instruction ordering on the processor, by stalling some instructions until it is
safe to issue them. Other architectures, including the PowerPC [19, 21] and Intel
Pentium [24] and Itanium [22], require order to be enforced by the compiler, either
by providing instructions that serialize the processor or by creating a serial-friendly
schedule.

The PowerPC Compiler Writer’s Guide [19] describes four types of instructions
that require some sort of serialization and occur on the PowerPC architecture.
However, only one of these types occurs with any frequency in our test data (see
Section 4.3.1), occurring 15% of the time compared to less than 1% for each of the
other three types, and instructions with the same properties can also be found on
the Intel Pentium [24] and Itanium [22] architectures. This type of serializing in-
struction, labelled execution serialization in PowerPC literature [19, 21], describes
a set of instructions that require exclusive access to the processor in the cycle in
which they are issued. These instructions are held in a queue on the processor until
they are the oldest uncompleted instruction on the processor (in other words, until
all previously executing instructions have completed), and then they are issued. In
the cycle in which they are issued, no other instruction can be issued, meaning that
for one cycle, the instruction has sole access to the processor and its resources. In-
structions having these exact properties will be referred to as serializing instructions
throughout this thesis.

Serializing instructions can be modelled in a CSP in a manner similar to that
of instructions with a execution time larger than one, as described in Section 4.2.2.
I introduce a serial variable, which is similar to a pipeline variable.

Definition 7 (Serial Variables) Suppose an instruction i with corresponding
CSP variable Xi has bounds [ai, bi] and represents a serial instruction. Insert vari-
ables si,j into the CSP, for 1 ≤ j ≤ F −1, where F is the total number of functional
units. There is one serial variable for every functional unit except for the one on
which instruction i is issued; the functional unit type of each serial variable is as-
signed accordingly. si,j has bounds [ai, bi]. Also add all serial variables of type t to
the functional unit constraint for type t (see Section 4.1.6).

Since the bounds of si,j are exactly equal to the bounds of Xi, this forces the
serial variables to be issued in the same cycle as Xi. As there are enough serial
variables to fully occupy every functional unit except for one to be used for Xi, no

39

1

1 1

1

INT [3, 4]

FP [2, 3] FP [2, 3]

A

B C

D

INT [1, 1]

Figure 4.3: Example DAG with serial instruction B.

other instruction besides Xi can be issued in the cycle in which Xi is issued. This
also disallows any multi-cycle instruction from being issued before Xi is issued but
completing after Xi is issued, since the pipeline variable that would be required
to be scheduled in the same cycle as Xi’s issue cycle would conflict with some
serial variable si,k. Thus, no instruction will be executing on the processor in the
same cycle in which Xi is issued, and any instruction issued before Xi must have
completed before Xi is issued.

Example 8 Consider the DAG in Figure 4.3, where node B corresponds to a
serial instruction. Suppose the target architectural model has an issue width of 2.
If neither B nor C corresponded to serial instructions, they could both be issued
in cycle 2, allowing D to be issued in cycle 3. However, since B corresponds to a
serial instruction, no other instruction can be issued in the same cycle as B. Thus,
if B is issued in cycle 2, C must be issued in cycle 3 and D must be issued in cycle
4.

As with pipeline variables, serial variables are not selected as the branching
variable in the backtracking algorithm. They are not considered in the issue width

40

constraint as there may be more functional units than the issue width and adding
all serial variables to the issue width constraint in such a case makes the CSP
unsolvable.

4.2.4 Architectural Features Not Modelled

There are several other features of modern architectures that were rejected for
addition to the improved model. As mentioned in 4.2.3, the three other types of
serialization on the PowerPC were ignored because of the extremely low frequency
of their occurrence in our benchmark suites.

Some architectures, like the IA-64 [23], allow some instructions to be executed
on several different types of functional unit. For example, the add instruction can
be executed on either an I-unit or M-unit, generally used for integer and memory
instructions respectively. This capability was not added to our model as there
was no accurate way to evaluate it. The PowerPC architecture does not allow
instructions to execute on multiple types of functional unit. If I were to have
selected some instructions from the PowerPC instruction set to allow to be issued
on multiple functional unit types, I would have had to choose an arbitrary set of
instructions to do so.

Basic blocks rarely have the full resources of the processor available to them
when they begin execution. In particular, non-fully pipelined instructions may
still be executing and registers may already be storing data from previous basic
blocks. Neither of these features were modelled because of the difficulty of finding
a suitable evaluation method. While I could have designated some set of registers
and functional units to be in use at the start of a basic block, this would be another
arbitrary choice.

Cache misses were not modelled as the contents of the data cache while a basic
block is executing do not depend solely on the basic block. Without a compiler
that considered all basic blocks at once, it would be impossible to predict cache
usage during basic block scheduling.

4.3 Evaluation

I now present data which evaluates the performance of list schedulers when com-
pared to our optimal scheduler. The data is collected across a large number of basic
blocks, nearly 400,000, each scheduled on several architectures, for the initial and
improved architectural models described previously in this chapter.

41

4.3.1 Experimental Setup

To evaluate the quality of our optimal scheduler compared against list scheduling
in both the initial and improved architectural models, I scheduled basic blocks for
a number of architectures using both the list and optimal schedulers, and com-
pared the schedule lengths. All experiments were done on a 3.2 GHz Intel Pentium
machine with 1 GB of RAM.

The basic blocks used in all experiments were the complete SPEC 2000 bench-
mark suite. The SPEC benchmark suite is a collection of C, C++, and Fortran
programs that is widely used in research and production in compilers and architec-
tures for experimental evaluations. The basic block data was generated by IBM’s
TOBEY compiler backend, and includes basic blocks generated both before and
after register allocation was performed.

I compared the optimal scheduler against list scheduling using two heuristics:
Critical Path and Shieh and Papachristou, both described fully in Section 2.4.1.
For each model improvement and heuristic, all basic blocks were scheduled on each
of four architectural models, differing in the issue width and number and type of
functional units only. Properties such as the execution time of each instruction were
obtained from the PowerPC Compiler Writer’s Guide [19]. Table 4.1 summarizes
the differences between each of the models used. For every experiment, including
those simulating architectures other than the PowerPC family (in particular, the
Intel Itanium), the PowerPC instruction set was used, due to the fact that our
research group had ready access to basic blocks compiled on the PowerPC and did
not have access to basic blocks compiled on the Itanium. We are thus mapping
PowerPC instructions to generic versions of the functional units available on an
Itanium.

Changes were made to the list scheduler only for the purposes of facilitating
evaluation. The aim of this thesis was to evaluate the quality of schedule produced
by a standard list scheduler on both idealized and realistic architectural models, as
list schedulers are used in production compilers. It therefore makes little sense to
improve the list scheduler except for evaluation purposes, as described later in this
chapter.

There are several possible ways in which the list and optimal schedulers could
be compared. One possibility is for actual schedules to be generated, compiled,
and compared with respect to overall runtime on a standard set of input data.
This does not necessarily reflect schedule quality, as the optimal scheduler could
produce significantly better schedules for most blocks but the list scheduler could
produce optimal results for the basic blocks in an application that are executed

42

Table 4.1: Architectural models used in scheduling experiments

Issue Simple Complex Memory Branch Floating
Architecture Width Int. Units Int. Units Units Units Point Units
1-Issue 1 1
PowerPC 603e 2 1 1 1 1
(ppc603e)
PowerPC 604 4 2 1 1 1 1
(ppc604)
Intel Itanium 6 2 2 3 2
(IA-64)

most frequently. Another disadvantage is that the selection of test input might
bias the behaviour of the application, and thus favour the schedules produced by
one of the two schedulers.

Another alternative is to run the code in a PowerPC simulator, such as Mambo
[4] or PSIM, which measures the actual cycles expended, including delays for cache
misses, and compare the cycle count. This approach suffers from the same draw-
backs as actually timing native code discussed above.

The final method of evaluation is to compare the lengths of schedules produced
by the optimal and list schedulers. While this is the simplest method of evaluation,
it fails to accurately represent the running time of a particular program, and it
does not clearly indicate how well frequently-executed basic blocks perform as we
have no profiling information and thus cannot accurately estimate the actual time
savings.

I chose the final method because it avoids the dependency of the results on the
choice of input data and the variability that different input data could cause, and
because this method of evaluation is the most common in papers that compare
heuristic and optimal scheduling methods. While this choice of evaluation does not
account for cache misses, there is no obvious reason why either scheduler should
consistently have worse cache performance than the other, so they are ignored,
especially since this evaluation method does not measure cache performance in any
way.

As the architectural model was improved, comparing static schedule lengths
with the initial list scheduler became ineffective. The list scheduler produced sched-

43

ules that ignored and even violated the advanced architectural features, allowing it
to produce shorter schedules than the optimal scheduler. For example, on a single-
issue machine with a 32-cycle floating point instruction, the list scheduler would
still schedule an instruction every cycle, if possible, while an optimal scheduler us-
ing a non-fully pipelined model, would be forced to delay 32 cycles before any other
instruction could be issued.

Because of this drawback, the list scheduler was modified for evaluation pur-
poses. As list scheduling occurs, special conditions are enforced so that the choices
the list scheduler makes are exactly as they would be when scheduling for our ini-
tial model, but once a choice of instruction is made, the scheduler behaves as if it
was a physical processor, enforcing delays as necessary. If a schedule produced by
the initial list scheduler were executed on a processor, the processor would delay
instructions when resources were unavailable; the modified list scheduler described
later in this chapter copies that behaviour. The 32-cycle instruction on the single-
issue machine would be chosen without any knowledge of its execution time or
impact on other instructions beyond what the basic list scheduler would already
know, but once this instruction is chosen, the functional unit executing the instruc-
tion is locked for the full 32 cycles, and the list scheduler cannot successfully select
another instruction until the 32-cycle instruction completes.

4.3.2 The Optimal Scheduler

The goal of the optimal scheduler is to search the space of all schedules having
length in the range [L, U − 1], attempting to find the shortest possible schedule
with length at least L and at most U for lower and upper bounds L and U . This is
done by searching first for a feasible schedule of length L. If none can be found, it
searches for a scheduler of length L + 1, continuing until it searches for a schedule
of length U − 1. The scheduler need not attempt to find a schedule of length U ,
provided that U is equal to the schedule length of some not necessarily optimal
schedule, such as one generated by a list scheduler using any heuristic. If there is
no valid schedule with length at most U−1, and a heuristic has produced a schedule
of length U , it follows that U is the length of the optimal schedule, and the optimal
scheduler has proved the heuristically-generated schedule to be optimal.

The lower bound L is calculated by initializing the lower bounds of all variables
to 1 and then modifying lower bounds so that latency and distance constraints
are satisfied. For each variable in topologically sorted order, the latency, distance,
predecessor, and successor constraints are propagated, tightening the lower bound
of each variable as much as possible. A similar process is used to calculate the initial

44

upper bounds, save that the order in which variables are processed is reversed and
that the upper bounds of all variables are initialized to L.

The upper bound U is obtained by invoking the list scheduler on the DAG. To
achieve the best possible bound, I take the minimum schedule produced by using
several different heuristics. In addition to the Critical Path and Shieh and Pa-
pachristou heuristics, the optimal scheduler also considers a Decision Tree heuristic,
learned by a decision tree algorithm from data obtained from our optimal scheduler
[33], an Earliest Start Time heuristic and two refinements to Shieh and Papachris-
tou using more tie breaking features that proved in practice to have a negligible
effect on schedule length (and thus were not selected to be one of the heuristics used
by the list scheduler). The Earliest Start Time heuristic selects the instruction with
the earliest start time, breaking ties with the critical path to sink.

Having set initial bounds on the variables and determined an upper bound on
schedule length, the optimal scheduler can now search for an optimal schedule. If
L = U , the schedule produced by the list scheduler is provably optimal and no
further work need be done. If not, the scheduler tries to find a schedule of length
L. If no feasible schedule can be found, the upper bounds on all variables are
increased by one, the source and sink have their bounds set to [1, 1] and [L+1, L+1]
respectively, and the scheduler attempts to find a schedule of length L + 1. This
alternation between increasing bounds and searching for a schedule of length k
continues until either a schedule of length k is found or the scheduler determines
that no schedule with length k ≤ U − 1 exists.

The optimal scheduler searches for a schedule of length k using a recursive back-
tracking search interleaved with constraint propagation. At each level, a variable
Xi with bounds [ai, bi] is chosen heuristically to be the branching variable. Vari-
able Xi is assigned the value ai, and constraints are propagated. The propagation
algorithm first propagates any constraints involving Xi, and notes which variables
have their bounds changed. Constraints involving this new set of changes variables
are propagated, resulting in another changed set. Propagation continues until no
variables have their bounds changed as a result of constraints in the most current
set of constraints, or until any variable has its domain reduced to the empty do-
main. If propagation completes with a valid partial assignment, a new branching
variable is selected.

If a variable has its domain reduced to the empty domain, there is no solution to
the CSP given the current partial assignment. This means that the value assigned
to Xi is invalid. The domains of all variables are restored to their values before Xi

was assigned ai, and the lower and upper bounds of Xi are set to ai + 1. This new
change is then propagated. Xi is assigned each value in [ai, bi] successively, followed

45

by propagation, until either a solution is found or the scheduler determines that
for Xi assigned to any value in [ai, bi], no solution exists. A solution is found when
propagation completes successfully and there are no variables left with unequal
lower and upper bounds. For a DAG with n nodes, there need not be n levels
of propagation, both because the sink and source are assigned values and because
propagating constraints when one variable is assigned may lead to other variables
being assigned.

If there is no value within [ai, bi] which, when assigned to Xi, leads to a solution,
the algorithm backtracks. The partial solution for all variables assigned values before
Xi was selected as the branching variable cannot lead to a solution, and so the value
assigned to the previous branching variable is invalid. It is increased, if possible,
and propagation is performed; if this previous variable was also assigned its upper
bound, the algorithm backtracks again, and so on. If Xi was the first branching
variable, there is no solution given the current constraints and schedule length, and
so the schedule length is increased as described previously.

The optimal scheduler uses several different levels of propagation that allow
for a tradeoff between the time spent propagating constraints and the quality of
the propagation that gets performed. Latency, distance, edge, and functional unit
constraints must be propagated at every level of propagation, as failure to do so
could lead to an invalid schedule being identified as valid. Singleton consistency, a
propagation technique discussed later in this chapter, helps restrict the bounds of
the variables, but is not necessary for correctness. For basic blocks with few nodes
which can be scheduled quite quickly, the cost of performing singleton consistency
outweighs the speed increase gained by fewer backtracks and variable assignments
being required. For this reason, the scheduler uses three levels of propagation, using
higher levels of propagation as the time spent scheduling increases.

Initially, singleton consistency is not performed. If the scheduler fails to find an
optimal solution within 5 seconds, the scheduler begins using singleton consistency
to depth one. If no solution is found within 15 seconds, the scheduler uses singleton
consistency to depth two. If no solution is found after 10 minutes, the scheduler
times out, and the schedule length returned is a lower bound to the optimal schedule
length. The time limit of 10 minutes was chosen as a balance between time and
number of blocks that could be solved without timing out; very few additional
blocks could be solved if the time limit was increased to 30 minutes.

Branching variables are chosen heuristically from the set of variables for which
the lower and upper bounds are not currently equal. The heuristic used varies
slightly depending on the propagation level. If the lowest level of propagation is
being used, all variables are considered. If not, let chi be the number of changes in

46

the domains of variables which occurred when singleton consistency was propagated
for variable Xi, and let ch = max{chi}. In this case, variables are candidates for
the next branching variable if chi ≥ 0.8 ∗ ch, favouring the instruction that has the
greatest effect on the domains of other variables. There must always be at least one
instruction for which chi ≥ 0.8∗ ch, as ch = chj for some j and chj ≥ 0.8∗ chj. The
value 0.8 was chosen as it produced good results in practice, being large enough to
reduce the number of variables considered but small enough to allow there to often
be some choice of variable.

Singleton Consistency

Singleton consistency (see [7]) is an additional form of constraint propagation that
can, in practice, significantly reduce the domains of variables and shorten the
amount of time needed to find an optimal solution to a constraint satisfaction
problem. Singleton consistency is based on the property that for variable Xi, a
value v ∈ dom(Xi) that has a support in a constraint C will have a support in
C even if dom(Xi) = {v}. Singleton consistency works by temporarily reducing
the domain of a variable to a singleton set and propagating constraints to find an
inconsistency. If an inconsistency is found, the value is removed from the domain
of the variable.

In our scheduler, we place a bound on how many levels of recursion are used
during singleton consistency for performance reasons. If no limit is placed on the
number of levels of recursion for which singleton consistency is performed, singleton
consistency becomes another form of backtracking search. Since we are enforcing
bounds consistency within our scheduler, we choose the values for the singleton
domains for a variable by starting at the variable’s lower bound. If an inconsistency
is detected, the lower bound is increased by one and a new singleton domain is made
until there is no inconsistency within the given depth of propagation. A similar
method is used to reduce the upper bound on a variable. We perform singleton
consistency on all variables which do not already have a singleton domain.

4.3.3 Results for Initial Architectural Models

The list scheduler performs quite well for the initial model. As Table 4.2 and
Table 4.3 indicate, there are very few blocks for which the list scheduler is not
optimal. The list scheduler produces optimal schedules for 99.1%-99.9% blocks
when scheduling was done before register allocation and 98.6%-99.6% blocks when
scheduling was done after register allocation. Tables 4.4 and 4.5 present the same

47

results grouped by block size instead of benchmark application. However, when
the optimal scheduler is able to find an improved schedule, the schedule is often
improved by a significant number of cycles. Table 4.6 and Table 4.7 show the
average and maximum percentage improvement over all improved basic blocks,
with a maximum improvement over any block on any architecture of 27%. While
the optimal scheduler is able to produce significantly better schedules when the
heuristic schedule is non-optimal, there are so few non-optimal schedules produced
that the overall savings are negligible.

Comparing the four architectures, the worst performance for the list scheduler
is achieved on the PowerPC 603e and 604 architectures; the single-issue and IA-64
architectures have fewer improved schedules and the improvements are generally
smaller than on the PowerPC architectures. In the case of the single-issue architec-
ture, I suspect that the optimal scheduler is unable to find many better schedules
than the list scheduler because there is often a clear best choice of instruction to
issue in a given cycle, and both heuristics are able to find this best instruction.
While a single-issue architecture can be the least forgiving of a poor choice (on
a multi-issue architecture, if instruction a is the best choice and b is second-best,
the list scheduler can choose b and then a, but both may be executed in the same
cycle; on a single-issue architecture, a single bad choice of instruction can cause the
schedule to be non-optimal), the small issue width also makes the best instruction
more obvious.

The performance of the list scheduler on the IA-64 is harder to explain. Perhaps
since the issue width and number of functional units are both large, the need to
make the right choices in a heuristic is reduced, since if an instruction must be
executed in a particular cycle in order to lead to an optimal schedule, there are more
chances for that instruction to actually be selected by the heuristic than there are
on a more constrained architecture. The PowerPC architectures are complicated
enough to often have more than one strong choice of instruction, as opposed to the
single-issue architecture, but have small enough issue widths to make wrong choices
costly and are less forgiving than the IA-64.

There is also negligible difference between the two heuristics used. Table 4.8
and Table 4.9 shows that there is little gain realized when choosing one heuristic
over the other, although Shieh and Papachristou’s heuristic does outperform the
critical path heuristic.

List scheduling performs well with respect to register pressure. When schedul-
ing is performed before register allocation, the list scheduler gets better results on
every architecture, as shown in Table 4.10. After register allocation, the list sched-
uler produces schedules with a lower register pressure more often than the optimal

48

scheduler for the PowerPC 603e and IA-64 architectures, and is not significantly
outperformed by the optimal scheduler on the single-issue and PowerPC 604 archi-
tectures (see Table 4.11). With respect to the two list scheduling heuristics, Shieh
and Papachristou’s heuristic outperforms the critical path heuristic when schedul-
ing is done before register allocation, as shown in Table 4.12, but critical path
produces better results after register allocation, demonstrated in Table 4.13.

Register pressure is more significant when instruction scheduling is performed
before register allocation instead of after register allocation. This is because register
allocation assigns a physical register to each data value, possibly at the cost of
introducing spill code to temporarily store some values in memory, and so a schedule
can never use more registers than are physically available [29].

The numbers presented in Tables 4.10 and 4.11 only show results for basic blocks
where the schedule produced by the list scheduler was not proved optimal. When
the list scheduler does give a provably optimal schedule, the optimal scheduler
is either not invoked or stops after determining that there is no valid schedule of
length U−1, where U is the upper bound given by the list scheduler. Since only the
list scheduler produces an actual schedule in this case, there can be no comparison
between schedules.

Overall, list scheduling performs quite well, and there is no strong motivation
to use an optimal scheduler for an idealized architectural model. This is not sur-
prising, as it is supported by the research surveyed in Chapter 3. The list scheduler
is outperformed by the optimal scheduler mainly for larger blocks, but with the
majority of basic blocks being small, this is not particularly significant.

49

Table 4.2: Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite
with more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 3128 30 29 26 2
applu 653 18 23 22 6 1
apsi 2210 16 65 70 15
art 355 1 4
bzip2 972 4 2 1
crafty 4969 41 26 26 7
eon 4509 22 25 1 12 1 8
equake 486 1 4 3 2
facerec 1221 12 48 54 16
fma3d 10034 133 207 9 143 8 39 11
galgel 5369 55 90 3 81 2 13 2
gap 19729 47 41 17 5
gcc 42686 107 81 38 25
gzip 1610 11 20 13
lucas 915 15 49 51 16
mcf 364 9 8 2
mesa 14903 87 177 3 130 3 42
mgrid 207 1 3 4
parser 3561 8 3 2
perl 16450 47 59 29 8
sixtrack 10950 213 333 2 284 2 38 2
swim 345 1 4 4 1 1
twolf 7468 55 45 35 3
vortex 11945 54 82 30 7
vpr 3369 18 15 6
wupwise 591 12 14 12 1
Totals 168999 1017 1436 18 1079 16 241 17

50

Table 4.3: Local instruction scheduling for the initial architectural model after reg-
ister allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 3459 73 55 52 7
applu 734 33 47 47 16
apsi 2650 57 103 100 38
art 486 1 4 4
bzip2 1060 5 17 13
crafty 5135 56 1 82 1 58 21
eon 4972 87 107 74 26
equake 503 5 7 7 3
facerec 1436 21 65 61 31
fma3d 11280 333 2 432 2 288 1 118 3
galgel 6120 139 195 183 43
gap 20625 151 64 33 16
gcc 45565 174 147 77 30
gzip 1722 10 18 14 1
lucas 1014 21 33 35 9
mcf 407 10 9 2
mesa 16478 177 199 1 125 1 44
mgrid 221 8 15 12 3
parser 3934 19 6 4 1
perl 17542 144 102 74 10
sixtrack 12568 402 645 584 195 3
swim 388 6 6 6 1
twolf 7695 70 71 35 12
vortex 12808 60 126 70 41
vpr 3654 26 30 17 4
wupwise 654 41 50 45 9
Totals 183110 2126 3 2631 4 2014 2 677 6

51

Table 4.4: Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite
with more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of basic blocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 91806 50 0.1 52 0.1 43 0.0 0 0.0
6-10 44152 257 0.6 243 0.6 112 0.3 3 0.0
11-20 20167 246 1.2 334 1.7 187 0.9 41 0.2
21-30 5321 137 2.6 201 3.8 158 3.0 37 0.7
31-50 3895 161 4.1 262 6.7 230 5.9 50 1.3
51-100 2372 124 5.2 234 9.9 238 10.0 49 2.1
101-250 1131 36 3.2 89 7.9 94 8.4 48 4.3
251-2600 155 6 3.9 21 14.4 17 11.6 14 9.9
Totals 168199 1017 0.6 1436 0.9 1079 0.6 241 0.1

Table 4.5: Local instruction scheduling for the initial architectural model after reg-
ister allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of basic blocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 90305 51 0.1 48 0.1 34 0.0 0 0.0
6-10 47655 242 0.5 203 0.4 105 0.2 6 0.0
11-20 25766 6203 2.3 602 2.3 324 1.3 89 0.3
21-30 8446 333 3.9 451 5.3 307 3.6 95 1.1
31-50 5808 365 6.3 503 8.7 471 8.1 168 2.9
51-100 3273 302 9.2 485 14.8 466 14.2 182 5.6
101-250 1655 181 10.9 279 16.9 257 15.5 113 6.8
251-2600 199 49 24.6 60 29.9 58 24.9 24 12.2
Totals 183107 2126 1.2 2631 1.4 2014 1.1 677 0.4

52

Table 4.6: Local instruction scheduling for the initial architectural model before
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the basic blocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 8.8 12.5 9.5 16.7 8.8 10.0 0.0 0.0
6-10 7.5 11.1 8.7 14.3 8.3 16.7 11.5 16.7
11-20 5.3 16.7 6.9 21.1 6.8 16.7 8.2 12.5
21-30 3.2 10.7 4.9 21.1 5.0 15.0 6.4 10.0
31-50 2.4 13.2 3.8 17.2 3.6 15.0 4.4 10.5
51-100 1.9 8.2 2.3 26.9 2.6 22.2 3.8 20.7
101-250 1.5 8.8 2.8 21.4 3.0 21.4 2.1 17.6
251-2600 0.3 0.7 2.5 12.4 3.6 12.4 1.7 9.2
Totals 4.7 16.7 5.4 26.9 4.8 22.2 4.7 20.7

Table 4.7: Local instruction scheduling for the initial architectural model after regis-
ter allocation. Average and maximum percentage improvements in schedule length
of optimal schedule over the best heuristic schedule, for various architectures. The
average is over only the basic blocks in the SPEC 2000 benchmark suite for which
the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 9.2 14.3 9.6 16.7 9.1 10.0 0.0 0.0
6-10 7.3 11.1 8.4 14.3 7.7 14.3 11.3 16.7
11-20 4.6 13.3 6.0 21.4 5.4 12.5 7.7 12.5
21-30 3.1 11.1 4.6 16.7 4.5 13.3 5.3 11.5
31-50 2.3 10.8 3.4 23.5 3.5 15.0 4.3 14.3
51-100 1.8 8.1 2.5 17.1 2.9 21.4 3.2 16.7
101-250 1.2 7.8 1.4 10.0 1.5 11.7 1.5 8.6
251-2600 0.2 0.6 0.5 3.2 0.5 3.6 0.5 2.7
Totals 3.6 14.3 4.3 23.5 3.8 21.4 4.1 16.7

53

Table 4.8: Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over Shieh and Papachristou’s heuristic, and (b) Shieh and Papachristou’s heuristic
resulted in an improved schedule over critical path, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 156 0 57 0 6 0 0
6-10 23 121 19 70 11 30 6 4
11-20 76 101 78 125 53 68 10 82
21-30 19 67 47 73 46 41 17 22
31-50 25 32 48 76 45 60 11 15
51-100 15 51 29 74 22 76 21 40
101-250 12 29 20 56 20 53 16 27
251-2600 2 1 3 13 3 12 7 9
Totals 177 558 244 544 200 346 88 199

Table 4.9: Local instruction scheduling for the initial architectural model after reg-
ister allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over Shieh and Papachristou’s heuristic, and (b) Shieh and Papachristou’s heuristic
resulted in an improved schedule over critical path, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 4 85 0 17 0 8 0 0
6-10 28 196 47 154 36 51 10 3
11-20 177 197 170 233 115 99 56 39
21-30 88 92 111 123 89 86 40 45
31-50 148 107 150 232 137 209 80 48
51-100 166 91 188 187 157 184 59 100
101-250 90 54 103 106 93 90 34 54
251-2600 18 21 22 24 21 23 4 11
Totals 719 843 791 1076 648 750 283 300

54

Table 4.10: Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 15 103 1 30 1 7 0 5
6-10 567 609 191 488 96 118 28 62
11-20 1284 1185 760 783 369 446 303 367
21-30 217 221 450 522 320 337 281 258
31-50 597 864 440 423 288 290 207 215
51-100 309 617 220 396 211 290 175 200
101-250 92 420 133 185 136 158 109 115
251-2600 12 63 21 35 21 34 11 39
Totals 3093 4082 2216 2862 1442 1680 1114 1222

Table 4.11: Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 71 148 22 60 12 15 0 12
6-10 707 537 314 502 162 196 30 154
11-20 1654 1322 1032 930 820 507 375 460
21-30 982 885 492 340 622 381 435 352
31-50 847 759 556 515 473 437 343 365
51-100 354 449 230 410 241 315 183 255
101-250 160 237 101 146 96 139 101 64
251-2600 27 34 20 22 21 23 20 23
Totals 4802 4371 3010 3143 2445 2017 1475 1730

55

Table 4.12: Local instruction scheduling for the initial architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than Shieh and Papachristou’s schedule, and (b) Shieh and Papachristou’s
schedule had lower register pressure than the critical path schedule, for various
architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 201 94 190 30 18 7 17 5
6-10 333 244 401 273 145 87 131 55
11-20 358 549 412 525 291 329 237 312
21-30 217 221 239 300 173 248 154 204
31-50 109 228 177 212 158 135 129 107
51-100 80 173 112 204 108 162 130 103
101-250 34 189 31 114 26 105 56 51
251-2600 2 34 9 29 8 23 16 17
Totals 1334 1732 1571 1687 927 1093 870 854

Table 4.13: Local instruction scheduling for the initial architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than Shieh and Papachristou’s schedule, and (b) Shieh and Papachristou’s
schedule had lower register pressure than the critical path schedule, for various
architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 143 138 125 60 50 15 47 12
6-10 412 191 384 303 227 153 189 127
11-20 575 456 732 598 650 342 425 289
21-30 408 302 492 340 436 207 294 255
31-50 335 284 470 313 405 232 298 237
51-100 215 162 244 222 236 191 207 161
101-250 99 134 121 61 118 58 101 64
251-2600 20 11 15 12 19 13 15 18
Totals 2207 1678 2583 1909 2141 1043 1576 1163

56

4.3.4 Results for Improved Architectural Models

As the initial model was improved by the addition of more realistic architectural
properties, it became necessary to modify the list scheduler in order to accurately
compare schedule lengths. This section discusses the modifications made to the list
scheduler and presents the results of comparing the performance of both schedulers
when the optimal scheduler was given an improved architectural model.

List Scheduler Modifications

In order to produce the behaviour in the list scheduler described in Section 4.3.1,
the list scheduler had to undergo several changes, described here. Our initial list
scheduler did not account for issue width since the initial CSP model did not either.
Issue width is a standard feature of modern list schedulers, and so this change was
made directly.

The list scheduler simulates an in-order processor, one which executes instruc-
tions in the order specified by the program. The alternative would be an out-
of-order processor, which does not necessarily execute instructions in the order in
which they are received by the processor. The two processor classes differ mainly
in their behaviour when an instruction is issued too early. For example, on an
architecture with one integer and one floating point functional unit, no integer in-
structions can be issued for five cycles following the issue of an integer instruction
i with an execution time of five. Suppose the next two instructions to be issued
are instructions j, an integer instruction, and k, a floating point instruction. An
in-order processor would delay both j and k until five cycles after i had been issued,
while an out-of-order processor could issue k before i had finished executing, pro-
vided it could guarantee the correctness of the program. I chose to modify the list
scheduler to resemble an in-order processor, not an out-of-order processor, because
the former is more clear and it allows for a direct comparison against the optimal
scheduler. If the list scheduler resembled an out-of-order processor, any compar-
ison would be lost unless the optimal scheduler behaved the same way. Given
the NP-completeness of optimal instruction scheduling, incorporating out-of-order
behaviour into a constraint program will drastically increase the runtime of the
optimal scheduler without adding any value to this thesis.

To evaluate list scheduling on a processor that was not fully pipelined, the
list scheduler was modified to simulate the processors’ behaviour when attempting
to issue an instruction for which no functional unit was available. If a compiler
produced code that attempted to issue instructions without having proper units

57

available, the processor would delay those instructions (and any dependent instruc-
tions) until an appropriate functional unit became available. This effect is achieved
in a standard list scheduler by having a pending list : a list of instructions that were
selected to be issued in the current cycle but cannot be issued because a functional
unit is unavailable. When choosing an instruction to schedule, instructions must
be chosen from the pending list if possible, and the oldest instruction of its type
for which a functional unit is available must be chosen first. For example, suppose
the pending list has two floating point instructions and an integer instruction, with
the integer instruction between the floating point instructions in order of time.
The integer instruction can be chosen as soon as an integer unit becomes available,
but the newer floating point instruction cannot be chosen until the older floating
point instruction has been chosen. If the pending list is empty or if no instructions
in the pending list can be executed but another instruction can, that instruction
may be issued. When choosing an instruction that is not on the pending list, se-
lectBestInstruction does not consider the execution time of the instruction; the
heuristics used remain the same as they were previously.

The effect is that selectBestInstruction makes a choice that is uninformed
with respect to execution time and available functional units, just as in a standard
list scheduler, and the pending list simulates the delay enforced by the processor if
no functional units are available for a particular instruction.

Instructions which serialize the processor are also not a feature of the stan-
dard list scheduling algorithm. The necessary modifications were similar to those
for non-fully pipelined processors. If a serial instruction is issued in the current
cycle, no other instructions can be issued. If selectBestInstruction selects a
serial instruction but another instruction has been issued in the current cycle or
a previously-issued instruction is executing, the serial instruction is placed on the
pending list. If any serial instructions are on the pending list, no other instruction
can be issued unless it completes without delaying the first serial instruction on the
pending list. For example, if a 32-cycle floating point instruction has been issued
and then a serial instruction is selected and added to the pending list, a 3-cycle
load instruction can be issued, as it does not delay the serial instruction (provided
that it finishes before or at the same time as the floating point instruction), as
this does not further delay the execution of the serial instruction. Only the first
serial instruction need be considered: since only one serial instruction can execute
in a cycle, delaying the first serial instruction necessarily delays all future serial
instructions. As before, selectBestInstruction has no knowledge of the pending
list; it selects an instruction from the ready list using a standard heuristic. This
simulates the delay experienced when a serial instruction is issued on the processor

58

but cannot execute until other instructions complete execution. As with non-fully
pipelined processors, an instruction on the pending list must be selected, if there
is one, to prevent the list scheduler from being able to decide that the previously
queued instruction was not the best choice after all.

In the case where there are both serial instructions and instructions delayed due
to multi-cycle instructions, the oldest instruction is selected first, regardless of type.
The only exception is that an instruction waiting on a multi-cycle instruction may
be selected ahead of an older serial instruction provided that the serial instruction
is not further delayed, similar to the example in the preceding paragraph.

Results

While Section 4.2 presents architectural improvements in succession, the results
here encompass all implemented architectural improvements. There is no motiva-
tion to choose one improvement before another for the purposes of evaluation, and
so all are evaluated at once. The order presented in Section 4.2 follows the order
of implementation and testing, which has no bearing on the performance of either
scheduler when all improvements are considered.

The list scheduler’s performance is still quite good when using the improved
architectural model. Tables 4.14 and 4.15 give the improvements by benchmark
application, and Tables 4.16 and 4.17 give the improvements by block size. List
scheduling is now optimal from 95.9%-97.8% of the time when scheduling is per-
formed before register allocation and 94.2%-97.6% of the time when scheduling is
performed after register allocation. When the list scheduler is not optimal, it is
further away from optimality for the improved architectural model than the initial
architectural model. Table 4.18 and Table 4.19 give average and maximum im-
provements over all improved basic blocks. In the worst case, the optimal scheduler
finds a schedule nearly half as long as the list scheduler (the maximum percent-
age improvement of 42.7% on the IA-64 architecture when scheduling is done after
register allocation).

With regard to heuristics, Shieh and Papachristou’s heuristic achieves much
better schedules than the critical path heuristic (see Tables 4.20 and 4.21).

The list scheduler and optimal scheduler are again relatively similar with regards
to register pressure. Neither significantly outperforms the other for any target ar-
chitecture, and there seems to be little difference whether scheduling is performed
before or after register allocation. Tables 4.22 and 4.23 give results comparing
the two schedulers, and Tables 4.24 and 4.25 compare the critical path heuristic

59

with Sheih and Papachristou’s heuristic. As with the initial architectural model,
Shieh and Papachristou’s heuristic produces better schedules with regards to regis-
ter pressure than the critical path heuristic when scheduling is done before register
allocation, but critical path performs better after register allocation.

Overall, list scheduling is still quite good, both in terms of schedule length and
register usage. The optimal scheduler produces better results for large basic blocks,
but the overwhelming number of small basic blocks is a good argument in favour
of list scheduling.

60

Table 4.14: Local instruction scheduling for the improved architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 3128 129 6 146 9 137 10 101 26
applu 653 64 1 110 8 102 7 71 13
apsi 2210 169 28 338 45 349 27 259 13
art 355 1 15 16 9
bzip2 972 7 28 27 3 24 1
crafty 4969 57 136 3 171 9 137 9
eon 4509 137 1 378 22 374 17 310 34
equake 486 6 11 1 10 1 8 3
facerec 1221 64 138 22 155 10 145 11
fma3d 10034 958 6 1114 72 769 56 697 101
galgel 5369 143 1 413 9 452 11 358 13
gap 19729 452 1 680 1 477 1 448 1
gcc 42686 144 2 398 5 374 4 390 8
gzip 1610 11 44 42 33 1
lucas 915 47 68 55 41
mcf 364 9 17 16 2 15 1
mesa 14903 353 709 23 632 12 875 27
mgrid 207 3 11 13 12
parser 3561 20 43 27 36
perl 16450 57 320 279 1 278 9
sixtrack 10950 662 15 1376 33 1125 29 808 81
swim 345 11 34 4 32 1 27 10
twolf 7468 131 325 219 1 184 1
vortex 11945 94 291 2 222 4 195 5
vpr 3369 75 101 2 73 3 59 4
wupwise 591 27 1 48 47 36
Totals 168999 3769 62 6964 264 5996 209 5195 372

61

Table 4.15: Local instruction scheduling for the improved architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 3459 135 6 208 12 208 10 158 21
applu 734 84 3 138 10 146 12 118 20
apsi 2650 179 12 455 41 477 27 398 24
art 486 3 26 20 1 30
bzip2 1060 13 62 63 4 56 6
crafty 5135 81 2 218 11 233 12 209 19
eon 4972 173 2 605 97 539 24 560 47
equake 503 9 15 3 21 2 18 3
facerec 1436 71 231 31 211 22 201 16
fma3d 11280 951 13 1517 87 1241 93 1277 186
galgel 6120 219 633 16 710 20 602 18
gap 20625 515 736 2 680 10 684 19
gcc 45565 212 1 1052 6 1221 18 1245 24
gzip 1722 11 74 1 82 1 80 4
lucas 1014 49 158 1 158 1 143 2
mcf 407 10 25 1 28 1 24 1
mesa 16478 378 3 1054 29 1044 31 1132 52
mgrid 221 13 30 1 31 1 23 1
parser 3934 30 146 155 1 161 1
perl 17542 154 669 1 694 5 782 16
sixtrack 12568 780 17 1806 51 1636 47 1259 109
swim 388 24 52 1 45 3 45 9
twolf 7695 145 325 298 3 258 7
vortex 12808 90 446 6 580 5 564 16
vpr 3654 88 2 189 3 180 4 185 8
wupwise 654 59 93 1 96 1 72 2
Totals 183110 4416 61 10571 412 10455 359 9675 631

62

Table 4.16: Local instruction scheduling for the improved architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of basic blocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 91806 70 0.1 722 0.8 682 0.7 692 0.8
6-10 44152 560 1.3 1073 2.4 771 1.7 810 1.8
11-20 20167 1217 6.0 1774 8.8 1452 7.2 1095 5.4
21-30 5321 630 11.8 1138 21.4 1070 20.1 887 16.7
31-50 3895 640 16.4 1067 27.6 976 25.2 838 21.7
51-100 2372 448 19.1 849 37.1 729 31.6 582 25.7
101-250 1131 179 16.2 309 29.5 287 27.3 280 27.6
251-2600 155 25 16.3 34 31.8 31 27.7 12 15.2
Totals 168999 3769 2.2 6964 4.1 5996 3.5 5195 3.1

Table 4.17: Local instruction scheduling for the improved architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of basic blocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 90305 64 0.1 502 0.6 403 0.4 406 0.5
6-10 47655 488 1.0 980 2.1 851 1.8 859 1.8
11-20 25766 1338 5.2 3061 11.9 2932 11.4 2760 10.7
21-30 8446 702 8.3 1843 21.9 2120 25.1 1913 22.7
31-50 5808 818 14.1 2060 35.7 2072 36.1 1783 31.3
51-100 3273 602 18.5 1367 43.4 1341 42.6 1195 38.7
101-250 1655 336 20.6 693 46.4 666 42.7 718 49.6
251-2600 199 68 37.8 79 61.2 81 58.3 44 48.9
Totals 183107 4416 2.4 10571 5.8 10455 5.7 9675 5.3

63

Table 4.18: Local instruction scheduling for the improved architectural model before
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the basic blocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 8.0 12.5 15.8 25.0 16.2 20.0 16.5 25.0
6-10 6.7 18.2 9.0 26.7 9.6 26.7 10.2 31.3
11-20 5.5 21.7 7.1 26.3 7.7 27.8 8.7 31.0
21-30 5.6 23.8 6.3 30.8 6.3 32.5 7.4 33.8
31-50 4.8 23.2 4.6 26.5 5.4 32.4 6.5 37.1
51-100 3.6 29.3 3.4 33.3 3.7 31.9 4.4 28.8
101-250 3.4 23.5 3.1 20.4 3.6 21.1 3.7 16.8
251-2600 1.1 13.3 2.6 7.8 1.7 10.1 0.9 3.3
Totals 5.2 29.3 7.1 33.3 7.6 32.5 8.6 37.1

Table 4.19: Local instruction scheduling for the improved architectural model after
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the basic blocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 8.9 14.3 15.8 25.0 16.9 20.0 17.3 25.0
6-10 6.7 14.3 9.3 26.7 10.0 26.7 10.0 31.3
11-20 5.2 22.2 7.9 34.1 8.7 34.1 10.0 42.7
21-30 4.4 21.7 6.0 27.6 6.6 28.6 8.3 33.3
31-50 4.0 25.0 4.9 26.3 5.3 36.4 6.2 41.3
51-100 3.2 32.0 3.8 30.8 4.1 30.8 5.0 36.4
101-250 2.2 18.3 3.2 26.8 3.3 29.6 4.3 24.3
251-2600 1.7 17.2 1.9 11.7 2.5 15.0 3.2 10.7
Totals 4.5 32.0 6.6 34.1 7.0 36.4 8.2 42.7

64

Table 4.20: Local instruction scheduling for the improved architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over Shieh and Papachristou’s heuristic, and (b) Shieh and Papachristou’s heuristic
resulted in an improved schedule over critical path, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 36 156 44 159 3 62 3 63
6-10 40 116 60 242 34 241 36 181
11-20 113 104 146 463 158 436 109 293
21-30 27 89 156 216 122 207 123 152
31-50 41 33 87 223 87 229 80 101
51-100 23 62 87 134 89 138 106 90
101-250 24 24 38 104 43 102 50 41
251-2600 2 1 9 9 11 5 6 4
Totals 306 585 627 1550 547 1420 513 925

Table 4.21: Local instruction scheduling for the improved architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over Shieh and Papachristou’s heuristic, and (b) Shieh and Papachristou’s heuristic
resulted in an improved schedule over critical path, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 35 85 32 126 2 70 2 69
6-10 40 184 89 361 73 210 57 151
11-20 203 200 353 612 305 533 258 440
21-30 90 89 225 402 282 415 439 360
31-50 164 113 330 458 334 447 296 286
51-100 188 97 322 299 274 301 193 212
101-250 86 57 173 172 167 228 145 127
251-2600 17 24 18 22 20 26 8 12
Totals 823 849 1542 2452 1457 2230 1398 1657

65

Table 4.22: Local instruction scheduling for the improved architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 81 386 126 275 133 238 148 239
6-10 40 116 400 989 343 335 331 326
11-20 1379 1106 1134 1280 842 820 755 686
21-30 781 747 692 625 502 500 615 463
31-50 671 720 659 527 524 369 420 316
51-100 384 529 412 392 392 338 305 253
101-250 155 309 227 134 203 122 144 108
251-2600 35 40 22 18 25 15 12 4
Totals 3526 3953 3672 4240 2964 2737 2730 2395

Table 4.23: Local instruction scheduling for the improved architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 272 427 255 306 268 260 270 252
6-10 968 847 753 898 584 489 573 490
11-20 1859 1276 1491 1596 1430 1363 1394 1260
21-30 1046 876 935 834 862 970 864 925
31-50 880 695 765 816 702 753 627 705
51-100 456 382 380 455 325 420 283 407
101-250 204 199 158 191 172 225 156 176
251-2600 29 20 22 11 16 23 4 13
Totals 5174 4722 4759 5107 4359 4503 4171 4228

66

Table 4.24: Local instruction scheduling for the improved architectural model before
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than Shieh and Papachristou’s schedule, and (b) Shieh and Papachristou’s
schedule had lower register pressure than the critical path schedule, for various
architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 221 92 224 56 26 40 19 41
6-10 331 252 404 301 159 102 134 79
11-20 352 535 405 607 345 325 257 283
21-30 213 216 270 307 199 236 191 199
31-50 118 202 204 238 157 152 120 147
51-100 83 170 112 197 94 174 109 87
101-250 37 156 38 87 39 81 45 38
251-2600 7 22 7 17 5 13 5 4
Totals 1362 1645 1664 1810 1024 1123 880 878

Table 4.25: Local instruction scheduling for the improved architectural model after
register allocation. Number of basic blocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than Shieh and Papachristou’s schedule, and (b) Shieh and Papachristou’s
schedule had lower register pressure than the critical path schedule, for various
architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 147 135 140 92 47 48 32 51
6-10 390 169 409 317 260 182 215 157
11-20 473 482 620 683 529 389 377 331
21-30 395 328 422 347 395 308 309 248
31-50 329 284 441 342 371 254 271 258
51-100 199 151 215 214 193 185 163 179
101-250 89 122 110 90 100 73 61 87
251-2600 18 10 12 5 13 8 8 6
Totals 2040 1681 2369 2090 1908 1447 1436 1317

67

4.4 Summary of Results

Basic block scheduling has made heavy use of a critical path heuristic-based list
scheduler for many years, and based on the work presented in this thesis, there is
minimal need for that to change. The data presented in this chapter is for all basic
blocks within the SPEC 2000 benchmark suite of length three or greater. When
trivial blocks of length one and two are also considered, list scheduling is able to
schedule even more blocks optimally overall.

There are two major findings in this chapter. The first is that while list schedul-
ing for a more realistic architectural model produces fewer optimal schedules than
for an idealized architectural model, there is not a significant loss of quality when
scheduling for a more realistic architectural model. Thus, the list scheduling algo-
rithm continues to be a worthwhile method of performing instruction scheduling.

The second finding is that while the critical path feature may be the most
popular and best-performing feature in a heuristic (a fact not proven by experiments
over the course of my work), the choice of secondary features is indeed significant.
Shieh and Papachristou’s heuristic outperformed the critical path heuristic, and
as both have critical path as their primary feature, the obvious conclusion is that
secondary features are indeed important. This finding suggests the need for a more
through examination of heuristic performance on a sufficiently large benchmark
suite, such as the work done by Russell et al. [33].

68

Chapter 5

Global Instruction Scheduling

Global instruction scheduling is similar in many ways to local instruction schedul-
ing. While our optimal scheduler has many additions designed to reduce the cost
of finding an optimal schedule for a superblock, the list scheduling algorithm it-
self is unchanged. In this chapter, I present the minor differences between local
and global instruction scheduling, discuss the changes made to the optimal sched-
uler, and evaluate list scheduling for the initial and improved architectural models
presented in Chapter 4.

5.1 Initial Model

There is only one difference in the initial model between local and global instruction
scheduling. The cost function for global instruction scheduling is given in Definition
3, and it obviously differs from schedule length, the cost function used for local
instruction scheduling. Other than the cost function, the model remains the same.
A superblock can be scheduled by treating it as a basic block and not giving side
exits special treatment. In fact, this is precisely how list scheduling works for
superblocks. Unless the heuristic used treats side exits as special instructions,
there are no other differences between local and global instruction scheduling with
respect to the list scheduler.

69

5.2 Architectural Improvements

Because global and local instruction scheduling are so similar, there was no need
to add any more improvements to the architectural model, nor did any existing
improvements have to be changed. The issue width, for example, makes no distinc-
tion between side exits and other instructions. None of the improvements directly
involve the schedule cost, and as schedule cost is the only change between local and
global instruction scheduling, none of the improvements made in Section 4.2 need
any modifications.

5.3 Evaluation

In the remainder of this chapter, I present experimental results gained from schedul-
ing nearly 200,000 superblocks. As in Chapter 4, the data was obtained from com-
piling the entire SPEC 2000 benchmark suite in IBM’s TOBEY compiler backend.
Superblocks were collected before instruction scheduling was performed, both be-
fore and after register allocation were performed. Each superblock was scheduled
on several different architectures using both the initial and improved architectural
models. The same set of architectures given in Table 4.1 was used again for global
instruction scheduling.

5.3.1 Experimental Setup

The experimental setup for global instruction scheduling differs in a few ways from
the experimental setup from local instruction scheduling. The process followed by
the optimal scheduler was changed in several ways to enable it to find solutions
to the global instruction scheduling problem more quickly. These changes are de-
scribed in Section 5.3.2. The experiments were also performed on a Linux cluster
instead of a standard PC so that the results could be obtained faster. Experiments
were run on Whale, an HP Opteron cluster that is part of the Shared Hierarchical
Academic Research Computing Network (SHARCNET: http://www.sharcnet.ca).
The Whale cluster is comprised of 768 machines running HP Linux XC 3.0, each
with 4 GB of RAM and 4 2.2 GHz processors for a total of 3,072 processors.

The other more significant difference between the local and global instruction
scheduling experiments is the heuristics used for evaluation. The critical path
heuristic used for local instruction scheduling is used again for global instruction
scheduling, but instead of using Shieh and Papachristou’s heuristic, DHASY is

70

used. This is because DHASY was found to produce optimal schedules more often
than other global instruction scheduling heuristics in work done both within our
research group and by others (see Section 2.4.1).

5.3.2 The Optimal Scheduler

Because the cost function for global instruction scheduling is more complex than
the schedule length, as used in local instruction scheduling, the optimal scheduler
must account for this. This section outlines the differences in how the optimal
scheduler performs scheduling for superblocks as compared to basic blocks.

As with local instruction scheduling, the optimal scheduler invokes a list sched-
uler on the superblock multiple times, using a large number of heuristics. In ad-
dition to the heuristics mentioned in Section 4.3.2, two other heuristics were used.
Side Exits First favours side exits, breaking ties with critical path distance and
then earliest start time. The other heuristic, Weighted Estimate, is described in [8]
and is similar to DHASY except that estimates of the distances between pairs of
nodes that account for resource usage are used in place of the actual critical path
distance.

Heuristic bounds are used differently when scheduling superblocks. Each heuris-
tic schedule has both a length and a cost, which provide upper bounds for the
optimal schedule length and optimal schedule cost. For global instruction schedul-
ing, the optimal schedule length is the minimum length of any possible schedule,
ignoring the cost function completely.

The upper bounds on schedule length and cost can be improved by considering
articulation nodes. An articulation node is a side exit such that if it is removed
from a DAG G, G will have two separate components. That is, there is no edge
from a node in a basic block preceding the side exit to a node in a basic block
following the side exit.

Articulation nodes are useful in tightening the upper bounds on schedule length
and cost, and may even lead to an optimal solution. The optimal scheduler considers
each articulation node in the DAG in the order of topological sort. It solves the
region consisting of all nodes lying on a path between the initial node and the
articulation node exactly, unless a time limit of 5 seconds is exceeded. This tightens
the lower bounds on each articulation node in succession. If every side exit is an
articulation node, it can be proven (see [28]) that a schedule with optimal cost can
be obtained by scheduling each articulation node as early as possible. Since the
lower bounds on each articulation node have been tightened, all that remains is

71

to schedule while minimizing schedule length, as is done for basic blocks, and an
optimal schedule is obtained. If not every side exit is an articulation node, the
bounds on the articulation nodes can still be tightened.

The next step is to calculate a lower bound on the length of the optimal cost
schedule. This can be found by obtaining the optimal length schedule ignoring
schedule cost; in other words, by treating the superblock like a basic block. Let the
optimal schedule length be L. The optimal cost schedule must have length at least
L, as no schedule, optimal or not, with length less than L exists.

An upper bound on the final exit node for an optimal cost schedule can be
obtained from an upper bound U on schedule cost. Schedule cost for any schedule
is obtained by weighting the bounds on each exit. If every side exit is scheduled
for its earliest starting time and these weighted times are subtracted from U , the
remaining value is the weighted upper bound for the final exit. The final exit cannot
have a higher upper bound, or else the weighted sum of the exits would exceed U .
If any side exit was scheduled later than its lower bound, the final exit would have
to be scheduled earlier in order for the weighted sum of the exits to be U . This
upper bound on the final exit is also an upper bound on schedule length for an
optimal cost schedule. The optimal scheduler then uses singleton consistency to
prune the bounds of each exit variable.

At this point, the scheduler has obtained tight bounds on the cost variables and
on schedule cost, so it begins a process of enumerating assignments to cost variables.
For each schedule cost from lower to upper, the scheduler enumerates through all
valid assignments of the exits that achieve that schedule cost from lowest to highest.
For each assignment, all exits are fixed and backtracking interleaved with constraint
propagation is used to determine if a schedule exists. Three levels of timeouts are
used in the same way as they were used for local instruction scheduling. The second
and third levels include singleton consistency to depth one and two respectively as
part of each constraint propagation phase.

5.3.3 Results for Initial Architectural Models

Global instruction scheduling is clearly a more difficult problem to solve than local
instruction scheduling. For the initial architectural model, Tables 5.1 and 5.2 sum-
marize the number of blocks in which the list scheduler was non-optimal grouped
by benchmark application, and Tables 5.3 and 5.4 give the number and percent-
age of non-optimal blocks grouped by block size. When instruction scheduling is
performed before register allocation, 91.2%-97.5% of schedules produced by the list

72

scheduler are optimal. When scheduling follows register allocation, the list sched-
uler produces optimal schedule for 96.3%-97.6% of the superblocks.

The average percentage improvements for improved schedules is fairly small,
ranging from 3.9%-6.4% when instruction scheduling precedes register allocation
and 3.2%-5.7% when scheduling follows register allocation, as shown in Tables 5.5
and 5.6. However, the maximum improvements are significant, again affirming that
the list scheduler making a non-optimal choice can be costly.

Table 5.7 and Table 5.8 show, unsurprisingly, that DHASY is a much better
heuristic for global instruction scheduling than critical path. In the worst case, the
single-issue architecture when scheduling is performed before register allocation,
critical path outperforms DHASY on 1,677 superblocks, but DHASY produces
better schedules for 13,668 superblocks. This confirms that when scheduling su-
perblocks, a heuristic that accounts for side exits is essential for good performance.

The optimal scheduler produces reasonable schedules in terms of register pres-
sure, although a heuristic schedule produces schedules with a lower register pressure
than the optimal scheduler more often than the optimal schedule has a lower reg-
ister pressure than a heuristic schedule. Tables 5.9 and 5.10 show the number of
basic blocks where the schedule produced by the optimal scheduler and a heuristic
schedule had differing register pressures. A more surprising result is that for each
architecture, when one of the heuristics produced a schedule with lower register
pressure than the other, it was most often DHASY, as shown in Tables 5.11 and
5.12. This is significant as it suggests that an improved schedule need not occur at
the expense of increased register pressure.

In summary, global instruction scheduling is a more complex problem than local
instruction scheduling, and even on an idealized architectural model, list scheduling
does not perform as well for global instruction scheduling as it did for local instruc-
tion scheduling. However, when using a heuristic designed for global instruction
scheduling, the list scheduler is still near optimal for the majority of superblocks,
and an optimal scheduler need not be used for most purposes.

5.3.4 Results for Improved Architectural Models

As mentioned in Section 5.2, there are no new changes needed to the improved
architectural model to accommodate global instruction scheduling. As such, the list
scheduler remains the same, other than the improvements presented in Section 4.3.4
that are necessary to simulate the behaviour of the processor within the scheduler.

73

Scheduling superblocks effectively appears to be a much more difficult for a real-
istic architectural model than for an idealized architectural model. Tables 5.13 and
5.14 summarize the number of blocks in which the list scheduler was non-optimal
grouped by benchmark application, and Tables 5.15 and 5.16 give the number and
percentage of non-optimal blocks grouped by block size. Unlike schedules produced
for the idealized architectural model, a significant number of heuristic schedules are
non-optimal for the realistic architectural model: 46.4%-49.6% when scheduling is
performed before register allocation and 39.9%-52.3% when scheduling is performed
after register allocation.

While the average percentage improvement for any architectural model is not
particularly large, ranging from 5.3%-7.6% when instruction scheduling precedes
register allocation and 5.1%-8.1% when instruction scheduling follows register al-
location, there is a significant overall increase in schedule cost over the optimal
scheduler due to the large number of blocks which are non-optimal. Table 5.17 and
Table 5.18 show average and maximum improvements for schedules where the list
scheduler produced a non-optimal schedule.

Table 5.19 and Table 5.20 confirm again that DHASY is a much better heuristic
for global instruction scheduling than the critical path heuristic. The single-issue
architecture is once again the architecture on which DHASY outperforms critical
path by the widest margin: critical path finds better schedules than DHASY for
1,373 superblocks but DHASY finds better schedules than critical path for 13,400
superblocks.

When considering register pressure, heuristic schedules have lower register pres-
sure than optimal schedules more often than optimal schedules have lower register
pressure than heuristic schedules, shown in Tables 5.21 and 5.22. However, the mar-
gin is fairly narrow, with a difference between the two quantities of at most 1,400,
occurring on the single-issue architecture when instruction scheduling is performed
before register allocation. As with the idealized architectural model, DHASY sched-
ules had a lower register pressure more often than critical path schedules. Tables
5.23 and 5.24 show the differences between the two heuristics with respect to reg-
ister pressure.

These results show that list scheduling is far from optimal when scheduling su-
perblocks for a realistic architectural model. Not only are 40%-52% of schedules
produced by the list scheduler not optimal but the optimal scheduler yields an
average improvement of 5% or more with significant improvements on some su-
perblocks compared to the best heuristic schedule. Differences between heuristics
and the optimal scheduler with respect to register pressure are insignificant.

74

Table 5.1: Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 1834 125 71 69 55
applu 262 31 18 11 20
apsi 1039 120 116 64 52
art 295 23 13 6 4
bzip2 480 41 27 15 21
crafty 2469 323 180 111 117
eon 2453 354 488 494 144
equake 190 6 9 9
facerec 580 67 68 38 33
fma3d 4888 460 282 204 174
galgel 2657 235 168 81 102
gap 11518 1012 582 135 138
gcc 24698 2280 889 544 519
gzip 794 109 58 33 17
lucas 552 23 32 17 4
mcf 202 18 9 1 4
mesa 7003 573 342 207 176
mgrid 72 11 8 5 5
parser 2042 127 67 41 42
perl 9219 751 298 214 204
sixtrack 4930 497 223 121 200
swim 192 14 8 2 2
twolf 4269 240 136 84 77
vortex 6613 436 153 135 110
vpr 1677 142 91 52 56
wupwise 268 22 9 1 9
Totals 91196 8038 0 4345 0 2694 0 2285 0

75

Table 5.2: Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 1950 104 94 94 58
applu 266 25 27 28 36
apsi 1281 60 106 99 100
art 448 11 14 9 14
bzip2 495 17 8 12 12
crafty 2630 131 141 100 101
eon 3059 117 154 138 72
equake 195 5 8 7 7
facerec 643 43 86 69 52
fma3d 6009 323 328 306 278
galgel 3046 80 168 157 140
gap 11524 317 238 129 93
gcc 25053 806 546 394 275
gzip 810 44 24 30 16
lucas 545 20 21 25 10
mcf 236 8 7 6 7
mesa 7775 236 273 200 215
mgrid 78 5 13 12 9
parser 2050 42 26 22 21
perl 9387 302 180 157 99
sixtrack 5505 420 481 440 377
swim 190 5 19 20 21
twolf 4330 119 110 70 85
vortex 6601 214 252 218 166
vpr 1752 55 57 46 50
wupwise 280 7 11 6 18
Totals 96138 3516 0 3392 0 2794 0 2332 0

76

Table 5.3: Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of superblocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 15764 171 1.1 11 0.1 3 0.0 2 0.0
6-10 22720 1357 6.0 705 3.1 675 20.0 455 2.0
11-20 27596 2510 9.1 1366 5.0 749 2.7 762 2.8
21-30 10985 1569 14.3 753 6.9 319 2.9 332 3.0
31-50 8409 1343 16.0 764 9.1 387 4.6 354 4.2
51-100 4287 840 19.6 514 12.0 360 8.4 230 5.4
101-250 1274 213 16.7 194 15.2 167 13.1 111 8.7
251-2600 161 37 23.0 38 23.6 34 21.1 39 24.2
Totals 91196 8038 8.8 4345 4.8 2694 3.0 2285 2.5

Table 5.4: Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of superblocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 16274 12 0.1 0 0.0 4 0.0 10 0.1
6-10 23726 251 1.1 133 0.6 180 0.8 351 1.5
11-20 28713 1056 3.7 697 2.4 571 2.0 651 2.3
21-30 11566 569 4.9 513 4.4 357 3.1 271 2.3
31-50 9123 672 7.4 734 8.0 549 6.0 363 4.0
51-100 5137 578 11.3 831 16.2 705 13.7 399 7.8
101-250 1401 308 22.0 396 28.3 351 25.1 230 16.4
251-2600 198 70 35.4 88 44.4 77 38.9 57 28.8
Totals 96138 3516 3.7 3392 3.5 2794 2.9 2332 2.4

77

Table 5.5: Global instruction scheduling for the initial architectural model before
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the superblocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 13.5 20.0 16.7 16.7 16.7 16.7 16.7 16.7
6-10 7.2 18.8 6.8 17.9 9.9 20.0 15.0 33.3
11-20 4.2 22.1 4.6 23.1 6.2 22.6 6.3 24.3
21-30 2.9 34.9 3.3 27.1 4.1 16.7 3.9 17.2
31-50 2.2 29.2 2.6 19.6 2.8 18.4 2.7 16.7
51-100 1.7 34.8 1.9 25.0 2.3 25.0 2.1 21.8
101-250 1.2 16.6 1.4 15.3 1.6 10.8 1.4 10.8
251-2600 0.7 2.9 1.8 11.4 1.4 10.0 1.4 8.2
Totals 4.0 34.9 3.9 27.1 5.5 25.0 6.4 33.3

Table 5.6: Global instruction scheduling for the initial architectural model after
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the superblocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 16.1 16.7 0.0 0.0 25.0 33.3 22.0 33.3
6-10 8.3 17.6 8.0 25.0 13.5 24.8 14.2 33.3
11-20 4.8 18.8 5.5 17.2 6.7 20.0 6.9 31.0
21-30 3.1 16.0 3.5 23.8 3.6 16.7 4.0 15.5
31-50 1.9 11.2 2.8 20.0 2.7 20.0 3.2 15.9
51-100 1.3 10.8 1.8 12.0 2.0 11.8 2.4 18.2
101-250 0.8 6.3 1.3 14.5 1.4 8.9 1.5 10.6
251-2600 0.4 1.9 0.6 4.7 0.7 5.0 0.6 3.5
Totals 3.2 18.8 3.2 25.0 3.9 33.3 5.7 33.3

78

Table 5.7: Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over DHASY, and (b) DHASY resulted in an improved schedule over critical path,
for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 14 216 3 21 0 0 0 0
6-10 210 2091 115 562 74 100 75 65
11-20 486 4560 356 1486 235 637 288 480
21-30 302 2691 234 1166 163 496 197 498
31-50 351 2433 237 1032 148 482 150 402
51-100 248 1240 155 529 86 271 79 186
101-250 62 371 51 147 40 88 26 52
251-2600 4 66 13 26 8 19 4 11
Totals 1677 13668 1164 4969 754 2093 819 1694

Table 5.8: Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over DHASY, and (b) DHASY resulted in an improved schedule over critical path,
for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 3 0 3 0 0 0 0
6-10 7 470 0 488 0 75 0 46
11-20 164 1239 56 1073 19 204 17 112
21-30 81 799 23 804 16 243 1 142
31-50 78 731 33 680 21 240 14 158
51-100 70 532 119 483 106 228 22 109
101-250 58 95 54 142 56 94 10 27
251-2600 9 27 11 29 11 20 3 12
Totals 461 3837 296 3702 229 1104 67 606

79

Table 5.9: Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 1 130 1 0 0 0 0 0
6-10 49 476 13 206 5 51 10 50
11-20 212 632 91 532 26 289 22 237
21-30 193 488 80 415 28 247 35 277
31-50 286 463 106 343 41 255 32 240
51-100 214 314 121 305 99 241 47 207
101-250 63 165 56 110 48 86 27 84
251-2600 16 25 7 25 3 29 4 22
Totals 1034 2693 475 1936 250 1198 177 1117

Table 5.10: Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 3 0 0 0 0 0 0
6-10 7 106 3 42 3 2 1 3
11-20 23 207 28 152 24 74 13 37
21-30 45 212 29 212 18 113 14 52
31-50 99 212 94 264 54 183 31 177
51-100 92 210 150 278 107 246 50 125
101-250 58 95 69 99 59 92 40 67
251-2600 11 16 12 17 8 17 2 6
Totals 335 1061 385 1064 273 727 151 467

80

Table 5.11: Global instruction scheduling for the initial architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than DHASY’s schedule, and (b) DHASY’s schedule had lower register
pressure than the critical path schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 253 0 18 0 0 0 0
6-10 116 663 68 346 19 64 20 63
11-20 192 976 220 654 141 362 144 323
21-30 185 629 177 505 106 304 112 289
31-50 179 597 235 460 174 286 131 286
51-100 154 361 148 301 106 221 103 209
101-250 68 158 84 98 88 83 40 87
251-2600 11 24 11 26 12 25 9 23
Totals 905 3661 943 2408 646 1345 559 1280

Table 5.12: Global instruction scheduling for the initial architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than DHASY’s schedule, and (b) DHASY’s schedule had lower register
pressure than the critical path schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 0 0 0 0 0 0 0
6-10 28 106 9 96 1 11 2 11
11-20 118 164 91 158 53 56 19 37
21-30 122 204 103 186 44 94 40 39
31-50 214 176 162 228 116 148 65 138
51-100 186 173 190 187 165 156 108 99
101-250 73 72 80 84 77 78 52 43
251-2600 10 5 16 13 16 12 6 2
Totals 751 903 651 952 472 555 292 369

81

Table 5.13: Global instruction scheduling for the improved architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 1834 844 60 865 21 841 15 803 36
applu 262 171 1 162 5 154 6 154 5
apsi 1039 648 24 680 32 668 31 660 28
art 295 189 5 195 6 183 5 185 6
bzip2 480 273 6 282 6 270 266 7
crafty 2469 1149 77 1188 73 1138 20 1118 17
eon 2453 1178 42 1556 32 1525 25 1174 41
equake 190 82 1 116 3 112 108
facerec 580 336 14 346 17 343 16 363 9
fma3d 4888 2498 77 2792 58 2272 47 2436 47
galgel 2657 1548 54 1602 70 1514 56 1440 117
gap 11518 5621 13 5706 264 5340 88 5383 104
gcc 24698 10886 729 11178 414 10800 84 10912 100
gzip 794 413 29 425 20 399 24 388 23
lucas 552 342 6 368 7 364 1 361 2
mcf 202 88 1 104 1 95 1 93 2
mesa 7003 2886 60 3611 68 3452 29 3440 101
mgrid 72 43 48 43 1 47 1
parser 2042 947 55 1018 16 959 11 956 13
perl 9219 4162 242 4364 148 4215 75 4294 69
sixtrack 4930 2818 66 2972 167 2744 116 2775 84
swim 192 164 3 163 4 156 4 149 11
twolf 4269 2000 99 2114 59 2036 19 2058 44
vortex 6613 2203 203 2538 92 2279 56 2327 39
vpr 1677 709 19 749 39 641 16 656 25
wupwise 268 133 3 129 7 118 9 125 6
Totals 91196 42331 2029 45271 1629 42661 755 42671 937

82

Table 5.14: Global instruction scheduling for the improved architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the optimal scheduler failed to
complete within a 10-minute time limit, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 1950 706 28 905 19 851 12 843 30
applu 266 154 189 4 170 4 165 3
apsi 1281 650 6 916 15 855 15 856 16
art 448 178 2 275 5 227 4 240 6
bzip2 495 245 2 303 3 288 286 1
crafty 2630 942 25 1315 16 1172 5 1172 10
eon 3059 783 26 1334 18 1237 12 1221 30
equake 195 78 1 123 106 112 1
facerec 643 348 7 444 12 403 12 404 2
fma3d 6009 2338 58 3144 44 2783 33 2875 59
galgel 3046 1450 36 2075 35 1900 54 1832 116
gap 11524 4938 48 5901 61 5485 25 5549 65
gcc 25053 9615 440 11845 168 10971 49 11141 87
gzip 810 340 8 452 10 408 20 410 21
lucas 545 343 9 399 3 384 3 381 3
mcf 236 79 1 122 1 109 111 1
mesa 7775 2900 45 4377 34 4010 24 4289 81
mgrid 78 46 56 1 49 2 49 2
parser 2050 847 48 1039 19 978 12 990 14
perl 9387 3501 154 4447 57 4184 49 4509 58
sixtrack 5505 2716 53 3627 108 3140 106 3221 80
swim 190 149 7 163 5 156 5 142 20
twolf 4330 1815 81 2349 28 2067 12 2132 29
vortex 6601 2449 105 3388 85 2974 52 3073 46
vpr 1752 612 13 886 11 749 3 776 13
wupwise 280 123 3 158 3 139 6 141 7
Totals 96138 38345 1206 50232 765 45795 519 46920 801

83

Table 5.15: Global instruction scheduling for the improved architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of superblocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 15764 9304 59.0 8388 59.6 9406 59.7 9437 59.9
6-10 22720 10688 47.0 11815 52.0 11502 50.6 11424 50.3
11-20 27596 11585 42.0 12968 47.0 11745 42.6 12149 44.0
21-30 10985 4304 39.2 4380 39.9 4054 36.9 3941 35.9
31-50 8409 3494 41.6 3546 42.2 3184 37.9 2982 35.5
51-100 4287 2116 49.4 2254 52.6 1917 44.7 1867 43.6
101-250 1274 747 58.6 800 62.8 744 58.4 759 59.6
251-2600 161 93 58.5 109 68.6 109 68.6 112 70.4
Totals 91196 42331 46.4 45271 49.6 42661 46.8 42671 46.8

Table 5.16: Global instruction scheduling for the improved architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found an improved
schedule over the best heuristic schedule, and (b) the percentage of superblocks
with improved schedules, for various architectures.

1-Issue ppc603e ppc604 IA-64
blocks (a) (b) (a) (b) (a) (b) (a) (b)

3-5 16274 9066 55.7 9466 58.2 9416 57.9 9434 58.0
6-10 23726 9173 38.7 12093 51.0 11224 47.3 11829 50.0
11-20 28713 10135 35.3 14566 50.7 12369 43.1 13117 45.7
21-30 11566 3723 32.2 5175 44.7 4484 38.8 4443 38.4
31-50 9123 3224 35.3 4498 49.3 4023 44.1 3866 42.4
51-100 5137 2132 41.5 3199 62.3 3085 60.1 3011 58.6
101-250 1401 760 54.2 1075 76.7 1043 74.4 1093 78.0
251-2600 198 132 66.7 160 80.8 151 76.3 127 64.1
Totals 96138 38345 39.9 50232 52.3 45795 47.6 46920 48.8

84

Table 5.17: Global instruction scheduling for the improved architectural model before
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the superblocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 10.5 31.0 14.6 59.2 14.6 59.2 15.1 59.2
6-10 5.3 31.0 7.3 50.0 7.3 50.0 7.9 58.3
11-20 3.5 78.1 4.6 46.5 4.3 47.2 5.2 44.0
21-30 2.7 37.9 2.9 31.5 2.7 30.8 2.9 42.2
31-50 2.4 44.6 2.9 43.4 2.7 43.4 2.9 51.3
51-100 2.4 82.3 3.0 38.3 2.8 39.6 3.3 56.6
101-250 2.4 38.1 2.8 36.8 2.9 43.4 3.2 36.8
251-2600 3.7 51.6 4.5 54.2 2.9 28.0 4.2 39.8
Totals 5.3 82.3 7.0 59.2 7.0 59.2 7.6 59.2

Table 5.18: Global instruction scheduling for the improved architectural model after
register allocation. Average and maximum percentage improvements in schedule
length of optimal schedule over the best heuristic schedule, for various architectures.
The average is over only the superblocks in the SPEC 2000 benchmark suite for
which the optimal scheduler found an improved schedule.

1-Issue ppc603e ppc604 IA-64
avg. max. avg. max. avg. max. avg. max.

3-5 10.6 33.1 15.0 59.2 14.9 59.2 15.4 59.2
6-10 5.0 45.1 8.2 50.0 7.9 50.0 8.8 58.3
11-20 3.2 50.6 5.4 49.3 5.0 41.9 6.0 56.4
21-30 2.1 58.1 3.4 38.9 3.1 32.5 3.8 49.4
31-50 1.9 34.5 3.5 51.0 3.6 41.9 4.2 48.4
51-100 2.1 47.5 3.7 39.7 3.8 37.5 5.0 56.6
101-250 1.7 64.1 3.2 40.0 3.2 25.5 4.7 51.8
251-2600 2.1 18.6 2.4 40.3 2.4 17.3 4.2 18.5
Totals 5.1 64.1 7.3 59.2 7.3 59.2 8.1 59.2

85

Table 5.19: Global instruction scheduling for the improved architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over DHASY, and (b) DHASY resulted in an improved schedule over critical path,
for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 19 125 4 76 3 3 3 3
6-10 224 2148 159 668 47 159 62 96
11-20 446 4627 357 2061 215 942 268 532
21-30 210 2528 175 1212 153 580 190 553
31-50 242 2316 190 1289 129 750 171 522
51-100 183 1221 179 755 107 441 129 295
101-250 44 373 71 245 51 165 90 104
251-2600 5 62 6 51 10 35 6 26
Totals 1373 13400 1141 6357 715 3075 919 2131

Table 5.20: Global instruction scheduling for the improved architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) critical path resulted in an improved schedule
over DHASY, and (b) DHASY resulted in an improved schedule over critical path,
for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 7 0 7 0 1 0 1
6-10 8 476 22 548 3 104 3 80
11-20 169 1252 185 1280 77 362 48 272
21-30 95 803 107 986 50 438 55 269
31-50 84 702 182 942 135 563 91 432
51-100 72 547 212 739 179 491 112 412
101-250 55 139 124 224 134 176 85 121
251-2600 9 29 39 37 39 39 27 17
Totals 492 3955 871 4763 617 2174 421 1604

86

Table 5.21: Global instruction scheduling for the improved architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 1 49 5 12 4 1 4 1
6-10 59 566 30 377 42 132 42 161
11-20 437 1048 261 703 229 506 124 428
21-30 377 480 255 576 140 414 166 447
31-50 492 599 405 608 291 523 255 407
51-100 441 476 341 409 250 336 222 375
101-250 168 157 114 120 104 87 97 123
251-2600 14 14 20 18 17 18 15 17
Totals 1989 3389 1431 2823 1077 2017 925 1959

Table 5.22: Global instruction scheduling for the improved architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the optimal scheduler found a schedule with
lower register pressure than both heuristic schedules, and (b) a heuristic schedule
had lower register pressure than the optimal schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 23 1 3 1 0 1 0
6-10 28 234 62 159 46 142 47 123
11-20 285 673 279 482 159 363 152 296
21-30 217 297 221 355 189 347 215 293
31-50 330 409 338 468 300 544 295 472
51-100 378 268 335 406 284 428 271 397
101-250 136 87 114 134 103 119 104 97
251-2600 16 14 6 10 9 6 5 8
Totals 1390 2005 1356 2017 1091 1949 1090 1686

87

Table 5.23: Global instruction scheduling for the improved architectural model before
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than DHASY’s schedule, and (b) DHASY’s schedule had lower register
pressure than the critical path schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 7 2 68 0 0 0 0
6-10 117 518 102 377 35 85 36 77
11-20 194 916 226 744 148 360 140 320
21-30 115 540 173 454 103 288 98 285
31-50 216 485 253 484 221 280 137 279
51-100 178 307 157 314 109 239 103 235
101-250 63 141 55 121 66 84 41 90
251-2600 6 17 8 28 9 17 5 19
Totals 889 2931 976 2590 691 1353 560 1305

Table 5.24: Global instruction scheduling for the improved architectural model after
register allocation. Number of superblocks in the SPEC 2000 benchmark suite with
more than two instructions where (a) the critical path schedule had lower register
pressure than DHASY’s schedule, and (b) DHASY’s schedule had lower register
pressure than the critical path schedule, for various architectures.

1-Issue ppc603e ppc604 IA-64
(a) (b) (a) (b) (a) (b) (a) (b)

3-5 0 1 0 1 0 1 0 1
6-10 28 113 40 117 9 27 14 19
11-20 119 164 134 183 78 76 63 57
21-30 129 200 144 205 101 99 89 94
31-50 226 184 265 241 221 126 127 102
51-100 188 166 212 167 179 153 142 109
101-250 67 74 90 81 79 70 65 55
251-2600 5 6 12 6 12 10 8 4
Totals 762 908 897 1001 679 562 508 441

88

5.4 Summary of Results

Schedules produced by a list scheduler are sufficiently near optimality for global
instruction scheduling when scheduling for an idealized architectural model. While
list scheduling produces better results for local instruction scheduling, the results
presented in this chapter suggest that the cost of an optimal scheduler for global
instruction scheduling still heavily outweighs the improvements in schedule quality
that could be obtained by using an optimal scheduler, provided that an ideal-
ized architectural model is used. When a realistic architectural model is used, list
scheduling performs poorly for all architectures, and the optimal scheduler is able
to make significant improvements to schedule cost. This work demonstrates that
list scheduling is not near-optimal in all cases and provides motivation for further
work in superblock scheduling.

89

Chapter 6

Conclusions and Further Work

This thesis examined the optimality of the list scheduling algorithm for both sim-
plistic and realistic architectural models. Experiments were done for both local and
global instruction scheduling.

For the local instruction scheduling problem, the list scheduler was invoked using
both a critical path heuristic and one created by Shieh and Papachristou. When
scheduling for the idealized architectural model, the list scheduler solved 98.6%-
99.9% of the basic blocks in the benchmark suite optimally. For the improved
architectural model, the list scheduler produced optimal schedules for 94.2%-97.8%
of the basic blocks. I also found that Shieh and Papachristou’s heuristic performed
slightly better than the critical path heuristic, and that there was negligible differ-
ences between the two heuristics and the optimal scheduler with respect to register
pressure.

For the global instruction scheduling problem, the critical path heuristic and the
DHASY heuristic were used for comparison against the optimal scheduler. When
scheduling for the idealized architectural model, the list scheduler solved 91.2%-
97.5% of superblocks optimally. However, the list scheduler was only optimal for
47.7%-60.1% of superblocks when scheduling for a realistic architectural model,
and schedules produced by the optimal schedule were an improvement of 5.3%-
8.1% on average over non-optimal schedules produced by the list scheduler. As
expected, DHASY yields better schedules than the critical path heuristic. As with
local instruction scheduling, there is little difference between heuristic schedules
and optimal schedules with respect to register pressure.

The most significant conclusion of this thesis is that list scheduling is sufficiently
close to optimality in practice for local instruction scheduling but not for global

90

instruction scheduling. There is almost no need for optimal schedulers of any kind
when scheduling basic blocks, as the cost of invoking an optimal scheduler will
generally outweigh the cost of list scheduling, and there will only be benefits for a
small number of blocks which may not even be significant to the execution time of
a particular application. This is not the case for global instruction scheduling, and
other superblock scheduling algorithms must be investigated in order to produce
lower-cost schedules for superblocks being scheduled on realistic architectures.

In order to take advantage of an optimal scheduler, one possibility might be to
invoke an optimal scheduler on each block with a short time limit. If the limit was
exceeded, the schedule produced by the list scheduling algorithm as an upper bound
for the optimal schedule could be returned. This would likely improve schedule cost
overall without incurring too dramatic a penalty to compilation time.

Another result of this thesis is evidence that secondary features should be exam-
ined more closely for local instruction scheduling heuristics. Shieh and Papachris-
tou’s heuristic, differing only in secondary features from the critical path heuristic,
achieved better overall performance. A comprehensive study with a large number
of features on a realistic architectural model might result in better schedules being
produced.

Finally, there seemed to be minimal differences in register pressure between the
optimal scheduler and any heuristic schedule. There was also no one scheduler or
heuristic that strongly outperformed the others with respect to register pressure.
While it might be desirable to construct a scheduler or heuristic that accounted for
register pressure, it appears that among those that do not, there is no best choice
to minimize register pressure, and the focus can be solely on minimizing schedule
cost.

6.1 Further Work

There are two relevant architectural features which were not modelled as part of
this thesis. I did not model instructions that can be issued on more than one
type of functional unit, nor did I handle the case when not all resources, including
issue slots, functional units, and registers, were available to the scheduler when
scheduling each new block. Both of these are properties that could be included in a
more complete study of architectural properties if suitable test data were available.

Another avenue of research would be to design an optimal scheduler that ac-
counted for register pressure. Our optimal scheduler ignores register pressure en-
tirely. One possible way of implementing this would be to invoke the scheduler

91

with a given number of available registers R. The scheduler would then either find
an optimal cost schedule using at most R registers or assert that no such schedule
exists.

92

Bibliography

[1] P. Baptiste and C. Le Pape. A theoretical and experimental comparison of
constraint propagation techniques for disjunctive scheduling. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, pages
600–606, Montréal, 1995.

[2] D. Bernstein and I. Gertner. Scheduling expressions on a pipelined proces-
sor with a maximal delay of one cycle. ACM Transactions on Programming
Languages and Systems, 11(1):57–66, 1989.

[3] R. J. Blainey. Instruction scheduling in the TOBEY compiler. IBM J. Res.
Develop., 38(5):577–593, 1994.

[4] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra, J. Peterson, R. Ra-
jamony, R. Rockhold, H. Shafi, R. Simpson, E. Speight, K. Sudeep, E. van
Hensbergen, and L. Zhang. Mambo - a full system simulator for the PowerPC
architecture.

[5] R. Bringmann. Enhancing instruction level parallelism through compiler-
controlled speculation. Technical Report 1897, Urbana, Illinois, 1994.

[6] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. R. Rau, and
M. Schlansker. Profile-driven instruction level parallel scheduling with ap-
plication to superblocks. In Proceedings of the 29th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Micro-29), pages 58–67, Paris,
1996.

[7] R. Debruyne and C. Bessière. Domain filtering consistencies. J. Artificial
Intelligence Research, 14:205–230, 2001.

[8] B. L. Deitrich and W. W. Hwu. Speculative hedge: Regulating compile-
time speculation against profile variations. In Proceedings of the 29th Annual

93

IEEE/ACM International Symposium on Microarchitecture (Micro-29), pages
70–79, Paris, 1996.

[9] A. E. Eichenberger and W. M. Meleis. Balance scheduling: Weighting branch
tradeoffs in superblocks. In Proceedings of the 32nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Micro-32), pages 272–283, Haifa,
Israel, 1999.

[10] M. A. Ertl and A. Krall. Optimal instruction scheduling using constraint logic
programming. In Proceedings of 3rd International Symposium on Program-
ming Language Implementation and Logic Programming, pages 75–86, Passau,
Germany, 1991.

[11] P. Faraboschi, J. Fisher, and C. Young. Instruction scheduling for instruction
level parallel processors. Proceedings of the IEEE, 89(11):1638–1659, 2001.

[12] J. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Trans. Computers, 30(7):478–490, 1981.

[13] J. Fisher. Global code generation for instruction-level parallelism: Trace
scheduling-2. Technical Report HPL-93-43, Hewlett-Packard Laboratories,
1993.

[14] P. B Gibbons and S. S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN
Symposium on Compiler Construction, pages 11–16, New York, NY, USA,
1986. ACM Press.

[15] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal
of Applied Mathematics, 17(2):263–269, 1969.

[16] M. Heffernan and K. Wilken. Data-dependency graph transformations for
instruction scheduling. Journal of Scheduling, 8:427–451, 2005.

[17] J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints.
ACM Transactions on Programming Languages and Systems, 5(3):422–448,
1983.

[18] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, second edition, 1996.

[19] S. Hoxey, F. Karim, B. Hay, and H. Warren. The PowerPC Compiler Writer’s
Guide. Warthman Associates, 1996.

94

[20] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery. The superblock: An effective technique for VLIW
and superscalar compilation. The Journal of Supercomputing, 7(1):229–248,
1993.

[21] IBM. PowerPC 604e RISC Microprocessor User’s Manual. 1998.

[22] Intel. Intel Itanium Architecture Software Developer’s Manual, Volume 2: Sys-
tem Architecture. 2002.

[23] Intel. Intel Itanium Architecture Software Developer’s Manual, Volume 3: In-
struction Set Reference. 2002.

[24] Intel. IA-32 Intel Architecture Software Developer’s Manual, Volume 3A: Sys-
tem Programming Guide, Part 1. 2006.

[25] D. Kästner and S. Winkel. ILP-based instruction scheduling for IA-64. In
Proceedings of the SIGPLAN 2001 Workshop on Languages Compilers, and
Tools for Embedded Systems (LCTES), pages 145–154, Snowbird, Utah, 2001.

[26] J. Liu and F. Chow. A near-optimal instruction scheduler for a tightly con-
strained, variable instruction set embedded processor. In Proceedings of the
International Conference on Compilers, Architectures, and Synthesis for Em-
bedded Systems, pages 9–18, Grenoble, France, 2002.

[27] A. M. Malik, J. McInnes, and P. van Beek. Optimal basic block instruction
scheduling for multiple-issue processors using constraint programming. Tech-
nical Report CS-2005-19, School of Computer Science, University of Waterloo,
2005.

[28] A. M. Malik, T. Russell, M. Chase, and P. van Beek. Optimal superblock
instruction scheduling for multiple-issue processors using constraint program-
ming. Technical report, School of Computer Science, University of Waterloo,
2006.

[29] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[30] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Pro-
gramming. Elsevier, 2006.

95

[31] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[32] T. Russell. Personal communication, August, 2006.

[33] T. Russell, A. M. Malik, M. Chase, and P. van Beek. Learning basic block
scheduling heuristics from optimal data. In Proceedings of the 15th CASCON,
Toronto, 2005.

[34] P. J. Schielke. Stochastic Instruction Scheduling. PhD thesis, Rice University,
2000.

[35] J.-J. Shieh and C. Papachristou. On reordering instruction streams for
pipelined computers. SIGMICRO Newsl., 20(3):199–206, 1989.

[36] G. Shobaki and K. Wilken. Optimal superblock scheduling using enumeration.
In Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture (Micro-37), pages 283–293, Portland, Oregon, 2004.

[37] M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt. Effi-
cient DAG construction and heuristic calculation for instruction scheduling.
In Proceedings of the 24th Annual IEEE/ACM International Symposium on
Microarchitecture (Micro-24), pages 93–102, Albuquerque, New Mexico, 1991.

[38] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue
processors with arbitrary latencies. In Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming, pages 625–
639, Paphos, Cyprus, 2001.

[39] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using
integer programming. In Proceedings of the SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI), pages 121–133,
Vancouver, 2000.

96

