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Abstract

A distributed virtual environment (DVE) is a shared virtual environment where

multiple users at their workstations interact with each other. Some of these systems

may support a large number of users, e.g., massive multi-player online games, and

these users may be geographically distributed. An important performance measure

in a DVE system is the delay for an update of a user’s state (e.g., his position in the

virtual environment) to arrive at the workstations of those users who are affected

by the update. This update delay often has a stringent requirement (e.g., less than

100 ms) in order to ensure interactivity among users.

In designing a DVE system, an important issue is how well the system scales

as the number of users increases. In terms of scalability, a promising system archi-

tecture is a two-level hierarchical architecture. At the lower level, multiple service

facilities (or basic systems) are deployed; each basic system interacts with its as-

signed users. At the higher level, the various basic systems ensure that their copies

of the virtual environment are as consistent as possible. Although this architecture

is believed to have good properties with respect to scalability, not much is known

about its performance characteristics.

This thesis is concerned with the performance characteristics of the two-level

hierarchical architecture. We first investigate the issue of scalability. We obtain

analytic results on the workload experienced by the various basic systems as a

function of the number of users. Our results provide valuable insights into the

scalability of the architecture. We also propose a novel technique to achieve weak

consistency among copies of the virtual environment at the various basic systems.
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Simulation results on the consistency/scalability tradeoff are presented.

We next study the update delay in the two-level hierarchical architecture. The

update delay has two main components, namely the delay at the basic system

(or server delay) and the network delay. For the server delay, we use a network

of queues model where each basic system may have one or more processors. We

develop an approximation method to obtain results for the distribution of server

delay. Comparisons with simulation show that our approximation method yields

accurate results. We also measure the time to process an update on an existing

online game server. Our approximate results are then used to characterize the

95th-percentile of the server delay, using the measurement data as input.

As to the network delay, we develop a general network model and obtain analytic

results for the network delay distribution. Numerical examples are presented to

show the conditions under which geographical distribution of basic systems will

lead to an improvement in the network delay. We also develop an efficient heuristic

algorithm that can be used to determine the best locations for the basic systems in

a network.
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Chapter 1

Introduction

1.1 Introduction

In recent years, distributed virtual environments (DVEs) have gained popularity

among Internet users. This is substantiated by the increased interest in DVE

systems such as multi-player online games (MOGs) [1–6] and computer-supported

collaborative workplaces (CSCWs) [7]. Some of these systems may support a large

number of simultaneous users, and these users may be geographically distributed.

For example, World of Warcraft (WoW) is a MOG that currently has nearly 4

millions subscribers [1]. Each of its game servers can support up to a few thousands

of players simultaneously. The game’s virtual environment is generally composed of

dungeons, cities, and open areas. WoW offers its players an appealing entertainment

experience; it also generates significant revenue from its subscribers. Hence, over

the past few years, MOGs have become a major trend in the entertainment industry.

In general, a DVE is a shared virtual environment where multiple users at their

1
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workstations interact with each other. Such an environment is often considered as

interactive, immersive, multi-sensory, and synthetic [8]. Each user is represented

by an entity, called an avatar.1 Users may move around, perform various actions,

or interact with each other within the virtual environment. Each user has a “vision

domain” which is defined as the area in the virtual environment where interactions

between this user and other users may take place [9]. Any changes in an avatar’s

state (e.g., position, orientation, and velocity) must be distributed to all users

within this avatar’s vision domain in real time. These users are referred to as

“affected users” in our investigation.

An important performance measure of a DVE system is the “update delay,”

which is defined as the elapsed time from when a user submits a state update to

when this state update arrives at the workstation of an affected user. The update

delay should be small, e.g., less than 100 ms [10] because excessive delay would

annoy users and consequently ruin the sense of realistic interaction.

A popular architecture for DVE systems is “client-server” [1, 2]. In this archi-

tecture, the virtual environment is maintained by a central server; all users interact

with this server. When a user makes a move, a state update packet is sent to the

central server. When this packet is processed, the corresponding avatar is moved to

its new location. The server also forwards the new state information to all affected

users. Each affected user, upon receiving this information, renders the changes on

his workstation. The client-server architecture is popular because of its ease of im-

plementation. The server can also perform operations such as update verification

1Each user is often associated with one avatar. In this thesis, “avatar” and “user” will be used
interchangeably.
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and user authentication.

For the client-server architecture, the update delay is affected by the response

time at the server and the round trip network delay between the users and the server.

As the user population of a DVE grows, the rate of state update packets generated

by the users increases, leading to an increased load at the server. This may have

a negative impact on the response time performance. For instance, in World of

Warcraft, if the number of players logged on to a server exceeds some maximum,

the server’s performance degrades dramatically, and the game play experienced by

the players becomes “laggy” (or unresponsive). The architecture of the DVE system

should therefore be scalable. By scalable, we mean that a system’s capacity can

be improved in a straightforward manner to support more users without suffering

noticeable degradation in response time performance [11].

In terms of scalability, a promising architecture proposed for DVE systems is

a two-level hierarchical architecture [12–15]. At the lower level, multiple service

facilities (referred to as basic systems) are deployed and users are assigned to these

basic systems. Each basic system maintains its own copy of the virtual environment,

and interacts with its assigned users using the client-server model. At the higher

level, the various basic systems communicate among themselves to ensure that

updates are sent to affected users and that their copies of the virtual environment

are as consistent as possible. With the two-level architecture, basic systems can be

added when there is a need to support more users. The basic systems may also be

placed at locations close to their users in order to reduce network delay. However,

if a user makes a move and an affected user is at a different basic system, then the
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state update packet must be sent to the remote basic system, which may yield a

longer update delay.

Although the two-level hierarchical architecture is believed to have good proper-

ties in terms of scalability, not much is known about its performance characteristics,

especially when one considers scenarios with large user populations. In this thesis,

we first study the performance characteristics of the two-level architecture, focusing

on the issue of scalability. At each basic system, the workload can be measured by

the rate at which state update packets arrive at the basic system. When there are

more basic systems, the number of users assigned to each basic system is smaller,

leading to reduced arrival rate of state update packets from these assigned users.

However, the rate of state update packets sent between basic systems may be in-

creased. The total arrival rate seen by each basic system is therefore of interest.

An analysis of this total rate as a function of the number of users would provide

insights into the scalability of the two-level architecture. Our approach is to first

develop models for the overall system, virtual environment and vision domain, and

then derive analytic results for the total arrival rate at each basic system. Numeri-

cal results showing the impact on scalability of factors such as the number of users

and vision domain size will be presented.

For the two-level hierarchical architecture, an important consideration is the

consistency among copies of the virtual environment at the various basic systems.

It has been suggested that global synchronization should be performed periodically

to ensure consistency [14]. Such periodic synchronization, however, would consume

processing capacity at the basic systems. Furthermore, one can only achieve weak
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consistency using this approach because inconsistency may occur between successive

global synchronizations. We propose a new technique called “virtual vision domain”

which would also result in weak consistency. Our technique incurs overhead as

well. Simulation results showing the consistency/scalability tradeoff are presented.

These results show that the virtual vision domain technique is a viable alternative

to global synchronization for achieving weak consistency.

As mentioned earlier, the update delay is an important performance measure

for a DVE system, and it is desirable for the update delay to be below some max-

imum value. The update delay has two main components, namely the delay at

the basic system (or server delay) and the network delay. For the server delay, we

develop a network of queues model where each basic system may have one or more

processors. The distribution of server delay is of interest because it would provide

insights into the percentiles of server delay, e.g., the 95th-percentile. We develop an

approximation method to obtain analytic results for the server delay distribution.

This analysis takes into consideration the two scenarios where an affected user may

be at the local basic system or at some other basic system. The accuracy of our

approximate analysis is evaluated by comparison with simulation results. In order

to get realistic data about server delay, we measure the time to process an update

for an existing online game server. Using the measurement data as input, we are

able to gain an understanding of the magnitude of the server delay.

As to the network delay, we develop a general network model where users and

basic systems are connected to some network end points. For the two-level hierar-

chical architecture, basic systems may be co-located or geographically distributed.
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For each of these two scenarios, we develop a performance model and derive ana-

lytic results for the network delay distribution. Numerical examples are presented

to show the conditions under which geographical distribution of basic systems would

lead to an improvement in the network delay. For the geographically distributed

scenario, the network delay is affected by the locations of the basic systems. We

develop an efficient heuristic algorithm that can be used to determine the best

locations for the basic systems in a network.

This thesis represents a significant step in understanding the performance char-

acteristics of the two-level hierarchical architecture for DVE systems. Our contri-

butions are summarized in the next section.

1.2 Contributions

Our thesis is the first known attempt to carry out an in-depth analysis of the per-

formance and scalability of the two-level hierarchical architecture for DVE systems.

The main contributions are as follows.

• We conduct a scalability analysis of the two-level architecture. In particular,

our results provide new insights into the impact of various factors on the

architecture’s scalability and confirm that the architecture possesses good

properties with respect to scalability.

• We perform an in-depth investigation of the issue of consistency in the two-

level architecture, and discover that consistency can be restored as a result

of user movement in the virtual environment, without employing any explicit
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synchronization measures.

• We propose a novel technique, called the virtual vision domain, for achieving

weak consistency. Our simulation results show that this technique is effective

in avoiding inconsistencies. Also, it may lead to a reduction in the time spent

by a user in the inconsistent state.

• We develop an approximation method to obtain accurate analytic results for

the server delay distribution. These results provide improved understanding

of the delay in processing an update at the basic systems.

• We obtain new analytic results for the network delay distribution. We also

present numerical examples to show the conditions under which geographical

distribution of the basic systems will lead to an improvement in the network

delay.

• We propose a heuristic algorithm that can be used to determine the best

locations for the basic systems in a network. Such an algorithm is shown to

yield good results; it is also computationally efficient.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 reviews work in related research areas.

Chapter 3 presents a scalability analysis of the two-level hierarchical architec-

ture. Analytic results for the total arrival rate of packets to each basic system are
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derived, and scalability of the architecture is investigated.

Chapter 4 examines the issue of consistency. Our proposed virtual vision domain

technique is discussed, and its performance is evaluated by simulation.

Chapter 5 presents our approximation method to obtain analytic results for the

server delay distribution. The accuracy of our approximation method is evaluated.

We also present numerical examples to characterize the 95th-percentile of the server

delay.

Chapter 6 derives the network delay distribution. An evaluation of the per-

formance difference between the co-located and geographically distributed basic

systems scenarios is presented. Our heuristic algorithm for finding the best loca-

tions for the basic systems is also described.

Finally, Chapter 7 contains a summary of our findings and suggestions for future

research.



Chapter 2

Related Work

In this chapter, we review the research relevant to our study in performance and

scalability of DVE systems.

2.1 Classic Architectures

There are two classic architectures proposed for DVE systems, namely “client-

server” and “peer-to-peer.”

The client-server architecture is shown in Figure 2.1. In this architecture, a

central server maintains a copy of the virtual environment; all users interact with

this server. When a user makes a move, a state update packet is sent to the central

server. This packet joins a queue awaiting processing by the server. When the

server processes a state update packet, the corresponding avatar is moved to its

new location, and the server forwards the new state information to all affected

users. Each affected user, upon receiving this information, renders the changes on

9
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his workstation. Basically, the server mediates interaction among users, and the

user workstations are responsible for sending/receiving state update packets and

graphical rendering. Examples of DVE systems using the client-server architecture

are Everquest [2], Lineage [4], and World of Warcraft [1].

The client-server architecture is popular because of its ease of implementation.

The central server maintains an authoritative copy of the virtual environment,

which makes it easy to guarantee a consistent view of the environment among all

users. The server can also perform operations such as update verification and user

authentication. In some DVE systems like multi-player online games, the presence

of a central server allows game operators to collect usage information conveniently,

and to ensure the “well-being” of the virtual environment (e.g., the prevention of

cheating). However, the central server could be a performance bottleneck. Scala-

bility of this architecture is therefore limited by the server’s capacity.

The peer-to-peer architecture is depicted in Figure 2.2. For this architecture,

state update packets are sent directly between user workstations. Each worksta-

tion updates its own copy of the virtual environment using the state updates re-

ceived. The peer-to-peer architecture originates with SIMNET (Simulation Net-

work), which is an interactive network system for real-time battle simulation and

military training [16]. A later version of SIMNET, called DIS (Distributed Inter-

active Simulation), was proposed as an ANSI/IEEE standard [17]. Both SIMNET

and DIS are autonomous simulators in the form of software running on geographi-

cally distributed, networked host computers [18]. Subsequent DVE systems based

on the same architecture include DIVE [19], MiMaze [10, 20], and NPSNET [21].
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Figure 2.1: Client-server Architecture

The peer-to-peer architecture has several advantages over the client-server ar-

chitecture [10]. First, the update delay is generally shorter because all state update

packets are sent directly between user workstations without the involvement of a

central server. Second, the peer-to-peer architecture does not suffer from a single

point of failure or attack. Third, its “serverless” architecture avoids potential per-

formance bottlenecks at the central server; such a bottleneck may limit scalability

of the architecture. However, compared to client-server, the complexity and pro-

cessing requirement at the user workstations may be significantly higher because

each workstation is required to process state update packets (like performing up-

date verification and user authentication on every state update packet), as well as

render the changes caused by these updates.
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Figure 2.2: Peer-to-peer Architecture

2.2 Techniques to Improve Scalability

Several techniques have been proposed to improve scalability of the client-server

and peer-to-peer architectures.

2.2.1 Dead Reckoning

Dead reckoning is a technique which reduces the number of state update packets

that need to be transmitted by each user [22]. The principle is to model the state

of an avatar, such as position, velocity, and orientation, by predictive extrapola-

tion. This model is often referred to as the dead-reckoning model. For a given

avatar, when the deviation between its exact state and the predicted state exceeds

a pre-defined threshold, a state update packet is sent to those affected users. Each
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user uses the same dead-reckoning model to determine the state of other avatars

between updates. With dead reckoning, state update packets may be sent at a

lower rate, resulting in a reduction in both processing and bandwidth demands.

Different extrapolation functions have been proposed to improve the accuracy of

the prediction, while maintaining the computational complexity of the functions

and the arrival rate of state update packets at a reasonable level [22–24].

2.2.2 Relevant Filtering

Another technique to improve scalability is relevant filtering, which is related to

the notion of vision domain mentioned in Chapter 1. The basic idea is to reduce

the packet traffic to individual workstations by sending only state updates that are

relevant to them. This would result in a significant reduction in network traffic

when compared to the case of broadcasting the updates to all other users [14]. In

Figure 2.3, a “vision domain” is defined for every user to describe an area in the

virtual environment within which interactions between this user and other users

may take place. If user B is within user A’s vision domain (see Figure 2.3), state

updates made by user A will “affect” user B. With relevant filtering, each state

update is delivered only to users who are affected by the update. It has been shown

that this technique can reduce the number of state update packets transmitted and

processed at the workstations significantly; therefore, it allows the DVE system to

scale to a larger number of users [25].
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Figure 2.3: Vision Domains

2.2.3 Multicast

For the peer-to-peer architecture, relevant filtering has been implemented in DVE

systems that make use of multicast [10, 26]. In these systems, users are mapped

into different multicast groups, and state update packets are distributed within

each group. A user subscribes to multicast groups of users whose vision domains

contain this user; then this user will receive only those state updates that are

relevant to him. Different techniques for assigning users to multicast groups have

been proposed and studied [9, 27, 28]. In general, the use of multicast results in

a smaller number of state update packets being transmitted, when compared to

sending a separate unicast packet to each affected user. Note that multicast is

applicable to both the peer-to-peer and client-server architectures. This technique,

however, introduces complexities such as join/leave overhead and multicast group
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management.

2.2.4 Aggregation of Updates

For the client-server architecture, aggregation of updates at the central server is an-

other technique that can lead to improved scalability. Instead of sending updates to

an affected user immediately, the server may aggregate several updates (addressed

to the same user) into a single message [29]. With one single message, the amount

of traffic is reduced, and processing time for packet headers can be saved. Depend-

ing on the application protocol, it has been shown that the bandwidth requirement

can be reduced by as much as 50% [29]. The drawback of this technique, however,

is increased update delay.

2.2.5 Server Cluster

Also, for the client-server architecture, the processing capacity of the central server

can be improved by the use of a server cluster [29]. A state update packet can be

processed by any of the servers in the cluster. By deploying additional servers, a

DVE system may support more users. However, as the number of servers increases,

these servers may have to contend for resources, e.g., data access to the copy of the

virtual environment. When this happens, an increase in the number of servers may

not always lead to an improvement in the effective capacity.
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2.2.6 Partitioning of the Virtual Environment

Another technique to improve scalability of a DVE system is to partition the virtual

environment [30]. The main idea is to divide the virtual environment into two

or more partitions and assign each partition to a different server. Then, each

server is responsible for only those users located within its assigned partition. This

technique not only reduces the potential resource contention among servers in a

cluster, but also allows them to process packets in parallel. Different approaches

used to partition the virtual environment can be found in [31–33].

Lui et al. proposed a partitioning algorithm for DVEs [31, 32]. Their goal is

to obtain a partitioning where the workload is shared equally among the servers

and the amount of server-to-server communication is kept to a minimum. As users

move around, join, or leave a DVE, the workload among partitions may become

imbalanced. Re-partitioning algorithms to restore the balance can be found in [31]

and [33].

2.2.7 Hierarchical Architecture

A promising approach to supporting a large user population is a two-level hier-

archical architecture, depicted in Figure 2.4. DVE systems using this architec-

ture include BrickNet [34], CyberWalk [35], Mirrored-Server [12], NetEffect [13],

RING [14], Rokkatan [15], and Spline [36].

In the two-level hierarchical architecture, multiple servers1 are deployed, and

1Note that a server in the two-level hierarchical architecture could be replaced by a server
cluster described in Section 2.2.5.
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Figure 2.4: Two-level Hierarchical Architecture



CHAPTER 2. RELATED WORK 18

they may be distributed geographically. Each server maintains its own copy of

the virtual environment. Users are assigned to servers, and the assignment of

users to servers can be based on load balancing and/or geographical considerations.

Specifically, at the lower level, each user interacts with his assigned server as in the

client-server architecture. When a user makes a move, a state update packet is sent

to this assigned server. The server processes the packet, applies change(s) to its

copy of the virtual environment, and distributes the update to all affected users.

Note that the affected users may be at the local server or at some remote servers.

For users at the local server, the update is sent directly to these users. Contrarily,

for users at a remote server, the update is transmitted to the remote server via

the higher level. The remote server then processes the packet, updates its copy

of the virtual environment, and delivers the corresponding update to the affected

users. Note that at the higher level, the servers communicate among themselves

and operate like the peer-to-peer architecture.

With the two-level architecture, servers can be added when there is a need to

support more users. The servers may also be placed at locations close to their

users to reduce network delay. These are good properties with respect to perfor-

mance and scalability. The two-level architecture also enjoys other advantages. For

example, in case of server failure, users connected to the failed server may be tem-

porarily redirected to the other servers. Another example is that techniques such

as relevant filtering and aggregation of updates may be applied at both levels of

the architecture. At the lower level (between users and their assigned servers), the

details of these techniques have been described earlier in Sections 2.2.2 and 2.2.4.
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At the higher level, a state update packet from a server can be sent only to those

servers which have users affected by the update (relevant filtering). State update

packets can also be aggregated into one single message before delivery to a specific

remote server (aggregation of updates).

Nonetheless, the two-level hierarchical architecture introduces extra delay due

to the exchange of state update packets among the servers.

2.3 Consistency

In addition to the extra delay, in the two-level hierarchical architecture, copies of

the virtual environment at the various servers may become inconsistent.

It has been suggested that global synchronization should be performed periodi-

cally to ensure consistency [14]. Such a process, however, may consume processing

capacity and may affect the architecture’s scalability. Furthermore, one can only

achieve weak consistency using this approach because inconsistency may occur be-

tween successive global synchronizations.

Note that the issue of consistency has also been investigated in distributed

database. For example, in optimistic replication, data is replicated into multiple

copies, called replicas, on separate computers, and any update to the data on a

replica is distributed to the other replicas asynchronously. A detailed survey of

optimistic replication can be found in [37].
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2.4 Server Placement Problem

As servers in the hierarchical architecture are distributed across the network, a

relevant issue is how to place these servers with a view to reducing network latency.

The problem of placing the servers at strategic points is often referred to as the

“server placement problem” (SPP).

SPP is closely related to a well-known class of problems, called “facility location

problems.” Two basic problems in this class are the p-center [38] and p-median

problems [39]. The p-center problem finds the locations of p facilities (e.g., servers)

so as to minimize the maximum distance from any demand node (e.g., user) to its

closest facility. The p-median problem, on the other hand, finds the locations of

p facilities, which will result in the minimum total distance between the demand

nodes and the facility to which they are assigned. It is known that most of the

facility location problems are computationally intractable [40], though exceptions

occur in some special cases [41]. Thus, heuristics and approximation algorithms

have been proposed. Surveys on this class of problems and solution techniques can

be found in [40, 42]. More recent works regarding SPP, in the context of network

applications, can be grouped into four areas: caching proxies [43, 44], web server

replicas [45], reliable multicast [46], and Internet instrumentation [47].

With caching proxies, users’ web requests may be satisfied by one of the proxies

instead of the web server. This would tend to shorten the response time. In [43]

and [44], mathematical models were developed and were used in the formulation

of optimization problems to place these proxies in such a way that the average

response time was minimized. The authors proved that the problems were NP-
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Hard, and proposed algorithms for special types of network topologies such as line,

ring, and tree.

Web server replicas, where web content is replicated to a number of servers called

replicas, is another method to reduce the response time perceived by users. The

problem is to place these servers in the network so that the average response time is

minimized. In [45], several placement algorithms were evaluated by simulating their

behavior on both synthetic and real network topologies. These algorithms included

tree-based, greedy, random, and hot spot algorithms. The greedy algorithm gave

the best performance and stability, yielding an average response time that was a

factor of between 1.1 and 1.5 of the optimal.

SPP has also been investigated in the context of reliable multicast, where mul-

ticast servers (acting as intermediate servers) are introduced to alleviate the “ac-

knowledgment implosion” problem. In case of packet loss, the multicast servers

can provide users with fast retransmission/recovery. In [46], heuristic algorithms

were presented for placing the multicast servers such that the bandwidth cost was

minimized. The problem formulation was very similar to those for caching proxies

and web server replicas.

Finally, Jamin et al. aimed at building a map of the Internet, which shows

the distance between any two hosts on it [47]. The basic architecture consists of

a network of instrumentation boxes, called Tracers, which measure the distances

among themselves, and the distances among themselves and different regions of the

Internet. One interesting problem is the placement of these Tracers such that the

accuracy of the map is acceptable, while keeping the number of Tracers deployed to
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a minimum. This is similar to the p-center problem, which is known to be NP-Hard.

Hence, the authors proposed an approximation solution.

2.5 Performance Analysis

Performance analysis of DVE systems is crucial to our understanding of system

behavior. It can also help identify key parameters and their impact on system

performance. Approaches that have been used to study the performance of DVE

systems include analytic modeling, prototyping, simulation, and measurement.

2.5.1 Analytic Modeling

In [15], Muller et al. presented an online real-time strategy (RTS) game called

Rokkatan. Rokkatan is based on a hierarchical architecture similar to that de-

scribed in Section 2.2.7. The authors developed an analytic model, the “game

scalability model” (GSM), to predict the number of players that their game system

can support. This model divides the processing at the game server into five tasks:

1) receiving, validating, and processing state updates received from the server’s lo-

cal users; 2) receiving state updates from remote servers; 3) updating the database;

4) sending state updates to the server’s local users; and 5) sending state updates to

remote servers. For each of these tasks, GSM characterizes the average processing

time required, the average amount of data received, and the average amount of

data sent. Summing each measure over the five tasks and comparing the sums to

pre-defined maximum values, GSM predicts the maximum number of players that

can be supported. GSM accurately approximated the actual measurement made
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on Rokkatan with up to five servers.

Other work on analytic modeling of a DVE server can be found in [48]. In this

work, the server performance is analyzed in terms of utilization and arrival rate of

user requests at the server.

2.5.2 Prototyping and Simulation

In [49], a virtual battlefield was simulated using SIMNET. Users were allowed

to control multiple objects in the virtual environment. The largest experiment,

conducted in March 1990, showed that SIMNET was able to support up to 850

objects [50]. It was also shown that dead reckoning led to a reduction in the

communication and processing load, and that predictive modeling resulted in a

reduction of the perceived delay.

A number of simulators based on an NPSNET prototype were developed in

order to investigate specific aspects of the system. One example is the use of

multicast [27]. A 3D vehicle simulator was built using an IP-multicast version

of NPSNET and was tested over the Internet with several North American sites.

Input to the system was data obtained from a real-world military scenario. It

was found that multicast reduced the bandwidth requirement significantly, when

compared to the original broadcast approach. The reduction was on average over

70%. Another example is the exploration of a new technique for relevant filtering

[28]. This technique is based on subdividing a virtual environment into octants.

Octants may be coalesced on demand, depending on the density of avatars within

them. It was found that this technique could eliminate up to 90% of network traffic.
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Funkhouser implemented an experimental system of RING and tested it for a

virtual environment with 800 “rooms” connected by “hallways” [14]. In his exper-

iment, simulated avatars moved around randomly in the virtual environment. As

the number of servers increased, the amount of server-to-user traffic decreased, but

that of server-to-server traffic increased. The total amount of communication per

server was in fact reduced. He also demonstrated that the use of relevant filtering

could reduce the number of packets by up to 97.5%.

MiMaze is a multi-player online game which employs multicast and peer-to-

peer architecture [10, 20]. Its virtual environment is a 3D maze. MiMaze was

implemented and evaluated on the Mbone [51] with 25 players at different locations

in France. It was observed that although the network delay was on average less

than 100 ms, the delay distribution was widely dispersed (more specifically, the

mean and the standard deviation were 55.47 ms and 50.44 ms, respectively). To

reduce the standard deviation, Diot et al. proposed a mechanism called “bucket

synchronization” [10]. The idea is to divide time into fixed length periods. State

update packets received within a particular period are not processed until the end

of the period. This mechanism helps reduce the standard deviation of the delay,

and also allows the updates to be ordered properly (e.g., according to the time of

occurrence) before they are processed.

2.5.3 Measurement

More recently, work has been done in measuring and characterizing the performance

of multi-player online game (MOG) systems (one of the many DVE applications).
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It can be categorized into three levels: network, server, and user.

Network-level characterization examines the network traffic between the user

workstations and the server. In [52], Bangun et al. investigated the distributions

of packet interarrival time and packet payload size for two MOG systems, Quake-

World and StarCraft. It was found that in certain cases the distributions were

independent of the number of users logged on to the game. Borella also attempted

to characterize packet size and packet interarrival time for Quake [53]. A variety

of distributions, including deterministic, exponential, and extreme value distribu-

tions, were considered. In a study similar to Borella’s, a network traffic model was

presented for CounterStrike [54]. Further studies on MOG network traffic can be

found in [55–59].

Attempts to analyze MOG performance at the server level have, so far, been

limited. Abdelkhalek et al. measured the behavior of a Quake game server in

terms of throughput, network bandwidth requirement, and the processing time of

the various tasks performed by the server [60]. In a follow-up to this work, the

authors studied a parallel version of the game server [61] and the corresponding

improvement in server performance.

Finally, at the user level, the focus has been on the users’ reactions towards the

network- and system-level behaviors of a MOG system. Several studies have eval-

uated the impact of packet loss and update delay on user performance in different

types of MOGs [55–57, 62]. In particular, methodologies for evaluating user level

performance were proposed in [55–57], and different measures such as the time for

a user to complete a designed task and the probability that a user hits a target
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were developed. Participating players were also interviewed for their subjective

experience. It was found that packet loss had little influence on user perceived

performance, but update delay had a noticeable effect, especially in first-person

shooting games.

2.6 Concluding Remarks

In this chapter, we presented a survey of the previous research related to the perfor-

mance and scalability of DVE systems. From our investigation, we conclude that

not much is known about the performance characteristics of the two-level hierar-

chical architecture. For example, how this architecture scales to a large user pop-

ulation, how the update delay may be analyzed, and the impact of server location

on the update delay have not been well-studied. These topics will be investigated

in this thesis.

Note that a hierarchical architecture may have more than two levels. However,

we are not able to find any publications in the open literature about a DVE system

with more than two levels.
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Scalability of the Two-level

Architecture

This chapter investigates the scalability of the two-level hierarchical architecture.

This involves the development of performance models for the overall system, virtual

environment and vision domain, and the use of analytic results to illustrate the

scalability of the architecture.

3.1 Performance Model

In this section, we develop a performance model for the two-level hierarchical ar-

chitecture. This architecture consists of multiple servers (or server clusters) inter-

connected by a network. We refer to each of these servers as a “basic system.” The

various basic systems may be co-located or geographically distributed. Each basic

system has a number of assigned users. Figure 3.1 shows a two-level architecture

27
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with two basic systems. Suppose user u is assigned to basic system i (denoted by

BSi). BSi is referred to as the “local basic system” of user u, and user u is said to

be a “local user” of BSi.

UsersUsers

Basic System Basic System

Figure 3.1: A Two-level Hierarchical Architecture with Two Basic Systems

At the user side, there is typically a DVE client program running on the work-

station. This program accepts input commands from the user, which may trigger a

change in the state of his avatar. For example, suppose a user decides to move his

avatar to a new location. This will change his avatar’s state, namely its position.

Any such change is transmitted, in the form of an update packet, to the user’s

local basic system for processing, and rendered on the user workstation. When

this update packet is received, the local basic system executes the DVE-specific

logic (e.g., verifying the eligibility of the update), applies changes to its copy of

the virtual environment, and distributes the update to the client programs of those

users who are affected by the changes. Each client program, upon receiving the
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update, renders the changes in the virtual environment on its corresponding work-

station. An affected user may be located at the local basic system or at a remote

basic system. In the former case, the update is transmitted directly to the user.

In the latter case, an update packet at the higher level of the hierarchy, referred

to as a “syn packet”, is transmitted to this remote basic system. When this syn

packet is processed, the remote basic system updates its own copy of the virtual

environment, and distributes the update to its affected local users.

Based on the above description, two types of packets arrive at each basic system:

update packets from its local users, and syn packets from some other basic systems.

These packets join a queue at the basic system, awaiting processing (see Figure 3.2).

When a syn packet is processed, the update in it is distributed to affected local

users. On the other hand, when an update packet is processed, a syn packet

may be generated for transmission to some other basic system(s), in addition to

distribution of the update to affected local users, if any. Note that whether a syn

packet is transmitted to some other basic system(s) is dependent on whether there

are affected users there. We develop a model of the virtual environment and vision

domain that can be used to determine the probability that such a syn packet will

be generated. This model will be described in the next section.

3.2 Model of a Virtual Environment

At each basic system, a copy of the virtual environment (VE) is maintained. Such

an environment is often very complex [8]. Its behavior is difficult to analyze and

costly to simulate. In our study, we consider a model of the VE which is simple and
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yet realistic enough to gain insights into the performance characteristics of DVE

systems.

For a DVE, it is common that the VE is organized using a xy-coordinate system.

We therefore model our VE as a two-dimensional area organized as a unit square

grid. Let A and B (in number of units) be the width and height of the VE,

respectively. We index the width of the VE from left to right by 0, 1, . . . , A− 1, A

and the height from top to bottom by 0, 1, . . . , B − 1, B (see Figure 3.3). Avatars

can only be located at a grid intersection; one or more avatars can be located

at any given intersection. Note that in our VE model the granularity of a unit

may be varied. Our model is therefore general enough to represent different VE

organizations, e.g., rooms & hallways [14] or a maze [10].

A user can perform various actions within the VE, e.g., moving from one place

to another and interacting with the other users. In our investigation, we focus on
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user movement because it is the most common action performed by a user [10, 25].

We assume for simplicity that the movement of any given user is independent of

the behavior of the other users. We also assume that the movement of each user

is modeled by a Markov Chain, which is consistent with the measurement data

that we have obtained for an existing DVE [63]. When a user makes a move, he

chooses one of the four possible directions (up, down, left, and right) according to

a probability distribution and moves his avatar in the chosen direction by one unit
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(or step). We assume that this distribution is the same for all users. Let qa,b;c,d be

the probability that a user moves from location (a, b) to (c, d) in one step. Note

that

qa,b;c,d = 0 if |c− a| > 1 or |d− b| > 1.

Since a user cannot move out of the VE, we also have 0 ≤ a, c ≤ A and 0 ≤ b, d ≤ B.

Finally, for simplicity, the time until the user makes the next move is assumed to

be exponentially distributed.

It follows from the above assumptions that at steady state, the probability that

a user is at location (a, b) (denoted by pa,b) can be obtained by solving the following

set of equations:

pc,d =
A
∑

a=0

B
∑

b=0

pa,bqa,b;c,d for c = 0, 1, . . . , A, and d = 0, 1, . . . , B

A
∑

a=0

B
∑

b=0

pa,b = 1.

(3.1)

We next define our model of a vision domain. As discussed in Section 2.2.2,

a state update from a user is sent only to those who are within this user’s vision

domain (in other words, who are affected by the update). For any user, we assume

that his vision domain is a rectangle with width U and height V , and that the

user’s avatar is centered at this rectangle (see Figure 3.4). This implies that U and

V are even numbers. An example of a vision domain of size 6× 4 (U = 6, V = 4) is

shown in Figure 3.4. The above assumption is consistent with the common practice

that the vision domain of a user in a DVE is the area surrounding the user [9].
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3.3 Analysis of Arrival Rates

In this section, we present analytic results for the arrival rates of update and syn

packets to a basic system, based on our models described in Sections 3.1 and 3.2.

Our analysis is for the case that the number of logged-on users at each basic

system is a constant. We use Ni to denote the number of logged-on users at BSi,

i = 1, 2, . . . ,K, where K is the total number of basic systems. We recognize that

Ni typically varies over time. Including such variations would introduce complexity

in the analysis. Ni can be viewed as the maximum number of logged-on users. Our

analysis is then for the worst case scenario where the number of logged-on users is

always at the maximum. Such a scenario is of interest when one considers the issue

of performance and scalability.

Arrival Rate of Update Packets

Consider first the arrival rate of update packets to BSi, i = 1, 2, . . . ,K. Recall

that when a user makes a move, a state update, in the form of an update packet,

is generated and sent to his local basic system. The arrival rate of such update

packets is determined by how frequently users make their moves (or submit their

updates). Let φ be the rate at which update packets are submitted by a user, which

is assumed to be the same for all users. The arrival rate of update packets to BSi,

denoted by γi, is given by:

γi = Niφ. (3.2)
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Arrival Rate of Syn Packets

We next determine the arrival rate of syn packets to BSi. These packets are sent

from the other basic systems. Consider the transmission of syn packets from BSk

to BSi (i 6= k). Upon processing an update packet from a local user, BSk checks to

see if there are users at BSi who are within the local user’s vision domain. If so, a

syn packet is sent to BSi, as discussed in Section 3.1.

To determine the rate of syn packets transmitted from BSk to BSi, we assume

that the system is in steady state. Consider a “tagged” user at BSk. Suppose this

user is currently at location (a, b) in the VE. For any other user, the probability

that he is within the tagged user’s vision domain is:

h(a, b) =
x∗
∑

x=x′

y∗
∑

y=y′

px,y (3.3)

where px,y, the probability that a user is at location (x, y), is given by Equation 3.1,

x′ = max{0, a− U
2
}, x∗ = min{A, a+ U

2
}, y′ = max{0, b− V

2
}, and y∗ = min{B, b+

V
2
}. The variables x′, x∗, y′ and y∗ are defined so that the vision domain is inside

the VE boundaries.

Our interest is the probability that after this tagged user has made a move,

there are one or more users logged on to BSi, who are within the tagged user’s

vision domain. This is also the probability that a syn packet is sent from BSk to

BSi. We now derive an analytic expression for this probability, denoted by gk,i.

Note that at BSi, each of the Ni logged-on users could be within the tagged

user’s vision domain. Let ξk,i(n) be the probability that n users at BSi are within
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the tagged user’s vision domain. ξk,i is given by:

ξk,i(n) =
A
∑

a=0

B
∑

b=0

[(

Ni

n

)

(h(a, b))n (1− h(a, b))Ni−n

]

pa,b (3.4)

where h(a, b) is given by Equation 3.3. It follows that

gk,i = 1− ξk,i(0). (3.5)

Finally, considering the updates submitted by the Nk users at BSk, the arrival

rate of syn packets from BSk to BSi is given by:

ηk,i = gk,iNkφ (3.6)

Summing over all the other basic systems, the arrival rate of syn packets to BSi,

denoted by ηi, is:

ηi =
K
∑

k=1,k 6=i

ηk,i (3.7)

Total Arrival Rate

The total arrival rate of update and syn packets to BSi, denoted by λi, is simply

the sum of γi and ηi. We thus have:

λi = γi + ηi (3.8)

where γi and ηi are given by Equations 3.2 and 3.7, respectively.
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3.4 Results and Discussions

In this section, we present numerical results that illustrate the scalability of the

two-level architecture. Suppose there are K basic systems. Let µi be the capacity

of BSi, measured in number of packets (update or syn packets) processed per unit

time. For BSi to be stable, the total arrival rate to BSi must be less than µi, or

the traffic intensity, as given by ρi = λi/µi, must be less than 1. In practice, it

is desirable to keep λi below a certain level (e.g., by admission control) such that

ρi ≤ y, for some given value y (e.g., y = 0.8 or 0.9); otherwise, the response time

(or delay in processing the update or syn packets) may be excessive. Analysis of

response time will be considered in Chapter 5.

Suppose there are N logged-on users and these users are distributed equally

to the K basic systems. The arrival rate of update packets to any basic system,

say BSi, is γi = Nφ/K (see Equation 3.2). As N increases, γi can be reduced by

deploying more basic systems (i.e., increasingK). However, syn packets are present

when K > 1, and the arrival rate of syn packets ηi is affected by factors such as user

movement and vision domain size. An important question is whether it is possible

to configure a DVE system, such that for each BSi, λi = γi + ηi is less than the

desired level for that BSi. The system is scalable if this is possible. The numerical

results in the rest of Chapter 3 will provide insights into this question.

3.4.1 Total Arrival Rate

We first present numerical results for the total arrival rate of packets to each basic

system as a function of the number of basic systems K. We note that the arrival
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rate of syn packets is affected by the size of the vision domain because a larger vision

domain means more users are affected by an update. The arrival rate of syn packets

is also affected by the density of avatars, which is defined as the number of avatars

per grid intersection. This density is determined by the number of logged-on users

N and the size of the VE.

In our numerical examples, we assume for convenience that φ, the rate at which

state updates are sent from a user to his local basic system, is the same for all

users. Without loss of generality, we assume that φ is equal to 1. We also assume

that the VE and vision domain are square in shape. This allows us to use a single

parameter, namely E, for both the width and height of the VE (i.e., A = B = E),

and a single parameter,D, to denote both the width and height of the vision domain

(i.e., U = V = D). The above assumptions are expected to have a minimal impact

on our observations because the scalability of the two-level architecture is affected

by the sizes of the VE and vision domain, rather than by their shapes.

Four combinations of N and E are considered in our numerical examples (N =

500, 1000 and E = 100, 150). This would allow the investigation of different den-

sities of avatars in the VE. Several sizes of the vision domain D are also selected;

they are 2, 4, . . . , 10 (note that D must be even).

As to user movement, we consider the special case in which an avatar moves

to each of the four directions with equal probability, except that when the avatar

is on an edge (or at a corner) of the VE, the number of possible directions is

reduced to 3 (or 2). This results in pa,b being a uniform distribution, i.e., an avatar

is equally likely to be at any grid intersection. One may argue that in practice
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there may be regions with a high concentration of avatars due to user movement.

In our examples, the effect of different concentrations (or densities) is studied by

considering different combinations of N and E.

Due to the symmetric and uniform nature of our assumptions, it is sufficient to

present results for one of the basic systems, say BSi.

Consider first the arrival rate of update packets γi. As indicated by Equation 3.2,

γi is a decreasing function of the number of basic systems K. In particular, suppose

we already haveK basic systems. Deploying an additional basic system would result

in 1
K+1

reduction in γi, which implies a diminishing rate of return. Equation 3.2

also indicates that γi is directly proportional to the number of users N , and that γi

is not affected by the sizes of the VE and vision domain (E and D). This behavior

is illustrated by Figure 3.5 where we plot γi against K for N = 500 and 1000.
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Figure 3.5: Arrival Rate of Update Packets to BSi γi
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We next present results for the arrival rate of syn packets ηi, which are computed

using Equation 3.7. In Figures 3.6 and 3.7, ηi is plotted against the number of

basic systems K for D = 2, 4, . . . , 10, and for the four combinations of N and E.

As expected, ηi = 0 when K = 1. This is because no syn packet is sent when there

is only one basic system. As K increases, we observe that ηi increases at first, but

then decreases quickly as more basic systems are added. This is a result of two

opposing effects. For a given N , an increase in K means that fewer users are at

BSi and more users are at the other basic systems. This would tend to increase the

rate of syn packets sent from the other basic systems to BSi. Contrarily, with fewer

users at BSi, the chance that BSi has a local user within the vision domain of users

at the other basic systems is smaller, thus reducing the number of syn packets from

these basic systems. The results in Figures 3.6 and 3.7 show that the latter effect

dominates the former as K increases, leading to a reduction in ηi.

Comparing the results for different sizes of the vision domain D in Figures 3.6

and 3.7, we observe that the larger the vision domain, the higher is the arrival rate

of syn packets ηi. This is as expected because a larger vision domain means a higher

probability of user interaction, leading to a higher rate of syn packets among the

basic systems.

We now combine the results for γi and ηi to obtain λi, the total arrival rate at

BSi. The results are shown in Figures 3.8 and 3.9. We observe that λi is a decreasing

function of K, indicating that the two-level architecture has good properties with

respect to scalability. The issue of scalability will be discussed in the next section.
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3.4.2 Scalability

As mentioned in the last section, it is desirable in practice to keep λi, the total

arrival rate to BSi, below a certain level so that the traffic intensity

ρi = λi/µi ≤ y. (3.9)

We refer to y as the traffic intensity parameter. From the results in Figures 3.8

and 3.9, we observed a larger λi when N is increased from 500 to 1000. This may

result in ρi > y. When this happens, more basic systems may be deployed so

that the resulting ρi for each basic system is less than y. The system architecture

is scalable if this can be done. In our investigation of scalability, we use, as our

metric, the minimum number of basic systems required to support N users, while

maintaining ρi ≤ y at each basic system. We denote this number by Kmin. For

illustrative purposes, we consider values of N in the range of 500 to 1000. Two

values of y are considered: 0.8 and 0.9. We select the capacity µi of each basic

system so that ρi is less than y when N = 500 and significantly larger than y

when N = 1000, but Kmin is no more than 10. Using Equations 3.8 and 3.9, we

numerically solve for the value of µi and find that µi = 850.

We first consider the case of E = 100. This corresponds to a smaller VE than

E = 150, and thus results in a higher density of avatars. In Figure 3.10, the

minimum number of basic systems required Kmin is plotted against the number of

users N for y = 0.8 and 0.9. At y = 0.8,Kmin = 1 for N = 500 and 600. This means

that a single basic system has sufficient capacity to support as many as 600 users.

When N ≥ 700, more than one basic system is required, and Kmin increases almost
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linearly with N . This is a good property with respect to scalability. However, the

rate of increase in Kmin is dependent on the size of the vision domain D. For a

small D (D = 2), 2 basic systems would be sufficient to support N = 1000 users

(twice the number of users when compared to N = 500). Contrarily, when D = 10,

the minimum number of basic systems required is about 10. This is a significant

increase in resource requirement. In general, a larger D means more avatars are

potentially within the vision domain of a given user; this has a negative impact on

scalability.

The results for y = 0.9 are shown in Figure 3.10. We again observe that Kmin,

the minimum number of basic systems required, increases linearly with N , the

number of users. This represents additional evidence that the two-level architecture

has good scalability. Besides, the results for Kmin at y = 0.9 are generally smaller

than those at y = 0.8. This is because at y = 0.9, a higher utilization is possible

at each basic system. Therefore, each basic system is able to support more users,

and fewer basic systems are needed. For example, at y = 0.9, one basic system is

sufficient to support up to N = 700 users. When N is increased to 1000, we need

only 8 basic systems for a large vision domain D = 10. As seen in Figure 3.10,

at y = 0.9, the size of the vision domain D still has a significant impact on the

architecture’s scalability.

Consider next the case of a larger VE, E = 150. The corresponding results for

Kmin are plotted in Figure 3.11. Similar to our previous observations (for the case

of E = 100), the results demonstrate that the two-level architecture scales well,

and resource requirement is affected by the traffic intensity parameter y and the
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size of the vision domain D.

We further observe that for a given D, the rate of increase in the number of

basic systems required Kmin (as the number of users N increases) is lower with a

larger VE (e.g., E = 150). This is because a larger VE means that the density of

avatars is smaller and fewer avatars are potentially within the vision domain of a

given user. The number of syn packets is reduced, leading to a decrease in the total

arrival rate of packets to each basic system. This in turn leads to a smaller number

of basic systems required. Consider, for example, the number of users in the DVE

N is doubled from 500 to 1000. For E = 100 and D = 10, Kmin is increased from 1

to 10 at y = 0.8 and from 1 to 8 at y = 0.9. For E = 150 and D = 10, on the other

hand, Kmin is increased from 1 to 6 at y = 0.8 and from 1 to 5 at y = 0.9. Hence,

the scalability of the architecture is also affected the density of avatars, namely

that a lower density of avatars yields better scalability.

Note that our analysis can be extended to a VE with regions that have different

densities of avatars. For example, one can define the transition probabilities in our

user movement model (Section 3.2) such that users are more likely to be in one

region than another.

3.5 Concluding Remarks

In this chapter, we investigated the scalability of the two-level hierarchical architec-

ture. Our investigation began with analyzing the arrival rate of packets to a basic

system in the architecture. We derived the analytic results for the total arrival rate,

and the numerical examples presented gave us valuable insights into the impact of
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the various factors on the scalability. More importantly, they confirmed that the

two-level architecture possesses good properties with respect to scalability.

Our analysis can be extended to user actions other than user movement. As

an example, for the case of shooting, a state update resulting from the shooting is

sent to all affected users, similar to a state update resulting from user movement.

However, including these other user actions introduces complexity to our model.

Also, since these other actions tend to occur infrequently, we believe that they have

a minimal impact on the scalability of the two-level architecture. Therefore, these

other actions are not included in our investigation.

There are other factors related to the scalability of the two-level hierarchical

architecture. These include the following.

• Consistency among copies of the VE at the various basic systems is an im-

portant issue. Processing capacity at the basic systems is required to achieve

consistency. This would have a negative impact on the scalability. In Chap-

ter 4, the issue of consistency will be discussed.

• For the two-level architecture, an update from a user may have to be processed

first at the local basic system, and then at a remote basic system. This would

incur additional delay when compared to the case of an one-level architecture.

The server delay will be analyzed in Chapter 5.
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Chapter 4

Consistency of the Virtual

Environment

In the two-level hierarchical architecture, consistency among copies of the VE at

the various basic systems is an important issue. Such consistency is necessary

for the basic systems to determine accurately if two users are within each other’s

vision domain. It has been suggested that “periodic-update” packets be exchanged

among the basic systems at regular intervals in order to synchronize the current

locations of all users in their copies of the VE [14]. We refer to such a technique

as “periodic global synchronization.” Periodic global synchronization consumes

resources and may have a negative impact on scalability. Also, this technique can

only achieve weak consistency because inconsistency may occur between successive

global synchronizations.

This chapter investigates the issue of consistency in the two-level hierarchical

architecture. We first examine how inconsistency may occur and show that consis-

51
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tency may be restored as a result of user movement. Then, we propose a technique

called “virtual vision domain,” as an alternative to periodic global synchronization,

to achieve weak consistency. We also present a simulation study to evaluate its

effectiveness in improving consistency and its impact on scalability of the architec-

ture.

4.1 Inconsistency

A basic system receives updates from its local users whenever these users make a

move. As a result, the basic system always knows the exact location of its local

users. However, this may not be the case for users at the other basic systems.

For example, consider two basic systems, BSi and BSj. Suppose users u and v are

logged on to BSi and BSj, respectively. When user v makes a move, in order for

BSi to have up-to-date information on this user’s location, BSj needs to send BSi

a syn packet containing the state update. This happens only if one or more users

logged on to BSi are within user v’s vision domain, according to BSj’s copy of the

VE. Otherwise, BSi’s copy of the VE will not reflect the new location of user v.

Generally, a global view of the VE contains the up-to-date locations of all the

users in the VE. In our investigation, consistency is defined with respect to this

global view. Let VEi be the copy of the VE at BSi. For any given user (say user

u) at BSi, this user is in the “consistent” state if the content of his vision domain,

as shown by VEi, is the same as that shown in the global view; otherwise, user u

is in the “inconsistent” state. During user movement, there are two scenarios that

may result in user u entering the inconsistent state.
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Scenario I. User u’s vision domain contains users who should not be there ac-

cording to the global view.

Scenario II. User u’s vision domain does not show users who are supposed to be

there according to the global view.

Scenario I can be illustrated by the example depicted in Figure 4.1. There are

two basic systems. At each basic system, a solid circle represents a local user, while

a hollow circle represents a user at the other basic system (or remote basic system).

• At time t0, users u and v are in each other’s vision domain. Both of them are

in the consistent state (i.e., the contents of their respective vision domains

are consistent with the global view).

• At time t1, user v at BSj moves to the left by one step. Since there are no

users within user v’s vision domain after the move, BSj will not send any syn

packet to BSi. As a result, user u’s vision domain still contains user v. User

u is now in the inconsistent state. Note that user v remains in the consistent

state because his vision domain is empty, which is the same as that shown in

the global view.
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Figure 4.1: Inconsistency: Scenario I



CHAPTER 4. CONSISTENCY OF THE VIRTUAL ENVIRONMENT 55

An example that illustrates Scenario II is as follows (see Figure 4.2).

• At time t0, both users u and v are in the consistent state. They are not in

each other’s vision domain.

• At time t1, user v at BSj moves down by one step. No syn packet is sent from

BSj to BSi because according to VEj, user u is still not within user v’s vision

domain after the move. Nevertheless, both users remain in the consistent

state because their vision domains are both the same as those shown in the

global view.

• At time t2, user u at BSi moves to the left by one step. No syn packet is sent

from BSi to BSj because VEi shows that there are no users within user u’s

vision domain after the move. However, with respect to the global view, the

two users, u and v, are now in each other’s vision domain. Both users have

thus entered the inconsistent state.
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Further investigation of consistency reveals that a user in the inconsistent state

may return to the consistent state as a result of user movements in the future.

For instance, consider again the example for Scenario I shown in Figure 4.1. The

locations of users u and v at time t1 are reproduced in Figure 4.3. Recall that user

u is in the inconsistent state at time t1. Suppose the future user movements are as

follows.

• At time t2, user u moves to the left by one step. Since according to VEi, user

v is within user u’s vision domain (even though his location is incorrectly

shown), a syn packet is sent from BSi to BSj. At BSj, the processing of this

syn packet will update the new location of user u at BSj. User v remains in

the consistent state. User u is still in the inconsistent state because his vision

domain is different from that of the global view.

• At time t3, user v at BSj moves down by one step. BSj sends BSi a syn packet

containing user v’s new location. At BSi, after processing this syn packet,

user u returns to the consistent state.

As another example, we consider the example for Scenario II shown in Figure 4.2.

The locations of users u and v at time t2 are reproduced in Figure 4.4. Recall

that both users are in the inconsistent state at time t2. Suppose the future user

movement is as follows.

• At time t3, user v at BSj moves to the right by one step. According to VEj,

user u is within user v’s vision domain; a syn packet is sent from BSj to

BSi. Upon processing this packet, BSi has the up-to-date location of user v,
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and user u returns to the consistent state. User v, however, is still in the

inconsistent state; further user movements may result in his state becoming

consistent again.

The above examples show how users u and v may enter the inconsistent state and

then return to the consistent state because of user movement. In some instances,

inconsistency can actually be avoided. Consider again the example for Scenario II

shown in Figure 4.2. Suppose there is a third user, w, logged on to BSi. Figure 4.5

depicts the location of this user. With the presence of user w, the same sequence of

movements by users u and v will not result in inconsistency. This can be explained

as follows.

• At time t0, users u, v, and w are in the consistent state.

• At time t1, user v at BSj moves down by one step. Since user w is within the

vision domain of user v according to VEj, a syn packet is sent to BSi. BSi

has the up-to-date location of user v, and both users u and w remain in the

consistent state.

• At time t2, user u moves to the left by one step. User v is now in the vision

domain of user u according to VEi. A syn packet is sent from BSi to BSj. BSj

has the up-to-date location of user u, and user v remains in the consistent

state.

For the remainder of this chapter, we will investigate the issue of consistency

among copies of the VE by focusing on the inconsistency that may arise. We will
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look at how the inconsistency is affected by the various factors, and how the level

of inconsistency may be reduced.

4.2 Preliminary Observations

We conduct simulation experiments to evaluate the extent of inconsistency that

may occur among copies of the VE at the basic systems. Our simulation pro-

gram implements our models of the two-level hierarchical architecture and VE, as

described in Sections 3.1 and 3.2, respectively. To verify the correctness of our

simulation program, we obtained simulation results for the arrival rates of update

and syn packets using our program, and confirmed that they are consistent with

the corresponding analytic results in Section 3.3.

Of interest is the number of users who are in the inconsistent state at a given

time t, and we denote it by I(t). Recall that a user is said to be in the inconsistent

state if the content of his vision domain, as shown in his local basic system’s copy

of the VE, is not the same as that shown in the global view of the VE.

Our simulation is based on the performance model described in Chapter 3. The

definition of consistency is extended to more than two basic systems. This extension

is straightforward because consistency is defined with respect to the global view.

For each experiment, we run a time-driven simulation for 50 time units and collect

data for I(t), for t = 0, 1, . . . , 50. A total of 100 replications are made. Using

the data collected, we construct distributions of I(t). For all experiments that

we conducted, the distributions of I(t) converge to their respective steady state

distributions as t increases.
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In our first experiment, the input parameters are shown in Table 4.1. Using

the parameter values in Table 4.1, the minimum number of basic systems required

Kmin is 4 (see Figure 3.10).

N Number of users 1000
E Size of the VE 100
D Size of the vision domain 4
y Traffic intensity parameter 0.8
µi Processing capacity of BSi, same for all i 850

qa,b;c,d User movement probability uniformly distributed

Table 4.1: Parameter Values Used in the First Experiment

Let I(t) be the mean number of users who are in the inconsistent state at time

t. In other words, I(t) is the mean of the distribution of I(t). The behavior of I(t)

as a function of t is shown in Figure 4.6. At t = 0, every copy of the VE is assumed

to be synchronized, so we have I(0) = 0. Starting from t = 0, I(t) increases with

t, and when t ≈ 30, steady state is reached. We denote the steady state results for

I(t) by I. In Figure 4.6, we observe that I is approximately equal to 397 (of 1000).

The existence of steady state behavior illustrates the facts that user movement may

lead to inconsistency and that consistency can be restored without employing any

explicit measures, as discussed in Section 4.1.

In our next experiment, we use the input parameters shown in Table 4.1 with

the exception that y = 0.9 instead of 0.8. The corresponding Kmin, as determined

from Figure 3.10, is 3. Again, we observe that steady state exists although the

mean number of users in the inconsistent state I is 285 (out of 1000). This is

smaller than that for y = 0.8 and Kmin = 4, which is 397. This can be explained
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N = 1000, D = 4 and y = 0.8
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as follows. When the number of basic systems is larger (4 instead of 3 in this case),

more users are located at some other basic systems. This would tend to increase

the chance that a user enters the inconsistent state because remote users are those

who can potentially cause inconsistency. Hence, I tends to be higher when more

basic systems are deployed.

One technique for improving consistency is periodic global synchronization [14].

With this technique, all copies of the VE are synchronized periodically. Consider

again the results in Figure 4.6. Suppose periodic global synchronization is per-

formed every 10 time units. We would expect in Figure 4.6 that I(t) drops to

almost zero1 every 10 time units and increases again to its steady state behavior

(i.e., approximately 397). This is depicted in Figure 4.8. In that figure, we see that

inconsistency still exists between successive global synchronizations, but the use

of periodic global synchronization leads to a reduction in the long-term average of

I(t).2 If the time interval between successive synchronizations (referred to as the

synchronization interval) is shorter, the long-term average would be reduced fur-

ther. For instance, Figure 4.9 shows the behavior of I(t) when the synchronization

interval is 5 time units.

Global synchronization generally involves exchanging state update information

among all the basic systems and processing these updates. This consumes pro-

cessing resources at the basic systems. When global synchronization is performed

1Due to potential server delay and network delay experienced by the global synchronization
messages, users in the inconsistent state may not return to the consistent state at the same time.
Therefore, a certain level of inconsistency may still exist when global synchronization is performed.

2The long-term average is given by 1

L

∫

L

0
I(t)dt where L denotes the length of observation

period.
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Figure 4.8: Mean Number of Users in the Inconsistent State I(t) with Periodic
Global Synchronization (Every 10 Time Units) for E = 100, N = 1000, D = 4 and
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Figure 4.9: Mean Number of Users in the Inconsistent State I(t) with Periodic
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more frequently (by choosing a shorter synchronization interval), more resources

are required although better consistency is achieved. With periodic global synchro-

nization, the capacity at each basic system available for processing update and syn

packets is therefore reduced. This has a negative impact on scalability because more

basic systems may be required to support the same number of users. A detailed

evaluation of the effect of periodic global synchronization is out of the scope of this

thesis.

As an alternative to periodic global synchronization, we propose a technique

called the “virtual vision domain,” which will be investigated in the next section.

4.3 Virtual Vision Domain

The basic idea is to extend a user’s vision domain to a larger size. We refer to the

extended vision domain as the virtual vision domain and the original one as the

real vision domain. The virtual vision domain is used when a basic system wishes

to determine whether a local user’s update (in the form of a syn packet) is to be

distributed to another basic system. The real vision domain is used when the state

of a user (consistent or inconsistent) is to be determined. The relationship between

the real and virtual vision domains is shown in Figure 4.10.

The use of the virtual vision domain avoids some inconsistencies which would

occur if the technique were not used. Consider again the example of inconsistency

for Scenario I shown in Figure 4.1. The contents of the VEs at time t0 are re-

produced in Figure 4.11. Suppose we use a virtual vision domain which is 2 units
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Figure 4.10: Real and Virtual Vision Domains

larger than the real vision domain.3

• At time t1, user v moves to the left by one step. User u is still inside user v’s

virtual vision domain, causing BSj to send a syn packet to BSi. As a result,

inconsistency is avoided, and user u remains in the consistency state.

For Scenario II inconsistency, consider again the example shown in Figure 4.2.

The contents of the VEs at time t0 are reproduced in Figure 4.12. Again, suppose

we use a virtual vision domain which is 2 units larger than the real vision domain.

We note that at time t0, both users u and v are within each other’s virtual vision

domain.

• At time t1, user v at BSj moves down by one step. According to VEj, user u

is still inside user v’s virtual vision domain. A syn packet is sent from BSj to

32 units are the smallest possible increment in the size of the vision domain because the size
is assumed be an even number.
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Figure 4.11: How the Virtual Vision Domain Technique Avoids Scenario I Incon-
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BSi. Upon processing this packet, BSi has the up-to-date location of user v,

and both users remain in the consistent state.

• At time t2, user u at BSi moves to the left by one step. User v is within the

virtual vision domain of user u, causing BSi to send a syn packet to BSj. As

a result, both users are still in the consistent state; inconsistency is avoided.

The above examples confirm that the area inside the virtual but outside the

real vision domain can be viewed as a buffer/margin that helps avoid potential

inconsistencies.

Since the virtual vision domain is larger than the real vision domain, additional

syn packet traffic is generated. The total rate of packets to each basic system is

therefore increased, resulting in more basic systems being required to support the

same number of users.

4.4 Evaluation of the Virtual Vision Domain Tech-

nique

In this section, we evaluate our proposed virtual vision domain technique by means

of simulation. We first consider the time dependent behavior of the mean number of

users in the inconsistent state and then study the steady state behavior, focusing on

the effectiveness of our virtual vision domain technique and the issue of scalability.
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4.4.1 Time Dependent Behavior

Consider again the input parameters shown in Table 4.1. Figure 4.6 has shown

the results for I(t) as a function of t when the virtual vision domain is not used.

These results are for a real vision domain of size 4 (or D = 4). Let D′ be the

size of the virtual vision domain. In our first simulation experiment, we consider

two values for D′: D′ = D + 2 and D + 4. For each of these values, we obtain the

minimum number of basic systems requiredKmin (see Figure 3.10). Note that Kmin

is determined based on D′ rather than D because, as mentioned in Section 4.3, a

basic system uses the virtual vision domain to determine if a local user’s update (in

the form of a syn packet) is to be transmitted to another basic system. Using the

parameter values in Table 4.1, Kmin is therefore equal to 6 and 8 for D′ = D + 2

and D + 4, respectively.

The results for I(t) are plotted in Figure 4.13. We also include the plot in

Figure 4.6 that corresponds to the case where the virtual vision domain is not

used. We observe that steady state also exists with the virtual vision domain

technique. Furthermore, the use of the virtual vision domain results in a significant

reduction in I, the mean number of users in the inconsistent state (at steady state).

Specifically, when D′ = D + 2 (or D + 4), I is reduced from 397 to 126 (or 67). In

general, the larger the virtual vision domain, the greater is the reduction.

We also consider the case of y = 0.9 (instead of y = 0.8). Simulation results

for I(t) for D′ = D + 2 and D + 4 are obtained. For these two values of D′,

the corresponding values of Kmin, as determined from Figure 3.10, are 4 and 6,

respectively. The results for I(t) are shown in Figure 4.14. We again include the
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Figure 4.13: Mean Number of Users in the Inconsistent State I(t) with Virtual
Vision Domain for E = 100, N = 1000, D = 4 and y = 0.8
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plot in Figure 4.7 that corresponds to the case where the virtual vision domain is

not used. We observe that the use of the virtual vision domain again leads to a

reduction in I; this time from 285 to 81 for D′ = D + 2, and from 285 to 34 for

D′ = D + 4.

The results presented in Figures 4.13 and 4.14 confirm the ability of the virtual

vision domain technique to improve consistency. The use of it, however, increases

the number of basic systems required Kmin. In the next section, we will present a

detailed analysis of the steady state results to gain insights into the effectiveness of

the virtual vision domain technique and the issue of scalability.

4.4.2 Steady State Results

Our evaluation is based on the fraction of users in the inconsistent state, denoted

by Ifrac, and the minimum number of basic systems required Kmin. Note that

Ifrac = I/N . The use of Ifrac instead of I facilitates the discussion of our results

for different values of N .

The input parameters to our evaluation are summarized in Table 4.2. The

parameter values are consistent with those used in Section 3.4.2. We note from

the results in Figures 3.10 and 3.11 that one basic system is sufficient to support

N ≤ 700 users, and no inconsistency will occur in the case of one basic system. We

therefore select N to be 800 and 1000.

To obtain steady state results for Ifrac, we choose the length of simulation runs

and number of replications so that the width of the 95% confidence intervals is less

than 5% of the sample means. We use, as our result, the sample means of Ifrac
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N Number of users 800, 1000
E Size of the VE 100, 150
D Size of the real vision domain 2, 4, 6
D′ Size of the virtual vision domain D + 2, D + 4
y Traffic intensity parameter 0.8, 0.9
µi Processing capacity of BSi, same for all i 850

qa,b;c,d User movement probability uniformly distributed

Table 4.2: Parameter Values Used in Our Simulation Study

over all the replications. In addition, to avoid any potentially negative effect of the

initial transient period (i.e., the time before steady state is reached), initial data

deletion is performed.

As to Kmin, its values are determined from Figures 3.10 and 3.11, using the size

of the virtual vision domain D′.

The results for Ifrac for different combinations of N and E are shown in Ta-

bles 4.3 – 4.6. We observe that the virtual vision domain technique significantly

reduces the fraction of users who are in the inconsistent state. For instance, with

D′ = D + 2 (a virtual vision domain 2 units larger than the real vision domain),

Ifrac is reduced by as much as 92%. With D′ = D + 4, the largest percentage of

reduction in Ifrac observed is 99%. These results are consistent with our comments

in Section 4.3 that the use of the virtual vision domain provides a buffer/margin to

avoid potential inconsistencies. Our results also show that a larger virtual vision

domain (relative to the real vision domain) leads to a greater percentage of reduc-

tion in Ifrac. When the size of the virtual vision domain D′ approaches “infinity”

(meaning that the virtual vision domain always covers the entire VE), Ifrac would
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drop to zero. This further supports our observation that consistency improves with

the size of the virtual vision domain.

The above results illustrate how the virtual vision domain technique can help

improve consistency. However, the improved performance comes with a cost of

increased resource requirements. As mentioned earlier, having a virtual vision do-

main larger than the real vision domain would generate additional syn packets,

thus increasing the total arrival rate to each basic system. Additional processing

capacity is required; this may mean more basic systems for the same number of

users.

In Tables 4.3 – 4.6, we also show the results for the number of basic systems

required Kmin. We see that as the size of the virtual vision domain D′ increases,

Kmin may increase. Consider, for example, the case of D = 4 in Table 4.4. At

y = 0.8, when D′ = D + 2, Kmin is increased from 4 to 6; when D′ = D + 4,

Kmin is further increased to 8. As another example, consider the case of D = 4 in

Table 4.5. At y = 0.8, when D′ = D + 2, Kmin remains unchanged. This means

that 2 basic systems are still sufficient to handle the increase in the amount of syn

packet traffic. However, when D′ = D + 4, an additional basic system is required.

Comparing these two examples, we observe that the increase in Kmin is dependent

on the size of the virtual vision domain as well as the density of avatars. The results

in Table 4.4 are for N = 1000 and E = 100, while those in Table 4.5 are for N = 800

and E = 150, which is less dense. In general, a lower density of avatars will result

in fewer syn packets being generated and hence fewer basic systems required.

Another interesting performance measure is the mean length of time that a user
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y = 0.8 y = 0.9
D D′ Kmin Ifrac % reduction Kmin Ifrac % reduction

2 D 2 0.1794 — 2 0.1794 —
2 D + 2 2 0.0308 82.83% 2 0.0308 82.83%
2 D + 4 3 0.0102 94.31% 2 0.0025 98.61%
4 D 2 0.1536 — 2 0.1536 —
4 D + 2 3 0.0535 65.17% 2 0.0165 89.26%
4 D + 4 4 0.0152 90.10% 2 0.0010 99.35%
6 D 3 0.2108 — 2 0.0809 —
6 D + 2 4 0.0637 69.78% 2 0.0061 92.46%
6 D + 4 5 0.0230 89.09% 3 0.0031 96.17%

Table 4.3: Fraction of Users in the Inconsistent State Ifrac for E = 100 and N = 800

y = 0.8 y = 0.9
D D′ Kmin Ifrac % reduction Kmin Ifrac % reduction

2 D 2 0.1930 — 2 0.1930 —
2 D + 2 4 0.1094 43.32% 3 0.0669 65.34%
2 D + 4 6 0.0290 84.97% 4 0.0166 91.40%
4 D 4 0.3970 — 3 0.2852 —
4 D + 2 6 0.1261 68.24% 4 0.0817 71.35%
4 D + 4 8 0.0678 82.92% 6 0.0341 88.04%
6 D 6 0.3963 — 4 0.2964 —
6 D + 2 8 0.2023 48.95% 6 0.1219 58.87%
6 D + 4 10 0.1095 72.37% 8 0.0540 81.78%

Table 4.4: Fraction of Users in the Inconsistent State Ifrac for E = 100 and N =
1000
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y = 0.8 y = 0.9
D D′ Kmin Ifrac % reduction Kmin Ifrac % reduction

2 D 2 0.1592 — 2 0.1592 —
2 D + 2 2 0.0420 73.62% 2 0.0420 73.62%
2 D + 4 2 0.0087 94.54% 2 0.0087 94.54%
4 D 2 0.1390 — 2 0.1390 —
4 D + 2 2 0.0384 72.37% 2 0.0384 72.37%
4 D + 4 3 0.0224 83.88% 2 0.0062 95.54%
6 D 2 0.1207 — 2 0.1207 —
6 D + 2 3 0.0744 38.36% 2 0.0264 78.13%
6 D + 4 3 0.0151 87.49% 2 0.0037 96.93%

Table 4.5: Fraction of Users in the Inconsistent State Ifrac for E = 150 and N = 800

y = 0.8 y = 0.9
D D′ Kmin Ifrac % reduction Kmin Ifrac % reduction

2 D 2 0.1346 — 2 0.1346 —
2 D + 2 3 0.0824 38.78% 2 0.0404 69.99%
2 D + 4 3 0.0199 85.22% 3 0.0199 85.22%
4 D 3 0.2814 — 2 0.1646 —
4 D + 2 3 0.0819 70.90% 3 0.0819 50.24%
4 D + 4 4 0.0343 87.81% 4 0.0343 79.16%
6 D 3 0.2573 — 3 0.2573 —
6 D + 2 4 0.1106 57.02% 4 0.1106 57.02%
6 D + 4 6 0.0686 73.34% 5 0.0443 82.78%

Table 4.6: Fraction of Users in the Inconsistent State Ifrac for E = 150 and N =
1000
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is in the inconsistent state (denoted by Itime). Itime indicates the average length of

time that a user stays in the inconsistent state before he returns to the consistent

state. Simulation results for Itime, together with the minimum number of basic

systems required Kmin, are shown in Tables 4.7 – 4.10. We observe improvements

in Itime when the virtual vision domain is used. The percentage of improvement,

however, is not as significant as that in Ifrac. We also observe that an increase

in the size of the virtual vision domain D′ generally yields a good reduction in

Itime. Finally, we note that the observed values of Itime range from 1.0 to 2.8

(approximately). Our time unit is the mean time between updates submitted by

the same user. This means that a user in the inconsistent state will usually return

to the consistent state in less than three moves by some other user, and less than

two in many cases.

Note that a user may be in the inconsistent state for an extended period of time.

Consider the scenario shown in Figure 4.15. Users u and v are assigned to BSi and

BSj, respectively. At time t0, the two users are in the consistent state and located

at the opposite corners of the VE. Then, at some arbitrary time t, they move to

within each other’s vision domain (according to the global view). However, with

respect to VEi and VEj, the two users are not within each other’s vision domain;

they thus have entered the inconsistent state. Now, suppose they move within each

other’s vision domain for a long time. They will then be in the inconsistent state

for a long period of time.

For the above scenario, one approach to improve consistency is to have BSj send

a state update of user v to BSi if BSj has not sent any update of user v to BSi for a
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y = 0.8 y = 0.9
D D′ Kmin Itime Kmin Itime

2 D 2 2.0922 2 2.0922
2 D + 2 2 1.2919 2 1.2919
2 D + 4 3 1.2584 2 1.0091
4 D 2 1.8253 2 1.8253
4 D + 2 3 1.5040 2 1.1939
4 D + 4 4 1.4572 2 0.9901
6 D 3 2.0466 2 1.5396
6 D + 2 4 1.6279 2 1.0945
6 D + 4 5 1.6109 3 1.2049

Table 4.7: Mean Length of Time that a User is in the Inconsistent State Itime for
E = 100 and N = 800

y = 0.8 y = 0.9
D D′ Kmin Itime Kmin Itime

2 D 2 1.9367 2 1.9367
2 D + 2 4 1.7184 3 1.4726
2 D + 4 6 1.5169 4 1.3143
4 D 4 2.1973 3 2.7986
4 D + 2 6 1.8999 4 1.6136
4 D + 4 8 2.1343 6 1.7132
6 D 6 2.5104 4 2.8236
6 D + 2 8 2.3622 6 1.933
6 D + 4 10 2.4637 8 1.9425

Table 4.8: Mean Length of Time that a User is in the Inconsistent State Itime for
E = 100 and N = 1000
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y = 0.8 y = 0.9
D D′ Kmin Itime Kmin Itime

2 D 2 2.5167 2 2.5167
2 D + 2 2 1.7757 2 1.7757
2 D + 4 2 1.4837 2 1.4837
4 D 2 2.4896 2 2.4896
4 D + 2 2 1.7478 2 1.7478
4 D + 4 3 1.9698 2 1.4887
6 D 2 2.2335 2 2.2335
6 D + 2 3 2.1157 2 1.5959
6 D + 4 3 1.7637 2 1.4302

Table 4.9: Mean Length of Time that a User is in the Inconsistent State Itime for
E = 150 and N = 800

y = 0.8 y = 0.9
D D′ Kmin Itime Kmin Itime

2 D 2 2.3286 2 2.3286
2 D + 2 3 2.0105 2 1.6246
2 D + 4 3 1.6495 3 1.6495
4 D 3 3.0368 2 2.3217
4 D + 2 3 2.0434 3 2.0434
4 D + 4 4 2.0309 4 2.0924
6 D 3 2.6904 3 2.6904
6 D + 2 4 2.2693 4 2.2693
6 D + 4 6 2.6828 5 2.2736

Table 4.10: Mean Length of Time that a User is in the Inconsistent State Itime for
E = 150 and N = 1000
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certain period of time. This approach would keep the length of time that a user is

in the inconsistent state under a given threshold. However, it may also result in the

distribution of unnecessary state updates among the basic systems. Investigation

of this approach is out of the scope of this thesis.
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Figure 4.15: An Example

4.5 Concluding Remarks

In this chapter, we investigated the consistency issue in the two-level architecture.

We showed that consistency can be restored as a result of user movement. This

property is very useful. For example, in a typical DVE, users tend to gather together

in a small area to interact with one another. Inconsistency may occur because of

the two scenarios described in this chapter, e.g., inconsistency due to a user from
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outside of the small area entering the area. However, consistency can be restored

as a result of user movement, without employing any explicit measures by the basic

systems.

Furthermore, we proposed the virtual vision domain technique, as an alternative

to periodic global synchronization, to provide weak consistency. Our simulation

study showed that this technique is effective in reducing the fraction of users in the

inconsistent state, but at the cost of a potential increase in the number of basic

systems required.

Another technique that may help improve consistency is to distribute a state

update resulting from a user’s move to all other users within the vision domains

based on the user’s old and new locations. With this technique, Scenario I inconsis-

tency is avoided completely because a user is always notified when someone moves

out of his vision domain. Note that this technique has the effect of extending the

vision domain as far as the distribution of updates is concerned. It can therefore

be considered as a special case of our virtual vision domain technique.



Chapter 5

Server Delay

As mentioned in Chapter 1, an important performance measure for a DVE system is

the update delay, which is defined as the elapsed time from when a user submits an

update to when this update is received by an affected user. Generally, the update

delay is composed of two main components: server delay and network delay. The

server delay includes the time required to execute the DVE-specific logic on an

update received, apply changes to the database, prepare and transmit the resulting

update packets, and any queueing delay at a basic system. The network delay, on

the other hand, is determined by the queueing delay and processing time at the

routers, and packet transmission time and signal propagation delay along the path

traversed by a packet. For a DVE system, it is important that the update delay

does not exceed some given maximum (e.g., 100 ms); therefore, we are interested

in the update delay distribution. Such a distribution will allow us to determine the

probability that the update delay is larger than some given value.

Let T , S, and L be the update delay, server delay, and network delay, respec-

87
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tively. We can write:

T = S + L.

Assuming that S and L are independent of each other, the distribution of T is given

by considering the convolution of the probability density functions of S and L. Such

a convolution tends to yield rather complex results because analytic results for the

distributions of S and L are not simple functions of the input parameters. In this

thesis, we analyze the distributions of S and L separately to reduce complexity.

We also note that factors affecting the network delay, such as network topology, do

not seem to have any major impact on the server delay. We therefore believe that

valuable insights into the update delay can be obtained by considering S and L

separately. Our analysis will provide answers for the probability that server delay

will exceed some given value, and similar answers for the network delay.

In this chapter, we focus on the server delay of our two-level hierarchical ar-

chitecture; the network delay will be investigated in the next chapter. We first

develop a performance model for a basic system and obtain analytic results for its

response time distribution. These results are then used to characterize the server

delay. When an affected user is at the same basic system, the server delay is the

same as the response time at the basic system. Contrarily, when the affected user

is at a remote basic system, the server delay is given by the sum of the response

times at the local and remote basic systems. Our approach is to obtain approximate

results for the distribution of the sum of these response times.
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5.1 Performance Model of a Basic System

We model a basic system by a single service facility with multiple processors, as

depicted in Figure 5.1. There is a single queue; an arriving packet (an update or a

syn packet) joins the queue, awaiting processing by an available processor. Update

or syn packets can be processed by any of the processors. Such an architecture

is commonly used because the rate at which packets are processed can often be

increased by adding more processors. We use mi to denote the number of processors

at BSi.
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Figure 5.1: A Model of a Basic System
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5.1.1 Arrival Process

As shown in Figure 5.1, there are two classes of packets arriving at each basic

system, namely update packets from its local users and syn packets from other

basic systems. In Chapter 3, we obtained analytic results for γi and ηi, the arrival

rates of update and syn packets to BSi, respectively. These results are found in

Equations 3.2 and 3.7 which are repeated below:

γi = Niφ

and

ηi =
K
∑

k=1,k 6=i

ηk,i

where ηk,i = gk,iNkφ = gk,iγk (see Equation 3.6).

For our model of BSi, we assume that the arrival process of update packets is

Poisson with rate γi. This is consistent with our earlier assumptions in Section 3.2

that the time between successive moves made by a user is exponentially distributed,

and the actions of the Ni users at BSi are independent of each other.

We assume that the arrival process of syn packets to BSi is also Poisson, but

with rate ηi. This assumption can be justified as follows. Consider, for example,

syn packets from BSk. We note that the arrival process of update packets to BSk is

Poisson with rate γk. For each of these packets, the probability that a syn packet

is sent to BSi is given by gk,i in Equation 3.5. It follows that the departure process

of syn packets from BSk (destined to BSi) is also Poisson, but with rate ηk,i. These

syn packets will experience some delay in the network before reaching BSi. We
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have two scenarios for this delay.

Scenario 1. BSi and BSk are co-located—we assume that the network delay is

minimal and can be neglected.

Scenario 2. BSi and BSk are not co-located—we assume that the delay in the

network is constant and is given by the sum of signal propagation delay and

packet transmission time from BSk to BSi. This assumption will be discussed

further in Chapter 6.

Considering these two scenarios together, a syn packet leaving BSk will either

experience a negligible delay or a constant delay before arriving at BSi. Both

scenarios result in an arrival process of syn packets from BSk to BSi that is Poisson.

Finally, the aggregation of the K − 1 streams of syn packets from all the other

basic systems yields a Poisson process with rate
∑K

k=1,k 6=i ηk,i = ηi (as shown in

Equation 3.7).

5.1.2 Service Time Distribution

When an update packet is processed, the update may need to be sent to multiple

recipients in addition to executing the DVE-specific logic and applying changes to

the database. These recipients include affected users at the local system and/or at

any other basic systems. Similarly, when a syn packet is processed, the update may

be sent to one or more recipients that are affected by the update, but at the local

system only. To simplify our analysis, we assume that the service times of update

and syn packets have the same distribution which is exponential with mean 1/µ.
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We further assume that the rate µ is independent of the number of recipients. This

assumption can be justified as follows.

It has been suggested that multicast can be used to disseminate a packet to

multiple recipients in a DVE system [10, 26]. With multicast, a basic system is

only required to transmit one packet, regardless of the number of recipients. The

underlying multicast network will look after the distribution of the packet to the

recipients. In case multicast is not supported by the underlying network, unicast

has to be used to transmit a separate packet to each recipient. In [64], we reported a

kernel-based technique to efficiently unicast a packet to multiple recipients with only

minimal additions to the sending operating system interface and implementation.

Using our technique, we found that the delay in distributing a packet is largely

insensitive to the number of users, when the packet size is small, e.g., less than 100

bytes. Small packet sizes are typically found in DVE systems such as multi-player

online games [54, 65].

5.1.3 Other Assumptions

Finally, we assume that packets are serviced in a first-come-first-served (FCFS)

manner. Our model of BSi thus becomes an M/M/mi model with two classes of

packets (update and syn packets) and FCFS discipline. The rate at which packets

are processed is miµ, and the traffic intensity at BSi is given by ρi = λi/miµ.
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5.2 Response Time Distribution

Let Xi be the response time of a packet (an update or a syn packet) at BSi. For

the above model, the cumulative distribution function (c.d.f.) of Xi, denoted by

FXi
(t), is given by:

FXi
(t) = Pr[Xi ≤ t]

=















1− e−µt − κµe−µt(mi−σ)
[

1−e−µt(1−mi+σ)

(1−mi+σ)

]

for σ 6= mi − 1

1− e−µt − κµe−µtt for σ = mi − 1

(5.1)

where

• σ = ρimi

• κ = P (0)σmi

mi!
mi

(mi−σ)
, and

• P (0) =
(

∑mi−1
n=0

σn

n!
+ miσ

mi

mi!(mi−σ)

)−1

.

The response time distribution of each class of packets is the same and is given

by Equation 5.1. The derivation of Equation 5.1 can be found in Appendix A.

5.3 Server Delay

In the two-level architecture, a user participating in the DVE submits a stream of

update packets to his local basic system. After processing an update packet, the

local basic system distributes the update to all affected local users. The local basic

system also sends a syn packet to those remote basic systems that have affected



CHAPTER 5. SERVER DELAY 94

users. Consequently, an update submitted by a user may result in several other

users receiving the update (at the local or at remote basic systems). Each of these

other users will experience a server delay.

In our analysis of overall server delay, the delay experienced by individual af-

fected users will be taken into consideration. We use Si to denote the overall server

delay resulting from the submission of an update packet by a user at BSi, and

FSi
(t) to denote its cumulative distribution function (c.d.f.). Our goal is to obtain

analytic results for FSi
(t). There are two cases, depending on whether the affected

user is at the same local basic system or at a remote basic system.

5.3.1 Case 1 — Local Basic System

For an affected user at the same local basic system, Si is the same as Xi, the

response time at BSi. We thus have:

FSi
(t|case 1) = FXi

(t) (5.2)

where FXi
(t) is given by Equation 5.1.

5.3.2 Case 2 — Remote Basic System

Suppose as a result of processing an update submitted by a user at BSi, a syn

packet is sent to BSj. This implies that one or more users at BSj are affected by

the update. For each of these users, the server delay is the sum of Xi and Xj , the

response times at BSi and BSj, respectively. We use Xi,j to denote this sum. As
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an approximation, we assume that the packet processing times at BSi and at BSj

are mutually independent. This means that the server delay distribution can be

written as a convolution of the two response times. We thus have:

FXi,j
(t) =

∫ t

0

FXi
(t− s)fXj

(s)ds where fXj
(t) =

dFXj
(t)

dt
(5.3)

and

FSi
(t|case 2, j) = FXi,j

(t). (5.4)

5.3.3 Overall Server Delay

We now consider FSi
(t), the c.d.f of the overall server delay of an update submitted

to BSi. Recall that ξi,j(n), as defined in Equation 3.4, is the probability that n

users at BSj, j = 1, 2, . . . ,K, are within the vision domain of any given user at

BSi. This is also the probability that when a user at BSi submits an update packet,

n users at BSj are affected by the update and will receive the update. Note that

the arrival rate of update packets submitted to BSi is given by γi. For case 1, let

Ci,i be the rate at which updates are received by affected users at the same local

system. Ci,i can be written as:

Ci,i = γi

Ni−1
∑

ni=0

ξi,i(ni)ni.
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Similarly, for case 2, the rate at which updates are received by affected users at a

remote basic system BSj, j 6= i, is given by:

Ci,j = γi

Nj
∑

nj=0

ξi,j(nj)nj.

Combining the two cases, the c.d.f. of the overall server delay Si is:

FSi
(t) =

1

Ci

[

Ci,iFSi
(t|case 1) +

K
∑

j=1,j 6=i

Ci,jFSi
(t|case 2, j)

]

(5.5)

where Ci =
∑K

j=1 Ci,j. Substituting Equations 5.2 and 5.4 into Equation 5.5, we

get:

FSi
(t) =

1

Ci

[

Ci,iFXi
(t) +

K
∑

j=1,j 6=i

Ci,jFXi,j
(t)

]

. (5.6)

Finally, we obtain the distribution of server delay over all the basic systems. It

is given by:

FS(t) =
1

C

K
∑

i=1

CiFSi
(t) (5.7)

where C =
∑K

i=1Ci.

5.3.4 Evaluation of Accuracy

As mentioned previously, the results for FXi,j
(t) in Equation 5.3 are an approxima-

tion. This is due to the assumption that the packet processing times at BSi and

at BSj are mutually independent. In this section, we evaluate the accuracy of our

approximation method.
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Our approach is to compare the results for FXi,j
(t), as computed from Equa-

tion 5.3, with those obtained from simulation. Our comparison is based on the

percentile of FXi,j
(t). Specifically, we define xp as the p-th percentile of FXi,j

(t). xp

is obtained by solving the following equation:

FXi,j
(xp) = p%.

The parameter values used in our experiments are summarized in Table 5.1.

The number of basic systems required Kmin is determined using the results in

Section 3.4.2. We thus obtain Kmin = 4 when y = 0.8, and Kmin = 3 when

y = 0.9. Each basic system is then assigned N/Kmin users. The service rate µ

of each processor is chosen to be 850, 425, 170, and 85 for mi = 1, 2, 5, and 10,

respectively. These values are selected so that the traffic intensities for the various

values of mi remain unchanged. This would allow the evaluation of accuracy for

a range of values for the number of processors while keeping the total processing

capacity of the basic system the same. Since different service rates are used for

different values of mi, we present results for the p-th percentile relative to the mean

service time, namely that

x̂p =
xp

mean service time

where the mean service time is given by 1/µ.

We first consider the scenario where y = 0.8. In Figure 5.2, we plot the ap-

proximate and simulation results for x̂p for different values of mi. We observe that
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N Total number of users 1000
E Size of the VE 100
D Size of the vision domain 4
µ Service rate of each processor 850, 425, 170, 85
mi Number of processors at BSi, same for all i 1, 2, 5, 10
y Traffic intensity parameter 0.8, 0.9

qa,b;c,d User movement probability uniformly distributed

Table 5.1: Parameter Values Used in the Simulation Experiments

the approximate and simulation results are consistent with each other. We further

calculate the percentages of error as follows:

| simulation result for x̂p - approximate result for x̂p |

simulation result for x̂p

∗ 100%.

Table 5.2 shows the percentages of error. The errors shown are generally less than

5%, confirming that our approximation method yields accurate results.

We next consider the scenario where y = 0.9. The approximate and simulation

results for x̂p for different values of mi are shown in Figure 5.3, and the correspond-

ing error percentages are shown in Table 5.3. We again observe a good agreement

between these results.

The above experiments confirm the accuracy of our approximate results for

FXi,j
(t), as given by Equation 5.3.
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Figure 5.2: Approximate and Simulation Results for x̂p, y = 0.8
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p Error Percentages of x̂p

m = 1 m = 2 m = 5 m = 10

5 1.77 9.26 13.00 3.27
10 2.62 0.43 9.20 2.49
15 0.92 2.67 5.24 0.03
20 1.88 0.89 4.94 2.83
25 1.44 0.37 2.79 4.82
30 1.07 1.74 2.61 3.79
35 1.56 1.31 3.77 4.11
40 2.66 0.30 2.52 4.01
45 1.75 1.07 2.00 4.92
50 1.92 2.28 2.52 3.82
55 1.05 0.99 2.93 3.76
60 1.71 0.59 2.15 3.18
65 1.57 0.92 2.36 2.56
70 0.52 0.80 2.11 2.07
75 2.01 1.73 2.51 2.75
80 1.54 0.68 2.25 2.81
85 1.17 0.14 2.84 1.21
90 0.86 1.29 2.80 0.25
95 1.40 0.17 5.39 2.67

Table 5.2: Percentages of Error between Approximate and Simulation Results for
x̂p, y = 0.8
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p Error Percentages of x̂p

m = 1 m = 2 m = 5 m = 10

5 1.12 1.82 3.34 3.03
10 2.07 0.34 3.20 0.55
15 3.07 1.85 2.80 0.48
20 3.58 2.36 2.05 0.03
25 3.54 2.23 2.19 0.77
30 2.80 2.30 1.90 0.65
35 2.63 2.81 1.97 0.77
40 3.48 2.66 1.73 0.91
45 3.29 2.95 1.39 1.44
50 3.51 2.69 1.01 1.42
55 2.70 2.81 0.55 1.44
60 2.75 3.04 0.71 1.42
65 2.94 2.38 0.62 1.28
70 3.85 2.79 0.47 1.46
75 3.62 2.43 0.12 1.49
80 3.49 1.68 0.24 1.81
85 2.26 1.31 0.18 1.54
90 1.41 0.92 0.19 1.71
95 2.45 0.97 0.02 1.86

Table 5.3: Percentages of Error between Approximate and Simulation Results for
x̂p, y = 0.9
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5.4 Numerical Examples

In this section, we present numerical examples to gain insights into the server delay.

The distribution of server delay over all the basic systems is given by Equation 5.7.

The performance measure of interest is the 95th-percentile of the overall server

delay, denoted by s95. It is obtained by solving the following equation:

FS(s95) = 95%.

In order to obtain realistic values of the service time for our numerical examples,

we conducted an experiment on an existing DVE server, called RockyMud [66], and

found that the mean service time to process an update packet is around 0.33 ms.

(See Appendix B for details.) We therefore assume that the service rate of each

processor µ is 3000 packets per second. This rate is the same for all basic systems.

The input parameters used in our numerical examples are listed in Table 5.4.

N Total number of users 3000, 6000
E Size of the VE 150
D Size of the vision domain 2, 4, 6, 8, 10
µ Service rate of each processor 3000
mi Number of processors at BSi, same for all i 1, 2
y Traffic intensity parameter 0.8, 0.9

qa,b;c,d User movement probability uniformly distributed

Table 5.4: Parameter Values Used in the Numerical Examples

Two values formi, the number of processors at each basic system, are considered:

1 and 2. N is chosen to be 3000 when mi = 1. When mi is increased to 2, the
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overall capacity of each basic system is doubled, and the number of supported users

N is increased to 6000. The size of VE considered is 150 (or E = 150). This would

result in a reasonable density of avatars. Finally, the number of basic systems

required Kmin is determined using the results in Section 3.4.2. Each basic system

is assigned an equal number of users, given by N/Kmin.

We first consider the case of one processor at each basic system (mi = 1).

The results for the 95th-percentile of the overall server delay s95 are shown in

Table 5.5. We also show Kmin, the number of basic systems required, and ρi, the

traffic intensity at BSi (which is the same for all the basic systems). We observe

that s95 is at most 16 ms for the cases considered. We further observe that a higher

ρi results in a larger s95. This is as expected because a higher traffic intensity means

a higher load at a basic system, leading to a higher server delay.

y = 0.8 y = 0.9
D Kmin ρi s95 Kmin ρi s95

2 2 0.72 5.0 2 0.72 5.0
4 3 0.77 6.5 3 0.77 6.5
6 5 0.77 6.8 4 0.84 9.8
8 8 0.76 6.2 5 0.90 14.9
10 11 0.76 6.6 7 0.90 16.0

Table 5.5: Results for the 95th-percentile of the Overall Server Delay s95 (in ms),
mi = 1

Note that an increase in D yields a higher total arrival rate of packets to each

basic system (because of the higher syn packet traffic). This in turn leads to a

larger Kmin, the number of basic systems required. The actual traffic intensity is

affected by N and Kmin and may not increase with D. Hence, the impact of D on



CHAPTER 5. SERVER DELAY 105

the server delay percentile is not easy to characterize.

We next consider the case of 2 processors at each basic system (mi = 2). The

corresponding results are shown in Table 5.6. We observe that the behavior of

s95 is similar to that for the case of mi = 1. Comparing the results in Tables 5.5

and 5.6, we note that the 95th-percentile of the overall server delay s95 becomes

smaller when mi is increased from 1 to 2. This is because the service rate of each

basic system is doubled when mi is increased from 1 to 2.

y = 0.8 y = 0.9
D Kmin ρi s95 Kmin ρi s95

2 3 0.69 2.8 2 0.85 4.7
4 5 0.78 3.8 4 0.85 5.3
6 9 0.78 4.0 7 0.86 5.6
8 14 0.79 3.7 10 0.88 6.9
10 21 0.78 3.9 14 0.90 8.2

Table 5.6: Results for the 95th-percentile of the Overall Server Delay s95 (in ms),
mi = 2

The numerical examples presented above show that if the traffic intensity at

each basic system is maintained below 0.9, the 95th-percentile of the overall server

delay could be well below 20 ms. This is a small fraction of the requirement of 100

ms for a DVE system. This also means that when we consider the network delay,

the magnitude of the delay could be as high as 80 ms without violating the 100 ms

requirement. An in-depth investigation of network delay will be presented in the

next chapter.
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5.5 Concluding Remarks

In this chapter, we derived approximate analytic results for the server delay dis-

tribution. Comparisons with simulation show that our approximate analysis yields

accurate results. Through numerical examples, we showed that if the traffic inten-

sity at each basic system is kept below 0.9, the 95th-percentile of the overall server

delay could be well below 20 ms. This result provides valuable insights because the

mean service time used in the numerical examples is computed from measurement

data on an existing DVE server.



Chapter 6

Network Delay

In this chapter, we investigate the network delay in our two-level hierarchical archi-

tecture. In this architecture, the basic systems may be co-located or geographically

distributed. For both scenarios, we develop performance models and derive ana-

lytic results for the network delay distribution. Numerical examples are then used

to characterize the conditions under which geographical distribution of the basic

systems will lead to performance advantage. We also propose an effective algorithm

for determining the locations of basic systems in a network.

6.1 Co-located Basic Systems

6.1.1 Network Model

In this section, we develop a network model for the scenario of co-located basic

systems.

107
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We assume that each user workstation is connected to some network “end-point”

which can be a point of presence (POP) to the Internet, the user’s Internet Service

Provider (ISP), or a DSL/cable modem owned by the user. Multiple users may be

connected to the same end-point. All basic systems are assumed to be connected

to a single network end-point which can also be a POP, an ISP, or a modem.

The network delay between a user and a basic system is measured between their

respective end-points. For convenience, the delay between a user workstation (or

a basic system) and its connected end-point is not included in our model. Since

the basic systems are co-located, we assume that the network delay for syn packets

transmitted among these systems is minimal and is also not included in the model.

The last two assumptions imply that there is no need to model the transmission of

syn packets for the scenario of co-located basic systems.

The network topology is a general, connected graph. An example topology is

illustrated in Figure 6.1. In this figure, an end-point to which user workstations

are connected is represented by a solid circle, whereas a shaded circle denotes the

end-point to which the basic systems are connected. All intermediate nodes (e.g.,

routers, switches, and multiplexers) are represented by hollow circles. We assume

that the network has sufficient bandwidth so that the queueing delay at the various

channels is negligible. Packet processing time at the intermediate nodes is also

assumed to be negligible. The above assumptions are reasonable in view of advance

in high-speed network technologies. These assumptions also imply that the delay

at a communication channel is simply given by the sum of signal propagation delay

and packet transmission time.
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Figure 6.1: Network Model in the Co-located Scenario
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We assume that fixed shortest path routing is used. The network delay between

a user and a basic system is given by the delay between their respective network

end-points, along the shortest path. For simplicity, the network protocols used for

the transmission of update and syn packets are not included in our model. Also,

we assume that no packet is lost during the transmission.

6.1.2 User Movement Model

When an update packet is processed, an affected user may be located anywhere in

the network. In order to determine the network delay experienced by each affected

user, we need to model the behavior of individual users explicitly. This can be done

by a straightforward extension of the user movement model discussed in Chapter 3

and the relevant measures are defined below:

• p
(i,u)
a,b = Pr[user (i, u) is at location (a,b)]

• hi,u;j,v(a, b) = Pr[user (j, v) is within the vision domain of user (i, u), condi-

tioned on user (i, u) being at location (a, b)]

where (i, u) denotes user u at BSi and, similarly, (j, u) denotes user v at BSj.

p
(i,u)
a,b and hi,u;j,v(a, b) can readily be obtained by extending the results in Equa-

tions 3.1 and 3.3, respectively, to the case where each user is represented explicitly.

In particular, hi,u;j,v(a, b) can be written as:

hi,u;j,v(a, b) =

x∗
∑

x=x′

y∗
∑

y=y′

p(j,v)
x,y (6.1)
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where x′ = max{0, a − U
2
}, x∗ = min{A, a + U

2
}, y′ = max{0, b − V

2
}, y∗ =

min{B, b+ V
2
}, U and V are the width and height of the vision domain, and A and

B are the width and height of the VE.

Removing the condition on location (a, b), we obtain the following expression

for ψi,u;j,v, the probability that user (j, v) is within user (i, u)’s vision domain:

ψi,u;j,v =
A
∑

a=0

B
∑

b=0

hi,u;j,v(a, b)p
(i,u)
a,b (6.2)

for all (j, v). This probability will be used in the next subsection when we derive

analytic results for the network delay distribution.

6.1.3 Network Delay Distribution

We now derive analytic results for the network delay distribution. For convenience,

we assume that the delay to transmit an update packet from user (i, u) to BSi is the

same as that to transmit an update packet from BSi to user (i, u), and we use zi,u to

denote this delay. The above assumption is accurate if update packets between user

(i, u) and BSi are transmitted along the same path (but in the opposite direction),

these packets have the same size, and each communication channel along the path

has the same capacity in both directions. Suppose user (i, u) submits an update.

This update would affect all users within his vision domain. We need to consider

two cases for these affected users.

Case 1. An affected user is connected to the same local basic system as user (i, u);

Case 2. An affected user is connected to some other basic system, say BSj.
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Case 1 is illustrated in Figure 6.2a. Suppose the affected user is (i, v). The

network delay experienced by this user, denoted by Li,u;i,v, is given by:

Li,u;i,v = zi,u + zi,v. (6.3)

User vUser u

Basic System i

User vUser u

Basic
System i

Basic
System j

(a) (b)

Figure 6.2: Network Delay for the Co-located Scenario

For case 2 (see Figure 6.2b), the network delay from user (i, u) to an affected

user (j, v) is given by:

Li,u;j,v = zi,u + zj,v. (6.4)

Note that based on our previous assumptions, there is no need to include the

network delay for transmitting a syn packet from BSi to BSj.
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Let us consider zi,u in detail. Given a network topology and locations of the

basic systems and the users, zi,u is a constant and is given by:

zi,u =
∑

(m,n)∈π(i,u)

(dm,n + tm,n) (6.5)

where π(i, u) is the set of channels along the path between user (i, u) and BSi, and

dm,n and tm,n are the signal propagation delay and packet transmission time on the

channel between nodes m and n, respectively.

Consider again the two cases. Equations 6.3 and 6.4 can be rewritten as follows.

For case 1,

Pr[Li,u;i,v ≤ t] = Pr[zi,u + zi,v ≤ t], (6.6)

and for case 2,

Pr[Li,u;j,v ≤ t] = Pr[zi,u + zj,v ≤ t]. (6.7)

We next combine the results for these two cases to determine the distribution of the

network delay L. Recall that φ is the rate at which a user submits state updates to

his local basic system. For case 1, letWi,u;i,v be the rate at which updates submitted

by user (i, u) would result in update packets sent to an affected user (i, v). Wi,u;i,v

can be written as:

Wi,u;i,v = φψi,u;i,v (6.8)

where ψi,u;i,v is the probability that user (i, v) is within the vision domain of user

(i, u) (given by Equation 6.2). Similarly, for case 2, we have the following result for

the rate at which updates from user (i, u) are sent to an affected user at a remote
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basic system, say user (j, v):

Wi,u;j,v = φψi,u;j,v. (6.9)

Summing over all possible combinations of (i, u) and (i, v) for case 1, and all

possible combinations of (i, u) and (j, v) for case 2, we have the following expression

for the c.d.f. of the network delay distribution:

FL(t) = Pr[L ≤ t]

=
1

W

K
∑

i=1









∑

(i,u),(i,v),
u6=v

Wi,u;i,vPr[Li,u;i,v ≤ t] +
K
∑

j=1,
j 6=i

∑

(i,u),(j,v)

Wi,u;j,vPr[Li,u;j,v ≤ t]









(6.10)

where K is the number of basic systems,

W =
K
∑

i=1









∑

(i,u),(i,v),
u6=v

Wi,u;i,v +
K
∑

j=1,
j 6=i

∑

(i,u),(j,v)

Wi,u;j,v









,

and Pr[Li,u;i,v ≤ t] and Pr[Li,u;j,v ≤ t] are given by Equations 6.6 and 6.7, respec-

tively. Note that Wi,u;i,v/W can be viewed as the relative frequency that user (i, u)

interacts with (i, v) (referred to as “local interaction” because both users are at the

same local system). Likewise,Wi,u;j,v/W captures the relative frequency of “remote

interaction” of user (i, u) with user (j, v).
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6.2 Geographically Distributed Basic Systems

We next consider the scenario where basic systems are geographically distributed.

6.2.1 Network Model

The network model for the co-located scenario, as described in Section 6.1, can

readily be extended to basic systems that are geographically distributed. Particu-

larly, the basic systems may now be connected to different network end-points. An

example network model with two basic systems is shown in Figure 6.3.

For basic systems that are geographically distributed, the delay experienced by

syn packets sent between them is modeled explicitly. Syn packets are typically

transmitted via a high-speed network. For this network, we make similar assump-

tions as those described in Section 6.1. These include no queueing delay, negligible

packet processing time at the intermediate nodes, and shortest path routing. Con-

sequently, the network delay for syn packets exchanged between two basic systems

is simply the sum of the signal propagation delay and data transmission time, mea-

sured between their respective network end-points.1 If two basic systems happen to

be connected to the same network end-point, then the network delay between them

is not included in our model, similar to our discussion of co-located basic systems

in the previous section.

1Note that the resulting network delay is deterministic and is consistent with our discussion
in Section 5.1.1 regarding the arrival process of syn packets to a remote basic system.
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Figure 6.3: Network Model with Two Basic Systems in the Geographically Dis-
tributed Scenario
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6.2.2 Network Delay Distribution

We now derive the network delay distribution for the geographically distributed

scenario. As mentioned in Section 6.1, an update from a user may affect users at

the same local basic system (case 1) and/or at some other basic systems (case 2).

For case 1, the network delay distribution is the same as that for the co-located

scenario (see Figure 6.4a). More specifically, the distribution of network delay from

user (i, u) to an affected user (i, v) is given by Equation 6.6. For case 2, the update

delay involves an additional component which is the network delay for transmitting

a syn packet between the local and the remote basic systems. Suppose user (i, u)

submits an update, and this update affects user (j, v) where j 6= i. This is illustrated

in Figure 6.4b.

User vUser u

Basic System i

(a) (b)

User vUser u

Basic
System i

Basic
System j

Figure 6.4: Network Delay for the Geographically Distributed Scenario
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The network delay between user (i, u) and the affected user (j, v) is given by:

Li,u;j,v = zi,u + yi,j + zj,v (6.11)

where yi,j is the delay in transmitting a syn packet from BSi to BSj. Again, we

assume that yi,j and yj,i are the same. The derivation of yi,j is similar to that of

zi,u in Equation 6.5 and is given by:

yi,j =
∑

(m,n)∈π(i,j)

(dm,n + tm,n) (6.12)

where π(i, j) is the set of channels along the path between BSi and BSj, and dm,n

and tm,n are the signal propagation delay and packet transmission time on the

channel between nodes m and n, respectively. We thus have

Pr[Li,u;j,v ≤ t] = Pr[zi,u + yi,j + zj,u ≤ t]. (6.13)

Summing over all possible combinations of (i, u) and (j, v) for the two cases, we

have the following expression for the c.d.f. of the network delay distribution for the

geographically distributed scenario:

FL(t) = Pr[L ≤ t]

=
1

W

K
∑

i=1









∑

(i,u),(i,v),
u6=v

Wi,u;i,vPr[Li,u;i,v ≤ t] +
K
∑

j=1,
j 6=i

∑

(i,u),(j,v)

Wi,u;j,vPr[Li,u;j,v ≤ t]









(6.14)
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where K is the number of basic systems,

W =

K
∑

i=1









∑

(i,u),(i,v),
u6=v

Wi,u;i,v +

K
∑

j=1,
j 6=i

∑

(i,u),(j,v)

Wi,u;j,v









,

and Pr[Li,u;i,v ≤ t] and Pr[Li,u;j,v ≤ t] are given by Equations 6.6 and 6.13, respec-

tively.

6.3 Numerical Results

In this section, we present numerical results for the network delay distribution for

the co-located and geographically distributed scenarios. The merit of distributing

the basic systems geographically is also discussed.

6.3.1 Example Networks

Our results are based on a network consisting of multiple autonomous systems

(AS’s) [67], each of which contains a collection of nodes. An example is illustrated

in Figure 6.5. This network can be viewed as having two levels. At the higher level,

the AS nodes form a backbone network. Within each AS, the local nodes form a

local network; at least one of these local nodes is connected to the AS node. Users

can only be connected to the local nodes, whereas basic systems are connected to

the AS nodes.

In our numerical examples, we consider networks with 10 AS nodes. The AS

backbone networks have diameters of 7,500 km, 15,000 km, and 30,000 km, repre-
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local nodes

AS nodes

Figure 6.5: An Example Network Model Used in Our Numerical Examples
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senting networks of different sizes. We refer to the three networks as networks 1, 2,

and 3, respectively. For each local network of a AS, the number of local nodes is 5,

and the diameter of the local network is assumed to be 5,000 km. We use a well-

known universal Internet topology generator, called BRITE [68], to generate our

network topologies. The network topologies are based on the Waxman model [69]

with the same parameters as those selected in [70]. The use of the Waxman model is

for illustrative purposes only. Using BRITE, the average signal propagation delays

between two local nodes in the topologies generated for networks 1, 2 and 3 are

approximately 30, 50, and 70 ms, respectively (assuming that propagation delay

is characterized by 300 km/ms). We believe that such example networks would

provide insights into the performance of different networking and scenarios of basic

systems’ locations.

For high speed networks and small packet size, the packet transmission time

(tm,n in Equations 6.5 and 6.12) is small when compared to the signal propagation

delay. For simplicity, the packet transmission time is assumed to be negligible. The

network delay is then determined by the signal propagation delay only.

There are N users. The number of users connected to each local node is the

same. Since our example networks have 50 local nodes, each local node has N/50

connected users. We also have K basic systems, which can be placed at any of the

10 AS nodes. For the co-located scenario, the K basic systems are connected to

the same AS. When the basic systems are geographically distributed, each basic

system can be connected to any of the AS nodes. Once the basic system locations

are chosen, users are assigned to the closest basic systems.
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6.3.2 User Model

As discussed in Section 6.1.2, a user, say (i, u), has probability p
(i,u)
a,b of being at

location (a, b) in the VE at steady state. For the case p
(i,u)
a,b = pa,b for all (i, u), this

user model is the same as that defined in Section 3.2.

It is quite intuitive that for a given basic system, if more of its connected users

are located in areas within the VE that are not well populated by users at the other

basic systems, then the level of interaction between users at different basic systems

will be reduced and the rate of syn packets being generated will be smaller. This

would tend to favor the idea of locating a basic system close to its connected users.

A parameter that indicates the level of interaction between users at different basic

systems would be helpful in understanding the conditions under which distributing

the basic systems geographically will lead to performance advantage. One such

parameter can be defined as follows.

Consider first the case of two basic systems. For BSi, i = 1, 2, all of its local users

are assumed to be in the same region (denoted by REi). For convenience, we assume

that REi is square with size (r + 1)2 and each local user is equally likely to be at

any location within REi. The two regions RE1 and RE2 may overlap horizontally

and the fraction of overlap is characterized by a parameter Φ, 0 ≤ Φ ≤ 1 (see

Figure 6.6). When Φ = 0, the two regions are disjoint. This means that there are

no interaction between users at BS1 and BS2. As Φ increases, the level of interaction

also increases, and the maximum interaction occurs at Φ = 1. The extension of the

definition of Φ to three basic systems is shown in Figure 6.7. Again, there are no

interaction between users at different basic systems when Φ = 0, and the level of
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interaction increases with Φ. Similar extensions can be defined for more than three

basic systems.

Note that when Φ = 1, the user model is reduced to that defined in Section 3.2,

i.e., p
(i,u)
a,b = pa,b for all (i, u). For Φ < 1, the user model is dependent on the basic

system to which a user is connected. We recognize that this assumption may not

be realistic in practice. Nevertheless, by varying Φ, we can gain insights into the

conditions under which geographical distribution of the basic systems will lead to

performance advantage.

6.3.3 Performance Measure

Recall that the network delay distributions FL(t) for the two scenarios are given by

Equations 6.10 and 6.14, respectively. FL(Lmax), the probability that the network

delay is less than or equal to some given Lmax, is of particular interest. Lmax can

be viewed as an estimate of the largest network delay that would result in realistic

interaction. In considering the value of Lmax, we note that the update delay T is

given by T = S+L where S is the server delay and L is the network delay. We also

note that for realistic interaction, T should not exceed 100 ms. In our investigation

of the server delay in Chapter 5, the results in Section 5.4 indicated that the server

delay S could be well below 20 ms while maintaining a traffic intensity of 0.9 or

less at each basic system. We thus consider Lmax = 80 and 90 ms in our numerical

examples.
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Figure 6.6: Overlap between Regions for K = 2
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Figure 6.7: Overlap between Regions for K = 3
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6.3.4 Preliminary Observations

Our initial experiments reveal that FL(Lmax) is not affected by the number of users

N . This can be explained as follows. We have assumed that the number of user

end-points is constant. The number of users connected to each end-point therefore

increases proportionally with N . Changes in N would not have any impact on

the frequency with which the network delay between any pair of user end-points is

larger than Lmax. Therefore, the network delay distribution is not affected.

Our initial experiments also reveal that the value of FL(Lmax) is not affected

by the size of a region (or the value of r). This can be explained as follows. We

have assumed that all the regions are of the same size and that users within each

region are uniformly distributed. Changes in r would lead to the same percentage

of increase in both ψi,u;i,v and ψi,u;j,v. As a result, the network delay distribution is

not affected.

6.3.5 Results and Discussions

As discussed in the last subsection, the network delay distribution is not affected by

N and r. We use N = 1000 and r = 10 in our numerical examples. The size of the

vision domain D is set to 2, and a uniform user movement probability distribution

is assumed for each user. The number of basic systems considered is K = 2, 3 and

4.

The following approach is used to obtain results for our performance measure

FL(Lmax). For each combination of input parameters, 20 networks are generated

using the method described in Section 6.3.1. We then obtain the average as well
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as the best values of FL(Lmax) over all possible locations of the basic systems for

both the co-located and geographically distributed scenarios.

Case 1: Φ = 1

Consider first Φ = 1. This corresponds to the case where p
(i,u)
a,b = pa,b for all

(i, u), the user model defined in Section 3.2. The results for FL(Lmax) are shown

in Tables 6.1 and 6.2 for Lmax = 80 and 90 ms, respectively. We observe that

increased network size (e.g., network 3 instead of network 1) has a negative impact

on FL(Lmax) for both the co-located and geographically distributed scenarios. As

an example, for network 3, FL(Lmax) for Lmax = 80 ms is less than 0.40 in the best

case and can be as small as 0.13 on average. A similar observation is made for

Lmax = 90 ms. The poor performance is a consequence of the challenge posted by

geographical distance. When two users are far apart, the signal propagation delay

between them may have already exceeded the constraint of 80 or 90 ms. This would

certainly have a negative impact on the quality of the interaction.

The results are quite different for network 1, where FL(Lmax) for Lmax = 80 (or

90) ms is 1.00 in the best case and the average value is at least 0.86 (or 0.89). This

is very good performance in terms of meeting the delay constraint. Compared to

networks 2 and 3, the performance improvement is mainly due to the fact that the

signal propagation delay is well within the 80 (or 90) ms range.

The results in Tables 6.1 and 6.2 clearly show the performance advantage of

the geographically distributed scenario over the co-located scenario. There are

noticeable improvements in both the average and best values of FL(80) and FL(90).

Consider, for instance, the average values of FL(80). The percentage improvement
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ranges from 6.14% to 7.92% for network 1 and 36.64% to 55.18% for network 3.

One should note, however, that the improvement for network 3 is from FL(80) =

0.13 to 0.20. The actual performance is still poor even though there is a 55.18%

improvement. This is again due to the large size of network 3.

average FL(80) best FL(80)
network K co. dist. % improvement co. dist. % improvement

1

2 0.86 0.91 6.14% 0.89 0.99 11.14%
3 0.86 0.91 6.84% 0.89 0.99 11.13%
4 0.86 0.92 7.92% 0.89 1.00 11.52%

2

2 0.45 0.49 7.85% 0.64 0.81 27.23%
3 0.45 0.50 9.73% 0.64 0.84 31.37%
4 0.45 0.51 13.50% 0.64 0.85 33.42%

3

2 0.13 0.17 36.64% 0.24 0.33 36.89%
3 0.13 0.18 45.01% 0.24 0.37 56.02%
4 0.13 0.20 55.18% 0.24 0.39 65.04%

Table 6.1: Results for FL(80) when Φ = 1

Additionally, we observe that for a given network, when more basic systems are

used, a more significant performance improvement of the geographically distributed

scenario is observed. This is because with more basic systems, we are able to place

them closer to the users, thus reducing the network delay.

The performance advantage of the geographically distributed scenario can be

illustrated by the following example. Figures 6.8a and 6.8b show example networks

where two users, (i, u) and (j, v), are connected to co-located and geographically

distributed basic systems, respectively. The label on each communication channel

represents the signal propagation delay on that channel. Note that the signal

propagation delay between two nodes is based on their geographical locations in
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average FL(90) best FL(90)
network K co. dist. % improvement co. dist. % improvement

1

2 0.89 0.96 8.62% 0.90 1.00 11.12%
3 0.89 0.97 9.01% 0.90 1.00 11.12%
4 0.89 0.97 9.50% 0.90 1.00 11.21%

2

2 0.56 0.59 5.86% 0.72 0.91 26.08%
3 0.56 0.60 7.17% 0.72 0.93 28.22%
4 0.56 0.62 9.86% 0.72 0.93 28.99%

3

2 0.17 0.23 30.87% 0.31 0.42 33.48%
3 0.17 0.24 37.12% 0.31 0.46 47.07%
4 0.17 0.25 45.69% 0.31 0.49 55.98%

Table 6.2: Results for FL(90) when Φ = 1

the network. Suppose user (i, u) submits an update and user (j, v) is the affected

user. For the co-located scenario, the network delay from user (i, v) to user (j, v)

is given by:

L = a+ b+ c+ d,

while that for the geographically distributed scenario is given by:

L = a+ e+ d.

Since e < b + c, the geographically distributed scenario yields a smaller network

delay.

Case 2: Φ < 1

As mentioned in Section 6.3.2, the parameter Φ reflects the level of interaction

between users at different basic systems. Consider the case of 3 basic systems
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Figure 6.8: Example Networks
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(K = 3). In Figures 6.9, 6.10 and 6.11, we plot FL(80) as a function of Φ for the

three networks considered. We observe that the geographically distributed scenario

performs significantly better when Φ is small. This is consistent with our remark

that a smaller Φ means less interaction between users at different basic systems

and fewer syn packets being exchanged between these systems, thus reducing the

overall network delay. We also observe that the larger the network size, the more

significant is the performance advantage of the geographically distributed scenario.

This is a consequence of placing the basic systems closer to their connected users.

Similar observations can also be made for the case of FL(90) (results not shown).

Finally, we consider the extreme case of Φ = 0, or no interaction between users

at different basic systems. This case yields the maximum improvement of the ge-

ographically distributed scenario. In Tables 6.3 and 6.4, we show the results for

FL(Lmax) for Lmax = 80 and 90 ms, respectively. As expected, the geographically

distributed scenario outperforms the co-located scenario. An interesting observa-

tion is that for network 3, the best values for FL(80) and FL(90) are 0.77 and 0.85,

respectively. This implies that for large networks, the geographically distributed

scenario could result in acceptable network delay if most interaction is between

users connected to the same basic system.
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Figure 6.9: FL(80) vs. Φ for K = 3 in Network 1
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Figure 6.10: FL(80) vs. Φ for K = 3 in Network 2
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Figure 6.11: FL(80) vs. Φ for K = 3 in Network 3
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average FL(80) best FL(80)
network K co. dist. % improvement co. dist. % improvement

1

2 0.86 0.97 12.91% 0.89 1.00 11.71%
3 0.86 0.97 13.61% 0.89 1.00 11.87%
4 0.86 0.98 14.09% 0.89 1.00 11.87%

2

2 0.45 0.64 41.98% 0.64 0.95 48.07%
3 0.45 0.68 48.85% 0.64 0.98 52.89%
4 0.45 0.70 53.72% 0.64 0.99 55.22%

3

2 0.13 0.28 119.95% 0.24 0.56 132.85%
3 0.13 0.33 163.86% 0.24 0.70 194.28%
4 0.13 0.38 199.10% 0.24 0.77 224.49%

Table 6.3: Results for FL(80) when Φ = 0

average FL(90) best FL(90)
network K co. dist. % improvement co. dist. % improvement

1

2 0.89 0.99 11.63% 0.90 1.00 11.26%
3 0.89 0.99 11.87% 0.90 1.00 11.26%
4 0.89 0.99 12.00% 0.90 1.00 11.26%

2

2 0.56 0.73 30.92% 0.72 0.99 36.87%
3 0.56 0.75 34.36% 0.72 0.99 37.49%
4 0.56 0.77 36.89% 0.72 1.00 38.35%

3

2 0.17 0.35 104.65% 0.31 0.65 106.86%
3 0.17 0.41 138.14% 0.31 0.79 151.93%
4 0.17 0.46 164.19% 0.31 0.85 172.75%

Table 6.4: Results for FL(90) when Φ = 0
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6.4 Basic System Placement Algorithm

As discussed in the last section, the geographically distributed scenario has a per-

formance advantage over the co-located scenario. An interesting question is how

to obtain the optimal placement for the basic systems in the network. By optimal,

we mean the best value for FL(Lmax).

The best values for FL(Lmax) presented in Section 6.3 were obtained by exhaus-

tive search (i.e., by enumerating all possible locations). With exhaustive search,

the number of possible placements is
(

Q−1+K

K

)

where Q is the number of potential

end-points to which basic systems are connected and K is the number of basic

systems deployed. For each of these placements, we have to compute FL(Lmax)

using Equation 6.14. Suppose such computation takes a constant time denoted

by C. The complexity of exhaustive search is then given by Θ
((

Q−1+K

K

)

C
)

. Con-

sider, for example, Q = 10 and K = 4; the computational requirement is around

715C. When Q and K are large, the exhaustive search approach would become

very costly. We therefore propose an efficient heuristic algorithm for the placement

of basic systems.

The basic idea of our heuristic algorithm is as follows. We first place all the

K basic systems at the same location that would result in a maximum value for

FL(Lmax). Note that this initial step ensures that the placement obtained by our

algorithm is as good as the co-located scenario. Then, we moveK−1 basic systems

one by one from this location to a new location. At each move, the basic system

under consideration is placed at a location such that FL(Lmax) is maximized. Once

this basic system is placed, its location can no longer be changed.
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As to efficiency, our heuristic algorithm consists of K moves. In the first move,

it takes Q steps to find the initial optimal location. For the rest of the moves,

each requires Q − 1 steps to determine the best location of the basic system in-

volved. Thus, the complexity of our algorithm is Θ(Q ×K × C). Consider again

the example of Q = 10 and K = 4. Using our algorithm, the computational re-

quirement is around 40C, which is a significant improvement over the exhaustive

search approach.

We now compare the performance of our heuristic algorithm against the opti-

mal results obtained by exhaustive search. Our evaluation is based on the same

numerical examples discussed in Section 6.3. For illustrative purposes, we present

only the results for FL(80), the probability that the network delay is less than or

equal to 80 ms. In Tables 6.5, 6.6 and 6.7, we show the results for FL(80) obtained

by our heuristic algorithm and by exhaustive search for different values of Φ for

networks 1, 2 and 3, respectively. We observe that our heuristic algorithm is able

to yield results very close to those obtained by exhaustive search.

K = 2 K = 3 K = 4
Φ opt heur opt heur opt heur

0 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00
0.6 0.99 0.99 1.00 1.00 1.00 1.00
0.8 0.99 0.99 0.99 0.99 1.00 0.99
1 0.99 0.99 0.99 0.99 1.00 0.99

Table 6.5: Results for FL(80) in Network 1
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K = 2 K = 3 K = 4
Φ opt heur opt heur opt heur

0 0.95 0.94 0.98 0.96 0.99 0.98
0.2 0.93 0.92 0.96 0.95 0.98 0.97
0.4 0.88 0.88 0.94 0.93 0.96 0.93
0.6 0.85 0.85 0.90 0.90 0.94 0.92
0.8 0.83 0.83 0.86 0.86 0.89 0.88
1 0.81 0.81 0.84 0.84 0.85 0.85

Table 6.6: Results for FL(80) in Network 2

K = 2 K = 3 K = 4
Φ opt heur opt heur opt heur

0 0.56 0.55 0.70 0.67 0.77 0.73
0.2 0.54 0.53 0.67 0.65 0.74 0.71
0.4 0.49 0.48 0.60 0.59 0.67 0.65
0.6 0.43 0.42 0.52 0.51 0.60 0.57
0.8 0.37 0.37 0.43 0.43 0.48 0.46
1 0.33 0.33 0.37 0.37 0.39 0.39

Table 6.7: Results for FL(80) in Network 3
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6.5 Concluding Remarks

In this chapter, we investigated the network delay for the co-located and geograph-

ically distributed scenarios, and obtained the analytic results for the network delay

distribution. The numerical examples showed that distributing the basic systems

geographically has clear performance advantage. Note that our numerical examples

were based on the assumption that users are assigned to the closest basic systems.

However, if this is not possible, the performance advantage for the geographically

distributed scenario may be less significant. We also proposed a heuristic algorithm

that can be used to determine the placement of basic systems in a network. Our

evaluation showed that this algorithm yields good results, and is efficient in terms

of computational requirement.



Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, we investigated the performance characteristics of the two-level hi-

erarchical architecture for DVE systems. Our investigation began by studying the

scalability of the two-level architecture. We developed performance models for the

overall system, virtual environment and vision domain. Based on these models,

we obtained analytic results on the workload experienced by the various basic sys-

tems, in terms of the arrival rates of packets submitted by the users. Our numerical

examples provided valuable insights into the scalability of the architecture. More

importantly, they showed that the architecture has good properties in terms of its

ability to support an increasing user population, while keeping the traffic intensity

(or the workload) at each basic system at a desired level.

We then studied the issue of consistency among copies of the virtual environ-

ment at the various basic systems. We demonstrated how inconsistency may occur

140
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and that consistency may be restored as a result of user movement. Furthermore,

we proposed a new technique called the virtual vision domain to achieve weak con-

sistency. Our simulation results showed that this technique is effective in improving

consistency, but at the cost of a potential increase in the number of basic systems

required.

We next focused on the characterization of the update delay, an important

performance measure for a DVE system. The two main components of the update

delay, namely the server delay and network delay, were investigated by analytic

modeling. For the server delay, we first obtained the response time distribution

at each basic system and then derived the analytic results for the overall server

delay distribution. Using measurement data on an existing DVE server, we gained,

by means of numerical examples, valuable insights into the 95th-percentile of the

overall server delay.

We derived analytic results for the network delay distribution for two scenarios:

co-located and geographically distributed basic systems. We presented numerical

results that can be used to characterize the conditions under which geographical

distribution would lead to performance advantage. We also proposed a heuristic

algorithm for determining the placement of basic systems in a network. We showed

that this algorithm yields good results, and is efficient in terms of computational

requirement.

Taken together, the above results are important advances in the state of knowl-

edge of the performance characteristics of the two-level hierarchical architecture for

DVE systems.
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7.2 Suggestions for Future Research

Areas for future work include the following.

7.2.1 Heterogeneous Workload

Our investigation so far has assumed that each basic system is assigned an equal

number of users. This implies that the workload at each basic system is balanced

and the capacity of the DVE system is best utilized. This assumption may not

always be valid. For example, users logging on and out of basic systems may make

the workload at these systems imbalanced. Furthermore, in terms of network delay,

it may be beneficial to assign a user to the closest basic system. This may, however,

lead to imbalanced workload. Therefore, it would be fruitful to investigate the

performance of our two-level architecture under scenarios of heterogeneous workload

at the basic systems.

7.2.2 Virtual Environment Model

Our investigation was based on relatively simple models of the virtual environment

and user behavior. These models are useful in terms of illustrating the performance

characteristics of DVE systems. In a complex DVE system, however, the users may

behave differently. Hence, it would be be worth extending our investigation to

other VE models. Characterizing user behavior, in view of model development and

performance analysis, is also an interesting topic.
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7.2.3 Global Synchronization

In Chapter 4, we studied the issue of consistency. Specifically, we proposed the

virtual vision domain technique, as an alternative to periodic global synchroniza-

tion, to improve consistency. Further work should be done to investigate periodic

global synchronization, for example, how the length of synchronization interval

would have an impact on consistency and processing costs. Also, comparison be-

tween this approach and our proposed virtual vision domain technique would help

us better understand the merits of our technique.

7.2.4 Effective Capacity

Recall that in Chapter 5, we modeled our basic system by a single service facility

with multiple processors. In this model, the capacity of a basic system can be

expanded by increasing the number of processors (denoted by mi). Nevertheless,

as mi increases, the processors may have to contend for some other resources,

e.g., data access. When this happens, an increase in mi may not always lead to

a proportionate improvement in the capacity. A detailed investigation should be

conducted to characterize the effective capacity of a basic system.

7.2.5 Partitioning of the Virtual Environment

To further improve scalability, partitioning of the VE, as described in Section 2.2.6,

may be used. The idea is to organize the VE into a number of partitions. Proces-

sors are assigned to each partition; these processors are responsible for processing

updates associated with avatars within their assigned partition. This approach not
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only allows the processors of different partitions to service updates in parallel, but

also reduces the potential resource contention among them. An interesting question

is how to partition a VE and how to allocate a pool of processors to the various

partitions so that the update delay is minimized.

When a VE is partitioned, a user in one partition may cross the boundary

and enter another partition. Such user movement may incur processing overhead.

This may also lead to load imbalance among the processors responsible for the two

partitions involved. When there is significant load imbalance, it may be desirable

to re-define the boundaries between partitions [31, 33]. Issues such as the overhead

of re-partitioning and the frequency with which the loads in the partitions become

imbalanced are worth investigating.

Note that a user crossing from one partition to another is analogous to the

handoff operation in a cellular network, in which a cellular device moves from one

cell to another. The user mobility model investigated in the handoff operation and

the related resource allocation schemes [71] would provide valuable insights into the

issues related to re-partitioning.

7.2.6 Alternative Two-level Hierarchical Architectures

The two-level hierarchical architecture considered so far uses client-server at the

lower level and peer-to-peer at the higher level. Peer-to-peer may also be used at

both levels [72] (see Figure 7.1). In this architecture, each user workstation forwards

update packets to its assigned basic system as well as to affected users at the same

local basic system. Extra capacity is therefore required at the user workstation to
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transmit the update packets and process the update packets received. Alternatively,

one of the local users can perform the function of the basic system. The resulting

architecture is similar to the super-peer architecture presented in [73, 74].

Basic System

user-to-BS communication

user-to-user communication

BS-to-BS communication

User UserUserUserUser

Basic System

Figure 7.1: Alternative Two-level Hierarchical Architecture

A performance comparison of the two-level architecture investigated in this the-

sis and the alternative architectures discussed above is an interesting extension of

our work.



Appendix A

Derivation of M/M/m Response

Time Distribution

In this appendix, we derive the analytic results for the response time distribution

in an M/M/m model.

Let FX(t) be the cumulative distribution function (c.d.f.) of the response time.

Also, let FR(t) and FH(t) be the c.d.f. of the service time and the queueing delay,

respectively. We know FX(t) is the convolution of FR(t) and FH(t), i.e.,

FX(t) = FR(t)⊗ FH(t). (A.1)

For an M/M/m model, the number of parallel processors is m, the arrival

process is Poisson with rate λ, and the service time distribution is exponential with

c.d.f. given by:

FR(t) = 1− e−µt. (A.2)
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We first derive the distribution of queueing delay. For an M/M/m model, the

arrival and departure rates of requests are:

λ(n) = λ n ≥ 0

µ(n) = min(m,n)µ n > 0,

respectively. Let the state be the number of requests in the system (denoted by n).

The steady state probability can be shown to be [75]:

P (n) = P (0)
n−1
∏

i=0

λ(i)

µ(i+ 1)
=















P (0)σn

n!
n < m,

P (0) σn

m!mn−m n ≥ m

where σ = λ
µ
. Let

G =
∞
∑

n=0

n−1
∏

i=0

λ(i)

µ(i+ 1)

=
m−1
∑

n=0

σn

n!
+

∞
∑

n=m

σn

m!mn−m

=

m−1
∑

n=0

σn

n!
+

mσm

m!(m− σ)
.

We have

P (0) =
1

G
=

(

m−1
∑

n=0

σn

n!
+

mσm

m!(m− σ)

)−1

if G converges (or σ < m).



APPENDIX A. DERIVATION OF M/M/M RESPONSE TIME

DISTRIBUTION 148

Now, consider a tagged arrival. First, let

κ = Pr[the tagged arrival has to wait].

κ can be obtained by:

κ =
∑

n≥m

P (n)

= P (0)
σm

m!

∑

n≥m

( σ

m

)n−m

= P (0)
σm

m!

1

1− σ
m

= P (0)
σm

m!

m

(m− σ)
.

Then, let

y(n, t) =Pr[queueing delay ≤ t|number of requests in system seen by tagged

arrival = n].

Then,

FH(t) = Pr[queueing delay ≤ t]

=
∑

n

y(n, t)P (n).

Consider the following two cases:
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• Case 1: n < m:

y(n, t) = 1

because no queueing occurs.

• Case 2: n ≥ m:

y(n, t) = Pr[(n−m+ 1) requests finish their services].

y(n, t) is given by FEn−m+1,mµ
(t), the c.d.f. of the Erlang distribution with

parameters (n−m+1) and mµ. It can be interpreted as the sum of (n−m+1)

independent random variables, each of which is exponentially distributed with

parameter mµ. We thus have:

FEn−m+1,mµ
(t) =

∫ t

0

(mµ)n−m+1xn−me−mµx

(n−m)!
dx.
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Combining the above two cases, we have:

FH(t) =
∑

n<m

(1)P (n) +
∑

n≥m

FEn−m+1,mµ
P (n)

= 1 − κ+
∑

n≥m

[
∫ t

0

(mµ)n−m+1xn−me−mµx

(n−m)!
dx

] [

P (0)
σn

m!mn−m

]

= 1 − κ+ P (0)
mµσm

m!

[

∫ t

0

(

e−mµx
∑

n≥m

(µxσ)n−m

(n−m)!

)

dx

]

= 1 − κ+ P (0)
mµσm

m!

[
∫ t

0

(

e−mµxeµxσ
)

dx

]

= 1 − κ+ P (0)
mµσm

m!

[
∫ t

0

e−µx(m−σ)dx

]

= 1 − κ+ P (0)
mσm

m!

1− e−µt(m−σ)

m− σ

= 1 − κ+ κ
(

1− e−µt(m−σ)
)

= 1 − κe−µt(m−σ).

(A.3)

Finally, substituting Equations A.2 and A.3 into Equation A.1, we obtain the
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following results for the response time distribution:

FX(t) = FR(t)⊗ FH(t)

=

∫ t

0

FH(t− x)dFR(x)dx

=

∫ t

0

(1 − κeµ(t−x)(m−σ))µe−muxdx

=

∫ t

0

(

µe−µx − κµe−µ(t(m−σ)+(1−m+σ))x
)

dx

=















1− e−µt − κµe−µt(m−σ)
[

1−e−µt(1−m+σ)

(1−m+σ)

]

for σ 6= m− 1

1− e−µt − κµe−µtt for σ = m− 1.
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Measurement of Service Time of

Updates on a DVE Server

Recall that we use µ to denote the service rate of update and syn packets, and the

mean service time of these packets is simply given by 1/µ. To better understand

the service time of an update at a basic system, we conducted a measurement

experiment on an existing DVE server, called RockyMud [66].

RockyMud is a text-based multi-player online game. It uses a client-server ar-

chitecture; users access the game server via a telnet program on their workstations.

The virtual environment in RockyMud comprises roughly 10,000 rooms and in-

cludes buildings, cities, dungeons, and open areas. Users chat, hunt, and travel

within this environment.

Our objective is to measure the time required by the server to process an up-

date sent by a user, specifically, the update resulting from a move operation. We

measure the processing time spent in each of these “move” updates by integrating
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measurement code into the server program.

We set up a RockyMud game server on an Intel P3 1.2 GHz machine with

256MB RAM, which runs on a version 2.4.18 Linux kernel. The server is executed

with a single thread. We also run an emulated user program on a SUN Ultra 60

machine with 512 MB RAM and 450 MHz processor, which runs Solaris 8. These

two machines are connected directly by a 100 Mbps Ethernet network; the network

delay between them is found to be minimal.

In our experiment, the emulated user program performs 10,000 moves (in ran-

dom directions). This means that 10,000 move updates are sent and processed by

the server. Upon receiving a move update from the user program, the server pro-

cesses it and sends back an acknowledgment to this program, which then sends the

next move update to the server.

Our experiment results show that the mean service time of a move update is

around 0.33 ms and its standard deviation is 0.048 ms.



Appendix C

Summary of Notations

Symbol Interpretation
A The width of the virtual environment
B The height of the virtual environment

BSi Basic system i
Ci,i The rate at which updates are received by affected users at the

same local system
Ci,j The rate at which updates are received by affected users at a remote

basic system BSj, j 6= i
dm,n The signal propagation delay on the channel between nodes m and

n
h(a, b) The probability that a user is within the vision domain of a tagged

user at location (a, b), assuming that every user has the same be-
havior

hi,u;j,v(a, b) The probability that user (j, v) is within the vision domain of user
(i, u) who is at location (a, b)

gj,k The probability that a syn-packet is to be sent from BSj to BSk

FL(t) The c.d.f. of the network delay
FS(t) The c.d.f. of the overall server delay
FSi

(t) The c.d.f. of the server delay of updates submitted by users at BSi

FXi
(t) The c.d.f. of the server delay of an update processed by BSi

FXi,j
(t) The c.d.f. of the server delay of an update processed by BSi and

BSj
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Symbol Interpretation
I(t) The number of users who are in the inconsistent state at a given

time t

I(t) The mean number of users who are in the inconsistent state at a
given time t

I The mean number of users who are in the inconsistent state at
steady state

Ifrac The fraction of users who are in the inconsistent state
Itime The mean length of time that a user is in the inconsistent state
(i, u) User u at BSi

K The number of basic systems deployed
Kmin The minimum number of basic systems required to support a given

number of users while maintaining traffic intensity at each basic
system below a given level

L The network delay
Li,u;j,v The network delay between users (i, u) and (j, v)
Lmax The estimate of the largest network delay that would result in re-

alistic interaction
mi The number of processors at BSi

N The total number of users in the DVE system
Ni The number of users at BSi

pa,b The steady state probability that a user is at location (a, b), assum-
ing that every user has the same behavior

p
(i,u)
a,b The steady state probability that user (i, u) is at location (a, b)

Q The number of potential basic system end-points
qa,b;c,d The probability that a user moves from location (a, b) to (c, d) in

one step
REi The region of BSi

r The size of a region
S The server delay
sp The p-th percentile of the server delay distribution
VE The virtual environment
T The update delay
tm,n The packet transmission time on the channel between nodes m and

n
VEi The copy of the virtual environment maintained at BSi

U The width of the vision domain
V The height of the vision domain
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Symbol Interpretation
Wi,u;i,v The rate at which updates submitted by user (i, u) affect user (i, v)

(at the same local system)
Wi,u;j,v The rate at which updates submitted by user (i, u) affect user (j, v)

(at a remote system BSj)
y The traffic intensity parameter
yi,j The network delay from BSi to BSj

zi,u The network delay from BSi to user u who is connected to BSi

γi The arrival rate of update packets to BSi

ηi The arrival rate of syn packets to BSi

ηj,i The arrival rate of syn packets from BSj to BSi

λi The total arrival rate of packets to BSi

µ The service rate of each processor at a basic system
µi The processing capacity of BSi

ξj,k(n) The probability that n other users at BSk are within the vision
domain of a tagged user at BSj

ρi The traffic intensity at BSi

Φ The fraction of overlap between two adjacent regions
φ The rate at which a user makes a move (or submits an update)

ψi,u;j,v The probability that user (j, v) is within user (i, u)’s vision domain
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