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Abstract

In this thesis, we present a new clustering algorithm we call Significance Fea-
ture Clustering, which is designed to cluster text documents. Its central premise is
the mapping of raw frequency count vectors to discrete-valued significance vectors
which contain values of -1, 0, or 1. These values represent whether a word is sig-
nificantly negative, neutral, or significantly positive, respectively. Initially, standard
tf-idf vectors are computed from raw frequency vectors, then these tf-idf vectors
are transformed to significance vectors using a parameter α, where α controls the
mapping -1, 0, or 1 for each vector entry. SFC clusters agglomeratively, with each
document’s significance vector representing a cluster of size one containing just the
document, and iteratively merges the two clusters that exhibit the most similar
average using cosine similarity. We show that by using a good α value, the sig-
nificance vectors produced by SFC provide an accurate indication of which words
are significant to which documents, as well as the type of significance, and there-
fore correspondingly yield a good clustering in terms of a well-known definition of
clustering quality. We further demonstrate that a user need not manually select
an α as we develop a new definition of clustering quality that is highly correlated
with text clustering quality. Our metric extends the family of metrics known as
internal similarity, so that it can be applied to a tree of clusters rather than a set,
but it also factors in an aspect of recall that was absent from previous internal
similarity metrics. Using this new definition of internal similarity, which we call
maximum tree internal similarity, we show that a close to optimal text clustering
may be picked from any number of clusterings created by different α’s. The auto-
matically selected clusterings have qualities that are close to that of a well-known
and powerful hierarchical clustering algorithm.
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Chapter 1

Introduction

In recent years there has been a massive proliferation of data that is accessible
electronically, ranging in form from highly structured databases, such as article
collections and company records, to web sites and pages that vary greatly in content.
Despite the large differences in structure between the various forms of data, the
principal type of information available in all these formats is essentially the same:
text. With this in mind, we can refer to any logically encapsulated unit of text,
regardless of its source, as a document. A huge amount of research has been devoted
to creating effective ways to access various document collections based on user
needs. For example, research into effectively accessing web pages has led to the
proliferation of search engines such as Google [5] and Yahoo [11], where a small
piece of text, a query, is submitted to the engine. The query represents the user’s
information needs. The search engine matches the query to its indexed web pages.
More organized document collections, such as article databases (e.g., ACM Portal
[1] and CiteSeer [2]), frequently offer search methods based on information that is
given either by humans or found in structures within the text (e.g., bibliographies
in TeX, XML tags in web pages, etc.). These search tools represent one of many
approaches to analyzing large volumes of text documents. Fields of research such as
Data Mining, Information Retrieval, and Natural Language Processing have all dealt
extensively with the problem. One particular approach that has been employed by
all three is the topic of this thesis: Clustering.

Clustering algorithms are generally unsupervised learning techniques, not re-
quiring data labels, that take some data set of objects, such as documents, gene
sequences, proteins, consumers surveys, or geological information, and group that
set into groups of similar objects. Clustering algorithms are similar to classifica-
tion algorithms, but while clustering algorithms create groups without using labels
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(generally), classification algorithms are supervised learning techniques that assign
objects to known labels, implying that all the label types of interest are known in
advance.

The usefulness of creating groups of similar objects through either clustering or
classification may be seen in various applications. For example, if proteins can be
grouped by structural similarity, it may be possible to extrapolate the function of
unknown proteins by the properties of other proteins in the same group. Companies
might try to group consumers by preferences in order to better direct advertising
and sales. Medical professionals might wish to identify patients at high risk for
certain diseases by finding other patients with similar physical/internal parameters
and checking the number who have the ailment. In text applications, clustering can
facilitate a task we refer to as thematic querying, that is a request for documents
on a certain topic. If a clustering algorithm could generate groups of documents
with similar topics, a thematic query could be answered by matching the query to
a whole group. This is significantly easier and faster, although usually not more
accurate, than determining how well each document matches a thematic query.
Another use of text clustering is to analyze the relationships between documents,
which is a specific case of a more-general clustering application, exploratory data
analysis. Exploratory data analysis refers to an attempt to analyze (‘data mine’)
a data set for useful information when there is uncertainty about the information
that is actually present.

A myriad of algorithms have been developed for text clustering, so many that
it is not possible to cover them all in any reasonable depth. Hierarchical clustering
algorithms are a popular subtype of clustering algorithms well-suited to text. Such
approaches generate a dendrogram, a tree of clusters within clusters, where leaves
are individual documents, and nodes further up in the tree represent clusters con-
sisting of all their descendant leaves. Dendrograms are good for browsing, and are
arguably the most natural way to represent document collections.

Previous hierarchical clustering algorithms have varied greatly in approach.
Some progressively split up a data set into smaller and smaller clusters, while
other merge clusters together into larger clusters until a certain number of clus-
ters remain. Various methods exist for selecting the clusters to be merged or split.
Each algorithm has a unique approach, but the large majority of them (with a few
notable exceptions) are based on a single concept, the vector space model, in which
documents are represented as vectors. The way in which algorithms create these
vectors is usually identical, this being a form of weighting function applied to word
counts.

In this thesis, we present a new clustering algorithm called SFC (Significant
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Feature Clustering), which uses a standard merge-based hierarchical template: find
the most similar clusters at each iteration using a metric X and representation for
each cluster Y , and merge them into one cluster. The novelty of our approach is in
the method SFC uses to generate both document and cluster representations. SFC
uses a basic tf-idf approach to generate initial weighted vectors, then overlays the
basic tf-idf function with a secondary weighting function that maps each weight
from a real number to one of three possible significance types, positive, negative, or
neutral, where significance is defined as the significance of a word to the topic of a
document. This mapping is done such that the number of documents with positive
and negative significance values for any one word is restricted by a parameter α.
Using significances, SFC is able to represent clusters in a useful form we refer to as
a probabilistic significance vector. These vectors represent the type of significance
each word has to a cluster, along with the probability of that significance. During
each iteration of SFC, clusters that have a maximal similarity in their significance
vectors are merged together. We will show that by carefully selecting the parameter
α, the performance of SFC can be improved as well as improving the quality of the
clustering solution produced. SFC is competitive with UPGMA [89], a well-known
and high-quality clustering algorithm.

An overview of the material in this thesis is as follows. In Chapter 2, we present
an overview of clustering.The first part of the chapter covers the preliminary aspects
of clustering, including: a definition of clustering, how objects can be represented
in clustering algorithms, how better representations can be created through feature
extraction/selection, how similarity can be quantified, how clustering algorithms
can be evaluated, and various other issues clustering algorithms must deal with.
Following this, a literature review of clustering algorithms is provided. The review
is organized by major types of clustering algorithms, and within each major type
there may be several smaller subtypes. For each, we give a representative sample of
the algorithms that exist. Note that our organization of the clustering algorithms
is by no means the only way to organize them—every review has a slightly different
organization scheme.

Chapter 3 presents our new clustering algorithm called SFC, Significance Fea-
ture Clustering. We first reiterate the problem domain in which our algorithm is
intended to function, then we build up the basis for our algorithm, starting with
how we generate data representations, followed by our notion of significance and
similarity, and how it can be used to cluster. We then present the full algorithm,
and discuss how it deals with important clustering issues.

An evaluation of SFC is presented in Chapter 4. The principal purpose of this
chapter is to show that SFC is competitive with other text-clustering algorithms
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in terms of one of the most commonly-used definition of quality. In addition, we
examine the effects of varying SFC’s parameters on the trade-off between quality of
clustering and improvement in speed, as well as on other properties of the algorithm.
Lastly, we discuss directions for future work.

Chapter 5 provides conclusions on our research, a summary of our algorithm,
assessment of its uniqueness and quality, and a reiteration of future work to pursue.
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Chapter 2

Background on Clustering

In this chapter we will review the background of clustering. We begin with a
preliminary section that explains the goals of clustering, the terminology associated
with it, and its general concepts. Whenever possible, we emphasize how these
aspects are related to text. The preliminary section is followed by a discussion
of specific clustering algorithms. Each main type of clustering approach will be
described in its own section. Within each section, we give a brief definition of
the general model algorithms of that type follow, then a representative sample of
algorithms of that type are presented. Note that the algorithms we will present
are applicable to various data types. We will therefore specify the data type for
which each algorithm is intended in its description. In particular, we will highlight
text-oriented approaches.

2.1 Preliminaries

2.1.1 Definition of Clustering

A clustering of a data set is a splitting of the data set into a collection of subsets.
These subsets are called clusters. Figure 2.1(a) shows a set of data points, and
Figure 2.1(b) illustrates a possible clustering using spatial distance. Subsets may
be nested recursively, as in Figure 2.1(c), creating a hierarchy. Although Figure
2.1(b) shows that a cluster may be a simple partitioning, it should be clear from
the other examples that it need not be. Clusters may overlap or be nested within
each other. Each object in the data set may belong to only one cluster, probabilis-
tically to any number of clusters, or wholly belong to multiple clusters (disjunctive
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clustering). When dealing with probabilities of membership, we use the notation
P (x|y) to denote the probability of x given that y has occurred. The type of sub-
sets produced vary based on the algorithm used to cluster. Objects in the same
cluster are ‘similar’. In Figure 2.1, lower spatial distance is taken as an indicator
of similarity.

Figure 2.1: What is a cluster?
(a) shows a set of data points in two dimension. For example, a height versus

weight plot, or a time versus speed plot. (b) illustrates a clustering of the points
in (a). (c) illustrates a clustering of the points in (a) with subsets within subsets.

(d) illustrates a clustering with overlapping clusters. Any of these are valid
examples of clustering.

A clustering algorithm is an algorithm that takes a data set (such as shown in
Figure 2.1(a), and produces some clustering of the data set (such as shown in Figure
2.1(b)-(d)). The basic goal of any clustering algorithm is to generate clusters that
contain similar objects. Consequently, distinct clusters should contain dissimilar
objects. The definition of similarity is highly varied. The type of data objects
being clustered restricts the definition of similarity. For example, in Figure 2.1,
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we have numeric point data objects, so we can use distance to indicate similarity.
However, as we will see in following sections, this is only one of many ways to define
similarity.

Clustering is associated with many fields of study. It has been used in statistics
for a long time (Arabie et al. [14]). It has been applied in various fields including
bioinformatics (Kasturi & Acharya [63], Guo [49], Au et al. [15]), information
retrieval (Crouch et al. [31], Leuski [68], Ng et al. [76]), marketing (Wu & Lin
[98]), and many others too numerous to mention. Clustering is a powerful tool for
data mining, applicable to virtually every field where there are large amounts of
information requiring organization. Unfortunately, it is not possible to cover even
a significant fraction of the clustering algorithms that exist. Rather, in this chapter
we will focus on explaining the main techniques for clustering and some of the
better-known algorithms that implement these techniques. The next few sections
will explain the basics of clustering before we move on to the specific types of
algorithms. Where applicable, we will focus on clusterings from a text perspective.
For those interested, some other recent reviews of clustering include Jain et al. [59],
Berkhin [21], and Zhao & Karypis [102] (for hierarchical text-specific algorithms).

2.1.2 Data Set

Before we design a clustering algorithm, we need to know the type of data set on
which we are operating. The data set might be a collection of patient information
for a medical study, genome sequences, sales figures, or something as simple as
height and weight information. For the remainder of this thesis, we will refer to
any data set as D, with Di being the ith object in the data set, and n being the
number of objects in the data set. This notation is given formally below:

D = 〈D1, D2 · · ·Dn〉

We will refer to the output clustering produced by running a clustering algorithm
on D as C, where C has k clusters. Each cluster Ci is a subset of C:

C = 〈C1, C2 · · ·Ck〉

When dealing with text, the data-set objects may be as small as single letters.
Stemming algorithms, algorithms designed to strip word endings and/or lemmatize
them to their roots (foods to food, flight to fly, etc.) sometimes rely on single-letter
data objects (or multiple letters, but still not a word). An example of a stemming
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clustering algorithm based on letters is given in Xu & Croft’s [99]. At the next
level up from letters, we may look at syllable objects, then words. Word Sense
Disambiguation, which involves assigning one sense of many possible senses to a
word, treats text as words. Chen & Chang [28] gives an example of a disambiguation
tool based on word clustering. Moving up from words, there are phrases, sentences,
and blocks of texts at subsequent levels. Finally, the most common view of text
is the document. The vast majority of text-clustering algorithms are designed to
handle document clustering. It is important to note that techniques applicable to
one level of text clustering may not translate to another. Also, it is important to
note that text clustering is potentially very language-sensitive.

2.1.3 Data Representation

The data representation of a clustering algorithm refers to the form used to represent
objects of the data-set. Consider a medical study in which we wish to classify
patients as high risk, medium risk, or low risk for cancer. Our data-set is the
collection of patients’ data. Our data representation for each patient might then be
weight, age, and gender. By selecting these features, we are saying that we believe
(or have factual evidence) that they provide a good indication of cancer risk. But
why not use eye colour, diet, or height as well? In general, objects have a massive
number of features, and only a small fraction of them are selected to be used in the
data representation.

We will refer to each property of an object in a data-set as a feature. Each feature
of a data representation takes the form of one of three types: numeric, Boolean,
or categorical. A numeric feature refers to an ordinal number. Height, weight, and
age are examples of numeric attributes. For text blocks, a basic numeric feature is
a word frequency count, although modern algorithms dealing with text manipulate
this basic count considerably. Boolean features are those that are present or absent
(e.g., having or not having a disease for example). Older Information Retrieval (IR)
Systems often used Boolean word lists, recording only whether a word was present
or absent in a document, and not a specific count. This data representation is
generally now outmoded for text. Categorical features are those that draw from a
group of categories. Eye colour may be green, brown, black, or blue. Gender may
be male or female, etc.

Individual features of each Di are almost always combined into a single repre-
sentation. The most common way of doing this is to use the vector space model,
discussed in Salton’s 1975 work on automated indexing in Information Retrieval
[82], which is illustrated in Figure 2.2. In this model, each Di is represented as an
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m-dimensional vector, where m is the number of features. Dij represents the jth
feature’s value in Di. The vector representation of Di is then:

Di = 〈Di1, Di2 · · ·Dim〉

Figure 2.2: The vector space model
The vector space model takes a set of n documents with a total of m different
terms and maps each object to a vector of length m, where Dij is a numeric

quantity representing the importance of term j to object i.

The effectiveness of the vector space model is due to the key attribute that
the space must have: similarity of data objects should be inversely proportional to
distance. We can use this aspect of the vector space to create clusters of similar
objects. We group vectors with low spatial distance (high similarity) together. The
problem is to find a feature set that has the desired property of similarity being the
inverse of distance.

Certain objects are not amenable to the vector space model in their raw form.
For example, how do we represent text in the vector space model. This has led
to the development of data representations. For text, the data representation is
based on the text unit being examined. In situations where the text object itself
is small (letter, word, phoneme) the data representation is typically a form of
modified count information of surrounding neighbors. For example, in word sense
disambiguation, a word may represented by its ‘context window’, which is just the
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surrounding words. In Gale et al. [44], the authors give an example of this form of
representation. A context window may be viewed as a vector of word counts. Larger
text blocks provide all the information needed for clustering within themselves.
Thus, a document’s data representation is based on counting words within the
document (or other structures). If tf ij refers to the number of occurrences of term
j in Di (note we use the word term and not word, because we may be dealing with
phrases, a set of letters, or any other structure within text), then Di’s raw count
data representation is:

Di = 〈tf i1, tf i2 · · · tf im〉

Data representations based on raw term counts (when terms are words only)
are not overly useful for clustering, information retrieval, or most text-related ap-
plications. They do not accurately capture significance of terms to documents and
therefore lead to poor results. Because of this, a great deal of research has gone
into weighting functions. In IR and typically text-clustering as well, a weighting
function has as its parameters a document Di, a term k, and the document set D.
Such a function returns the significance value of term k to document Di based on
term distribution information of k in D and Di. We refer to the weight for term k
in document i as wik. Thus the weighted data representation of Di is:

Di = 〈wi1, wi2 · · ·wim〉

Good weighting functions have been shown to produce enormous improvements
in IR and clustering over simple frequency counts. A weighted term data repre-
sentation is the accepted standard when not dealing with categorical features. A
particularly useful family of weighting functions is known as tf-idf. We will discuss
tf-idf in more depth in Chapter 3, but to give an introduction to its concepts, tf-idf
factors document frequency, which is the number of different documents contain-
ing a term, and term frequency, which is the count for a word within a specific
document. For example, a simple tf-idf weighting is wij = tfij

|D|
nj

, where nj is the

document frequency of j. Document frequency makes tf-idf metrics very useful, as
it has been verified that terms with lower document frequencies better distinguish
documents.

Boolean counts can be represented in the vector space model (0’s and 1’s) as
well, but categorical data cannot be represented in the vector space model. The
vector space model takes a ‘bag’ approach to modelling objects. That is to say,
order of occurrence within a data object does not affect its vector representation.
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In some cases, where no ordering is present, this makes sense. But text is ordered:
‘Don’t touch that, it will explode if you do’ and ‘Do touch that, if you don’t it
will explode’ have the same word vector representation, but clearly have oppo-
site meanings. In addition to ignoring word order, the vector space model does
not automatically handle homographs (words with the same spelling but different
meanings) or synonyms. Despite these shortcomings, the vector space model has
had marked success with text and many other kinds of data-sets. Most clustering
algorithms use it.

2.1.4 Feature Selection and Dimensionality Reduction

A key component of learning algorithms is the identification of features. For exam-
ple, consider a set of documents with a vector space of 1,000,000 words. Performing
clustering, or any learning at all, on a data-set with this high of a dimensionality
can be very difficult, assuming it is possible at all. If we can reduce the vector
sizes, say several hundred dimensions, learning will be faster. Not only this, but a
well-defined mapping to the smaller vectors can increase the accuracy of learning
algorithms. However, only a small fraction of this information may be useful in
any given study. In general, we want to include features that improve the accuracy
of learning algorithms, and omit others. There are two approaches for identify-
ing important features: feature extraction (dimensionality reduction), and feature
selection. We discuss these two methods below. It should be noted that not all
methods of clustering require feature selection or dimensionality reduction, for ex-
ample, some, but not all, Support Vector Machine methods, mentioned very briefly
in Section 2.2.6, don’t use these concepts.

Feature Selection

Feature Selection, as the name implies, involves selecting which subset of features to
use. It is often applied in unsupervised situations such as clustering, but supervised
learning algorithms also make use of it (Cardie [26], Kohavi & John [66]).

Learning algorithms associated with text benefit greatly from feature selection.
In most large collections of text, the vocabulary (number of distinct words) numbers
well into the hundreds of thousands. If the count of each distinct word in the
vocabulary is a feature of each text block in the collection, then every text block
has a feature set the same size as the vocabulary. Only a fraction of these words
may be useful in a given clustering algorithm. The useless words impose both a
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Figure 2.3: Models of feature selection
The two models of feature selection. (a) Filter model: feature selection is a
preprocessing step. (b) Wrapper model: features are selected iteratively by

running the learning algorithm and observing the results.

large run-time penalty on learning, and lower accuracy due to a huge amount of
noise words.

There are two ways of performing feature selection, the filter model (John et al.
[60]) and the wrapper model (Dy & Brodley [37]). The filter model is illustrated
in Figure 2.3(a). In filter model feature selection, the set of all features possible is
submitted to the filter algorithm, which then filters out the less informative features,
leaving a good feature set for the learning algorithm to work on. The learning
algorithm and the feature selection algorithm are separate. In the wrapper model
(Figure 2.3(b)) we begin with some set of features (possibly one, or any number
of them). The learning algorithm is then run to select which features to add (or
remove). With this new feature set, the algorithm is rerun. With each iteration
the set of features is refined so as to produce increased accuracy in the learning
algorithm.

Filter algorithms rely on labelled data. For example, in a text classification
algorithm, we would ‘label’ each text block with a topic. We could then use a filter
algorithm that removes all words from the feature set which occur in greater than
a certain fraction of topics. Some of the more common techniques used with the
filter model include χ2 significance testing, mutual information (Weiner et al. [97]),
and information gain (Lewis & Ringuette [70]). In text categorization, document
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frequency (DF) is also used. Manning & Schütze [74] give an example of feature
selection using χ2 significance testing on a modified Reuters news wire collection
(from Apté et al. [13]). They use the test to determine the 20 words (features)
that best define the Reuters’ earnings category. Methods such as χ2 have been
shown to produce increased accuracy and faster run-time in algorithms when they
are used as feature filters. In addition to the types previously mentioned, there are
also entropy-based filter methods such as Dash & Liu’s [32].

In the wrapper model of feature selection, as the name implies, feature selection
is ‘wrapped around’ the learning algorithm. The basic idea is to repeatedly refine
the feature set by evaluating the output structure. Fukunaga [42] illustrates a basic
wrapper-model feature-selection process, referred to as sequential search. Suppose
we have the function φ(X), which evaluates the quality of the feature set X, and we
desire ω features in our output feature set. Algorithm 1 shows the sequential search
algorithm for this situation. For each iteration, the best feature (α) is selected to
add to the output set. If α would decrease quality, the algorithm stops. There are
many other wrapper model feature selection techniques, such as the evolutionary
search (Kim [65]), that are faster and more accurate than sequential search.

Algorithm 1 Sequential Feature Search

1: Input: f : set of features
2: ω: desired number of features
3: S = {}
4: while |S| < ω do
5: α = arg max

fi∈f
φ(fi ∪ S)

6: if φ(α ∪ S) < φ(S) then
7: break
8: else
9: S = S ∪ α

10: f = f − α
11: end if
12: end while

Both the filter model and the wrapper model can be applied to clustering prob-
lems, depending on the information we have about the data-set. Exploratory data
analysis (EDA) is one of the primary functions of clustering. In EDA, we are un-
sure of true labels, so filter-model feature selection is not an option. When dealing
with text though, we often have labels (such as document classes for the Reuters’
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Figure 2.4: Subspace similarity
The vectors in (a) require some examination to note similarity. However, if we
take the subspace dimensions 1, 2, 5, and 7 as in (b), the similarity becomes

obvious. This is what subspace clustering attempts to do.

collection used by Apté [13], or word parts-of-speech tags in any number of online
corpora). Consequently, either model of feature selection may be applicable to text.

Subspace clustering is a form of feature selection used in clustering. It follows
the wrapper model in being performed during the clustering algorithm. The basic
concept here is that, given a data-set of m features, similarities between objects
are likely over a set of k features, k < m. Subspace clustering involves searching
for those subspaces where object similarities are easier to detect algorithmically.
Figure 2.4 gives an example of this.

Unfortunately, detection of subspaces in actual data is a much more complex
problem than our example, and a great deal of research has been devoted to it. A
review of various clustering algorithms employing subspace detection/manipulation
can be found in Parsons et al. [78].

Feature Extraction

Feature Extraction may also be called feature transformation or dimensionality re-
duction. It serves much the same purpose as feature selection, but operates in
different ways. Feature selection involves selecting only. Features may or may not
be used in the learning algorithm. A feature extraction algorithm maps a set of
objects from a high-dimensional space with M dimensions into lower dimensional
space of m dimensions, where m < M . Feature extraction has an additional prob-
lem in that it is difficult to be sure what each feature represents in the new space.

Principal Component Analysis, or PCA, is a common tool for feature extraction
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in any number of applications, including clustering. A good tutorial on the con-
cepts involved can be found online [8]. In PCA, for text clustering, the data-set is
represented as a document-by-word feature matrix (with a mean adjusted to zero).
A covariance matrix is then computed for the matrix. Eigenvectors are computed
for the covariance matrix, which are ordered by length. Each eigenvector is a com-
ponent, with length indicating importance. Now, to perform feature extraction, we
need only pick the p largest eigenvectors (in matrix form), transpose them, then
multiply them by the original data. The resulting matrix is a transformed feature
set with only p dimensions. PCA is lossy, as omitting any eigenvector results in
information loss. However, we can minimize the impact by removing only those
eigenvectors with low length. Explaining why this method works is beyond the
scope of this thesis, but it is very useful. Two good examples of PCA applied to
clustering are given by Ding et al. [36] [35].

Another method of feature extraction is Latent Semantic Analysis, or LSA,
which uses Singular Value Decomposition, or SVD. SVD is very similar to the
eigenvector analysis used in PCA, but here we have singular values and singular
vectors rather then eigenvalues and eigenvectors. A singular value y is a real-
number for a document-by-word matrix X that fulfills the condition Xv = yu and
XT u = yv, where v is a left singular vector and u is a right right singular vector.
Identifying y’s, u’s, and v’s for a given X follows in a manner similar to finding
eigenvectors. Once this has been done, again, like in PCA, we simply pick the
number of singular vectors we want to use and recombine these with the original
data to create a new matrix that is reduced in dimensionality.

Hoffman [57] illustrates how LSA can be applied to clustering. LSA has been
shown to be a useful tool in many applications. With regard to text, LSA has the
property of mapping words that occur in similar contexts to the same dimensions.
For example mist and fog might be collapsed into a single feature as they occur
around similar words. There are many other methods for feature extraction, and
we have given just a small sample here.

2.1.5 Similarity

We have stated the goal of clustering is to produce subsets of similar objects from
an initially ungrouped data-set. As a bare minimum, clustering algorithms provide
some definition of similarity between two individual objects of a data-set based
on their respective feature sets. We denote the similarity between data objects
Di and Dj as simx(Di, Dj), with increasing values indicating higher similarity.
When giving a specific type of similarity, x will be substituted with a short form
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of that name. For example, Euclidian similarity would be simeuc(Di, Dj). The
term distance used here is analogous to similarity in clustering, except low distance
means high similarity, and vice versa. Distx(Di, Dj) is the distance between Di

and Dj using metric x. Similarity/distance equations provide a basis for creating
clusters.

The exact definition of similarity is dependent on the clustering algorithm and
the data-set. We have already explained the basic vector space model’s definition
of similarity (inverse of distance). Using the basic vector space model, similarity
may be calculated using the cosine (Equation 2.1).

The cosine value is between -1 and 1, with 1 indicating complete similarity, and
-1 complete dissimilarity. If each Di has been normalized such that ||Di|| = 1,
then the cosine calculation can be substituted by one minus the Euclidian distance
metric in Equation 2.2, where m is the number of dimensions in the vector space.

simcos(Di, Dj) =
Di ·Dj

‖Di‖‖Dj‖
(2.1)

disteuc(Di, Dj) =

√√√√ m∑
k=1

(Dik −Djk)2 (2.2)

distman(Di, Dj) =
m∑

k=1

|Dik −Djk| (2.3)

distmah(Di, Dj) =
√

(Di −Dj)T Σ−1(Di −Dj) (2.4)

Two other vector distance definitions used in clustering are Manhattan (Equa-
tion 2.3) and Mahalanobis (Equation 2.4). Manhattan distance is simply the sum
of the differences over every dimension. It is also referred to as the ‘city block
distance’. Mahalanobis distance is used in the EM family of clustering algorithms,
presented in the clustering algorithm section. xT is the transpose of x, and Σ is the
covariance matrix of the multivariate vector that produced Di and Dj. Numerous
other distance metrics exist [3], including Minkowski, Chebyshev, and others, but
these four are the most common by far.

Data-sets of objects with Boolean features can use some of the metrics from
Equation 2.1-2.4 by representing their features as 1s and 0s. However, it is far
more common to use distances designed specifically for Boolean vectors. Some
of these distances are presented in Table 2.1. The matching coefficient is simply
the number of Boolean values that overlap in Di and Dj. The Dice and Jaccard
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Equation Name Similarity

Matching Coefficient simmatch(Di, Dj) = |Di

⋂
Dj|

Dice Coefficient simdice(Di, Dj) =
2|Di

T
Dj |

|Di|+|Dj |

Jaccard Coefficient simjacc(Di, Dj) =
|Di
T

Dj |
min(|Di|,|Dj |)

Table 2.1: Similarity measures for binary vectors.

coefficients are designed to compensate for each Di being a different length, and as
such are more robust. The Jaccard coefficient may be extended (Strehl [91]) so that
it works with numeric features as well, as long as they are non-negative). Equation
2.5 gives the extended Jaccard equation, where DT

i is the transpose of Di.

simxjacc(Di, Dj) =
DT

i Dj

|Di|2 + |Dj|2 −DT
i Dj

(2.5)

Another method for defining similarity is a neighbourhood system. Suppose that
for all Di, Dj, we know whether Di and Dj are similar. We will then refer to Di

and Dj as linked, and write this as linked(Di, Dj). One way to use these links is
to calculate the neighbourhood overlap between all Di,Dj pairs. Equation 2.6 gives
the neighbourhood overlap of Di and Dj. Neighbourhood clustering techniques are
popular because they can handle any kind of data. However, similarity calculations
must still be performed by some other algorithm to obtain the links with which to
calculate neighbourhood overlaps.

simneighbourhood(Di, Dj) = |{Dk : linked(Di, Dk) ∧ linked(Dj, Dk)}| (2.6)

There are many other methods for determining similarity, likely as numerous as
clustering algorithms themselves.
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2.1.6 Noise and Outliers

Given a data-set, it is possible that some of the objects are noise or outliers (see
Figure 2.5). The former word is commonly used to refer to erroneous data, the
latter to data that, while not erroneous, does not fit in with the other objects
of the data-set. While outliers and noise are not the same thing, they are both
treated the same way in clustering: as objects to be detected and isolated so as to
not corrupt the clusters produced by the more typical, accurate data. As such, we
will refer to outliers and noise as the same phenomenon.

Figure 2.5: Outliers and noise in clustering
A data-set with outliers/noise circled. In this case, it is obvious that these three

points are outliers, but in practice, identifying outliers is difficult and often
requires some subjective definition of what an outlier/noise is.

Outliers may be useful in their own right, as it is often informative to isolate and
examine such entities. Regardless of the motivation, almost all of the more recent
clustering algorithms have some form of outlier detection/isolation integrated into
them. We will explain how various algorithms handle outliers in the section on
clustering algorithms (2.2).

2.1.7 Data Streams versus Batch Data

One of the major issues with clustering algorithms is the ability to handle data
streams. A data stream, as the name implies, is a source that generates data

18



objects in real-time. For example, a news wire is a data stream of article objects.
This is in contrast to batch data, in which the entire collection of objects is available
at once (for example, a collection of data from a consumer survey).

The ability to handle data streams is beneficial as many data-sets are produced
in real-time, and any algorithm that works on data streams can work on batch
data as well (by simply submitting the batch objects as a stream). Many algo-
rithms assume batch data is available, and those that can handle streams are often
referred to as incremental to denote their stream-handling ability. Unless noted
when explained in Section 2.2, a clustering algorithm is batch-data-based.

2.1.8 Evaluation of Clustering Algorithms

There are several ways to evaluate the quality of a clustering algorithm. In situ-
ations where data-sets have labels, an obvious solution is to compare the clusters
obtained against the labels, with the hope that clusters match up to distinct labels.
Purity (used by Mandhani et al. [73] for example) is one means of quantifying the
relatedness between a cluster and a particular label. It is calculated as follows: for
cluster Ci, the purity with respect to the label Lj from a set of labels L, where
Ci has nij data objects of label Lj, is nij/|Ci|. Purity may also be referred to as
precision. Recall is another quality metric, and may be thought of as the ‘flip side’
of purity: while purity tells you to what degree a cluster belongs to a certain label,
recall tells you the portion of a label that belongs to a cluster. Continuing with
the this notation, the recall of cluster Ci with respect to Lj, where there are nj

data objects of label Lj in the entire data-set, is nij/nj. While either precision or
recall on its own misses something about quality, combining the two into a single
metric, referred to as an F-measure, results in a much better calculation of qual-
ity. F-measures come in a variety of forms, for example, the F-measure used for
a single cluster in Zhao and Karypis’ hierarchical clustering review [102] is given
in Equation 2.7. The overall quality of a clustering solution tree is calculated as∑
Lj∈L

nj

|D| max
Ci∈T

F (Ci, Lj), where T is the entire tree of clusters produced during the

clustering algorithm.

F (Ci, Lj) =
2

nij

|Ci|
nij

nj

nij

Ci
+

nij

nj

(2.7)

HFTC uses a metric almost identical to Zhao and Karypis’, except HFTC con-
siders only top-level clusters when evaluating F-measure, e.g., HFTC’s metric ap-
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plies only to a specific number of clusters, whereas Zhao and Karypis’ metric is
calculated by running a clustering algorithm until only one cluster remains then
evaluating the metric. The F-measures from Zhao and Karypis’ method are strictly
equal to or greater then those produced by HFTC (as they include the clusters
HFTC uses, and others as well, and we are taking maximums).

Without labels, the variety of potential quality measures is somewhat limited,
as only the similarity definitions and the properties present in the data objects
themselves can be used. Most often, unlabelled data quality metrics are based on
the particular metric the algorithm is trying to maximize/minimize. For example,
most entropy-based algorithms have been evaluated by their creators using entropy.
This may sound like a dubious practice, but it does make sense. Since the authors
are inferring that a cluster is based on a certain principle, it makes sense to evaluate
the output quality based on that principle. Unfortunately, an algorithm trying to
maximize a quality x is often compared against another algorithm that was designed
to maximize some different quality metric y, but the evaluation is done using x on
both. An example of such a comparison can be found in Barbará et al. [19], in
which they compare COOLCAT, an entropy based algorithm, to ROCK, which is
based on links, using only entropy. As a result, it is often hard to determine which
algorithm is performing better.

Besides the labelled and unlabelled issue, we must also consider the source of
test and training data on which an algorithm is run. There are a huge variety of
sources (non-standardized) and many algorithms function much better on certain
data types (text, geological data, image data, etc.) and poorly (or not at all) on
others.

In the next section, we move on to a discussion of specific types of clustering
algorithms. The general issues that all such algorithms must deal with as their
common purpose is clustering are:

• Feature types used: Boolean, categorical, and/or numerical.

• Handling of outliers/noise.

• Applicable to real-time data (data streams).

• Invariant clustering (order for considering data points has no effect on final
clustering).

• Scalability (including high dimensionality, high number of clusters, high num-
ber of points, etc.)
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• Type of clusters produced: disjoint (a point may belong fully to any number
of clusters), hard (every point is in one cluster), soft (probabilistic assignment
to clusters), etc.

• Parameters and the difficulty of parameter estimation.

• Easily understandable results.

We will discuss these various issues as we review the algorithms. Major cate-
gories are presented, then subcategories. Each subcategory has several algorithms
representative of its type. It should be noted that many algorithms fall under mul-
tiple categories, so that the organization scheme used here is by no means perfect.

We point out a curious aspect of clustering algorithms before we move on to
describing them. It is somewhat of a convention to ignore the fact that vector
operations are not constant time. That is to say, for example, a cosine operation
on two vectors is O(1) when it is actually O(m), m being the length of each vector.
Unless we note otherwise or mention the variable m directly in our complexity
notation, we use the former definition of time complexity, e.g., a single vector
operation is O(1). Also, note that many algorithms assume that they are supplied
with pairwise similarities for the entire dataset and do not consider the computation
of these similarities as part of their run-time cost.

2.2 Clustering Algorithms

Here we present an overview of various clustering methodologies/algorithms. The
overview is organized by major type, sub-type, then specific algorithms.

2.2.1 Density-Based

Density-based clustering algorithms are used mainly with spatial databases. Data
objects for such databases typically consist of m-dimensional points (m numeric
features), although generalizations to objects with categorical features exist. The
defining characteristic we use for density-based clustering algorithms is: clusters
are sets of data points that meet some density requirements.
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DBSCAN Family - Density Connected Sets

DBSCAN (Ester et al. [38]) is a numeric feature density-based clustering algo-
rithm. There are two input parameters for DBSCAN: ε and MinPts. The central
concept of DBSCAN is the density-connected set. It may be conceptually defined
as follows: Given some point x, draw an arc from x to all y where dist(x, y) ≤ ε.
Repeat this recursively. When all arcs are drawn, erase all points with number of
arcs less than MinPts. The remaining connected-points are a density-connected
set. In DBSCAN, such sets are clusters (Algorithm 2 illustrates conceptually how
DBSCAN clusters a dataset uses density-connected sets).

Algorithm 2 DBSCAN

1: Input: D: dataset
2: ε: maximum neighbourhood distance
3: MinPts: minimum neighbourhood size
4: C = empty set of clusters
5: while |D| > 0 do
6: p = random point in D
7: N = density connect set of p with diameter ε
8: D = D −N
9: if |N | ≥ MinPts then

10: C = C ∪N
11: end if
12: end while
13: return C

DBSCAN is both simpler and faster than many other clustering algorithms:
using advanced data structures for indexing it runs in O(n log(n)) time. The algo-
rithm allows for arbitrarily shaped clusters (Figure 2.6) that most other clustering
algorithms cannot detect. Outliers are handled well (consider the MinPts value,
we may note that an outlier will not have that many points within ε). GDBSCAN
(Sander et al. [83]) is a generalized version of DBSCAN designed to handle non-
spatial (non-numeric) features as well as spatial features. (G)DBSCAN’s quality is
highly sensitive to its parameters, making it ill-suited to large/high dimensionality
datasets. The 4C algorithm (Böhm et al. [23]) defines many of the same concepts as
DBSCAN, except that they are applied with respect to correlation between points
and not density. It yields better results than DBSCAN, but requires a run-time of
O(m2n log(n) + m3n) on high dimensional data (m features).
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Figure 2.6: DBSCAN clusters
DBSCAN can detect both spherical clusters as shown in (a) and oddly shaped

ones such as the spiral in (b) or the horizontal ‘y’ in (c). We refer to any
non-spherical cluster, such as (b) and (c) as arbitrarily shaped.

FDBSCAN (Fuzzy DBSCAN, Kriegel & Pfeifle [67]) is DBSCAN designed to
handle fuzzy data. OPTICS (Ankerst et al. [12]) is another extension of DBSCAN.
Given a fixed MinPts in DBSCAN, every high-density cluster is contained within
a lower density one (Figure 2.7). OPTICS uses this situation to create a cluster-
ordering of data points. Conceptually (although the algorithm works differently
in practice for speed) OPTICS first orders pairs of points by ascending distance.
The algorithm then iterates over this sorted list and arcs are drawn between each
pair of points it iterates over. As the DBSCAN clusters present change, clustering-
order information is recorded in the order obtained. Ordering is by distance (since
the point pairs are so ordered). Now, to get a clustering with ε equal to some
value X, we need only read the summary until X distance. The actual algorithm
for generating the cluster-ordering is somewhat complex and runs in O(n log(n))
time, but the output has the following highly desirable property: Given any ε value,
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creating a DBSCAN clustering can be done in O(n) by sequentially moving through
the cluster-ordering. In effect, OPTICS is like infinitely many DBSCAN runs of a
dataset with 0 ≤ ε ≤ ∞.

Figure 2.7: Cluster density observation in OPTICS
As illustrated here the observation that a high density clustering is always
contained within a lower density one allows the construction of OPTICS’

cluster-ordering.

Unlike OPTICS and DBSCAN, DBCLASD (Xu et al. [100]) is good for larger
databases where parameter estimation is problematic. In addition, it is solidly
grounded in mathematics, relying on an assumption of uniform distribution to gen-
erate clusterings. DBCLASD is slightly slower than DBSCAN. Unfortunately, the
assumption of uniform distribution means that DBCLASD is not suited to some
kinds of data (text word counts, for example). Foss & Zäıane [40] give another pa-
rameterless algorithm called TURN∗. TURN∗ is interesting in that it takes existing
point similarities, and scales them iteratively. For each scaling of points, a basic
density-type clustering algorithm is run. Then, the clustering is evaluated to judge
if it of sufficiently high quality.

DENCLUE - Density Function Clustering

A different approach to density-based clustering uses density functions. Hinneburg
& Kim [54] illustrate this with DENCLUE (DENsity based CLUstEring). The
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basic concept is that every object x has an influence with respect to every other
object in the dataset y. The influence between two points x and y is written as
f(x, y). Influence may be some form of similarity equation, scaled by division by

a parameter σ. A data point’s total influence is f(x) =
∑

y∈D,y 6=x

f(x, y)k (a density

function). Given the density function, DENCLUE can form either centre-based
clusters by finding local maxima in the graph, or arbitrarily-shaped clusters by
linking sequences of points with density functions values above a parameter ε. σ is
used to control the granularity of the searching for maxima. DENCLUE runs very
fast, in sublinear time.

2.2.2 Grid-Based

Grid-based clustering algorithms are very similar to density-based clustering algo-
rithms, but where density-based algorithms are centred around points, grid-based
methods partition the vector space into chunks (see Figure 2.8 for an example).
Then, density within these chunks is used to build a clustering.

Static Grid Partitioning

Many useful algorithms can be designed around a simple, static-type partitioning of
the data space into a grid. WaveCluster (Sheikholeslami et al. [87]) offers a novel
clustering approach that treats the data space as waves. The first step involves
‘cutting’ the data space into blocks (quantizing, essentially making a grid). At this
point, wave theory can be applied to detect connected blocks. Connected blocks are
considered to be clusters. This algorithm runs in O(n) time. Multiple clusterings
are produced by a single run of WaveCluster, equivalent to progressively increasing
the definition of connected blocks (analogous to relaxing the similarity required for
objects to be in the same clustering). Unfortunately, the algorithm does this by
skipping rows of quantized blocks. This results in progressively cruder clusterings.

STING (Wang et al. [95]) was implemented a year after DBSCAN. It uses the
concept of summarization. The vector space is partitioned recursively into blocks
of four (see Figure 2.8) until a desired granularity (cell size) is reached. Summary
information is then computed for each cell. The use of cells rather than individual
points can have benefits. If we have k cells, k << n, and store only cell summaries,
the memory requirement is less. The STING algorithm initially examines the top-
level partitioning (a single cell) and recursively examines finer regions as required
to create a clustering. For example, it may determine that the entire dataset may

25



be a cluster. It will then look at the dataset split into four cells. If two cells are not
clusters, they are flagged and not processed further. The other two cells are each
split into four and each piece is examined, and so on. This yields a run-time of O(k).
If each cell contains only one (or zero) data points, STING’s output is equivalent to
DBSCAN. STING+ (Wang et al. [96]) builds on STING, and is designed to handle
data streams. It defines a language in which one can specify ‘triggers’ that will fire
when certain conditions are met in the hierarchy of grid cells.

Figure 2.8: STING’s partitioning approach
Note that blocks are always split perfectly into four. Applied recursively, this

creates a uniform grid.

FC (Fractal Clustering, Barbará & Chen [18]) uses the concept of the fractal
dimension. Given a cluster C consisting of r boxes (hypercubes), let N(r) be the
number of such boxes that contain at least one point. A box-counting plot is a log-
log plot of N(r) versus r. The fractal dimension used in FC is the negative slope of
that plot (Figure 2.9). Initially, the data space is divided evenly into hypercubes.
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Clusters are created by bootstrapping a starting algorithm that clusters a small
fraction of the points. Then, further points are added one at a time. A point x is
added to the cluster C, where C’s fractal dimension will change the least among all
clusters by adding x. Minimizing the change in fractal dimensions roughly equates
to maintaining the structure of a clustering as much as possible. Splitting and
merging of clusters is also possible in FC. FC can be used on streaming datasets,
as it constructs clusters incrementally.

Figure 2.9: FC: Box counting and the fractal dimension
A dataset partitioned into blocks. The grey-shaded blocks represent a cluster.

The accompanying graph shows the box-counting plot and the fractal dimension
(calculated using linear regression in this case).

Adaptive Grid Partitioning

Thus far, all the grid-based algorithms we have discussed partition the data space
into perfect grids. If we remove this restriction, we are immediately confronted
with the question: how can the data space be adaptively partitioned in a useful and
meaningful way? Adaptive grid partitioning methods address this. As an example,
BANG-Clustering (Schikuta [85], Schikuta & Erhat [86]) operates in the following
manner: Start with one block containing the entire data set. With each iteration,
all blocks remaining are split in half. Each block has its density index calculated,
which is its volume divided by the number of points in it. If the density index is
above some threshold, the block becomes a new cluster centre. The remaining non-
cluster blocks are sorted by density index, and processed further, either merging
into existing cluster centers or just being passed on to the next iteration. Only
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adjacent blocks may merge. This method creates a hierarchy of clusters as grid
squares/recentangles.

OptiGrid (Hinneburg & Keim [55]) is another algorithm that uses intelligent grid
partitioning and belongs to a family of dimensionality-reduction type clustering
algorithms referred to as projective clustering. The meaning of ”projection” for
this family may be taken literally. An example is projecting a three-dimensional
universe onto a two-dimensional screen. In general, in projective clustering an n
dimensional dataset is projected to an m dimensional one, m < n.

Optigrid first creates a projection plane for every dimension of the dataset. For
example, a three-dimensional data space x, y, z would have three projections, one
with only x, y co-ordinates, the other y, z, and the other x, z. Then, for each of
these projections, a set of ‘cuts’ which split the plane into two are calculated. The
quality of a cut is defined by the amount of density function (as in DENCLUE [54])
it goes through, with lower density cuts being higher in quality. All the cuts for
each projection are pooled together, then the best q cuts are used to partition the
dataset. OptiGrid is then run recursively on each partition until no more good cuts
can be found. Optigrid runs superlinear to n.

2.2.3 Partition Reallocation Clustering

Partition reallocation clustering algorithms rely on iterative refinement. In iterative
refinement, the entire dataset, or sample of the dataset, is clustered, then certain
properties of the clustering are evaluated. These properties are used to re-cluster
the dataset into a higher quality clustering. This refinement step may be done
until the clustering converges (e.g., two consecutive clusterings have exactly the
same structure) or some other criterion is satisfied. Note that partition reallocation
algorithms suffer the ‘chicken and the egg’ problem, in order to produce a clustering,
we must have certain statistics. In order to have these statistics, we must have a
clustering. This problem forces partition reallocation algorithms to bootstrap an
initial clustering, which is a difficult task in itself. Note that the term refinement
is specific to what the algorithm is trying to minimize or maximize (the objective
function). We will hereafter refer to the objective function of an algorithm X as
φX . Most partition reallocation algorithms are non-hierarchical. Some of the oldest
and best-known clustering algorithms fall into this class, and almost every field of
science has applied these in one form or another.
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Figure 2.10: Optigrid
(a) Illustrates a sample two-dimensional data set. (b) shows the two projections
(onto x and y). (c) depicts possible low density cuts. (d) illustrates when both of

these cuts in (c) are applied to (a).

K-Means Methods

K-Means (Hartigan [53]) is the most well-known and widely applied clustering al-
gorithm, with so many variants that enumerating all of them would be a feat! This
may be attributed to its age as well as its simplicity, and that it produces good
enough results in most applications. The ‘K’ in K-Means is a parameter dictating
the number of clusters to be used throughout the algorithm. Centroids are the
key elements of the K-Means methodology. Given a cluster Ci, the centroid of Ci,
which we denoted as ci, is defined by Equation 2.8.

ci =

∑
Dj∈Ci

Dj

|Ci|
(2.8)
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Thus, a cluster’s centroid is a single point with every dimension’s value equal
to the average of that dimension within the cluster.

Algorithm 3 K-Means

Input: D: dataset
C: initial set of clusters from D
ω: improvement threshold

loop
Cold = C
for all Cj ∈ C do

cj = computeCentroid(Cj)
Cj = {}

end for
for all Di ∈ D do

cj = closest centroid to Di

Cj = Cj ∪Di

end for
if (Cold = C) or (φKM(Cold)− φKM(C) > ω) then

break
end if

end loop
return C

Algorithm 3 shows the K-Means algorithm. Basically, in each iteration, cen-
troids are re-computed and data points are assigned to the closest centroid. It-
erations terminate on convergence or when the solution improvement is below a
threshold (using the objective function in Equation 2.9).

φKM(C) =
∑
Ci∈C

∑
Dj∈Ci

‖Dj − ci‖ (2.9)

K-Means has an appealing theoretical basis, as its objective function is as-
sured to improve every iteration until convergence is reached. One criticism of
K-Means methods (and most partition reallocation approaches) is its favoritism
towards nicely shaped (circular) clusters. Some other problematic issues include:
bounding time, probabilistic membership, selecting the number of clusters, appli-
cability to Euclidian data spaces only, and selecting good initial starting centroids
(seeds).
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The run-time complexity of K-Means is non-trivial to bound. It is unclear how
long convergence takes. Har-Peled & Sadri [52] examined the convergence-time
issue and produced upper and lower bounds for some variations of K-means (such
as integer-only data), but there are no bounds for basic K-means with real data
without making some assumptions about metrics/data.

With regards to selecting the number of clusters for K-Means, one method can
be found in Pelleg & Moore 2000 [79]. Another issue is that basic K-Means uses
Euclidian distance, and is therefore not applicable to categorical data. Huang [58]
presents a categorical version of K-Means called K-Modes. K-Modes centroids use
the mode value for each feature (the most commonly occurring category). Distance
(and therefore quality as well) is defined in terms of the matching coefficient, as
shown in Table 2.1. Interestingly, Huang also presents an algorithm for combining
categorical and numeric data, which he refers to as the K-Prototypes.

On-line (Adaptive) K-Means [72] is designed for streaming data. Initially, K
points are selected to be clusters of size one (and therefore each is a centroid). Then,
non-clustered points are considered one at a time, and assigned to the cluster with
the nearest centroid. After each assignment, the centroid of the affected cluster is
recomputed. With an n-points dataset, a maximum of n/K operations are needed
for centroid recalculations each iteration, and there are a maximum of n iterations
for a run time of O(n2/K). On-line K-Means is very sensitive to order of point
submission. Ordonez [77] gives an improved version of On-line K-Means called
Incremental K-Means. Rather than use random points for initializing clusters,
Incremental K-Means uses a sample of the dataset for a good initial set of clusters.
Then, it recomputes the clustering and centroids by adding small batches of n/L
points, where L is a parameter. If L = n, it is equivalent to On-line K-Means.
Scalable K-Means [25] can also handle a data stream, but was actually designed for
very large datasets (those that can’t fit into main memory). Like Incremental K-
Means, it samples batches at a time. However, it uses an interesting approach where
it determines which points must be kept in memory, and which can be dumped and
replaced with summaries to greatly reduce memory consumption.

Bisecting K-Means (Steinbach et al. [90]) has been shown to work considerably
better then basic K-Means, in particular with text. It produces a hierarchy, so may
be more accurately classified under hierarchical clustering, but since it is based on
K-Means we mention it here. Initially, every point is in one large cluster. For each
iteration, a cluster Ci is selected to be partitioned in two. Then, a simple one-pass
version of K-Means is performed using the following steps: find two centroids in Ci,
denoted ci1 and ci2 as defined by equations 2.11 and 2.12. Then, perform a normal
K-Means step 2 to create two new clusters. Note that there are better ways to pick
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the two centroids to split a cluster on then by random. Bisecting K-Means may be
generalized to n-secting K-Means, where in each iteration a cluster is split into n
smaller clusters.

ci1 = random(Ci) (2.10)

ci2 = ci − (ci − ci1) (2.11)

As with other clustering algorithms, K-Means has variants designed to deal
with probabilistic cluster membership. As it turns out, the centroid computation
in Equation 2.8 can be generalized to probabilistic membership. Equation 2.12
illustrates this. P (Dj|Ci) is the probability that Dj is a member of cluster Ci,
and w(Dj) is the weight of point Dj. Note that if all points have weight one, and
P (Dj|Ci) equals one if Ci is the closest centroid to Dj and zero otherwise, Equation
2.12 reduces to the regular K-Means centroid calculation of Equation 2.8.

ci =
∑

Dj∈D

P (Dj|Ci)w(Dj)Dj (2.12)

Fuzzy K-Means (Bezdek [22]) and Harmonic K-Means (Zhang et al. [101],Hamerly
& Elkan [50]) both employ probabilistic membership. In Fuzzy K-Means, w(Dj)
is always one, and P (Dj|Ci) is defined in Equation 2.13. The objective function is
given in Equation 2.14.

Pr(Dj|Ci) =
‖Dj − ci‖−2/(r−1)∑

Ck∈C

‖Dj − ck‖−2/(r−1)
(2.13)

φFKM(C) =
∑
Ci∈C

∑
Dj∈D

Pr(Dj|Ci)(Dj − ci)
2 (2.14)

The r value may be thought of as a fuzz factor. As r approaches one, the
algorithm becomes similar to regular K-Means. Larger values for r allow more
effect on the centroid by lower probability memberships. Harmonic K-Means is a
better fuzzy algorithm, developed later. We will not mention its specifics here, only
that it incorporates the interesting notion that a point is well-placed if it is close
to one centroid and it is far from other centroids as well.

32



Medoids

A simple adjustment to K-Means is to use medoids instead of centroids. A cluster’s
medoid is the data point within the cluster that is closest to the centroid. Equation
2.15 shows how it is calculated.

mi = arg min
Dj∈Ci

‖Dj − ci‖ (2.15)

φPAM(C) =
∑
Ci∈C

∑
Dj∈Ci

‖Dj −mi‖ (2.16)

PAM (Kaufman & Rousseeu [64]) is a medoid-based method closely related
to K-Means. For each iteration, every pair of points (x,y), where x is a medoid
and y is a non-medoid, is evaluated for swapping potential. That is to say, x will
no longer be a medoid and y will be one instead. For each of these swaps, the
quality is calculated using Equation 2.16. If this best swap would degrade quality
the algorithm ends, otherwise the best swap is performed and iterations continue.
PAM is better then K-Means, but costly, with an O(K(n−K)2) run-time. CLARA
(Kaufman & Rousseeu [64]) is an extension of PAM which draws random samples
of size 40 + 2k points and performs the PAM algorithm on these samples. After
this, all points of the dataset are assigned to the cluster of the nearest medoid.
Samples are drawn multiple times, but only the best result is returned. The run-
time of CLARA is O(K3 + Kn). Since K << n, this reduces to O(n), much faster
then PAM. However, CLARA is vulnerable to bad sampling. CLARANS (Kaufman
& Rousseeu [64]) is an improved CLARA. It creates a graph, where each node is
a different set of possible medoids (Figure 2.11). Arcs connect those nodes that
differ by only one medoid. The algorithm is then a simple graph traversal problem,
starting at a random point and traversing arcs that lead to higher quality, as defined
by Equation 2.16. CLARANS uses multiple random start points in the graph, and
returns the best quality found from all graph traversals. It outperforms CLARA in
average solution quality.

Probability Distribution Methods

In the probability distribution framework, the viewpoint is that a dataset has been
generated by a collection of distributions (generative clustering). Let us say we
have k distinct distributions that are thought to have generated a dataset. Every
point in the data is assumed to have been generated by one, and only one of the k

33



Figure 2.11: CLARANS medoid graph
The graph for CLARANS operating on a dataset of points {a, b, c, d, e} with the

number of medoids set to three. Arcs exist between nodes differing by one medoid.

distributions. This leads to a natural definition of a cluster: all the points generated
by one distribution. Each distribution can also be referred to as a model, and
combined together they are known as a mixture model. Unfortunately, we do not
know which data point belongs to which distribution. We can, however, compute
the probability that a point Di was produced by any specific distribution numbered
j. As cluster j (Cj) is produced by distribution j, we refer to this probability as
P (Di|Cj). The goal of a probability distribution clustering algorithm is usually to
maximize the likelihood that the dataset D was generated by the set of distributions
C. Equation 2.17 is the likelihood of D given the distributions in C. πj is the weight

of the probability distribution j, under the restriction
∑

Cj∈C

πj = 1.

L(D|C) =
∏

Di∈D,Cj∈C

πjP (Di|Cj) (2.17)

The log of Equation 2.17 is used as an objective function (Equation 2.18) in Ex-
pectation Maximization (EM, Dempster et al. [34]). EM is not a specific clustering
algorithm, but rather a general learning method that can be applied in almost all
situations. It follows a two-step process. The Expectation (E) step is the process
of calculating expectations, which we denote as E(Di|Cj) (the likelihood of Di be-
longing to cluster Cj). First, we estimate P (Di|Cj)’s based on the distributions,
and then we calculate the E(Di|Cj)’s. P (Di|Cj)’s are not normalized, but are
just the probability that Cj generated Di without considering other elements in C.
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E(Di|Cj)’s are normalized such that
∑

Cj∈C

E(Di|Cj) = 1. When the EM algorithm

terminates, it is these E values that are used as probabilistic membership values.
The Maximization (M) step attempts to maximize Equation 2.18 by adjusting the
distributions based on the E(Di|Cj)s. Clearly, this is a cyclic problem. E depends
on M, and M depends on E. This is the same problem K-Means encounters as it
needs an initial clustering to iterate. The solution is to guess as at attributes (mean,
variances, etc.) of the distributions and start at the E step.

φEM = log(L(D|C)) (2.18)

EM iterates until convergence or the improvement in Equation 2.18 is below
a threshold. EM clustering may be even more popular than K-Means. As with
K-Means, its number of variants is large. It has many appealing properties: a
strong mathematical basis, easily understood results, and guaranteed improvement
per iteration. Unlike K-Means, it has built-in probabilistic memberships and the
ability to handle categorical data. Like K-means, EM suffers from having to select
the number of distributions to use.

Assessing the number of distributions to use in probability distribution cluster-
ing is somewhat easier then for other partitioning methods. It is simply a matter of
determining if adding a new parameter(s) (distribution) improves the model. The
function for determining quality given a number of parameters p always include the
likelihood function and p. One such method is the Minimum Description Length
(MDL) [80] given in equation 2.19. The best number of clusters to use is the one
that yields the minimum for this equation.

MDL(C, D, p) = −L(D|C) + p/2− log(p) (2.19)

Berkhin [21] gives a more thorough discussion of the various methods for deter-
mining the number of clusters.

On-line (Sato & Ishii [84]), and Incremental EM (Neal & Hinton [75]), like the
K-Means algorithms of the same name, exist to handle streaming data. Also, the
work focusing on Scalable K-Means by Bradley et al. [25] is applicable to Scalable
EM as well. Thus variants of EM exist to handle streams and very large databases.

Gaussian Expectation Maximization (GEM) is a common form of EM clustering.
GEM assumes D was generated by a set of multivariate Gaussian distributions. The
P (Di|Cj) for the E is computed using Equation 2.20. The reader may notice that
the exponent of the e is the Mahalanobis distance given by Equation 2.4. µj is the
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mean of distribution j, m is the number of dimensions, and Σj is the covariance
matrix of distribution j. Given the P (Di|Cj)’s, the E(Di|Cj)’s are easy to compute
(Equation 2.21).

P (Di|Cj) =
1√

(2Π)m|Σj|
e−

1
2
(Di−µi)

T Σ−1
j (Di−µj) (2.20)

E(Di|Cj) =
πjP (Di|Cj)∑

Ck∈C

πkP (Di ∈ Ck)
(2.21)

The M step in GEM re-estimates the means (Equation 2.22), covariance matrices
(Equation 2.23), and weights (Equation 2.24) of each Gaussian.

µj =

∑
Di∈D

E(Di|Cj)Di∑
Di∈D

E(Di|Cj)
(2.22)

Σj =

∑
Di∈D

E(Di|Cj)(Di − µj)(Di − µj)
T

∑
Di∈D

E(Di|Cj)
(2.23)

πj =

∑
Di∈D

E(Di|Cj)∑
Ck∈C

∑
Di∈D

E(Di|Ck)
(2.24)

A virtue of Gaussian clusters is that they are nicely formed. By this we mean
that they are circular, with a large density of points around the mean that grad-
ually thins out moving further away. This corresponds to most people’s notion of
what a cluster is. MCLUST (Fraley & Raftery [41]) is an example of a Gaussian-
distribution–based clustering approach. Gaussians are by no means the only distri-
butions used in distribution clustering. AutoClass (Cheeseman & Stutz [27]) uses a
wide variety of distribution types, including Gaussian, Bernoulli, and Poisson. As
well, it uses learning techniques to estimate the number of distributions. A more
recent work by Banerjee et al. [16] uses Von Mises-Fisher distributions in EM clus-
tering. Von Mises-Fisher distributions are designed to deal with directional data
(e.g., numeric vector, where ‖Di‖ = 1). Such data representations produce good
results in text clustering.
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2.2.4 Information Theoretic Clustering Approaches

Information Theory, to simplify greatly, involves determining the maximum com-
pression that data can undergo. Compression may be lossless (the original structure
can be reconstructed perfectly) or lossy (it can’t). This is a useful concept in cluster-
ing. Consider the Minimum Description Length principle we mentioned in Section
2.2.3 (Equation 2.19), which states that more compact solutions are better. The
concept MDL provides is to produce a clustering that can be expressed in the small-
est amount of space possible. Such a clustering, by MDL, is a good solution. Li et
al. [71] give a more concrete explanation of how information-theoretic clustering is
a good approach using entropy. The authors show that certain forms of entropy cal-
culations on clusterings are related to EM algorithms (discussed previously), which
are widely accepted as good techniques.

Entropy is a fundamental concept in information theory. The entropy of a ran-
dom variable X is the uncertainty in that variable. Not only this, but it represents
the space required for the X if it is maximally compressed. If the values that X
can take are denoted S(X) = {x1, x2, ...xk}, then the entropy of X, denoted H(X),
is given by Equation 2.25. Expanding this, the joint entropy of a vector of random
variables D is given by Equation 2.26.

H(X) =
∑

xi∈S(X)

P (X|xi) log(P (X|xi)) (2.25)

H(D) =
∑

x1∈S(Di)

· · ·
∑

xn∈S(Di)

P (D1|x1 · · ·Dn|xn) log(P (D1|xi · · ·Dn|xn)) (2.26)

A clustering algorithm may be designed around minimizing entropy using local
minima heuristics, as finding minimum entropy is generally NP-Complete.

ENCLUS (Cheng [29]) is an entropy-based subspace-clustering algorithm. For
each iteration, the number of dimensions being considered is increased by one.
After determining candidate dimension subsets for clustering, each candidate has
its entropy calculated by first partitioning the space into a grid (see Figure 2.8) and
then applying Equation 2.25. The random variable X is a single grid cell, obtained
by picking a point at random from D. Thus P (X|xi) is just |xi|/|D| (the percentage
of points in cell xi). Candidates that have an entropy below ω and a mutual
information above ε (another entropy-based metric that quantifies the connectivity
of a set of variables) are returned as good clusterings. In addition to suffering

37



normal grid problems (see Section 2.2.2), ENCLUS requires three parameters (ω,
ε, grid size) making optimization difficult. In addition, it is too slow when looking
for subspaces of larger size (30+ dimensions, so it is not applicable to text).

COOLCAT (Barbará et al. [19]) is designed to handle categorical features using
entropy. Categorical features have a natural notion of entropy with respect to a
cluster. Consider a single feature j within a cluster Ck. The entropy may be
calculated using Equation 2.25, where X is the feature, and S(X) is the set of

possible categories for the feature. P (X|xi) is
|{Di∈Ck:Dij=xi}|

|Ck|
(the percentage of

points within Ck that have xi for feature j. Expanding this, COOLCAT uses the
joint entropy from Equation 2.26 as an objective function (Equation 2.27). After
obtaining an initial clustering, points are taken one at a time, and placed in the
cluster that minimizes Equation 2.27. Li et al.’s work [71] is another entropy-
based method for categorical clustering that uses Monte Carlo sampling. Each
point is initially placed in the same cluster. Then a point is randomly selected,
and is moved to a new (or simply different) cluster if it reduces the entropy. The
objective function is slightly different then COOLCAT (equation 2.28). The Monte
Carlo approach makes it run faster. There are various other entropy approaches,
with these three being just a sample.

φCOOLCAT =
∑

Ck∈C

(
|Ck|
|D|

H(Ck)) (2.27)

φLI =
∑ 1

|C|
∑

Ck∈C

|Ck|H(Ck) (2.28)

2.2.5 Hierarchical Clustering

Hierarchical clustering algorithms, as their name implies, create a hierarchy of clus-
ters, in contrast to flat-table clustering algorithms (most of the methods we have
discussed this far are of this type). Data objects in flat-table algorithms are either
an element of only one cluster, or an element of several clusters with a degree of
probability, but there is no notion of clusters within clusters. Hierarchies of clus-
ters can be visualized by a dendrogram, a tree in which properties of the parent are
shared by all the children (in this case, the property is cluster membership). Figure
2.12 illustrates an example dendrogram. A real-life example of a dendrogram is
the Linnean Taxonomy tree, which organizes all living beings by kingdom, phylum,
class, order, family, tribe, genus, and then species.

38



The dendrogram of a hierarchical clustering can be constructed bottom-up, in
which case the algorithm is referred to as agglomerative, or top-down, in which case
the algorithm is termed divisive. With the agglomerative approach, each data
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Figure 2.12: A dendrogram
Dendrograms are visualizations of hierarchical clustering structures. In this case,

if we have a clustering {{A}, {{{B}, {C}}, {D}}, {E}} (with {} defining a
cluster’s contents) the dendrogram presented here is a possible visualization of the

hierarchy of clusters.

object is initially placed in its own cluster, then clusters are merged repeatedly until
the desired number of clusters remain. In effect, the dendrogram is generated from
the leaves upwards. Divisive algorithms initially put all data objects in a single
cluster and iteratively split clusters into multiple smaller clusters.

Many of the flat-table clustering algorithms we have already discussed can be
used as hierarchical clustering algorithms (see the section below). Hierarchical algo-
rithms tend to be slower than other clustering methods, and sometimes lack a strong
mathematical component. Despite this, they are quite popular since they provide
a very natural view of datasets in the form of dendrograms. As well many hierar-
chical methods are applicable to numeric, boolean, and categorical data and may
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be used with any similarity metric. It should be noted that hierarchical methods
are particularly applicable to text data, as such datum (in the form of documents,
for example) lends itself to a hierarchical representation. A good example of a
hierarchy of documents can be found on the web page for DMOZ [4].

Non-Hierarchical Methods as Hierarchical

Many of the clustering algorithms we have previously discussed, although not based
directly on the construction of hierarchies, can be considered to be hierarchical clus-
tering methods. Bisecting K-Means [50] can be thought of as a divisive hierarchical
algorithm, STING [95] generates a hierarchy of grid-cells, which can also be viewed
as hierarchy of clusters. OPTICS [12] creates a hierarchy of dense clusters within
less dense ones. Indeed, most partitional clustering algorithm can be used to create
a hierarchy if framed appropriately.

Linkage-Based Methods

Linkage-based clustering uses linkage metrics to cluster. A linkage metric is analo-
gous to a similarity metric, but while similarity is defined between points, a linkage
metric is defined between clusters. Using a linkage metric, clustering is done ag-
glomeratively, so that with each iteration, the two clusters that yield a maximum
value for a chosen linkage metric are merged. Equations 2.29-2.31 list the major
basic linkage metrics (for more details see & Dubes [59]): single-link, complete-link,
and group average. The group average metric is also referred to as UPGMA (Un-
weighted Pair Group With Arithemtic Mean) in many discussions. This should not
be confused with the the UPGMA clustering algorithm used in biology, as the two
are not the same.

Algorithm 4 is an algorithmic template for linkage metrics. Although it is
possible to use linkage metrics to cluster divisively, it is not done in practice.

linkageSL(Ci, Cj) = arg max
x∈Ci,y∈Cj

simX(x, y) (2.29)

linkageCL(Ci, Cj) = arg min
x∈Ci,y∈Cj

simX(x, y) (2.30)

linkageGA(Ci, Cj) =
1

|Ci||Cj|
∑

x∈Ci,y∈Cj

simX(x, y) (2.31)
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Algorithm 4 Agglomerative Hierarchical Clustering

1: Input: D: the dataset
2: s: type of linkage clustering
3: k: desired number of clusters
4: C = cluster set, with each element of D in its own cluster
5: while |C| > k do

6: Ci, Cj = arg min
x∈C,y∈C,x 6=y

linkages(x, y)

7: Cl = Ci ∪ Cj

C = C − Ci − Cj

8: C = C ∪ Cl

9: end while
10: return C

Figure 2.13: Single-link clustering
An example of how single-link clusters are ‘stringy’. A thin, long cluster can

easily be created as only the most similar points are used to evaluate the quality
of merging two clusters (Equation 2.29).

SLINK (Sibson [88]) is an example of a single-link clustering implementation
and CLINK (Defays [33]) is an implementation of complete-link clustering. Single-
link clustering is known to be one of the worst clustering methods possible, often
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producing ‘stringy’ clusters such as those illustrated in Figure 2.13. While complete-
link clusterings tend to be of somewhat higher quality (as shown in Figure 2.14),
the clusterings are still worse then practically all of the more recent hierarchical
approaches. In contrast, clustering techniques based on the group-average metric,
such as Voorhees’ [94] method (a direct implementation of group average with no
alterations), are very effective algorithms. In fact, it is a challenge for any hier-
archical clustering algorithm to beat basic group-average, regardless of the metric
used to evaluate clustering quality. The major flaw of group-average clustering
is the same as for other linkage metrics: a large runtime. Group-average runs in
(O(n2 log(n)) time, with complete-link having a similar complexity and single-link
having O(n2)) run-time.

Figure 2.14: Complete-link clustering
Although complete-link clusters are often more hyper-spherical than single-link

clusters, complete-link’s linkage metric is too harsh. For example, a single outlier
in a cluster may make the cluster seem dissimilar to every other cluster, regardless

of the other objects within it.

Advanced Hierarchical Clustering

As noted, the main problem with group-average clustering algorithms is the run-
time of O(n2 log(n)). This is simply not fast enough to handle the massive databases
in use today (even O(n) is too costly in some situations, which poses some inter-
esting problems). CURE (Clustering Using REpresentatives, Guha et al. [47]) ad-
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dresses the complexity problem of group-average clustering. In CURE, a random
sample of objects from D is divided into subsets, with each subset being clustered
in isolation. After this, all the subset clusterings are merged together and clustered.
Objects not drawn in the random sample may be easily merged with their closest
cluster in the final solution. Rather than use every point in a cluster for calculating
the linkage-type metric (Equations 2.29-2.31) CURE selects c well-scattered points
in a cluster to represent that cluster for linkage calculations. These representatives
are drawn to the centroid of the cluster by a factor of α, a user-specified parameter
(Figure 2.15). Note that this implies numerical attributes must be used, as categor-
ical ones cannot be drawn towards a centroid. As clustering is done over a sample
of objects only, the run-time of CURE is considerably faster than standard linkage
clustering. In addition to this, CURE can handle outliers (as an outlier is further
from the centroid, it will be drawn in more than regular points and therefore not
alter similarity computations between clusters as much) and arbitrary shapes (the
well-scattered property ensures that all parts of a cluster are represented).

Figure 2.15: CURE: Clustering Using REpresentatives
(b) shows a representative set of well-scattered points within cluster (a). (c)

shows the representatives being drawn towards centroid (α = 2). (c) is thus the
final representation that will be used in linkage calculations with other clusters.

ROCK (Guha et al. [48]), developed by the same authors as CURE, works
with links rather than similarities (as discussed in the similarity subsection 2.1.5).
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A simplified Algorithm for ROCK is given in Algorithm 5. As for CURE, only a
sampling of the data is used during clustering and a parameter θ is a threshold
for defining linked objects. Merging is done by finding the two clusters with the
largest ratio of actual links between them, divided by the expected number of links
by random chance. Although ROCK runs in O(n log(n)) of the sample size, it
handles outliers well (in the same way density-based algorithms do). Also, links
give a better notion of global connectivity then simple linkage metrics. However,
selecting a good θ is difficult.

Algorithm 5 ROCK

Input: D: the sample of the dataset
k: desired number of clusters
θ: threshold for similarity
x: similarity metric to use

for all x,y ∈ D, x 6= y do
if simx ≥ θ then

link(x, y)
end if

end for
C = cluster set, with each element of D in its own cluster
while |C| > k do

Ci, Cj = arg max
x∈C,y∈C,x 6=y

linkage(x,y)
E[linkage(x,y)]

Cl = Ci ∪ Cj

C = C − Ci − Cj

C = C ∪ Cl

end while
return C

Frequent item-sets have been used for improved hierarchical clustering. In terms
of the vector space model, a frequent item-set over a collection of objects is a
set of dimensions that have ‘high’ values in some portion of the set (a significant
portion). Discovering frequent item-sets is a well-researched rule-association (data-
mining) problem (Hipp et al. [56]) that is useful for high-dimensionality datasets
(and therefore text). The idea here is to cluster using the small dimensionality
frequent item-sets rather then the large original dataset. Thus, using a frequent
item-set is also a type of feature selection. HFTC (Hierarchical Frequent Term-
Based Clustering, Fung et al. [43]) uses frequent item-sets. It assumes there is some
function that calculates frequent item sets over a set of documents, and proceeds
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as in Algorithm 6. The bulk of the work involves calculating the frequent item-
sets, which requires several parameters. Basically, the algorithm is divisive, frequent
item-sets are clusters (as they are over a set of documents). Each iteration, the best
group of frequent item-sets is used to break down the data into clusters. HFTC
is called recursively on each cluster. HFTC produces clustering of a somewhat
lower quality then bisecting k-means, and is sensitive to parameters used to create
frequent item-sets as well as having a large run-time complexity. Another algorithm
along the lines of HFTC, called FIHC (Frequent Item-Sets Hierarchical Clustering,
Beil et al. [20]) yields better clustering using frequent item sets and is also much
faster then HFTC.

Algorithm 6 Hierarchical Frequent Term Clustering

1: Input: D: set of data points
2: Call = FIS(D)
3: Csuff = {}
4: while

⋃
x∈Csuff

6= D do

5: y = element of Call with least overlap with Csuff

6: Call = Call − y
Csuff = Csuff ∪ y

7: remove documents in y from each cluster in Call

8: end while
9: order Csuff by size

10: for all x ∈ Csuff do
11: children(x) = HFTC(x)
12: end for

Mathematical Methods

A minority of hierarchical clustering algorithms are strongly mathematical. PDDP
(Principal Directions Divisive Partition, Boley [24]) is one such mathematical method.
It generates a binary tree of clusters by recursively splitting the dataset in two (as
with Bisecting K-Means). The hyperplane to split the dataset on is selected using
Singular Value Decomposition (see Section 2.1.4). Simply put, SVD is performed
on the dataset and a hyperplane orthogonal to the largest eigenvector obtained is
used to split the dataset in two. This is performed recursively. PDDP has a large
run-time.
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Conceptual (also called model-based) hierarchical clustering algorithms are sim-
ilar to those discussed in probability distribution subsection of Section 2.2.3 (e.g.,
clusters are described as a model/distribution rather than the points assigned to
them). Cobweb (Fisher [39]) is an incremental conceptual clustering algorithm for
categorical data that builds a classification tree. Each node of the tree is a cluster
(the tree is initialized with a single node), and at the same time it is a classifier.
The methodology is to construct a tree of clusters/classifiers such that the predic-
tive abilities of each node is high 1. Points are ‘dropped’ into the tree at the root
one at a time, and ‘percolate down’, causing possible splits, merges, and new leaves
to form. The split/merge/creation process, and the path the object takes down
the tree are all driven by a heuristic to maximize the predictive ability of the tree.
Cobweb runs in O(tn) time (t is the time through the tree) and is order-sensitive
(different orders of data submission result in potentially very different trees). Fur-
thermore, there is no assurance of a balanced tree as output. CLASSIT (Gennari et
al. [45]) is similar to Cobweb, but uses normal distributions and numeric features.
Labyrinth is an extension of Cobweb (Thompson & Langley [92]).

A different kind of conceptual clustering, called SUBDUE (Jonyer et al. [61]) is
designed for structural data (such as the form of an XML document). For example,
a cluster may be defined as the concept {A, B, C}, where A-B, B-C, and C-A are
connected. All sets of points {x, y, z} where x-y, y-z, and z-x are connected, match
this pattern and might belong in the cluster corresponding to that structure. The
hierarchical aspect of SUBDUE may be observed as follows: Within every structure
of size greater then one there is a substructure of smaller size 2. SUBDUE uses
a depth search to find substructures and is based on MDL. Its main novelty is
the data type it operates on: structural data. Clustering algorithms to handle
structural data are rare.

2.2.6 Other Clustering Methodologies and Principles

As we mentioned at the outset, there is no universally agreed upon way of splitting
clustering algorithms into categories. As a consequence, some algorithms don’t
fit in any of the categories we have discussed. We mention some other clustering
techniques briefly.

Real clustering applications are often forced to deal with constraints. Tung et al.
[93] explain the framework for constraint-based clustering. Constraints can come

1By predictive abilities, we mean nodes are able to accurately select a cluster for a data object.
2Continuing the previous example, {A,B}, where A-B is linked is a substructure, and therefore

that concept is a child concept of the previous one.

47



in many forms: number of clusters, minimum/maximum cluster size, maximum
deviance from a centroid for any point, points that must not be in same cluster,
points that must be in the same cluster, and so forth. Constraints require some
rethinking of previous approaches.

An example of a constraint-based modification is frequency sensitive K-Means
(Banerjee & Ghosh [17]), which uses an altered objective function to help ensure
the minimum number of points in a cluster. There are many algorithms to deal
with practically every kind of constraint.

Support Vector Machines (SVMs) are useful tools that are associated with clus-
tering. SVMs use statistical learning theory to generate functions that can classify
(or perform general regression on) data. For an introduction to SVMs see Cristian-
ini & Shawe-Taylor [30].

Additional clustering approaches include genetic algorithms (Goldberg [46]),
artificial neural networks (ANN), others.
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Chapter 3

Significant Feature Clustering

In this chapter we present our new clustering algorithm, called ”SFC” (Significant
Feature Clustering). We begin by explaining the problem domain in which SFC
is intended to be applied, that being hierarchical text document clustering, and
follow this with a discussion of SFC’s logical basis. Finally, the SFC algorithm is
presented, and we discuss its ability to handle various important issues, including
text-specific and general clustering problems.

3.1 Problem Domain

Our problem domain is text clustering, specifically clustering at the document level,
which includes web pages, newspaper articles, scientific papers, and any other logi-
cally encapsulated block of text. The typical purpose of document-level clustering,
which is our purpose as well, is the creation of a set of clusters in which each clus-
ter corresponds to a topic. The hope is that these topic clusters correspond to
the way a human would organize a document collection. For example, an on-line
library of multi-disciplinary scholarly articles would require topic clusters of fields
of study (i.e., Computer Science, Mathematics, Geology, Psychology, etc.). We add
one additional requirement to the goal of creating topic clusters, that of producing
a hierarchical clustering such as that found on the DMOZ web site [4]. DMOZ’s
hierarchy is a human-crafted organization of a massive collection of web pages in
which leaves of the hierarchy are single web pages. These documents are grouped
under a specific, narrowly defined topic, which is in turn grouped with other narrow
topics to form a more general topic, and so on until everything is under a completely
general root (see Figure 3.1), We aim for a DMOZ-like hierarchy for two reasons:
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Hierarchical clustering methods naturally produce a structure very similar to
DMOZ’s.

Our goal is to create a topic hierarchy for browsing, and DMOZ is a human-
made topic hierarchy intended for browsing that people actually use.
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Figure 3.1: DMOZ
A small section of the hand-made hierarchy of DMOZ topics.

Generating a hierarchical set of topic clusters poses all the standard hierarchical
clustering problems, including time complexity, ability to handle data streams, and
so on. In addition to these, the domain of text poses some additional problems
including the curse of high dimensionality, generating a data representation from
raw text, the need for topics to correspond to existing human classification schemes,
and the inherent ambiguity in assigning a topic, when even human judges may not
agree.

The curse of high dimensionality has received more attention than any of these
other text problems because it affects both the speed and accuracy of clustering,
especially since vectors of weighted word counts are the most common data rep-
resentations for text. These vectors have lengths potentially in the hundreds of
thousands, which makes many hierarchical algorithms unusable on large datasets
as they simply cannot calculate the similarities between all pairs of documents.
Furthermore, these gigantic vectors obscure the small number of dimensions over
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which documents are likely to exhibit similarity, lowering the overall accuracy of a
clustering algorithm. We have already examined a number of approaches to deal-
ing with giant vectors including feature selection, dimensionality reduction, and
clustering algorithms like HFTC [43]. In Section 3.2 below, we discuss a different
way of handling high dimensionality which involves creating a hierarchy based on
clustering with significant dimensions only. As only a fraction of dimensions should
be significant to a single document, this will speed up the clustering as well as
increasing accuracy, providing we compute significances correctly.

For the other problems we mentioned for text clustering, the second issue we
wish to address in this thesis is the most commonly ignored problem in text clus-
tering, that of generating the data representations of documents. How does one
go from the various data formats for documents such as pdf or HTML to a data
representation such as a vector? This process is not part of a clustering algorithm
per se, as most algorithms simply assume data representations are provided from
some other algorithm, and do not discuss how they were generated. Our data
representation is unique so we discuss it here as well.

3.2 Basis of our Algorithm

3.2.1 Generating a Data Representation

Before explaining the basis of our algorithm, we will first describe our method
for generating the weighted vectors to use in our algorithm. Given our document
set D, we can assume we are supplied with a vector of word frequency counts
Di = 〈tfi1, tfi2, ..., tfim〉 for each document of our collection as generating such
vectors is simple enough, even when the original format of the document is not
plain text1.

As we observed in Section 2.1.3, raw count vectors are not particularly useful
for clustering, so weighting functions are used to transform each document’s vector
entries Dik into a value wik, where each wik represents the importance of term k
to document Di based on k’s distribution within Di and D. Most clustering al-
gorithms borrow weighting functions from the information retrieval community (in
which determining word significance is one of the principle research areas). The

1Methods such as pdf2text [7], ps2text [9], HTML Stripper [6], and the like convert non-plain
text formats to plain text. It is then a simple matter to transform the texts to word frequency
count vectors.
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weighting scheme presented by Zhao and Karypis [102] in their study of hierarchi-
cal document clustering is a variant of the tf-idf (term frequency-inverse document
frequency) family of weighting functions. Such functions consist of three compo-
nents: one based on term frequency (count data), one based on inverse document
frequency (one over the fraction of documents containing a term), and a normal-
ization component. These components are multiplied together to generate a single
weight. Table 3.1 lists some possible values for each component.

Tf-idf metrics work well because, in addition to factoring in term frequency and
normalization, they incorporate the notion of inverse document frequency. It has
been observed and empirically verified that, given a document collection of size |D|,
as nj/|D| (document frequency) increases, the discrimination power of j decreases.
By discrimination we mean the ability of j to distinguish one document from an-
other. Clustering is an exercise in discrimination: we determine which points belong
to which clusters. By extension, in the vector space model, a word with high doc-
ument frequency is not significant for clustering as it doesn’t discriminate well.
Such a word should get a low weight because weights measure significance. The
opposite is also true. Tf-idf measures factor in inverse document frequency and as
such, are good weighting functions for clustering. Notice that tf-idf metrics can be
used as simple counts (txx from Table 3.1) and boolean presence indicators (bxx)
in addition to more complex weights such as that discussed by Zhao and Karypis
(tfc).

Term Frequency Inverse Document Frequency Normalization
b 1.0 (0.0 if absent) x 1.0 x 1.0
t tfij f log( n

nj
) c 1s

mP
k=1

w2
ik

n 0.5 + 0.5
tfij

arg
m

max
k=1

tfik

p log(
n−nj

nj
)

l log(1 + tfij)

Table 3.1: Tf-idf weighting schemes
To calculate wij one function is picked from each column. These are combined

together to generate a single weight by multiplying them together. n = |D| (size
of document collection, nj = |{Dx ∈ D : tfxj > 0}| (number of documents

containing 1 or more instances of term j).

Besides tf-idf metrics, there are also distribution-based methods for calculating
wijs. The Two Poisson Model [81] is an example of such a weighting scheme. We
do not discuss functions like this further, as they are not used in clustering.
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The method of weighting we elect to use is the tf-idf variant lfc or:

wij =
(log(1 + tfij)) log( n

nj
)√

m∑
k=1

w2
ik

(3.1)

This function is similar to tfc, except the term component has a log so it grows
slowly. The 1+ within the log is there so that when tfij = 0, log(1 + tfij) =
log(1+0) = log(1) = 0. In other words, when tfij = 0, wij = 0. The normalization
component is essential for dealing with documents that vary significantly in length.

Algorithm 7 is our method for converting raw frequency count vectors to lfc
weighted tf-idf vectors.

Algorithm 7 GenerateRepresentations

1: Input: D: dataset of count vectors
2: w = array of of vectors
3: //Assign Basic Weights
4: for i = 1 to n do
5: for j = 1 to m do
6: wij = log(1 + tfij) log( n

nj
)

7: end for
8: end for
9: //Normalize Each Document’s Weights to Length 1

10: for i = 1 to n do
11: t = 0.0
12: for j = 1 to m do
13: t = t + w2

ij

14: end for
15: t =

√
t

16: for j = 1 to m do
17: wij =

wij

t

18: end for
19: end for
20: return w
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3.2.2 Similarity and Significance

Our goal in this section is to explain our definition for significance of a dimension
to a document. We show how to perform a mapping of real-numbered data vectors
to significance vectors, which are vectors with each dimension assigned a value of
-1, 0, or 1, representing the significance of that dimension to the document.

We begin by defining our notion of significance using weighted vectors produced
by Algorithm 7. This is the standard data representation for text clustering, where
increasing values of a dimension indicate increasing probability of importance. Con-
sider a single dimension of w, numbered k, where µk is the mean value of dimension
k in w:

µk =

n∑
i=1

wik

n
(3.2)

If we place all the µk values for all dimensions together into a single vector, we
have a pseudo-document which we will refer to as µ, which may be thought of as
the average weighted document of D.

Now pick two documents from D, call them Di and Dj, with values wik and
wjk for dimension k respectively. wik > wjk indicates that dimension k is probably
more significant to Di then Dj. Now consider what it means when wik > µk. The
mean is always the centre of gravity for a dataset, that is to say, the point such
that the average absolute distance of other points from it is a minimum is always
the mean.

We argue that, despite the way tf-idf weighting schemes work, for any dimension
k, when wik = µk, k’s probability of significance to Di is a minimum, and not when
wik = 0 or when wik = arg min

wm∈w
wmk. Consider what clustering does: it puts similar

objects in the same cluster, and dissimilar ones in different clusters. If wik = µk,
then other wjk’s have a minimum average distance from wik, meaning that k does
not distinguish Di well from other documents. We further note that, in general,
as wik deviates further from the mean in either direction, for many distributions
(uniform, normal, etc.), the average distance from wik is monotonically increasing.

The fact that deviation from the mean increases average distance from wik

means that k is more significant to Di, as it better differentiates Di from other
documents. However, the type of significance is not the same when below the mean
as above though. Consider a text example where there is a mean weight of 50 for
the word apple in D and we have two documents, one with zero weight and the
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other 100. Clearly, the way in which apple is significant to the document with zero
differs from the significance apple has to the document with 100.

We refer to a dimension k as positive with respect to Di when wik > (µk + ε),
negative to Di when wik < (µk − ε), and neutral where wik = µk. ε is real number
that quantifies how far away from the mean a dimension must be for us to conclude
positive or negative significance. These three definitions can be used to map a real-
numbered dimension to a significance of 1 (positive), 0 (neutral), or -1 (negative).
We will refer to this simple mapping function as fs:

fs(wik) =


1, if wik > (µk − ε).
−1, if wik < (µk − ε).
0, otherwise

(3.3)

If we apply fs to the entire vector wi, we will have mapped our tf-idf vector
to what we refer to as a significance vector. We denote the significance vector
produced by applying fs dimension-wise to wi as Si:

Si = 〈fs(wi1), fs(wi2), · · · , fs(wim)〉 (3.4)

The concept behind a significance vector is to have a clear indication about
which words are important to which document in what way, relative to the entire
document collection. Such an idea is appealing for obvious reasons, but how do we
pick a good ε. We might consider using ε = 0. But if we do this it is more than
likely that there is no Di and k such that wik = µk, so every dimension of Si will be
either a 1 or -1. This is incorrect, as most dimensions of Si should be zero, e.g. only
a small fraction of the dimensions are significant to any one document. Instead, we
select ε based on word distribution information on a dimension-by-dimension basis.

We define a variable α, 0 ≤ α < 2, where αk represents an interval length of the
distribution of weights for dimension k in D, computed as:

αk = α
(arg max

i=1..n
wik − arg min

i=1..n
wik)

2
(3.5)

αk is our uncertainty threshold for dimension k, centred around the mean µk.
When µk − αk ≤ wik ≤ µk + αk, we desire a value of 0 for Sik, and if we make
corresponding adjustments to the definition of -1 or 1 from fs, we have a new fs

given in Equation 3.6. Figure 3.2 illustrates Equation 3.6.
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fs(wik) =


1, if wik > µk + αk.
−1, if wik < µk − αk.
0, otherwise

(3.6)

As α increases, each αk increases, and correspondingly, the number of 1’s and
−1’s for every dimension decreases. There is tradeoff here as we adjust α, with
larger values we are more certain that 1s and −1s assigned by fs correctly reflect
a dimension being significant, but we are less certain that our zeroes are correctly
assigned. This is due to our requirement that the tf-idf values be further away from
the mean to be 1 or −1 with higher α’s, and so less weights satisfy the criterion.

Using our new fs, we refer to dimension k, where fs(wik) = 1 as significantly
positively to Di and significantly negative when fs(wik) = −1. To illustrate our new
definition of fs, Table 3.2 gives a sample of four documents from an artificial dataset,
with α = 0.5 and means and αk’s calculated using the appropriate functions. Table
3.3 shows the significance vectors for each of the four documents, computed using
Equation 3.4 with our second definition fs from Equation 3.6. We will discuss our
technique for selecting an α shortly.

Vector/Dimension 1 2 3 4 5 6 7 8 9
D1 5 -2 4 16 -10 5 11 2 3
D2 12 11 -3 15 -9 25 -9 2 -6
D3 -2 5 -3 15 2 -10 -8 6 -11
D4 6 -5 8 8 -6 0 9 -1 14
µ 5.25 1.75 1.5 12.5 -4.75 4 0.75 2.25 0

αk’s 3.5 4 2.75 2 3 8.75 5 1.75 6.25

Table 3.2: Significance vectors 1
Four vectors of an artificial dataset along with µ and the αk values when α = 0.5

Equation 3.6 is the final fs we will use to generate our Sis. Although the
function can deal with variable requirements of certainty by adjusting α, it still
overlooks some other issues. With our current definition, every dimension will have
a relatively equal number of documents with 1 and −1, but it is known that not
all dimensions have equal distinguishing power, as we discussed in Section 3.2.1.
Thus, for example, the word the, which likely does not help distinguish documents,
will have the same distinguishing power in our model as an obscure word such as
aardvark, which in all likelihood is a powerful distinguisher between documents. It
is therefore desirable to adjust the number of 1’s and −1’s allowed per dimension,
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Vector/Dimension 1 2 3 4 5 6 7 8 9
S1 0 0 0 1 -1 0 1 0 0
S2 1 1 -1 1 -1 1 -1 0 0
S3 -1 0 -1 1 1 -1 -1 1 -1
S4 0 -1 1 -1 0 0 1 -1 1

Table 3.3: Significance vectors 2
The significance vectors for the documents from Table 3.2

based on its distribution information. We do not deal with this aspect here though.
Rather we make the assumption that insignificant words have been removed, via a
method such as a stop list if it is text, or perhaps feature selection/extraction, and
that all other words have roughly the same distinguishing power. This is obviously
not true, but as we will see in the evaluation section, it suffices to produce a good
clustering result.
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Figure 3.2: The modified fs function
A, B, G, I, and J are all neutral with respect to dimension k. D and F are

positive, while C, E, and H are negative.

The algorithm to compute significance vectors from D is given in Algorithm
8. The minimum and maximum value for each dimension are tracked so we can
properly select the size of each αk, and the overall run time is O(nm).
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Algorithm 8 SignificanceVectors

1: Input: w: dataset of weighted vectors, each length 1
2: α: threshold value
3: µ = new vector of 0’s, length m
4: S = new array of significance vectors
5: for j = 1 to m do
6: //Calculate µj, mj, and Mj

7: for i = 1 to n do
8: µj = µj + wij

9: Mj = max(Mj, wij)
10: mk = min(mj, wij)
11: end for
12: µj =

µj

n

13: αk = (Mj −mj))/2α
14: //Assign significance for dimension j
15: for i = 1 to n do
16: Sij = fs(wij)
17: end for
18: end for
19: return S

The Si’s produced in from algorithm 8 are intended to be used in place of the
normal tf-idf vectors for our algorithm during clustering. It may seem like this
choice for data representations would result in an inferior quality clustering, as we
have lost information by mapping from real number to significances, but in fact as
we will show in the testing section, accuracy remains high.

3.2.3 Similarity between Significance Vectors

With our significance vectors created, we now present how to evaluate their simi-
larity. Given Di, Si and Dj, Sj, the function we select to evaluate similarity is the
cosine:

simcos(Di, Dj) =
Si · Sj

‖Si‖‖Sj‖

It is easy to see that where positive and negative dimensions of Si and Sj match
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up, similarity is increased, and where they mismatch similarity drops. This means
that Si and Sj have a high similarity when they overlap in types of dimension
significance, which is exactly what we want.

The usage of cosines for similarity is a simple choice. Significance vectors are
not length-normalized, making the Euclidian distance metric (Equation 2.2) a poor
choice for similarity. This leaves us with the most prominent choice being cosine.
It is possible to use some metric applicable to categorical data such as the Jaccard
coefficient from Table 2.1, as we have mapped real numbers to discrete three-valued
entries which may be viewed as three categories, but given our definition of simi-
larity between clusters that follows, it should be clear why we did not select such a
similarity measure. Cosine adequately captures the amount of overlap between our
significance vectors relative to the maximum they could have.

3.2.4 Similarity between Clusters

Hierarchical clustering algorithms require some definition of similarity between clus-
ters in order to facilitate merging or splitting. For instance, recall that single-link
clustering defines the similarity between two clusters as the similarity of their clos-
est two points, while complete-link uses the furthest pair of points. Rather than
search for the furthest or closest pair of points, or calculating the average distance
as in UPGMA, we elect to represent every cluster as a single vector, reducing a
similarity comparison between clusters to a single cosine operation requiring O(m)
time.

Given some cluster Ci of documents for which we have significance vectors
〈S1, S2, · · · , S|Ci|〉, we refer to its single-vector representation as a probabilistic sig-
nificance vector, which we denote as Pi. The value at Pik corresponds to the ex-
pected significance of k for a document drawn at random from cluster Ci. Calcu-
lating Pik is done by a weighting process 2:

Pik =
1

|Ci|

|Ci|∑
i=1

Sik (3.7)

As Pi quantifies how well the expected significances of each dimension corre-
sponds to a document drawn at random from Ci, we consider it to be a good

2It is clear from this definition that Pi is just the mean/centroid of cluster Ci from this
definition.
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representation for cluster Ci. An illustrative example of calculating Pik’s is given
in Table 3.4, which is based on Tables 3.2 and 3.3.

Cluster/Piks 1 2 3 4 5 6 7 8 9
{1,2} 0.5 0.5 -0.5 1 -1 0.5 0 0 0
{1,3} -0.5 0 -0.5 1 0 -0.5 0 0.5 -0.5
{1,4} 0 -0.5 0.5 0 -0.5 0 1 -0.5 0.5
{2,3} 0 0.5 -1 1 0 0 -1 0.5 -0.5
{2,4} 0.5 0 0 0 -0.5 0.5 0 -0.5 0.5
{3,4} -0.5 -0.5 0 0 0.5 -0.5 0 0 0
{1,2,3} 0 0.33 -0.66 1 -0.33 0 -0.33 0.33 -0.33
{1,2,4} 0.33 0 0 0.33 -0.66 0.33 0.33 -0.33 0.33
{2,3,4} 0 0 -0.33 0.33 0 0 -0.33 0 0
{1,2,3,4} 0 0 -0.25 0.75 -0.25 0 0 0 0

Table 3.4: Probabilistic significance vectors
Pik’s for every cluster of size 2 or greater from table 3.3.

With Pi defined, the similarity between two clusters Ci and Cj can be calculated
as the cosine between their probabilistic significance vectors 3:

simcos(Ci, Cj) =
Pi · Pj

‖Pi‖‖Pj‖

If we are agglomeratively merging clusters, then computing a newly created
cluster’s PS can be done quickly using Algorithm 9. The evaluation of similarity
between clusters is only a single cosine operation. These two factors mean an
agglomerative implementation of SFC will iterate quickly.

Algorithm 9 SFCMerge

1: Input: Ci, Cj: clusters to be merged
2: Cl = Ci ∪ Cj

3: for k = 1 to m do
4: Plk =

|Ci|Plk+|Cj |Pjk

|Cl|
5: end for
6: return Cl

3This is the cosine between means/centroids of the two clusters.
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It is important to note that using averages (otherwise known as centroids) to
represent clusters and clustering based on cosines between averages is not a well-
used clustering technique. It may seem similar to K-Means, but it should be noted
that basic K-Means uses cosines between single points and averages, not between
averages and averages. The reason average-average cosines are not used is simple:
poor clustering results when using tf-idf vectors. We argue that our vectors, with
a properly defined α, are amenable to using average-average cosine clustering.

3.2.5 Selecting an α

Selecting a value of α to use is critical in achieving optimal clustering results in our
algorithm. Before describing a technique for finding such an α, we should note that
there is no reason to believe that a single α value will yield optimal clustering over
different datasets. This is because the weighting functions used (in our case, the
lfc tf-idf function) can create a variety of weight distributions based on underlying
frequency counts, and such changes can greatly alter the effect of a fixed α. Thus
we must look at finding the optimal α for each dataset based on its own property.

As we have said in Section 2.1.8, optimal clustering is an ambiguous term and we
must link it to a specific definition. To that end, we use ”optimal” in the following
sense: when running our final algorithm until we are left with one cluster, e.g., a
tree with a single root, using a variety of different α’s, an optimal α will be one
where the F-measure calculation used in Zhao and Karypis’ hierarchical clustering
review [102] is maximized:

maximize
∑
Lj∈L

nj

|D|
max
Ci∈T

F (Ci, Lj) (3.8)

Note that this maximization is defined over a tree of clusters such as the one in
Figure 2.12, and not a set such as that the evaluation metric used in Hierarchical
Frequent Term Clustering [20].

Obviously, we cannot directly use Equation 3.8 to find such an optimal α, as
in real applications we have no labels. Instead we may use some function that
approximates the equation. It suffices to apply a metric that factors in precision
and recall as the F-measures of Equation 3.8 are based on these. To this end, we opt
to use a metric that rewards clusters for having a high internal similarity, and further
rewards larger clusters more for bearing the same average internal similarity as a
group of smaller clusters that add up to the same size. The first aspect, rewarding
larger internal similarity, may be thought of as precision. Objects of similar labels
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should be highly similar, therefore a cluster with high internal similarity should
exhibit higher precision. The second aspect of rewarding larger clusters more than
a group of smaller ones for exhibiting the same average internal similarity may be
thought of as recall. A larger cluster exhibits higher recall on average.

Before we give the metric we will use in approximating Equation 3.8, we note
that the approximation is based on the tf-idf vectors produced from Algorithm
7, not the significance vectors from Algorithm 8. The reason for this is simple:
with each different α value, the significance vectors change. It is not possible to
accurately compare a quality for, say, α = 0.1 and α = 0.2 on the basis of their
significance vectors, since they are using different ones; their source tf-idf vectors
are the same though. Thus when we say simcos(x, y) in this section, we mean
simcos(wx, wy), where w is the set of tf-idf vectors.

The particular metric we select to try to fulfill our requirements is a variation
of internal similarity given in Equation 3.9 (Zhao and Karypis [102]). Internal
similarity metrics quantify the similarity that data objects have to data objects in
the same cluster. In the case of our metric, φisim(C) is the sum over all clusters of
each cluster’s average internal cosine divided by its size:

φisim(C) =
∑
Ci∈C

∑
x,y∈Ci,y 6=x

simcos(x, y)

|Ci|
(3.9)

As the values for the average within cluster cosine increases, the top part of the
fraction increases, fulfilling our first requirement. The second requirement is not
fulfilled by this equation though. For example, let us say we have two clusters, each
of size y, and each exhibiting average internal similarity x. They each contribute
y2x/x to equation 3.9, for a combined total of 2y2. Now consider one cluster of size
2y, with an average internal similarity of x. This contributes (2y)2x/2y, or 2y2,
the same as the two smaller clusters combined, so our second requirement is not
fulfilled.

As it turns out, factoring recall and precision into a metric in a balanced way
is difficult. The solution we developed is as follows. Recall that we have our cosine
similarity defined between significance vectors. As we have n such vectors, we have
n2 cosines, one for each pair of vectors. Given some cluster Ci, we want to know
how internally similar points are within Ci (equation 3.9) compared to the best
internal similarity possible for a cluster of size |Ci|. Computing the most internally
similar cluster of size |Ci| from D is NP-Hard. To this end, we settle for an upper
bound on this value, which we denote maxcos(D, x). maxcos(D, x) be the maximum
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average sum of x cosines between pairs of vectors in D. Computing maxcos(D, x)
for x = 1 to x = n, assuming cosines have been computed, requires O(n2 log(n)):
O(n2 log(n)) to sort the n2 cosines in descending order and O(n2) to iterate through
the list adding the previous max to the next. As x increases, maxcos(D, x) is
monotonically decreasing. If we use maxcos(D, x) to scale our Equation 3.9 by
division as in Equation 3.10, clusters with lower number of edges, e.g. smaller ones,
will be divided by larger values, and those with more edges will be divided by a
smaller number. In essence, we reward larger clusters, hopefully giving a flavour of
recall to the internal similarity metric without unbalancing the precision aspect.

φisim(C) =
∑
Ci∈C

P
x,y∈Ci,y 6=x

simcos(x,y)

|Ci|

maxcos(D,
∑

Ci∈C

|Ci|(|Ci|−1)
2

)
(3.10)

Equation 3.10 is defined over a set of clusters, not a hierarchy. As the F-measure
we are trying to maximize with internal similarity relies on searching through the
entire tree for the best cluster for each label, we should alter Equation 3.10 in a
similar manner so that it applies to a hierarchy. Specifically, we wish to search
through the hierarchy and select only the best group of clusters, such that their
union equals D. The manner in which we do this can be summarized by a recursive
function β(Ci):

β(Ci) =

{
φisim(children(Ci)), if φisim({Ci}) < φisim(children(Ci)).
φisim({Ci}), otherwise

(3.11)

With this setup, we define the maximum tree internal similarity, or mtis, for a
tree of clusters T :

φmtis(T ) = β(root(T )) (3.12)

Equation 3.12 is our approximation for F-measure. With it, a procedure for
selecting the optimal α can be easily implemented:

1 Select some range and granularity of α to sample. For example, 0 ≤ alpha ≤ 1
with a granularity of 0.1 means we sample α = {0.1, 0.2, · · · , 1.0}.

2 For each α value, run the algorithm to generate a tree T .
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3 Select the α such that equation 3.12 is maximized.

Algorithm 10 lists the necessary adjustments to Algorithm 9 to extract the
β(Ci)’s.

3.3 Significant Feature Clustering

With our foundation defined, we now present our full algorithm, called SFC (Sig-
nificant Feature Clustering). After presenting the full algorithm, we explain how it
deals with various clustering issues.

3.3.1 The SFC Algorithm

We give an agglomerative implementation of SFC in Algorithm 12. Algorithm 11,
called by SFC, computes the tf-idf cosines needed for computing the β’s.

Algorithm 10 SFCMerge2

1: Input: Ci, Cj: clusters to be merged
2: Cl = Ci ∪ Cj

3: for k = 1 to m do
4: Plk =

|Ci|Plk+|Cj |Pjk

|Cl|
5: end for

6: β(Cl) =

{
φisim({Ci}) + φisim({Cj}), if φisim({Cl}) < φisim({Ci}) + φisim({Cj}).
φisim({Cl}), otherwise

7: return Cl
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Algorithm 11 Cosines

1: Input: w: set of tf-idf vectors
2: cos = two dimensional array of cosines
3: for i = 1 to n do
4: for j = 1 to n do
5: cosij = simcos(wi, wj)
6: end for
7: end for
8: return cos

3.3.2 Time Complexity

It should first be noted that most of the algorithms discussed in Chapter 2 ab-
stract away from the notion that each data object is a vector. Clustering typically
requires computing similarity between each pair of points for a run-time cost of
O(n2m). We do not use the clustering convention of ignoring the time to create
data representations. We now compute the overall run-time cost by breaking down
the cost of the algorithm line by line and then grouping these until we have the
complexity of the entire algorithm in our scope.

Lines 1-2 Parameters, no run-time cost.

Lines 3-4 Constant time operations to initialize the best tree to null and the best
maximum tree internal similarity to zero.

Line 5 Calls Algorithm 7. This Algorithm contains two double for-loops, each
one iterating over n then m for a run-time of O(nm).

Line 6 Calls Algorithm 11. With n vectors over which cosines must be computed
(each of length m) the cost is O(n2m).

Lines 7-10 Sorting the values from line 6 takes O(n2 log(n)) time. Iterating
through maxList on lines 8-10 takes O(n2) time. Combining these, the complexity
is O(n2 log(n)).
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Algorithm 12 SFC

1: Input: D: raw frequency count vectors
2: F : set of alpha values to sample
3: Tbest = {}
4: MaxMtis = 0
5: w = GenerateRepresentation(D)
6: cos = Cosines(w)
7: maxList = descending sorted single dimensional array of values from cos
8: for i = 2 to n(n−1)

2
do

9: maxListi = maxListi + maxListi−1

10: end for
11: for f ∈ F do
12: S = SignificanceVectors(w,f)
13: C = empty set of clusters
14: for i = 1 to n do
15: Ci = new cluster with Pi = Si

16: β(Ci) = 0
17: C = C ∪ Ci

18: end for
19: while |C| > 1 do
20: Ci, Cj = arg max

x∈C,y∈C,x 6=y
simcos(Px, Py)

21: Cl = SFCMerge2(Ci, Cj)
22: C = (C − Ci)− Cj

23: C = C ∪ Cl

24: end while
25: T = tree rooted at C
26: if φmtis(T ) > MaxMtis then
27: MaxMtis = φmtis(T )
28: Tbest = T
29: end if
30: end for
31: return Tbest

Lines 1-10 The complexity is dominated by the cost of sorting in lines 7-10,
which means the overall complexity is O(n2 log(n)).

Line 12 Calls Algorithm 8, which iterates over m then n taking O(nm) time.
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Line 13 Constant time operation.

Lines 14-17 A for-loop to initialize clusters before starting clustering that takes
O(n) time.

Line 20 Assuming that cosines are stored in sorted lists for each cluster, we must
look at the first entry for each of up to n such lists to find the best similarity, taking
O(n) time.

Line 21 Calls Algorithm 10, which calculates a new probabilistic significance
vector in O(n) time. Computing a new β value, if done naively, takes up to O(n2)
time, but we will describe below a way around this. These two operations together
take O(n2) time. As well, we must calculate cosines between the new cluster and
other clusters which takes O(nm) time, and sort these similarities in O(n log(n))
time.

Lines 22-23 Constant-time operations.

Lines 19-24 The heart of the SFC algorithm. The while-loop assumes cosines
have been precomputed and sorted for each cluster, for O(n2 log(n)) complexity.
The loop itself iterates n− 1 times, which may appear to give the while-loop O(n3)
complexity as line 21 requires O(n2) time. The principal cost in Line 21 is calcu-
lating a new β, specifically calculating the internal similarity of the new cluster.
However, we have already computed the total internal cosines of its two children
as part of calculating each one’s β. Thus we need only add in the cosines between
the clusters, then divide by the new cluster size times the appropriate value from
maxList. No edge will have to be added twice, meaning computing new β’s takes at
most O(n2) time over the entire while loop, not per iteration. This means Line 21’s
complexity is actually max(O(n log(n)), O(nm)). Factoring in the while-loop over n
and the required cosine calculations/sorting, lines 19-24 have an overall complexity
of max(O(n2 log(n)), O(n2m)).

Lines 25-29 All constant time operations.

Lines 11-30 Clearly, the most expensive operation within the for-loop is the
while-loop. Adding in the additional complexity of O(|F |), we have a run-time of
max(O(|F |n2 log(n)), O(|F |n2m)).
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Line 31 Constant time operation.

Entire Algorithm For the two large sections (lines 1-10 and lines 11-30) the lat-
ter is more costly, giving an overall run-time of max(O(|F |n2 log(n)), O(|F |n2m)).
This run-time may seem larger than other hierarchical methods, but it should be
noted that |F | is small (in our evaluation section, it is 100). Furthermore, as α
increases, the number of features being used in the clustering is decreased sig-
nificantly, increasing speed. It is not possible to quantify the expected increase
as it varies based on the dataset, but it is significant as will be discussed in the
evaluation section. As a side note, if we do not factor in the cost of generating
data representations, as most clustering algorithms do not, the run-time becomes
O(|F |n2 log(n)).

3.3.3 Feature Types

SFC is applicable to numeric data only. While other linkage-based hierarchical
clustering algorithms may be applied to any kind of data because any similarity
metric/data type combination may be used, SFC is based on transforming tf-idf
vectors to significance vectors, both of which are numeric in nature. This is not a
flaw, as the vast majority of text-clustering algorithms are numeric (even HFTC
and FTHC, which do not use numbers during clustering, generate their frequent
item-sets from initial numeric frequency count vectors).

3.3.4 Outliers and Noise

The potential for noise and outliers affecting clustering quality of SFC has not been
evaluated formally. However, it is reasonable to assume that using an average-
average calculation for cosines will-be fairly robust in the presence of outliers and
noise. We may reason as follows: Consider a single point of outlier/noise and a
cluster. If the cluster and this point exhibit a high similarity, then the outlier/noise
must not be an outlier/noise at all, as it is near the average of the cluster and
therefore fits nicely in it. There is no such assurance of position relative to the
cluster for the other linkage metrics we have discussed.
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3.3.5 Real-time or Batch Data

SFC is designed to handle only batch data. In its current form, it is not amenable to
handling real-time data, but using significance vectors for data stream algorithms
such as incremental K-Means is possible.

3.3.6 Scalability

Unfortunately, as it stands, SFC has poor scalability in terms of number of docu-
ments. It is highly desirable to be able to select a single α to use rather then iterate
through a list of them as we do now. If this could be done, the run-time of SFC
would be the same as other linkage metrics. This would still be too slow for large
datasets though, so sample-based methodology would need to be introduced into
SFC (as used in ROCK and CURE) for further speedup. In terms of dimension-
ality scalability, Section 4.5 will show that quality remains high relative to other
approaches even when dealing with high dimensionality datasets.

3.3.7 Output and Understandability

Since SFC follows a standard agglomerative hierarchical clustering template, its
output is a dendrogram. Dendrograms are particularly useful for browsing and are
easy to understand. An interesting property of the output that is specific to SFC
alone is that, given some threshold γ, 0 ≤ γ ≤ 1, every cluster in the tree can be
easily represented as a list of words where each word’s entry in the probabilistic
significance vector of cluster is greater then γ. In essence, we have frequent-word
sets for each cluster.

3.3.8 Parameters

SFC requires only one parameter, α, or rather, the set of values of α which we
wish to search through for an optimal mtis clustering to return. As the number
of α values searched increases, we can expect correspondingly better results along
with increased time. A user therefore does not need to select an α, rather just two
items: the number of runs of SFC he/she is willing to run through (|F |) for results
and range from αmin to αmax (which may be avoided by specifying the entire range
of 0 to 2). With this setup, sample points are at αmin, αmin + αmax−αmin

|F | ,αmin +
2(αmax−αmin)

|F | ,· · · , αmax.
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3.3.9 Order Invariance

The notion of order invariance is used only in data-stream and sample-based meth-
ods. As SFC is neither, order invariance is not applicable to SFC.
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Chapter 4

Evaluation

In this section, we present our evaluation of SFC. We begin by defining our quality
metric, then the algorithms we will test SFC against, followed by test data and test
method. We then discuss our test results, and various other observations about
SFC.

4.1 Quality Metric

The metric we selected to use for our evaluation is the F-measure used in Zhao and
Karypis’ clustering review [102]. We have already explained it, but we do so here
again for clarity. Given a dataset D, with each Di ∈ D having one label drawn
from a fixed set of possible labels L = {L1, L2, ..., }, and a cluster Ci, let nij denote
the number of documents in Ci with the label Lj, and nj denote the number of
documents in D with label j. The precision of Ci with respect to the label Lj is:

precision(Ci, Lj) =
nij

|Ci|
(4.1)

and the recall of Ci with respect to Lj is:

recall(Ci, Lj) =
nij

nj

(4.2)

The F-measure of cluster Ci with respect to the label Lj, which we denote as
F (Ci, Lj), is calculated as:
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F (Ci, Lj) =
2 ∗ precision(Ci, Lj)recall(Ci, Lj)

precision(Ci, Lj) + recall(Ci, Lj)
(4.3)

The overall quality of a tree of clusters T , which we denote as φ(T ), is:

φ(T ) =
∑
Lj∈L

nj

|C|
max
Ci∈T

(F (Ci, Lj)) (4.4)

It seems reasonable to use this metric as a definition of quality for two reasons.
First, and most important, f-measures are the standard way to measure the quality
of text clustering. Secondly, we are returning a clustering that maximizes a metric
designed to approximate this exact F-measure. This is why we use this F-measure
and not one such as that given in HFTC [20], which is based on a set of clusters
and not a tree.

4.2 Test Algorithms

We compare SFC against 3 standard algorithms:

1. SLINK [88]

2. CLINK [33]

3. UPGMA [89]

There are a number of reasons for selecting UPGMA, SLINK, and CLINK as
SFC’s competitors. SFC is from the linkage family of hierarchical clustering algo-
rithms, as are the other three. UPGMA is one of the best agglomerative clustering
algorithm in terms of any quality measure and serves as a reference for SFC to aim
to surpass. As SLINK’s typical results are very poor quality, it serves as a baseline.
If an algorithm is doing worse then SLINK, it is a clear indication that it is not
working well. CLINK is more robust then SLINK, but still considerably less so than
UPGMA. All three of these algorithms are very well known, and their run-times are
close to SFC’s. We therefore feel they will be good comparisons to SFC. For testing
purposes, we used the implementations of UPGMA, CLINK, and SLINK provided
by Cluto [62], a clustering toolkit created by Karypis. This clustering toolkit has
been used in several published works.
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4.3 Test Data

The datasets we used to test the algorithms are also from the Cluto web site. The
test data is in the form of document vectors files (called .mat files) containing word
frequency counts. Additionally, files containing the correct labels for each document
are supplied (.mat.rclass files). The specifications of the seven test sets we used are
given in Table 4.1.

Set Source Size # of Labels # of Terms
fbis FBIS (TREC) 2463 17 2000
hitech San Jose Mercury (TREC) 2301 6 22498*
k1a WebACE 2340 20 12879
k1b WebACE 2340 6 12879
re0 Reuters-21578 1504 7 2886
re1 Reuters-21578 1657 25 3758
wap WebACE 1560 20 8460

Table 4.1: Test data
The seven datasets UPGMA, CLINK, SLINK, and SFC used in our testing. The
term count for the hitech dataset is so marked because in previous publications it

had an incorrect value.

The hitech dataset is a collection of articles from the San Jose Mercury news-
paper, and was used in TREC (Text REtrieval Conference [10]). Likewise, the
FBIS dataset (Foreign Broadcast Information Service) was used at TREC. Wap is
a collection of web pages from the yahoo web page directory [11], and, together
with kla and klb, is from the WebACE project [51]. K1a and k1b are particularly
interesting as they contain the same documents, but k1a has a finer-grained set of
labels. The re0 and re1 datasets are parts of the Reuters-21578 collection [69]. All
of these sets have been used in several text application tests, and provide a good
range of document source type, number of terms, and number of different labels.
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4.4 Method

For UPGMA, CLINK, and SLINK, we ran their Cluto implementation from the
command line 1 2. The parameters we supplied give a term weighting model ba-
sically identical to ours (Equation 3.1), and indicate that the cosine is to be used
to evaluate similarity (also like our method). For each clustering method/dataset
pair, we ran Cluto until only one cluster remained, and evaluated the F-measure
described in Section 4.1. The results of these tests are presented in Table 4.2.

For SFC, we implemented Algorithm 12 ourselves. For each dataset, we used the
Algorithm with α = {0.00, 0.02, 0.04, 0.06, · · · , 1.98} (100 values). In Table 4.2,
we present the F-measure of clustering selected that maximizes our mtis Equation
3.12, along with the α value that generated it.

4.5 Results

4.5.1 F-measure

Table 4.2 presents the F-measures obtained on the seven test sets for our four
algorithms.

From Table 4.2, it is clear SFC is superior, in terms of F-measure, then SLINK,
and is likewise superior to CLINK in all cases. Although SFC only surpasses UP-
GMA once, only one of its clusterings is significantly worse then UPGMA’s result,
namely the result for re1.

4.5.2 Correlation of mtis and F-measure

Recall that when we were designing a metric to calculate the optimal clustering to
return as α varies, we discussed the following equation for internal similarity:

1The command was vcluster -clmethod=agglo -crfun=< X > -sim=cos -rowmodel=log -
colmodel=idf -rclassfile=< Y >.mat.rclass < Y >.mat < N >

2< X > is the appropriate clustering algorithm name (upgma, slink, or clink), < Y > is the
name of the dataset being tested (hitech, wap, etc.), and < N > is the number of clusters desired
in the final solution. Vcluster is the name of the Cluto clustering program that clusters data from
.mat files as input.
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Set/Method UPGMA CLINK SLINK SFC
hitech 0.510 0.351 0.336 0.453,α = 0.920
fbis 0.675 0.574 0.216 0.633,α = 0.580
re0 0.586 0.442 0.359 0.545,α = 0.620
re1 0.700 0.500 0.291 0.532,α = 0.700
k1a 0.641 0.550 0.257 0.677,α = 1.120
k1b 0.892 0.684 0.603 0.871,α = 1.120
wap 0.630 0.496 0.450 0.593,α = 0.760

Table 4.2: F-measures test results
The results for UPGMA, CLINK, SLINK, and SFC run on the seven test sets.

For SFC, we present the F-measure of the clustering selected automatically by the
algorithm, along with the α that generated it.

φisim(C) =
∑
Ci∈C

∑
x,y∈Ci,y 6=x

simcos(x, y)

|Ci|

We stated this equation did not accurately implement our recall requirement.

We modified this metric to compensate for recall, but the motivation for the
modification was not backed by a formal proof, only an intuition. Here we give
empirical evidence that our modified metric is indeed a better way of selecting
an optimal clustering to return. To show this, we first calculate mtis values using
Equation 3.9 instead of Equation 3.10 for the three datasets FBIS, kla, and wap. We
use Equation 3.9 to illustrate how poorly correlated mtis is without a modification
for recall (see Figure 4.1). The r values displayed in Figure 4.1 are linear correlation
values, i.e., how much of the variance for F-measure can be accounted for by the
variance in mtis. Note the low values, indicating poor correlation. Mtis does not
correspond well to F-measure without our recall modification.

Figure 4.2 plots mtis versus F-measure for the same three datasets, except that
we factor in our maxcos(D, x) using Equation 3.10. The correlation for each dataset
is much greater than that in Figure 4.1. We have omitted the other four datasets to
save space, but all follow the same trend of higher correlation when using Equation
3.10. Given this, we can conclude our new metric is indeed a better way to select
an optimal F-measure clustering.
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Figure 4.1: Correlation without compensating for cluster sizes.
(a) is the FBIS dataset, (b) is kla, and (c) is wap. The linear correlation values

are the r’s on each graph. All the correlations are low.

4.5.3 α and F-measure

It is desirable to understand how F-measure changes as α varies, to identify general
trends over multiple datasets, and to possibly design a method with low time-
complexity to select an optimal α than testing a large set of different values. Figure
4.3 shows how F-measure varies for four of our datasets.

From Figure 4.3, we can observe that each plot has a slight peak, some larger
than others, but none of the peaks are overly ”sharp”. We further note that after
each peak there is constant, slow downgrade in the F-measure of the clustering
solution. The oscillations in each curve is a property common to all agglomerative
clustering techniques, caused by a single decision early on have the potential to
greatly affect the final output clustering.
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Figure 4.2: Correlation with compensating for cluster sizes.
(a) is the FBIS dataset, (b) is kla, and (c) is wap. The linear correlation values

are the r’s on each graph. Note that for all three datasets, the correlation between
mtis and F-measure is substantially higher than the values without compensating

for cluster size in Figure 4.1.

4.5.4 α and Features Remaining

As α increases, the number of non-zero features per vector decreases, resulting in
decreases in both the time and space requirements of SFC. Figure 4.4 shows the
percentage of features (words) remaining in total for all vectors versus α for each
dataset.

The slope of the curves in Figure 4.4 shows that features drop off rapidly until
roughly α = 1.00. Furthermore the general form of the curve is identical for each
dataset. An interesting thing to note is that all the optimal clusterings returned
by SFC have α = 0.580 or greater, at which point there is 50% or fewer features
remaining. K1a and k1b peak at α = 1.120, at which point only 20% of the
features are remaining. This indicates many features are noise, at least as far as
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Figure 4.3: How F-measure varies with α
A plot of four of our datasets’ (hitech, k1a, re0, and re1) F-measure values as α

varies.

our algorithm is concerned.

4.6 Discussion

The significance vectors used in SFC are, by and large, boolean vectors of zeroes and
ones. This conclusion can be drawn by understanding our tf-idf weighting scheme.
In such a weighting scheme, the mean weight for each dimension is generally close
to zero, leaving a very small range of values that are below the mean. Even a small
α will enforce µk − αk ≤ wik for any dimension k and document i. Examining
equation 3.6, we note that having this property enforces either a one or zero value
for every Sik, thus we have boolean significance vectors unless α is very small.

Basic boolean vectors are very poor choices of data representations, but as SFC
uses boolean representations and yields good F-measures, we must conclude that
our significance vectors properly reflect, to some extent, which terms are signif-
icant to which document. If we can accurately represent significance using just
our Boolean vectors, then perhaps tf-idf vectors are not the ideal choice for data
representations in clustering. Certainly, other approaches already exist to cluster

78



Figure 4.4: Percentage features remaining versus α
All the datasets follow a similar, smooth quickly dropping curve that levels off.

documents that are initially represented as frequency counts only, without map-
ping to tf-idf vectors. Such methods include links (ROCK [48]) and frequent item
sets (HFTC [20], FTHC [43]), but few papers examine the effect that using differ-
ent kinds of weighted vectors have on clustering quality. One conclusion we may
draw from this thesis is that we should examine different and new vector-weighting
methods, rather then just focus on new clustering algorithms. Just because tf-idf
variants happen to be the de facto standard does not mean they should be so in
clustering algorithms.

Another important aspect of our research is our new internal similarity metric
which we call maximum tree internal similarity, which is defined over a tree of clus-
ters. Defining the quality of a tree of clusters has always been a difficult process,
but we have shown that mtis is better correlated with F-measure then internal sim-
ilarity. The key, as we have also shown, is the maxcos(D, x) component, which adds
an element of recall to a metric that is otherwise exclusively quantifying precision.
If a more refined way of factoring in recall could be found, mtis might be used
to select an optimal clustering of text from any number of cluster hierarchies of a
dataset, where different algorithms constructed each tree.

Despite the power of our mtis metric and the revelation our research provides
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about using different vectors, SFC itself is not practical in its current form. The
run time is just too high, being equal to running a standard linkage multiplied by
whatever number of α we examine. There is a pressing need for SFC to be able
to select a single α value quickly, or just a small number. Examining Figure 4.3
suggests that it is possible to select an optimum α. We can observe there is a definite
curve to each F-measure versus α plot, meaning a maximum can be found (ignoring
the oscillations, which are, as we have said, not entirely avoidable in agglomerative
clustering). If a good α can be found, then by combining it with existing speed-
up methods such as sampling, SFC can be extremely fast as it uses vectors that
are potentially only a fraction of the size of normal tf-idf vectors. Unfortunately,
given SFC’s current state, it is preferable to use UPGMA, as UPGMA is faster and
slightly more accurate for almost all data sets.

4.7 Future Work

We consider the most notable directions for future work arising from our research
to be:

Removal of Negative Significance As noted in Section 4.6, -1’s are not even
present when α is of any reasonable size. It would thus be desirable to revise some
of our definitions so that our system is truly only dealing with zeroes and ones.
The principal benefit of this change is clarity of methodology. Also, we could, for
instance, use logical ‘and’ operations to compute dot products if our significance
vectors are Boolean, making cosine computations faster. Alternatively, we could
try methods to enforce -1’s in equal proportion to 1’s.

Estimating α Quickly Currently, we iterate over a range of α values and return
the clustering which yields the best mtis value. This method produces good results,
but is very slow. In order to select α quickly, we must use information that can
be computed quickly, such as the basic word frequency count vectors or the tf-idf
vectors. We are particularly interested in further study of tf-idf vectors, and believe
that their distribution of weights may suggest an appropriate α.

Improving fs As it stands, our fs function assigns roughly the same number of
non-zero values to every dimension, but as we discussed in Section 3.2.1, some words
are better distinguishers than others. Such words should have a larger number of

80



non-zero entries. To this end, we should alter Equation 3.6. One possible alteration
is to assign the x top weights for a dimension k to be one, where x is some function
of k’s distribution in D, likely document frequency information.

Improving and Testing Mtis Mtis is well-correlated with F-measure, but the
method with which we generated the correlation is suspect. We should incorporate
a more principled notion of recall. This is a difficult task, as we must balance
the recall aspect with the precision aspect, where both are just approximations (of
true recall and true precision respectively). A better recall aspect than the one we
selected would be some function of the amount of similarity a cluster has internally
and the amount it has to objects outside itself. The function must be designed
carefully, lest it overpower precision and always favour larger clusters. Another
aspect of mtis is examining if one can select the optimal F-measure from trees
produced by many different clustering algorithms using it.

Other Weighting Functions We would like to examine the effect of using var-
ious other weighting functions besides tf-idf values, ones not typically used in clus-
tering, and to try and determine what kind of vectors are most suited to clustering.
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Chapter 5

Conclusion

In this thesis, we presented a new text-clustering algorithm called Significant Fea-
ture Clustering. SFC’s methodology is based on determining which words are
significant to documents. To do this, our algorithm first generates standard tf-idf
vectors from frequency count vectors, then maps these tf-idf vectors, using a param-
eter α, to significance vectors which contain entries representing whether each word
is neutral, positive, or negative to a document. We demonstrated that by careful
selection of α, the significance vectors produced accurately reflect the significances
that words have to documents. By using an agglomerative implementation of SFC
which merges clusters exhibiting the highest centroid cosine similarity, we were able
to obtain final F-measures nearly as good as one of the more powerful agglomer-
ative hierarchical clustering algorithms, group-average clustering. As part of this
research, we developed a metric that is correlated with F-measure and does not use
labels. This metric enabled the selection of a near optimal-clustering from a set of
clusterings, each one created with a different α value.

However, SFC is too costly to run as presented here, but further research may
allow its run-time to be significantly reduced. If so, then, considering the good
F-measures we have obtained thus far, SFC may be applicable to large real data
sets. The mtis value SFC uses to select a good clustering to return appears to be
highly useful in its own right, and is certainly worth examining further. If this
crude metric can correlate so well with F-measure relative to other metrics, then
with further refinement it may be possible to create a mtis that is well-correlated
with F-measure to use for any set of clusterings from a variety of algorithms, and
reliably pick the best one.

Lastly, we again note that our research has revealed that standard tf-idf vectors
may not be the best vector representation to use in clustering. This suggests that
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researchers should not only investigate new clustering algorithms, but also new data
representations more amenable to clustering.
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[40] Foss, A., and Zäıane, O. R. A parameterless method for efficiently dis-
covering clusters of arbitrary shape in large datasets. In Proceedings of the
2002 IEEE International Conference on Data Mining (2002), pp. 179–186.

[41] Fraley, C., and Raftery, A. MCLUST: Software for model-based cluster
and discriminant analysis. Tech. Rep. 324, Department of Statistics, Univer-
sity of Washington, 1999.

[42] Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed. Aca-
demic Press, San Diego, CA, 1990.

[43] Fung, B. C., Wang, K., and Ester, M. Hierarchical document cluster-
ing using frequent itemsets. In Proceedings of the 2003 SIAM International
Conference on Data Mining (2003), pp. 59–70.

[44] Gale, W. A., Church, K. W., and Yarowsky, D. A method for
disambiguating word senses in a large corpus. Computers and the Humanities,
26 (1992), 415–439.

[45] Gennari, J., Langley, P., and Thompson, K. Models of incremental
concept learning. Artificial Intelligence, 40 (1987), 11–61.

[46] Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, 1989.

[47] Guha, S., Rastogi, R., and Shim, K. CURE: An efficient clustering algo-
rithm for large databases. In Proceedings of the ACM SIGMOD International
Conference on Data Management (1998), pp. 73–84.

88



[48] Guha, S., Rastogi, R., and Shim, K. ROCK: A robust clustering al-
gorithm for categorical attributes. In Proceedings of the 15th International
Conference on Data Engineering (1999), pp. 512–521.

[49] Guo, A. A new framework for clustering algorithm evaluation in the do-
main of functional genomics. In Proceedings of the 2004 ACM Symposium on
Applied Computing (2004), pp. 143–146.

[50] Hamerly, G., and Elkan, C. Alternatives to the k-means algorithm that
find better clusterings. In Proceedings of the 11th International Conference
on Information and Knowledge Management (2002), pp. 600–607.

[51] Han, E., Boley, D., Ginii, M., Gross, R., Hastings, K., Karypis,
G., Kumar, V., Mobasher, B., and Moore, J. WebACE: A web agent
for document categorization and exploration. In Proceedings of the 2nd In-
ternation Conference on Autonomous Agents (1998).

[52] Har-Peled, S., and Sadri, B. How fast is the k-means method. In Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (2005),
pp. 887–885.

[53] Hartigan, J. Clustering Algorithms. John Wiley & Sons, Inc., New York,
NY, 1975.

[54] Hinneburg, A., and Keim, D. A. An efficient approach to clustering
large multimedia databases with noise. In Proceedings of the 4th Internation
Conference on Knowledge Discovery in Databases (1998), pp. 58–65.

[55] Hinneburg, A., and Keim, D. A. Optimal grid-clustering: Towards break-
ing the curse of dimensionality in high-dimensional clustering. The Very Large
Database Journal (1999), 506–517.

[56] Hipp, J., Guntzer, U., and Nakhaeizadeh, G. Algorithms for as-
sociation rule mining - a general survery and comparison. ACM SIGKDD
Explorations 2 (2000), 58–64.

[57] Hoffman, T. Probabilistic latent semantic analysis. In Proceedings of the
22nd ACM Conference on Research and Development in Information Re-
trieval (1999), pp. 50–57.

[58] Huang, Z. Extensions to the k-means algorithm for clustering large data sets
with categorical values. Data Mining and Knowledge Discovery 2, 3 (1998),
283–304.

89



[59] Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: A review.
ACM Computing Survey 31, 3 (1999), 264–323.

[60] John, G. H., Kohavi, R., and Pfleger, M. Irrelevant features and the
subset selection problem. In Proceedings of the 10th International Conference
on Machine Learning (1993), pp. 25–32.

[61] Jonyer, I., Cook, D. J., and Holder, L. Graph-based hierarchical
conceptual clustering. The Journal of Machine Learning 2 (2002), 19–43.

[62] Karypis, G. Cluto. http://www-users.cs.umn.edu/∼karypis/cluto/.
Visited January 2006.

[63] Kasturi, J., and Acharya, R. Clustering of diverse genomic data using
information fusion. In Proceedings of the 2004 ACM Symposium on Applied
Computing (2004), pp. 116–120.

[64] Kaufman, L., and Rousseeu, P. Finding Groups in Data. John Wiley &
Sons, Inc., New York, NY, 1990.

[65] Kim, Y., Street, W. N., and Menczer, F. Feature selection in un-
supervised learning via evolutionary search. In Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2000), pp. 365–369.

[66] Kohavi, R., and John, G. H. Wrappers for feature subset selection.
Artificial Intelligence 97, 1-2 (1997), 273–324.

[67] Kriegel, H. P., and Pfeifle, M. Density-based clustering of uncertain
data. In Proceedings of 11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (2005), pp. 672–677.

[68] Leuski, A. Evaluating document clustering for interactive information re-
trieval. In Proceedings of the 10th International Conference on Information
and Knowledge Management (2001), pp. 33–40.

[69] Lewis, D. D. Reuters-21578 text categorization test collection distribution
1.0. http://www.research.att.com/∼lewis. Visited January 2006.

[70] Lewis, D. D., and Ringuette, M. Comparison of two learning algo-
rithm for text categorization. In Proceedings of the 3rd Annual Symposium
on Document Analysis and Information Retrieval (1994), pp. 83–91.

90



[71] Li, T., Ma, S., and Ogihara, M. Entropy-based criterion in categorical
clustering. In Proceedings of the 21st International Conference on Machine
Learning (2004), pp. 68–75.

[72] MacQueen, J. Some methods for classification and analysis of multivariate
observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statitics and Probability (1967), pp. 281–298.

[73] Mandhani, B., Joshi, S., and Kummamuru, K. A matrix density based
algorithm to hierarchically co-cluster documents and words. In Proceedings
of the 12th International Conference on the World Wide Web (2003).

[74] Manning, C. D., and Schütze, H. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge Massachusetts, London
England, 2003, ch. 16.

[75] Neal, R., and Hinton, G. A View of the EM Algorithm that Justifies In-
cremental, Sparse, and other Variants. Kluwer Academic Publishers, Norwell,
MA, 1998, ch. 12, pp. 355–368.

[76] Ng, C., Sia, K., and Chan, C. Peer clustering and firework query model.

[77] Ordonez, C. Clustering binary data streams with k-means. In Proceedings
of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (2003), pp. 12–19.

[78] Parsons, L., Haque, E., and Liu, H. Subspace clustering for high dimen-
sional data: A review. ACM SIGKDD Explorations Newsletter 6, 1 (2004),
90–105.

[79] Pelleg, D., and Moore, A. X-means: Extending k-means with efficient
estimation of the number of clusters. In Proceedings of the 17th International
Conference on Machine Learning (2000), pp. 727–734.

[80] Rissanen, J. Modeling by shortest data description. Automatica 14 (1979),
465–571.

[81] Robertson, S. E., and Walker, S. Some simple effective approximations
to the 2-poisson model for probabilistic information retrieval. In Proceedings
of the 1994 ACM SIGIR (1994), pp. 232–241.

[82] Salton, G., Yang, C. S., and Yu, C. T. A vector space model for
automatic indexing. Communications of the ACM 18 (1975), 613–620.

91



[83] Sander, J., Ester, M., Kriegel, H., and Xu, X. Density-based clus-
tering in spatial databases: The algorithm gdbscan and its applications. Data
Mining and Knowledge Discovery 2 (1998), 169–194.

[84] Sato, M., and Ishii, S. On-line EM algorithm for the normalized Gaussian
network. Neural Computing 2, 12 (2000).

[85] Schikuta, E. Grid-clustering: An efficient hierarchical clustering method
for very large data sets. In Proceedings of the 13th International Conference
on Pattern Recognition (1996), pp. 101–105.

[86] Schikuta, E., and Erhat, M. The bang-clustering system: Grid-based
data analysis. Lecture Notes in Computer Science 1280 (1997), 513–524.

[87] Sheikholeslami, G., Chatterjee, S., and Zhang, A. Wavecluster:
A multi-resolution clustering approach for very large spatial databases. In
Proceedings of the 24th International Conference on Very Large Databases
(1998), pp. 428–439.

[88] Sibson, R. SLINK: An optimally efficient algorithm for the single link cluster
method. The Computer Journal, 16 (1973), 30–34.

[89] Sneath, P. H., and Snokal, R. R. Numerical Taxonomy. W.H. Freeman
and Company, San Francisco, CA, 1973.

[90] Steinbach, M., Karypis, G., and Kumar, V. A comparison of document
clustering techniques. In KDD Workshop on Text Mining (2000).

[91] Strehl, A., and Ghosh, J. Value-based customer grouping from large
retail data-sets. In Proceedings of the SPIE Conference on Data Mining and
Knowledge Discovery (2000), vol. 4057, pp. 50–57.

[92] Thompson, K., and Langley, P. Concept Formation Knowledge and
Experience in Unsupervised Learning. Morgan Kaufmann Publishers, Inc.,
San Francisco, CA, 1991.

[93] Tung, A. K. H., Ng, R. T., Lakshmanan, L. V. S., and Han, J.
Constraint-based clustering in large databases. In Proceedings of the 8th
International Conference on Database Theory (2001), pp. 405–419.

[94] Voorhees, E. M. Implementing agglomerative hierarchical clustering algo-
rithms for use in document retrieval. Information Processing and Manage-
ment 20, 6 (1986), 465–476.

92



[95] Wang, W., Yang, J., and Muntz, R. Sting: A statistical information
grid approach to spatial data mining. In Proceedings of the 23rd International
Conference on Very Large Databases (1997), pp. 185–196.

[96] Wang, W., Yang, J., and Muntz, R. Sting+: An approach to active
spatial data mining. In Proceedings of the 1999 International Conference on
Data Engineering (1999), pp. 116–125.

[97] Weiner, E., Penderson, J. O., and Weigend, A. S. A neural network
approach to topic spotting. In Proceedings of the 4th Annual Symposium on
Document Analysis and Information Retrieval (1995), pp. 317–322.

[98] Wu, J., and Lin, Z. Research on customer segmentation model by cluster-
ing. In Proceedings of the 7th International Conference on Electronic Com-
merce (2005), pp. 316–318.

[99] Xu, J., and Croft, W. B. Corpus-based stemming using co-occurrence
of word variants. ACM Transactions on Information Systems 16, 1 (1998),
62–81.

[100] Xu, X., Ester, M., Kriegel, H., and Sander, J. A distribution based
clustering algorithm for mining in large spatial databases. In Proceedings of
the 14th International Conference on Data Engineering (1998), pp. 324–331.

[101] Zhang, B., Hsu, M., and Dayal, U. K-harmonic means - a data clustering
algorithm. Tech. Rep. HPL-1999-124, Hewlett-Packard Labs, 1999.

[102] Zhao, Y., and Karypis, G. Evaluation of hierarchical clustering algo-
rithms for document datasets. In Proceedings of the 11th International Con-
ference on Information and Knowledge Management (2002), pp. 515–524.

93


