
Implementation of a

Variable Duty Factor Controller on a

Six-Legged Axi-Symmetric Walking

Robot

by

Steven J. Cutler

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2006

c©Steven J. Cutler 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my

thesis may be made electronically available to the public.

Steven J. Cutler

ii

Abstract

Hexplorer is a six-legged walking robot developed at the University of Waterloo. The

robot is controlled by a network of seven digital signal processors, six of which control

three motors each, for a total of 18 motors. Brand new custom electronics were designed

to house the digital signal processors and associated circuitry. A variable duty factor wave

gait, developed by Yoneda et al. was simulated and implemented on the robot. Simulation

required an in-depth kinematic analysis that was complicated by the mechanical design

of parallel mechanism comprising the legs. These complications were handled in both

simulation and implementation. However, due to mechanical issues Hexplorer walked for

only one or two steps at a time.

iii

Acknowledgements

Special thanks are owed to my Supervisors, John McPhee and Eric Kubica. Without their

support and encouragement very little would have seen fruition.

As for lab-mates, none could be better than Derek Wight. I thank him for his engaging

conversation, insight, and Solidworks help.

Of course, the same is true of my family. I would like to thank them for their patience

and support, which go hand-in-hand with answering the phone late at night.

Unfortunately, my clumsy and clinical words cannnot express my gratitude to Rita.

Even when circuits were blown causing undoubtedly toxic vapour to fill the air, Rita gave

me the reassurance and motivation I needed. I love you Rita, and I will get a job soon, I

promise.

iv

Contents

1 Introduction 1

1.1 Goals . 2

1.2 Literature Review . 4

1.3 Contributions . 8

2 Robot Configuration 9

2.1 Mechanical Configuration . 9

2.2 Electrical Configuration . 13

2.2.1 Power Distribution Board . 17

2.2.2 DSP Board . 21

2.2.3 Brain Daughter Board . 21

2.2.4 Leg Daughter Board . 23

2.2.5 Sensor Boards . 28

2.3 Computing Configuration . 29

2.4 Summary . 31

3 Gait Algorithm 32

3.1 Yoneda’s Algorithm . 35

3.1.1 Definitions . 35

3.1.2 Overview . 36

3.1.3 Motion Input . 38

3.1.4 Conventional Forward Wave Gait 39

3.1.5 Gait Planner . 52

v

3.1.6 Foot Motion Planning . 54

3.2 Other Modifications and Enhancements . 60

3.3 Summary . 63

4 Kinematic Model and Simulation 64

4.1 Kinematic Model . 64

4.1.1 Forward Kinematics . 67

4.1.2 Inverse Kinematics . 73

4.1.3 Joint Velocities . 74

4.2 Kinematic Simulation . 76

4.2.1 Leg Workspace . 76

4.2.2 Improved Temporal Kinematic Margin 81

4.2.3 Horizontal Foot-Hold Selection . 85

4.3 Summary . 88

5 Implementation and Results 89

5.1 Gait Algorithm Implementation . 89

5.2 Joint Controllers . 93

5.2.1 Velocity Control . 93

5.2.2 Position Control . 97

5.3 Revised Electronics . 100

5.4 Gait . 102

5.5 Summary . 105

6 Conclusions and Future Work 108

6.1 Conclusions . 108

6.2 Future Work . 109

References 112

A Power Distribution Board Schematics 117

B Brain Daughter Board Schematics 120

vi

C Leg Daughter Board Schematics 127

vii

List of Tables

2.1 Logic-Circuitry Current Requirements . 17

2.2 Trade-off Between Precision and Range using IQMath Library [43] 30

2.3 Fixed-Point Round-off Error and Numeric Instability 30

3.1 Touch-down Phase Values for a Conventional Wave Gait
(
α = +π

6

)
. . . . 41

3.2 Relative Leg Phases at Discrete Duty Factors and Crab Angles 51

4.1 Forward Kinematics Computation Performance Comparison 73

4.2 Joint Velocity Computation Performance Comparison 76

4.3 Travelling 5 Gait Cycles in Pure Rotation 84

4.4 Travelling 5 Gait Cycles with Little Rotation 85

4.5 Travelling 5 Gait Cycles in Pure Translation 86

4.6 Travelling 5 Gait Cycles in Pure Rotation 87

4.7 Travelling 5 Gait Cycles with Rotation and Translation 87

viii

List of Figures

1.1 Standard autonomous model. 3

2.1 Hexplorer. 10

2.2 Hip joint of a leg. 12

2.3 Revolute-Prismatic-Revolute mechanism forming a leg. 14

2.4 Encoders measuring lead screw displacement. 15

2.5 Spring loaded foot. 15

2.6 Hexplorer’s power distribution topology. 18

2.7 Current flow in Hexplorer’s electrical system. 19

2.8 Leg collision with body rings. 25

2.9 Two infrared limit switches and one mechanical E-Stop limit switch. 26

2.10 E-Stop latch circuitry. 27

2.11 RC de-bouncing circuitry. 28

3.1 Definitions of pitch, roll, and yaw. 34

3.2 Gait algorithm overview. 37

3.3 Motion input commands to Hexplorer. 38

3.4 Axi-symmetric hexapod with 1
2
≤ β ≤ 1, and α = π

6
. 40

3.5 Equivalent relative distance traveled in support and transfer phases. 42

3.6 Improved balance of the robot due to larger duty factor β. 44

3.7 Leg sequences for a forward wave gait with α = π
6
. 46

3.8 Relative phase of leg 1 ψ1 vs. variable duty factor β with α = π
6
. 47

3.9 Leg sequencing with β = 1
2

and specific crab angles. 48

3.10 Leg sequencing with β = 2
3

and specific crab angles. 50

ix

3.11 Relative phase of leg 1 ψ1 vs. variable crab angle α with β = 2
3
. 53

3.12 Outline of Yoneda’s foot motion planner. 55

3.13 Cartesian reference frames. 56

4.1 Cartesian coordinate system of a leg. 65

4.2 Joint coordinate system of a leg. 66

4.3 Modeling coordinate system of a leg. 67

4.4 Natural coordinate system of a leg. 68

4.5 Transformation between coordinate sets. 69

4.6 Hexplorer simulation graphics. 77

4.7 Leg workspace. 79

4.8 Comparison of horizontal leg workspaces at different distances. 80

4.9 Linearized leg workspace. 82

5.1 Overall block diagram of gait implementation. 90

5.2 Graphical user interface to control software for Hexplorer. 92

5.3 Leg joint velocity profiles . 94

5.4 Hip joint response with velocity controller. 96

5.5 Inner lead screw response with velocity controller. 98

5.6 Outer lead screw response with velocity controller. 99

5.7 Joint responses with position controllers. 101

5.8 Foot 1 position with respect to Leg 1 reference frame in simulation. 104

5.9 Single leg algorithm results. 106

5.10 Full implementation results. 107

x

Chapter 1

Introduction

In 1997, a team of undergraduate students sought to design and build a six-legged walk-

ing robot in order to fulfill their final design project requirements. Following a trend in

robotics [1, 28, 41], the robot was biologically inspired and took an insect form [20]. Di-

vided in two by a sagittal plane, the first robot, Hexotica, featured serially manipulated

legs powered by electric motors and controlled by a set of microcontrollers. While the

team presented an impressive and ambitious plan to make this robot fully autonomous,

their efforts were constrained by underpowered motors, and consequently the robot was

not able to walk.

Another group of students took on the challenge of redesigning Hexotica. The new

configuration consisted of a novel axi-symmetric design with a distributed computing ar-

chitecture. The control system of the robot used Texas Instruments (TI) Digital Signal

Processors (DSPs) and was entered in a TI design competition [6] and was also named

NASA’s ‘cool robot of the week’.

Throughout the years, the problems solved by each successive group of students working

on Hexplorer became markedly more tractable, though less ambitious. Although the robot

was evolving, it still could not walk, and this eventually became the sole goal of the

design team working on the robot [9]. In 2003, Hexplorer was entered in the Ontario

Engineering Competition as a functioning, walking robot. A dynamic ADAMS simulation

was created, where the feet were driven kinematically by periodic equations to create a

tripod gait. These periodic equations were then transformed into joint positions using

1

Hexplorer 2

inverse kinematics and a set of position controllers were used to ensure that all the joints

arrived at the correct location at the appropriate time. This implementation resulted in

a walking robot, but as can be seen in video footage of the robot, there were further

improvements that could be made as the gait was fixed and the motion was jerky.

The next step in the design of the robot was to smooth out the gait. Unfortunately,

in 2004, this was impossible with the existing electrical hardware, as all of the electronics

had been damaged [8]. Improper voltage levels caused the DSPs flash memory to ‘flash

out’ prematurely and repeated replacement of the DSPs damaged the circuit boards. A

new circuit board design and hardware were needed.

The goal of the research behind this thesis was to enable the robot to walk with a

smooth gait, improving upon the gait developed by Kwok and Cristello [9].

1.1 Goals

The directive to make Hexplorer walk was issued. While the task of making the robot walk

seems simple and direct, the problem is actually quite general. Fast walking is a dynamic

problem, where the inertia and velocity of the robot are critical to ensure that the robot

remains upright. On the other hand, the robot may walk slowly enough that dynamic

effects do not affect the balance of the robot. Other questions involve the topology and

characteristics of the surface upon which the robot will operate. A perfectly level spongy

floor in a laboratory will provide very different challenges than if the robot were exploring

the Canadian shield. Once in its environment and ready to walk, a decision must be made

regarding the path or heading to be taken. Does the robot decide, or is the decision made by

a supervisor? The degree to which these decisions are delegated to the robot represent the

degree of autonomy of the robot. Ideally, the robot would be totally autonomous, scouring

hazardous environments for deposits of lucrative natural resources, all the while fending

off attacks from wild animals. Realistically, however, simply following a supervisory input

is quite tractable.

This research represents the addition of omnidirectional motion to Hexplorer, bringing

Hexplorer one step closer to full autonomy. As such, the ability of the robot to walk

should fit neatly into the standard autonomous model depicted in Figure 1.1. In this

Introduction 3

Figure 1.1: Standard autonomous model.

Hexplorer 4

model, adapted from Siegwart and Nourbakhsh [39], data from the environment is sensed

and processed until a plan or behaviour is selected and passed to the actuation module. If

the plan or behaviour is to move the robot, then the actuation module applies a supervisory

input to make Hexplorer walk. This is the interface between the research in this thesis

and eventual autonomy of the robot, as the supervisory input can be specified by a user

or calculated by the robot depending on its sensor input. In the research for this thesis,

the supervisory input that specified the speed, heading, and yaw rate of the body of the

robot was not generated autonomously, but instead by a user.

The motion of Hexplorer is generated by highly-geared electric motors. The high level

of gearing indicates that speed is sacrificed in favour of torque and Hexplorer is limited to

moving fairly slowly. Slow motion, coupled with high friction, as well as backlash in the

couplings and gearboxes, ensure that any kinetic energy is readily consumed by the internal

components of the robot. It is for these reasons, in addition to constraining Hexplorer to

walk on level terrain, that a kinematic analysis and simulation of the robot is sufficient to

fully describe its gaited motion.

To summarize the goals of the research for this, Hexplorer should move smoothly con-

sidering only the kinematics of the robot, on firm level terrain, under supervisory control.

1.2 Literature Review

The breadth and depth of research into robotics is astonishing. Robots range in size

and shape, from the Ohio State Adaptive Suspension Vehicle (ASV) [41] that carries its

operator, to a tiny inchworm robot [4]. Some robots have wheels [21], others rollerblade [5],

trot, walk [1, 10, 15, 17, 19, 23, 16, 31, 48, 51, 52, 53], or run [36]. Construction of

these robots varies as well, with some having compliant legs [36] and others having rigid

ones [6, 53]. The methods of controlling and generating gaits for these robots are just as

varied, ranging from fixed rigid gaits [31], to adaptive gaits that improve the static balance

of the robot [52, 53], to gaits that focus on the dynamics of the robot [36, 23, 16, 51].

The literature review focuses on four- and six-legged walking robots and associated gait

techniques. The gaits themselves can be classified into three broad categories including

analytical gaits, evolutionary gaits, and heuristic gaits.

Introduction 5

Almost all analytical gaits are based on the mathematical foundation developed by

McGhee [30]. McGhee used principles from finite state machines to develop equations

and notation to describe a particular gait. Song and Choi [40] extended McGhee’s work,

and investigated the static balance of robots that implemented wave gaits. They found

that the wave gait optimally balances four-, six-, and eight-legged robots under certain

conditions. This property makes the wave gait particularly appealing, and explains its

frequent use [10, 17, 31, 48, 52, 53].

Many other gaits were derived from McGhee’s mathematics. Song and Waldron [41]

provide a comprehensive and in-depth survey of these gaits and implementation on the

ASV. More recently, in 2003 Yee’s doctoral dissertation [50] painstakingly details tran-

sitions between distinct gaits. Some of the work was not applicable to Hexplorer. Yee

documents the transitions between a variety of follow-the-leader gaits. As discussed in

Chapter 3, implementing follow-the-leader gaits is contrary to the design of Hexplorer be-

cause the robot does not have overlapping leg workspaces. Other work by Yee, such as

the number of gait cycles and the leg resequencing required to change between straight-

line and circular gaits, is relevant, but better handled by Yoneda et al. [52, 53] with their

omnidirectional wave gait.

The most relevant and applicable work was completed by Lee and Orin [28], and

Yoneda et al. [52, 53]. Before Lee and Orin’s work, gaits were primarily unidirectional,

and forward and backward motion, left and right motion, and rotation were handled by

three distinct gaits. Lee and Orin were able to generalize these three distinct wave gaits

and established an omnidirectional wave gait. This was an important contribution because

only a single gait implementation was now required to achieve any motion. The relevance

of this contribution is due to the axi-symmetric design of Hexplorer. Mechanically, Hex-

plorer is able to walk equally well in any direction, and Lee and Orin’s omnidirectional

wave gait achieves this mathematically.

The equations defining the omnidirectional wave gait allow Lee and Orin to introduce

the concept of Constrained Working Volumes (CWVs). This concept prevents legs with

overlapping workspaces from colliding with one another. In the omnidirectional wave gait,

the size of the workspace affects many parameters. By providing the gait algorithm with

a subset of the full workspace, the size of the steps taken by the robot can be modified.

Hexplorer 6

Yoneda et al. [52, 53] capitalized on these contributions. Using the concept of CWVs and

the omnidirectional gait, Yoneda et al. defined a variable duty factor wave gait. In this

gait, the duty factor, or duration of a cycle in which a leg supports the robot, was selected

to optimize the balance of the robot at a given speed. The result was that when moving

slowly, a hexapod may only have one or two legs in the air at a time, but while moving

quickly the gait became the familiar tripod gait. On a hexapod, the tripod gait always has

exactly three legs supporting the robot at any given instant. Yoneda’s analytic algorithm

is particularly applicable to Hexplorer because he and his colleagues implemented the

algorithm on an axi-symmetric hexapod. In addition, Yoneda’s algorithm is based on a

statically balanced gait, and only static gaits can realistically be implemented on Hexplorer,

as it moves too slowly for the dynamics of the robot to affect its balance. The terrain is

also an important consideration, and since Hexplorer operates in a laboratory environment

and is at an early stage of gait development, level terrain is assumed. While an analytic

model requires explicit knowledge of the terrain to perform optimally, an evolutionary gait

may eventually be implemented and learn to deal with irregularities in the terrain resulting

in an overall improvement in balance or speed over its analytic counterpart.

The next class of gaits surveyed were evolutionary gaits. Evolutionary gaits involve

some component of learning or incremental improvement. Artificial neural networks [37,

29, 47], genetic algorithms [26, 32], and reinforcement learning [34] are some examples of the

evolutionary techniques used. The research into gaits and artificial neural networks usually

involves a central pattern generator specified by differential equations. These patterns

specify leg timings and sequences, defining the gait. Because of the evolutionary process,

the neural networks generating the gait can tune it to better achieve the desired results. In

the case of Hexplorer, slightly modifying or altering the timings produced by an analytic

gait would be pointless, because of the negligible dynamic effects and level terrain. Genetic

algorithms follow a similar process. The genetic algorithms used to tune gaits are typically

a special variety, named cyclic genetic algorithms [26, 32]. While this may be useful for fast

moving robots that are dynamically balanced where the optimal gait may not be obvious,

or, uneven terrain, the results of optimizing a statically balanced gait for speed on level

terrain yielded the tripod gait, according to Parker [32]. This is the identical result of

Yoneda’s algorithm [52, 53]. For example, Hornby [19] tuned several parameters on the

Introduction 7

Sony quadruped. He considered optimizing the distance travelled by the robot given a

variety of parameters, such as foothold selections, and the location of the centre of mass of

the robot with respect to its support legs. He devised a very clever learning environment

where the robot executed gaits with these varying parameters. Upon completion of the

trial by either reaching its destination or falling over, the robot would get up, return to the

start position using a predefined gait, and incorporate the results of the trial into a new gait

and repeat the same cycle. The most interesting concept presented by Hornby was that

the robot could train itself without supervisory input. However, due to the quasi-static

nature of Hexplorer’s gait on smooth terrain, it is likely that the results of an evolutionary

algorithm would provide obvious results, similar to Parker’s [32].

Finally, a variety of robots use heuristics to define or improve gaits. All of the examples

that follow provide interesting insights into the robots for which they are designed. Many

are intricately linked and optimized to the architecture of the robot, or solve a specific

problem with an existing gait on that robot. To this end, these algorithms are too specific

or too advanced to be implemented on Hexplorer at the present time. Yoneda et al. [23, 51]

fuse kinematics and dynamics using a zero moment point to dynamically control the balance

of a quadruped. Shih and Klein [38] use heuristics to deal with peaks and valleys in the

terrain; the gait is modified on the traditional analytical gaits developed from McGhee’s

work. Yang and Kim [49] investigate fault-tolerant gaits based on analytical gaits. The

work is strictly theoretical, but does provide insight into how Hexplorer may be made fault-

tolerant. Implementation would require re-derivation of many ideas for an axi-symmetric

robot. Kinematic reconfiguration to optimize some aspect of a gait is also present in the

literature. One of NASA’s wheeled robots [21] changes the position of the centre of mass

with respect to the tipping point of the robot to allow it to scale steep dunes. Chen

and Yeo [4] present a similar technique for a legged robot. The performance of heuristic

algorithms can vary greatly and depend heavily on the platform or configuration of the

robot. Yoneda et al. [52, 53] conducted research on a different robot than discussed above.

The depth of work, unequivocal results, and applicability to Hexplorer make the analytical

gait presented by Yoneda et al. [52, 53] best-suited to Hexplorer.

Hexapode [17], Kafka [31], Hamlet [10], and the robot developed by Go et al. [15]

are all digitally controlled hexapods. These robots all implement analytical gaits, most

Hexplorer 8

frequently the tripod gait, despite aiming for different objectives. Hexapode fuses its gait

with sensor readings to achieve quasi-static equilibrium in order to be balanced. Hamlet

and the robot developed by Go et al., investigate closed-loop control of the body of the

robot. The fact that these robots successfully implement analytic gaits is an indication of

their effectiveness.

The effectiveness, static balance, knowledge of terrain, and optimality of Yoneda’s

adaptive gait algorithm make it ideal for implementation on Hexplorer.

1.3 Contributions

In the chapters that follow, the configuration of Hexplorer, Yoneda’s gait algorithm and mi-

nor modifications, kinematics and the resulting simulation, and the overall implementation

of the gait on the robot will be discussed.

The contributions of this research primarily include the implementation of Yoneda’s

algorithm on the unique architecture of the robot. The mechanical design of the robot

poses special challenges: the forward kinematic equations for the legs and feet of the robot

do not admit an analytical solution. Because of this, special care has to be taken to ensure

that the forward kinematics can be determined iteratively to be implemented in real-time.

In addition, modifications to some of the parameters in Yoneda’s algorithm improve the

distance travelled by the robot in a fixed number of steps, such as including the curvature

of the path of the foot taken by the robot.

Chapter 2

Robot Configuration

This chapter describes the configuration of the robot from mechanical, electrical, and

computing perspectives. The mechanical structure of the robot was inherited from previous

work, whereas the electrical and computing platforms were redesigned for the explicit

purpose of this research. The configuration of Hexplorer, in particular the axi-symmetric

configuration of the six-legs and the parallel mechanism comprising each leg, makes it quite

unique. Hexplorer is passively balanced and stays upright without power, uses parallel

manipulators for legs, and is controlled using a network of digital signal processors.

2.1 Mechanical Configuration

The mechanical configuration of Hexplorer characterizes the uniqueness of the robot. Con-

figured with an axi-symmetric design, the robot is afforded equal mobility in any direction.

The body of the robot is comprised of two aluminum rings (Figure 2.1). These rings provide

support points that define axes of rotation for the legs of the robot. The legs themselves

incorporate a parallel mechanism that ably handles the vertical motion of the robot while

also providing a second degree of freedom (DOF) that can contribute to the lateral motion

of the robot. By rotating the legs about axes through the two rings, a third DOF is added

to each leg.

The joint providing this third DOF is referred to as the hip joint. Rotation of the hip

is created by connecting the leg to the body with an axle. This connection can be seen in

9

Hexplorer 10

Figure 2.1: Hexplorer.

Figure 2.2. The rotation of the axle is constrained about an axis defined by two bearings

that press-fit into the top and bottom rings. The reaction forces are provided by washers

that hold the axle in place between these two rings. Unfortunately, this results in a large

amount of friction in the joint where each leg is connected to the body. The friction for

each leg also differs depending on whether the leg is supporting the weight of the robot

or whether the leg is in the air. If the leg is in the air, gravity creates a moment that

ultimately creates a reaction force in one direction on the washer. Alternatively, if the leg

is supporting the body, the ground creates a moment and reaction forces in the opposite

direction. Friction is not only different during supporting and airborne states, but is also

different for each of the six legs on the robot. This is very much a factor when controlling

velocity and also the position of the legs, although differences in controller parameters

between legs are probably influenced more by the wear and deformation of the washers.

A possible solution to this problem is to install thrust bearings held in place with stiff

supports that can generate the necessary reaction forces to hold the leg in place, without

yielding.

The rotation of the hip joint is produced by a DC motor connected to the rings that

make up the body of the robot (Figure 2.2(b)). In the original design of the robot, the

Robot Configuration 11

support mechanism anchoring the motor to the body rings twisted because of large forces

applied to it [9]. It was redesigned with better torsional stiffness properties and has since

performed adequately. The DC motor is connected to a gearbox (Figure 2.2(c)) which is,

in turn attached to each leg axle via a coupling (Figure 2.2(d)). The gearbox is not easily

back-drivable because of the large gearing ratio. This is beneficial, but also potentially

damaging to the robot. Because the gearbox is not back-drivable, the leg cannot be rotated

when the motor is un-powered. However, if a large enough force is applied to the leg, gear

teeth may be broken, damaging the gearbox.

An encoder is used to measure the rotation of the leg and is attached to the axle

(Figure 2.2(e)). This DOF, or joint is referred to as the hip, and is measured as an angle.

The range of the hip joint is defined by two limit switches that indicate the under-travel

and over-travel configurations of the hip. The resolution of workspace range depends on

the location of the encoder with respect to the gearbox. If the encoder was attached

directly to the motor, located before the gearbox, it would have much better resolution.

However, because it is attached to the axle, located after the gearbox, the resolution of

the encoder is dramatically diminished. In fact, the encoder only rotates a fraction of

a revolution between one end of the workspace of the leg, and another. Details of the

encoder resolutions are discussed in Section 2.2.4. Another disadvantage of connecting the

encoder to the end of the drive-train is that its measurements include backlash. Backlash

is the hysteresis developed when switching between forward and reverse directions. It adds

non-linearities to a system and complicates its control.

The remaining two DOFs on each leg are from the planar parallel revolute-prismatic-

revolute mechanism (RPR) (Figure 2.3(a)). The mechanism has three revolute-prismatic-

revolute (RPR) structures that achieve this planar motion. Two of the prismatic joints

are driven by DC motors (Figure 2.3(b)) and lead screws (Figure 2.3(c)). These motors

are each attached to a gearbox (Figure 2.3(d)) and a coupling (Figure 2.3(e)), similar to

the configuration of the hip motor. Unlike the hip gearbox, these gearboxes are back-

drivable, and the motor will rotate, if the output shaft of the gearbox is mechanically

rotated. Lead screws are attached to the gearboxes and convert rotational motion to linear

motion. The lead screw has two note-worthy characteristics. Lead screws are typically

slow, but can be very accurate. They can also add significant friction to the joint, but this

Hexplorer 12

(a) Hip connection. (b) DC motors driving
hip.

(c) Gearbox driving
hip.

(d) Coupling connect-
ing gearbox to hip
axle.

(e) Encoder measuring
hip rotation.

Figure 2.2: Hip joint of a leg.

Robot Configuration 13

friction prevents the screw from being back-drivable. The end result is that the lead screw

cannot be rotated by applying a linear force to it. Since the lead screw is not back-drivable

(although the gearbox of the hip is back-drivable), the leg is able to retain its physical

configuration without power applied to the motors. The third RPR member does not have

a true prismatic joint, but is instead a fixed length (Figure 2.3(f)).

The length of each prismatic joint is determined from the rotation of the motor which

is measured with an optical encoder (Figure 2.4). The encoder is attached directly to

the motor, resulting in good resolution (0.0011mm/count) because several rotations are

registered for a small change in linear displacement. Rotation is then converted into a

linear displacement using the pitch of the lead screw.

With all three leg joints being passively static, the robot is afforded passive balance.

Simply put, the robot will not fall down after being disconnected from a power source.

This quality is favourable for debugging purposes because the robot can be halted safely

by de-energizing its power source, but as mentioned above, a lot of friction is introduced

into the system.

Attached to the bottom of each leg is a spring-loaded foot, shown in Figure 2.5. This

provides the benefit of shock absorption properties when landing; however, it also effectively

decreases the size of the vertical workspace.

2.2 Electrical Configuration

In the year 2000, Hexplorer underwent a hardware revision, in which control and com-

puting was migrated to digital signal processor (DSP) chips manufactured by Texas In-

struments (TI). Custom circuit boards incorporating the TI DSPs were manufactured by

a team of undergraduate students. This enabled Hexplorer to handle the computational

challenges of digital signal management and control. Unfortunately, due to a design flaw

on the custom-designed circuit boards, the DSPs repeatedly ‘flashed-out’ after being re-

programmed relatively few times, and subsequently lost the ability to be re-programmed.

Fixing this problem required that the DSP chips themselves be replaced on the custom

circuit boards. Repeated replacement deteriorated the circuit boards, until many of them

ceased to function.

Hexplorer 14

(a) Revolute-Prismatic-
Revolute mechanism.

(b) DC motors driving lead
screws.

(c) Lead screws.

(d) Gearbox driving lead
screws.

(e) Couplings connecting gear-
boxes to lead screws.

(f) Fixed length instead of
prismatic joint.

Figure 2.3: Revolute-Prismatic-Revolute mechanism forming a leg.

Robot Configuration 15

Figure 2.4: Encoders measuring lead screw displacement.

Figure 2.5: Spring loaded foot.

Hexplorer 16

For this research and the overall longevity of the robot, the entire electrical system

was overhauled. The design of the system was based on both the architecture of the

2000 circuit boards [6] and a prototype developed for a single leg in 2005 [8]. In 2005 a

prototype board was designed with the goal of completely isolating motor circuitry and

logic circuitry, as it was thought that electrically noisy motors had caused the DSPs to

fail. Isolation was accomplished using opto-isolators in both a digital and analog manner.

Digital opto-isolators use an electric signal from one region of circuitry to power an LED.

A photo transistor then measures whether the original LED is active and returns the state

of that signal to the other region of circuitry. An analog opto-isolator operates similarly,

only instead of measuring the state (on or off) it measures the intensity of the LED. While

many of the design flaws of the 2000 model were corrected [8, 9] and appeared to shield

digital circuitry from the harsh environment generated by the motors, the redesigned 2005

prototype board was costly. Specifically, the designs in 2000 and 2005 required separate

logic and motor power supplies. As development on Hexplorer proceeds, it may eventually

become fully autonomous and use a single onboard power supply. If a single power supply

is used, both regions of the circuit served by the opto-isolators will likely share a common

ground. In this case, the noise generated by the motors would be transmitted to the logic

circuitry, via the common ground plane, circumventing the entire purpose of the opto-

isolators. Therefore, the expense of the opto-isolators is not justified when using a single

power supply for the logic and motors.

The new, relatively cost-effective circuitry was redesigned with the goal of isolating as

much electrical noise between the motors and logic as possible while using a single power

source. Electric noise is mitigated by designing separate physical pathways for motor and

logic current to travel from their source and back. With the exception of a few low-current

signals, this design creates two separate circuit regions for logic and motor signals that are

only connected at the power supply. The circuitry is divided into 5 segments: a power

distribution board, leg daughter boards, sensor boards, a brain daughter board, and an

off-the-shelf DSP board to parent each daughter board. The overall topology showing the

interconnection of these components is shown in Figure 2.6. The voltage requirements are

as follows: 24V for motors, 5V for the DSP boards, and 3.3V for the Brain board RAM,

Ethernet, Bluetooth, and Compass. An overview of the resulting electrical system and

Robot Configuration 17

corresponding flow of current for the power distribution board, one leg board, and a sensor

board, is shown in Figure 2.7. In this figure, the current flow for the logic and motor

circuitry is clearly delineated and only share a single significant point of interconnection

at the input of the power distribution board.

2.2.1 Power Distribution Board

The power distribution board requires an input of 24V 1 from an external supply. It outputs

24V and 5V to each of the 6 DSP/Leg board combinations and 5V to the DSP/Brain

board combination. The 24V input of the power distribution board is fed directly to the

24V output without any conditioning because this 24V line is only used to power the

motors. Assuming the mechanical and electrical time constants of the motors are large

when compared to high frequency noise that may be present in the 24V line, any noise in

the 24V line will have little effect on the performance of the motors.

The 5V line is derived from the 24V input. Based on data-sheets [3, 25, 33, 42] and

some preliminary testing, the DSP/Leg daughter boards require no more than 500mA

of current per board. In addition, Table 2.1 summarizes the current requirements of the

remaining peripherals attached to the robot. Incorporating a safety factor of 1.5, the power

Table 2.1: Logic-Circuitry Current Requirements

Component Current Requirement

All 7 DSP boards with 6 leg daughter cards 3500mA

Bluetooth radio 120mA

Ethernet device 233mA

3-Axis Compass 0.5mA

Current sub-total (approx.) < 4A

Total Current (safety factor of 1.5) < 6A

distribution board is designed with the capability of supplying up to 6A at 5V .

Successfully generating a 5V power source by reducing the 24V input depends on the

current demand and operating ranges of voltage regulators. Two types of regulators were

1All voltage measurements are VDC.

Hexplorer 18

Figure 2.6: Hexplorer’s power distribution topology.

Robot Configuration 19

Figure 2.7: Current flow in Hexplorer’s electrical system.

Hexplorer 20

considered: linear and switching regulators. A linear regulator uses a linear feedback circuit

to adjust the output voltage. It provides a clean output voltage and can source up to 10A

of current [27]. However, a linear regulator can dissipate a lot of power, particularly when

the input voltage is much higher than the output voltage. The excess power dissipated (Pd)

by a linear regulator with an input voltage Vin and sourcing Iout amperes at Vout volts [44]

is governed by

Pd = (Vin − Vout)× Iout (2.1)

= (24V − 5V)× 6A

= 114W .

Such an enormous power loss (enough to power a bright light bulb) makes a linear regulator

ill-suited for this task. Alternatively, a switching regulator could be used. A switching

regulator uses semiconductors as on/off switches to produce the necessary output voltage.

Access to the input voltage is turned on and off, such that on average, a specified voltage

is obtained [27]. The output is then filtered in order to provide a relatively clean power

source. Due to the switching nature of the regulator, the switching regulator is far more

efficient and dissipates far less heat than its linear counterpart [27], given the voltage

requirements of the robot. However, if not properly designed, the switching regulator

can produce electromagnetic interference, which could seriously hamper the operation of

wireless devices. A TI PTN78020W pre-built switching regulator circuit is used to ensure

a proper design. Two of these regulators, each with the ability to source up to 6A, provide

ample power capacity for the logic of the robot. Two regulators are used because greater

efficiency is achieved when operating each regulator in the 2A to 3A range as opposed to

a single regulator in the 4A to 6A range. The voltage provided by these regulator circuits

is further smoothed using a π-filter, as described in the product documentation [45]. One

regulator powers three leg boards and associated DSPs, and the other powers three leg

boards, the brain board and associated DSPs. Care was taken to provide parallel paths

for 5V , 24V , and ground for each leg and the brain in an attempt to minimize electrical

noise from one leg interfering with the circuitry of another.

The layout and schematics of the power distribution board can be found in Appendix A.

Robot Configuration 21

2.2.2 DSP Board

In order to eliminate the premature DSP failure experienced with the previous circuit

board design, it was decided that an evaluation kit with a socket for the DSP would be

the best solution. All of the required power regulation, filtering, and protection circuitry

for the DSP was designed and tested on an evaluation board, in order to confirm that

it worked correctly. In addition, many evaluation boards are also fitted with sockets to

facilitate DSP replacement, if for some reason the DSP does fail or ‘flash-out’. It was also

decided that due to prior experience, the evaluation board should be based on the TI DSP

platform.

The eZdspTM F2812 socketed evaluation board, manufactured by Spectrum Digital

and available through Texas Instruments, meets all of these needs and features a Texas

Instruments TMS320F2812 DSP [42]. Therefore, it was purchased and built into Hexplorer.

2.2.3 Brain Daughter Board

The brain of the robot is responsible for coordinating the leg board and handling supervi-

sory input. The general purpose of the brain daughter card is to connect communication

peripherals and memory to the DSP. The daughter card features 1MB of RAM, an ether-

net communication device, a Bluetooth communication device, a CAN bus driver, and a

compass. Each of these devices run at 3.3V, requiring a voltage regulator.

In this case, a linear regulator suffices because of the minimal voltage drop required from

5V to 3.3V as well as the limited current draw of less than 1A. A fixed linear regulator,

the TI TPS79633 capable of delivering 1A at 3.3V , was selected to meet these needs [44].

The RAM is used for data storage. The brain is an ideal location for the RAM because

almost all information regarding the states of the legs pass via the brain to the supervisory

software.

The Lantronix XPort ethernet device is a network-to-serial device. It converts network

data, using a TCP/IP protocol or UDP protocol, to a standard serial signal [25]. This

device adds network capabilities to the robot, allowing the supervisory software to operate

the robot from any computer attached to the same network as the robot. It also features

a large bandwidth, up to 921.6kbps [25], that is ideal for reading data from the robot.

Hexplorer 22

However, this device does require Hexplorer be tethered to an ethernet cable.

In the future, Hexplorer may become autonomous and having a cable tethered to the

robot may be inappropriate. To meet this need, a BlueRadios BR-C11 Bluetooth device

providing a wireless-to-serial connection was added to the robot. Unfortunately, it requires

substantially more overhead than the Lantronix XPort ethernet device when handling con-

nections, and as such, source code to support this device was removed during development

as the complexity of the supervisory software grew. Since the robot requires a power tether

anyway, wireless control is left for future work.

In another forward-looking move, a digital three-axis compass was purchased [33]. It

is expected that in future, this compass will help provide feedback to the overall gait

algorithm, closing the control loop. It is also anticipated that the compass will be used

with the robot in an outdoor environment. Previous experience with digital compasses in

the laboratory has shown that there is too much electromagnetic interference in the lab

for the compass to provide consistent and accurate data. The software implementation of

this compass, and its outdoor performance, should be evaluated in future work.

Finally, and most importantly, the brain daughter card features a Controller Area

Network (CAN) driver chip to complement the built-in CAN device on the TMS320F2812

DSP. The driver chip provides a physical point of connection, connecting the CAN device on

the DSP to a bus shared with similar driver chip/CAN interfaces on the Leg/DSP boards.

The CAN enables inter-communication between all of the legs and the brain of the robot.

CAN was originally developed to fulfill intercommunication needs between a variety of

devices within an automobile [35]. CAN boasts impressive speeds of up to 1Mbps with very

good noise rejection characteristics. Data is transmitted using a broadcast protocol and

all devices attached to the bus receive all data transmitted on the bus. Individual devices

simply ignore irrelevant data based on a number identifying the type of data encapsulated

in the packet. For example, when the brain requires updates on the state of the legs, it

places a single send update message on the bus, which, when received by the legs, execute

the appropriate procedures and send updated information to the brain.

CAN communication was selected for a number of reasons. It supports the broadcast

protocol and is available on TI DSPs. Unlike a raw serial specification like RS-485, it

has a complex messaging scheme that includes error checking. In addition, the CAN bus

Robot Configuration 23

only has two signals. This means that only two wires are needed to interconnect the DSP

boards.

The layout and schematics of the brain daughter board can be found in Appendix B.

2.2.4 Leg Daughter Board

The general purpose of the leg daughter boards is to connect the inputs and outputs of the

DSP to electronic sensors and actuators, respectively. The requirements for the daughter

board stem from the mechanical configuration of each leg. As described in Section 2.1,

each leg has three DC motors each of which requires a driver, position sensor, and limit

switches.

A National Semiconductor LMD18201 H-Bridge was selected to drive each motor. It

contains circuitry to protect the chip and the rest of the circuit board from large current

and voltage spikes caused by the motors in reaction to sudden stops, starts, or large step

changes in input. This H-Bridge uses a pulse-width-modulated (PWM) signal to control

the voltage applied to the motor as well as supply the current drawn by the motor. The

PWM signal is a periodic square wave that operates at a specific frequency with a variable

duty cycle. In this case, the duty cycle refers to the fraction of the period of the wave, in

which the wave has a value of logic-high. The PWM input is a low-power signal supplied by

DSP, and the H-Bridge uses this signal to activate/deactivate power electronics echoing the

PWM signal to drive the motor. Because the dynamic time constant of the motor is large

compared to the frequency of the PWM output wave, the resulting motion of the motor

is smooth despite a pulsed energy source. The PWM signals sent to the three H-Bridges

are generated by three independent PWM generators available on the TMS320F2812 DSP.

The PWM generators are attached to internal timers in the DSP and the duty cycles are

controlled by register values in the DSP.

The H-Bridges are mated to large heat sinks. The heat sinks adhere to the back of

the H-Bridges and rest on regions of exposed ground plane. During operation, heat is

drawn from the H-Bridge and dissipated to the air via convection. Heat is also dissipated

via conduction, as the ground plane also absorbs heat from the heat sink. Kwok and

Cristello [9] indicated in their report on Hexplorer that the H-Bridges on the previous

circuit boards became hot to the touch. The larger heat sinks and use of a ground plane

Hexplorer 24

as a heat sink prove to be a far more effective solution as the H-Bridge chips no longer get

warm, even after extended use. It is a qualitative assessment, but it is very noticeable.

With the PWM signal from the DSP controlling the H-Bridges that drive the motors,

feedback is required before the gait algorithm can be implemented. Position sensors for

each motor take the form of encoders. These encoders produce a quadrature-encoded wave-

train to convey a change in position or direction. Being digital, encoders are less susceptible

to electrical noise than their potentiometer and analog-to-digital converter counterparts.

The US Digital E2-512-375-G [46] optical encoder used on each of the joints measures 4

changes in state of two waves and generates 2048 counts per revolution or 0.17◦ per count.

Converting these values into joint measurements, the two lead screws have a total displace-

ment of approximately 39000 counts or 4.3cm, with the encoders measuring displacements

of 0.0011mm per encoder count. The hip joint, which is measured on the other side of the

gearbox, includes backlash and ranges by approximately 350 counts which is equivalent to

60◦. The difference in resolution between the hip and lead screws is significant. The lead

screw motor encoders are able to indicate resolutions about 111 times greater than the hip

encoder. With such poor resolution, it is no surprise that velocity control of the hip motor

is extremely complicated.

One disadvantage of using encoders as opposed to potentiometers is that these encoders

measure relative position. In order to provide an absolute measurement, an index pulse or

homing sequence is necessary. On Hexplorer the homing sequence is as follows:

1. The lead screws simultaneously retract until the under-travel limit switches of the

inner and outer lead screw are activated.

2. The lead screws are now at known minimum lengths and these values are stored in

the appropriate registers on the DSP.

3. The hip retracts until it reaches its under-travel limit switch and its minimum position

is stored in the appropriate register.

4. Finally, because of backlash in the hip coupling, the hip is protracted until it reaches

its over-travel limit switch. The hip is now at its maximum position, which is set

to be 60◦ from its minimum position (as opposed to being determined by encoder

counts).

Robot Configuration 25

Originally, Hexplorer had the following limit switches installed: one under-travel switch

for each lead screw, one under-travel limit switch for the hip, and one limit switch to

indicate ground contact. While the ground contact switch and under-travel limit switches

for the lead screws were well located and functioned well, the single hip under-travel limit

switch performed poorly. In its original position, the lever of the hip under-travel limit

switch was bent each time the hip over-travelled. In fact, the damage caused when the

hip over-travelled was compounded by the mechanical interference between the leg and the

body of the robot. As shown in Figure 2.8, immediately before an over-travel collision, if

the foot is extended far enough, the leg will collide with the lower ring of the body. This

Figure 2.8: Leg collision with body rings.

type of collision is particularly destructive because the leg becomes “wedged” in between

the two rings. Dislocating the leg from the rings is difficult and potentially damaging to

the robot because if set screws are not loosened, the hip gearbox could be damaged by

the large dislocating force. In this configuration, if the under-travel switch is not polled

properly or the DSP experiences a spurious interrupt and halts, this collision could happen

Hexplorer 26

on an under-travel as well.

To improve upon this design, the new leg daughter board has additional inputs for

limit switches as well as Emergency Stop (E-Stop) limit switches. The original hip limit

switch has been replaced with two infrared “soft limit switches”. These switches, like the

original, can only change the value of an input to the DSP. They are unable to physically

or electrically stop the hip motor. These two infrared switches are used in the homing

sequence. The E-Stop switches are mechanical limit switches located immediately outside

the range of the infrared limit switches. Both infrared limit switches and one E-Stop limit

switch are shown in Figure 2.9. When triggered, these E-Stop switches instantly activate

Figure 2.9: Two infrared limit switches and one mechanical E-Stop limit switch.

the brake input on all three H-Bridges halting all three motors. Latching circuitry was

added to maintain electrical braking if the limit switch was only activated momentarily.

This scenario would likely occur when a leg hits the limit switch and ricochets off it. Braking

is maintained until the limit switch is no longer active and the DSP has reset the latch.

The latching circuitry was constructed with simple sequential logic using AND and OR

gate, as shown in Figure 2.10. This functionality proved very useful while debugging the

robot. If a joint lost control, simply tapping one of the E-Stop switches safely deactivated

the motors. With the addition of these switches, a leg has yet to collide with the body

rings.

Electrically, the E-Stop switches were designed to be fail-safe. This is accomplished by

Robot Configuration 27

Figure 2.10: E-Stop latch circuitry.

wiring the mechanical switches to be normally closed, meaning that a signal of 0V indicates

that an E-Stop has not been depressed. Depressing the E-Stop opens the mechanical switch,

and the signal changes to 5V . Similarly, if the wiring connecting the limit switches to the

sensor board fails or breaks, the signal will also become 5V due to the pull-up resistor and

trigger an E-Stop.

Mechanical limit switches generate noisy signals when closing, opening or even when

exposed to vibration [2]. The digital circuitry accompanying the mechanical switch pos-

sesses a bandwidth orders of magnitude larger (microsecond vs. millisecond) than that of

the mechanical switch. The digital circuitry, therefore reacts to mechanical noise as though

it was a signal. Desensitizing the digital circuitry to this noise is known as de-bouncing the

switch [2]. One method of de-bouncing an input involves adding a passive low-pass filter to

the input of the digital circuitry. A simple RC filter, like the one shown in Figure 2.11, can

suffice. The time constant of the RC filter, τRC , is selected to be similar to the mechanical

time constant. Given that mechanical time constants of switches are in the millisecond

range [2], and the electrical time constant is governed by

τRC = R× C (2.2)

= 22kΩ× 10nF

= 0.2ms,

the resistor and capacitor values are selected as shown.

Hexplorer 28

Figure 2.11: RC de-bouncing circuitry.

Like the brain daughter board, the leg daughter boards include a CAN transceiver to

provide a link between the CAN interface on the DSP and the physical connections between

boards.

2.2.5 Sensor Boards

The purpose of the sensor boards is to consolidate all of the wiring attached to leg sensors

near the leg itself and have a single non-moving cable connect the sensor board to the leg

board. In the previous circuit board design, sensors were connected directly to the leg

boards. Some sensors required power and ground conductors in addition to the conductor

required for the signal returned to the DSP. To keep the connectors on the leg board a

reasonable size, power and ground wires for all sensors were first soldered together before

being attached to a power pin and a ground pin on the connector. Attaching several wires

to a small pin is physically awkward and prone to failure. In this configuration, the blobs of

solder holding several power conductors together and several ground conductors together

are essentially acting as power and ground planes. The sensor board resolves this problem

by providing proper, mechanically sound, power and ground planes to which sensors can

be connected.

Robot Configuration 29

The layout and schematics of the leg and sensor boards can be found in Appendix C.

2.3 Computing Configuration

In total, Hexplorer is configured with seven identical DSPs. One DSP is responsible for

controlling and coordinating the actions of the remaining DSPs, which are each responsible

for servicing a single leg. The DSPs must be powerful enough to handle the complex

kinematics of the legs of the robot. In this circuitry revision, Hexplorer is equipped with

the Texas Instruments TMS320F2812 DSP.

The Texas Instruments TMS320LF2812 150MHz DSP is a very capable processor. It

features a number of memory-mapped on-chip devices specifically tailored for digital motor

control, including, a set of multi-purpose timers, a set of PWM channels, two QEP decoding

circuits, two serial interfaces, a SPI interface, and a CAN interface. It supports JTAG for

online source code debugging and profiling. Profiling a block of source code or function

involves counting the number of clock cycles required to execute that region of code. This

is particularly relevant when dealing with floating-point operations, such as determining

forward and inverse kinematics. The DSP is fixed-point and cannot execute floating-

point operations in hardware. Floating-point operations must be emulated and can require

several hundred clock cycles for a single multiplication or division. In fact, if implemented

poorly, solving the forward or inverse kinematics of the robot using emulated floating-

point operations could significantly reduce the maximum sample rate of the gait and joint

controllers. None of the previous reports on Hexplorer [6, 8, 9, 24] investigated the effects of

emulating floating-point operations on the sample rates of controllers, but it is investigated

with great attention in the research for this thesis.

TI recognized the necessity of floating-point operations in some aspects of digital control

and released a high performance floating-point library dubbed IQmath. The limitation of

IQmath is that numbers are stored as fixed-point values where the precision of the number

competes with its range. Table 2.2 indicates the two extremes of precision and range offered

by this library [43]. Although individual operations using IQmath occur as floating-point

operations, the resultant is stored as a fixed-point value. Fixed-point representations of

numbers are even more prone to round-off error and numeric instability than floating-point

Hexplorer 30

Table 2.2: Trade-off Between Precision and Range using IQMath Library [43]

Type Min Max Precision

Most Precise -2 1.999 999 999 0.000 000 001

Largest Range -1073741824 1 073741823.500 000 000 0.5

representations. Round-off error refers to the inherent error in representing a rational

number with finite precision [13]. Round-off error is compounded when it is propagated

through a mathematical operation. If these errors predominately under- or over-estimate

the true result, then the digital representation can drift significantly from the true value

over time. Numeric instability, on the other hand, has a more immediate and devastating

effect. Numeric instability in this context refers to operations that result in numbers that

cannot be represented within the same range as the operands. Since the result cannot

be represented, a minimum, maximum, or sentinel value, that can be represented, will be

stored in place of the true result. Table 2.3 provides examples of the concepts of round-off

error and numeric instability. The IQmath library may represent these numbers slightly

differently.

Table 2.3: Fixed-Point Round-off Error and Numeric Instability

Number Most Precise Representation Largest Range Representation

1
3

0.333 333 334 0.5
1.5
0.5

1.999 999 999 3.0

1.5× 1.5 1.999 999 999 2.0

A trade-off exists when using floating-point operations with a fixed-point TI DSP. True

floating-point operations and representation can be emulated at the expense of computation

time. Floating-point operations with fixed-point representation permits manipulation of

rational numbers relatively quickly, but the range of the numbers is limited and results

can be error-prone. Certain techniques can be used to mitigate the error and numeric

instabilities introduced by fixed-point representation [13], but the effectiveness of these

techniques is still limited by the finite precision of the DSP. An example of one such

technique where variables a and b are fixed-point numbers, and a+ b exceeds the range of

Robot Configuration 31

fixed-point representation, the term a+b
2

should be represented by 0.5a+0.5b instead. Each

complex mathematical equation that required floating-point operations was examined to

achieve the best execution performance in terms of time and numeric stability.

2.4 Summary

This chapter summarized the configuration of Hexplorer from mechanical, electrical, and

computing perspectives. Each of the six legs on the robot has 3 DOF, with each joint

actuated by a DC motor. The motors are powered by H-Bridges located on custom designed

circuit boards. The circuit boards have been designed to isolate as much noise as possible

between the motor and logic, using a single power supply. Finally, the logic is powered by

a Texas Instruments DSP with a high-speed floating-point library.

Chapter 3

Gait Algorithm

The wheel has become synonymous with convenience and speed and has revolutionized

transportation for humanity [41]. Both efficient and simple, the wheel is able to create

continuous locomotion. The simplicity of the wheel, however, is not without a profoundly

negative aspect [41]. Although very efficient on a smooth surface, a wheeled vehicle demon-

strates very limited mobility on rough terrain. This limitation has shaped society and is

evidenced by incredible infrastructure around the entire world.

In contrast, the natural world favours a high degree of mobility and legged locomo-

tion prevails. The large variation in the types of creatures that use legged locomotion

is indicative of its robustness. Song and Waldron point out that legged locomotion car-

ries creatures at speeds varying from standstill to upwards of 100km/h [41]. The range of

weights of these creatures is equally impressive with ants being of negligible weight to large

African elephants weighing 700kg [41]. Most crucial however, is that all of this movement

occurs without any infrastructure on naturally occurring terrain. This bodes well when

exploring environments such as caves, sea beds, or planets where it is either too dangerous

or prohibitively expensive to provide infrastructure for the wheel.

While the motion of an animal’s body may be nearly continuous, the motion of its legs

is not. Legged locomotion requires that a foot lose contact with the ground in order to

reset the position of the leg to continue to propel the animal. The coordination of the

legs, and how and when the feet are lifted from the ground, is known as a gait [41]. The

types of gaits are quite diverse and include horses galloping, humans walking, and spiders

32

Gait Algorithm 33

climbing. Gaits used in robotics research are equally diverse.

Originally studied by Muybridge [30], understanding of the gait has improved dramat-

ically over the years. Based on Muybridge’s compilation of photographs published in the

volume, ‘Animals in Motion’, McGhee [30] developed a mathematical foundation to quanti-

tatively characterize gaits. Using principles associated with finite state machines, McGhee

succinctly describes the gait as the ordering, subsequent timing and duration of each foot

lifting off the ground. With a solid mathematical foundation, McGhee was able to create

the first computer-controlled walking robot [41]. Primarily focussed on unidirectional mo-

tion, McGhee’s research was later generalized to omnidirectional motion by Orin [28] and

others. The specific gait algorithm implemented on Hexplorer was developed by Yoneda

et al. [52, 53]. Its fundamental principles were derived from a vein of research explored by

McGhee and Orin.

Three types of gaits and their properties were examined to determine which would suit

Hexplorer best.

A free gait [41] is, as it sounds, free. It is not periodic and does not require any

consistency between separate foot steps. A free gait functions by selecting optimal, or

at least hospitable, foot-holds. This affords a robot with the ability to traverse rough

terrain, albeit slowly. While an impressive gait to witness, it is inappropriate for Hexplorer

and this research because of inadequate vertical range and lack of sensory data. In order

to operate in rough terrain, the workspace of the leg of the robot should permit a large

heave in order to clear peaks in the terrain. The parallel mechanism comprising each leg

of Hexplorer provides relatively little ground clearance (i.e., 4 to 5 centimetres). This

problem is compounded by two factors. First, spring-loaded feet are attached to each leg

and further reduce ground clearance. Second, the body of Hexplorer is not articulated

and cannot increase the vertical displacement of a leg by having one segment pitch. When

operating in a reasonable workspace region, each foot has only 3 to 4 centimetres of ground

clearance, or about 12% of the height of the robot. Sensory information regarding pitch,

roll, and yaw of the body is necessary to maintain the balance of the robot on uneven

terrain. Pitch, roll, and yaw are rotations defined between a body-fixed axis and an

inertial axis as shown in Figure 3.1. Although Hexplorer is equipped with a three-axis

compass, electro-magnetic interference in the laboratory renders it essentially useless. The

Hexplorer 34

Figure 3.1: Definitions of pitch, roll, and yaw.

use of foot force sensors in a similar manner to Goulet [17] could be used to provide this

information in a laboratory environment, but Hexplorer is not equipped with these sensors.

Should a new revision of Hexplorer be developed, it may then become logical to examine

and implement a free gait.

Another type of gait is a follow-the-leader gait [41]. In this periodic gait, only the foot-

holds of the lead foot or feet are determined by the supervisor (human or artificial). All

other feet simply relocate to the foot-hold vacated by the preceding foot. This is advan-

tageous because given rough terrain, once the controllers of the lead feet have determined

suitable foot-holds, the remaining foot controllers need not apply any processing power

to finding foot-holds. Being able to occupy the foot-hold left vacant by an adjacent foot

requires that the workspaces of these legs overlap. However, since the leg workspaces of

Hexplorer do not overlap with adjacent ones, it circumvents the benefit of this gait.

The third type of gait investigated is the wave gait [41]. It features periodic motion

and is well-suited for level terrain. This gait functions by dividing the legs of the robot

into two groups. Two separate waves then propagate touch-down events to the feet of the

robot. These events are timed such that as a leg in one group touches down the leg in front

Gait Algorithm 35

of it lifts off. More importantly, this gait provides the ability to tune parameters offering

a trade-off between speed and balance. Yoneda et al. proposed a method to dynamically

modify these parameters achieving optimal balance of the robot [52, 53]. The smooth

periodic motion and superior balance generated by Yoneda’s modified wave gait make it

well-suited to control Hexplorer. The full details of the wave gait and the modifications

suggested by Yoneda are presented in Section 3.1.

3.1 Yoneda’s Algorithm

The principle behind Yoneda’s algorithm is rather elegant. It is based on the premise that

a robot is best balanced with the most number of feet on the ground. Thus, when moving,

a robot should maximize the number, and duration of, feet on the ground by minimizing

the time in which each foot is airborne. Minimizing the airborne duration of the foot is

accomplished by maximizing the speed of the foot. This objective is achieved within the

framework of a traditional wave gait.

3.1.1 Definitions

In order to understand the underpinnings of a wave gait, important definitions are presented

below.

A statically stable gait is one in which the inertial forces of the walker are negligible.

Due to its significant weight, slow speeds, and very large amount of friction, Hexplorer is

only capable of implementing a statically stable gait.

The support phase of a leg describes the duration of the gait in which the foot of the

leg is in contact with ground. It is represented as the phase variable φSi, for the ith leg,

which varies from 0 at foot touch-down, to 1 at foot lift-off [28].

The transfer phase of a leg describes the duration of the gait in which the foot of the

leg has been lifted off of the ground. It is represented as the phase variable φTi, for the ith

leg, which varies from 0 at foot lift-off, to 1 at foot touch-down [28].

The duty factor of a gait is the fraction of a cycle in which the leg is in its support

phase [41]. It is represented as the variable β. In a statically stable gait, it ranges between
1
2

and 1 . With a duty factor near 1, the robot moves very slowly and usually has all of

Hexplorer 36

its legs on the ground, making it well balanced. With a duty factor of 1
2
, a hexapod moves

with a tripod gait. That is, at any instant, three legs are in a support phase and three legs

are in a transfer phase. A tripod gait can achieve a maximum speed in a statically stable

walker, but with only three legs in the support phase, it is also the least stable wave gait.

The kinematic phase of the robot, φ, is a fraction representing the completion of the

current gait cycle. It varies between 0 and 1.

The relative phase of the ith leg is the value of the kinematic phase when the foot

touches down. It is represented as the variable ψi.

The kinematic period, τ , is the time required to complete one cycle of a periodic or

semi-periodic gait [41].

The temporal kinematic margin of leg i, tSi, is the amount of time remaining before the

foot reaches its workspace boundary.

The crab angle of a wave gait, α, refers to the angle between the heading of the robot

and the leg designated as number one. As the heading of the robot changes, so too does the

crab angle and consequently ordering of the lift-off events. Reordering the lift-off events

helps to maximize the balance of the robot [53].

3.1.2 Overview

The overall goal of Yoneda’s algorithm is to realize motion given a desired motion com-

mand. As indicated in Section 1.1, this motion control algorithm fits well into the stan-

dard autonomous model. On a typical wheeled robot, motion control can be achieved

using straightforward kinematics. The reciprocating nature of the legs on a walking robot

increases the complexity of realizing motion control. Yoneda inserts gait and foot motion

planners before the kinematics to manage the increased complexity [52, 53]. Input speeds

and directions, a gait planner, a foot motion planner, a kinematics-based controller, and

output are sufficient to realize motion on a walking robot. Yoneda provides a block dia-

gram similar to Figure 3.2 to describe his algorithm; this section of the thesis focuses on

the ‘Gait Planner’ block.

Gait Algorithm 37

Figure 3.2: Gait algorithm overview.

Hexplorer 38

3.1.3 Motion Input

The input to this system is defined as two horizontal velocity vectors, and the yaw rate of

the body of the robot [52, 53]. Roll, pitch, as well as heave are held constant. The input

is depicted in Figure 3.3 and generally defined as

I(t) =

vx(t)

vz(t)

ωy(t)

 . (3.1)

vx(t) and vz(t) are velocity components of the body of the robot, as measured in a frame

fixed to the body. ωy(t) is the angular velocity, or yaw rate of the body of the robot.

Figure 3.3: Motion input commands to Hexplorer.

The gait controller is responsible for translating the input and current state of the robot

Gait Algorithm 39

into a set of leg states that can be used by a kinematic controller to determine relative

Cartesian velocities for each foot. Yoneda’s algorithm differs from a traditional wave gait

in that it permits a variable crab angle and a variable duty factor. The crab angle of the

robot, α(t), is depicted in Figure 3.3 and defined by

α(t) = tan−1

(
vz(t)

vx(t)

)
. (3.2)

3.1.4 Conventional Forward Wave Gait

A forward wave gait divides the legs of a robot into two groups. In a conventional forward

wave gait, this division is specified by the sagittal plane of the robot. On the other hand,

for an axi-symmetric robot, Yoneda defines the crab angle, α to specify this division.

Having divided the legs of the robot into two groups, two waves, one per group, then

propagate foot touch-down events through each group. Touch-down events are required to

propagate forward, from the hindmost leg to the foremost leg in the direction of the desired

heading. In addition, the touch-down events should be timed such that as one leg touches-

down, an adjacent leg in the same group lifts-off. If the gait has a duty factor of β, then

this corresponds to a timing or phase difference of 1− β between adjacent legs in a group.

Finally, a conventional wave gait requires that the touch-down events of the two groups are

out of phase, or have a phase difference of 1
2
. Yoneda, however, notes that this definition

is only true for axi-symmetric robots with crab angles of α ∈ (2i−1)π
6

, i = 1 . . . 6 [53].

In the following sections, the modifications Yoneda makes to the conventional forward

wave gait is presented. Although the modifications are presented in [52, 53], details will

be discussed here to benefit the reader. Yoneda proves that the final variable duty factor

gait developed is in fact a legitimate forward wave gait or conventional forward wave gait,

using rules derived from the definition above. A gait is considered to be a forward wave

gait if:

1. touch-down events in a group propagate from the hindmost leg of the robot, to the

foremost leg;

2. the phase difference between adjacent legs in a group is 1− β;

In addition, a gait is considered to be a conventional forward wave gait if:

Hexplorer 40

3. the conditions above, describing a forward wave gait are met;

4. the crab angle is, α ∈ (2i−1)π
6

, i = 1 . . . 6;

5. the phase difference between the two groups is ±1
2
;

To illustrate the process of determining the validity of a conventional forward wave

gait, consider the following mathematical example. The axi-symmetric hexapod depicted

in Figure 3.4 has duty cycle of 1
2
≤ β ≤ 1, and a crab angle of α = π

6
, with touch-down

timings of some legs given by

φm = ((7−m) β)mod1 for leg m, with m = 5, 6, (3.3)

that has been adapted from Song and Waldron [41]. In this equation, φm refers to the

Figure 3.4: Axi-symmetric hexapod with 1
2
≤ β ≤ 1, and α = π

6

value of the kinematic phase, φ, when leg m touches down, using the definition

x mod y =

(
x−

⌊
|x|
y

⌋
× y

)
, if x ≥ 0

(⌈
|x|
y

⌉
× y − x

)
, else

. (3.4)

Since the crab angle is α = π
6
, condition (4) is satisfied. The crab angle has divided

the legs into two groups, with legs ordered from hindmost to foremost, < 5, 6, 1 > and

< 4, 3, 2 >. Touch-down phase values are given for legs 5 and 6 by Equation (3.3) evaluating

Gait Algorithm 41

to φ5 = (2β)mod1 and φ6 = βmod1. To determine whether these values satisfy condition (2),

subtract φ5 from φ6 as shown

φ6 − φ5 = βmod1 − (2β)mod1 (3.5)

= β − (2β − 1)

= 1− β.

Based on these results, condition (2) is satisfied. The phase value for leg 1 can now be

obtained by applying the results from Equation (3.5) to legs 1 and 6, yielding

φ1 − φ6 = 1− β (3.6)

φ1 = (1− β + βmod1)mod1

φ1 = 1mod1.

Since φ5 < φ6 < φ1 the order of touch-down events proceeds from hindmost to foremost

leg and condition (1) is satisfied. Touch-down phase values have now been determined for

the entire group of legs < 5, 6, 1 >. Next, apply a phase difference of +1
2

to calculate the

values for the second group. This satisfies condition (5), the only remaining condition. The

touch-down phase values are summarized in Table 3.1 after evaluating the mod1 operator.

Table 3.1: Touch-down Phase Values for a Conventional Wave Gait
(
α = +π

6

)
Group < 5, 6, 1 > Group < 4, 3, 2 >

φ1 = 0 φ2 =
(
0 + 1

2

)
mod1

φ6 = β φ3 =
(
β + 1

2

)
mod1

φ5 = 2β − 1 φ4 =
(
2β − 1

2

)
mod1

Having satisfied conditions (1-5), it can be concluded that Equation (3.3) does indeed

generate a conventional forward wave gait. These conditions will be used later to demon-

strate that the gait generated with a variable crab angle can indeed be classified as a

forward wave gait, and as such, results in optimal balance.

Hexplorer 42

Variable Duty Factor

The variable duty factor is derived by considering a robot undergoing unidirectional motion.

On average, the relative distance travelled between a leg and the body of the robot during

its support phase should be equal and opposite to the relative distance traveled between

the leg and body while the leg is in its transfer phase, as seen in Figure 3.5.

(a) Position of leg at beginning
and end of support phase.

(b) Position of leg at beginning
and end of transfer phase.

Figure 3.5: Equivalent relative distance traveled in support and transfer phases.

Considering an average relative velocity of the foot in its support phase to be vav and

an average relative velocity of the foot in its transfer phase to be uav, the relative distances

Gait Algorithm 43

traveled can be equated using the duty factor and kinematic period with

|vav| (τβ) = |uav| (τ [1− β]) . (3.7)

Rearranging Equation (3.7) for the duty factor yields

β =
|uav|

|vav|+ |uav|
. (3.8)

Equation (3.8) represents the trade-off between the balance and top speed achieved by

the robot. Song and Waldron indicate that increasing the duty factor increases balance [41].

In the literature, the degree to which the robot is balanced is referred to as the stability

margin [41]. The stability margin is measured as the normalized minimum distance between

the centre of mass (COM) of the robot and the polygon created by all of the support

legs [41]. This is a static measure. Figures 3.6(a) and 3.6(b) visually demonstrate the

relationship between an increased stability margin or balance, and an increased duty factor.

In Figure 3.6(a), the duty factor of the robot is β = 1
2
. Accordingly, three legs are in their

support phase (shaded feet), and three legs are in their transfer phase. A support triangle

is created between the feet of legs in their support phase, and the resulting stability margin

SM is indicated. In contrast, Figure 3.6(b) depicts the robot with a duty factor β > 5
6
.

With β > 5
6

there are periods in the gait cycle in which all six legs are in their support

phase. The support hexagon created by the robot, in this case, clearly permits a larger

stability margin, leading to the conclusion that a larger duty factor can increase the balance

of the robot. A thorough proof of this relationship is available in [41].

Since balance and consequently duty factor are to be maximized, consider the variables

composing Equation (3.8). |uav| is free to vary in any manner because there are no velocity

constraints imposed by the inputs, I(t), on an airborne foot. It is constrained however by

the physical characteristics of the propulsion system of the robot. In the case of Hexplorer,

a transfer leg can only travel as fast as the DC motors will allow. If this maximum speed

is defined as Umax, then β is maximized by setting |uav| = Umax. |vav|, on the other hand,

is constrained by the inputs I(t) and a kinematic equation involving a rotating reference

frame. Ginsberg [14] provides Equation (3.9) that measures the velocity of a point P from

a translating and rotating reference frame with origin O,

vP = vO + Ω× rP/O + (vP)xyz , (3.9)

Hexplorer 44

(a) An example of a stability mar-
gin for a wave gait with β = 1

2 .
(b) An example of a stability mar-
gin for a wave gait with β > 5

6 .

Figure 3.6: Improved balance of the robot due to larger duty factor β. Support feet are

shaded.

where vP is the velocity of point P , vO is the velocity of point O, Ω is the rotation of

the frame with its origin at point O, rP/O is the displacement between points P and O,

and (vP)xyz is the relative velocity of point P with respect to the moving reference frame.

Applying Equation (3.9) to the values at hand results in

vfoot = vbody + Ω× rfoot/body + vav. (3.10)

In this equation, vfoot is the velocity of the foot, but, when the leg is in its support

phase, the foot is in contact with the ground and as such has zero velocity. vbody is the

velocity of the body measured from a translating and rotating frame. vx(t) and vz(t),

specified in I(t), define the velocity of the body of the robot. Ω is the rotation of the

body frame, and based on the constraints of no pitch nor roll, Ω results in the yaw rate of

the robot ωy(t). rfoot/body is simply the displacement between the body and foot, and vav

represents the relative velocity between the body and foot. Substituting these values into

Equation (3.10), and considering maximum magnitudes, the following equation results:

|vav| =
√
vx(t)2 + vz(t)2 + |ωy(t)|rmax. (3.11)

In this equation, rmax refers to the maximum horizontal distance between the foot and the

centre axis of the robot [52, 53].

Gait Algorithm 45

Combining the equations, inputs, and physical constraints of the robot above, an in-

stantaneous duty factor, β(t), can be computed as

β(t) =
Umax√

vx(t)2 + vz(t)2 + |ωy(t)|rmax + Umax

. (3.12)

Variable Crab Angle

Once a variable crab angle, α(t), and duty factor, β(t), have been defined, the sequencing

of individual legs can be examined. In a conventional forward wave gait, these parameters

are fixed, as is the leg sequencing. Yoneda uses linear interpolation between several of

these fixed parameter gaits to achieve smooth variable leg sequencing. Figure 3.7 shows

a gait diagram depicting leg sequences for conventional wave gaits with a variety of duty

factors.

Recall that the relative phase of leg i, ψi, is the value of the kinematic phase when the

foot touches down and begins its support phase. Since the crab angle and duty factor of

the gait will affect the timing of the legs, the relative phase is a function of these variables,

i.e., ψi (α(t), β(t)) = function (α(t), β(t)).

A continuous function for a dynamic relative phase of leg i, ψi (α(t), β(t)), must be

determined [52, 53]. It is important to remember that the resulting function, ψi (α(t), β(t)),

should be continuous. Continuity is important to ensure a smooth transition between

support and transfer phases. If the function is discontinuous, a slight change in crab angle

could require that a fast moving transfer leg, high above the ground, instantly becomes

a very slow moving support leg that is in contact with the ground. Kinematically, this

sudden change is impossible because time is required to dissipate kinetic energy from and

transfer kinetic energy to the joints of a leg.

Figure 3.8 is a plot of relative phases, for a conventional wave gait, for leg 1 with α = π
6

and β as indicated [52, 53]. The values used in this plot are taken directly from Figure 3.7.

Based on the figure, a continuous linear relationship between β and ψ1 emerges as

ψ1

(π
6
, β(t)

)
= mβ(t) + b. (3.13)

Substituting in the appropriate values, and generalizing it to all legs, Yoneda arrives at

Hexplorer 46

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

1
!

"1

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

2
!

"2

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

3
!

"3

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

4
!

"4

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

5
!

"5

 0 1/6 2/6 3/6 4/6 5/6 1
1/2
2/3
5/6

Le
g

6
!

"6

!=5/6 support phase
!=5/6 touch!down phase value (relative phase #i)

!=2/3 support phase
!=2/3 touch!down phase value (relative phase #i)

!=1/2 support phase
!=1/2 touch!down phase value (relative phase #i)

Gait Diagram ($=%/6)

Figure 3.7: Leg sequences for a forward wave gait with α = π
6
.

Gait Algorithm 47

3/6 4/6 5/6 1
 0

1/6

2/6

3/6

4/6

5/6

 1

Duty Factor !

Re
la

tiv
e

Ph
as

e
"

1
Relative Phase vs. Duty Factor

"1(#/6,1/2)

"1(#/6,2/3)

Figure 3.8: Relative phase of leg 1 ψ1 vs. variable duty factor β with α = π
6
.

ψi

(π
6
, β(t)

)
=

(
6

[
ψi

(
π

6
,
2

3

)
− ψi

(
π

6
,
1

2

)]
β(t) (3.14)

−
[
3ψi

(
π

6
,
2

3

)
− 4ψi

(
π

6
,
1

2

)])
mod1

.

Actually, these results are not surprising as Equation (3.13) is similar to Equation (3.3),

which was shown to define a conventional forward wave gait.

Equation (3.14) represents the relative phases of the legs for any time-varying β with a

crab angle of α = π
6
. In order to have the relative phase vary with the crab angle as well,

the values ψi

(
π
6
, 2

3

)
and ψi

(
π
6
, 1

2

)
in Equation (3.14), need to be replaced with functions

ψi

(
α(t), 2

3

)
and ψi

(
α(t), 1

2

)
, respectively. These functions must satisfy the conditions for

either a conventional forward wave gait or a forward wave gait.

In [53], Yoneda produces a set of relative phases, and using the conditions from the

previous section, proves that the set of relative phases can be classified as a forward wave

gait. Instead of simply re-proving Yoneda’s results, it is instructive to infer how these sets

Hexplorer 48

of relative phases were selected or developed. Two sets of equations will be developed with

one set representing a variable crab angle with a duty factor of β = 1
2

and the other set

representing a variable crab angle with a duty factor of β = 2
3
. In both cases, the procedure

to generate the equations will be similar. Using Equation (3.3) and the conditions outlined

in the previous section, relative phases for specific crab angles, at the given duty factor,

will be determined. These discrete values will be connected using linear interpolation to

yield continuous functions, ψi

(
α(t), 2

3

)
and ψi

(
α(t), 1

2

)
, for the range α(t) ∈ [0, 2π).

First, consider the tripod gait, β = 1
2

with α = π
6
, depicted in Figure 3.9(a). Equa-

tion (3.3) and the conditions defining a forward wave gait resolve to the following relative

phase values:

ψ1

(
π
6
, 1

2

)
= 0 ψ2

(
π
6
, 1

2

)
= 1

2

ψ6

(
π
6
, 1

2

)
= 1

2
ψ3

(
π
6
, 1

2

)
= 0

ψ5

(
π
6
, 1

2

)
= 0 ψ4

(
π
6
, 1

2

)
= 1

2
.

Next consider the same tripod gait, with α = 11π
6

, depicted in Figure 3.9(b) (α = π
6

(a) β = 1
2 and α = π

6 (b) β = 1
2 and α = 11π

6

Figure 3.9: Leg sequencing with β = 1
2

and specific crab angles.

Gait Algorithm 49

leg numbers are shaded and located next to the feet). For α = π
6

the two groups were

< 5, 6, 1 > and < 4, 3, 2 >. By effectively renumbering the feet, the same groups, and

ordering within the groups, for α = π
6

can be achieved for α = 11π
6

. The renumbered legs

are shown in Figure 3.9(b), with the new numbers located inside the feet and designated

with a prime, ′. By equating the relative phases for group < 5, 6, 1 > where α = π
6
, and

group < 5′, 6′, 1′ > where α = 11π
6

, the results below are obtained:

ψ1

(
11π
6
, 1

2

)
= ψ1′

(
11π
6
, 1

2

)
= ψ1

(
π
6
, 1

2

)
= 0

ψ2

(
11π
6
, 1

2

)
= ψ6′

(
11π
6
, 1

2

)
= ψ6

(
π
6
, 1

2

)
= 1

2

ψ3

(
11π
6
, 1

2

)
= ψ5′

(
11π
6
, 1

2

)
= ψ5

(
π
6
, 1

2

)
= 0

ψ6

(
11π
6
, 1

2

)
= ψ2′

(
11π
6
, 1

2

)
= ψ2

(
π
6
, 1

2

)
= 1

2

ψ5

(
11π
6
, 1

2

)
= ψ3′

(
11π
6
, 1

2

)
= ψ3

(
π
6
, 1

2

)
= 0

ψ4

(
11π
6
, 1

2

)
= ψ4′

(
11π
6
, 1

2

)
= ψ4

(
π
6
, 1

2

)
= 1

2
.

If this procedure is repeated for α ∈ (2i−1)π
6

, i = 1 . . . 6, the relative phases offset by 1
4

as

per the discrete values adapted from Yoneda [52, 53] summarized in Table 3.2, and a line

interpolated between these relative phases, Yoneda’s results are obtained,

ψi

(
α(t),

1

2

)
=

1
4

if i = 1, 3, 5

3
4

else

. (3.15)

This set of relative phases satisfies conditions (1) and (2) and therefore generates a forward

wave gait.

The function ψi

(
α(t), 2

3

)
can be formulated in a similar manner. In the interest of

brevity, only ψ1

(
α(t), 2

3

)
is fully derived. An initial set of relative phases can be deter-

mined using Equation (3.3). The results, generating a forward wave gait, correspond to

Figure 3.10(a) and are listed below:

ψ1

(
π
6
, 2

3

)
= 0

ψ3

(
π
6
, 2

3

)
= 1

6

ψ5

(
π
6
, 2

3

)
= 2

6
.

Hexplorer 50

(a) β = 2
3 and α = π

6 (b) β = 2
3 and α = 7π

6

(c) β = 2
3 and α = 11π

6 (d) β = 2
3 and α = 5π

6

Figure 3.10: Leg sequencing with β = 2
3

and specific crab angles.

Gait Algorithm 51

Table 3.2: Relative Leg Phases (ψi) at Discrete Duty Factors (β) and Crab Angles (α)

Relative Phase Duty Factor (β)

ψi (α, β) 1/2 2/3

Crab Angle (α) ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

π/6 1/4 3/4 1/4 3/4 1/4 3/4 0 3/6 1/6 5/6 2/6 4/6

3π/6 1/4 3/4 1/4 3/4 1/4 3/4 1/6 3/6 0 4/6 2/6 5/6

5π/6 1/4 3/4 1/4 3/4 1/4 3/4 2/6 4/6 0 3/6 1/6 5/6

7π/6 1/4 3/4 1/4 3/4 1/4 3/4 2/6 5/6 1/6 3/6 0 4/6

9π/6 1/4 3/4 1/4 3/4 1/4 3/4 1/6 5/6 2/6 4/6 0 3/6

11π/6 1/4 3/4 1/4 3/4 1/4 3/4 0 4/6 2/6 5/6 1/6 3/6

In Figure 3.10(b), the legs have been renumbered to equate relative phases between

crab angles of α = π
6

and α = 7π
6

. The relative phase for leg 1 is given below:

ψ1

(
7π
6
, 2

3

)
= ψ5′

(
7π
6
, 2

3

)
= ψ5

(
π
6
, 2

3

)
= 2

6
.

Following this same procedure for α = 11π
6

and 5π
6

, shown in Figures 3.10(c) and 3.10(d),

respectively, the leg 1 relative phases listed below are obtained:

ψ1

(
11π
6
, 2

3

)
= ψ1′

(
11π
6
, 2

3

)
= ψ1

(
π
6
, 2

3

)
= 0

ψ1

(
5π
6
, 2

3

)
= ψ5′

(
5π
6
, 2

3

)
= ψ5

(
π
6
, 2

3

)
= 2

6
.

Plotting and linearly interpolating between these values, as shown in Figure 3.11, then

yields a continuous equation for the relative phases of leg 1 with a variable crab angle and

Hexplorer 52

a duty factor of β = 2
3
. By extending this procedure to the other legs, Yoneda [53] provides

ψi

(
α(t),

2

3

)
=

α′

2π
if 0 ≤ α′ ≤ 2π

3
1
3

2π
3
≤ α′ ≤ π

− α′

2π
+ 5

6
π ≤ α′ ≤ 5π

3

0 5π
3
≤ α′ ≤ 2π

, if i = 1, 3, 5

α′

2π
+ 1

2
if 0 ≤ α′ ≤ 2π

3
5
6

2π
3
≤ α′ ≤ π

− α′

2π
+ 1

3
π ≤ α′ ≤ 5π

3
1
2

5π
3
≤ α′ ≤ 2π

, if i = 2, 4, 6

(3.16)

where

α′ =

[
α− (2i− 1)π

6

]
mod2π

,

(3.17)

which by inspection satisfies all of the conditions necessary to define a forward wave gait.

The entire purpose of examining a variable crab angle was to develop a set of equations

to describe relative leg phases for variable crab angles and duty factors. Incorporating

Equations (3.15) and (3.16) into Equation (3.14) provides the desired result in the form of

ψi (α(t), β(t)) =

(
6

[
ψi

(
α(t),

2

3

)
mod1

− ψi

(
α(t),

1

2

)
mod1

]
β(t) (3.18)

−
[
3ψi

(
α(t),

2

3

)
mod1

− 4ψi

(
α(t),

1

2

)
mod1

])
mod1

.

3.1.5 Gait Planner

Equation (3.18) and Figure 3.7 form Yoneda’s gait planner. Based on a set of inputs I(t)

and the current state of the robot, the gait planner generates a set of touch-down timings to

sequence the legs. This sequence has been carefully designed to produce a modified forward

wave gait that is dynamically optimal first for balance and then for speed. In order to make

use of these touch-down timings, they are converted to represent and quantify the states

of a leg. Afterwards, based on the states of the legs, the foot motion planner selects an

appropriate course of action.

Gait Algorithm 53

 pi/6 3pi/6 5pi/6 7pi/6 9pi/6 11pi/6 2pi
 0

1/6

2/6

3/6

4/6

5/6

 1

Crab Angle ! [rad]

Re
la

tiv
e

Ph
as

e
"

1
Relative Phase "1 vs. Crab Angle ! with #=2/3

Discrete Relative Phase Values "1
Interpolated Relative Phase "1

Figure 3.11: Relative phase of leg 1 ψ1 vs. variable crab angle α with β = 2
3
.

Leg and Body States

In this section, touch-down timings are combined with the overall state of the robot to

generate a set of variables that determine and describe the state of a leg. Very simply,

the state of leg i, φLi, refers to whether the leg is in its support or transfer phase as well

as the completion of the current state. With this information, support legs can be driven

such that the correct motion of the body of the robot is achieved, and transfer legs can

determine whether they should aggressively raise their feet from the ground or prepare to

become support legs, ready to gently place a foot on the ground.

The most important phase variable and state is the kinematic phase of the robot φ.

Based on this value, supervisory inputs, and relative leg phases, all of the necessary gait

information can be generated. As defined earlier, the kinematic phase of the robot rep-

resents the percent completion of a gait cycle. It essentially measures how far the robot

has moved in the present cycle compared to the total movement the robot can achieve in

a single cycle. The kinematic phase is calculated based on the instantaneous kinematic

Hexplorer 54

period [28], τ , as

φ(t) =

∫ t

0

1

τ(η)
dη, (3.19)

where η is a dummy integration variable. The leg phase variable indicates the current state

of the leg. It is calculated with

φLi = [φ(t)− ψi (α(t), β(t))] mod 1 , (3.20)

and its values are interpreted as

0 ≤ φLi ≤ β being in the support phase and

β < φLi ≤ 1 being in the transfer phase.
(3.21)

By normalizing the leg phase using β, degree of completion of the support phase is measured

as a value between 0 and 1, as per the definition of support phase. The support phase of

leg i is calculated as

φSi =
φLi

β
. (3.22)

Similarly, normalizing the leg phase remaining after the support phase with the fraction

of a cycle spent in the transfer phase, completion of the transfer phase is measured as a

value between 0 and 1, as per the definition of transfer phase. The transfer phase of leg i

is calculated as

φTi =
1− φLi

1− β
. (3.23)

The phase values, φLi and, φSi or φTi, together, form the inputs to the foot motion

planner.

3.1.6 Foot Motion Planning

Yoneda defines a foot motion planner which, depending on the state of the leg, prescribes

the motion of a foot relative to the reference frame of the leg. Relatively simple in structure,

the logic of the foot motion planner is depicted in Figure 3.12.

If a leg is in its support phase, then the motion of the foot relative to the reference

frame of the leg must occur in such a way that the motion of the body of the robot

matches the desired body motion. Goulet explains this constraint using Wilson’s Law [17],

Gait Algorithm 55

Figure 3.12: Outline of Yoneda’s foot motion planner.

Hexplorer 56

stating that the polygon formed by the feet acting as the based of support cannot deform.

Using either of these explanations, the velocity of the feet with respect to the leg or

body can be determined using kinematics, in addition to realizing that support feet are

in contact with the ground, and therefore should have an absolute velocity of zero. By

carefully selecting and defining reference frames, identical code can be implemented on

all of the DSPs responsible for controlling Hexplorer. Eight reference frames are defined

in Figure 3.13. The world reference frame {W} is an inertial reference frame. The body

Figure 3.13: Cartesian reference frames.

reference frame {B} is a reference frame attached to the body of the robot, with xB aligned

Gait Algorithm 57

with leg 1 as shown. The input velocities and angular velocities are defined in this frame.

The remaining six frames are local leg frames. Attached to the body of the robot, these

frames are oriented such that the leg workspaces all share identical coordinates in their

local frames. The origins of these local leg frames are located at the hip joint connecting

the legs to the body of Hexplorer and designated as {Li}. The constant angle δ measures

the rotation of the leg frames with respect to the body frame and the radius of the body

is given by ρ. Using Equation (3.9), the equation governing the relative velocity of foot i

with respect to a local leg frame i is

vfooti = vLi
+ Ω× rfoot/Li

+ vfoot/Li
. (3.24)

In Equation (3.24), vfooti is the velocity of foot i which is zero, Ω is the rotation of local

frame {Li} which is the yaw rate ωy, rfoot/Li
is the displacement of foot i with respect to

the local leg frame, and vfoot/Li
is the relative velocity of foot i with respect to local leg

frame {Li}. The components of rfoot/Li
and vfoot/Li

, respectively, as measured from the

local frame {Li} resolve into

rfoot/Li
=

rxfoot/Li

ryfoot/Li

rzfoot/Li

Li

and vfoot/Li
=

vxfoot/Li

vyfoot/Li

vzfoot/Li

Li

. (3.25)

Substituting the inputs, I(t), angular offset of the leg frame, δ, displacement of the leg

frame from the body frame, ρ, and the column matrix components of Equation (3.25) into

Equation (3.24), results in the set of equations:
vxfoot/Li

vyfoot/Li

vzfoot/Li

Li

=

vz sin δ − vx cos δ − ωy

(
rzfoot/Li

)
0

−vx sin δ − vz cos δ + ωy

(
ρ+ rxfoot/Li

)

Li

. (3.26)

On the other hand, if the leg is in its transfer phase, it can move freely without affecting

the motion of the robot. The only critical requirement is that the foot cannot be in contact

with the ground. Yoneda uses a set of velocity templates that when integrated, define a

path of travel for the foot. Hexplorer uses a simpler technique based on position control

that will be fully discussed in Section 4.2.3. The freedom of motion of the foot while in

Hexplorer 58

its transfer phase, introduces another problem. Where should the foot move within its

workspace, such that it can maximize the distance traveled through its workspace during

its next support phase? In more colloquial terms, where should the foot-hold be located so

that the biggest step can be taken? If the distance traveled in the support phase (step size)

is maximized, then the number of gait cycles (steps) required to travel a certain distance

will be minimized. Yoneda selects a foot-hold located on a circle that has its centre located

in the middle of the workspace of the leg. The position of the foot-hold on the circle is

selected based on the crab angle. This technique is simple and computationally efficient. It

also provides larger step sizes than simply returning the foot to the centre of the workspace.

The implementation on Hexplorer, however, takes advantage of the existing functionality

of the temporal kinematic margin. Instead of limiting the foot-hold position to occur on a

circle of a pre-determined radius, the foot-hold can occur anywhere in the workspace. By

reversing the direction of the inputs I(t) and solving for the temporal kinematic margin,

from the centre of the workspace, a foot-hold near the workspace boundary is selected. Like

Yoneda’s technique, this one is dynamic, and new foot-hold locations are recalculated, until

the foot is placed on the ground. But unlike Yoneda’s technique, the one implemented on

Hexplorer takes advantage of the existing temporal kinematic margin functionality, is based

solely on local leg frame coordinates, and exploits the shape of the workspace more fully.

Two main ideas are important in the foot motion planner. If a leg is in its support

phase then velocity is the parameter to control. Otherwise, if a leg is in its transfer phase,

the position of the foot is critical.

Kinematic Phase and Temporal Kinematic Margin

The temporal kinematic margin possesses two advantages that are related to one another.

The temporal kinematic margin is used to update the state of the kinematic phase, φ,

by means of the kinematic period, τ . It is also able to adjust the kinematic period to

dynamically shrink or expand the workspace of a leg, within its physical limits.

Lee and Orin [28] define the temporal kinematic margin as

tSi =
d∣∣vfoot/Li

∣∣ , (3.27)

where d is the distance between the current position of the foot and the workspace boundary

Gait Algorithm 59

(real or effective) and vfoot/body is the relative velocity of the foot with respect to the body. It

represents a first order approximation of the time until a support foot reaches its workspace

boundary.

The temporal kinematic margin is converted into a kinematic period by considering the

state of the support legs. First, the support period, which indicates the amount of time

required to complete the support phase, must be determined. If the temporal kinematic

margin represents the time remaining in the support phase, then dividing this by the

completion of the support phase will provide the support period [28]:

τSi =
tSi

1− φSi

. (3.28)

The support period can then be converted to the kinematic period by considering the

fraction of a cycle the leg is in its support phase (i.e. duty factor). This kinematic period

should ideally be equivalent for all legs; however, since it is a first order approximation,

support legs closest to their workspace boundaries will provide the most accurate estimate

of the kinematic period. Accuracy increases because as a leg approaches its workspace

boundary, the linear approximation of time until impact better reflects the non-linear

motion of the robot, including variable speeds, crab angles, and yaw rate. A kinematic

period, τi, is calculated for each leg in a support phase with

τi =
τSi

β
. (3.29)

The minimum value is selected to represent the kinematic period, and used to update the

kinematic phase. This will increase the chance that a leg close to its workspace boundary

will finish its support phase and begin its transfer phase because the kinematic phase is

advanced more by a smaller kinematic period. The instantaneous estimate of the kinematic

period is calculated,

τ = min
i=1...6,

φLi≤β

(τi) , (3.30)

which in turn is used to update the kinematic phase [28].

In Equation (3.27) the distance between the foot and the workspace boundary is mea-

sured by d. This distance may reflect the real workspace boundary, or a boundary within

Hexplorer 60

the workspace itself. Lee and Orin [28] introduced this method as constrained working vol-

ume (CWV). It is particularly useful if the workspaces between legs on the robot overlap

with one another. By artificially limiting the size of the workspace, a robot designed for

a follow-the-leader gait can execute a wave gait without the concern of workspace inter-

ference. However, usefulness of the CWV method is limited on Hexplorer because the leg

workspaces do not overlap.

3.2 Other Modifications and Enhancements

While the contribution of the variable duty factor wave gait represents a significant con-

tribution to the research community, Yoneda does not fully address a few technical im-

plementation issues in his team’s papers. These issues involve the sign of the kinematic

period, handling the temporal kinematic margin, unexpected contact events, and the rate

of change of inputs.

Temporal Kinematic Margin

In Orin’s original derivation of the kinematic phase of the robot, he takes into account

the direction of travel [28] by changing the sign of the kinematic period. If Orin’s robot

traveled forward, the kinematic phase increased. If it traveled backwards, the kinematic

phase decreased. The benefit of calculating kinematic phase in this respect is that if the

robot moves forwards for a half cycle and then backwards for a half cycle, it does not

necessarily require new foot-holds as the support legs may not change. If, on the other

hand, the kinematic phase only increases, and the robot moves forwards for a half cycle

and then backwards for a half cycle, the kinematic phase would indicate that the robot has

completed a full cycle. This implies that the robot would have changed support legs even

though a tiny distance was traveled and the total displacement of the robot is zero. Thus,

using an unsigned kinematic period to calculate kinematic phase can, in some instances,

cause unnecessary changes in support legs and consequently foot-holds. Yoneda likely

excluded the sign of the kinematic phase because of the omnidirectional nature of his

algorithm and the ability of the robot to yaw. Realistically, if selecting new foot-holds is a

delicate activity because of inhospitable terrain, then the forward wave gait itself is likely

Gait Algorithm 61

a bad choice of gait for the terrain.

The temporal kinematic margin is an estimate that affords the robot the ability to

effectively shrink the workspace of the leg. However, Yoneda does not address the proper

procedure to deal with a leg that has reached its physical workspace limit prematurely. If

a support leg reaches its workspace boundary prematurely, its foot cannot move in such a

way to prevent the base of support polygon to deform. In simulation of Hexplorer, this is

handled by increasing the kinematic phase so that the delinquent leg becomes a transfer

leg. Although this technique introduces a slight discontinuity into the kinematic phase, the

temporal kinematic margin should be reasonably accurate, so that any legs instantaneously

changed from support to transfer or vice versa, should not do so very abruptly.

Ground Contact

In [53], Yoneda briefly mentions that phase changes depend on a foot sensor, but he does

not elaborate. Based on experience with Hexplorer, two important scenarios can occur

based on unexpected foot sensor readings. It is possible for a foot sensor to indicate that

a leg has lost contact with the ground, during the beginning or middle of its support

phase. In this case, heuristics are likely to solve the problem best because the robot has

effectively broken its gait and needs some method to recover. The robot could activate an

E-stop, halting all movement before executing a search algorithm to find another foot-hold

location. This scenario only occurs on uneven or inclined terrain. It was assumed at the

outset however, that the robot would only be exposed to smooth level terrain, making this

problem beyond the scope of the research for this thesis. It is something to be aware of,

should Hexplorer become fully autonomous. The second scenario involves having a foot

make contact with the ground earlier than predicted. In general, this is likely an indication

of an obstacle or uneven terrain. However, due to the smooth terrain assumption, obstacle

avoidance is not discussed. Therefore, the only case where the foot acquires contact with

the ground prematurely, is at the end of the transfer phase. This situation can be handled

by advancing the kinematic phase in order to reclassify the leg as a support one. This does

create a discontinuity in the kinematic phase, but as in the case of the inaccurate temporal

kinematic margin, the discontinuity is small and is likely dissipated by the compliance of

the joints.

Hexplorer 62

Input Rate of Change

A larger issue, involving discontinuities in the relative leg phases, can be caused by large

instantaneous changes in crab angle or yaw rate. Consider an example, where a fast moving

transfer leg is supposed to instantaneously become a support leg. Let the body of the robot

move at a fixed speed with a duty factor of β = 2
3
. At t = 0 let the kinematic phase be

φ(0) = 3
4

and the crab angle be α(0) = π
6
. Accordingly, the phase of leg 1 is φL1(0) =(

3
4
− 0

)
mod1

= 3
4
, meaning the leg is in the middle of its transfer phase and moving quickly

high above the ground. At the next instant in time, t = 0+, φ(0+) = 3
4

+
, and the crab angle

changes to α(0+) = 5π
6

. Accordingly, the phase of leg 1 is φL1(0
+) =

(
3
4

+ − 1
3

)
mod1

= 5
12

,

meaning the leg is now supposed to be nearing the end of its support phase and moving

fairly slowly on the ground in the opposite direction. This type of instantaneous change

cannot occur because the legs have mass and are subject to the laws of physics. If such an

input were applied to the robot, severe synchronization problems between legs would likely

result. Furthermore, this de-synchronization could cause the robot to lose its balance and

tip over.

To counteract the possibility of such an instantaneous change in crab angle or yaw

rate, a second-order Butterworth filter is applied to the inputs, I(t). The cut-off frequency

of the filter is tuned based on the physical properties of the motors. Assuming that the

leg can only travel at Umax = 5cm/s and its foot travels 5cm above the ground in the

transfer phase, it should take at least 1 second to change its crab angle from π
6

to 5π
6

and

consequently switch phases. In a second-order system, the rise-time is defined as the time

it takes for a system to reach the vicinity of its new set-point based on a step input [11]:

tr ≈
1.8

ωcut-off
. (3.31)

Using a rise-time of tr = 1
5π
6
−π

6

seconds for a unit step input, the cut-off frequency of the

Butterworth filter can be calculated. Thus, the digital implementation is based on a 10Hz

sampling rate with a cut-off frequency of 0.6Hz.

Gait Algorithm 63

3.3 Summary

In this chapter, the concept and details of a variable duty factor wave gait were introduced.

Based on a desired heading, speed, and yaw rate, the robot is able to sequence its legs

properly. When supporting the robot, legs must move at an appropriate velocity to propel

the robot at the desired heading, speed, and yaw rate. Supporting legs are also used to

update the overall state of the robot. During the transfer phase, the motion of the leg can

be arbitrary, provided the foot is not in contact with the ground. The next stage involves

realizing the motions of the feet and legs by actuating the leg joints, and is accomplished

with a kinematic analysis of the legs of the robot.

Chapter 4

Kinematic Model and Simulation

In Yoneda’s algorithm [52, 53], input variables I(t), processed by gait and foot motion

planners, produce values that determine the desired motion of the legs of the robot. This

motion is generated by moving the joints of the leg, but the leg joints must move in such

a way that the overall motion of the body, specified in a Cartesian coordinate system,

is achieved. The relationship between these two descriptions of motion is determined by

analysing the kinematic configuration of the leg. This chapter provides an in-depth mathe-

matical description of the mechanical configuration of Hexplorer. With this mathematical

description defined, a full kinematic simulation of Yoneda’s algorithm on Hexplorer is pre-

sented. The simulation includes a number of details, such as the workspace of a leg, results

of using a higher-order approximation to estimate the temporal kinematic margin, and a

comparison between two horizontal terrain foot-hold selections.

4.1 Kinematic Model

Before the kinematic model of the robot is discussed, the four coordinate systems used in

conjunction with the kinematics are presented.

The Cartesian coordinates of a foot are based on a reference frame attached to the body

of the robot, not the leg, and located as shown in Figure 4.1. The Cartesian coordinates

64

Kinematic Model and Simulation 65

of foot i are:

xiCartesian
= {xi, yi, zi} . (4.1)

The joint coordinates of a leg are the two lead screw lengths and the rotation of the leg

(a) Isometric view. (b) Planar view.

(c) Top view.

Figure 4.1: Cartesian coordinate system of a leg.

about the hip as shown in Figure 4.2. The joint coordinates of leg i are:

xiJoint
= {L1i

, L2i
, θ3i

} . (4.2)

Hexplorer 66

(a) Planar view. (b) Top view.

Figure 4.2: Joint coordinate system of a leg.

The modeling coordinates of a leg are based on rotations of the two serially connected links,

depicted in Figure 4.3, relative to the body-fixed xyz frame. The modeling coordinates of

leg i are:

xiModel
= {θ1i

, θ2i
, θ3i

} . (4.3)

Natural coordinates of a planar multibody system describe the configuration of the system

using two Cartesian points to describe each joint [12]. In the plane of the RPR mechanism,

one point at each end of each lead screw defines the natural coordinates of the leg, shown

as points c, e, f , and h in Figure 4.4. Since the positions of points f and h are fixed within

the plane, only variables representing points c and e are required. The scalar coordinate

components of points c and e are:

xiNat
= {vci

, vei
, wci

, wei
} . (4.4)

The kinematic model of the robot has two components, forward kinematics and inverse

kinematics. A forward kinematic analysis is used to determine the Cartesian position of

an end effector of a mechanism based on the joint positions [7]. In this instance, the

Kinematic Model and Simulation 67

(a) Planar view. (b) Top view.

Figure 4.3: Modeling coordinate system of a leg.

mechanism is a leg attached to Hexplorer, while the end effector is the foot of the leg. The

forward kinematic analysis is used for a number of purposes, especially during the support

phase of a leg, including estimating the temporal kinematic margin and calculating joint

velocities. Inverse kinematics, on the other hand, are used for the opposite task. An inverse

kinematic analysis converts the Cartesian position of a foot, belonging to Hexplorer, into

joint positions of the leg to which the foot is attached [7]. The inverse kinematics are

useful during the transfer phase of a leg, where the desired position of the foot is given in

Cartesian coordinates, but where control of the foot is accomplished at the joint level.

Two additional sets of coordinate systems are used to relate the Cartesian and joint

coordinates. Referred to as modelling and natural coordinates in this thesis, these coor-

dinate systems are required because of difficulties arising from determining the forward

kinematics of the RPR mechanism. Figure 4.1 describes the relationships between these

four sets of coordinates.

4.1.1 Forward Kinematics

The legs of Hexplorer were designed to allow the robot to be passively supported and sturdy.

These goals were indeed met; however, they were met at the expense of an analytical

Hexplorer 68

Figure 4.4: Natural coordinate system of a leg.

Kinematic Model and Simulation 69

Figure 4.5: Transformation between coordinate sets.

solution to the forward kinematic equations. As mentioned in previous sections, the legs

of the robot form a planar parallel revolute-prismatic-revolute (RPR) mechanism.

Kong and Gosselin [22] performed an extensive analysis of planar parallel mechanisms

and the associated forward kinematics. They show that in general, a closed-form forward

kinematic solution does not exist for a planar parallel RPR mechanism. In special circum-

stances, such as having three collinear revolute joints (R6 = 0 in Figure 4.4), the forward

kinematics are simplified, and a closed-form solution exists. Unfortunately, because of the

vertical offset, R6 6= 0 and the legs of Hexplorer form a general planar parallel RPR mech-

anism. The forward kinematic solution hinges on one equation consisting of a sixth-order

polynomial, the roots of which can only be determined iteratively [22]. A number of it-

erative techniques, such as Laguerre’s method [13], could be used to solve this equation.

However, implementing Laguerre’s method requires that several divisions and square roots

be calculated each iteration. As explained earlier, when precision is required for fixed-point

numbers, the range of representation is sacrificed, making division a computationally risky

operation. Alternatively, a system of four non-linear equations with four unknowns can be

used to determine the forward kinematic configuration of a leg. Similar to the sixth-order

polynomial, the non-linear system can be solved using an iterative technique. The Newton-

Raphson algorithm is the preferred method for solving a system of non-linear equations.

Hexplorer 70

In general, iterative techniques begin with an initial guess and improve the guess until it

provides a solution within some tolerance.

Iteratively solving equations is an unfavourable proposition in real-time control [7].

Problems with convergence, the rate of convergence, and convergence to an incorrect so-

lution, limit the appeal of iterative techniques. However, a good initial guess can address

some of these concerns. The Newton-Raphson algorithm features quadratic convergence,

meaning that convergence accelerates as the guess approaches the correct solution [13].

To ensure good guesses, Hexplorer frequently executes the Newton-Raphson algorithm

using the results from the last solution as the initial guess for the next. The initial guess

for the first execution of the algorithm is calculated offline for the home position of the legs.

During its homing sequence, each leg reaches a configuration where all the joints reach their

under-travel limit switches. In this configuration, the solution to the forward kinematics

is known and that result is applied to the initial guess, solving the first execution of the

Newton-Raphson algorithm in one iteration.

The Newton-Raphson iterative technique [13] is used in conjunction with natural co-

ordinates to solve the forward kinematics of a leg. Given the two lead screw lengths, the

coordinates of points c and e are determined from the kinematic constraints of the RPR

mechanism. The coordinates of points c and e form the column matrix {xNat} where

{xNat} =

vc

ve

wc

we

 . (4.5)

Two of the four kinematic constraints are found by equating the distances between points c

and f , and between points e and h to lead screw lengths L1 and L2, respectively. The other

two kinematic constraints are found by expressing R1 and R5 in xNat. These constraints

form the column matrix {ϕ} where

{ϕ} =

(

1
2
(vc + ve)−R7

)2
+

(
1
2
(wc + we)−R6

)2 −R2
1

(vc −R3)
2 + (wc)

2 − L2
1

(ve −R4)
2 + (we)

2 − L2
2

(vc − ve)
2 + (wc − we)

2 −R2
5

 . (4.6)

Kinematic Model and Simulation 71

The Jacobian of {ϕ} with respect to the vector {xNat} is designated as [ϕ]xNat
and is

calculated as

[ϕ]{xNat} =
∂ {ϕ}
∂ {xNat}

(4.7)

=

vc + ve −R7 vc + ve −R7 wc + we −R6 wc + we −R6

2 (vc −R3) 0 2wc 0

0 2 (ve −R4) 0 2we

2 (vc − ve) 2 (ve − vc) 2 (wc − we) 2 (we − wc)

 .

One of the reasons for selecting natural coordinates is that the matrix [ϕ]xNat
is composed

entirely of linear combinations of the natural coordinates. In turn, calculating the values

in the matrix is very predictable and numerically well-conditioned. The only operators

are addition, subtraction, and multiplication by 2. Since all of the variables or constants

are measuring values between ±0.5m, multiplication by 2 results in numbers that can be

represented by the smallest fixed-point range [43]. The same logic applies to addition and

subtraction. The Newton-Raphson algorithm works as follows:

1. An initial guess, {xNat}k is selected.

2. Equation (4.8) is evaluated, where ∆{xNat} represents the error between the true

solution and {xNat}k.

3. Using the error ∆{xNat}, the guess is updated by Equation (4.9), resulting in a better

guess, {xNat}k+1.

4. Repeat the process again from step 2 using {xNat}k+1, and repeat until the error

∆{xNat} is within tolerance.

(
ϕ + [ϕ]{xNat} ∆{xNat}

)∣∣∣
{xNat}={xNat}k

= 0 (4.8)

{xNat}k+1 = {xNat}k + ∆{xNat} (4.9)

Once complete, the natural coordinates are converted into into intermediate modelling

Hexplorer 72

variables where

θ1 = tan−1

(1
2
(wc + we)−R6

1
2
(vc + ve)−R7

)
and (4.10)

θ2 = tan−1

(
we − wc

ve − vc

)
. (4.11)

Simple ‘forward kinematics’ are applied to the modeling variables in order to obtain the

Cartesian coordinates

x = (R7 +R1 cos θ1 +R2 sin θ2) cos θ3, (4.12)

y = R6 +R1 sin θ1 −R2 cos θ2, and (4.13)

z = − (R7 +R1 cos θ1 +R2 sin θ2) sin θ3. (4.14)

By formulating the Newton-Raphson approach with natural coordinates, solving a lin-

ear system of 4 equations and 4 unknowns lies at the heart of the computation. Solving

this system of linear equations can be performed two reasonable ways: an ad-hoc approach,

or a numerical methods based approach. An ad-hoc approach refers to solving a linear sys-

tem of equations by hand. This approach takes advantage of the structure of the Jacobian

[ϕ]{xNat}, especially entries of 0. However, the ad-hoc approach is not well-conditioned

numerically, because of a large number of multiplications and divisions and consequently

emulated floating-point operations must be used. The other option is to use a numerical

technique such as LU decomposition. In LU decomposition, a matrix is decomposed into

the product of a Lower triangular matrix and an Upper triangular matrix [13]. Because

of the well-conditioned Jacobian [ϕ]{xNat} and partial pivoting, the LU decomposition al-

gorithm solves this system accurately using fixed-point representation.

Table 4.1 shows the results of profiling the ad-hoc approach using emulated float-point

operations versus LU decomposition and fixed-point representation. The results clearly

show that the IQmath library coupled with LU decomposition is much faster than the

ad-hoc approach.

The Newton-Raphson implementation used to determine the forward kinematics for

Hexplorer works well. LU decomposition with partial pivoting using fixed-point numbers

handles the computationally intensive task of the Newton-Raphson algorithm well. The

algorithm easily achieves sampling rates of 100Hz, keeping guesses and solutions accurate

enough that only 1 or 2 iterations are required to achieve errors less than 10−5m.

Kinematic Model and Simulation 73

Table 4.1: Forward Kinematics Computation Performance Comparison: Fixed-Point LU

Decomposition vs. Emulated Floating-Point Ad-Hoc

Technique Average Operations Maximum Sample Rate

Ad hoc 1, 843, 558 81 Hz

LU Decomposition 467, 838 320 Hz

4.1.2 Inverse Kinematics

The inverse kinematic equations convert the Cartesian coordinates of a foot into leg model-

ing variables, and finally into joint variables. Closed-form inverse kinematics were originally

developed in [6] and later corrected in [9]. Neither [6] nor [9] considered a case where a

foot may be directly under the body rings. Adding the additional case, the closed-form

inverse kinematics are given by

θ1 = cos−1

R2
1 −R2

2 +
(√

x2 + z2 −R7

)2
+ (y −R6)

2

2R1

√(√
x2 + z2 −R7

)2
+ (y −R6)

2

 (4.15)

−atan2
(
R6 − y,

√
x2 + z2 −R7

)
,

θ2 =
π

2
− cos−1

R2
2 −R2

1 +
(√

x2 + z2 −R7

)2
+ (y −R6)

2

2R2

√(√
x2 + z2 −R7

)2
+ (y −R6)

2

 (4.16)

−atan2
(
R6 − y,

√
x2 + z2 −R7

)
, and

θ3 = − tan−1
(z
x

)
, (4.17)

followed by a conversion to joint values

L1 =

√(
R7 +R1 cos θ1 −

R5

2
cos θ2 −R3

)2

+

(
R6 +R1 sin θ1 −

R5

2
sin θ2

)2

(4.18)

and

L2 =

√(
R7 +R1 cos θ1 +

R5

2
cos θ2 −R4

)2

+

(
R6 +R1 sin θ1 +

R5

2
sin θ2

)2

(4.19)

Hexplorer 74

As with all kinematic equations, the fixed-point implementation of the inverse kine-

matics was examined. Equations (4.15) through (4.17) were optimized by hand. Repeated

expressions such as
√
x2 + z2−R7 are computed and stored in temporary variables. These

temporary variables are then used to build Equations (4.15) through (4.17). The resulting

source code is similar to optimized code generated by Maple,1 only far fewer temporary

variables are used and calculations of some expressions are duplicated. Equations (4.18)

and (4.19) are well-conditioned for a fixed-point implementation. Neither equation has any

division operators, recalling that R5

2
= 0.5R5. Most of the multiplication operators involve

squaring a number between ±1 or multiplying by sine or cosine, which both ensure that

the resultant is within the range of the selected fixed-point representation. Multiplication

by sine and cosine have this property because they evaluate to numbers between ±1.

4.1.3 Joint Velocities

The joint velocities are used to realize the Cartesian motion of the robot. Calculating the

desired velocities of the leg joints is based on the desired Cartesian velocity of the foot, as

well as the state of the leg itself. Mathematically, joint velocities are calculated using the

forward or inverse kinematic equations and calculating the corresponding Jacobian matrix.

Joint velocities can be calculated using forward kinematics:
L̇1

L̇2

θ̇3

 =

∂x(L1,L2,θ3)

∂L1

∂x(L1,L2,θ3)
∂L2

∂x(L1,L2,θ3)
∂θ3

∂y(L1,L2,θ3)
∂L1

∂y(L1,L2,θ3)
∂L2

∂y(L1,L2,θ3)
∂θ3

∂z(L1,L2,θ3)
∂L1

∂z(L1,L2,θ3)
∂L2

∂z(L1,L2,θ3)
∂θ3

−1

ẋ

ẏ

ż

 . (4.20)

Or, joint velocities can be calculated using inverse kinematics:
L̇1

L̇2

θ̇3

 =

∂L1(x,y,z)

∂x
∂L1(x,y,z)

∂y
∂L1(x,y,z)

∂z
∂L2(x,y,z)

∂x
∂L2(x,y,z)

∂y
∂L2(x,y,z)

∂z
∂θ3(x,y,z)

∂x
∂θ3(x,y,z)

∂y
∂θ3(x,y,z)

∂z

ẋ

ẏ

ż

 . (4.21)

Calculating joint velocities is typically done using the forward kinematics [7] because

the Jacobian produced is based on the joint state of the leg, not the Cartesian state of the

1Maple is a software package produced by Waterloo Maple Inc.

Kinematic Model and Simulation 75

foot. Since sensors usually measure joint variables, joint states are readily available for use

in the Jacobian. It is also important to note that the invertability of this Jacobian matrix

has an important physical meaning. When a singular Jacobian matrix is encountered, it

means that the mechanism has reached a lock-up condition [18]. As such, the Jacobian is an

important tool when examining the workspace of a mechanism. Alternatively, calculating

joint velocities can be done using the inverse kinematic equations instead, but the Jacobian

matrix is formed using the Cartesian position of the foot, which is not usually directly

available from a sensor.

Using inverse kinematics to determine joint velocities was considered because of a lack

of closed-form forward kinematic equations. However, in addition to being too cumbersome

to analyse for numeric stability of the equations in a fixed-point environment, the Maple

optimized source code to calculate joint velocities required more variables to calculate

the Jacobian matrix than the DSP was able to allocate. Instead, the joint velocities

are calculated using the ‘forward kinematics’ of the modeling variables (Equations (4.12)

to (4.14)). Since the natural coordinates are updated frequently, they are used to estimate

the state of the modeling variables (Equation (4.10) to (4.11)). The modeling variable

velocities are then translated into joint velocities using Equations (4.19), (4.18), and their

resulting Jacobian.

Finally, the fixed-point performance of the joint velocity equations was examined. The

critical calculation involved solving the inverse of the 3×3 Jacobian. The inverse was solved

using an ad-hoc approach with emulated floating point numbers and again using fixed-point

LU decomposition. Just as before, the ad-hoc approach refers to a hand solution where

one variable is the system is calculated. Then, using back-substitution with equations

developed for the variable solved first, the remaining variables are calculated. As with the

4×4 case, the fixed-point LU decomposition of a 3×3 system out-performed the ad-hoc

approach. The results are shown in Table 4.2.

Hexplorer 76

Table 4.2: Joint Velocity Computation Performance Comparison: Fixed-Point LU Decom-

position Forward Kinematics vs. Emulated Floating-Point Inverse Kinematics

Technique Average Operations Maximum Sample Rate

Emulated Floating-Point 416, 866 359 Hz

using Inverse Kinematics

Fixed-Point LU Decomposition 156, 486 958 Hz

using Forward Kinematics

4.2 Kinematic Simulation

The kinematic simulation was completed using the MATLAB2 software package. It was

used to implement Yoneda’s algorithm, including the gait equations, and foot motion

planning discussed in Section 3.1.6. In simulation, the robot can be controlled using

equations or a joystick input to specify both horizontal velocities and the yaw rate of

the robot. The body of the robot is assumed to be at a fixed height with neither any pitch

or roll motion, i.e. vy = ωx = ωz = 0. The graphical output is shown in Figure 4.6.

The simulation includes a number of visual representations, in addition to numerical

data. The following can be shown visually during the simulation: the configuration of each

leg, the phase of each leg (support feet are coloured red), the support polygon, the stability

margin (SM) calculated and normalized between the centre of the robot projected on to

the ground and the nearest edge of the support polygon, and the height-dependent resizing

of the horizontal workspaces.

4.2.1 Leg Workspace

In order to solve for or estimate the temporal kinematic margin, the workspace of the

robot must be described in Cartesian coordinates. It is the joint coordinates, however,

that define the workspace of a leg. The workspace boundary was determined by holding

one lead screw at its minimum or maximum length while the other lead screw length varied

between its minimum and maximum. The hip joint was held constant. Using the forward

2MATLAB is a software package produced by The MathWorks.

Kinematic Model and Simulation 77

Figure 4.6: Hexplorer simulation graphics.

Hexplorer 78

kinematics developed in Section 4.1, these lead screw lengths that traced out the workspace

envelope, were converted into Cartesian coordinates. The resulting planar shape is shown

in Figure 4.9(a). This shape was then revolved about the y-axis of the leg between the

minimum and maximum hip rotations. The resulting workspace is shown in Figure 4.9(b).

The vertical planar slice of the workspace in Figure 4.9(a) indicates that the horizontal

workspaces shrink as the foot moves downward with respect to the body. The horizontal

workspace is important because the height of the robot is fixed, and support feet must

therefore travel on the horizontal plane. The horizontal workspaces at yL = −0.24cm and

yL = −0.22cm are shown in Figure 4.8 and demonstrate the reduced workspace at lower

foot positions. The trade-off between ground clearance of transfer feet and workspace size

is evident. As the size of the horizontal workspace increases, the amount of clearance

afforded to transfer feet is reduced. The spring-loaded feet of the robot compound this

problem. Gravity causes the spring loaded feet to be fully compressed when in the support

phase; thus to clear the ground, the spring must uncompress. This requires that the foot

be raised by an additional 1cm to achieve the desired ground clearance. Removing the

springs from the feet would provide a much larger vertical workspace.

In order to calculate the temporal kinematic margin, the distance between the foot and

the workspace boundary in the direction of travel, must be determined. By approximating

the workspace of a leg as a set of piece-wise linear functions, the distance between a point

in the workspace and a line on the boundary is determined using elementary algebra. In

addition, by adding a scaling factor to the linearized workspace, the steps taken by the

robot can be modified. Using the full linearized workspace results in large steps, while

reducing the size of the linear workspace results in smaller steps. This is actually the

basis for the constrained working volumes (CWVs) introduced by Lee and Orin [28]. The

linearized vertical planar workspace is shown in Figure 4.9(a). The linearized horizontal

workspace for y = −24cm is shown in Figure 4.9(b). Careful examination of Figure 4.9(b)

shows that for y ≤ −23.5cm the linearized workspace provides a conservative estimate of

the actual workspace. On the other hand, for values of y ≥ −23.5cm the estimate of the

linearized workspace is relaxed. This overestimation does not pose a problem because the

linearized workspace is only used with the height of the body from the ground, not the

height of the body from a foot. Because of the spring-loaded feet, in order to achieve a

Kinematic Model and Simulation 79

0 0.0# 0.1 0.1# 0.2 0.2#
!0.&

!0.28

!0.26

!0.24

!0.22

!0.2

!0.18

Horizontal 454 5lane (m)

y L (m
)

<ertical >lice o? Le@ Workspace

(a) Vertical leg workspace.

(b) Workspace volume.

Figure 4.7: Leg workspace.

Hexplorer 80

0 0.05 0.1 0.15 0.2 0.25

!0.1

!0.05

0

0.05

0.1

xL (m)

z L (m
)

Horizontal Workspace Comparison

yL = !24cm

yL = !22.6cm

Figure 4.8: Comparison of horizontal leg workspaces at different distances below the body

of the robot.

Kinematic Model and Simulation 81

ground clearance of y ≤ −25cm, the conservative linearized estimate of the workspace is

used.

4.2.2 Improved Temporal Kinematic Margin

The temporal kinematic margin, as proposed by Lee and Orin, is a first-order approxi-

mation of the amount of time it will take until a foot reaches its workspace boundary. It

is referred to as a first-order approximation in this thesis because it does not take into

account the curvature of the trajectory between calculations, and it assumes that the ve-

locity is constant in magnitude and direction. To improve the distance travelled in a fixed

number of steps, taking into account the curvature of the trajectory between calculations

was considered.

The motion of the foot relative to the leg i frame, was given by Equation (3.26).

Considering only the horizontal plane formed by (xi, zi) from any leg i reference frame

{Li}, substitute the following values:

vfoot/Li
=

{
ẋi

żi

}
, (4.22)

rfoot/Li
=

{
xi

zi

}
. (4.23)

Assuming a constant velocity and yaw rate, the velocity of the foot relative to the leg is

given by {
ẋi

żi

}
=

{
vz sin δ − vx cos δ − ωyzi

−vz cos δ − vx sin δ + ωy(ρ+ xi)

}
. (4.24)

This forms a set of linear ordinary differential equations (ODEs). Solving this set of ODEs

assuming vx, vz, and ωy are constant and applying initial conditions xi(0) and zi(0), which

represent the initial position of the foot, expressions as functions of time for the relative

Hexplorer 82

0 0.05 0.1 0.15 0.2 0.25

!0.28

!0.26

!0.24

!0.22

!0.2

!0.18

!0.16

Horizontal 343 4lane (m)

y L (m
)

Linearize; Vertical >lice of Leg Workspace

3eal workspace
Linear workspace

(a) Linearized vertical leg workspace.

0 0.05 0.1 0.15 0.2 0.25

!0.1

!0.05

0

0.05

0.1

xL (m)

z L (m
)

Linearized Horizontal Workspace at yL=!0.24cm

Real workspace
Linearized workspace

(b) Linearized horizontal leg workspace.

Figure 4.9: Linearized leg workspace.

Kinematic Model and Simulation 83

position of the foot with respect to the leg reference frame are found to be

xi(t)

zi(t)

=

− sin(ωyt)zi(0) + cos(ωyt) (xi(0) + ρ)− ρ+
vx

ωy
[sin δ − sin δ cos(ωyt)− cos δ sin(ωyt)] +

vz

ωy
[cos δ + sin δ sin(ωyt)− cos δ cos(ωyt)]

cos(ωyt)zi(0) + sin(ωyt) (xi(0) + ρ) +
vz

ωy
[sin δ − sin δ cos(ωyt)− cos δ sin(ωyt)] +

vx

ωy
[cos δ − sin δ sin(ωyt) + cos δ cos(ωyt)]

. (4.25)

Using these expressions and the linearized workspace of the robot, the amount of time it

takes to reach the nearest boundary (the temporal kinematic margin) can be estimated.

The sinusoidal functions in the expression prevent a perfectly accurate closed-form solution

from being determined. Thus, an approximation is required to determine a closed-form

solution. The approximation is made by approximating sine and cosine functions as second

order polynomials like

cos(ωyt) = c2(ωyt)
2 + c1(ωyt) + c0 and (4.26)

sin(ωyt) = s2(ωyt)
2 + s1(ωyt) + s0. (4.27)

The constants ci, i = 0 . . . 2 and si, i = 0 . . . 2 are determined by fitting each quadratic to

its sinusoid using a least-squares estimate. The accuracy of the sinusoid approximation

depends on which part and how much of each sinusoid is fitted. Consequently, the tem-

poral kinematic margin is also affected by this decision. Based on experimentation, the

largest distances travelled in a fixed number of steps were found when sine and cosine were

approximated between 0 ≤ ωyt ≤ 0.6 rad.

For completeness, if the yaw of the robot is fixed, ωy = 0, the ODEs in Equation (4.24)

solve to: {
xi(t)

zi(t)

}
=

{
(vz sin δ − vx cos δ) t+ x0

(−vz cos δ − vx sin δ) t+ z0

}
. (4.28)

These equations are used when the robot is in pure translation. Since all of the input

velocities are assumed to be constant, this equation is the first-order approximation used

by Yoneda.

Hexplorer 84

To examine the effectiveness of the higher-order temporal kinematic margin (tSi), the

system was simulated using two different sets of inputs. Each simulation was executed

until the robot had completed five gait cycles, or steps, and the performance was evaluated

by the total distance travelled in the five steps. In the first set the robot undergoes pure

rotation while in the second set the rotation is reduced and the robot has translational

velocity components. A case with no rotational velocity was not considered for two reasons.

Firstly, the higher-order equation, Equation (4.25), is only defined when some rotational

input exists. Secondly, Equation (4.28), used for pure translation, is the same first-order

approximation used by Yoneda, and consequently the results would be identical.

The inputs and results for the first simulation are summarized in Table 4.3. For a

Table 4.3: Travelling 5 Gait Cycles in Pure Rotation

Input vx(t) = 0.0m/s, vz(t) = 0.0m/s, ωy(t) = 0.15rad/s

Measure First-order tSi Higher-order tSi

Distance (m) 0.0 0.0

Rotation (rad) 2.42 3.52

Minimum SM 0.33 0.32

Mean SM 0.52 0.50

pure rotation, the higher-order temporal kinematic margin improved upon the first-order

approximation by rotating the body of the robot 45% further. The reason for such a

dramatic improvement is because the higher approximation incorporates the curvature of

the path of the foot through the workspace and the oblong shape of the workspace. Without

considering curvature, the first order approximation frequently ran into the boundaries

along the narrow part of the workspace, which in turn forced the robot to advance its

kinematic phase too quickly. Advancing the kinematic phase too quickly prematurely ends

one step and begins the next, explaining the above results. It should also be noted that the

mean and minimum measures of balance (SM) only decreased 3% using the higher-order

approximation.

The inputs and results for the second simulation are summarized in Table 4.4. In

this simulation the yaw rate was significantly lower than in the previous simulation and

therefore the paths travelled by the feet in the workspace were less curved. Recall that

Kinematic Model and Simulation 85

Table 4.4: Travelling 5 Gait Cycles with Little Rotation

Input vx(t) = −0.01m/s, vz(t) = −0.01m/s, ωy(t) = 0.05rad/s

Measure First-order tSi Higher-order tSi

Distance (m) 0.37 0.38

Rotation (rad) 1.32 1.34

Minimum SM 0.34 0.4

Mean SM 0.50 0.50

the curvature of the path travelled, or rather, the relative path between the foot and the

local leg reference frame is governed by Equation (4.25). Consequently the higher-order

approximation of the temporal kinematic margin was less beneficial and its performance

was on par with the first-order approximation. It is interesting to note however, that

although the mean stability margins were identical, the minimum stability margin of the

higher-order temporal kinematic margin improved by 17%. This means that when using

the higher-order temporal kinematic margin the robot is theoretically less likely to tip over

than if the first-order approximation was used.

Based on the results of these simulations, the higher-order approximation of the tem-

poral kinematic margin improved the distance travelled in a fixed number of steps as the

yaw rate of the robot increased. This is due to the improved accuracy of the calculation as

well as the oblong shape of the leg workspace. While this approximation yields at least a

marginal improvement over the first order temporal kinematic margin, the added compu-

tational complexity of solving it does not warrant its use on Hexplorer because of limited

CPU resources.

4.2.3 Horizontal Foot-Hold Selection

As discussed in Section 3.1.6, Yoneda selects a foot-hold position for a transfer leg based

on a circle located in the horizontal plane. Instead of using a circle, a scalable linear piece-

wise scalable approximation of the workspace is used in conjunction with the temporal

kinematic margin (tSi) in order to determine a suitable foot-hold location. The proposed

technique determines the foot hold position by determining tSi when the supervisory inputs

Hexplorer 86

are reversed, −I(t). The temporal kinematic margin is then applied to the trajectory of

the foot to find the foot-hold location. In order to calculate tSi, the position of the foot is

required. When using the tSi to calculate the foot-hold location, the centre of the workspace

is used, as opposed to the actual position of the foot. This prevents the foot-holds from

getting locked into the corners of the workspace.

Similar to the previous section, a series of simulations were executed to determine the

total distance travelled and rotation achieved in five gait cycles using Yoneda’s foot-hold

selection and the proposed foot-hold selection technique. It is important to realize that

Yoneda may have selected the circular foothold due to the shape of the workspace of his

robot. The leg workspaces of Hexplorer on the other hand, are oblong and Yoneda may

have suggested a different shape in this situation.

The inputs and results for the first simulation are summarized in Table 4.5. In this

Table 4.5: Travelling 5 Gait Cycles in Pure Translation

Input vx(t) = 0.02cm/s, vz(t) = 0.0cm/s, ωy(t) = 0.0rad/s

Measure Yoneda Proposed Proposed

(with 1st order tSi) (with higher-order tSi)

Distance (m) 0.32 0.33 N/A

Rotation (rad) 0.0 0.0 N/A

Minimum SM 0.43 0.30 N/A

Mean SM 0.48 0.46 N/A

simulation the only command input was a translational velocity in the xL1 direction. As

it happens, in this direction of travel, the size of Yoneda’s circular subset is equivalent

to the linearized workspace subset for legs 1 and 4. This can be seen in the results, as

the distance travelled by the robot between Yoneda’s foothold selection technique and the

proposed foothold selection technique is identical. However, Yoneda’s foot hold selection

balances the robot slightly better. This occurs because using the first-order technique, legs

other than 1 and 4 are attempting to maximize the distance travelled along the oblong

direction of the workspace; whereas using Yoneda’s technique these legs are constrained

within a small circular region and consequently more centred, ultimately resulting in better

balance.

Kinematic Model and Simulation 87

The inputs and results for the second simulation are summarized in Table 4.6. Due to

Table 4.6: Travelling 5 Gait Cycles in Pure Rotation

Input vx(t) = 0.0m/s, vz(t) = 0.0m/s, ωy(t) = 0.15rad/s

Measure Yoneda Proposed Proposed

(with 1st order tSi) (with higher-order tSi)

Distance (m) 0.0 0.0 0.0

Rotation (rad) 2.26 2.42 3.52

Minimum SM 0.40 0.33 0.32

Mean SM 0.52 0.52 0.52

the oblong workspace, the simulations using both the first order and higher order temporal

kinematic margins and the proposed foothold selection technique outperformed Yoneda’s

technique by rotating 7% and 56% more.

The inputs and results for the third simulation are summarized in Table 4.7. The

Table 4.7: Travelling 5 Gait Cycles with Rotation and Translation

Input vx(t) = −0.01m/s, vz(t) = −0.01m/s, ωy(t) = 0.15rad/s

Measure Yoneda Proposed Proposed

(with 1st order tSi) (with higher-order tSi)

Distance (m) 0.26 0.37 0.38

Rotation (rad) 0.93 1.32 1.34

Minimum SM 0.40 0.34 0.40

Mean SM 0.51 0.50 0.50

proposed foothold selection technique improved the distance travelled and rotation each

by approximately 40% for both calculations of the temporal kinematic margin.

The overall pattern of these results, is that larger steps can be taken when larger

workspaces are available. In the first simulation, Yoneda’s foot-hold selection technique

provided a larger effective workspace. In the second and third simulations, the proposed

method, with its larger oblong workspace, outperformed Yoneda’s foot-hold selection tech-

nique. Based on these results, the best solution would be to increase the number of nodes

Hexplorer 88

used to linearize the workspace, such that the resulting workspace would be as large, and

usually larger than Yoneda’s circular workspace, while retaining its oblong shape. How-

ever, increasing the number of piece-wise linear functions to describe the workspace also

significantly increases the computations required to determine tSi. Since floating-point

computing power is fairly limited on the DSPs, the simple linearized oblong workspace

shown in Figure 4.9 was implemented on Hexplorer.

4.3 Summary

The kinematics required to implement Yoneda’s algorithm on Hexplorer were investigated

in this chapter. The forward kinematics are calculated using a Newton-Raphson iterative

algorithm and natural coordinates. By selecting the initial guess to be the previous solution,

only one iteration of the algorithm is required to solve the forward kinematics. In the

support phase, the joint velocities of a leg are calculated based on the results of this

algorithm and the commanded inputs I(t). In the transfer phase, the joint positions are

calculated based on the inverse kinematics and a horizontal foot-hold selection. All of these

equations are implemented using the high performance floating-point library IQmath and

were carefully evaluated to provide accurate fixed-point results at reasonable sampling

rates. With a full kinematic simulation of the robot complete, the implementation on the

robot is discussed in the next chapter.

Chapter 5

Implementation and Results

Having already developed the necessary theoretical and mathematical background, this

chapter deals with the actual implementation of Yoneda’s algorithm on Hexplorer and the

corresponding results.

Although Hexplorer was able to move its legs in the prescribed motion, with its body

atop a platform and its legs in mid-air in both the stance and transfer phases, it was

not able to walk on the ground for more than a step or two. The hip encoder on Leg

5 failed when the leg was in its stance phase. As per the recommendations in the next

chapter, moving the encoder from the joint to the motor powering the joint will address

this problem, and provide better resolution resulting in better velocity control.

5.1 Gait Algorithm Implementation

The block diagram in Figure 5.1 provides an overall perspective of the gait implementation.

Control of the robot is accomplished using a set of finite state machines that communicate

with one another. Each leg and the brain have their own state machines that are interlocked

at a few locations.

The leg DSP is responsible for servicing a 100Hz control loop to maintain either the

desired velocity or position of the foot with respect to the leg. 100Hz represents the

maximum control loop frequency. This is governed by the speed of the DSP and complexity

of the kinematic equations as discussed in Chapter 4. As part of this routine, the forward

89

Hexplorer 90

Figure 5.1: Overall block diagram of gait implementation.

Implementation and Results 91

kinematics are updated using the Newton-Raphson technique. If the leg is in its support

phase, then the desired joint velocities are calculated and provided to the joint controllers.

Otherwise, if the leg is in its transfer phase, then the desired joint position based on the

selected foot-hold is provided to the joint controllers.

The leg and brain also have an interlocking 10Hz control loop that services the gait of

the robot. This gait control loop is slower than the motor control loop because of the data

transmission times required between the legs, brain, and supervisory software interface.

Initially, the brain requests supervisory inputs from the user. The duty factor, β, and crab

angle, α, are calculated and, along with the inputs I(t) and the kinematic phase φ of the

body, are then transferred to all of the legs. The brain now awaits the new kinematic phase

estimates from each leg.

Upon receiving these inputs, each leg calculates its gait parameters and executes one

iteration of the control loop. Then, if the leg is in its support phase, one of two calculations

will occur. If the leg has reached its workspace boundary, the kinematic phase φ will be

incremented until the leg is to begin its transfer phase. This value is sent to the brain

as φi. If the leg has not reached its workspace boundary, the kinematic phase φ will be

updated using the temporal kinematic margin, and sent to the brain as φi. However, if

the leg is in its transfer phase, the estimate of the kinematic phase, φi, sent to the brain

will be calculated as, φi = φ + ε where ε is a small value (typically equal to 0.005). After

transferring its estimate φi to the brain, the leg will enter the 100Hz control loop, keeping

either the velocity of the foot constant or moving the foot to its desired foot-hold. The

leg will remain in the 100Hz control loop, until new supervisory inputs are received from

the brain. Having collected all estimates for the kinematic phase, the brain selects the

maximum estimate to become the new kinematic phase. The brain then waits until the

next iteration of the 10Hz control loop to request the supervisory inputs and repeat the

process.

As discussed in Section 2.2.4, the robot must first home each leg to calibrate the absolute

measurements of the encoders. The homing sequence is initiated by the user through the

control software. This signal is received by the brain. The brain then initiates the homing

sequence for the first leg. Upon completion of its homing sequence, the leg indicates that

it has homed successfully. The brain then initiates the homing sequence for the next leg,

Hexplorer 92

until all legs have been homed. Because the positions of the leg joints are unknown at

start-up and several legs may be off the ground, the legs are homed individually to try

and prevent the robot from tipping over during its homing sequence. Once all legs are

successfully homed, the robot enters its normal operating mode.

The graphical user interface to the robot control software is used to supply supervisory

inputs to the robot. The interface is shown in Figure 5.2. This software was written

Figure 5.2: Graphical user interface to control software for Hexplorer.

Implementation and Results 93

using Microsoft Foundation Classes (MFC) in C++. It is a multi-threaded application

that supports TCP/IP communication with the robot. An OpenGL representation of the

robot, shown in Figure 5.2, mimics the leg configurations on the robot. The OpenGL

window can be zoomed, rotated, or panned. The control software also supports very

rudimentary data logging that records the Cartesian position of the feet compared to their

respective leg frames. The supervisory inputs can be supplied using a numeric constant or

a 4-axis joystick. Another control on the joystick is used to adjust the heave of the robot,

y(t).

With the overall implementation of the gait algorithm defined, the details of the joint

controllers are discussed, as are modifications to the Leg DSP board circuitry introduced

in Section 2.2.4.

5.2 Joint Controllers

Two different joint controllers are used to implement the gait. In its support phase, the

leg uses a joint velocity controller to maintain the correct motion of the body of the robot,

whereas in its transfer phase, the leg uses inverse kinematics and a joint position controller.

5.2.1 Velocity Control

The desired instantaneous velocity of the foot with respect to its leg frame is given in

Cartesian coordinates. These Cartesian velocities are then converted into joint velocities

and applied to the joint controller as the desired input. The entire gait algorithm is based

around planar motion with no body motion along the vertical axis. This means that during

the support phase, the Cartesian velocity in the vertical direction is zero. Ideally, the robot

would implement a position-based controller on a vertical joint to maintain the body height.

The legs, however, do not have such a joint. Instead, a position controller is placed on

the vertical position of the robot. The error generated by this controller is converted into

a vertical velocity, appended to the supervisory inputs I(t), and finally converted into

desired joint velocities. Operating the joints at the specified velocities permits the feet to

travel according to the inputs and allows the height of the robot to be maintained at a

near-constant value.

Hexplorer 94

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000
!0.08

!0.06

!0.04

!0.02

0

0.02

0.04

0.06

0.08

PWM Output Register
Integer: [!2000,2000]

Ve
lo

cit
y

m
/s

)

Inner Lead Screw
Velocity Profile

Measured forward velocity
Interpolated forward velocity
Measured reverse velocity
Interpolated reverse velocity

(a) Inner lead screw velocity profile.

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000
!0.08

!0.06

!0.04

!0.02

0

0.02

0.04

0.06

0.08

PWM Output Register
Integer: [!2000,2000]

Ve
lo

cit
y

(m
/s

)

Outer Lead Screw
Velocity Profile

Measured forward velocity
Interpolated forward velocity
Measured reverse velocity
Interpolated reverse velocity

(b) Outer lead screw velocity profile.

!2000 !1500 !1000 !500 0 500 1000 1500 2000 2500
!1

!0.5

0

0.5

1

PWM Output Register
Integer: [!2000,2000]

An
gu

la
r V

el
oc

ity
 (r

ad
/s

)

Hip Joint
Velocity Profile

Measured forward ang. velocity
Interpolated forward ang. velocity
Measured reverse ang. velocity
Interpolated reverse ang. velocity

(c) Hip joint angular velocity profile.

Figure 5.3: Leg joint velocity profiles

Implementation and Results 95

The joint velocity controllers are simple Proportional-Integral (PI) controllers with a

feed-forward term. PI controllers possess the benefit of eliminating steady-state error. The

feed-forward terms for the controllers are linear piece-wise functions that were determined

empirically. Each joint was run forward or in reverse at specific pulse-width modulated

(PWM) outputs for a set distance. Using the total time for each joint to travel a fixed

displacement, an average velocity was calculated and finally mapped back to the PWM

input using linear interpolation. This open-loop feed-forward term is supplemented with

a PI controller having relatively small gains. This allows each joint to compensate for

external disturbances and non-linearities excluded by the linear interpolation. Figure 5.3

shows plots of the feed-forward terms. The linear relationship between the PWM output

and joint speed are quite evident from these plots.

The hip joint has especially low PI gains and functions in nearly an open-loop manner.

For stability reasons, low gains allow some disturbance rejection and a minor reduction in

steady-state error while the overall control signal is dominated by the feed-forward term.

Velocity joint control for the hip is extremely difficult because of the poor resolution from

the optical encoders. Consider the minimum non-zero angular velocity that the DSP is

capable of computing, based on encoder measurement. To measure the minimum non-zero

angular velocity, the encoder must change by one pulse within the sample time. Each hip

encoder count corresponds to 0.0031rad and the sample time is 10ms. Given

θ̇3 ≈
θ3k

− θ3k−1

∆t
, (5.1)

the minimum non-zero angular velocity measured by the encoder is 0.307rad/s. However,

the hip joint typically operates between 0 and 0.2 rad/s.

Figure 5.4 shows the results of the hip velocity controller responding to a set of step

inputs. As can be seen, the raw velocity estimate of the hip is very noisy, and consequently

provides a poor feedback signal to a controller. In order to counteract the fluctuations

between zero and non-zero velocities, a second-order Butterworth filter is used with a

cut-off frequency of 6Hz. Applying the second-order Butterworth filter to this raw signal

permits a reasonable feedback signal to be generated. Although the Butterworth filter

introduces a delay in the system response, the benefit of creating a reasonably smooth

feedback signal far outweighs any minor delays that are introduced. Likewise, the lead

Hexplorer 96

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

An
gu

la
r V

el
oc

ity
 (r

ad
/s

)

Hip Joint
Velocity Controller Response

Step Input
Raw angular velocity
Filtered angular velocity

(a) Hip joint response with velocity controller to forward step input.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
!0.6

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

Time (s)

An
gu

la
r V

el
oc

ity
 (r

ad
/s

)

Hip Joint
Velocity Controller Response

Step Input
Raw angular velocity
Filtered angular velocity

(b) Hip joint response with velocity controller to reverse step input.

Figure 5.4: Hip joint response with velocity controller.

Implementation and Results 97

screw velocity controllers also used Butterworth filters; however, these filters have large

bandwidths because their presence is primarily for flexibility. Figures 5.5 and 5.6 show the

performance of the inner and outer lead screw velocity controllers. The contrast between

the unfiltered velocities of the lead screws and hip motor could not be more prominent.

With a far better resolution, the raw velocities calculated from the lead screw encoders are

far more stable and uniform. Simply relocating the hip joint encoder to the other side of the

gearbox should transform the current raw hip velocity, Figure 5.4, into a far smoother and

more stable signal, much like those of the lead screws in Figures 5.5 and 5.6. Relocating

the encoder is not a simple task, and is unfeasible in the project at hand. In addition to the

mechanical changes required for mounting new motor with built-in encoders, the circuitry

would require substantial changes. As discussed in Section 2.2.4, the quadrature decoding

required for the hip motor is emulated in the DSP. Relocating the encoder improves the

resolution of the hip position, and in so doing, increases the number of pulses to be decoded

by the DSP by a corresponding magnitude. In other words, the DSP is required to process

an increased number of pulses without affecting the overall performance of the controllers

and gait algorithm. It is unlikely that the DSP will be able to handle such a processing

load and consequently, the quadrature decoding for the hip will have to be moved off-chip

and on to the circuit board. This in turn requires new circuitry on a new circuit board,

making the hip encoder relocation infeasible within the time constraints for the task at

hand, but necessary for future work.

5.2.2 Position Control

Position control is used to place the foot of a leg at a desired location during the trans-

fer phase of the leg. Specified in Cartesian coordinates, the position of the foot is then

determined in terms of its joint position using the inverse kinematics developed earlier in

Section 4.1.2. In order to arrive at the joint position specified, one Proportional-Integral

(PI) controller is used on each joint until the actual joint position is close enough to the

desired joint position. Again, a PI controller is used to eliminate steady-state error that

may occur. The position controller in the transfer phase is set to the desired targets as

follows:

1. if φTi
≤ 0.3, then the relative x and z coordinates of the foot are held fixed, while

Hexplorer 98

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (s)

Ve
lo

cit
y

(m
/s

)

Inner Lead Screw
Velocity Controller Response

Step input
Raw velocity
Filtered velocity

(a) Inner lead screw response with velocity controller to forward step input.

0.0 0.5 1.0 1.5 2.0 2.5
!0.035

!0.03

!0.025

!0.02

!0.015

!0.01

!0.005

0

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Inner Lead Screw
Velocity Controller Response

Step input
Raw velocity
Filtered velocity

(b) Inner lead screw response with velocity controller to reverse step input.

Figure 5.5: Inner lead screw response with velocity controller.

Implementation and Results 99

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (s)

Ve
lo

cit
y

(m
/s

)

Outer Lead Screw
Velocity Controller Response

Step input
Raw velocity
Filtered velocity

(a) Outer lead screw response with velocity controller to forward step input.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
!0.035

!0.03

!0.025

!0.02

!0.015

!0.01

!0.005

0

Time (s)

Ve
lo

cit
y

(m
/s

)

Outer Lead Screw
Velocity Controller Response

Step input
Raw velocity
Filtered velocity

(b) Outer lead screw response with velocity controller to reverse step input.

Figure 5.6: Outer lead screw response with velocity controller.

Hexplorer 100

the foot is lifted to achieve the desired ground clearance

2. if 0.3 < φTi
≤ 0.7, then the y coordinate of the foot is held fixed, while the foot is

relocated above its new foot-hold location (as per Section 3.1.6)

3. if φTi
> 0.7, then the relative x and z coordinates of the foot are held fixed, while

the foot is lowered to achieve the correct body height of the robot

Very precise position control was deemed too difficult for the purposes of the research

for this thesis because of the large amount of backlash and flexibility within the joints,

especially the hip joint. The only critical property of the controller involved overshoot.

When the initial position of a joint is at one extreme of the workspace and the desired

position is at another, overshoot caused by the position controller could cause the joint

to activate an E-Stop. In order to prevent this, the PI controller parameters were tuned

such that no overshoot occurred when a joint was forced to traverse its entire workspace.

Tuning the PI controller was done by adjusting the proportional gain to achieve maximal

performance without overshoot, and then the integral gain was adjusted in the same way.

Figure 5.7 shows the results for the PI controllers on each joint responding to a step input

causing the joint to traverse a significant portion of its workspace.

None of the joint position controllers cause any overshoot. The two lead screws, in

Figure 5.7(a) and 5.7(b), traverse approximately 3.5cm of the 7cm workspace without

overshoot. Likewise, the hip motor, in Figure 5.7(c) traverses approximately 1rad of the

workspace without overshoot.

5.3 Revised Electronics

Only a few errors in the electronics of the robot presented themselves. Overall, the elec-

tronics worked well without a single DSP ‘flashing out’. Two DSPs did however require

replacement. One DSP was destroyed by an electrostatic discharge due to improper han-

dling. The other DSP was damaged when the robot stepped on and pierced the power

tether. The metal legs and feet conducted electricity and short-circuited the entire robot.

Fortunately, only a single DSP was affected. Even though the DSP sockets facilitated the

Implementation and Results 101

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.03

0.04

0.05

0.06

0.07

0.08

Time (s)

Le
ad

 S
cr

ew
 L

en
gt

h
(m

)

Inner Lead Screw Position Response

Step input
Joint response

(a) Inner lead screw response with position controller to step input.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.03

0.04

0.05

0.06

0.07

0.08

Time (s)

Le
ad

 S
cr

ew
 L

en
gt

h
(m

)

Outer Lead Screw Position Response

Step input
Joint response

(b) Outer lead screw response with position controller to step input.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

Time (s)

R
ot

at
io

n
(ra

d)

Hip Joint Position Response

Step input
Joint response

(c) Hip response with position controller to step input.

Figure 5.7: Joint responses with position controllers.

Hexplorer 102

replacement of the damaged DSPs, interestingly enough, they actually caused a few prob-

lems. The DSP sockets are spring loaded, using the spring force to create a mechanical

connection between the DSP pins and traces on the circuit board. Unfortunately, with use

and vibration the spring was no longer able to maintain a mechanical connection with all

DSP pins. Solving this problem involved bending the pins of the DSP before placing it in

the socket.

The only other component that did not function properly was the latching circuitry

powering the emergency stop. The logic gates were sensitive enough and fast enough, that

rapid changes in the direction of the motors triggered the E-stop. To correct this, the latch

circuitry was removed so that E-stops were only triggered when the E-stop limit switches

remained depressed. In the future, increased filtering to de-bounce the switch may help to

solve the problem.

5.4 Gait

The modest success achieved in implementing Yoneda’s algorithm on Hexplorer precludes

a comprehensive discussion of the results for two different reasons. The first reason is that

the failure of the hip encoder on Leg 5, during its support phase, causes Leg 5 to active its

E-Stop. As a result, this prevented any further updates to the kinematic phase φ, which

in turn caused the remaining legs to wait for a kinematic phase update and incidentally

caused these legs to trigger their respective E-Stops. Since the possible fault-tolerance of

the gait is beyond the scope of the research, it was not investigated further. The second

reason is that the difficulty in controlling the speed of the hip joints caused the body

phase to be increased faster than necessary, resulting in a reduced step size and effectively

eliminating portions of the support and transfer phases.

The results of the implementation and simulation are presented below. The full sim-

ulation of the robot serves as a benchmark for the implementation results. The first

set of implementation results discussed are obtained from a rather contrived execution of

Yoneda’s algorithm for a single leg. The second set of results discussed are obtained by

having the robot swim. Swimming refers to operating the robot on a stand such that its

legs do not make ground contact at any point in time. This allows the Leg 5 hip encoder to

Implementation and Results 103

function properly which in turn permits Yoneda’s algorithm to work correctly. Results of

both the simulation and implementation are evaluated based on the calculated Cartesian

coordinates of Foot 1 with respect to the Leg 1 reference frame.

Figure 5.8 shows the simulation results of the robot with respect to three different

supervisory inputs.

In Figure 5.8(a), the supervisory inputs are: vx = 0.01m/s, vz = ωy = 0 and the

platform is kept 25.5cm above the ground. The appropriate lift-off and touch down motions

of the foot can be observed from the y coordinate of Figure 5.8(a). The x coordinate of the

foot shows a linearly increasing value during the support phase, consistent with the input

vx = 0.01m/s. During the transfer phase of the leg, the x coordinate indicates the foot-

hold selection for the next step. Since vz = ωy = 0 there is no change in the z coordinate,

as shown.

In Figure 5.8(b), the supervisory inputs are: vx = vz = −0.01m/s, ωy = 0 and the

platform is kept 25.5cm above the ground. The y coordinate of the foot reflects the

appropriate lift-off and touch down motions. The motion of the foot in the x and z

directions is identical, as it should be.

In Figure 5.8(c), the supervisory inputs are: vx = vz = 0, ωy = 0.15rad/s and the

platform is kept 25.5cm above the ground. Since the platform of the robot is yawing, each

foot should move through its workspace resulting in a large displacement along the local

z axis, and this displacement is reflected in the figure. Changes in the x coordinate reflect

that the arc traced by rotating the hip is different than the arc required to achieve a perfect

yawing motion.

Figure 5.9 shows the experimental results when running only a single leg of Hexplorer

using Yoneda’s algorithm. In this case, the kinematic phase cannot be incremented by

the other legs while the single leg is in its transfer phase. To solve this, upon entering its

transfer phase, the kinematic phase is updated by a fixed amount until the next support

phase is reached. This partially accounts for the differing values between the simulation and

the implementation results. What is important to notice in these results is that the general

motion obtained in the simulation is obtained on the leg itself by virtue of the fact that

the position curves in Figures 5.8 and 5.9 share a similar shape. The curves resemble each

other, but are not identical because of the imprecise control of the hip motor introducing

Hexplorer 104

0 5 10 15 20 25 30 35
!0.3

!0.2

!0.1

0

0.1

0.2

Time (s)

/o
si

tio
n

(m
)

Foot 1 Relative Coordinates

; coordinate
y coordinate
> coordinate

(a) Simulation of Hexplorer with inputs: vx = 0.01m/s, vz = ωy = 0.

0 5 10 15 20 25 30 35
!0.3

!0.2

!0.1

0

0.1

0.2

Time (s)

Po
si

tio
n

(m
)

Foot 1 Relative Coordinates

x coordinate
y coordinate
z coordinate

(b) Simulation of Hexplorer with inputs: vx = vz = −0.01m/s, ωy = 0.

0 2 # $ % 10 12 1#
!0.3

!0.2

!0.1

0

0.1

0.2

Time (s)

1o
si

tio
n

(m
)

Foot 1 Relative Coordinates

= coordinate
y coordinate
@ coordinate

(c) Simulation of Hexplorer with inputs: vx = vz = 0, ωy = 0.15rad/s.

Figure 5.8: Foot 1 position with respect to Leg 1 reference frame in simulation.

Implementation and Results 105

error into the temporal kinematic margin calculation that in turn prematurely advances

the kinematic phase resulting in smaller steps. The similar shapes formed in both the

simulated and actual coordinates indicates the successful implementation of the kinematics

and mathematics behind Yoneda’s algorithm on the robot itself. Only Figure 5.9(c) bears

less correlation to its simulated counterpart than the others. In this test the robot is

yawing. By watching the robot execute a constant yaw, it would seem, qualitatively, that

the numerical results should follow accordingly. Unfortunately that is not the case, likely

because of the large dependence of the yawing motion on successful control of the hip

motor.

Finally, Figure 5.10 shows the results when all legs are operational and the supervisory

inputs are vx = 0.01m/s, vz = ωy = 0 and the platform is kept 25.5cm above the ground.

The abbreviated nature of the steps is quite evident, especially when viewing the recipro-

cating nature of the y coordinate. Still, the trajectory does qualitatively reflect that the

kinematics and mathematics are functioning correctly and that the discrepancy is largely

caused by imperfect control.

5.5 Summary

In conclusion, Yoneda’s algorithm appears to be well-suited to walking robots with large

workspaces and precise motor control. In its present state, Hexplorer is unable to obtain the

necessary motor control precision because of problems with the hip encoder design. Using

its current hardware and electronics, it is unlikely that Hexplorer will be able to obtain a

smooth continuous gait. Instead, a smooth, yet discontinuous gait may be implemented

with some success.

Hexplorer 106

0 10 20 30 40 50 60
!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Po
si

tio
n

(m
)

Foot 1 Relative Coordinates

x coordinate
y coordinate
z coordinate

(a) Hexplorer output with inputs: vx = 0.01m/s, vz = ωy = 0.

0 10 20 30 40 50 60
!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Po
si

tio
n

(m
)

Foot 1 Relative Coordinates

x coordinate
y coordinate
z coordinate

(b) Hexplorer output with inputs: vx = vz = −0.01m/s, ωy = 0.

0 10 20 30 40 50 60
!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Po
si

tio
n

(m
)

Foot 1 Relative Coordinates

x coordinate
y coordinate
z coordinate

(c) Hexplorer output with inputs: vx = vz = 0, ωy = 0.15rad/s.

Figure 5.9: Single leg algorithm results: Foot 1 position with respect to Leg 1 reference

frame.

Implementation and Results 107

0 10 20 30 40 50 60
!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Po
si

tio
n

(m
)

Foot 1 Relative Coordinates

x coordinate
y coordinate
z coordinate

Figure 5.10: Full implementation results: Foot 1 position with respect to Leg 1 reference

frame with inputs: vx = 0.01m/s, vz = ωy = 0.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The algorithm introduced by Yoneda has been successfully implemented in simulation

and somewhat successfully on Hexplorer. Because of encoder problems caused by the hip

joint, Hexplorer cannot take more than a step or two on land. Hexplorer does however,

swim in mid-air with Yoneda’s algorithm when suspended in the air with some success.

It can be said that Hexplorer now swims with a variable duty factor gait that maximizes

balance. This fits well into the general autonomous model as supervisory inputs from the

autonomous system can be applied directly to the robot that will in turn swim and with

some hardware modifications, walk.

Two modifications to the gait algorithm suggested by Yoneda were investigated. The

temporal kinematic margin, used to estimate the time until a foot reaches its workspace

boundary, was calculated using a higher-order approximation that included the curvature

of the path of the foot. In simulation, it reduced the number of steps necessary to travel

a certain distance, or rotation, without significantly reducing the balance of the robot,

when the yaw rate of the body increased. The increased computational complexity of this

technique prevented its implementation on Hexplorer. The other modification involved

selecting a foot-hold position. In the proposed method implemented on Hexplorer, the

temporal kinematic margin functionality introduced by Yoneda was exploited. The benefits

of this method were apparent when the path of the foot traversed the oblong workspace of

108

Conclusions and Future Work 109

the robot.

The architecture of the robot presented unique challenges in terms of kinematic analysis

and motion control. The parallel mechanism allows the robot to be balanced when de-

energized but at the expense of closed-form solutions to the forward kinematic equations.

Due to the number and speed of the DSPs, the DSPs were able to handle the rational

number computations required by an iterative Newton-Raphson technique to solve the

forward kinematics. In fact, sampling rates of 100Hz for the joint controllers and 10Hz

for the gait controllers were achieved. Implementation of the controllers, however, was

complicated due to the poor resolution of the hip encoder. Strong filters and feed-forward

terms, based on open-loop experiments, were used to deal with the deficiency of the hip

encoder.

In conclusion, although the goal to make Hexplorer walk was not entirely achieved,

Hexplorer successfully executed Yoneda’s algorithm using a distributed DSP architecture

when raised above the floor.

6.2 Future Work

With Yoneda’s algorithm fully implemented on Hexplorer, and a few mechanical correc-

tions, it can continue its journey to one day walk and be endowed with full autonomy.

Proceeding with such a challenge will require improvements to mechanical, electrical, and

computing aspects of the robot.

Mechanically, the legs of the robot are well built and allow the robot to be passively

balanced. The heave provided by the legs, however, is relatively small considering the

overall size of the robot. If the future intentions involve rugged terrain where ground

clearance of transfer feet is important, then the leg may need to be redesigned.

The hip connection between the leg and the body of the robot, however, must be

redesigned. The press-fit bearings and washers should be replaced with thrust bearings

and supports. Supports added to the top of the top ring and bottom of the bottom ring

would hold the thrust bearings in place while allowing the hip to rotate freely. The location

of the bottom support would require that the hip encoder be replaced or relocated, which

is actually required.

Hexplorer 110

The current location of the hip encoder, is also inadequate. As shown in Chapters 2

and 5, having the encoder measure the output shaft of the gearbox reduces its resolution,

increasing the difficulty of control. Replacing the hip motors with ones that have a built-in

encoder, like the lead screw motors would solve this problem.

In terms of the forward kinematics of the robot, two other techniques could be inves-

tigated. A lookup table containing predetermined mappings between joint and Cartesian

coordinates combined with linear interpolation could be used to solve the forward kine-

matics very quickly. However, such a table listing n joint positions for a lead screw, would

require a table of n2 entries to determine the full forward kinematics of the leg. Limiting

the size of the table or storing the table on a EPROM would require further investigation.

A redundant encoder or potentiometer could also be used to measure the angle θ1 or θ2,

resulting in a closed-form solution to the kinematics.

Depending on the future purpose of the robot, an electronic hardware revision may

prove beneficial. The existing distributed processing architecture has its advantages. Par-

allel processing increases the computational power available to the robot. Each leg is able

to make its own low-level decisions regarding its state. These decisions could correct small

errors or minor unexpected environmental interactions that would otherwise unnecessar-

ily interrupt higher priority issues being dealt with by the brain. For example, if a foot

encounters an obstacle, the leg could activate an obstacle avoidance algorithm without

disturbing a computationally-intensive localization algorithm being executed by the brain.

However, without being sensor-laden and programmed with such high-level cognitive

abilities, Hexplorer does not have any higher priority tasks with which to deal. Instead of

being beneficial, the additional complexity created by the distributed architecture unnec-

essarily confuses and complicates debugging tasks. By migrating to a new design based

on a single processor, debugging source code would be greatly simplified. Cost could also

be reduced or money that would have otherwise been used to purchase the remaining five

DSPs could instead be used to upgrade the single DSP to a floating-point capable model.

Having a floating-point capable DSP would improve the portability of the source code and

accuracy of the arithmetic. Portability would be improved because the same source code

could be written, compiled, and executed on a PC as well as the floating-point DSP. As

mentioned in Chapter 4, the fixed-point DSP required special libraries to perform fast

Conclusions and Future Work 111

emulated floating-point operations. Since these libraries are not readily available for PC

compiled software, portability is limited. Accuracy of the arithmetic would be improved

because fixed-point numeric representation would no longer be necessary. If a new elec-

tronic hardware revision is undertaken, a single floating-point DSP architecture should be

considered because of simpler debugging, improved source code portability, and numerical

accuracy.

The future direction of research on Hexplorer may include rugged terrain or closed-loop

supervisory control. In either case, the mechanical and electrical improvements suggested

above will help to achieve future research goals.

References

[1] M.B. Binnard. Design of a small pneumatic walking robot. Master’s thesis, Mas-

sachusetts Institute of Technology, 1995.

[2] W.D. Bishop, R.B. Gorbet, C.C.W. Hulls, and W. Loucks. ECE 324 and ECE 325

Microprocessor Systems and Interfacing Lecture Notes. University of Waterloo, Wa-

terloo, Ontario, 2004.

[3] BlueRadios, Inc. Bluetooth R©Module: BR-C11 Class1, 2005.

[4] I. Chen, S.H. Yeo, and Y. Gao. Locomotive gait generation for inchworm-like robots

using finite state approach. Robotica, 19(5):535–542, 2001.

[5] S. Chitta, F. W. Heger, and V. Kumar. Design and gait control of a rollerblading robot.

In Proceedings of the 2004 IEEE International Conference on Robotics & Automation,

pages 3944–3949, New Orleans, Louisiana, April 26 - May 1, 2004.

[6] C. Collins and D. Orr. Intelligent Motion Control Using The TMS320LF2407 Applied

To A Six-Legged Walking Robot. Systems Design Engineering 4th Year Undergraduate

Workshop Project, University of Waterloo, 2001.

[7] J.J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall,

Upper Saddle River, New Jersey, third edition, 2005.

[8] S. Cutler and R. Tien. Hexplorer: Hexplorations in Walking (H2IW). Systems Design

Engineering 4th Year Undergraduate Workshop Project, University of Waterloo, 2005.

112

References 113

[9] N. Cristello and D. Kwok. How 2 Hex. Systems Design Engineering 4th Year Under-

graduate Workshop Project, University of Waterloo, 2003.

[10] M. R. Fielding, R. Dunlop, and C. J. Damaren. Hamlet: Force/position controlled

hexapod walker - design and systems. In Proceedings of the 2001 IEEE International

Conference on Control Applications, pages 984–989, Mexico City, Mexico, September

5 - 7, 2001.

[11] G.F. Franklin, J.D. Powell, and M. Workman. Digital Control of Dynamic Systems.

Addison-Wesley, Menlo Park, California, third edition, 1998.

[12] J. Garcia de Jalon and E. Bayo. Kinematic and Dynamic Simulation of Multibody

Systems: The Real-Time Challenge. Springer-Verlag, 1994.

[13] C.F. Gerald and P.O. Wheatley. Applied Numerical Analysis. Addison-Wesley, Boston,

Massachusetts, seventh edition, 2003.

[14] J.H. Ginsberg. Advanced Engineering Dynamics. Cambridge University Press, Cam-

bridge, second edition, 1998.

[15] Y. Go, X. Yin, , and A. Bowling. A navigable six-legged robot platform. In Proceedings

of the 2004 IEEE International Conference on Robotics & Automation, pages 5105-

5110, New Orleans, Louisiana, April 26 - May 1, 2004.

[16] D Golubovic and H. Hu. An interactive software environment for gait generation

and control design of sony legged robots. In Proceedings of the 6th International

Symposium on RoboCup, Fukuoka, Japan, June 24 - 25, 2002.

[17] M. Goulet. Hexapode : Developpement mecatronique d’un robot marcheur. Master’s

thesis, Universite Laval, 2006.

[18] E.J. Haug. Computer-Aided Kinematics & Dynamics of Mechanical Systems - Volume

1: Basic Methods. Allyn and Bacon, Needham Heights, Massachusetts, 1989.

[19] G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Autonomous

evolution of gaits with the sony quadruped robot. In Proceedings of the Genetic and

Hexplorer 114

Evolutionary Computation Conference, pages 1297–1304, Orlando, Florida, July 13 -

17, 1999.

[20] D. Horvath, J. Lee, S. Williams. Hexotica: Design and Implementation of a Small

Walking Robot. Systems Design Engineering 4th Year Undergraduate Workshop

Project, University of Waterloo, 1997.

[21] K. Iagnemma, A. Rzepniewski, S. Dubowsky, P. Pirjanian, T. Huntsberger, and

P. Schenker. Mobile robot kinematic reconfigurability for rough terrain. In Proceed-

ings of the Sensor Fusion and Decentralized Control in Robotic Systems III Conference,

pages 413–420, Boston, Massachusetts, November 6 - 8, 2000.

[22] X. Kong and C. M. Gosselin. Forward displacement analysis of third-class analytic 3-

RPR planar parallel manipulators. Mechanism and Machine Theory, 36(9):1009–1018,

2001.

[23] R. Kurazume, K. Yoneda, and S. Hirose. Feedforward and feedback dynamic trot gait

control for quadruped walking vehicle. Autonomous Robots, 12(2):157–172, 2002.

[24] A. Kwan and E. So. Hexplorer: Hex to Walk. Systems Design Engineering 4th Year

Undergraduate Workshop Project, University of Waterloo, 2004.

[25] Lantronix, Inc. XPort Data Sheet, 2005.

[26] K. Larochelle, S. Dashnaw, and G. Parker. Gait evolution for a hexapod robot. In

Proceedings of the Fourth International Symposium on Soft Computing and Intelligent

Systems for Industry, Paisley, Scotland, June 26 - 29, 2001.

[27] National Semiconductor. Linear and Switching Voltage Regulator Fundamentals, 2006.

[28] W. J Lee and D. E. Orin. Omnidirectional supervisory control of a multilegged vehicle

using periodic gaits. IEEE Journal of Robotics and Automation, 4(6):635–642, 1988.

[29] M. Lewis, A. Fagg, and G. Bekey. Genetic algorithms for gait synthesis in a hexapod

robot. In Recent Trends in Mobile Robots, World Scientific, 1993.

References 115

[30] R. McGhee. Some finite state aspects of legged locomotion. Mathematical Biosciences,

2:67–84, 1968.

[31] D. McMillen. Kafka: A hexapod robot. Master’s thesis, University of Toronto, 1995.

[32] G. Parker, D. Braun, and I. Cyliax. Evolving hexapod gaits using a cyclic genetic

algorithm. In Proceedings of the International Conference on Artificial Intelligence

and Soft Computing, pages 141–144, Banff, July 27 - August 1, 1997.

[33] PNI Corporation. MicroMag3: 3-Axis Magnetic Sensor Module, 2005.

[34] J.M. Porta and E. Celaya. Efficient gait generation using reinforcement learning.

In Proceedings of the 4th International Conference on Climbing and Walking Robots,

pages 411–418, Karlsruhe, Germany, September 24 - 26, 2001.

[35] Robert Bosch GmbH. CAN Specification 2.0, 1991.

[36] U. Saranli, M. Buehler, and D. E. Koditschek. Rhex – a simple and highly mobile

hexapod robot. The International Journal of Robotics Research, 20(7):616–631, 2001.

[37] S.V. Shastri. A biologically consistent model of legged locomotion gaits. Biological

Cybernetics, 76:429–440, 1996.

[38] C.L. Shih and C. A. Klein. An adaptive gait for legged walking machines over rough

terrain. IEEE Transactions on Systems, Man and Cybernetics, 23(4):1150–1155, 1993.

[39] R. Siegwart and I. Nourbakhsh. Introduction to Autonomous Mobile Robots. The MIT

Press, Cambridge, Massachusetts, 2004.

[40] S. M. Song and B. S. Choi. The optimally stable ranges of 2n-legged wave gaits. IEEE

Transactions on Systems, Man and Cybernetics, 20(4):888–902, 1990.

[41] S.M. Song and K.J. Waldron. Machines That Walk: The Adaptive Suspension Vehicle.

The MIT Press, Cambridge, Massachusetts, 1989.

[42] Spectrum Digital Incorporated. eZdspTM F2812 Technical Reference, 2003.

Hexplorer 116

[43] Texas Instruments. IQmath Library: A Virtual Floating Point Engine, 2002.

[44] Texas Instruments. TPS79633 Ultralow-Noise, High PSRR, Fast, RF, 1A, Low-

Dropout Linear Regulator Datasheet, 2004.

[45] Texas Instruments. PTN78020W 6-A Wide-Input Voltage Adjustable Switching Reg-

ulator Datasheet, 2006.

[46] US Digital. E2 Optical Encoder Kit, 2006.

[47] S.T. Venkataraman. A model of legged locomotion gaits. In Proceedings of the 1996

IEEE International Conference on Robotics & Automation, pages 3545–3550, Min-

neapolis, Minnesota, April 22 - 28, 1996.

[48] C. Villard, P. Gorce, J.G. Fontaine, and J. Rabit. Ralphy: A dynamic study of a

quadruped robot. In Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, pages 106–111, Le Touquet, France, October 17 - 20, 1993.

[49] J. Yang and J. Kim. A strategy of optimal fault tolerant gait for the hexapod robot in

crab walking. In Proceedings of the 1998 IEEE International Conference on Robotics

& Automation, pages 1695–1700, Leuven, Belgium, May 16 - 20, 1998.

[50] T. Yee. Gait Planning and Transitions of Walking Robots on Smooth and Rough

Terrains. PhD thesis, University of Illinois, 2003.

[51] K. Yoneda and S. Hirose. Dynamic and static fusion gait of a quadruped walking

vehicle on a winding path. Advanced Robotics, 9(2):125–136, 1995.

[52] K. Yoneda, K. Suzuki, and Y. Kanayama. Gait planning for versatile motion of a six

legged robot. In Proceedings of the 1994 IEEE International Conference on Robotics

& Automation, pages 1338–1343, New Orleans, Louisiana, April 26 - May 1, 2004.

[53] K. Yoneda, K. Suzuki, Y. Kanayama, H. Takahashi, and J. Akizono. Gait and foot

trajectory planning for versatile motions of a six-legged robot. Journal of Robotic

Systems, 14(2):121–133, 1997.

Appendix A

Power Distribution Board Schematics

117

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

24V

24V

24V

5V 1,2,3

5V 4,5,6,B

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

1 2Tuesday, January 03, 2006

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

1 2Tuesday, January 03, 2006

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

1 2Tuesday, January 03, 2006

1
2
3
4

LEG 4

LEG 4

LEG 4

LEG 4

1
2
3
4

LEG 5

LEG 5

LEG 5

LEG 5

1
2
3
4

LEG 1

LEG 1

LEG 1

LEG 1

1
2
3
4

LEG 6

LEG 6

LEG 6

LEG 6

1
2
3
4

BRAIN1

BRAIN

BRAIN1

BRAIN

1
2
3
4

LEG 2

LEG 2

LEG 2

LEG 2

1
2
3
4

LEG 3

LEG 3

LEG 3

LEG 3

1
2

J12

INPUT

J12

INPUT

H
ex

p
lorer

118

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

24V

5V 1,2,3

5V 4,5,6,B

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

2 2Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

2 2Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Power Distribution Board 0

Hexplorer Circuit Boards

A

2 2Monday, January 16, 2006

C5
1uF
C5
1uF

+ C4
330uF

+ C4
330uF

R3
2.2K
R3
2.2K

D2
LED
D2
LED

D1
LED
D1
LED

R4

21.0K

R4

21.0K

C3
2.2uF
C3
2.2uF

L4 1uHL4 1uH

G
ND

1

Vi2
In

hi
bi

t
3

Vo
Ad

ju
st

4
Vo

Se
ns

e
5

Vo 6

G
ND

7

U3

PTN78020

U3

PTN78020

+ C2
330uF

+ C2
330uF

+ C8
330uF

+ C8
330uF

R2
300
R2
300

C11
1uF
C11
1uF

L6 1uHL6 1uH

D3
LED
D3
LED

C9
2.2uF
C9
2.2uF

C1
1uF
C1
1uF

L5 1uHL5 1uH

C7
1uF
C7
1uF

+ C10
330uF

+ C10
330uF

L1 1uHL1 1uH

R5
300
R5
300

G
ND

1

Vi2

In
hi

bi
t

3

Vo
Ad

ju
st

4
Vo

Se
ns

e
5

Vo 6

G
ND

7

U2

PTN78020

U2

PTN78020

+ C12
100uF

+ C12
100uF

L3 1uHL3 1uH

L2 1uHL2 1uH

+ C6
100uF

+ C6
100uF

R1

21.0K

R1

21.0K

P
ow

er
D

istrib
u
tion

B
oard

S
ch

em
atics

119

Appendix B

Brain Daughter Board Schematics

120

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

S3.3V

S3.3V

GPIOA1

SCIRXDA

SCITXDA

GPIOA2

GPIOA3

GPIOA4

SCITXDB
SCIRXDB GPIOA0

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

L7

FERRITE BEAD

L7

FERRITE BEAD

G
ND

1
Vc

c
2

RESETn3

TXD4

RXD5

CP1 6

CP2 7

CP3 8

U20

XPort

U20

XPortC51
0.1uF

C51
0.1uF

C52
0.1uF

C52
0.1uF

G
ND

1

G
ND

25
G

ND
27

G
ND

28
G

ND
29

G
ND

12

RXD13

TXD14

Vd
d

11

RESET 5

U19

BlueTooth BR-C11

U19

BlueTooth BR-C11

1 2 3 4 5 6 7 8

J56
8 HEADER
J56
8 HEADER

1 2 3 4 5 6 7 8

J55
8 HEADER
J55
8 HEADER

B
rain

D
au

gh
ter

B
oard

S
ch

em
atics

121

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

S3.3V

SPICLKA
SPISIMOA
SPISOMIA
GPIOB0

GPIOB2
GPIOB1

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

2 14Monday, January 09, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

2 14Monday, January 09, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

2 14Monday, January 09, 2006

Vd
d

12
G

ND
14

G
ND

7

SCLK1

MISO2

MOSI3

SSn4

NC 8
NC 9
NC 10
NC 11
NC 13

DRDY 5

READY 6

U21

MicroMag3

U21

MicroMag3 C53
0.1uF
C53
0.1uF

1 2 3 4 5 6 7 8

J57
8 HEADER
J57
8 HEADER

1 2 3 4 5 6 7 8

J58
8 HEADER
J58
8 HEADER

H
ex

p
lorer

122

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

5V

5V

3.3V

5V

XINT2/ADCSOC
MCLKXA
MCLKRA
MFSXA
MFSRA
MDXA
MDRA

QEP4
CAP6
T3PWM/T3CMP
T4PWM/T4CMP
TDIRB
TCKLINB
XF/XPLLDISn
SCITXDB
SCIRXDB

SCIRXDA
QEP1
CAP3
GPIOA1
GPIOA3
GPIOA5
T2PWM/T2CMP
TCLKINA

XINT1n/XBIOn
SPISOMIA
SPISTEA
CANRXA
GPIOB0
GPIOB2
GPIOB4
QEP3
T3CTRIP/PDPINTBn

SCITXDA
XINT1n/XBIOn
QEP2
GPIOA0
GPIOA2
GPIOA4
T1PWM/T1CMP
TDIRA

SPISIMOA
SPICLKA
CANTXA
XCLKOUT
GPIOB1
GPIOB3
GPIOB5

T1CTRIP/PDPINTAn

XD1
XD3
XD5
XD7
XD9
XD11

XHOLDn
XA17

XNMI/INT13
XRDn

XZCS2n

XA15
XA13
XA11
XA9
XA7
XA5
XA3
XA1
XD15
XD13

XD0
XD2
XD4
XD6
XD8
XD10
XD12
XD14
XA0
XA2
XA4
XA6
XA8
XA10
XA12
XA14

XZCS0AND1n
XREADY
XRnW
XWEn

XRSn/RSn

XA16
XA18
XHOLAn

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

J61

HEADER 30X2

J61

HEADER 30X2

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

J60

HEADER 20X2

J60

HEADER 20X2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

J59

HEADER 20

J59

HEADER 20

1
2
3
4

BRAIN

POWER

BRAIN

POWER

B
rain

D
au

gh
ter

B
oard

S
ch

em
atics

123

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

3.3V

CANTXA

CANRXA

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

1
2

J63

CAN DAISY

J63

CAN DAISY

1
2

J62

CAN DAISY

J62

CAN DAISY

R24

0

R24

0
1 2 3

J64
CAN TERM
J64
CAN TERM

R23
120
R23
120

C54
0.1uF
C54
0.1uF

D 1

G
ND

2
Vc

c
3

R 4

Vref5

CANL6
CANH7

Rs8

U22

SN6HVD

U22

SN6HVD

H
ex

p
lorer

124

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

S3.3V

S3.3V

XA0
XA1
XA2
XA3

XA18
XA17
XA16
XA15
XA14
XA13
XA12

XA4
XA5
XA6
XA7
XA8
XA9
XA10
XA11

XD0
XD1
XD2
XD3
XD4
XD5
XD6
XD7
XD8
XD9
XD10
XD11
XD12
XD13
XD14
XD15

XZCS2n
XRnW
XWEn

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

A05
A14
A23
A32
A41
A544
A643
A742
A828
A927
A1026
A1125
A1224
A1323
A1422
A1521
A1620
A1719
A1818

D0 7
D1 8
D2 9
D3 10
D4 13
D5 14
D6 15
D7 16
D8 29
D9 30

D10 31
D11 32
D12 35
D13 36
D14 37
D15 38

Vc
c

11
Vc

c
33

G
ND

34
G

ND
12

CEn 6
OEn 41
Wn 17UBn40

LBn39

U23

M68AW512M

U23

M68AW512M C55
0.1uF

C55
0.1uF

B
rain

D
au

gh
ter

B
oard

S
ch

em
atics

125

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

S3.3V
5V

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 09, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 09, 2006

Title

Size Document Number Rev

Date: Sheet of

Brain Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 09, 2006

G
ND

3

IN2

EN1
BYPASS 5

OUT 4

U24

TPS79633

U24

TPS79633
C56
2.2uF
C56
2.2uF C57

0.1uF
C57
0.1uF

+ C58
1uF

+ C58
1uF

H
ex

p
lorer

126

Appendix C

Leg Daughter Board Schematics

127

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

5v 5v

5v

5v 5v 5v

HIP OT ESTOP
HIP UT ESTOP

HIP_ESTOP

HIP_BRAKE

OUTER_BRAKE

INNER_BRAKE

GPIOF9

GPIOF4

GPIOF1

GPIOB4

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

1 14Monday, January 16, 2006

C80
0.1uF
C80
0.1uF

9

10
8

U25C

74HCT32

U25C

74HCT32

12

13
11

U25D

74HCT32

U25D

74HCT32

1

2
3

14
7

U25A

74HCT32

U25A

74HCT32

4

5
6

U25B

74HCT32

U25B

74HCT32

C81
0.1uF
C81
0.1uF

1

2
3

14
7

U26A

74HCT08/SO

U26A

74HCT08/SO

C82
0.1uF
C82
0.1uF

1

2
3

14
7

U27A

74HCT32

U27A

74HCT32

H
ex

p
lorer

128

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

5V

5V

3.3V

24V
5V

XINT2/ADCSOC
GPIOF8
GPIOF9
GPIOF10
GPIOF11
GPIOF12
GPIOF13

QEP4
CAP6
T3PWM/T3CMP
T4PWM/T4CMP
TDIRB
TCKLINB
XF/XPLLDISn
SCITXDB
SCIRXDB

GPIOF5
QEP1
CAP3
PWM2
PWM4
PWM6
T2PWM/T2CMP
GPIOA12

XINT1n/XBIOn
GPIOF1
GPIOF3
CANRXA
PWM7
PWM9
GPIOB4
QEP3
T3CTRIP/PDPINTBn

GPIOF4
XINT1n/XBIOn
QEP2
PWM1
PWM3
PWM5
T1PWM/T1CMP
GPIOA11

GPIOF0
GPIOF2
CANTXA
XCLKOUT
PWM8
PWM10
GPIOB5

T1CTRIP/PDPINTAn

XD1
XD3
XD5
XD7
XD9
XD11

XHOLDn
XA17

XNMI/INT13
XRDn

XZCS2n

XA15
XA13
XA11
XA9
XA7
XA5
XA3
XA1
XD15
XD13

XD0
XD2
XD4
XD6
XD8
XD10
XD12
XD14
XA0
XA2
XA4
XA6
XA8
XA10
XA12
XA14

XZCS0AND1n
XREADY
XRnW
XWE

XRSn/RSn

XA16
XA18
XHOLAn

HIP +
HIP -
INNER +
INNER -

OUTER -
OUTER +

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

2 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

2 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

2 14Monday, January 16, 2006

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

J67

HEADER 30X2

J67

HEADER 30X2

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

J66

HEADER 20X2

J66

HEADER 20X2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

J65

HEADER 20

J65

HEADER 20

1
2
3
4

LEG1

POWER

LEG1

POWER

1
2
3
4
5
6

J68

MOTOR POWER

J68

MOTOR POWER

L
eg

D
au

gh
ter

B
oard

S
ch

em
atics

129

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

3.3V

CANTXA

CANRXA

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

3 14Monday, January 16, 2006

1 2 3

J71
CAN TERM
J71
CAN TERM

R25
120
R25
120

D 1

G
ND

2
Vc

c
3

R 4

Vref5

CANL6
CANH7

Rs8

U28

SN6HVD

U28

SN6HVD
C59
0.1uF
C59
0.1uF

1
2

J69

CAN DAISY

J69

CAN DAISY

1
2

J70

CAN DAISY

J70

CAN DAISY

R26

0

R26

0

H
ex

p
lorer

130

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

5V

OUTER UNDERTRAVEL
INNER UNDERTRAVEL

GPIOF11
GPIOF10
GPIOF13

INNER_PWM
INNER_DIR

OUTER_PWM
OUTER_DIR

HIP_PWM
HIP_DIR

PWM1
GPIOF0

PWM3
GPIOF3

PWM5
GPIOF8

HIP OVERTRAVEL
HIP UNDERTRAVEL

INNER ENC1
INNER ENC2
OUTER ENC1
OUTER ENC2
HIP ENC1
HIP ENC2

FOOT CONTACT

GPIOA11
GPIOA12
QEP1
QEP2
QEP3
QEP4
CAP3
CAP6

INNER_TF
OUTER_TF
HIP_TF

GPIOF2
GPIOF5
GPIOF12

HIP_ESTOP GPIOB5

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

4 14Monday, January 16, 2006

C60
0.1uF
C60
0.1uF

D4
BAS16/SOT
D4
BAS16/SOT

A02
A13
A24
A35
A46
A57
A68
A79
A810
A911
A1014
A1115
A1216
A1317
A1418
A1519
A1620
A1721
A1822
A1923

B0 46
B1 45
B2 44
B3 43
B4 42
B5 41
B6 40
B7 39
B8 38
B9 37

B10 34
B11 33
B12 32
B13 31
B14 30
B15 29
B16 28
B17 27
B18 26
B19 25

nBE147
nBE21
nBE335
nBE413

Vc
c

48
Vc

c
36

G
ND

24
G

ND
12

U29

PI5C16862C

U29

PI5C16862C

L
eg

D
au

gh
ter

B
oard

S
ch

em
atics

131

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

24V 24V 24V

5v 5v 5v

HIP_PWM
HIP_DIR
HIP_BRAKE

OUTER_PWM
OUTER_DIR
OUTER_BRAKE

INNER_PWM
INNER_DIR
INNER_BRAKE

HIP +
HIP -

OUTER +
OUTER - INNER +

INNER -

HIP_TF OUTER_TF INNER_TF

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Daughter Card 0

Hexplorer Circuit Boards

A

5 14Monday, January 16, 2006

C64
10nF
C64
10nF

+ C69
330uF

+ C69
330uF

C65
10nF
C65
10nF

+ C67
330uF

+ C67
330uF

C66
10nF
C66
10nF

C63
10nF
C63
10nF

BT
P1

1
O

UT
1

2

VC
C

6

PG
N

D
/S

EN
SE

7

GND 8

TF
O

U
T

9
O

UT
2

10
BT

P2
11

D
IN

3
BI

N
4

PW
M

IN
5

U30

LMD18201/TO

U30

LMD18201/TO

R28
10K
R28
10K

BT
P1

1
O

UT
1

2

VC
C

6

PG
N

D
/S

EN
SE

7

GND 8

TF
O

U
T

9
O

UT
2

10
BT

P2
11

D
IN

3
BI

N
4

PW
M

IN
5

U32

LMD18201/TO

U32

LMD18201/TO

BT
P1

1
O

UT
1

2

VC
C

6

PG
N

D
/S

EN
SE

7

GND 8

TF
O

U
T

9
O

UT
2

10
BT

P2
11

D
IN

3
BI

N
4

PW
M

IN
5

U31

LMD18201/TO

U31

LMD18201/TO

C62
10nF
C62
10nF

C61
10nF
C61
10nF

R27
10K
R27
10K R29

10K
R29
10K

+ C68
330uF

+ C68
330uF

H
ex

p
lorer

132

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

SB 5V

SB 5V

SB 5V

SB 5V

SB 5V

SB 5V

SB 5V

5V

SB 5V

SB 5V

INNER UNDERTRAVEL
OUTER UNDERTRAVEL
FOOT CONTACT

HIP ENC1
HIP ENC2HIP OVERTRAVEL

HIP UNDERTRAVEL
INNER ENC1
INNER ENC2 OUTER ENC1

OUTER ENC2

HIP UT ESTOP
HIP OT ESTOP

Title

Size Document Number Rev

Date: Sheet of

Leg Sensor Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Sensor Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 16, 2006

Title

Size Document Number Rev

Date: Sheet of

Leg Sensor Board 0

Hexplorer Circuit Boards

A

6 14Monday, January 16, 2006

1
2
3
4

J80

HIP UNDERTRAVEL

J80

HIP UNDERTRAVEL

1
2

J74

OUTER UNDERTRAVEL

J74

OUTER UNDERTRAVEL

1
2
3
4

J75

OUTER ENCODER

J75

OUTER ENCODER

C70
10 nF
C70
10 nF

C77
10 nF
C77
10 nF

1
2

J79

HIP UNDERTRAVEL ESTOP

J79

HIP UNDERTRAVEL ESTOP

C79
10 nF
C79
10 nF

1
2

J81

HIP OVERTRAVEL ESTOP

J81

HIP OVERTRAVEL ESTOP

C72
10 nF
C72
10 nF

R32 280R32 280
R33
22K
R33
22K

C76
10 nF
C76
10 nF

2 4 6 8 10 12 14

1 3 5 7 9 11 13 15J76

HEADER 8x2/SM

J76

HEADER 8x2/SM

R34
22K
R34
22K

R31
22K
R31
22K

1
2

J73

FOOT CONTACT

J73

FOOT CONTACT
C71
10 nF
C71
10 nF

1
2
3
4

J72

HIP ENCODER

J72

HIP ENCODER

C78
10 nF
C78
10 nF

1
2

J77

INNER UNDERTRAVEL

J77

INNER UNDERTRAVEL

C75
10 nF
C75
10 nF

2
4
6
8

10
12
14

1
3
5
7
9
11
13
15

J83

HEADER 8x2/SM

J83

HEADER 8x2/SM

R30
22K
R30
22K

C74
10 nF
C74
10 nF

1
2
3
4

J78

INNER ENCODER

J78

INNER ENCODER

C73
10 nF
C73
10 nF

1
2
3
4

J82

HIP OVERTRAVEL

J82

HIP OVERTRAVEL

L
eg

D
au

gh
ter

B
oard

S
ch

em
atics

133

	Introduction
	Goals
	Literature Review
	Contributions

	Robot Configuration
	Mechanical Configuration
	Electrical Configuration
	Power Distribution Board
	DSP Board
	Brain Daughter Board
	Leg Daughter Board
	Sensor Boards

	Computing Configuration
	Summary

	Gait Algorithm
	Yoneda's Algorithm
	Definitions
	Overview
	Motion Input
	Conventional Forward Wave Gait
	Gait Planner
	Foot Motion Planning

	Other Modifications and Enhancements
	Summary

	Kinematic Model and Simulation
	Kinematic Model
	Forward Kinematics
	Inverse Kinematics
	Joint Velocities

	Kinematic Simulation
	Leg Workspace
	Improved Temporal Kinematic Margin
	Horizontal Foot-Hold Selection

	Summary

	Implementation and Results
	Gait Algorithm Implementation
	Joint Controllers
	Velocity Control
	Position Control

	Revised Electronics
	Gait
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Power Distribution Board Schematics
	Brain Daughter Board Schematics
	Leg Daughter Board Schematics

