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Abstract

The use of Electroencephalograms (EEG) are essential to the analysis of sleep disorders in
patients. With the use of electroencephalograms, electro-oculograms (EOG), and electromyo-
grams (EMG), doctors and EEG technician can make conclusions about the sleep patterns of
patients. In particular, the classification of the sleep data into various stages, such as NREM
I-IV, REM, Awake, is extremely important.

The EEG signal itself is highly sensitive to physiological and non-physiological artifacts. Trained
human experts can accommodate for these artifacts while they are analyzing the EEG signal.
However, if some of these artifacts are removed prior to analysis, their job will be become
easier. Furthermore, one of the biggest motivations, of our team’s research is the construction
of a portable device that can analyze the sleep data as they are being collected. For this task,
the sleep data must be analyzed completely automatically in order to make the classifications.

The research presented in this thesis concerns itself with the denoising and the feature selection
aspects of the teams’ goals. Since humans are able to process artifacts and ignore them prior
to classification, an automated system should have the same capabilities or close to them. As
such, the denoising step is performed to condition the data prior to any other stages of the sleep
stage neoclassicisms. As mentioned before, the denoising step, by itself, is useful to human
EEG technicians as well.

The denoising step in this research mainly looks at EOG artifacts and artifacts isolated to a
single EEG channel, such as electrode pop artifacts. The first two algorithms uses Wavelets
exclusively (BWDA and WDA), while the third algorithm is a mixture of Wavelets and In-
dependent Component Analysis (IDA). With the BWDA algorithm, determining consistent
thresholds proved to be a difficult task. With the WDA algorithm, the performance was bet-
ter, since the selection of the thresholds was more straight-forward and since there was more
control over defining the duration of the artifacts. The IDA algorithm performed inferior to
the WDA algorithm. This could have been due to the small number of measurement channels
or the automated sub-classifier used to select the denoised EEG signal from the set of ICA
demixed signals.

The feature selection stage is extremely important as it selects the most pertinent features to
make a particular classification. Without such a step, the classifier will have to process useless
data, which might result in a poorer classification. Furthermore, unnecessary features will take
up valuable computer cycles as well. In a portable device, due to battery consumption, wasting
computer cycles is not an option. The research presented in this thesis shows the importance of
a systematic feature selection step in EEG classification. The feature selection step produced
excellent results with a maximum use of just 5 features. During automated classification, this
is extremely important as the automated classifier will only have to calculate 5 features for
each given epoch.
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Chapter 1

Background

1.1 Introduction and Motivation

Patients with sleep disorders need to be monitored carefully by doctors, so that they can

understand the underlying problem. In order to provide an accurate diagnosis, many different

types of data can be collected from the patients. However, it has been established that the

voltage activity that occurs in the brain of the patient is crucial for such an analysis. It is also

highly desirable that any data collected be done in an as non-intrusive manner as possible.

To this end, electroencephalogram (EEG) signals can be measured from the scalp of the patient.

With the use of this data, as well as other data channels, various features can be extracted

in order to better understand the patient’s situation. Medical experts typically divide the

obtained EEG signal into 30-second intervals known as epochs. Based on the various features

that can be extracted from such epochs and any pertinent contextual information, each such

epoch can be classified into five different stages that will be discussed later. Medical experts

are able to use this information, as well as other trends observed from the data, to assist in

the diagnosis and management of patients.

As I found out during my interviews with members of the London Health Sciences Centre, the
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classification of such epochs is an involved task. Currently, doctors or trained technicians need

to go through each epoch and make a classification manually, based on the features contained

in the epoch, information contained in other channels such as electro-oculogram (EOG), and

any pertinent contextual information. Considering a patient’s one night sleep record could be

approximately 8 hours, analyzing one sleep session could involve the analysis of approximately

960 epochs. Also, sometimes it is difficult to be consistent when making such classifications.

For example, in most laboratories, an inter-human expert agreement of 90% is considered to

be quite good. The inaccuracies that exist could be due to many factors. The ambiguity of the

rules themselves, the difficulties present when extracting the features, fatigue of the technicians

are to name a few of them.

One of the purposes of the teams’ research is to eliminate some of that variability, in order

to provide a more predictable classification. Given the same data, the goal is to develop an

automated system that can perform the classification of the epochs with good accuracy. If

successful, such a system will be extremely fast compared to a human scorer, and can help a

human EEG technician immensely in analyzing the data. Furthermore, it is guaranteed that

the automated system will never miss any of the features that were deemed pertinent when

programming the system. As such, it can be a very important tool for a human scorer to

check his or her work. Whenever, the human scorer’s decision deviates from that of the expert

system, the error can be analyzed and a decision can be made about whether to modify the

system or the analysis of human scorer. This can assist in making the inter-human expert

agreement higher as well.

A top level diagram of the proposed system is given in Figure 1.1. The first part of the thesis

is to investigate the removal of artifacts from the raw signal. Traditionally, human experts

only use high/low/band-pass filters before inspecting the signals. However, such filters are not

directly useful in removing artifacts whose frequency content overlaps with those of desired

components. For the purposes of removing the artifacts from the signals, there are two major

tools used in this thesis; namely, Wavelets and Independent Component Analysis (ICA).

2



Figure 1.1: A top level view of the system

The second part of this research deals with feature extraction. In order to carry out the

classification, it is necessary to extract the relevant features from the signals. To do this, it is

important to establish which features are the best for separating the epochs into various sleep

stages. If good features are left out, the classification will be poorer, and if useless features are

included, it will waste computational cycles as well as potentially confuse the classifier.

When humans classify the signals to belong to the various sleep stages, they are able to ignore

artifacts that they perceive to be extraneous before making the classification. The same ability

needs to be given to an automated system before it attempts to perform the same task. The

denoising step described in this research attempts to identify artifacts and remove them from

the signal before further processing.

Once the raw signal is cleaned up, features need to be extracted to be used by the classifier.

However, having irrelevant features or lacking important features will hurt the final classifica-

tion. As a result, it is important to identify the most important features that should be used in

the classification. This feature selection, is another aspect that is investigated in this research.
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Obviously, the research also involves a use of a classifier. The details of the classifier will be

discussed later in the thesis. It must be noted that the classifier itself is not the focus of this

research and is not investigated in depth.

It is the hope of this research that a good classification rate can be achieved from a small subset

of the initial feature pool. Selecting an appropriate feature subset has the potential to both

improve the results and to improve the speed of the classification. Furthermore, identifying the

artifacts and removing them from the raw signal, before feature extraction, is hoped to further

improve the results.

1.2 Flow of the thesis

In Chapters 1 and 2 the necessary background information is given so that the terminology and

the information needed for the rest of the thesis can be understood by the reader. After that,

in Chapter 3 the research conducted by researchers in the industry is presented and discussed.

At the end of the chapter, the motivation for the research presented in this thesis is discussed

again and the connection to existing research is stated.

Chapter 4 discusses the methodology used in this thesis to identify and remove artifacts that

occur in the EEG channel. Chapter 5 contains a discussion about feature extraction and the

features in the feature pool. Chapter 6 discusses the role of the classifier and presents the

pertinent information about the classifier used in this research. Since another member of the

research team did her research on classification, the focus of this research is not the classifier.

Chapters 7 and 8 describe the experimental setup and present the results of the methodologies

described in previous chapters. Chapter 9 summarizes the conclusions observed in this research

and chapter 10 discusses how the research should be improved upon in the future.
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Chapter 2

EEG and Artifacts

Before delving into the methods of removing artifacts, it is important to discuss the EEG signal

and the different types of artifacts that are present in an EEG signal. They could be either

physiological or nonphysiological in origin.

2.1 EEG Activity

The activity occurring in the brain can be measured in a variety of ways such as with EEG,

magnetoencephalogram (MEG), and optical images. However, with MEG, the large magnetic

sensors make it impractical to monitor freely moving subjects, such as moving patients. Also,

optical imaging are constrained to surface events. The more invasive approach of deep brain

wire electrodes, regardless of local accuracy, is not always suitable and might not be desired

by some patients. EEG measurements, even though it works on a more macro scale spatially,

is still quite effective. Furthermore, EEG allows for the assessment of cooperative neuronal

activity at high temporal resolutions. [2]

Neurons within the brain produce currents that pass from the intracellular to extracellular

space. Using EEG, the voltage generated as a result of this current can be measured. Many
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neurons contribute to the measured values and such, it gives us a macroscopic view of that

local area.

The cerebral sources of EEG potentials are three-dimensional volumes of the cortex. The three-

dimensional potentials produced by these sources are mapped to the two-dimensional surface

of the scalp. Since EEG measurements are taken from the scalp, there is an inherent loss of

information. In order to localize the actual underlying sources, it is important to appreciate

and understand the physical and functional factors that produce the signals observed. [2]

The measured field potential is due to a variety of sources. Other than the expected synaptic

activity, these include calcium spikes, voltage-dependent oscillations, and spike after-potentials

observed in various neurons. However, the principle generators of EEG fields measured on the

scalp are grade synaptic potentials: namely, excitatory and inhibitory postsynaptic potentials

of pyramidal neurons. [2]

The field potential around an individual neuron is too small to be measured at the scalp.

However, pyramidal cells are all aligned perpendicular to the surface of the cortex. If the

activity of these cells are synchronous, the combined field produced by these cells would be large

enough to be measured. The summation of potential fields resulting from synaptic currents can

occur more readily than with other sources, due to the relatively long duration of the events

causing the synaptic currents. [2]

However, it must be said that not all activity occurring in the cortex can be measured by

scalp electrodes. The physical factors such as the source location, area, and orientation as

well as functional factors such as the amplitude and frequency, determine the quality of the

recording of a particular phenomenon. For example, if adjacent regions of the cortex have

opposite orientations, the signals will cancel and no voltage field can be observed at the scalp.

[2]

Another difficulty has to do with the localization of the source that generated the phenomenon
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of interest. Unfortunately, the original source of the phenomenon that is observed at the scalp

might not be directly underneath the electrode used during the detection. Thus, attempting to

explain certain phenomena as a result of the brain segment directly underneath the electrode

might lead to incorrect analysis.

2.2 Measured signals

In order to perform sleep staging in any patient, it is recommended that signals from 2 electroen-

cephalogram (EEG) channels, an electromyogram (EMG) channel, and an electro-oculogram

(EOG) be used. These channels not only contain useful data, but noise elements as well. Hav-

ing multiple EEG channels are essential in identifying sporadic activities in the signals [2]. The

amplitude of normal EEG phenomena tends to be in the order of 20-50 uV. However, artifacts

such as eye-movements and eye-blinks tend to be in the range of mV. The procedure in which

these signals are collected is called a Polysomnogram (PSG) [3].

2.3 EEG and sleep staging

The human sleep cycle consists of five different sleep stages, and the awake state. The five sleep

stages are Non-Rapid Eye Movements I-IV (NREM I-IV) and the Rapid Eye Movement (REM)

stage. Examples of these sleep stages can be found in Appendix D. An EEG technician inspects

the signal that is generated by the patient, and classifies each epoch (30 second interval) as

belonging to one of the six stages in the sleep cycle. In this research, the data as well as

the classified epochs were obtained from the Sleep Medicine Laboratory at the London Health

Sciences Center.

The EEG technicians at the sleep lab generate the data from the sleeping patients during their

stay at the Sleep Laboratory. Once the data is collected, the EEG technicians inspect the
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signals on their computers and classify the epochs accordingly. The computers have simple

filters built in, such as high-pass and low-pass filters, to eliminate the most common forms of

noise.

Features such as delta waves (0.5-4Hz), theta waves (4-8Hz), alpha waves (8-12Hz), beta waves

(12-45Hz), and K-complexes are observed from the EEG recordings for the purposes of classifi-

cation. The delta range was defined from 0.5Hz and upwards, in order to ignore potential sweat

artifacts. On top of being used for classification, the EOG, ECG, and EMG channels can be

used to identify artifacts as well. For example, with respect to classification, as a patient’s sleep

deepens from Stage I to Stage IV, his or her EMG activity lowers in amplitude and disappears

completely during REM sleep [4].

In this data, whenever a proper diagnosis cannot be made for an epoch, it is automatically

classified as being awake. In reality, this might involve non-awake situations such as movement

of the patient while he or she is sleeping. The classification process is heavily based on the

rules that Rechtschaffen and Kales have described in their manual. The actual rules will not

be discussed in this thesis, as it was not explicitly used in the classification algorithms used in

this thesis. However, there are researchers who model their classifier as rule based agents that

use these rules explicitly.

It is very important to note that in terms of performance, the goal of laboratories is to have

an inter-human expert agreement of 90%. Thus, a performance level of around 90% is a quite

respectable score for an automated system.

2.4 Nonphysiological artifacts

Nonphysiological artifacts can occur from a variety of sources. They arise due to activity

outside of the body and typically involves the electrode sites and environmental factors [2].

It is imperative that the EEG technician does everything in his or her ability to reduce such
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artifacts before the recording is performed.

2.4.1 Motion artifacts

Any movements of the patient can generate phenomena that can be observed by the scalp

electrodes. The nature and the localization of the artifact observed on the scalp electrodes

is dependent on the movement of the body part involved, the strength of the movement, and

the relative location of the electrode wires. Parkinson’s disease, myoclonic limb movements,

nocturnal leg movements, and hypnic jerks are some examples of movements that can cause

movement artifacts to appear on scalp electrodes. [2]

As I found out during my interviews in London Health Sciences Centre, the motion artifacts

generated can be a significant source of noise. The noise generated can be as large as 14 mV

and is usually contained within the 1 to 10 Hz range. These artifacts are readily visible in

ECG, EEG, EMG, and impedance pneumography recordings.

The motion artifacts have two primary causes; namely, movements in the electrode metal-to-

solution interface and skin-stretch. It has been demonstrated that with paste-filled recessed

Ag-AgCl electrodes, motion artifacts due to electrode metal-to-solution interface are negligible.

Thus, the majority of motion artifacts that occur are due to skin stretch.

To alleviate these artifacts, a number of approaches can be used. Abrading the skin at the

electrode site and the use of electrodes that puncture the skin are a couple of notable solutions.

Skin abrasion in particular require some experience on the part of the technician as too much

abrasion can lead to skin irritation and too little abrasion will not reduce the noise significantly.

[5]
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2.4.2 Electrode pop

The electrode pop artifact is a nonphysiological artifact that occurs at the electrode-scalp

junction with a slight electrode movement relative to the scalp. This movement causes a

momentary change in the electrode-paste-skin interface that will produce the slight deflection

in the recording. Proper scalp cleaning and electrode application can reduce the occurrence of

this artifact [6]. Ideally, the electrolyte gel would absorb such motions, without changing the

interface. In fact, [5] indicated that artifacts generated by electrode metal-to-solution interface

movement is negligible when paste-filled recessed Ag-AgCl electrodes are used.

2.4.3 Sweat artifacts

Sweat artifacts manifest themselves as extremely low frequency signals typically in the range

of 0.25 to 0.5Hz. While their amplitude can certainly affect the EEG recording, they can be

easily removed with a high-pass filter due to their extremely low frequency range.

2.4.4 50/60 Hz noise

The 50/60Hz interference is a major cause of artifacts in the EEG signal. These induced

voltages are due to the activity of nearby electrical equipment that operate at 50/60Hz. It is

quite possible to measure a several volt difference from the human to earth-ground. Connecting

a reference ground to a patient using an EEG electrode can significantly reduce the potential

difference between the patient and the earth-ground [6]. While the differential amplifier used

in EEG recordings should cancel out any uniform interference present in the human body from

the two corresponding electrodes, impedance mismatches in the electrodes and the electrode-

electrolyte-scalp interfaces prevents it from doing so perfectly. As a result, any reduction of

the interference from within the human body is quite useful. Finally, it must be ensured that

a patient is connected to only one ground at a time. Connecting a patient to more than one
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ground could be absolutely lethal to the patient due to the potential voltage difference [6].

That being said, the presence of 50/60 Hz does not create any significant problems with respect

to EEG recordings. The frequency range of the signals of interest is typically well below the

50/60 Hz range. Therefore, applying a low-pass filter to the signal can get rid of these unwanted

interferences quite easily.

2.5 Physiological artifacts

Physiological artifacts originate from sources inside the body, but not necessarily from within

the brain [2]. The most notable physiological artifacts are due to the normal electrical activity

of the heart, muscles, and the eyes. Of these, the ocular artifacts are the most relevant. [7]

2.5.1 Ocular artifacts

Eye movements that are recorded by a standard 10-20 montage are generated by the corneoreti-

nal potential and the phenomenon created has an amplitude of approximately 50-100 mV [2].

In current data acquisition, ocular artifacts tend to be more dominant than other physiological

artifacts (cardiac and muscle artifacts) and external interferences. [8]

The electrodes that detect the ocular phenomenon most prominently are the ones that are

closest to the eyeballs; namely, Fp1, Fp2, F7, and F8. This is because ocular artifacts decrease

rapidly as a function of the distance from the eyes [8]. The location of these electrodes can

be seen in Figure 2.1. The ocular phenomenon is best regarded as a dipole where the positive

pole is localized to the cornea and the negative pole is localized to the retina. [2]

The phenomena observed on the different channels vary significantly with the type of motion of

the eyeballs. For example, when the eyes close, the movement of the eyeballs is in an upward

direction. This is recorded as a positive potential with respect to the electrodes placed at
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Figure 2.1: The locations of Fp1, Fp2, F7, and F8 on the scalp.

Fp1 and Fp2. However, when the eyes move to the left, the activity recorded at Fp1 and

FP2 remain steady with no change in potential. On the other hand, the F7 electrode shows a

positive deflection while the F8 electrode shows a negative deflection.

While the subject is awake, asking the individual to refrain from making eye-movements is ob-

viously unrealistic. Even if a subject manages to consciously stop making any eye-movements,

the mere fact that he or she is concentrating to do this will affect the eventual signal.

It should be noted that the EEG signal might contain pathological phenomena that might

resemble ocular activity. Such activity should not be removed from the signal as they might

be medically significant. It is important to identify such phenomena before removing potential

artifacts [8]. To this end, one approach would be to verify that the unusual phenomenon is

actually present in the primary channel meant to measure the artifact source in question; in

this case the EOG channels.
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2.5.2 Cardiac artifacts

The cardiac activity of a patient is easily monitored and can be accomplished by placing

electrodes on the chest of the patient. The typical bipolar arrangement requires two electrodes

to be attached to the left chest and the right chest, respectively. With respect to ECG artifacts,

they usually occur in the EEG in referential montages, especially when using the ear electrodes

as a reference. The field of the heart is oriented so that a negative polarity signal is produced

on one side of the head and a positive polarity artifact is detected on the other side. ECG

artifacts are more prominent in obese patients, patients with short necks, and babies; all these

subjects have their heads close to the thorax.

Pulse artifacts are typically confined to a single electrode and usually occurs when placed over

a surface artery. Such artifacts become most prominent when the electrode is loosely applied.

The pulse artifact takes the form of a slow-wave potential and is time locked to the phenomenon

on the ECG channel.

Artifacts generated from pacemakers take the form of high-voltage, short-duration spike activity

and typically precedes the cardiac signal. Depending on the type of pacemaker, this type of

artifact can be either continuous or intermittent. For further information regarding the topic

of cardiac artifacts, please consult [2].

2.5.3 Muscle artifacts

When speaking of electromyographic artifacts, a number of different types of artifacts must be

discussed. Lateral rectus artifacts are typically recorded from the F7 and F8 surface electrodes

and has the form of a sharp positive deflection of very short duration followed by a slow falloff

as the muscle relaxes. This type of artifact mimics the appearance of a calibration signal.

Single motor units can also be recorded by placing an electrode over one of the scalp muscles.
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The appearance of the resulting artifact usually takes the form of a repetitive negative or

positive deflection that takes a comb-like appearance. It is also possible for this type of artifact

to occur transiently as single deflections that look random.

The frontalis electromyogram is recorded from the frontal electrodes and becomes present in

patients who are contracting these muscles, such as when closing their eyes. These muscles are

typically activated by photic stimulation and the amplitude of the phenomenon can be quite

large; and as such, they can sometimes obscure EEG activity.

The temporalis EMG is recorded by placing the electrodes over the temporal lobe and usually

occurs when patients tightly close their jaws or make chewing movements. Many of these

artifacts can be reduced by ensuring the patient is relaxed. [2]

2.5.4 Glossokinetic

This form of artifact is produced by the movement of the tongue. The manifestation of this

type of artifact is broad and can be recorded over the entire face or from frontal and temporal

scalp areas. The artifact itself has a higher amplitude than the activity recorded on standard

scalp electrodes, and is of low frequency. [2]

2.5.5 Respiratory artifacts

Respiration artifacts can also affect EEG measurements. Such artifacts can contain slow waves

consistent with inhalation and exhalation or higher frequency activity due to snoring.
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2.6 Summary

There are two main types of artifacts to be considered; namely, physiological and non-physiological

artifacts. Non-physiological contain artifacts such as movement artifacts, electrode pop arti-

facts, sweat artifacts, and 50/60Hz noise. Typically, these artifacts are not explicitly monitored,

and as such they need to be filtered out by their characteristics alone. For example, sweat arti-

facts tend to be of really low frequency, 50/60 Hz noise is contained within a narrow frequency

band, and electrode pop artifacts are not necessarily time-aligned in two corresponding elec-

trodes on the two sides of the scalp.

Physiological artifacts take the form of ocular artifacts, cardiac artifacts, muscle artifacts,

glossokinetic artifacts, and respiratory artifacts. Most of these artifacts can be monitored with

another channel, which in turn can be used during the denoising process of the EEG.
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Chapter 3

Current research

There has been a significant interest into the areas of Sleep Stage classification and the removal

of artifacts. This section describes some of the more relevant research to the work described

in this thesis.

3.1 Sleep stage classification

To perform sleep staging, researchers have used a variety of techniques ranging from Neural

Networks, Probabilistic models, Rule-based systems, and Fuzzy systems.

The research done in [9] describes a finite state machine that indicates the sleep stage with the

use of Dempster-Shafer (D-S) theory. With the use of D-S theory, each of the hypothesis (sleep

stages) are assigned a value of [0, 1]. This essentially indicates the belief in the hypothesis. D-S

theory works by combining evidence to form the final belief in the hypothesis. In this system,

there were a total of 130 rules to make the final belief set.

The evidence is dependent on the input characteristics of the type that will be discussed in

Section 5.1. In [9], not all the features were used. Only the features, that were relevant to
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the corresponding sleep stage, were used when calculating the belief in the hypothesis. The

relevant features were taken from literature and the researchers’ knowledge. The features were

not simply given to the D-S algorithm. Fuzzy Logic was employed to give a probabilistic weight

to the input to describe how well it supports a particular sleep stage. The actual numbers in

the fuzzification process was also based on the researchers knowledge of the sleep process and

the accuracy of the detected waveforms.

Finally, contextual correction step was included to handle the nuances in the process. For

example, some sleep stages don’t exhibit a particular features all the time. However, if the

previous epoch is classified to be of a certain type, the lack of evidence in the current epoch

may not matter.

So, in essence, there were three stages: Fuzzification, D-S theory, and the application of Con-

textual Information. The researchers ran their algorithm against five sleep records and found

the accuracy to lie between 78.44% and 90.6%, with a mean of 84.74%.

The research done in [4] uses a decision tree learning system to do the classification. In that

research, the recognition of waves such as alpha waves, delta waves, sleep spindles, and K-

complexes, are based on the directions, peaks, bottoms (negative peak), and durations. If the

measured characteristics are within the predetermined limits specified for each type of wave,

it is classified as belonging to that type. For a more detailed description of the procedure to

select the wave type, please see [4].

When the waves are identified, general statistics about the number or the ratio of occurrences

can be made. These features are subsequently given to the decision tree learning classifier.

For this research, data from only one test subject was used. The researchers divided the data

into five group randomly, and used four of the groups for training and one for testing. The

experiment was repeated five times so that each group could be the test group. In four out of

the five cases, the accuracy of the classifier had exceeded 80%. The mean classification rate for

the whole experiment was 81.4%. Sleep stages that occupied most of the data stream, had a
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high accuracy rate, while sleep stages that have a low presence, had a relatively unimpressive

accuracy rate (40% to 53%).

The research described in [10] uses a Neural Networks system for the classification of sleep

stages. The system has three tiers that perform very different tasks. The first layer is called a

Sleep EEG Recognition Neural Network (SRNN) and is responsible for the detection of several

important characteristics waves in EEG.

The SRNN can recognize amongst five different characteristic waves; namely, (I) spindle, (II)

hump, (III) alpha wave, (IV) slow wave that occupies 20%-50% duration of data segment, and

(V) slow wave that occupies over 50% of data segment. The second layer is called the Sleep

Stage Diagnosis Neural Network (SSNN) and is responsible for the actual classification of the

sleep stage. The final tier of the system is called the Contextual Diagnosis Neural Network

CDNN and is used for post-contextual correction.

For the experiments, 20% of all data was used as training data and the remaining data as the

test data. The accuracy of the experiments yielded 82% agreement with the human expert.

The research that was described in [1] used a combination of Neural Networks and Genetic

Algorithms. The Neural Networks were used for the purposes of classification, and the genetic

algorithms were used for the selection of the optimal features from the feature pool and to find

the optimal structure and initial weights of the Neural Network.

The initial feature pool consisted of 120 features in which 110 were by spectrum analysis, 7

features by statistical measure, and 3 using chaotic characteristics. Some of the features in the

feature pool can be seen in Table 3.1. Of the set of features, 32 were chosen to be given to the

Neural Network.

The experimental results indicated that the best features were the maximum power density in

the α, β, θ, and δ bands and the frequency of the maximum power density. The constructed

Neural Network had 32 input nodes, and 5 output nodes, and 1 hidden layer with 15 to 30
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Table 3.1: Feature pool used by [1]
Type Examples

Spectrum analysis maximum power density, the frequency at the maximum
power density, accumulated and relative power density, and
the standard deviation of power density in the α, β, θ, and
δ bands

Statistical measure average amplitude, difference between the maximum and
minimum amplitude, ratio between maximum and mean
amplitude, standard deviation, maximum and minimum
amplitude

Chaotic characteristics fractal dimension of horizontally projected signal, box-
counting dimension, and the second-order central tendency

hidden nodes. Of the structural optimization, only the number of hidden layers and the number

of hidden nodes were variable elements. Unfortunately, this research paper did not indicate

any concrete classification accuracy numbers.

There have also been hybrid classification solutions described in literature that attempt to

integrate the best of different approaches. The research done in [3] wanted to demonstrate

that a hybrid Rule-Based Expert System and a Neural Network can work well in conjunction.

The Neural Network was essentially used to handle situation which might be difficult to handle

with just rules. In this research, a multilayer feedforward network with two hidden layers

were used with the error back propagation algorithm as the learning algorithm. The input

of the Neural Network had 58 features. The reasoning given for the need for a Rule-Based

expert system is that Neural Networks are not ideal for smoothing-rules. For example, the

3 minute rule in EEG classification is heavily dependent on the epochs in the vicinity of the

current epoch. Sometimes, this context is more important than the features directly observed

in the current epoch itself. Therefore, the Rule-Based Expert System contains both Single

Epoch Reasoning and Multi-epoch Adjusting. The Rule-Based Expert System has a notion of

an overall reliability measure for all the decisions it generates. If there are any conflicts in the

final decision, or the reliability measure is too low, the Neural Network system is used.
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The researchers of this paper also did signal denoising before feature extraction. The signal

denoising step involved the removal of ECG interference from the EEG channel, removal of

harmonic noise at 20 Hz and 60 Hz using notch filters, and the removal of low frequency voltage

due to sweat. They were also concerned with the fact that the traditional use of band powers

calculated over the whole epoch does not necessarily give all the information regarding the

epoch. For example, when the power is averaged over the whole epoch, the temporal resolution

is completely eliminated. To determine the power statistics, for example, they divided the

EEG epoch into 30 segments, and calculated the hamming windowed FFT over each segment

to determine the desired statistic.

The experiment for this research yielded an accuracy of 83.1% with the use of just the Rule-

Based expert system and an agreement of 85.9% with the hybrid system. These numbers

are rather impressive considering the setup of the experiment. Of the 4 test subjects in the

experiment, 2 were used exclusively for training purposes and the other 2 were used exclusively

for testing purposes. Therefore, the generalization factor was relatively high. Interestingly, the

researchers were only able to get an accuracy of just 55.1% when only the Neural Networks are

used. They admitted that the use of various Neural Network architectures yielded similarly

poor results and concluded that Neural Networks by themselves are not appropriate for sleep

stage scoring.

3.2 Removal of artifacts

There has been a fair bit of research towards investigating how to remove artifacts in the

EEG signal. The authors of the paper [7] concerned themselves with the removal of ocular,

cardiac, and muscle artifacts from the EEG signal. The context of an artifact is sometimes

dependent on the sleep stage. For example, awake and REM stages of sleep usually involve

the contamination of the EEG signal with ocular artifacts. On the other hand, in some other

sleep stages, EEG phenomena, such as K-Complexes, interferes with the EOG channels more
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noticeably. Such bidirectional mixing makes methods based on regression analysis difficult to

utilize effectively with respect to ocular artifacts.

In their work, the EEG signal was recorded from 19 electrodes on the scalp. The goal was to

apply Independent Component Analysis (ICA), discussed in B, with the end-goal of eliminating

unwanted artifacts. In their work, they used the ICA variant Algorithm for Multiple Unknown

Signal Extraction (AMUSE) for the separation of the mixtures into their independent com-

ponents. This algorithm uses the time-structure of the signals instead of just assuming that

the signals are generated by random variables. When the independent components that rep-

resent an ocular, cardiac, or muscle artifact are found, with the use of time, frequency, and

scalp topography details of the independent components, they can be eliminated prior to the

reconstruction of the denoised EEG signal. With the prior knowledge of the artifacts being

investigated, as well as expected corticle activity, such comparisons between the templates and

the separated independent components can be made.

The experimental analysis claims good results of separation. However, the authors did not

publish any results as to how the denoising step affected sleep stage classification. Also, the

large number of channels that were available to these researchers essentially means that the

denoising problem they worked on is significantly different from the denoising problem analyzed

in this thesis.

In order to remove EOG artifacts, time-domain and frequency-domain regression methods have

been used [8]. Time-domain regression assumes that the propagation of ocular potential is vol-

ume conducted, frequency independent, and without any time delay. However, it has been

argued that the scalp is not a perfect volume conductor and that some frequencies are atten-

uated more than others. Neither techniques, however, take into consideration the propagation

of brain signals into the EOG channels. Also, the correction coefficients used are typically

different for eye-blinks and eye-movements. [8]

A method based on Principle Component Analysis (PCA), when applied to the same problem,
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has outperformed the above mentioned regression methods. Unfortunately, it has performed

poorly when the amplitudes are of comparable size [8]. In essence, PCA attempts to uncorrelate

a set of given signals by using 2nd order statistics. It should be understood that uncorrelating

the mixtures is not as strong as making them statistically independent from each other. A

more detailed description about PCA can be found in B.3.

Wavelet based techniques have also had success in removing ocular artifacts. Since ocular arti-

facts reside in the low frequency bands and is large in amplitude, thresholding the coefficients

of the wavelet decomposition that are above a certain value would hopefully remove the arti-

fact while keeping the original EEG signal relatively undisturbed [8]. However, the authors of

[8] didn’t quite say whether the results obtained were verified with EEG experts to judge the

quality of the denoising process.

A paper by Brown et al described the possibility of statistical wavelet thresholding. In this

approach, assuming EEG activity follows a somewhat normal distribution, coefficients that

deviate from the normal distribution is rejected. Unfortunately, this approach failed to improve

baseline drift, eye movements, and step artifacts. [11]

Haas et al published a paper which attempted to remove EOG artifacts by using an ARMAX

(AutoRegressive Moving Average with eXogenous inputs) model. This model is used to model

the recordings as a linear combination of EEG and EOG activity. By estimating the parameters

of the model, it was the intention to locate the EOG artifacts and then to remove them. While

this method was successful in removing some EOG artifacts not removable by standard EOG

techniques, it is more computationally expensive and might introduce new EOG artifacts. [11]

Extended Kalman filters have also been used in an Adaptive Autoregressive (AAR) setting to

filter out the artifacts. Once the parameters of the model are identified with the use of an

Extended Kalman Filter, adaptive inverse filtering is applied to filter out the artifacts. The

results indicated that the method performed better with muscle and movement artifacts than

EOG or ECG artifacts. [11]
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Independent Component Analysis (ICA) has been used successfully to separate a multi-channel

scalp recordings into physiologically plausible independent components [8]. For example, in [11]

the authors successfully decomposed an artificial mixture of EEG, EOG, and EMG signals into

their independent components. However, it should be noted that these mixtures were artificially

created by the authors. The performance against natural mixtures originating from the human

body was not performed. Also, the obtained results does not seem to have received expert

evaluation to verify the quality of separation.

Another research team has done work on using ICA to reject artifacts as well. They have used

both simulated and real data to evaluate their method. The simulated data were obtained

by artificially mixing channels recorded from the corticle surface of the human going through

presurgical evaluation. Overall, the artifacts due to ocular activity was removed from the signal-

set. Unfortunately, the quality of the decomposition does not seem to have been evaluated

by domain-experts. Also, the channel-set that was used during the decomposition had 20

channels. So, while ICA can be successfully used when there are a large number of channels,

its performance for a low number of channels is still not known conclusively. [12]

There have also been work done to simply identify artifact sources. Reference [13] described

such a system that achieved approximately 90% accuracy rate with respect to domain-experts

in identifying the presence of artifacts. Conceivably, such a system can be used by an expert

system that performs sleep stage classification.

Most importantly, in [14], wavelets were used as a visualization tool by the researchers, to

visualize the decomposed levels as a set of time-series in order to locate artifacts in Partial

Discharge (PD) signals. This time-series reconstruction of the decomposed levels forms the

basis of the wavelet solution presented in this paper. In this thesis this method will be modified

to tackle the problem of locating artifacts from EEG.
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3.3 Motivation

One can conclude from the above survey, with the exception of [1], there hasn’t been much

work on feature selection. Even in [1], 32 features were given to the Neural Network. It would

be interesting to determine the performance of a Neural Network classifier when the number

of features are significantly less.

Also, [3] stated that Neural Networks by themselves are not effective classifiers. Even though

the system they proposed was very powerful indeed, their conclusion regarding Neural Networks

seems premature.

As was seen from the above survey, there have been some work done to denoise EEG signals

with ICA. However, they always seemed to use much more channels than used in this research.

Therefore, it would be interesting to determine if the implementation of ICA used in this

research is able to denoise EEG signals effectively when the number of channels is small.

As mentioned before, the Wavelet based solution described in this thesis is an improvement

over the algorithm presented in [14]. Naturally, such an extension should be investigated.
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Chapter 4

Removing artifacts

Once the artifacts are identified, it is necessary to remove them while keeping the effect on the

desired signal to a minimum. For this purpose, there were three main techniques investigated

in this paper: namely, the basic Wavelet denoising algorithm (BWDA), the Wavelet denoising

algorithm (WDA), and the Independent Component Analysis denoising algorithm (IDA). It

should be noted that IDA actually uses Wavelets in the initial stages of the algorithm. This

research mainly looked at EOG artifacts that occur in the EEG channels and artifacts isolated

to a single EEG channel, such as electrode pop artifacts.

4.1 Tools used

For the purposes of denoising the EEG signals, Wavelets are used within all the algorithms.

When denoising artifacts, localization in the time-frequency axis is essential. The artifacts have

particular frequency properties and they only occur some of the time. As a result, it is highly

desirable to inspect a signal as a function of both time and frequency. Wavelets are excellent

for this purpose. Since a scale in a wavelet decomposition can be mapped to a particular

frequency, localizing in the time-scale axis is equivalent to localizing in the time-frequency

axis. As a result, the algorithms used in this thesis use wavelets to great effect in localizing
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various artifacts.

Wavelets are also excellent at selectively suppressing artifacts. When an artifact is located in the

time-frequency axis, it can be easily suppressed through a process called Wavelet Thresholding.

Due to the localization in time, only that local area is affected; and due to the localization in

frequency (through scales), waveforms of different frequencies can be suppressed independently.

However, the physiological model of the mixing that takes place at the scalp describes the

mixing process as being linear. Thus, each scale separated by the wavelet decomposition

is a linear mixture of the corresponding scales of the wavelet decompositions of the original

sources. By only suppressing a few select scales by using wavelet thresholding, the other scales

are essentially ignored. However, the mixing model indicates that those scales are mixtures

of the original sources as well. Due to this scenario, instead of using Wavelet thresholding to

denoise the artifacts, Independent Component Analysis (ICA) can be used. ICA assumes a

linear mixing model of the sources and attempts to demix them to the original components.

Even with the use of ICA, Wavelets are still used to locate potential artifacts.

More details about Wavelets can be found in Appendix A and about Independent Component

Analysis in Appendix B.

4.2 Denoising with Wavelets (BWDA)

The types of artifacts that are considered in this research are EOG artifacts and sporadic

artifacts that occur in the EEG channel, mainly due to nonphysiological issues. Both forms of

artifacts are localized in time and are of low frequency. As a result, the capability of Wavelets

to inspect the signal on the time-scale, and in turn on the time-frequency resolution is quite

desirable.

The most straightforward approach to using Wavelets to denoise the EEG signals is to inspect
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the corresponding coefficients in the time-scale axis of different channels and to suppress them

when necessary. The algorithms used for this purpose are seen in Tables 4.1 and 4.2.

For example, when the EOG channel and the EEG channel are compared, time-locked and

large Wavelet coefficients in one of the higher scales, in both the EEG and EOG channel

could potentially signal EOG contamination. When such a time-scale aligned coefficients are

detected, the coefficient in the EEG signal can be suppressed. The threshold values that are

needed to detect potential contamination can be established experimentally. The Wavelet

algorithm based on this approach described within this section is named the Basic Wavelet

Denoising Algorithm (BWDA).

4.2.1 Removing mixed biological artifacts using Wavelets

If the artifact in question is a biological artifact, a channel meant to measure the source of

the artifact could be quite useful. For example, in order to remove EOG artifacts, the EOG

channels can be used to select the location of potential contaminations in the EEG time-series.

When any ocular activity is observed in the EOG channel, the EEG channel can be observed

for a similar phenomenon.

The BWDA algorithm described in Table 4.1 compares the time-scale aligned wavelet coeffi-

cients of the EEG and the artifact channels before suppressing the necessary coefficients in the

EEG signal. It is quite likely that such a correlation between the EEG and the artifact channel

occur due to a contamination from the artifact channel into the EEG channel.

4.2.2 Removing sporadic artifacts using Wavelets

If the artifact that needs to be removed is an electrode/site related artifact or some sporadic

waveform, then it is highly likely that it is present in only one channel. In this research,

there are two EEG channels available that should be extremely correlated. When these two
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Table 4.1: Algorithm for mixed artifact removal using Wavelets (BWDA)
1 Decompose EEG channel Teeg and artifact channel(s) into N levels using an ap-

propriate mother-wavelet.
2 Select the first/next artifact channel as the current artifact Tartifact to be used in

all the remaining steps in the algorithm. Each artifact is processed individually.
3 By inspecting the EEG signal and artifact signal, determine which levels con-

tribute noticeably to the current artifact - L.
4 For each level of the decomposition listed in L, determine an appropriate wavelet

coefficient profile to indicate the presence of artifacts. In each profile, obtain the
amplitude values Heeg and Hartifact, experimentally, such that when a coefficient
value in Teeg is greater than Heeg and the corresponding coefficient in Tartifact is
greater than Hartifact, an artifact is said to have occurred.

5 Using the wavelet coefficient profiles generated in the previous step, compare each
set of corresponding coefficients in the time-scale axis, for the scales in set L. If
the EEG coefficient and the artifact coefficient satisfy the threshold profile, set
the coefficient in the EEG decomposition to zero.

6 If more artifact types are present, armed with the updated wavelet coefficients
for the EEG channel, goto Step 2 and process the next artifact.

7 Reconstruct the final set of wavelet coefficients for the EEG channel to generate
the denoised EEG signal (eegcurrent).

channels are compared, any significant discrepancy between them could potentially signal an

unwanted artifact. It must be stated that there is an inherent difference in amplitude between

the two hemispheres of the brain. Thus, when comparing the two EEG channels, it should

be understood that their amplitudes won’t be necessarily approximately equal. For example,

difference in the skull thickness of the patient can account for voltage asymmetries of 20% to

70% and also mask or simulate abnormalities. Without having actual measurements about

the skull thickness, asymmetries of less than 50% is usually diagnosed as being insignificant.

Due to the interest of low frequency waveforms in this thesis, it should be noted that transient

asymmetries of vertex sharp waves are common and normal. However, a significant asymmetry

that persists is abnormal and suggests a cerebral disturbance lateralized to the side of lower

voltage. [2]

Therefore, with consideration to the scaling differences and transient phenomena already dis-
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cussed, the two corresponding channels should be approximately scaled versions of each other.

Since it is quite difficult to tell the difference between valid transient phenomenon and sporadic

artifacts, this thesis will only attempt to remove low frequency asymmetries that seem to have

some persistency in an epoch. The algorithm for this purpose using wavelets is presented in

Table 4.2.

Table 4.2: Algorithm for sporadic artifact removal using Wavelets (BWDA)
1 Decompose primary EEG channel (Tprimary) and the secondary EEG channel

(Tsecondary) channel(s) into N levels using an appropriate mother-wavelet. For
the automated analysis, the primary channel will be used solely to extract the
features.

2 Using Tprimary, Tsecondary, and the nature of the sporadic artifacts, determine the
levels that contribute noticeably to the artifact phenomenon - L.

3 For each level of the decomposition listed in L, determine an appropriate threshold
profile to indicate the presence of artifacts. In each profile, obtain the amplitude
values Hprimary and Hsecondary, experimentally, such that when a coefficient value
in Tprimary is greater than Hprimary and the corresponding coefficient in Tsecondary

is less than Hsecondary, a sporadic artifact is said to have occurred.
4 Using the wavelet coefficient profiles generated in the previous step, compare each

set of corresponding coefficients in the time-scale axis, for the scales in set L. If
the EEG coefficient and the artifact coefficient satisfy the threshold profile, enter
them into the Lsporadic list.

5 If Lsporadic list contains sufficient entries, for a period of Y epochs, set the coeffi-
cient in the primary EEG decomposition of those entries, to zero.

6 Reconstruct the final set of wavelet coefficients for the EEG channel to generate
the denoised EEG signal (eegcurrent).

4.3 Denoising with Wavelets (WDA)

The approach used in Section 4.2 considers the coefficients, on the time-scale grid, individually.

This approach might not reflect the actual phenomenon since the duration of certain artifacts

might be longer than what is indicated by the implied frequency of using a particular scale.

Taking higher levels in the decomposition, which averages out the neighbouring coefficients even

more, might satisfy the length of the artifact. However, using these coefficients for comparison
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might not be ideal, since some of the detail present in the lower layers is lost if they are not

used in the comparison explicitly.

To resolve these limitations, each scale can be reconstructed into a separate time-series; and

then each resulting time-series can be segmented appropriately in the time axis. This method

also makes it much easier to visualize potential artifacts by the naked eye than with the use

of raw Wavelet coefficients directly. This forms the basis of the algorithm which is described

in this section. The reconstructed time-series differs from the original time-series in the sense

that most of the extraneous elements are discarded.

The method described in this section follows the work done by L. Satish and B. Nazneen

[14]. In that paper, Wavelets were applied for the purposes of reducing noise and unwanted

interference present in Partial Discharge (PD) signal measurements.

That research is relevant to the problem discussed in this thesis, since in that research, much

like with my own research, the interference and the desired signal had overlapping spectral

properties. In [14], the process is not completely automated. The reconstructed Wavelet

decompositions were essentially used to allow the human researcher to better visualize the

signal and its many components. The methodology essentially decomposes the signal into

an appropriate number of scales, and then reconstructs a time-series from each scale. For

example, if the PD signal was decomposed into eight levels, the resulting algorithm would

produce a set of nine time-series corresponding to the coefficients at the eight detailed scales

and the one approximate scale. From this set of time-series, the researcher can select which

reconstructed scales contain artifacts, and which do not. This should be straight-forward to do

as phenomenon resembling the artifact shape is easily recognized and can be eliminated within

each scale. The details present in other scales, that overlap in the time-axis will be preserved.

In the present EEG research, it is possible to automate this selection procedure as well. In

[14], the human’s expertise was required to discriminated between desired phenomenon and

artifact phenomenon. In the EEG research, the nature of the artifacts and their locations can
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be approximated through the use of other channels that are available to us.

4.3.1 Removing mixed biological artifacts using Wavelets

Since the mixing of other biological artifacts with the EEG is instantaneous, any contamination

should essentially overlap in time on the EEG channel. Since the ocular activity on the EOG

channel, and any related artifacts on the EEG channel are time-locked, simply checking for

the degree correlation is sufficient to verify the presence of an artifact. The algorithm used to

detect any potential mixed artifacts with the Wavelet method is presented in Table 4.3.

4.3.2 Removing sporadic artifacts using Wavelets

As described before, if the artifact that needs to be removed is an electrode/site related artifact,

then it is highly likely that it is present in only one channel. Normal phenomenon that occurs

in the two EEG channels used in this study should be extremely correlated. As discussed

before, it is also possible for valid transient vertex sharp waves to occur without signaling

any abnormalities [2]. When these two channels are compared, any significant and somewhat

persistent discrepancy between them could potentially signal an unwanted artifact. As with

Section 4.3.1 the signals are divided into segments prior to carrying out the denoising. The

algorithm for the removal of sporadic artifacts using wavelets is presented in Table 4.4.

4.3.3 Issues with using wavelets for artifact removal

The selection of the amplitude thresholds requires some work as there are no classification

data available for each segment of an epoch. Also, the selection of the mother-wavelet and

the number of levels in the decomposition is an important issue. Within this research, only a

limited number of mother-wavelets were considered. The work done by [8] indicates that the

’coif3’ mother-wavelet is appropriate due to it’s close resemblance to an eye-blink artifact. As
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Table 4.3: Algorithm for mixed artifact removal using Wavelets (WDA)
1 Decompose EEG channel and artifact channel(s) into N levels using an appropri-

ate mother-wavelet.
2 Reconstruct N+1 time-series (Teeg) from the decomposed coefficients of the EEG

signal - N from the detail coefficient levels and one from the remaining approxi-
mate coefficient level.

3 Reconstruct N+1 time-series (Tartifact) from the decomposed coefficients of the
first/next artifact channel - N from the detail coefficient levels and one from the
remaining approximate coefficient level.

4 Using Teeg and Tartifact, determine which levels contribute noticeably to the arti-
fact phenomenon - L.

5 Divide these levels into M segments each and let the ith segment of channel foo

be denoted by T foo S i. Through trial and error, using the training set only,
determine the minimum amount of correlation (Cmin) present between T eeg S i
and T artifact S i whenever the artifact is present in the ith segment of the EEG
channel. Also, determine an appropriate amplitude profile, (A), of the segment
from the EEG channel. This could be simply the maximum height within the
segment.

6 Using the correlation and amplitude profiles generated in the previous step, com-
pare the ith segment in the EEG channel and the artifact channel of the testing

set. If the correlation is above the Cmin value and the amplitude profile is a
match, a artifact is assumed to be detected.

7 If an artifact was detected in the EEG segment, set that segment to zero. Else,
retain the current segment without modification.

8 If more artifact types are present, armed with the updated Teeg, goto Step 3 and
process the next artifact.

9 Add all the levels of Teeg to generate the final denoised EEG estimate (eegcurrent).

a result, the same mother-wavelet was used in this research as well.

The number of levels within the decomposition depends on both the size of the data and the

resolutions of interest. It was found in this research that setting N = 5 gave sufficient resolution

to pin-point potential artifacts within only a single level. Increasing the number of levels to

a large number has an effect of creating very low frequency DC-like waveforms in the highest

scales and do not tell anything useful. On the other hand having a very low number of levels in

the decomposition, would not give the decomposition sufficient frequency resolution. In such
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Table 4.4: Algorithm for sporadic artifact removal using Wavelets (WDA)
1 Decompose primary EEG channel and the secondary EEG channel channel(s)

into N levels using an appropriate mother-wavelet. For the automated analysis,
the primary channel will be used solely to extract the features.

2 Reconstruct N+1 time-series x 2 (denoted by Tprimary and Tsecondary) from the
decomposed coefficients of both the primary and secondary EEG signals.

3 Using Tprimary, Tsecondary, and the nature of the sporadic artifacts, determine the
levels that contribute noticeably to the artifact phenomenon - L.

4 Divide these levels into M segments each and let the ith segment of channel foo be
denoted by T foo S i. Through trial and error, using the training set only, deter-
mine the maximum amount of correlation (Cmax) present between T primary S i
and T secondary S i whenever there is an artifact present (discrepancy between
the two segments). Also, determine an appropriate amplitude profile, (A) of
the segment from the EEG channel. This could be simply the maximum height
within the segment.

5 Using the correlation and amplitude profiles generated in the previous step, com-
pare the ith segment of the primary EEG channel and the secondary EEG channel
of the testing set, for all i. For each segment, if the correlation is below the Cmax

value and the amplitude profile is a match, an artifact is said to have occurred.
6 If an artifact was detected in the primary EEG segment, enter the segment into

the Lsporadic list.
7 If Lsporadic list contains sufficient entries, for a period of Y epochs, set those

segments to zero.
8 Add all the levels of Tprimary to generate the final denoised EEG estimate

(eegcurrent).

a case, the suppression of a level due to the presence of an artifact has the negative effect of

suppressing useful detail as well. By trial and error, it was found that setting N = 5 gave the

best resolution to isolate the artifact in the time-series reconstructed from the different scales.

4.4 Denoising with ICA (IDA)

In section 4.3, we discussed how wavelets can be used as a tool to denoise artifacts. Once the

regions of interest were discovered, and analyzed, the appropriate regions were set to zero.
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Now, instead of setting those regions to simply zero, ICA can be used to demix those segments

of interest. Therefore, a system consisting of both wavelets and ICA can be constructed and

its performance evaluated. It is important to note that only the segments that are flagged are

demixed using ICA.

ICA essentially allows us to separate out an estimate of the artifact from the desired signal.

If there are useful information in the same frequency range, setting the whole segment to zero

would eliminate useful information as well. Given two signals, even if there are frequency

overlap, ICA has the ability to distinguish the contribution of each source component to the

observed signals, and thus identifying the desired signal.

4.4.1 Removing mixed biological artifacts using ICA

This algorithm is a modified version of the algorithm found in Section 4.3.1. Only the latter

number of steps are different from the original algorithm. The modified partial listing of the

algorithm can be seen in Table 4.5.

Table 4.5: Algorithm for mixed artifact removal using ICA (IDA)
7 If an artifact was detected in the EEG segment, demix the full EEG segment (that

generated the wavelet decomposition) with the full artifact channel segment.
Notice that these full segments are the original segments that generated the
current set of wavelet decomposition. This is in contrast to a normal segment
which refer to a segment of the time-series generated from a particular scale of
the wavelet decomposition.

8 Once all the segments are evaluated, regenerate Teeg from the fully assembled
EEG epoch (eegcurrent).

9 If more artifact types are present, armed with the updated Teeg, goto Step 3 and
process the next artifact.

34



4.4.2 Removing sporadic artifacts using ICA

Much like in Section 4.4.1, the ICA algorithm is built upon the wavelet counterpart. The

algorithm presented in this section is a modified version of the algorithm in Section 4.3.2. The

modifications can be seen in Table 4.6.

Table 4.6: Algorithm for sporadic artifact removal using ICA (IDA)
7 If Lsporadic list contains sufficient entries, for a period of Y epochs, demix the

undecomposed primary EEG segment (from the measured signal) with the unde-

composed secondary EEG segment. From the demixed output, keep the one that
does not have the artifact. Once all the segments are evaluated, the final EEG
epoch is implicitly created.

4.4.3 Relevancy of data size

It is important to select an appropriate size of data when using the Independent Component

Analysis algorithm. The phenomenon that needs to be removed only occurs some of the time.

If the data segment that is given to the ICA algorithm is too long, the emphasis will not be

put on the phenomenon in question. Any significant statistics that are observed surrounding

the waveform will simply get averaged out over the length of the large dataset. Of course,

having too little data is also poor and becomes a classic over-fitting problem. When this is the

case, the observed statistics are not reliable and it will be difficult to calculate any meaningful

statistics. To give an analogy, there would be too many unknown parameters with too little

equations keeping them together. Thus, it is important to establish an appropriate window

(segment) length before applying the ICA algorithm. The actual window length that is used

in this research will be given later in the thesis.
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4.4.4 Other important notes

It is important to note that the desired signal and the artifacts that needs to be removed can

be thought of as independent components in a certain sense. Obviously, they are not purely

independent in the strictest sense since various phenomenon at different parts of the body are

related. For example, when a person sees an object that he or she really desires, EEG waveforms

might contain certain characteristics patterns. At the same time, the heart might also beat

faster. However, the activation of related phenomenon in the different parts of the body are

not necessarily time-locked to each other. This aspect of these related biological signals can be

used to classify them as independent components in the time-locked sense. Appendix B gives

more details about ICA.

Also, in this research, the data-set that is available for analysis has only 6 channels. There

are 2 EEG channels, 2 EOG channels, an ECG channel and an EMG channel. This is less

than the number of distinct sources that are observed on the human brain. Traditionally, when

Independent Component Analysis is applied to decompose brain signals, there are much more

channels available to the researcher. As discussed in Appendix B, if the number of independent

sources in the system is greater than the number of measurements, it is not possible to find an

accurate decomposition without further constraints. This is analogous to having more variables

than equations when trying to solve a math problem. As a result, each variable can take more

than one legal value. Without sufficient constraints in the form of channels, the decomposed

signal can take many legal forms. Naturally, this is not acceptable. Thus, to obtain good

results, it is important to use as many quality channels as possible.

4.4.5 Choice of ICA method

The optimization algorithm that was chosen to perform Independent Component Analysis in

this research was the FastICA algorithm. Details of this algorithm is discussed in detail in

Appendix B. The FastICA algorithm was chosen due to it’s ability to process batch-data
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effectively. Simulated experiments with the use of various random generators showed that

the FastICA algorithm is capable of separating the mixtures into the original independent

components. Also, it was shown in [15] that it was possible to decompose mixed EEG signals

into their independent components when the number of channels available are approximately

15.

4.4.6 Choice of higher-order statistics

As described in Appendix B, the choice of the higher-order statistic is crucial for the proper

separation of the independent components. The higher order statistics are in essence used as an

approximation to a true measure of independence. Naturally, it is not an exact approximation,

but given the application, hopefully a sufficient one. For this thesis, the higher-order statistic

used was the Negentropy of the function as described in Appendix B.5.4. The G(y) function

is given in Equation 4.1.

G(y) = −exp(−y2/2) (4.1)

4.4.7 Selecting the denoised EEG

After ICA is used to demix the raw signals, a set of demixed signals is produced. Unfortunately,

deriving which demixed signal is the EEG signal is not straightforward. This is because, during

the ICA algorithm, the notion of order is not preserved.

As a result, in order to select the EEG signal, a post-identification step must be performed.

The algorithm that was developed in this research for this purpose is presented in Table 4.7.

The candidate demixed signal chosen essentially is the signal that is most unlikely to any of

the artifact signals. In this algorithm, the notion of most unlikely is based on the summation
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Table 4.7: Selecting the EEG signal from the set of demixed signals produced by ICA.

N=# of signals
FOR j=2 to N (raw signals - assume signal #1 is unclean EEG)

FOR i=1 to N (ICA demixed signals)
C = Find correlation of jth raw signal with ith ICA demixed signal

END
END

Sort matrix C, such that C(j,i) tells you how close the ith ICA separated signal
is to the original jth signal.

FOR i=1 to N (ICA demixed signals)
FOR j=2 to N

L(j-1)=Find how close the ith ICA separated signal is to the
jth original signal (artifact) with respect to the other ICA separated
signals (rank based measure).

END
D(i) = sum of closeness of the ith demixed signal to the raw signals (artifacts).

END

Select the kth demixed signal, such that min(D) = D(k)

of the relative ranks as seen in Table 4.7. The quality of this cost function with respect to

other possible cost functions needs to be investigated further in future work.

The ICA demixed signals could not simply be checked against the original EEG raw signal,

since the original raw EEG signal might contain the artifact. And as such, an ICA demixed

signal that contains some artifact might provide a high correlation to the original EEG signal,

since the original EEG signal might contain that artifact. As a result, the candidate demixed

waveforms were compared against the raw artifact channels, with the hope that the signal that

resembles the artifact channels the least, with respect to the cost function defined in Table 4.7,

is the denoised EEG signal.

In future work, instead of using the summation of the ranks, simply using the highest rank,

when comparing ICA separated signals against the original artifact channels, must be consid-
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ered. This is because, the ICA separated signals ideally should only contain a single artifact.

And as such, considering the other ranks after the primary match-up, can affect the result

negatively.
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Chapter 5

Feature Selection

Feature Extraction is the process of obtaining certain descriptions of the data that might be

more readily used for classification purposes. The types of the features as well as the number of

features selected and given to the classifier affects the final outcome greatly. Feature Selection

is a process that sits between Feature Extraction and Classification stages that attempts to

prune and select the most relevant features from the initial feature pool before giving it to the

classifier. The mathematics of the feature selection, will be discussed later in this chapter. In

this work, features extracted from EEG, EOG, and EMG channels are considered.

The need for feature selection is two fold. Firstly, having unnecessary features can make

the classification accuracy lower by confusing the classifier. This is analogous to information

overload. When the classifier tries to tune the parameters, it’s more difficult when there are

useless information to process and integration into the system. More unknown parameters

require more data to give a similar level of confidence in the classifier. If some of the features,

that we know are not very useful, can be left out, the classifier will have an easier time tuning

itself. Secondly, feature selection will also make the classification process go faster. When

there are more features to extract during the classification stage, each epoch that needs to be

classified needs to generate more features. If there are too many features that are needed, it

might be the case that there isn’t enough time to classify the data in a real-time fashion.
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This section describes a systematic approach of determining the number and the types of

features that should be selected for optimum classification. As a first task, the data is described

and the types of appropriate statistical techniques used for feature selection are explained. Once

the algorithms are performed, the nature of the optimal features can be determined.

The nature of the features selected would naturally depend on the classifier selected for the

task of classification. In this thesis, the main classifier used was the Conjugate gradient Back-

Propagating Neural Network.

The intention of this work is not to specify how the different features discussed in the R&K

manual fit together. Rather, it is to give the important features to the classifier, and let it learn

their relationships effectively based on the classified data. If features that are representative

of the features that were used to do the classification using the R&K rules are extracted, it

should be expected that a good classifier be able to find the proper connection amongst those

features to satisfy the classified output.

5.1 Feature types considered

From the set of measured signals (time-series), many features can be extracted. For the pur-

poses of this research, the features described in Table 5.1 are extracted. The features that are

wavelets coefficients were retrieved with the use of the ’coif3’ mother-wavelet.

5.2 K-complex detector

A K-Complex is a high amplitude, low frequency, diphasic wave that usually occurs during

Stage 2 sleep. Since it is a prominent waveform in Stage 2 sleep, checking for its presence is

useful when performing sleep stage classification. [2]
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Table 5.1: Extracted features
Channel Name Type

1 EEG Delta band (0-4Hz) (EEG) Wavelet coefficient
2 EEG Theta band (4-8Hz) (EEG) Wavelet coefficient
3 EEG Alpha band (8-12Hz) (EEG) Wavelet coefficient
4 EEG Beta band (12-45Hz) (EEG) Wavelet coefficient
5 EOG Delta band (0-4Hz) (EOG) Wavelet coefficient
6 EOG Theta band (4-8Hz)(EOG) Wavelet coefficient
7 EOG Alpha band (8-12Hz) (EOG) Wavelet coefficient
8 EOG Beta band (12-45Hz) (EOG) Wavelet coefficient
9 EMG Delta band (0-4Hz) (EMG) Wavelet coefficient
10 EMG Theta band (4-8Hz) (EMG) Wavelet coefficient
11 EMG Alpha band (8-12Hz) (EMG) Wavelet coefficient
12 EMG Beta band (12-45Hz) (EMG) Wavelet coefficient
13 EEG # K-complex Estimates the presence of

K-complexes
14 EEG Most prominent frequency Number indexing the most prominent

frequency band
15 EEG Total power Power of all the frequencies

of interest

Unfortunately, there aren’t any concrete amplitude and frequency guidelines in determining

a K-Complex. Simply finding the low-frequency parts of the signal is not sufficient as there

are many phenomenon that would have low frequencies, but with significantly different shapes

from those of a K-Complex. In order to detect their presence, the shape of the waveform is

critical. As a result, it was decided to apply a Template Matching algorithm in order to identify

the general shape of the candidate waveform.

The features to match between the candidate waveform and the templates were simply taken

to be actual points of the respective curve. Since the width of a K-Complex is not set in stone,

Dynamic Time Warping was used in the Template Matching algorithm as well. Using dynamic

time warping in the template matching algorithm allows for some slack in the time-axis of the

template. This way, the horizontal scaling factor of template matching will become relatively

insignificant. This allows the candidate waveform to be more fluid in the time-axis and doesn’t
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force it to take a more rigid shape. The significant downside to this algorithm is that it takes

a noticeable amount of the computational cost of the whole algorithm.

5.3 Features and the Classifier

Since the discrimination of various sleep stages might be best suited from different feature

sets, it was decided to create a set of binary classifiers that would be able to discriminate a

particular class against all the rest. As a result, the optimum feature set would be calculated

with respect to each of the six classes. The approach to do this will be discussed later.

5.4 Maximum Significant Difference and Indepen-

dence

In order to select the optimal features, the idea of Significant Difference (SD) and Feature

Independence (FI) will be used. Significant Difference is a statistical measure of the ability of

a particular feature to discriminate between various classes [16]. When a candidate feature is

applied to the training data, its effectiveness at separating the different classes can be estimated.

The features that have high Significant Difference figures have a very good potential to be

selected in the final feature set.

Feature Independence on the other hand checks for the interdependency of different features

[16]. This is important since two features that have high Significant Difference, might be

highly correlated to each other. If they make the same decisions, then having both of them is

redundant. The idea is to select features that complement each other, that will work together

to provide a better classification, and not simply the same classification provided with fewer

features.

Since it was decided to have different classifiers to specialize in the identification of each sleep
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stage, the data was divided into two classes to train each classifier in question. This way, the

optimum features can be extracted from the data to discriminate against that individual sleep

stage.

There are numerous statistics that are especially catered to data that have normal distributions.

The tests are quite powerful if the data satisfies the normality conditions. Otherwise, the tests

are meaningless. If the normality conditions are not met, then more general statistical tests,

such as rank based tests, can be performed.

If the data follows a normal distribution, the conclusions made by the tests that assume nor-

mality will be more precise than the tests that make no such assumptions. Of course, if the

data used in this research do not satisfy the normality conditions, the statistics based on the

normality assumptions cannot be used. In fact, when I applied the Bera-Jarque parametric

hypothesis test of composite normality (JBTEST) to the data, I found that none of the train-

ing groups satisfied the normality conditions. As a result, it was decided that only rank based

statistical tests be used for the analysis of the features.

In order to establish the Significant Difference of the features with respect to their ability to

successfully discriminate the class in question, the Mann-Whitney test is used. Details about

this statistical test can be found in Appendix C. The formulation of the Mann-Whitney test

was obtained from [16] and is presented in Equation (5.1).
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Here, Z is the level of significant difference, Rs is the sum of the ranks of the elements in the
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class with less elements, nm is the number of elements in the class with more elements, and

N = ns + nm is the total number of elements.

To establish the level of Feature Independence between any two candidate features, the Spear-

man Correlation is used. Details of this statistical test is also found in Appendix C. It must

be noted that the Pearson Correlation is not appropriate for the experiments, since as was

shown by the JBTEST, the data, in any of the classes, does not follow a normal distribution.

The Pearson Correlation inherently assumes the data to have a normal distribution.

The top-level Maximum Significant Difference and Independence (MSDI) algorithm used in

[16] was also used here, and is shown in Table 5.2.

Table 5.2: MSDI algorithm
1 Create an empty set: selected-features
2 Compute the Significant Difference (SD) of each of the candidate features and

insert into set {sd-set}
3 Select the features with the maximum SD from {sd-set} and insert it into the
{selected-features} set. Delete the same entry from {sd-set}.

4 Calculate the Significant Level (SF) of each of the features in {sd-set} with
respect to the features in the {selected-features} set.

5 Select the feature with the largest SF value from Step 4, and insert it into
{selected-features} set. Delete the same entry from {sd-set}.

6 If the maximum number of features are selected: Exit. Else, goto Step 4.

In step 4 of the MSDI algorithm in this thesis, each feature in {sd-set} is compared with each

of the features in {selected-features} individually to determine the maximum correlation of

each feature in {sd-set} with some feature in {selected-features}. These maximum correlation

(CM ) values are related to the FI values by the formula shown in Equation (5.2). For example,

when the maximum correlation is closer to zero, the feature independence is closer to one and

thus is extremely high.

FI =
√

1− C2

M (5.2)
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Also, SD is simply equal to Z in Equation 5.1. Once the FI and SD values are calculated, the

SF value can be calculated with (5.3) [16]. This formula allows us to combine the Significant

Difference and Feature Independence into one convenient number.

SF = SDxFI (5.3)

5.5 Mann-Whitney approximation

As mentioned before in Section 5.4, the Mann-Whitney test is used to establish the Significant

Difference of the features with respect to their ability to successfully discriminate the two

classes in question. In each of the six classifiers, one of the two groups is a collection of data

points from multiple classes. The other group is obviously the single class that needs to be

discriminated successfully (Cmain). It should be noted that even though the Mann-Whitney

test is a rank-based test and does not assume normality, it does assume that the distributions

are identical and only differ in the mean. In this work, the two distributions in each classifier

are certainly not identical. But, since the test is rank based, a good result can still be obtained

by intelligently separating the classes to more than two groups and testing the relevant pairs

separately.

The group that contains five classes, will most likely contain a much larger spread and a

more complex distribution than the group with a single class, Cmain. If the Mann-Whitney

approximation is used on these two groups as is, the performance should be expected to be

quite poor. Figure 5.1 might illustrate this point visually. The two distributions shown in this

figure illustrates the values of one of the candidate features used in this experiment for the two

different groups.

Here, the green distribution shows the values of some feature, from class Cmain. The blue

distribution illustrates the values of the same feature from all the other classes. Since the rank
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Figure 5.1: The need for the Mann-Whitney approximation

of points in the blue distribution is on both sides of the rank of points in the green distribution

(Cmain), the Mann-Whitney test will not obtain an accurate result as the sum of the ranks of

the feature values in the blue distribution could very well average out to a sum that could be

produced from the points from the green distribution, assuming the same number of points are

obtained.

Therefore, for the purposes of this thesis, the feature values illustrated in the blue distribution

were further subdivided by class, so that the Mann-Whitney test was performed twice for each

of the candidate features within each of the six classifiers. Within each classifier, for each feature

fi, the first Mann-Whitney test compared the main class being discriminated against (Cmain)

with the group that consists of all the classes whose individual feature mean (mean(fi)) is less

than the feature mean (mean(fi)) within Cmain. The second Mann-Whitney test compared the

main class being discriminated against (Cmain) with the group that consists of all the classes

whose individual feature mean (mean(fi)) is greater than the feature mean (mean(fi)) within

Cmain. The final Z measure is simply a weighted average of the two calculated Z measures.

While this modification is not perfect, it is much better than using the default groups.

47



5.6 Monotonically Increasing Curve

A subsequent post-processing stage can be applied to the features selected by the MSDI step,

to validate the improvement in performance. The algorithm described in [16], called Monoton-

ically Increasing Curve (MIC), is used in this research and is described in Table 5.3.

Table 5.3: MIC algorithm
1 Sort the features selected by the MSDI step from the best feature to worst,

using an appropriate sorting criterion (e.g. SF, SD, FI)
2 Plot the performance curve (classification) using the features selected by the

MSDI step. The x-axis corresponds to the number of features used in the
sorted array.

3 Delete the left-most feature that contributes negatively to the performance.
i.e. the first feature that causes the performance curve to be
not monotonically increasing.

4 Re-plot the performance curve with the updated feature list.
5 Goto step 3, until the curve is monotonically increasing or until the maximum

number of iterations are reached.

Obviously, this is not an optimal solution, but it certainly has potential to yield some im-

provement over simply using the MSDI algorithm. It is not optimal since this algorithm does

not take a global view of the features, and so there is no guarantee that it will find the perfect

features to delete. However, due to computational limitations, this thesis will use the algorithm

as described in Table 5.3.
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Chapter 6

Classification

Among several numerical classification methods, it is believed that Artificial Neural Networks

are one of the most attractive techniques for sleep stage classification [3]. Neural Networks in

general are a wide-spread tools for the task of classifying patterns.

A Neural Network is a collection of processing units called neurons connected together to form

a larger network. The identity of the Neural Network is defined by both the properties of the

neurons themselves and the nature of the interconnections between the neurons.

In this thesis, the emphasis was feature extraction and denoising of artifacts. Therefore, differ-

ent techniques of classification were not explicitly investigated. After straightforward trial and

error, it was decided that a Conjugate Gradient Back-Propagating Neural Network (CGBNN)

would be sufficient as the classifier, for the investigation of the effects of feature extraction and

artifact removal.

The CGBNN used in this research is a feed-forward neural network and uses backpropagation to

adjust the weights between its neurons. Thus, during the training phase, the errors calculated

between the network output and the expected output is used to further adjust the weights

within the network. Given such an error, the CGBNN uses a conjugate gradient formulation
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to determine the subsequent search direction for the parameters (weights) in question [17]. A

diagram of a feed-forward neural network with one hidden layer is seen in Figure 6.1. The

neural network in the figure has three input neurons, four neurons in the hidden layer, and one

output neuron.

Figure 6.1: Feed-forward neural network

A conjugate gradient algorithm essentially uses a combination of the current gradient and

previous search directions to determine the new search direction. In contrast, a basic gradient

descent algorithm will simply use the current gradient. The CGBNN used in these experiments

is the Powell-Beale version of the conjugate gradient algorithm. The Powell-Beale version of the

algorithm has two important properties. First, it resets the search direction to the negative

of the current gradient, whenever a particular condition becomes true. Second, whenever

the condition is not true, it uses a combination of the current gradient, the previous search

direction, and the last search direction before the previous reset, to calculate the new search

direction. This algorithm is already defined in MATLAB as traincgb, and was used in the

experimentations. [17]
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Unless otherwise mentioned, any reference to a neural network made in this thesis refers to

the Conjugate Gradient Back-Propagating Neural Network described in this section. Since a

Neural Network is used as the classifier in this research, the aim is that given the features,

the classifier will deduce the rules based on the data. In contrast, a rule based system would

involve more direct involvement from the researcher in setting up the rules.

Using the research done in [1], it was decided that a single hidden layer with 15 to 30 hidden

nodes would be a good starting point for the classifier used in the experiments. Of course, the

number of input features in that research was significantly higher than the aimed number of

features in this research. Thus, it is to be expected that a fewer amount of hidden nodes would

also yield similar or even better results. Using the results of [1] as a basis, it was seen that

20 hidden nodes in the single hidden layer provided good results. Also, the transfer functions

used in the two layers were the Tan-Sigmoid Transfer function (tansig) and the Linear Transfer

Function (purelin), respectively. As mentioned before, the classifier itself was not investigated

extensively, as it is not the focus of this research.
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Chapter 7

Experiments

In this section, the experiments that uses the above mentioned techniques are described. The

comparisons between the effects of the various techniques showcase the various strengths and

weaknesses of each approach. The denoising step in this research mainly looked at EOG arti-

facts and artifacts isolated to a single EEG channel, such as electrode pop artifacts. Artifacts

such as sweat artifacts were easily eliminated since their frequency ranges were well defined

and could be eliminated easily.

7.1 Experimental Setup

For the experiments, data from two subjects are used. The information about the two subjects

are seen in Table 7.1.

Table 7.1: Subjection information
Sex Age # of epochs

Subject 1 Female 23 604
Subject 2 Female 33 900

The experiments were performed to gauge the effectiveness of applying a Feature Selection stage
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into the feature extraction step and applying denoising techniques prior to feature extraction.

Unless indicated otherwise, each experiment with a fixed number of selected features were run

for 10 iterations and the results were averaged. The experiments that investigated the effects of

varying the number of features were run a number of times until a clear trend could be observed.

For illustration purposes, from all the test-runs for each experiment, a single candidate that is

representative of each experiment was chosen and included in the thesis.

7.2 Measuring quality of denoising

For the purposes of this thesis, the quality of the results were judged by comparing the results

generated by the automatic classifier with the results generated by the EEG technician. As

mentioned before, it is important to note that in terms of performance, generally, the goal of

sleep laboratories is to have an inter-human expert agreement of around 90%.
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Chapter 8

Results

This chapter describes each experiment and discusses the results obtained.

8.1 Without feature selection nor denoising

In this section, the separation of all six classes was attempted. As described before, each class

was discriminated against all other by a dedicated Neural Network. This essentially allows

feature selection optimizations to be performed on the classifiers individually, instead of being

forced to apply any global optimizations. The details about the Neural Network are given in

Chapter 6.

The results of this experiment are given in Table 8.1. As we can see, the performance is quite

poor.

Table 8.1: Classification results: no feature selection, no denoising
Accuracy

NREM I NREM II NREM III NREM IV REM Awake Total

F23 10.8% 54.8% 14.1% 18.8% 25.2% 7.8% 36.1%
F33 1.6% 51.4% 1.3% 63.9% 34.4% 21.0% 39.4%
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There is an inherent difference between the training set and the test set. If there is a feature that

does not discriminate between the classes, but is considered by the classifier, a poor result will

be obtained. This can be seen more clearly in Figures 8.1 and 8.2 by observing the performance

level as a function of the number of features selected. It seems that the performance level, when

all the features are selected, is extremely low. Some of the poor features that do a bad job at

classifying the data quite possibly do not capture the trends very well.

The performance seems to improve drastically as only the most relevant features from the

feature pool are selected through the feature selection step described earlier in the thesis. This

experiment demonstrates the importance of the feature selection step in EEG classification.
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Figure 8.1: Accuracy vs number of selected features for F23

From these graphs, it was determined that using approximately 5 features would yield good

results. Therefore, for the purposes of this thesis, 5 features were given to the classifier for both

subjects. As discussed before, many prior research done by other researchers simply used the

initial feature pool in their classifiers without any appropriate feature selection. In the feature
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Figure 8.2: Accuracy vs number of selected features for F33

pool used in this experiment, it can be seen that there are some features that are extremely

poor. However, in larger features pools, it can be the case that many more features yield poor

results. So, it is greatly desired that for EEG classification, a feature selection step is included.

8.2 With feature selection but without denoising

After setting the number of features selected to be 5, the original experiment with 10 iterations

was repeated. The performance of that subsequent experiment is seen in Table 8.2. Clearly,

the performance was significantly improved.
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Table 8.2: Classification results: feature selection, no denoising
Accuracy

NREM I NREM II NREM III NREM IV REM Awake Total

F23 74.6% 94.3% 61.1% 89.4% 91.1% 82.8% 87.7%
F33 29.1% 93.8% 22.5% 99.1% 90.5% 83.0% 84.8%

8.3 Denoising with BWDA

Now that the importance of the feature selection step has been investigated and established,

the effect of introducing the denoising step can be investigated. For this task, the wavelet

decomposition used the ’coif3’ mother-wavelet and used 5 levels in the decomposition. This

resulted in 5 detailed levels and 1 approximate level.

As discussed before, EOG artifacts are the most prominent type of artifact that affect EEG

signals. In this section, the effect of removing EOG artifacts and sporadic artifacts with the

use of BWDA was investigated. Performance of this algorithm can be seen more clearly in

Figures 8.3 and 8.4. The thresholds were selected such that the artifact in Figure 8.3 would be

denoised optimally. As we can see, the epoch in Figure 8.4 was not denoised at all. The original

eeg signal and the post-denoised modified eeg signal look identical. The artifact present in the

6th segment is still present. With this algorithm, tuning the thresholds proved to be a difficult

task. The thresholds that work for some segments don’t easily work for others. With the WDA

algorithm, selecting a successful threshold proved to be an easier task. The methodology used

in this experiment (BWDA) was discussed in detail in Section 4.2.

Now, the effectiveness of the BWDA denoising step with respect to automatic classification

was investigated. The performance numbers can be seen in Table 8.3.

Inspecting the results shows that the performance of the automated classifier is marginally

worse for the F23, but slightly better for the F33 patient. The decrease in performance for

the F23 patient is most likely well within the expected error in this experiment. It seems
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Figure 8.3: BWDA denoising example (1). Artifact present in the second segment is
suppressed in EEG modified.
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Figure 8.4: BWDA denoising example (2). Artifact present in the sixth segment is not
suppressed in EEG modified.

59



Table 8.3: Classification results: feature selection, BWDA denoising
Accuracy

NREM I NREM II NREM III NREM IV REM Awake Total

F23 76.3% 95.2% 63.7% 84.6% 88.6% 79.7% 87.5%
F33 33.7% 95.2% 15.0% 98.9% 90.8% 84.6% 85.9%

that denoising the signal to eliminate low-frequency artifacts does not have much impact on

the automated classification, especially considering the BWDA algorithm missed a number of

denoising opportunities as was seen in Figure 8.4. Out of the 15 features, only a few features

are affected by the denoising step. With respect to assisting the human technician to identify

artifacts, the BWDA algorithm does not perform reliably. The performance level of the other

two algorithms that were described earlier in the thesis will now be discussed.

8.4 Denoising with WDA

The methodology used in this section was discussed in detail in Section 4.3. For this task, the

wavelet decomposition used the ’coif3’ mother-wavelet and used 5 levels in the decomposition.

This resulted in 5 detailed levels and 1 approximate level.

The performance and a visualization of what the WDA denoising step produces can be more

readily seen in Figures 8.5 - 8.7. As discussed before, the algorithm essentially decomposes the

signal into an appropriate number of levels, and then reconstructs a time-series from each level.

For example, since the EEG signal was decomposed into five levels, the resulting algorithm

would produce a set of six time-series corresponding to the coefficients at the five detailed

scales and the coefficients of the one approximate scale. From these new time-series, it is

easier to establish which scales are most representative of the contamination observed. If a

contamination is found, it is simply suppressed in the relevant scale. By segmenting the signal

into many smaller segments, the suppression can be made to be extremely local. Therefore, the

suppression of a potential artifact will only affect the area surrounding the immediate artifact
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and not the rest of the epoch. The other details present in other scales, that overlap the artifact

in the time-axis will be preserved. In the graphs shown,the magenta shows the actual signal

while blue shows the time-series generated from the coefficients of the wavelet decomposition.
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Figure 8.5: WDA denoising example (Set 1) - original EEG signal. From top to bottom
[original EEG signal (magenta), reconstructed signals from approximate coefficients and
detailed levels 5 to 1, respectively.]

We can clearly see an EOG contamination in the EEG in segment 2 (delimited by the red

dots). After running the algorithm, the EEG modified graph has eliminated that artifact by

setting the segment within the approximate coefficients to zero. That activity in the EEG

modified graph is simply the activity from the other scales. It should be noted that there is

a difference in the y-axis resolution between the original EEG graph and the modified EEG

graph. Another example of the Wavelet denoising procedure can be seen in Figures 8.8 - 8.10.

It can be clearly seen that the EEG signal, indicated in magenta on Figure 8.8, contains an

ocular artifact on segments 5 and 6. After the denoising step, that artifact is no longer present

in the modified EEG graph, shown in magenta on Figure 8.10.
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Figure 8.6: WDA denoising example (Set 1) - EOG signal. From top to bottom [EOG
signal (magenta), reconstructed signals from approximate coefficients and detailed levels
5 to 1, respectively.]
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Figure 8.7: WDA denoising example (Set 1) - Denoised EEG signal. From top to bottom
[Denoised EEG signal (magenta), reconstructed signals from approximate coefficients
and detailed levels 5 to 1, respectively.]
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Figure 8.8: WDA denoising example (Set 2) - original EEG signal. From top to bottom
[original EEG signal (magenta), reconstructed signals from approximate coefficients and
detailed levels 5 to 1, respectively.]
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Figure 8.9: WDA denoising example (Set 2) - EOG signal. From top to bottom [EOG
signal (magenta), reconstructed signals from approximate coefficients and detailed levels
5 to 1, respectively.]
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Figure 8.10: WDA denoising example (Set 2) - Denoised EEG signal. From top to bottom
[Denoised EEG signal (magenta), reconstructed signals from approximate coefficients
and detailed levels 5 to 1, respectively.]
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Clearly, this denoising step is quite effective in eliminating EOG artifacts. The EOG artifact

that was identified in the original signal is no longer present in the modified signal. It is much

easier to select the WDA thresholds over BWDA thresholds, since the actual artifact shape is

more readily visible in WDA levels. With WDA, segmentation of the epoch had to be used

since the time resolution within the reconstructed level was identical to the original epoch. As

such, the duration of any potential artifacts had to be considered through the segmentation.

With the BWDA method, segmentation was not used as the coefficients in the highest levels

capture the nature of a whole neighbourhood of the area of interest. Lastly, varying the segment

length and the number of levels of the Wavelet decomposition in the WDA algorithm gives much

more control than just varying the number of levels in the Wavelet decomposition of the BWDA

algorithm. Since a researcher can vary both the number of levels and the window (segment)

length, the WDA offers more control during the denoising step. Furthermore, for a human, it

just seems more natural to set the appropriate thresholds using the time-series reconstruction

provided by the WDA algorithm.

Now, the effectiveness of this denoising step with respect to automatic classification was inves-

tigated. The performance numbers can be seen in Table 8.4.

Table 8.4: Classification results: feature selection, WDA denoising
Accuracy

NREM I NREM II NREM III NREM IV REM Awake Total

F23 75.0% 93.6% 64.8% 88.5% 90.0% 85.3% 87.8%
F33 29.3% 94.4% 35.0% 99.8% 90.5% 84.4% 85.6%

The performance of the automated classifier, after denoising, improved slightly, but not signifi-

cantly. This could be due to the fact that the improvements are limited by the occurrence rate

of the artifacts and the limited impact the artifacts have on most of the features. While the

effectiveness of the denoising can be clearly observed from the graphs, the statistical features

that are extracted from the data does not seem to change as much when the automated clas-

sifier is concerned. However, the effectiveness of this denoising algorithm is still very valuable

for an actual human EEG technician. With a cleaner signal, an EEG technician will have a
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much easier time at classifying the epochs.

8.5 Denoising with IDA

This section describes the performance level reached by using Independent Component Analysis

in the denoising step. As described before, the ICA denoising algorithm used in this thesis is

a modification of the Wavelet denoising algorithm, and was discussed in detail in Section 4.4.

The output of the ICA denoising step for one epoch can be seen in Figures 8.11 - 8.13. Unlike

the WDA, with the ICA denoising algorithm, the wavelet decomposition is only used to identify

segments that contain artifacts. The actual demixing with ICA is done to the original time-

series (in magenta). When Figure 8.11 and 8.13 are compared, taking Figure 8.12 into account,

it seems the phenomenon that is common to both Figure 8.11 and Figure 8.12 is suppressed

in Figure 8.13. However, this is not necessarily desirable as some of those higher frequency

phenomenon might have originated from the EEG source itself. Unfortunately, without any

additional measurement channels, such uncertainty in the results do occur.

The EEG and the EOG data used in these figures are the same ones that were shown in Figure

8.5 and Figure 8.7.

The effectiveness of the IDA, with respect to automated classification is seen in Table 8.5. The

performance level reached with the ICA implementation used in this thesis is poorer than with

the WDA solution.

When prior information is not considered, ICA needs to have more measurement channels

in order to ensure a reliable decomposition. Also, in this application, the number of channels

observed was less than the number of macro sources in the human brain. In such scenarios, some

phenomena could belong to one of many separated channels, and still satisfy the constraints.
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Figure 8.11: IDA denoising example - original EEG signal. From top to bottom [original
EEG signal (magenta), reconstructed signals from approximate coefficients and detailed
levels 5 to 1, respectively.]
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Figure 8.12: IDA denoising example - EOG signal. From top to bottom [EOG signal
(magenta), reconstructed signals from approximate coefficients and detailed levels 5 to
1, respectively.]
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Figure 8.13: IDA denoising example - Denoised EEG signal. From top to bottom [De-
noised EEG signal (magenta), [reconstructed signals from approximate coefficients and
detailed levels 5 to 1, respectively.]
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This experiment suggests that in order for ICA to be successful, prior information must be

integrated into the system or more channels needs to be measured. This aspect of ICA, with

respect to EEG, needs to be investigated in future work. Also, as discussed before in Section

4.4.7, during the selection of the modified EEG signal, instead of using the summation of

the ranks, simply using the highest rank, when comparing ICA separated signals against the

original artifact channels, must be considered.

Table 8.5: Classification results: feature selection, ICA denoising
Accuracy

NREM I NREM II NREM III NREM IV REM Awake Total

F23 70.0% 93.5% 69.6% 85.5% 86.7% 85.0% 87.1%
F33 28.6% 95.3% 42.5% 99.4% 89.3% 81.7% 85.3%

8.6 Sleep/awake classification

For completion, the effectiveness of the algorithm at discriminating sleep vs awake stages was

also measured. In order to do this, stages NREM I-IV and REM were grouped together into

the sleep class, and was made distinct from the awake class. As mentioned before, the result

of the experiment is an average over 10 iterations. The final performance level can be seen in

Table 8.6.

Table 8.6: Classification results: Sleep/Awake
Accuracy

Subject 1 97.1%
Subject 2 95.7%

As we can see, the average agreement with the human EEG expert is excellent. This demon-

strates that the classifier that was selected is quite capable of discriminating between the sleep

and awake stages. For this experiment, the same classifier described in Chapter 6, was used. In

this case however, the classifier was single stand-alone classifier and was not a combination of

multiple sub-classifiers. The reason for this was because, the discrimination was done between
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only two classes; namely, sleep and awake. However, the same classifier parameters listed in

Chapter 6 were used.
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Chapter 9

Conclusion

The purpose of this research was two-fold. Firstly, this research wanted to establish the im-

portance of a theoretically sound feature selection step. Based on the results, the importance

was clearly established. Many researchers select the features given to the classifier by trial and

error. Instead, having a proper feature selection step will be more fundamentally sound, and

will yield excellent results.

The MSDI algorithm and the MIC algorithm are not the most optimal by any means for the task

of feature selection. The MSDI algorithm for example gives the same importance to Significant

Difference and Feature Independence. The MIC algorithm does not consider a notion of global

relationships. For example, two features that might compliment each other brilliantly, might

not get selected since they were both eliminated in the absence of the other. However, even

with these considerations being mentioned, the MSDI and MIC algorithms provide significant

improvements in performance. The results obtained in this thesis clearly demonstrate that.

Also, the work presented in this thesis had success with 5 features, compared to the 32 features

selected in [1].

Secondly, this research wanted to investigate the effect of denoising the signals before classi-

fication. The benefits of this is two-fold. Firstly, if the artifacts present in the EEG signal
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are removed, the signal will become more useful to the EEG technicians as they don’t have

to worry about accommodating the presence of the artifacts. Secondly, the removal of the

artifacts should make the automated classifier more accurate as well, since it now has a more

cleaner signal to work with.

The parameters that were selected for the BWDA algorithm in this research did not provide

consistent results. While successful denoising is certainly a possibility, selecting the proper

thresholds is not as straightforward as with the WDA algorithm. The WDA algorithm was

clearly successful in eliminating the ocular artifacts as was seen in the figures. Even though

the performance improvement in automated classification was only marginal, it was better in

both patients. The marginal improvement in performance could be due to the fact that the

statistical features in the test were not significantly affected by the elimination of the various

low frequency waveforms from the EEG channel. However, for the human EEG technician, the

elimination of these artifacts can be more significant.

The IDA algorithm yielded poorer results than the WDA algorithm with respect to automated

classification. After denoising with the IDA algorithm, the performance improvement over the

non-denoised data was superior in one subject but was inferior in the other. This relatively

unimpressive performance of the IDA algorithm, when compared to the WDA algorithm, could

be explained by the fact that the number of measurement channels available are less than the

number of sources that exist in the human brain. Also, the algorithm used to select the denoised

EEG signal from the set of ICA demixed signals, described in Section 4.4.7, might need more

improvement as well.
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Chapter 10

Future Work

The research described in this thesis, did not consider any contextual information. All the

epochs in this research were classified based on each epochs own features. As a result, the

results should be even more encouraging in two important ways.

Firstly, the introduction of contextual information to the classification algorithm will undoubt-

edly improve the results even further. This step should be a post-processing step to the classified

stages obtained from the system described in this thesis. When these context rules that the

human experts use are explicitly written out, the performance should get better.

Secondly, it should be noted that these contextually-classified stages affect other epochs in the

same sleep stage negatively. This is because, based on the features themselves, the epoch in

question does not belong in that sleep stage. It was only classified to be of that sleep stage

due to contextual information. When all these epochs are given to the automated classifier,

including the contextually-classified epochs, the classifier needs to find a way, with respect to

the available features, to integrate all of them to the same sleep stage. If these contextually-

classified epochs were eliminated from the sleep stage, the classifier would be able to integrate

the features better. After the epochs are classified based on their inherent features, they could

be corrected as needed based on contextual information.
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Also, Independent Component Analysis, in it’s classical formulation, require more measurement

channels than sources. When EEG demixing is attempted with ICA, many channels are usually

available. Unfortunately, in this research only a very limited number of scalp electrodes were

used. In [15], the FastICA algorithm was used throughout the whole book and they had

success demixing a set of measurements from 15 channels. Given the same algorithm, the

results obtained in this thesis looks to be of lesser quality. A solution to this would be to

include a priori knowledge into the formulation, to compensate for the lack of channels. This

aspect of ICA should be investigated in the future. Also, as discussed before in Section 4.4.7,

during the selection of the modified EEG signal, instead of using the summation of the ranks,

simply using the highest rank, when comparing ICA separated signals against the original

artifact channels, must be considered. This might improve the result significantly.

It is also important to carry out the experiments with more subject data once they become

available. For future work, data from an additional four subjects should be analyzed. During

these future experiments, it might be also prudent to collapse NREM III and IV stages together

and classify it as slow wave sleep. Since, EEG technicians don’t necessarily pay as much

attention to the distinction between NREM III and IV, this has the potential of improving the

classification noticeably.
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Appendix A

Wavelets

A wavelet can be thought of as a little wave, because it is short in duration, has finite energy,

and integrates to zero. Due to it’s unique characteristics, it is extremely suitable to represent

transients. [18]

A.1 Motivation for its use

Given a signal, engineers can perform transformations on it in order to observe the frequency

content of the signal. The most popular transform that was used in the past was the Fourier

Transform. Unfortunately, the basis functions of the Fourier Transform, sines and cosines,

are not localized in time. As a result, any frequency information calculated by the classical

Fourier transform is a statistical average over the duration of the whole signal. If a transient

exists in the signal, it’s contribution to the Fourier transform will be small, and its location on

the time-axis will be lost. Also, Fourier transforms are very poor at analyzing non-stationary

signals. [18]

In many types of research, analysis of the transients of the signal are very important. There-

fore, the use of the classical Fourier transform will yield undesirable results as its localization
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properties are quite poor. One solution to this has been the Windowed Fourier Transform or

Short-Time Fourier Transform (STFT). With this approach, the signal is divided into mul-

tiple windows (segments) before applying the Fourier Transform to each segment. A narrow

window would provide good time-resolution but would give poor frequency-resolution. On the

other hand, a wide window would give good frequency-resolution but poor time-resolution.

Typically, the window size is established a priori to analysis. Since it is fixed, a notion of a

combined time-frequency resolution does not exist. Of course, a solution to this would be to

have a sequence of windows of different widths. However, this solution becomes quite time

consuming. [18]

The wavelet transform does not have such limitations as its base functions are local both in time

and frequency. Due to wavelets ability to focus on short-time intervals and long-time intervals,

it is inherently capable of discovering information about both high-frequency phenomena and

low-frequency trends.

A.2 Description

Similar to sines and cosines in the Fourier transform, Wavelet Analysis uses a prototype function

called the mother wavelet. This function has a mean of zero, fast decaying in an oscillatory

fashion, has finite energy, and integrates to zero. The mathematical definition of the Continuous

Wavelet Transform (CWT) of a given signal, x(t), is seen in Equation A.1. In this equation, a

is the scale factor, b is the translation factor, and g(.) is the mother-wavelet function. [18]

CWT (a, b) =
1√
a

∫

∞

−∞

x(t)g

(

t− b

a

)

dt (A.1)

A wavelet coefficient, denoted by CWT(a,b), is a measure of how well the original signal, x(t),

and the mother-wavelet that has been scaled by a factor of a and translated by a factor of b,

match with each other. So, in essence, the original one-dimensional signal has been mapped to

79



a two-dimensional space across scale a and translation b. [18]

The mother wavelet can be thought of as a windowing function as well. A large scale factor

allows wideband frequency components of the signal to be observed while a small scale factor

allows narrow-band frequency components to be observed. There are many types of mother

wavelets mentioned in literature and used in practice; such as, Haar, Daubechies, and Morlet.

The shapes of some of these mother wavelets were generated from MATLAB and is shown in

Figure A.1.

Figure A.1: Mother Wavelets

Unfortunately, the continuous wavelet transform cannot be implemented in a computer system.

For this, the Discrete Wavelet Transform (DWT) must be used. The general equation for the

discrete wavelet transform is given in Equation A.2. In this equation, the DWT is a function of

the parameters m and k, and a0 and b0 are constants. A comparison of the resulting transforms

generated by the CWT and the DWT is shown in Figure A.2. [18]
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DWT (m, k) =
1√
a0

m

∑

n

x(n)g

(

k − nb0a
m
0

am
0

)

(A.2)

Figure A.2: CWT and DWT

A.3 Wavelet thresholding

Wavelet thresholding is a common technique which is used to eliminate noise from a signal.

The basic algorithm for wavelet thresholding is shown in Table A.1. [8]

Table A.1: Wavelet thresholding
1 Decompose the signal and find the coefficients of the wavelet transform of the

signal, S ′.
2 Compare each wavelet coefficient against an appropriate threshold, and keeping

only those coefficients larger than the threshold.

3 Applying the inverse wavelet transform to the result to obtain Ŝ.
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Obviously, this is not an universal algorithm, as the noise could be larger than the desired

signal. If this is the case, in contrast to Step 2, coefficients less than a particular threshold

should be retained. Also, it is not necessary to check all the coefficients separately. For example,

the coefficient set can be divided into segments, and a statistical feature of each segment can

be compared with a threshold.

So, in essence, the algorithm presented in Table A.1 is the thresholding performed for the most

basic application. A researcher would have to modify it accordingly to suit his or her own

research problem.
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Appendix B

Independent Component Analysis

A fundamental reality in Signal Processing applications is the inability to take measurements

directly from the most useful sources. The measurements that are taken are not necessarily

pure source signals and are usually a mixture of the desired signals.

It is usually highly desirable to extract the independent source components, which are mixed to

create the measurements, prior to any Feature Extraction and Classification stages. Discovering

the fundamental independent components making up the measurements might provide more

readily available information than the measured signals themselves.

Peoples’ conversations in a large room is one such example. The sensors, instead of picking up

the original voices, pick up the mixtures of the voices instead. When the mixed voice signals

are received, they are usually demixed by the listener to understand the original dialog spoken.

This is an example of the fundamental problem analyzed in this thesis.

The sources do not necessarily need to be physically separate components. It is quite possible

for multiple independent signals to be generated from a single tangible source. In such a

scenario, the independent source signals could be thought of as being generated from multiple

logical sources than a single physical source. In this thesis, all references to a source should be
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thought of as a logical source.

B.1 Assumptions

For the purposes of discussion and analysis within this thesis, it will be assumed that the

signals being generated from any independent sources are mixed linearly at the sensors. Since

the separation problem is difficult enough as is, for the experiments within this thesis, it will

be assumed that additive noise at the sensors is not present. As can be seen in System (B.1),

the source signals si are mixed linearly to generate the measurement signals, xi [15]. If the

mixing matrix A is known, given X, obtaining a good estimation of the source signals should

be straightforward. However, typically, knowledge of the mixing matrix is not present. Within

this thesis, it is also assumed that the mixing matrix A is stationary in time and the mixing

process is instantaneous. This can be seen clearly in the problem formulation defined in (B.1).

x1(t) = a11s1(t) + a12s2(t) + · · ·+ a1nsn

x2(t) = a21s1(t) + a22s2(t) + · · ·+ a2nsn

...

xm(t) = am1s1(t) + am2s2(t) + · · ·+ amnsn

X = As (B.1)

It is also necessary to make an assumption about the variance of the source signals. The reason

for this can be seen in (B.2).

x(t) =
∑

i

(

1

βi
ai

)(

βisi(t)

)

(B.2)

Any scaling, βi, performed on any of the sources si can be canceled out by dividing the
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corresponding column of the mixing matrix A by the same factor. As a result, within this

thesis, it is assumed that all source signals are of unit variance. However, the ambiguity of the

sign is still present [15]. However, this ambiguity will be ignored in this thesis.

B.2 Blind Source Separation

Knowing the mixing matrix A would allow the original source signals to be approximated quite

easily. However, in reality, information about the mixing process is very limited. The Blind

Source Separation (BSS) problem deals with the approximation of both the mixing matrix

A and the estimation of the source signals, given only the measurements at the sensors, the

nature of the mixing itself (e.g. linear), and perhaps the noise characteristics. Essentially, very

little is known other than the measurements themselves; thus, the use of the term blind is quite

appropriate. [15] [19]

Independent Component Analysis (ICA) is a widely used class of algorithms that is used to

perform BSS. However, before delving into ICA, a less powerful method known as Principle

Component Analysis (PCA) will be discussed. The need for ICA should become clear during

the discussion of PCA.

Looking at the problem stated in (B.1), it looks rather difficult to solve at first glance. After all,

assuming only the measurements are available, clearly there are more unknown variables than

known variables. However, it turns out that the simple assumption that the original sources

are independent of each other is sufficient to fill this void [15]. Just using this assumption

of independence, along with the assumptions made with regards to the mixing process and

other relevant technical assumptions discussed in the thesis, ICA is capable of estimating the

independent source components. Once again, it should be noted that in this thesis, only

problems that contain linear mixing at the sensors will be discussed.

Distinguishing between 2 physically different source components are only possible if they are
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independent of each other. ICA is limited in that sense. It is not possible to tell ICA to find

the signal generated at a particular source. ICA will implicitly identify the sources that are

independent to each other. So, if a single physical component (such as the heart), emits 2

different independent signals, they will be identified as 2 different independent components

instead of as a single component. Thus, the notion of a logical source is quite appropriate.

B.3 Principle Component Analysis

For the remainder of the thesis, the measurements and the source signals will be considered

to be a vector of random variables. This is done since the ideas and methodologies discussed

in this thesis does not use the time structure of the signals. As a result, the time index t is

dropped, and entities such as x (mixtures) and s (sources) are considered to be random vectors.

Also, within this thesis, any estimate of the independent source components, by any method,

will be known as a Source Components Estimate (SCE).

B.3.1 Introduction to PCA

One method that is used to reduce the redundancy in the measurement set and to increase

the level of independence between the components, is Principle Component Analysis (PCA).

PCA attempts to do this by uncorrelating the signals by using 2nd order statistics. It should

be understood that uncorrelating the mixtures is not as strong as making them be statistically

independent from each other. Statistical independence is a much more richer and stringent

concept than decorrelation. [15]

For 2 random variables x and y to be uncorrelated, (B.3) must be satisfied. [15]
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E[xy] = E[x]E[y]

= 0, if zero mean (B.3)

However, in order for 2 signals, x and y, to be independent, they would have to satisfy (B.4),

for every absolutely integrable functions g and h as well. Condition (B.3) can be derived from

(B.4), by making g and h linear. Thus, (B.4) enforces much stricter constraints than (B.3).

[15]

E[g(x)h(y)] = E[g(x)]E[h(y)] (B.4)

In this thesis, the PCA step would result in a signal covariance matrix that is I (identity), and

not simply a diagonal matrix. Therefore, within the discussion in this thesis, the traditional

PCA procedure that simply diagonalizes the covariance matrix and the subsequent whitening

procedure are combined into one step and will be known as the PCA step. The whitening

step is important since, as described before, only source components of unit variance are being

considered.

If X is the measurement matrix, the PCA step performs the transformation seen in equation

(B.5). Here, D is the diagonal eigenvalue matrix and V is the eigenvector matrix of the

sensor covariance matrix, estimated from the measured signals. The columns of V indicate the

individual eigenvectors. [15]

Ŝ = D−
1

2 V T X (B.5)
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B.3.2 Finding the correct rotation

As can be seen in Figure (B.1), uncorrelating and whitening the mixture is not sufficient. The

obtained result is a rotation of the original source components. Even though the PCA step

transformation is uncorrelated and whitened, it is obviously not independent; the knowledge

of one variable tells a lot about the 2nd variable.
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Figure B.1: Deficiency of PCA

In fact, there are many more solutions that will satisfy uncorrelatedness without satisfying

independence. For example, consider Systems (B.6) and (B.7).

Ŝ = QX

And, CŜ = QCXQT = I (B.6)
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As can be seen in (B.6), the matrix Q found by the PCA step diagonalizes and whitens the

covariance matrix of the estimate. Thus, the PCA step has achieved its main task.

However, if any orthogonal matrix U is applied to Ŝ, as seen in Equation (B.7), the result

would still be uncorrelated. [15]

Ŝ
′

= UŜ

So, CŜ
′ = UCŜUT = UIUT = I (B.7)

Therefore, the original SCE found by the PCA step and all the other SCEs that were derived

by applying an orthogonal transformation matrix, should have uncorrelated components. How-

ever, of all the possible solutions in this whitened space, the solution that is closest to the actual

source signal set is the most desirable. The 2nd order statistics cannot distinguish amongst the

solutions in the whitened space; and thus, PCA is not capable of pinpointing the actual final

solution. Even though PCA was instrumental in reducing the size of the solution space to the

whitened solution set, higher order statistics must be used to make further distinctions. [15]

B.4 General idea behind higher order statistics

After the signal set has been decorrelated, other algorithms that take higher order statistics into

consideration can be applied iteratively until a solution is obtained from within the whitened

solution set. Usually, the algorithms that consider the higher-order statistics will attempt to

find the best available result. Therefore, it is usually not a matter of finding some result; but

a matter of the quality of the found result being poor. The relationship between the different

subsets that have been discussed so far can be seen in Figure B.2.

A final point to discuss is whether the solution space that is eliminated due to the whitening

process is detrimental to finding an appropriate solution. Due to the assumption that all source
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Figure B.2: Relationship between the solution spaces after various transformations

components have a variance of 1, all the demixing matrices and the corresponding SCEs that

would force the covariance to be D 6= I will never be found as a solution. If the original source

signals in fact do have a covariance matrix D 6= I, the exact signal will never be found due

to the assumption made with regards to the variance of the source components. However,

a scaled version of the source signal with a covariance of I should be available to be found

by the proper application of discussed algorithms. This is considered to be sufficient in most

applications and will be considered to be sufficient in this thesis as well. If the actual scaling

factor is important, more information is required.

Since the original source components were independent, it must be ensured that only those

SCEs whose member components satisfy (B.3) and (B.4) are considered. However, it is impos-

sible to test all the higher-order statistics when finding a solution. Typically in practice, after

the signal set is uncorrelated, a single algorithm that considers only a very limited amount of

higher-order statistics is usually sufficient to arrive at a reasonable conclusion. Independent

Component Analysis (ICA) is one such algorithm, and will be discussed in Section B.5. [15]

Equation (B.4) is not necessarily used directly to separate the mixtures; it was simply stated

90



to demonstrate the importance of higher-order statistics with respect to independence. Even

though the Taylor expansion of certain functions can have an infinitely many higher-order

terms, the higher-order terms are usually insignificant due to the factorial in the denominator.

Even if PCA cannot find the final desired solution by itself, its importance cannot be stressed

enough. From a large set of possible solutions, PCA allows the search to be reduced to a much

smaller set, whose members contain components that are uncorrelated to each other. Due to

this vast reduction in the solution space at very little computational cost, the PCA step is a

powerful pre-processing step. [15]

Yet another important application of PCA occurs if the number of independent sources are less

than the number of mixtures that are observed. Then, uncorrelating the components would

cause some of the components to have insignificant information, indicated by their low variance

values. This allows those components to be simply rejected in order to ease any subsequent

analysis. [15]

It should also be noted that mixtures consisting of multiple Gaussian sources cannot be sepa-

rated using the previously said methods. If the underlying sources were independent Gaussian

random variables, any linear mixtures of them would also be Gaussian. Uncorrelating and

whitening such a mixture would naturally produce a covariance matrix that is I. However,

with Gaussian random variables, uncorrelatedness implies independence. This can be easily

derived from the joint probability density function when the covariance matrix is diagonal.

The implication of this is that uncorrelatedness implicitly implies independence and therefore

any measure of independence, using higher-order statistics, would be satisfied by the current

uncorrelated mixture itself. That is not to say that the solution obtained through PCA is

the perfect solution. In fact, as before, any orthogonal transformation on the uncorrelated

mixture would produce another uncorrelated mixture; and this mixture would be statistically

independent as well.

It is impossible to distinguish between all these potential solutions. Thus, without knowledge of
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the mixing matrix itself, it is impossible to state which of them is the correct estimation. With

another type of distribution, even if an orthogonal transformation maintains uncorrelatedness,

the level of statistical independence will most likely be different, and can be detected with

higher-order measures.

B.5 Independent Component Analysis

As the name implies, Independent Component Analysis assumes that the original source com-

ponents are independent. This is an assumption that is absolutely needed to carry out the

analysis, since the number of unknown variables in (B.1) is greater than the number of known

variables. The identity of the sources are implicitly identified by ICA, such that the redundancy

between them is minimized. The sources themselves are not known beforehand and cannot be

assumed to be physically separate components. The assertion that the original sources are

independent allows ICA to implicitly estimate the actual underlying logical sources.

As was seen in Section B.3, uncorrelating the measurements using 2nd order statistics was not

sufficient. Thus, ICA uses higher-order statistics and continues the search where PCA left

off. As can be seen in (B.4), the use of 2nd order statistics and higher-order statistics should

provide a better measure of independence than using 2nd order statistics alone. As the amount

of higher order statistics used in the analysis increases, the accuracy should improve.

Realistically speaking, it is only possible to consider a limited amount of higher order infor-

mation. Since, typically ICA does not restrict the user to a particular set of higher-order

information, the user is free to select the appropriate functions as needed. [15]

ICA has 2 main components, the objective function and the optimization algorithm. Their

connection is seen in (B.8). [15]
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ICA method = objective function + optimization algorithm (B.8)

The objective function is a measure of independence using higher-order statistics. Obviously, in

the strictest theoretical sense, it is not a completely reliable measure of independence. However,

it has been shown in practice that a well-thought-out objective function, even if it only considers

a limited amount of higher order information, can still give a sufficiently acceptable measure

of independence in order to carry out the separation of the mixtures. [15]

Of course, having a measure of independence is not sufficient. An algorithm must exist to

exploit this measure. Thus, the proper selection of the optimization algorithm is also crucial.

The properties of the ICA method used is dependent on both the objective function and

the optimization algorithm. The objective function determines statistical properties such as

consistency, asymptotic variance, and robustness; and the algorithm determines properties such

as the convergence speed, memory requirements, and numerical stability. [15]

Within this thesis, objective functions consisting of the Kurtosis and the Negentropy of the

signal will be considered. For optimization purposes, the FastICA fixed-point algorithm will

be used exclusively.

B.5.1 The role of Gaussianity

One of the implications of the Central Limit Theorem is that the linear combination of inde-

pendent and identically distributed random variables will resemble the Gaussian distribution

more so than the original random variables themselves. [15]

As a result, the distributions estimated from a linear combination of the source signals, should

resemble the Gaussian distribution more so than the original source distributions themselves.

Here, the source signals are assumed to be drawn from independent and identically distrib-
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uted density functions. Thus, the level of Gaussianity in a signal can be used as a means of

determining whether the signal is a mixture or an original source component. [15]

Now, all that is left is to determine a quantitative measure of Gaussianity. Due to the use of

the FastICA algorithm, each component will be identified separately. As a result, all measures

of Gaussianity is calculated separately for each component estimation.

B.5.2 Separation with Kurtosis

The Kurtosis of the signal can be used as a measure of Gaussianity. The Kurtosis of a random

variable is the name given to its 4th order cumulant, seen in (B.9). [15]

kurt(y) = E
[

y4
]

− 3

(

E
(

y2
)

)2

(B.9)

The Kurtosis for a Gaussian random variable is 0. Therefore, the Kurtosis of a signal that is

generated from a Gaussian random variable, should tend to 0, as the number of data points

increase. [15]

Since a linear mixture of independent and identically distributed random variables should be

more Gaussian than the original source distributions, the maximization of the absolute value

of the Kurtosis, as a function of the rotational vector, has the potential of finding the correct

solution. [15]

The PCA step reduces the remainder of the search to the set of orthogonal matrices; an

orthogonal rotation matrix is constructed from a set of rotational vectors. Therefore, using

the absolute value of the Kurtosis as an objective function, the orthogonal matrix set can be

explored to find the correct rotation matrix. [15]
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B.5.3 Separation with Negentropy

One of the biggest problems associated with using the Kurtosis of a signal as a measure of

Gaussianity is its sensitivity to outliers, when estimated from sampled values. Due to the 4th

power that is present in the calculation, even a moderately large outlier could skew the results

significantly. For example, if 1000 data points are obtained from a channel with a data variance

of 1, and one of them takes the value of 10, the Kurtosis will equal to at least 7 [15]. It would

be beneficial to have a measure that not so sensitive to outliers but that still retains the speed

of the Kurtosis method.

Based on this, a common measure of Gaussianity that can be made to be less sensitive to

outliers is directly related to the entropy of the signal. The entropy essentially deals with the

amount of randomness that is present in a signal; or alternatively, the lack of structure that is

present in a signal. The entropy for discrete and continuous variables are seen in (B.10). [15]

Discrete: H(X) = −
∑

i

P (X = ai) log P (X = ai)

Continuous: H(X) = −
∫

px(ε) log px(ε) dε (B.10)

It has been shown in literature that of all random variables of unit variance, a Gaussian random

variable has the largest entropy. In fact, generally, the Gaussian distribution has the largest

entropy of all distributions with a given covariance matrix. Thus, entropy can be used as a

measure of Gaussianity if all of the signals under consideration have the same covariance. A

larger entropy value implies that the signal under consideration is more Gaussian than the

other signals and thus is probably a mixture. [15]

In order to use the entropy based measure of Gaussianity, it is important to establish that all

signals that are analyzed by ICA have the same covariance. Otherwise, it is not appropriate
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to compare the signals with one another using the entropy measure. Now, due to the PCA

step, we are only searching the orthogonal matrix set to obtain the final component of the

demixing matrix; namely, the orthogonal rotation matrix. Before and after any such orthogonal

transformation, all of the individual component estimates will continue to have a variance of 1.

Therefore, estimating the level of Gaussianity between the estimates with the entropy measure

is perfectly valid.

A larger entropy typically means that the signal under consideration is closer to a Gaussian

distribution than a signal with a smaller entropy. Also, as discussed before, a higher measure of

Gaussianity typically means that the signal under consideration is more of a mixture of source

components than a signal with a lower measure of Gaussianity. Of course, this is with the

assumption that the original source distributions are independent and identically distributed.

The distributions being identically distributed is usually not the case in real world applications.

Even though it really depends on the actual distributions, the experiments in the thesis show

that it is possible to achieve good separation even if the distributions are not identical.

Now, to make the measure of Gaussianity be zero for a Gaussian variable and be nonnegative

in general, an alternative measure called Negentropy can be defined. Negentropy is directly

related to entropy. However, Negentropy is always a positive quantity and the negentropy of

a gaussian random variable is 0. In the Negentropy equation defined in (B.11), xgaussian is a

gaussian random variable with the same variance as the random variable x. Also, an important

property of negentropy is that it is scale invariant. This can be seen in equation (B.12). [15]

J(x) = H(xgaussian)−H(x) (B.11)

J(cx) = J(x), for a constant scalar c (B.12)

Since the measurements available are simply sampled values, some form of density estimation

needs to be applied in order to estimate the Negentropy. It is important to note that calcu-
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lating the Negentropy based on its definition, for an arbitrary density function, could be quite

computationally expensive due to the presence of the integral [15].

Various algorithms that attempt to approximate the Negentropy are available due to this high

computational cost. [15] These measures are by no means perfect; but as long as the measures

are accurate in a relative sense, the approximation can be considered to be quite good. For

example, if solution 1 has a true Negentropy measure that is higher than that of solution

2, it should be the case that the approximation of Negentropy should also provide a similar

relationship, even if the absolute values are incorrect.

B.5.4 Approximating Negentropy

All the methods that approximate the Negentropy makes various assumptions. The goal is to

approximate the Negentropy as accurately as possible, but at a reasonable computational cost.

The high computational cost of the original definition is one of the motivational factors for the

need for a suitable approximation. [15]

Cumulant based approximation

This method makes the fundamental assumption that each signal in question has a distribution

very close to that of a Gaussian distribution. The derivation approximates the probability

density function (pdf) of the signal with a combination of the standard gaussian pdf and

higher-order cumulants that approximate the degree to which the actual pdf is different from

the gaussian pdf (B.13). [15]

px(ε) ≈ p̂x(ε) = ϕ(ε)

(

1 + κ3(x)
H3(ε)

3!
+ κ4(x)

H4(ε)

4!

)

(B.13)

Substituting this into the definition of negentropy, and assuming that the cumulants in (B.13)

are very small, an approximation for the Negentropy can be obtained and is seen in (B.14).
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[15]

J(x) ≈ 1

12
E[x3]2 +

1

48
kurt(x)2 (B.14)

However, if the Negentropy method is used with the approximation, the same issues that arose

with the use of the Kurtosis as a measure of Gaussianity is encountered. As with that method,

this approximation is very sensitive to outliers. [15] Also, the assumption made with regards to

the pdf being close to the gaussian pdf is also important. If this assumption is false, obviously,

the approximation will not be very good. However, the approximation should improve as the

distribution approaches the gaussian distribution. So this assumption is quite appropriate

when dealing with signals that are heavily mixed. However, as the mixture starts to become

less mixed, and thus less Gaussian, one has to be careful with making this type of assumption.

Since this approximation suffers from the same problems as the Kurtosis measure, it is not

quite useful.

Maximum Entropy based approximation

Given a set of samples from some distribution, it is impossible to estimate the original distri-

bution since there are an infinitely many distributions that will satisfy the constraints implied

by the sampled points; and most of these distributions will have different entropy values from

each other. [15] As described previously, an estimation of the density function is needed for

the calculation of Negentropy.

The Maximum Entropy method is interested in the distribution with the maximum entropy that

satisfies the constraints implied by the data points of the potentially transformed signal. The

entropy of the actual distribution will be something less than the maximum entropy quantity.

The assumption is that minimizing the maximum value of the entropy, that is consistent with

the data points, will also hopefully minimize the actual entropy as well. [15] While, this is not

true in general, it should give decent results for the most part. Since the cost function is usually
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in terms of Negentropy, the optimization problems essentially deals with the maximization of

the Negentropy value, as discussed below.

Similar to Section B.5.4, this derivation makes the assumption that the maximum entropy

density that is consistent with the points in the transformed signal in question is not far from

the gaussian density of the same mean and variance. [15] Obviously, the invalidity of this

assumption leads to the issues raised previously.

The resulting approximation is shown in (B.15) [15].

J(x) ≈ 1

2

n
∑

i=1

E[F i(x)]2 (B.15)

The F i functions seen in (B.15) form an orthonormal system as defined in (B.16). Here, ϕ(ε)

is the standard gaussian distribution. For a complete derivation, please see [15].

∫

ϕ(ε)F i(ε)F j(ε) dε =

{

1 if i = j
0 if i 6= j

∫

ϕ(ε)F i(ε)εk dε = 0, for k=0,1,2 (B.16)

It is not easy to simply select the F i functions, and have them satisfy (B.16). Therefore,

usually a set of linearly independent functions, Gi, are selected and the Gram-Schmidt orthog-

onalization scheme is performed on the set containing the Gi functions and εi, k = 0, 1, 2. The

resulting set of functions, F i, will satisfy the orthonormality requirements stated in (B.16).

[15] The procedure for doing this orthonormalization is found in [20].

When the distribution of x is Gaussian, the Negentropy specified in (B.15) will evaluate to 0.

This is because it can be shown that E[F i(x)] = 0,∀i when the random variable is Gaussian.

This is easily seen by making k = 0 in the constraints specified in (B.16). [15] Therefore, as it

should be, the negentropy approximation of a gaussian variable is 0.
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Without going through the full derivation, the reason for the ability to use any arbitrary set of

functions that conforms to the orthonormality requirements might not be conceptually clear.

What is important to realize is that the F i functions are essentially meant to measure how

far a distribution is away from the Gaussian distribution. Since the actual distribution is not

available, E[F i(x)] will be estimated from the data points themselves. The effectiveness of

the F i functions chosen will certainly depend on the underlying distribution that might have

generated the signal in question, and therefore must be selected carefully.

For a nongaussian distribution, E[F i(x)] = ci,∀i. These ci values are not necessarily zero,

and the sum of their squares give an approximate Negentropy value that indicates how far the

distribution is from the gaussian distribution. A higher approximation of Negentropy should

indicate a distribution further away from a Gaussian distribution.

Since the researcher selects the Gi functions, it is his or her responsibility to select them in

an intelligent manner. In practice, Gi functions are selected to measure a characteristic of the

underlying distributions of the signals, that might indicate a meaningful measure of distance

to the gaussian distribution. For example, odd and even functions are popular choices as they

measure skewness and peakiness, respectively [15]. With these functions, a nongaussian random

variables should usually give a nonzero value for the approximated Negentropy and should assist

the researcher in determining how far the distribution is from the Gaussian distribution. The

goal is to increase the distance as much as possible, since the distributions of mixtures of source

components resemble the Gaussian distribution more so than the distributions of the original

source components. Also, it is important to select the Gi functions to be robust with respect

to outliers.

Selecting G1(y) = y3 and G2(y) = y4 will result in the cumulant based approximation seen in

(B.14). However, for reasons already discussed, this approximation is considered to be poor.

Also, it is not required to have two Gi functions. Selecting only one such function can still give

superior results to that of (B.14). The resulting simplified equation is seen in (B.17). Here, v

is a zero mean, unit variance Gaussian random variable. Random variable y is also zero mean
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and of unit variance, but is not necessarily Gaussian. [15]

J(y) ∝ (E[G(y)]− E[G(v)])2 (B.17)

A popular choice for G1 = G in the single function approximation is seen in (B.18). [15] The

approximation based on this function is used in the experiments in this thesis.

G(y) = −exp(−y2/2) (B.18)

B.6 FastICA

Of course, having an objective function is only part of the problem. Given an objective function,

it is important to investigate the possible solutions in order to arrive at a suitable solution. As

expected, Gradient methods have been fairly popular for this purpose. [15]

If the goal is to maximize a function, C(wTz), as a function of w, the Gradient ascent method

in (B.19) can be used. [15] Here, w represents the ICA rotation vector that is applied to the

vector of whitened random variables, z, to obtain an estimate for one of the source signals.

Once all n of the rotation vectors, wi, are obtained separately, a suitable orthogonalization

scheme can be applied to orthogonalize them. These schemes will be discussed in Section

B.7. Once again, it is important to note that due to the unavailability of any actual density

functions, any expectations will be evaluated with the data points.

w ← w + α
∂C(wTz)

∂w

w ← w

‖w‖ (B.19)
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Gradient methods depend greatly on the selection of the learning rate. An improper learn-

ing rate can either make convergence extremely slow or destroy convergence completely. [15]

Therefore, the authors of [15] have proposed a method known as FastICA, which is independent

of such learning rates. FastICA actually has its roots in gradient based algorithms.

With the use of the Lagrangian method, it can be shown that at the maximum point of the

function C(wTz), when w is constrained to be on the unit sphere, the gradient of C(wTz)

is pointing in the same direction as w. Therefore, if wf is the solution to the maximization

problem, constrained by ‖wf‖ = 1, the constraint shown in (B.20) is true. [15]

∂C(wTz)

∂w

∣

∣

w=wf
= αwf , where α is some constant (B.20)

Generally, at a local maximum or minimum of a typical function, the gradient is 0. However, in

the optimization problem we are interested in, the gradient at the maximum point, wf , when

it is constrained to be on the unit sphere, is said to be a scalar multiple of wf . The reason for

the gradient not being zero at wf should be conceptually clear. None of the local maximum or

minimum points of the C(wTz) function are necessarily at wf . wf is only the maximum point

when the solution space is constrained to the unit sphere (‖w‖ = 1).

For example, let the Kurtosis of the signal be the cost function. One of the properties of the

kurtosis measure is that |kurt(αx)| = α4|kurt(x)|. Unless the underlying distribution of wTz

is mesokurtic, |kurt([αwT]z)| should always give a higher value than |kurt(wTz)|, whenever

|α| > 1. Therefore, none of the local maximum values of C(wTz) will be at wf or anywhere

on the unit sphere, as any vector αwf when α > 1, will give a higher kurtosis value.

While the condition in (B.20) must be true at a maximum, the converse is not necessarily

implied by the statement. However, it is still used as the basis for the algorithm. Considering

the Gradient Ascent algorithm would itself identify such a point as a solution, since any point

satisfying (B.20) would force the Gradient solution to stabilize, it seems acceptable to use it
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as a basis for the FastICA algorithm as well [15].

Thus, satisfying (B.20) is assumed to imply the presence of a maximum at the point in question.

This leads to the equation shown in (B.21) that can be solved to obtain a potential solution.

[15]

αw =
∂C(wTz)

∂w
, Alternatively

w = β
∂C(wTz)

∂w
(B.21)

The FastICA algorithm based on (B.21) is seen in B.22. The algorithm is run indefinitely until

the value of 2 consecutive w vectors converges, maybe except for the multiplicative sign.

w ← ∂C(wTz)

∂w

w ← w

‖w‖ (B.22)

This is essentially a Fixed-Point algorithm followed by a normalizing step. Looking at equation

(B.22), it is clear that the scalar constant β was dropped from (B.21) by the designers of the

algorithm. The motivation for dropping the scalar constant is based on the fact that the w

vector is normalized at the end; thus, the effect of any scalar constant would vanish [15].

However, it should be noted that this approach cannot possibly be taken in the general case

for an arbitrary equation w = βH(w). Obviously, when we solve such an equation using a

fixed-point algorithm, we are essentially trying to find the intersection between y = w and

y = βH(w) [21]. The intersection points in this system, if any, clearly depends on β. With the

FastICA algorithm, β is assumed to be 1. The solution found by the fixed-point algorithm,

when β = 1, is clearly by definition, a scalar multiple of the gradient at that point; the

word point is used since the only variable in the optimization problem is w. However, when
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w = wunnormalized is normalized, wnorm is obtained. In general, there is no guarantee that

the gradient at wnorm has the same direction as the gradient at wunnormalized. Therefore, in

general, finding the solution by assuming β = 1 and then normalizing does not necessarily

guarantee a proper solution.

However, when the cost function is either the Kurtosis or the Negentropy, it can be shown that

the gradient when w = x and the gradient at a scalar multiple of x, cx, only differ by a scalar

constant dependent on c. Thus, with the cost functions discussed in this thesis, the gradient

at w = wT
norm has the same direction as the gradient at w = wT

unnormalized, which obviously

has the same direction as wunnormalized, and which in turn has the same direction as wnorm.

Therefore, the gradient at w = wT
norm has the same direction as wnorm. Therefore, wnorm

satisfies (B.20) and is also on the unit sphere; and thus, satisfies all the criteria of the search.

The advantage of the FastICA algorithm is its independence of the learning rate. With the

cost functions discussed in this thesis, the FastICA algorithm can find all the solutions that can

be potentially found by the Gradient Ascent Algorithm, but is not dependent on the learning

rate.

B.6.1 FastICA and the Kurtosis measure

When the cost function C(wTz) is made to be the Kurtosis of the signal, K(wTz), the ICA

step is reduced to the algorithm shown in (B.23): [15]

w ← E
[

z(wTz)3
]

− 3w

w ← w

‖w‖ (B.23)

104



B.6.2 FastICA and the Negentropy measure

When the cost function C(wTz) is made to be the Negentropy of the signal, J(wTz), and after

some optimization, the ICA step is reduced to the algorithm shown in (B.24): [15]

w ← E
[

zg(wTz)
]

− E
[

g
′

(wTz)
]

w

w ← w

‖w‖ (B.24)

The g function and the g′ function obviously depends on the G function selected, which was

described in Section B.5.4. For the experiments in this thesis, the functions seen in (B.25) are

used. They were obtained from [15].

G(y) = −exp(−y2/2)

g(y) = y exp(−y2/2)

g′(y) = (1− y2) exp(−y2/2) (B.25)

B.7 Orthogonalization of vectors

The FastICA algorithm described in Section B.6 essentially estimates one component at a time,

as only one of the wk rotation vectors is estimated. In order to obtain estimates for all the

signals, the remaining n− 1 columns of the rotation matrix W needs to be discovered as well.

It was shown before that to maintain uncorrelation between the components, the rotation

matrix W must be orthogonal. Now, it is also the case that the orthogonality of W is only

true if and only if the column vectors of W are orthogonal to each other. [22] Thus, ensuring
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that all the rotation vectors wk, which are the columns of W , are orthogonal to each other is

sufficient. This requirement can be seen even more clearly in (B.26). [15]

E[(wT
i z)(wT

j z)T )]

= E[wT
i zzTwj]

= wT
i E[zzT]wj

= wT
i wj

Also, E[(wT
i z)(wT

j z)T )] = E[(sis
T
j ] = 0, i 6= j

Therefore, wT
i wj = 0, i 6= j (B.26)

Even if all the rotational vectors wk estimate one of the source components exactly, there

might still be redundancy. It is quite possible that some of the rotational vectors estimate the

same source component. If an estimation were to be duplicated, that essentially means that

some of the other components were not even found. This is obviously highly undesirable. This

situation would never happen if the wk vectors were orthogonal to each other.

In this thesis, on each full iteration, all the separate wk vectors are found separately by FastICA,

and are then orthogonalized using a suitable orthogonalization scheme. Subsequently, the new

vectors can simply be normalized. The most popular scheme for orthogonalization is the

Gram-Schmidt Orthogonalization scheme, seen in (B.27). However, this method gives more

emphasis to estimates with a lower index number and might cause the compounding of errors.

Alternatively, The Symmetric Orthogonalization method can be used. This method does not

give preference to any particular vector and as such does not have the problem associated with

the compounding of errors. [15] Both of these methods are used in the experiments in this

thesis.
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w1 = a1

wj = aj −
j−1
∑

i=1

wT
i aj

wT
i wi

wi (B.27)

The Symmetric Orthogonalization algorithm makes the unorthogonalized vectors orthogonal

to each other while preserving their likeness to the original set of unorthogonalized vectors, as

measured by an appropriate matrix norm. If the columns of matrix G are the wk vectors, the

Symmetric Orthogonalization algorithm is simply (B.28): [15]

G← (GGT )−1/2G (B.28)

The columns of the resulting matrix will give the new orthogonalized vectors. [15]

B.8 Complete ICA algorithm

Now that all the steps required have been discussed, the complete algorithm is summarized in

Table B.1

Table B.1: ICA algorithm
# Step

1 Center the data to obtain a mean of zero
2 Use PCA to diagonalize the covariance matrix
3 Reduce the number of components by eliminating any components

with an insignificant variance
4 Randomly select n initial vectors for wi, i ← 1 to n
5 Update all wi in parallel using FastICA with a suitable objective function
6 Perform Orthogonalization and normalize
7 Check for convergence of wi, if not converged goto step 5
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B.9 Other possible measures

ICA is certainly not limited to the techniques described in this thesis. There are a multitude of

other ICA solutions; such as Maximum Likelihood, Tensorial Methods, and Nonlinear Decorre-

lation based methods. The pre-processing steps are not limited to PCA either. Reference [15]

gives further information.
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Appendix C

Statistical Tests

C.1 Spearman’s Rank Correlation

The Spearman’s Rank correlation is a measure of correlation between two variables. One

of the desirable properties of the Spearman’s Rank correlation is that it does not make any

assumptions regarding the distribution of data. The measure is obtained by considering the

rank of the data item and considering the difference in rank of the corresponding values of two

random variables.

For example, if the age and the height of an individual are correlated, a person should expect

that her age rank in a group of individuals to be more or less equal to her height rank in the

same group. Obviously, this is not necessarily the case in real life as there are many other

factors, such as genetics.

The Spearman’s rank correlation between two random variables, A and B, has a simple form

and is shown in Equation C.1.

ρA,B = 1− 6
∑n

i=1
(rA,i − rB,i)

2

n(n2 − 1)
(C.1)
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Here, rA,j and rB,j are the ranks of the jth value produced by the random variable A and B,

respectively. The values are always ranked with respect to all the values generated by the same

random variable. Therefore, the equation compares the difference in rank between an ordered

pair of values produced by two random variables, A and B, and judges the manner in which

their ranks vary.

C.2 Mann-Whitney test

The essence of the Mann-Whitney test is quite simple. Given two unpaired groups, the goal is

to determine whether the two groups are sufficiently statistically different. Given two labeled

classes, it is important to know whether all the points came from a single distribution or

whether they came from two different distributions. The Mann-Whitney test is a measure of

this degree of separation. Also, it is a rank based measure.

The Mann-Whitney test measures how far the actual rankings differ from the expected rankings

when both groups come from the same distribution.

Firstly, items are ranked from 1 to N, where N is the number of items in both groups. Then, all

the data items of the class with the lower number of items is added and then compared to the

expected sum of the rankings for this class. If there are ns items in the class with less elements,

the expected sum is simply ns(1 + N)/2. The actual form of the equation was obtained from

[16] and is shown in Equation C.2.

Z =

∣

∣

∣

∣

Rs − E
(

Rs

)

∣

∣

∣

∣

− 0.5

√

V ar
(

Rs

)

where E
(

Rs

)

=
ns(1 + N)

2

and V ar
(

Rs

)

=
nsnm

12
(1 + N) (C.2)

110



Here, Z is the level of significant difference, Rs is the sum of the ranks of the elements in the

class with less elements, nm is the number of elements in the class with more elements, and

N = ns + nm is the total number of elements.
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