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Abstract
Simultaneous Localization and Mapping (SLAM) is a recursive probabilistic infer-
encing process used for robot navigation when Global Positioning Systems (GPS)
are unavailable. SLAM operates by building a map of the robot environment, while
concurrently localizing the robot within this map. The ultimate goal of SLAM is to
operate anywhere using the environment’s natural features as landmarks. Such a
goal is difficult to achieve for several reasons. Firstly, different environments contain
different types of natural features, each exhibiting large variance in its shape and
appearance. Secondly, objects look differently from different viewpoints and it is
therefore difficult to always recognize them. Thirdly, in most outdoor environments
it is not possible to predict the motion of a vehicle using wheel encoders because
of errors caused by slippage. Finally, the design of a SLAM system to operate in a
large-scale outdoor setting is in itself a challenge.

The above issues are addressed as follows. Firstly, a camera is used to recog-
nize the environmental context (e.g ., indoor office, outdoor park) by analyzing the
holistic spectral content of images of the robot’s surroundings. A type of feature
(e.g ., trees for a park) is then chosen for SLAM that is likely observable in the
recognized setting. A novel tree detection system is introduced, which is based
on perceptually organizing the content of images into quasi-vertical structures and
marking those structures that intersect ground level as tree trunks. Secondly, a new
tree recognition system is proposed, which is based on extracting Scale Invariant
Feature Transform (SIFT) features on each tree trunk region and matching trees
in feature space. Thirdly, dead-reckoning is performed via an Inertial Navigation
System (INS), bounded by non-holonomic constraints. INS are insensitive to slip-
page and varying ground conditions. Finally, the developed Computer Vision and
Inertial systems are integrated within the framework of an Extended Kalman Filter
into a working Vision-INS SLAM system, named VisSLAM.

VisSLAM is tested on data collected during a real test run in an outdoor unstruc-
tured environment. Three test scenarios are proposed, ranging from semi-automatic
detection, recognition, and initialization to a fully automated SLAM system. The
first two scenarios are used to verify the presented inertial and Computer Vision
algorithms in the context of localization, where results indicate accurate vehicle
pose estimation for the majority of its journey. The final scenario evaluates the
application of the proposed systems for SLAM, where results indicate successful
operation for a long portion of the vehicle journey. Although the scope of this
thesis is to operate in an outdoor park setting using tree trunks as landmarks, the
developed techniques lend themselves to other environments using different natural
objects as landmarks.
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Chapter 1

Introduction

1.1 Hypotheses

1. Land-based Simultaneous Localization and Mapping (SLAM) is feasible in
outdoor environments using a low-cost Inertial Measurement Unit (IMU) for
dead-reckoning purposes and a camera for detecting, recognizing, and local-
izing natural objects.

2. SLAM using natural features produces meaningful maps that can be used for
surveying or for human navigation.

3. By recognizing landmarks from their appearance, conventional statistical-
based data association can be avoided.

These three hypotheses are demonstrated by presenting a Vision-Inertial SLAM
system implemented in an outdoor park setting, using tree trunks as landmarks for
SLAM.

1.2 Motivation

With the turn of the twenty first century, the barriers between robots and humans
are falling. Humans are less intimidated by electronic equipment, which is evidenced
by the ubiquitous presence of computers and digital equipment in consumer house-
holds. Robots are evolving from toys to necessities, from being remotely controlled
to being fully autonomous. Roboticists have shifted their research from insuring
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robot motion control, which is considered a solved problem today, to fulfilling a
human need and thereby insuring the robots’ economic justification. Examples
of such robots include the robot vacuum cleaner ROOMBA [1] which operates
autonomously and recharges itself without any human intervention. Search and
rescue robots, such as the PACKBOT by iRobot [2], are also very popular and
are dispersed in catastrophe type scenarios such as in an earthquake aftermath.
Other examples of autonomous robot applications include extra-terrestrial explo-
ration such as the Spirit Mars rover [3] that successfully navigated, sampled, and
mapped areas of the planet Mars and relayed back this information to humans
located millions of miles away. These robots share in common the fact that they
must navigate autonomously with no help from a human operator. Current mobile
robot systems are limited in their capacity to achieve this task.

The simplest form of robot navigation is line-following, where the robot is
equipped with sensors that are able to track a pre-laid electromagnetic, optical
or thermal track (Figure 1.1a). This type of navigation is very successful in con-
strained indoor environments with a slow-moving robot. The disadvantage of line-
following robots is that they are dependent on the line they follow. Bad ground
conditions or crossed tracks could cause the robot to loose its fix on the track and
become completely lost. Skidding and quick turns could also cause de-tracking. In
other words, no lateral movement is tolerated. In general, methods that require
environmental modification are limited by economics, generalization, and places of
application. More successful navigation algorithms are based on robot localization.
In these algorithms the pose (location and orientation) of the robot is calculated at
each time step. Dead-reckoning using wheel encoders or inertial sensors is a good
positioning methodology for short paths; however, the errors associated with such
methods accumulate with distance and eventually localization fails if no corrective
measures are taken. Localization can alternatively be estimated via triangulation
(Figure 1.1b) by using range sensors to estimate the distance from the robot to
artificial or natural landmarks having known coordinates. In an effort to improve
robot localization, robot pose estimates obtained from dead-reckoning sensors on
one hand and from landmark relative positions on the other hand can be combined
to yield more precise pose estimates. The Kalman Filter (KF) [4, 5] is optimal at
fusing such data sources if both the dynamic and measurement models are linear
and the associated errors can be represented by white Gaussian noise. Unfortu-
nately, in practice it is rare when linearity can be assumed and alternative filters
that can deal with non-linearities are used, such as the Extended Kalman Filter
(EKF) [5] or the Particle Filter (PF) [6, 7].

In robot localization, differentiation is made between local robot localization

2



(a) (b)

Figure 1.1: Robot navigation modalities. (a) Line following; (b) landmark triangu-
lation.

and global robot localization. In local robot localization, also known as tracking,
the initial pose of the robot is known. In global robot localization, or the kid-
napped robot scenario, the problem is more challenging since the robot is given no
information about its initial whereabouts and has to find itself without any prior
information. Markov Localization (ML) [8] and Monte Carlo Localization (MCL)
[9] are very common in the solution of such problems. In outdoor navigation, good
global localization can be achieved via Global Positioning Systems (GPS). In some
environments, such as forests, urban canyons, sub-sea, extra-terrestrial, or inside
underground mines, GPS information is not available. Nevertheless, it is still pos-
sible for a robot to globally localize itself by a process known as Simultaneous
Localization and Mapping (SLAM).

1.2.1 Simultaneous localization and mapping

In SLAM, the robot builds a map of the environment in which it is navigating, while
simultaneously localizing itself with respect to that map (Figure 1.2). When a map
of the robot’s environment is available, navigation is relatively simple by localizing
the robot using its onboard sensors [10, 11] and path planning towards the goal
[12]. Conversely, when the absolute position of the robot is known at every time
frame (e.g ., using GPS in an outdoor environment), mapping of the environment is
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Figure 1.2: SLAM is the problem of localizing a robot while simultaneously building
a map of its surrounding milieu. Black dots are landmarks that can be used to build
a map.

also considered a solved problem [13]. It is when both the pose of the robot and the
location of the landmarks are unavailable (i.e., SLAM scenario) that the problem
becomes convoluted because the errors in pose of the robot and landmark locations
are correlated. More specifically, if at time ‘t’, the pose and the kinematics of a
robot are known, then at time ‘t+ 1’ its pose can be estimated by integrating the
angular and linear acceleration between t and t + 1 and adding the result to the
pose at time t. At the robot’s new location the position of any observed landmark is
estimated based on its relative distance from the robot. Since the robot’s estimated
coordinates are not precise, the landmark position estimates are subject to an error
which is dependent on that of the robot pose (Figure 1.3). As the robot continues
to navigate, the error in its ego motion estimate increases, which results in a larger
error in the estimated position of new landmarks. SLAM addresses this error growth
problem by maintaining a covariance matrix, which correlates between the errors in
all the variables of the state vector, including the position and bearing of the robot
and surrounding landmarks. At each time step, the covariance matrix is propagated
forward in time, indicating the inter-dependence between variables. The Kalman
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Filter (KF), the Extended Kalman Filter (EKF), or the Particle Filter (PF) are
the traditional mechanisms by which the state and covariances are propagated
between time steps. If at some time later during the robot’s journey, it returns to a
previously viewed scene (a situation ubiquitously know in SLAM as loop closure),
and the robot recognizes previously viewed landmarks which have low uncertainty,
the position of the robot can be updated with high certainty. More importantly,
the uncertainty in the position of all the landmarks which have been seen so far
can also be reduced since they are correlated (through the covariance matrix) to
the uncertainty in robot pose.

SLAM is difficult because of three main reasons: (1) dimensionality explosion,
(2) robust landmark detection and (3) data association. The processing require-
ments for traditional SLAM systems using a Kalman filter are O(N2), where N
is the number of landmarks. As the number of landmarks increases, SLAM im-
plementation becomes intractable due to the quick growth in the dimension of the
problem; an issue referred to as dimensionality explosion. Since the seminal pa-
per of Smith and Cheeseman [14], which sparked research in SLAM, the focus of
most research in this field [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] has
been directed towards developing the underlying theory of SLAM and reducing its
order of complexity in order to avoid dimensionality explosion. Towards this end,
researchers relaxed the landmark issue of SLAM by using simple features which are
easily detected and recognized as landmarks,. After resolving many of the issues of
dimensionality explosion [24, 29, 30], growing interest mounted in applying SLAM
in more challenging environments, such as in aerial [31], underwater [32], and large
land-based [23] outdoor settings. Although the SLAM methodology remains the
same in such settings, implementing the SLAM filter is more difficult because of
the increased size of the mapped area and the inherent uneven and unstructured
terrain conditions. In such settings, the problem of landmark detection has to be
addressed.

Each iteration of the SLAM filter is either a predictive or an update step. In a
predictive iteration, SLAM predicts the ego-motion of the navigating vehicle via an
onboard dead-reckoning sensor. In an update iteration, SLAM uses range and bear-
ing (or bearing alone) information to update the vehicle ego-motion estimate and
the position of the landmarks surrounding the vehicle. SLAM uses the discrepancy
(a measure called innovation) between its prediction of the pose of a landmark
and the instantaneous observation of the pose of the same landmark to perform
an update iteration. Therefore, for SLAM to succeed, the system must be capa-
ble of detecting landmarks and associating a previously-viewed landmark to new
observations of the same landmark; a problem known as data association.
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Figure 1.3: Error growth in landmark position estimate is associated with the error
in robot position. The ellipses around the robot position and Landmarks represents
the errors in their estimate. Notice how the error in the landmark estimate grows
as the uncertainty in the robot position grows.

Data association of a landmark is dependent on the complexity of the shape of
that landmark and the capabilities of the exteroceptive sensors onboard the robot.
In small scale SLAM, data association is not a problem because the test site can be
set up with a number of artificial beacons that are salient and highly distinctive from
the background. In large environments, the cost and time of setting up a test site
with artificial beacons, is not justifiable. Natural landmarks, such as trees, rocks,
and shrubs are readily available outdoors but are more difficult to detect than
artificial landmarks. Natural features exhibit large variance in their size, shape,
orientation, color, and texture. It is therefore difficult for sensors with limited
bandwidth of information to successfully detect and recognize natural features.

The most common type of range-bearing sensor that is used for SLAM is the
sonar for indoor and underwater settings and the Laser Range Finder (LRF) for
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outdoor land settings. Cameras have been recently proposed as an alternative to
these sensors. With the growing commercialization of digital cameras, good qual-
ity cameras can be found which are cheap, small, and weigh very little. Cameras
are passive sensors which consume very little power and are easily integrated into
embedded navigating systems. Furthermore, there has been much work in the Com-
puter Vision community on segmentation, and although this remains an unsolved
problem, such routines can be utilized to help detect objects. In Computer Vision,
landmarks can be matched in feature space, by extracting high level primitives of
each landmark and comparing them to those of model landmarks. Cameras can
provide rich information about the color and texture of the environment; informa-
tion which can be used as top-down a priori knowledge about the type of landmark
expected in such a setting [33].

1.2.2 SLAM using vision

The majority of Vision SLAM systems implemented to date [34, 35, 36, 37, 38, 39,
40, 41, 42, 43] use local image saliencies called Interest Points (IP) as landmarks
for SLAM. IPs are regions within the image which are distinctive from the rest of
the image. Although such systems are typically fast to implement, the maps that
they generate serve little purpose other than to perform SLAM because IPs are
too abstract for any human to use as a reference. Figure 1.4 (a) shows the map
generated by Se et al. [43] using Scale Invariant Feature Transform (SIFT) features
as landmarks. Notice that these features (shown in 1.4 (b)) lack the semantics to
be used as references for humans.

Alternatively, some Vision SLAM systems [44, 31, 45] exist which use real ob-
jects as landmarks; however, all such systems use artificial rather than natural
objects as landmarks. Although efficient for SLAM, artificial landmarks do not
add any new information about their environment. In some settings such as in an
earthquake aftermath or on the planet Mars, the test site is not accessible to man
and natural landmarks which are indigenous of their setting are more appropriate
than artificial landmarks to perform SLAM. Natural features have been tradition-
ally avoided because they vary considerably in shape and size amongst each other;
nevertheless, when one considers the above issues and the cost of setting up the site
with a sufficient number of artificial beacons, natural features become an attractive
alternative, especially if the landmarks are simple enough to be quickly detected.

In this context, the first motivation of this work is to develop a Vision system
that can detect natural objects for the sake of using them as landmarks for SLAM.
Examples of natural features could include trees, shrub, ponds, and rocks. Although
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Figure 1.4: (a) Map generated during SLAM of (a) Se et al. [43] with the corre-
sponding SIFT features (b). Notice that such maps and features would be of no
use for a human navigator.

the system in this work is tailored for tree trunks, the developed techniques are
easily extendible to other natural objects.

In most SLAM implementations, landmarks are matched to previously viewed
landmarks (an issue referred to as data association) by means of some statistical
procedure such as the Nearest Neighbor (NN) [46], or Joint Compatibility Branch
and Bound (JCBB) [47]. Such systems become problematic once the error in the
vehicle pose estimate is high. For instance, in Figure 1.5, the robot observes a
feature and estimates its position with an associated uncertainty (ellipse), which
makes both landmarks ‘A’ and ‘B’ viable candidates for a match. In such situations,
SLAM systems are usually programmed to avoid making an association and to
ignore the observation altogether; such methods suffer from too few updates, which
can compromise the consistency of the SLAM filter. It is clear at this point that
a system capable of recognizing landmarks without using statistical inference at
all would be a large contribution to the field of SLAM. This goal constitutes the
second motivation of this thesis.

Vision SLAM systems can be classified based on the type of vision sensor used:
range-bearing vision SLAM using multiple cameras or bearing-only vision SLAM
using a single camera. In range-bearing SLAM, stereo or trinocular vision is used
to calculate the bearing as well as depth of a landmark from one viewpoint. The
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Figure 1.5: Data association failure. If at given time a robot’s pose is estimated
with a given uncertainty (ellipse around triangle) and observes a landmark (solid
circle), it tries to match the observation to one of two known landmarks A or B.

main contributions here consist of the work of Davison et al. [35, 37], Se et al.
[43], Panzieri et al. [44], Fitzgibbons [45], Jung and Lacroix [48, 38], and Kim and
Sukkarieh [31]. Range-bearing SLAM systems have demonstrated good results in-
door and outdoor; however, the main pitfall of this method is the requirement of
a relatively large baseline between the cameras of the stereo rig. The precision
of depth values obtained from a stereo rig is proportional to its baseline and in-
versely proportional to the square of the observed depth [38]. Tests have shown
[38] that depth values extracted via stereo cameras degrade for baseline to depth
ratios smaller than 1/30, which corresponds to depths of the order of 6 meters for
conventional stereo rigs, whose baselines are less than 20 centimeters. While such
depth capabilities are acceptable for indoor purposes, outdoor range sensors used
for SLAM are expected to detect landmarks that are sometimes located 15 to 30
meters away, requiring stereo rigs featuring baselines of the order of 50 centimeters
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to 1 meter to insure precise depth estimates. This minimum baseline size constraint
precludes performing outdoor Stereo-Vision SLAM on small vehicles, which can not
accommodate such wide stereo camera rigs, and promotes the idea of Bearing-only
(B-only) Vision SLAM, using a single camera for detecting landmarks. In B-only
SLAM systems the depth of a landmark is determined by correlating the bear-
ing readings from several viewpoints with the distance the robot travels between
bearing observations. Bearing-only Vision SLAM contributions include the work
of Deans and Hebert [49], Davison [36], Fitzgibbons [45], Kwok et al. [39, 40, 41],
Kim and Sukkarieh [31], Sola et al. [50, 42], and Bailey [51]. None of these systems
presents a conclusive solution to the problem of B-only SLAM, where each of them
suffers from either intractable processing requirements or dimensionality issues.

The third motivation is to develop a hybrid between range-bearing and bearing-
only systems, where range information is used only to initialize a landmark into the
SLAM map when a tree trunk is within the range capabilities of the stereo camera.
When the robot navigates out of this confidence region, the SLAM system uses
its bearing-only information (i.e., azimuth and elevation of landmark) to continue
performing SLAM. In this fashion, bearing-only and range-bearing complement
each other to produce a robust initialization and tracking system. This idea agrees
favorably with that of human depth perception, where studies [52] have shown that
humans use stereo as the dominant depth source for up to one meter. Above this
range, other cues are used to infer depth such as occlusion, height in the visual
scene, relative size, relative density, shading, and texture.

Uneven terrain conditions create issues for both the proprioceptive and extero-
ceptive sensors onboard the navigating vehicle. The most common dead-reckoning
sensors are based on wheel encoders, which are sensitive to slippage; an issue so
common when the terrain is not flat. Traditional approaches to deal with slippage
are to use an Inertial Measurement Unit (IMU) as an alternative dead-reckoning
sensor or to supplement the encoder with an IMU to correct errors caused by the
encoders [53].

The forth and final motivation is to integrate inertial predictions and visual
observations into a working Visual-Inertial SLAM system and to test it on real data
collected during a run in an outdoor unstructured environment. The integration
of such a system constitutes a significant step forward in the development of a
stand-alone product to be applied in non-wheeled kinematics such as for humanoid
robotics or to act as a navigation aid for the visually impaired. Many SLAM
systems avoid testing in unstructured outdoor environments because it is difficult
to account with the large variabilities in these settings. Nevertheless, such tests
are necessary to comprehend the limitations and strength of one’s system. In the
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next sections, the objectives of the developed system are presented, as well as its
architecture and anticipated challenges.

1.3 Objectives, architecture, and challenges

1.3.1 Objectives

The long term intent of the author’s research is to develop a system capable of
navigating between different environmental settings (e.g ., park, urban), recogniz-
ing the milieu it is in, choosing landmarks that are appropriate for the recognized
environment (e.g ., trees for park and lampposts for urban), and performing SLAM
using an inertial sensor to predict motion and a camera to detect landmarks. Ini-
tial efforts aim at solving this problem in a single environment; namely, an outdoor
park environment, using tree trunks as landmarks for SLAM. Towards this end, the
first objective of the developed system is to recognize that the navigating vehicle is
indeed located in a park setting. Once the system has verified its surrounding con-
text, the second objective is to be capable of segmenting and detecting tree trunks,
and determining their 3D pose (i.e., position and bearing) in the vehicle’s Field
of View (FoV). The third objective constitutes what is known as data association,
where the system is required to differentiate between observed trees and associate a
previously viewed tree to new observations. The SLAM filter uses the discrepancy
between the predicted location of the landmark and its new observation to update
the ego-motion estimate of the navigating vehicle.

1.3.2 Architecture

A Vision SLAM system is proposed, named VisSLAM, whose structure is presented
in Figure 1.6. VisSLAM operates within the framework of an Extended Kalman
Filter (EKF); fusing state predictions with landmark observations to propagate
the state and covariance matrices at each time step. The state vector includes
the position, velocity, and orientation of the navigating vehicle, as well as the 2D
coordinates of landmarks around the vehicle. State predictions are achieved via an
Inertial Navigation System (INS) and detection and localization of landmarks are
obtained via a stereo camera. VisSLAM is comprised of three fundamental building
blocks; namely, the Inertial Navigation System (INS), the Computer Vision (CV)
System, and the SLAM system.
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The INS system is responsible for predicting the state of the robot at each SLAM
predictive iteration. The INS uses a low-cost strapdown Inertial Measurement Unit
(IMU) to measure the linear accelerations and angular velocities of the moving
platform and subsequently predict the motion of the vehicle. Care must be taken
to calibrate the IMU before navigation commences to avoid detrimental effects that
the biases of an IMU have on its predictive capabilities.

The CV system is responsible for two independent tasks: the first task is to
perform Environment Recognition (ER) before SLAM commences in order to insure
that the robot’s environment is indeed that of an outdoor park. Future research
could involve performing ER online during SLAM to give the vehicle dynamic
feedback of its instantaneous milieu. ER is implemented in a holistic fashion, based
on the spectral composition of each image. The details of the ER system are
presented in Chapter 4. The second task of the CV system is to detect natural
objects for the sake of using them as landmarks for SLAM. The type of landmarks
to use is defined by the context of the scene; in this work the context is that
of a park and tree trunks are the most appropriate type of natural landmarks
for such as setting. Tree detection is performed by segmenting images, using a
mixture of brightness and texture cues, into symmetric and continuous lines and
grouping these lines into potential trees. Landmarks are initialized into the SLAM
map based on the quality of the depth map at the landmark positions. Trees
that are within the confidence range of the stereo camera (set to 7.48 meters in
Section 4.5) are immediately initialized into the SLAM state and covariance matrix.
Landmarks which are outside the range of the stereo camera are still detected and
their bearing to the camera is recorded. All initialized landmarks are compiled
in a database along with their corresponding coordinates. Each tree trunk that
is sighted in subsequent images is first tested for a match against all initialized
trees in the compiled database. If a match is successful, the difference between
bearing observation of the landmark and the predicted bearing observation (a metric
called Innovation) is used to update the vehicle pose and landmark position. Trees
are matched and recognized via a system which compares Scale Invariant Feature
Transform (SIFT) features within the boundaries of the query tree to SIFT features
corresponding to model tree trunks. If the observed tree does not successfully match
any trees in the database, and it is within the confidence range of the stereo system,
an attempt is made to initialize it as a new landmark for the SLAM map.

The prediction-update loop continues until the robot performs an entire cycle
inside the test site and returns to its starting point. The ability of the system to
recognize that a loop has ended and that it is back at its starting point is known
as loop closure.
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Figure 1.6: VisSLAM system architecture. Environment recognition is first con-
ducted to determine the context and type of landmarks to track. An EKF is used
to integrate dead-reckoning information with observations of landmarks. Dead-
reckoning is done via an IMU. Detection and localization of landmarks is done via
a stereo camera.
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1.3.3 Challenges

The challenges facing VisSLAM are numerous including ground truth establish-
ment, tree detection, tree recognition, tree initialization, and real-time issues.

Ground truth. VisSLAM performance is established by comparing its results
to ground truth, which includes the position of landmarks and the position and
heading of the vehicle during its complete journey. The traditional approach used
by surveyors for fixing the coordinates of an object outdoors is to position oneself at
the desired location, while holding a hand held Global Positioning System (GPS),
and recording the longitude and latitude at that position. This approach is not
possible for locating trees since they exhibit dense foliage which causes faulty GPS
readings due to the deflection of the incoming GPS electromagnetic signal by the
overhead foliage.

Tree detection. Object recognition has received extensive attention in the Com-
puter Vision community for several decades and remains far from being a solved
problem. Furthermore, none of these systems have attempted to segment natural
features such as trees from background foliage. Trees are natural objects which are
conventionally considered as part of the background in images. Trees share similar
brightness and texture patterns as their surrounding background, which makes it
difficult to place thresholds for segmentation. These difficulties are compounded by
the issue that most trees also change drastically in appearance between seasons.

Tree recognition. In order for SLAM to succeed, it must be capable of recog-
nizing the landmark in order to calculate an innovation based on the saved state of
this landmark. Even if the CV system successfully detects the presence of a tree,
there is no guarantee that it will successfully identify which of these trees it is.
Object recognition is a very complex issue in Computer Vision which is an open
problem as of yet.

Tree initialization. Tree initialization signifies calculating the coordinates of
a tree and adding these coordinated with their corresponding covariance into the
SLAM state and covariance. The coordinates of a landmark to a camera are directly
related to the depth of the landmark to the camera. Depth can be calculated using
stereo vision if multiple cameras are available or by calculated depth from two
bearing readings if only a single camera is available.
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Real time issues. The largest challenge facing SLAM systems in general is their
real-time requirements. Although it is very appealing to perform VisSLAM in real-
time, this constraint is relaxed here since the main concern is functionality of the
system. Real-time issues can be dealt with in future work.

1.4 Principal contributions

The impact of the proposed research is twofold: first, to the Computer Vision
community, detection and recognition of natural objects in cluttered outdoor envi-
ronments, and secondly to the SLAM community, the application of the Computer
Vision system to track natural landmarks for SLAM. A system is proposed which
is original and unique due to the following contributions

1. VisSLAM presents a Computer Vision system that segments trees from back-
ground clutter. Images are segmented into quasi-vertical lines which are sub-
sequently grouped into trees based on symmetry, continuity and minimization
of image entropy. Trees are recognized by matching high level primitives ex-
tracted from the query tree to those features corresponding to model trees.
VisSLAM also contributes to the field of Computer Vision by introducing an
environment recognition system built on an Artificial Neural Network (ANN),
which uses the holistic spectral content of images to predict the environmental
context.

2. VisSLAM presents an INS system specifically designed for land-based navi-
gation. Experimental analysis of a approximate IMU calibration method is
performed and the results compared to real calibration results. Two theo-
ries from the literature of non-holonomic constraints are implemented and
evaluated. While the first is refuted due to shortcomings in the method, the
second, which is based on and EKF, is proved to be successful.

3. Another major contribution is the integration of different technologies into an
operational land-based Vision-Inertial SLAM system which is tested on real
data from a navigation run in an outdoor park. The VisSLAM Computer
Vision system including landmark detection, recognition, and initialization
succeeds at bounding the INS errors first in a localization scenario and then
in a full localization and mapping scenario.

4. The experimental part of this thesis puts forward a methodology for establish-
ing ground truth for Vision SLAM systems and makes available a database
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of synchronized IMU, Images and GPS data. This database constitutes the
infrastructure for a benchmark where past and future Vision SLAM systems
can be compared.

1.5 Thesis overview

This chapter presents a brief synopsis on robot localization and mapping with a
specific focus on SLAM. The current challenges facing SLAM are dimensionality
explosion and issues related to landmark detection, landmark matching and data
association. The focus of research in this thesis are landmark issues, which are
addressed by developing a SLAM system, named VisSLAM, which uses a camera
to detect, recognize landmarks, and initialize landmarks; and an IMU to predict the
robot motion at each time step. An EKF is used to integrate dead-reckoning state
vector estimates with camera observations, yielding corrected state and covariance
matrices at each time step. The remainder of this thesis is structured as follows.

Chapter 2 reviews the state of the art of Vision SLAM, first by describing the
different methodologies of implementing Vision SLAM, and then by analyzing
the various contributions to date in Vision SLAM.

Chapter 3 deals with the first of VisSLAM’s building blocks, the dead-reckoning
system, which predicts vehicle motion via an Inertial Measurement Unit
(IMU). The system is tested on an IMU dataset corresponding to a real ex-
perimental run.

Chapter 4 explains the fundamental building block of VisSLAM, which is the
Computer Vision system, including environment recognition, landmark repre-
sentation, segmentation, and detection, landmark initialization and matching.
The CV system is tested on a database of images of trees.

Chapter 5 demonstrates the developed inertial and Computer Vision systems in
the context of SLAM by integrating them into a working Vision-Inertial
SLAM system named VisSLAM. VisSLAM is tested on a data sequence
recorded during a run in an outdoor area using tree trunks as landmarks.
Three tests are performed to evaluate each of the CV systems (i.e., tree de-
tection, tree recognition, and the tree initialization).

Chapter 6 summarizes the contributions of this thesis and introduces the focus
of future research.
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Chapter 2

Background

2.1 Introduction

There is growing interest in the SLAM community to use vision rather than laser or
sonar as the robot’s exteroceptive sensory modality. Cameras are passive sensors,
which are virtually jam proof. They are light, cheap, and consume relatively low
power. Furthermore, cameras transfer a large bandwidth of information, which
if properly managed can be used to detect landmarks in cluttered environments,
where laser or sonar fails.

Vision SLAM has been researched in the Computer Vision community since the
early eighties under a variant name called Structure from Motion (SfM) [54, 55,
56, 57, 58]. SfM refers to the problem of recovering the 3D structure of a scene
and the motion of a camera inside it by analyzing a sequence of images taken by
the camera of this scene. In SfM, the camera is used to both estimate its ego-
motion and detect the position of surrounding landmarks. In contrast, many of the
Vision SLAM systems developed to date use some other form of sensor (i.e., wheel
encoder or IMU) for dead-reckoning purposes and use the camera exclusively to
detect landmarks. The main differences between SfM and Vision SLAM are related
to loop closure requirements and processing time. In Vision SLAM, a global map
of the vehicle setting must be constructed using landmarks that the system detects
during navigation. Once a landmark is initialized into the SLAM map, its position
is continuously updated, such that when it is revisited, the system can re-predict
its location with high accuracy. Drift occurs when the position of a landmark is
predicted at an offset from its original estimate. In SfM, there is no need for such a
global map; rather, SfM produces only local 3D information which is not preserved
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when the vehicle navigates away from the scene. Therefore, when a previously
viewed scene is traversed the SfM system does not recognize it and treats it as a new
environment. Vision SLAM requires the detection and recognition of landmarks in
real-time using Computer Vision; a task which creates an inherent challenge since
object detection algorithms in Computer Vision are far from becoming a solved
problem and yet further from being run in real-time. SfM does not necessitate any
real-time processing and can be run in an off-line scenario using a batch process.

In Vision SLAM implementation to date, landmarks have either been real ob-
jects, or image saliencies (known as Interest Points) that do not necessarily possess
any semantic grounding, but are distinctive enough to be repetitively detected and
recognized. The advantage of using object-based landmarks is that they generate
sparse maps that are not susceptible to dimensionality explosion issues which are
common in Interest-Point based systems. The intent of this chapter is to provide
the background for Vision SLAM methodologies and then to present the state of
the art in Vision SLAM systems. More specifically, in the next four sections, a
Vision SLAM taxonomy is presented which is based on four criteria: (1) the type
of the landmark (i.e., Interest-Point-based or object-based), (2) the type of sensor
(i.e., range-bearing or bearing-only), (3)the setting (i.e., indoor or outdoor), and
(4) the type of dead-reckoning sensor (i.e., IMU or wheel encoder). Section 2.6
then presents the state of the art in Vision SLAM, segregating system based on the
forgoing four criteria.

2.2 Type of landmark

Vision SLAM systems rely on the camera to capture images of the surrounding
scene and on systems developed in Computer Vision to detect and recognize land-
marks in these images. The camera’s ability to detect landmarks is dependent on
the complexity in shape, color and texture of the sought landmarks, and on the
sophistication of the visual object detection system. Unfortunately, the state of
the art of object detection and recognition in Computer Vision is far from being
applicable to generic objects in any setting. In light of this weakness, developers of
Vision SLAM systems use easily detectable landmarks such as image saliencies that
do not necessarily correspond to objects but that can be quickly detected, or real
objects which are highly salient. The former type of landmarks are referred to as
Interest-Point-based or IP-based, while the latter are referred to as object-based.

IP-based landmarks include features such as the Scale Invariant Feature Trans-
form (SIFT) features [59], moment invariants [60], differential invariants [61], com-
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plex filters [62], Steerable filters [63], Harris Corners (HC) [64], Scale Adaptive
Harris Corners (SAHC) [65], edges [66], or Salient Normalized Intensity Regions
(SNIR) [67]. SIFT features [59] are the most stable of the IP types [68], and are in-
variant under changes in camera viewpoint and variable lighting conditions. These
invariant properties ascertain dependable repeatability (i.e., detecting a previously
viewed landmark) and good data association (i.e., recognizing a previously viewed
landmark and maintaining the correspondence between a measurement and that
landmark). The second best IP type is based on the Steerable filter [63], which
produces stable results but is computationally expensive. Corners and intensity
based regions are fast to compute but are not as robust as SIFT or the Steerable
filter. Of the possible IP types, only SIFT, HC, SAHC, SNIR, and edges have
been used as landmarks in Vision SLAM implementations. The justification for
these choices is a compromise between IP robustness and the speed of detecting the
IP. Landmarks represented by IPs can either be the IPs themselves, combinations
of IPs into stable clusters which do not necessarily correspond to real objects, or
combinations of IPs that represent objects.

Object-based landmarks are either artificial man-made landmarks or natural
landmarks. The former type have been traditionally selected for Vision SLAM
because they are relatively easy to detect due to their predictable and structured
properties. Artificial beacons are chosen that are salient in color, texture, shape
and size. The disadvantage of using these man-made objects for SLAM is the
cost and time of setting up the test site with a large enough number of them to
satisfy SLAM. Natural features do not require any site preparation but are difficult
to detect because they exhibit large variance in their properties. Nevertheless, if
natural features with relatively structured shapes are used (e.g ., tree trunks) it is
postulated that they can be detected at rates that satisfy SLAM. In order for SLAM
to succeed, the system must be capable of repeatedly detecting the same landmarks
and associating a previously-viewed landmark to new observations, regardless of the
lighting conditions and viewing direction of the camera (i.e., scale and orientation
of the landmark); a detailed account of these issues is differed to Chapter 4 that
deals with object recognition in Computer Vision.

Table 2.1 compares the advantages and disadvantages of IP-based verses Object-
based landmarks. The entries in the table are labeled as true ‘t’, false ‘f ’, inclined
to be true ‘t̂’, and inclined to be false ‘f̂ ’. Most of the IP-based landmarks can be
quickly detected but are prone to dimensionality explosion issues, some are invariant
to camera viewing direction (e.g ., SIFT) and others are not (e.g ., edges, Harris
corners). Most of the IP-based SLAM systems generate dense occupancy maps
comprising of landmarks with no underlying semantic significance. Researchers in
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IP-based SLAM deal with the issue of denseness by either reducing the number of
IPs by selecting the top ‘n’ most salient of them in each image [40], or by gating
the IPs to a certain size [37, 35, 36].

Landmark Type
IP-based Object-based

Artificial Natural

Fast Detection t̂ f̂ f̂

Scale Invariant t̂ f̂ f̂
Small # landmarks f t t
Dimensionality Explosion t̂ f f
Model Required f t t
Sparse Map f t t
Dense Map t f f
Infrastructure Preparation f t f

Table 2.1: Comparison of the advantages and disadvantages of IP-based verses
object-based landmarks for SLAM. The entries in the table are rated as t (true), f
(false), t̂ (inclined to be true), and f̂ (inclined to be false).

Object-based SLAM systems generate sparse maps, comprising of landmarks
that are real objects. The implementation time of these systems is at par with that
of object detection routines which are generally slower than IP-based detection.
Object-based SLAM requires the additional work of setting up a model for each
type of landmark but avoids dimensionality explosion issues due to the relatively
low number of landmarks that are tracked. Using artificial landmarks for SLAM is
costly and time consuming because of the need to set up the site with a large enough
number of beacons to satisfy SLAM. Natural landmarks are readily available inside
their environment but are difficult to model, detect, and recognize due to a large
variance in their shape, size, color, and texture.

2.3 Type of vision sensor

Vision SLAM systems are developed differently based on the number of cameras
that are used. If more than one camera is available (stereo or trinocular), the vision
system is capable of reporting the bearing as well as the depth (i.e., via stereopsis)
of surrounding landmarks; this is known as Range-Bearing Vision SLAM. If, on
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the other hand, only one camera is available, the vision system looses its depth
perception but retains its ability to determine the relative bearing of a landmark;
such systems are known as Bearing-only (B-only) Vision SLAM. B-only Vision
SLAM is an idea that stems from bearing-only tracking [69, 70, 71] but is easier
to implement since it only requires the estimation of position, whereas bearing-
only tracking also estimates the velocity of the vehicle. Because of their inability
to infer depth, B-only sensors can not initiate a landmark into the SLAM map
(i.e., determine its coordinates) from one sighting; rather, at least two readings are
required from different viewpoints to subsequently calculate the landmark position.
These two positions must be separated by a large enough baseline in order to avoid
ill-conditioned situations (Figure 2.1). The 2D position of a landmark is located at
the intersection of two lines, drawn from the robot position to that of the landmark
at different times i and j [51]; these lines are expressed analytically as (2.1a) and
(2.1b) respectively.

yL − yV i = tan(αi + βi)(xL − xV i) (2.1a)

yL − yV j = tan(αj + βj)(xL − xV j) (2.1b)

where xV i, yV i and xV j, yV j are the coordinates of the vehicle at time i and j, α is the
bearing of the vehicle in the global coordinate frame and β is the landmark bearing
in the vehicle coordinate frame. Manipulating (2.1a) and (2.1b) and rearranging
their components, the intersection of the lines determines the 2D position of the
landmark (xL, yL) expressed as

[
xL
yL

]
=


xvisicj−xvjsjci+(yvj−yvi)cicj

sicj−sjci
yvisicj−yvjsjci+(xvj−xvi)cicj

sicj−sjci

 (2.2)

where

s = sin(α+ β)

c = cos(α+ β)

Research in B-only Vision SLAM [34] reports that (2.2) is ill-conditioned for
bearing sightings separated by an angle θ less than 40 degrees. As a result of this
minimum baseline criterion, most B-only SLAM systems involve a wait period from
the time a landmark is first observed until a sufficient baseline is insured before it
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Figure 2.1: Landmark initialization requires a minimum bearing. Θ is the angle
between different sightings, α is the bearing of the vehicle in the global coordinate
frame OG, β is the bearing of the landmark in the vehicle coordinate frame OV , b is
the baseline between sightings, and t is the time at which the sightings are taken.

may initialized into the SLAM map. These delayed systems are known as delayed-
initialization B-only SLAM [42, 34, 51, 49, 50, 45]. In undelayed initialization B-
only SLAM systems [36, 40, 41, 50], landmarks are initialized into the SLAM map
in real-time by hypothesizing multiple depths for each landmark and subsequently
pruning bad hypothesis from the map based on consequent observations. There are
several flavors of delayed and undelayed B-only Vision SLAM systems, which are
presented in Sections 2.6.3 and 2.6.4.

Table 2.2 presents the differences between R-B and B-only SLAM with their cor-
responding advantages and disadvantages. In R-B Vision SLAM the visual system
determines the depth and bearing of the landmark from one sighting. Further-
more, in R-B systems the depth of a landmark can be used as an additional cue
for data-association; landmarks are matched based on their characteristic features
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and on their 3D position relative to the camera. In B-only SLAM, the landmarks
can be matched based on their characteristic properties or on bearing triplets [51]
and the depth of each landmark is subsequently inferred. B-only SLAM is more
processor intensive than R-B SLAM because of the delayed initialization opera-
tion, which involves keeping track and correlating the different poses of the robot
and landmarks until conditions are appropriate for initialization. The advantage
of B-only systems is primarily flexibility because a single camera is sufficient to
implement SLAM. Furthermore, a single camera does not have to worry about loss
of calibration (such as in stereo camera) caused by physical abuse of the camera.

Sensor Type
Range-Bearing Bearing-only

Delayed Undelayed
Initialize from 1 sighting t f f
Data association using depth t f f
A single camera f t t
Requires 2 or more cameras t f f

Processor intensive f̂ t t

Table 2.2: Range-bearing verses bearing-only sensors. The entries in the table are
rated as t (true), f (false), t̂ (inclined to be true), and f̂ (inclined to be false).

2.4 Vision SLAM setting

The third criterion by which Vision SLAM systems are classified is their environ-
mental setting, which affects both the prevailing lighting conditions and the nature
of the terrain for the navigating vehicle.

Cameras are sensitive to the lighting conditions of the scene they are viewing.
In indoor settings, lighting conditions can be made fairly homogenous regardless
of the time of the day; in outdoor settings, objects reflect differently throughout
the day. Furthermore, shading can cause detrimental effects on a segmentation
system, suggesting boundaries that do not correspond to true separations of physical
regions. Objects viewed in homogenous lighting conditions are more likely to be
repeatedly detected than under changing lighting conditions.

Terrain conditions are a second matter of concern when considering different
environments. In indoor spaces, the ground is relatively flat and slippage can be
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avoided. Moreover, a camera that is fixed to a vehicle remains approximately
at the same height, thereby reducing the viewing direction parameters from six
(pitch, roll, yaw, x, y, and z) to five (i.e., z is constant). Outdoor SLAM is per-
formed in either an aerial, underwater, or land-based setting. In aerial SLAM
[31, 48, 45, 34], range capabilities of the vision system are an issue and therefore
promote using B-only SLAM rather than R-B SLAM. In underwater SLAM [72], is-
sues including unstructured terrain, low-overlap imagery, and a moving light source
must be considered. In outdoor navigation, dead-reckoning via wheel encoders is
either not possible (aerial, underwater) or is prone to severe errors (on land due to
slippage). In such environments, an Inertial Measurement Unit (IMU) or camera
is used for ego-motion estimation.

Table 2.3 re-iterates the advantages and disadvantages of indoor verses outdoor
settings in tabular form.

Setting
Indoor Outdoor

Land Aerial Underwater
Homogenous light t f f f

Shading issues f̂ t t t

Moving light source f f̂ f̂ t̂
low-overlap imagery f f f t̂

Uneven terrain f̂ t̂ t t

Unstructured terrain f̂ t t t

Range issues f̂ t̂ t t̂

Table 2.3: Range-Bearing verses Bearing-only Vision SLAM. The entries in the
table are rated as t (true), f (false), t̂ (inclined to be true), and f̂ (inclined to be
false).

2.5 Type of dead-reckoning sensor

A forth and final criterion by which Vision SLAM systems are classified is the
type of dead-reckoning sensor that is used. Different environments constrain the
navigating vehicle to use different types of ego-motion sensors. In indoor settings,
where slippage is rare and the ground is relatively flat, wheel encoders are used.
In outdoor aerial and underwater settings, wheel encoders are not possible, and
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IMUs are used instead. IMUs have traditionally not been used for land navigation
due to their excessive cost; however, with the recent commercialization of low cost
strapdown IMUs, such sensors are being considered for land navigation. IMUs
are not affected by slippage, as in the case of wheel encoders, but require precise
pre-calibration in order to reduce the detrimental effects of IMU sensor biases.

Cameras can also be used for dead-reckoning, akin to the method of Structure
from Motion (SfM) [57]. In such systems care must be taken if a Kalman filter is
used to merge ego-motion estimates and observations of landmarks. Kalman filters
require that the two sources of information that it fuses are statistically indepen-
dent. If the camera is used to both predict the motion of the vehicle and update
its position by detecting landmark, both sources of information are correlated since
they both come from the same camera; such situations can lead to failure of the
filter if care is not taken to compensate for these effects. One possible remedy is to
use different landmarks for motion prediction than those used to build the SLAM
map. The comparison between dead-reckoning sensors is shown in Table 2.4.

Dead-Reckoning Sensor
Encoder IMU Camera

Slippage Issues t̂ f f

Expensive f̂ t̂ f̂
Correlated to Kalman Filter f f t

Table 2.4: Type of dead-reckoning sensor, encoder-based verses IMU-based verses
camera-based. The entries in the table are rated as t (true), f (false), t̂ (inclined
to be true), and f̂ (inclined to be false).

2.6 State of the art

In the following sections, the most significant Vision SLAM contributions to date
are presented. Systems are grouped based on the camera used (range-bearing or
bearing-only) and then into subgroups based on the experimental setting (indoor
or outdoor). The critical analysis of each system is focused on highlighting the
type of landmark that each system uses. Furthermore, systems are evaluated based
on their aptitude to achieve SLAM in an large-scale outdoor setting such as that
of VisSLAM. The expected outcome of this section is to show that a new Vision
SLAM system based on using natural landmarks is pioneering work that provides an
attractive solution to large-scale outdoor Vision SLAM. In this context, the author
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does not attempt to highlight the contributions of each of the proposed system;
nevertheless, information that is found necessary is included for additional clarity.

2.6.1 Range-bearing indoor

Davison and Murray [37] present the first successful real-time indoor implemen-
tation of R-B Vision SLAM using active stereo vision to detect and track natu-
rally occurring features. Landmarks that are used for SLAM are interest regions,
detected by finding the principal directions inside patches of the high frequency
components of the tested images, akin to the method of Shi and Tomasi [67] but
differs in the fact that the tested interest regions are 15 by 15 rather than 5 by 5
pixel regions. Once initialized, these patches are tracked with an active stereo head
for several frames to insure that they are stable landmarks. SLAM is executed in
the framework of an Extended Kalman Filter. During navigation, a measure of
attractiveness for each landmark is calculated based on the amount of information
the robot would gain from observing it. The camera is then directed towards land-
marks that exhibit the highest attractiveness. Efficient map management decide
which landmarks to keep, which to add, and which to prune. Depth is inferred by
stereopsis via a stereo camera pair. Experiments are done in an indoor corridor
6 meters long following a straight path and moving forwards and back along this
path. Images are processed at 5 frames per second. No information is provided
regarding the resolution of the captured images, and to the linear and angular ve-
locities of the navigating vehicle. Davison and Kita [35] build on their previous
work [37] to conduct SLAM using vision on uneven terrain. The contribution of
this paper resides in conducting SLAM in 3D, where random slope variations of the
terrain are allowed, although inclinations higher than 10◦ are not attempted. The
same interest regions as above are used as landmarks and the experimental site is
a simulated 2 by 2 meter square indoor area. No information is provided regarding
the resolution of the captured images, the frame rate, and the linear and angular
velocity of the navigating vehicle. The robustness and validity of this systems re-
quires more extreme terrain variations. These systems can not be applied in an
outdoor unstructured setting such as that of VisSLAM, because of the following
three reasons. Firstly, the landmarks that are used are not scale invariant, which
makes it difficult to recognize them from different depths. Secondly, it is observed
that the systems are not tested under significant changes in lighting conditions and
viewing directions such as in large outdoor settings. Thirdly, it is expected that the
method would suffer from dimensionality issues when applied in large scale settings,
where a large number of landmarks have to be tracked.
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Se, Lowe, and Little [43] use Scale Invariant Feature Transform (SIFT) local fea-
tures as landmarks to conduct vision SLAM in an indoor environment. Each SIFT
feature has associated with it a vector representing the coordinates, scale, orienta-
tion, and disparity (or depth) of the image at the feature location. Dead-reckoning
information is used to estimate the robot motion and thereby predict the location of
tracked SIFT features in the images of the environment during navigation. Wheel
encoders are used for dead-reckoning and a triclops camera arrangement is used
to estimate landmark depth. Features are matched according to position, scale,
orientation, and disparity. Using the matched SIFT features, a least-squares pro-
cedure corrects the camera ego-motion, thereby rectifying the estimate of the 3D
coordinates of the SIFT features. SIFT features are screened according to several
criteria before using them as landmarks. Appropriate map management is con-
ducted to add, prune, and keep these landmarks as the robot navigates. The effect
of viewpoint variance is accounted for by keeping track of the view direction of each
landmark. The experimental setting is an indoor office, where the robot travels in
a loop approximately 10 meters long on a flat surface. The image resolution is 320
by 240, the linear and angular velocities of the robot are 0.4 m/s and 10◦/s respec-
tively. The loop closure results are 3.9cm in position and 2.1◦ in bearing. SLAM
is successfully implemented in this paper using SIFT features, which prove to be
stable landmarks which satisfy repeatability (i.e., same landmarks detected from
different viewpoints) and data association (i.e., associating a feature in a 2D image
to a saved 3D landmark). The main criticism here is the dimensionality issue, one
important requirement for SLAM is that the generated map be sparse, allowing
tractable map management. The experimental setting the authors use is too small
and constrained to permit generalization of its results to large unstructured envi-
ronments, exhibiting non-uniform lighting conditions. In outdoor environment, Se
et al.’s method would detect a large number of SIFT features, requiring some form
of pruning to avoid the dreaded dimensionality explosion problem of SLAM.

Panzieri, Pascucci, and Ulivi [44] present a vision-based SLAM implementation
in an indoor environment using trinocular vision. SLAM is implemented in the
framework of an Extended Kalman Filter (EKF). The environmental setting is fairly
constrained and consists of an office-like setting, where planar motion is assumed.
Artificial light sources located in the ceiling, above the robot, are used as landmarks.
Image segmentation, grouping and recognition is performed to recognize and locate
landmarks. Since the light sources are at a fixed vertical location, a single camera
is used to locate them, using a homography to map the 3D landmark locations
to their respective image positions. The experimental setting is a 3 by 4.5 meter
area in an indoor office-like setting. The resolution of the images is 352 by 288.
No information is provided regarding the frame rate, and the linear and angular
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velocity of the navigating vehicle. The loop closure errors are shown graphically but
are not quantified. Although the authors show acceptable results for this setting,
their system can not be applied in more realistic environments such as that of
VisSLAM, which exhibit varying lighting conditions and camera viewpoint as well
as detecting natural landmarks that vary substantially in size and shape.

In his thesis dissertation, Jung [38] presents an EKF Vision SLAM system which
uses a stereo camera as its only onboard sensor to predict the camera motion and
detect landmarks near the camera. Vehicle ego-motion is estimated by matching 3D
points between consecutive frames [73, 74]. Landmarks are groups of local interest
points, which are invariant to scale, viewpoint, and lighting conditions. Interest
Points (IPs) are scale adaptive Harris corners [64, 65] and are grouped based on their
physical proximity. Landmarks, represented by IP groups, are matched between
images by comparing how similar they are. A similarity metric for IP groups is
developed based upon the geometry of IPs inside each group and the similarity of
the IPs themselves. Once a reliable group match is established the predicted image
transformation are used to focus the search space of candidate group matches,
thereby reducing the computational requirements. Data association is successful
under changes in camera viewpoint and lighting conditions. Since prediction and
observation are based on the same sensor (i.e., the stereo camera) special care is
taken to avoid violating the independence condition of the Kalman filter. This is
achieved by minimizing calibration errors of the stereo system and by selecting IP
for dead-reckoning that are different than those for landmarks. The main concern
here is the extreme dependence of the SLAM system on the stereo rig. If the
relative position of one camera is accidently displaced with respect to the other,
which is highly probable in outdoor settings, the Kalman Filter would fail. This
method solves the problem of dimensionality explosion, which is so common in IP
based landmarks, by grouping IPs together and using these groups as landmarks
rather than the IPs themselves. As a result the number of tracked landmarks is
reduced to a manageable number. Jung implements his system in three settings:
indoor, outdoor off-road, and outdoor aerial. The experimental setting is a 3.5 by
3.5 square indoor office setting. Image resolution is 512 by 384. The frame rate is
1.1fps. No information is provided regarding the linear and angular velocity of the
navigating vehicle. This system produces very good results for all three settings;
however, its major shortcoming is the requirement for a relatively large baseline
between the cameras of the stereo rig. Figure 2.2 displays the stereo geometry,
where depth of a 3D point P is calculated based on the disparity in coordinates of
the images IL and IR of point P on the image planes of the left and right cameras
respectively. The precision of the three dimensional points which are determined
from image points is calculated according to the following equations [75]:
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z =
b · f
p

(2.3)

where z is the depth, b is the camera baseline, f is the camera focal length in pixels,
and p is the parallax or disparity. Differentiating this equation yields

zdp+ pdz = fdb+ bdf (2.4)

The relation for the relative standard deviation squared is then expressed as [75]:

(
σz
z

)2 = (
σb
b

)2 + (
σf
f

)2 + (
σp
p

)2 (2.5)

where σ stands for standard deviation and its inverse is the precision. In the case
of perfect calibration and orientation, σb and σf can be ignored and the relative
standard deviation becomes

σz
z

=
σp
p

(2.6)

Subbing p = f ·b
z into (2.6) yields

σz
z

=
z

f

σp
b

=⇒ Precision =
1

σz
=

f · b
z2 · σp

(2.7)

Equation (2.7) states that, given a calibrated stereo rig with fixed focal length
and baseline, the precision of three dimensional points obtained via stereopsis is
inversely proportional to the depth squared, and the standard deviation of the dis-
parity values which is directly related to the precision of the camera. Therefore,
one can obtain more precise depth values by using cameras with higher precision
(i.e., lower σz) but comes at the cost of more expensive hardware and high pro-
cessing requirements (i.e., larger images). Empirical tests have shown, that for a
camera with a resolution of 1024x768, baseline to depth ratios less than 1/30 return
inconsistent depth values [38]; which implies that off-the-shelf stereo cameras with
similar resolution, exhibiting a baseline of the order of 10− 15cm return imprecise
depth estimates at distances larger than 4.5 meters. As a result, stereo rigs used
in long range applications are designed with large baselines, where the cameras
are placed far away from each other. When space requirements are an issue, such
configurations are not possible and one has to resort to using a single camera with
bearing-only technology.
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Figure 2.2: Stereo geometry. IL and IR are the images of the point P in the left
(CL) and right (CR) cameras respectively, f is the focal length of the cameras and
2h is the baseline between the two cameras.

2.6.2 Range-bearing outdoor

Fitzgibbons [45] performs both R-B SLAM and B-only SLAM in an outdoor flat
open area using bright white parking dots as landmarks. SLAM is performed on
a utility vehicle, equipped with wheel encoders to predict the vehicle ego motion.
In the R-B SLAM system, the vehicle is fitted with a stereo camera which reports
the range and bearing of landmarks. The landmarks are detected by threshold-
ing images of the scene, and selecting regions that are brightest in these images.
The experimental test site is 60 by 60 meter outdoor flat area. No information
is provided regarding the frame rate, and the linear and angular velocity of the
navigating vehicle. This system could not be applied in the VisSLAM setting for
two reasons. First, no artificial beacons exist in the VisSLAM test site and second,
the wheel encoders would probably suffer from large errors due to slippage in the
outdoor setting. Fitzgibbons’ B-only implementation is described below along with
other B-only systems in Section .

Kim and Sukkarieh [31] demonstrate a Vision SLAM system on an unmanned
aerial vehicle using an inertial sensor for dead-reckoning prediction and a monoc-
ular camera for landmark detection. Landmarks are artificial beacons with known
shapes and sizes, whose 3D positions are determined based on their projected size
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in images collected during navigation of the test site. The experimental setting is a
1200 by 600 meter outdoor area. The aerial vehicle travels at 40 m/s and is capable
of 20◦/s rotation rates. The processing rate is 50fps. The main contribution of this
work is the proof that Visual information is sufficient to bound inertial drift. The
inherent problem of this system is that it relies on artificial beacons as landmarks,
the cost of preparing such an infrastructure would be intractable for large scale
settings.

Jung [38] presents two successful outdoor R-B SLAM implementations, the first
is aerial-based and the second in land-based. The resolution of the images in both
cases is 512 by 384. The aerial test site is 100 by 100 meters and the land-based site
is 16 by 12 meters. The loop closure results for the aerial set up is 212cm in position
and 3.56◦ in bearing. The loop closure results for the land-based experiment is
6.5cm in position and 1.38◦ in bearing. The frame rate is 1.1fps. No information
is provided regarding the linear and angular velocity of the navigating vehicle.

In stereo rigs, care must be taken to prevent any relative motion between the
cameras during navigation to avert the need for re-calibrating the stereo rig. Clearly,
an algorithm capable of using a single camera to locate landmarks is useful. How-
ever, in such systems depth information is lost and an alternate method is used to
infer the 3D position of landmarks. In the next section, the various contributions
of B-only SLAM are discussed.

2.6.3 Bearing-only indoor

Davison [36] performs ego-motion estimation in real-time using a single camera,
using a separate Particle Filter to estimate distance. Once a feature is measured
for the first time, a 3D line ‘L’ is initialized into the map from the estimated camera
position, and heading to infinity along the direction of the feature. Each feature
is then represented by a vector containing the origin of ‘L’ and its unit direction
vector in the world coordinate frame. Then, for each feature, a number of depth
hypotheses is suggested along their respective directions. Davison suggests using
100 depth hypotheses for each feature. As the robot moves to another position,
these hypotheses are tested by projecting them into the image. Each hypothesis
consists of an elliptical search region. Features that match within each ellipse
produce a likelihood for each which are used to adjust the weight of each hypothesis
and used to update is probability of occurrence. As the robot navigates, each
feature’s 3D position hypothesis is updated until its PDF peaks at a consistent
depth value. At that time, the feature is initialized as a landmark in the SLAM map.
Landmarks are local interest regions detected as in the Davison’s previous work [35,

31



37]. Loop closure is not performed here. This SLAM implementation is performed
indoors on a desktop setting, where lighting is almost uniform and the scale of
environment is small; implementing it in an outdoor environment such as ours,
does not seem feasible because of issues related to variable lighting conditions and
poor data association (landmark variance under scale). Furthermore, The number
of landmarks needed for an outdoor SLAM implementation for depth detection
might increase prohibitively in large-scale outdoor settings.

Kwok and Dissanayake [39] implement B-only SLAM on a mobile robot in an
indoor unstructured environment. Their SLAM filter is implemented within the
framework of a particle filter; fusing dead-reckoning data from wheel-encoders with
landmark positions estimated via a monocular camera. The vision system uses
edge features as landmarks. Edge features are not invariant from the standpoint of
scale, viewpoint, and lighting conditions. Data association is achieved via a Nearest
Neighbor approach, by determining the difference between real-life and expected
measurements and thresholding the result against some confidence level in order to
determine the most likely match. If the measurement is below a given threshold,
a landmark is declared matched. Landmarks are ranked according to their edge
height and image quality and only the top 15 landmarks are preserved in order
to avoid dimensionality issues. The robot is steered in a circular path to insure
maximum convergence due to the low Field of View (FOV) of the onboard camera.
A better approach is to mount the camera on a Pan Tilt Unit (PTU) or to use
an omnidirectional camera. The robot is steered in a circular path 2 meters in
diameter. The experimental setting is too small to ascertain the effectiveness of the
method. The system promotes the particle filter SLAM approach which is a more
robust vision module for non-linear cases.

Kwok and Dissanayake [40] present an undelayed initialization B-only SLAM,
where the initial state is approximated as a sum of Gaussians [76, 77] and is added
to the state vector of the Kalman filter. Multiple depth hypothesis are postulated
for each landmark along its line of sight at the time it is first observed. Each of
the hypotheses is integrated into the filter and treated as a separate feature. Bad
hypotheses are subsequently pruned as the vehicle moves around the feature and
only persistent hypotheses are kept. Once a depth hypothesis for a landmark is
validated from several sightings, the landmark is initialized into the SLAM map.
This approach is computationally efficient but suffers from poor data association
because information from observations made before initialization is discarded. The
experimental setting is the same as in their previous work [39]. No information is
reported to the frame rate, linear and angular velocities of the vehicle. The loop
closure performance is shown graphically but is not quantified in numbers.
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Kwok, Dissanayake, and Ha [41] extend their previous work [40] in devising an
efficient initialization procedure for landmarks. Each depth hypothesis has associ-
ated with it an EKF which operates independently and its performance is evaluated
from the likelihood values calculated based on the innovations. A Sequential Ratio
Probability Test (SPRT) [78, 79] is used to decide whether to keep the EKF or
remove it from the EKF bank. The SPRT is a decision-making technique in which
the ratio of innovations from EKFs is used as a decision metric. SPRT allows for
the choice of a delayed decision in addition to acceptance or rejection decisions.
Each time a new landmark is observed the EKF bank is re-initialized and the de-
cision process repeats. The authors present results in a simulated setting, as well
as an indoor setting on an Pioneer robot using a Laser Range Finder (LRF) to
determine bearing-only values to the landmarks. The experimental setting is an
office like environment as in their previous work [39, 40]. Loop closure results are
shown graphically but are not quantified. Although the results are promising, it
remains to investigate this method in a larger unstructured settings, using a camera
to obtain bearing information.

Kwok, Dissanayake, and Ha [41] extend their previous work [40] in devising an
efficient initialization procedure for landmarks. Each depth hypothesis has associ-
ated with it an EKF which operates independently and its performance is evaluated
from the likelihood values calculated based on the innovations. A Sequential Ra-
tio Probability Test (SPRT) [78, 79] is used to decide whether to keep the EKF
or remove it from the EKF bank. The SPRT is a decision-making technique in
which the ratio of innovations from EKFs is used as a decision metric. The authors
present results in a simulated setting, as well as an indoor setting on an Pioneer
robot using a Laser Range Finder (LRF) to determine bearing-only values to the
landmarks.

Deans and Hebert [49] demonstrate a Visual B-only SLAM system. In their
work, landmarks are initialized based on a modified bundle adjustment system.
Bundle adjustment consists of storing all the observations and respective robot
poses and then correct the robot pose and landmark positions by performing a
batch update with all the stored observations. The advantage of this system is that
the estimates are well conditioned, the disadvantage is that the computational com-
plexity of the algorithm scales with the number of observations, make it intractable
for real-time applications.
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2.6.4 Bearing-only outdoor

Lemaire, Lacroix, and Solà [42] introduce their implementation of a B-only SLAM
system which is based on an EKF. Once a landmark is first observed, its 3D location
is modeled as a sum of Gaussians. This landmark is then updated during subsequent
observation until the landmark can be initialized into the SLAM map. The initial
state of the robot is expressed in the robot frame until it is initialized into the SLAM
map and expressed in the global frame. Many features can be added to the initial
map at low computational cost and then the best feature is selected. All landmark
observations and their corresponding robot pose at the time of observation are
saved and used to update the map in a batch process once the landmark is deemed
stable. The experimental tests are done in a simulated environment and landmarks
are corners detected via a Harris corner detector. The indoor test is run on a
circular path 3 meters in diameter. The outdoor test is done on an aerial blimp
along a straight path 120 meters in length. For the indoor setting loop closure
performance is not reported and the outdoor loop closure is not performed.

Bailey [51] presents a B-only SLAM system implemented within an EKF frame-
work. Landmarks are initialized into the SLAM map in a delayed procedure known
as constrained initialization [80], where past vehicle poses are stacked into the
SLAM state-vector, together with associated measures of landmark bearing un-
til the baseline is sufficient to enable Gaussian initialization. At that time, the
saved pose and landmark bearing measurements are used to correct the entire map.
The condition for well-conditioned situations relies on relative entropy between the
analytical PDF of the feature location and its linearized Gaussian approximation,
where a close match implies a near-linear transformation from measurement-space
to feature-space. The primary concern in this method is the validity of the entropy
threshold methodology. Bailey states that the optimum threshold is not constant;
rather, it is dependent on the degree of uncertainty of the analytical PDF. Another
issue is the computational burden inherent in a numerical Monte Carlo solution
such as this one. Finally, the observations that were discarded between the first
and final reading contain information that might add robustness, precision, and
accuracy to the heuristic depth estimating system. The experiments are run in a
simulated 100 by 100 meter outdoor flat area and the landmarks are point features.
Loop closure information is not quantified but the estimated error of one of the
vehicle’s coordinates is plotted verses time.

Bryson and Sukkarieh [34] implement their B-only SLAM on an Unmanned
Aerial Vehicle (UAV) over unstructured, natural environments. They implement
SLAM within an EKF environment, where IMU dead-reckoning information is fused
with camera bearing information. Delayed initialization is used to fix the 3D posi-
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tion of landmarks from several bearing readings obtained from different robot poses.
The bearing of each landmark and the corresponding robot pose are stacked into a
state vector and their corresponding covariances into a dynamic covariance matrix.
In other words, the correlations between the saved states and observations, and
the current vehicle pose are maintained until ill conditions subside. At that time,
the accumulated state and covariance matrices are used to initialize the landmark
and update the entire SLAM map. The authors use a angle threshold of 40 de-
grees between observations to decide when conditions are satisfactory to initialize
a landmark. Data association is achieved via statistical inference by hypothesizing
several feature 3D positions along a line of sight. The mean and covariance of each
hypothesis is calculated in incremental depths from a minimum to a maximum
range. The multi hypothesis distribution is maintained separately from the state
vector and is used only to assist in the data association of un-initialized features.
The Malhalanobis distance between features and landmarks is used to predict the
optimal match. The vision system finds the normalized intensity of each pixel in the
image, applies an intensity threshold and finds which pixels lie above the threshold.
Groups of interconnected pixels whose pixel count and dimensions fall within given
bounds, are treated as image saliencies and initialized as landmarks into the SLAM
map. The system is implemented in an off-line scenario using logged vision and
IMU data and real-time implementation remains to be evaluated.

The bearing-only systems detailed so far suffer from two major drawbacks.
Firstly, they all rely on a criterion to decide when ill-conditions subside, and it
is safe to initialize a landmark. Good generic criteria are not available yet and nav-
igation constraints must be enforced to keep the wait period with reasonable limits.
Secondly, a wait period is necessary until the criteria of initialization are met. It is
clear from this discussion that it would be beneficial that alternate methods which
avoid the initialization criterion and transient period would be beneficial. Such
methods are known as undelayed-initialization and are discussed next.

In the work of Fitzgibbons [45] the B-only system is preceded by an analysis
of the different methodologies for landmark initialization in B-only SLAM; namely,
triangulation-based and particle filter based initialization. In his analysis, the au-
thor concludes that the former method (i.e., triangulation) yields more robust so-
lutions than the latter (i.e., Particle filter). B-only SLAM is then performed in
the same outdoor area using the same utility vehicle as in the R-B case; however,
landmarks are salient colored poles rather than parking dots and the system uses
a panoramic camera to detect the relative bearing of landmarks to the vehicle. In
both R-B and B-only implementations, the author mentions the reduction of un-
certainty of the systems at the end of each run but no mention is given to loop
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closure capabilities and run-time of the systems.

Solà et al. [50] implement an undelayed initialization B-only SLAM that can be
run in real-time using a bearing-only sensor with a narrow Field of View (FOV).
The system works by generating a multi-hypothesis Gaussian map that includes the
entire ray that represents the PDF of the landmark’s position. Prior to initializing a
feature as a landmark, observations of this feature are transferred to each hypothesis
using concepts acquired from the Federated Filter (FF) [81]. However, in using such
an approach there is no guarantee that estimates are consistent due to the updating
of hypotheses that might not exist. The experimental setting is a simulated one
and no mention is given to the type of landmarks that are used.

Table 2.5 encapsulates the foregoing literature review in tabular form. Two
shortcomings are immediately obvious: 1) none of the systems uses natural objects
as landmarks and 2) none of the systems uses an IMU for land-based SLAM. Fur-
thermore, none of the systems except Jung [38] constitutes a serious candidate for
large-scale outdoor SLAM. However, Jung’s system relies on a stereo rig featuring
a long baseline between cameras. Such a system can not be used if physical con-
straints on board the mobile platform are an issue. Moreover, it is interesting to
develop a system that can be implemented on any handheld camera, rather than
having to purchase an expensive stereo rig or having to set up and calibrate your
own stereo system.

2.7 Context of this thesis

A Vision SLAM system named VisSLAM is proposed that aims to use real objects as
landmarks in an outdoor environment. Tree trunks are used for testing the system,
although the developed techniques lend themselves to other situational relevant
landmarks, possessing known structure, color and texture. It is the author’s belief
that environment recognition can offer valuable information that can aid in the
detection of sought landmarks for SLAM. If we submit to the idea of using physical
objects as landmarks, environment recognition can help decide with high probability
what landmarks are available in the current setting to confine the landmark search
space to landmarks that are characteristic of that setting. The long term goal is to
develop a SLAM algorithm capable of operating across multiple environments with
good loop closure.
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Table 2.5: Comparison of Vision SLAM systems. Systems are grouped into Range-
Bearing and Bearing-only systems and then into subgroups based on the setting
(Indoor or Outdoor). Each of the systems is then classified based on three criteria:
(1) the landmark type is either IP-based (I.P.), Object Artificial (O.A.) or Object
Natural (O.N); (2) the dead-reckoning sensor is either a Wheel Encoder(W.E.), an
IMU, or a Camera (C); (3) the objective of each system is either Feasibility (Feas.),
Landmark Initialization (Init.), or Sparseness (Sparse). The landmark initialization
is either Delayed(D) or Undelayed(U). The IMU is applied in either an aerial (A)
or underWater(W) setting.
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2.8 Summary

In this chapter a critical analysis is presented of the state of the art in the field of
Vision SLAM. There are two main research streams in Vision SLAM: range-bearing
and bearing-only. Range-bearing SLAM systems use binocular or trinocular camera
rigs to determine the range and bearing of landmarks in one sighting. Although
efficient, they are limited to vehicles which can accommodate relatively large camera
baselines.

Bearing-only systems use a single camera to report the bearing of a landmark
from several sightings and subsequently calculate depth based on the bearing read-
ings and vehicle motion estimate between sightings. Bearing-only systems provide
flexibility to the vision system but suffer from high computational requirements or
real-time issues due to delay times inherent in initializing a landmark.

Landmarks used for Vision SLAM systems are either based on image saliencies
of artificial landmarks. While the former type of landmarks can suffer from dimen-
sionality issues, the latter type suffers from the inherent overhead of setting up the
SLAM test site. Although difficult to detect, there is a definite advantage in using
the environment’s natural features as landmarks.

A new Vision SLAM system named VisSLAM is proposed, which begins by
recognizing the context of the surrounding environment in order to develop a prior
probability on the type of landmarks to use. Once the context is established, the
SLAM system selects natural features that are commonly found in such settings.
VisSLAM is implemented on tree trunks inside a park environment. VisSLAM
detects, recognizes, and localizes tree trunks using a Computer Vision system de-
tailed in Chapter 4. VisSLAM predicts the ego-motion of a mobile platform using
a Inertial Navigation System (INS) which is introduced in the next Chapter.
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Chapter 3

Land-based inertial navigation
system

3.1 Introduction

The Inertial Navigation System (INS) constitutes the first building block of VisS-
LAM. Inertial navigation is a form of dead-reckoning which predicts the translation
and rotation of a platform by processing readings of linear accelerations and angular
rotations obtained via an Inertial Measurement Unit (IMU) fixed to this platform.
IMUs possess many important advantages for navigation; they are insensitive to
vehicle slip, they are jam proof, and do not radiate anything. IMUs have been tra-
ditionally used by the military (e.g ., aircrafts, submarines, missiles) and not used
elsewhere due to their prohibitive cost; however, with the recent growing interest in
using IMUs in the automotive industry [82] for applications such as vehicle dynamic
control, rollover, airbag deployment, navigation, and chassis control, small sized,
low-cost IMUs are being developed [82, 83, 84, 85] that are not as precise as their
military counterparts but are good enough for robot navigation applications.

IMUs are especially appealing to aerial and underwater robotics, where dead-
reckoning via wheel encoders is not possible. In outdoor land-based navigation,
IMUs are also attractive primarily because they are not affected by slippage, which
is a major source of error in wheel encoders. In fact, there has been recent incorpo-
ration of IMUs on board some commercial wheeled robots [53] to compensate for
dead-reckoning errors incurred by the robot in its wheel encoders. Other benefits
of developing land-based INS, is the application of robotics navigation technologies
to non-wheeled scenarios such as humanoid robotics or as an aid for the visually
impaired.
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Although, it is possible to purchase relatively cheap, out-of-the-box IMUs that
are self-contained, small, and precise [86], these devices are not plug-&-play and
special care must be taken to calibrate them, and to set up appropriate coordinate
systems before using them. Unfortunately, regardless of the calibration that is done,
the best one can achieve is to reduce dead-reckoning errors and not completely
eliminate them, for these errors will grow without bound unless the IMU readings
are supplemented by some external absolute positioning system such as GPS or
they are incorporated into a SLAM framework.

The contributions of the proposed INS system to the inertial navigation commu-
nity are threefold. First, to present a clear and detailed methodology for designing
an INS based on strapdown IMUs. Although there are a myriad of papers in the
literature regarding INS design, very little information is provided regarding those
based on low cost IMUs. Second, this chapter addresses IMU bias effects and eval-
uates an approximate calibration method by comparing its results to those of an
exact method. Third, the effect of non-holonomic constraints on an INS are ana-
lyzed. Specifically, two recently proposed theories for imposing such constraints are
implemented and evaluated. The first theory is contested because a shortcoming
is discovered during its implementation. The second theory, based on enforcing
constraints via an EKF is found effective and is adopted for the VisSLAM INS.

The remainder of this chapter is structured as follows. First, Section 3.2 intro-
duces IMUs and discusses the two types available on the market, along with their
advantages and disadvantages. Section 3.3 discusses the coordinate frames that
are used in the VisSLAM INS. Section 3.4 discusses the biases that are present in
IMUs and presents two methods to account for them. Section 3.5 discusses the non-
holonomic constraints, which can be imposed on land-based INS when no lateral
skidding or slipping occurs. Section 3.6 presents the architecture of the VisSLAM
INS system. In Section 3.7 several experiments are performed to investigate the
INS dead-reckoning capabilities, where shortcomings in inertial-based navigation
promotes the idea of an INS-SLAM navigation system.

3.2 Inertial measurement units

The background information for IMUs is taken from the technical report of Nebot
[87]. Inertial sensors include accelerometers and gyros. Accelerometers report the
linear acceleration of a body in one direction by sensing the value of the inertial force
applied to this body. Gyroscopes determine the rotational velocity of a body in
one direction and are either of the vibratory type or the fiber optic type. Vibratory

40



gyros calculate angular velocity based on the measured coriolis 1 accelerations; fiber
optic gyros calculate angular velocity based on the Sagnac 2 effect.

IMUs are constructed by assembling three mutually orthogonal accelerometers
and three mutually orthogonal gyros in one of two configurations: gimballed or
strapdown. The traditional and most precise IMUs are based on the gimballed
configuration (Figure 3.2), where the platform that carries the accelerometers and
gyros is actively controlled on three mutually orthogonal gimbals, such that the
platform maintains a constant orientation (i.e., pitch, roll, and yaw). Motion of the
vehicle in each direction (x, y, and z) is then obtained by simply integrating the
accelerometer reading in the corresponding directions (ax, ay, and az). Although
precise, these systems are extremely expensive running in the order of tens of thou-
sands of U.S. dollars [83], whereas strapdown IMUs can be purchased at around
two thousand U.S. dollars [86, 84].

In strapdown IMUs, the accelerometers and gyros are fixed to a common frame
whose orientation changes with that of the vehicle. Many manufactures of strap-
down IMUs use Micro Electro Mechanical Systems (MEMS) parts to build very
small systems such as the one shown in Figure 3.1 (Crista IMU by Cloud Cap [86]).
The disadvantage of strapdown systems is the relative complexity of the underly-
ing algorithms used to transform acceleration and rotation rates to position and
bearing and for the necessity to account for biases and gravity effects that must be
removed from the sensor readings before integration. In strapdown IMUs, readings
are indicative of accelerations and rotation rates in a frame attached to the body
(body frame). These values must be expressed in an inertial frame before they are
integrated. The transformations from body to inertial frame are detailed in section
3.3. True acceleration of the vehicle must be separated from external disturbances
including gravity effects, coriolis forces incurred from the rotation of Earth, and
biases (discussed in Section 3.4). In practice, it is impossible to completely remove
all IMU errors, which grow without bound if the system is not augmented by some
external source of information.

1The coriolis acceleration is apparent at a point which is translating on a body which is itself
in rotation.

2The angular velocity is proportional to the phase shift in two waves of light circulating in
opposite direction around a given path.
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Figure 3.2: Gimballed IMU. During navigation the gyroscopes sense any angular
motion in pitch, roll, and yaw, which subsequently activates the relevant torque
motor to maintain the platform at a constant angular orientation. Motion is then
predicted by a straight integration of the accelerometer readings.
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a b

Figure 3.1: (a) Strapdown IMU sold by Cloud Cap [86], (b) sketch of a strapdown
IMU.

3.3 Coordinate frames

Figure 3.3 shows the coordinate frames used in the INS, including navigation (N)
frame, which is a North, East, Down (NED) coordinate frame and the body (B)
frame.

During navigation, transformation from body to Inertial frame is performed
following the Z-Y-X Euler convention, which starts with the body frame coincident
with the navigation frame, followed by a rotation of the body frame about the Ẑb
by an angle ψ, followed by a rotation θ about the current y axis ŶB, followed by a
rotation of an angle φ about the current x axis X̂B. These rotations must occur in
the above order, since rotations are not commutative. The resulting rotation from
body to navigation frame would then be calculated as:

Cn
b = Rz(ψ)Ry(θ)Rx(φ) =

cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

1 0 0
0 cψ −sψ
0 sψ cψ

 (3.1)

Cn
b =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 (3.2)
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Figure 3.3: Coordinate frames used for INS dead-reckoning. Subscripts B and N
stand for the body and navigation frames respectively.

where c and s are the cos and sin of the Euler angles. Transforming a vector (e.g .,
ABx) from the body frame to the navigation frame is done by multiplying ABx by
the direction cosine
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Anx = Cn
b ABx. (3.3)

It is apparent that the Euler angles must be tracked throughout the navigation
process in order to allow for the accelerometer readings to be expressed in the
navigation frame at each iteration. The Euler angles at any time t are calculated
by integrating the respective gyro readings from the previous time step t− 1 until
t and adding the result of each of the three integrals to the Euler angles at time
t− 1. Numerically, this amounts toφtθt

ψt

 =

φt−1

θt−1

ψt−1

 + EN
B

wxwy
wz

 dt (3.4)

where EN
B is the matrix that transforms gyroscope readings into Euler angles

En
b =

1 sφ tan θ cφ tan θ
0 cφ −sφ
0 sφsecθ cφsecθ

 (3.5)

One issue that warrants attention is the determination of the initial Euler angles.
One method to calculate them is to include two pendulum gyros on board the
navigating vehicle to determine the bank and elevation of the unit at standstill.
Alternatively, if such pendulum gyros are not available, one can estimate these
initial Euler angles by correlating the accelerometer readings at standstill to the
known gravitational forces.

θ0 = arcsin(ax/g) (3.6a)

φ0 = arcsin(−ay/(g ∗ cos(θ))), (3.6b)

where ax and ay are the average accelerometer readings (calculated by averaging
accelerometer readings at standstill) in the x and y directions respectively. The re-
maining Euler angle is the heading of the vehicle at startup, which can be estimated
via a compass, via a gyro with enough sensitivity to determine the rotation of the
Earth, or as is done in this work via two consecutive GPS readings at startup,

ψ0 = arctan(
GPSy(t2)−GPSy(t1)

GPSx(t2)−GPSx(t1)
), (3.7)
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where ψ0 is the heading at t0, GPSy and GPSx are the latitude and longitude
readings of the GPS respectively, t1 and t2 are two consecutive time stamps from
the point the vehicle initiates navigation. Determining the correct t1 is important,
for if it is set to a pre-startup time stamp, t1 and t2 would mistakenly represent
random noise in the GPS unit; using the corresponding GPS values at t1 and t2
would therefore result in an erroneous initial heading of the unit. If on the other
hand, t1 and t2 are recorded some time after the correct startup, and the vehicle
moves in a curved trajectory, an erroneous initial heading is recorded. The solution
to this issue is to choose t1 closest to the time the first image is taken; which is
when navigation initiates.

Once the Euler angles are calculated, the new direction cosine matrix Cn
b is

updated by subbing in the new Euler angles into 5.7. The updated Cn
b is then

used to transform the accelerometer readings from the current body frame to the
navigation frame and the velocity and position of the vehicle are calculated as

Vnew = ANdt+ Vold, (3.8)

and

Xnew =
1

2
ANdt

2 + Volddt+Xold (3.9)

The equations presented above in (3.6a) and (3.6b) assume that the accelerom-
eter readings ax and ay include no bias and therefore report true values. In reality,
these readings are corrupted by errors, called biases that must be accounted for
before any integration occurs.

3.4 IMU biases

Linear and angular displacements of an IMU are measured by integrating accelerom-
eter and gyroscopic readings respectively. Biases in the accelerometers and gyros
can introduce artifacts that have devastating effects on the integration process. For
example, if we consider a bias in the angular velocity reading wz, it introduces false
acceleration components in ax and ay which are proportional to the navigation time
cubed (t3nav) [88]. Biases in the gyros are modeled as

θ̇meas = θ̇true + b+ µ, (3.10)

where θ̇meas is the measured gyroscopic rate, θ̇true is the true rate, b is the gyro bias
(assumed independent of time), and µ is the noise in the measurement. Integrating
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(3.10) yields

θmeas = θtrue + bt+

∫
µdt, (3.11)

where θmeas is the integral of the measured gyroscopic rate, θtrue is the true angular
rotation, bt is the angular bias offset which is a linear function of time, and

∫
µdt

is known as random walk (RW), which is proportional to the standard deviation of
gyro noise σµ and square root of navigation time t, expressed as

RW = kσµ
√
t. (3.12)

The biases that are present in accelerometers and gyroscopes include temperature-
dependent bias, turn-on to turn-on bias, cross-axis or inline bias, and scale bias.
Gyroscopes further include acceleration-dependent biases, which cause the gyro-
scope bias to shift based on the sensed accelerations. The exact value of these
biases is different from sensor to sensor and depend on manufacturing imperfec-
tions. For this reason, IMU manufacturers usually report only nominal bias values
as part of their product specifications (Appendix A.1). In order to determine more
precise and unit-specific biases, some manufacturers calibrate each of their units
individually and provide the corresponding calibration file to the customer. This
file contains information regarding cross-axis acceleration and gyroscope biases, as
well as a matrix to deal with gyroscope acceleration bias.

Calibration of an IMU is performed by placing the unit in a controlled envi-
ronment, varying the parameter of interest and measuring the corresponding bias.
There is a strong correlation between temperature and sensor bias; the better the
quality of the sensor the smaller the variability of the bias with temperature and
the more linear the variation of the bias in the temperature range. Temperature-
dependent bias is estimated by keeping the sensor stationary and measuring the
readings of the sensors while varying the temperature. Sensors are also affected by
a hysteresis effect; the bias determined during one temperature range and during
another is different. This is called turn-on to turn-on bias and is measured by
conducting several batch bias calculations and comparing their output. Inline, or
cross-axis biases are caused by internal misalignment of the sensor input axis. Inline
biases of gyros are estimated by placing the gyro on a rate table such that its axis
is perpendicular to that of the rate table. Any measurement that is subsequently
reported by the gyro is due to misalignment. Once these biases are estimated, the
scale biases of the gyros are estimated by aligning the gyro axis with that of the rate
table and comparing gyro readings to those of the input. Acceleration-dependent
gyro biases are estimated by placing the gyro inside a centrifuge machine and com-
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paring the reported gyro readings (minus the previous biases) and the inputs at
different rotation rates (i.e., centrifugal forces are proportional to the square of the
angular velocity). Accelerometer biases are determined in a similar fashion as that
described for gyros.

Nebot [87] presents the aforementioned biases in a more formal manner shown
in (3.13) and (3.14). Gyro bias is a function of a residual bias, linear accelerations,
angular rotation rates and random noise (3.13). The residual bias includes the
temperature-dependent bias and the turn-on to turn-on bias. Accelerometer bias
is a function of residual bias, linear accelerations, and random noise (3.14).

δwx = biasw + biasg

axay
az

 + sfwx +mywy +mzwz + η, (3.13)

δfx = biasf + sfax +myay +mzaz + η (3.14)

where δwx and δfx are the gyro and accelerometer biases respectively. biasw and
biasf are the residual biases for gyros and accelerometers. biasg is the gyro accelera-
tion bias. sf is the scale factor term. m is the mounting and internal misalignments
of the IMU sensors. η is random noise on the sensor signal.

In order to better understand bias and noise, an experiment is performed on a
dataset of IMU readings (See Appendix A.3) recorded during a real experimental
run in an outdoor environment. Gyro readings in the pitch direction are first
integrated without removing any biases. In Figure 3.4a. the integrated gyroscopic
rate about the Y axis (i.e., pitch), is shown. Notice the pronounced error in pitch
in the standstill region(0 to 28s). In this region Pitch should be represented a by
straight line which is approximately horizontal since no rotation rate should exist.
The bias component ‘b’ from (3.10) is represented by the slope of the line in the
standstill region. In Figure 3.4b the as-is data, with uncorrected biases is used to
run the INS algorithm during standstill. Although the vehicle is stationary during
this period, the figure indicates that it is moving from the ‘x’ at the middle towards
the left (bold line). This reconfirms the presence of biases that are detrimental to
the INS performance. In Figure 3.4c the biases are removed from the data sets.
Notice that the previously sloped line is now horizontal, indicating that biases are
removed. The line is not perfectly flat because of the random noise in the system. In
Figure 3.4d the rectified data is used in the INS and the results are much improved.
However, there still exist a drift from the true position due to random noise in the
gyro sensor.

In addition to temperature dependent biases, inline biases, scale biases, and
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turn-on to turn-on biases, accelerometers are susceptible to gravity effects, which
must be accounted for and removed from the accelerometer readings before inte-
grating them. Such errors are dependent on the inclination of the IMU axes with
respect to the gravitational force and are particularly important in land-based nav-
igation where the applied accelerations are comparable to those caused by gravity.
In other words, if the vehicle is pitched at an angle θ, the accelerometer in the
direction of the vehicle falsely reports an acceleration of g ∗ sinθ; for tilt angles in
the order of five to ten degrees, this gravitational error in the forward direction is in
the order of 0.1g to 0.2g which is comparable to those accelerations encountered in
land based navigation. Therefore, any error in the estimated pitch θ can seriously
effect the precision of the predicted forward acceleration.
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Figure 3.4: Effect of gyro bias on the acceleration and dead-reckoning estimate. (a)
Pitch angle throughout the first part of a sample run. The cart is stationary until
approximately 28 seconds. This should be evidenced by a horizontal line in the
Pitch-time graph, rather than a sloped line; indicative of a linear time dependent
bias. (b) INS prediction using the as-is data; although the cart is stationary, the
image shows a severe drift of the cart to the let of the image (bold line). (c)
Pitch after correcting for bias. Notice that the bias has been removed from the
stationary region (horizontal line). (d) Some drift due to random noise still exists
in the system.
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3.4.1 IMU data correction

Two methods are presented here for correcting IMU data. The first method is the
most precise of the two and is applied if the IMU unit has been calibrated and a
resulting calibration file exits. The second method is less precise and is used to
approximate the IMU biases when no calibration information is provided.

Calibration method

In this first method, hereafter referred to as ‘calibration method’, IMU are cal-
ibrated based on the manufacturer instructions [89]. The calibration file that is
supplied by the manufacturer contains four pieces of information, which are used
to post process and subsequently correct data collected by the IMU. These items
include:

1. A cross-axis correction matrix for the Accelerometer data KA.

2. A cross-axis correction matrix for the Gyroscope data KG.

3. A Gyroscope Acceleration Bias matrix KGAB
.

4. A Gyro Gain vector GG.

In the IMU used by VisSLAM, temperature-dependent biases are taken into
account by the software of the IMU manufacturer and do not have to be addressed.
Removing the remaining biases is achieved according to the following calibration
sequence. First, the accelerometer data is corrected by multiplying it by the cross-
axis correction matrix KA: AxAy

Az


true

= KA

AxAy
Az


meas

, (3.15)

whereKA is taken from the calibration file, the subscript true refers to the corrected
accelerations and the subscript meas refers to the as-is measured accelerations from
the IMU.

Once the true acceleration is calculated the gyro acceleration bias is calculated:

GABV olts = KGAB

AxAy
Az


true

, (3.16)
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where GABV olts is the calculated gyro acceleration bias in Volts, Atrue is the true ac-
celeration calculated in (3.15), KGAB is the gyro acceleration matrix taken from the
calibration file. The gyro acceleration bias is then expressed in ◦/s by multiplying
it by the Gyro Gain GABx

GABy

GABz


◦/s

=
1

0.8085
GG

GABx

GABy

GABz


V olts

, (3.17)

where 0.8085 is scaling due to a voltage divider. The gyroscope acceleration bias
causes a shift in the gyroscope cross-axis bias when the system is accelerating.
Therefore, this shift must be accounted for and removed from the measured gyro-
scope readings before correcting for gyroscope cross-axis error.

Gtrue = KG(Gmeas −GAB), (3.18)

where Gtrue is the true gyroscope readings, Gmeas is the as-is measured gyroscope
readings from the gyroscopes, and GAB is the gyro acceleration bias calculated in
(3.17).

As a final corrective measure, the turn-on to turn-on bias is removed by plotting
the gyroscope reading at standstill and removing any offset from zero. Figure 3.5
shows an example of this procedure where the calibrated GyroZ is plotted with
turn-on to turn-on bias included (left) and without the turn-on to turn-on bias
(right). Notice how the average gyro reading in the uncorrected image is around
-0.25 rad/s, whereas the average in the correct one is approximately zero.
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Figure 3.5: Removing turn-on to turn-on bias. In the left image the gyroZ data is
calibrated but the turn-on to turn-on bias is not removed. In the right image the
turn-on to turn-on is removed.

Approximate method

Alternatively, if a calibration file is not available, the biases can be approximated
as suggested by Nebot and Durrant-Whyte [88], in which accelerometer bias is
calculated as follows

abiasx = ameasx − g ∗ sin(elevation) (3.19a)

abiasy = ameasy + g ∗ sin(bank) (3.19b)

abiasz = ameasz − g ∗ (1− cos(elevation) cos(bank)) (3.19c)

where the subscripts bias and meas correspond to the bias and measured accel-
erations respectively. The elevation and bank are the initial elevation and bank
of the vehicle. Nebot and Durrant-Whyte [88] determine elevation and bank by
adding an additional two pendulum gyros to their vehicle. Since the system here
is not equipped with such sensors, the original bank and elevation of the vehicle
are calculated by ignoring these biases (3.20) and assuming that the accelerometer
reading used in 3.6a and 3.6b are true accelerations.

bank = arcsin(sin(φ0) ∗ cos(θ0)) (3.20a)

elev = θ0 (3.20b)
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where φ0 and θ0 are the euler angles averaged at standstill (calculated in (3.6a) and
(3.6b)). This method is error prone because it does not take into account the bias
errors when estimating the initial Euler angles. Nevertheless, in the absence of tilt
and bank sensors it is the only possible alternative. The biases in the gyros are
calculated by estimating the gyro readings at standstill, where any readings from
the gyros are due to their inherent biases and not to any motion.

The effects of using these simplifying assumptions on the INS system are inves-
tigated next.

Comparison of methods

In this section, the two methods discussed above are analyzed and compared by
running them on a data set of IMU readings collected during an experimental run
(See Appendix A.3 for a description of this data set). Both methods are used
to compute the corrected accelerometer and gyroscopes readings and subsequently
plot and compare them in order to understand the predictive capabilities of both.
One would predict that the re-calibration based on actual data has to be at least
as good as the tables provided by the sensor manufacturer. The problem is that
if the system keeps running for a long period of time then continuous adjustment
with the manufacturer table could provide better results.

In Figure 3.6 the gyroscope data about the X, Y, and Z directions are plotted
for both the ‘calibration’ method (in blue) and the ‘approximate’ method (in red).
These graphs show that both methods yield almost identical results (no major
offset of one color over the other). This graph validates the use of the approximate
method for the estimation and removal of gyro bias.

In Figure 3.7, the accelerometer data in the X,Y, and Z directions in the navi-
gation frame are plotted for the two calibration methods. Notice that both method
closely agree for all three methods. Notice how all acceleration are zero at standstill
before the vehicle commences to navigate.
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a b c

Figure 3.6: Comparison of GyroX, GyroY, and GyroZ between the ‘Calibration’
method (in blue) and the ‘approximation’ method (in red). There is strong agree-
ment between the two methods for all three Gyro sensors.

a b c

Figure 3.7: Comparison of AccX, AccY, and AccZ between the ‘Calibration’ method
(in blue) and the ‘approximation’ method (in red). Both methods closely agree for
all three accelerations.

Since the IMU that is used in this work is in fact calibrated and a calibration
file is supplied from the manufacturer, the calibration method is used to remove
biases from the IMU sensors for the remaining of the VisSLAM experiments.
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3.5 Enforcing constraints

In land-based navigation, the INS can be made more robust by enforcing what is
known as non-holonomic constraints, which imply that the navigating vehicle can
move in only one direction at any one time. In other words, if the vehicle is moving
in a forward direction, no lateral movement occurs. A further constraint is that the
vehicle remains in contact with the ground (i.e., no motion in the vertical direction).
Dissanayake et al. [90] introduce two methods to enforce these constraints: (1) the
direct method, and (2) the EKF method.

3.5.1 Direct method

A simple method to enforce non-holonomic constraints is to reformulate the state
transition matrix in function of the distance along the path of the vehicle. The
velocity vector of the vehicle in the navigation frame is aligned with the forward
velocity of the vehicle body (note this direction as ~bx). Let s, ṡ, and s̈ denote
the respective displacement, velocity, and acceleration of the vehicle in the forward
direction. As a result,

V = ṡ~bx (3.21)

Similarly, the acceleration of the vehicle is taken as the derivative of forward
velocity

~A = V̇ = s̈~bx + ṡ~̇bx (3.22)

Taking the derivative of bx as the cross product of its rotation vector and itself and
expanding the cross product yields

~A = s̈~bx + ṡwb × ~bx
~A = s̈~bx + ṡwz ~by − ṡwy ~bz (3.23)

The values s̈, ṡwz, and −ṡwy in (3.23) are the magnitudes of the accelerations

of the vehicle in the ~bx, ~by, and ~bz directions of the body frame. Expressing the
forward velocity ṡ as Vf , allows one to write these magnitudes as V̇f , Vfwz, and
−Vfwy respectively. In the absence of Gravity, these three values represent the
accelerations felt by the accelerometers mounted on the body of the vehicle. The
effect of the gravity is added to these values by transforming the gravitational force
Fg = [0; 0; g] to the body coordinate system by simply multiplying Fg by the inverse
of the direction cosine as follows:
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AbxAby
Abz

 =

 V̇f
Vfwz
−Vfwy


+

 CθCψ CθSψ −Sθ
−CφSψ + SφSθCψ CφCψ + SφSθSψ SφCθ
SφSψ + CφSθCψ −SφCψ + CφSθSψ CφCθ

 0
0
−g

 (3.24)

V̇f − Abx + gsinθ = 0 (3.25a)

Vfwz − Aby − g sinφ cos θ = 0 (3.25b)

Vfwy − Abz + g cosφ cos θ = 0 (3.25c)

Dissanayake et al. present results for experiments in a simulated setting where
the velocity is set to a constant value and therefore V̇f in 3.25a is zero and the pitch
θ is then directly observable. The forward velocity Vf and roll θ are then found by
solving the two equations with two unknowns 3.25a and 3.25c. Unfortunately in a
real life setting, it is not possible to assume constant velocity and there always exist
some fluctuations in the velocity. In such situations, Dissanayake et al. recommend
manipulating 3.25a and 3.25c to obtain an expression of pitch and subbing it into
3.25a in order to obtain a first order differential equation for Vf . What the authors
fail to notice is that Pitch can only be obtained as a function of its trigonometric
Cosine, which when converted to its equivalent Sine value (such as required in
3.25a) no information is given to the sign (i.e., plus or minus) of this angle. In a
more mathematical form, squaring 3.25a and 3.25c and rearranging:

g2 sin2 φ cos2 θ = Aby2 + V 2
f w

2
z − 2AbyVfWz (3.26a)

g2 cos2 φ cos2 θ = Abz2 + V 2
f w

2
y − 2AbzVfWy (3.26b)

Adding 3.26a and 3.26b and rearranging yields an expression for the Cosine of
the Pitch as

cos2 θ =
(A2

by + A2
bz) + V 2

f (w2
z + w2

y)− 2Vf (Abywz + Abzwy)

g2
(3.27)

The Sine of the Pitch angle θ is calculated as ±
√

1− cos2 θ and is subbed into
(3.25a) to yield
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dVf
dt

−Abx±g
√
g2 − (A2

by + A2
bz) + V 2

f (w2
z + w2

y)− 2Vf (Abywz + Abzwy) = 0 (3.28)

In the first order non-linear differential equation (3.28), the value of Vf is differ-
ent depending on the sign of the radical, which is directly related to the sign of the
Pitch angle. It is therefore apparent, that without further knowledge of the sign of
the Pitch angle, the ‘Direct’ method just proposed is lacking.

This constraint method could work very well if a wheel encoder were avail-
able and Vf is directly observable. In this case the non-holonomic constraints are
Vy = Vz = 0 and Vx = Vforward. These equations render the problem extremely
simple since the velocities can now be expressed in the navigation frame through
the transformation matrix Cn

b (from body to navigation frame). The system thus
becomes linear and a simple Kalman Filter or Information Filter can be used to
predict ego-motion.

3.5.2 Extended Kalman Filter method

Enforcing land-based constraint can also be performed using an Extended Kalman
Filter. The no lateral movement is imposed via the EKF observation model, by
assuming that an observation represents two vehicle velocities, one in the lateral
direction and the other in the vertical direction. The motion constraints are then
imposed by setting these velocities to zero at each iteration. Mathematically, this
implies:

Vby − νy = 0 (3.29a)

Vbz − νz = 0 (3.29b)

where Vby and Vbz are the velocity components of the vehicle in the body coordinate
frame, νy and νz are the respective noise values associated with these velocities. Vb
is expressed in the navigation frame as

Vb = [Cn
b ]TVn (3.30)

where Cn
b is the direction cosine matrix shown in (3.2). Expanding (3.30) yields
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z(k) = h(x(k), w(k)) =

[
Vby
Vbz

]
=[

Vnx(sφsθcψ − cφsψ) + Vny(cφcψ + sφsθsψ) + Vnzsφcθ
Vnx(cφsθcψ + sφsψ) + Vny(−sφcψ + cφsθsψ) + Vnzcφcθ

]
+

[
νy
νz

]
, (3.31)

where s and c are the trigonometric Sine and Cosine, and φ, θ, and ψ are the Euler
angles.

Equation (3.31) represents the velocity of the vehicle in the body coordinate
frame; it is desired to set the two rows of (3.31) to zero at each time step in order
to satisfy the non-holonomic and ground navigation constraints. The navigation
system is designed in the framework of an EKF, where predictions are obtained
from the INS state transition equations, which includes three entries for position
(Pn), three for linear velocities (Vn) and three for the Euler angles (φ, θ, ψ).

ẋ = f(x, u) =


Ṗn
V̇n
φ̇

θ̇

ψ̇

 =


Vn

Cn
b Ab −G

wbx + (wby sinφ− wbz cosφ) tan θ
wby cosφ− wbz sinφ

wby sinφ+wbz cosφ

cos θ

 , (3.32)

Kalman Filters and Extended Kalman Filters are applied by integrating two
sources of information. First a prediction of a queried state and corresponding
covariance is performed. Next, an observation model, which is a function of the
state, is used to predict a set of variables. At the same time, these variables are
observed using an alternate sensor. The difference between the observations and the
predicted observation constitutes a metric known as the ‘Innovation’, which is used
to update the initial predicted state and covariance. The equations for prediction,
observation, and update of the INS EKF are presented next.

Prediction
x̂(k|k − 1) = f(x̂(k − 1|k − 1), u(k − 1), (k − 1)) (3.33a)

ẑ(k|k − 1) = h(x̂(k|k − 1)) (3.33b)

P (k|k − 1) = Js(k − 1)P (k − 1|k − 1)Js(k − 1)T + Ju(k − 1)QJu(k − 1)T (3.33c)

where x̂ is the predicted state (x, y, z, Vx, Vy, Vz, φ, θ, ψ) of the vehicle, f(x̂, ...) is the
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state transition function shown in (3.32), u(k) is the process (ax, ay, az, wx, wy, wz).
ẑ(k|k − 1) is the predicted observation at time tk−1 obtained from the observation
model h calculated in (3.31). Js and Ju are the Jacobians of the state transition
function f(x̂) with respect to the state and process respectively. The calculation of
these Jacobians is performed numerically as shown in Appendix B.2. Q is the noise
associated with the process (i.e., expected noise in IMU gyros and accelerometers).

Observation The observation model here is used to impose non-holonomic con-
straints through the mechanics of an EKF. This objective is achieved by supposing
that the system observes, at each iteration, the lateral and vertical vehicle veloc-
ities, expressed in the body reference frame. The system further supposes that
these two velocities are observed to be zero at every iteration and then update the
EKF accordingly. At each update iteration, an innovation is calculated from the
difference between the predicted observation (i.e., found via (3.31)) and the new
observation (i.e., it is set to zero). More formally, the innovation µ is expressed as

µ = 0− ẑ(k|k − 1) (3.34)

At this stage an innovation covariance can also be calculated as

S(k|k − 1) = Jx(k − 1)P (k|k − 1)Jx(k − 1)T+

Jw(k − 1)R(k − 1)Jw(k − 1)T (3.35)

where Jx and Jw are the Jacobians of the observation model with respect to the
state and observation (vby,vbz ) respectively. Jx and Jw are calculated numerically
as shown in Appendix B.2. R is the noise in the assumed non-holonomic model, or
in other words, the precision of the non-holonomic assumptions.

Update The update is based on the EKF formulation as follows:

x̂(k|k) = x̂(k|k − 1) +W (k)(µ) (3.36a)

P (k|k) = P (k|k − 1)−W (k)S(k)W T (k) (3.36b)

where W (k) is the gain matrix and is given by

W (k) = P (k|k − 1)Jx(k − 1)TS−1(k) (3.37)

60



where P (k|k− 1) is the predicted covariance obtained through (3.33c) and S is the
innovation covariance calculated in (3.35).

Figure 3.8 shows the effect of the non-holonomic constraints on the velocity in
the lateral vehicle direction Y . Ideally, one would want the velocity to remain zero
but in reality the best the EKF can do is to have this value fluctuate about zero.
In the left image, the system includes no constraints, notice how Vy increases very
quickly and ends up at around 25 m/s at 100 seconds, whereas in the constrained
plot Vy remains approximately zero except at approximately 70 seconds where there
is a pronounced jump to 0.4 m/s in the lateral velocity. This is probably due to
excessive slippage of the vehicle at this point, causing the non-holonomic constraints
to be violated.

Figure 3.8: Effect of enforcing non-holonomic constraints on the lateral velocity.
In the left image no constraints are imposed whereas in the right image, the non-
holonomic constraints are imposed via the EKF.

3.6 Architecture

The above discussion regarding the INS is summarized in the flowchart of Figure
3.9. The INS is structured within the framework of an EKF, whose prediction step
estimates the position, velocity and bearing of the vehicle by integrating rectified
accelerometer and gyroscope readings. The covariance of the system is estimated
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using the Jacobians of the state transition function Js and Ju with respect to the
state and process variables respectively. The observation part of the EKF (Section
3.5.2) is used to impose, through the mechanics of the EKF, a set of constraints
regarding the allowable modes of motion of the vehicle. This is done by formulating
the observation as a vector containing the lateral and vertical velocities Vby and Vbz
of the vehicle and setting these velocities to zero (plus noise ν) at each time step.
Finally, the update step uses the difference between the expected values of the
velocities (i.e., zero) and the prediction of these velocities from the observation
model h, to calculate a new state Xnew and new covariance Pnew.

The output of the INS system is used as the prediction step for the VisSLAM
system. In effect, what the INS system offers is a prediction of state in the form
of a Probability Distribution Function (PDF) with a mean XINS and a covariance
PINS expressed as follows:

XINS =



x
y
z
Vx
Vy
Vz
φ
θ
ψ


, (3.38)

where x, y, z are the predicted coordinates of the vehicle, Vx, Vy, Vz are velocities
of the vehicle expressed in the navigation frame, and φ, θ, ψ are the Euler angles
representing the 3D orientation of the vehicle.

PINS =


σxσx · · · σxσVx · · ·σxσψ

...
. . .

σVxσx
...

σψσx σψσψ

 , (3.39)

where σ stands for standard deviation. The state coordinates ‘x’ and ‘y’ are initial-
ized to the GPS readings at the GPS time stamp closest to that of the first captured
image, since this time indicates when navigation commences. The state coordinate
‘z’ is the height of the IMU at startup and is determined to be 0.4 meters. Vx, Vy,
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and Vz are zero at startup since the vehicle begins its journey at standstill. The
calculation of the initial Euler angles φ, θ, and ψ is shown in 3.6a 3.6b, and 3.7
respectively.

63



Figure 3.9: The INS is structured in the framework of an EKF. The state variables
include position (X,Y, Z), velocity(Vx, Vy, Vz), and Euler angles (φ, θ, ψ). A(k) and
W (k) are the IMU accelerometer and gyroscope readings at time k. AN and AB
are the accelerations in the navigation and body frames respectively. V ∗, X∗, and
P ∗ are the predicted velocity, position, and covariance respectively of the system.
Js and Ju are the Jacobians of the state transition function with respect to the
state and process model respectively. Z is the observation model comprising the
lateral and vertical velocities VNy and VNz respectively and ν is the associated
noise. Innov, S, and W are the innovation, innovation covariance and Kalman
Gain respectively. Jx and Jw are the Jacobians of the observation model with
respect to the state and observation respectively. σIMU and R are the IMU and
observation covariances. All these variables are defined in Section 3.5.2.
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In the next section, the INS system described above is tested on a dataset of
IMU readings, taken from a real experimental run in an outdoor environment. See
Appendix A for a description of the experiment and dataset. The point of this
exercise is to twofold: first, to show the benefits of the non-holonomic constraints
on the IMU predictive capabilities of the IMU; and second to show that INS based
navigation using low cost IMUs fail on their own, thereby promoting the idea of
INS-SLAM system.

3.7 Experiments

In the first part of this experimental section, IMU corrected data is plotted verses
time. The point of this exercise is to investigate the worth of the IMU data from
their respective graphs alone. In Figure 3.10 the three sets of gyroscope readings
are plotted against time. The two Graphs 3.10 ‘a’ and ‘b’ indicate that the IMU
remains relatively flat during its journey and any change in roll or pitch (i.e., GyroX
and GyroY) is due to random noise in the sensors. The GyroX readings fluctuate
between plus or minus 3◦/s with very few impulses reaching peaks at around 6 ◦/s.
In Graph 3.10 ‘c’ the sensor readings are of higher order than the random noise
since the readings are indicative of planar rotations of the vehicle around bends
during the journey of the vehicle. In order to get a better perspective on the worth
of these results, the GyroZ data is plotted along with a corresponding aerial image
and shown in Figure 3.11. Critical points representing sharp bends are marked on
both the the gyro image and its corresponding location on the aerial image. This
graphs indicates that the IMU GyroZ data corresponds to reality, where each peak
matches to a change of orientation of the vehicle. At point ‘1’ the vehicle initiates
navigation and preserves a constant heading until it reaches point ’2’, where the
vehicle makes a sharp clockwise rotation ( IMU coordinate system shown in Figure
3.3 is such that the Z axis points down and a clockwise rotation is positive). At
point ’3’ the vehicle makes a U-turn while rotating counter-clockwise (peak ‘3’) and
then retraces its path backwards until it reaches point ‘4’ where it makes a counter-
clockwise rotation (peak‘4’) and travels up and left to peak ‘5’. The vehicle than
closes the loop after going through another two bends (peaks ‘5’ and ‘6’). Peaks
‘8’ and ‘9’ are repeats of ‘2’ and ‘3’.
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a b c

Figure 3.10: GyroX, GyroY, and GyroZ verses time. It is difficult to fully ascertain
the goodness of the IMU data from these graphs.

Figure 3.11: Correlating the Gyro readings in the Z direction to their corresponding
locations on the aerial image of the test site. Experiment performed on a data set
of an experimental run.
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Figure 3.12 shows the corrected accelerometer data verses time. Although it
is not possible to fully ascertain the quality of the accelerometer data from these
graphs, several observations can be made. At startup, all accelerometer data is not
centered around zero; this is due to the effect that gravity has on accelerometers
in all three directions. Graphs 3.12 ‘a’ and ‘b’ indicate that the vehicle to which
the IMU is fixed is not level at startup; rather, there exists certain bank and
elevation angles at startup which cause components of gravity to be recorded by
the accelerometers in the X and Y directions. Indeed, it is these values upon
which the approximate calibration method described above (Section 3.4.1) is based.
Graph 3.12 ‘c’ further validates the fact that the vehicle is not level at startup
since the recorded accelerations in the Z directions, which represent gravitational
acceleration, are approximately -9.75 m/s2 instead of -9.81 m/s2, which is the
known gravitational acceleration at the nominal longitude and latitude positions of
the test site.

a b c

Figure 3.12: AccX, AccY, and AccZ verses time. It is difficult to fully ascertain
the worth of the IMU data from these graphs.

In addition to the above analysis, one can check the quality of IMU data by
plotting the vehicle path on the ground truth and verifying how closely the INS
matches the ground truth. The left image of Figure 3.13 shows a sample INS run
while enforcing non-holonomic constraints. The employed strategy also involves
capping the velocity at 1 m/s since accelerometer data is bound to diverge if not
supplemented by an external source of information (e.g ., GPS). This approach is
successful on straight paths, but at extreme bends the algorithm does not predict
actual motion of the vehicle , thus causing it to deviate from its actual path. In
order to highlight this effect, gyroscopic rates are manually compensated at the
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first three turns and the result is shown in right image of Figure 3.10. In this
experiment the vehicle moves from the bottom-left to the the middle-right and
then to the top-left before heading back to the starting point.

a b

Figure 3.13: (a) Enforcing non-holonomic constraints on INS dead-reckoning and
capping the forward velocity at 1 m/s. (b) Manually increasing the yaw angles at
the first, second, and third turns. The vehicle runs counter-clockwise starting from
the bottom of the figure, following the bold line. Experiments are performed on
data set ‘3’ of the database of experimental data.

Although INS dead-reckoning succeeds to some extent, INS errors grow without
bound if not augmented by some form of absolute positioning systems such as GPS
or integrated within a SLAM framework. This issue is evidenced by the quick
divergence of the vehicle state estimate on the position verses time plot in Figure
3.14.
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a b

c d

Figure 3.14: Vehicle position (a) and velocities (Vx, Vy, and Vz) without constraints.
The velocities are expressed in the navigation frame. Notice how quickly the system
diverges when no constraints are enforced.

The effect of adding non-holonomic constraints is shown in Figure 3.15. Al-
though the vehicle does indeed avoid skidding sideways, the IMU errors are not
bounded. In fact the system erroneously moves backwards at the outset before
moving forwards. A similar error is shown before the vehicle makes its turn where
it overshoots the curb and then moves backwards and turns. From the above im-
ages in 3.14 and 3.15 it is evident that the INS system alone is lacking and that an
alternative navigation system is needed.
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a b

c d

Figure 3.15: Vehicle position (a) and velocities (Vx, Vy, and Vz) with constraints.
The velocities are expressed in the navigation frame. Notice how the non-holonomic
constraints bound the lateral and vertical vehicle velocities.

3.8 Summary

The INS is the prediction entity for VisSLAM. The predicted state
X = [x, y, z, Vx, Vy, Vz, φ, θ, ψ]T and its corresponding covariance matrix are the
output of the INS system, and are fed into the VisSLAM system.

The first contribution of this chapter is a comparison of an approximate cal-
ibration system proposed in the literature to an exact method used when a unit
is calibrated in shop. The approximate method involves correlating the average
accelerometer and gyroscope readings at standstill to known gravitational forces.
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The two methods yield comparative corrections for gyroscopes data but different
corrections for accelerometer data. This is due to an incorrect estimate in the
vehicle orientation at standstill.

The second contribution is an evaluation of two theories from the literature
for imposing non-holonomic constraints on a land-based inertial navigation system.
The first theory involves expressing the vehicle state transition equations in func-
tion of the forward velocity alone and thereby eliminating one integration from
the position estimation process. This systems is found lacking since the final dif-
ferential equation involving vehicle forward velocity can only be found up to an
unknown sign. In the second method, non-holonomic constraints are enforced via
an Extended Kalman Filter (EKF), by formulating the EKF observation model as
a vector containing the lateral and vertical velocities of the mobile platform in the
body coordinate system, and setting these velocities to zero at each iteration. This
method is implemented and indeed helps stabilize the system considerably.

Unfortunately, as evidenced by the experiments in this chapter, regardless of the
improvements that might be achieved, INS alone is lacking, and an alternate mode
of autonomous navigation such as INS-based SLAM is recommended. Towards this
end, a new Inertial-SLAM system named VisSLAM is proposed. VisSLAM uses
the INS EKF system developed in this chapter to predict vehicle ego motion and
a Computer Vision system, developed in the next chapter for landmark detection,
recognition, and initialization.
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Chapter 4

Computer vision system

4.1 Introduction

The fundamental contribution of this thesis is the Computer Vision (CV) system
presented in this chapter, whose function is to first classify the vehicle milieu and
second to detect, recognize, and localize natural landmarks within this milieu.

A fast and robust Environment Recognition (ER) system is developed that can
infer the context of the environment (e.g ., indoor office, outdoor park) in which
an image is taken. Before a vehicle initiates SLAM, ER processes a number of
images of the setting in which the vehicle is located and subsequently suggests the
context of this scene. VisSLAM can then use this top down information for its map
building task, by selecting a type of landmark that is most probably available in the
recognized environment. The details of the ER technique are discussed in Section
4.2. In this work, the experimental setting is an outdoor park area and the SLAM
landmarks are tree trunks. Nevertheless, the developed techniques lend themselves
to other environments featuring different landmarks.

The second Computer Vision module is designed to detect, recognize and lo-
calize tree trunks in the vicinity of the vehicle. Tree trunks are detected by first
segmenting the query images into quasi-vertical structures and marking those struc-
tures that are close to the Ground-Sky (G-S) separation line as tree trunks. The
detection system is designed for trees exhibiting visible trunks such as those in Fig-
ure 4.1 except for trees of types (E) and (G). Tree trunks are recognized based on
a number of their discriminative features, which are extracted via a Scale Invariant
Feature Transform (SIFT) filter.
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Figure 4.1: Different shapes of trees. The Computer Vision system is intended to
detect trees with salient tree trunks. Trees of type (E) and (G) are not expected
to be detected by the vision system. Image courtesy of Steve Nix [91].

VisSLAM is a bearing-only system, in the sense that only bearing observations
are used to update the SLAM predictions. Nevertheless, stereo vision is used to
initialize tree trunks into the SLAM state. Stereo vision offers precise depth infor-
mation, which reduces uncertainties in the landmark estimates when they are ini-
tialized. Alternatively, landmark initialization could be performed in the standard
bearing-only techniques but VisSLAM experimental conditions (i.e., straight line
trajectories) are poor for the application of such initialization techniques. Stereo
information can further provide invaluable information that can assist in object
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detection and recognition. In this context, the advantages of using stereo is inves-
tigated for each of the Computer Vision systems proposed in this chapter.

The remainder of this chapter is structured as follows: Section 4.2 introduces En-
vironment Recognition techniques, including top-down and bottom-up approaches
before presenting the ER system developed for VisSLAM. Section 4.3 introduces
two variants for object detection, one based on Interest Points and the other based
on Segmentation. The Interest Point method is discarded due to unacceptable
shortcomings in the technique. Section 4.4 addresses object recognition and intro-
duces a fast and efficient tree trunk recognition system based on matching objects in
feature space. Section 4.5 describes landmark initialization in the context of SLAM,
and presents a methodology for initializing trees based on stereo vision. Section 4.6
summarizes the architecture of the Computer Vision system. Section 4.7 discusses
experiments performed on the proposed system, starting with a description of the
experimental methodology and ending with a presentation of the experimental re-
sults. Finally, Section 4.8 draws relevant conclusions and recommendations.

4.2 Environment recognition

Context is valuable knowledge that can aid a robot to autonomously navigate across
different environments. Before performing SLAM, it is beneficial for the robot to an-
alyze and thereby categorize the setting around it (i.e., office, street, underwater,
etc.). Once this knowledge is acquired, the robot uses landmarks that are typi-
cal of the recognized environment to perform SLAM. A database of environment-
landmark pairs in the form of a look up table can then be set up at a preprocessing
stage. Looking at the four images in Figure 4.2 it is difficult to specify features that
are common to all four settings; while in the urban setting lamp posts or windows
are good features, in underwater settings rocks are better candidates. The general
idea in environment recognition is to reduce the search space to features that are
typical of that environment. In this manner, the system can be designed as a set
of rules rather than a complex learning paradigm. The rules dictate the type of
landmarks to use for SLAM based on the recognized environment. It goes without
saying that an exhaustive list of environments is not possible; however, the list can
be general enough to encompass most of the areas that the robot is likely to visit.
In this thesis, SLAM is performed in only one environment and therefore ER is
only used to confirm that the mobile platform is indeed located in a park. It can be
easily deduced how such a system can be applied to multiple environments using
different landmarks for each environment.
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Figure 4.2: Images taken in four different setting. (a) park, (b) urban, (c) lab, (d)
underwater (taken from Williams [92]).

In Computer Vision, ER is done in either a bottom-up or top-down approach. In
the former case the environment is inferred from a set of objects that are recognized
in the environment. This is considered a hard problem in the Computer Vision
community and is still unresolved. The complexity resides in the ability to represent
objects in such a way that computer vision algorithms are capable of recognizing
them from different views, scales and lighting conditions. The order of complexity
of such scene recognition algorithms is on par with that of object recognition, which
is too costly to be implemented in real-time.

Alternatively, ER is performed in a top-down fashion, by analyzing the holistic
content of each image of a queried environment. Top-down methods are appearance-
based, where scenes are recognized by analyzing the spatial organization of struc-
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tural elements of the images of the scene. Each image class exhibits a distinctive
structural signature that is sufficient to discriminate it from other scene classes.
Top-down approaches are robust and fast enough to be run in real-time. Structure
is relevant to the type of image processing that is undertaken. Windowed Fourier
Transforms, Gabor filters or Wavelet Decomposition filters are the most common
frequency decomposition methods that are used to extract image spatial structure.
These are holistic approaches, where all pixels in the image contribute to each
representation.

Section 4.2.1 reviews the various context recognition systems to date. Section
4.2.2 formalizes the framework for ER: extracting the feature vectors of images,
training the neural network, and classifying query images. Section 4.2.3 presents
the results of the tests conducted on the ER system.

4.2.1 Top-down environment recognition

Torralba [33] presents an excellent paper on environment recognition in which he
states that there exist several discriminatory features between scenes and cites three
of them:

1. ‘The statistics of structural elements. The second order statistics of
natural images are correlated with simple scene attributes and differ between
distinct environmental categories.’

2. ‘The spatial organization of structural elements. Structural elements
have particular spatial arrangements. Each context imposes certain organiza-
tion laws. The different organization laws introduce spatial non-stationarities
in statistics of low-level features that provide differential signatures between
scene categories.’

3. ‘Color distribution. Color histograms and coarse spatial distribution pro-
vide discriminant information between scene categories.’

Torralba’s features are extracted by filtering images with a bank of oriented
bandpass filters (Gabor filters) at six orientations and four scales . The resulting
image representation encodes spatially localized structural information in the form
of a Feature Vector (FV). The dimensionality of the feature space is reduced by
performing PCA and extracting the first 64 eigen vectors. Each scene context is
estimated by averaging the FV of 500 images belonging to that context. Torralba
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et al. [93] further extend their work by presenting a context-based vision system for
place and object recognition. Their goal is to categorize environments and to use
that information to improve object recognition. Their FV is extracted via a Wavelet
image decomposition. In the first part of the paper, the system is trained on 64
specific places (i.e., office A, office B, lobby C, lobby D, etc.) and is then tested
by querying it with images of similar locations. In the second part of their tests,
the system is queried with images of areas that have not been visited before and
asked to determine the image class (e.g ., office, corridor, street). Seventeen classes
in total are available for the program to choose from. It is of no surprise that the
success rate is lower in the second test since many images with different structure
can belong to the same class, whereas in the first test very specific structure is
sought.

In a similar vein, Oliva and Torralba [94] propose another top-down ER sys-
tem that is based on a very low dimensional representation of the scene, termed
Spatial Envelope. Five perceptual dimensions called naturalness, openness, rough-
ness, expansion, and ruggedness are used to develop the spatial representation of a
scene. These dimensions are estimated using spectral information that is extracted
from images using a Windowed Fourier Transform (WFT). Scenes belonging to
the same semantic categories are identified by similar dimensional values. The en-
ergy spectrum (Fourier Transform (FT) squared) of images gives the distribution
of the signal’s energy among the different spatial frequencies. The global and local
energy spectrums provide high dimensional representations of the input image. Fea-
ture extraction and dimensionality reduction is achieved using the Karhunen-Loeve
Transform and the Principal Component Analysis, respectively. Different kinds
of environments such as buildings, highways, mountains, forests, etc., exhibit very
specific and distinctive power spectrum forms. The Discriminant Spectral Template
(DST) is a function that describes how each spectral component of each scene en-
ergy spectrum should be weighted in order to determine its perceptual dimension.
Similarly, the Windowed Discriminant Spectral Template (WDST) describes how
the spectral components at different spatial locations contribute to a spatial enve-
lope property. The DST and WDST are a function of the principal components of
the Fourier Transform and the WFT of each image. Their coefficients are learned
by training the algorithm on a large set of images that are representative of each
scene category.

Tieu and Viola [95] present a paper in which they postulate that images are
generated by a sparse set of visual causes and that images that are visually similar
share causes. They introduce a method for automatically generating a very large
number of selective features. A technique known as boosting is then used to learn
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a simple classifier that relies on approximately 20 features. As a result, a very
large number of images can be scanned in a very short time. After query learning,
each image is evaluated by only examining the 20 features. The highly selective
features are a natural extension of the simple features that are used in other image
processing techniques. For example, first order features such as oriented edges
or color are used to construct selective features that measure how the first order
features are related. Each level of processing discovers arrangements of features in
the previous level. This work is based on previous work by Debonnet and Viola
[96]. The process starts by extracting a feature map for twenty five simple features
(e.g ., oriented edges, center surround, etc.). Each feature map is then rectified and
down-sampled by two. The process is then repeated for all 25 maps yielding 625
maps. Again this process is repeated to yield 15, 625 feature maps. That number
is multiplied by three if colored images are used (Red, Green and Blue). Finally
each feature map is summed to yield a single feature value. In mathematical terms
the above is expressed as:

gi,j,k,c =
∑
pixels

Mi,j,k,c, (4.1)

where:

Mi,j,k = ↓2 (|fk ⊗Mi,j|) (4.2)

Mi,j = ↓2 (|fj ⊗ (Mi)|) (4.3)

Mi = ↓2 (|fi ⊗X|), (4.4)

where ↓2 means down sampling by 2, X is the image, f is the primitive operator
and ⊗ is the convolution operator. AdaBoost [97] is used to combine several weak
learners into one strong classifier. The learner is called weak because it is not
expected to classify the training data well on its own. The final strong classifier is
a weighted average of the weak classifiers. One important point in this method is
that it entails knowing what you are looking for (e.g. cars, trees, jets, cloudy skies,
waterfalls), finding the most selective features and then convoluting those features
with the test images to check if the images contain such objects. It entails classifying
scenes (100 images of each) and running AdaBoost 20 times for each scene category
to extract 20 selective features for each category. Now these features can be used
to determine if a scene belongs to any of the classes. Experimental results show
that there is indeed a high correlation between these highly selective features and
scenes. Although this system is not implemented in our work, it could be useful
as a tool for ascertaining the presence of a specific landmark in the surrounding
environment.
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All the above approaches are based on representing images in a holistic fashion;
where all pixels in the image contribute to each representation. The difference
between the approaches resides in the way features are extracted. Torralba [33]
performs Gabor filtering, Torralba et al. [93] perform a wavelet transformation
on their images, Oliva and Torralba [94] use a discrete Fourier Transform and a
Windowed Discrete Fourier Transform. Tieu and Viola [95] apply several low level
filters to discover salient features in images.

VisSLAM implements its own top-down system, which is similar in spirit to
the work of Torralba [33] since both use a Steerable Pyramid (SP) to extract its
Feature Vector (FV), but differs in its learning paradigm; while Torralba uses a
Hidden Markov Model (HMM), VisSLAM uses an Artificial Neural Network (ANN)
combined with Histogram weighing. The justification for this preference is the
higher robustness of the ANN to non-linearities. The details of the VisSLAM ER
system are presented in the next section.

4.2.2 ER framework

The framework of the ER system proposed in this work is presented in Figure 4.3
and is interpreted as follows. At a preprocessing stage, a large number of images of
various classes (e.g. indoor office, indoor corridor, indoor hall, outdoor street) are
collected. A steerable pyramid filter is applied to each of these images in order to
extract its corresponding FV, which includes 384 dimensions: 6 orientations times
4 scales times 16 sub-regions per image. Principal Component Analysis (PCA) is
then performed on all these FVs to reduce their dimensionality from 384 to 40.
The reduced FVs, along with the class of each image are then used to train a
3-layered Feed-Forward Artificial Neural Network. Once the ANN is sufficiently
trained the robot can initiate navigation. Equipped with a vision system, the
robot acquires images from its surrounding environment and classifies 100 of them
using the trained ANN and accumulating the resulting votes in a histogram. The
class with the highest votes is picked as the recognized environment. Although
the developed technique is applicable to multiple environments types, the scope
of this work is limited to classifying an image as an Outdoor Park or not. Once
environment classification is achieved, the robot is assigned features that agree with
the recognized setting (i.e., tree trunks for a park area). During SLAM, the robot
periodically scans its surroundings to insure that it is still located within the same
environment.
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Figure 4.3: Framework for the ER system. Images are filtered with a Steerable
Pyramid at 6 orientations and 4 scales. Each filtered image is then averaged by a
4x4 lattice resulting in 16 entries per filtered image. The resulting feature vector
contains 384 (4 scales x 6 orientations x 16 entries). The dimensionality of each
feature vector is then reduced to 40 via PCA. These entries are then used as inputs
to an ANN for scene classification.

Figure 4.4 presents an example of two environment classes with their low-level
features extracted via a steerable pyramid. The filtered images are obtained using
the code of Simoncelli and Freeman [98].
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Figure 4.4: Images filtered via the steerable filter code of Simoncelli [98];(a-c) input
images, (b-d) filtered images at finest scale and vertical orientation.

4.2.3 Experiments

Methodology

All the ER code is written in Matlab and is implemented on an Intel Pentium 4
processor, 3.2 GHz, 1 GByte RAM workstation. In the preprocessing phase one
thousand images of various indoor and outdoor urban environments are collected
and labeled by hand according to their environment class. The images are filtered
and PCA applied to extract their feature vectors. Testing is performed on batches
of 100 images each of three settings: the first batch of images is taken from the
same setting as that of the test images, the second batch is taken from a different
setting than that of the test images. The ANN assigns a weight between zero and
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one to each image based on its class, where 1 is an outdoor park and zero is not.
Any weighting between zero and one corresponds to an unsure classification. In this
work, a threshold of 0.5 is used to binarize the classification process. The number
of votes of the ANN are accumulated in a Histogram and the environment class is
assigned to the label of the bin with the highest number of votes.

Results

The computational time for the preprocessing phase is 574s. The feature vectors
that are used as training instances for the ANN, trained successfully in 20 epochs
or the equivalent duration of 540s. Once the training is complete, the ANN is
tested on 100 images from an indoor setting and 100 images from an outdoor urban
setting.

The ANN classifies the indoor images with a success rate of 83% (Figure 4.5a)
and the outdoor images with a success rate of 80% (Figure 4.5b). A classification
is considered ’correct’ when the error is less than 0.5. The total time required to
extract the feature vectors of 100 images and classify them amounts to 61s, which
corresponds to 0.61s per image.

In the second test, images from an outdoor park (rather than urban) setting are
queried using the same network as above. The ANN performs poorly and yields a
success rate of 51 percent which is almost equivalent to random guessing. These
poor results are expected because the ANN is not exposed to any suburban images
in its training set. Comparing the urban picture in Figure 4.7a to the park picture
in Figure 4.7b, it is intuitive why the above ANN failed. Although both are images
of external environments, there is significant difference in the structure of both.
In the latter case there are natural objects such as trees and grass that exhibit a
distinctive spectral signature which is different than that of buildings and streets,
which are common in urban environments. To remedy this setback, the ANN had
to be retrained by including images of outdoor park locations in the training data.
This retrained ANN yields 81 % correct classification. In the third and final test,
a video sequence of an indoor lab at the American University of Beirut (AUB) and
another sequence of an outdoor area at the AUB campus is tested on the ANN.
The result is an impressive 95 % correct recognition rate for the indoor images
and 79% for the outdoor images. Figures 4.6a and 4.6b display the performance
of the ANN on these images. It is interesting to note that the variability in the
classification error is much lower (i.e., closer to 0) in the indoor than the outdoor
environment. The reason for this discrepancy is that an indoor environment is more
structured than an outdoor one; a fact that enables the ANN to classify indoor
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Figure 4.5: Classification performance of the ER system on test images of same
setting as the training images on (a) indoor and (b) outdoor images. The x axis
represents the image number and the y axis is the classification error, calculated
as the difference between the true class and the one predicted via the ANN. Any
classification with an error below 0.5 is considered correct. The system results in
83% correct classification for indoor images and 80% for outdoor images.

settings with more certainty than outdoor ones. In any case, classification results
for both environments are acceptable and are indicative of the strong inductive bias
of the ANN toward correct classification, which allows for good generalization of
the recognition system.
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Figure 4.6: Classification performance of the ER system on images taken from the
AUB campus on (a) indoor and (b) outdoor images. The x axis represents the image
number and the y axis is the classification error, calculated as the difference between
the true class and the one predicted via the ANN. Any classification with an error
below 0.5 is considered correct. The system results in 95% correct classification for
indoor images and 79% for outdoor images.

a b

Figure 4.7: (a) Sample urban and (b) park images.
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4.2.4 Can stereo help environment recognition?

It is argued here that stereo vision can aid environment recognition by adding a
prior probability that depends on the clutter and dimension of the area surrounding
the camera. For instance, in an indoor office, the stereo camera detects objects that
are relatively close and most of the regions surrounding the camera are within the
range of the stereo system. On the other hand, in an outdoor open area, most of
the camera surrounding is probably out of the range of the stereo camera, which
detects very few objects in its vicinity. Stereo vision for environment recognition
is not investigated in this work but constitutes a open problem and an interesting
field for future research.

4.3 Proposed tree detection techniques

Tree detection is a new problem, which to the author’s knowledge has received very
little attention in the Computer Vision community. Some recent work is proposed
by Ramos et al. [99] who use statistical representations for natural objects but
the resulting segmentations are too coarse to serve for object detection. Object
detection systems can be grouped according to the following taxonomy: Local-
Image-Descriptor (LID)-based object detection or SEGmentation (SEG)-based ob-
ject detection. In the first technique [59, 33, 100, 101, 102, 103], distinctive and
salient image features [60, 61, 62, 63, 64, 65, 102, 104] are extracted from images
at a pre-processing phase and archived in a database. Each of these features is
represented by its corresponding feature vector. Objects are then modeled by a
combination of these local features that are arranged in a specific geometric con-
figuration. Query images are classified by matching their feature vectors to the
nearest ones in feature space. David Lowe [59, 104] introduced the Scale Invariant
Feature Transform (SIFT) descriptor. A 16x16 grid is constructed around every
interest point. Each entry into this grid represents the orientation of a Difference
of Gaussian (DoG) map, taken at the scale of the interest point. The grid is then
grouped into 4x4 sub-grids, where each sub-grid element represents a histogram
of orientations of the original grid elements inside each sub-grid. Other descrip-
tors include steerable filters, differential invariants, complex filters, and moment
invariants. Mikolajczyk and Schmid [68] compare the performance of the afore-
mentioned descriptors and find that SIFT descriptors perform best, followed by
steerable filters. Although SIFT descriptors are very distinctive, it is still possible
to find similar SIFT features between two different objects or between an object
and its surrounding background, thereby resulting in false positives. One method
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to improve matching is proposed by Lowe [104], where a triplet of descriptors are
associated with each object part and query objects are matched to model objects
only if three of its descriptors match up with a corresponding triplet in the model
database. The probability of a mismatch with three descriptors between a query
object and those of an image in a database is much lower than that of a mismatch
with one descriptor. In a similar vein, Dorkó and Schmid [101] suggest represent-
ing objects by clusters of descriptors, where objects are represented by a Gaussian
Mixture Model (GMM) and each Gaussian represents a part of the object. The
mean, covariance, number of components, and prior probabilities of the GMM com-
ponents are learned in a weakly supervised fashion — images that contain query
objects are labeled positive but individual objects are not labeled. Learning of
the mixture components is achieved using Expectation-Maximization (EM). The
clusters of Gaussians are then ranked using classification likelihood and mutual
information. While the former ranking method is a measure of classification effi-
ciency, the latter is good for sparse representation and focus of attention scenarios.
During testing, candidate images are first processed to extract their local descrip-
tors, which are then paired to the closest Gaussian (or part) using Maximum à
Posteriori (MAP). If enough of the query object descriptors are matched to the n
top-ranked clusters of the model object then it is safe to conclude that the object
is present in the image. A natural extension to this work is the addition of spatial
constraints between the ranked parts to improve the recognition rate and reduce
false positives.

Unfortunately, although LID-based techniques are fast, they require that the
sought object be comprised of features which can be repeatedly detected and
matched and that these features be organized similarly across all objects. These
requirement rules out using LID-based object detection systems for detecting nat-
ural features such as tree trunks. The only commonality between tree trunks is
that all of them stem from the ground and that their structure is quasi-vertical and
quasi-symmetric. None of the internal features of one tree trunk are likely to be
found on another trunk. One possible ramification of these methods is to use local
descriptors to locate all salient regions inside a query image and then to determine
which of these salient features are tree trunks and which are not. Alternatively, IPs
can be used for recognition rather than detection. Once an object is detected, the
regions bounded by the perimeter of the object in question can be searched for dis-
tinctive features (such as SIFT) which can then be used to differentiate between 2
objects (e.g ., Tree A verses Tree B). This method is further investigated in Section
4.4.

In segmentation-based object detection the query image is segmented before
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attempting to detect an object within it. Image segmentation returns the most
probable interpretation of the content of the primal image. Ideally, segmentation
seeks to group pixels that belong to same objects together. The exact details of
the segmentation process is dependent on the type of object that is sought and
consists of extracting a useful object representation for the detection system. The
disadvantage of such systems is that they are slow because of their high processing
requirements. Nevertheless, if the sought objects are simply structured, such as tree
trunks, it is possible to model them by a few parameters such as the position of their
center, their diameter and their orientation. Furthermore, full 3D reconstruction of
a landmark is not necessary, since SLAM only uses this feature as a point landmark
and is not interested in the exact shape of its profile. Under such simplifying
conditions, the implementation of such detection techniques can approach real-time
barriers. The issue that remains to be solved is the nature of the segmentation
process that yields the most informative and useful representation for detecting
tree trunks. The choice of possible segmentation methods is either appearance-
based or structure-based. In the former method images are regarded as arrays of
pixels rather than a picture of objects and pixels sharing similar properties (e.g .,
brightness, color, texture) are combined together. The latter segmentation method
consists of searching the image for lines, ellipses, and other geometries, which are
later combined into candidate objects and compared to model objects. In Figure
4.8, three images are shown that are typical examples of the type of images in which
VisSLAM seeks to detect tree trunks. The images are difficult to segment because
of the varying brightness patterns across the trees and because of the similarities
in texture between trees in the foreground and background clutter.
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Img 181 Img 185 Img 186

Figure 4.8: Challenging segmentation problems. (a) Tree trunks in the background
causes merging of foreground and background regions; (b) The textured regions
inside the tree trunk in front creates line artifacts which could be falsely labeled as
separations between two different objects; (c) Hanging foliage of the tree triggers
line artifacts around the tree.

4.3.1 SEG-based tree detection (appearance-based)

Segmentation-based object detection involves segmenting the image into a represen-
tation that is useful for the subsequent object detection task. In this section two
appearance-based segmentation methods are attempted: the Brightness-Texture
clustering method and Statistical Region Merging (SRM) [105]; both methods are
tested on a database of images collected during an experimental run in an outdoor
park environment (See Appendix A for a description of the experiments).

Integrating brightness and texture

This segmentation procedure consists of grouping into regions pixels which exhibit
similar brightness, texture, or a combination of both. Brightness is represented by
the gray-scale intensity values of the pixels inside the query image. The brightness
of a 3D object in an image is a result of the illumination of the 3D object and its
reflectance properties. An object that is illuminated in an inhomogeneous fashion
exhibits inhomogeneous brightness patterns even though its reflectance properties
across its entire surface might be the same. It is therefore desirable to remove
the illumination component from the calculated values of brightness and express
brightness as a function of the reflectance properties of the body alone. Once
illumination variation is accounted for, it is then possible to segment objects by
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clustering pixels exhibiting similar brightness values. In gray scale images, the
effects of changing lighting conditions are reduced by histogram equalizing each
image before it is processed. Histogram equalization employs a monotonic, non-
linear mapping which re-assigns the intensity values of pixels in the input image
such that the output image contains a uniform distribution of intensities (i.e., a
flat histogram).

Object reflection is dependent on the surface property of the object and is
expressed as the Bidirectional Reflectance Distribution Function (BRDF)1 [106].
Segmentation is done by clustering pixels into one of four bins (several numbers are
tested and 4 produces the best results for these images) based on their intensity
values. The result of Brightness segmentation on three images containing trees is
reported in the middle images of Figure 4.9. Trees that are located far away are
segmented well, whereas close-by trees are badly segmented. In the close-by trees,
the textures patterns are highly visible and the tree trunks exhibit inhomogeneous
BRDF across the tree surface, thereby causing inconsistent segmentation. The
textured regions on the far away tree trunks are less pronounced; therefore, the
tree surfaces exhibit homogenous BRDF and reflect similarly.

Texture is an indication of the spatial arrangement of patterns inside the image.
Studies in psychology have shown that filtering an image with a Gabor filter bank
produces responses similar to the ones sensed by V1 cortical cells [107]. The filter
bank consists of four scales and six orientations and a nominal texture value is
calculated at each pixel site by simply adding the response at all scales and ori-
entations. Pixels exhibiting similar texture response are grouped together. The
result of texture segmentation on three images is reported in the right images of
Figure 4.9. In texture based segmentation, close-by regions are better segmented
than in Brightness-based segmentation since similarly textured regions are grouped
together. The problem here occurs when background regions exhibit similar tex-
ture regions as the trees in the foreground, subsequently causing the segmentation
process to merge trees with background.

Given the limitations of the previous approaches it is proposed to combine the
evidence from both brightness and texture to yield a better quality segmentation.

Seg = wb ∗ Segb + wt ∗ Segt, (4.5)

1Forsyth and Ponce [106] define the BRDF as: ‘The ration of the radiance in the outgoing
direction to the incident irradiance’

ρ =
Lo

Li

where ρ is the BRDF, Li is the incident irradiance, and Lo is the outgoing radiance.
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Img. 180 B-Seg. T-Seg.

Img. 184 B-Seg. T-Seg.

Img. 185 B-Seg. T-Seg.

Figure 4.9: Result of performing Brightness and Texture segmentations on images
180, 184, and 185 of our first database of tree images.

where Seg is the combined response at each pixel which is used to ultimately
segment the image. Segb and Segt are the responses obtained from the brightness
and texture respectively, wb and wt is the weighting the user chooses for combining
brightness and texture respectively (wb = 1 − wt). Unfortunately, this additive
effort does not improve segmentation results. An attempt is also made to segment
using color (i.e., Hue component from the Hue, Saturation, and Intensity (HSI)
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space) and texture on color images taken from the same test site. Results do not
improve over those obtained in Figure 4.9.

Statistical region merging

Statistical Region Merging (SRM) is an appearance based segmentation method
developed by Nock and Nielsen [105] which segments images via region merging, fol-
lowing a particular order in the choice of regions. SRM works by creating what the
authors refer to as “theoretical image” I∗ in which pixels are referred to as“statistical
pixels” and are represented by a family of distributions, from which the observed
image is sampled. Pixels that share similar statistical expectations in the theoret-
ical image are grouped together. Different regions exhibit different expectations
for their statistical pixels. In each pixel of I∗, each color channel is replaced by a
set of exactly Q independent random variables, taking positive values on domains
bounded by g/Q (g is the dimension of the color space e.g ., 0 to 255) such that any
possible sum of outcomes of these Q random variables belongs to 1, 2, ...g. Tuning
Q modifies the statistical complexity of the scene, and makes it possible to tune
the coarseness of the segmentation. SRM is implemented as follows. First, a list
SI is compiled of all possible couples of pixels (4-connexity) of the image. The
couples are sorted in increasing order of f(p, p′), where f can be any real-valued
function (described below) and p and p′ are pixels of I. A test P (R(p), R(p′)) of
compatibility is made between the regions R() to which p and p′ belong to. P is
the merging predicate of SRM and is the key to its success. For gray-scale images

P (R,R′) =

{
true if |R̄′ − R̄| ≤

√
b2(R) + b2(R′)

false otherwise
(4.6)

where R̄ is the average intensity value of the region R, |.| stands for cardinal,
b(R) = g

√
(1/(2Q|R|)) ln(|R|/δ), δ is a value between 0 and 1, and g is equal to

256.

and the same applies for color images

P (R,R′) =


true if ∀a ∈ {R,G,B},

|R̄′
a −Ra|≤̄

√
b2(R) + b2(R′)

false otherwise
(4.7)

If P (R(p), R(p′)) returns true the regions R(p) and R(p’) are merged. In this
SRM implementation f implements radix sorting based on color differences.
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fa(p, p
′) = |pa − p′a| (4.8)

SRM can be applied on colored (i.e., 3 channels) or gray (i.e., 1 channel) im-
ages. The segmentation is slightly better for colored images but since color is not
available in our images, SRM is implemented based on gray level information. The
implication of using only one channel versus three is a coarser segmentation. This
is confirmed by testing SRM on several colored images obtained from the test site.
SRM requires the user to specify the segmentation resolution, which is a problem
in itself for tree detection. If the resolution is set too low, large tree trunks are
segmented as one entity but small tree trunks are not detected. On the other hand,
if the resolution is set high, small tree trunks are detected but the larger ones are
partitioned at highly textured locations. In the results presented below in Figure
4.10, an intermediate scale is used that compromises between large and small tree
segmentation requirements. Unfortunately, the results are unsatisfactory, where
segmentation errors occur similar to those in the Brightness-Texture segmentation
described above. The middle images in Figure 4.10 show the results obtained by
segmenting trees using SRM-Brightness. Notice the overlapping regions between
trees and background.

Nock and Nielsen [105] also suggest performing SRM on different color spaces
such as the Hue, Saturation, Intensity (HSI) color space. This work attempts SRM
on a textured image in order to cluster homogenous texture patches together. The
results are presented in the right images of Figure 4.10. Again,overlapping regions
are observable in the segmentation results of all three tree images.One observation
worth mentioning is that the SRM-Brightness segmentation performs better on
trees which are far away than SRM-Texture and the contrary occurs for trees that
are close by. This is an expected result since close by trees exhibit similar texture
values but different brightness values, whereas in far away trees the texture of the
trees and background foliage is comparable and gets merged together.

Both appearance-based segmentation methods presented in this section are lack-
ing. In some instances, tree regions are mixed with the background (e.g ., the 2
attached trees in Image 180 of Figure 4.9); in other instances a single tree is di-
vided into two parts (e.g ., the large tree in the left of Image 184 of Figure 4.10).
Furthermore, in both SRM and Brightness-Texture segmentations the proposed
regions are coarse and small tree trunks are not detected. In spite of these short-
comings, these segmentations can be used as a starting point for a system that
further processes them in order to produce more precise results. Tu et al. [108]
integrate top-down and bottom-up segmentation techniques to recursively recon-
figure segmentations via reversible Markov Chain Jumps [109]. Unfortunately, the

92



Img. 180 SRM-B SRM-T

Img. 184 SRM-B SRM-T

Img. 185 SRM-B SRM-T

Figure 4.10: Statistical Region Merging (SRM) segmentation. (left) Original gray
images showing trees that are close to the camera and others that are far. (center)
SRM using brightness, notice that the far away trees are nicely segmented whereas
the close ones are not. (right) SRM using texture, this segmentation performs well
on trees that are close but poorly on far away trees.

run time of such methods is too high to be used for SLAM, which requires object
detection in near-realtime.
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Can stereo help appearance-based segmentation?

Depth information from stereo vision can indeed help in correcting and refining
both appearance-based techniques. Figure 4.11 proposes a method by which depth
and height maps inside the segmented regions can be used to refine an appearance-
based segmentation. First, SRM is applied to the query image to segment it into
several regions. The height map of the same scene, extracted via stereopsis is used
to further refine the segmentation into ground, sky, and interesting regions ‘A’
and ‘B. Depth histograms are then computed for ‘A’ and ‘B. Note that the stereo
camera used for VisSLAM (Appendix A.1) returns a value of 0.204 meters as a
depth value when there are inconsistencies in a disparity at a certain point in the
image. These values are reflected by the peaks near zero that are evident in both
the histograms. If a segmented region represents an object such as a tree, it is
expected that the depth map in this region have very little variations and without
any independent pixel clusters (histogram B). If on the other hand, there is a cluster
of pixels at one depth (histogram A) and the remaining pixels are distributed at
other depths, the depth map suggests that the original segmentation is not precise.
Depth information can then be used to refine the original SRM segmentation. One
would argue that only depth should be used for segmentation and not bother with
the initial segmentation. The problem is that depth segmentation is coarse and
would lead to many discontinuities in the segmentation.

Although this depth-based method is appealing, the problem resides in segment-
ing trees that are not in the range of the stereo camera, where the system would
have to rely on SRM alone and segmentation errors can not be corrected. In the
next section an alternative segmentation method is proposed, which is a structure-
based system, and detects trees by perceptually organizing lines into symmetric
and continuous lines and grouping these lines into trees.
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Figure 4.11: Stereo aiding appearance-based segmentation.
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4.3.2 SEG-based tree detection (structure-based)

Steve Nix [91] defines a tree as follows:

• ‘A tree is a woody plant with a single erect perennial trunk at least 3 inches
in Diameter at Breast Height (DBH).’

One could add the following definitions:

• ‘The profile of a tree is constructed by quasi-symmetric lines that are approx-
imately vertical.’

• ‘The base of a tree trunk is always connected to ground.’

• ‘The aspect ratio of a tree trunk is generally larger than 2.’

These definitions are used as guidelines for generating an efficient tree detection
system. First, edges dominant in the vertical direction are sought by filtering
the input image with an edge detection routine that is sensitive to vertical edges.
Next, the dominant edges are grouped into continuous and symmetric lines, which
are subsequently grouped into trees based on two criteria: entropy reduction and
location of the tree trunk base. A Ground-Sky tracking system is used to yield a
strong prior on the position of the tree trunk base. The details of each system are
presented in the following sections.

Figure 4.12 shows the different parts of a tree. It is the ‘TRUNK’ that the vision
system is designed to detect.

Edge detection

The first step in this process involves detecting edges which are dominant in the
vertical direction. The justification for searching for vertical lines is that the cam-
era remains horizontal to the ground plane during all experimental runs and since
trees are quasi-vertical structures they would always appear quasi-vertical in im-
ages taken by the camera. This is a valid assumption since the ground upon which
the vehicle navigates is relatively flat and smooth. Alternatively, in off-road con-
ditions, one could take advantage of the tilt and bank information obtained from
the onboard IMU to determine the relative orientation of a tree to the camera and
search for structures in that orientation.
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Figure 4.12: Tree parts including the roots, trunk and crown. The vision system is
interested in detecting the trunk of each tree. Image courtesy of Steve Nix [91].

In the traditional Canny edge detector [66], lines are tracked in a random direc-
tion before any non-max suppression is applied. After applying a Gaussian filter
to the image, it is convolved with a gradient kernel in the horizontal, vertical and
diagonal directions.
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In the first stage of VisSLAM, images are processed by a Canny edge detector
tuned for vertical sensitivity. This is achieved by simply discounting the effect of
the horizontal gradient from the sum of gradients before non-max suppression and
hysteresis thresholding is performed. Discounting horizontal gradients results in
giving more weight to vertical structures and make it simpler to segment them
from background clutter. In Figure 4.13 the red circles overlaid on top of the image
show location where the traditional Canny erroneously follows a horizontal edge
rather than a vertical one. In the modified Canny the vertical edges are given
more weight, which results in a better trace of the tree profile. For the sake of
clarity edge tracking and linking is also included in these images. Following edge
detection, non-max suppression is performed as in the traditional Canny, followed
by hysteresis thresholding.

Img. 180 Canny Trad. Canny Vert.

Img. 185 Canny Trad. Canny Vert.

Figure 4.13: Applying the traditional Canny and one sensitive to vertical lines. The
images also include a line following system for clarity purposes.
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Line tracking and refining

The output of the edge detection system is fed to a line tracking system which
uses an eight point neighborhood scheme to build lines in a recursive fashion. At
junctions the system tracks all lines of the junction and selects the longest of the
possible lines in a greedy fashion (Figure 4.14).

a b

Figure 4.14: (a) At junctions the system tracks all possible alternatives and chooses
the longest line (line B); (b) Check line neighborhoods at their extremities, if line
D continues line C at their intersection is better than the original line D, join C
and D at their intersection and trim line D.
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a b

Figure 4.15: Trimming bad lines at intersections. (a) Arrow shows location of bad
line direction; (b) Algorithm trims bottom lines at intersection and merges the two
lines at their intersection, thereby trimming the first line.

By following this greedy approach noisy pixels that tend to deviate the tree
profile in the wrong direction are eliminated.

Line pruning

Of the remaining lines, a number of them are pruned according to two heuristics:
minimal length and average texture response. Firstly, all lines which are smaller
than a minimal length are pruned. Experiments run on a database of tree images,
indicate that lines less than 15 pixels long can be safely pruned without loosing any
significant lines. 15 pixels corresponds to a tree 1 meter high located approximately
34 meters away from the camera. Secondly, since it is quasi-vertical lines we are
interested in, the images are filtered with a Gabor filter, using the coefficients
sensitive to the vertical orientation at the finest scale. Then, the average texture
value (4.9) for each of the tracked lines above is calculated and those below a
threshold h are discarded.

T =
1

Ni

Ni∑
i

T (f, v) (4.9)
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where i is a point of the queried line, Ni is the total number of points of that line,
T is the average texture value of the line, and T (s, or is the texture value of the
queried point i at the finest scale f and vertical orientation v.

The idea is that tree profiles exhibit significantly larger average texture values
in the vertical direction than those of lines generated by bark texture. h is found
empirically by testing the system on data sets ‘one’, ‘two’ and ‘three’ of the database
of experimental images (Appendix A.3). A value of h equal to 0.8 yields the best
compromise between detected tree profile and spurious lines.

Figure 4.16 shows the effectiveness that texture pruning has on eliminating
insignificant lines. Notice how the lines representing grass are eliminated and those
inside the tree trunk are reduced.

a b

Figure 4.16: Effect of applying pruning based on the texture response. (a) Before
texture pruning; (b) after texture pruning.

Once all lines are tracked, repaired, and bad lines are pruned, the system is
ready to group lines based on Continuity and Symmetry constraints.

Continuity and symmetry

The procedure here is inspired by the Gestalt laws in psychology [107] to design a
system that detects trees. Based on the theory of perception, the Gestalt principles
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were developed in the nineteenth century by a psychologist who believed that whole
images are often perceived as more than the sum of their parts. The Gestalt laws
include nine rules that are stated as follows:

1. Continuity

2. Symmetry

3. Proximity

4. Similarity

5. Closure

6. Surroundedness

7. Smallness/area

8. Figure/ground

9. Pragnanz

All the lines that are obtained after line tracking and pruning are grouped based
on four of the Gestalt laws; namely, Continuity, Symmetry, Similarity, and Proxim-
ity. First, all detected lines are compared for continuity. The developed equation
for Continuity and Symmetry are inspired by the work of Mohan and Nevatia [110],
although the equations proposed here include modification that are found neces-
sary to insure better grouping. Continuity between two lines is proportional to the
proximity between the extremities of the endpoints, to the difference in orienta-
tion (similarity) between the lines and inversely proportional to the length of the
continuing line as detailed in (4.10)

Continuity =

√
α2 + β2 ∗ (1 + 0.9 ∗ δs)√

LD/LS
, (4.10)

where Continuity is the continuity strength of between two lines, α is the change
in orientation the source line takes to join the destination line, β is the change in
orientation the destination line makes to join the source line,δs is the value of the
spacing between the two source and destination line, Lso and LD are the lengths of
the source and destination lines respectively (Figure 4.17).

Equation (4.10) indeed succeeds to represent the continuity affinity between lines
since α and β indicate the compatibility of the end of a source line to the beginning
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of a destination line. If any of these two angles is large the continuity value increases
and lines have low affinity. Furthermore, even if both lines are compatible matches
based on orientation but are far away, then they are not matched.

Figure 4.17: Variables for continuity.

Lines with α, β, δs above given thresholds are pruned to ensure that the source
lines only connect to destination lines which are in front of them and not behind
them or too far away from them. These thresholds are found empirically by running
a series of experiments on the first three data sets of the experimental database.
Values of ±20 degrees for α and β, and 30 pixels for δs yielded the most consis-
tent results across the database of tree images. The minimum Continuity value is
preserved for each line and lines which are with 1/3 of this value are preserved as
potential continuous lines.

A measure of symmetry is also used to determine the symmetry strength be-
tween two lines (4.11).

S = 5AR− 20δθ − 20δl − δe − 3δsk + Ls − δal, (4.11)

where AR is the aspect ratio between the two lines, δθ is the difference in orien-
tation between them in rad, δl is the normalized difference in their length, δe is
the difference in the orientation of their ends in rad, δsk is the difference in their
maximum skewness, Ls is the length of the symmetry line, δal is the difference in
the alignment between their ends (Figure 4.18).

The weights in (4.11) are found to produce the most consistent results in the
database of tree images. A better approach would be to learn the weights using a
machine learning algorithm such as Expectation Maximization (EM). It is worth-
while to note that the calculation of the symmetry and continuity is very fast due to
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the fact that only the extremities of the lines are used to calculate all the variables
in (4.10) and (4.11). The symmetry line is the line joining the midpoints of the
lines joining the top and bottom extremities respectively.

Figure 4.18: Variables for symmetry.

Testing this equation on a pair of lines that are close and parallel produces a
change in orientation δθ equal to zero; therefore resulting in a high affinity between
the two parallel lines. On the other hand, if two perpendicular lines are tested
for grouping, the difference in their orientation results in a large negative number
(40 ∗ Pi) subtracted from the Symmetry value, and the tow perpendicular lines
have a very lwo affinity for each other.

Ground-sky line tracking

In addition to their quasi-vertical shapes, tree trunks are also constrained to be
attached to ground. A tree is either located far away and the base of its trunk
is adjacent to the Ground-Sky (G-S) separation line, or it is located close by and
its trunk intersects G-S. Figure 4.19 shows the two possible configurations of tree
trunks. It is not possible for the base of the tree trunk to be located higher than
G-S.
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Figure 4.19: Image showing the two possible locations for a tree trunk with the
Ground-Sky (G-S) line overlaid by hand. The tree on the right is close and its
trunk intersects the G-S line, whereas the tree on the left is far and its base is
adjacent to the G-S line. It is not possible for a tree base to be located higher than
G-S.

Determining G-S is a difficult problem, and is one that is directly tied to Per-
ception: where does the ground end and the sky begin? To the author’s knowledge,
there has been no work to date specifically focused on finding G-S. The closest
work is aerial based ground-sky detection [111], which is more focused on finding
the horizon for the sake of navigation of Unmanned Aerial Vehicles (UAV). This is
a different problem than G-S for in the aerial scenario trees, shrub, rocks and simi-
lar ground based structured are assumed part of the ground; whereas in land-based
navigation these structures are part of the Sky. In other words, the G-S system here
is interested in segmenting ‘Ground 0’ from the sky and other structures protruding
from the ground.

G-S line is attributed to the longest horizontal line in the image since the camera
is assumed to remain oriented parallel to the ground. Its calculation is similar to
that of vertical line tracking explained in Sections 4.3.2 and 4.3.2 but in this case
it is the horizontal lines that are sought. Edges are detected and tracked in the
horizontal direction and all horizontal lines below a threshold h are preserved.
Tests on the database of experimental images indicate that a value of 90 pixels

105



for h preserves most of the G-S information while avoiding spurious horizontal
information. The result of this intermediate operation is shown in the left image of
Figure 4.20. The next step consists of taking the mean row height of all horizontal
lines in each column

Hor(j) = mean(Hor1(j), Hor2(j), Hor3(j), ..), (4.12)

where Hor1(j) is row height of the horizontal line ‘1’ at column ‘j’. The final result
is shown in the right image of Figure 4.20.

Intermediate Final

Figure 4.20: G-S detection system based on finding the dominant horizontal lines.

106



Hand label 6 GS 6

Hand label 180 GS 180

Hand label 183 GS 183

Figure 4.21: Results of the Ground-Sky detection system (right), compared to
ground truth (left). The numbers 6, 180, and 183 refer to the image number in the
database of collected images.
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Unfortunately, this G-S system sometimes fails due to long horizontal lines in
the image that do not represent G-S. It is found that setting a nominal value for
the G-S line and using a range of acceptable G-S lines produces better results.
More specifically, all lines with their endpoints below the horizon range and with
no continuous or symmetric lines above the horizon range are pruned. All lines
with their beginning above the horizon and with no lines which are continuous or
symmetric within the horizon range are pruned. The range of acceptable G-S lines
is determined empirically by hand segmenting all the collected images during an
experimental run and recording the position of G-S. It is found that most of the
G-S lines are located within 50 pixels of the middle of the images (i.e., 240 ± 50
pixels).
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Hand label 12 GS 12

Hand label 37 GS 37

Hand label 40 GS 40

Figure 4.22: Failures of the Ground-Sky detection system (right), compared to
ground truth (left). The numbers 12, 37, and 40 refer to the image number in the
database of collected images.
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Grouping lines into trees

Continuous and symmetric lines are now grouped into potential trees based on
two criteria; namely, entropy reduction and proximity of the base to horizon. The
remaining lines are grouped into trees by reducing the entropy of the pixels in the
image, where the entropy is defined in (4.13)as follows

E = −
∑

(Pn)log2(Pn) (4.13)

and Pn is the probability of a pixel having a label n and is calculated as

Pn =
nc
TP

(4.14)

where nc is the count of pixels in the image labeled n and TP is the total count of
pixels inside the image.

Results

Figures 4.23 and 4.24 show the result of applying the PO-based tree detection
system described above to a temporal sequence of images (180-197) taken from data
set 1 of the experimental data (Section A.3). A quantitative analysis of this tree
detection system is presented in Section 4.7, where its performance is evaluated on
an entire run during which the navigating vehicle traverses a complete loop around
the test site.
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Img. 180 Img. 181 Img. 182

Img. 183 Img. 184 Img. 185

Img. 186 Img. 187 Img. 188

Figure 4.23: Tree detected via perceptual organization. The system appears to
detect all instances of trees when they are isolated and relatively closely situated.
Problems occur when multiple trees intersect (Img. 180) and when trees are far
away and poorly contrasted (Img. 187).
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Img. 189 Img. 190 Img. 191

Img. 192 Img. 193 Img. 194

Img. 195 Img. 196 Img. 197

Figure 4.24: Tree detected via perceptual organization. The system appears to
detect all instances of trees when they are isolated and relatively closely situated.
Problems occur when multiple trees intersect (Img. 192) and when trees are far
away and poorly contrasted (Img. 195).
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4.4 Tree recognition

In VisSLAM, tree trunks are recognized and matched to previously viewed trees
based on the features which they exhibit. These features must be very distinctive
in order to avoid false positives, and must be recognizable from different camera
viewpoints and varying lighting conditions. Mikolajczyk and Schmid [68] compare
the performance of many descriptors (See discussion in Section 4.3) and find that
SIFT features are the most stable and distinctive of them all. For this reason, SIFT
features are used in VisSLAM as the basis for the tree recognition system. Once
a tree is detected, the SIFT features located within its boundaries are matched
to those in a database, and the corresponding match indicated the identity of the
queried tree. In a real-time SLAM, the SIFT database can be compiled online and
updated each time a new tree is observed by augmenting the SIFT database with
the SIFTs and their corresponding identity. In VisSLAM, the SIFT database is
prepared offline, by extracting the SIFTs of all landmarks from several viewpoints
and adding them to the SIFT database.

Due to the importance of SIFT to the success of the recognition system, the
following sections review the extraction of SIFTs and the calculation of their de-
scriptors. In Section 4.4.2 SIFT features are extracted and overlaid on images of
trees taken from various viewpoints.

4.4.1 SIFT extraction and description

Extraction

SIFT features are detected via a Difference of Gaussian filter (see Figure 4.25).
First, the input image is filtered with a 2D Gaussian kernel (21/k) to produce the
first entry at the bottom of the image. Then, each processed image is convoluted
with this same 2D Gaussian kernel to produce the image one level higher on the
same octave. The DoG images on the right are obtained by subtracting two adjacent
images. Once the desired number of images per octave are obtained, the image
corresponding to the original Gaussed by a kernel equal to 2 (i.e., 2k/k) is down-
sampled by two to produce the first image on the next octave. The procedure is
repeated for each scale.

Once all the DoG images are obtained, the maximum values inside each image
are determined and compared to those obtained at lower and higher scales to yield
the most salient regions in space and scale. In this work, the DoG uses two Gaussed
images (i.e., one DoG image) for each octave at a spatial frequency of σ = 1.6 and
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Figure 4.25: Procedure for extracting the Difference of Gaussian (DoG) image
saliencies. The input image is first convolved with a 2D Gaussian (the bottom
image). Next the convolved image is convolved to produce the image higher on
the scale. This procedure is repeated to produce all the images on one octave.
The DoG images on the right are obtained by taking the difference between two
adjacent Gaussed images. After each octave, one of Gaussed images (chosen to
avoid aliasing) is down-sampled by a factor of two and the process is repeated for
that octave. This image is copied from that produced by Lowe [104].

ten octaves in total. Figure 4.27 shows five of the ten DoG images for a sample
image where the ‘+’ sign indicate the location of DoG maxima at the current scale.
The final large image shows the original image with all the detected IPs overlaid,
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where the size of each square reflects the scale of the IP.

Descriptor

While the DoG operator insures invariance of the SIFT features to changes in
lighting conditions and camera viewpoint, it is its descriptor that ascertains its
distinctiveness from other DoG features. At each DoG point, a window of 16 x 16
pixels is taken surrounding this point (see Figure 4.26). This window is then divided
into 16 sub-windows (4x4) and inside each sub-window all orientations are weighed
in a histogram. All the weights of each of these 16 sub-windows for each of the 8
orientations are grouped into a feature vector known as the SIFT descriptor. The
SIFT descriptor is 128 dimensional, including 8 orientations times 16 sub-windows.

The success of SLAM is hinged on recognizing a landmark (i.e., data association)
and using the difference between the observation of that landmark (range and/or
bearing) on one hand and the prediction of that same observation on the other
hand, to correct the ego-motion estimate of the navigating vehicle and the estimate
of the SLAM map. It is therefore imperative that the system not only detect a
landmark but also recognize which specific landmark it is (e.g ., tree ‘one’ verses
tree ‘nine’). One option for tree recognition is to list SIFT features that appear
inside the tree region from several viewpoint, and then to match a query tree by
matching one of its SIFT to those in the database. Since SIFT features are invariant
to camera viewpoint and lighting conditions, the system should be able to match
SIFT features of one tree to very few template SIFT features taken from that tree.
A more robust recognition system is to use multiple SIFT for matching, but care
must be taken not to use too many of these SIFTs to avoid false rejection. The
best compromise between correct recognition and false positives is to require 3 SIFT
matches to infer a correct tree match.

4.4.2 Results

Figures 4.28 and 4.29 show the images that are used to extract the SIFT descrip-
tors for Tree ‘six’ and ‘seven’ respectively. Images are taken for nine different
viewpoints to capture sufficient SIFT features to represent the tree from all view-
points. A quantitative analysis is differed to Section4.7 where the system is tested
on a database of images taken while the navigating vehicle completes a full loop
around a track.
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Figure 4.26: SIFT descriptor. After each DoG interest region is found, it is ex-
pressed by its corresponding SIFT descriptor. A 16x16 window is take around each
interest point and the orientations in eight directions are recorded at these loca-
tions. The large 16x16 window is then subdivided into 4x4 sub regions where an
orientation histogram is set up in each of these regions. The value of each histogram
entry is reflected by the size of the arrow in the eight arrow cluster inside each of
the subregions. Finally each of the orientation entries in each of the subregions are
accumulated in a feature vector known as the SIFT descriptor (4x4 subregions x 8
orientations = 128 entries). This image is inspired by a similar one produced by
Lowe [104].
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PYR1 PYR2 PYR3

PYR4

PYR5 IPs at all scales.

Figure 4.27: DoG Interest Points (IPs) shown at 5 scales (the + signs). Although
the images appear to be the same size, the actual size of PYR2 is half of PYR1 and
that of PYR3 is half of PYR2. For this reason, when they are shown at the same
scale the smaller images appear blurred due to the required averaging. The final
large image with squares overlaid shows all the IPs on the original image, where
the size of the square reflects the scale of the IP.
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Img. 12 Img. 28 Img. 52

Img. 68 Img. 220 Img. 238

Img. 258 Img. 343 Img. 362

Figure 4.28: Tree ‘six’ shown from nine different viewpoints, with overlaid SIFT
features on every view. The SIFT features provide distinctive marks by which trees
are identified.
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Img. 4 Img. 75 Img. 93

Img. 196 Img. 237 Img. 259

Img. 328 Img. 352 Img. 375

Figure 4.29: Tree ‘seven’ shown from nine different viewpoints, with overlaid SIFT
features on every view. The SIFT features provide distinctive marks by which trees
are identified
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4.4.3 Can stereo help tree recognition?

One method by which stereo depth information can assist recognition is by reducing
false negatives and false positives when the queried tree is within the range of the
stereo camera. For instance, when a tree is associated to another tree, the depth of
the recorded tree and that of the observed tree are compared to validate if indeed
the match is correct or not.

4.5 Tree initialization

Another issue that is crucial for SLAM’s success is the initialization of landmarks
into the SLAM map. Initialization involves adding the landmark position into the
SLAM state and its corresponding covariance into the SLAM covariance matrix.
One must be cognisant that the EKF upon which SLAM is built imposes Gaussian
representation for all SLAM state variables and works by linearizing a non-linear
estimate of vehicle pose and the position of the landmarks. Landmark locations
must exhibit small variances in order to approximate their non-linear functions
with their respective linearized forms. Therefore, it is imperative that the initial
guess of the landmark’s position be as precise as possible in order to avoid large
non-linearities that can cause the EKF to diverge. Landmark initialization can be
performed in a bearing-only or range-bearing fashion.

4.5.1 Bearing-only initialization

In bearing-only SLAM it is not possible to localize a landmark and initialize it into
the SLAM map from a single observation; rather, it takes at least two observa-
tions of the same landmark and knowledge of the vehicle motion between the two
observations in order to localize a landmark (Figure 4.30).
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Figure 4.30: Initializing a landmark via bearing-only. Once a tree is detected, its
bearing to the camera θ and ϕ is saved as well as the pose of the robot. If the tree
is detected in subsequent images, its bearing is saved with the respective position of
the robot, however it is not initialized into the SLAM map until sufficient angular
gradient is sufficient to avoid ill-conditioned problems.

The problem with the bearing-only procedure is the requirement for a large
baseline between the positions at which landmarks are sighted at the time of ini-
tialization (This issue is detailed in Section 2.3). Unfortunately, in the experiments
run in VisSLAM, the vehicle navigates for long periods of time in a straight line and
only rotates when changing its heading and making another straight line trajectory.
It would therefore take a long time before the initialization condition be met and
the system would have most probably already diverged because of the INS growing
errors.

4.5.2 Can stereo help tree initialization?

Alternatively, landmark initialization can be performed in range-bearing fashion
if a stereo camera is available. The stereo camera is used to infer the depth of a
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landmark via stereopsis, where the parallax between the two lenses of the stereo
pair is used to calculate the depth of a landmark. One important issue is that depth
quality decreases with range of the camera. This issue is evidenced by the images
compiled by the camera manufacturer [112] shown in Figure 4.32, where the long
and short range accuracy are plotted verses the range of the camera. VisSLAM uses
a range cut-off point, beyond which potential trees are not initialized. This point
is chosen at 7.5 meters, where a maximum error of 1 meter can occur. One could
allow for higher depth values but must be cognisant of the risk of filter divergence
if too large an error exists in the initial landmark position estimate. Figures 4.32
and 4.33 show images where the trees within are initialized. Tree ’one’ is initialized
when it is at 5.165 meters away. Tree ‘six’ is initialized at 2.4 meters. These trees
are then initialized into the SLAM map by adding half the diameter of each tree to
its corresponding range reading.
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Figure 4.31: Stereo accuracy of the bumblebee camera. The accuracy is plotted
verses the range of the camera for short range (top) and long range (bottom). Any
landmark observed at a depth value beneath the cut-off point (shown in the bottom
graph) of 17.5m is deemed acceptable and the landmark is initialized. The accuracy
of the depth estimate at the cut-off point is 1m. If the landmark is situated beyond
this point, it is not initialized.
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Tree ‘One’ Depth ‘One’

Tree ‘Six’ Depth ‘Six’

Figure 4.32: Trees initialized using depth from stereo. Trees ‘One’ and ‘Six’ initial-
ized when they are within the range of stereo camera.
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Tree ‘Ten’ Depth ‘Ten’

Tree ‘Forteen’ Depth ‘Forteen’

Figure 4.33: Trees initialized using depth from stereo. Trees ‘Ten’ and ‘Fourteen’
initialized when they are within the range of stereo camera.
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4.6 Architecture

The above system, including tree detection, recognition and initialization, is sum-
marized in the flowchart in Figure 4.34. The vision system first captures a stereo
image of the scene, which it unwraps and rectifies, performs stereo correspondence
and performs 3D reconstruction of that scene. At the same time, the image is
processed by the tree detection system, where edge detection, line tracking, line
pruning, and line grouping is performed to detect potential tree trunks. The image
is simultaneously filtered by a SIFT filter and those inside each tree boundary are
associated to that tree. These SIFT features are then matched to a library of SIFT
descriptors of previously viewed trees. If 3 SIFT descriptors match to the same
tree, the system concludes that the query tree is recognized and initiates a SLAM
update using that tree. If, on the other hand, the queried tree does not match any
in the database, an attempt is made to initialize it into the SLAM map, where
acceptable conditions are determined by the stereo system as described in Section
4.5. If the queried tree is within the acceptable range of the stereo camera, it is
initialized; if it is not within the acceptable range it is discarded and the next tree
is processed.

4.7 Experiments

The Computer Vision system proposed above is tested on the first data set of the
experimental runs (described in A.3) where the vehicle completes a full loop and
the system is evaluated based on correct detection, recognition and initialization
rates. Other measures of interest include false positive detections and false positive
recognitions.

4.7.1 Results

Images are collected from a camera onboard a mobile vehicle while it is navigating
inside a park area, featuring relatively flat and smooth paved paths that circulate
between a number of conifer trees, exhibiting salient tree trunks (See Appendix
A.2 for images of the trees that are used as landmarks). In addition to the trees, 7
lampposts are observed at the test site. These posts are treated as tree trunks by
the detection and recognition system. This is done due to the scarcity of trees in
some locations. 580 images are collected in total as the vehicle makes a complete
cycle around a pre-determined path. These images are hand segmented in order to
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Figure 4.34: Architecture of the Computer Vision system.

determine the number of times each tree is sighted as well as the total number of
these trees, where 932 tree trunks are marked as potential landmarks for the vision
system.

The performance of the vision system on the aforementioned tree images is
summarized in tabular form in Table 4.1 and then graphically in Figure 4.35. The
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average detection rate is 71.24% and the average recognition rate of these detected
trees is 85.54%.

Trees ‘2’ and ‘7’ are marked as initialized, which signifies that during an entire
cycle of the vehicle, trees 2 and 7 are never close enough to the camera to satisfy the
initialization criterion (i.e., closer than 7.48 meters away). A picture of these trees
is shown in Figure A.3 and it is apparent that the path along which the vehicle
circulates is far from these trees. A solution to this shortcoming is to combine
range-bearing and bearing-only initialization techniques; where trees that satisfy
the bearing-only initialization criteria (Section 2.3) are initialized if they have not
yet been initialized through range-bearing methods. This method is not attempted
here but is left for future research.
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Total # of
Sightings

Detection Recognition Initialization
Landmark

True % True % (Y,N)

Tree 1 28 20 71.43 17 85.00 Y
Tree 2 40 35 87.50 26 74.29 N
Tree 3 50 32 64.00 25 78.13 Y
Tree 4 41 31 75.61 26 83.87 Y
Tree 5 51 33 64.71 24 72.73 Y
Tree 6 54 39 72.22 32 82.05 Y
Tree 7 58 45 77.59 38 84.44 N
Tree 8 49 35 71.43 33 94.29 Y
Tree 9 31 20 64.52 17 85.00 Y
Tree 10 61 55 90.16 53 96.36 Y
Tree 11 33 22 66.67 15 68.18 Y
Tree 12 27 17 62.96 13 76.47 Y
Tree 13 28 21 75.00 15 71.42 Y
Tree 14 20 11 55.00 9 81.82 Y
Tree 15 23 16 69.57 15 93.75 Y
Tree 16 26 14 53.85 13 92.86 Y
Tree 17 20 18 90.00 16 88.89 Y
Tree 18 11 9 81.82 7 77.78 Y
Tree 19 6 4 66.67 3 75.00 Y
Tree 20 10 7 70.00 7 100.00 Y
Tree 21 9 6 66.67 5 83.33 Y
Tree 22 4 1 25.00 1 100.00 Y
Tree 23 100 53 53.00 48 90.57 Y
Tree 24 48 33 68.75 30 90.91 Y
Lamp 1 26 19 73.08 17 89.47 Y
Lamp 2 39 35 89.74 34 97.14 Y
Lamp 3 11 10 90.91 9 90.00 Y
Lamp 4 11 9 81.82 7 77.78 Y
Lamp 5 6 5 83.33 5 100.00 Y
Lamp 6 1 1 100.00 1 100.00 Y
Lamp 7 2 1 50.00 1 100.00 Y
Post 1 8 7 87.50 6 85.71 Y

Total 932 664 71.24 568 85.54

Table 4.1: Performance of Computer Vision system during a complete cycle of the
robot. A tree is marked as not initialized (N) if during the entire run it does not
enter into the confidence range of the stereo camera (7.48 meters).
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Figure 4.35: Tree detection and recognition rates.

Trees that are connected at the base including Tree ‘11’, Tree ‘12’, Tree ‘13’,Tree
‘23’, and Tree ‘22’ are merged and treated as one tree. The tree detection manages
with such trees by keeping track of the distance between the centers of each tree
pair ‘dtree1−tree2’ and the width of each tree ‘Wtree1’ and ‘Wtree2’. The merging
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predicate of two trees is as follows:

P (tree1, tree2) =

{
true if W1+W2

2
≥ d12

false otherwise
(4.15)

where P (tree1, tree2) is the merging predicate between tree1 and tree2.

If the sum of the widths of two trees is equal to or larger than the distance
between the centers of these trees, the trees are merged and considered as one tree
(See Figure 4.36). Figure 4.37 shows Tree ‘23’, which in essence is two trees joined
at the base. In the image on the left the result of the tree detection system without
merging is shown, on the left the result is shown after the merging.

The system is written in Matlab and implemented on a Pentium M 1.8GHz
processor with 1GB of RAM. The time to detect trees on a 640x480 image, including
edge detection, line tracking, continuity and symmetry detection, line and tree
pruning is 6 seconds.

Figure 4.36: Merging trees connected at the base. If W1+W2

2
≥ d12 the two trees are

merged.
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Figure 4.37: Merging of the two trees of Tree ‘23’.
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4.8 Summary

This chapter constitutes the fundamental contribution of this thesis. Three Com-
puter Vision systems are introduced including environment recognition, tree detec-
tion, and tree recognition.

Environment recognition is based on extracting high-level primitives inside im-
ages via a steerable pyramid and using the resulting feature vector as the image’s
signature. An Artificial Neural Network is trained to classify each image based
on its discriminative signature. Results of experiments conducted on 350 indoor
images and 270 outdoor images show correct classification rates of 95% and 79%
respectively.

The detection system is based on segmenting images into quasi-vertical struc-
tures and selecting those structures that are close to the Ground-Sky separation
line as tree trunks. The segmentation is a structure-based segmentation which con-
sists of detecting vertical edges and tracking them into vertical lines. A measure
of continuity and symmetry is then calculated for each pair of lines. In each im-
age, vertical structures are then constructed using compatible lines (continuity and
symmetry) by reducing the total entropy of the image. The system is tested on a
database of 580 images containing 932 trees. The total number of trees detected is
664 trees, which is equivalent to 71.24%.

The recognition system is based on matching trees in feature space. Each tree
that is detected, is scanned for SIFT features within its borders and these features
are matched to those of previously viewed trees. If three SIFTs match to the same
tree the query tree is declared matched. The system is tested on the same database
as that of the tree detection system and results in 85% correct recognition rate.

The localization system uses depth via stereopsis to localize a landmark in
3D space. Trees that are located within 7.48 meters of the camera are localized
with an accuracy below 18.72 cm. During the experiments, where the navigating
vehicle makes a complete cycles, all trees except for two of them ‘T7’ and ‘T22’ are
initialized. The other two are never initialized since they are never located within
the confidence range of the stereo camera.
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Chapter 5

VisSLAM system

5.1 Introduction

This chapter is intended to demonstrate the application of the fundamental con-
tributions presented in Chapters 3 and 4 in the context of both autonomous lo-
calization and SLAM. The developed inertial and Computer Vision systems are
integrated into a working SLAM system, which is named VisSLAM. VisSLAM is
built in the framework of an Extended Kalman Filter, where the prediction model
is the INS system described in Chapter 3 and the update model is based on the
Computer Vision system presented in Chapter 4. The mechanics of VisSLAM are
first described in Section 5.2, including specifics of the EKF prediction, observation,
and update models. Three experiments are conducted to demonstrate the perfor-
mance of the object detection, recognition, and localization techniques proposed in
Chapter 4. Results from these experiments are presented in Section 5.3. Finally,
conclusions are made in Section 5.5.

5.2 Architecture

The VisSLAM architecture is shown in the flowchart of Figure 5.1. First, an Envi-
ronment Recognition system described in Chapter 4 (Section 4.2) is used to deter-
mine the environmental context of the navigating vehicle. In this work, the vehicle
is constrained to an outdoor park area, where trees are abundant. Once the sys-
tem is confident that it is indeed located within a park environment, it chooses
tree trunks as potential landmarks and initializes the state vector and covariance
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Figure 5.1: Architecture of VisSLAM system. In the first step of VisSLAM, the
Environment Recognition system is executed to determine the context of robot
milieu in order to know what type of landmarks to search for. Navigation begins
and the state vector and covariance matrix are initialized. A prediction is then
performed through the INS system of Chapter 3. After each prediction, the system
checks if a new image is captured; if so the image is used to detect tree trunks and
perform a SLAM update (or initialization); if not the INS predictions for state and
covariance are adopted as the new state and covariance.

matrix. VisSLAM does not attempt the kidnapped robot problem1 [113]; rather,
the initial position and heading of the vehicle are calculated from two consecutive
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GPS readings at startup:

Pos(t0) = (GPSx(1), GPSy(1)) (5.1)

Heading(t0) = arctan(
GPSy(2)−GPSy(1)

GPSx(2)−GPSx(1)
), (5.2)

where GPS(1) and GPS(2) are two consecutive GPS readings at the time the
vehicle initiates navigation. GPS(1) is the GPS reading immediately following
the first captured image, since as previously explained in Section 3.3, navigation
initiates immediately after the first image is taken. Furthermore, the vehicle travels
on a straight line, thereby allowing calculation of initial heading from 2 consecutive
GPS readings. The state at startup includes the vehicle position (x, y, z), the
vehicle velocity (Vx, Vy, Vz) and the Euler angles (φ, θ, ψ). The covariance at startup
includes the components of the vehicle states



σxσx 0 0 0 0 0 0 0 0
0 σyσy 0 0 0 0 0 0 0
0 0 σzσz 0 0 0 0 0 0
0 0 0 σV xσV x 0 0 0 0 0
0 0 0 0 σV yσV y 0 0 0 0
0 0 0 0 0 σV zσV z 0 0 0
0 0 0 0 0 0 σφσφ 0 0
0 0 0 0 0 0 0 σθσθ 0
0 0 0 0 0 0 0 0 σψσψ


, (5.3)

where σ stands for the standard deviations of the relevant state at startup and are
all initialized to a random small number. σ is chosen as 0.01 here since the initial
positions, velocities, and Euler angles are known with high certainty (i.e., low σ).
The process of adding and removing landmarks from the state and covariance, also
known as map management, is described in Section 5.2.2.

Once the states and covariances are initialized, they are propagated forward in
time in a recursive fashion via an EKF, whose specifics are discussed next.

1The kidnapped robot refers to the situation where the robot is given no information regarding
its initial position and heading.
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5.2.1 The EKF System

Extended Kalman Filters are very popular for SLAM in situations where the non-
linearities in the process and measurement models are small enough to allow ap-
proximating these models by the linear terms of their corresponding Taylor series
expansions.

Process model

VisSLAM’s process model is based on the equations developed for the INS in Chap-
ter 3, where a prediction of the vehicle motion is made from

x̂(k) = F (x̂(k − 1), u(k), k) + w(k), (5.4)

where F (., ., k) is the non-linear state transition function and w(k) is the white
Gaussian noise associated with this transition function; x̂ is the state and u is the
process input including accelerometer and gyroscope readings from the IMU.pn(k)vn(k)

ψn(k)

 =

 pn(k − 1) + vn(k)∆t
vn(k − 1)) + [Cn

b (k − 1)f(b(k) + gn]∆t
ψn(k − 1) + En

b (k − 1)wb(k)∆t

 , (5.5)

where pn, vn are the position and velocity of the vehicle in the navigation frame,
and ψn are the Euler angles. More explicitly,

pnx(k)
pny (k)
pnz (k)
vnx(k)
vny (k)
vnz (k)
φ(k)
θ(k)
ψ(k)


=



pnx(k − 1) + vnx(k)∆t
pny (k − 1) + vny (k)∆t
pnz (k − 1) + vnz (k)∆t

vnx(k − 1) + (Cn
b (1, :)[abx; a

b
y; a

b
z] + gx)∆t

vny (k − 1) + (Cn
b (2, :)[abx; a

b
y; a

b
z] + gy)∆t

vnz (k − 1) + (Cn
b (3, :)[abx; a

b
y; a

b
z] + gz)∆t

φ(k − 1) + En
b (1, :)[wbx;w

b
y;w

b
z]∆t

θ(k − 1) + En
b (2, :)[wbx;w

b
y;w

b
z]∆t

ψ(k − 1) + En
b (3, :)[wbx;w

b
y;w

b
z]∆t


, (5.6)

where ∆t is the time difference between two IMU readings; ab and wb are the
body-frame referenced vehicle accelerations and rotation rates which are sensed
by the IMU accelerometers and gyroscopes respectively; Cn

b is the direction cosine
matrix that transforms accelerometer readings from the body coordinate frame to
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the navigation frame

Cn
b =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 , (5.7)

and En
b is the matrix used to transform gyroscope readings to Euler angles,

En
b =

1 sφtθ cφtθ
0 cφ −sφ
0 sφsecθ cφsecθ

 . (5.8)

Observation model

The second source of information used by the EKF are the observations. A stereo
camera is mounted on board the navigating vehicle to detect the bearing of land-
marks around the vehicle. The observation model is as follows

zi(k) = Hi(p
n(k),Ψn(k),mn

i (k), k) + v(k), (5.9)

where Hi is the observation model, which is a function of the position pn(k) and
bearing Ψn(k) of the vehicle in the navigation frame, as well as the position of the
landmarks mn

i (k) in the navigation frame; v(k) is the zero-mean observation noise
error with covariance R. R is dependent on the quality and resolution of the camera
and is approximated in an empirical fashion in Section 5.3.1. The observation model
Hi is expressed as

Hi(x̂(k|k − 1) =

[
ϕi
ϑi

]
=

 arctan
(
yc

xc

)
arctan

(
zc√

(xc)2+(yc)2

) , (5.10)

where ϕi and ϑi are the predicted azimuth and pitch angles of the landmarks with
respect to the camera. Pitch is usually included in the observation model for aerial-
based SLAM; however, for land-based SLAM it is sufficient to use the azimuth
since the vehicle is constrained to navigate on the ground. The observation model
is therefore reduced to:

Hi(x̂(k|k − 1) =
[
ϕi

]
=

[
arctan

(
yc

xc

)]
, (5.11)
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xc and yc, are the 2D coordinates of landmarks in the camera reference frame and
are determined from

pcmc =

[
xc

yc

]
= Cc

bC
b
n[m

n
i − pn − Cn

b p
b
cb], (5.12)

where pbcb is the position of the camera lens with respect to the body coordinate
frame center (i.e., inertial sensor location); mi and pn are the respective position
of a landmark ‘i’ and the vehicle in the navigation frame. The expression between
the square brackets in (5.12) represents the distance between the landmark and
camera ∆LC expressed in the navigation frame. Cb

n is the matrix expressing the
distance ∆LC in the body frame (Figure 5.3). Cb

n is in effect the inverse of the
direction cosine Cn

b , and can be simply calculated from the transpose of Cn
b since

only rotations are involved in this transformation; pn is the position of the vehicle
in the navigation frame and mn

i is the position of a landmark ‘i’, once initialized,
in the navigation frame.

Equations (5.11) and (5.12) present an expression for the expected bearing (az-
imuth) of a landmark as seen from the camera. The difference between the expected
and actual bearing measurements yields a measure called Innovation, which is used
in the update stage of the EKF to improve the state and covariance estimates. Cc

b

transforms ∆LC from the body frame to the camera frame. During vehicle motion,
the camera pans back and forth in increments of Pi/4 between +Pi/2 and −Pi/2
in the body reference frame (white frame in Figure 5.2), taking an image at each
increment. This is done to increase the range view of the navigating vehicle. Since
the camera rotates throughout the vehicle motion, the position of the camera lens
depends on the camera shot. For simplicity, the center of PTU Yaw axis is taken as
the camera origin rather than the actual camera center. This amount to an error
of 6 cm at most in the position of the camera origin.

Let α represent the camera angular rotation with respect to the Z axis of the
body frame. The camera center offset, seen in Figure 5.2, is 5 cm in the x direction,
0 cm in the y direction and -20.6 cm in the z direction. Therefore, Cb

c is best
expressed in homogenous coordinates as follows:

Cb
c =


cα −sα 0 0
sα cα 0 0
0 0 1 0
0 0 0 1




1 0 0 +0.05
0 1 0 0
0 0 1 −0.206
0 0 0 1

 (5.13)
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or

Cb
c =


cα −sα 0 0.05
sα cα 0 0
0 0 1 −0.206
0 0 0 1

 , (5.14)

where Cc
b and Cb

n are the inverse of Cb
c and Cn

b respectively.

Figure 5.2: Body and camera coordinate frames. Subscripts b and c stand for the
body and camera frames respectively.

The actual bearing measurements (ϕa and ϑa) as seen from the camera are
calculated based on their image coordinates as follows

zi(k) =

[
ϕa
ϑa

]
=

 arctan
(
u−u0

fu

)
arctan

(
tan

(
v−v0
fv

)
cosϕ

) . (5.15)

Since the system is only concerned with the azimuth, the observation only in-
cludes:

zi(k) =
[
ϕ
]

=
[
arctan

(
u−u0

fu

)]
, (5.16)
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where uo, v0 are the coordinates of the image center in pixels, u, v are the coor-
dinates of the landmarks in pixels and fu and fv are the focal lengths in u pixels
and v pixels respectively (Figure 5.4 ). The focal length for the camera is 4mm
or 514.92 pixels at a resolution of 640 x 480 pixels (See camera specifications in
Appendix A.1.

Figure 5.3: Coordinate frames used for INS dead-reckoning. Subscripts n, b and c
stand for the navigation, body and camera frames respectively. XL and YL are the
coordinates of the landmarks.
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Figure 5.4: Calculating bearing from an image. f is the focal length of the camera,
u and v are the coordinates of the image of the base of the tree. u0 and v0 are the
coordinates of the center of the image, and ϕL is the azimuth angle to the landmark.

The EKF recursive process consists of a prediction (INS), an observation (tree
bearing from camera), and an update (EKF equations). The mathematical details
of these three steps are presented next.
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Recursive process

A SLAM prediction involves more work than an INS prediction since it also must
take into account the prediction of correlations between the vehicle state and map.

Prediction:
P(k|k − 1) = JxP(k − 1|k − 1)JTx + JwQJTw, (5.17)

where Jx and Jw are the Jacobians of the state transition function with respect to
the state vector and noise input respectively. Jx and Jw are calculated numerically
as shown in Appendix B.2. Equation (5.19) can be written more explicitly as:

[
P−
vv(k) P−

vm(k)
P−T
vm(k) P−

mm(k)

]
=

[
JvP

+
vv(k − 1)JTv +Qvv JvP

+
vm(k − 1)

JTv (k)P+
vm(k − 1) P+

mm(k − 1)

]
, (5.18)

where the diagonal entries in (5.18) represent the variances in the vehicles state and
map and the off-diagonal represent the correlations between the vehicle and map
uncertainties. The update step occurs every time the system observes a landmark
and recognizes it from a previous sighting.

Update:
x̂(k|k) = x̂(k|k − 1) + W(k)ν(k) (5.19)

where

ν(k) = zi(k)−Hi(x̂(k|k − 1)) (5.20)

W(k) = P(k|k − 1)J[HT
x (k)]S−1(k) (5.21)

S(k) = J[Hx(k)]P(k|k − 1)J[Hx(k)]
T + R (5.22)

where J[Hx(k)] is the Jacobian of the observation model with respect to the state
vector. J[Hx(k)] is calculated numerically as shown in Appendix B.2.

The state covariance is finally updated as follows

P(k|k) = P(k|k − 1)−W(k)S(k)WT (k). (5.23)

If a landmark is observed for the first time, care must be taken in the fashion in
which it is added into the SLAM map. This process is known as map management.

143



5.2.2 Map management

Once a landmark satisfies the initialization criterion (explained in Section 4.5), it
is initialized in both the SLAM state and covariance. The following equations are
based on those presented by Williams [92]. Each new feature is initialized via a
feature initialization model gi(., .) as follows:

x̂+
i = gi(x̂

−
v (k), z(k)), (5.24)

where x̂+
i is the estimated feature coordinates when it is initialized, x̂−

v is the current
vehicle state estimate before the observation, and z(k) is the observation of the new
landmark. gi is the initialization function obtained from the stereo system:

[
x̂+
i (k)
ŷ+
i (k)

]
=

[
x̂−v (k) + zr(k) ∗ cos(ψ̂−

v (k) + zθ(k))

ŷ−v (k) + zr(k) ∗ sin(ψ̂−
v (k) + zθ(k))

]
, (5.25)

where zr(k) and zθ(k) are the depth and bearing of the observed landmark at time
k. The new state x̂+

i is then appended to the current state as follows:

xaug =

[
xold
x̂+
i

]
, (5.26)

where xold is the SLAM state vector before the new landmark is initialized. At this
point, the covariances of the new feature estimates must also be initialized. The
manner in which this is done is critical because the initial landmark estimate is
dependent on the uncertainty of the current vehicle pose and is therefore correlated
to the vehicle pose and landmark position uncertainties. Given that the current
covariance matrix P−(k) is

P−k =

[
P−
vv(k) P−

vm(k)
P−T
vm (k) P−

mm(k)

]
, (5.27)

The covariance is updated via two steps. In the first step the covariance is
augmented with the observation covariance, R(k) as follows:

P ∗−(k) =

 P−
vv(k) P−

vm(k) 0
P−T
vm (k) P−

mm(k) 0
0 0 R(k)

 , (5.28)
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In the second step, the covariance is corrected by projecting P ∗−(k) through
the Jacobian Jxg(k) of the initialization function gi with respect to the states,

P+(k) = Jxg(k)P
∗−(k)Jxg

T (k), (5.29)

The Jacobian Jx is calculated numerically as shown in Appendix B.2.

Pruning of landmarks is done based on the expectancy of their detection. Land-
marks that are within the detectable range and bearing of the camera and are not
detected are marked as missed. Recalling in Section 4.3.2 that the line detection
system prunes lines that are shorter than fifteen pixels long. Fifteen pixels corre-
sponds to a line (or tree trunk) measuring 1 meter in height, viewed at a depth of 34
meters. Given this constraint, the maximum detectable range is set to 30 meters.
Landmarks that are consecutively missed for three times are marked as ‘false’ and
removed from the state and covariance matrix. The SLAM state is updated by
deleting the coordinates of the ‘false’ landmark, and SLAM covariance is updated
by deleting the row and column of the corresponding ‘false’ landmark.

Although VisSLAM uses a stereo camera to initialize landmarks into the SLAM
system, it is in effect a bearing-only SLAM system where only bearing information
is used as observations to update the EKF. Initialization could alternatively be
made in the standard delayed or undelayed bearing-only initialization techniques
discussed in Section 2.3 but is done using stereo because conditions for bearing-
only initialization are poor. More specifically, bearing initialization may be ill-
conditioned due to three factors : (1) the pose estimates are not precise, (2) the
uncertainty in the bearing measurements, and (3) the minimum angle between two
sightings. The first two conditions are inherent of the SLAM problem and nothing
can be done to remedy these issues. The problem of minimum angle is the issue
that is addressed by researchers in Bearing-only Vision SLAM, by waiting until
such angles are satisfied. In land-based INS, the system is not tolerant of long wait
periods and diverges quickly if the errors of the IMU are not bounded quickly. For
this reason, range-bearing initialization is preferred for VisSLAM.

No system is complete before it is tested in a veridical setting, where its per-
formance is compared to established ground truth. Towards this end, in the next
section VisSLAM is tested on several data sets collected during real experimental
runs.
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5.3 Experiments

VisSLAM is tested on a data set (Section A.3) of time-stamped GPS, IMU and
images collected during an experimental run of a vehicle navigating in a park setting
(Section A.2). VisSLAM is evaluated based on (1) the agreement of VisSLAM state
estimate to ground truth, (2) the covariance values for the position of landmarks,
(3) the covariance values during navigation for position and bearing of the vehicle,
and finally (4) the innovations calculated at each observation.

This information is compiled for three scenarios. In the first scenario, trees
are automatically detected but manually recognized and initialized into the SLAM
state and covariance. The aim here is to investigate the efficiency of the land-
mark detection part of VisSLAM and isolate the issues of landmark recognition
and initialization by performing them manually. In the second scenario, the system
automatically detects trees and also automatically recognizes them using a tech-
nique proposed in Section 4.4. In this test, landmarks are still initialized manually
using the known ground truth coordinates for each landmark. These first two tests
should really be classified as localization problems rather than SLAM problems
because of the fashion in which the landmarks are initialized. In the third and fi-
nal scenario, VisSLAM performs SLAM while automatically detecting, recognizing,
and initializing trees.

5.3.1 Automatic detection, manual recognition and initial-
ization

The first step in these experiments is to estimate the values of the sensor variances
used to predict and update the VisSLAM EKF and to estimate the variance (or
confidence) of the non-holonomic model. Towards this end, several values for the
above variances are proposed and the resulting performance of VisSLAM is evalu-
ated; the values that result in the closest agreement of the VisSLAM map to ground
truth (highlighted row in Table 5.1) are chosen for the remainder of the experiments
that follow. In this parameter tuning phase, all trees are detected automatically,
but are manually recognized and initialized by hand labeling each tree during the
entire run and initializing its position to its known ground truth location. Fig-
ure 5.5 shows the SLAM map and vehicle motion obtained using these selected
variances. The system performs well at estimating the SLAM state (i.e. vehicle
pose and positions of landmarks). Notice how closely the outbound and inbound
paths follow the center of the pathways on the map. Furthermore, notice how the
landmark estimates (white dots) remain for the most part of them at their true
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locations (i.e., middle of green patches). It is true that the landmarks are initial-
ized manually but nevertheless, the fact that they remain at their position during
SLAM indicates the stability of VisSLAM and the efficiency of the tree detection
system at bounding the IMU dead-reckoning errors.

IMU Camera Constraints
Test acc (m/s2) gyro (rad/s) Azimuth (rad) V(m/s)

1 0.12 0.3 0.2 0.3
2 0.16 0.06 0.02 0.1
3 0.05 0.05 0.1 0.1
4 0.1 0.03 0.07 0.07

Table 5.1: Covariance tuning for IMU, camera, and non-holonomic model. The
values shown represent the expected standard deviations of each sensor, and the
corresponding variances are the square of these entries.

Figure 5.7 shows vehicle covariance estimates for the position of the vehicle
during the run shown in Figure 5.5. One interesting observation is the brisk jump
of the vehicle position near ‘T13’, which occurs because the camera In the worse
case scenario, the variance in the x direction reaches 20m2 which corresponds to
a standard deviation of approximately 4.6 meters in the x position (at t = 330
seconds). This peak corresponds to the final bend in Figure 5.5 near Tree 16 (T16).
A closer observation of this region of the test site reveals that the ground is inclined
beyond the normal ground inclination of the rest of the test site. Therefore, the
error is probably due to an incorrect estimate of the vehicle pitch, which in turn
results in a over-estimation of the gravity component. This error would appear
to the INS system as if the vehicle were accelerating backwards, where in fact it
is undergoing forward acceleration. The highest covariance in the y direction is
approximately 8 m2 (std = 2.8m) and occurs at 200 seconds, which corresponds
to the region right after the U-turn at the bottom left of the image in Figure
5.5 where the estimated vehicle trajectory slightly looses control (green line goes
off track). This large variance is due to the deficiency of the non-holonomic slip
model at regions where high rotation rates occur and some lateral movement does
in fact exist. VisSLAM immediately recovers and re-stabilizes after this. Figure
5.5 is repeated from Figure 3.11 for the purpose of getting better perspective on
the position of the vehicle at each time step.
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Figure 5.5: VisSLAM map developed during Experiment ‘one’ (auto tree detection,
manual recognition and initialization). ‘T’ refers to a Tree, ‘L’ refers to a Lampost,
‘P’ refers to a Post, ‘S’ refers to a Sign, and ‘FH’ refers to a Fire Hydrant. ‘Start’
is the starting point of the vehicle, ‘end’ and ‘loop closure point’ are the true and
estimated (via VisSLAM) location of the vehicle at the point of loop closure. The
red and green arrows are overlaid on the map to simply help follow the trajectory
of the vehicle from ‘Start’ to ‘End’.
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Figure 5.6: Correlating the Gyro readings in the Z direction to their corresponding
locations on the ortho-referenced image of the test site. Experiment performed on
data set 1 of the database of experimental data. Figure 3.11 Chapter 3.
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Figure 5.7: Covariance for vehicle position for Experiment ‘one’ (auto tree detec-
tion, manual recognition and initialization). Px and Py are the covariances in the
x and y directions respectively.

Figure 5.8 shows the variance of the vehicle heading direction during the ex-
periment. This value is small throughout the journey of the vehicle, indicating
the continued large confidence in the heading direction. Indeed, observation of the
vehicle motion in Figure 5.5 shows good turning predictions at all bends. Note that
even at the ‘T16’ tree the vehicle correctly rotates (look at the orientation of the
tail of the vehicle) but moves backwards rather than forwards after the rotation.
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Figure 5.8: Covariance for vehicle bearing for Experiment ‘one’ (auto tree detection,
manual recognition and initialization). Pyaw is the covariance in the heading of the
vehicle.
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Figure 5.9: Covariance for the position of three landmarks ‘T7’, ‘T10’, and ‘T27’ for
Experiment ‘one’ (auto tree detection, manual recognition and initialization). Pkx
and Pky are the covariances for Landmark ‘k’ in the x and y directions respectively.

Finally, in Figure 5.10, the Innovation of landmark bearing is shown throughout
the entire run, where the values fluctuate between plus or minus 0.1 rad (5.7 degrees)
with occasional peaks at 0.25 to 0.5 rad (14.32 to 28.64 degrees) and very few
peaks at 1 rad (57.29 degrees). These peaks occur in areas where the vehicle does
not detect enough landmarks and must count on its dead-reckoning capabilities.
When a landmark is eventually detected, the innovations are high and result in the
observed peaks.
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Figure 5.10: Innovation for the bearing of landmarks during Experiment ‘one’ (auto
tree detection, manual recognition and initialization). Update Nb. stands for the
number of innovations.

In Experiment ‘two’ the manual recognition is replaced by the VisSLAM recog-
nition system. Landmarks are still manually initialized.

5.3.2 Automatic detection and recognition; manual initial-
ization

The objective of the second experiment is to investigate the effectiveness of the tree
recognition system developed in Section 4.4. In Figure 5.11, although the SLAM
map is not as close to ground truth as in the first test, the vehicle trajectory is
still well estimated. The exception is around tree ‘T13’ where the vehicle follows a
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false trajectory and then rectifies itself. This error is due to the low number of tree
trunks that are recognized by the automatic recognition system in this part of the
map. A low recognition rate implies a low number of EKF updates and insufficient
bounding of the INS errors. A similar error occurs at loop closure, where the system
reverses track instead of heading to its correct destination.

The de-tracking issue at tree ‘T13’ is evidenced in Figure 5.12, where the ve-
hicle position covariance exhibits a high impulse of approximately 100 m2 (at 280
seconds), corresponding to a standard deviation of 10 meters. An important obser-
vation in this figure is that the covariance of the vehicle position is high at startup
and then reduces gradually as more and more landmarks are initialized into the
SLAM state.

In Figure 5.13, the covariance in vehicle heading is still low (average of 0.002
rad2); albeit, not as low as the first experiment (average of 0.0012 rad2). The head-
ing covariance in heading is not affected due to the fact that the vehicle remains on
a straight path for the majority of the journey with six bends. The highest orien-
tation covariance occurs at the bottom left of the map, when the vehicle performs
a U-turn.

Figure 5.14 shows the covariance variation for three landmarks during SLAM. As
expected, the covariance in landmark position reduces due to increasing confidence
in their position after several sightings. The difference between between this and
the previous results is that in this case the landmarks covariances reduce at a slower
rate. Notice that the final covariances here are not as low as those in Figure 5.14.
This result is expected since all landmarks, including these three (‘T7’, ‘T10’, and
‘T27’) are recognized fewer times during the journey, resulting in less reduction of
covariance.

Looking at Figure 5.15, it is apparent that a much smaller number of innovations
occur than in the previous experiment (270 verses 700), reflecting the fact that many
less landmarks are recognized than in the manual recognition case. Less landmarks
signifies less SLAM updates and a less stable system.
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Figure 5.11: VisSLAM map developed during Experiment ‘two’ (auto tree detection
and recognition, manual initialization). ‘T’ refers to a Tree, ‘L’ refers to a Lampost,
‘P’ refers to a Post, and ‘FH’ refers to a Fire Hydrant. The red and green arrows
are overlaid on the map to simply help follow the trajectory of the vehicle from
‘Start’ to ‘End’.
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Figure 5.12: Covariance for vehicle position for Experiment ‘two’ (auto tree detec-
tion and recognition, manual initialization). Px and Py are the covariances in the
x and y directions respectively.
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Figure 5.13: Covariance for vehicle bearing for Experiment ‘two’ (auto tree detec-
tion and recognition, manual initialization). Pyaw is the covariance in the heading
of the vehicle.
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Figure 5.14: Covariance for the position of three landmarks ‘T7’, ‘T10’, and ‘T27’
for Experiment ‘two’ (auto tree detection and recognition, manual initialization).
Pkx and Pky are the covariances for Landmark ‘k’ in the x and y directions respec-
tively.
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Figure 5.15: Innovation for the bearing of landmarks during Experiment ‘two’ (auto
tree detection and recognition, manual initialization). Update Nb. stands for the
number of innovations.

These first two test scenarios demonstrate the successful application of the Com-
puter Vision and inertial systems developed above to localization. In the third and
final test scenario presented in the next section, the systems are evaluated based
on their ability to perform SLAM.

5.3.3 Automatic detection, recognition, and initialization

In this last test, VisSLAM automatically detects, recognizes, and initializes trees.
Landmark initialization is performed using depth information extracted from a
stereo camera (Section 4.5). Since the stereo system only initializes trees that enter
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into the range of the camera, a smaller number of landmarks are initiated into the
SLAM state during the journey of the mobile platform. The SLAM map shown in
Figure 5.16 shows a degeneration in the results of VisSLAM from the previous two
tests. Landmarks are no longer initialized at their correct position, which results in
eventually destabilizing the EKF. In the outbound journey (red and white) VisS-
LAM faithfully tracks the correct vehicle trajectory while initializing landmarks
into SLAM. Many of the landmarks (e.g ., ‘L2’, ‘T9’, ’T24’) are initialized at their
correct positions. Those landmarks falsely initialized (e.g ., ‘T3’, ‘T4’, ‘L1’) appear
to slowly converge towards their correct positions. On the inbound journey, VisS-
LAM is de-stabilized near ‘T9’ and the INS dead-reckoning is lacking. The reason
for this failure is primarily caused by not initializing ‘P1’, which in the previous
tests contributed to the stability of VisSLAM around the bend after tree ‘T9’. The
system does not recover after that and the SLAM filter diverges. This weakness
in landmark initialization suggests that either an alternate method is necessary or
the current method should be aided by a second initialization technique.

Figures 5.17 and 5.18 show the vehicle position and bearing covariance verses
time. The peaks at approximately 270 seconds and beyond indicate the divergence
of the SLAM filter, where it can no longer estimate vehicle position with high
confidence. In fact, the uncertainty in vehicle position covariance grows in both x
and y directions.

Figure 5.19 shows the covariance variation for the same three landmarks as in
the previous two experiments (‘T7’, ‘T10’, and ‘T27’). The first observation is
that ‘T7’ covariance does not change. This is simply due to fact that ‘T7’ is never
initialized throughout the vehicle journey. The position covariance of ‘T10’ reduces
much later than in the previous tests because it is not initialized until a later time
in the inbound journey.

In Figure 5.20, innovations are plotted at all EKF updates. The first observation
is that a much smaller number of innovations than before (175 versus 260 and 700),
caused by fewer landmarks initialized and subsequently observed. Second, notice
that many spikes exist, which is indicative of the much longer time the system uses
it dead-reckoning estimation.
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Figure 5.16: VisSLAM results during Experiment ‘three’ (auto tree detection,
recognition, and initialization).

161



Figure 5.17: Covariance for vehicle position for Experiment ‘three’ (auto tree de-
tection, recognition, and initialization). Px and Py are the covariances in the x and
y directions respectively.
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Figure 5.18: Covariance for vehicle bearing for Experiment ‘three’ (auto tree detec-
tion, recognition, and initialization). Pyaw is the covariance in the heading of the
vehicle.
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Figure 5.19: Covariance for the position of landmarks ‘T28’ or Lamp 3, ‘T11’,
and ‘T8’ for Experiment ‘three’ (auto tree detection, recognition, and initializa-
tion). Pkx and Pky are the covariances for Landmark ‘k’ in the x and y directions
respectively.
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Figure 5.20: Innovation for the bearing of landmarks during Experiment ‘three’
(auto tree detection, recognition, and initialization). Update Nb. stands for the
number of innovations.

5.3.4 Run-time

All of the VisSLAM modules, except for the SIFT feature extraction, are written
in Matlab and implemented off-line on a laptop featuring a 1.8 GHz Pentium M
processor, and 1GB of RAM. All processing times are shown in Table 5.2. SIFT
features are extracted using the code of Lowe [104] which is written in C. The time
for extracting SIFTs is added to the tree recognition time. The size of all the images
is 640x480 pixels.

Each INS prediction requires 0.25 seconds. This time includes the IMU predic-
tion as well as the application of non-holonomic constraints.
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The average time spent for tree detection is approximately 20.22 seconds for a
typical image containing two trees. This time includes importing an image, edge
detection, line tracking, line pruning, continuity and symmetry calculations and line
grouping. Furthermore, this time also includes filtering the image with a Gabor
filter (2 scales and 2 orientations).

Each tree recognition step requires approximately 7 seconds. This time includes
SIFT extraction, and matching 3 of them to the those saved in the SIFT database.

Tree initialization requires approximately 4.78 s and is in effect the time for the
stereo camera API to unwrap a stereo image, rectify the resulting right and left
images, extract the disparity map, and calculate depth.

A SLAM update involves executing the EKF equations and are executed in real
time.

The total time for a SLAM iteration, including prediction, observation, and
update is 32.25 seconds.

Operation time (s)

INS prediction .25
Tree detection 20.22
Tree recognition 7.00
Tree initialization 4.78
SLAM update ∼ 0

Total SLAM iteration 32.25

Table 5.2: Run-time for VisSLAM processes.

5.4 Discussion

VisSLAM is tested in three experiments, where the mobile platform navigates on a
path 314 meters in length, featuring one U-turn, and 6 curbs in which the vehicle
makes 2 clockwise rotations and 4 counterclockwise. The results of the tests are
shown in Table 5.3 which are interpreted as follows.

In the first test, only the detection part of VisSLAM is automated, while man-
ually recognizing and initializing landmarks. Results are comparable to those
achieved in range-bearing systems. The maximum covariance in vehicle position is
20 m2 although the average value is considerably lower, at approximately 1 m2. The
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covariance in vehicle orientation is approximately 0.0001 rad2 which is indicative
of high confidence in this measure. Landmark position covariance reduces during
navigation, where the minimum attained value is 0.05 m2 for ‘T27’. The Innovation
in landmark position also remains within low bounds with a mean innovation close
to zero (due to manual initialization ) and very few spikes at approximately 1.2
rad.

In the second test, automatic tree recognition is implemented in addition to
automatic detection. VisSLAM successfully converges and the vehicle estimated
trajectories faithfully follow ground truth for the majority of the journey. The
maximum covariance in vehicle position during the journey is 100 m2 although
the average value is much lower at approximately 3 m2. Although the vehicle
covariance in orientation is higher in this test, it is still low at a average of 0.002
rad2. Landmark position covariance reduces during navigation to a minimum of
0.068 for landmark ‘T27’. This reduction is not as much as the previous test because
the landmark is not observed as frequently as before. The peak innovation here is
approximately 3.4 rad, although the average innovation is much lower during the
trip (approximately 0.3 rad).

In the third and final test, all manual intervention is removed and the system
is left to automatically detect, recognize, and initialize landmarks. Although the
system destabilizes at one point due to insufficient tracked landmarks, VisSLAM
allows the vehicle to autonomously navigate for the majority of its journey.

Vision System Traj Dev Cov V Cov Yaw Cov L Inn
Det. Rec. Init. (m) (m2) (rad2) (m2) (rad)

A M M 2.4 20 0.0001 0.05 1
A A M 9.5 100 0.002 0.068 3.5
A A A 7.9 75 0.0003 0.072 3.2

Table 5.3: Performance of VisSLAM under three tests. First the Detection (Det.),
Recognition (Rec.), and Initialization (Init.) of each test are labeled as Automatic
(A) or Manual (M). The entries shown are the maximum values for Deviation in
trajectory (Traj Dev), maximum vehicle position covariance ( Cov V), maximum
vehicle covariance in heading (Cov Yaw), minimum covariance in the position of a
landmark, and finally the innovation at each update step.

VisSLAM can not be implemented in real-time in its current form. The major
bottleneck is the detection system but it is predicted that VisSLAM can be run in
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near-real time if ported to a lower-level computer language.

5.5 Summary

This chapter demonstrates the systems developed in Chapters 3 and Chapter 4 in
the context of localization and SLAM. A Vision-Inertial SLAM system is developed
entitled VisSLAM, structured in the framework of an EKF, using natural features
as landmarks.

Three experimental scenarios are presented. In the first two scenarios, the
vision-inertial systems are tested on a localization problem, where landmarks are
manually localized in the SLAM map. The first scenario differs from the second
one in that landmarks are also recognized manually. While, the objective of the
first scenario is to test the detection system of Section 4.3, the second scenario
aims to test both the detection and recognition systems. In both the first and
second scenarios, the CV systems guarantee high enough detection and recognition
rates to allow accurate localization. In the third scenario, all three Computer
Vision systems, including detection, recognition, and localization are tested on a
SLAM problem. Result are encouraging for most of the vehicle trajectory but the
filter eventually diverges due to incorrect data associations and low detection and
recognition rates.
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Chapter 6

Contributions, conclusions, and
future research

This primary focus of this thesis is the development of a Computer Vision system
for detecting natural landmarks for the sake of both localization and SLAM. A
new Computer Vision system is developed which can classify the environment,
and detect and recognize natural objects within that environment. The secondary
objective of this thesis is to investigate the issues involved in the application of
inertial land-based ego-motion estimation using low-cost IMUs. The developed
Computer Vision and inertial systems are integrated into a working Vision-Inertial
SLAM system, named VisSLAM, that is tested on real data collected during a test
run in a park setting. Although VisSLAM is designed for a park setting using tree
trunks as landmarks for SLAM, the developed techniques are extendable to other
environments using different landmarks.

In the first section of this chapter, the main contributions of VisSLAM are ac-
centuated and relevant conclusions are made. A section then follows which discusses
the direction of future research avenues founded in VisSLAM.

6.1 Contributions and conclusions

Environment recognition. An Environment Recognition (ER) system is de-
signed which is built on an Artificial Neural Network. Knowledge of the environ-
ment context constitutes top-down information which dictates the type of landmark
to use for SLAM. The ER system is tested by querying it with a set of indoor and
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outdoor images, where 95% of the indoor images and 79% of the outdoor images
are correctly classified.

Object detection and recognition. A Computer Vision system is proposed for
segmenting tree trunks within their natural environment. This system operates by
segmenting quasi-vertical structures in images and choosing those structures that
intersect the Ground-Sky separation line. The second contribution in the field of
Computer Vision is the proposed tree recognition system which matches trees based
on distinctive features within the borders of their trunks. Images are filtered with
a Scale Invariant Feature Transform (SIFT) filter and those SIFT features within
the boundaries of each tree trunk are used as identifiers by which the query tree
can be matched in feature space. Tests performed on a database of 580 images
containing 932 trees result in 71.24% detection rate. Of the detected trees 85.5% of
them are recognized by the tree recognition system. Tests performed on VisSLAM
in an outdoor park indicate that these detection and recognition rates meet the
required standards of a SLAM observation model. The main limitation of the
detection system is tracking the the Ground-Sky (G-S) separation line. Although
an attempts is made to automate this process, the developed G-S detection system
is lacking.

Inertial navigation system. While Inertial Navigation Systems (INS) systems
have been designed for decades, very little interest has been given to land-based INS
using low cost strapdown IMUs. VisSLAM implements a land-based INS system,
which integrates IMU predictions with Non-Holonomic (NH) constraints to improve
the INS dead-reckoning capabilities. The contribution of VisSLAM in the field of
inertial navigation is twofold: first, to contest a theory based on enforcing NH
constraints via forward velocity expressions. Second, to implement a second theory
for enforcing NH constraints which is built in the framework of an EKF. The INS
system is tested on real data, which indeed reveals constrained motion for the
mobile platform.

Vision-inertial SLAM system. Building a Vision-Inertial SLAM system is in
itself an accomplishment. VisSLAM succeeds at integrating the foregoing INS and
Computer Vision technologies into a working SLAM system capable of operating
in an outdoor park, using tree trunks as landmarks.

VisSLAM is tested on real data collected onboard a mobile platform while it
is navigating in a park setting. Three scenarios for these tests are proposed. In
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the first test, trees are detected automatically, but are recognized and initialized
manually. In the second test, automatic detection and recognition is insured but
manual initialization is done. In the third and final test, VisSLAM automatically
detects, recognizes and initializes landmarks. In the first two tests where landmarks
are manually initialized, the detection and recognition systems are good enough to
insure loop closure errors that are of the same order of range-bearing systems. While
the first test results in an loop closure error of 2.4 meters in position and 2 degrees
in orientation, the second test achieves an error of 9 meters in position and 3 degrees
in bearing. Furthermore, in both of these tests, the covariance in vehicle position is
low (approximately 4m2) with the exception of some spikes which are evident in the
second test due to erroneous data associations. The vehicle covariance in heading
is low for both tests ranging around 0.002 rad2. For the last test, where VisSLAM
is completely autonomous, the performance is considerably degraded. Loop closure
error in position is not acceptable (30 meters in position), although the error in
heading is still low. The covariance in vehicle position during the journey is high,
indicating the need for a better initialization technique.

6.2 Future Research

This thesis prepares the ground work for future research, some directly related to
issues raised in this thesis in the fields of Computer Vision, INS and SLAM and
others related to the larger scheme of autonomous robot navigation.

In Computer Vision, research is encouraged towards detecting and tracking
Ground-Sky separation lines. This is a problem related to perception [107]. How
do we judge where the ground end and the sky begins? It is the author’s belief
that such systems might have to be solved in a holistic approach, where images
are parsed into it constituent parts [108]. The implication of this knowledge is the
detection of any vertical and erect structure contacting ground.

In SLAM, research is encouraged in landmark initialization. VisSLAM initial-
ization via range readings is lacking. A proposed solution is to use a hybrid between
range and bearing systems. Bearing initialization requires a 40 degree angle be-
tween two sightings and range initialization requires the landmark to be within the
range of the stereo system. These systems appear to complement each other. A
system can be designed such that whichever method has its conditions met first is
used to initialize a landmark.

Real time issues are not considered for VisSLAM. Any aspiration of porting
VisSLAM to a mobile platform for real-time implementation must be preceded by
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a conversion of the code to a lower level language than Matlab.

The natural extension of VisSLAM is in executing it in more than one environ-
ment using more than one type of landmarks. For instance, when a robot navigates
between an park environment of a rural city center VisSLAM would transition from
using tree trunks as landmarks to using buildings, or traffic lights. The INS system
would effectively remain the same unless one of the environments to which the vehi-
cle travels to is an aerial, underwater, or off-road setting where the non-holonomic
constraints no longer hold and a more generic INS system is warranted.

The long term implication of VisSLAM is true autonomy for navigating robots
via self-localization inside various environments using natural features. As an ex-
ample of the application of such technology, an amphibious robot could be made
to localize itself on land and underwater, without the need to stop in transition
and hard code landmarks according to its surroundings. The developed techniques
should be valid for a range of scales and applications including NANO-biomedical,
undersea and space robots, in addition to various terrestrial applications.
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Appendix A

Experimental setup: equipment,
setting, frames of reference, and
data sets

This Chapter deals with issues related to VisSLAM experiments including the
equipment used in Section A.1, the experimental setting in Section A.2, and the
collected data sets in Section A.3.

A.1 Equipment

The experimental equipment consists of a hand held Global Positioning System(GPS),
an Inertial Measurement Unit (IMU) and a stereo camera. These three units are
mounted on a mobile platform (Figure A.1), which is manually guided around a
track .

The GPS unit is a carrier phase hand held unit made by Trimble, model named
“GeoExplorer3” [114]. Accurate and precise absolute position is assured by tracking
between 4 to 12 satellites at one time. Carrier phase processing is possible for sub-
meter precision. The GeoExplorer3 is a stand alone item, where data is collected
on site and later downloaded to the computer. The collected data is differentially
corrected during post-processing.

The IMU is a three-axis strap-down inertial sensor made by Cloud Cap Tech-
nologies, model named “Crista” [86]. It comprises three orthogonal Micro Electro
Mechanical System (MEMS) accelerometers and three gyroscopic rate sensors. The
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a b

Figure A.1: Experimental equipment. (a) Cart used to collect data, equipped with
PTU, stereo camera, hand held GPS (not shown) and strap-down IMU. (b) hand
held GPS and strap-down IMU.

gyros and accelerometers feature ±300◦/sec and ±10g angular velocity and linear
acceleration ranges respectively. The gyros operate below 0.05% Full Scale(FS)
bias error and below 1% scale error. The accelerometers operate below 0.025%FS
bias error and below 1% scale error. This unit is calibrated over −40◦C to 80◦C
temperature range. The output rate and over-sample averaging rates of output data
can be controlled by the user. Over-samples are the number of A/D measurements
made and averaged for each signal for each IMU update. The suggested IMU rates
are 10Hz sampling rate and 200Hz over-sampling rate. The IMU specifications are
shown in Table A.3:

Gyros
Range ±300◦/sec
Scale Factor Error < 1%
In-Run Bias Error

Fixed Temperature < 0.05%FS
Over Temperature < 0.2%FS

Turn-on to Turn-on bias < 0.25%FS
Linear acceleration Effects 0.2◦/sec/g typical
Resolution 0.009◦/sec
Bandwidth 2nd order filter. Fc = 100Hz

Table A.1: Specifications of the Crista gyroscopes.
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Accelerometers
Range ±10g
Scale Factor Error < 1%
In-Run Bias Error

Fixed Temperature < 0.025%FS
Over Temperature < 0.2%FS

Turn-on to Turn-on bias < 0.3%FS
Alignment Error < 0.0025g
Resolution 0.3mg
Bandwidth Simple RC LPF. Fc = 100Hz

Table A.2: Specifications of the Crista accelerometers.

The camera is a stereo camera made by Pt. Grey, model named “Bumblebee”
[?]. This unit features two 1/3′′ progressive scan CCD’s. Accurate pre-calibration is
done for lens distortions and camera misalignments. The frame rate is controllable,
peaking at a maximum frame rate of 30fpm. Connection to the camera is insured
via IEEE1394 firewire. The focal length of the cameras is 4mm, which corresponds
to 70◦ Field of View (FOV). Images are aligned within 0.05 pixel RMS error. The
unit is equipped with a calibration retention system that prevents it from losing
calibration when the device is subject to mechanical shock and vibration.

Cameras two Sony ICX084 Color,
1/3 inch progressive scan CCDs

Resolution 640x480
Frame Rate 30Hz
A/D Sampling 10 bit
Shutter Speed 1/8000sto1/30s
Baseline 12 cm
Focal Length 4 mm
Field of View 70◦

Size 160x40x50 mm
Weight 375 g
Power Consumption 2.1 W

Table A.3: Specifications of the Bumblebee camera.
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The camera is mounted on a Pan Tilt Unit (PTU). The PTU is the “PTU-D46-
17” model manufactured by Directed Perception [115]. It features a 78◦ tilt angle
range and a 318◦ pan angle range. Its maximum speed is 300◦/s with on-the-fly
speed and position changes.

A laptop is mounted on the vehicle to control the PTU unit and collect IMU data
and images of the surroundings during navigation. The laptop features a Pentium
M, 1.5 GHz processor with 1MB of onboard RAM. The IMU, stereo camera, and
PTU unit are powered by a 12V battery pack [116].

A.2 Environmental setting and ground truth

An outdoor area is sought that is relatively flat and smooth (no inclinations higher
than 10◦) with few bumps, populated with large trees exhibiting visible trunks
that could be used as landmarks. Keeping in mind these constraints, the open
area outside St Jerome’s building on the University of Waterloo campus is chosen
(Figure A.2). This area spans a width of 70 meters by a length of 93 meters. A
total of 25 conifer trees occupy the area, through which run several intertwining
paved paths. The trees exhibit tree trunks that are large and salient. Determining
the effectiveness of any SLAM system requires first establishing ground truth for
the coordinates of the tracked landmarks and the pose of the vehicle as it navigates.
These issues are tackled in the following section.

Ground truth for the experimental setting is acquired from a geographically
referenced aerial image of the site [117]. This consists of an image similar to a
photographic image, where each pixel is reference to a latitude and longitude. Next,
a Computer Aided Drawing (CAD) of the site is obtained and overlaid on top of
the geographically referenced image. The CAD image comprises the features of the
site, such as paths, trees, and buildings. Vector data images (i.e., CAD) are often
out of date and lacking. For the sake of this work, the 2D location of trees trunks
and their diameter is of interest for developing ground truth. This information is
not available and had to be collected. The standard method to locate features in
Geographic Information Systems (GIS) is to locate oneself next to the object with
a hand held Global Positioning System (GPS) and fixate the object via the GPS.
This procedure is not possible to locate trees since GPS suffers from outages and
multipath errors under dense foliage such as conifers. Due to this limitation, it is
necessary to fixate alternative features (lampposts) that are distant from foliage
using GPS and then locate the position of trees by triangulation. The images of
each of the trees that is used as a landmark are shown in Figures A.3 and A.4.
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Figure A.2: Aerial image of the test site where IMU and GPS data, as well as stereo
images were collected for Vision SLAM navigation runs. The location is the open
area near St Jerome’s building at the University of Waterloo campus. The overlaid
circles are the landmarks (tree trunks) that will be used for Vision SLAM.
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Figure A.3: Trees in the test site
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Tree 13 Tree 14 Tree 15
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Figure A.4: Trees in the test site

Ground truth for the pose of the vehicle during navigation is established via
a differential GPS. The vehicle follows a path that is distant from trees for the
majority of the time, where GPS reception is adequate for positioning.
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A.3 Data sets

The information collected from the IMU, camera, and gyroscope consist of three
data files and a sequence of images. The first data file, entitled ‘IMU *.txt’, includes
information pertinent to the IMU sensor and its format is presented in Table A.4.

N Clks S N h m s Gx Gy Gz Ax Ay Az N N N
- Clks # - h m s ◦/s ◦/s ◦/s m/s2 m/s2 m/s2 - - -

- - - - - - - - - - - - - - - -

Table A.4: IMU data file format. ‘N’ signifies that this column is not used. ‘Clks’
stands for the number of clock cycles that have passed since the IMU was initiated.
The clock is a 10 MHz and recycles each 429 seconds. ‘S’ is an 8 bit sequence. ‘h’,
‘m’, and ‘s’ are the PC clock in hours, minutes and seconds respectively. ‘Gx’,‘Gy’,
and ‘Gz’ are the gyroscope readings in ◦/s and ‘Ax’, ‘Ay’, and ‘Az’ are the ac-
celerometer readings in m/s2.

The time stamp at which an IMU reading is taken can be calculated in one
of two methods. In the first method, the time stamp is calculated as the simple
addition of the hour, minute, and second entries of the PC clock. This time stamp
represents the time at which the IMU reading is processed by the PC and includes
some delay in it. The second, more precise method is to use the PC clock only
to obtain an initial time stamp t0 and then calculate subsequent time stamps by
adding the number of PC clocks to t0

tk = t0 + Clks ∗ 1

107
, (A.1)

where tk is the time stamp at IMU reading k, Clks is the number of clock cycles
since t0 and the number 107 refers to the clock frequency. Although this second
time stamp is more representative of the time an IMU reading is taken, better
synchronization with the camera images are obtained using the first method.

The second data file ‘IMG *.txt’, shown in Table ?? relates to the images cap-
tured during navigation and each entry is time stamped based on the PC clock.
The time stamps in the IMU and IMG data files are synchronized since they are
both based on the PC clock.
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Iter h m s N N N
# h m s - - -

- - - - - - -

The final data file is the one related to GPS readings. The first two columns
include longitude and latitude readings. The remaining column represent the GPS
time stamp, which is acquired from the atomic clock onboard the GPS satellite and
is extremely precise.

Long Lat hh mm ss
m m hh mm ss

- - - - -

Table A.5: GPS data file format. ‘N’ signifies that this column is not used. ‘Long’
stands for longitude, ‘Lat’ stands for latitude. ‘h’, ‘m’, and ‘s’ are the GPS clock
in hours, minutes and seconds respectively.

The GPS time stamps are synchronized to those of the IMU and IMG files by
observing the time differential between the PC clock and that of the GPS unit.

In addition to the three text files, stereo images are saved in a folder to be later
uncoupled into their corresponding right and left images.
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Appendix B

Details of jacobian calculation

The Jacobians that are used in Chapters 3 and 5 can be calculated in one of two
methods. In the first method, analytical expressions are developed for the Jacobians
in an explicit fashion and those equations are used to calculate the Jacobians at
each time step. It turns out that these equations are quite involved as can is shown
in the next section. Alternatively, the Jacobians can be calculated numerically as
shown in Section B.2, which is relatively simple to implement on a computer.

B.1 Closed-form analytical method

B.1.1 Process model
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

px(k)
py(k)
pz(k)
vx(k)
vy(k)
vz(k)
φ(k)
θ(k)
ψ(k)


=
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vx(k − 1) + [(cψcθ)ax + (cψsθsφ− sψcφ)ay + (cψsθcφ+ sψsφ)az + gx)]∆t
vy(k − 1) + [(sψcθ)ax + (sψsθsφ+ cψcφ)ay + (sψsθcφ− cψsφ)az + gy)]∆t

vz(k − 1) + [(−sθ)ax + (cθsφ)ay + (cθcφ)az + gz)]∆t
φ(k − 1) + [wx + (sφtθ)wy + (cφtθ)wz]∆t

θ(k − 1) + [(cφ)wy − (sφ)wz]∆t
ψ(k − 1) + [(sφsecθ)wy + (cφsecθ)wz]∆t


,

(B.2)

Jx =



1 0 0 ∆t 0 0 0 0 0
0 1 0 0 ∆t 0 0 0 0
0 0 1 0 0 ∆t 0 0 0
0 0 0 1 0 0 J4,7 J4,8 J4,9

0 0 0 0 1 0 J5,7 J5,8 J5,9

0 0 0 0 0 1 J6,7 J6,8 J6,9

0 0 0 0 0 0 J7,7 J7,8 J7,9

0 0 0 0 0 0 J8,7 J8,8 J8,9

0 0 0 0 0 0 J9,7 J9,8 J9,9


, (B.3)
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where

J4,7 = [(cψsθcφ+ sψsφ)ay + (−cψsθsφ+ sψcφ)az]∆t

J4,8 = [(−cψsθ)ax + (cψcθsφ)ay + (cψcθcφ)az]∆t

J4,9 = [(−sψcθ)ax + (−sψsθsφ− cψcφ)ay + (−sψsθcφ+ cψsφ)az]∆t

J5,7 = [(sψsθcφ− cψsφ)ay + (−sψsθsφ− cψcφ)az]∆t

J5,8 = [((−sψsθ)ax + (sψcθsφ)ay + (sψcθcφ)az]∆t

J5,9 = [(cψcθ)ax + (cψsθsφ− sψcφ)ay + (cψsθcφ+ sψsφ)az]∆t

J6,7 = [(cθcφ)ay + (−cθsφ)az]∆t

J6,8 = [(−cθ)ax + (−sθsφ)ay + (−sθcφ)az]∆t

J6,9 = 0

J7,7 = 1 + [(cφtθ)wy + (−sφtθ)wz]∆t
J7,8 = [(sφsec2θ)wy + (cφsec2θ)wz]∆t

J7,9 = 0

J8,7 = [(−sφ)wy + (−cφ)wz]∆t

J8,8 = 1

J8,9 = 0

J9,7 = [(cφsecθ)wy + (−sφsecθ)wz]∆t
J9,8 = [(cφsecθtθ)wy + (−sφsecθtθ)wz]∆t
J9,9 = 1

Ju =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ 0 0 0
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ 0 0 0
−sθ cθsφ cθcφ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφsecθ cφsecθ


, (B.4)
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B.1.2 Observation model

Hi(x̂(k|k − 1) =

[
ϕi
ϑi

]
=

 arctan
(
Y c

Xc

)
arctan

(
Zc√

(Xc)2+(Y c)2

) , (B.5)

pcmc =

Xc

Y c

Zc

 = Cb
n[m

n
i − pn − Cn

b p
b
cb], (B.6)

Cn
b =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 , (B.7)

Cb
n = inv(Cn

b ) = (Cn
b )T =

 cψcθ sψcθ −sθ
cψsθsφ− sψcφ sψsθsφ+ cψcφ cθsφ
cψsθcφ+ sψsφ sψsθcφ− cψsφ cθcφ

 , (B.8)

pcmc =

XY
Z

 =

P11(mx − Px) + P12(my − Py) + P13(mz − Pz)
P21(mx − Px) + P22(my − Py) + P23(mz − Pz)
P31(mx − Px) + P32(my − Py) + P33(mz − Pz)

 (B.9)

where where d = X2 + Y 2, δx = mx−Px, δy = my −Py, and δz = mz −Pz. In the
same manner, the terms of the second row of the Jacobian are expressed as

P11 = cψcθ

P12 = sψcθ

P13 = −sθ
P21 = cψsθsφ− sψcφ

P22 = sψsθsφ+ cψcφ

P23 = cθsφ

P31 = cψsθcφ+ sψsφ

P32 = sψsθcφ− cψsφ

P33 = cθcφ

J(Hi) =

[
∂H1

∂px

∂H1

∂py

∂H1

∂pz

∂H1

∂vx

∂H1

∂vy

∂H1

∂vz

∂H1

∂φ
∂H1

∂θ
∂H1

∂ψ
∂H2

∂px

∂H2

∂py

∂H2

∂pz

∂H2

∂vx

∂H2

∂vy

∂H2

∂vz

∂H2

∂φ
∂H2

∂θ
∂H2

∂ψ

]
(B.10)
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H1 and H2 are taken from (5.11) and are equal to arctan
(
Y c

Xc

)
and arctan

(
Zc√

(Xc)2+(Y c)2

)
respectively. The partial derivatives in (B.10) are evaluated as

∂H1

∂px
= [

∂Y

∂px
X − ∂X

∂px
Y ]

1

X2

1

(1 + Y 2

X2 )

∂H1

∂px
= [

∂Y

∂px
X − ∂X

∂px
Y ]

1

d
∂H1

∂py
= [

∂Y

∂py
X − ∂X

∂py
Y ]

1

d

∂H1

∂pz
= [

∂Y

∂pz
X − ∂X

∂pz
Y ]

1

d
∂H1

∂vx
=
∂H1

∂vy
=
∂H1

∂vz
= 0

∂H1

∂φ
= [

∂Y

∂φ
X − ∂X

∂φ
Y ]

1

d
∂H1

∂θ
= [

∂Y

∂θ
X − ∂X

∂θ
Y ]

1

d
∂H1

∂ψ
= [

∂Y

∂ψ
X − ∂X

∂ψ
Y ]

1

d
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∂H2

∂px
= [

∂Z

∂px
d1/2 − 1

2
d−1/2(2X

∂X

∂px
+ 2Y

∂Y

∂px
)Z]

1

e
∂H2

∂py
= [

∂Z

∂py
d1/2 − 1

2
d−1/2(2X

∂X

∂py
+ 2Y

∂Y

∂py
)Z]

1

e

∂H2

∂pz
= [

∂Z

∂pz
d1/2 − 1

2
d−1/2(2X

∂X

∂pz
+ 2Y

∂Y

∂pz
)Z]

1

e
∂H2

∂vx
=
∂H2

∂vy
=
∂H2

∂vz
= 0

∂H2

∂φ
= [

∂Z

∂φ
d1/2 − 1

2
d−1/2(2X

∂X

∂φ
+ 2Y

∂Y

∂φ
)Z]

1

e
∂H2

∂θ
= [

∂Z

∂θ
d1/2 − 1

2
d−1/2(2X

∂X

∂θ
+ 2Y

∂Y

∂θ
)Z]

1

e
∂H2

∂ψ
= [

∂Z

∂ψ
d1/2 − 1

2
d−1/2(2X

∂X

∂ψ
+ 2Y

∂Y

∂ψ
)Z]

1

e

∂X

∂px
= −P11;

∂X

∂py
= −P12;

∂X

∂pz
= −P13

∂X

∂φ
=
∂P11

∂φ
δx+

∂P12

∂φ
δy +

∂P13

∂φ
δz

∂X

∂θ
=
∂P11

∂θ
δx+

∂P12

∂θ
δy +

∂P13

∂θ
δz

∂X

∂ψ
=
∂P11

∂ψ
δx+

∂P12

∂ψ
δy +

∂P13

∂ψ
δz

Similarly

∂Y

∂px
= −P21;

∂Y

∂py
= −P22;

∂Y

∂pz
= −P23

∂Y

∂φ
=
∂P21

∂φ
δx+

∂P22

∂φ
δy +

∂P23

∂φ
δz

∂Y

∂θ
=
∂P21

∂θ
δx+

∂P22

∂θ
δy +

∂P23

∂θ
δz

∂Y

∂ψ
=
∂P21

∂ψ
δx+

∂P22

∂ψ
δy +

∂P23

∂ψ
δz
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and

∂Z

∂px
= −P31;

∂Z

∂py
= −P32;

∂Z

∂pz
= −P33

∂Z

∂φ
=
∂P31

∂φ
δx+

∂P32

∂φ
δy +

∂P33

∂φ
δz

∂Z

∂θ
=
∂P31

∂θ
δx+

∂P32

∂θ
δy +

∂P33

∂θ
δz

∂Z

∂ψ
=
∂P31

∂ψ
δx+

∂P32

∂ψ
δy +

∂P33

∂ψ
δz

∂P11

∂φ
= 0

∂P11

∂θ
= −cψsθ

∂P11

∂ψ
= −sψcθ

∂P12

∂φ
= 0

∂P12

∂θ
= −sψsθ

∂P12

∂ψ
= cψcθ

∂P13

∂φ
= 0

∂P13

∂θ
= −cθ

∂P13

∂ψ
= 0
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∂P21

∂φ
= +cψsθcφ+ sψsφ

∂P21

∂θ
= +cψcθsφ

∂P21

∂ψ
= −sψsθsφ− sψcφ

∂P22

∂φ
= +sψcθcφ− cψsφ

∂P22

∂θ
= +sψcθsφ

∂P22

∂ψ
= +cψsθsφ− sψcφ

∂P23

∂φ
= +cθcφ

∂P23

∂θ
= −sθsφ

∂P23

∂ψ
= 0

∂P31

∂φ
= −cψsθsφ+ sψcφ

∂P31

∂θ
= cψcθcφ

∂P31

∂ψ
= −sψsθcφ+ cψsφ

∂P32

∂φ
= −sψsθsφ+ cψcφ

∂P32

∂θ
= sψcθcφ

∂P32

∂ψ
= cψsθcφ+ sψsφ
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∂P33

∂φ
= −cθsφ

∂P33

∂θ
= −sθcφ

∂P33

∂ψ
= 0

B.2 Numerical method

In this second method, taken from Bailey [118], the Jacobian is calculated numer-
ically as follows. Let S1(x, y, z), S2(x, y, z), ... Sn(x, y, z) represent n vectors of
the state transition matrix for whom the Jacobians with respect to the variables
x,y, and z are sought. Each entry of the Jacobian J is found as

J =


JS1x JS1y JS1z

JS2x JS2y JS2z
...

...
...

...
...

...
JSnx JSny JSnz

 (B.11)

where

JS1x =
S1(x+ δx, y, z)− S1(x, y, z)

δx

JS1y =
S1(x, y + δy, z)− S1(x, y, z)

δy

JS1z =
S1(x, y, z + δz)− S1(x, y, z)

δz
,

and δx, δy,δz are very small increments added to the states for the sake of finding
the Jacobians. In this work, a value of 10−9 is used as an increment.
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