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Abstract

This thesis presents the design of a two-dimensional phononic band gap crystal

simulator, and phononic crystal analysis.

Phononic crystals and their application to microwave acoustic filters are studied.

Wave mechanics is introduced. A two-dimensional phononic crystal simulator is

developed. Simulator operation is validated through comparison with published

data. Design parameters for phononic crystal band gap engineering are outlined.

Digital signal processing and wave mechanics are utilized to analyze fractal and

circular inclusion based phononic crystals. Topics for further study are given.

Phononic crystal band structure is found to be sensitive to inclusion boundary

geometry. Fractal inclusion based crystals provide multiple pass band characteris-

tics. The evolution of a fractal inclusion in a phononic crystal may cause band gap

widening and the formation of new band gaps. Circular inclusion based phononic

crystals have piecewise-linear phase characteristics and quality factors up to 600.

iii



Acknowledgments

I would like to recognize Professor John Starr Hamel for his inventiveness in com-

bining the disciplines of microwave acoustic filter engineering, phononic band gap

crystal engineering, and micro-electro-mechanical-system engineering to create the

novel class of filtering devices known as silicon integrated phononic band gap filters.

Many thanks go to Professor Hamel for granting me the opportunity to perform re-

search with him in this new and expanding research effort. During my study with

him, Professor Hamel has provided me with the the fundamental knowledge re-

quired to rapidly break into the silicon integrated phononic band gap filter research

effort. This thesis is a testament of his ingenuity.

iv



Dedication

This thesis is dedicated to Professor John Starr Hamel and the advancement of the

silicon integrated phononic band gap filter research effort.

v



Contents

1 Introduction to Phononic Crystals and Their Applications 1

1.1 Linguistic Stipulations . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Microwave Acoustic Filters . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Micro-Electro-Mechanical-System

Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Phononic Band Gap Filters . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Outline of Thesis Subject Matter . . . . . . . . . . . . . . . . . . . 11

2 Wave Mechanics 13

2.1 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Phase Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Phase Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Wave Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3 Two-Dimensional Phononic Crystal Simulator Development 20

3.1 The Elastic Wave Equation . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Finite Difference Time Domain Solution to Elastic Wave Equation . 25

3.3 The Absorbing Boundary Condition . . . . . . . . . . . . . . . . . . 32

3.4 The Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . 38

3.5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Simulator Inputs . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Source and Detector Locations . . . . . . . . . . . . . . . . . 55

3.5.3 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 On Choosing kmax . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Verification of Simulator Operation . . . . . . . . . . . . . . . . . . 61

3.7.1 The Absorbing Boundary Condition . . . . . . . . . . . . . . 62

3.7.2 The Periodic Boundary Condition . . . . . . . . . . . . . . . 65

3.7.3 Reproducing Published Data . . . . . . . . . . . . . . . . . . 67

3.7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Two-Dimensional Phononic Crystal Analysis 81

4.1 Phononic Crystal Band Gap Engineering . . . . . . . . . . . . . . . 82

4.2 Fractal Inclusion Based Phononic Crystals . . . . . . . . . . . . . . 85

4.2.1 Introduction to Fractal Crystals . . . . . . . . . . . . . . . . 85

vii



4.2.2 Representation of Fractal Structures on a Discrete Grid . . . 88

4.2.3 Uniformity of Simulation Conditions . . . . . . . . . . . . . 89

4.2.4 Wavelength Characteristics . . . . . . . . . . . . . . . . . . 94

4.2.5 Forward Transmission Parameter Characteristics . . . . . . . 104

4.2.6 Band Gap Engineering Functions of Fractals . . . . . . . . . 111

4.2.7 Reflection, Refraction, and Diffraction in a Fractal Based

Phononic Crystal . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.8 Fractals For Use In Generalized Boundaries . . . . . . . . . 113

4.2.9 Implications of Fractal Structure Simulation Results . . . . . 113

4.3 Circular Inclusion Based Phononic Crystals . . . . . . . . . . . . . 114

4.3.1 Transient Response . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.3 Group Delay Characteristics . . . . . . . . . . . . . . . . . . 119

4.3.4 Phase Delay Characteristics . . . . . . . . . . . . . . . . . . 120

4.3.5 Phase Velocity Characteristics . . . . . . . . . . . . . . . . . 120

4.3.6 Dispersion Characteristics . . . . . . . . . . . . . . . . . . . 122

4.3.7 Quality Factor Characteristics . . . . . . . . . . . . . . . . . 123

5 Conclusions and Topics for Further Study 125

A Material Constants 130

viii



B Fractal Inclusion Layout 131

Bibliography 142

ix



List of Tables

1.1 Comparison of microwave acoustic filters [2], [3]. . . . . . . . . . . . 5

1.2 Microwave acoustic filters applications [2]. . . . . . . . . . . . . . . 6

3.1 Typical values of ∆t that provide good convergence for various systems. 48

3.2 Simulation constants for the simulation of the layered structure. . . 70

3.3 Simulation constants for the simulation of the aluminium-air crystal. 75

3.4 Simulation constants for the simulation of the aluminium-mercury

crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Fractal inclusion structures [25]. . . . . . . . . . . . . . . . . . . . . 86

4.2 Simulation constants for the simulation of fractal systems. . . . . . 92

4.3 Simulation variables for the simulation of fractal systems. . . . . . . 93

4.4 Wavelength at 3.5[MHz] for all fractal based crystal structures. . . 102

4.5 Minimum feature sizes of fractal inclusion structures. . . . . . . . . 103

4.6 Simulation constants for the simulation of a phononic crystal that is

composed of circular inclusions. . . . . . . . . . . . . . . . . . . . . 115

x



A.1 Material parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



List of Figures

1.1 Types of microwave acoustic devices. List of acronyms: SAW (Sur-

face Acoustic Wave), BAW (Bulk Acoustic Wave), LF (Low Fre-

quency), TFR (Thin Filter Resonator), HF (High Frequency), PBG

(Phononic Band Gap), FBAR (Film Bulk Acoustic Wave Resonator),

SMR (Solidly Mounted Resonator). . . . . . . . . . . . . . . . . . . 4

2.1 Experimental setup of plane wave source and point detector. . . . . 14

3.1 Discrete grid representation of discrete space. . . . . . . . . . . . . 27

3.2 Simulation space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Pictorial depiction of the operation of the PBC equations. The de-

picted simulation space measures 5[nodal units] by 6[nodal units].

The computational domain measures 3[nodal units] by 4[nodal units].

The ux component of the displacement vector is shown located in the

PBC domains, and at the top and bottom edges of the computational

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Map of inputs to ux (Equation 3.15) at time kcur. . . . . . . . . . . 41

xii



3.5 Illustration of how ABCs and PBCs act to make the two-dimensional

simulation space into an infinitely long cylindrical simulation space.

The arrows indicate the path of elastic wave propagation. The left

edge ABC domain is not shown. . . . . . . . . . . . . . . . . . . . . 43

3.6 Illustration of the parameters that characterize the structure of a

phononic crystal. The following abbreviations are applied in the

figure: the lattice constant, acellNODES, has been abbreviated as a;

the total width of the homogeneous region, homoWIDTH , has been

abbreviated as homo; the inclusion material density, ρinclusion, has

been abbreviated as ρi; the host material density, ρhost, has been

abbreviated as ρh. The unit cell is depicted as a square inclusion for

illustration purposes only. . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 The transient response of the source signal induced into the phononic

crystal as detected at a location just beside the plane wave source

(∆t = 0.997623539[ns]). The envelope of the transient response

appears to be an exponentially decaying function: the dotted curve

is given by 2.5×10−9

44400000(t−0.75×10−6)
+ 0.4× 10−8. . . . . . . . . . . . . . . . 53

3.8 The discrete fourier transform of the source signal of Figure 3.7. . . 54

3.9 Overall program flow of the phononic band gap crystal simulator. . 57

3.10 Program flow of the FDTD block of the phononic crystal simulator. 58

3.11 Snapshots of wave traveling into the boundary of the simulation

space with no boundary condition applied. . . . . . . . . . . . . . . 63

xiii



3.12 Snapshots of wave traveling into the boundary of the simulation

space with ABC applied. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Verification of PBC operation for source at node 3 (close up near the

location of the source). As seen in the figure, the plane wave source

is located two nodal units away from the PBC domain. . . . . . . . 66

3.14 Verification of PBC operation for source at node 75. . . . . . . . . . 67

3.15 Structure of the Bragg grating. The lattice constant, acellNODES,

has been abbreviated as a. The thickness of the plates is denoted

using the variable t. The plates are composed of Perspex, while the

host material is water. Finally, t = 0.2[cm] and a = 0.724[cm]. . . . 69

3.16 Transient response of the layered structure, of Figure 3.15, as de-

tected by a point detector. . . . . . . . . . . . . . . . . . . . . . . . 71

3.17 Magnitude response of the layered structure of Figure 3.15. . . . . . 72

3.18 Magnitude response of a two-dimensional phononic crystal that is

composed of an aluminum host and circular air inclusions. The data

curves that are attributed to Sun in the legend were taken from [21]. 76

3.19 Magnitude response of a two-dimensional phononic crystal that is

composed of an aluminum host and circular mercury inclusions. The

data curves that are attributed to Garcia in the legend were taken

from [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Arbitrary structure represented on discrete grid. . . . . . . . . . . . 90

xiv



4.2 Wavelength characteristic for a filter created using the Initial Square

inclusion structure, and the wavelength characteristic for the alu-

minum inclusion material and the mercury host material. For the

filter created using the Initial Square structure acellCM = 0.24[cm]. 96

4.3 Wavelength characteristic for Structure 1 (please refer to the legend

of Figure 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Wavelength characteristic for Structure 2 (please refer to the legend

of Figure 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Wavelength characteristic for Structure 3 (please refer to the legend

of Figure 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Forward transmission parameters for Structure 1. . . . . . . . . . . 105

4.7 Forward transmission parameters for Structure 2. . . . . . . . . . . 106

4.8 Forward transmission parameters for Structure 3. . . . . . . . . . . 107

4.9 Lattice vibrations within the unit cell for the Initial Square Structure

(left), Iteration 1 of Structure 3 (center) and Iteration 2 of Structure

3 (right). The amplitude of vibration in the regions that are shaded

white are larger than the amplitude of vibrations in the regions that

are shaded black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10 Transient response of the phononic crystal that was created using

circular inclusion structures. . . . . . . . . . . . . . . . . . . . . . . 116

xv



4.11 The Bode plot that was generated by taking the discrete fourier

transform of the transient response of the phononic crystal that was

created using circular inclusion structures. . . . . . . . . . . . . . . 117

4.12 Magnitude response on a logarithmic axis. . . . . . . . . . . . . . . 118

4.13 Group delay characteristic of the phononic crystal created from cir-

cular inclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.14 Phase delay characteristic of the phononic crystal created from cir-

cular inclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.15 Phase velocity characteristic of the phononic crystal created from

circular inclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.16 Dispersion characteristic of the phononic crystal created from circu-

lar inclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.17 Quality factor characteristic of the phononic crystal created from

circular inclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.1 Layout of Initial Square Structure. . . . . . . . . . . . . . . . . . . 132

B.2 Layout of Structure 1 Iteration 1. . . . . . . . . . . . . . . . . . . . 133

B.3 Layout of Structure 1 Iteration 2. . . . . . . . . . . . . . . . . . . . 134

B.4 Layout of Structure 2 Iteration 1. . . . . . . . . . . . . . . . . . . . 135

B.5 Layout of Structure 2 Iteration 2. . . . . . . . . . . . . . . . . . . . 136

B.6 Layout of Structure 3 Iteration 1. . . . . . . . . . . . . . . . . . . . 137

B.7 Layout of Structure 3 Iteration 2. . . . . . . . . . . . . . . . . . . . 138

xvi



Chapter 1

Introduction to Phononic Crystals

and Their Applications

Phononic band gap crystals are periodic structures created through the repeated

placement of one, two- or three-dimensional unit cells. The unit cell is comprised

of a host medium in which an inclusion medium is embedded. The host medium

and inclusion medium differ in their material properties, such as density and elastic

wave velocities. Energy is transmitted through the phononic band gap crystal via

an elastic wave.

The phononic band structure of a phononic band gap crystal is analogous to the

electronic band structure of semiconductors, and the electromagnetic band struc-

ture of photonic band gap crystals. The electronic band structure of a semiconduc-

tor is a consequence of the wave nature of the electrons present in a periodic lattice

of atomic nuclei. The electromagnetic band structure of a photonic band gap crystal

1



Chapter 1: Introduction to Phononic Crystals and Their Applications 2

results from the presence of electromagnetic waves in a periodic lattice of inclusions,

whose dielectric constant contrasts that of the host medium. The phononic band

structure results from the presence of elastic waves in the phononic band gap crys-

tal. ”Phononic band gap” crystals are often also referred to as ”acoustic band gap”

crystals, ”elastic band gap” crystals or ”sonic band gap” crystals.

This introductory chapter continues, in the next section, by clarifying the afore-

mentioned terminology. An introduction to contemporary microwave acoustic fil-

ters follows. For a phononic band gap crystal to perform a filtering operation

in microwave acoustic filters, an electromechanical transducer would be required

to convert electrical signals to elastic wave vibrations and vice versa. Micro-

Electro-Mechanical-System (MEMS) transducer technologies are later introduced

as an electromechanical transducer solution. The invention of the silicon integrated

phononic band gap filter is then formalized. The introduction concludes by outlin-

ing the thesis subject matter.

1.1 Linguistic Stipulations

The term ”phononic” was derived in analogy to the term ”phonon”, which is a

quanta of energy that characterizes atomic vibrations. Phonons may have wave-

lengths with a magnitude on the order of the atomic crystal lattice constant [1].

Similarly, the elastic wave vibrations, in phononic band gap crystals, may have

wavelengths on the order of the phononic band gap crystal lattice constant.

In the special case, where the elastic wave wavelength becomes much greater
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than the phononic band gap crystal lattice constant, then the term ”acoustic band

gap” or ”elastic band gap” is also accurate. However, the wavelength of elastic

waves is usually only larger than the crystal lattice constant at low frequencies

(near zero hertz where the wavelength approaches infinity).

The term ”acoustic band gap” crystal may also be being utilized, to draw anal-

ogy with the nomenclature used to describe microwave acoustic filters, such as

Surface Acoustic Wave (SAW) and Bulk Acoustic Wave (BAW) filters. The term

”sonic” and ”acoustic” are interchangeable.

It may be seen then, that the term ”phononic band gap crystal” scientifically

describes a device that may contain elastic wave vibrations at relatively arbitrary

wavelengths. Appropriately, the term ”phononic band gap” will be used throughout

this thesis.

The terms ”phononic band gap crystal” and ”phononic crystal” will be used

synonymously.

1.2 Microwave Acoustic Filters

Phononic crystals may be utilized to perform a filtering operation in microwave

acoustic filters. A similarity exists between phononic crystal based filtering devices

and SAW and BAW filtering devices in that the propagation of energy in these

devices is described using elastic wave mechanics. Figure 1.1, categorizes some

commonly used microwave acoustic devices. A phononic crystal based filter would

be categorized as a BAW device since the energy carrying elastic waves travel
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Microwave Acoustic Filters

SAW BAW

Quartz crystal (LF) TFR (HF) PBG

FBAR SMR

Figure 1.1: Types of microwave acoustic devices. List of acronyms: SAW (Surface
Acoustic Wave), BAW (Bulk Acoustic Wave), LF (Low Frequency), TFR (Thin
Filter Resonator), HF (High Frequency), PBG (Phononic Band Gap), FBAR (Film
Bulk Acoustic Wave Resonator), SMR (Solidly Mounted Resonator).

through the bulk of the crystal structure. This is in contrast to a SAW device

where the energy carrying wave travels along the surface of the structure.

Advantages and disadvantages of SAW devices, BAW devices and the proposed

phononic crystal based filters are listed in Table 1.1. Table 1.1 may be summarized

by stating that SAW filtering devices are capable of wider bandwidth, however,

BAW filtering devices will outperform SAW filtering devices in high Q (quality

factor) and high frequency applications. While SAW and BAW devices are estab-

lished technologies, phononic crystal based devices are purely in the research and

development phase. Applications of SAW, BAW and phononic crystal based filters

are listed in Table 1.2.

Though phononic crystal based microwave acoustic filters are under research

and development, it is known that a phononic crystal based filter would perform
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Table 1.1: Comparison of microwave acoustic filters [2], [3].

Surface Acoustic
Wave

Bulk Acoustic
Wave

Phononic Band Gap
(proposed)

Advantages
Package footprint size on the or-
der of mm×mm

Package footprint size on the or-
der of mm×mm

Multiple degrees of freedom in
band gap engineering

Magnitude response and group
delay can be designed indepen-
dently

Operating frequency range:
600[MHz] to 12[GHz] (conserv-
atively)

Device scaling would allow the
operating frequency range to be
easily increased

Unassisted SAW has higher
bandwidth than BAW filter

Excellent power handling at
frequencies up to 10[GHz] with-
out expensive photolithographic
equipment and fabrication
processes

Magnitude response and group
delay may be designed indepen-
dently

Linear phase response (transver-
sal SAW filter)

Lower insertion loss than SAW
devices

Higher Q than SAW devices

Small layout SMRs show promise
for integration onto substrates

Disadvantages

Contamination of wave propaga-
tion surface disturbs device op-
eration, so hermetic packaging is
required

At least one vibrating surface
will be exposed to the ambient
and so hermetic packaging is re-
quired

Magnitude response of the over-
all filter may be a function of the
resonant frequency of the MEMS
transducer

Inter-Digital transducer size de-
creases as frequency increases
and feature sizes become too
small to fabricate reliably, max-
imum operating frequency is
thus limited by minimum Inter-
Digital Transducer line width

Incompatible with standard sili-
con processes, and thus are off-
chip filters

Maximum operating frequency is
limited by minimum fabrication
process feature size

May be incompatible with stan-
dard silicon processes, and thus
are off-chip filters

At high frequency film thickness
becomes small and the thin films
are difficult to fabricate

May require a wide band trans-
ducer

Power handling decreases with
frequency

Still in research and development
phase, many problems to be ad-
dressed

Operating frequency range:
10[MHz] to 3[GHz] (imprac-
tically large size at some low
intermediate frequencies)

Modest Q (relative to BAW fil-
ter)

Wave location Surface Bulk Bulk
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Table 1.2: Microwave acoustic filters applications [2].

Surface Acoustic Wave Bulk Acoustic Wave
Phononic Band Gap (pro-
posed)

Applications

High selectivity filter in
mobile phone and radio
front ends

Global Positioning System
receiver front end (TFR
based latter or lattice fil-
ter)

Fully integrated on-chip
band pass or low pass fil-
ters for transceiver front
end

Analog signal processing:
delay lines, tapped delay
lines, chirp filters, con-
volvers, duplexers, correla-
tors, multiplexers and de-
multiplexers

Thin film SMRs for inte-
gration with microwave
heterojunction bipolar
transistor voltage con-
trolled oscillators

Low power communica-
tions

Intermediate frequency
band pass filters in televi-
sion receivers

FBARs have been used in
cellular phone transceiver
front ends

Multiplexers, demultiplex-
ers, elastic waveguides

Wireless passive iden-
tification tags, sensors,
passive transponders, mi-
crobalances, ladder filters,
resonators (precision clock
oscillators), digital radios,
satellites, modems

Duplexers, delay lines,
crystal resonators, SMRs,
FBARs

Pulse compression filters
for radar systems

a filtering operation by a fundamentally new mechanism. The filtering operation

is determined by the elastic band structure of the phononic crystal. Moreover, a

phononic crystal based filter may not require the use of a piezoelectric transducer

to induce elastic waves into the phononic crystal.

The transducer utilized in a SAW or a BAW device is partially composed of a

piezoelectric material. It may be possible to incorporate a phononic crystal into

a SAW or BAW device in order to exploit the phononic band gap phenomenon to

further alter the frequency response of the SAW and BAW devices. This, how-

ever, would not leverage the notion that a phononic crystal based filter may not

necessarily require a piezoelectric transducer. The MEMS transducer solution for

phononic crystal based devices is discussed next.



Chapter 1: Introduction to Phononic Crystals and Their Applications 7

1.3 Micro-Electro-Mechanical-System

Transducers

SAW and BAW filtering devices utilize a piezoelectric transducer and so these de-

vices are not purely mechanical devices, and may not be fabricated in standard

silicon processes. Moreover, in the case of a SAW device, the piezoelectric trans-

ducer may not be eliminated since the frequency response of the SAW device is a

function of the geometry of the piezoelectric Inter-Digital Transducer (IDT).

In contrast, it may be possible that the frequency response of a phononic crystal

based filter be determined by the phononic crystal itself. The MEMS developer

would be free to design the actuator and sensor transducers in a novel fashion.

The utilization of MEMS transducers in phononic band gap crystal based filtering

devices would result in a filtering system that is purely mechanical.

It may be likely that a phononic crystal can be fabricated in a standard silicon

process. Since a MEMS transducer may also be fabricated in a standard silicon

process, it may be possible to integrate a phononic crystal based filter with other

microelectronic circuits and systems. This may, for example, enable the fabrication

of a single chip transceiver where microwave filtering devices and mixed signal

integrated circuits are fabricated in a single silicon process.

The required transducer must convert electrical signals into elastic wave vibra-

tions, which are mechanical deformations, and such a transducer is referred to as an

electromechanical transducer. The silicon integrated phononic crystal based filter

development challenge is then to develop an electromechanical transducer that can
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be fabricated in a standard silicon process. A list of MEMS structures that may

provide the required transduction capabilities includes:

1. current carrying wires (a mechanical force is generated between current car-

rying wires),

2. a capacitive micromachined ultrasonic transducer (for example, a capacitive

diaphragm transducer),

3. a clamped-clamped beam with electrostatic electrodes [4], and

4. an electrostatic comb drive [4].

Clamped-clamped beams, and electrostatic comb drives, have been used to cre-

ate electrostatic coupled beam filters, and comb drive filters, respectively [4]. In

the electrostatic coupled beam filter, two clamped-clamped resonators (one at the

input and one at the output) are couple via a beam. The comb drive filter consists

of two comb drives (one at the input and one at the output), which are also coupled

via a beam. In both cases, the elastic wave signal flow path from the input to the

output is through the beam structure. Creating a phononic crystal based filter may

involve incorporating a phononic crystal into this beam structure.

In such a configuration, the elastic wave would travel from the input transducer,

through the phononic crystal beam structure, and to the output transducer. The

signal would thus be filtered according to the frequency response of the phononic

crystal that is embedded in the beam, achieving the desired filtering operation.

Many design challenges were not addressed here, however, the utility of MEMS

transducers in the development of silicon integrated phononic crystal based filter



Chapter 1: Introduction to Phononic Crystals and Their Applications 9

structures was illustrated. The origin of the notion of phononic band gap filters

will now be elaborated upon.

1.4 Phononic Band Gap Filters

The seminal papers that describe phononic crystals and the phononic band struc-

ture were presented by Sigalas in 1992 [5] and Kushwaha in 1993 [6]. In 1992,

Sigalas proposed that phononic crystals may find application in devices that per-

form a filtering operation.

As eluded to above, the combination of phononic crystals and MEMS transducer

technologies may create a new breed of on-chip integrated microwave acoustic fil-

tering devices, for which the name ”silicon integrated phononic band gap filter” has

been coined.

The functional feature of a phononic crystal may be observed through an ex-

amination of the phononic crystal frequency response. The frequency response of a

phononic crystal contains band gaps: frequency bands in which neither an elastic

traveling wave nor an elastic standing wave may exist. Through band gap engi-

neering, the frequency response of phononic crystals may be developed to create a

wide variety of filtering characteristics. Phononic crystals have been demonstrated

to generate low pass filter, band pass filter, band stop filter, waveguide [7], multi-

plexing [8], and demultiplexing [8] phenomenon.

In essence, a phononic band gap filter would be comprised of a phononic crys-

tal, which is sandwiched between two electromechanical transducers, and hence is
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comprised of at least three components:

1. an input actuator electromechanical transducer,

2. the phononic crystal, and

3. the output sensor electromechanical transducer.

MEMS transducers were described in the previous section. Additional elements

that the phononic band gap filter may require include acoustic impedance matching

and reflective layers.

If solidly mounted to the substrate, the phononic crystal based device may be

acoustically isolated from the substrate using quarter wave reflectors (as in Solidly

Mounted Resonators (SMRs)) or acoustically impedance matched to the substrate

using acoustic absorbers (possibly similar to those utilized in SAW devices).

Alternatively, the device may be isolated from the substrate by being mounted

on a suspended membrane (as in Film Bulk Acoustic Wave Resonators (FBARs)), or

the crystal may be fabricated directly in the suspended membrane. The membrane

may be suspended using tethers, which may have a taper geometry (like the cross

section of an electromagnetic horn antenna), to acoustically impedance match the

device to the silicon substrate. Scattered waves traveling into the tethers will not

be reflected back into the device, and so would not interfere with the operation of

the device.

The challenge of fabricating a silicon integrated phononic band gap filter may be

summarized by stating that the real world device must realize the functionality of
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the theoretical structures (such as, Absorbing Boundary Conditions (ABCs), Per-

fectly Matched Layers (PMLs) or Periodic Boundary Conditions (PBCs)) that are

implemented in device simulators. Realization of the theoretical structures is sub-

ject to the constraints (such as, mask errors, material availability, minimum feature

size and minimum economically affordable mask address unit) of the fabrication

process.

Projecting into the future, if it were possible to integrate several phononic crystal

based filters into a reasonable die area, a parallel bank of such filters could be

realized. Each filter in the filter bank could be tuned to a different channel. If

the quality factor (Q) of each filter was sufficiently high, it has been proposed that

such a filter bank may be used to develop a new front-end receiver architecture in

which channel selection is performed at radio frequencies [9]. Performing channel

selection at radio frequencies would alleviate low noise amplifier linearity and local

oscillator phase noise requirements, thereby reducing the power consumption of

these components [9]. For this reason, as stated in Table 1.2, a silicon integrated

phononic band gap filter may find application in low power communications.

1.5 Outline of Thesis Subject Matter

The attention of this thesis is confined to two topics:

1. the development of a simulator that can simulate phononic crystals that are

composed of two-dimensional units cells arranged on a square lattice: a two-

dimensional phononic band gap crystal simulator, and
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2. the analysis of the properties of the phononic crystals that have been simu-

lated using this simulator.

Transducer development is not discussed so that exclusive attention is paid to the

simulation and analysis of phononic crystals.

Chapter two of the thesis contains an introduction to wave mechanics, which

provides the mathematical framework for the analysis of phononic crystals. In

Chapter three, the development of the two-dimensional phononic band gap simu-

lator is detailed. An analysis of two phononic crystals is found in Chapter four.

The thesis concludes, in Chapter five, with suggested topics to further the study of

silicon integrated phononic band gap filters.



Chapter 2

Wave Mechanics

A sinusoidal wave may be represented by [10]:

ψ(t, x) = Acos

(
2πt

T
− 2πx

λ

)
, (2.1)

where ψ(t, x) is the displacement of the medium at time t and position x, A is the

amplitude of the wave, T is the temporal period, and λ is the spatial wavelength.

If the sinusoidal wave of Equation 2.1 is observed at a fixed point x = xo, the

period of the displacement versus time function, ψ(t, xo) will be found to be T . If

the sinusoidal wave of Equation 2.1 is observed at a fixed time t = to, the period

of the displacement versus position function, ψ(to, x) will be found to be λ. The

reciprocal of the temporal period, T , is the frequency, f :

13
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f =
1

T
. (2.2)

Consider the experimental setup of Figure 2.1. Waves are generated by a plane

wave source and travel through the elastic medium toward the point detector. After

a finite duration of time, waves will begin to arrive at, and be detected by, the point

detector, which measures the displacement versus time function, ψ(t, xo = d).

Plane wave source

d

Point detector

Direction of
wave propagaion

Elastic medium

Figure 2.1: Experimental setup of plane wave source and point detector.

If the plane wave source generates the Dirac Delta function, which will be defined

as

δ(t) =

 0 t 6= 0

1 t = 0
, (2.3)

then sinusoidal waves at all frequencies are induced into the elastic medium since

the Fourier transform of Equation 2.3, F (δ(t)), is equal to [11]

F (f(t))

∣∣∣∣
f(t)=δ(t)

=

∫ ∞

−∞
f(t)e−j2πftdt

∣∣∣∣
f(t)=δ(t)

= 1, (2.4)
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a constant for all f . Hence, by using the plane wave source to induce a unit impulse

into the elastic medium, the displacement versus time function, ψ(t, xo = d), is

equal to the impulse response, h(t), of the elastic medium:

h(t) = ψ(t, xo = d). (2.5)

The Fourier transform of the impulse response, h(t), is the transfer function,

H(2πf), of the elastic medium:

H(2πf) =

∫ ∞

−∞
h(t)e−j2πftdt

∣∣∣∣
h(t)=ψ(t,xo=d)

=

∫ ∞

−∞
ψ(t, xo = d)e−j2πftdt. (2.6)

In general, the transfer function, H(2πf), is a complex number that may be

represented using a magnitude and a phase:

H(2πf) = |H(2πf)|ej 6 H(2πf) = |H(2πf)|ejΘ(2πf). (2.7)

where |H(2πf)| is referred to as the magnitude response and Θ(2πf) = 6 H(2πf)

is referred to as the phase response. The quantity 2πf is defined as the angular

frequency, ω:

ω = 2πf. (2.8)

The magnitude, and phase response, are often denoted as |H(ω)| and Θ(ω), re-
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spectively, and provide a complete description of the system: for a sinusoidal input

Acos(ωt), the output is the sinusoid given by A|H(ω)|cos(ωt + Θ(ω)). The phase

response is less than zero: Θ(ω) < 0.

2.1 Group Delay

The group delay, τ(ω)g, is defined as the rate of change of the phase response with

respect to angular frequency [12]:

τ(ω)g = −dΘ(ω)

dω
, (2.9)

and has the units of seconds.

Most signals can be defined over some finite, non-zero, bandwidth ωo ± δω.

Since the magnitude response |H(ω)|, and group delay, τ(ω)g are, in general, not a

constant over the bandwidth, ωo± δω, the magnitude of each frequency component

of the input signal will be scaled according to |H(ω)| and have a group delay τ(ω)g.

In the time domain, the result is that the output signal will not resemble the input

signal: the signal is said to have been distorted and the elastic medium is said to

be dispersive.

2.2 Phase Delay

The phase delay, τ(ω)p, is defined as the phase response divided by frequency:
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τ(ω)p = −Θ(ω)

ω
, (2.10)

and has the units of seconds. The phase delay is the time, in seconds, taken for the

signal to travel from the input to the output.

2.3 Phase Velocity

If the sinusoidal wave of Equation 2.1 is observed at a fixed displacement, ψ(t, x) =

ψo, then Equation 2.1 may be rearranged as:

2πt

T
− 2πx

λ
= cos−1

(
ψo
A

)
. (2.11)

Taking the derivative of position with respect to time, gives the definition of phase

velocity, vp:

vp =
dx

dt
=
λ

T
= fλ, (2.12)

which is the velocity of the sinusoidal wave. The experimentally determined phase

response may be used to compute the phase velocity of a sinusoidal wave in the

elastic medium:

vp(ω) =
d

τ(ω)p
, (2.13)
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where d is the distance between the plane wave source and detector (as illustrated

in Figure 2.1), and τ(ω)p is the phase delay (as given by Equation 2.10).

When applied to phononic crystals, Equation 2.13 is only an approximation

since the distance traversed by each frequency component, as it travels through the

crystal, may not equal d. As may be observed in following chapters, low frequency

components tend to be unaffected by the presence of the phononic crystal and

so travel direct paths from the input to the output - hence Equation 2.13 may

be accurate for low frequency components. However, as frequency increases, the

phononic crystal becomes frequency selective and high frequency components may

follow indirect paths as they traverse the phononic crystal - as a result the distance

traveled may not equal d.

2.4 Wave Vector

The wave vector is defined as:

k(ω) =
2π

λ(ω)
=

ω

vp(ω)
, (2.14)

where Equation 2.12 was used to relate the wavelength, λ, to the phase velocity,

vp(ω). As described at the end of Section 2.3, Equation 2.13, for phase velocity,

vp(ω), is an approximation when applied to phononic crystals. Hence, Equation

2.14, for the wave vector, k(ω), which depends on Equation 2.13, is also an approx-

imation when applied to phononic crystals.
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Using Equation 2.8 for the angular frequency, ω, and Equation 2.14 for the wave

vector, k(ω), Equation 2.1 may be simplified to:

ψ(t, x) = Acos(ωt− k(ω)x). (2.15)

In summary, utilizing the experimentally determined phase response, the group

delay, phase delay, phase velocity and wave vector may be computed. In a dispersive

medium, the group delay, phase delay, phase velocity, and wave vector vary with

frequency.



Chapter 3

Two-Dimensional Phononic

Crystal Simulator Development

The discussion will begin with an explanation of why it is of interest to code a two-

dimensional phononic band gap crystal simulator when a physically realizable device

would be three-dimensional. When it is said that the simulator is a two-dimensional

simulator, it is meant that the simulator is capable of simulating two-dimensional

crystals.

A two-dimensional phononic crystal is a crystal that displays periodicity only in

the x̂-ŷ plane, and the device geometry is uniform in the ẑ direction and so displays

no periodicity in the ẑ direction. The structure is assumed to be infinitely thick in

the ẑ direction.

Band gaps in the x̂ and ŷ direction do not depend on device thickness in the

ẑ direction. Hence, theoretically, the simulated x̂ and ŷ direction band structure

20
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should match that of a crystal that has an arbitrary thickness in the ẑ direction.

This justifies the assumption that the two-dimensional phononic crystal is infinitely

thick in the simulator.

A three-dimensional crystal displays periodicity in all three physical directions

(the x̂, ŷ, and ẑ directions). An elastic wave may have three components: two

transverse components, and one longitudinal component. When a phononic crystal

suppresses the propagation of all three components of the elastic wave vector at a

given frequency, the crystal is said to display a ”full band gap”. It is more difficult

to obtain a full band gap when using a two-dimensional phononic crystal [13], than

it is when using a three-dimensional crystal. However, a two-dimensional phononic

crystal would be easier to realize in planar integrated circuit fabrication processes,

which is why the two-dimensional simulator is of interest.

One may wonder whether or not it is a hinderance that it is more difficult to

obtain full band gaps using a two-dimensional phononic crystal. An abundance of

two-dimensional phononic crystals having partial band gaps (a band gap for just one

or two components of the elastic wave vector) have been discovered and are a topic

of discussion in Chapter 4. It may be possible that the proposed silicon integrated

phononic band gap filter be created using such a phononic crystal that has a partial

band gap for only the longitudinal component, or one transverse component, of the

elastic wave vector. This may simplify the development of the transducers that

would be needed to create and detect the displacement of the phononic crystal since

the transducer only has to operate in a single direction. Moreover, this illustrates

that only a partial band gap may be required by a phononic crystal based filter.
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If a full band gap were required, it has been shown [13] that altering the thick-

ness, in the ẑ direction, of a thin two-dimensional crystal (thin meaning the crystal

has a thickness in the ẑ direction that is much smaller than wavelength) causes the

location of existing band gaps in the ẑ component of the displacement vector to

change frequency. Band gaps in the x̂ and ŷ components of the displacement vector

are independent of device thickness. Hence, if the thickness in the ẑ direction is

chosen appropriately it would be possible to align a band gap in the ẑ component

with the band gaps in the x̂ and ŷ components of the displacement vector thereby

creating a full band gap. Full band gaps are also relatively easier to obtain with

thick two-dimensional crystals [13] (thick meaning the crystal has a thickness in

the ẑ direction that is much larger than wavelength).

An advantage of developing a filter from a crystal that only has a partial band

gap in one direction is that it eases design constraints in the other directions. Let the

x̂ direction be the longitudinal direction. Let the ŷ and ẑ directions be transverse

directions. Consider a crystal that has a partial band gap for the x̂ and ŷ directions.

Partial band gaps are independent of the device thickness in the ẑ direction. Hence,

the designer may arbitrarily choose the thickness in the ẑ direction. This decreases

the requirements on the fabrication process. Moreover, the designer is free to choose

the device thickness in the ẑ direction to perform other functions, for example to

decrease internal stress or to increase mechanical strength.

As a final note, due to the fact that the two-dimensional crystal thickness may

be chosen arbitrarily, a phononic band gap filter may be fabricated out of a thin film

or membrane and hence may be realizable using a planar Complementary Metal
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Oxide Semiconductor (CMOS) compatible, or a surface micro-machining, process.

3.1 The Elastic Wave Equation

The energy carrying waves of interest in a phononic crystal are elastic waves. Elastic

waves are described by the elastic wave equation an in inhomogeneous isotropic

media:

ρ
δ2 #»u

δt2
=

#»∇ · #»

T , (3.1)

where ρ is the material density, #»u = [ux, uy, uz] = uxx̂+uyŷ+uz ẑ is the displacement

vector, t is the time variable, and
#»∇ = [ δ

δx
, δ
δy
, δ
δz

] = δ
δx
x̂ + δ

δy
ŷ + δ

δz
ẑ is the nabla

operator. The stress tensor,
#»

T , is given by

#»

T =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 (3.2)

Txx = (λ+ 2µ)
δux
δx

+ λ
δuy
δy

+ λ
δuz
δz

(3.3)

Tyy = (λ+ 2µ)
δuy
δy

+ λ
δux
δx

+ λ
δuz
δz

(3.4)

Tzz = (λ+ 2µ)
δuz
δz

+ λ
δux
δx

+ λ
δuy
δy

(3.5)
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Txy = Tyx = µ
δuy
δx

+ µ
δux
δy

(3.6)

Txz = Tzx = µ
δuz
δx

+ µ
δux
δz

(3.7)

Tyz = Tzy = µ
δuz
δy

+ µ
δuy
δz

, (3.8)

where λ and µ are the Lamé coefficients and are given by: λ = ρ× c2l − 2× µ and

µ = ρ× c2t . The Lamé coefficients are material dependent parameters.

Three material parameters are of interest: the material density, ρ, and the

longitudinal, and transverse, elastic wave velocities, cl, and ct, respectively. Since

the phononic crystal is composed of two different materials, the value of the material

parameters and Lamé coefficients are a function of position (x, y, z).

By reverse substitution, each of the components of the elastic wave displacement

vector may be expressed in terms of a partial differential equation:

ρ
δ2ux
δt2

=
δTxx
δx

+
δTyx
δy

+
δTzx
δz

(3.9)

ρ
δ2uy
δt2

=
δTxy
δx

+
δTyy
δy

+
δTzy
δz

(3.10)

ρ
δ2uz
δt2

=
δTxz
δx

+
δTyz
δy

+
δTzz
δz

. (3.11)
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3.2 Finite Difference Time Domain Solution to

Elastic Wave Equation

Since it is proposed that a phononic band gap filter may only require a crystal

that has a band gap in the longitudinal direction, the simulator only provides

information about the propagation of the ux (longitudinal) component of the elastic

wave displacement vector. To compute ux, the elastic wave equation must be solved

for the components of the displacement vector. A second order accurate Finite

Difference Time Domain (FDTD) numerical method was used to solve the elastic

wave equation for the components of the displacement vector.

The phononic crystal is assumed to be infinitely thick in the ẑ direction. This

means that the device is geometrically invariant in the ẑ direction. Hence, the

derivative with respect to z, in Equations 3.3 to Equation 3.11, evaluates to zero.

Further, the crystal will only be excited in the longitudinal (x̂) direction, since it

is only desired to determine the response of a phononic crystal to a transducer that

provides excitation in the longitudinal direction. Due to the geometrical uniformity

along the ẑ direction, no waves can become refracted into the ẑ direction. Thus:

uz = 0. (3.12)

Under these conditions, the set of equations needed to quantify elastic wave vibra-

tions become:
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ρ
δ2ux
δt2

=
δTxx
δx

+
δTyx
δy

ρ
δ2uy
δt2

=
δTxy
δx

+
δTyy
δy

Txx = (λ+ 2µ)
δux
δx

+ λ
δuy
δy

Tyy = (λ+ 2µ)
δuy
δy

+ λ
δux
δx

Txy = Tyx = µ
δuy
δx

+ µ
δux
δy

.

(3.13)

The two-dimensional simulation plane, in discrete space, is represented using

discrete points. To maintain second order accuracy, the ux and uy components of

the displacement vector are represented on two different grids (see Figure 3.1). The

ux component is computed at the set of points (l,m), which form the integer-grid.

The uy component is computed at the set of points (l + 1
2
,m + 1

2
), which form

the half-grid. Both l and m are integers. Figure 3.1 depicts both the integer-grid

(represented by solid lines) and the half-grid (represented by dotted lines).

Time is also discrete in the simulator. The location in discrete time is repre-

sented by an integer, k, called the time step.

The distance between points on the integer-grid or half-grid is the spatial res-

olution of the simulation plane. The spatial resolution in the x̂ direction, and ŷ

direction, are ∆x, and ∆y, respectively. The duration of time that elapses between

time steps is the temporal resolution, ∆t.

Distances between points on the integer-grid or half-grid may be described in

terms of nodal units. Figure 3.1 illustrates the meaning of a nodal unit.
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The ux, and uy, component of the displacement vector are physically and tem-

porally located at (l∆x,m∆y, k∆t), and ((l+ 1
2
)∆x, (m+ 1

2
)∆y, k∆t), respectively.

Where l ∈ [0, lmax], m ∈ [0,mmax], and k ∈ [0, kmax] are integers.

Finite differences are used to approximate the derivatives in Equation 3.13. In

particular, the space derivatives are approximated using central differences (CD),

and the time derivative is approximated using forward differences (FD) and back-

ward differences (BD) [14]:

δui(l,m, k)

δx
≈
ui(l +

1
2
,m, k)− ui(l − 1

2
,m, k)

∆x
(CD)

δui(l,m, k)

δy
≈
ui(l,m+ 1

2
, k)− ui(l,m− 1

2
, k)

∆y
(CD)

δui(l,m, k)

δt
≈ ui(l,m, k + 1)− ui(l,m, k)

∆t
(FD)

δui(l,m, k)

δt
≈ ui(l,m, k)− ui(l,m, k − 1)

∆t
(BD)

δ2ui(l,m, k)

δt2
≈ ui(l,m, k + 1)− ui(l,m, k)

∆t

∣∣∣∣
ui(l,m,k)=

ui(l,m,k)−ui(l,m,k−1)

∆t

=
ui(l,m, k + 1)− 2ui(l,m, k) + ui(l,m, k − 1)

∆t2

(3.14)

where i ∈ [x, y]. If i = x then the (l,m) pairs correspond to the integer-grid. If

i = y then the (l,m) pairs are replaced by (l + 1
2
,m + 1

2
) pairs, which correspond

to the half-grid.

Applying the finite difference approximations of Equation 3.14 to Equation 3.13,

and letting kcur = k+1, kpr1 = k and kpr2 = k− 1 (where the subscript cur implies

the current time step, the subscript pr1 implies the previous time step, and so
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forth) yields the equations of discrete space:

ux(l,m, kcur) = 2ux(l,m, kpr1)− ux(l,m, kpr2)

+
∆t2

ρ(l,m)∆x

(
Txx(l +

1

2
,m, kpr1)− Txx(l −

1

2
,m, kpr1)

)
+

∆t2

ρ(l,m)∆y

(
Txy(l,m+

1

2
, kpr1)− Txy(l,m− 1

2
, kpr1)

) (3.15)

uy(l +
1

2
,m+

1

2
, kcur) = 2uy(l +

1

2
,m+

1

2
, kpr1)− uy(l +

1

2
,m+

1

2
, kpr2)

+
∆t2

ρ(l + 1
2
,m+ 1

2
)∆y

(
Txy(l + 1,m+

1

2
, kpr1)− Txy(l,m+

1

2
, kpr1)

)
+

∆t2

ρ(l + 1
2
,m+ 1

2
)∆x

(
Tyy(l +

1

2
,m+ 1, kpr1)− Tyy(l +

1

2
,m, kpr1)

) (3.16)

Txx(l +
1

2
,m, kpr1) =(

λ(l +
1

2
,m) + 2µ(l +

1

2
,m)

)
ux(l + 1,m, kpr1)− ux(l,m, kpr1)

∆x

+

(
λ(l +

1

2
,m)

)
uy(l +

1
2
,m+ 1

2
, kpr1)− uy(l +

1
2
,m− 1

2
, kpr1)

∆y

(3.17)

Txx(l −
1

2
,m, kpr1) =(

λ(l − 1

2
,m) + 2µ(l − 1

2
,m)

)
ux(l,m, kpr1)− ux(l − 1,m, kpr1)

∆x

+

(
λ(l − 1

2
,m)

)
uy(l − 1

2
,m+ 1

2
, kpr1)− uy(l − 1

2
,m− 1

2
, kpr1)

∆y

(3.18)
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Txy(l,m+
1

2
, kpr1) =(

µ(l,m+
1

2
)

)
ux(l,m+ 1, kpr1)− ux(l,m, kpr1)

∆y

+

(
µ(l,m+

1

2
)

)
uy(l +

1
2
,m+ 1

2
, kpr1)− uy(l − 1

2
,m+ 1

2
, kpr1)

∆x

(3.19)

Txy(l,m− 1

2
, kpr1) =(

µ(l,m− 1

2
)

)
ux(l,m, kpr1)− ux(l,m− 1, kpr1)

∆y

+

(
µ(l,m− 1

2
)

)
uy(l +

1
2
,m− 1

2
, kpr1)− uy(l − 1

2
,m− 1

2
, kpr1)

∆x

(3.20)

Txy(l + 1,m+
1

2
, kpr1) =(

µ(l + 1,m+
1

2
)

)
ux(l + 1,m+ 1, kpr1)− ux(l + 1,m, kpr1)

∆y

+

(
µ(l + 1,m+

1

2
)

)
uy(l + 1.5,m+ 1

2
, kpr1)− uy(l +

1
2
,m+ 1

2
, kpr1)

∆x

(3.21)

Tyy(l +
1

2
,m+ 1, kpr1) =(

λ(l +
1

2
,m+ 1) + 2µ(l +

1

2
,m+ 1)

)
uy(l +

1
2
,m+ 1.5, kpr1)− uy(l +

1
2
,m+ 1

2
, kpr1)

∆y

+

(
λ(l +

1

2
,m+ 1)

)
ux(l + 1,m+ 1, kpr1)− ux(l,m+ 1, kpr1)

∆x

(3.22)
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Tyy(l +
1

2
,m, kpr1) =(

λ(l +
1

2
,m) + 2µ(l +

1

2
,m)

)
uy(l +

1
2
,m+ 1

2
, kpr1)− uy(l +

1
2
,m− 1

2
, kpr1)

∆y

+

(
λ(l +

1

2
,m)

)
ux(l + 1,m, kpr1)− ux(l,m, kpr1)

∆x
.

(3.23)

Due to the finite difference approximations used above, the central difference

space derivatives have second order accuracy. However, these approximations have

the result that the ux and uy components of the displacement vector are located

at different points in space: the ux component is on the integer-grid, while the uy

component is on the half-grid. To compute the ux component on the half-grid, and

the uy component on the integer-grid, averaging may be used:

ux(l +
1

2
,m+

1

2
, k) =

1

4
[ux(l + 1,m+ 1, k) + ux(l + 1,m, k)

+ ux(l,m+ 1, k) + ux(l,m, k)]

uy(l,m, k) =
1

4
[uy(l +

1

2
,m+

1

2
, k) + uy(l +

1

2
,m− 1

2
, k)

+ uy(l −
1

2
,m+

1

2
, k) + uy(l −

1

2
,m− 1

2
, k)].

(3.24)

To assist stability in the computations the CFL (Courant-Friedrichs-Levy; some-

times Levy appears as Lewy) condition was applied:
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∆t =
∆tNumerator

cmax
2

√
1

∆x2
+

1

∆y2
, (3.25)

where ∆tNumerator ∈ [0, 0.5] is chosen through experience. The phononic crystal

will be composed of two materials. Each material is described by a longitudinal

and transverse velocity. The variable cmax, of Equation 3.25, represents the largest

of these velocities. The CFL condition is necessary, but not sufficient, for stability.

As described in Chapter 2, a plane wave source will be used to excite the

phononic crystal. For the reasons discussed in Chapter 2, the continuous time

domain signal that will be used at the source will be the Dirac Delta. The discrete

time domain dual of the Dirac Delta is the Kronecker Delta:

δ(k) =

 0 k 6= 0

1 k = 0
, (3.26)

where k, an integer, is the time step.

3.3 The Absorbing Boundary Condition

When performing computations using a computer that has a finite amount of mem-

ory, the two-dimensional simulation plane must be truncated: the result is the finite

two-dimensional simulation space depicted in Figure 3.2. As seen in Figure 3.2, the

method utilized to truncate the simulation space was to apply an Absorbing Bound-

ary Condition (ABC) and a Periodic Boundary Condition (PBC). Mur’s first order
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Plane wave source
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wave propagaion
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m
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crystal is placed here

Figure 3.2: Simulation space.

ABC truncates the two-dimensional simulation plane in the x̂ direction, and is the

topic of discussion in this section.

The ideal operation of the ABC is to ensure that the waves that impinge on

the left, and right edges, of the simulation space, near the source, and detector,

respectively, are absorbed (not reflected) and removed from the simulation space.

The absence of reflected waves eliminates the possibility of interference patterns,

which could cause erroneous simulation data. Moreover, as soon as the wave arrives

at the ABC it is ideally removed from the simulation space, and so the same wave

cannot be repeatedly detected by the detector.

The boundary formed by Mur’s first order ABC is finite in width, and ensures

that outgoing waves effectively travel out of the system. Applying an ABC at the

boundary of a finite simulation space, thus, causes the finite simulation space to
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mimic open (unbounded) space [15].

Mur’s first order ABC truncates the two-dimensional simulation plane in the x̂

direction, and is given by [16], [17]:

ux(lL,m, kcur) =ux(lL + 1,m, kpr1)

+
cl(lL,m)∆t−∆x

cl(lL,m)∆t+ ∆x
[ux(lL + 1,m, kcur)− ux(lL,m, kpr1)]

uy(lL +
1

2
,m+

1

2
, kcur) =uy(lL +

1

2
+ 1,m+

1

2
, kpr1)

+
ct(lL + 1

2
,m+ 1

2
)∆t−∆x

ct(lL + 1
2
,m+ 1

2
)∆t+ ∆x

× [uy(lL +
1

2
+ 1,m+

1

2
, kcur)− uy(lL +

1

2
,m+

1

2
, kpr1)]

ux(lR,m, kcur) =ux(lR − 1,m, kpr1)

+
cl(lR,m)∆t−∆x

cl(lR,m)∆t+ ∆x
[ux(lR − 1,m, kcur)− ux(lR,m, kpr1)]

uy(lR +
1

2
,m+

1

2
, kcur) =uy(lR +

1

2
− 1,m+

1

2
, kpr1)

+
ct(lR + 1

2
,m+ 1

2
)∆t−∆x

ct(lR + 1
2
,m+ 1

2
)∆t+ ∆x

× [uy(lR +
1

2
− 1,m+

1

2
, kcur)− uy(lR +

1

2
,m+

1

2
, kpr1)]

(3.27)

where lL, and lR, specify the location where the ABC is applied in the left, and

right, side, respectively, of Figure 3.2. The phononic crystal lies within the ABC

and PBC boundaries of the simulation space and so the cl and ct, in Equation 3.27,

are the longitudinal and transverse wave velocities in the host material.
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Mur’s ABC is a differential-equation-based or ”traditional” ABC [18]. The

discrete form of a traditional ABC applies a ”one-way boundary operator”, which

only permits outgoing waves [18]. As seen in Equation 3.27, the boundary computed

by Mur’s first order ABC is a function of points that are, at most, one nodal unit

in from the boundary. For this reason Mur’s ABC and the traditional ABC’s are

considered local [18] and so are computationally efficient. Arbitrary order ABC’s

may be utilized to increase accuracy of the ABC, however, higher order ABC’s are

less stable [18] and less computationally efficient.

For example, as stated Mur’s first order ABC utilizes values one nodal unit in

from the boundary, and also utilizes values from one time step back in time. In

contrast, Mur’s second order ABC, which is considered a highly absorbing boundary

condition [17], utilizes values at one and two nodal units in from the boundary, and

values one and two time steps back in time [17] and so is less computationally

efficient.

Mur’s first order ABC suffers from the problems of the other traditional ABC’s,

which generally assume that the incoming waves are plane waves or normally in-

cident on the boundary [15]. In electromagnetic applications Mur’s second and

higher order ABC’s reportedly produce fewer reflections, than Mur’s first order

ABC, for obliquely incident waves and grazing fields. Traditional ABC’s also per-

form poorly in dispersive mediums since traditional ABC’s assume a constant speed

of propagation [18].

Traditional ABC’s were commonly used due to the lack of a boundary condi-

tion which would eliminate reflections for waves impinging at arbitrary angles of
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incidence [17]. Though Mur’s second order ABC of 1981 decreased reflections for

oblique angles of incidence, the next widely accepted alternative didn’t come until

1994 when Berenger developed the Perfectly Matched Layer (PML) [15].

The PML is categorized as a material ABC (in contrast to a differential-equation

based or traditional ABC). In 1996, Chew and Liu proved the existence of, and

developed, a PML for simulations involving the elastic wave equation [19]. The

PML has been proved to have zero reflections for waves of arbitrary frequency and

angle of incidence.

The PML is only ”perfect” in the continuous case and numerical errors develop

in the discrete case. That said, in general the PML still performs better than Mur’s

ABC. However, due to it’s simplicity, computational efficiency, and widespread use,

Mur’s first order ABC was used in the development of the phononic band gap crystal

simulator.

To account for the described short comings of Mur’s first order ABC, a plane

wave source has been used. The waves generated by the plane wave source are

normally incident on the boundaries where Mur’s first order ABC is applied.

In addition, Mur’s first order ABC is applied near a homogeneous region in

which the elastic wave velocity is a constant. The homogeneous region also sepa-

rates the boundary at which Mur’s first order ABC is applied from the phononic

crystal. Thus, the waves that are reflected off the crystal, must travel through the

homogeneous region before they arrive at the ABC. The ABC can be thought of as

being in the far-field of the scattering crystal, and so the reflected waves may be

approximated as plane waves at the location of the ABC [20].
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The homogeneous region also ensures that the ABC is far enough from the crys-

tal so that the ABC will not remove elastic waves that are important in computing

the crystal’s response [20].

Finally, even with all the aforementioned provisions, reflections will still be

generated at Mur’s first order ABC. Having a large homogeneous region ensures

that it will take a finite amount of time for the first set of waves, which emerge from

the crystal, to travel past the detector, be reflected at Mur’s ABC, and travel back

to the detector. By locating the detector in the middle of the homogeneous region,

far from the boundary at which the ABC is located, the initial set of detected

elastic waves will not include any reflected waves. The first part of the transient

response is essential in determining the frequency response of the crystal and so

it is crucial that the first part of the transient response only be composed of the

waves that came directly out of the crystal (and not reflected waves generated at

the boundaries of the simulation space).

If the simulation is stopped before the reflected waves travel back to the detector,

then the waves reflected by Mur’s first order ABC will not be detected again. By

choosing the total width of the homogeneous regions to be four, the simulation is

being optimized to minimize simulation time and not simulation error since it is

likely that some reflected waves will pass by the detector more than once. If the

homogeneous region were chosen large enough, an ABC would not even be required,

however, simulation time would become impractically large.
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3.4 The Periodic Boundary Condition

PBC’s are applied to truncate the two-dimensional simulation plane in the ŷ direc-

tion:

ux(l,mB, kpr1) = ux(l,mB, kpr1)

uy(l +
1

2
,mB +

1

2
, kpr1) = uy(l +

1

2
,mB +

1

2
, kpr1)

ux(l,mT , kpr1) = ux(l,mT , kpr1)

uy(l +
1

2
,mT , kpr1) = uy(l +

1

2
,mT , kpr1)

(3.28)

where mB, and mT , specify the location of the PBC at the bottom, and top, of

Figure 3.2, respectively.

An ideal crystal is infinitely periodic. The PBC ensures that the finite simulation

space mimics an infinitely periodic crystal in the ŷ direction.

Figure 3.3 illustrates the operation of the PBC equations (Equation 3.28). In

Figure 3.3 a computational domain that measures 3[nodal units] by 4[nodal units]

is depicted surrounded by the ABC and PBC domains. Each integer-grid node is

illustrated by a square box. The ABC domain is not currently of interest.

As may be seen in Figure 3.3, the ux component at the top, and bottom, edges of

the computational domain are relocated by the PBC to the bottom, and top, PBC

domain, respectively. Thus, a wave traveling into the top edge of the computational

domain is relocated and appears outside the computational domain in the bottom

PBC domain. Similarly, a wave traveling into the bottom edge of the computational
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domain is relocated and appears outside the computational domain in the top PBC

domain.

Since the relocating operation of the PBC removes components of ux from the

computational domain and relocates them to a location outside the computational

domain (in the PBC domain), it may not be immediately obvious that the relocated

component of ux will even have an impact on the future computations that occur

in the computational domain. Moreover, it is not obvious that a wave traveling

into the top edge (or bottom edge) of the computational domain will reenter the

computational domain after being relocated to the bottom (or top) PBC domain.

For the PBC operation to be successful the following condition is required.

The condition required by the PBC is that the component of ux that was re-

located to PBC domain must be analytically linked into the computational. This

means that the ux at the edge of the computational domain must be a function of

the ux’s that are located in the PBC domain.

The ux’s at the edge of the computational domain are located one nodal unit

away from the ux’s in the PBC domain. Hence, the PBC requires that ux at some

location (l,m) must be a function of ux’s that are located one nodal unit away from

(l,m). Turning to Figure 3.4, it may be seen that this is indeed the case.

Figure 3.4 illustrates that Equation 3.15 for ux(l,m, kcur) is a direct function of

the components of the stress tensor at time kpr1 and the value of ux(l,m, k) at both

k = kpr1 and k = kpr2. The components of the stress tensor are physically located

half a nodal unit away from (l,m). Figure 3.4 also illustrates that the components

of the stress tensor, Equations 3.17 to Equation 3.20, are a function of the ux at
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kpr1: these ux, however, are located one nodal unit away from (l,m). In other

words, the ux at kcur are a function of ux at kpr1: ux(kcur) = f(ux(kpr1)), where the

ux(kpr1) are located one nodal unit away from location (l,m). Thus, the function

for ux at (l,m), and ux one nodal unit away from (l,m), are analytically linked

through the components of the stress tensor.

Hence, the top, and bottom, edges of the computational domain are analytically

linked to the bottom, and top, PBC domains, respectively. A wave traveling into the

upper edge of the computational domain is relocated to the bottom PBC domain,

and will then emerge from the bottom edge of the computational domain, and

continue traveling up through the crystal. It is this same analytic feature of the

discrete equations for ux and uy that also results in wave propagation within the

computational domain. Similarly, waves traveling into the bottom edge of the

computational domain are relocated to the top PBC domain and emerge from the

upper edge of the computational domain. The same arguments hold for the uy

component of the displacement vector.

In conclusion, the proper operation of the PBC will ensure that a wave traveling

toward the edge of the simulation space where the PBC is applied (the top and

bottom edges in Figure 3.2) will emerge from the opposite edge and continue to

travel through the periodic crystal. Thus, the PBC causes the simulation space

to wrap around on itself in the ŷ direction. As in Figure 3.5, the two-dimensional

simulation space becomes a cylinder.

Figure 3.5 illustrates that the combined action of the ABC and PBC result in

a cylindrical simulation space, which is effectively infinitely long in the x̂ direction.
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Figure 3.5: Illustration of how ABCs and PBCs act to make the two-dimensional
simulation space into an infinitely long cylindrical simulation space. The arrows
indicate the path of elastic wave propagation. The left edge ABC domain is not
shown.
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Waves traveling into the ABC domain are absorbed and so effectively travel to

infinity. Waves traveling into the PBC domain, emerge coming out of the opposite

edge and continue to travel through the periodic phononic crystal. Hence, the

application of the PBC effectively provides infinite periodicity in the ŷ direction.

3.5 Simulator

In Section 3.2, the FDTD numerical method was applied to solve the elastic wave

equation in discrete time and discrete space. The discrete form of a Dirac Impulse,

the Kronecker Delta, was also introduced in Section 3.2. In Section 3.3 and Section

3.4, a discrete version of the ABCs and PBCs, respectively, was introduced. Hence,

a computer program may be written to simulate the impulse response of an elastic

media (namely a phononic crystal) that is bounded by boundary conditions as

illustrated in Figure 3.2.

3.5.1 Simulator Inputs

Three text files are input into the simulator:

1. architecture.txt,

2. device.txt, and

3. source.txt.

A discussion of these three text files follows.
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The architecture.txt File

The discussion begins with archutectire.txt, which defines phononic crystal ar-

chitecture, meaning the location of the host and inclusion materials. The phononic

crystal is represented using a two-dimensional matrix:

medium(l,m) =

 1, if the host material is present at node (l,m)

2, if the inclusion material is present at node (l,m)
.

(3.29)

Only the points at which the inclusion material is present need to be input into

the simulator (if the inclusion material is not present at location (l,m) then the

host material is present there). The coordinate pair that represents the points at

which the inclusion material is present are stored in the architecture.txt file.

With the phononic crystal architecture defined in architecture.txt, next the

material parameters, data regarding the number and size of inclusions in the crystal,

the simulation duration, and the value of ∆tNumerator are input into the simulator

via the device.txt file.

The device.txt File

The device.txt file defines 11 parameters:

1. host material density, ρhost; units: [g/cm2],
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2. host material longitudinal velocity, cl host, (velocity in the x̂ direction); units:

[cm/s],

3. host material transverse velocity, ct host, (velocity in the ŷ direction); units:

[cm/s],

4. inclusion material density, ρinclusion; units: [g/cm2],

5. inclusion material longitudinal velocity, cl inclusion, (velocity in the x̂ direc-

tion); units: [cm/s],

6. inclusion material transverse velocity, ct inclusion, (velocity in the ŷ direction);

units: [cm/s],

7. the filters dimensions, Nx; units: number of unit cells, or [lattice constants],

in the x̂ direction,

8. the filters dimensions, Ny; units: number of unit cells, or [lattice constants],

in the ŷ direction,

9. the lattice constant, acellNODES; units: [nodal units],

10. the simulation duration, kmax; units: [time steps], and

11. the temporal resolution coefficient, ∆tNumerator ∈ [0, 0.5].

The host and inclusion material parameters ρ, cl, and ct for all devices that will be

studied in this thesis are tabulated in Appendix A. The phononic crystal structure is

characterized using three parameters: Nx, Ny and acellNODES, which are described
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in Figure 3.6. The last two parameters contained in the device.txt file are kmax

and ∆tNumerator.

Figure 3.6: Illustration of the parameters that characterize the structure of a
phononic crystal. The following abbreviations are applied in the figure: the lattice
constant, acellNODES, has been abbreviated as a; the total width of the homoge-
neous region, homoWIDTH , has been abbreviated as homo; the inclusion material
density, ρinclusion, has been abbreviated as ρi; the host material density, ρhost, has
been abbreviated as ρh. The unit cell is depicted as a square inclusion for illustra-
tion purposes only.

A discussion on how to deduce which materials may be utilized in the simulator

is in order. The discrete equations provide insight into the materials that may be

utilized in the simulator. The discrete equations for ux and uy (Equation 3.15 and

Equation 3.16) are inversely proportional to the density of the medium through the

(∆t)2

ρ
factor. This eliminates the possibility of simulating a vacuum (which has a

material density of approximately zero); however, an elastic wave cannot be present

in a vacuum.

Low density materials, such as air, which has a density of 0.001225 [g/cm3] (see

Appendix A), may cause convergence problems. The known solution for dealing
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Table 3.1: Typical values of ∆t that provide good convergence for various systems.

Materials Inclusion ∆tNumerator ∆x = ∆y ∆t
(Host-Inclusion) geometry [cm] [ns]
Aluminium-Air Circle 0.008 0.0093 0.0818562926
Aluminium-Mercury Circle 0.100 0.0091 0.997623539
Aluminium-Mercury Fractal 0.100 0.0035 0.383701376
Silicon-Air Circle 0.010 0.0100 0.095041231
Water-Perspex Layer 0.010 0.0329 1.57187929

with low density materials is to decrease ∆tNumerator or ∆x(= ∆y). By decreas-

ing ∆tNumerator or ∆x(= ∆y), ∆t is decreased and this compensates for the low

density that appears in the (∆t)2

ρ
factor of the equations for ux and uy (Equation

3.15 and Equation 3.16).

Typical values for ∆tNumerator, and the resultant value of ∆t, which provide

good convergence for various phononic crystals are listed in Table 3.1; these values

were obtained through experience (trial and error). The general trend is that ∆t is

within a factor of 10 of 1[ns] in magnitude. Moreover, the value of ∆t that ensures

convergence may depend on both the materials utilized and the inclusion geometry.

Figure 3.6 depicts the two equal sized homogeneous regions that lie to the left

and right of the phononic crystal. The total width of the homogeneous regions,

homoWIDTH , was fixed at four lattice constants for all simulations (see Section

3.3). This results in left and right homogeneous regions which are each two lattice

constants wide. From Figure 3.6, this means that the source is located in a ho-

mogeneous region that is two lattice constants wide, and the detector is located in

a homogeneous region that is two lattice constants wide. The functionality of the
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homogeneous regions was discussed in detail in Section 3.3.

The method of choosing kmax is detailed in Section 3.6.

The dimensions of the phononic crystal, measured in the number of inclusions

in the x̂ direction, Nx, and ŷ direction, Ny, are through trial and error. Due to the

complexity of describing the response of a phononic crystal analytically, design and

development generally consists of trial and error.

The last simulation parameter defined in device.txt is the lattice constant,

acellNODES, which is measured in nodal units. The lattice constant, acellNODES,

is set during the design of the unit cell fill factor.

The fill factor for a two-dimensional unit cell is the inclusion area divided by the

total unit cell area. To determine acellNODES, the phononic crystal designer first

chooses the inclusion geometry. The inclusion is then drawn on a discrete grid, such

as that in Figure 3.1. Extra padding is added around the inclusion to achieve the

desired fill factor. Since, the two-dimensional phononic band gap crystal simulator

is designed to simulate only square lattices the unit cell is always a square. The

width of the square box that contains the inclusion and the extra padding is the

lattice constant, acellNODES, which has the units [nodal units]. The physical length

of the lattice constant is computed as follows:

acellCM [cm] = acellNODES[nodal units]×∆x[cm/nodal unit]. (3.30)
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The source.txt File

The final input to the simulator is the source.txt file, which contains the discrete

time domain amplitude data of the signal that is generated by the plane wave

source.

The sampling period, ∆t, is computed using Equation 3.25 and obeys Nyquist’s

Law. Nyquist’s Law states that in order to accurately represent a continuous time

signal, in the discrete time domain, the continuous time signal must be sampled

with a sampling period, ∆t, that is, at most, half of the period of the highest

frequency component in the continuous time signal. That is: ∆t ≤ 1
2
Tmin, where

Tmin is the period of the highest frequency component in the signal that is being

represented in the discrete time domain. From Table 3.1, typically ∆t ≈ 1[ns],

so typically Tmin = 2 × ∆t = 2[ns]. Thus, theoretically, the frequency of the

highest frequency component that can typically be accurately represented is fmax =

1/Tmin = 1/2ns = 500[MHz]. A frequency of 500[MHz] is much higher than any

frequency that will be examined.

As stated in Section 3.2, a Kronecker Delta will be used as the plane wave

source signal. The Kronecker Delta was represented by nine zeros, the value 10−6,

followed by 1,250 zeros, that is source(k) = [0 0 0 0 0 0 0 0 0 10−6 0 0 0...0]. Hence,

the size of the source(k) vector is 1260 time steps, where k is the time step. Most

simulations run for over 40,000 time steps, which is more than 1,260 time steps,

and so during the simulation the end of the source vector will be reached. Two

source models were experimented with to handle the condition of reaching the end

of the source vector.
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The first model utilized was referred to as the ”floating source model”: after the

end of the source array was reached, the simulator allowed the crystal to undergo a

natural response (the source is essentially detached from the crystal, and the crystal

is allowed to vibrate, or ”float”, freely). The second model utilized was termed the

”zero padded source model”: after the end of the source array was reached, the

amplitude of vibrations at the source location is fixed at zero for the remainder of

the simulation.

The disadvantage of the floating source is that the crystal is free to vibrate and

eventually the simulation may diverge beginning at the source end. Eventually

the diverging vibrations travel to the detector end, and so the simulation must be

stopped prematurely so that the vibrations at the detector do not diverge. The

zero padded source does not suffer from this problem. Thus, if divergence due to

the use of a floating source is a problem, then a zero padded source should be used.

For example, in the study of wave guides it is useful to generate surface plots of

the amplitude of vibration versus position in the crystal. When utilizing a floating

source, the amplitude of the vibrations at the source end will eventually diverge,

and the information on the surface plot becomes unintelligible. Hence, in the study

of wave guides the use of a zero padded source is recommended.

In addition, the simulated frequency response was found to be dependent on

whether a floating or zero padded source was implemented. In one instance, the use

of the zero padded source caused high frequency components to become suppressed.

The two-dimensional phononic band gap crystal simulator, developed to produce

the results presented in this thesis, implemented a floating source.
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Returning to the discussion of the Kronecker Delta: the above stated repre-

sentation of the Kronecker Delta works well in in practice in that the DFT of a

displacement versus time signal that was detected near the input source was ob-

served to have a band limited ”white” spectrum.

The transient response (displacement versus time signal) of an aluminum host

material at a point just beside the Kronecker Delta plane wave source is depicted

in Figure 3.7. Though the amplitude of the induced Kronecker Delta was 10−6[cm],

the amplitude of the transient response is on the order of 10−8[cm] indicating the

presence of propagation losses. The curve represented by the dotted line in Figure

3.7 is the function 2.5×10−9

44400000(t−0.75×10−6)
+0.4×10−8. Hence, the amplitude of vibrations

decay exponentially with respect to time.

Figure 3.8 depicts the DFT of the transient response of Figure 3.7. During the

simulation used to generate Figure 3.7 and Figure 3.8, the temporal resolution was

set to ∆t = 0.997623539[ns]. The spectrum of the signal induced, by the Kronecker

Delta source, into the aluminium host is a constant up to about 20[MHz]. A

frequency of 20[MHz] is approximately 10 times higher than the highest frequency

that will be of interest. As ∆t decreases the frequency up to which the DFT remains

a constant increases.

Thus, in practice, the above stated Kronecker Delta implementation, used in

conjunction with the floating source model, is a satisfactory approximation of an

ideal Kronecker Delta. During each simulation, the DFT of the source signal de-

tected at a point adjacent to the source was checked to ensure that the induced

signal had a ’white’ spectrum in the frequency regime that would be of interest.
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Figure 3.7: The transient response of the source signal induced into the phononic
crystal as detected at a location just beside the plane wave source (∆t =
0.997623539[ns]). The envelope of the transient response appears to be an exponen-
tially decaying function: the dotted curve is given by 2.5×10−9

44400000(t−0.75×10−6)
+0.4×10−8.
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Figure 3.8: The discrete fourier transform of the source signal of Figure 3.7.
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3.5.2 Source and Detector Locations

The plane wave source was chosen to be located two nodal units in from the left

ABC domain, and is parallel to the left ABC domain as in Figure 3.2. Section

3.3 describes why the plane wave source was used and applied parallel to the ABC

domain. The plane wave source generates waves in two directions: one wave is

directed toward the phononic crystal and the other wave is directed in the opposite

direction toward the left ABC domain. By having the plane wave source very close

to the left ABC domain the plane wave that is directed toward the left ABC domain

is immediately absorbed and removed from the simulation, leaving only the plane

wave that was directed toward the phononic crystal.

The detector was chosen to be a point detector. The point detector was located

directly in the middle of the right homogeneous region. Since the right homogeneous

region is two lattice constants wide, the point detector is located one lattice constant

from the right ABC domain. The choice of point detector location is justified in

Section 3.3.

Another choice for the point detector location may have been away from the

center of the right homogeneous region. Such a point detector location may be

chosen if it is desired to eliminate symmetry in the simulation, or to eliminate line

of sight from the source to the detector. An alternative to a point detector may be

to average the vibrations detected over the area of a unit cell [21].

Changing the plane wave source and point detector locations was found to

change the overall amplitude of the magnitude response. However, the ability of

the simulator to predict band gap location appeared to be relatively independent
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of the source and detector locations.

3.5.3 Program Flow

An overview of the two-dimensional phononic band gap crystal simulator program

flow is provided in Figure 3.9.

As may be seen in Figure 3.9, upon execution of the program, variables are

declared and text files are opened for data input and output. The data contained

in the source.txt file is read into memory and used to initialize variables of the

FDTD routine. Data that is contained in the device.txt file is used to compute

the Lamé coefficients and the CFL condition, and is input into the FDTD routine

along with the Lamé coefficients and the CFL condition. The data contained in

the architecture.txt file is input into the FDTD routine and is used to compute

the fill factor of the unit cell. Lastly, several simulation parameters are written to

the simparametes.txt file so that the operation of the simulator can be verified.

The block that contains the FDTD numerical method block and boundary con-

dition blocks, is of primary interest and will be referred to as the FDTD block. The

computer code represented by the FDTD block is described in Figure 3.10.

The FDTD block consists of three loops: one time loop and two space loops.

The time loop cycles through discrete time from k = 0...kmax. The two space

loops are nested in the time loop. The space loops step through discrete space for

l = 0...lmax and m = 0...mmax.

Upon entering the loop that steps through discrete time, the simulator checks

to see if the current time step is less than, or equal to, the length of the source



Chapter 3: Two-Dimensional Phononic Crystal Simulator Development 57

 
Start program

Declare variables

Open text files for data input and output 

Read simulation 
parameter data 
from device.txt
into variables 

Read source 
discrete time 

domain 
amplitude data 
from source.txt 
into variable 

Write data to the 
screen and 

simparameters.txt
for verification 

Apply absorbing boundary condition

Apply periodic boundary condition

Write displacement vector 
data to: ux_vs_time.txt 

FDTD Block 
Finite difference time domain 

numerical method

Compute 
fill factor

Compute Lame 
coefficients

Compute CFL 
condition 

Initialize finite difference 
time domain variables 

Read phononic 
band gap filter 

device 
architecture data

from 
architecture.txt 
into variable

Close all files

End program

Figure 3.9: Overall program flow of the phononic band gap crystal simulator.
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  3) If located at the top or 
     bottom edge of the  
     computational domain: 
 
 
 
 

2) Space loops: for l=0…lmax, m=0…mmax

Figure 3.10: Program flow of the FDTD block of the phononic crystal simulator.
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vector, source(k). The amplitude of vibrations at the location of the plane wave

source are set equal to source(k) or the floating source model of Section 3.5.1 is

applied.

The simulator then enters the two loops that step through discrete space. Upon

entering the loop that steps through discrete space, the simulator checks if it is

currently located within the computational domain: if this condition is true the

components of the stress tensor, and ux and uy, are computed. Then the simulator

checks if it is currently located at the top or bottom edge of the computational

domain: if this condition is true the PBC is applied. Applying the PBC in such a

fashion was found to provide good convergence (the alternative is to apply the PBC

along with the ABC outside of the space loops). The space loops step through all

of discrete space.

Finally, the ABC is then applied and the simulator proceeds to the next time

step.

3.6 On Choosing kmax

This section discusses the process utilized to choose the simulation duration, which

is defined as the number of time steps signified by kmax.

The lower bound on kmax is provided by considering that it will take a finite

amount of time for elastic waves to travel from the source to the detector. The

simulation should continue for a short period of time after elastic waves arrive at

the detector so that enough non-zero data is captured.
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The upper bound on kmax is determined such that the amount of error that

accumulates is negligible. There exist three sources of simulation error: (1) com-

putational errors due to the limited precision of data stored in computer memory,

(2) numerical errors due to the discrete approximations of the FDTD numerical

method, and (3) error caused by waves that reflect off of Mur’s first order ABC.

Computational errors are difficult to eliminate. However, through proper choice of

kmax, numerical errors and the errors generated by reflected waves can be reduced.

First, kmax is chosen to be large enough such that simulation proceeds until

the simulation data becomes erroneous: this was found to be 100,000[time steps]

to 200,000[time steps] for the devices discussed in this thesis. Then, the Discrete

Fourier Transform (DFT) of the first k time steps is taken, for k ∈ [40,000 50,000

... kmax]. Generally, the DFT data will look radically different for each kmax. Once

in the frequency domain, it is abundantly clear when the simulation has proceeded

for too long.

The largest k for which the data appears to be representative of physical phe-

nomenon is chosen to be the new kmax and the remainder of the data is discarded.

The kmax may also be chosen to produce the best match with published data may

be utilized. The simulation data that should be utilized is usually the data from

time t = 0 to some time tmax. The time tmax is determined through trial and error,

and corresponds to the new kmax.

After some time, elastic waves are reflected off of the boundaries where Mur’s

first order ABC is implemented, and may travel back to the detector to be detected

for a second time. It is desired to detect the elastic waves that emerge from the
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crystal only once. For this reason, very large homogeneous regions may be uti-

lized in association with Mur’s first order ABC. However, in the two-dimensional

phononic band gap crystal simulator, two relatively small homogeneous regions

(each having a width of two lattice constants) were implemented. The consequence

of implementing a small homogeneous region is that it is very likely that elastic

waves will reflect off of Mur’s first order ABC and travel back to the point detector

to be detected again.

In the absence of published data, for example when studying a new phononic

crystal, experience is then used to examine the DFT data and determine the optimal

value of kmax.

Experience may be utilized to identify features of the DFT that are characteristic

of a physical response to the given input. Such features may include pass band

ripple (smooth rolling Gibbs type oscillations), or a stop band (band gap) that is

consistently present in the frequency response for several different kmax. If a stop

band is present for several kmax, there is a high probability that the stop band is

real and not an artifact of simulation errors. All the studied systems also possess a

pass band at zero frequency.

The optimal kmax is stated for each simulation that will be presented.

3.7 Verification of Simulator Operation

The operation of the phononic crystal simulator was verified as follows:

1. first, a reference simulation, in which no boundary conditions are applied, was
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executed;

2. next, the operation of the boundary conditions was verified;

3. while examining the operation of the boundary conditions the induced elastic

waves were observed to ensure that the waves travel across the computational

domain in a physically meaningful fashion; finally

4. simulations were performed to duplicate published data.

In the reference simulation a Gaussian pulse is launched toward a boundary of

the simulation space where no boundary condition was applied. Five snapshots,

taken at five different moments in time, of the Gaussian pulse traveling toward

the boundary are depicted in Figure 3.11. The amplitude of the induced Gaussian

pulse was 10−6[cm].

In the fourth snapshot of Figure 3.11, a non-physical gain is observed since

the amplitude of the Gaussian pulse increases to above 10−6[cm]. The phononic

crystal is a passive device and so a gain is not physically possible. Then, in the fifth

snapshot, the Gaussian pulse is reflected from the boundary. Both the non-physical

gain and the reflected pulse are undesired.

Simulations that test the operation of the implemented ABC and PBC will now

be discussed, followed by simulations that reproduce published data.

3.7.1 The Absorbing Boundary Condition

Turning attention to Figure 3.12, a Gaussian pulse with an amplitude of 10−6[cm]

is depicted as it approaches a boundary at which Mur’s first order ABC has been
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Figure 3.11: Snapshots of wave traveling into the boundary of the simulation space
with no boundary condition applied.
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Figure 3.12: Snapshots of wave traveling into the boundary of the simulation space
with ABC applied.

applied. The Gaussian pulse was generated so that it is normally incident on the

ABC domain. The Gaussian pulse travels toward the boundary and is absorbed as

desired.

The Gaussian pulse also migrated across the computational domain in a physi-

cally meaningful fashion in that the pulse amplitude was always less than or equal

to 10−6[cm]. The simulation supports the implementation of the ABC.

Realistically, however, the phononic crystal will cause elastic waves to reflect,

refract, and diffract into a multitude of directions that are not normal to the ABC
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domain. When these waves impinge on the ABC domain they would be reflected

and may interfere with other waves near the detector. This interference may cause

changes in the detected signal that are not attributed to the impulse response of

the crystal. Reflections off of the ABC domain would also cause a triple transit

phenomenon.

The triple transit phenomenon arises due to the presence of four reflective in-

terfaces: the left and right ABC domains, and the two interfaces between the two

homogeneous regions and the phononic crystal. Due to the presence of these re-

flective interfaces an elastic waves can be reflected back and forth, may transit the

phononic crystal a number of times, and potentially be detected by the detector at

least twice.

The triple transit phenomenon is known to occur in SAW devices. In SAW

devices, acoustic absorbing layers act as an ABC in order to mitigate the triple

transit.

During post processing of simulation data, the simulation duration may be

decreased (as discussed in Section 3.6) to mitigate the erroneous results that may

be generated due to interference caused by reflected waves. Large homogeneous

domains also assist in mitigating the triple transit phenomenon.

3.7.2 The Periodic Boundary Condition

Figure 3.13 depicts a closeup of the displacement of an aluminum host material

versus position in the vicinity a PBC domain. For this test, the plane wave source

was applied parallel to the PBC domain. Due to the elastic properties of the
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Figure 3.13: Verification of PBC operation for source at node 3 (close up near the
location of the source). As seen in the figure, the plane wave source is located two
nodal units away from the PBC domain.

aluminum host, the plane wave source displacement generates particle displacement

both to the left and the right of the source.

The waves that travel to left of the source rapidly arrive at the left edge of the

computational domain and should be transferred to the right edge PBC domain

through application of the PBC. This operation may be verified through observation

of Figure 3.14.

In Figure 3.14, the plane wave source is located 75 nodal units away from the
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Figure 3.14: Verification of PBC operation for source at node 75.

PBC domain, and generates a Gaussian pulse that has an amplitude of 10−6[cm].

As desired, the elastic wave that traveled into the PBC domain appears emerging

from the right edge of the computational domain.

3.7.3 Reproducing Published Data

Three structures were simulated to reproduce published data:

1. a layered structure,
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2. an aluminium-air crystal, and

3. an aluminium-mercury crystal.

All structures were stimulated using a Kronecker Delta. Hence, the DFT of the

transient response is the impulse response. Only the longitudinal component of the

elastic waves displacement vector is studied.

Two parameters describe the transient response:

1. to, the time taken for the signal to travel from the source to the detector, and

2. ttransient, the duration of the (non-zero) transient response.

The total simulation duration is computed as follows:

tTOT = to + ttransient. (3.31)

Layered Structure

The phononic band gap crystal simulator was designed for the simulation of two-

dimensional phononic crystals, however, the first simulation presented will be that

of a layered structure. The layered structure exhibits periodicity in only the x̂

direction, and so is considered a one dimensional phononic crystal.

This layered structure is depicted in Figure 3.15. The dark colored layers were

composed of Perspex, while the host material is Water. Simulation constants are

contained in Table 3.2.
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Figure 3.15: Structure of the Bragg grating. The lattice constant, acellNODES, has
been abbreviated as a. The thickness of the plates is denoted using the variable
t. The plates are composed of Perspex, while the host material is water. Finally,
t = 0.2[cm] and a = 0.724[cm].
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Table 3.2: Simulation constants for the simulation of the layered structure.

Parameter Value Units
Source type Kronecker Delta, amplitude 1× 10−6 [cm]
Host material Water −
Layer material Perspex −
Nx 5 [cells]
Ny 1 [cells]
∆tNumerator 0.01 −
∆t 1.57187929 [ns]
∆x = ∆y 0.0329 [cm]
kmax 165000 [time steps]
to 23.476 [µs]
ttransient 259.3601 [µs]
tTOT 282.8361 [µs]
acellCM 0.7238 [cm]
acellNODES 22 [nodal units]
Fill Factor 0.272727281 [cm2/cm2]

Simulating the layered structure is of value because the published data are in

strong agreement with one another [22]. This agreement positively supports the

accuracy of the published data. Moreover, the theoretical data were computed

using an approach that is mathematically different from the approached used in

the development of the two-dimensional phononic band gap crystal simulator. Val-

idating the simulator operation through comparison with data obtained using a

different mathematical approach will illustrate that the results are independent of

the approach used to obtain the results.

The DFT of the transient response of Figure 3.16 is presented in Figure 3.17.

To achieve the best match with the data presented in [22], the time domain data

of Figure 3.16 was modified.
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Figure 3.16: Transient response of the layered structure, of Figure 3.15, as detected
by a point detector.
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Figure 3.17: Magnitude response of the layered structure of Figure 3.15.
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First, the window of time leading up to to was deleted: only the transient

response of the phononic band gap crystal remained. Next, the mean value of

the remaining transient response was computed and subtracted from the signal.

This was done to assist in removing a large spike that was found to occur at zero

frequency. The resultant transient response data was presented in Figure 3.16.

The shape of the low frequency pass band of the DFT was still not in strong

agreement with the data presented in [22]. It was found that the DFT had to be

normalized to the DFT of the transient response (after removing the part of the

signal that occurs before the vibrations arrive, and with the mean value of the signal

subtracted off in time) of water (the host material). The result is the DFT depicted

in Figure 3.17, which is in good agreement with the numerical and experimental

data found in [22].

As seen in Figure 3.16, the amplitude of the transient response is always less

than 10−6[cm] (the peak amplitude of the input Kronecker Delta) illustrating that

the simulator converges. The transient response decays in a fashion expected for a

physical system that was stimulated by a Kronecker Delta.

A key feature of the DFT displayed in Figure 3.17 is the presence of pass bands

which contain four peaks. The structure depicted in Figure 3.15 contains five

Perspex layers, between which four layers of water are enclosed. The number of

peaks in the pass bands correspond to the number of enclosed layers of water

[22]. As the number of Perspex sheets was increased, the number of peaks in the

pass bands was found to increase accordingly, which is consistent with the results

presented in [22]. Between the described pass bands occur stop bands (regions of



Chapter 3: Two-Dimensional Phononic Crystal Simulator Development 74

high attenuation). The locations of the stop bands correspond to the theoretically

and experimentally predicted band gaps presented in [22].

If a defect was introduced, into the layered structure depicted in Figure 3.15,

by removing the center Perspex plate, a narrow pass band would appear in center

of each stop band - this is also in agreement with the data presented in [22].

The stop band that occurs at approximately 0.1[MHz] in Figure 3.17 is not as

deep as the other stop bands - this is also consistent with the data reported in [22].

Though the stop bands depicted in Figure 3.17 clearly indicate band gap loca-

tions, the stop bands do not indicate infinite attenuation, which is a characteristic

of a band gap. To increase the stop band depth, a Hamming temporal window

had to be applied to the transient response. However, the use of a Hamming tem-

poral window causes the pass bands to become distorted: the outer peaks of the

pass bands become accentuated, while the inner peaks of the pass bands becomes

suppressed.

Aluminium-Air Crystal

The next simulated structure was a crystal composed of an aluminium host material

with circular air inclusions. The inclusions were arranged in a square lattice. The

simulation constants are summarized in Table 3.3. Theoretical and experimental

DFT data for the aluminium-air crystal was presented in [21].

Figure 3.18 displays the simulated DFT data overlayed on the data presented

in [21]. As was done for the layered structure, the simulated time domain data

was modified by deleting the window of time leading up to to, so that only the
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Table 3.3: Simulation constants for the simulation of the aluminium-air crystal.

Parameter Value Units
Source type Kronecker Delta, amplitude 1× 10−6 [cm]
Host material Aluminium −
Inclusion material Air −
Inclusion geometry Circular −
Nx 4 [cells]
Ny 5 [cells]
∆tNumerator 0.01 −
∆t 0.109628952 [ns]
∆x = ∆y 0.01 [cm]
kmax 50000 [time steps]
to 2.3 [µs]
ttransient 5.4824 [µs]
tTOT 7.7824 [µs]
acellCM 0.3 [cm]
acellNODES 30 [nodal units]
Fill Factor 0.349 [cm2/cm2]
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Figure 3.18: Magnitude response of a two-dimensional phononic crystal that is
composed of an aluminum host and circular air inclusions. The data curves that
are attributed to Sun in the legend were taken from [21].
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transient response was utilized in determining the DFT of Figure 3.18. Unlike the

simulation of the layered structure: the mean value of the transient response was

not subtracted off, and the DFT of the structure was not normalized to that of

aluminium (the host material). No temporal window was applied to the transient

response data.

Though the numerical data presented in [21] was generated using a different

mathematical formulation, and used more accurate FDTD approximations, the

overall shape of the DFT data presented in Figure 3.18 shows good agreement with

the published numerical and experimental data.

Aluminium-Mercury Crystal

The final structure that was simulated, for validation of the simulator operation,

was a crystal composed of an aluminium host material and circular mercury in-

clusions. The inclusions were arranged in a square lattice. The simulation con-

stants are summarized in Table 3.4. Numerical and experimental DFT data for the

aluminium-mercury crystal were presented in [23] and are displayed in Figure 3.19.

Figure 3.19 also displays the DFT data that was obtained using the two-

dimensional phononic band gap crystal simulator. As was done for the layered

structure, the simulated time domain data was modified by deleting the window

of time leading up to to, so that only the transient response was utilized in deter-

mining the DFT of Figure 3.19. A temporal window was applied to the transient

response. The mean value of the transient response was not subtracted off. The

DFT of the transient response of the crystal structure was not normalized to that
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Table 3.4: Simulation constants for the simulation of the aluminium-mercury crys-
tal.

Parameter Value Units
Source type Kronecker Delta, amplitude 1× 10−6 [cm]
Host material Aluminium −
Inclusion material Mercury −
Inclusion geometry Circular −
Nx 15 [cells]
Ny 3 [cells]
∆tNumerator 0.1 −
∆t 0.997623539 [ns]
∆x = ∆y 0.0091 [cm]
kmax 55000 [time steps]
to 6.3918 [µs]
ttransient 54.8683 [µs]
tTOT 61.2601 [µs]
acellCM 0.273 [cm]
acellNODES 30 [nodal units]
Fill Factor 0.42 [cm2/cm2]

of aluminium (the host material).

The numerical data presented in [23] was generated using the same mathe-

matical formulation, boundary conditions, and FDTD formulation. However, the

numerical data (DFT) obtained through simulation using the phononic band gap

crystal simulator shows better agreement with the experimental data presented in

[23].
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Figure 3.19: Magnitude response of a two-dimensional phononic crystal that is
composed of an aluminum host and circular mercury inclusions. The data curves
that are attributed to Garcia in the legend were taken from [23].
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3.7.4 Conclusions

The two-dimensional phononic band gap crystal simulator can capably predict band

gap locations for a wide variety of structures. To ensure the best match with

published numerical and experimental data, the post processing of the transient

response data involved:

1. the proper selection of kmax;

2. judgement over whether the average value of the transient response should,

or should not, be subtracted from the transient response;

3. judgement over whether a temporal window should, or should not, be utilized;

and

4. judgement over whether the DFT of the transient response of the crystal

should, or should not, be normalized to the DFT of the transient response of

the host material.

In Section 3.7.2, the plane wave source was observed to generate elastic waves

that were directed both to the left and right of the plane wave source. As in

Figure 3.2, the plane wave source is located directly beside the left ABC domain.

Half of the induced wave energy is directed into the left ABC domain, and the

other half of the induced wave energy is directed toward the detector. The ABC

domain perfectly absorbs the wave generated by the plane wave source since the

wave impinges on the left ABC domain at a normal angle of incidence. Thus, 3[dB]

of loss is associated with the plane wave source.
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The point detector of the simulator is ideal and detects elastic waves without

loss.



Chapter 4

Two-Dimensional Phononic

Crystal Analysis

This chapter contains a discussion of phononic crystal band gap engineering, fol-

lowed by an analysis of fractal and circular inclusion based phononic crystals. The

phononic crystals are analyzed using techniques that include:

1. the use of the DFT to convert discrete time domain impulse response data

into frequency domain (magnitude and phase response) data,

2. the use of phase data to compute group delay, phase velocity, wavelength,

and dispersion characteristics, and

3. the generation of three-dimensional surface plots which are used to view par-

ticle displacement versus position in the phononic crystal.

82
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4.1 Phononic Crystal Band Gap Engineering

The design parameters utilized in the band gap engineering of phononic crystals

are enumerated below.

1. Acoustic impedance mismatch between the host and inclusion materials: the

reflection coefficient for normally incident waves, Γ, is a good figure of merit

to describe the acoustic impedance mismatch between two materials. The

reflection coefficient between the host and inclusion material is given by Γ =

(Zi − Zh)/(Zi + Zh), where Zi is the inclusion acoustic impedance and Zh

is the host acoustic impedance. The acoustic impedance is computed as:

Z = ρν, where ρ is the material density, and ν is the elastic wave velocity

in the direction of interest. The reflection coefficient is representative of the

density contrast between the host and inclusion material, and also accounts

for the wave velocity contrast and thus material properties such as Young’s

modulus (ν = 2

√
K
ρ
, where K, the Bulk modulus, is a function of Young’s

modulus). In rare cases, the host and inclusion may have the same material

density and, provided that there is a contrast in Young’s modulus, phononic

band gaps will form [13]. Hence, while the density contrast between the host

and the inclusion may be a valid figure of merit to describe the suitability of

materials used in most cases, the reflection coefficient for normal incidence is

valid in general.

2. Fill factor: the area (volume) of the inclusion divided by the area (volume) of

the unit cell for two-dimensional (three-dimensional) structures is commonly
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varied to perform band gap engineering. Fill factor may be varied in two

ways: (1) by fixing the lattice constant and varying the inclusion size, and

(2) by fixing the inclusion size and varying the lattice constant.

3. Topology: two crystal topologies are utilized. The first is the cermet topol-

ogy, where the inclusion material density is designed to be greater than the

host material density (in other words, Γ > 0) [13]. In the cermet topology,

the scattering center is the inclusion [13]. The second topology is the net-

work topology, where the host material density is designed to be greater than

the inclusion material density (in other words, Γ < 0) [13]. In the network

topology, the scattering center is the host [13].

4. Macro and micro features: the feature size of a particular feature on the in-

clusion is classified as macro or micro by contrasting the feature size with the

wavelength of interest. As a rule of thumb, a wave that has a wavelength

of λ may only resolve a feature if λ ≤ 2 × featureSize, where featureSize

is the size of the feature. A feature is denoted as a macro feature if: 2 ×

featureSize > λ. A feature is denoted as a micro feature if: 2×featureSize <

λ. For two-dimensional phononic crystals both macro and micro features have

been shown to be important in determining the band structure of the crystal.

5. Inclusion bulk and inclusion boundary geometry: macro and micro features

may be introduced into the boundary of an inclusion while maintaining a sim-

ilar overall shape to the bulk of the inclusion. This supports the recognition

of a distinction between inclusion boundary and inclusion bulk geometry.
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6. Inclusion orientation: rotating an inclusion, whose geometry is not rotation-

ally invariant, has been shown to control band gap width [24].

7. Defect states, disorder, and symmetry in the crystal lattice: the symmetry of

a crystal lattice may be broken by introducing defects through the removal

of a single inclusion (point defect) or portions of, or entire, rows and columns

of inclusions (line defects) or random forms of disorder. The introduction of

point defects into layered structures has been shown to cause the appearance

of narrow pass bands within band gaps [22]. Line defects may be employed

in the design of phononic band gap wave guides, multiplexers, and demulti-

plexers [8].

8. Device size scaling: phononic band gap filters are linear systems. Operating

frequency and device size are inversely proportional.

9. Advanced architectures: Cascading phononic crystals, by placing them adja-

cently in a host material, results in an overall magnitude response which is

approximately the product of each crystal’s individual magnitude response.

To ensure that that the overall magnitude response is identically the product

of the individual magnitude responses, the crystals have to be acoustically

isolated then cascaded.

These design parameters provide multiple degrees of freedom in the band gap

engineering of phononic crystals. These design parameters will now be manipulated

to produce two phononic crystals: one based on fractal inclusion structures, and

the other based on circular inclusion structures.
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4.2 Fractal Inclusion Based Phononic Crystals

In this section, a fractal inclusion structure is demonstrated to create two-dimensional

phononic crystals. The following discussion is believed to describe the first instance

in which fractal inclusion structures have been utilized to create phononic crystals.

4.2.1 Introduction to Fractal Crystals

The fractal inclusion structures that were utilized are depicted in Table 4.1 and

were generated using an iterative processes that introduced micro features into the

boundary of an inclusion that had a square bulk geometry. As seen in Table 4.1,

Structure 2 is related to Structure 1 in that the features on Structure 2 are the

features on Structure 1 inverted (that is, turned inside out). Structure 3 does not

appear to be related to either Structure 1 or Structure 2.

The fractal structures are well suited for use with the FDTD numerical method

since the structures are fundamentally composed of squares, and so a step ap-

proximation of curved surfaces was not required. The iterative process utilized to

generate the fractal inclusion structures is described in [25], where the fractal in-

clusion structures were used to create photonic band gap crystals. The study of

photonic and phononic crystals are not one and the same; the following distinctions

between the study of photonic and phononic crystals may be made.

The waves studied in photonic crystals are electromagnetic waves, while the

waves studied in phononic crystals are elastic waves. However, both electromagnetic

and elastic waves may contain transverse and longitudinal components.
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Table 4.1: Fractal inclusion structures [25].

Structure 1 Structure 2 Structure 3

Initial

Iteration 1

Iteration 2
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Through the use of an appropriate transducer, electrical signals may be processed

using both photonic and phononic crystals. However, the phase velocity of an elas-

tic wave is approximately five orders of magnitude less than that of an electromag-

netic wave. Hence, it will take noticeably longer to process a signal with a phononic

crystal, than with a photonic crystal.

Often it is desirable for the wavelength at a given frequency to equal some device

feature size. For a given operating frequency, the wavelength of an elastic wave is

smaller than the wavelength of an electromagnetic wave, and so phononic crystals

may theoretically be made smaller than photonic crystals. However, if for a given

frequency, wavelength is less than the minimum fabrication process feature size,

then larger phase velocities and wavelengths would be desirable [4]. The proper

selection of material composition may allow for the phononic crystal designer to

obtain the desired wavelength at a given frequency.

Photonic crystals are governed by the physics of electromagnetism, while phononic

crystals are governed by the physics of elastic wave mechanics. In photonic crystals

the refractive index, n, (or equivalently the relative dielectric constant, εr) of the

host and inclusion materials must differ, while in phononic crystals the material

density, ρ, of the host and inclusion material usually must differ.

Having distinguished between photonic and phononic crystals, it is now reason-

able to acknowledge that the application of fractal inclusion structures to phononic

crystals may not yield results that are in agreement with the results yielded from

the application of fractal structures to photonic crystals and microwave devices.

That said, the application of fractal structures to photonic crystals and microwave
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structures has been widely observed to produce two effects: (1) band gap widening,

and (2) multiple pass band behavior [25].

4.2.2 Representation of Fractal Structures on a Discrete

Grid

The fractal inclusion layouts are included in Appendix B. A comment may be made

regarding the input of fractal shaped structures into a simulator that represents

structures on a discrete grid.

The length of time that a simulation runs for is related to the size of the structure

being simulated. The size of the structure is defined in terms of the number of

discrete nodes that the structure occupies in the simulation space. The larger the

structure is in size, the longer the simulation of the structure will take to run.

To minimize simulation time, the minimum feature size was chosen to be rep-

resented by a single point. Of the three fractal structures that were simulated,

only Structure 3 contains features that have a physical size equal to the minimum

feature size.

When modeling a feature that is of the minimum feature size as a single point,

it is not clear as to what the physical size of such a feature is. The following rules

were applied when analyzing the physical size of the features on a fractal inclusion:

the physical distance between three co-linear points, and two co-linear points, in

the x̂ and ŷ, directions is ∆x and ∆y, and 1
2
∆x and 1

2
∆y, respectively. The physical

size of a point in the x̂, and ŷ, directions is < 1
2
∆x, and < 1

2
∆y, respectively.
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Figure 4.1 depicts an arbitrary structure drawn onto the discrete grid by the

same method as that utilized to draw the fractal structures onto the discrete grid.

As seen in Figure 4.1, the smallest feature size is represented by a single point, as

was the case when Structure 3 was drawn onto the discrete grid.

When representing the smallest feature as a single point, it is possible that some

features may (1) exist only on the integer-grid, (2) may exist only on the half-grid,

or (3) may exist only on points at the intersection of the integer-grid and half-

grid. Thus, minimizing simulation time by representing the smallest feature size

by a single node, results in the trade off wherein features that have a physical size

equal to the smallest feature size may not be represented on both the integer- and

half-grid.

Though ux, and uy, are computed only at the integer-grid, and half-grid, nodes,

respectively, the components of the stress tensor are computed everywhere (on

integer-grid and half-grid nodes, and at the intersection points of the integer-grid

and half-grid). The ux and uy components of the displacement vector are a function

of the stress tensors. Thus, ux and uy are influenced by fractal features drawn

anywhere on the discrete grid. This qualitatively supports the functionality of the

described method of representing fractal structures on the discrete grid.

4.2.3 Uniformity of Simulation Conditions

In any experiment where the outcome of more than one simulation are going to

be compared, it is important that the simulations are conducted using the same

simulation parameters. The entity that may be varied amongst simulations is the



Chapter 4: Two-Dimensional Phononic Crystal Analysis 91

F
ig

u
re

4.
1:

A
rb

it
ra

ry
st

ru
ct

u
re

re
p
re

se
n
te

d
on

d
is

cr
et

e
gr

id
.



Chapter 4: Two-Dimensional Phononic Crystal Analysis 92

structure being simulated. The outcome of the simulations involving the frac-

tal structures will be compared and appropriately the simulation parameters were

maintained constant.

To elaborate on the necessity of such an experimental procedure, consider that,

for example, varying ∆t, may cause a change in the outcome of a simulation - it is

not of interest to observe a change in the outcome of a simulation due to a change

in such a simulation parameter. What is of interest is to observe the change in

the outcome of a simulation due to a change in the geometry of a fractal inclusion

structure. Hence, simulation parameters were maintained constant while the fractal

inclusion structure was varied.

The physical quantities that are computed by the simulator are the displacement

vector and stress tensor (Equation 3.15 to Equation 3.23). As may be deduced when

viewing Equation 3.15 to Equation 3.23, the displacement vector and stress tensor

are a function of six simulation parameters: ∆t, ∆x, ∆y, λ, µ, and ρ.

To maintain these six simulation parameters constant, first ∆x (= ∆y) and

∆tNumerator were fixed. As a result, ∆t is fixed. The Lamé coefficients, λ and µ,

and the density, ρ, are material parameters and were held constant since it was not

desired to change the material composition of the fractal based phononic crystals.

The interaction of elastic waves with the inclusion depends on the relative mag-

nitude of the wavelength and the physical size of the inclusion. By maintaining

∆x (= ∆y) constant, all fractals consisted of a fundamental element that had fixed

physical dimensions. The initial square structure also had a fixed physical size of

0.12[cm] by 0.12[cm]. Thus, by maintaining the physical size of the initial square
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Table 4.2: Simulation constants for the simulation of fractal systems.

Parameter Value Units
Source type Kronecker Delta, amplitude 1× 10−6 [cm]
Host material Aluminium −
Inclusion material Mercury −
Nx 15 [cells]
Ny 3 [cells]
NxHomo 4 [cells]
∆t 0.54814 [ns]
∆x = ∆y 0.005 [cm]
ttransient 47 [µs]

structure a constant, all fractals are created from a structure that initially had the

same scattering ability (ability to interact with elastic waves).

The interaction of elastic waves with the phononic crystal also depends on fill

factor. With the initial square inclusion size fixed, the lattice constant, acellNODES,

becomes chosen to maintain a constant fill factor. The fill factor was maintained

at 25%.

The simulation constants for the simulation of all fractal inclusion structures

are contained in Table 4.2, and the simulation variables are listed in Table 4.3. As

seen in Table 4.3, it was not possible to maintain the fill factor at exactly 25%

throughout all simulations. This is the case because the lattice constant, acellCM ,

was adjusted in discrete increments of ∆x (=∆y).

The last measure taken to ensure uniformity in simulation conditions was the

varying of kmax during post processing of transient response data. Varying kmax

compensates for the variation in the lattice constant, which determines the overall
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physical size of the phononic crystal.

As seen in Table 4.2, the duration of the transient response that is post processed

into the DFT was maintained constant at ttransient = 47[µs]. All devices contain

the same number and arrangement of inclusions. Hence as the lattice constant was

varied, the physical size of the phononic crystal would vary. Due to this change in

the physical size of the phononic crystal, elastic waves would arrive at the output

of the crystals at a different time, to, for each device.

The simulation duration is computed as kmax = tTOT/∆t = (to + ttransient)/∆t,

where tTOT is given by Equation 3.31. Since to varies from device to device, kmax

correspondingly varies, for a constant ttransient. By varying kmax in this fashion, it

is ensured that the same duration of the transient response is examined during post

processing.

In summary, the described simulation methodology ensures that the only vari-

able between the simulation of different fractal inclusion structures is the geometry

of the fractal: all other parameters are held constant. Hence, uniformity in the

simulation conditions was maintained and there are equal grounds for comparison

of the results presented below.

4.2.4 Wavelength Characteristics

The wavelength characteristic for the phononic crystal created using the Initial

inclusion structure is depicted in Figure 4.2. Using the relation λ = cl/f , where cl

is the elastic wave longitudinal velocity in the material of interest (see Appendix A),
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and f is frequency, the wavelength characteristics for the aluminum host material

and the mercury inclusion material were also plotted in Figure 4.2.

From Figure 4.2 it may be seen that the wavelength characteristic for the crys-

tal does not completely match that of either the host or inclusion material. For

wavelengths less than the lattice constant, acellCM = 0.24[cm], the wavelength

characteristic is approximated by that of the inclusion material. For wavelengths

greater than the lattice constant, acellCM = 0.24[cm], the wavelength characteristic

rapidly begins to approach that of the host material. This suggests that, in the

crystal, there is a relation between the wavelength at a given frequency and the

physical device dimensions, such as the lattice constant.

One-Dimensional Theory of Elastic Wave Resolving Ability

An elastic wave, of wavelength λ, may resolve a feature, of feature size featureSize,

if the physical size of the feature is greater than half the wavelength: featureSize ≥
1
2
λ. The largest wavelength, λmax, that may resolve a given feature is: λmax =

2 × featureSize. In words: as inclusion features become small, or wavelength

becomes large, elastic waves may not resolve all inclusion features.

Next, the effects of maximum feature sized features are considered. Then, the

effects of minimum feature sized features are considered.

Effect of Maximum Feature Sizes

The features of a phononic crystal that are considered to be of the maximum fea-

ture size are the inclusion width and the lattice constant. The width of the Initial
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inclusion is 0.12[cm], which would be resolved by waves that have wavelengths of

0.24[cm] and smaller. The lattice constant of the crystal composed of the Initial

inclusion is 0.24[cm]. Near a wavelength of approximately 0.24[cm], an interest-

ing feature is present in the wavelength characteristic (Figure 4.2) of the crystal

composed of the Initial inclusion.

Vertical lines corresponding to λ = 0.24[cm] and λ = 0.48[cm] are drawn onto

Figure 4.2. Between these two vertical lines, the wavelength characteristic transi-

tions from resembling that of the inclusion, and begins to resemble that of host.

In the frequency domain analysis discussed later, it will be seen that a band gap

forms at the frequency where the wavelength characteristic of the crystal transitions

from that of the inclusion to that of the host.

The wavelength characteristics for all iterations of Structure 1, Structure 2, and

Structure 3 are contained in Figure 4.3, Figure 4.4, and Figure 4.5, respectively.

From Figure 4.3, Figure 4.4, and Figure 4.5, above 1[MHz], the elastic waves

that are present in the phononic crystal have a wavelength that is less than double

the lattice constant (< 2× acellCM [cm]). Hence, according to the one dimensional

theory described above, most of the elastic waves in the frequency regime from

1[MHz] to 3.5[MHz], are capable of resolving features that are smaller than the

maximum feature sizes.

The one-dimensional analysis described above provides insight into the oper-

ation of the phononic crystal at low frequencies (frequencies that correspond to

wavelengths that have a magnitude on the order of the maximum feature sizes).

However, the phononic crystal is a two-dimensional entity and displays a much
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more complex behavior at high frequencies.

Two-dimensional effects increase the complexity of the theory that describes

how elastic waves will interact with the crystal at high frequencies (short wave-

lengths). Short wavelengths also allow for minimum feature sized features, which

are in abundance on the fractal boundary, to be resolved. The effects of features

that have a physical size less than 0.12[cm] (the width of the Initial inclusion) are

now considered.

Effect of Minimum Feature Sizes

At approximately 0.5[MHz], wavelength begins to decay to less than 2×acellCM [cm].

As wavelength decreases, it becomes wise to check the accuracy of the data. As a

rule of thumb, simulation data is considered accurate if λ ≥ 10∆x = 10∆y. In this

case, 10∆x = 10∆y = 0.05[cm]. In Figure 4.3, Figure 4.4, and Figure 4.5, it may be

seen that the wavelength characteristic of the phononic crystal converges with the

wavelength characteristic of mercury as frequency increases. Hence, by computing

the elastic wave wavelength in mercury at 3.5[MHz], the accuracy of the phononic

crystal simulation data, for the 3.5[MHz] regime, can be deduced. Utilizing Ap-

pendix A, at a frequency of 3.5[MHz], λ = cl mercury

f
= 145000[cm/s]

3.5[MHz]
≈ 0.04[cm],

which is less than 10∆x = 10∆y = 0.05[cm]. Hence, data near 3.5[MHz] is less

accurate than desired.

The exact numerical values for wavelength at 3.5[MHz] are listed in Table 4.4

along with the minimum resolvable feature size.

Comparing Table 4.4 with Table 4.5, at 3.5[MHz] some fractal features are
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Table 4.4: Wavelength at 3.5[MHz] for all fractal based crystal structures.

Minimum resolvable
Wavelength feature size for waves

Device inclusion at 3.5[MHz] at 3.5[MHz]

Initial Square Structure 0.030[cm] 0.015[cm]
Structure 1 Iteration 1 0.028[cm] 0.014[cm]
Structure 1 Iteration 2 0.029[cm] 0.015[cm]
Structure 2 Iteration 1 0.024[cm] 0.012[cm]
Structure 2 Iteration 2 0.021[cm] 0.011[cm]
Structure 3 Iteration 1 0.026[cm] 0.013[cm]
Structure 3 Iteration 2 0.026[cm] 0.013[cm]

resolvable while other features are smaller than the minimum resolvable feature

size.

By examining the wavelength characteristic above 3.5[MHz], it was deduced

that the wavelengths required to resolve features on the order of ∆x = ∆y =

0.005[cm] - that is, wavelengths of 0.01[cm] or less - are not abundantly present

in the wavelength characteristic until frequency approaches 50[GHz]. However, as

stated above, the accuracy of the wavelength characteristic as wavelength becomes

less than 10∆x = 10∆y = 0.05[cm] is poor.

Thus, according to the one-dimensional theory, many of the micro features

present on some fractal inclusion structures may not be resolved by elastic waves in

the 0[MHz] to 3.5[MHz] regime. The micro features on the fractal inclusion struc-

tures make the structure unique. Hence, the precise identity of the fractal inclusion

structures may be unresolved by the elastic waves in the 0[MHz] to 3.5[MHz]

regime.
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One may then be tempted to propose that: (1) the magnitude response of some

devices may share strong similarities and (2) only low-frequency (large-wavelength)

should travel through the crystal unaffected. To the contrary, an examination of

the wavelength characteristics (Figure 4.3, Figure 4.4 and Figure 4.5) and the the

forward transmission parameters (Figure 4.6, Figure 4.7 and Figure 4.8) illustrates

that (1) the magnitude response of all devices are unique and (2) there are localized

regions (pass bands) at high frequency where waves that have wavelengths less than

two times the largest feature size of the crystal travel through the crystal with little

attenuation.

4.2.5 Forward Transmission Parameter Characteristics

The forward transmission parameter, S21, characteristic is none other than the DFT

of the transient response (since the ABC at the crystal input and output effectively

cause both the input and output ports to be ”matched”). The S21 characteristic for

all iterations of the fractal inclusion structures are contained in Figure 4.6, Figure

4.7, and Figure 4.8. The wavelength characteristic is a representation of transfer

function phase, while the S21 characteristic is the transfer function magnitude.

Elastic waves that have wavelengths larger than the maximum feature sizes (for

example, low frequency elastic waves) appear to propagate through the phononic

crystal unaffected, and so all phononic crystals display a low pass property. At

higher frequencies, corresponding to shorter wavelengths, the fractal based phononic

crystals appear to become frequency selective.

Thus, a phononic crystal appears to have a cut-off frequency above which the
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Figure 4.6: Forward transmission parameters for Structure 1.
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Figure 4.7: Forward transmission parameters for Structure 2.
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Figure 4.8: Forward transmission parameters for Structure 3.
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phononic crystal becomes a frequency selective device. That is, above the lowest

cut-off frequency only certain bands of frequencies will propagate through the de-

vice - these frequency bands may correspond to a different mode of propagation,

or propagation path, through the two-dimensional crystal. This modal behavior

mimics that of the rectangular waveguide structures developed for electromagnetic

waves.

Minimum-Phase Characteristics

From filter theory, in minimum-phase conditions there is a relationship between

the magnitude and phase response of the system transfer function. The relation-

ship between the magnitude and phase response of a minimum-phase system, with

transfer function H(ω) = |H(ω)|ejΘ(ω), is [26]:

Θ(ω) = − 1

π

∫ ∞

0

log

∣∣∣∣ω − x

ω + x

∣∣∣∣d log |H(x)|
dx

dx, (4.1)

where ω = 2πf is the angular frequency, and |H(ω)|, and Θ(ω), are the magnitude,

and phase, response, respectively.

A qualitative comparison of the wavelength characteristic (a representation of

the phase response) and the S21 characteristic of a phononic crystal may provide

evidence to suggest that a phononic crystal is a minimum-phase system.

If the phononic crystal is a minimum-phase system in some frequency regimes,

this provides some insight into the pole and zero locations of the phononic crystal

transfer function. For a minimum phase filter, all poles and zeros are located in
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the left-half of the complex plane [27]. A non-minimum phase filter may have zeros

in the right-half plane. The poles, on the other hand, must always remain in the

left-half plane in order to ensure that causality is not violated.

To illustrate that there may be a relationship between the magnitude and

phase response consider, for example, Figure 4.4 and Figure 4.7. At approximately

0.25[MHz] there is a kink in the wavelength characteristic and a valley in the S21

characteristic.

As wavelength becomes smaller than the maximum feature sizes, the previ-

ously stated minimum-phase behavior is not easily identified through comparison

of wavelength and S21 characteristics. The Bode plot provides a clear illustration of

the minimum-phase behavior at high frequency (see Section 4.3.2). It may also be

possible that the phononic crystal only displays minimum-phase behavior in some

frequency regimes.

The minimum-phase relation for a phononic crystal may differ from that of

Equation 4.1. For a phononic crystal, the minimum-phase behavior may potentially

be described in terms of the principles of solid state physics.

Analogy to Classical Filter Characteristics

A second result from filter theory, that may be applied in an analysis of the S21

characteristics of Figure 4.6, Figure 4.7, and Figure 4.8, describes the ripple in

the pass and stop bands. In filter theory, four classical low pass filter responses

are discussed: the maximally flat response, the Chebyshev response, the inverse

Chebyshev response, and the Cauer (elliptic) response [28].
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The maximally flat response (for example, a Butterworth response) has ripple

in neither the pass bands nor the stop bands. The Chebyshev response has ripple

in the pass bands, and maximally flat stop bands. The inverse Chebyshev response

has maximally flat pass bands and ripple in the stop bands. Finally, the Cauer

response has ripple in both the pass bands and stop bands. Hence, from Figure

4.6, Figure 4.7, and Figure 4.8, the fractal based phononic crystal response mimics

that of the classical Chebyshev filter response. However, the DFT of the layered

structure depicted in Figure 3.17 appears to mimic a Cauer response.

Pass band ripple consists of a succession of crests and valleys. From filter theory,

the total number of crests and valleys in a low pass filter pass band, is referred to

as the filter order. The filter order is the number of poles in the denominator of the

filter transfer function. Examining the low frequency pass band of Iteration 2 in

Figure 4.6, one may count 12 crests and 11 valleys, which would imply a low pass

filter order of 12 + 11 = 23 if the phononic crystal were a Chebyshev filter.

Performing a similar analysis for Figure 4.6, Figure 4.7 and Figure 4.8, one

may conclude that the filter order of a phononic crystal is relatively large when

compared with, for example, the order of a filter that may be implemented with a

reasonable number of operational amplifiers.

A comparison of the classical responses with the phononic crystal response could

be extended to discuss the filter roll-off, quality factor and pole and zero locations.

Due to the complexity of the phononic crystal response, it is difficult to deduce

whether the filter order changes as the fractal inclusion evolves.
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4.2.6 Band Gap Engineering Functions of Fractals

The S21 characteristics of Figure 4.6, Figure 4.7, and Figure 4.8, suggest that fractal

inclusion structures provide multiple pass band characteristics: all S21 characteris-

tics contain multiple stop and pass bands.

Secondly, the evolution of a fractal inclusion structure appears to cause band

gap widening. For all fractal inclusion structures, it may be seen in Figure 4.6,

Figure 4.7, and Figure 4.8, that after the first iteration of the fractal inclusion

structure, stop band attenuation increases in the 1[MHz] to 3.5[MHz] regime.

The evolution of Structure 2 and Structure 3 appears to cause a band gap to

form at 0.25[MHz].

4.2.7 Reflection, Refraction, and Diffraction in a Fractal

Based Phononic Crystal

Figure 4.9 depicts the amplitude of the lattice vibrations within a unit cell for the

phononic crystal that was created using Structure 3. A plane wave source was

utilized to induce elastic waves in the longitudinal direction. The direction of the

longitudinal component is from the left to right in Figure 4.9. By definition, the

direction of wave propagation is perpendicular to the wavefront.

In Figure 4.9, the wavefronts are indicated by continuous black or white stripes.

The orientation of the wavefronts (black and white stripes) indicate that many elas-

tic waves do not propagate from left to right. Hence, through reflection, refraction,

and diffraction the phononic crystal causes the induced longitudinal elastic wave to
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Figure 4.9: Lattice vibrations within the unit cell for the Initial Square Structure
(left), Iteration 1 of Structure 3 (center) and Iteration 2 of Structure 3 (right). The
amplitude of vibration in the regions that are shaded white are larger than the
amplitude of vibrations in the regions that are shaded black.

change direction.

For a longitudinal elastic wave to change direction, the elastic wave must ac-

quire a transverse component. Through reflection, refraction, and diffraction, the

phononic crystal thus redirects the induced longitudinal elastic wave energy into

transverse directions.

The capacity of the phononic crystal to reflect, refract, and diffract elastic waves

into multiple directions, causes the creation of multiple modes of propagation. A

mode of propagation is a path that an elastic wave may follow to travel through

the crystal.

The mode of propagation that the elastic wave follows as it travels through

the crystal may depend on frequency. Thus, the modes of propagation produced

by reflection, refraction and diffraction may be the fundamental mechanism from

which the dispersive properties and band gap structure of a phononic crystal arise.
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4.2.8 Fractals For Use In Generalized Boundaries

The successful application of fractal inclusion structures to phononic crystals opens

the field to theoretical work in which inclusion boundaries are generalized. Geo-

metrical objects such as Penrose tiles, Hilbert curves [29], Koch curves, or fractals

may be suitable for use in work involving generalized inclusion boundaries. The

bulk of the inclusion may also be created using such geometrical objects.

For example, the boundary of a square inclusion may decorated using Hilbert

curves, or an entire square inclusion may be built out of Hilbert curves [29]. The

properties of a crystal composed of Hilbert curve based square inclusions will likely

differ from the properties of a crystal composed of regular square inclusions.

The Hilbert curve based square inclusion may, for instance, display a higher

characteristic acoustic impedance [29] than a regular square inclusion. The prop-

erties of a phononic crystal built out of such Hilbert curve based inclusions would

also change, though the material composition of the crystal may be held constant.

For this reason the phononic crystals created using generalized boundaries and bulk

geometries would be referred to as meta-materials.

4.2.9 Implications of Fractal Structure Simulation Results

The results of this theoretical examination into fractal inclusion based phononic

crystals may have practical implications relevant to the fabrication of such crys-

tals in standard silicon processes. As discussed above, the magnitude and phase

functions are sensitive to the micro features that are introduced into the inclu-
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sion boundary. If fabrication process errors (such as mask errors) introduce micro

features into the inclusion boundary, the magnitude and phase response of the fab-

ricated device may drastically deviate from the simulated magnitude and phase

response.

Intricate inclusion boundaries may be attained through the use of costly masks

that have a small minimum address unit.

4.3 Circular Inclusion Based Phononic Crystals

This section contains an analysis of a two-dimensional phononic crystal that is com-

prised of circular inclusions. The same crystal was studied in [23]. The simulation

constants are contained in Table 4.6.

No temporal window was applied to the transient response data, the mean value

of the transient response was not subtracted off, the part of the transient response

that is zero was not removed, and the DFT was not normalized to the DFT of the

host response.

4.3.1 Transient Response

The transient response is depicted in Figure 4.10. As stated in Table 4.6 the

amplitude of the input source is 10−6[cm]. As seen in Figure 4.10, the amplitude of

the transient response is always less than 10−6[cm] and so the simulation displayed

convergence.
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Table 4.6: Simulation constants for the simulation of a phononic crystal that is
composed of circular inclusions.

Parameter Value Units
Source type Kronecker Delta, amplitude 1× 10−6 [cm]
Host material Aluminium −
Layer material Mercury −
Nx 15 [cells]
Ny 3 [cells]
∆tNumerator 0.1 −
∆t 0.997623539 [ns]
∆x = ∆y 0.0091 [cm]
kmax 90000 [time steps]
to 7.4 [µs]
ttransient 82.385 [µs]
acellCM 0.273 [cm]
acellNODES 30 [nodal units]
Fill Factor 0.22 [cm2/cm2]

Figure 4.10 indicates that it takes a finite amount of time, to = 7.4[µs], for the

signal to arrive at the output (to was given in Table 4.6). The total width of the ho-

mogeneous regions is always 4[inclusions], and from Table 4.6 the filter widthNx =

15[inclusions], so the total width of the simulated region is 4+15 = 19[inclusions].

From Table 4.6 each inclusion is 30[nodal units] wide. Hence, the total width of the

simulation region is 19[inclusions]×30[nodal units/inclusion] = 570[nodal units].

The source is always located at node 3, the detector is always located one inclusion

(or 30[nodal units]) in from the right edge of the computational domain. Hence

the distance from the source to the detector is 570− 3− 30 = 537[nodal units], or

537×∆x = 4.8867[cm] (where ∆x is given in Table 4.6).

Using the longitudinal acoustic wave velocity for the aluminium host material
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Figure 4.10: Transient response of the phononic crystal that was created using
circular inclusion structures.

(see Appendix A) the time it would take a wave to travel from the source to

the detector is expected to be t = 4.8867[cm]/645000[cm/s] = 7.576[µs], which

is approximately to = 7.4[µs]. Hence the transient simulation produced expected

results.
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4.3.2 Bode Plots

The DFT of the time domain data presented in the previous section, was used to

generate the Bode plot of Figure 4.11. The portion of the phase response which

corresponds to the low frequency pass band in the magnitude response is non-linear.

However, the phase response in the high frequency pass band appears linear.
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Figure 4.11: The Bode plot that was generated by taking the discrete fourier trans-
form of the transient response of the phononic crystal that was created using circular
inclusion structures.

At frequencies corresponding the band gap edges there is an inflection point

in the phase response. Thus, the Bode plot supports the observation that there
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is some relationship between the magnitude response and the phase response of a

phononic crystal.

The normalized magnitude of response of the circular inclusion based phononic

crystal is displayed in Figure 4.12 on a logarithmic axis. The attenuation in the

band gap is approximately 100 times more than that in the pass band.
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Figure 4.12: Magnitude response on a logarithmic axis.

Below 0.5[MHz], the magnitude response contains ripple in the pass and stop

bands (a Cauer response). Above 0.75[MHz], the magnitude response contains

ripple in the pass bands and maximally flat stop bands (a Chebyshev response).



Chapter 4: Two-Dimensional Phononic Crystal Analysis 120

4.3.3 Group Delay Characteristics

By applying Equation 2.9 to the phase response characteristics of Figure 4.11, the

group delay characteristic of Figure 4.13 was generated.

There is a small group delay variation in the low frequency, 0.75[MHz], and

1.25[MHz] pass bands.
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Figure 4.13: Group delay characteristic of the phononic crystal created from circular
inclusions.



Chapter 4: Two-Dimensional Phononic Crystal Analysis 121

4.3.4 Phase Delay Characteristics

By applying Equation 2.10 to the phase response characteristics of Figure 4.11, the

phase delay characteristic of Figure 4.14 was generated.
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Figure 4.14: Phase delay characteristic of the phononic crystal created from circular
inclusions.

4.3.5 Phase Velocity Characteristics

Equation 2.13 was applied to the phase delay characteristic of Figure 4.14 to gener-

ate the phase velocity characteristic of Figure 4.15. The longitudinal wave velocity,
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cl, of mercury and aluminium are also plotted in Figure 4.15.

The phase velocity characteristic approximates the elastic wave velocity in mer-

cury at high frequencies. However, the phase velocity characteristic tends toward

the elastic wave velocity of aluminium in the low frequency pass band. These

results support the observation that the properties of the inclusion dominate in

determining the response of the crystal when wavelength is small. However, at

low frequency when wavelength of elastic waves becomes too large to resolve the

inclusion structures the response of the crystal approaches that of the host material.

0 1 2 3 4 5 6 7

x 10
5

0

0.5

1

1.5

Phase Velocity, v
p
 [cm/s]

F
re

qu
en

cy
 [

M
H

z]

Frequency vs. Phase Velocity

c
l
(aluminium)c

l
(mercury)

v
p
(phononic crystal)

Figure 4.15: Phase velocity characteristic of the phononic crystal created from
circular inclusions.
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4.3.6 Dispersion Characteristics

By applying Equation 2.14 to the phase velocity characteristic of Figure 4.15 the

dispersion characteristic of Figure 4.16 was computed. The dispersion characteristic

of the phononic crystal approximates that of the mercury inclusion structure in the

high frequency pass bands. In the low frequency regime the dispersion characteristic

appears to approximate that of the aluminium host material. In the band gaps the

dispersion characteristics deviate from both that of aluminum and mercury.
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Figure 4.16: Dispersion characteristic of the phononic crystal created from circular
inclusions.
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4.3.7 Quality Factor Characteristics

Lastly, due to the complexity of the magnitude response, the quality factor, Q, of

the phononic crystal was approximated as the derivative of the phase response [30]:

Q(ω) =
ω

2

∣∣∣∣d(Θ(ω))

dω

∣∣∣∣. (4.2)

where Θ(ω) is the phase response given in Figure 4.11.

The phase response of Figure 4.11 contains inflection points - points where

the derivative of the phase response is undefined - at frequencies near the band

gap edges. Thus, the Q predicted by Equation 4.2 becomes large near the band

gap edges, which is expected. This further supports the observation that phononic

crystal may be a minimum-phase filter (the phase characteristic describes pass band

slope). Moreover, the Q is accurately predicted to be relatively small in the pass

bands where the magnitude response of Figure 4.11 is almost a constant. These

observations support the use of Equation 4.2 in approximating the Q of a phononic

crystal.



Chapter 4: Two-Dimensional Phononic Crystal Analysis 125

0 0.5 1 1.5
0

100

200

300

400

500

600

Frequency [MHz]

Q
ua

lit
y 

F
ac

to
r,

 Q

Quality Factor vs. Frequency

Figure 4.17: Quality factor characteristic of the phononic crystal created from
circular inclusions.



Chapter 5

Conclusions and Topics for

Further Study

First and foremost, advanced research into three-dimensional phononic crystals

requires the development of a three-dimensional simulator. The three-dimensional

simulator should implement a PML boundary condition and should have the capac-

ity to simulate devices that are composed of more than two materials. The PML

boundary condition is necessary to eliminate the reflections that are associated

with Mur’s first order ABC. The three-dimensional simulator should be capable

of simulating MEMS transducers so that phononic band gap filter devices may be

simulated.

In this thesis mercury was utilized as an inclusion material. Mercury is not

available in standard silicon processes. An investigation should be performed to

discover phononic crystals that are (1) composed of materials that are utilized in
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standard silicon processes and (2) have band gap features that are useful for filtering

applications. Aluminium-air and silicon-air crystals are two examples of phononic

crystals that may be fabricated in standard silicon process and may have band

structures useful for filtering applications. Other materials that may be utilized as

the host and inclusion materials include silicon dioxide, nickel and copper.

Phononic crystal simulation results have been observed to be sensitive to ma-

terial parameters (density, and transverse and longitudinal elastic wave velocities).

The material parameters of a fabricated device will vary with temperature and

built in stress. Hence, an investigation of the phononic band gap temperature

dependence would be meaningful. Built in stresses should also be modeled.

Advanced study limited to phononic crystals may explore the wealth of crystals

that may be created from meta-materials, hexagonal and random lattices, and

generalized inclusion boundaries. Phononic crystal analogues of frequency selective

surfaces may potentially be designed as absorbing or reflecting layers. Elastic wave

lenses may possibly be developed for directing elastic wave energy toward, or from,

transducers.

The effect of cascading phononic crystals should be investigated as a form of

phononic crystal band gap engineering. A preliminary investigation into the cas-

cading of phononic crystals indicated that the crystals would have to be acoustically

isolated before being cascaded. By acoustically isolated it is meant that the crystals

may not be fabricated adjacent to one another in a single block of the host material.

Without acoustically isolating each phononic crystal, there appears to be cou-

pling between the crystals that inhibits the overall transfer function of the adjacent
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crystals from being equal to the product of the individual crystal transfer functions.

By cascading acoustically isolated phononic crystals, the total transfer function of

the system may equal the product of the individual crystal transfer functions. De-

termining a method to efficiently acoustically isolate cascaded phononic crystals

may be an important problem to consider.

Two-port network analysis should be applied to phononic crystals to quantify

the properties of phononic crystals in terms of RF performance metrics, such as

input reflection coefficient, size, insertion loss, quality factor, reciprocity, dispersion,

power handling ability, power consumption, temperature coefficient, electrostatic

discharge robustness, maximum operating frequency, ability for silicon integration,

and parasitic elements.

Phononic crystal based meta-materials may be analyzed using lumped element

parameters such as scattering parameters, ABCD parameters, and impedance pa-

rameters. Such analysis may reveal interesting properties of the crystals. For ex-

ample, a scattering parameter analysis may indicate in which frequency regimes the

phononic crystal behaves as a capacitive or inductive load. This analysis may allow

for the development of mechanical phononic crystal based capacitors and inductors.

Phononic crystal based capacitors and inductors would not resemble parallel plate

capacitors and spiral inductors.

Using two-port network analysis, the properties of phononic crystal based meta-

materials may be quantified in terms of characteristic quantities. Characteristic

quantities, such as characteristic acoustic impedance, would be distinguished from

actual material properties, such as acoustic impedance. Characteristic quantities
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account for non-material properties such as inclusion geometry.

Though phononic crystals appear to possess unique properties, such minimum-

phase characteristics and a piecewise linear phase response, a review of disper-

sive devices may be performed to deduce if any other known devices share similar

properties. Such a study would help identify the uniqueness of phononic crystal

properties.

Bragg gratings, for example, which are utilized in fiber optic applications, op-

erate based on the principles that govern the layered structure that was discussed

in Section 3.7.3. A review of dispersive devices may examine the acoustic devices,

many of which possess filtering properties, that may be found in acoustics journals.

Such devices may be have the capability for miniaturization.

Investigations into phononic crystal fabrication should survey the minimum fea-

ture size of MEMS fabrication processes.

Phononic band gap filters are not a standard devices. Design of phononic band

gap filters should occur in parallel with fabrication processes design to ensure that

the designed devices will be realizable. Silicon integrated mechanical structures that

mimic the operation of ABCs, PMLs, and PBCs may be developed. Collectively

this research will aid the fabrication of devices that resemble simulated structures.

Lastly, advanced research into phononic crystals may investigate potential ap-

plications, such as filters, phase shifters, audio delay applications, and dispersion

compensators. It may also be possible that phononic band gap effects are being

observed in existing MEMS devices, however, the engineering community may lack

knowledge of the phenomenon.
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Research into the development and fabrication of silicon integrated phononic

band gap filters presents a wealth of challenges.



Appendix A

Material Constants

The utilized material constants are contained in Table A.1.

Table A.1: Material parameters.

Material Density cl ct
Name [g/cm3] [cm/s] [cm/s]
Air 0.001225 30000 0
Aluminum 2.692 645000 322000
Mercury 13.51 145000 0
Perspex 1.179 273000 143000
Silicon 2.33 895000 536000
Water 1 148000 0
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Appendix B

Fractal Inclusion Layout

The layout of each fractal inclusion structure is contained herein. The (x, y) co-

ordinate pairs, for which x and y are even integers, correspond to nodes on the

integer-grid. The (x, y) coordinate pairs, for which x and y are odd integers, corre-

spond to nodes on the half-grid. The fractal inclusion structures also occupy (x, y)

coordinate pairs on the intersection of the integer-grid and the half-grid.
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Figure B.1: Layout of Initial Square Structure.
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Figure B.2: Layout of Structure 1 Iteration 1.
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Figure B.3: Layout of Structure 1 Iteration 2.



Chapter B: Fractal Inclusion Layout 136

180 190 200 210 220 230 240
10

20

30

40

50

60

70

Position in the x direction [nodal units]

P
os

it
io

n 
in

 t
he

 y
 d

ir
ec

ti
on

 [
no

da
l u

ni
ts

]

Figure B.4: Layout of Structure 2 Iteration 1.
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Figure B.5: Layout of Structure 2 Iteration 2.
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Figure B.6: Layout of Structure 3 Iteration 1.
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Figure B.7: Layout of Structure 3 Iteration 2.
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