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Abstract

The minimum k-partition (MkP) problem is a well-known optimization problem encoun-

tered in various applications most notably in telecommunication and physics. Formulated

in the early 1990s by Chopra and Rao, the MkP problem is the problem of partitioning

the set of vertices of a graph into k disjoint subsets so as to minimize the total weight of

the edges joining vertices in different partitions.

In this thesis, we design and implement a branch-and-cut algorithm based on semidef-

inite programming (SBC) for the MkP problem. We describe and study the properties

of two relaxations of the MkP problem, the linear programming and the semidefinite pro-

gramming relaxations. We then derive a new strengthened relaxation based on semidefinite

programming. This new relaxation provides tighter bounds compared to the other two dis-

cussed relaxations but suffers in term of computational time. We further devise an iterative

clustering heuristic (ICH), a novel heuristic that finds feasible solution to the MkP problem

and we compare it to the hyperplane rounding techniques of Goemans and Williamson and

Frieze and Jerrum for k=2 and for k=3 respectively. Our computational results support

the conclusion that ICH provides a better feasible solution for the MkP. Furthermore, un-

like the hyperplane rounding, ICH remains very effective in the presence of negative edge

weights. Next we describe in detail the design and implementation of a branch-and-cut

algorithm based on semidefinite programming (SBC) to find optimal solution for the MkP

problem. The ICH heuristic is used in our SBC algorithm to provide feasible solutions at

each node of the branch-and-cut tree. Finally, we present computational results for the

SBC algorithm on several classes of test instances with k=3, 5, and 7. Complete graphs

with up to 60 vertices and sparse graphs with up to 100 vertices arising from a physics

application were considered.
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Chapter 1

Introduction

1.1 The Minimum k-Partition Problem

The minimum k-partition problem (MkP) is the problem of partitioning the set of ver-

tices of a graph into k disjoint subsets so as to minimize the total weight of the edges

joining vertices in different partitions. This problem is known to be NP-hard in general

and hence very difficult to solve. The MkP is equivalent to finding a maximum k-cut,

where the weighted sum of all edges with their endpoints in distinct sets is maximized.

Several authors, including Barahona and Mahjoub [5] and Deza and Laurent [12], studied

the problem of partitioning a graph into two subsets, the special case with k=2 known as

the max-cut problem. The maximum k-cut problem has received more attention in the

literature than the minimum k-partition problem, such as in Deza, Grötschel, and Laurent

[10], Chopra and Rao [9], and the book by Deza and Laurent [12]. Results on the approxi-

mation of the maximum k-cut problem were obtained by Karger, Motwani, and Sudan [25]

as well as by Frieze and Jerrum [18]. In [18], a polynomial-time approximation algorithm

using the semidefinite relaxation with a performance guarantee is presented for the max-

imum k-partition problem. However, the optimal cut value in the maximum k-partition

is underestimated so that the value of the minimum k-partition is overestimated, hence

no lower bound is obtained that way. The minimum k-partition problem is formulated

by Deza et al. [10, 11] and Chopra and Rao in [8] where several valid and facet-defining

inequalities are identified.
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The minimum k-partition has applications in network planning [16], VLSI layout design

[3], micro-aggregation of statistical data [13], sports team scheduling [36], physics [23, 34,

17], and other areas. We briefly describe two of those applications in the next section.

1.2 Applications of MkP

1.2.1 Physics: Spin Glass Problem

A spin glass is a set of magnetic spins that possesses various interactions between them

[34, 17]. Each spin can be in one of a finite number of orientations. Spins i and j are

coupled with coupling strength Jij, where the couplings are assumed to follow a Gaussian

distribution or to take on values {±J} (for a given value J) in equal (or nearly equal)

numbers.

The special case in which the spin is one-dimensional and can take only one of two

orientations, represented by +1 and -1, is called the Ising model. The interactions between

the spins describe how the orientation of a given spin and those of its neighboring spins

affect the overall energy of the spin glass. The ground state, or minimum-energy state,

of a spin glass occurs when the orientations of the spins are chosen so as to minimize the

overall energy of the spin glass, that is, to minimize the Hamiltonian representing the total

energy of the system.

To formulate the optimization problem, suppose that we have n spins and let vi be

the orientation of spin i, where vi = 1 if the spin is oriented upwards and vi = −1 if it

is oriented downwards. Let v0 indicate the orientation of the exterior magnetic field of

strength h. Then the total energy of the system is given by the Hamiltonian [30]

H := −
n−1∑
i=1

n∑
j=i+1

Jijvivj − h

n∑
j=1

v0vj.

This problem can be represented using an edge-weighted graph G = (V, E), where

the vertex set V = {1, . . . , n} is the set of spins, the edge set E describes the pairwise
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interactions between spins, and the edge weight wij = −Jij and w0j = −h. In the case of

the Ising model wij ∈ {−1, 0, 1} where

wij =





1, if i and j interact positively

−1, if i and j interact negatively

0, if i and j have negligible or no interaction.

Let the variable zi ∈ {1,−1} represent the orientation of spin i, then to find the ground

state of the Ising spin glass we want to minimize H. Since

H =
∑

ij∈E, i<j

wijzizj

=
∑

ij∈E, i<j: zi=zj

wijzizj +
∑

ij∈E, i<j: zi 6=zj

wijzizj

=
∑

ij∈E, i<j

wij − 2
∑

ij∈E, i<j: zi 6=zj

wij,

minimizing H is equivalent to maximizing −H, and since
∑

ij∈E, i<j wij is a constant, then

maximizing
∑

ij∈E, i<j: zi 6=zj
wij is equivalent to maximizing

∑
ij∈E, i<j wij

1−zizj

2
. Therefore,

the optimization problem is as follows:

max
1

2

∑
ij∈E, i<j

wij(1− zizj)

s.t. |zi| = 1.

This optimization problem is an instance of the max-cut problem, the minimum k−partition

problem with k = 2. Hence, the problem of determining a ground state of an Ising spin

glass is equivalent to the max-cut problem. The spin-glass server website [24] can solve

these types of instances using a linear programming-based branch-and-cut algorithm [31].

The spin glass model can be extended to the case where the spins can take more than

2 positions. This is known as the Potts model. The Potts model with p states is a system

of spins where each spin i can be in one of the p different states, {1, 2, . . . , p}. Let the

variable zij be one if neighbouring spins i and j are in the same state, and zero if they are

3



in different states. The Hamiltonian is defined as follows [29]:

H = −
∑

ij∈E, i<j

Jijzij.

Let xi be a unit vector which takes one of p values. Then xi satisfies:

xi · xj =
pzij − 1

p− 1

Thus the Hamiltonian becomes:

H = −
∑

ij∈E, i<j

Jij

[
p− 1

p
xi · xj +

1

p

]
.

Let wij = −Jij and let Xij = xi · xj, and since we want to minimize the Hamiltonian, then

the objective function of the optimization problem is as follows:

min
∑

ij∈E, i<j

wij
(p− 1)Xij + 1

p
.

This is equivalent to the minimum k-partition problem as discussed in Section 2.3.3.

1.2.2 Fixed-Spectrum Frequency Assignment Problem

The radio spectrum is a limited resource to be shared by all users. The Global System for

Mobile Communications (GSM) divides up the bandwidth among the users in such away

that minimizes the interference among users.

Given a list of transmitter/receiver units (TRX), a range of channels, a list of locally

blocked channels for each TRX, as well as the minimum separation, the co-channel inter-

ference, and the adjacent channel interference matrices, the frequency assignment problem

(FAP) is to assign to each TRX one channel from the spectrum which is not locally blocked

such that the sum over all interferences occurring between pairs of TRXs is minimized,

and all separation requirements are met.
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In the fixed-spectrum frequency assignment problem (FS-FAP), the frequencies are

assigned from a limited number of available frequencies in such a way that the interference

is minimized. The FS-FAP can be represented using an edge-weighted undirected graph.

The representation of the problem is based on a 5-tuple {V,E, D, P,B} where:

• V is the vertex set of the undirected graph. Every vertex represents a transmitter.

• E is the set of edges of the undirected graph. Edges represent those transmitters

that are constrained, i.e., pairs of potentially interfering transmitters.

• D is a set of labels dvw ∈ N+
0 , such that dvw is the highest separation between the

frequency assigned to the transmitter v and the one assigned to w that generates

unacceptable interference. Let f(v) be the frequency assigned to transmitter v, then

if |f(v)− f(w)| > dvw, the interference involving the two transmitters is acceptable.

• P is a set of labels pvw ∈ N+ such that pvw is the cost to be paid if the separation

between the frequencies of transmitters v and w is less than or equal to dvw, that is,

if |f(v)− f(w)| ≤ dvw.

• Bv ( F is the set of locally blocked frequencies for each vertex v ∈ V .

The objective of the FS-FAP is to find an assignment of frequencies to transmitters that

minimizes the sum of pvw over all pairs vw ∈ E for which |f(v)− f(w)| ≤ dvw.

Eisenblätter’s Problem Formulation

Let G = (V,E) be an undirected graph. The vertices of the graph are called carriers and

represent the TRXs. The frequency spectrum F is a finite carrier spectrum interval in

Z+, the set of nonnegative integers, representing the range of channels. For every carrier

v ∈ V , a set Bv ( F of blocked channels is specified (where Bv may be empty). The

channels in F \ Bv are available at transmitter v. For an edge vw ∈ E, dvw gives the

separation necessary between the channels assigned to v and w. cco
vw and cad

vw respectively

denote the co-channel and adjacent channel interference between v and w. Eisenblätter in

[15] formulates the FS-FAP using a function y : V → F . An assignment is feasible if every

5



carrier v ∈ V is assigned an available frequency and all separation requirements are met,

i.e.,

yv ∈ F \Bv ∀v ∈ V, (1.1)

|yv − yw| ≥ dvw ∀vw ∈ E. (1.2)

Therefore, given a carrier network, the FS-FAP problem is as follows:

min
y feasible

∑
vw∈E
yv=yw

cco
vw +

∑
vw∈E

|yv−yw|=1

cad
vw (1.3)

In [15], Eisenblätter relaxed the FS-FAP by modifying the objective function and weakening

the constraints. The relaxed frequency planning is done by dropping the adjacent channel

interference, ignoring the locally blocked channels, and restricting the minimum separation

dvw to equal at most 1. A partition of V into at most |F | = k disjoint carriers has to be

determined. Thus, the frequency assignment problem is reduced to a minimum k-partition

problem where the graph is G = (V, E) and the edge weights of G are derived from cco and

the modified dvw.

1.3 Contribution of this Thesis

The main contribution of this thesis is the design and implementation of a semidefinite

programming-based branch-and-cut (SBC) algorithm to solve the minimum k-partition

problem. Experimental results show that the semidefinite programming (SDP) relaxation

provides tighter lower bounds for the MkP problem when compared to the LP relaxation.

Additionally, the SDP bound can be tightened by the addition of valid inequalities. Hence,

a sequence of SDP relaxations with separation of inequalities is solved at each node of the

branch-and-cut tree. To get upper bounds, we devise an iterative clustering heuristic

(ICH), a novel primal heuristic to find a feasible solution at each node of the branch-and-

cut tree. Computational experiments show that the ICH heuristic provides good feasible

solutions and tight upper bounds. This motivates the use of ICH in the SBC algorithm.
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In Chapter 2, the technical definition and literature background about the minimum

k-partition problem is given, and previous approaches proposed to tackle it and closely

related problems are discussed. In Chapter 3, a new SDP relaxation is described. This

new relaxation is a lifting that experimentally provides in most cases tighter bounds than

the previous SDP relaxation in the literature but requires more computational time. The

branch-and-cut algorithm and the novel primal heuristic are presented in Chapter 4. The

novel heuristic is compared to the hyperplane rounding of Frieze and Jerrum [18] in terms

of bounds. Computational results for the branch-and-cut algorithm on several important

classes of instances, and for different values of k, are presented in Chapter 5. The computa-

tional results show the potential of SBC for tackling the MkP problem. Finally, conclusions

and future research directions are discussed in Chapter 6.

7



Chapter 2

Formulations and Relaxations of

MkP

In this chapter, we begin by giving some definitions related to graph theory. We then

present well-known formulations of the MkP in the literature. Furthermore, we introduce

two types of relaxations, the linear programming and the SDP relaxations. We strengthen

these two relaxations using valid inequalities. Next using experimental analysis we show

that the SDP relaxation is stronger which motivates its use in a branch-and-cut algorithm.

Finally, we give an overview of several approaches related to this problem. However, none

of these approaches address the same version of the minimum k-partition problem that our

method does.

2.1 Mathematical Preliminaries

2.1.1 Graphs

A graph G = (V, E) consists of a finite set V of vertices and a finite set E of edges. Every

edge e ∈ E joins two vertices u and v (which are called endnodes) and is denoted as uv.

Two vertices are said to be adjacent if they are joined by an edge. The degree of a vertex

v ∈ V is the number of edges that have v as an endnode.
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A graph G with n vertices is said to be complete if every two vertices in G are adjacent.

The complete graph on n vertices is denoted by Kn. A graph G is said to be k-partite if its

vertex set can be divided into k partitions such that no two vertices in any partition are

adjacent. For a k-partite graph G, if each partition is a complete graph then G is called a

k-partite complete graph.

For a graph G = (V,E), a graph H = (W,F ) is said to be a subgraph of G if W ⊆ V

and F ⊆ E. An induced subgraph is a subset of the vertices of the graph together with

all the edges whose endnodes are both in this subset. G[W ] denotes the subgraph of G

induced by the vertex set W . The set W is said to induce a clique in G if G[W ] is a

complete graph. Given a k-partition (S1, ..., Sk) of V in G, where Si ⊂ V and 1 ≤ i ≤ k,

the set of edges in G having one endnode in Si and the other endnode in V \Si is called

the cut determined by Si and is denoted by δG(Si). Given a set E and a subset S ⊆ E,

then the incidence vector of S is the vector χS ∈ RE defined by

χS
e =





1 if e ∈ S,

0 if e ∈ E\S.

2.1.2 Polyhedra

Given a set X ⊆ Rn, the convex hull of X is defined as

Conv(X) =

{
y ∈ Rn | y =

∑
x∈X

λxx, λx ≥ 0 for all x ∈ X, and
∑
x∈X

λx = 1

}

A set X is said to be convex if Conv(X)= X [12].

The polar Xo of X ⊆ Rn is defined as

Xo = {x ∈ Rn | xT y ≤ 1, ∀ y ∈ X},

where

xT y =
n∑

i=1

xiyi for x, y ∈ Rn.

9



Cones and Polytopes

Given a subset C ⊆ Rn, the set C is said to be a cone if R+(C) = C. The polar of a cone

C is the cone defined as

Co = {x ∈ Rn | xT y ≤ 0, ∀y ∈ C}.

Proposition 1 If C is a cone, then Co = {x ∈ Rn | xT y ≤ 1, ∀ y ∈ C}.

Proof. Suppose x ∈ Xo, so x satisfies xT y ≤ 1, ∀y ∈ C. But x /∈ Co, that is ∃ y ∈ C such

that xT y > 0.

So, 0 < xT y ≤ 1 y ∈ C,

but y ∈ C =⇒ R+y ⊆ C =⇒ αy ∈ C ∀α ≥ 0.

Therefore, 0 ≤ xT (αy) ≤ 1, ∀α ≥ 0. However, if we choose α = 1
xT y

+ 1, then α(xT y) =

1 + xT y ≥ 1. This leads to a contradiction, so x ∈ Xo\Co does not exist =⇒ Xo = Co. ¤

Let A be an m× n matrix and b ∈ Rm, then the set

{x ∈ Rn | Ax ≤ b}

is called a polyhedron. When the vector b is the zero vector then the polyhedron is a cone.

Every convex set of the form Conv(X), where X is finite, is called a polytope. Define the

cut polytope CUTn to be

CUTn := Conv ({χ ∈ RE | χ = χδKn (S), S ⊆ Vn}).

Faces

Let P ⊆ Rn be a polytope. A set F ⊆ P is called a face of P if for every x ∈ F , whenever

x = αy + (1 − α)z where 0 ≤ α ≤ 1 and y, z ∈ P implies that y, z ∈ F . The only face of

dimension dim(P ) is the polytope P itself. Every face of dimension dim(P )−1 is called a

facet of P . A face of dimension 0 is of the form {x} and x is said to be a vertex of P . A

10



face of dimension 1 is an edge of P . A face F is said to be a simplex face if the vertices

of P lying in F are affinely independent. Given a vector v ∈ Rn and a scalar v0 ∈ R, the

inequality vT x ≤ v0 is said to be valid for P if vT x ≤ v0 holds for all x ∈ P . Therefore,

the set

F = {x ∈ P | vT x = v0}
is a face of P .

2.2 Linear Programming Approach

2.2.1 Definition and Integer Linear Programming Formulation

of MkP

Definition 1 An instance of the minimum k-partition problem consists of an undirected

graph G = (V, E) with edge weights wij of the edges, and a positive integer k ≥ 2. The

objective is to find a partition of V into at most k disjoint partitions V1, ..., Vk such that∑k
l=1

∑
i,j∈Vl

wij is minimized.

1

3

4

5

2

Partition 3

4

5

Partition 1
Partition 2

1

3

2

Figure 2.1: A k-partition of a graph with |V | = 5 and k = 3.

Without loss of generality the graph G = (V, E) can be completed to K|V | and the edge

weighting extended by assigning a weight of zero to all the new edges. The edge set is then

11



E = {ij | 1 ≤ i < j ≤ n}. Define the variable zij to be

zij =





1 if i and j are in the same partition,

0 otherwise.

Chopra and Roa in [9] considered the following integer linear programming (ILP) formu-

lation:

(ILPMKP) min
∑
i,j∈V

wijzij (2.1)

s.t. zih + zhj − zij ≤ 1 ∀ h, i, j ∈ V (2.2)
∑
i,j∈Q

zij ≥ 1 ∀Q ⊆ V where |Q| = k + 1 (2.3)

zij ∈ {0, 1} ∀ i, j ∈ V, (2.4)

where inequalities (2.2) and (2.3) are the triangle and clique inequalities respectively.

Constraint (2.2) requires the values of the variables to be consistent. For example, if zih

and zhj indicate that i, h, and j are in the same partition, then by transitivity the value of

zij has to reflect that as well. Constraint (2.3) imposes that at least two from every subset

of k +1 vertices have to be in the same partition. Together with the constraints (2.2), this

implies that there are at most k partitions. There are 3
(|V |

3

)
triangle inequalities and

( |V |
k+1

)

clique inequalities. Note that for (ILPMKP), if we remove the clique inequalities then we

will get the trivial zero vector solution in case of all positive weights wij.

Define the polytope Pk as the convex hull of all integer points of (ILPMKP):

Pk = Conv {zij ∈ {0, 1} | zih + zhj − zij ≤ 1 ∀ h, i, j ∈ V ;

∑
i,j∈Q

zij ≥ 1 ∀Q ⊆ V where |Q| = k + 1 }.

The hypermetric inequalities are a class of valid in inequalities to the polytope Pk and

they are defined as follows:
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Definition 2 [12] Given k ≥ 3, the complete graph Kn and the vertex weights bv ∈ Z with∑
v∈V bi = η ≥ 0, the hypermetric inequality for the polytope Pk is defined as:

∑
ij∈E

bibjzij ≥
∑
ij∈E

bibj − fhm(η, k). (2.5)

Assume that for the integers k, t and q

∑
i∈V

bi = tk + q = η, t ≥ 0, 0 ≤ q < k.

The hypermetric inequalities reflect the fact that if we have η nodes and a k-partition of the

graph then to maximize the number of edges between these partitions the nodes should be

distributed in such a way that we will have

(
η mod k

2

)
⌈

η
k

⌉2
edges between the q subsets

containing t + 1 nodes,

(
k − η mod k

2

)
⌊

η
k

⌋2
edges between the n− q subsets containing t

nodes, and (η mod k)(k− η mod k)dη
k
ebη

k
c edges between the subsets containing t + 1 and

t nodes. The hypermetric inequality is a generalization of the clique inequality that was

described earlier in this section.

Another IP formulation was proposed by Chopra and Roa in [8]. In [8], the authors

define, in addition to the binary zij edge variables, k binary variables, yl
i, one for each

vertex i, for l = 1, . . . , k, and require that yl
i = 1 if and only if vertex i is in the lth

partition and 0 otherwise. This formulation is defined as follows:

(ILPMKP2) min
∑
ij∈E

wijzij (2.6)

s.t. yl
i + yl

j − zij ≤ 1 ∀ ij ∈ E ∀ l ∈ {1, . . . , k} (2.7)

yl
i − yl

j + zij ≤ 1 ∀ ij ∈ E ∀ l ∈ {1, . . . , k} (2.8)

− yl
i + yl

j + zij ≤ 1 ∀ ij ∈ E ∀ l ∈ {1, . . . , k} (2.9)

k∑

l=1

yl
i = 1 ∀ i ∈ V (2.10)

yl
i, zij ∈ {0, 1}, (2.11)
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where inequalities (2.7), (2.8), and (2.9) ensure that if vertices i and j are in the same

partition then zij = 1, otherwise zij = 0. Equality (2.10) assigns each vertex to exactly

one partition.

(ILPMKP2) doesn’t require the graph G to be complete. Hence, for sparse graphs it

has fewer variables than (ILPMKP). However, for a given k-partition, (ILPMKP2) has k!

different ways of allocating vertices to partitions whereas (ILPMKP) has a unique one. For

the rest of the thesis we will consider the (ILPMKP) formulation.

2.2.2 Linear Programming Relaxation

Using the (ILPMKP) formulation with GAMS and the CPLEX solver, it is only possible to

solve instances with up to 20 nodes in a reasonable time due to the number of constraints

that grow exponentially as n or k are increased. For example, when k = 3 and n = 20 we

have 1140 triangle inequalities and 9690 clique inequalities; and when k = 4 and n = 20,

while we have the same number of triangle inequalities, we have 15504 clique inequalities.

Therefore, we relax the binary variable zij by replacing the feasible variable values {0, 1}
by their convex hull [0, 1]. Hence, we have the following LP relaxation:

(LPMKP) min
∑
i,j∈V

wijzij (2.12)

s.t. zih + zhj − zij ≤ 1 ∀ h, i, j ∈ V (2.13)
∑
ij∈Q

zij ≥ 1 ∀Q ⊆ V where |Q| = k + 1 (2.14)

0 ≤ zij ≤ 1 ∀ i, j ∈ V. (2.15)

The feasible set of the resulting LP relaxation is the polytope denoted by PLP
k . Solving the

LP relaxation still requires a lot of memory and computational time for large k or n values.

Separating the clique inequalities would significantly decrease the number of constraints,

hence decreasing computational time and the needed memory space. The motivation for

this method is that a complete description of PLP
k usually involves too many constraints to

handle efficiently, and many of them won’t be binding at the optimal solution, so instead

14



of adding them all in at the beginning, we add in only violated inequalities in an iterative

fashion. Thus we have a sequence of LP relaxations, where we start by solving an initial

LP problem with few clique inequalities (LPMKP-C), then check if the solution satisfies

all the clique inequalities; if yes then we terminate, else we add the most violated ones

(outside a tolerance tolc), decrease the tolerance by a certain value εLP , and solve again.

Algorithm 1 gives a detailed description of the clique separation algorithm and Figure 2.2

illustrates the idea of separation.

LPMKP
feasible

region

Optimal Solution of 

LPMKP-C at iteration 1

LPMKP
feasible

region

LPMKP
feasible

region

Optimal Solution of LPMKP

Optimal Solution of

LPMKP-C at iteration 2

Figure 2.2: Separation of clique inequalities for (LPMKP).

In the initialization phase, few clique constraints are added because removing all the

clique inequalities from (LPMKP) would result in a trivial solution where all z∗ij = 0. The

number of clique inequalities added at the beginning depends on the size of the problem

(i.e., n) and the weight matrix. We sum the edge weights of every clique, take the highest

n of them and add the corresponding cliques at the beginning.

We note that, given the complete graph Kn, n ≥ 3, and a vector z ∈ [0, 1], checking

whether the clique inequality is met or not for all set of cliques Q ⊆ V with |Q| = k + 1

is a NP-hard problem (see Proposition 7.31 of [15]). In Algorithm 1, the separation of

clique inequalities is done by enumeration. This is a simple way of finding violated clique

inequalities however, in future research we want to improve this separation algorithm to

reduce the computational time.
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Algorithm 1 Separating Clique Inequalities for (LPMKP)

1- Initialization

1.a- Remove all clique inequalities from the relaxed (LPMKP) problem.

1.b- Add clique inequalities that cover cliques with highest weights.

1.c- Solve this LP relaxation.

1.d- Get an initial solution.

1.e- Check for violated clique inequalities.

2- Adding clique inequalities.

2.a- Add the violated clique inequalities outside a tolerance tolc.

2.b- Decrease tolc by εLP .

2.c- Solve this LP relaxation.

2.d- Get a solution.

3- Termination.

3.a- If the solution violates clique inequalities

3.a.1- Return to step 2.

3.b- Else

3.b.1- Terminate (none of the clique inequalities are violated).

Barahona et al. in [4] designed a cutting plane algorithm for the max-cut problem

within a branch-and-bound framework. They solve at the root node the trivial LP

min
∑
i,j∈V

wijzij

s.t. 0 ≤ zij ≤ 1,

and then generate cutting planes using odd cycle inequalities. The cutting planes are

added not only at the root node, but also at each node of the branch-and-bound tree. The

computational results presented in Barahona et al. [4] show that the optimal solution for

graphs of any density with up to n = 30 nodes can be computed in reasonable time. But

with an increasing number of nodes, the limits on the largest density that can be handled

decreases rapidly. Therefore, this algorithm becomes impractical for dense instances.
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Results on an improved version of this algorithm are presented in [31] for the max-cut

problem. They focus on solving Ising spin glass problems using an LP-based branch-and-

cut approach. These types of graphs are sparse, and since linear approaches can exploit the

sparsity, they can solve problems of large sizes. However, for dense graphs the LP-based

approach isn’t suitable for solving these types of graphs.

2.3 Semidefinite Programming Approach

Semidefinite relaxations of combinatorial optimization problems were pioneered by Lovasz

[33] in 1979 in order to compute the Shannon capacity of a graph. This problem arises in

information theory where the graph represents the channel, the vertices represent single

letters in the alphabet, and the edge ij indicates that letters i and j are confusable in

transmission. Moreover, in 1995 Goemans and Williamson used a similar SDP relaxation

in an approximation algorithm for the max-cut problem (k = 2). Frieze and Jerrum

extended it to the max k-cut problem. These relaxations are described in Section 2.4.3

and Section 2.4.1 respectively.

2.3.1 Basic Concepts of Semidefinite Programming

A semidefinite programming (SDP) problem consists of minimizing a linear function of

a symmetric matrix variable X subject to linear equality constraints on X and X being

positive semidefinite. The set of positive semidefinite matrix is a closed convex cone but it

is not polyhedral. The duality theory for semidefinite programming isn’t as smooth as that

of linear programming since a gap between the optimal primal and dual objective function

values is possible. The standard primal semidefinite program is formulated as follows:

(PSDP) min < C, X >

s.t. < Ai, X >= bi i = 1, . . . , m

X º 0,
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where < C, X > is the trace of matrix CT X. The corresponding dual semidefinite program

is:

(DSDP) max bT y

s.t. Z = C −
m∑

i=1

yiAi

Z º 0.

Let S+
n denote the space of n× n positive semidefinite matrices and S++

n denote the space

of n× n positive definite matrices.

Definition 3 X ∈ S+
n is said to be feasible for (PSDP) if < Ai, X >= bi.

Similarly, y ∈ Rm and Z ∈ S+
n are said to be feasible for (DSDP) if C −∑m

i=1 yiAi = Z.

If X is a primal feasible solution and the pair (y, Z) is a dual feasible solution, then

the duality gap is defined as the difference between the objective values of (PSDP) and

(DSDP).

Definition 4 If X ∈ S+
n , y ∈ Rm and Z ∈ S+

n are feasible for (PSDP) and (DSDP), then

the duality gap is defined as:

〈C,X〉 − 〈b, y〉
We have 〈C, X〉− 〈b, y〉 = 〈AT y + Z, X〉− 〈AX, y〉 = 〈Z, X〉 and because 〈Z, X〉 ≥ 0, then

〈C,X〉 − 〈b, y〉 ≥ 0. That is, the objective value of any primal feasible solution is greater

or equal to the objective of any dual feasible solution. This property is known as weak

duality. When the gap between the primal and the dual objective is zero, we say that

strong duality holds and this gives optimal solutions to (PSDP) and (DSDP). However,

unlike for linear programming, Vandenberghe and Boyd [44] exemplify that optimality does

not imply that we have a zero gap between the primal and the dual objective (〈Z, X〉 = 0).

Slater’s constraint qualification provides sufficient (but not necessary) conditions to have

problems with zero duality gap at the optimal solution.

Definition 5 (PSDP) satisfies Slater’s condition if there exists a strictly feasible X that

is X ∈ S++
n with AX = b.

(DSDP) satisfies Slater’s condition if there exists a strictly feasible pair (y, Z) that is

Z ∈ S++
n and AT y − Z = C.
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Theorem 1 [14] Let p∗ = inf{〈C,X〉 : 〈Ai, X〉 = bi, X ∈ S++
n } and d∗ = sup{〈b, y〉 : Z =

C −∑m
i=1 yiAi, Z º 0}, then we have the following:

• If (PSDP) satisfies Slater’s condition and p∗ is finite, then p∗ = d∗ and this value is

attained for (DSDP).

• If (DSDP) satisfies Slater’s condition and d∗ is finite, then p∗ = d∗ is attained for

(PSDP).

• If (PSDP) and (DSDP) both satisfy Slater’s condition, then p∗ = d∗ is attained for

both problems.

2.3.2 Software for Solving SDP

Interior-point algorithms, as well as the spectral bundle method, low-rank approach, and

augmented Lagrangian method [37] have been used to solve semidefinite programs. A list

of links to the various packages can be found on the Semidefinite Programming Website

[21].

SeDuMi [41] and SDPT3 [42] are interior-point codes written in Matlab. Another interior-

point code is CSDP by Borchers [6] however, it is written in C. Helmberg implemented the

Spectral Bundle Method, SBMethod. S. Burer and R. Monteiro [7] implemented SDPLR

that solves SDPs via low-rank factorization. PENNON software [27] solves SDPs using

augmented Lagrangian method.

In this thesis, we used the CSDP solver to solve the SDPs. CSDP is an interior-point

primal-dual algorithm. These methods compute both primal and dual feasible solutions.

The algorithm stops when an optimal solution is found.
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2.3.3 Basic Semidefinite Relaxation of MkP

To obtain an SDP formulation of MkP we make use of the following lemma.

Lemma 1 [15] For all integers n and k satisfying 2 ≤ k ≤ n + 1, the following holds:

1. There exists k unit vectors ū1, ..., ūk ∈ Rn such that 〈ūi , ūj〉 = −1
k−1

for all i 6= j.

2. Any given k unit vectors u1, ..., uk ∈ Rn satisfy
∑

i<j〈ui , uj〉 ≥ −k
2

and if 〈ui , uj〉 ≤ δ

for all i 6= j, then δ ≥ −1
k−1

.

To shed some light on the structure of the SDP relaxation that follows, we include the

details of the proof of part 1 of the lemma.

Proof. Let k = n + 1 and let ti be an (n + 1)-dimensional vector for 1 ≤ i ≤ n + 1 with all

its entries equal to −
√

1
n(n+1)

except the ith entry which is equal to
√

n
n+1

.

Then

〈ti , tj〉 = (n− 1)×
(
−

√
1

n(n + 1)

)2

− 2

√
n

n + 1

√
1

n(n + 1)

=
n− 1

n(n + 1)
− 2

n + 1

= − 1

n
i 6= j.

If the ti were vectors in Rn instead of Rn+1 then the first part of the lemma would be

proved. However, the subspace spanned by the vectors ti is at most n-dimensional because

〈ti , [1, 1, ..., 1]T 〉 = −n

√
1

n(n + 1)
+

√
n

n + 1
= 0.

Therefore, we can rotate the coordinate system so that [1, 1, ..., 1]T turns into a multiple of

the vector [0, 0, ..., 0, 1]T . Since the last coordinate of each ti is zero in the new coordinate

system, we can obtain the desired vectors ūi from the ti by truncation. Therefore, 〈ūi, ūj〉 =

− 1
n

= −1
k−1

for all i 6= j. ¤
According to Lemma 1, we may fix a set U = {u1, ..., uk} ⊆ Rn of unit vectors with




〈ui, uj〉 = −1

k−1
for i 6= j

〈ui, ui〉 = 1 for i = 1, ..., k
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The minimum k-partition problem is finding an assignment x : V → U that minimizes the

expression ∑
i,j∈V

wij
(k − 1) < xi, xj > +1

k
.

Assemble the scalar products into a square matrix X such that it is indexed row and

column wise by V . The symmetric matrix X is characterized by the following:

1. All entries on the principal diagonal are ones.

2. All off-diagonal elements are either −1
k−1

or 1.

3. X º 0.

The minimum k-partition problem was formulated in [16] as follows:

min
∑

i<j∈V

wij
(k − 1)Xij + 1

k
(2.16)

s.t. Xii = 1 ∀i ∈ V (2.17)

Xij ∈ { −1

k − 1
, 1} ∀i < j ∈ V (2.18)

X º 0 (2.19)

Relaxations of the MkP can be obtained by relaxing some of the constraints. All possible

solutions of this problem are feasible for its relaxation, and the optimal value of the relax-

ations, are lower bounds on its optimal value.

In particular, replacing constraint (2.18) by −1
k−1

≤ Xij ≤ 1 results in a semidefinite relax-

ation. However, the constraint Xij ≤ 1 can be dropped since it is enforced implicitly by

the following two constraints:

Xii = 1 and

X º 0

This is because X º 0 is equivalent to all principal minors being non-negative. For X ∈ Sn,

Xii = 1 and i 6= j, consider the following principal minor:
(

1 Xij

Xij 1

)
.
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By positive semidefiniteness,

det

(
1 Xij

Xij 1

)
= 1−X2

ij ≥ 0

=⇒ X2
ij ≤ 1

⇐⇒ −1 ≤ Xij ≤ 1.

Hence, the SDP relaxation is as follows:

(SMKP) min
∑

i<j∈V

wij
(k − 1)Xij + 1

k
(2.20)

s.t. Xii = 1 ∀i ∈ V (2.21)

Xij ≥ −1

k − 1
∀i < j ∈ V (2.22)

X º 0. (2.23)

Denote by Eij(n) the n×n symmetric matrix with entries equal to 1 at positions (i, j)

and (j, i), and zeros elsewhere. For every matrix W ∈ Sn, the primal semidefinite program

is

min
∑

1≤i<j≤n

wijXij (2.24)

s.t. 〈Eii, Xii〉 = 1

〈Eij, Xij〉 ≥ −1

k − 1
, ∀ i, j ∈ {1, ..., n}, i < j

X º 0.

and the dual semidefinite program is

max
n∑

i=1

yii −
∑

1≤i<j≤n

yij

k − 1
(2.25)

s.t. W −
∑

1≤i≤j≤n

yijE
ij º 0, yij ≥ 0.
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The dual variable associated to the primal constraint 〈Eii, Xii〉 = 1 is yii and that associ-

ated to the primal constraint 〈Eij, Xij〉 ≥ −1
k−1

is yij.

To investigate the strength of the semidefinite relaxation, we need to relate the solution

set of the semidefinite relaxation to the polytope Pk introduced in Section 2.2.1. Let

Ψk,n = {X ∈ Rn×n | X º 0, Xii = 1, Xij ≥ −1
k−1

where i, j ∈ {1, ..., n}}, that is Ψk,n is the

set of feasible solutions of the semidefinite relaxation stated previously.

Define an affine mapping that projects Ψk,n into R(n
2) by letting

ζk,n :X → z

Sn → R(n
2).

Moreover, define Tk : R → R to be the affine transformation x 7→ k−1
k

x + 1
k
. The affine

transformation Tk is extended by letting Tk : Sn → Sn, where S 7→ k−1
k

S + 1
k
E(n, n)

and E(n, n) is an n × n matrix with all entries are equal to 1. Therefore, we will have

X 7→ ζk,n(X) = z, where zij = (Tk(X))ij and

Θk,n = ζk,n(Ψk,n) = {ζk,n(X) | X ∈ Ψk,n}

The restriction of ζk,n to Ψk,n is one-to-one, and ζk,n |Ψk,n
: Ψk,n → Θk,n is an affine bijection.

To prove that Tk is an affine transformation, consider the following:

Tk(X) =
k − 1

k
X +

1

k
E(n, n)

=
k − 1

k
X

︸ ︷︷ ︸
Linear Transformation

+
1

k
E(n, n)

︸ ︷︷ ︸
Constant

=⇒ Tk(X) has the form of AX + b

Therefore, Tk is an affine mapping since it is a linear transformation followed by a trans-

lation.
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A transformation is a bijection if it is one-to-one and onto. First we show that the

transformation is one-to-one:

Given X ∈ Sn and Y ∈ Sn, then the transformation Tk defined on Sn is one-to-one if

Tk(X) = Tk(Y ) only if X = Y .

Suppose Tk(X) = Tk(Y ) then:

k − 1

k
X +

1

k
E(n, n) =

k − 1

k
Y +

1

k
E(n, n)

k − 1

k
X =

k − 1

k
Y

X = Y.

Therefore, Tk is one-to-one.

Finally, we need to show that Tk is an onto transformation:

The transformation Tk defined on Sn is onto if there is an X ∈ Sn such that Tk(X) = Y

for all Y ∈ Sn.

Given Y ∈ Sn, consider there exists an X such that Tk(X) = Y for all Y . Then X ∈ Sn

and

Tk(X) =
k − 1

k
X +

1

k
E(n, n)

= Y

=⇒ k − 1

k
X = −1

k
E(n, n) + Y.

X = k
k−1

Y − 1
k−1

E(n, n) and hence Tk is onto. Since Tk is one-to-one and onto, then it is

a bijection. Consequently, Tk is an affine bijection.

For any given X ∈ Ψk,n, any given w ∈ R(n
2), and the symmetric matrix W with Wii = 0

and Wij = wij for all 1 ≤ i < j ≤ n, the following result is obtained:

1

2
〈W,Tk(X)〉 = 〈w, ζk,n(X)〉 =⇒ (2.26)

min
1

2
〈W,Tk(X)〉 s.t. X ∈ Ψk,n and min 〈w, z〉 s.t. z ∈ Θk,n
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are equivalent.

This can be shown as follows:

〈W,Tk(X)〉 = trace (T T
k (X) W )

= trace (W Tk(X)) since W and Tk(X) ∈ Sn

=
∑
ij

wij(Tk(X))ij

=
∑
ij

wijzij

= 2
∑
i<j

wijzij

= 2〈w, z〉
= 2〈w, ζk,n(X)〉

Therefore, 1
2
〈W,Tk(X)〉 = 〈w, ζk,n(X)〉.

The affine image Θk,n of the truncated elliptope Ψk,n contains the polytope Pk.

Lemma 2 [15] Θk,n is the semidefinite relaxation of Pk and they both contain the same

integral points.

Proof. Let z̄ be an integral vector in Θk,n. Under the mapping ζk,n, X̄ is the pre-image of

z̄. So X̄ º 0 and all the entries of X̄ are either −1
k−1

or +1 since zij = (Tk(X))ij for i < j.

If inequality (2.2) is not satisfied then for some i, j, and k, we have

zih + zhj − zij ≥ 2

and hence, the matrix z̄ has one of the following as a principal submatrix:



1 0 1

0 1 1

1 1 1







1 1 0

1 1 1

0 1 1







1 1 1

1 1 0

1 0 1


 .

Therefore, the pre-image X̄ will have one of the following principal submatrices:



1 −1
k−1

1
−1
k−1

1 1

1 1 1







1 1 −1
k−1

1 1 1
−1
k−1

1 1







1 1 1

1 1 −1
k−1

1 −1
k−1

1


 .
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However, the determinant of all these matrices is −( k
k−1

)2 < 0, which contradicts the fact

that X̄ º 0. Therefore, none of these matrices can appear as a principal submatrix of X̄

=⇒ inequality (2.2) is not violated.

In addition, if inequality (2.3) is not satisfied then

∑
ij∈Q

zij ≤ 0,

where |Q| = k + 1. Let z̄QQ be a submatrix of z̄ of size k + 1 × k + 1. If inequality (2.3)

is violated, then all of the off-diagonal elements of z̄QQ are equal to 0. Therefore, the

pre-image X̄ will have the following submatrix of size (k + 1)× (k + 1):

X̄QQ =




1 − 1
k−1

. . . − 1
k−1

− 1
k−1

1 . . . − 1
k−1

...
...

. . .
...

− 1
k−1

− 1
k−1

. . . 1




.

However, consider the following:

eT (X̄QQ)e = (k + 1) +
[
(k + 1)2 − (k + 1)

] −1

k − 1
(where e is the vector of all ones)

= (k + 1)

[
1− (k + 1)− 1

k − 1

]

= (k + 1)

[
(k − 1)− k

k − 1

]

= −1

(
k + 1

k − 1

)
< 0

This implies that X̄QQ � 0, and hence X̄ � 0. Therefore, no subset Q of size k + 1 can

induce a submatrix X̄QQ with all its off-diagonal elements equal to − 1
k−1

. Consequently,

the clique inequality (2.3) is not violated. ¤

The next two lemmas show that the triangle inequalities in equation (2.2) and clique

inequalities in equation (2.3) are more than half satisfied by every point in Θk,n.

26



Lemma 3 [16] Given the complete graph Kn, then for 4 ≤ k ≤ n and z ∈ Θk,n

zij + zjh − zih ≤ 1 +

√
2(k − 2)(k − 1)− (k − 2)

k

[
<
√

2
]

(2.27)

holds for every triangle. Moreover, for every clique Q of size k + 1 in Kn,

∑

ij∈E(Q)

zij ≥ 1− k − 1

2k

[
>

1

2

]
. (2.28)

In the next section, we will describe how the separation of the triangle and clique inequal-

ities is done to strengthen the SDP relaxation.

2.3.4 Strengthening the SDP Relaxation with Valid Inequalities

The SDP relaxation can be further tightened by adding valid inequalities. The two types

of valid inequalities to be added are the triangle and the clique inequalities. The resulting

relaxation is (SMKP-C).

The first type of valid inequalities to be added are the triangle inequalities. We add

violated triangle inequalities at each iteration. The triangle inequalities have the following

form:

Xij + Xjh −Xih ≤ 1,

where i, j, and h ∈ V . Let us take the following example to illustrate this inequality:

Example: If i and j are in the same partition ⇒ Xij = 1

If j and h are in the same partition ⇒ Xjh = 1

Now suppose i and h are not in the same partition ⇒ Xih = −1
k−1

.

Then we have Xij + Xjh −Xih = 1 + 1 + 1
k−1

� 1

Therefore, i and h should be in the same partition to have Xij + Xjh −Xih ≤ 1
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The second type of valid inequalities added to the SDP relaxation are the clique inequal-

ities. Recall that for the SDP relaxation, at the optimal solution of the integer problem,

each entry Xij should be either 1 or −1
k−1

. The clique inequalities for (SMKP) have the

following form: ∑
i,j∈Q

Xij ≥ −k

2
∀Q ⊆ V where |Q| = k + 1.

To show this, recall that the clique inequalities ensure that if we have k partitions and n

vertices then each set Q ⊆ V that satisfies |Q| = k + 1 at leat 2 vertices should be in the

same partition. This means that at least one of the Xij = 1. Therefore,

∑
i<j∈Q

Xij ≥ 1 +

(k+1
2 )−1∑
i=1

−1

k − 1
∀Q ⊆ V where |Q| = k + 1.

∑
i<j∈Q

Xij ≥ 1 +

[
(k + 1)k

2
− 1

] −1

k − 1

⇔
∑

i<j∈Q

Xij ≥ 1 +
2− k2 − k

2k − 2

⇔
∑

i<j∈Q

Xij ≥ 1− (k + 2)(k − 1)

2(k − 1)

⇔
∑

i<j∈Q

Xij ≥ 1− k + 2

2

⇔
∑

i<j∈Q

Xij ≥ −k

2

For example, when we have a 3-partition problem then we consider the 4-clique inequality.

For every vertex i, j, k, and h in the vertex set, we have the following clique inequality:

Xij + Xik + Xih + Xjk + Xjh + Xkh+ ≥ −3

2

Once the (SMKP) is solved, one can check for violated clique inequalities and add them to

the SDP problem, hence getting a better lower bound. These inequalities will strengthen

the relaxation by cutting off some feasible solution for (SMKP) that are not feasible for

the original problem (ILPMKP).
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The SDP relaxation provides a non-trivial solution, hence no inequalities need to be

added at the start (in contrast to the LP relaxation). The number of clique inequalities

added at each iteration depends on the size of the problem. Moreover, at first we try

to satisfy the most violated clique inequalities so we give a tolerance of tc then this tol-

erance decreases by a value of εSDP at each iteration until finally it is the desired −k
2

value.

The algorithm for adding clique and triangle inequalities is described in Algorithm 2.

Algorithm 2 Separating Clique and Triangle Inequalities for (SMKP-C)

1- Initialization

1.a- Solve (SMKP)

2- Adding clique and triangle inequalities.

2.a- Add the most violated clique and triangle inequalities within tolerances tc and tt

respectively.

2.b- Decrease tc and tt by εSDP .

2.c- Solve the SDP problem.

2.d- Get a solution.

3- Termination.

3.a- If the solution violates any inequalities

3.a.1- Return to step 2.

3.b- Else

3.b.1- Terminate when none of the inequalities is violated.
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2.3.5 Properties of the SDP Relaxation

Take any three vertices in different partitions from the set of vertices in the graph G =

(V,E). Any fourth vertex should be in the same partition of one of these three vertices.

We show that a feasible solution to the SDP automatically satisfies this. Consider four

vertices i, j, k, and l with Xij = −1
2
, Xik = −1

2
, and Xjk = −1

2
. Then we have the following

principal submatrix:

X =




1 −1
2
−1

2
x

−1
2

1 −1
2

y

−1
2
−1

2
1 z

x y z 1




By positive semidefiniteness,



1 −1
2

y

−1
2

1 z

y z 1


−



−1

2

−1
2

x






−1

2

−1
2

x




T

º 0

⇔




1 −1
2

y

−1
2

1 z

y z 1


−




1
4

1
4

−x
2

1
4

1
4

−x
2

−x
2
−x

2
x2


 º 0

⇔




3
4

−3
4

y + x
2

−3
4

3
4

z + x
2

y + x
2

z + x
2

1− x2


 º 0.

Taking the determinant:

3

4
(
3

4
− 3

4
x2 − (z +

x

2
)2) +

3

4
(−3

4
+

3

4
x2 − (z +

x

2
)(y +

x

2
)) + (y +

x

2
)(−3

4
z − 3

8
x− 3

4
y − 3

8
x) ≥ 0

⇒ −3

4
z2 − 3

4
x2 − 3

4
y2 − 3

2
xy − 3

2
xz − 3

2
yz ≥ 0

⇒ 1

2
(z2 + x2 + y2) + xy + xz + yz ≤ 0

⇒ (x + y + z)2 ≤ 0

Therefore, x + y + z = 0. In the discrete case, this means that either x or y or z should be

one and the other two entries should be −1
2
.
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In general for k ≥ 3, we consider k + 1 vertices with the following principal matrix:

X =




1 − 1
k−1

− 1
k−1

. . . x1

− 1
k−1

1 − 1
k−1

. . . x2

...
...

. . .
...

...

− 1
k−1

− 1
k−1

. . . 1 xk

x1 x2 . . . xk 1




By positive semidefiniteness,



1 − 1
k−1

− 1
k−1

. . . x2

− 1
k−1

1 − 1
k−1

. . . x3

...
...

. . .
...

...

− 1
k−1

− 1
k−1

. . . 1 xk

x2 x3 . . . xk 1



−




− 1
k−1

− 1
k−1
...

x1







− 1
k−1

− 1
k−1
...

x1




T

º 0

⇔




1 − 1
k−1

− 1
k−1

. . . x2

− 1
k−1

1 − 1
k−1

. . . x3

...
...

. . .
...

...

− 1
k−1

− 1
k−1

. . . 1 xk

x2 x3 . . . xk 1



−




1
(k−1)2

1
(k−1)2

. . . 1
(k−1)2

− x1

k−1
1

(k−1)2
1

(k−1)2
. . . 1

(k−1)2
− x1

k−1
...

...
...

...
...

1
(k−1)2

1
(k−1)2

. . . 1
(k−1)2

− x1

k−1

− x1

k−1
− x1

k−1

... − x1

k−1
x2

1



º 0

⇔




(k−1)2−1
(k−1)2

− k
(k−1)2

− k
(k−1)2

. . . x2 + x1

k−1

− k
(k−1)2

(k−1)2−1
(k−1)2

− k
(k−1)2

. . . x3 + x1

k−1
...

...
. . .

...
...

− k
(k−1)2

− k
(k−1)2

. . . (k−1)2−1
(k−1)2

xk + x1

k−1

x2 + x1

k−1
x3 + x1

k−1
. . . xk + x1

k−1
1− x2

1



º 0.

Taking the determinant and performing linear algebra operations we get the following:

(
k∑

i=1

xi

)2

≤ 0

⇒
k∑

i=1

xi = 0.
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In the discrete case, this means that one xi should be one and the other k−1 entries should

be − 1
k−1

since in that case
∑k

i=1 xi = 1− (
∑k−1

i=1
1

k−1
) = 1− k−1

k−1
= 0.

2.3.6 Comparison of the LP and SDP Relaxations

The objective function value of a relaxation of the original problem provides a lower bound

(in case we are minimizing). A relaxation is strong if it provides a lower bound that is

close to the optimal solution of the original problem. The SDP relaxation is stronger than

the LP relaxation hence, it provides a tighter lower bound. Moreover, if we tighten the

SDP relaxation by adding violated clique inequalities, then the lower bound will improve.

In this section we will compare the LP relaxation plus separation of clique inequalities

(LPMKP-C) with the SDP relaxation (SMKP) and with the SDP relaxation plus separa-

tion of clique inequalities (SMKP-C) in terms of bounds and computational efficiency. In

order to compare the discussed approaches, several instances are used. These instances

were randomly generated using a C code. The clique inequality separation algorithms for

both SDP and LP were implemented in C. Furthermore, CPLEX through GAMS was used

to solve (LPMKP-C). The CSDP solver [6] was used to solve the SDP problems with and

without clique inequalities. All instances discussed were solved using a Sun Sparc.

The values of tolc and εLP for the LP separation algorithm are given by the user. Dif-

ferent values of εLP are allowed. When comparing the results of different approaches in

this section, εLP = 0.1 was used. Preliminary testing showed that εLP = 0.1 seems to be

an effective choice. Moreover, for the SDP separation algorithm εSDP was chosen to be 0.1.

The three different approaches were applied to most of these instances and the results

are provided in Table 2.1. As the problem gets larger it takes too long to get the optimal

solution for the LP problem, so for 100 nodes only (SMKP) and (SMKP-C) were considered.

Finally, for 200 nodes only (SMKP) was used.

From Table 2.1, (SMKP) provides a higher objective function than (LPMKP-C) and

hence an improvement of the lower bound. In addition, (SMKP-C) provides the best
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Instance LPMKP-C SMKP SMKP-C

25 1 244.833 309.745 318.252

25 2 244.833 304.9715 316.1462

25 3 302.333 379.594 396.722

25 4 281.711 338.227 343.889

25 5 240.333 298.72 310.741

50 1 1032.5 1530.218 1555.591

50 2 962.32 1426.61 1439.26

50 3 1021.39 1514.45 1528.09

100 4107.394 6816.74 6860.581

200 - 28643.3 -

Table 2.1: Lower bounds given by (LPMKP-C), (SMKP), and (SMKP-C) for 25, 50, 100

and 200 vertices (k=3 for all instances).

Instance LPMKP-C SMKP SMKP-C

25 1 0:0:5 0 0:0:9

25 2 0:0:5 0 0:0:10

25 3 0:0:6 0 0:0:16

25 4 0:0:5 0 0:0:11

25 5 0:0:5 0 0:0:9

50 1 0:1:49 0:0:20 0:546

50 2 0:1:42 0:0:20 0:8:29

50 3 0:1:46 0:0:20 0:8:31

100 1:28:01 0:17:50 4:37:36

200 - 2:22:06 -

Table 2.2: Computational time (in hr:min:sec) of (LPMKP-C), (SMKP), and (SMKP-C)

for 25, 50, 100 and 200 vertices (k=3 for all instances).
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bounds. Increasing the number of nodes beyond 25, we notice the significant difference in

the bounds between (LPMKP-C) and (SMKP). Moreover, the improvement in the bound

between (SMKP) and (SMKP-C) is worthwhile if one is willing to spend extra computa-

tional time, see Table 2.2.

We note that we didn’t compare these approaches with (LPMKP) since it has clique

constraints that reach up to 3 million for 100 nodes. In addition, (LPMKP) was found to

be inefficient since it provides weak bounds which are the same as the bounds of (LPMKP-

C). However, for (LPMKP-C) the number of constraints is significantly less since only the

violated clique inequalities need to be added.

% Gap versus Size
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Gap (LPMKP-C) and
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Gap (SMKP) and
(SMKP-C)

Figure 2.3: Behavior of the gaps of the different bounds.

For the SDP approach, (SMKP) provides better bounds than the LP relaxation and

it is time efficient which enables it to be applied in a branch-and-bound algorithm. For

(SMKP-C) only few constraints are added before none of the clique inequalities are vio-

lated. Finally, (SMKP-C) provides the best bound but it needs extra computational time;

it can be applied in a branch-and-cut algorithm.
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Our results suggest that the approach to adopt actually depends on the purpose. How-

ever, from Figure 2.3, we note that adding the cutting planes always improves the bound

by only a fixed percentage (8 % to 10 %), whereas a greater improvement can be seen when

comparing SDP bounds to LP bounds. In this thesis, we will use (SMKP) and (SMKP-C)

in the branch-and-cut algorithm to solve the MkP problem.

2.4 Approximation Algorithms

An α-approximation algorithm is a polynomial-time algorithm for a combinatorial opti-

mization problem that provides a solution of objective value that is guaranteed to be at

most (1− α) away from the optimal value.

2.4.1 Goemans-Williamson Approximation Algorithm for Max-

Cut

Goemans and Williamson [19] used semidefinite programming in the design of a random-

ized approximation algorithm for the max-cut problem which always produces solutions

of expected value at least 0.87856 times the optimal value. This was the first time that

semidefinite programming was used in an approximation algorithm.

Given an undirected graph G = (V, E) and non-negative weights wij for each edge ij

we can formulate the max-cut problem as in Section 1.2.1:

(MC) max
∑
i<j

wij

2
(1− zizj) (2.29)

s.t. zi ∈ {−1, 1}. (2.30)

Once zizj is replaced by vi · vj, then the resulting relaxation is as follows:

max
∑
i<j

wij

2
(1− vi · vj)

s.t. vi ∈ Sn.
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where Sn is the n-dimensional unit sphere. To solve this relaxation, [19] used semidefinite

programming to formulate the relaxation in the form:

(MCSDP) max
∑
i<j

wij

2
(1−Xij)

s.t. Xii = 1

X º 0.

The simple randomized algorithm for the max-cut problem is as follows:

1. Solve (MCSDP) and use the Cholesky factorization V T V of the optimal X to obtain

vectors vi.

2. Generate a vector r uniformly distributed on the unit sphere Sn.

3. Partition the vertices into 2 partitions. The first partition is where the vectors vi

have a nonnegative inner product with r and the second is those with a negative

inner product with r.

Let w(V) denote the value of the cut produced using this algorithm, and E[w(V)] its

expected value. Analysis in [19] showed that the expected weight of the cut defined by a

random hyperplane rounding is:

E[w(V)] =
∑
i<j

wij
arccos(vi · vj)

π
,

and that

E[w(V)] ≥ α
1

2

∑
i<j

wij(1− vi · vj),

where α = min
0≤θ≤π

2
π

θ
1−cos θ

> 0.878 and θ the angle between vector vi and the random vector r.

The results in [19] showed that the cut generated using the randomized algorithm was

in the range of 4% to 9% away from the semidefinite bound. Hence, it is an effective

heuristic technique for generating cuts.

In addition to the max-cut, approximation algorithms were presented in [19] for the MAX

2SAT and MAX DICUT problems.
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2.4.2 Approximating Max 3-Cut Using Complex Semidefinite

Programming

Toh and Trefethen showed that semidefinite programming over the complex domain can be

solved in polynomial-time [43]. Goemans and Williamson in [20] proposed to take advan-

tage of this using complex semidefinite programming. They used the 3 complex roots of

unity (1, exp
2π
3

i, exp
4π
3

i) to formulate the max 3-cut, and extended the rounding technique

in [19] by letting the vi vectors be in Cn and r be a random vector from the n-dimensional

complex distribution.

The analysis in [20] shows that their relaxation for the max 3-cut problem using complex

SDP is identical to the relaxation for the max 3-cut problem in [18] and that the perfor-

mance guarantee of the algorithm presented in [18] and of their algorithm is 0.836008 for

the max 3-cut problem. However, an extension of this approach isn’t straightforward i.e.,

the k roots of unity can’t be used in the same way to approximate max k-cut.

2.4.3 Improved Approximation Algorithms for Max k-Cut

Frieze and Jerrum in [18] presented an extension of [19] to obtain a polynomial-time ap-

proximation algorithm for the max k-cut problem. They first start by relaxing the max

k-cut using the SDP presented in Section 2.3 to obtain the following problem:

(MkCSDP) max
k − 1

k

∑
i<j

wij(1−Xij) (2.31)

s.t. Xij ≥ −1

k − 1
∀i < j (2.32)

Xij º 0. (2.33)

Frieze and Jerrum described a rounding heuristic based on the SDP relaxation that can be

used to obtain a feasible solution of the max k-cut problem. This method works as follows:

1. Solve (MkCSDP) to get the optimal solution, X = (Xij). Find unit vectors v1, . . . , vn ∈
Rn satisfying vT

i vj = Xij where (i, j ∈ V ). This can be done by computing the

Cholesky factorization V T V of X.
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2. Choose k independent random vectors r1, . . . , rk ∈ Rn. Requiring ‖ r ‖= 1 com-

plicates the analysis. Hence, choose their kn components as independent random

variables from a standard normal distribution with mean 0 and variance 1.

3. Partition V into Vk = {V1, . . . , Vk} according to which r1, . . . rk is closest to each vi.

Hence, Vj = {i : vi · rj ≥ vi · rj′ , for j 6= j′} for 1 ≤ j ≤ k

The authors in [18] proved the existence of a sequence of constants α(k≥2) such that:

E(w(Vk)) ≥ αkw(V∗k)

where w(Vk) =
∑

1≤r<s≤k

∑
i∈Vr,j∈Vs

wij, V∗k is the optimal cut, and E denotes the expected

value.

Theorem 2 αk satisfies

1. αk > k−1
k

2. αk − k−1
k
∼ 2 ln k

k2

3. α2 ≥ 0.878567 α3 ≥ 0.800217 α4 ≥ 0.850304 α5 ≥ 0.874243

This process can be iterated by varying the random vector r and taking the best solution

(i.e., minimum upper bound). The cut obtained by this hyperplane rounding technique

may be further improved by moving single vertices from one partition to the other.

Notice that α has the lowest value when k = 3, which is α3 ≥ 0.800217. This suggests

that the case of k = 3 is the most interesting, since for the hyperplane rounding has the

weakest guarantee for this case.
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2.5 METIS

METIS is a software used for k-way partitioning of large graphs. It is based on a multilevel

partitioning algorithm that consists of three phases. In phase one the algorithm successively

reduces the size of the graph, then in phase two it finds a high-quality partition of the

smaller graph. Finally, in phase three it refines the partition. METIS provides pmetis and

kmetis programs to partition unstructured graphs into k equal size partitions. The k-way

partitioning problem has applications in many areas including parallel scientific computing,

task scheduling, and VLSI design. The problem is defined as follows:

Definition 6 Given a graph G = (V, E) with |V | = n, partition V into k subsets such

that |Vi| = n
k

and the number of edges of E whose endnodes are in different partitions is

minimized.

METIS tries to minimize the number of edges whose endnodes belong to different sub-

sets i.e., the edge-cut of the partition. Kmetis is a k-way multilevel algorithm where the

graph G = (V, E) is first coarsened down to a small number of vertices, a k-way of this

much smaller graph is computed, and then the partitioning is projected back to the original

graph by periodically refining the partitioning at each intermediate level.

METIS can partition large number of graphs arising in various applications such as

circuit design. The partitions produced by METIS are 10% to 50% better than those pro-

duced by spectral partitioning algorithms. Moreover, METIS is efficient in terms of speed

as it can partition graphs with over 1,000,000 vertices in 256 parts in a few seconds [26].

Further information about METIS is available on the website [1].

Unlike out algorithm, METIS only considers positive edge-weights. It provides a feasible

solution and hence a bound for the k-way partitioning problem where partitions are of the

same size. This equilibrium-type constraint is not part of the MkP problem and hence a

comparison with our algorithm is not suitable for this case. However, we conducted several

test results on METIS and found it very efficient in terms of computational time. In future

work we might extend our algorithm to the k-way partitioning problem and test it using

benchmarks for circuit design partitioning applications.
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2.6 k-way Equipartition Problem

The k-way equipartition problem is to divide the graph into k sets of vertices, each of the

same size, so as to minimize the total weight of the edges that have both endnodes in the

same partition. Mitchell [35] applied a branch-and-cut algorithm to the k-way equipar-

tition problem. Mitchell applied this problem to the National Football League (NFL)

alignment of teams to divisions so as to minimize the total intradivisional travel distance.

Mitchell used a branch-and-cut LP-based algorithm to solve this problem. The separation

algorithm for the branch-and-cut approach is given in [35]. Computational results found

the optimal solution for the NFL realignment problem where k = 8 and n = 32, whereas

a percentage gap of less than 2.5% was given for graphs of sizes 100 to 500.

Moreover, Lisser and Rendl [32] described a telecommunication application for the k-

way equipartition problem. The edge weights represent the communication between each

pair of vertices, the objective is to partition the vertices into equal size partitions so as to

maximize the sum of communication within partitions. They investigated both semidefinite

and linear relaxations of the problem with iterative cutting plane algorithms. They used

real-world data from France Telecom to test their approach where the size of the graph

ranged from 100 to 900 vertices with a density of 80%. Their test results provide lower

bounds and feasible solutions and hence a measure of the quality of the bounds. These

results indicate that for k=5, 10, the SDP approach produces a gap between 4%-6% from

the optimal solution and is better than the LP approach. As k gets larger, the LP approach

is better than the SDP approach, however in both cases the gap isn’t very sensitive to the

graph size.

2.7 Biq Mac

The Biq Mac Solver [39] is a binary quadratic and max-cut (k = 2) solver. It is similar

to the SDP-based branch-and-cut framework of Helmberg and Rendl [22] that uses SDP

with cutting planes as a bounding procedure. In [39], the SDP bound is tightened by

including triangle inequalities. The major improvement as compared to Helmberg and
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Rendl [22] is that the Biq Mac combines an interior-point method to solve the basic SDP

relaxation with the bundle method to handle the triangle inequalities. At each node of the

branch-and-bound a feasible solution is generated using the following algorithm:

1. Apply the Goemans and Williamson hyperplane rounding technique (described in

Section 2.4.1) to the primal matrix X obtained from solving the SDP during the

bundle iterations. This would give a feasible solution.

2. Apply a local search technique to improve the feasible solution X̃.

3. Form a convex combination of X and X̃ and return to Step 1.

4. Repeat as long as better feasible solutions are found.

The solver Biq Mac, available via a web interface [38], solves max-cut problems of any

structure up to size of n = 100. It can also solve unconstrained quadratic 0-1 problems

and graph bisection problems. A detailed description of Biq Mac is given in [45].

2.8 Conclusion

In this section, we presented approximation algorithms, exact solution algorithms, and

other techniques for the minimum k-partition problem and related problems. In this the-

sis, we propose a branch-and-cut approach to obtain bounds and global optimal solutions

for the minimum k-partition problem. Most methods in the literature are not direct com-

parators, either because they provide no guarantee of global optimality, because they set

constraints on the size of the partitions, or because they are not applicable to general k.

Therefore, the only approach we can compare head-to-head with is the ILP approach. How-

ever, using CPLEX for the ILP approach and comparing it with our algorithm is unfair due

to the exponential number of inequalities required for the ILP formulation. CPLEX doesn’t

recognize the structure of the problem whereas our branch-and-cut approach exploits the

structure using valid cuts.
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Chapter 3

Lifting the Basic SDP Relaxation

In 2002, Lasserre [28] introduced SDP relaxations corresponding to liftings of polynomial

0-1 problems into higher dimensions. He applied the SDP liftings to quadratic 0-1 programs

and max-cut problems. Lasserre presented necessary and sufficient conditions under which

after a finite number of such liftings, the optimal objective value of max-cut problem is

reached. Using Lagrangian duality, strengthened SDP relaxations in a higher dimension

were derived in [2] for the max-cut problem. This motivates the use of liftings to obtain a

tighter relaxation for the minimum k-partition problem.

3.1 Formulation

Recall the following ILP formulation of MkP discussed in Section 2.2.1:

min
∑

i<j∈V

wijzij

s.t. zih + zhj − zij ≤ 1 ∀ i < h < j ∈ V (3.1)
∑

i<j∈Q

zij ≥ 1 ∀Q ⊆ V where |Q| = k + 1 (3.2)

zij ∈ {0, 1},
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assuming an undirected graph and symmetric edge weights. Define the variable:

yij =





1 if i and j are in the same partition,

−1 if i and j are in different partitions,

and observe that the transformation

yij = 2zij − 1

maps the two sets of variables in a way that preserves their meaning.

We now consider what happens to the constraints. The inequality (3.1) stays the same:

zih + zhj − zij ≤ 1 ⇔ yih+1
2

+
yhj+1

2
− yij+1

2
≤ 1

⇔ yih + yhj − yij + 1 ≤ 2

⇔ yih + yhj − yij ≤ 1

However, the inequality (3.2) becomes:

∑
i<j∈Q zij ≥ 1 ⇔ ∑

i<j∈Q

(
yij+1

2

)
≥ 1

⇔ ∑
i<j∈Q (yij + 1) ≥ 2

⇔ ∑
i<j∈Q yij ≥ 2− (|Q|

2

)
.

For the case k = 3, |Q| = 4 and the inequality is
∑

i<j∈Q yij ≥ −4.

The formulation is as follows:

min
∑

i<j∈V

wijyij

s.t. yih + yhj − yij ≤ 1 ∀ i < h < j ∈ V (3.3)

∑
i<j∈Q

yij ≥ 2−
(|Q|

2

)
∀Q ⊆ V where |Q| = k + 1 (3.4)

yij ∈ {−1, 1},

To simplify notation, let yij = a, yih = b, and yhj = c. If c = 1 then a and b should have

the same value. That is, if vertices h and j are in the same partition (c = 1) then either
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i will be in the same partition of h and j (b = a = 1) or it will not (b = a = −1). There

is 3
(

n
3

)
of these transitivity conditions for any value of i,j, and h, where n is the number

of vertices of a graph. For each three vertices we get the three transitivity conditions as

follows:

(b− a)(c + 1) = 0 ⇒ bc− ac + b− a = 0 (3.5)

(a− c)(b + 1) = 0 ⇒ ab− bc + a− c = 0 (3.6)

(b− c)(a + 1) = 0 ⇒ ab− ac + b− c = 0 (3.7)

Moreover, for each three vertices out of the total eight combinations of {1,−1} only five

are valid. Next we elaborate these five valid combinations that result from the following

four cases:

1. If vertices i and j are in the same partition (a=1) and vertices i and h are in the

same partition (b = 1) then vertices j and h should be in the same partition (c=1).

2. If vertices i and j are in the same partition (a=1) and vertices i and h are in different

partitions (b = −1) then vertices j and h should be in different partitions (c=-1).

3. If vertices i and j are in different partitions(a=-1) and vertices i and h are in different

partitions (b = −1) then vertices j and h could be in the same partition or in different

partitions (c=1 or c = −1).

4. If vertices i and j are in different partitions (a=-1) and vertices i and h are in the

same partition (b = 1) then vertices j and h should be in different partitions (c=-1).

The above cases are summarized in the table below:

a b c abc

1 1 1 1

1 -1 -1 1

-1 -1 ± 1 ± 1

-1 1 -1 1
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From the table above, we notice that abc = −1 only if a = b = c = −1.

Therefore,

(abc− 1)(a + b + c + 3) = 0

⇒ 3abc + ab + ac + bc− a− b− c− 3 = 0 (3.8)

Substituting abc = 1− ab + c in equation (3.8) we get:

bc− ac− 2ab− a− b + 2c = 0 which is equivalent to −2∗ equation (3.6)+ equation (3.7).

Moreover, we can get equation (3.8) by multiplying equation (3.5) by c, equation (3.6) by

c, equation (3.7) by b and then adding them as follows:

abc− a + bc− 1 = 0

abc− b + ac− 1 = 0

abc− c + ab− 1 = 0

Adding the above three equations we get 3abc+ab+ac+bc−a−b−c−3 = 0 which is equa-

tion (3.8). So using equations (3.5)-(3.7) is enough to ensure that equation (3.8) is satisfied.

In the case of 3-partition, we have a four-vertices clique. Consider four vertices i, j, k,

and h, if any three of these vertices are in different partitions, then the fourth vertex should

be in the same partition of one of these three vertices. This can be written as follows:

If yik = −1, yij = −1 and ykj = −1

⇒ yih or ykh or yjh = 1

⇒ yih + yjh + ykh = −1

Therefore, (yij − 1)(yik − 1)(yjk − 1)(yih + yjh + ykh + 1) = 0

⇒ (yijyikyjk − yijyjk − yijyik − yjkyik + yik + yjk + yij − 1)(yih + yjh + ykh + 1) = 0

⇒ yijyikyjkyih − yijyjkyih − yijyikyih − yjkyikyih + yikyih + yjkyih + yijyih − yih

+yijyikyjkyjh − yijyjkyjh − yijyikyjh − yjkyikyjh + yikyjh + yjkyjh + yijyjh − yjh

+yijyikyjkykh − yijyjkykh − yijyikykh − yjkyikykh + yikykh + yjkykh + yijykh − ykh

+yijyikyjk − yijyjk − yijyik − yjkyik + yik + yjk + yij − 1 = 0

We get a similar analysis when we do the permutation:

(yij − 1)(yih − 1)(yjh − 1)(yik + yjk + ykh + 1) = 0

(yik − 1)(yih − 1)(ykh − 1)(yij + yjk + yjh + 1) = 0

45



(yjk − 1)(yjh − 1)(ykh − 1)(yij + yik + yih + 1) = 0

Therefore, we have a total of four clique equalities. However, using these equalities is hard

due to the presence of the monomials with four variables. We need to have a bigger SDP

matrix to include such monomials and this will increase the computational time signifi-

cantly. Instead, we use clique inequalities of the form (3.4).

In the next section, we will use these equalities (3.5)-(3.7) to form the SDP relaxation.

However, we don’t go to higher degrees, that is, we don’t use monomials of degree three

or higher.

3.2 Strengthened SDP relaxation via Lifting

We will show that the original triangle inequality is weaker than the ones provided in

equation (3.5)-(3.7). Recall the triangle inequality and its permutations

yih + yhj − yij ≤ 1 ⇒ b + c− a ≤ 1 (3.9)

yij + yhj − yih ≤ 1 ⇒ a + c− b ≤ 1 (3.10)

yij + yih − yhj ≤ 1 ⇒ a + b− c ≤ 1 (3.11)

where yij = a, yih = b, and yhj = c.

Lemma 4 If yij, yih, and yhj satisfy equations (3.5)-(3.7), then they satisfy equations (3.9)-

(3.11).

Proof.

Equation (3.5), can be written as (b− a)(c + 1) = 0. In case c 6= −1, then b = a. Substi-

tuting b = a in equation (3.9), we get c ≤ 1 which is satisfied since −1 ≤ c ≤ 1.

In case c = −1, then b + c− a = b− a− 1 ≤ 1 since −1 ≤ b ≤ 1 and −1 ≤ a ≤ 1.

Similarly, we can show that if a point satisfies equation (3.6) and equation (3.7) then it

satisfies equation (3.10) and (3.11) respectively.

Moreover, we can show by counter example that there exists a point satisfying equation

(3.9) but not equation (3.5). Take a = −1
2
, b = 1, and c = 1

2
. Substituting in equation

(3.9), we have 1 + 1
2
− 1

2
≤ 1 and hence the equation is satisfied. However, if we substitute
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a = −1
2
, b = 1, and c = 1

2
in equation (3.5), we have 1

2
− 1

4
+ 1− 1

2
= 3

4
6= 0.

Hence, every discrete point satisfying equation (3.5) satisfies equation (3.9) but not vice

versa and similarly for the other constraints. ¤

Let the matrix X = xij containing the pairs and the triplets. In case we have 3 vertices

then X will have the following form:

X =




1 y12 y13 y23 y12y13 y12y23 y13y23 y12y13y23

1 y12y13 y12y23
...

...
... y13y23

1 y13y23
...

...
... y12y23

. . .
...

...
...

...

. . . . . . . . . 1




Notice that X15 = X23 is one example of the many equalities that arise from the structure

of this matrix. For n vertices, X has dimension
((n

2)
3

)
+

((n
2)
2

)
+

(
n
2

)
+ 1 and if we remove

the columns of triple products from the matrix, X will have a dimension of
((n

2)
2

)
+

(
n
2

)
+1.

Moreover, if we consider the equalities in the structure of the matrix we can reduce the

size to be of dimension
(

n
2

)
+ 1 as follows:

X =




1 y12 y13 . . . yn−1,n

1
...

...
...

. . .
... yijykh

. . .
...

1




((n
2)+1)×((n

2)+1)

The Xij entries can be obtained using the following transformation:

X1,T (i,j) = yij,

XT (i,j),T (k,h) = yijykh,

where T (i, j) = (j−1)(j−2)
2

+ i + 1.
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Relaxing the {−1, 1} constraints, the SDP formulation becomes as follows:

(LSDP) min
∑
i,j

wij
(1 + Xij)

2

s.t. Xij −Xjh + X1i −X1h = 0 ∀ h, i, j (3.12)

Xij −Xih + X1j −X1h = 0 ∀ h, i, j (3.13)

Xjh −Xih + X1j −X1i = 0 ∀ h, i, j (3.14)

Xii = 1

X º 0.

The triangle equalities are from equation (3.5)-(3.7). However, adding equations (3.12)

and (3.14) will result in equation (3.13). Taking any two of the equalities we can get the

third one. Hence, we can remove any one of them without loss of information.

min
∑
i,j

wij
(1 + Xij)

2

s.t. Xij −Xjh + X1i −X1h = 0 ∀ h, i, j

Xjh −Xih + X1j −X1i = 0 ∀ h, i, j

Xii = 1

X º 0.

Moreover, using equations (3.9)-(3.11) we have a set of valid inequalities for (LSDP). These

inequalities have the form:

X1i + X1j −X1h ≤ 1 ∀ h, i, j (3.15)

X1i + X1h −X1j ≤ 1 ∀ h, i, j (3.16)

X1h + X1j −X1i ≤ 1 ∀ h, i, j (3.17)

When Xij ∈ {−1, 1}, then if vertices i, j, and h satisfy equations (3.12)-(3.14), then they

satisfy equations (3.15)-(3.17). However, when Xij entries are fractional this might not be

the case.
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Since solving (LSDP) without the clique inequalities will give the trivial identity ma-

trix solution, we choose to add clique inequalities. The clique inequalities can be added by

including clique inequalities of the form
∑

X1i ≥ −4 for the case of k = 3. The separation

algorithm for the clique inequalities is similar to the LP separation algorithm presented in

Algorithm 1.

In the next section, we compare the performance of the basic SDP relaxation and the

(LSDP) in terms of quality of bounds and the computational efficiency.

3.3 Comparison between Basic SDP Relaxation and

the Lifted SDP

In order to compare the previously discussed SDP relaxations, different instances were ran-

domly generated using a C code. The CSDP solver [6] was used to solve the SDP problems.

All instances discussed were solved on the same Sun workstation with 16 processors and

32 GB of RAM.

From Tables 3.1-3.3, we notice that the lower bound of (LSDP) is in most cases better

than the lower bound of (SMKP) especially as the number of vertices of the graph increases.

The % gap in most cases is between 1% and 4%. However, the computational time required

by (LSDP) is significantly larger than that of (SMKP) and this is due to the size of the

SDP matrix. The SDP matrix in (SMKP) case has a size of n × n whereas for (LSDP)

the SDP matrix has a size of [
(

n
2

)
+ 1] × [

(
n
2

)
+ 1]. Due to the inefficiency of (LSDP) in

terms of time, we will not be able to use it in a branch-and-cut algorithm since it will

significantly degrade the algorithm’s performance. Although it is a promising relaxation in

terms of the improved bounds, the computational time required by (LSDP) is too large for

a branch-and-cut algorithm. It would be necessary to solve the SDP much more efficiently

to be able to exploit this relaxation.
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Instance (LSDP) (SMKP) %Gap

LB Time LB Time

10 1 33.95407 0 34.02139 0 -0.19787

10 2 43.57347 0 42.15544 0 3.363829

20 1 189.3691 0:8:10 191.6418 0 -1.1859

20 2 188.3403 0:7:17 186.366 0 1.059356

20 3 172.4323 0:7:54 176.0377 0 -2.04808

20 4 196.1249 0:8:10 209.0209 0 -6.1697

25 1 346.9252 0:44:48 339.5227 0 2.180272

25 2 336.0117 0:47:17 328.4746 0 2.294595

25 3 326.5639 0:44:43 320.514 0 1.887537

30 1 490.1492 3:40:33 477.9304 0:0:1 2.556621

30 2 506.5425 3:42:03 494.6722 0:0:1 2.399627

30 3 489.5041 3:42:02 473.7856 0:0:1 3.317644

Table 3.1: Lower bound comparison between the lifted and the basic SDP relaxation for

10, 20, 25 and 30 vertices. k=3 and time is in hr:min:sec.

Instance (LSDP) (SMKP) %Gap

LB Time LB Time

20 1 112.3795 0:10:08 109.2322 0 2.881256

20 2 106 0:9:04 103.6107 0 2.306036

20 3 116.8102 0:9:50 114.6116 0 1.918226

20 4 120.6657 0:10:30 118.6468 0 1.701623

25 1 199.0892 0:48:01 192.4265 0:0:1 3.462454

25 2 205.0574 0:50:3 197.9614 0:0:1 3.584557

25 3 191.806 0:45:12 188.8182 0:0:1 1.582385

Table 3.2: Lower bound comparison between the lifted and the basic SDP relaxation for

20 and 25 vertices. k=4 and time is in hr:min:sec.
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Instance (LSDP) (SMKP) %Gap

LB Time LB Time

20 1 68.26464 0:9:12 65.95797 0 3.497183

20 2 69.63217 0:9:19 69.83121 0 -0.28503

20 3 71.97329 0:10:41 72.51428 0 -0.74605

25 1 134.2568 0:41:24 128.9805 0:0:1 4.090726

25 2 136.919 0:44:51 131.9623 0:0:1 3.756165

25 3 122.9496 0:41:02 120.9309 0:0:1 1.669301

Table 3.3: Lower bound comparison between the lifted and the basic SDP relaxation for

20 and 25 vertices. k=5 and time is in hr:min:sec.
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Chapter 4

A Semidefinite Programming-Based

Branch-and-Cut Framework (SBC)

4.1 Brief Overview of Branch-and-Cut

The branch-and-cut method consists of the combination of the cutting-plane method and

the branch-and-bound algorithm. Traditionally, branch-and-cut solves a sequence of LP

relaxations of the ILP problem at each node of the branch-and-bound tree. Cutting-plane

methods improve the LP relaxation at the nodes, tightening the bounds. The branch-and-

bound algorithm guarantees that a global optimal solution is obtained.

As explained in Section 2.3.6, the SDP relaxation provides a significantly tighter bound

than the LP relaxation for the (ILPMKP) problem. Hence, instead of solving a sequence

of LPs at each node of the tree, we will solve a sequence of SDP relaxations. In addition,

we add valid cuts to improve the SDP relaxations. This can be done either at the root

node only or at every node of the tree, as desired.

The branch-and-cut tree starts with a root node corresponding to the original SDP

relaxation of the problem with none of the variables fixed. After one or more rounds of

adding valid inequalities at the root node and resolving, if a discrete solution is found then

we terminate. Otherwise, the branch-and-cut search algorithm branches by creating two
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subproblems derived by fixing a fractional variable (i.e., a variable that is not 1 nor −1
k−1

).

The subproblems are identical to the parent subproblem except for a variable being fixed

to 1 or −1
k−1

. The branch-and-cut tree stops when all subproblems have a discrete optimal

solution or have been fathomed. A subproblem is fathomed if it is either infeasible, has

a discrete solution, or if we can conclude that it does not contain an optimum solution.

The incumbent solution is the best discrete solution (giving an upper bound, since we are

minimizing) found so far in the tree.

An algorithmic description of branch-and-cut using SDP to solve the MkP problem is:

Step 1: Initialization Form the root node by using the (SMKP) problem without fixing

any variables.

Step 2: Terminating If none of the nodes of the tree are active (i.e., all nodes are fath-

omed) then terminate with the incumbent solution, Xincumbent, as the optimal solution

and the corresponding objective value ν∗ as the optimal objective value. Else proceed

to Step 3.

Step 3: Solving Choose a node t not yet solved. Solve the SDP relaxation (SMKP) to

get a solution X∗
t and a lower bound ωt.

Step 4: Adding Valid Inequalities Separate violated clique and triangle inequalities

as discussed in Algorithm 2. If none are violated go to Step 5, otherwise go to Step

4.

Step 5: Obtaining a Feasible Solution Get a feasible solution Xfeasiblet as discussed

in Section 4.2 and an upper bound νt. Update the incumbent if νt < ν∗.

Step 6: Fathoming

1. By Solving: If the solution X∗
t has all entries integer, i.e., X∗

t and Xfeasiblet are

identical. Update the incumbent if νt < ν∗. Increment t and go to Step 2.

2. By Bound: If the SDP relaxation gives ωt ≥ ν∗, then branching on this node

will not improve the incumbent. Increment t and go to Step 2.

53



3. By Infeasibility: If the SDP relaxation doesn’t have a feasible solution. Incre-

ment t and go to Step 2.

Step 7: Branching Choose a variable that is fractional (i.e., not 1 or −1
k−1

) and create

two new nodes by fixing the variable to 1 for one node and −1
k−1

for the other node.

Increment t and go to Step 2.

In the following sections, we describe in detail a branch-and-cut technique using SDP

as the bounding procedure. The addition of triangle and clique inequalities at each node

markedly improves the SDP lower bound, and hence pays off in spite of the computational

costs. Typically, branching is done on an edge. Hence, either both endnodes are put in

the same partition or in separate partitions. Moreover, at each node a feasible solution is

computed to get an upper bound.

4.2 ICH: An Iterative Clustering SDP-based Heuris-

tic

The novel ICH heuristic is designed to find a feasible solution at each node of the tree.

Given a graph G(V, E) with n vertices, weights wij between edges, and partition size k the

heuristic proceeds as follows:

1. Initialize a parameter r, the current number of partitions, to zero.

2. Initialize a parameter m, the current number of nodes, to n.

3. Solve the SDP relaxation (SMKP) with m nodes and get the optimal solution X∗.

4. Take each triplet of vertices i, j, and h and sum their edges: Tijh = Xij + Xih + Xjh.

5. Sort the values of Tijh.

6. (a) Choose vertices i, j, and h with Tijh > tol to be in the same partition.

(b) If any vertices remain unassigned to a partition, choose vertices with Tijh < tol

to be in separate partitions.
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(c) Modify the value of r as the number of partitions change.

7. If r > k,

(a) Aggregate the vertices that are in the same partition to form one new vertex i′.

(b) Update the value of m and the aggregate weight matrix W̄ .

(c) Return to step 3.

8. End.

The intuition behind this approach is the use of aggregate information which is more reli-

able than single elements of data. When we sum the edges of the three vertices, we have a

better idea of whether or not these three vertices should be in the same partition than by

looking at each edge separately. The sorting of the data is done to take advantage of the

best information first and use the less certain information only if necessary.

Note that sorting is not done for all the
(

n
3

)
combinations since that is quite time con-

suming. Instead, sorting is done first for a range of high values then for smaller values as

needed. This speeds up the algorithm significantly.

We use an example to elaborate on the algorithm, see Figure 4.1. Consider a complete

graph with 20 vertices and suppose we want to divide these vertices into 3 partitions. The

ICH heuristic proceeds as follows. First initialize r to be zero and m to be 20. We solve

the (SMKP) problem and get the solution matrix

X∗ =




1 X12 X13 . . . X1n

1
...

...
...

. . .
... Xij

. . .
...

1




.

Next use the Xij → (k−1)Xij+1

k
mapping to convert the entries of X∗ from [ −1

k−1
, 1] to [0, 1].

Take each triplet of vertices i, j, and h and sum their edges to get Tijh. Since we mapped
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each Xij to [0,1], Tijh will have a value between 0 and 3. After getting the Tijh values, we

sort them. In this example, tol was set to 1.6. Table 4.1 provides the highest Tijh values

for our example.

i j h Tijh

1 12 15 2.989602

2 10 11 2.982662

2 9 11 2.969226

12 15 18 2.966918

4 12 15 2.966367

4 18 20 2.961048

9 10 11 2.960813

1 12 18 2.959404
...

...
...

...

Table 4.1: Iteration 1 of the ICH heuristic example with n = 20 and k = 3.

Using the data in Table 4.1, we put vertices 1, 12, and 15 in one partition and increment

r by one. Then we put vertices 2, 10, and 11 in another partition and again increment r. In

the next row of the table we have vertices 2, 9, and 11 however vertex 2 and 11 are already

assigned to a partition so we put vertex 9 in the same partition without incrementing r.

By the time we reach row 7 where i = 9, j = 10, and h = 11, we don’t have any change in

the partitions. This column will only confirm the previous allocation of vertices 9, 10, and

11. We continue in this way until all vertices are assigned to a partition. If r > k when

we are done, then we perform another iteration of the algorithm, otherwise we stop with

a feasible solution.
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In our example at the first iteration we get r = 5 as follows:





Partition Vertices

1: 1, 4, 12, 15, 18, 20

2: 2, 9, 10, 11

3: 3, 7, 19

4: 5, 13, 14

5: 6, 8, 16, 17

Since r = 5 > 3, we perform another iteration. We aggregate the vertices that are in the

same partition to form one vertex and we set m = 5. Therefore, we now have five vertices,

and the edge weights between them are adjusted. To illustrate how the edge weights are

adjusted, we show how to calculate the edge weight between the aggregated vertices 3

and 4, i.e., w̄34. Vertex 3 is the aggregation of vertices 3, 7, and 19, and vertex 4 is the

aggregation of vertices 5, 13, and 14. Therefore,

w̄3,4 = w3,7 + w3,19 + w7,19 + w5,13 + w5,14

+ w13,14 + w3,5 + w3,13 + w3,14 + w5,7

+ w7,13 + w7,14 + w5,19 + w13,19 + w14,19.

Similarly, we calculate the edge weights for the other vertices.

Next we set r = 0 and we solve the SDP relaxation to get X∗. After performing the

same steps as before, we obtain the Tijh shown in Table 4.2.

From Table 4.2, we can deduce that vertices 1, 2, and 3 are in separate partitions so

we update r = 3. Moreover, vertices 2 and 5 are put in the same partition, and vertices 3

and 4 are also in the same partition. Since r = k, we stop the algorithm with the following

feasible solution: 



Partition Vertices

1: 1, 4, 12, 15, 18, 20

2: 2, 9, 10, 11, 6, 8, 16, 17

3: 3, 7, 19, 5, 13, 14

57



i j h Tijh

1 2 5 1.00

1 3 4 1.00

2 3 5 1.00

2 4 5 1.00

3 4 5 1.00

2 3 4 1.00
...

...
...

...

1 2 3 0

1 3 5 0

1 2 4 0

1 4 5 0

Table 4.2: Iteration 2 of the ICH heuristic example with n = 20 and k = 3.

Iteration 1

Iteration 2

Aggregate Vertices

Figure 4.1: The ICH heuristic example with n = 20 and k = 3.
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4.2.1 The ICH Heuristic with Convex Combination

The convex combination technique to improve on the Goemans-Williamson hyperplane

rounding was proposed and implemented for k = 2 in [45]. Using this convex combi-

nation technique results in a better solution than using only hyperplane rounding. This

motivated us to apply the convex combination idea to the Frieze and Jerrum [18] algorithm.

Given the SDP solution matrix X∗
1 and the hyperplane rounding feasible solution matrix

Xfeasible
1 , we take their convex combination to obtain the following matrix:

X2 = αX∗
1 + (1− α)Xfeasible

1

Next we take matrix X2 and we can perform the hyperplane rounding technique on this

matrix to get a new feasible solution.

Similarly, we applied the convex combination technique to the ICH heuristic. Taking

the feasible solution matrix Xfeasible
1 obtained from the ICH heuristic and the SDP solution

matrix, X∗
1 , we consider a convex combination of the following form:

X2 = αX∗
1 + (1− α)Xfeasible

1 .

Then we can apply the ICH heuristic to the X2 matrix to get a new feasible solution,

Xfeasible
2 . However, we found that the new feasible solution Xfeasible

2 is identical to Xfeasible
1 .

This result is not too surprising since multiplying X∗
1 by α only scales the values of Xij and

will not change their sorted order. In addition, since we got Xfeasible
1 from X∗

1 , they most

likely have vertices i, j, and h with the same sorted order. Once we multiply Xfeasible
1 by

(1−α) then this will only scale the values but will not change their sorted order. We have,

X2 = αX∗
1 + (1 − α)Xfeasible

1 so adding the edges values, Xij, of the three vertices using

the matrix X2 will give the same result as when we add the edges of the three vertices

using the matrix X1 since the order of Tijh values in the sorting will likely remain the same

(with a difference in the value since it is scaled and shifted). This was the case in all our

computational experiments.
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Hence, the convex combination technique does not seem to improve the solution for

the ICH heuristic. This gives evidence that the heuristic is strong enough that it does not

benefit from performing the convex combination improvement technique.

4.2.2 Comparison of Hyperplane Rounding and ICH

In this section, the two techniques to find a feasible solution for the MkP problem are

compared. We implemented both algorithms, ICH and the hyperplane rounding presented

in [18] using C and MATLAB respectively.

Since the rounding presented by [18] is randomized, each time we run the algorithm

we get a different feasible solution. As a result, this algorithm was run 30 times and the

minimum and the average of the upper bound (UB) were computed. The average value can

be interpreted as an estimate of the expected value of the UB that this algorithm would

give. On the other hand, the minimum value is the best solution found over the 30 runs.

The hyperplane rounding with the convex combination technique provides different

upper bounds for different values of α as seen in Figure 4.2-4.4. The plots shown in Figure

4.2 are for different values of |V | where we have a complete graph and the edge weights are

random with values between 0 and 9. For small values of |V |, the upper bound remains

almost constant as α varies. As we increase |V | beyond 50 vertices, then we notice that

the average upper bound provided by the hyperplane rounding decreases as α increases.

However, this can’t be generalized for all instances since the upper bound variation with

α is unclear for certain groups of instances in particular for spinglass2g instances where we

have positive and negative edge-weights, see Figure 4.3.

The two techniques were tested on the following three types of graphs for k = 2 and

for k = 3:

• Random Instances: These instances consist of complete graphs where the edge weights

are randomly generated between 0 and 9 using a C code.

• Spinglass2g Instances: These instances consist of graphs that were generated using
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Alpha vs. UB using HPR
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Figure 4.2: The average value of the UB provided by the hyperplane rounding [18] with

convex combination versus α for different values of |V | for random instances.
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Alpha vs UB using HPR

-4000000

-3500000

-3000000

-2500000

-2000000

-1500000

-1000000

-500000

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

U
B

4_4

5_5

6_6

7_7

8_8

9_9

10_10

Figure 4.3: The average value of the UB provided by the hyperplane rounding [18] with

convex combination versus α for different values of |V | for spinglass2g instances.
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Alpha vs. UB using HPR
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Figure 4.4: The average value of the UB provided by the hyperplane rounding [18] with

convex combination versus α for different values of |V | for grid 2D instances.
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rudy graph generator [40]. Spinglass2g generates a toroidal 2D grid for a spin glass

model with gaussian interactions.

• Grid 2D Instances: These instances consist of graphs that were generated using rudy

graph generator [40]. Grid 2D generates a planar bidimensional grid with edge weights

all equal to 1.
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|V | ICH LB %Gap

4 × 4 -954077 -954107.5 0.003

5 × 5 -1367840 -1484348 8.517

6 × 6 -2758520 -2758520 0

7 × 7 -3282586 -3282586 0

8 × 8 -4063059 -4063059 0

9 × 9 -4758332 -5236178 10.042

10 × 10 -6570984 -7230203 10.032

Table 4.9: Comparing the UB provided by ICH and the LB at the root node of the branch-

and-cut tree using spinglass2g instances and k = 3.

From Tables 4.3-4.8, we can notice that ICH is always better than the expected value of

the hyperplane rounding, and is in most cases at least as good as its minimum. Moreover,

even using different values of α for the hyperplane rounding with convex combination, the

results are still not as good as those of the ICH heuristic. Therefore, the UBs provided by

ICH are generally tighter and using it at each node of the branch-and-cut algorithm will

help reduce the size of the tree.

From Table 4.4 we can see that for spinglass2g instances where we have positive and

negative weights, the ICH heuristic provides a better solution than minimum value of hy-

perplane rounding for all values of α. This shows that ICH is efficient in the presence of

negative weights unlike the hyperplane rounding.

Moreover, from Table 4.9 we can see that the ICH heuristic provides a tight bound at

the root node and sometimes can directly find the optimal solution. This would help the

branch-and-cut tree not to grow exponentially and likely speed the computational time in

many cases.

We note that for the grid 2D instances we can find a solution by inspection. For the

case k = 2 there is a unique solution, while for k = 3 we have multiple solutions. Moreover,
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for k = 2 the SDP matrix X∗ satisfies Xij ∈ {−1, 1} while for k = 3 the SDP matrix X∗

doesn’t have its entries Xij ∈ {−1
2
, 1} but the matrix is a convex combination of several

multiple solutions. We included the results for grid 2D instances to show that even if we

don’t have the SDP matrix with discrete entries, the ICH heuristic can still extract a feasi-

ble solution that was found to be optimal for all test cases tried. So, unlike the hyperplane

rounding heuristic, the ICH heuristic can find the optimal solution for both cases, even

though the matrix entries aren’t of the form { −1
k−1

, 1}.

In this section, we experimentally showed the strength of the ICH heuristic. This

justifies its use in the branch-and-cut algorithm to provide a feasible solution at each node.

4.3 Branching Rules

The success of a branch-and-bound algorithm depends on the choice of the edge to branch

on. Helmberg and Rendl in [22] presented five different branching rules referred to R1-R5.

R1 and R2 follow the easiest first strategy, that is, to branch first on a pair of vertices

{i, j}, where the decision whether nodes i and j are in the same partition at the optimum

or not seems to be obvious. In the case of k = 2, R1 selects edge ij with maximum |Xij|
value while R2 chooses i and j so that they minimize

∑n
l=1(1− |Xil|)2.

Rules R3 and R4 go for the opposite policy, namely branching first where the decision

seems to be hard. When k = 2, R3 selects edge ij with minimum |Xij| value. R4 chooses

edge ij with vertex i that minimizes
∑n

l=1(1−|Xil|)2 and vertex j that minimizes
∑n

l=1 X2
jl.

Finally, in rule R5, information given by the triangle inequalities is used.

Based in the results of the analysis done in [22], we decided to use a version of R3 as a

branching rule in our branch-and-cut implementation. Our rule R3 works as follows:

Select the edge ij with Xij farthest from 1 and −1
k−1

, i.e., branch on the edge ij that mini-

mizes |2Xij(k−1)−k+2

k
|.
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For example, when k = 3 we will branch on the edge that has a value farthest from 1

and −1
2
. So if we were given the following values of Xij:

X∗ =




1 0.524 −0.56 0.1996

1 0.911 −0.34

1 0.257

1


 ,

then we choose to branch on X34 since it has the value farthest from 1 and −1
2
. So on one

branch we set X34 to have a value of 1 and on the other branch to a value of −1
2
.

By branching on the most difficult decision Xij, we hope that the bound will improve

faster. If this is the case then the branch-and-cut tree will be more balanced, as seen for

example in Figure 4.5, where |V | = 30 and k = 3.

4.4 Conclusion

In this chapter we described our branch-and-cut SDP-based algorithm. To obtain a feasible

solution, we use the ICH heuristic without the convex combination technique, since it

had a better performance than the hyperplane rounding and the convex combination did

not show any improvement of the solution. The branching strategy used is discussed in

Section 4.3. Furthermore, we added the option of tightening the SDP by triangle and clique

inequalities at the root node or at each node of the tree. The flow chart of the SDP-based

branch-and-cut algorithm (SBC) is shown in Figure 4.6.
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LB= 510.392

UB=511

Incumbent=511

LB= 511

UB=511

Incumbent=511

LB= 510.69

UB=521

Incumbent=511

LB= 511.48

UB=515

Incumbent=511

LB= 512.66

UB=513

Incumbent=511

X15,27=-0.5 X15,27=1

X3,21=-0.5 X3,21=1

Figure 4.5: A branch-and-cut example for |V | = 30 and k=3.
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Input Graph

G(V,E) and edge

weights wij and

partition size k.

Set t=1

Solve node t using

CSDP

and get LBt

Check for violated

triangle and clique

inequalities outside a 

tolerance tc and tt

Add the most

violated

inequalities

outside tolerances

tc and tt

Yes

No

Decrease the 

tolerance tc and tt

Apply heuristic

and get a feasible

solution and UBt.

Set Incumbent

=min{UBt}

Choose most

fractional edge to 

branch on

 (Incumbent > LBt) and

(Solution is feasible) and

(Solution not discrete)

Yes

Fathom node tNo

Check if all

nodes are 

fathomed

End

 Incumbent is

Optimal

Branch on node

t+1

Yes

No

Figure 4.6: Flow chart of the SBC algorithm.
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Chapter 5

Computational Experiments with the

New Framework

5.1 Computational Results

We implemented in C the branch-and-cut SDP-based Algorithm (SBC) described in the

previous chapter. To solve the SDP, which has to be done at each node of the tree, we used

the CSDP solver [6]. The SDP relaxations were solved from scratch at each node of the

tree since it is not straight forward to do warm start with SDP by exploiting information

generated at parent nodes. The SBC algorithm was tested using several instances on a

Sun workstation with 16 processors and 32 GB of RAM.

5.1.1 Test Instances

The first group of instances consists of complete graphs (100% edge density) with random

edge weights. All graphs in this group were generated by using a C code. We generated

several instances each of the following type of graph:

• Random: Complete graphs with integer edge weights chosen randomly from [0, 9].

The second group of instances consists of graphs generated using the graph generator of

Rinaldi [40], rudy. We generated several instances for each of the following types of graphs:
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|V | Time Optimal Solution |V | Time Optimal Solution

15 0:0:08 86 30 1:27:01 531

15 0:0:17 104 30 0:44:10 530

15 0:0:21 109 30 3:27:29 523

20 0:0:33 207 35 7:16:41 721

20 0:1:35 236 35 8:14:38 720

20 0:7:51 201 35 8:38:49 685

25 0:1:11 348 40 7:10:14 920

25 0:4:25 338 40 4:36:01 903

25 0:2:29 322 40 7:50:48 951

Table 5.1: SBC results for random instances where k=3. The time is given in hr:min:sec.

• Grid 2D: described in Section 4.2.2.

• Toroidal grid 2D: generates toroidal bidimensional grid with edge weights equal to 1.

The grid has size n=(height×width).

• Spinglass2G: described in Section 4.2.2.

• Spinglass3G: generates a toroidal 3D grid for a spin glass model with Gaussian dis-

tributed ±J interactions. The grid has size n =(rows×columns×layers).

• Spinglass2pm: generates a toroidal 2D-grid for a spin glass model with ±1 interac-

tions. The grid has size n =(rows×columns). The percentage of negative interactions

in this case is taken 50%.

• Spinglass3pm: generates a toroidal 3D-grid for a spin glass model with ±1 interac-

tions. The grid has size n =(rows×columns×layers). The percentage of negative

interactions in this case is taken 50%.

We note that for instances that have integer edge weights the optimal objective value

will always have an integer value. Therefore, if upper and lower bounds in a node are

such that | LB-UB |< 1, we can fathom the node. If the global bounds differ by at
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most 1, then we stop the algorithm with an optimal solution. Tables 5.1-5.8 show the

computational results for the SBC algorithm for k=3. Table 5.1 presents the time and

the optimal solution for random type instances with |V | being the number of vertices of

the graph. Table 5.2 presents results for grid 2D and toroidal grid 2D type of instances

where the number of vertices is given by height×width. Tables 5.3-5.8 give results for

two-dimensional and three-dimensional spin glass instances. In addition to the optimal

solution, the lower bound and the upper bound at the root node as well as the time at

the root node is presented. Moreover, the number of nodes of the branch-and-cut tree as

well as the time to reach a certain percentage gap are given in the tables. The symbol x
denotes that a lower % gap was achieved directly. For Table 5.3, we give optimal solution

for sizes up to 100 vertices (10×10) and provide a feasible solution for larger sizes (up to

169 vertices) with a percentage gap less than 6%.

Size Time

6 20

20 30

69 40

207 50

1001 60

4237 70

12162 80

35486 100

Size of the graph vs. Time

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120

|V|

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 5.1: Size of the graph versus computational time.

In order to compare Biq Mac and SBC, we need to choose k = 2 since Biq Mac is

designed specifically for max-cut only. The performance is compared in terms of time since

both algorithms provide the global optimal solution. The results are given in Table 5.7.
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Optimal Number

|V | solution Time of Nodes

Grid 2D 3 × 3 0 0:0:01 1

4 × 4 0 0:0:2 1

5 × 5 0 0:0:11 1

6 × 6 0 0:0:49 1

7 × 7 0 0:02:37 1

8 × 8 0 0:12:54 1

9 × 9 0 0:43:18 1

10 × 10 0 1:58:22 1

Toroidal grid 2D 4 × 4 0:0:0 7 1

5 × 5 0 0:0:16 1

6 × 6 0 0:0:43 1

7 × 7 0 0:04:09 1

8 × 8 0 0:12:35 1

Table 5.2: SBC results for grid 2D and toroidal grid 2D instances where k=3. The time is

given in hr:min:sec and the number of branched nodes of the branch-and-cut tree is given

in the last column.
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|V | SBC Biq Mac

10 3 0.01

15 9 0.04

20 32 0.1

25 41 0.12

30 417 2

35 213 3

40 814 6.4

Table 5.7: Computational time (in seconds) of SBC versus Biq Mac.

We next show the computational results when comparing SBC with the ILP model

(ILPMKP) implemented in GAMS and using CPLEX solver. We set a time limit of 1000

seconds for both approaches. CPLEX can solve up to 20 vertices within a reasonable time.

For 20 vertices it stops with a percentage gap between 15%-18% since the time limit was

exceeded. Using CPLEX, the percentage gap varied between 25% and 36% for |V | =25.

On the other hand, SBC can solve these graphs to optimality within few minutes. For

|V | > 25 it would take CPLEX more than a day to find a solution. This is expected since

we have an exponential number of inequalities for ILP formulation and CPLEX doesn’t

know the structure of the problem.
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k = 5 k = 7

|V | Objective Value Time Objective Value Time

spinglass2pm 5 × 5 -21 0:07:48 -21 430

6 × 6 -28 0:25:48 -28 1212

7 × 7 -42 0:44:04 -42 10382

8 × 8 -55 5:32:14 -55 21410

9 × 9 -69 12:53:57 -69 47550

spinglass3pm 2 × 3 × 4 -21 0:07:27 -21 221

2 × 3 × 5 -28 0:12:10 -29 3144

2 × 4 × 4 -28 0:19:36 -28 975

3 × 3 × 3 -26 0:37:53 -26 1645

3 × 3 × 4 -37 0:49:23 -37 2676

3 × 4 × 4 -48 4:10:31 -50 10256

3 × 4 × 5 -65 5:30:21 -66 17412

4 × 4 × 4 -68 13:49:23 -70 42670

spinglass2g 6 × 6 -2738870 0:23:41 -2738870 21

7 × 7 -3843979 0:42:31 -3864156 2363

8 × 8 -5485579 4:03:17 -5541348 7985

9 × 9 -5745419 11:22:31 -6026024 31169

10 × 10 -6860706 19:14:02 -7644016 63149

spinglass3g 2 × 3 × 4 -2212707 0:05:21 -2212707 462

2 × 3 × 5 -2081357 1:26:47 -2081358 2375

2 × 4 × 5 -3578762 2:30 -3578762 5281

3 × 3 × 3 -2932403 0:24:47 -2932403 3003

3 × 3 × 4 -3552295 5:41:58 -3559337 14475

3 × 3 × 5 -4561622 2:04:49 -4648539 3729

3 × 4 × 4 -5371414 7:14:12 -5466518 9536

3 × 4 × 5 -5474952 24:49:15 -5530625 14963

4 × 4 × 4 -7619675 9:30:19 -7646881 17825

Table 5.8: SBC results for k = 5 and 7. The time is given in hr:min:sec.
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5.2 Comparison and Analysis

The computational results which we have presented for graphs with random edge weights

and for spin-glass problems using Gaussian and ±1 distributions lead to the following

observations:

1. SBC found the optimal objective for problems with Gaussian distributed and ±1

interactions of dimension 2 and 3 and with sizes up to n = 60 and k=3 in a reasonable

amount of time. For 60 < n ≤ 100 we can find a gap of 1% with a reasonable amount

of time, however reaching a 0% gap converges slowly.

2. SBC found the optimal objective for grid 2D and toroidal grid 2D instances with k=3

of sizes up to 80 in less than an hour and at the root node.

3. Comparing SBC on random instances with 100% density with spinglass2g and sp-

inglass2pm instances, we notice for the same n the time required for random type

instances is larger. This is because the spinglass instances are sparse while random

type instances are complete graphs and hence density might have an effect on the

computational time.

4. For k = 5 and 7, our empirical analysis shows that for a given |V | as k increases, the

computational time decreases. Moreover, for some test cases the objective function

values of the same test instance with different k values are the same, see Table 5.8.

This is because the solution partitioned the vertices into partitions less than k due

to the presence of positive and negative edge weights.

5. The remarkable tightness of the bounds obtained at the root node (in most cases <

5% gap) make it worthwhile to conduct a branch-and-cut algorithm since this might

reduce the number of nodes of the tree.

6. Furthermore, the ICH heuristic algorithm applied to the solution of (SMKP-C) seems

to often provide an optimal solution at the root node or after only a few branches.

Most of the times the lower bound is the bottleneck where we often have the optimal

solution from the heuristic but cannot prove optimality.
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Biq Mac is a software specialized for k = 2, hence, as shown in Table 5.7, it is ex-

pected to perform better than SBC which is applicable for any value of k. Moreover, Biq

Mac uses the bundle method that is specialized for max-cut and is much faster than the

general-purpose CSDP solver.
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Chapter 6

Conclusion and Future Work

In this thesis we considered the minimum k-partition problem. We developed and imple-

mented the novel ICH heuristic which appears to be a promising method for generating a

good feasible solution. The proposed model improves the upper bound and gives a good

feasible solution. ICH can be applied to the MkP problem for different values of k. When

compared with other approaches in the literature such as the hyperplane rounding tech-

nique by Frieze and Jerrum, it provides a better solution. Moreover, the ICH heuristic was

used in a SDP-based branch-and-cut approach to provide optimal solution for MkP. The

SBC algorithm was implemented and tested using several instances and different values of

k. Finally, computational results show the potentials of SBC in handling the MkP problem.

Future research should investigate the algorithm used to solve the SDP at each node

of the tree since this is the major bottleneck in SBC algorithm. In particular, exploiting

the structure of the graph and its sparsity may lead to an efficient way for solving the

SDP relaxations. In addition, improvements can be made on the separation of clique and

triangle inequalities in order to be used efficiently in SBC. Furthermore, adding more valid

inequalities might tighten the bound and reduce the computational time. Also we might

investigate warm starting our branch-and-cut algorithm so that we can use information

generated at parent nodes and especially at the root node when branching, instead of

solving the SDP relaxation at each node from scratch. Future work also includes modifying

the SBC algorithm and the ICH heuristic so that they can be applied to closely related
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partitioning problems such as the k-way equipartition problem. Finally, we also need to

improve the computational time for solving the strengthened SDP relaxation to be able to

utilize it in the branch-and-cut algorithm.
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