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Abstract

The traditional approach to FPGA clustering anids-level placement has been shown to yield
significantly worse overall placement quality than apphmscwhich allowsLES to move during
placement. In practice, however, modern FPGA architesttggquire computationally-expensive
Design Rule Checks (DRC) which rendare-level placement impractical.

This thesis research addresses this problem by proposimyel olustering framework that
producesbetter initial clustersthat help to reduce the dependencesug-level placement. The
work described in this dissertation includes: (1) a congmariof various clustering algorithms
used for FPGAs, (2) the introduction of a novel hybridizeastéring framework for timing-driven
FPGA clustering, (3) the addition of physical informati@mbake better clusters, (4) a comparison
of the implemented approaches to known clustering toolsl @) the implementation and
evaluation of cluster improvement heuristics. The propotxhniques are quantified across
accepted benchmarks and show that the implemedReck produces results with 16% less wire
length, 19% smaller minimum channel widths, and 8% lesgatitielay, on average, than known
academic tools. The hybridized approadbRack, is found to achieve 21% less wire length, 24%

smaller minimum channel widths, and 6% less critical detayaverage.
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Chapter 1

Introduction

The Field Programmable Gate Array (FPGA) has become verylpom the last 25 years, and can
be found in a variety of applications. However, the perfanoeof the FPGA is highly dependent
on the quality of the Computer-Aided Design (CAD) tool used.tihes FPGA becomes more and
more powerful due to advances in process technology andtectire research, better tools are
needed to take full advantage of its capabilities. Theesfibiis of utmost importance to improve

the quality of the design tools used.

1.1 Overview of FPGAs

There are two primary platforms that hardware designs camiptemented upon: ASICs, and
FPGAs. The Application-Specific Integrated Circuit (ASIC)asspecially designed, custom
manufactured chip. In comparison, the Field Programmalate @rray (FPGA) has a regular
structure, with a standard set of elements that can be progesl to function as any digital
circuit. There are several advantages of using FPGAs ovdCAS First and foremost, the
FPGA is programmable, whereas the ASIC is not. The programiityaof the FPGA allows

easy modification of its programmed application. In corifrékee ASIC cannot be modified once
manufactured. If a different function is required of theghihen a new ASIC must be made.

This can pose as a significant problem during the developahstage of hardware designs. If
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a bug is found in the design, new chips must be remanufactwigdthe old ones discarded.
However, if the hardware design was based on FPGAS, thengsigrdcan be altered easily by
simply reconfiguring the FPGA. For this reason, FPGAs arg pepular for prototyping designs.
FPGAs also have an advantage over traditional ASICs in tefntsne-to-market, as the chip
manufacturing process can take months, whereas FPGAs ailalde off the shelf. However,
even though there are many advantages to adopting the FPGfevelopment, FPGAs are not
without drawbacks. Because of their programmability, FR@#e usually much larger in area than
an equivalent ASIC, leading to higher silicon costs and pawasumption. They also tend to be
slower than their ASIC counterpart. Therefore, for applmas that require high performance and
have stringent power requirements, such as cell phonecapipins, ASICs are still the preferred
choice.

A popular FPGA architecture that is manufactured today & igland-style cluster-based
FPGA. An example of this type of architecture is shown in Fégli.1. The key characteristic
of this architecture is the organization of logic blocks awides. In this architecture, groups of
logic, called Configurable Logic Blocks(Bs) are arranged in a grid-like pattern, separated by
routing channels. These channels contain many paralleieets of wires that can be programmed
to form connections betweerLBs. A more detailed view of the FPGA architecture is shown in
Figure[ 1.2, where the building blocks of the FPGA is labelldePGAs interact with off-chip
devices through the use of Input/Output) blocks, located along the periphery of the chip. The
square blocks in the interior of the chip ateBs with routing channels separating them. At the
intersection of horizontal and vertical channels, routswgtch blocks, such as the one shown in
Figure 1.3, control which horizontal and vertical wires aosnected. In Figure 1.3, 17 wires can
be seen in every horizontal and vertical channel. The rguinitch block performs the actual
connection of wires, thus allowing horizontal wires to b@&gected to vertical wires as necessary.
The switch shown allows a wire to be connected to one specifeiw every channel to which it
is adjacent.

It should be noted that the architecture shown in Figure 4.4 very simplified layout of a
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Figure 1.1: Sample Island-Style FPGA Architecture

FPGA. Modern FPGASs, such as the Cyclone Il [1] and Stratix 2]Ifamilies manufactured by
Altera, have many other types of blocks other than logic @RRGA. These additional hard com-
ponents further extend the capabilities of the FPGA, byiipeoating memory components such as
Random Access MemorrAM) blocks, multiplier blocks such as Digital Signal ProcegdDsP)
units, and Phase-Locked Loopa.(s) in the FPGA fabric.

The basic building block of logic in a FPGA is the Basic Logiefent 6LE). A simplified
architecture for aLE is shown in Figure 1.4. TheLE is made up of a Look-Up Tabla.(T)
for combinational logic, and a register, also referred toad$ip-flop, to store state. A-LuT
is essentially a memory component wihinput pins, and one output pin. Depending on the
combination of the input pin values, the row in tkeuT will be addressed and the output

set accordingly. There are a few different configuratioret theBLE can take. As seen from
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Figure 1.2: Detailed Placed-and-Routed FPGA Design

Figure 1.4, the output of theLE may either be the output of thesT, or the output of the register.
Again, this diagram is very simplistic, and does not shovesghcontrol signals (e.g., sets/presets),
or other enhancements such as high-speed arithmetic legic ¢arry-chains).

The second hierarchical logic structure of the FPGA is thefi@arable Logic Block €LB). A
CLB is a collection ofsLEs. Several salient features ofcaB are shown in Figure 1.5. It can be
seen that the outputs of tleEs contained in theLB can be connected to the input of allEs
within thecLB. These are also referred to as local, or intra-cluster, eotions of acLB. It should
be noted that the number of input pins of thies is typically less than the sum of the number of
input pins of the containedLEs. Therefore, if theBLES within thecLB are to be fully utilized,

some of thesLEs will need to share inputs. Also, if one of the inputs @& is driven by another
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Figure 1.3: FPGA Routing Switch Block

BLE located within thecLB, the output signal can directly feed tlsE without having to be routed
outside thecLB. To take advantage of this unique characteristic ofth®, it is preferable to group
togethersLEs that have many interconnections. In this FPGA architecttiire wires within the
cLB are much shorter than wires betweerrss. Therefore, the delay of intra-cluster connections
are much less than inter-cluster connections since it i2cessary to use routing resources. In
Figure/ 1.5, the number adLEs contained in theLs is 3. Although the inputs are depicted to
come from the left side of theLB in this figure, in practice, inputs are generally distritltligdong
the top, left, and bottom sides of tlkee B, with the outputs leaving the right side.

There are many parameters and constraints present in thé& BRfBitecture. Many of these
parameters cannot be controlled by the user. For examptemders such as the number of
BLES percLB, the number of inputs pezLB, and the number of wires in the routing channel are
predetermined by the manufacturer, and consistent thamutghe chip. Therefore, it is up to the

user of the FPGA to take advantage of the architecture teeaelthe best possible performance.
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Figure 1.4: A Basic Logic ElementgLE)

However, it is unreasonable to expect all users of the FPGlllypunderstand the complete inner
workings of the FPGA. This would create a very steep learmimgye, and discourage designers
from using the FPGA as their primary method of developmentrtuhately, tools have been
developed to make FPGAs much easier to use, and to help thenas@mize the performance

of their designs on the FPGA.

1.2 The FPGA CAD Flow

The purpose of the Computer-Aided Design (CAD) flow is to brittgegap between the hardware
designer and the hardware implementation of their desigther-PGA. The CAD tool takes the
circuit design, written in Hardware Description Langua@€ebL) such as VHDL and Verilog or as
schematics, as input. It then executes a number of stepsgataiformat that can be used directly
to configure the circuit onto the FPGA. The overall FPGA CAD fligvehown in Figure 1.6. The
main steps of the FPGA CAD flow includeogic SynthesisTechnology MappingClustering
PlacementandRouting

The first step id.ogic Synthesighich, in itself, consists of high-level synthesis and teabgy-
independent logic optimization. High-level synthesis k#oto convert the HDL of a design into

Register Transfer Level (RTL) logic (i.e., registers, logiquations and macro blocks such as
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Figure 1.5: A Configurable Logic Block¢LB)

RAM, DSP and arithmetric). Technology independent logic optim@atsubsequently performs
additional optimizations such as the removal of redundagitc| register retiming, and so forth.
The most well-known academic synthesis tools incl8t8 [3], WSI S [4] and ABC [5]. Then,
during Technology Mappingthe design is converted into a set of primitive blocks thastein
the FPGA, connected by nets. For the cluster-based FPG2#e thremitive blocks areuTs and
registers. Some popular technology mappers inclduz t | e [6], Fl owvap [7], Cut Map [8],
DART [9], FAST [10], | Map [11] andDAOmap [12]. Then, in theClusteringstage, these primitive
blocks are grouped into larger blocks that exist on the FPGAhe case of the island-style FPGA
described previously, theuTs and registers are first grouped IrBQES in an intermediate step
called register packing. Then, from the resulting seBoEs, a set ofcLBs are made using
various clustering algorithma/Pack[13], T- VPack [13], i RAC [14] andRPack [15] are examples

of academic clustering tools.
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Figure 1.6: FPGA CAD Flow

At this point, a clustered netlist consisting ©fBs and nets that connect tkeBs together is
generated. This netlist is then fed into kecemenstep, wherecLBs are moved around on a grid
representing the FPGA chip to determine the best locatioed&chcLB in the clustered netlist.
Academic placers vary widely in the algorithm used, randnogn algorithms such as simulated
annealing inVPR [13, 16], to partitioning algorithms [17-20]. After the plement step has been
completed, evergLB is assigned to anandy coordinate representing its final placement location.
This is also referred to as the physical location afias.

Finally, after the physical locations of alLBs are found and set, the nets that conimees are
assigned to specific wires in the routing channels duringRbetingstage. Routing can be split
up into two stages: global, and detailed routing. Duringoglorouting, the channel is selected

for every net, but the specific wire in the channel is not chosghen, during detailed routing,
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each net is assigned to a specific wire in the channel. Rotypisally perform the two step
either sequentially, known as 2-step routing, or simultarsty, where both the channel and wire
are chosen at the same time. One notable detailed routingtalys iSSEGA [21, 22]. The most
widely used routing algorithm is the Pathfinder [23] algomit, which is based on the A* search
algorithm. There have been extensive studies on routing?4 VPR [13, 16] also functions as a
router in addition to serving as a placement tool.

As the design progresses through each step of the CAD flowgdrbes more and more fixed.
Decisions made early in the flow have a dramatically greaigraict on subsequent steps of the
flow. For example, at thBlacemenstage, the contents ai.Bs have been determined, and usually
cannot be changed. Therefore, if clustering was perfornuily the placement problem also
becomes more difficult. For example, if a large numbecoBs was made during clustering, the
number of blocks that the placer needs to deal with also as@® This can affect the quality of
the final placement, as well as increase the runtime of suiasgctages of the flow. Thus, itis
important to optimize each step of the CAD flow, and more imgoatly, steps that occur early on

in the flow.

1.3 Definitions of Key Terms

Throughout this thesis, @usterrefers to acLB. Clusteringis the process of groupingLES into
cLBs such that they are design rule correct. Bnehitectureof an FPGA refers to the maximum
number ofBLES that can be put into oneLB. A netlistis the description of a hardware circuit,

denoted by blocks of logic, or nodes, connectecgtgesor nets

1.4 Statement of Thesis

There are three main objectives in the research documentéuis dissertation. The primary
objective is to provide a thorough analysis of tDleisteringstep of the FPGA CAD flow, and how

it can be enhanced. To achieve this, several clusteringitigts have been implemented within
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the same framework to evaluate and compare the performaneach algorithm. The second
objective is to further improve upon the performance of ti@lemented algorithms through the
addition of some preliminary physical information. The enented algorithms have been evaluated
to determine whether an improvement can be achieved. Tleeséis have been compared to data
from other known clustering tools. Then, it is the goal of thesis to determine how accurate
physical information needs to be before a positive impaatlastering can be witnessed. Finally,
several cluster improvement strategies have been impleddo study whether post-clustering
optimizations can lead to improvements in the final placamen
This dissertation is organized as follows. Chapter 2 pravida overview of clustering

algorithms found in the literature, and discusses releyaayers. Chapter 3 describes the
implemented clustering algorithms in detail, as well asghlsancements made to these algorithms
via the addition of physical information. Two cluster impement heuristics are described in
Chapter 4, which seeks to improve upon any initial set of elissinade by other tools. In Chapter 5,
results from the implemented algorithms and heuristicscatiected and compared. Finally, the

findings are summarized in Chapter 6 with future directionirmed in Chapter 7.

10



Chapter 2

Background

Clustering serves many crucial functions in the FPGA CAD flowst-it makes the placement
problem smaller. By clusteringLES intoCLBS, the number of blocks that the placement tool needs
to deal with decreases substantially. This tends to trémgto reduced CPU requirements. The
second advantage of performing clustering is that it elates Design Rule Checks (DRC) during
placement. While makingLBs for a given FPGA architecture, the constrainte€ogs are strictly
observed. Therefore, during placemeat,Bs can be moved around without the need to worry
that the move will result in an infeasible placement. Focphaent algorithms such as simulated
annealing, where thousands @fB moves are made while placing the circuit, the elimination of
DRC checks can significantly speed up the placement protessly, but most importantly, the
main objective of clustering is to absorb signals and/aticai connections intaLBs. Critical
connections are those connections that are important t@én®rmance of the circuit. The
absorption of critical signals intaLBs tends to improve the overall timing performance of the
circuit since critical connections do not need to be routetiveencLBs. The absorption of
signals in general, whether critical or not, tends to redheenumber of signals that require routing
betweencLBs. This also has a great impact on the overall routabilityhefdircuit.

Clustering can be broken up into two stages: register packingd clustering. During register

packing, theLuTs and registers of the primary netlist are packed mitgs. In the second step,

11
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theBLES are clustered to forraLBs. The focus of clustering optimizations is on the secongesta
since register packing is fairly straightforward.

The clustering problem is inherently different between PRBG@&nd ASICs . In ASICs, the
main purpose of clustering is to group together standand sel that the placer will have fewer
aggregates to deal with. However, in FPGAs, because of thany architectural features and
constraints, the primary objective is to create architedly legal blocks of logic, rather than to
reduce the size of the placement problem. Clustering algostcan generally be grouped into
two categories: seed-based, and depth-optimal methoeésl-I&esed algorithms work by forming
onecLB at a time using an objective function. Depth-optimal methtashd to focus on improving
the timing aspect of the circuit, and seek to optimize it$qrarance by duplicating timing-critical
logic during clustering.

This chapter seeks to provide an overview of the basic dinst@lgorithms, and a survey of
existing literature. There have been substantial invastgs conducted on the optimization of
the clustering step. In Section 2.1, the algorithm usednduregister packing is briefly described.
Section 2.2 discusses seed-based clustering algorithmgthidptimal techniques, such as logic
duplication, are shown in Section 2.3. A brief survey of ARIQstering algorithms can be found
in Section 2.4. There has been some recent work that invelwedining the clustering step with
the placement step, and these are discussed in Sectioni2allyRhe connection of the literature

discussed to the work presented in this dissertation is shiov@ection 2.6.

2.1 Register Packing

The first stage in clustering is the formulation ®EEs from theLUTs and registers in the
netlist. ABLE can contain at mostiauT node and a register node, and will have only one output.
Therefore, a register can only be packed withua node if one of the outputs is not needed outside
the BLE. This can occur in two situations, as illustrated in Figurg. ZThe first situation occurs
when the output of theuT goes only to the input of a register, and is not required by @ther

node in the netlist. The second situation occurs when theubwtf a register is only used as an

12
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Figure 2.1: PossiblesLE Configurations

input to a singlecuT node. In this case, theuT and register can be packed together as long as it
does not violate the input constraints of thiee. In Figure 2.1a, the absorbed net exists between
the output of the.uT and the input of the register. However, in Figure|2.1b, theoafed net is
between the output of the register, and the input ofLthe.

The basic register packing algorithm is shown in Figure E@r every register, its input and
output nets are examined. If the net only has two terminald,the terminal is auT, then this
register is grouped with theuT to form aBLE. At the end of register packing, all unclustered

nodes are placed into separates.

2.2 Seed-Based Approaches

Seed-based methods are among the most established tezhfogelusteringgLEs in FPGASs. In
such methods¢cLBs are made greedily one at a time until evene has been clustered into a
CLB. Seed-based approaches typically aim to minimize the nuofbeLBs formed, but can also
be modified to take into account other objectives such asigjrand power constraints.

One of the most widely known academic seed-based clustarolg isVPack and its timing-
driven versionT- VPack [26,27]. In addition to trying to packLBs to capacity,T- VPack also

accounts for the timing performance of the circuit by atténgpto absorb netlist connections that

13
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Procedure: REGISTERPACKING
Inputs: A primary netlist to be packed
Returns: A packedsLE-level netlist,N’

for eachregisteri € N do
cl us < new Cluster;
cl us.add();
for eachedgee c i andi is unclusteredlo
if eis an input edge toand getNumTerminals(e) == then
driver Node < get the driver of edge;
if driverNode is a.uT then
cl us.add@ri ver Node);
continue;
fi
fi
if eis an output edge dfand getNumTerminals(e) == then
si nkNode « get the sink of edge;
if sinkNode is auT and sinkNode and i can be added in the same clusien
cl us.addgi nkNode);
continue;
fi
fi
od
od
/I At this point, all unclustered blocks go into their owne
for eachunclustered blocke N do
¢l us < new Cluster;
cl us.add();
od
return N’;

Figure 2.2: Pseudocode for Register Packing.

14
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are deemed to be timing critical. The packing algorithnVBdck andT- VPack starts with the
selection of a seedLE. TheBLE with the most fully utilized inputs is usually selected as feed
BLE for acLB. When timing is of importance, the most timing critilE is used as the seed of
acLB. Additional BLEs are added to theLB until no moreBLES can be added without exceeding
CLB constraints, such as number ®EES percLB or the number of pins available on tloeB.

To choose whiclBLES to add to thecLB, a gain value is calculated for eveBy E that shares an
edge with the currentLB, using a cost function. The gain is a function of the numbeshafred
edges between the_ E and thecLB, and the criticalities of shared edgés.VPack has been used
extensively in academic research as the clustering toohiowall other clustering algorithms are
compared against.

Two algorithms of note are presentTaVPack: hill climbing, and unrelated logic clustering.
Hill climbing is an addition to the basic flow wheea.Es are continually added to th@.B even
after the number of inputs has been exceeded. This is dohe imape that an additionalLE will
actually reduce the number of inputs needed fordhe. This can occur when the output oBae
is needed within theLB as shown in Figure 2.3 [16]. The thiglLE in the diagram generates the
signal that is needed as an input in the first grouplas. By adding thisLE to thecLB, the input
count can actually be reduced by 1, since the sigrman be generated locally without needing to
route it from external sources. However, in general, thshiswn to have limited benefits, with at
most 1— 2% improvement in logic utilization [16]. The second alglom allows unrelated logic
to be packed together if sonta.Bs are not full. In this caseLEs that do not share any inputs or
outputs with the currentLB is still added, as long as i@ B constraints are exceeded. This allows
T- VPack to pack as tightly as possible.

Although T- VPack can achieve very good results, it does not always give the omsmal
answer. It is possible that the unrelated logic packed mgstage is best grouped elsewhere where
a greater gain in edge reduction or critical delay is possiBliso, if a group of highly connected
BLES span more than or&LB, it is possible that by rearrangirg).Es within the larger group, the

edges connecting theLBs can be reduced.

15
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Figure 2.3: Hill Climbing Example from [16]

RPack is proposed in [15]. Like/Pack andT- VPack, RPack also packsBLEs one at a time
starting with a see®LE. However, RPack extendsVPack by integrating routability into the
clustering step to reduce the number of wires required inrthging channel [15]. This is
performed by adding a term to the cost function. This extrantaccounts for routability by
calculating the number of shared input and output pins betves unclustereglLE and the current
CLB. This routability term also penalizes Es that do not share anything with the currens, to
deter this algorithm from putting them together. CompareéPaxk (non-timing-drivent- VPack),
previous research [15] show tHRRack can significantly improve circuit routability. However,sh
research [15] focused only on routability—no performanambers were presented to indicate the
impact of packing for routability on the final quality of thesult in terms of timing. Additional
research [14] provides numerical results that show thatenRRack outperformsVPack, it only
produces results that are comparablé@-t@Pack.

In i RAC [14], another routability-driven packing algorithm is deibed. This algorithm is also
seed-based and pac&sBs one at a time. However, the selection of a seed is different from
the method employed bl VPack. i RAC selects seeHLES based on its connectivity factor This
is calculated via Equation 2.1, where the separationgfmis the sum of the number of terminals

on nets connected to tlee E, and the degree is the number of nets directly connectecttsLih.
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c- Spmap

This connectivity factor increases the importancesets that have more low-fanout nets.
By starting withBLES that have low-fanout nets, it increases the likelihood #ulitions to the
cLB will result in nets being absorbed in their entirety. Thusgge nets can be removed from
the resulting clustered netlist. Since the router will héewer edges to route, this makes the
routing step easier. Another key idea presentadRiC s the use of Rent’'s Rule during clustering.
I RAC limits the the number of pins that are usable on anp to match the Rent parameter of the
architecture. By reducing the number of usable pingpBs, the demand on the routing channel is
also reduced. Numerical results [14] indicate that the owpd selection of the seel E coupled
with the use of the Rent parameter can reduce the numbereafdns edges by roughly 30%
compared t&RPack andT- VPack for the case of LES percLB architecture. However, the number
of usedcLBs increased substantially by 5% to 6%. This may become agmoln a highly utilized

device. Although edge reduction results are encouraghegeffect on performance is unknown

since no performance numbers were presented in this paper.

2.3 Depth-Optimal Methods

While capable of achieving very tight packings, seed-baggutomches are localized, greedy
algorithms that may become trapped in local minima. Anosee¢of methods, called depth-optimal
or depth-relaxed methods, seeks to optimize the performaricthe circuit by duplicating
timing-critical logic during clustering. Through the pexs of node duplication, a set ofBs
with optimal depth can be obtained through the use of a wagepost-processing, bin-packing
methods. TLC [28], M.C [29] and RCP [30] are all examples of depth-optimal clustering tools.
These three methods are all multi-level clustering alpamg, with an emphasis on producing

timing-optimal designs. The advantage of these methodmtsliey enable a more global view of
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the circuit to be taken. Although most often used for hienaral FPGAs in whiclkcLBs are futher
grouped together (e.g., the Altera APEX20K [31]), they wjoidt as well in architectures with only
1 level of hierarchy. Therefore, these methods still applthe island-style FPGAs considered in
this thesis, where the only hierarchy is that in whBites are grouped intgLBsS.

In depth-optimal algorithms, three phases are performddbeling phase, a clustering phase
and a packing phase. In the labeling phase, each node inrtié s labeled with its depth-optimal
delay from the primary inputs of the network. This is perfecnby traversing the netlist from
primary inputs to primary outputs. This generally resultsiilarge number of highly underutilized
CcLBs. Then, in the clustering phase, the network is traversad fsrimary outputs backwards to
the primary inputs, and a subset@iBs are selected such that the entire network can be covered.
However, there is usually still a large numberafss. Therefore, a third phase is needed to pack
thecLBs tighter to reduce the number of Bs needed.

An example of how typical depth optimal methods work is shawhRigure 2.4 and Figure 2.5.
These figures, found in [32], describe the process of loglidation used in conjuction with
a depth-optimal algorithm to reduce timing delays. The llalg phase is shown in Figure 2.4.
Figurel 2.4a depicts a graph that represents a circuit avith ¢, d, ande as primary input nodes,
and j andk as primary output nodes. The delay of each node is shown igrdgh by a number
next to the node, with all inter-cluster delays set to be 3e @tchitecture of this example is 3
BLES percLB. The labels are computed by traversing the graph from pgnguts, to assign
the maximum delay encountered at each node. Thus, it candpeirsé-igure 2.4b thaf has a
delay of 3. Then, as we propagate the delays forward ffdmh, we consider the entire subgraph
based ah, shown in Figure 2./4c, and calculate accordingly. If thestduis performed as circled
in Figure 2.4c, then there will not be any inter-cluster geddetweenf andh, and its label is only
increased by its internal delay.

After labels have been computed for the entire circuit, thustering phase of the algorithm
is executed, propagating backwards from the primary ostgotform the optimal set of clusters

shown in Figure 2.5. As evident from the clusters shown, stidnd f have been duplicated.
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(a) (b) (c)

Figure 2.4: Depth-Optimal Example: The Labelling Phase [32]. (a) Cirgunaph (b) Labels of
nodesb, ¢, andf (c) Computing the label df

The strength of depth-optimal algorithms is in that they deamatically shorten timing-critical
paths by absorbing them within tlee.B. However, in the process of such reductions, logic must
be duplicated to provide maximum benefits. Logic dupliaattan therefore get out of hand very
quickly. Although effective at reducing critical path dgl@revious experimental results indicate
that the process of logic duplication can be hard to confgalling to large increases in area. Also,
minimizing logic depth does not mean a reduction in wire terig modern designs. Although
the use of timing information during clustering can lead toetter set of clusters, recent research
indicates that timing estimates made during clustering n@ybe accurate when compared to the

final placement [33].

2.4 ASIC Clustering Algorithms

It is worth mentioning that a substantial set of literatuxests on ASIC clustering techniques [34—
37]. The main difference between the ASIC and the FPGA diungieoroblem is that there are no
cLBs in ASICs. Therefore, there are maB constraints that need to be taken into account. The
main objective of ASIC clustering algorithms is to createyé& aggregates of highly connected

nodes so as to speed up placement. In contrast telthe andcLBs for FPGAs, the netlist for
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Figure 2.5: Depth-Optimal Example: Optimal Clustering of Figure 2.4anfr[32]

ASICs includes macro blocks, and standard cells or nodes.

ASIC clustering methods are usually affinity-based, andaeormany clusters simultaneously.
Examples of affinity-based algorithms used in the ASIC CAD fioelude Best Choice [38], First
Choice [39], and Hybrid First ChoicélfCC) [40, 41]. At the beginning of clusteringFCC[41, 42]
computes the affinity of every possible pair of nodes. Aftetiag the calculated affinities, it starts
to make pairings between nodes to form clusters by pairimigaavith the highest affinities to each
other. If the nodes in question are already clustered, thepossibility of merging this additional
node into the existing cluster is investigated. This prea&spairing is continued until no more
merging of blocks can be made without violating cluster txmsts.

One of the advantages of affinity-based methods is thatkeisked-based methods, affinity-
based methods work on multiple clusters at the same timeaeldre, it is not concerned with the
minimization of cluster count. Because of the greedy natfiseed-based algorithms, clusters are
packed as tightly as possible. Although this is beneficatims of area reduction, it is possible
that blocks may be added early on that are better off cludteith other, still unclustered, blocks.
This problem does not exist in ASIC clustering, since thee=aoCLB constraints to take into
consideration. This means that the algorithm is always ntakie best possible decision. Since

it is not limited by dense packing, affinity-based methodsuea that good decisions are always
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made. However, the side effect of this method is that affibaged methods produce a much higher
number of clusters than seed-based algorithms, which mayrdidematic if applied to FPGAs.
As described later in Chapter 3, an attempt was made to adege thethods mentioned here to

FPGAs with mixed results.

2.5 Simultaneous Clustering and Placement

In the traditional FPGA CAD flow, the clustering step is contgtebefore placement is performed.
Normally, placement tools such ®BR perform placement on the netlist of Bs, and make moves
by swappingcLBs between locations on the FPGA grid. However, in recentsyear alternative
has been investigated such tlraiEs are allowed to move between Bs during the placement
step. This in turn restructuresLBs that were previously formed in the clustering stage. The
advantage of performingLE-level moves during placement is that physical informatias well

as more accurate timing information, can be used to maker®etBs. An example of this can
be found inSCPI ace [43]. SCPI ace implements a simulated annealing-based placement method
that is capable of moving botbLBs andBLES. SCPl ace usesT- VPack to generate an initial set
of cLBs which are feasible for the architecture (i.e., an initiatking must still be performed).
Then, during placement, bottLB-level andBLE-level moves are performed. It is fairly easy to
make acLB-level move. However, wheBLES are moved betweerLBs, CLB constraints must be
observed before the benefit of the move can be evaluated.

SCPI ace also implements the net weighting algorithm proposed bydK@d] to improve its
performance. Through experimentation, substantial recdis in wire length of up to 36% and
critical path improvement of up to 31% can be found, when camg toVPR (which performs
no reclustering and only moves Bs). It was found that the combination ofB- andBLE- level
moves produce the best results. By performing only 10% ofhitnaber ofcLB moves thav/PR
performs,SCPI ace was able to compensate for the time it uses t@de moves. The significance
of SCPI ace is that it demonstrates the importance of physical inforomain correctly predicting

wire length and delay information.
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However,BLE moves are expensive to make. In modern FPGA architecturess tire many
more constraints, such as carry chains, to consideréng Therefore, each time BLE move
is considered, the legality of the proposed move must bdiedri Since there are many such
constraints in commercial FPGAs, this DRC check can take ehnfarger proportion of runtime
execution if used in a commercial setting. Hence, if simisults can be achieved by altering
the clustering stage with physical information, the needsfice moves during placement can be
eliminated. This should also improve overall runtime of ERGA CAD flow.

Finally, reclustering can also occur at the end of placemdnis here that physical opti-
mizations can be made, often by exploiting physical infdraraobtainable at this point [45].
Logic replication can also be found at the placement levelFiBGAs [46]. Critical paths can
be straightenedwhenever possible by means of duplicating logic. An examplshown in
Figure 2.6 [46].

In Figure 2.6a, there are 4 paths going through nadeetween fixed output nodes afand
e, and input nodes db, andd. If no logic duplication is allowed, then nodewould have to be
placed in the center to minimize the maximum path delay ogpaths. However, if node can be
duplicated to create a comy, then it may be possible to place nodeandc’ in the arrangement
shown in Figure 2.6b. In this case, the paths have been Istemigd, and it can be seen that the
length of all paths have effectively been cut in half. By igfinéening the path, the impact of routing
delays on the critical paths can be minimized. However,ahgg/sical optimizations do require

reclustering and relegalization of the design, and are heyoe scope of this thesis.

2.6 Relation of Past Literature to Current Research

The goal of this work is to develop a new clustering algorittivat can outperform the clustering
algorithms mentioned. By extracting the positive chanasties from the existing approaches,
it is hoped that a better clustering approach can be founek ifiVestigation carried out in this
thesis research is essentially a hybridization of ASIC mémphes and seed-based approaches. The

key idea is to perform partitioning, such as algorithms raliynoccurring during placement, to
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Figure 2.6: Logic Duplication Example [46]

obtain the approximate physical locationgfes. Then, a seed-based clustering algorithm can be
performed while utilizing the additional information. K hoped that through the use of physical
information, the advantages of both approaches can beedaliTherefore, physical information

is incorporated into the seed-based clustering algorittam T- VPack. By clustering with some
physical information, potentially better clusters can ke, which may lead to better performance
of the final placement.

In this thesis research, two packing algorithms—caD@dck and HDPack—are introduced.
These three algorithms produbetter initial packingswhich in turn reduce the dependence on
computationally-expensivBLE-level placement.DPack andHDPack incorporate the concept of
“physical clustering” [41] within a novel hybrid framewodor timing-driven FPGA packing.
These techniques employ a quick min-cut, partitioningedaglobal placer to determiragproxi-
mateBLE locations. By using this information, these tools are cégabmaking more informed

decisions which, in turn, can lead to reduced wire lengtlisaitical path delays.
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Chapter 3

Clustering Algorithms

From Chapter 2, it can be seen that seed-based and depthabalgorithms have been widely used
and adapted for FPGAs. Both types of clustering algorithersegally have very fast runtimes and
provide good solutions. However, the depth-optimal mestgeherally provide better performance
than seed-based algorithms. Since depth-optimal methredslawed to duplicate timing-critical
nodes, the critical path delay of circuits can generally h@tened. Although these methods give
good performance gains, an area increase is inevitable amdametimes be quite substantial.
Simultaneous clustering and placement methods also showige by allowing the contents of
clusters to change during placement. However, since eaghgehin cluster content must be
preceded by a DRC check, the runtime of such algorithms iatgréhan clustering algorithms
alone. Therefore, the focus of the research here is to ingprgeon the most widely used
seed-based clustering algorithms, and attempt to achopyugadent, or better, results found in the
existing literature without the use of node duplicatiorBae-level moves in placement. Although
BLE-level placement algorithms will likely remain a necessitycommercial FPGA placement,
it is the premise of this work toeducethe reliance on this step by producing betteBs in the
first place. The idea is to create a better set of clusters,aabdtter final placement, without
incurring area or runtime penalties. To this end, severalknalgorithms have been implemented

and modified to see whether the results can be improved in wi#gs than node duplication and
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BLE-level placement algorithms.

Two clustering algorithms are implemented as part of thesih research. First, the primary
algorithm, calledDPack, is discussed in Section 3.1. Section 3.2 describes a saigodthm,
calledHDPack, which is an extension tbPack by hybridizing it with an affinity-based algorithm.

The process of augmenting both algorithms with physicalrmftion is presented in Section 3.3.

3.1 Greedy Packing DPack)

In pursuit of better clusters, a seed-based packing algorisimilar toT- VPack, was developed.
The pseudocode for this cluster@Pack, is shown in Figure 3.1. Likd- VPack, a seedBLE

is selected as the most critical, unpacked block. Kong'$ matunting algorithm [44] was
implemented as a tie-breaking mechanism during seed g@lgaiith the block that has the highest
path count selected as the seed. It should be noted thatdegit is also used as a secondary
mechanism to break ties [16]. After the sesmd:= has been chosen, a cost function is computed for

all blocks that are connected to tlEsE. This cost function is given by

Costj = A x Ejj + (1 —A) x Critj; (3.1)
where
Ej = -1 and Critj= % Criticality(e).
ecEp|i,jee ecEy|i,jee

Here, E, represents all nets in the netligf;; models connectivity, and Criticalitg) is the
estimated timing criticality of ne¢. From this equation, it can be seen that each net is weighted
by the number of terminals on it, similar to [47]. This incsea the importance of nets that have
fewer fanouts, and increases the likelihood that they véllabsorbed. In Equation 3.4,varies
between 0 and 1 and controls the preference between edggadts@nd timing criticality. The

BLE with the highest computed cost is added to¢he. This is continued until either theLB is
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full, or other constraints, such as the number of pins alslglan thecLB, are exceeded. Then, a
new seedLE is chosen to start a neaLB, and the process is repeated until the circuit has been
packed.

DPack also incorporates the hill-climbing and unrelated logiclpag algorithms from [16].
When the pin constraints of @B have been reached, but thes is not full, the clusterer enters
a hill-climbing phase;BLEs are continuously added to tlmeB even if the number of pins on
the resultingcLB exceed what is feasible. This is done in the hopes that, byngddoreBLES
to the cLB, the number of pins can be reduced as more edges are absdfpaéter reaching
the maximum number oBLES percLB, the pin constraints are still violated, the last feasible
arrangement is restored. If@.B is not full, then additionaBLEs that have no direct connection
(i.e., unrelated logic) with theLEs in thecLB may be added provided that toes constraints are

not violated.

3.2 Hybridized Packing (HDPack)

The second clustering algorithm is built dRack. For this approach, an affinity-based algorithm
was incorporated into the clustering flow. This affinity-edsalgorithm, called Hybrid First
Choice clusteringHFCC), has been successfully used in ASIC clustering. SHi@C has been
applied successfully to large-scale placement, it seenhwhile to explore the usefulness of this
algorithm in the context of FPGA placement. First, Sectidh Bdescribes theFCC algorithm,
and Section 3.2/2 provides the details of the hybridizabiiH-CC andDPack.

3.2.1 Affinity-Based Packing HFCC)

In HFCC, objects are initially placed onto a “free” list which coimsithe set of objects which have
not been paired. Thaffinity for pairing any two objects is calculated using Equation [31].
Then, starting with the highest affinity value, pairings amade between the specified blocks,

which may be unclusteredLEs or clusters, as long as mo.B constraints are violated. The
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Procedure: DPACK
Inputs: A netlist to be packed\
Returns: A packed netlistN’

Perform timing analysis on the circuit;
Compute block criticalities via Kong path counting;
Sort block criticality from highest to lowest;
seedBLE <+ most critical unclustered node;
while seedBLE > 0 do
¢l us < new Cluster;
cl us.addéeedBLE);
while cl us.getNumBLEs()< maxNunBLEsPer CLB do
for each BLE that shares an edge withus do
10 Calculate the cost according the equation;
11 if BLE can be added (passes DR@Ggn
12 cost Vect or .add(BLE, cost);
13 fi
14 od
15 BLEt 0Add < get Hi ghest Cost BLE(cost Vect or);
16 if BLEt 0Add is not validthen

© 00 N O g B~ W N PP

17 BLEt 0Add < get best unrelated BLE to add;
18 fi

19 if BLEt 0Add is valid then

20 cl us.addBLEt 0Add);

21 else

22 break ;

23 fi

24  od

25  Addclus intoN’;

26  seedBLE < most critical unclustered node;
27 od

28 return N/;

Figure 3.1: Pseudocode fddPack.
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algorithm repeatedly removes the object with the highefatigf from the free list, and pairs it
with the object that (originally) yielded this high affinjtgven if that object had already been
paired. Once an object has been paired, it is said to haveetbanri'cluster”. Pairings are made
continuously, until no more pairings can be made withoueexiingcLB constraints. The basic
pseudocode for the affinity clustering algorithm is foundFigure 3.2.

HFCC has the advantage of makiagBs simultaneously, without the worry of packing clusters
to the fullest. However, the algorithm can terminate withrgé number ofLBs. This is due to the
fact that ASIC clusters do not have constraints such as irARP&SIC clusters are not required to
pack for a minimum number of clusters, and hence there is Bd teepack unrelated logic. This
is not a deficiency in ASIC clustering algorithms; ratheistis only seen as a deficiency when
these algorithms are applied to FPGAs. However, this makdifficult to compare results fairly
to other clusterers that pack for minimum area. Also, thisieial bloat in the number of clusters
wastes FPGA area, and affects the performance of the caesign. This large set of clusters can
be difficult to pack together in later stages of the algorittine to pin constraints and a lack of
a hill-climbing phase. ConsequenthfCC packings typically contain several percenbre CLBS
thanDPack or T- VPack; for highly-utilized devices, this can be a significant doagk.

In practice, this algorithm is followed by several post-qassing steps to reduce the number
of clusters. These steps include the merging of simgles into cLBs when possible, and the
merging of half-filled blocks. However, these post-progggsoutines are inherently greedy, and
the only optimization goal during this phase is to minimize humber of clusters. This is similar
to depth-optimal methods (without duplication) in whicle thin-packing applied after the initial
clustering cannot effectively group clusters togetheraduce thecLB count. This may have a

detrimental effect on the quality of clusters, both in tewhsvire length and critical path delay.

3.2.2 Formulation of HDPack

Both DPack andHFCC have numerous associated advantagE€C is noted to be very effective at

making good pairwise packings and in minimizing the numiegxternal nets in the clustered
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Procedure: HFCC
Inputs: A netlist to be packed\, StoppingCost
Returns: A packed netlistN’

/I Do affinity clustering ...
for eachedgee € N do
for eachcelli, j € edo
Cost;j < compute affinity cost for pairing j;
od
od
Sort all affinity Cosfj; from largest cost to lowest;
St oppi ngCost « predetermined Cogtvalue at which to stop;
for each Cost; do
Attempt to pack cell and j together;
if DRC was not successftiien
continue;
fi
if Costj < St oppi ngCost then
break ;
fi
od

return N’;

Figure 3.2: Pseudocode fafFCC.
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netlist. However, it often creates a large numbercaBs, and the employed post-processing
routines have a negative impact on the quality of clusterdenan contrastPPack is known

to achieve good critical delay reduction while being ableack for a minimum number afLBs.
Thus, it is proposed to combine the two approaches in ord&ki® advantage of the benefits of
both DPack andHFCC. It is hoped that this hybridized flowiDPack, can yield the same high net
absorption offered byfFCC, while still preserving the critical delay reduction frobRack. The
pseudocode farDPack is shown in Figure 3.3.

In this combined approachFCCis used as pre-packingstep befor®Pack is called to perform
clustering. FirstHFCCis used to make initial pairings; when the affinity valuesh&f pairings in the
HFCC packer fall below a certain threshold;CC packing is stopped. At this point, a large number
of cLBs is generally required. However, unlikECC, none of the original post-processing routines
are used. Instead, this list of “intermediate” clusterseid foDPack to complete the clustering
process. In this stagBPack looks at this set of clusters, and computes costs using Equadtl.
Then, it starts to fillcLBs, starting with thecLB that has the highest number of contairgds,
highest number of used pins, and highest criticality. Bhe with the highest computed cost is
then added to theLB until the cLB becomes full. However, unlikBPack, it is possible that the
BLE has already been packed into anotbes by HFCC. In this case, theLE will be removed from
its current cluster and added to tlisB only if its original cLB wasnot full.

The effectiveness diDPack has a strong dependency on the handoff point betw€€g and
DPack. If HFCC performs too few affinity-based matches, the true benefti@hyybridization may
not be visible. On the other hand, HFCC almost finishes off all the possible pairingRack
may not have enough room to achieve a minimum set of clustén®w significantly messing up
the decision$d=CC made. Therefore, this handoff point, or threshold, mustIbarty analyzed,
parameterized, and the possible values swept to deteriménbdst configuration. This point is
calculated according to Equation 3.2, whéréfy,ax andAf fmin are the maximum and minimum
affinities found, respectively. The hybrid cutoff valiy,is a parameter that is then swept from 0

to 1 to see which value provides the best wire length anctatitdelay improvement. If the affinity
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values fall below the calculated thresholFCC terminates, lettingoPack finish packing the rest
of the blocks. In practice, it was found that this hybrid flovoguces very good improvements in

wire length and critical path delays over traditional metfio

Af finres= (AT fmax— AT fmin) X B+ AT fimin (3.2)

3.3 Incorporating Physical Information

The concept of “physical clustering” has been employedessftlly in ASIC placement for some
time [41]. In these approaches, an initial placement fdsaelthe unclustered netlist is determined
via a quick global placement operation. During this glodatpment, cells are allowed to overlap,
since circuit legality is not a concern. The clustering noelthheverages the inter-cell distances
from this approximate placement to make more informed Btieaking” decisions, and to make
better clustering decisions when packing unrelated logie core of this research is to determine
whether the same approach can be used in FPGAs with posititedraes by incorporating
physical information into the clustering algorithms déised previously.

Before physical information was incorporated ifleack andHDPack, a simplistic, top-down,
min-cut partitioning-based global placer was first devetbpThis placer usds\vet i s [40, 48] to
recursively bi-partition and place the primitive netligk. sample figure illustrating how min-cut
partitioning is typically performed is shown in Figure 3Hirst, all the nodes are placed onto the
chip, with positions set in the centre as shown in Figure .3%wen, these nodes are divided into
two groups, or partitions, as shown in Figure[3.4b. Thission between the nodes is called a
cut. The objective of this cut selection is to minimize thentner of nets that connect between the
two sections. Thus, the algorithm encourages highly-cot@tenodes to remain within a common
partition. After the nodes have been divided, each regultegion is then partitioned further,

independently of the other partition. The nodes are thethéudistributed as shown in Figure 3.4c.
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Procedure: HDPACK
Inputs: A netlist to be packed\
Returns: A packed netlistN’

Call HFCC to perform affinity-based clustering(N, StoppingCost);
/[ Finish off using greedy ...
Put each unclustered BLE into its own cluster;
Collect statistics (hnum pins, etc.) for each cluster;
Sort the list of clusters first (num BLES contained, num pins, criticality);
seedd us « cluster with highest # BLES, highest # pins, highest criticality;
while seedd us is validdo
for each BLE B that shares an edge withus (not in full cluster)do
Calculate the cost of putting in seedC us;
if B can be added teeedC us without violating DRCthen
cost Vect or .add@, cost);
fi
od
BLEt 0Add < getHighestCostBLEst Vect or);
if BLEt 0Add is not validthen
BLEt 0Add < get best unrelated BLE to add;
fi
if BLEt 0Add is in another cluster alreadiien
RemoveBLEt 0Add from its original cluster;
fi
if BLEt 0Add is validthen
seedC us.addBLEt 0Add);
else
break ;
fi
if seedC us.getNumBLEs()= nunBLEsPer CLB then
Mark seedd us as full, and therefore cannot be modified anymore;
fi
seedd us « most fully used, yet still incomplete cluster;
od
return N’;

Figure 3.3: Pseudocode fafDPack.

32



Clustering Algorithms

H

L}

[}

1 EE [m]
g90 a1 B3 Bg
D%EE o l; IR Dl;
o oo =] [

i o ¥ o

[}

i

[ ]

a) Before Partitioning b) Cut 1 (vertical) ¢) Cut 2 (horizontal)

Figure 3.4: Min-Cut Partitioning Algorithm

This is performed recursively until some stopping critarltas been reached. During placement,
this may occur when all nodes are suitably spread througheuthip area, and physical locations
can be assigned.

It should be noted that the technique used in this researels dot employ placement
feedback, or branch-and-bound partitioning, as in [49].eSéhmethods are used to fine-tune
the accuracy of a partitioner, and are not used since onlysi Ipartitioner is required for our
purposes. Placement feedback [50] is a method to make @ederaninal propagation during
partitioning by using the concept of feedback from contysitem applications. Branch-and-bound
partitioning [51] essentially enumerates partitioningusions, and uses bounds to discourage
unnecessary exploration.

Since accurate information is not necessary, the pariitgoalgorithm does not need to run
to the point where every block has a unique location. Insté#as min-cut partitioning placer is
augmented with a stopping criterion that depends on the puiinodes in the current partition.
hMet i s will then be recursively called until one of two conditiorssreached. Once the number of
nodes in a partition is either (a) less than a predeterminmexbiator (b) the depth of the partitioning
tree has exceeded a threshold, the partitioning algoritiopss TheBLES within the partition are
then assigned the samendy grid locations. It should be noted that this is perfectlyegatable

since it is not the intention of this fast partitioning to geate legal placements, but rather, to
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provide a rough idea of whicBLES may end up close together. Then, a clustering algorithrh suc
asDPack or HDPack is executed.
To account for physical information, the cost function inuatjon 3.1 is augmented with an

additional cost term; the new cost function is given by Equea8.3

Costj = A x Ejj +yx Critjj — (1 — A —y) x Distj; (3.3)

where

X — X Vi — Vil

Distj = ——— —
'St GridSize ' GridSizg

whereEjj and Critj are the same as in Equation 3.1. In this formulatibrandy control the
preference between edge absorption and timing, respbctiVae Distj term is a calculation of
the Manhattan distance between the curierg and the potentiaBLE, normalized by the grid
size. As a consequence of this formulation, this gastalizesobjects that are far apart. Although
several other formulations of the cost function were alsesatered and tested, this formulation
was found to yield the best performance.

Another modification tdPack andHDPack was made in the way unrelated logic clustering is
performed. In the original algorithm, argLE that could fully utilize the remaining available
inputs of acLB was added. In practice, there can be many blocks with the samwer of
inputs. To break ties, we use the physical distance betwsepadtentialBLES and the current

cLB. Consequently, thBLE that is closest to the curreotLB is added to theLB.
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Chapter 4

Cluster Improvement Algorithms

Since clustering is an important algorithm in the overallG#CAD flow, additional time spent
on improving the quality of the resultingLBs should be reflected in the final overall quality
of placements. In addition to the clustering algorithmsposed in Chapter 3, two cluster
improvement algorithms were implemented and investigatd@tiese improvement algorithms
are complementary to any of the aforementioned clusteriggrishms. That is, the algorithms
introduced in this chapter are not intended to produce diairset of CLBS, but rather, tdurther
improveon an existing set ofLBs. When used with a placement method sucBG@% ace, these
algorithms are still valid. If these cluster improvementhteiques can be performed quickly, a
better initial packing may be made. This better initial setlosters would likely translate into
both a better initial placement and a potential reductiomuimtime due to the need to perform
fewer placement perturbations to obtain a high quality freallt.

Given aninitial clustering oBLES intoCLBS, two heuristics are implemented to further improve
upon the clusters. Both of the described heuristics workoHievfs. A number of improvement
attempts are performed. In each attempt, a pacids is selected. This selection can be random
or require that the selected pair of Bs share some common connections. This requirement that
CLBs share common connections makes sense; it is likely thatgoove the absorption of edges

— either for routability or for timing — a selected pair ci.Bs must have some common edges
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which can potentially be absorbed.

This chapter starts with the general outline of the improgenhalgorithms in Section 4.1. Then,
in Section 4.2, a greedy improvement scheme is describadptirforms swaps and moves to
improve the quality of clusters. Section 4.3 shows a braati-bound scheme that takes a different

approach to improve clusters.

4.1 Overall Flow

Both cluster improvement algorithms take pladeer an initial set ofcLBs has been created and
works as follows; for a given set afLBs, the algorithm selects pairs oL.Bs — either random
pairs of CLBS or pairs ofcLBs that share common edges — and attempt to rearrange these two
BLES through either of the improvement heuristics describddvbeThis rearrangement is then
evaluated to see if an “improved” pair ai.Bs can be obtained. The pseudocode for this overall
flow is presented in Figure 4.1.

The two proposed heuristics differ in how they selsctEs to move. In Swaps and Moves,
randomBLES are selected from each.B and are either swapped (when t®oEs are selected to
be switched) or moved (when oBeE is selected to move to an empty spot in the othies). The
two cLBs are then evaluated to see if the quality, in terms of timingice length, has improved.
The second heuristic is based on branch-and-bound, andezates all possible packings BEES

into the pair of selectedLBs to find an improved packing @LES intoCLBS.

4.2 Swaps and Moves

The first proposed heuristic involves the simple greedy givapof BLES betweencLBs. This
heuristic is similar to that originally proposed for ASICustering [47] in which the objective
was to absorb as many edges as possible into clusters. Paosrected clusters were randomly

selected and a cell (pair of cells) was moved (swapped) letwiee two chosen clusters. In
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Procedure: IMPROVECLUSTERPAIRS
Inputs: A packed netlistN
Returns: An improved packed netlis’

pass « 1;

while pass < max_pass do
Select two connectedLBsi and j;
ImproveCLBSs(,j);

od

return N’;

o O~ W N P

Figure 4.1: Outer Loop of Improvement Heuristics.

performing the swap, edges were weighted according to kmquatl

1
Wi = m (4.1)

wherew; and p; represent the weight and number of pins on edgespectively. This weighting
scheme tends to give priority to low fan-out edges which @asiex to absorb completely into a
cluster. Upon performing either a move or swap of cells betwelusters, the total absorption of
edges into the pair of clusters is computed. If the absamptifcedges is improved, then the move
(swap) is retained, otherwise it is discarded. In [47], theves and swaps are performed using
annealing such that it is likely some worsening swaps arsamduring the improvement heuristic.
However, since only improving moves are allowed here, thislementation is greedy.

Several additions to the algorithm in [47] were necessagdapt it for the FPGA. The above
algorithm is purely driven by edge absorption. This usuladlg the effect of reducing wire length in
the final routed circuit. However, for FPGAs, the criticatipdelay is also an important parameter
to optimize for. To account for timing, a “unit-delay” tingranalysis is performed and a slack for
each connectionin the circuit is computed. The slack is used to compute &atity for each
connection given by Equation 4.2

slack(i)

Criticality (i) = 1— MaxSlack

4.2)
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where MaxSlackis equal to the largest slack found in all the connectionsh@ dircuit. This
criticality is then squared so that critical connectionpegr more critical, while relatively non-
critical connections are ignored. The cost of@&B is calculated by summing up the number of
edges absorbed (as in [44hd by summing up the absorption of critical circuit connectiotf
both edge absorption and criticality absorption are impcbafter either a move or swap, then the
new arrangement &LES toCLBS is accepted. Otherwise, the original assignmeBtL@lk toCLBS

is restored.

4.3 Branch and Bound

Although random greedy moves and swaps do improve cludtéssscheme may be somewhat
limited in its ability to improvecLBs. For instance, it might be the situation that many attempts
are made that do not meet the architectural constraintseottis. Furthermore, it might be
necessary thanore than twosLEs should changeLBs in order to obtain an improvement. To
overcome the potential limitations of simple moves and syamenumerativeneuristic, which

is based on branch-and-bound, is proposed to improve pats®s. Since the number &LES
percLB is limited to a fairly small number in modern architecturlesanch-and-bound is practical.
Furthermore, because of the enumerated nature of brarg:v@md, if a better packing &LES

into CLBs exists, it will be found. Complex packing constraints sughraited inputs, outputs and
control signal constraints are handled seamlessly by brand-bound.

This technique essentially performs a constraint-awaneplicking between twaLBs. The
algorithm initially begins with no assignment 8LEs to eithercLB. It then attempts to assign
eachsLE to the firstcLB and then to the secor@l.B in a subsequent pass. When assignimg a
to a particularcLBs, the architectural constraints need to be obeyed. It shoeldoted that some
computations must be performed carefully. For instancenture that the input limits on@.B
are not violated, input counts cannot be simply be “incret@&iwhen aBLE is assigned to aLB.
This assignment needs to deferreduntil the location of the sourceLE of an edge is known. If

the sourcesLE of an edge is in the san®@.B as thisBLE, the edge is absorbed, and thus will not
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add to the input count of theLB.

The general outline of the algorithm is very similar to thedease partitioner introduced
in [51], and is provided in Figure 4.2. The method begins ksigreng evengBLE in the 2CLBS to
either one or the other, and checks for feasibility. If it ileasible solution, then its cost is found
and the method checks to see if the solution can be bound.ofppte information is kept during
the enumeration to improve both the absorption of edges dswéhe absorption of connections
deemed to be timing critical; various stacks are kept in otdde able to track the current edge

absorption and criticality absorption.
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Procedure: BRANCHANDBOUND
Inputs: Two CLBsclus andclus;
Returns: Two potentially better CLBslug andclus;

Compute the current cost of clustérsnd |
bestSoln = empty;
assi gnment St ack.add€lusg.nodes() andlus;.nodes());
for eachk of 0 and 1do
current Node < last node irassi gnnent St ack;
if k=0then
assigrecur r ent Node to clug
else
assigncur r ent Node to clus;
fi
if arrangement is feasibtben
check if it is boundable
if boundablehen
popcurrent Node from assi gnnent St ack
if assi gnment St ack.empty()and k = 0 then
break
fi
elseifall nodes have been assigrteén
a complete solution that is the best one found so far
bestSoln— current assignment
fi
else
the arrangement is infeasible, and is bound
fi
od
return clbf andclb’j;

© 00 N o 0o b~ W N PP

N NN NNNDRNDERRRRR R B R R
O 0~ WNRFP O O 0 ~N O 0 W N R O

Figure 4.2: Pseudocode for Branch and Bound.
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Chapter 5

Numerical Results

To measure the effectiveness of the algorithms implemeateger Chapter|/3 and 4, several
experiments were conducted. This chapter documents thg messtigations carried out using
the implemented clusterers, and is organized as followSektion 5.1, the method through which
the algorithms are evaluated is described. This sectiam @gdfines several key metrics that are
used during comparison. Section 5.2 comp&feck andHDPack both with and without the use
of physical information. In Section 5.3, the impact of thewacy of physical information has on
the quality of the routed designs is investigated. TiPack andHDPack are compared with other
existing tools in Section 5.4. In Section 5.5, several cpte&om other tools were integrated into
these algorithms to see if any additional improvement caadtgeved. Section 5.6 presents the

results from the use of cluster improvement heuristics fmapter 4.

5.1 Experimental Setup

To make a fair comparison between the implemented tools tiradt existing clustering algorithms,
the twenty largest designs from tivecNC benchmark set were used [52]. The circuits in this set
vary in size and circuit structure. The benchmark set has lbsed widely in academic research

for FPGAs, and facilitates direct comparisons to be madeherdnown clustering tools.
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5.1.1 General Experimental Flow

Before any comparisons can be made, a baseline must firsttdigisised. In the comparisons
that follow, the baseline flow usds VPack, followed by VPR for placement and routing. Then,
to compare the clustering algorithms outlined in ChaptdédPack andHDPack were employed to
perform packing. The resultant netlists are then placedranted byVPR. The three constructed
flows can be summarized as follows: (1) the baseline floiv Pack+ VPR, (2) DPack + VPR, and
(3) HDPack + VPR,

A good clustering algorithm should be able to perform welllena variety of situations and
constraints. Therefore, the implemented clustering dlgms were tested on a set of FPGA
architectures. The range of architectural sizes used sporels to\ = {2,4,8,12} BLES percLB.

By using both large and smatiLB sizes, it becomes possible to determine whether a particula
clustering algorithm can perform well in all cases. For eadhitecture, the number of_LB inputs

is calculated as = 2N + 2. This was shown to yield good area efficiency by achieving\arage

of 98% logic utilization [26]. The grid size is set to the skaat square grid that can accommodate
a particular design.

The results obtained from placement tools often vary fromm to another. In particular, the
placement generated froWR can change drastically in quality depending on the randomikas,
or seed, used in the particular compilation. Sometimes,%a 2&riance in the critical path delay
can be observed. Therefore, to reduce this wide variancesults, each design is run 5 times
using the same architecture and tool configurations witkdoarly generated values as the seeds
used for placement and routing. The results obtained frasdld runs are then averaged before
they are compared to other flows.

One of the advantages WPR is its flexibility, achieved by a long list of variable paratee
settings. Of noteYPR's “timing tradeoff” was set to & for all tests. This indicates that while
placing the design, the impact of changes on both wire leagthtiming are both considered as
equally important. All wire length and critical path delaseported are obtained after routing.

Segment 1 routing architecture was used for all designs;itidiicates that in the routing channel,
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all wires have lengths of 1 and can only form connections betwneighboringLBs.

In the rest of the chapter, the quality of placements are tifiethand compared through the
measure of several metrics. Tivae lengthof a design refers to the total number of wire segments
that the final routed design requires. Generally, the lowerwire length, the better, since less
resources are needeBxternal netgefers to the number of nets that exist in the clusteredsietli
Fewer external nets is preferred, since less iates-wires are needed for the design. The area
efficiency of a clustering algorithm is often measured by mlienber ofcLBs in the clustered
netlist. In this case, the fewer the numbemaBs, the better the algorithm. However, a reduction
in one metric can sometimes mean an increase in another.efbher relevant metrics must be

compared side-by-side to obtain the entire picture of wéretin not an algorithm is beneficial.

5.1.2 Low-Stress Routing Setup

In FPGA research, there are generally 2 levels of routinggesips: low-stress, and high-stress.
The purpose of low-stress routing experiments is to mimigedfiarchitecture, and to evaluate the
performance of benchmark designs in terms of wire lengthtamichg.

To form a fair comparison, the minimum channel width for edelsign is found for a given
grid size. Since the minimum channel width found for a paitic design can vary depending
on the random seed used, the search for the minimum chand# i performed 5 times and
then averaged. The design is then routed again, with a chamité that is 20% greater than the
minimum channel width found. Since the number of wires inrthing channel is much greater,
the router needs to do less work to route the design. Themraitben free to choose different
wires and channels to optimize for wire length and criticallag. Thus, a fair comparison can be
made by comparing the performance of designs routed at the shannel width and same grid

size.
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5.1.3 High-Stress Routing Setup

High-stress routing tests typically are used for archueztevaluation and they are particularly
important during the process of designing an FPGA. Durimggéhtests, in addition to optimizing
for timing and wire length, the tool also aims to optimizearelo minimize area, high-stress
routing tests route for the smallest channel width possit$énce the routing resources on an
FPGA take up a substantial portion of the chip, high-stresgimg conditions involve trying to

reduce the number of wires required per routing channelr&fbee, minimum channel widths can

often be used as a metric of comparison between clusteraig. to

5.2 Results for Implemented Algorithms

This section presents data comparisons betvid®ank andHDPack and the baseline af- VPack

in both low-stress and high-stress routing conditions.

5.2.1 Low-Stress Routing

The first set of experiments comparBBack and HDPack to T-VPack in low-stress routing
conditions [16]. In the first experiment, physical infornoat is not used in the cost function
formulation. Since only edge absorption and timing infotiora are employed, there is only one
trade-off parameter in the cost functions of the packindsto&orDPack, aA of 0.8 was found
to yield the best results in terms of wire length and critipath delay. FoHDPack, the best
results were obtained usinghaof 0.9. The number of external nets after packing, and the final
routed wire lengths and critical delays are shown in Table The presented data is calculated
by first normalizing the collected statistic against thedtiage flow (T- VPack), and then averaged
geometrically across all designs for the given architextur

As shown in Table 5.1, both algorithms result in significaritetter net absorption and wire
length reduction than the baseline flow. A consistent redoaan be seen in the final wire lengths

with a greater variability in critical delay reduction. FbPack, the wire length reduction ranges
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from 6.9% to 108%. However, the critical delay improvement does not seee teery substantial,
ranging from 0% to 3% reduction. It also appears that implementation of thegqmath counting
algorithm during clustering did not improve critical delaignificantly. ForHDPack, the wire
length reduction varies from 1@% to 175%, with an average of 15% across all architectures.
There is also no significant reduction in critical delay.

A clear difference betweebPack and HDPack can be seen in terms of the wire length
improvement. DPack achieves an average of 9% improvement in wire length, wisetBBack
is capable of 15% improvement. This can be directly attedub theHFCC algorithm present in
HDPack. Since theHFCC method employed ikDPack pairsBLES that share the highest affinities,
it is able to make the best decisions early on, and is “unaoeck with packingcLBss fully. In
contrastDPack is limited in the sense that it must complete ang before moving on to another.
It is possible that in this process, somiees that are packed may have been better off packed with
other, still unpackedLEs.

Another important observation that can be made from TakleiSthe trend in wire length
reduction. There is no visible trend DPack. This is expected, sind@Pack is very similar to
T- VPack. However,HDPack show an increase in wire length reduction as the architectize
increases. This illustrates the key benefit of the affinegdHFCC algorithm. As the architecture
size increased)Pack may be forced to packLEs that have a much lower gain with the current
cluster while packing for minimum area. Therefore, the gawire length reduction between the

HFCC and the other flows is expected to increase as the archigesize is increased.

Table 5.1: Packing without physical information.

DPack HDPack
# CLB | Ext Nets| WL Crit || #CLB | Ext Nets| WL Crit
1.003 0.966 | 0.902| 0.963| 1.020 0.948 | 0.873| 0.937
0.997 0.928 | 0.892| 0.985| 1.000 0.858 | 0.874| 1.007
0.998 | 0.911 | 0.900| 0.999| 0.998 0.832 | 0.847| 0.984
12 1.002 0.937 | 0.931| 0.986| 0.998 0.844 | 0.825| 1.013

[Geomean| 1.00 | 094 | 091 0.98 | 1.00 | 0.87 | 0.85] 0.98 |

o h~NZ
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In the second experiment, physical information was usedhdysacking. As described in
Chapter 3, an additional weighting factor in the cost funtiias added to control the importance
of physical information during packing. Since there are naw independent weighting factors
(c.f., Section 3.3), a two-dimensional sweep was performoefind the best configuration. For
DPack, the best results were obtained using: 0.2 andy = 0.4, leaving the physical information
weight to be 04. ForHDPack, the best configuration was found with= 0.2, y= 0.2, and a
physical weight of (.

Results using physical information are shown in Table 5.&h\physical informationPPack
was able to achieve significant reductions in wire length entical path delay, with an average
improvement of 16% and 8%, respectively. This representsrgmovement of up to 10% in
wire length and up to 8% in critical path delay compare®®ack without physical information.
Significant improvements fa#DPack are also evident, with an average improvement of 21% and
6% for wire length and critical delay, respectively. Conteakwith Table 5.1, improvements up to
8% in wire length and up to 5% in critical delay can be seen wdwnpared tdiDPack without
physical information.

The average run-times were computed for all five runk &Pack-based clustering, placement,
and routing for all twenty design runs for each architectared similarly forDPack andHDPack.
The run-time ratios of th@Pack-based and¢iDPack-based flows were computed and compared to
T- VPack. These results, both with and without physical informatiame summarized in Table 5.3.

Generally, the use of physical information incurred negligrun-time penalties in the context of

Table 5.2: Packing with physical information.

DPack HDPack
# CLB | Ext Nets| WL Crit || #CLB | Ext Nets| WL Crit
1.012 0.962 | 0.862| 0.900| 1.034 | 0.966 | 0.846| 0.915
1.006 0.937 | 0.834| 0.920| 1.017 0.900 | 0.804| 0.960
1.007 0.908 | 0.823| 0.922| 1.012 0.873 | 0.768| 0.939
12 1.012 0.942 | 0.834| 0.937| 1.022 0.864 | 0.763| 0.963

[Geomean| 1.01 | 0094 | 084 0.92 | 1.02 | 090 | 0.79] 0.94

o h~NZ
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the entire place-and-route run-time for most architectutdowever, for the case & = 12, the
MCNC benchmarks that were considered were clustered into suah setlists that placement and
routing time approached that of the packing time. Consedyéehese results tend to show more

variability, which may not be indicative of performance onch larger, real-world designs.

5.2.2 High-Stress Routing

A high-stress routing test was conducted to determine tmenmim channel widths required for
each design. The search for minimum channel width was peddr5 times for each design for
all architectures under consideration. The average chavidéh was computed for each case and
then normalized to the minimum channel width found by thesbas flow. Physical information
was enabled during these tests. The channel width impraverstative toT- VPack is shown

in Table/ 5.4. BothDPack andHDPack were extremely successful in reducing minimum channel

widths, with 19% and 24% improvement on averaged, when cogdpagainst- VPack.

5.3 How Much Physical Information is Enough?

Even though partitioning algorithms are fast, they stitun some penalty in terms of run-time.
However, itis possible that after some point in the initiaittgiioning, further partitioning would not
give much wire length and critical delay reductions. If thant can be quantified and found, there

would be no need to incur the additional run-time penaltgc8ithe physical information obtained

Table 5.3: Run-time comparison vs. baseline.

DPack HDPack
N No Physical | Physical || No Physical | Physical
2 0.959 0.965 0.991 0.985
4 0.974 0.985 0.990 0.985
8 1.070 1.074 1.027 1.024
12 1.288 1.255 1.150 1.130
| Geomean| 1.065 | 1.064 | 1.038 | 1.029 |
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Table 5.4: Improvement in minimum channel widths.

N DPack | HDPack
2 0.805 | 0.764
4 0.808 | 0.776
8 0.760 | 0.755
12 0.854 | 0.756

| Geomean|| 0.81 | 0.76 |

in the clustering algorithms in this work is obtained throymerforming recursive partitioning, it is
easy to control how far to partition the design. Therefortesawas set up to determine the optimal
tree depth of recursive partitioning that leads to the bes l@ngth and delay trade-offs.

The initial partitioning algorithm was set as follows; tHgaithm terminates when either (a)
all end partitions were of a specified partition depth(b) when partitions contained less than
a set number of cells in the primitive netlist. The partitidepth was varied from O (where no
partitioning is performed at all) to 14, for each of the 20idas in the benchmark suite. This test
was conducted across four architecture sizeNl ef 2,4,8,12. Wire length improvement results
are shown in Figure 5.1 and critical delay reductions arevshia Figure 5.2.

From the two graphs, a dramatic initial reduction in bottcgit metrics as partition depth is
increased can be seen. Wire length improvement is gredtagtaatition depth of 5, beyond which
the average wire length reduction increases only sligtefpie flattening out. The trend for critical
delay reduction is less apparent. The best critical delgyavement occurs with partition depth
of 2 or 5. Even though the result for the partition depth of Blightly greater, the wire length
reduction at this point is not ideal. For almost all architees, a partition depth of 5 yields the
best overall wire length and critical delay reduction. Agdxhal partitioning is unnecessary, and

may even be detrimental to the quality of results.
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Figure 5.1: Wire Length Reduction vs. Partition Depth.

5.4 Comparison to Other Methods

To see how the implemented algorithms compare to otheriegisbols, cluster statistics were
compared against- VPack, RPack, andi RAC. It should be noted thakPack andi RAC were
primarily geared toward addressing routability; neithérlese tools dealt with timing (as the

implemented algorithms do), which skews results agairesatgorithms outlined in this thesis.

5.4.1 Low-Stress Routing Tests

To compare the performance of all algorithms under lowsstreuting conditions, the number
of cLBs, number of nets in theLB-level netlist, and the average number of pins usedqer
for the N = 8 case were obtained for each tool, and are shown in Tablel&should be noted
that comparisons with other architecture sizes are omgiade results are only available for
comparison with RAC andRPack atN = 8. All results are normalized with respect ToVPack.
Since a lower number of nets and lower pin usage are propeuseally associated with less

wire length used and better routability of the clusteredgies RAC was found to give the best
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Figure 5.2: Critical Delay Reduction vs. Partition Depth.

packing results, with the lowest number of nets and averagd-pins-per-cluster. However, this
was achieved at the cost of significantly maness. The next best clustering results were found to
be fromHDPack.

Itis important to make the comparison since from [53], it barseen that depopulating clusters
help routing at the expense of increase in area. Therefbis,dritical to make sure that the
improvement seen from the use of physical information isanotanifestation of depopulation of
clusters. From the results presented in Table 5.5, the ingpnent seen from the use of physical
information isnot a manifestation of depopulated Bs. Table 5.5 indicates that therevisry little
increase in the number of clusters madeDBgck or HDPack. Althoughi RAC was able to achieve
24% reduction in the number of nets, it came at a cost of a 8%ease in cluster count. In contrast,
DPack achieved 9% reduction in nets without impacting the numbehsters made. Although an
increase of 5% was observed in the average number of pins usedip@in DPack, which may
lead to more difficulty in routing [54], this was not found te b significant issue during testing.

Results from Table 5.5 are also plotted in Figure 5.3 to camplae 5 clustering tools in a

50



Numerical Results

graphical manner. For each of the 5 tools compared, the gegrim usage is plotted against the
external net improvement. A lower number of nets and lowerysiage are characteristics usually
associated with less wire length used and better routalafitthe clustered design. Therefore,
the clustering tool that is closest to the lower left cornkethe graph is expected to have the best
performance. From Figure 5.BRAC is found to give the best clustering results, with the lowest
number of nets and average used pins per cluster. Howeigis thchieved with the consequence
of an increase in the number of clusters made. The next bestecing results are found with

HDPack.

5.4.2 High-Stress Routing Tests

For high-stress routing tests, the minimum channel widthroiements obPack andHDPack are
compared to several known clustering tools. The improverrmeminimum channel widths were
compared t&RPack [15] as follows. For theN = 8 architectureRPack cites a 166% improvement
in minimum channel width versugPack (c.f., [15], Table 3). In [14], however, it is shown that
RPack does not provide any improvement versus/Pack (c.f., [14], Table 2), where it is also
pointed out thafl- VPack provides better results than its non-timing-driven coypeet VPack.
Given that, forN = 8, DPack andHDPack yield improvements of 24% and 2%, respectively,
compared td- VPack as seen from Table 5.4. It was concluded that these resutisobngoerform
RPack even though minimum channel widths were not considered abj@active in the clustering

algorithm.

Table 5.5: Comparison between known too,= 8,1 = 18.

Packer || # CLB | Ext Nets | Pins Used
T-VPack | 1.000 1.000 1.000
R- Pack 1.009 1.071 0.954
i RAC 1.078 0.757 0.870
DPack 1.007 0.908 1.025
HDPack 1.014 0.870 0.961

51



Numerical Results

Comparison of Known Clustering Tools
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Figure 5.3: Effect of Depopulation: N=8

Both RPack andi RAC report results for architectures of sike= 8. The grid sizes used in the
results presented in Table 5.4 are the same as those repgiRBdck [15]; therefore, the minimum
channel widths found faX = 8 can be compared directly to those in Table 3 of [15], wheré 8%
improvement (over- VPack) is reported, compared tdPack’s 24.5% improvement. It should be
noted thatHDPack’s improvement was obtained using the timing-driven flowhwiit specifically
attempting to optimize for wire length, congestion, or muim channel widths.

The performance obPack andHDPack are also compared to other tools such R4C [14].
However, a comparison withRAC [14] is harder to make than the comparisort&/Pack. Since
I RAC produces moreLBs compared to other packing methods, the results in [14] ulHement
grid size andvPR “10_RAT” value, a parameter that dictates the numbel @blocks that fit in
the width of acLB. Although an attempt was made to reproducethePack results presented

in [14], it was unsuccessful. Furthermore, the resultsqameesd in [14] for minimum channel width
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experiments were also obtained in combination with a matiifexsion ofVPR—calledi RAP—that
includes a congestion term in the placement algorithm’'&ahje function. It is reasonable to
expect that the modified placement algorithisoserved to reduce channel widths. Nevertheless,
the results of 24% and 28% reduction in channel widths f@Pack andHDPack, respectively,
compare favorably to the 38% reduction obtained B§C+i RAP algorithm. It is possible that if

this test was performed using a congestion-driven plalsergap may be reduced even further.

5.5 Integration of RPack andi RAC

Although numerical results thus far indicate tit®ack andHDPack outperform the baseline, it
is desirable to find additional concepts that would improperuthe results. Therefore, several
concepts fromRPack andi RAC were integrated int@Pack in an effort to assess their potential
benefits (similar results were found fdbPack). The incorporation oRPack was straightforward
since it consisted of adding a new term to the cost functiom.ddtermine the optimal balance
between the newPack term, theRPack term was multiplied by, with the cost calculated as per
Equation 3.3 multiplied by % ¢. The wire length and critical delay improvementslas varied
are shown in Figure 5.4. The best value as approximately 0. At this point, the inclusion of
RPack improved the critical delay and wire length by 1% and 2%, eesipely. However, this may
not be statistically meaningful. Astends to 10 andRPack dominates the packing objective, both
wire length and critical path improvements suffer. In aubehit a high-stress test was performed
with the inclusion of theRPack term, but the minimum channel width did not benefit, as the
improvement ovef- VPack decreased by 1% to 2%.

The incorporation of RAC algorithms into the tools was less successful, and did nptone
upon the current best result$.RAC depopulates by limiting the number of pins used peB,
as well as by trying to absorb low-fanout nets. A test was cotetl to establish the effect that
a decrease in the number of edges and in pin utilization hati@mesulting packing statistics.
As shown in Figure 5.5, as the number of pins usedqes is decreased, the number of Bs

generated increases. At the same time, the number of ekteetsaalso decreases. However, the
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Figure 5.4: Incorporation of RPack Sweep: N=8

wire length and critical delay do not exhibit a similar treimdthat they remain fairly consistent
(even increasing slightly as the pin counts are reduceds iftlicates that, even though a packing
algorithm can show good results frompackingpoint of view (i.e., good external net and pin
count reduction), the impact on the final wire length andicaltdelay may not show the same
trend. Since performance of the placed design is the ulérabjective, it may not be sufficient to

merely compare packing statistics.

5.6 Effectiveness of Improvement Algorithms

This section seeks to determine the effectiveness of theowement heuristics proposed in
Chapter 4. To do sdi- VPack, DPack andHDPack are executed in conjunction with the proposed
improvement algorithms. Four different flows were congteddor each clusterer: (1) the baseline
flow of T- VPack+VPR, (2) T- VPack+greedy swappingvPR, (3) T- VPack+branch-and-bound#R,
and (4) a combined flow in which both greedy swapping and Wramd-bound are used; i.e.,

T- VPack+greedy swapping+branch-and-boui@R. The same setup is then used by substituting
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DPack or HDPack for T- VPack. The results foil- VPack are collected from all architectures and are
tabulated in Table 5.6. For each architecture and designcdlected data was normalized with
respect to the baseline. The geometric average was thenutedhacross all designs for the given
architecture. Results fdPack andHDPack are shown in Tables 5.7 and 5.8, respectively. These
improvement heuristics did not appear to affect the numbezrL@s significantly, and therefore
this metric is left out of these tables for the sake of clarity

From Table 5.6, both the Greedy and B&B algorithms were ss&fe¢in reducing the number
of external nets and wire length for VPack. Using both algorithms appears to be slightly more
successful. This reduction ranged fronb% for the Greedy flow, 5% for the B&B flow, and
2.5% on average in the combined flow. It can be seen that the B&Bifislightly more effective
at reducing the number of edges than the Greedy flow, but tlesion of the greedy swapping
algorithm is still beneficial. In terms of wire length, the B&low provides greater reduction than
the greedy heuristic. It should be noted that the improves&om the two heuristics are not

cumulative.

55



Numerical Results

When both heuristics are performed, up to &% reduction in wire length can be seen.
However, this reduction seems to decrease as the clustelissincreased. It was found that
although there was no significant reduction in the numbelustters, there is a consistent reduction
across most circuits when packed for a cluster size of 2.itimily this makes sense, since it is
much easier to empty out a cluster of 2, than it is to be ablelaxate all usedLEs inside a much
bigger cluster. Due to this reduction in number of clustarsjgnificant reduction in wire length
was seen. However, although the algorithms were able tcceethe number of inte¢LB edges
and wire length (to a small extent), critical paths were nghbigicantly affected (i.e., it was not
significantly reduced or increased) on average.

Table 5.7 shows the results obtained from using the impreveineuristics aftebPack. From
the data presented, the number of external nets shows &cagtidrop of 3% when both heuristics
are used. Although this is good news, the final routed wirgtleid not decrease, as one might
have expected. Generally speaking, fewer nets in the tmetlist usually translate into a reduction
in wire length. However, this is not withessed in this case. ilgVthe number of external nets
dropped by 3%, the overall wire length actualhgreasedoy an average of.83%, with the critical
delay worsening by 3%. This same observation can be made rae ofiDPack, from Table 5.8.

In the case oHDPack, external nets decreased by an average.®¥3when both improvement
heuristics are used. However, wire lengths also increasdiis case by 5%. There may be a
few explanations for this phenomenon. First, as proved fpoenious section$)Pack andHDPack

perform better clustering thah VPack. Therefore, it can be argued that the set of initial clusters

Table 5.6: Effect of Improvement Algorithms oil- VPack.

Arch Greedy B&B Both
N Ext Net | WL Crit || Ext Net | WL Crit || Ext Net | WL Crit
2 0.980 | 0.971| 0.985| 0.986 | 0.979| 0.956|| 0.973 | 0.951| 0.987
4 0.983 | 0.996| 0.987| 0.978 | 0.977| 0.997|| 0.966 | 0.975| 0.977
8 0.989 | 1.007| 1.017| 0.982 | 0.985| 0.997|| 0.975 | 0.996| 1.009
12 0.988 | 0.993| 1.003| 0.990 | 0.990| 0.998| 0.980 | 0.982| 1.031
Geomean| 0.985 | 0.992| 0.998| 0.984 | 0.982| 0.987| 0.974 | 0.975| 1.000
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provided byDPack andHDPack are already very good, and further manipulation of the eluséet
would likely lead to a worse set of clusters. Secondly, thprowement heuristic operates only
on connectivity and criticality, whereas bafRack andHDPack uses physical information while
clustering. Since the improvement heuristics are unawaphgsical information, it may make
some decisions that is counter to the actions made duritigliclustering. The data presented
here is a perfect example of why examination and compari$@tueter statistics is not enough;
to make a fair judgement, the final routed wire lengths anticati delays must be compared.
In this case, if only cluster statistics are compared, it Mf@eem that the improvement heuristics
provide significant benefit since up to 5% reduction in the benof external nets can be witnessed.
However, the comparison of the final wire lengths lead to thectusion that it is best not to use
the cluster improvement heuristics in conjunction wbfack andHDPack; that is, improvement
heuristics are most likely going to worsen the quality of final placement.

There is a number of possible explanations why the propoksstiec improvement heuristics
did not have as significant a benefit. First, theNc benchmark designs are very small compared
to actual industrial designs. Therefore, it is possiblé thenore significant improvement may be
visible on a benchmark set of larger designs. Also, some@ttmparisons differ in only a few
percentage points, and may be attributed to noise. Thubgiunvestigation should be performed

to see if these algorithms may be enhanced further.
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Table 5.7: Effect of Improvement Algorithms obPack

Arch Greedy B&B Both
N Ext Net | WL Crit || Ext Net | WL Crit || Ext Net | WL Crit
2 0.986 | 1.046| 1.032| 0.992 | 1.010| 1.026| 0.982 | 1.034| 1.031
4 0.979 | 1.066| 1.035| 0.974 | 1.042| 1.025|| 0.962 | 1.065| 1.046
8 0.983 | 1.050| 1.004| 0.974 | 1.020| 1.003|| 0.964 | 1.061| 1.022
12 0.984 | 1.037|1.019|| 0.980 |1.025|1.024| 0.971 |1.050| 1.021
Geomean| 0.983 | 1.050| 1.023|| 0.980 | 1.024| 1.019|| 0.970 | 1.053| 1.030

Table 5.8: Effect of Improvement Algorithms oHDPack

Arch Greedy B&B Both
N ExtNet | WL | Crit || ExtNet | WL | Crit || ExtNet | WL | Crit
2 0.976 | 1.025| 1.019| 0.984 | 1.010| 0.996|| 0.969 | 1.018| 1.033
4 0.970 | 1.039| 0.991| 0.966 | 1.016| 0.990|| 0.950 | 1.037| 1.003
8 0.981 | 1.028| 0.998| 0.971 | 1.014| 1.005| 0.962 | 1.036| 1.004
12 0.985 | 1.009| 0.987| 0.983 | 0.999| 0.999|| 0.973 | 1.009| 0.999
Geomean| 0.978 | 1.025| 0.999| 0.976 | 1.010| 0.998| 0.963 | 1.025| 1.009
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Chapter 6

Conclusions

In this thesis, the clustering phase of the FPGA CAD flow wadaerg in detail. First, several
clustering algorithms were implemented within a commomieavork to facilitate comparisons.
Then, physical information was added to these clusteriggrahms to see if better clusters could
be made. To obtain physical information prior to clusteriagmin-cut partitioning algorithm
was performed such that approximate physical locationséddo& generated foBLES. Then, the
obtained physical information was incorporated into twoey of clustering algorithms to evaluate
the advantage(s) of the additional circuit informationeTbcus was not to obtain architecturally
correct placements, but rather to obtain reasonable pdiyisiormation with little effort.

The flow described employs top-down min-cut partitioniragséd placement prior to clustering
to generate rough physical locations &ures. This physical information was then incorporated
into two clustering algorithms obPack and HDPack. DPack is a seed-based algorithm that is
similar to T- VPack. It was implemented with a few modifications made to it frorevpous work.
HDPack was then created by using ASIC methods along ®itdck. Both tools were then enhanced
with physical information. By using the approximate phgsilocations and relative positions of
BLES, it is hoped that better clusters can be made, and a betdépfatement can be achieved.

From the results presented in ChapteDBack yielded an average reduction of 16% in wire

length, and 8% in critical path delay comparedTtd/Pack. Similarly, HDPack resulted in an
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average improvement of 21% in wire length and 6% in criticalag compared td- VPack.
Under high-stress conditions, significant improvementsevgeen in the minimum channel widths
required by the benchmark set, ranging from 19% to 24% realuciNeitherDPack nor HDPack
required a significant increase in the numbecoBs. Although an increase in the average number
of used pins pecLB was observed, it did not appear to impact routability in &&ig. Therefore,

it was concluded that the use of physical information dufiR§>A packing can improve the final
quality of results and reduce the need Bue-level placement. Although a slight increase in the
average number of used pins perB was observed, it did not impact routability in the testing
process.

As a part of the study, several experiments were conductectier to determine how accurate
the generated physical information needs to be before itahassitive impact on the quality of
routed designs. It was found that the wire length and clitleday of routed designs decrease very
quickly as the number of partitions increases, but levelsasfd slightly increases as the circuits
are partitioned more finely. A good partition depth to stopsdbund to be 5. By partitioning to a
depth of 5, the greatest improvements in wire length anetatitelay can be achieved. Therefore,
although physical information does aid in better clustérsloes not need to be very accurate.
Hence, only approximate locations are necessary for pindueettercLBs. Furthermore, more
accurate locations may be detrimental to the quality ofltesu

Several comparisons were made between the implementedtlalgs and existing tools such
asT- VPack, RPack, andi RAC. It was found thaDPack and HDPack outperformT- VPack and
RPack, but do not improve upon the results obtained froRAC. However, it should be noted
thati RAC was able to achieve better external net absorption at thensepof a higher number of
clusters. Therefore, it is less area-efficient when conpar®Pack andHDPack. Some key ideas
in RPack andi RAC were added t®Pack to determine whether they can improve the current best
results. It was found that the addition of a routability tefound inRPack, did result in 1— 2%
improvement in the key metrics; however, no such improvamess found when RAC concepts

were added.
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In addition to the proposed clustering algorithms, two t@usmprovement heuristics were
explored in this thesis. The Swaps and Moves algorithm nantiylewapssLES between twaLBS
and accepts the rearrangement if both absorption andaditficosts improve. The Branch-and-
Bound algorithm uses enumeration with the hope that morgtioated rearrangements (i.e., more
than just moves or swaps Bf ES) can lead to a greater improvementinss.

From the results presented in Chapter 5, the improvementshiesrdemonstrated a reasonable
reduction (on the order of a few percent) in the number ofriates edges. This reduction is
visible despite the fact that no depopulation was used amdhtimber ofcLBs remained mostly
the same. This might be useful in highly utilized designs ol increasing theLs count is not
possible. The decrease in inter8 edges results in a small decrease in wire length in the case of
T- Pack. Unfortunately, the critical paths remain largely unafézton average. However, although
the number of external nets did indeed reduce, the final dowtee lengths and critical delay were
found to beworsefor bothDPack andHDPack. Hence, it is concluded that the heuristics employed
were able to improve upon clusters madelbyPack, but not on the cluster set generatedBgck

andHDPack .
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Chapter 7

Future Work

From the obtained results, substantial gains can be foutetnms of reduction in wire length, but
the reduction in critical delay is less significant. Futurerkvmay be to integrate concepts from
depth-optimal methods intbPack andHDPack to see if these methods can further improve the
quality of results. It is also possible that in conjunctioithaa congestion placer, the results can be
further improved upon.

In each clustering algorithm presented, a clustered nhedigenerated after clustering is
performed with physical information. EaaLB in the clustered netlist has anandy location
computed from averaging the locations for alles it contains. It is possible to generate a
placement based on this information, using legalizati@hmiéques [55]. This initial placement
may in turn help the placement process, and may be a betteitstdne placement step of the
FPGA flow than a random placement. This has the potentialaofitgy to a better quality of final

placements, or the ability to achieve the same quality incatshtimeframe.
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Glossary of Terms

ASIC Applicaton-Specific Integrated Circuit.

BLE Basic Logic Element.

Channel Width The number of wires in the routing channel between CLBs.

CLB Configurable Logic Block.

Critical Path The longest path in a circuit, which determines the maximyerating frequency.
FPGA Field Programmable Gate Array.

IO Input/Output.

VPR Versatile Place and Route, a placement and routing tookfgarch in FPGAs, and can be

obtained aht t p: / / www. eecg. t or ont 0. edu/ vaughn/ vpr/vpr. htn .

Wire Length The sum of wire segments needed to route a circuit.

70


http://www.eecg.toronto.edu/vaughn/vpr/vpr.html

	Introduction
	Background
	Clustering Algorithms
	Affinity-Based Packing (HFCC)
	Formulation of HDPack


	Cluster Improvement Algorithms
	Numerical Results
	General Experimental Flow
	Low-Stress Routing Setup
	High-Stress Routing Setup
	Low-Stress Routing
	High-Stress Routing
	Low-Stress Routing Tests
	High-Stress Routing Tests


	Conclusions
	Future Work
	Bibliography
	Glossary of Terms

