
Tools for Modelling and Identification with
Bond Graphs and Genetic Programming

by

Stefan Wiechula

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical Engineering

Waterloo, Ontario, Canada, 2006

c©Stefan Wiechula 2006

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

ii

Abstract

The contributions of this work include genetic programming grammars for
bond graph modelling and for direct symbolic regression of sets of differential
equations; a bond graph modelling library suitable for programmatic use; a
symbolic algebra library specialized to this use and capable of, among other
things, breaking algebraic loops in equation sets extracted from linear bond
graph models. Several non-linear multi-body mechanics examples are pre-
sented, showing that the bond graph modelling library exhibits well-behaved
simulation results. Symbolic equations in a reduced form are produced au-
tomatically from bond graph models. The genetic programming system is
tested against a static non-linear function identification problem using type-
less symbolic regression. The direct symbolic regression grammar is shown
to have a non-deceptive fitness landscape: perturbations of an exact pro-
gram have decreasing fitness with increasing distance from the ideal. The
planned integration of bond graphs with genetic programming for use as a
system identification technique was not successfully completed. A catego-
rized overview of other modelling and identification techniques is included as
context for the choice of bond graphs and genetic programming.

iii

Acknowledgements

I’d like to thank my supervisor, Dr. Jan Huissoon, for his support.

iv

Contents

1 Introduction 1
1.1 System identification . 1
1.2 Black box and grey box problems 3
1.3 Static and dynamic models . 6
1.4 Parametric and non-parametric models 8
1.5 Linear and nonlinear models 9
1.6 Optimization, search, machine learning 11
1.7 Some model types and identification techniques 12

1.7.1 Locally linear models 13
1.7.2 Nonparametric modelling 14
1.7.3 Volterra function series models 15
1.7.4 Two special models in terms of Volterra series 16
1.7.5 Least squares identification of Volterra series models . 18
1.7.6 Nonparametric modelling as function approximation . . 21
1.7.7 Neural networks . 22
1.7.8 Parametric modelling 23
1.7.9 Differential and difference equations 23
1.7.10 Information criteria–heuristics for choosing model order 25
1.7.11 Fuzzy relational models 26
1.7.12 Graph-based models 28

1.8 Contributions of this thesis . 30

2 Bond graphs 31
2.1 Energy based lumped parameter models 31
2.2 Standard bond graph elements 32

2.2.1 Bonds . 32
2.2.2 Storage elements . 33
2.2.3 Source elements . 34

v

2.2.4 Sink elements . 35
2.2.5 Junctions . 35

2.3 Augmented bond graphs . 39
2.3.1 Integral and derivative causality 41
2.3.2 Sequential causality assignment procedure 44

2.4 Additional bond graph elements 46
2.4.1 Activated bonds and signal blocks 46
2.4.2 Modulated elements 46
2.4.3 Complex elements . 47
2.4.4 Compound elements 48

2.5 Simulation . 51
2.5.1 State space models . 51
2.5.2 Mixed causality models 52

3 Genetic programming 54
3.1 Models, programs, and machine learning 54
3.2 History of genetic programming 55
3.3 Genetic operators . 57

3.3.1 The crossover operator 58
3.3.2 The mutation operator 58
3.3.3 The replication operator 58
3.3.4 Fitness proportional selection 59

3.4 Generational genetic algorithms 59
3.5 Building blocks and schemata 61
3.6 Tree structured programs . 63

3.6.1 The crossover operator for tree structures 67
3.6.2 The mutation operator for tree structures 67
3.6.3 Other operators on tree structures 68

3.7 Symbolic regression . 69
3.8 Closure or strong typing . 70
3.9 Genetic programming as indirect search 72
3.10 Search tuning . 73

3.10.1 Controlling program size 73
3.10.2 Maintaining population diversity 74

4 Implementation 76
4.1 Program structure . 76

4.1.1 Formats and representations 77

vi

4.2 External tools . 81
4.2.1 The Python programming language 81
4.2.2 The SciPy numerical libraries 82
4.2.3 Graph layout and visualization with Graphviz 82

4.3 A bond graph modelling library 83
4.3.1 Basic data structures 83
4.3.2 Adding elements and bonds, traversing a graph 84
4.3.3 Assigning causality . 84
4.3.4 Extracting equations 86
4.3.5 Model reductions . 86

4.4 An object-oriented symbolic algebra library 100
4.4.1 Basic data structures 100
4.4.2 Basic reductions and manipulations 102
4.4.3 Algebraic loop detection and resolution 104
4.4.4 Reducing equations to state-space form 107
4.4.5 Simulation . 110

4.5 A typed genetic programming system 110
4.5.1 Strongly typed mutation 112
4.5.2 Strongly typed crossover 113
4.5.3 A grammar for symbolic regression on dynamic systems 113
4.5.4 A grammar for genetic programming bond graphs . . . 118

5 Results and discussion 120
5.1 Bond graph modelling and simulation 120

5.1.1 Simple spring-mass-damper system 120
5.1.2 Multiple spring-mass-damper system 125
5.1.3 Elastic collision with a horizontal surface 128
5.1.4 Suspended planar pendulum 130
5.1.5 Triple planar pendulum 133
5.1.6 Linked elastic collisions 139

5.2 Symbolic regression of a static function 141
5.2.1 Population dynamics 141
5.2.2 Algebraic reductions 143

5.3 Exploring genetic neighbourhoods by perturbation of an ideal 151
5.4 Discussion . 153

5.4.1 On bond graphs . 153
5.4.2 On genetic programming 157

vii

6 Summary and conclusions 160
6.1 Extensions and future work 161

6.1.1 Additional experiments 161
6.1.2 Software improvements 163

viii

List of Figures

1.1 Using output prediction error to evaluate a model. 4
1.2 The black box system identification problem. 5
1.3 The grey box system identification problem. 5
1.4 Block diagram of a Volterra function series model 17
1.5 The Hammerstein filter chain model structure 17
1.6 Block diagram of the linear, squarer, cuber model 18
1.7 Block diagram for a nonlinear moving average operation . . . 21

2.1 A bond denotes power continuity 32
2.2 A capacitive storage element: the 1-port capacitor, C 34
2.3 An inductive storage element: the 1-port inertia, I 34
2.4 An ideal source element: the 1-port effort source, Se 35
2.5 An ideal source element: the 1-port flow source, Sf 35
2.6 A dissipative element: the 1-port resistor, R 36
2.7 A power-conserving 2-port element: the transformer, TF . . . 37
2.8 A power-conserving 2-port element: the gyrator, GY 37
2.9 A power-conserving multi-port element: the 0-junction 38
2.10 A power-conserving multi-port element: the 1-junction 38
2.11 A fully augmented bond includes a causal stroke 40
2.12 Derivative causality: electrical capacitors in parallel 44
2.13 Derivative causality: rigidly joined masses 45
2.14 A power-conserving 2-port: the modulated transformer, MTF 47
2.15 A power-conserving 2-port: the modulated gyrator, MGY . . . 47
2.16 A non-linear storage element: the contact compliance, CC . . 48
2.17 Mechanical contact compliance, an unfixed spring 48
2.18 Effort-displacement plot for the CC element 49
2.19 A suspended pendulum . 50
2.20 Sub-models of the simple pendulum 50

ix

2.21 Model of a simple pendulum using compound elements 51

3.1 A computer program is like a system model. 54
3.2 The crossover operation for bit string genotypes 58
3.3 The mutation operation for bit string genotypes 58
3.4 The replication operation for bit string genotypes 59
3.5 Simplified GA flowchart . 61
3.6 Genetic programming produces a program. 66
3.7 The crossover operation for tree structured genotypes 68
3.8 Genetic programming as indirect search 73

4.1 Model reductions step 1: remove trivial junctions 88
4.2 Model reductions step 2: merge adjacent like junctions 89
4.3 Model reductions step 3: merge resistors 90
4.4 Model reductions step 4: merge capacitors 91
4.5 Model reductions step 5: merge inertias 91
4.6 A randomly generated model 92
4.7 A reduced model: step 1 . 93
4.8 A reduced model: step 2 . 94
4.9 A reduced model: step 3 . 95
4.10 Algebraic dependencies from the original model 96
4.11 Algebraic dependencies from the reduced model 97
4.12 Algebraic object inheritance diagram 101
4.13 Algebraic dependencies with loops resolved 108

5.1 Schematic diagram of a simple spring-mass-damper system . . 123
5.2 Bond graph model of the system from figure 5.1 123
5.3 Step response of a simple spring-mass-damper model 124
5.4 Noise response of a simple spring-mass-damper model 124
5.5 Schematic diagram of a multiple spring-mass-damper system . 126
5.6 Bond graph model of the system from figure 5.5 126
5.7 Step response of a multiple spring-mass-damper model 127
5.8 Noise response of a multiple spring-mass-damper model 127
5.9 A bouncing ball . 128
5.10 Bond graph model of a bouncing ball with switched C-element 129
5.11 Response of a bouncing ball model 129
5.12 Bond graph model of the system from figure 2.19 132
5.13 Response of a simple pendulum model 133

x

5.14 Vertical response of a triple pendulum model 136
5.15 Horizontal response of a triple pendulum model 137
5.16 Angular response of a triple pendulum model 137
5.17 A triple planar pendulum . 138
5.18 Schematic diagram of a rigid bar with bumpers 139
5.19 Bond graph model of the system from figure 5.18 140
5.20 Response of a bar-with-bumpers model 140
5.21 Fitness in run A . 144
5.22 Diversity in run A . 144
5.23 Program size in run A . 145
5.24 Program age in run A . 145
5.25 Fitness of run B . 146
5.26 Diversity of run B . 146
5.27 Program size in run B . 147
5.28 Program age in run B . 147
5.29 A best approximation of x2 + 2.0 after 41 generations 149
5.30 The reduced expression . 150
5.31 Mean fitness versus tree-distance from the ideal 153
5.32 Symbolic regression “ideal” 154

xi

List of Tables

1.1 Modelling tasks in order of increasing difficulty. 13

2.1 Units of effort and flow in several physical domains. 33
2.2 Causality options by element type: 1- and 2-port elements. . . 42
2.3 Causality options by element type: junction elements. 43

4.1 Grammar for symbolic regression on dynamic systems 117
4.2 Grammar for genetic programming bond graphs 119

5.1 Neighbourhood of a symbolic regression “ideal” 152

xii

Listings

3.1 Protecting the fitness test code against division by zero 71
4.1 A simple bond graph model in .bg format 78
4.2 A simple bond graph model constructed in Python code . . . 80
4.3 Two simple functions in Python 81
4.4 Graphviz DOT markup for the model defined in listing 4.4 . . 83
4.5 Equations from the model in figure 4.6 98
4.6 Equations from the reduced model in figure 4.9 99
4.7 Resolving a loop in the reduced model 106
4.8 Equations from the reduced model with loops resolved 107

xiii

Chapter 1

Introduction

1.1 System identification

System identification refers to the problem of finding models that describe
and predict the behaviour of physical systems. These are mathematical mod-
els and, because they are abstractions of the system under test, they are
necessarily specialized and approximate.

There are many uses for an identified model. It may be used in simula-
tion to design systems that interoperate with the modelled system, a control
system for example. In an iterative design process it is often desirable to
use a model in place of the actual system if it is expensive or dangerous to
operate the original system. An identified model may also be used online
in parallel with the original system for monitoring and diagnosis or model
predictive control. A model may be sought that describes the internal struc-
ture of a closed system in a way that plausibly explains the behaviour of the
system giving insight into its working. It is not even required that the system
exist. An experimenter may be engaged in a design exercise and have only
functional (behavioural) requirements for the system but no prototype or
even structural details of how it should be built. Some system identification
techniques are able to run against such functional requirements and generate
a model for the final design even before it is realized. If the identification
technique can be additionally constrained to only generate models that can
be realized in a usable form (akin to finding not just a proof, but a genera-
tive proof in mathematics), then the technique is also an automated design
method [45].

1

In any system identification exercise, the experimenter must specialize
the model in advance by deciding what aspects of the system behaviour will
be represented in the model. For any system that might be modelled, from
a rocket to a stone, there are an inconceivably large number of environments
that it might be placed in, and interactions that it might have with the en-
vironment. In modelling the stone, one experimenter may be interested to
describe and predict its material strength while another is interested in its
specular qualities under different lighting conditions. Neither will (or should)
concern themselves with the other’s interests when building a model of the
stone. Indeed, there is no obvious point at which to stop if either experi-
menter chose to start including other aspects of a stone’s interactions with its
environment. One could imagine modelling a stone’s structural resonance,
chemical reactivity, and aerodynamics only to realize one has not modelled
its interaction with the solar wind. Every practical model is specialized, ad-
dressing itself to only some aspects of the system behaviour. Like a 1:1 scale
map, the only “complete” or “exact” model is a replica of the original sys-
tem. It is assumed that any experimenter engaged in system identification
has reason to not use the system directly at all times.

Identified models can only ever be approximate since they are based on
necessarily approximate and noisy measurements of the system behaviour.
In order to build a model of the system behaviour, it must first be observed.
There are sources of noise and inaccuracy at many levels of any practical
measurement system. Precision may be lost and errors accumulated by ma-
nipulations of the measured data during the process of building a model.
Finally, the model representation itself will always be finite in scope and pre-
cision. In practice, a model’s accuracy should be evaluated in terms of the
purpose for which the model is built. A model is adequate if it describes and
predicts the behaviour of the original system in a way that is satisfactory or
useful to the experimenter.

In one sense, the term “system identification” is nearly a misnomer since
the result is at best an abstraction of some aspects of the system and not at
all a unique identifier for it. There can be many different systems which are
equally well described in one aspect or another by a single model and there
can be many equally valid models for different aspects of a single system.
Often there are additional equivalent representations for a model, such as a
differential equation and its Laplace transform, and tools exist that assist in
moving from one representation to another [28]. Ultimately, it is perhaps best
to think of an identified model as a second system that, for some purposes,

2

can be used in place of the system under test. They are identical in some
useful aspect. This view is most clear when using analog computers to solve
some set of differential equations, or when using a software on a digital
computer to simulate another digital system ([59] contains many examples
that use MATLAB to simulate digital control systems).

1.2 Black box and grey box problems

The black box system identification problem is specified as, after observing
a time sequence of input and measured output values, find a model that
as closely as possible reproduces the output sequence given only the input
sequence. In some cases the system inputs may be a controlled test signal
chosen by the experimenter. A typical experimental set-up is shown schemat-
ically in figure 1.2. It is common, and perhaps intuitive, to evaluate models
according to their output prediction error, as shown schematically in figure
1.1. Other formulations are possible but less often used. Input prediction
error, for example, uses an inverse model to predict test signal values from
the measured system output. Generalized prediction error uses a two part
model consisting of a forward model of input processes and an inverse model
of output processes; their meeting corresponds to some point internal to the
system under test [85].

Importantly, the system is considered to be opaque (black), exposing only
a finite set of observable input and output ports. No assumptions are made
about the internal structure of the system. Once a test signal enters the
system at an input port it cannot be observed any further. The origin of
output signals cannot be traced back within the system. This inscrutable
conception of the system under test is a simplifying abstraction. Any two
systems which produce identical output signals for a given input signal are
considered equivalent in a black box system identification. By making no
assumptions about the internal structure or physical principles of the system,
an experimenter can apply familiar system identification techniques to a wide
variety of systems and use the resulting models interchangeably.

It is not often true, however, that nothing is know of the system inter-
nals. Knowledge of the system internals may come from a variety of sources
including

• Inspection or disassembly of a non-operational system

3

• Theoretical principles applicable to that class of systems

• Knowledge from the design and construction of the system

• Results of another system identification exercise

• Past experience with similar systems.

In these cases, it may be desirable to use an identification technique that
is able to use and profit from a preliminary model incorporating any prior
knowledge of the structure of the system under test. Such a technique is
loosely called “grey box” system identification to indicate that the system
under test is neither wholly opaque nor wholly transparent to the experi-
menter. The grey box system identification problem is shown schematically
in figure 1.3.

Note that in all the schematic depictions above the measured signal avail-
able to the identification algorithm and to the output prediction error calcu-
lation is a sum of the actual system output and some added noise. This added
noise represents random inaccuracies in the sensing and measurement appa-
ratus as are unavoidable when modelling real, physical processes. A zero
mean Gausian distribution is usually assumed for the added noise signal.
This is representative of many physical processes and a common simplifying
assumption for others.

Figure 1.1: Using output prediction error to evaluate a model.

4

Figure 1.2: The black box system identification problem.

Figure 1.3: The grey box system identification problem.

5

1.3 Static and dynamic models

Models can be classified as either static or dynamic. The output of a static
model at any instant depends only on the value of the inputs at that instant
and in no way on any past values of the input. Put another way, the input–
output relationships of a static model are independent of order and rate
at which the inputs are presented to it. This prohibits static models from
exhibiting many useful and widely evident behaviours such as hysteresis and
resonance. As such, static models are not of much interest on their own but
often occur as components of a larger compound model that is dynamic over
all. The system identification procedure for static models can be phrased
in visual terms as: fit a line (plane, hyper-plane), curve (sheet), or some
discontinuous function to a plot of system input–output data. The data may
be collected in any number of experiments and is plotted without regard to
the order in which it was collected. Because there is no way for past inputs to
have a persistent effect within static models, these are also sometimes called
“stateless” or “zero-memory” models.

Dynamic models have “memory” in some form. The observable effects
at their outputs of changes at their inputs may persist beyond subsequent
changes at their inputs. A very common formulation for dynamic models is
called “state space form”. In this formulation a dynamic system is repre-
sented by a set of input, state, and output variables that are related by a set
of algebraic and first order ordinary differential equations. The input vari-
ables are all free variables in these equations. Their values are determined
outside of the model. The first derivative of each state variable appears alone
on the left-hand side of a differential equation, the right-hand side of which is
an algebraic expression containing input and state variables, but not output
variables. The output variables are defined algebraically in terms of the state
and input variables. For a system with n input variables, m state variables
and p output variables, the model equations would be

u̇1 =f1(x1, . . . , xn, u1, . . . , um)

...

u̇m =fm(x1, . . . , xn, u1, . . . , um)

6

y1 =g1(x1, . . . , xn, u1, . . . , um)

...

yp =gp(x1, . . . , xn, u1, . . . , um)

where x1 . . . xn are the input variables, u1 . . . um are the state variables,
and y1 . . . yp are the output variables.

The main difficulties in identifying dynamic models (over static ones) are
first, because the data order of arrival within the input and output signals
matter, typically much more data must be collected and second, that the
system may have unobservable state variables. Identification of dynamic
models typically requires more data to be collected since, to adequate sam-
ple the behaviour of a stateful system, not just every interesting combination
of the inputs but ever path through the interesting combinations of the in-
puts must be exercised. Here “interesting” means simply “of interest to the
experimenter”.

Unobservable state variables are state variables that do not coincide ex-
actly with an output variable. That is a ui for which there is no yj =
gj(x1, . . . , xn, u1, . . . , um) = ui. The difficulty in identifying systems with un-
observable state variables is twofold. First, there may be an unknown number
of unobservable state variables concealed within the system. This leaves the
experimenter to estimate an appropriate model order. If this estimate is too
low then the model will be incapable of reproducing the full range of system
behaviour. If this estimate is too high then extra computation costs will be
incurred during identification and use of the model and there is an increased
risk of over-fitting (see section 1.6). Second, for any system with an unknown
number of unobservable state variables it is impossible to know for certain
the initial state of the system. This is a difficulty to experimenters since, for
an extreme example, it may be futile to exercise any path through the input
space during a period when the outputs are overwhelmingly determined by
persisting effects of past inputs. Experimenters may attempt to work around
this by allowing the system to settle into a consistent, if unknown, state be-
fore beginning to collect data. In repeated experiments the maximum time
between application of a stationary input signal and the arrival of the sys-
tem outputs at a stationary signal is recorded. Then while collecting data
for model evaluation the experimenter will discard the output signal for at
least as much time between start of excitation and start of data collection.

7

1.4 Parametric and non-parametric models

Models can be divided into those described by a small number of parameters
at distinct points in the model structure, called parametric models, and those
described by an often quite large number of parameters all of which have
similar significance in the model structure, called non-parametric models.

System identification with parametric model entails choosing a specific
model structure and then estimating the model parameters to best fit model
behaviour to system behaviour. Symbolic regression (discussed in section 3.7)
is unusual because it is able to identify the model structure automatically
and the corresponding parameters at the same time.

Parametric models are typically more concise (contain fewer parameters
and are shorter to describe) than similarly accurate non-parametric models.
Parameters in a parametric model often have individual significance in the
system behaviour. For example, the roots of the numerator and denominator
of a transfer function model indicate poles and zeros that are related to
the settling time, stability, and other behavioural properties of the model.
Continuous or discrete transfer functions (in the Laplace or Z domain) and
their time domain representations (differential and difference equations) are
all parametric models. Examples of linear structures in each of these forms
is given in equations 1.1 (continuous transfer function), 1.2 (discrete transfer
function), 1.3 (continuous time-domain function), and 1.4 (discrete time-
domain function). In each case, the experimenter must choose m and n to
fully specify the model structure. For non-linear models, there are additional
structural decisions to be made, as described in Section 1.5.

Y (s) =
bmsm + bm−1s

m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0

X(s) (1.1)

Y (z) =
b1z

−1 + b2z
−2 + · · ·+ bmz−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n
X(z) (1.2)

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = bm

dmx

dtm
+ · · ·+ b1

dx

dt
+ b0x (1.3)

yk + a1yk−1 + · · ·+ anyk−n = b1xk−1 + · · ·+ bmxk−m (1.4)

Because they typically contain fewer identified parameters and the range
of possibilities is already reduced by the choice of a specific model structure,

8

parametric models are typically easier to identify provided the chosen spe-
cific model structure is appropriate. However, system identification with an
inappropriate parametric model structure, particularly a model that is too
low order and therefore insufficiently flexible, is sure to be frustrating. It
is an advantage of non-parametric models that the experimenter need not
make this difficult model structure decision.

Examples of non-parametric model structures include: impulse response
models (equation 1.5 continuous and 1.6 discrete), frequency response models
(equation 1.7), and Volterra kernels. Note that equation 1.7 is simply the
Fourier transform of equation 1.5 and that equation 1.6 is the special case of
a Volterra kernel with no higher order terms.

y(t) =

∫ t

0

u(t− τ)x(τ)dτ (1.5)

y(k) =
k∑

m=0

u(k −m)x(m) (1.6)

Y (jω) = U(jω)X(jω) (1.7)

The lumped-parameter, graph-based models discussed in chapter 2 are
compositions of sub-models that may be either parametric or non-parametric.
The genetic programming based identification technique discussed in chapter
3 relies on symbolic regression to find numerical constants and algebraic
relations not specified in the prototype model or available graph components.
Any non-parametric sub-models that appear in the final compound model
must have been identified by other techniques and included in the prototype
model using a grey box approach to identification.

1.5 Linear and nonlinear models

There is a natural ordering of linear parametric models from low-order models
to high-order models. That is, linear models of a given structure they can be
enumerated from less complex and flexible to more complex and flexible. For
example, models structured as a transfer function (continuous or discrete)
can be ordered by the number of poles first and by the number of zeros for
models with the same number of poles. Models having a greater number of
poles and zeros are more flexible, that is, they are able to reproduce more

9

complex system behaviours than lower order models. Two or more models
having the same number of poles and zeros would be considered equally
flexible.

Linear here means linear-in-the-parameters, assuming a parametric model.
A parametric model is linear-in-the-parameters if, for input vector u, output
vector y, and parameters to be identified β1 . . . βn, the model can be written
as a polynomial containing non-linear functions of the inputs but not of the
parameters. For example, equation 1.8 is linear in the parameters βi while
equation 1.8 is not. Both contain non-linear functions of the inputs (namely
u2

2 and sin(. . . u3)) but equation 1.8 forms a linear sum of the parameters,
each multiplied by some factor that is unrelated in any way to the parame-
ters. This structure permits the following direct solution to the identification
problem.

y = β1u1 + β2u
2
2 + β3 sin(u3) (1.8)

y = β1β2u1 + u2
2 + sin(β3u3) (1.9)

For models that are linear-in-the-parameters, the output prediction error
is also a linear function of the parameters. A best fit model can be found
directly (in one step) by taking the partial derivative of the error function
with respect to the parameters and testing each extrema to solve for the
parameters vector that minimizes the error function. When the error function
is a sum of squared error terms, this technique is called a linear least squares
parameter estimation. In general, there are no such direct solutions to the
identification problem for non-linear model types. Identification techniques
for non-linear models all resort to an iterative, multi-step process of some
sort. These iterations can be viewed as a search through the model parameter
and, in some cases, model structure space. There is no guarantee of finding
a globally optimal model in terms of output prediction error.

There is a fundamental trade-off between model size, or order, and the
model’s expressive power, or flexibility. In general it is desirable to identify
the most compact model that adequately represents the system behaviour.
Larger models incur greater storage and computational costs during identi-
fication and use. Excessively large models are also more vulnerable to over
fitting (discussed in section 1.6), a case of misapplied flexibility.

One approach to identifying minimal-order linear models is to start with
an arbitrarily low order model structure and repeatedly identify the best

10

model using the linear least squares technique discussed below while incre-
menting the model order between attempts. The search is terminated as
soon as an adequate representation of system behaviour is achieved. Unfor-
tunately, this approach or any like it are not applicable to general non-linear
models since any number of qualitatively distinct yet equally complex struc-
tures are possible.

One final complication to the identification of non-linear models is that
superposition of separately measured responses applies to linear models only.
One can not measure the output of a non-linear system in response to distinct
test signals on different occasions and superimpose the measurements latter
with any accuracy. This prohibits conveniences such as adding a test signal
to the normal operating inputs and subtracting the normal operating outputs
from the measured output to estimate the system response to the test signal
alone.

1.6 Optimization, search, machine learning

System identification can be viewed as a type of optimization or machine
learning problem. In fact most system identification techniques draw heavily
from the mathematics of optimization and in as much as the “best” model
structure and parameter values are sought, system identification is an opti-
mization problem. When automatic methods are desired, system identifica-
tion is a machine learning problem. Finally, system identification can also be
viewed as a search problem where a “good” or “best” model is sought within
the space of all possible models.

Overfitting and premature optimization are two pitfalls common to many
machine learning, search, and global optimization problems. They might also
be phrased as the challenge of choosing a rate at which to progress and of
deciding when to stop. The goal in all cases is to generalize on the training
data, find a global optimum, and to not give too much weight to unimportant
local details.

Premature optimization occurs when a search algorithm narrows in on a
neighbourhood that is locally, but not globally optimal. Many system iden-
tification and machine learning algorithms incorporate tunable parameters
that adjust how aggressive the algorithm is in pursuing a solution. In machine
learning, this is called a learning rate and controls how fast the algorithm
will accept new knowledge and discard old. In heuristic search algorithms it

11

is a factor that trades off exploration of new territory with exploitation of
local gain made in a a neighbourhood. Back propagation learning for neural
networks encodes the learning rate in a single constant factor. In fuzzy logic
systems it is implicit in the fuzzy rule adjustment procedures. Learning rate
corresponds to step size in a hill climbing or simulated annealing search and
in (tree structured) genetic algorithms the representation (function and ter-
minal set) determines the topography of the search space and the operator
design (crossover and mutation functions) determine the allowable step sizes
and directions.

Ideally, the identified model will respond to important trends in the data,
and not to random noise or aspects of the system that are uninteresting to
the experimenter. Successful machine learning algorithms generalize on the
training data and good identified models give good results to unseen test
signals as well as those used during identification. A model which does not
generalize well may be “overfitting”. To check for overfitting, a model is
validated against unseen data. This data must be held aside strictly for val-
idation purposes. If the validation results are used to select a best model,
then the validation data implicitly becomes training data. Stopping criteria
typically include a quality measure (a minimum fitness or maximum error
threshold) and computational measures (a maximum number of iterations or
amount of computer time). Introductory descriptions of genetic algorithms
and back propagation learning in neural networks mention both criteria and
a “first met” arrangement. The Bayesian and Akaike information criteria are
two heuristic stopping criteria mentioned in every machine learning textbook.
They both incorporate a measure of parsimony for the identified model and
weight that against the fitness or error measure. They are therefore appli-
cable to techniques that generate a variable length model the complexity or
parsimony of which is easily quantifiable.

1.7 Some model types and identification tech-

niques

Table 1.1 divides all models into four classes labelled in order of increasing
difficulty of their identification problem. The linear problems each have well
known solution methods that achieve an optimal model in one step. For
linear static models (class 1 in table 1.1) the problem is to fit a line, plane,

12

or hyper-plane that is “best” by some measure (such as minimum squared
or absolute error) to the input–output data. The usual solution method is
to form the partial derivative of the error measure with respect to the model
parameters (slope and offset for a simple line) and solve for model parameter
values at the minimum error extremum. The solution method is identical for
linear-in-the-parameters dynamic models (class 2 in table 1.1). Non-linear
static modelling (class 3 in table 1.1) is the general function approximation
problem (also known as curve fitting or regression analysis). The fourth class
of system identification problems, identifying models that are both non-linear
and dynamic, is the most challenging and the most interesting. Non-linear
dynamic models are the most difficult to identify because, in general, it
is a combined structure and parameter identification problem. This thesis
proposes a technique–bond graph models created by genetic programming–to
address black- and grey-box problems of this type.

Table 1.1: Modelling tasks in order of increasing difficulty.

linear non-linear
static (1) (3)

dynamic (2) (4)

(1), (2) are both linear regression problems and (3) is the general function
approximation problem. (4) is the most general class of system identification
problems.

Two models using local linear approximations of nonlinear systems are
discussed first, followed by several nonlinear nonparametric and parametric
models.

1.7.1 Locally linear models

Since nonlinear system identification is difficult, two categories of techniques
have arisen attempting to apply linear models to nonlinear systems. Both
rely on local linear approximations of nonlinear systems which are accurate
for small changes about a fixed operating point. In the first category several
linear model approximations are identified, each at different operating points
of the nonlinear system. The complete model interpolates between these local
linearizations. An example of this technique is the Linear Parameter-Varying

13

(LPV) model. In the second category a single linear model approximation is
identified at the current operating point and then updated as the operating
point changes. The Extended Kalman Filter (EKF) is an example of this
technique.

Both these techniques share the advantage of using linear model identifi-
cation, which is fast and well understood. LPV models can be very effective
and are popular for industrial control applications [12], [7]. For a given model
structure, the extended Kalman filter estimates state as well as parameters.
It often used to estimate parameters of a known model structure given noisy
and incomplete measurements (where not all states are measurable) [47], [48].
The basic identification technique for LPV models consists of three steps:

1. Choose the set of base operating points

2. Perform a linear system identification at each of the base operating
points

3. Choose an interpolation scheme (e.g. linear, polynomial, or b-spline)

In step 2 it is important to use low amplitude test signals such that the system
will not be excited outside a small neighbourhood of the chosen operating
point for which the system is assumed linear. The corollary to this is that
with any of the globally nonlinear models discussed later it is important to
use a large test signal which excites the nonlinear dynamics of the system
otherwise only the local, approximately linear behaviour will be modelled.
[5] presents a one-shot procedure that combines all of the three steps above.

Both of these techniques are able to identify the parameters, but not the
structure of a model. For EKF, the model structure must be given in a
state space form. For LPV the model structure is defined by the number and
spacing of the base operating points and the interpolation method. Recursive
or iterative forms of linear system identification techniques can track (update
the model online) mildly nonlinear systems that simply drift over time.

1.7.2 Nonparametric modelling

Volterra function series models and artificial neural networks are two gen-
eral nonparametric nonlinear models about which quite a lot has been writ-
ten. Volterra models are linear in the parameters but they suffer from an
extremely large number of parameters which leads to computational diffi-
culties and overfitting. Dynamic system identification can be posed as a

14

function approximation problem and neural networks are a popular choice
of approximator. Neural networks can also be formed in so-called recurrent
configurations. Recurrent neural networks are dynamic systems themselves.

1.7.3 Volterra function series models

Volterra series models are an extension of linear impulse response models
(first order time-domain kernels) to nonlinear systems. The linear impulse
response model is given by:

y(t) = y1(t) =

∫ 0

−TS

g(t− τ) · u(τ)dτ (1.10)

Its discrete-time version is:

y(tk) = y1(tk) =

NS∑
j=0

Wj · uk−j (1.11)

The limits of integration and summation are finite since practical, stable
systems are assumed to have negligible dependence on the very distant past.
That is, only finite memory systems are considered. The Volterra series
model extends the above into an infinite sum of functions. The first of these
functions is the linear model y1(t) above.

y(t) = y1(t) + y2(t) + y3(t) + . . . (1.12)

The continuous-time form of the additional terms (called bilinear, trilin-
ear, etc. functions) is:

y2(t) =

∫ 0

−T1

∫ 0

−T2

g2(t− τ1, t− τ2) · u(τ1) · u(τ2)dτ1dτ2

y3(t) =

∫ 0

−T1

∫ 0

−T2

∫ 0

−T3

g3(t− τ1, t− τ2, t− τ3) · u(τ1) · u(τ2) · u(τ3)dτ1dτ2dτ3

...

yp(t) =

∫ 0

−T1

∫ 0

−T2

· · ·
∫ 0

−Tp

gp(t− τ1, t− τ2, · · · t− τp) · u(τ1) · u(τ2) · · ·

· · · · u(τp)dτ1dτ2 · · · dτp

...

15

Where, gp is called the pth order continuous time kernel. The rest of this
discussion will use the discrete-time representation.

y2(tn) =

M2∑
i=0

M2∑
j=0

W
(2)
i,j · un−i · un−j

y3(tn) =

M3∑
i=0

M3∑
j=0

M3∑
k=0

W
(3)
i,j,k · un−i · un−j · un−k

...

yp(tn) =

Mp∑
i1=0

Mp∑
i2=0

· · ·
Mp∑

ip=0

W
(p)
i1,i2,...,ip

· un−i1 · un−i2 · · · · un−ip

...

W (p) is called the p’th order discrete time kernel. W (2) is a M2 by M2

square matrix and W (3) is a M3 by M3 by M3 cubic matrix and so on. It is not
required that the memory lengths of each kernel (M2, M3, etc.) are the same,
but they are typically chosen equal for consistent accounting. If the memory
length is M , then the p’th order kernel W (p) is a p dimensional matrix with
Mp elements. The overall Volterra series model has the form of a sum of
products of delayed values of the input with constant coefficients coming
from the kernel elements. The model parameters are the kernel elements,
and the model is linear in the parameters. The number of parameters is
M(1) + M2

(2) + M3
(3) + · · · + Mp

(p) + . . . or infinite. Clearly the full Volterra
series with an infinite number of parameters cannot be used in practice;
rather it is truncated after the first few terms. In preparing this thesis, no
references were found to applications using more than 3 terms in the Volterra
series. The number of parameters is still large even after truncating at the
third order term. A block diagram of the full Volterra function series model
is shown in figure 1.4.

1.7.4 Two special models in terms of Volterra series

Some nonlinear systems can be separated into a static nonlinear function fol-
lowed by a linear time-invariant (LTI) dynamic system. This form is called
a Hammerstein model and is shown in figure 1.5 The opposite, an LTI dy-
namic system followed by a static nonlinear function is called a Weiner model.

16

Figure 1.4: Block diagram of a Volterra function series model

This section discusses the Hammerstein model in terms of Volterra series and
presents another simplified Volterra-like model recommended in [6].

Figure 1.5: The Hammerstein filter chain model structure

Assuming the static nonlinear part is a polynomial in u and given the
linear dynamic part as an impulse response weighting sequence W of length
N .

v = a0 + a1u + a2u
2 + · · ·+ aqu

q (1.13)

y(tk) =
N∑

j=0

Wj · vk−j (1.14)

Combining these gives:

y(tk) =
N∑

j=0

Wj

q∑
i=0

aku
k
i

=

q∑
i=0

ak

N∑
j=0

Wju
k
i

= a0

N∑
j=0

Wj + a1

N∑
j=0

Wju1 + a2

N∑
j=0

Wju
2
2 + · · ·+ aq

N∑
j=0

Wju
q
q

17

Comparing with the discrete time Volterra function series shows that the
Hammerstein filter chain model is a discrete Volterra model with zero for
all the off-diagonal elements in higher order kernels. Elements on the main
diagonal of higher order kernels can be interpreted as weights applied to
powers of the input signal.

Bendat [6] advocates using a simplification of the Volterra series model
that is similar to the special Hammerstein model described above. It is
suggested to truncate the series at 3 terms and to replace the bilinear and
trilinear operations with a square- and cube-law static nonlinear map followed
by LTI dynamic systems. This is shown in figure 1.6. Obviously it is less
general than the system in figure 1.4, not only because it is truncated at
the third order term but also because, like the special Hammerstein model
above, it has no counterparts to the off-diagonal elements in the bilinear
and trilinear Volterra kernels. In [6] it is argued that the model in figure
1.6 is still adequate for many engineering systems and examples are given
in automotive, medical, and naval applications including a 6-DOF model
for a moored ship. The great advantage of this model form is that the
signals u1 = u, u2 = u2, and u3 = u3 can be calculated which reduces the
identification of the dynamic parts to a multi-input, multi-output (MIMO)
linear problem.

Figure 1.6: Block diagram of the linear, squarer, cuber model

1.7.5 Least squares identification of Volterra series mod-
els

To illustrate the ordinary least squares formulation of system identification
with Volterra series models, just the first 2 terms (linear and bilinear) will

18

be used.

ŷ(tn) = y1(tn) + y2(tn) + e(tn) (1.15)

ŷ =

N1∑
i=0

W 1
i · un−i +

N2∑
i=0

N2∑
j=0

W
(2)
i,j · un−i · un−j + e(tn) (1.16)

= (u1)
T W (1) + (u1)

T W (2)u2 + +e (1.17)

Where the vector and matrix quantities u1, u2, W (1), and W (2) are:

u1 =


un−1

un−2
...

un−N1

 u2 =


un−1

un−2
...

un−N2



W (1) =


W

(1)
1

W
(1)
2
...

W
(1)
N1

 W (2) =

 W
(2)
1,1 . . . W

(2)
1,N2

...
. . .

...

W
(2)
N1,1 . . . W

(2)
N1,N2


Equation 1.17 can be written in a form (equation 1.18) amenable to solu-

tion by the method of least squares if the input vector U and the parameter
vector β are constructed as follows. The first N1 elements in U are the ele-
ments of u1 and this is followed by elements having the value of the products
of u2 appearing in the second term of equation 1.16. The parameter vector,
β, is constructed from elements of W (1) followed by products of the elements
of W (2) as they appear in the second term of equation 1.16.

ŷ = Uβ + e (1.18)

Given a sequence of N measurements, U and β become rectangular, and
y and e become N by 1 vectors. The ordinary least squares solution is found
by forming the pseudo-inverse of U.

β = (UT U)−1Uŷ (1.19)

The ordinary least squares formulation has the advantage of not requiring
a search process. However, the number of parameters is large, O(NP) for a
model using the first P Volterra series terms and a memory length of N .

19

A slight reduction in the number of parameters is available by recognizing
that not all elements in the higher order kernels are distinguishable. In the
bilinear kernel for example, there are terms of the form Wi,j(un−i)(un−j) and
Wj,i(un−j)(un−i). However, since (un−i)(un−j) = (un−j)(un−i), the parame-
ters Wi,j and Wj,i are identical. Only N(N +1)/2 unique parameters need to
be identified in the bilinear kernel but this reduction by approximately half
leaves a kernel size that is still of the same order, O(NP).

One approach to reducing the number of parameters in a Volterra model is
to approximate the kernels with a series of lower order functions, transform-
ing the problem from estimating kernel parameters to estimating a smaller
number of parameters to the basis functions. The kernel parameters can then
be read out by evaluating the basis functions at N equally spaced intervals.
Treichl et al. [81] use a weighted sum of distorted sinus functions as orthonor-
mal basis functions (OBF) to approximate Volterra kernels. The parameters
to this formula are ζ, a form factor affecting the shape of the sinus curve, j
which iterates over component sinus curves, and i the read-out index. There
are mr sinus curves in the weighted sum. The values of ζ and mr are design
choices. The read-out index varies from 1 to N , the kernel memory length.
In the new identification problem, only the weights, wj, applied to each OBF
in the sum must be estimated. This problem is also linear in the parameters
and the number of parameters has been reduced to mr. For example if N
is 40 and mr is 10, then there is a 4 times compression of the number of
parameters in the linear kernel.

Another kernel compression technique is based on the discrete wavelet
transform (DWT). Nikolaou and Mantha [53] show the advantages of a
wavelet based compression of the Volterra series kernels while modelling a
chemical process in simulation. Using the first two terms of the Volterra
series model with N1 = N2 = 32 gives the uncompressed model a total of
N1 + N2(N2 + 1)/2 = 32 + 528 = 560 parameters. In the wavelet domain
identification, only 18 parameters were needed in the linear kernel and 28 in
the bilinear kernel for a total of 46 parameters. The 1- and 2-D DWT used
to compress the linear and bilinear kernels respectively are not expensive to
calculate so the compression ratio of 560/46 results in a much faster identifi-
cation. Additionally, it is reported that the wavelet compressed model shows
much less prediction error on validation data not used in the identification.
This is attributed to overfitting in the uncompressed model.

20

1.7.6 Nonparametric modelling as function approxi-
mation

Black box models identified from input/output data can be seen in very
general terms as mappings from inputs and delayed values of the inputs to
outputs. Boyd and Chua [13] showed that “any time invariant operation
with fading memory can be approximated by a nonlinear moving average
operator”. This is depicted in figure 1.7, where P (. . .) is a polynomial in u
and M is the model memory length (number of Z−1 delay operators). There-
fore, one way to look at nonlinear system identification is as the problem of
finding the polynomial P . The arguments to P , uZ−1, uZ−2, . . . , uZ−M ,
can be calculated. What is needed is a general and parsimonious function
approximator. The Volterra function series is general but not parsimonious,
unless the kernels are compressed.

Figure 1.7: Block diagram for a nonlinear moving average operation

Juditsky et al. argue in [38] that there is an important difference between
uniformly smooth and spatially adaptive function approximations. Kernels
work well to approximate functions that are uniformly smooth. A function
is not uniformly smooth if it has important detail at very different scales.
For example, if a Volterra kernel is smooth except for a few spikes or steps,
then the kernel order must be increased to capture these details and the
“curse of dimensionality” (computational expense) is incurred. Also, the
resulting extra flexibility of the kernel in areas where the target function
is smooth may lead to overfitting. In these areas, coefficients of the kernel
approximation should be nearly uniform for a good fit but the kernel encodes
more information than is required to represent the system.

21

Orthonormal basis functions are a valid compression of the model param-
eters that form smooth, low order representations. However, since common
choices such as distorted sinus functions are combined by weighted sums and
are not offset or scaled, they are not able to adapt locally to the smoothness
of the function being approximated. Wavelets, which are used in many other
multi-resolution applications, are particularly well suited to general function
approximation and the analytical results are very complete [38]. Sjoberg et
al. [73] distinguish between local basis functions, whose gradient vanishes
rapidly at infinity, and global basis functions, whose variations are spread
across the entire domain. The Fourier series is given as an example of a
global basis function; wavelets are a local basis function. Local basis func-
tions are key to building a spatially adaptive function approximator. Since
they are essentially constant valued outside of some interval, their effect can
be localized.

1.7.7 Neural networks

Multilayer feed-forward neural networks have been called a “universal ap-
proximator” in that they can approximate any measurable function [35].
Here at the University of Waterloo, there is a project to predict the position
of a polishing robot using delayed values of the position set point from 3
consecutive time steps as inputs to a neural network. In the context of fig-
ure 1.7, this is a 3rd order non-linear moving average with a neural network
taking the place of P ,

Most neural network applications use local basis functions in the neuron
activations. Hofmann et al. [33] identify a Hammerstein-type model using
a radial basis function network followed by a linear dynamic system. Scott
and Mlllgrew [70] develop a multilayer feed-forward neural network using
orthonormal basis functions and show its advantages over radial basis func-
tions (whose basis centres must be fixed) and multilayer perceptron networks.
These advantages appear to be related to the concept of spatial adaptability
discussed above.

The classical feed-forward multilayer perceptron (MLP) networks are
trained using a gradient descent search algorithm called back-propagation
learning (BPL). For radial basis networks this is preceded by a clustering
algorithm to choose the basis centres, or they may be chosen manually. One
other network configuration is the so-called recurrent or dynamic neural net-
work in which the network output or some intermediate values are used also

22

as inputs creating a feedback loop. There are any number of ways to con-
figure feedback loops in neural networks. Design choices include the number
and source of feedback signals, and where (if at all) to incorporate delay ele-
ments. Recurrent neural networks are themselves dynamic systems and just
function approximators. Training of recurrent neural networks involves un-
rolling the network over several time steps and applying the back propagation
learning algorithm to the unrolled network. This is even more computation-
ally intensive than the notoriously intensive training of simple feed-forward
networks.

1.7.8 Parametric modelling

The most familiar parametric model is a differential equation since this is
usually the form of model created when a system is modelled from first prin-
ciples. Identification methods for differential and difference equation models
always require a search process. The process is called equation discovery or
sometimes symbolic regression. In general, the more qualitative or heuristic
information that can be brought to bear on reducing the search space, the
better. Some search techniques are in fact elaborate induction algorithms,
others incorporate some generic heuristics called information criteria. Fuzzy
relational models can conditionally be considered parametric. Several graph-
based models are discussed, including bond graphs which in some cases are
simply graphical transcriptions of differential equations but can incorporate
arbitrary functions.

1.7.9 Differential and difference equations

Differential equations are very general and are the standard representation
for models not identified but derived from physical principles. “Equation
discovery” is the general term for techniques which automatically identify an
equation or equations that fit some observed data. Other model forms, such
as bond graph, are converted into a set of differential and algebraic equa-
tions prior to simulation. If no other form is needed then an identification
technique that produces such equations immediately is perhaps more conve-
nient. If a system identification experiment is to be bootstrapped (grey-box
fashion) from an existing model then the existing model usually needs to be
in a form compatible with what the identification technique will produce.

23

Existing identification methods for differential equations are called “sym-
bolic regression” and “equation discovery”. The first usually refers to meth-
ods that rely on simple fitness guided search algorithms such as genetic pro-
gramming, “evolution strategie”, or simulated annealing. The second term
has been used to describe more constraint-based algorithms. These use qual-
itative constraints to reduce the search space by ruling out whole classes of
models by their structure or the acceptable range of their parameters. There
are two possible sources for these constraints:

1. They may be given to the identification system from prior knowledge

2. They may be generated online by an inference system.

LAGRAMGE ([23], [24], [78], [79]) is an equation discovery program that
searches for equations which conform to a context free grammar specified
by the experimenter. This grammar implicitly constrains the search to per-
mit only a (possibly very small) class of structures. The challenge in this
approach is to write meaningful grammars for differential equations, gram-
mars that express a priori knowledge about the system being modelled. One
approach is to start with a grammar that is capable of producing only one
unique equation and then modify it interactively to experiment with differ-
ent structures. Todorovski and Dzeroski [80] describe a “minimal change”
heuristic for limiting model size. It starts from an existing model and favours
variations which both reduce the prediction error and are structurally similar
to the original. This is a grey-box identification technique.

PRET ([74], [75], [14]) is another equation discovery program that incor-
porates expert knowledge in several domains collected during its design. It is
able to rule out whole classes of equations based on qualitative observations
of the system under test. For example, if the phase portrait has certain geo-
metrical properties, then the system must be chaotic and therefore at least a
second order differential equation. Qualitative observations can also suggest
components which are likely to be part of the model. For example output
signal components at twice the input signal frequency suggest there may be
a squared term in the equation. PRET performs as much high level work
as possible eliminating candidate model classes before resorting to numerical
simulations.

Ultimately if the constraints do not specify a unique model, all equation
discovery methods resort to a fitness guided local search. The first book in the
Genetic Programming series [43] discusses symbolic regression and empirical

24

discovery (yet another term for equation discovery), giving examples from
econometrics and mechanical dynamics. The choice of function and terminal
sets for genetic programming can be seen as externally provided constraints.
Additionally, although Koza uses a typeless genetic programming system,
so-called “strongly typed” genetic programming provides constraints on the
crossover and mutation operations.

Saito et al. [69] present two unusual algorithms. The RF5 equation
discovery algorithm transforms polynomial equations into neural networks,
trains the network with the standard back-propagation learning algorithm,
then converts the trained network back into a polynomial equation. The
RF6 discovery algorithm augments RF5 using a clustering technique and
decision-tree induction.

One last qualitative reasoning system is called General Systems Problem
Solving [42]. It describes a taxonomy of systems and an approach to identify-
ing them. It is not clear if general systems problem solving has been applied
and no references beyond the original author were found.

1.7.10 Information criteria–heuristics for choosing model
order

Information criteria are heuristics that weight model fit (reduction in error
residuals) against model size to evaluate a model. They try to guess whether
a given model is sufficiently high order to represent the system under test
but not so flexible as to be likely to over fit. These heuristics are not a
replacement for the practice of building a model with one set of data and
validating it with a second. The Akaike and Bayesian information criteria
are two examples. The Akaike Information Criteria (AIC) is:

AIC = −2 ln(L) + 2k (1.20)

where L is the likelihood of the model, and k is the order of the model
(number of free parameters). The likelihood of a model is the conditional
probability of a given output, u, given the model, M , and model parameter
values U .

L = P (u|M, U) (1.21)

Bayesian Information Criteria (BIC) considers the size of the identification
data set, reasoning that models with a large number of parameters but which

25

were identified from a small number of observations are very likely to be over
fit and have spurious parameters. The Bayes information criterion is:

BIC = −2 ln(L) + k ln(n) (1.22)

where n is the number of observations (i.e. sample size). The likelihood
of a model is not always known however, and so must be estimated. One
suggestion is to use a modified version based on the root mean square error
(RMSE) instead of the model likelihood [3].

AIC ∼= −2n ln(
RMSE

n
) + 2k (1.23)

Çinar [17] reports on building In building the nonlinear polynomial mod-
els in by increasing the number of terms until the Akaike information criteria
(AIC) is minimized. This works because there is a natural ordering of the
polynomial terms from lowest to highest order. Sjoberg et al. [73] point out
that not all nonlinear models have a natural ordering of their components or
parameters.

1.7.11 Fuzzy relational models

According to Sjoberg et al. [73], fuzzy set membership functions and infer-
ence rules can form a local basis function approximation (the same general
class of approximations as wavelets and splines). A fuzzy relational model
consists of two parts:

1. input and output fuzzy set membership functions

2. a fuzzy relation mapping inputs to outputs

Fuzzy set membership functions themselves may be arbitrary nonlinear-
ities (triangular, trapezoidal, and Gaussian are common choices) and are
sometime referred to as “linguistic variables” if the degree of membership in
a set has some qualitative meaning that can be named. This is the sense
in which fuzzy relational models are parametric: the fuzzy set membership
functions describe the degrees to which specific qualities of the system are
true. For example, in a speed control application there may be linguistic
variables named “fast” and “slow” whose membership function need not be
mutually exclusive. However, during the course of the identification method

26

described below the centres of the membership functions will be adjusted.
They may be adjusted so far that their original linguistic values are not ap-
propriate (for example if “fast” and “slow” became coincident). In that case,
or when the membership functions, or the relations are initially generated
by a random process, then fuzzy relational models should be considered non-
parametric by the definition given in section 1.4 above. In the best case,
however, fuzzy relational models have excellent explanatory power since the
linguistic variables and relations can be read out in qualitative English-like
statements such as “when the speed is fast, decrease the power output” or
even “when the speed is somewhat fast, decrease the power output a little”.

Fuzzy relational models are evaluated to make a prediction in 4 steps:

1. The raw input signals are applied to the input membership functions
to determine the degree of compatibility with the linguistic variables.

2. The input membership values are composed with the fuzzy relation to
determine the output membership values.

3. The output membership values are applied to the output variable mem-
bership functions to determine a degree of activation for each.

4. The activations of the output variables is aggregated to produce a crisp
result.

Composing fuzzy membership values with a fuzzy relation is often writ-
ten in notation that makes it look like matrix multiplication when in fact it
is something quite different. Whereas in matrix multiplication correspond-
ing elements from one row and one column are multiplied and then those
products are added together to form one element in the result, composition
of fuzzy relations uses other operations in place of addition and subtraction.
Common choices include minimum and maximum.

An identification method for fuzzy relational models is provided by Branco
and Dente [15] along with its application to prediction of a motor drive sys-
tem. An initial shape is assumed for the membership functions as are initial
values for the fuzzy relation. Then the first input datum is applied to the
input membership functions, mapped through the fuzzy relation and output
membership functions to generate an output value from which an error is
measured (distance from the training output datum). The centres of the
membership functions are adjusted in proportion to the error signal inte-
grated across the value of the immediate (pre-aggregation) value of that

27

membership function. This apportioning of error or “assignment of blame”
resembles a similar step in the back-propagation learning algorithm for feed-
forward neural networks. The constant of proportionality in this adjustment
is a learning rate: too large and the system may oscillate and not converge,
too slow and identification takes a long time. All elements of the relation
are updated using the adjusted fuzzy input and output variables, and the
relation from the previous time step.

Its tempting to view the membership functions as nonlinear input and
output maps, similar to a combined Hammerstein-Wiener model, but com-
position with the fuzzy relation in the middle differs in that max-min com-
position is a memoryless nonlinear operation. The entire model, therefore, is
static-nonlinear.

1.7.12 Graph-based models

Models developed from first principles are often communicated as graph
structures. Familiar examples include electrical circuit diagrams and block
diagrams or signal flow graphs for control and signal processing. Bond graphs
([66], [39], [40]) are a graph-based model form where the edges (called bonds)
denote energy flow between components. The nodes (components) may
be sources, dissipative elements, storage elements, or translating elements
(transformers and gyrators, optionally modulated by a second input). Since
these graph-based model forms are each already used in engineering commu-
nication, it would be valuable to have an identification technique that reports
results in any one of these forms.

Graph-based models can be divided into 2 categories: direct transcrip-
tions of differential equations, and those that contain more arbitrary compo-
nents. The first includes signal flow graphs and basic bond graphs. The sec-
ond includes bond graphs with complex elements that can only be described
numerically or programmatically. Bond graphs are described in great detail
in chapter 2.

The basic bond graph elements each have a constitutive equation that is
expressed in terms of an effort variable (e) and a flow variable (f) which to-
gether quantify the energy transfer along connecting edges. The constitutive
equations of the basic elements have a form that will be familiar from linear
circuit theory but they can also be used to build models in other domains.
When all the constitutive equations for each node in a graph are written
out, with nodes linked by a bond sharing their effort and flow variables, the

28

result is a coupled set of differential and algebraic equations. The consti-
tutive equations of bond graph nodes need not be simple integral formulae.
Arbitrary functions may be used so long as they are amenable to whatever
analysis or simulation the model is intended. In these cases, the bond graph
model is no longer a simply a graphic transcription of differential equations.

There are several commercial software packages for bond graph simulation
and bond graphs have been used to model some large and complex systems,
including a 10 degree of freedom planar human gait model developed at
the University of Waterloo [61]. A new software package for bond graph
simulation is described in chapter 4 and several example simulations are
presented in section 5.1.

Actual system identification using bond graphs requires a search through
candidate models. This is combined structure and parameter identification.
The structure is embodied in the types of elements (nodes) that are included
in the graph and the interconnections between them (arrangement of the
edges or bonds). The genetic algorithm and genetic programming have both
been applied to search for bond graph models. Danielson et al. [20] use a
genetic algorithm to perform parameter optimization on an internal combus-
tion engine model. The model is a bond graph with fixed structure; only the
parameters of the constitutive equations are varied. Genetic programming is
considerably more flexible since, whereas the genetic algorithm uses a fixed
length string, genetic programming breeds computer programs (that in turn
output bond graphs of variable structure when executed). See [30] or [71] for
recent applications of genetic programming and bond graphs to identifying
models for engineering systems.

Another type of graph-based model used with genetic programming for
system identification could be called a virtual analog computer. Streeter,
Keane and Koza [76] used genetic programming to discover new designs for
circuits that perform as well or better than patented designs given a per-
formance metric but no details about the structure or components of the
patented design. Circuit designs could be translated into models in other
domains (e.g. through bond graphs, or by directly comparing differential
equations from each domain). This is expanded on in book form [46] with
an emphasis on the ability of genetic programming to produce parametrized
topologies (structure identification) from a black-box specification of the be-
havioural requirements.

Many of the design parameters of a genetic programming implementation
can also be viewed as placing constraints on the model space. For example, if

29

a particular component is not part of the genetic programming kernel, cannot
arise through mutation, and is not inserted by any member of the function
set, then models containing this component are excluded. In a strongly typed
genetic programming system the choice of types and their compatibilities
constrains the process further. Fitness evaluation is another point where
constraints may be introduced. It is easy to introduce a “parsimony pressure”
by which excessively large models (or those that violate any other a priori
constraint) are penalized and discouraged from recurring.

1.8 Contributions of this thesis

This thesis contributes primarily a bond graph modelling and simulation li-
brary capable of modelling linear and non-linear (even non-analytic) systems
and producing symbolic equations where possible. In certain linear cases
the resulting equations can be quite compact and any algebraic loops are
automaticaly eliminated. Genetic programming grammars for bond graph
modelling and for direct symbolic regression of sets of differential equations
are presented. The planned integration of bond graphs with genetic program-
ming as a system identification technique is incomplete. However, a function
identification problem was solved repeatedly to demonstrate and test the
genetic programming system and the direct symbolic regression grammar is
shown to have a non-deceptive fitness landscape—perturbations of an exact
program have decreasing fitness with increasing distance from the ideal.

30

Chapter 2

Bond graphs

2.1 Energy based lumped parameter models

Bond graphs are an abstract graphical representation of lumped parameter
dynamic models. Abstract in that the same few elements are used to model
very different systems. The elements of a bond graph model represent com-
mon roles played by the parts of any dynamic system, such as providing,
storing, or dissipating energy. Generally, each element models a single phys-
ical phenomenon occurring in some discrete part of the system. To model a
system in this way requires that it is reasonable to “lump” the system into a
manageable number of discrete parts. This is the essence of lumped parame-
ter modelling: model elements are discrete, there are no continua (though a
continuum may be approximated in a finite element fashion). The standard
bond graph elements model just one physical phenomenon each, such as the
storage or dissipation of energy. There are no combined dissipative–storage
elements, for example, among the standard bond graph elements, although
one has been proposed [55].

Henry M. Paynter developed the bond graph modelling notation in the
1950s [57]. Paynter’s original formulation has since been extended and re-
fined. A formal definition of the bond graph modelling language [66] has
been published and there are several textbooks [19], [40], [67] on the subject.
Linear graph theory is a similar graphical energy based lumped parameter
modelling framework that has some advantages over bond graphs including
more convenient representation of multi-body mechanical systems. Birkett
and Roe [8], [9], [10], [11] explain bond graphs and linear graph theory in

31

terms of a more general framework based on matroids.

2.2 Standard bond graph elements

2.2.1 Bonds

In a bond graph model, system dynamics are expressed in terms of the power
transfer along “bonds” that join interacting sub-models. Every bond has two
variables associated with it. One is called the “intensive” or “effort” variable.
The other is called the “extensive” or “flow” variable. The product of these
two is the amount of power transferred by the bond. Figure 2.1 shows the
graphical notation for a bond joining two sub-models. The effort and flow
variables are named on either side of the bond. The direction of the half
arrow indicates a sign convention. For positive effort (e > 0) and positive
flow (f > 0), a positive quantity of power is transferred from A to B. The
points at which one model may be joined to another by a bond are called
“ports”. Some bond graph elements have a limited number of ports, all of
which must be attached. Others have unlimited ports, any number of which
may be attached. In figure 2.1, systems A and B are joined at just one point
each so they are “one-port elements”.

System A System Beffort, e / flow, f

Figure 2.1: A bond denotes power continuity between two systems

The effort and flow variables on a bond may use any units so long as
the resulting units of power are compatible across the whole model. In fact,
different parts of a bond graph model may use units from another physical
domain entirely. This is makes bond graphs particularly useful for multi-
domain modelling, such as in mechatronic applications. A single bond graph
model can incorporate units from any row of table 2.1 or, indeed, any other
pair of units that are equivalent to physical power. It needs to be emphasized
that bond graph models are based firmly on the physical principal of power
continuity. The power leaving A in figure 2.1 is exactly equal to the power
entering B and this represents, with all the caveats of a necessarily inexact
model, real physical power. When the syntax of the bond graph modelling

32

language is used in domains where physical power does not apply (as in eco-
nomics) or where lumped-parameters are are a particularly weak assumption
(as in many thermal systems) the result is called a “pseudo bond graph”.

Table 2.1: Units of effort and flow in several physical domains.

Intensive variable Extensive variable
Generalized terms Effort Flow Power
Linear mechanics Force (N) Velocity (m/s) (W)

Angular mechanics Torque (Nm) Velocity (rad/s) (W)
Electrics Voltage (V) Current (A) (W)

Hydraulics Pressure (N/m2) Volume flow (m3/s) (W)

Two other generalized variables are worth naming. Generalized displace-
ment, q, is the first integral of flow, f , and generalized momentum, p, is the
integral of effort, e:

q =

∫ T

0

f dt (2.1)

p =

∫ T

0

e dt (2.2)

2.2.2 Storage elements

There are two basic storage elements: the capacitor and the inertia.
A capacitor, or C element, stores potential energy in the form of gen-

eralized displacement proportional to the incident effort. A capacitor in
mechanical translation or rotation is a spring, in hydraulics it is an accumu-
lator (a pocket of compressible fluid within a pressure chamber), in electrical
circuits it is a charge storage device. The effort and flow variables on the
bond attached to a linear one-port capacitor are related by equations 2.1
and 2.3. These are called the ‘constitutive equations” of the C element. The
graphical notation for a capacitor is shown in figure 2.2.

q = Ce (2.3)

33

An inertia, or I element, stores kinetic energy in the form of general-
ized momentum proportional to the incident flow. An inertia in mechanical
translation or rotation is a mass or flywheel, in hydraulics it is a mass-flow
effect, in electrical circuits it is a coil or other magnetic field storage device.
The constitutive equations of a linear one-port inertia are 2.2 and 2.4. The
graphical notation for an inertia is shown in figure 2.3.

p = If (2.4)

Ceffort, e / flow, f

Figure 2.2: A capacitive storage element: the 1-port capacitor, C

Ieffort, e / flow, f

Figure 2.3: An inductive storage element: the 1-port inertia, I

2.2.3 Source elements

Ideal sources mandate a particular schedule for either the effort or flow vari-
able of the attached bond and accept any value for the other variable. Ideal
sources will supply unlimited energy as time goes on. Two things save this
as a realistic model behaviour. First, models will only be run in finite length
simulations and second, the environment is assumed to be vastly more capa-
cious than the system under test in any respects where they interact.

The two types of ideal source element are called the effort source and the
flow source. The effort source (Se, figure 2.4) mandates effort according to
a schedule function E and ignores flow (equation 2.5). The flow source (Sf,
figure 2.5) mandates flow according to F ignores effort (equation 2.6).

e = E(t) (2.5)

f = F (t) (2.6)

34

Se effort, e / flow, f

Figure 2.4: An ideal source element: the 1-port effort source, Se

Sf effort, e / flow, f

Figure 2.5: An ideal source element: the 1-port flow source, Sf

Within a bond graph model, ideal source elements represent boundary
conditions and rigid constraints imposed on a system. Examples include:
a constant valued effort source representing a uniform force field such as
gravity near the earth’s surface, and a zero valued flow source representing
a grounded or otherwise absolutely immobile point. Load dependence and
other non-ideal behaviours of real physical power sources can often be mod-
elled by bonding an ideal source to some other standard bond graph elements
so that they together expose a single port to the rest of the model showing
the desired behaviour in simulation.

2.2.4 Sink elements

There is one type of element that dissipates power from a model. The resistor,
or R element, is able to sink an infinite amount of energy as time goes on.
This energy is assumed to be dissipated into a capacious environment outside
the system under test. The constitutive equation of a linear one-port resistor
is 2.7, where R is a constant value called the “resistance” associated with a
particular resistor. The graphical notation for a resistor is shown in figure
2.6.

e = Rf (2.7)

2.2.5 Junctions

There are four basic multi-port elements that do not source, store, or sink
power but are part of the network topology that joins other elements to-

35

Reffort, e / flow, f

Figure 2.6: A dissipative element: the 1-port resistor, R

gether. They are called the transformer, the gyrator, the 0-junction, and
the 1-junction. Power is conserved across each of these elements. The trans-
former and gyrator are two-port elements. The 0- and 1-junctions permit
any number of bonds to be attached (but are redundant in any model where
they have less than 3 bonds attached).

The graphical notation for a transformer, or TF-element, is shown in fig-
ure 2.7. The constitutive equations for a transformer, relating e1, f1 to e2, f2

are given in equations 2.8 and 2.9 where m is a constant value associated
with the transformer, called the “transformer modulus”. From these equa-
tions it can be easily seen that this ideal, linear element conserves power since
(incoming power) e1f1 = me2f2/m = e2f2 (outgoing power). In mechanical
terms, a TF-element may represent an ideal gear train (with no friction,
backlash, or windup) or lever. In electrical terms, it is a common electrical
transformer (pair of windings around a single core). In hydraulic terms it
could represent a coupled pair of rams with differing plunger surface areas.

e1 = me2 (2.8)

f1 = f2/m (2.9)

The graphical notation for a gyrator, or GY-element, is shown in figure 2.8.
The constitutive equations for a gyrator, relating e1, f1 to e2, f2 are given
in equations 2.10 and 2.11 where m is a constant value associated with the
gyrator, called the “gyrator modulus”. From these equations it can be easily
seen that this ideal, linear element conserves power since (incoming power)
e1f1 = mf2e2/m = f2e2 (outgoing power). Physical interpretations of the
gyrator include gyroscopic effects on fast rotating bodies in mechanics, and
Hall effects in electro-magnetics. These are less obvious than the TF-element
interpretations but the gyrator is more fundamental in one sense: two GY-
elements bonded together are equivalent to a TF-element, whereas two TF-
elements bonded together are only equivalent to another transformer. Models
from a reduced bond graph language having no TF-elements are called “gyro-
bond graphs” [65].

e1 = mf2 (2.10)

36

f1 = e2/m (2.11)

TFeffort, e1 / flow, f1 effort, e2 / flow, f2

Figure 2.7: A power-conserving 2-port element: the transformer, TF

GYeffort, e1 / flow, f1 effort, e2 / flow, f2

Figure 2.8: A power-conserving 2-port element: the gyrator, GY

The 0- and 1-junctions permit any number of bonds to be attached di-
rected power-in (bin1 . . . binn), and any number directed power-out (bout1 . . . boutm).
These elements “join” either the effort or the flow variable of all attached
bonds, setting them equal to each other. To conserve power across the junc-
tion the other bond variable must sum to zero over all attached bonds with
bonds directed power-in making a positive contribution to the sum and those
directed power-out making a negative contribution. These constitutive equa-
tions are given in equations 2.12 and 2.13 for a 0-junction, and in equations
2.14 and 2.15 for a 1-junction. The graphical notation for a 0-junction is
shown in figure 2.9 and for a 1-junction in figure 2.10.

e1 = e2 · · · = en (2.12)∑
fin −

∑
fout = 0 (2.13)

f1 = f2 · · · = fn (2.14)∑
ein −

∑
eout = 0 (2.15)

The constraints imposed by 0- and 1-junctions on any bond graph model
they appear in are analogous to Kirchhoff’s voltage and current laws for
electric circuits. The 0-junction sums flow to zero across the attached bonds
just like Kirchhoff’s current law requires that the net electric current (a flow
variable) entering a node is zero. The 1-junction sums effort to zero across the

37

effort, e1
 / flow, f1

0

effort, e2
 / flow, f2

effort, e3
 / flow, f3

effort, e4
 / flow, f4

effort, e5
 / flow, f5

effort, e6
 / flow, f6

effort, e7
 / flow, f7

effort, e8
 / flow, f8

Figure 2.9: A power-conserving multi-port element: the 0-junction

effort, e1
 / flow, f1

1

effort, e2
 / flow, f2

effort, e3
 / flow, f3

effort, e4
 / flow, f4

effort, e5
 / flow, f5

effort, e6
 / flow, f6

effort, e7
 / flow, f7

effort, e8
 / flow, f8

Figure 2.10: A power-conserving multi-port element: the 1-junction

38

attached bonds just like Kirchhoff’s voltage law requires that the net change
in electric potential (an effort variable) around any loop is zero. Naturally,
any electric circuit can be modelled with bond graphs.

The 0- and 1-junction elements are sometimes also called f-branch and
e-branch elements, respectively since they represent a branching points for
flow and effort within the model [19].

2.3 Augmented bond graphs

Bond graph models can be augmented with an additional notation on each
bond to denote “computational causality”. The constitutive equations of the
basic bond graph elements in section 2.2 could easily be rewritten to solve
for the effort or flow variable on any of the attached bonds in terms of the
remaining bond variables. There is no physical reason why they should be
written one way or another. However, in the interest of solving the resulting
set of equations, it is helpful to choose one variable as the “output” of each
element and rearrange to solve for it in terms of the others (the “inputs”).
The notation for this choice is a perpendicular stroke at one end of the bond,
as shown in figure 2.11. By convention, the effort variable on that bond is
considered an input to the element closest to the causal stroke. The location
of the causal stroke is independent of the power direction half arrow. In both
parts of figure 2.11 the direction of positive power transfer is from A to B.
In the first part effort is an input to system A (output from system B) and
flow is an input to system B (output from system A). The equations for this
system would take the form:

flow = A(effort)

effort = B(flow)

In the second part of figure 2.11 the direction of computational causality is
reversed. So, although the power sign convention and constitutive equations
of each element are unchanged, the global equations for the entire model are
rewritten in the form:

flow = B(effort)

effort = A(flow)

The concept discussed here is called computational causality to emphasize
the fact that it is an aid to extracting equations from the model in a form that

39

System A System B
effort, e / flow, f

System A System Beffort, e / flow, f

Figure 2.11: The causal stroke and power direction half-arrow on a fully
augmented bond are independent

is easily solved in a computer simulation. It is a practical matter of choosing a
convention and does not imply any philosophical commitment to an essential
ordering of events in the physical world. Some recent modelling and simu-
lation tools that are based on networks of ported elements, but not exactly
bond graphs, do not employ any concept of causality [2] [56]. These systems
enjoy a greater flexibility in composing subsystem models into a whole as
they are not burdened by what some argue is an artificial ordering of events
1. Computational causality, they argue, should be determined automatically
by bond graph modelling software and the software’s user not bothered with
it [16]. The cost of this modelling flexibility is a greater complexity in formu-
lating a set of equations from the model and solving those in simulation (in
particular very general symbolic manipulations may be required resulting in
a set of implicit algebraic-differential equations to be solved rather than a set
of explicit differential equations in state-space form; see section 2.5.1). The
following sections show how a few simple causality conventions permit the
efficient formulation of state space equations where possible and the early
identification of cases where it is not possible.

1Consider this quote from Franois E. Cellier at http://www.ece.arizona.edu/
∼cellier/psml.html “Physics, however, is essentially acausal (Cellier et al., 1995). It
is one of the most flagrant myths of engineering that algebraic loops and structural sin-
gularities in models result from neglected fast dynamics. This myth has its roots in
the engineers’ infatuation with state-space models. Since state-space models are what
we know, the physical realities are expected to accommodate our needs. Unfortunately,
physics doesn’t comply. There is no physical experiment in the world that could distin-
guish whether I drove my car into a tree, or whether it was the tree that drove itself into
my car.”

40

http://www.ece.arizona.edu/~cellier/psml.html
http://www.ece.arizona.edu/~cellier/psml.html

2.3.1 Integral and derivative causality

Tables 2.2 and 2.3 list all computational causality options and the resulting
equations for each of the standard bond graph elements.

Source elements, since they mandate a particular schedule for one vari-
able, have only one causality option: that in which the scheduled variable is
an output of the source element. The sink element (R) and all power conserv-
ing elements (TF, GY, 0, 1) have two causality options. Either option will
do for these elements since there is no mandate (as for source elements) and
since the constitutive equations are purely algebraic and (for linear elements,
at least) easily inverted.

The storage elements (C, I) have two causality options as well. In this
case, however, there are reasons to prefer one form over the other. The prefer-
ence is always for the form that yields differential expressions on the left-hand
side and not the right-hand side of any equations. Table 2.2 shows that this
is causal effort-out for capacitors and causal effort-in for inductors. Since the
variables on the right-hand side of these preferred differential equations are
inputs to the element (flow for a capacitor and effort for an inductor), the
variable in the differential expression can be evaluated by integration over
time. For this reason, these preferred forms are called “integral causality”
forms. In physical terms, the opposing forms, called “derivative causality”,
occur when the energy variable of a storage element depends directly, that
is without another type of storage element or a resistor between them, on
another storage element (storage-storage dependency) or on a source element
(storage-source dependency) of the model [51]. Two examples of derivative
causality follow.

The electric circuit shown schematically in figure 2.12 contains two ca-
pacitors connected in parallel to some larger circuit. A corresponding bond
graph model fragment is shown next to it. If one capacitor is first assigned
the preferred, effort-out causality, that bond is the effort-in to the junction.
Since a 0-junction permits only one attached bond to be causal effort-in,
the rest must be effort-out forcing the bond attached to the second capac-
itor to be effort-in with respect to the capacitor. In electrical terms, the
charges stored in these capacitors are not independent. If the charge on one
is known, then the voltage across it is known (e = q/C). Since they are con-
nected directly in parallel with on another, it is the same voltage across both
capacitors. Therefore the charge on the second capacitor is known as well
(q = eC). They act in effect as a single capacitor (with summed capacitance)

41

Table 2.2: Causality options by element type: 1- and 2-port elements.

Element Notation Equations

Effort source Se e = E(t)

Flow source Sf f = F (t)

Capacitor
C

q = Ce

f = dq
dt

C
e = q/C

dq
dt

= f

Inertia
I

f = p/I
dp
dt

= e

I
p = If

e = dp
dt

Resistor
R f = e/R

R e = Rf

Transformer
TF1 2 e1 = me2

f2 = mf1

TF1 2 f1 = mf2

e2 = me1

Gyrator
GY1 2 e1 = rf2

e2 = rf1

GY1 2 f1 = e2/r
f2 = e1/r

42

Table 2.3: Causality options by element type: junction elements.

Element Notation Equations

0-Junction

(b∗ directed power-in)

e∗ ≡ ein1

f ∗ ≡ fin1

ein2 = · · · = einn = e∗

eout1 = · · · = eoutm = e∗

f ∗ =
∑m

1 fout −
∑n

2 fin

(b∗ directed power-out)

e∗ ≡ eout1

f ∗ ≡ fout1

ein1 = · · · = einn = e∗

eout2 = · · · = eoutm = e∗

f ∗ =
∑n

1 fin −
∑m

2 fout

1-Junction

(b∗ directed power-in)

e∗ ≡ ein1

f ∗ ≡ fin1

fin2 = · · · = finn = f ∗

fout1 = · · · = foutm = f ∗

e∗ =
∑m

1 eout −
∑n

2 ein

(b∗ directed power-ou)

e∗ ≡ eout1

f ∗ ≡ fout1

fin1 = · · · = finn = f ∗

fout2 = · · · = foutm = f ∗

e∗ =
∑n

1 ein −
∑m

2 eout

• 0- and 1-junctions permit any number of bonds directed power-in
(bin1 . . . binn), and any number directed power-out (bout1 . . . boutm).

• A 0-junction permits only one connected bond (b∗) to be causal effort-
in (with the causal stroke adjacent to the junction). The rest must be
effort-out.

• A 1-junction permits only one connected bond (b∗) to be causal effort-
out (with the causal stroke away from the junction). The rest must be
effort-in.

43

and have only one degree of freedom between them.
For a mechanical example, consider two masses rigidly joined such as

the point masses on a rigid lever shown in figure 2.13. The bond graph
model shown in that figure is applicable for small rotations of the lever about
horizontal. The dependency between storage elements is not as direct here
as in the previous example. The dependent elements (two I-elements) are
linked through three other elements, not just one. Nevertheless, choosing
integral causality for one inertia forces derivative causality on the other as a
consequence of the causality options for the three intervening elements. Here
again there are two storage elements in the model but only one degree of
freedom.

Figure 2.12: A system having dependent dynamic parts and a corresponding
model having storage elements with derivative causality: electrical capacitors
in parallel and C elements with common effort

2.3.2 Sequential causality assignment procedure

There is a systematic method of assigning computational causality to bond
graph models so as to minimize computational complexity and consistently
arrive at a state space formulation where possible. This method is called the
sequential causality assignment procedure (SCAP) [40], [67] and it proceeds
in three stages. After each stage, the consequences of currently assigned
causality are propagated as far as possible through the graph. For example,
if a bond has been assigned effort-in causality to a 0-junction then the other
bonds attached to that junction must all be causal effort-out from that junc-

44

Figure 2.13: A system having dependent dynamic parts and a correspond-
ing model having storage elements with derivative causality: rigidly joined
masses and I elements with proportionally common flow

tion and any of those bonds that do not yet have a causal assignment can be
assigned at that time. The three stages of SCAP are:

1. Assign the required causality to all bonds attached to sources.

2. Assign the preferred causality to any unassigned bonds attached to
storage elements.

3. Assign arbitrary (perhaps random) causality to any unassigned bonds
attached to sink elements.

If unassigned bonds attached to nodes of any one type are always handled
in a consistent order then the assigned causalities, and therefore also the
collected equations, will be stable (identical for identical graphs).

Consider the fully augmented Se-C-I-R model in figure 5.2. In the first
stage of SCAP, bond 4 would be assigned causality effort-out from the source
(effort-in to the junction). Since 1-junctions allow any number of attached
bonds to be causal effort-in, there are no further consequences of this as-
signment. In the second stage, storage elements are assigned their preferred
causality. If the I-element is chosen first and the attached bond is assigned
the preferred causality (effort-in to the inertia, effort-out from the junction)
then the remaining bonds attached to the junction must be causal effort-in
and the graph is completely augmented. If instead the C-element is chosen

45

before the I-element, it is still assigned the preferred causality. Consequences
do not propagate any further and the I-element is selected after all. In either
case, as is often the case, all bonds attached to sink elements are assigned by
propagation of consequences and stage 3 is never reached.

2.4 Additional bond graph elements

2.4.1 Activated bonds and signal blocks

An activated bond is one on which either the effort or flow variable is con-
sidered negligibly small and the other is called the signal. Activated bonds
carry information in the signal but no power, no matter how large a value
the signal may take on. An activated bond is drawn with a full arrow at one
indicating the signal-flow direction.

Any bond graph can be transformed into a signal-flow graph by splitting
each bond into a pair of activated bonds carrying the effort and flow signals.
The reverse is not true since bond graphs encode physical structure in ways
that a signal graph is not required to conform to. Arbitrary signal-flow graphs
may contain odd numbers of signals or topologies in which the signals can
not be easily or meaningfully paired.

Signal blocks are elements that do not source, store, or sink power but in-
stead perform operations on signals and can only be joined to other elements
by activated bonds. In this way, activated bonds form a bridge between bond
graphs and signal-flow graphs allowing the techniques to be used together in
a single model.

2.4.2 Modulated elements

Activated bonds join standard bond graph elements at a junction, where
convention or the signal name denotes which of the effort or flow variable is
carried, or at modulated elements. If the modulus of a transformer (TF) or
gyrator (GY) is not constant but provided instead by the signal on an acti-
vated bond, a modulated transformer (MTF) or modulated gyrator (MGY)
results.

46

MTF

effort, e1 / flow, f1

effort, e2 / flow, f2
modulus, m

Figure 2.14: A power-conserving 2-port: the modulated transformer, MTF

MGY

effort, e1 / flow, f1

effort, e2 / flow, f2
modulus, m

Figure 2.15: A power-conserving 2-port: the modulated gyrator, MGY

2.4.3 Complex elements

Section 2.4.2 showed how certain non-linear effects can be modelled using
modulated transformer and gyrator elements. [40] presents a multi-port MTF
node with more than two power bonds. Single- and multi-port elements
with complex behaviour, such as discontinuous or even non-analytic effort–
flow relations are also possible. In the non-analytic case, element behaviour
would be determined empirically and implemented as a lookup table with
interpolation for simulation. These effort–flow relations are typically not
invertible, and so these elements, like the ideal source elements introduced
in section 2.2, have a required causality.

Figure 2.16 shows an example of an element with discontinuous consti-
tutive equations. The element is labelled CC for contact compliance; the
mechanical system from which this name derives (perpendicular impact be-
tween an elastic body and a rigid surface) is shown in figure 2.17. Constitutive
equations for the CC element in the shown causal assignment are given in
equations 2.16 and 2.17. The notation (q < r) is used to indicate 0 when
q > r and 1 otherwise, where r is called the threshold and is a new parame-
ter particular to this specialized variant of the C element. In the mechanical

47

interpretation of figure 2.17, these equations are such that the force exerted
by the spring is proportional to the compression of the spring when it is in
contact with the surface, and zero otherwise. The effort–displacement rela-
tionship of the CC element is plotted in figure 2.18. Behaviour of the 1-port
CC element with effort-in causality is undefined. Section 5.1.3 includes an
application of the CC element.

CCeffort, e / flow, f

Figure 2.16: A non-linear capacitive storage element: the 1-port contact
compliance, CC

Figure 2.17: Mechanical contact compliance: an unfixed spring exerts no
force when q exceeds the unsprung length r

e = (q < r)(r − q)/C (2.16)

dq

dt
= f (2.17)

2.4.4 Compound elements

The above example shows how a new bond graph element with arbitrary
properties can be introduced. It is also common to introduce new compound
elements that stand in place of a particular combination of other bond graph
elements. In this way, complex models representing complex systems can
be built in a modular fashion by nesting combinations of simpler models
representing simpler subsystems. At simulation time, a preprocessor may
replace compound elements by their equivalent set of standard elements or,

48

−r/C

0

e

0 r

q

C

1

Figure 2.18: Effort-displacement plot for the CC element shown in figure
2.16 and defined by equations 2.16 and 2.17

compound elements may be implemented such that they directly output a set
of constitutive equations that is entirely equivalent to those of the standard
elements being abstracted.

A library of three-dimensional joints for use in modelling multibody me-
chanics is given in [86]. Other libraries of reusable sub-models are presented
in [19] and [4].

For a modelling application in mechanics, consider the planar mechanism
shown in figure 2.19. A slender mass is pin jointed at one end. The pin
joint itself is suspended in the horizontal and vertical directions by a spring-
damper combination. A bond graph model of this system is given in figure
5.12. The graph is reproduced as figure 2.20 and divided into two parts
representing the swinging mass (“link”) and the suspended pin joint (“joint”).
The sub-models are joined at only two ports, bonds 20 and 23, representing
the horizontal and vertical coupling of the pin joint to point A on the link.
If two new, compound bond graph elements were introduced subsuming the
sub-graphs marked in figure 2.20, the entire model could be draw as in figure
2.21.

49

Figure 2.19: A pendulum with damped-elastic suspension

link_A_B joint_at_A

I:m

1

1

I:m

1

2

Se:mg

3

1

I:J

4

R:0.5

5

0

6

MTF
mxA

10

0

7

MTF
myA

11

89

0

12

MTF
mxB

18

Se:FxB=0

13

0

14

MTF
myB

19

Se:FyB=0

15

1617

1

C:0.01

21

R:0.8

22

0

20

1

C:0.01

24

R:0.8

25

0

23

Figure 2.20: Sub-models of the simple pendulum depicted in figure 2.19 and
modelled in figure 5.12

50

link_A_B

joint_at_A

20 23

Figure 2.21: Model of a simple pendulum as in figures 5.12 and 2.20, rewritten
using specialized, compound elements

2.5 Simulation

2.5.1 State space models

The instantaneous state of an energy-based model is precisely described by
a full accounting of the distribution of energy within the system. For a bond
graph built from the standard elements, this is simply the value of the energy
variable of each storage element in the model. If these values are assembled
into a vector, that vector locates the model in a “state space”.

The “state space equations” express the first derivative of the state vector
in terms of state and input variables only (called the “state update” equation)
and express any non-state, non-input variables in terms of the state variables
and the input variables (the “readout” equation). For a system with inputs
~x, state vector ~u, and outputs ~y, the “state update” equation is 2.18 and the
“readout” equation is 2.19.

d~u

dt
= f(~x, ~u) (2.18)

~y = g(~x, ~u) (2.19)

The procedure to form the state space equations of a bond graph model
is straight forward provided the constitutive equations for each element come
from table 2.2 or 2.3 and all storage elements have integral causality. Note
that every equation in tables 2.2 and 2.3 is written in an assignment state-
ment form, having just one variable (or the first time-derivative of a variable)
alone on the left-hand side. If, following the procedure described in Section
2.3.2, causality has been assigned to all bonds and the result shows integral

51

causality for all storage elements, then every variable occurring in the con-
stitutive equations of the elements will appear on the left-hand side of one
and only one of the collected equations. The state update equation is formed
from those constitutive equations having a derivative on the left-hand side.
The energy variable of any storage element with integral causality will be-
come a state variable (one element in the state vector). The procedure is
to replace each variable on the right-hand side of these equations with their
“definition” (the right-hand side of the equation for which the variable ap-
pears on the left-hand side) repeatedly back-substituting until only input and
state variables appear on the right-hand side. Applying the same procedure
to the remaining (non-state update) equations yields the readout equations
for every non-state variable.

2.5.2 Mixed causality models

When a model contains one or more storage elements with derivative causal-
ity, it is not possible to reduce the constitutive equations of that model to
state space form. The result instead is a set of implicit differential-algebraic
equations in which either some differential expressions must occur on the
right-hand side of some equations or, some variables must occur only on the
right-hand sides and never on the left-hand side of any equations. This is in-
convenient since there are ready and well known techniques for solving state
space equation sets in simulation.

An experimenter faced with such a model has two choices: either reach for
a more powerful (and inevitably more computationally expensive) solution
method for the simulation, or rewrite the model to eliminate any occurrence
of derivative causality. In the first case, the numerical solution techniques
are more expensive than those for state space equations since a set of implicit
algebraic equations must be solved iteratively (e.g. by a root finding algo-
rithm) at each time step. In the second case, the approach varies with the
system, the purpose of the model, and the preference of the experimenter.

One approach to revising a mixed or differential causality model is to
combine dependent elements. In the case of the parallel electrical capacitors
model shown in figure 2.12 it is a simple matter of replacing the two C-
elements with a single one having the sum of their capacitance. For the linked
masses in figure 2.13 or models having even longer and more complicated
linkages, possibly spanning sub-models of different physical domains, the
choice of which elements to combine and how is not at all obvious.

52

A second approach is to decouple the dependent storage elements by in-
troducing additional decoupling elements between them, raising the number
of degrees of freedom of the model. For example, if a small resistance were
added between the capacitors in figure 2.12 then they would no longer be
directly linked. The charge stored in each would be independent and the
model would have as many degrees of freedom as storage elements. In the
rigidly coupled masses example (figure 2.13) the addition of an R-element
would, in effect, make the lever plastic. A C-element could make the lever
elastic. Either way the inertias would be freed to move independently and a
state-space formulation would then be possible.

53

Chapter 3

Genetic programming

3.1 Models, programs, and machine learning

Genetic programming is the application of genetic algorithms to the task of
creating computer programs. It is a “biologically inspired, domain-independent
method... that automatically creates a computer program from a high-level
statement of a problem’s requirements” [45].

A method that automatically creates computer programs will be of inter-
est to anyone doing system identification since a computer program and a
model (model in the sense of chapter 1) are very similar at their most abstract
and formal description. A computer program is something that receives in-
formational input and performs computations on that input to produce an
informational output. A system model receives input signals and performs
transformations on those signals to produce output signals.

Figure 3.1: A computer program is like a system model.

The method popularized by Koza in [43], [44], [45], [46] and used here is
a genetic algorithm applied to computer programs stored as concrete syntax
trees in a functional programming language. Genetic algorithms are one

54

form of “evolutionary computing”, which includes also evolution strategies
and others. All of evolutionary computing is in turn part of the broader
class of adaptive heuristic search algorithms inspired by natural processes,
which includes also simulated annealing, swarm optimization, ant colony
optimization, and others.

The canonical genetic algorithm is similar to some other common ma-
chine learning algorithms, such as back propagation learning in multilayer
perceptron networks, in that it performs a local search for minima on an er-
ror surface. However, whereas back-propagation learning in neural networks
tests one point on the error surface at a time, a genetic algorithm explores
many points on the surface in parallel. The objective of a genetic algorithm
need not have any particular structure, such as a network or a tree, so long
as the candidate solutions can be encoded in a form that is amenable to the
operations described in the next section.

3.2 History of genetic programming

Early experiments in evolving computer programs were performed by Fogel,
Owens and Walsh under the title Evolutionary Programming [26]. In that
work, populations of finite state automata were evolved to solve discrete
time series prediction problems. The reproduction and mutation genetic
operators (asexual reproduction) were used to search for individual solutions
inhabiting minima on an error surface (fitness maxima). Crossover (sexual
reproduction) was not used and a problem-specific encoding of solutions as
finite state automata limited the generality of the method.

In 1981, Richard Forsyth published a pattern recognition system using
genetic principals to breed tree structured Boolean proposition statements
as classifiers [27]. In this work Forsyth notes the generality of “Naturalistic
Selection” in contrast to the many limiting assumptions inherent in more spe-
cialized statistical classifiers and also makes the important observation that
the evolved rules are plainly and comprehensibly expressed, which facilitates
human-machine collaboration.

Using a tree structured encoding of solutions allows the size and shape
of individuals to vary so that these need not be known a priori 1. [18] also

1In an interesting early link to other soft computing techniques, under “future work”
Forsyth suggests using fuzzy logic in place of crisp Boolean propositions and references
L.A. Zadeh “Fuzzy Sets” in Information and Control 8, 1965.

55

used genetic operations to search for tree structured programs in a special
purpose language. Here the application was in symbolic regression.

A tree structured encoding of individuals would later prove to be very
important. Generating machine code or FORTRAN without regard to syntax
fails to yield acceptable results ([22]) because the distribution of syntactically
correct, and therefore executable, programs within the search space of all
possible combinations of, say, FORTRAN key words is far too sparse. Rather,
it is preferable to limit the search to finding a program which solves the
problem from within the (very much smaller) space of all syntactically correct
programs.

Program syntax may be checked by generating the parse tree as would a
compiler. Genetic operations may then be chosen which operate on the pro-
grams parse, or syntax tree directly and in syntax preserving ways. For fitness
testing, the parse tree is converted into executable code. In 1992 John Koza
published a textbook “Genetic Programming: on the programming of com-
puters by means of natural selection” [43] which very much set the standard
for the future work in Genetic Programming. In it he shows an implementa-
tion of a program induction system in LISP, a general purpose programming
language, using the reproduction, crossover and mutation operators on indi-
vidual program syntax trees. LISP was a particularly convenient choice for
two reasons. First, the syntax or parse tree of LISP programs is very directly
expressed in LISP source code. An example of this dual representation is
shown in figure 6.

Second, LISP is a highly dynamic language with introspective capabil-
ities. That is, a program written in LISP may read and modify its own
source code while it is running. This allowed John Koza to write a Genetic
Programming framework in LISP which operated on other LISP programs
(the candidate solutions) and could load and run them as needed for fitness
testing. For these reasons most genetic programming implementations since
have been written in LISP although C is also used [31], [63] and many ex-
perimenter still use problem-specific languages. Improved performance has
been shown by using genetic programming to evolve low level yet general
purpose machine code for a stack-based virtual machine [58]. For demon-
strating human competitive artificial intelligence it will be desirable to use a
general purpose high level programming language popular among human pro-
grammers. “Grammatical evolution” is a genetic algorithm that can evolve
complete programs in any recursive language using a variable-length linear
chromosome to encode mappings from a Backus Naur Form (BNF) language

56

definition to individual programs [68]. This technique has been demonstrated
using a BNF language definition consisting of a subset of C where the re-
sulting programs were compiled with a standard C compiler and executed to
test their fitness [54].

Today there are several journals and annual conferences dedicated to
genetic programming and algorithms in general.

3.3 Genetic operators

In an analogy to natural evolution, genetic algorithms maintain a population
of candidate solutions to the problem that are selectively reproduced and
recombined from one generation to the next. The initial generation is created
by arbitrary, and usually random, means. There are three operations by
which the next generation individual candidate solutions are created from
the current population.

1. Sexual reproduction (“crossover”)

2. Asexual reproduction (“replication”)

3. Mutated asexual reproduction (“mutation”)

The words “sexual” and “asexual” do no mean that there is any analogy
to gender in the genetic algorithm. They simply refer to operations in which
two “parent” candidate solutions come together to create a “child” candidate
and to operations in which only one “parent” candidate is used.

These operations are applied to an encoded version of the candidate solu-
tions. Candidates are maintained in this form from generation to generation
and only converted back to their natural expression in the problem domain
when they are evaluated, once per generation. The purpose of this encoding
is so that the operations listed above need not be redesigned to apply to the
form of the solution to each new type of problem. Instead, they are designed
to apply to the encoded form and an encoding is designed for each new prob-
lem type. The usual encoded form is a bit string, a fixed-length sequence of
zeros and ones. The essential property that a bit string encoding must have
for the genetic operators to apply is that every possible combination of zeros
and ones represents a syntactically valid, if hopelessly unfit, solution to the
problem.

57

3.3.1 The crossover operator

The crossover operator is inspired by sexual reproduction in nature. Specif-
ically, genetic recombination in which parts of the genetic material of both
parents are combined to form the genetic material of their offspring. For
fixed-length bit string genotypes, “single point” crossover is used. In this
operation, a position along either of the equal-length parents is chosen ran-
domly. Both parent bit strings are split at this point (hence single point)
and the latter parts are swapped. Two new bit strings are created that are
complimentary offspring of the parents. The operation is depicted in figure
3.3.1.

Parents: aaaaaa bbbbbb
aaaa aa bbbb bb

Children: aaaabb bbbbaa

Figure 3.2: The crossover operation for bit string genotypes

3.3.2 The mutation operator

The mutation operator is inspired by random alterations in genetic material
that give rise to new, previously unseen traits in nature. The mutation
operator applied to bit string genotypes replaces one randomly selected bit
with its compliment. The operation is depicted in figure 3.3.

Parent: aaaaaa
aaaa a a

Child: aaaaba

Figure 3.3: The mutation operation for bit string genotypes

3.3.3 The replication operator

In the replication operation a bit string is copied verbatim into the next
generation.

58

Parent: aaaaaa
Child: aaaaaa

Figure 3.4: The replication operation for bit string genotypes

3.3.4 Fitness proportional selection

The above three operators (crossover, mutation, replication) apply to directly
genetic material and describe how new genetic material is created from old.
Also needed is some way of selecting which old genes to operate on. In an
analogy to “survival of the fittest” in nature, individual operands are chosen
at random with a bias towards selecting the more fit individuals. Selection
in exact proportion to the individual fitness scores is often visualized as a
roulette wheel on which each individual has been allocated a wedge whose
angular extent is proportional to the individual’s portion of the sum of all
fitness scores in the population. A uniform random sample from the circum-
ference of the wheel, equivalent to dropping a ball onto this biased wheel,
will have a chance of selecting each individual that is exactly proportional to
that individual’s fitness score.

This operation (fitness proportional selection) is applied before each oc-
currence of a genetic operator to choose the operands. In this way it tends to
be the more fit individuals which are used in crossover, mutation, and repli-
cation to create new individuals. No individual in any generation is entirely
ruled out of being selected occasionally. However, less fit individuals are less
likely to be selected and sequences within the bit string genome which are
present in less fit individuals but not in any particularly fit individuals will
tend to be less prevalent in subsequent generations.

3.4 Generational genetic algorithms

Genetic algorithms can be divided into two groups according to the order in
which new individuals are added to the population and others removed. In
a “steady state” genetic algorithm, new individuals are created one or two
at a time by applying one of the genetic operators to a selection from the
existing population. Thus, the population evolves incrementally without a
clear demarcation of one generation from the next. In a “generational” ge-
netic algorithm, the entire population is replaced at once. A new population

59

of the same size as the old is built by selecting individuals from the old and
applying genetic operators to them. Then the old population is discarded.
The more popular generational form is described below and used throughout.
A comparison of the performance of steady state and generational algorithms
is given in [64].

The generational form of a genetic algorithm proceeds as follows [52]:

1. Choose a representation for solutions to the problem as bit strings of
some fixed length N

2. Choose the relative probabilities of crossover PC , mutation PM , and
replication PR = 1− (PC + PM)

3. Choose the population size, M

4. Define termination criteria in terms of best fitness, number of genera-
tions, or a length of time

5. Generate an initial, random population of M individuals

6. Evaluate the fitness of each individual in the population

7. If any of the termination criteria are met, halt

8. Make a weighted random selection of a genetic operator

9. Select one or two (dependent on the operator) individuals at random
weighted in proportion to their fitness.

10. Apply the operator to the selected individuals, creating a new individ-
ual.

11. Repeat steps 8–10 until M new individuals have been created

12. Replace the old population with the newly created individuals

13. Go to step 6

This is the form originally presented by Holland [34] and is also called the
canonical genetic algorithm [84]. See also figure 3.4 for a simplified flowchart.

It is customary for the members of the initial population to be randomly
generated but they may just as well be drawn from any configuration that

60

needs to be adapted to requirements encoded in a fitness test. Genetic al-
gorithms are adaptive. They respond to selective pressures encoded in the
fitness test at the start of each generation, even if the fitness test has changed
between generations. In this way, genetic algorithms can also be used to
track, and home in on, a moving objective.

Genetic algorithms are also open ended searches. They may be stopped
at any time to yield their best-of-generation candidate. Typically, the termi-
nation criteria are expressed in terms of both a desired solution fitness level
(performance criteria) and either a number of generations or a length of time
(resource criteria). The fitness level is set to stop the search as soon as a
satisfactory result is achieved. The running time or number of generations
represent the length of time an experimenter is willing to wait for a solu-
tion before restarting the algorithm with different parameters. For example,
Koza et al. ran their patent-busting genetic programming experiments for
one month each [46].

0. Generate initial population
⇓

1. Evaluate fitness
⇓

2. Check termination criteria
⇓

3.
Take fitness-proportional sample

and apply genetic operators

Repeat from step 1

Figure 3.5: Simplified flowchart for the Genetic Algorithm or Genetic Pro-
gramming

3.5 Building blocks and schemata

The fundamental qualitative argument for why genetic algorithms are suc-
cessful is expressed in the so-called “building blocks” hypothesis [29], [34].
It says that good solutions to a problem (fit individuals) are assembled from

61

good parts. In particular, good solutions have “good” partial solutions as-
sembled in a “good” way to form a “good” whole. This seems almost tau-
tological at first. Of course the whole thing must be “good” if it is a useful
solution. However, it implies a more specific quality of the problem that must
be true for genetic algorithms to be more successful than a random search.
It implies that good building blocks, while not sufficient for a good solution,
are necessary. For the right type of problem, genetic algorithms will keep
good building blocks in the population until they can later be assembled into
a good whole. The right type of problem is one in which a good building
block can add value to an otherwise flawed solution.

Consider a function identification problem. It is desired to find an alge-
braic expression for an unknown function of one variable. Genetic program-
ming applied to this class of problems is known as “symbolic regression”.
All the requirements can be met for the application of genetic algorithms to
this problem. Namely, a suitable encoding and fitness measure are possible.
The encoding may be as a bit string but another, more natural encoding
is shown in section 4.5.3. The fitness function shall be the reciprocal of
the sum mean square difference between the solution expression and a sam-
pling of the “true” function in whatever form it is available. There are some
sub-expressions, or building blocks, that will bring the solution expression
dramatically closer to the true function even if other parts of the solution
are incorrect. For the example of an offset and scaled parabola such as
1 + 2(x + 3)2 it is clear that solutions containing a positive quadratic term
will be more fit than solutions containing only linear expressions given a suf-
ficiently large range of samples in the fitness test. All linear expressions are
exponentially worse fitting near at least one extremity.

A more formal complement to the building blocks hypothesis is schema
theory [34], [29]. Schemata for bit string genomes are strings from the al-
phabet {0, 1, ∗} that describe sets of bit strings. A 0 or a 1 anywhere in a
schema indicates that bit string members of the corresponding set must have
a 0 or a 1 respectively in the given position. The ∗ character is a wild card,
indicating a degree of freedom. Members of the schema set may have either
value in that position. The number of bits that are specified exactly (not by
wild cards) in a schema is called the “order” of the schema. The number of
positions between the outermost exactly specified bits is called the “defining
length” of the schema. For example, 01 ∗ 1∗ is a length 5, order 3 schema
with a defining length of 4 that describes the following set of bit strings:

62

01010

01011

01110

01111

Schema theory states that genetic algorithms truly operate in the space
of schemata. It predicts that low-order schemata with a short defining length
and above average fitness receive exponentially more trials in future genera-
tions. Poli [60] gives an adaptation to tree-structured genetic programming.

3.6 Tree structured programs

The key to applying genetic algorithms to the problem of generating a com-
puter program is to choose a genetic encoding such that even randomly gen-
erated individuals decode to a valid, if incorrect, computer program. Al-
ternatively, it is possible to use any encoding at all (the one preferred by
human programmers perhaps) but assign an arbitrarily low (i.e. zero) fitness
score to invalid programs. However, in most languages the distribution of
valid computer programs among the set of random character strings is so
astronomically low that the algorithm will spend virtually all available time
constructing, checking, and discarding invalid programs.

The canonical genetic programming system by Koza [43] was written in
LISP. The LISP programming language [50] has an extremely minimal syntax
and a long history of use in artificial intelligence research. Program source
code and data structures are both represented in a fully bracketed prefix
notation called s-expressions. Nesting bracket expressions gives a hierarchical
or tree structure to both code and data. As an early step in compilation
or interpretation, programs written in most languages are fit into a tree
structure according to the way they are expressed in the language (called
the “concrete parse tree” of the program). The LISP s-expression syntax is
a very direct representation of this structure (i.e. parsing LISP programs is
near trivial).

This immediate representation and the ability of LISP code and data to be
interchanged and manipulated freely by other LISP code makes it relatively

63

straight forward to write LISP programs that create and manipulate other
LISP programs. Since LISP code and data are both stored as tree structures
(s-expressions), any valid data structure is also valid code. Data structures
can be created and manipulated according to the genetic operators using
standard LISP constructs and, when the time comes, they can be evaluated
as program code to test their fitness.

Genetic programming systems are now often written in C [63], [46] for
performance reasons. For this thesis Python [83] is used but the essence of
the process is still the creation, manipulation, and evaluation of programs
in the form of their concrete parse trees. Often the genetic programs them-
selves are created in a special purpose language that is a reduced version
of, or completely distinct from, the language in which the genetic program-
ming system is written. For example, in this thesis the genetic programs
are created in a statically typed functional language that is interpreted by
the genetic programming system, itself written in Python. The language is
statically typed in that every element of a program has a particular type
that determines where and how it can be used, and the type of an element
cannot be changed. It is functional in the same sense as LISP or Haskell
whereas Python, in which the genetic programming system is written, is an
imperative language, like C or Java.

They are “imperative” in the sense that they consist of a sequence
of commands, which are executed strictly one after the other. [...]
A functional program is a single expression, which is executed by
evaluating the expression. 2

The canonical form of genetic programming as given in [43] shares the
basic procedure of the generational genetic algorithm. New generations are
created from old by fitness proportional selection and the crossover, mutation,
and replication operations. Genetic programming is precisely the genetic
algorithm described above with the following important differences:

1. Whereas a bit string genetic algorithm encodes candidate solutions to
a problem as fixed length bit strings, genetic programming individuals
are programs (typically encoded as their parse trees) that solve the
problem when executed.

2http://haskell.org/haskellwiki/Introduction#What is functional
programming.3F

64

http://haskell.org/haskellwiki/Introduction##What_is_functional_programming.3F
http://haskell.org/haskellwiki/Introduction##What_is_functional_programming.3F

2. Whereas bit string genetic algorithm chromosomes have no syntax (only
bitwise semantics) the genetic programming operators preserve pro-
gram syntax. Thus only the reduced space of syntactically correct
programs that is being searched, not the space of all possible sequences
of tokens from the programming language.

3. Whereas bit string genetic algorithm solutions have a fixed-length en-
coding which entails predetermining, to some degree, the size and shape
of the solution before searching 3, tree structured genetic programming
solutions have variable size and shape. Thus, in a system identification
application, genetic programming can perform structural and paramet-
ric optimization simultaneously.

4. Whereas bit string genetic algorithm individuals typically decode to
a solution directly, genetic programming individuals decode to an exe-
cutable program. Evaluation of genetic programming solutions involves
running these programs and testing their output against some metric.

5. There are some operators on tree structured programs that have no
simple analogy in nature and are either not available or are not com-
monly used in bit string genetic algorithms.

Preparation for a run of genetic programming requires the following 5
decisions from the experimenter:

1. Define the terminal node set. This is the set of all variables, constants,
and zero argument functions in the target language. It is the pool
from which leaf nodes (those having no children) may be selected in
the construction and manipulation of program trees.

2. Define the function node set. This is the set of operators in the target
language. Members are characterized by the number of arguments they
take (their arity). It is the pool from which internal (non-leaf) nodes
may be selected in the construction and manipulation of program trees.
Canonical genetic programming requires that the function set satisfy
closure, meaning that every member of the function set must accept as

3This requirement for a priori knowledge of upper limits on the size and shape of the
solution is common to many other machine learning techniques. For example, with neural
network applications the number of layers and nodes per layer must be decided by the
experimenter.

65

Figure 3.6: Genetic programming produces a program. Some inputs to the
framework are generic, others are specific to the problem domain but only
one, the fitness test, is specific to any particular problem.

input the output of any other member. This allows crossover points to
be chosen anywhere in the program syntax tree without constraint.

3. Define the fitness function. Typically, the fitness function executes an
individual program with a fixed suite of test inputs and calculates an
error metric based on the program output.

4. Choose the evolutionary control parameters M , G, PR, PC , PM .

M population size (number of individuals)

G maximum number of generations to run

PR probability of selecting the replication operator

PC probability of selecting the crossover operator

PM probability of selecting the mutation operator

5. Choose termination criteria. Typically a run of genetic programming is
terminated when a sufficiently fit individual is found or a fixed number
of generations have elapsed.

The first two decisions (definition of the function and terminal set) define
the genetic encoding. These need to be done once per computer language in
which programs are desired. Specialized languages can be defined to better

66

exploit some prior knowledge of the problem domain, but in general this is
an infrequent task. The fitness function is particular to the problem being
solved. It embodies the very definition of what the experimenter considers
desirable in the sought program and so changes with each new problem. The
evolutionary control parameters are identical to those of the canonical genetic
algorithm and are completely generic. They can be tuned to optimize the
search, and different values may excel for different programming languages,
encoding, or problems. However, genetic programming is so very computa-
tionally expensive that they are general let alone once adequate performance
is achieved. The cost of repeated genetic programming runs usually prohibits
extensive iterative adjustment of these parameters except on simple problems
for the study of genetic programming itself.

Specialized genetic programming techniques such as strongly typed ge-
netic programming will require additional decisions by the experimenter.

3.6.1 The crossover operator for tree structures

The canonical form of genetic programming operates on program parse trees
instead of bit strings and the genetic operations of crossover and mutation
differ necessarily from those used in the canonical bit string genetic algorithm.
Selection and replication, which operate on whole individuals, are identical.

The crossover operator discussed in section 3.3.1 swaps sub-strings be-
tween two parent individuals to create a pair of new offspring individuals. In
genetic programming with tree structured programs, sub-trees are swapped.
To do this, a node is selected at random on each parent then the sub-trees
rooted at these nodes are swapped. The process is illustrated in figure 3.7.
Closure of the function set ensures that both child programs are syntacti-
cally correct. They may, however, have different size and shape from the
parent programs, which differs significantly from the fixed-length bit-strings
discussed previously.

3.6.2 The mutation operator for tree structures

Two variations on the mutation operator are possible using tree structured
individuals. The first, called “leaf node mutation” selects at random one leaf
node (a node at the periphery of the tree having no children) and replaces
it with a new node randomly selected from the terminal set. Like the single

67

Figure 3.7: The crossover operation for tree structured genotypes

bit mutation discussed in section 3.3.2, this is the smallest possible random
change within the overall structure of the individual.

The second mutation operator is called “sub-tree mutation”. In this
variation, a node is selected at random from anywhere within the tree. The
sub-tree rooted at this node is discarded and a new sub-tree of random size
and shape is generated in its place. This may create much more dramatic
changes in the program. In the extreme, if the root node of the whole tree
is selected then the entire program is replaced by a new randomly generated
one.

3.6.3 Other operators on tree structures

Other more exotic operations such as “hoist” and “automatically defined
functions” have been suggested [43]. Not all have counterparts in bit string
genetic algorithms or in nature. The hoist operator creates a new individual
asexually from a randomly selected sub-tree of the parent—a partial repli-
cation. The child will be smaller and differently shaped than the parent
tree.

The automatically defined function operator adds a new member to the
function set by encapsulating part of the parent tree. An internal (non-leaf)

68

node is selected at random to be the root of the new function. The sub-tree
rooted at this node is traversed to some depth. Un-traversed sub-trees below
this depth are considered arguments to the function. A new node is added to
the function set having the required number of arguments (that is, requiring
that number of children). This new function stores a copy of the traversed
portion. Within the parent individual, the sub-tree at the root of the new
function is replaced with an instance of the automatically defined function
with the untraversed sub-trees attached below. In subsequent generations the
automatically defined function is available for use within the descendants of
this program just like any other member of the function set. Immediately
prior to fitness evaluation of any program containing automatically defined
functions, those functions are replaced by their stored originals. Thus, an
individual created by the automatically defined function operator is exactly
as fit as its parent but is has a different, and simpler, structure using a
new function that was not available to the parent. Automatically defined
functions allow a portion of a program from anywhere within its tree to be
encapsulated as a unit unto itself and thus protected from the destructive
effects of crossover and mutation.

3.7 Symbolic regression

Symbolic regression is an application of genetic programming where the “pro-
gramming” language in use is restricted to just algebraic expressions. Sym-
bolic regression solves the problem of generating a symbolic expression that is
a good fit to some sampled data. The task performed by symbolic regression
is sometimes also known as “function identification” or “equation discovery”.
A variation that generates dimensions (units) along with the expressions is
called “empirical discovery” [41]. Traditional regression methods such as lin-
ear, quadratic or polynomial regression search only over for the coefficients
of a preformed expression. They cannot automatically discover the form of
expression which best suits the data.

Symbolic regression and its variants are widely reported in the literature.
In its simplest form it is easily understood and example problems are easily
generated. Symbolic regression is often used in benchmarking implementa-
tions of the genetic programming technique. Symbolic regression on a single-
input, single-output (SISO) static, nonlinear function is presented in section
5.2. Symbolic regression on multiple-input, multiple-output (MIMO) static

69

functions can be treated in the same way using vector quantities in place of
scalars. Symbolic regression on SISO or MIMO dynamic systems, however
requires a different approach. Modelling of dynamic systems requires some
sort of memory operation, or differential equations. Section 4.5.3 presents
a design for using symbolic regression to discover sets of differential and
algebraic equations in state space form.

3.8 Closure or strong typing

Genetic programming systems must be strongly typed or mono-typed with
closure. The type system of a functional programming language is said to
have closure if the output of every function is suitable input for any function
in the language. The canonical form presented by Koza is mono-typed with
closure. To enforce closure in symbolic regression, care must be taken with
some very common operators that one is almost certain to want to include
in the function set.

For example, division must be protected from division by zero. Koza
handles this by defining a “protected division” operator “%” which returns
the constant value 0.0 whenever its second operand is zero.

Measures such as this ensure that every candidate program will execute
without error and produce a result within the domain of interest. The out-
comes, then, are always valid programs that produce interpretable arithmetic
expressions. They may, however, exploit the exceptions made to ensure clo-
sure in surprising ways. A candidate program might exploit the fact that
x/0 = 0 for any x in a particular genetic programming system to produce
the constant 1.0 through a sub-expression of the form cos(x/0) where x is a
sub-expression tree of any size and content. In this case the result is inter-
pretable by replacing the division node with a 0.0 constant value node. A
more insidious example arises if one were to take the seemingly more rea-
sonable approach of evaluating x/0 as equal to some large constant (perhaps
with the same sign as x). That is, x/0 has a value as close to infinity as
is representable within the programming system. This has the disadvantage
that sin(x/0) and cos(x/0) evaluate to unpredictable values on [-1,1] which
vary between computer platforms based on the largest representable value
and the implementation of the sin and cos functions.

A more robust solution is to assign a very low fitness value to any can-
didate program which employs division by zero. Using the standard Python

70

Listing 3.1: Protecting the fitness test code against division by zero

def f i tT e s t (candidate) :
e r r o r = 0 .0
try :

for x in t e s tPo i n t s :
e r r o r += abs (candidate (x) − t a r g e t (x))

except ZeroDiv i s i onErro r :
return 0 .0

NaN (undef ined) compares equa l to any number .
i f e r r o r==0 and e r r o r==1:

return 0 .0
High error −−> low f i t n e s s
Zero error −−> p e r f e c t f i t n e s s (1 . 0)
return 1 .0/(1 .0+ e r r o r)

division operator will throw a runtime exception when the second operand
is zero. That exception is trapped and the individual in which it occurred is
awarded a fitness evaluation of zero. The following source code excerpt shows
how division by zero and occurrences of the contagious NaN value 4 result
in a zero fitness evaluation. Comments in Python begin with a # character
and continue to the end of the line.

Another very common yet potentially problematic arithmetic operation

4The standard Python math library relies on the underlying platform’s implementation.
For example in cPython (used in this project), the Python standard library module “math”
is a fairly transparent wrapper on the C standard library header “math.h”. All operating
systems used in this project (Microsoft Windows 2000, GNU/Linux, and SGI IRIX) at
least partially implement IEEE standard 754 on binary floating point arithmetic. Of
particular interest, IEEE 754 defines two special floating point values called “INF” (-INF
is also defined) and “NaN”. INF represent any value larger than can be held in the floating
point data type. INF arises through such operations as the addition or multiplication of
two very large numbers. NaN is the IEEE 754 code for “not a number”. NaN arises from
operations which have undefined value in common arithmetic. Examples include cos(INF)
or sin(INF) and INF/INF. These special values, INF and NaN, are contagious in that
operations involving one of these values and any ordinary number evaluates to the special
value. For example INF - 123.456 = INF and NaN * 2.0 = NaN. Of these two special
values, NaN is the most “virulent” since in addition to the above, operations involving
NaN and INF evaluate to NaN. See http://grouper.ieee.org/groups/754/ for further
reading on the standard.

71

http://grouper.ieee.org/groups/754/

is fractional powers. If the square root of a negative value is to be allowed,
then a mono-typed GP system with closure must use complex numbers as
its one type. If one is not interested in evolving complex valued expressions
then this also must be trapped. Again, the more robust option is to assign
prohibitively low fitness to programs that employ complex values.

GP trees that build graphs from a kernel are strongly typed since there
may be several types of modifiable sites on the graph which can only be
modified in certain (possibly non-overlapping) ways. For a simple example,
a node and an edge may both be modifiable in the kernel yet there are not
many operations that a GP function node could sensibly perform in exactly
the same way on either a node or an edge.

3.9 Genetic programming as indirect search

Genetic programming refers to the use of genetic algorithms to produce com-
puter programs. An indirect use of genetic programming uses the genetic al-
gorithm to find programs that, when run, produce a solution from the search
space. These programs are judged not on their own structure but on the
quality of their output. This generalizes the applicability of the technique
from simple bit-strings or tree structures to any possible output of a com-
puter program in the given programming language. There is a computational
cost to all of this indirection however, and a risk that it contorts the fitness
landscape in a way the will slow down progress of the genetic algorithm.

A genetic programming system can be arranged that gives each genetic
program as input a representation of some prototypical solution (called a
kernel) that incorporates any prior knowledge about the problem. If the
problem is system identification, then the kernel may be a rough system
model arrived at by some other identification technique. If the problem is
symbolic regression, then the kernel may be a low order approximation of the
target function, for example. In this arrangement, a program is sought which
modifies the kernel and returns a better solution. This makes genetic pro-
gramming useful in “grey-box” system identification problems, for example,
where a preliminary model is already known.

72

Figure 3.8: Genetic programming as indirect search for use in “greybox”
system identification

3.10 Search tuning

3.10.1 Controlling program size

Although it is often listed as an advantage of genetic programming that
there is no formal requirement for a priori knowledge of the size or form of
an optimal or even correct solution, there are practical reasons for setting an
upper bound on the size of evolved programs.

Namely, the algorithm must be implemented with finite computational
resources. If individuals are allowed to grow without bound then one or
more exceptionally large individuals can quickly consume so much memory
and processor time as to virtually stall the search.

Common resource usage limitation options include a fixed population size
and maximum number of generations, which are near ubiquitous in genetic
programming. As to program size, a fixed ceiling may be set either as a
constraint on crossover or (as implemented in this project) by assigning zero
fitness during program evaluation for individuals that exceed the ceiling.

Another program size limiting option is to incorporate program size as a
negative factor in fitness evaluation, creating a sort of evolutionary “parsi-
mony pressure”. Here there is a difficulty in deciding the “pressure sched-
ule” that maps between program size and the penalty factor. In particular a
schedule that is monotonic and steep, tending to penalize large programs and
reward small programs to an extent that overwhelms the test-suite based per-
formance factor will limit the size and diversity of subprograms available for
inclusion in a solution through crossover. This extreme case would obviously
have a detrimental effect on the performance of the genetic programming
algorithm. Even if the extreme is not reached, the very act of designing a
“parsimony pressure schedule” requires us to estimate the size of a correct
solution to our problem. Specifying how big a program must be in order
to solve a given problem will usually be more difficult than picking some
generous value which is obviously adequate.

73

A “parsimony pressure” measure may also be implemented by limiting the
computational resources (e.g. memory or processing time) available to each
program during evaluation. Programs which are not able to complete the
fitness evaluation test suite within their assigned resource limits are culled
from the population. While more complex to implement than, for example, a
simple ceiling on program tree size, this approach is stronger. The strength
of this approach arises when the programs being evolved may incorporate
iteration or recursion for which the bounds are a parameter of the search or
when the programs being evolved are allowed to allocate resources for their
own use. None of these aspects apply to the programs of interest in this work
however, and so the simpler approach was taken.

It is also interesting to note that the approach of limiting computation
resources in general is perhaps more naturalistic. Biological organisms which
have very extensive material needs will, on occasion, find those needs unmet
and consequently perish.

3.10.2 Maintaining population diversity

It is a fact of performing a local search on complex error surfaces that lo-
cal extrema are sometimes encountered. Genetic programming can become
“stuck” for considerable time on a non-global fitness maximum if the pop-
ulation comes to consist predominately of individuals that are structurally
identical. That is, if one solution occurs which is very much more fit than
all others in the current population, then reproduction with reselection will
cause the next generation to consist primarily of copies of this one individ-
ual. Although, subtree swapping crossover can produce offspring of differing
size and shape from both parents (for example by swapping a large portion
of one program for a small portion of another), if both parents are substan-
tially or exactly structurally equivalent, then the range of possible offspring
is greatly reduced. In the extreme, a population consisting entirely of in-
dividuals having exactly the same structure, a solution containing function
nodes not present in that structure is not reachable except through mutation,
which is typically employed sparingly.

There are many techniques available for population diversity maintenance
such as tagging or distance measures based limits on the total number of
individuals per generation sharing any particular structure, demes with mi-
gration, and adaptive crossover or mutation rates (e.g. make mutation rate
proportional to the inverse of some population diversity measure).

74

No active population diversity maintenance techniques were employed
but a measure of population diversity was included in the measured genetic
programming run aspects. This measure employed tagging, a sort of struc-
tural hashing in which each individual is assigned a “tag” (which could be a
simple integer) such that structurally equivalent individuals share a tag value
while tag values differ for structurally different individuals. A test for struc-
tural equivalence must be designed for the particular function and terminal
sets in use. As an example, in a symbolic regression system, two program
trees might be considered equivalent if their root nodes are equivalent where
the equivalence of two nodes is defined recursively as follows: two nodes are
equivalent if they share the same type, the same number of children, and cor-
responding pairs of their children are all equivalent. Thus two constant value
node would be considered structurally equivalent regardless of any difference
in their values (a parametric, not structural difference) since they have the
same type (constant value) and the same number of children (zero).

It may seem natural to consider any subtree having only constant value
leaf nodes to be structurally equivalent to a single constant value node. A
side effect of this would be to bias the search towards exploring towards
exploring structural variations and away from parametric optimization.

Tagging is less computationally expensive and conceptually simpler than
numerically valued distance measures. A conceptually simple recursive algo-
rithm for evaluating structural equivalence is described above. This evalua-
tion can be made tail-recursive and short circuiting. Short circuit evaluation
1 is possible in this case because the algorithm will stop recursion and return
false immediately upon encountering any two corresponding nodes which are
not equivalent. The implementation in Python developed for this project
achieves this automatically since all of the Python built-in logical operators
are short circuiting. A LISP or Scheme implementation would benefit since
modern optimizing LISP compilers perform very well with tail-recursion.

75

Chapter 4

Implementation

In the course of producing this thesis, software was written for bond graph
modelling and simulation, symbolic algebra, and strongly typed genetic pro-
gramming. This software was written in the Python [83] programming
language with a numerical solver provided by the additional SciPy [37] li-
braries. Visualization tools were written that use Graphviz [25], Pylab [36]
and PyGame [72] to show bond graphs, genetic trees, algebraic structures,
numerical results, and animations of multi-body mechanics simulations.

4.1 Program structure

The bond graph modelling and simulation and related symbolic algebra code
code is divided into 4 modules.

Bondgraph.py The Bondgraph module defines a set of objects representing
basic and complex bond graph elements, bonds, and graphs. Graphs
can be assembled programmatically or prescriptively (from text files).
Automatic causality assignment and equation extraction are imple-
mented here as are some bond graph reduction routines.

Components.py The Components module contains a collection of com-
pound bond graph elements.

Algebra.py The Algebra module provides facilities for constructing and ma-
nipulating symbolic expressions and equations. It produces textual
representations of these in Graphviz “DOT” markup or LATEX. It im-
plements algorithms for common algebraic reductions and recipes for

76

specialized actions such as finding and eliminating algebraic loops from
sets of equations where possible and identifying where it is not possible.

Calculus.py The Calculus module provides extensions to the Algebra mod-
ule for constructing and manipulating differential equations. In partic-
ular, for reducing coupled sets of algebraic and first order differential
equations to a set of differential equations involving a minimal set of
state variables, and a set of algebraic equations defining all the remain-
ing variables in terms of that minimal set.

The genetic programming code is divided into 4 modules as well.

Genetics.py The Genetics module implements an abstract genetic pro-
gramming type system from which useful specializations can be derived.
It implements the genetic operators for tree structured representations.

Evolution.py The Evolution module executes the generational genetic al-
gorithm in a generic way, independent of the particular genetic repre-
sentation in use.

SymbolicRegression.py The SymbolicRegression module implements a spe-
cialized genetic programming type system for symbolic regression on
dynamic systems on top of the Genetics module.

BondgraphEvolution.py The BondgraphEvolution module implements a
specialized genetic programming type system for evolving bond graphs
on top of the Genetics module. Uses a subset of the symbolic regression
module to find constant valued expressions for bond graph element
parameters.

A number of other modules were written. Most of these automate partic-
ular experiments or implement small tools for visualization of bond graphs
and genetic trees, generating test signals and visualizing numerical results. A
framework for distributing genetic programming across a local or wide area
network in the island model was also begun but is yet incompleted.

4.1.1 Formats and representations

Simulation results and test signals used as input to simulations are stored in
comma separated value (CSV) text files for portability. For particularly long

77

or detailed (small time-step) simulations, there is a noticeable delay while the
plotting and animation visualization tools parse and load the results. A more
compact non-text format might run quicker but the delay is acceptable in
exchange for the ability to inspect the results with a text editor and the ease
of importing CSV data into off-the-shelf tools such as MATLAB, Octave,
and even spreadsheet programs.

There are several graph definition markup languages in use already, in-
cluding GraphML (an XML schema) and DOT (used by Graphviz). An
expedient custom markup format for storing bond graphs was defined as
part of this work. The Bondgraph.py module is able to load models from
files written in this format and write them back out, possibly after some ma-
nipulation. The distributed computing modules use this format to send bond
graph models across the network. It is not the intention that this format be-
come widely used but an example is included as listing 4.1 for completeness.

Any line beginning with a # is a comment intended for human eyes and
ignored by the software. Nodes and bonds are defined within begin and end

lines. Nodes referred to within the definition of a bond must themselves have
been defined earlier in the file. The direction of positive power flow along
bonds is from the tail to the head (i.e. the half arrow would be drawn at the
head). Bond graphs defined in this way are acausal, since Bondgraph.py is
able to assign causality automatically when it is needed.

This format can be criticized as needlessly verbose. For comparison,
Python code to create the same model then extract and print the corre-
sponding state space equations is included as listing 4.2.

Listing 4.1: A simple bond graph model in .bg format

t i t l e s i n g l e mass/ sp r ing /damper chain .

nodes

Spring , damper and mass .
begin node

id spr ing
type C
parameter 1 .96

end node

begin node

78

id damper
type R
parameter 0 .02

end node

begin node
id mass
type I
parameter 0 .002

end node

Common f low point j o i n i n g s /d/m
begin node

id point1
type c f j

end node

Input fo r ce , a c t ing on spr ing and damper
begin node

id f o r c e
type Se
parameter Y

end node

bonds

Spring and damper j o i n ed to mass
begin bond

t a i l po int1
head spr ing

end bond

begin bond
t a i l po int1
head damper

end bond

79

begin bond
t a i l po int1
head mass

end bond

begin bond
t a i l f o r c e
head point1

end bond

EOF

Listing 4.2: A simple bond graph model constructed in Python code

from Bondgraph import ∗

g = Bondgraph (’ s i n g l e mass/ sp r ing /damper chain ’)
c = g . addNode (Capacitor (1 . 9 6 , ’ sp r ing ’))
r = g . addNode (Re s i s t o r (0 . 0 2 , ’ damper ’))
i = g . addNode (I n e r t i a (0 . 002 , ’mass ’))
j = g . addNode (CommonFlowJunction ())
s = g . addNode (E f f o r tSource (’E ’))

g . bondNodes (j , c)
g . bondNodes (j , r)
g . bondNodes (j , i)
g . bondNodes (s , j)

g . a s s i gnCausa l i t y ()
g . numberElements ()

print StateSpace (g . equat ions ())

80

4.2 External tools

4.2.1 The Python programming language

Python is a highly dynamic, interpreted, object-oriented programming lan-
guage originally written by Guido van Rossum. It has been distributed under
a series of open source licenses [62] and has thus gained contributions from
hundreds of individuals world-wide. Similar to LISP, the dynamic and in-
trospective features of Python facilitate the creation, manipulation and eval-
uation of blocks of code in an automated way at runtime, all of which are
required steps in genetic programming.

In addition to personal preference and familiarity, Python was chosen be-
cause it is more legible to a general audience than LISP and faster and less
error prone than writing programs in C. The historical choice of syntax and
keywords for Python has been strongly influenced by the “Computer Pro-
gramming for Everyone” philosophy [82] which strives to show that powerful
programming environments enjoyed by experts need not be inaccessible to
others. The language design choices made to date have been successful in
this respect to the extent that executable Python source code from real ap-
plications has occasionally been mistaken for pseudo code. Take for example
the following two functions which implement the universal and existential
logical qualifiers, respectively:

Listing 4.3: Two simple functions in Python

def f o rA l l (sequence , cond i t i on) :
for item in sequence :

i f not cond i t i on (item) :
return False

return True

def t h e r eEx i s t s (sequence , cond i t i on) :
for item in sequence :

i f cond i t i on (item) :
return True

return False

These are succinct, easily understood by English readers familiar with
procedural programming and, due to the name-based polymorphism inher-
ent in Python’s object system [49], these operate on any iterable object,

81

“sequence” (which may in fact be a list, tuple, dictionary etc. or even a cus-
tom object-type implementing the iterator interface) and any callable object
“condition”.

Since this research addresses automated dynamic system identification
topics which are primarily of interest to engineers and not computer scien-
tists, the ease and accuracy with which an audience of non-specialists in the
implementation language can understand the software is important.

In addition to its legibility, Python code is portable without change across
several important platforms. Development was carried out at times on each of
Mac OS X, GNU/Linux, and Microsoft Windows with no change to the code
base. Later, dozens of genetic programming runs were performed with the
same code on a 4 processor SGI machine under the IRIX operating system.
Python compiles easily for most Unix variants making Python code portable
to some very powerful machines.

4.2.2 The SciPy numerical libraries

SciPy [37] is a collection of libraries and extensions to the Python pro-
gramming language that are likely to of use to scientists and engineers.
In this work, SciPy is used for fast matrix operations and to access a nu-
merical solver. Both capabilities are made possible by code from netlib [1]
included in SciPy. The solver is LSODA, an adaptive solver that automati-
cally switches between stiff and non-stiff routines. It is part of ODEPACK
[32], which SciPy exposes as scipy.integrate.odeint. StateSpace ob-
jects from the Calculus.py module conform to the interface provided by
scipy.integrate.odeint.

4.2.3 Graph layout and visualization with Graphviz

Graphviz [25] is an open source suit of graph layout and visualization soft-
ware. It was used in this work to visualize many automatically generated
graph and tree structures including tree-structured genetic programs, bond
graphs, and tree-structured equation representations. The importance of an
automated graph layout tool is keenly felt when handling large, automati-
cally generated graphs. If Graphviz or Springgraph [21] (another open source
graph layout suite, it reads the Graphviz DOT file format but supports only
one layout algorithm) were not available, an automated layout tool would
need to have been written. Instead, Bondgraph.py is able to produce a

82

graph definition in the DOT format used by Graphviz. For example, listing
4.4 is the DOT representation produced by Bondgraph.py from the graph
defined in listing 4.1. From this, Graphviz produces the hierarchical layout
(ordered by direction of positive power flow) shown in figure 5.2.

Graphviz DOT files are also produced for genetic trees, nested algebraic
expressions, and algebraic dependency graphs.

Listing 4.4: Graphviz DOT markup for the model defined in listing 4.4

digraph ” s i n g l e mass/ sp r ing /damper chain . ”
{

rankd i r=LR;
node [shape=p l a i n t e x t] ;

C1 [l a b e l=”C: spr ing ”] ;
R2 [l a b e l=”R: damper ”] ;
I3 [l a b e l=”I : mass ”] ;
11 [l a b e l =”1”] ;
Se4 [l a b e l=”Se : f o r c e ”] ;

edge [f o n t s i z e =10] ;
11 −> C1 [arrowhead=ha l f , a r r owta i l=tee , l a b e l =”1”] ;
11 −> R2 [arrowhead=ha l f , a r r owta i l=tee , l a b e l =”2”] ;
11 −> I3 [arrowhead=te eha l f , l a b e l =”3”] ;
Se4 −> 11 [arrowhead=te eha l f , l a b e l =”4”] ;

}

4.3 A bond graph modelling library

4.3.1 Basic data structures

Formally, a graph is a set of nodes and a set of edges between the nodes.
Bondgraph.py implements a bond graph object that maintains a list of el-
ements and another of the bonds between them. Each element has list of
bonds and counts of the maximum number of causal-in and causal-out bonds
allowed. Each bond has head and a tail (references to elements within the
bond graph) and a causality (initially nil but assigned equal to the head or
the tail during sequential causality assignment). Activated bonds are a sub-
class of bonds. Activated bonds are never assigned a causality. Signal blocks
are elements that only accept activated bonds at their ports.

83

4.3.2 Adding elements and bonds, traversing a graph

The graph class has an addNode and a removeNode method, a bondNodes
and a removeBond method. Nodes are created independently then added
to a graph. The addNode graph method checks first that the node is not
already part of this or any other graph and that it has no attached bonds.
Bonds are created only within the context of a particular graph by calling
the bondNodes graph method. This method takes two elements (which are
to become the tail and the head of the bond, respectively), checks that both
elements are part of this graph and can accommodate an additional bond,
then joins them and returns a reference to the new bond.

Each element maintains a list of attached bonds. Each bond has a ref-
erence to its head and tail elements. In this way it is possible to walk the
graph starting from any element or bond. For convenience, the bond graph
object has methods to iterate over all elements, all bonds, or a filtered subset
thereof.

4.3.3 Assigning causality

The sequential causality assignment procedure (SCAP) described in Sec-
tion 2.3.2 is automated by the bond graph code. This procedure is in-
voked by calling the assignCausality method on a bond graph object. An
unassignCausality method exists as well which strips any assigned causal-
ity from all bonds in the graph.

The assignCausality method implementation begins by segregating the
graph elements into four lists:

1. one-port elements with a required causality (source elements Se and Sf,
switched storage element CC),

2. one-port elements with a preferred causality (storage elements C and
I),

3. one-port elements with arbitrary causality (sink element R),

4. others (0, 1, GY, TF, signal blocks).

As a side effect of the way bond graph elements are stored and retrieved,
elements appear in these lists in the order that they were added to the graph.

84

For each element in the source element list, the attached bond is assigned
the required causality. Each time a bond is assigned causality the conse-
quences of that assignment, if any, are propagated through the element at
the other end of the bond. Causality propagates when:

• a bond attached to a TF or GY element is assigned either causality,

• a bond attached to a 0 element is assigned effort-in (to the 0 junction)
causality,

• the last-but-one bond attached to a 0 element is assigned effort-out
(from the 0 junction) causality,

• a bond attached to a 1 element is assigned effort-out (from the 1 junc-
tion) causality,

• the last-but-one bond attached to a 1 element is assigned effort-in (to
the 1 junction) causality.

The rules for causality propagation are implemented in the extendCausality
method of each element object type so the propagation of causality assign-
ment consequences is a simple matter of looking up the element at the other
end of the just-assigned bond and invoking its extendCausality method.
That element object itself is then responsible for examining the causality
assignment of all attached bonds, making any new assignments that may
be implied, and invoking extendCausality on its neighbours after any new
assignments.

If, as a consequence of the assignment of a required causality, another
causality requirement is violated then the extendCausality method on the
second element will raise an exception and abort the original invocation of
assignCausality. This could occur if, for example, two like source elements
are bonded directly together.

After all required causality one-port elements have been handled, the
preferred causality list is examined. Any elements whose attached bond
has been assigned a causality, preferred or otherwise, as a consequence of
earlier required or preferred causality assignments is skipped over. Others
are assigned their preferred causality and consequences are propagated.

Finally, the list of arbitrary causality elements is examined. Again, any
whose attached bond has been assigned a causality are skipped over. The
rest are assigned a fixed causality (effort-in to R elements) and consequences

85

are propagated. If any non-activated bonds remain without a causality as-
signment, these are given an arbitrary assignment (effort in the direction of
positive power transfer). Once all bonds have been assigned a causality, the
list of preferred causality elements is re-examined and any instances of dif-
ferential causality are noted in a new list attached to the bond graph object.

4.3.4 Extracting equations

All bond graph element objects have an equations method that, when in-
voked, returns a list of constitutive equations for that element. This method
fails if the attached bonds have not yet been assigned a causality and a
number. Bonds are assigned a causality either manually or automatically as
described in the previous section. Bonds are assigned a number in the order
they were added to the graph by invoking the numberBonds method of the
bond graph object. Bond numbers are used to name effort and flow variables
of each bond uniquely. Bond graph objects also have an equations method.
It returns an equation set object containing all the constitutive equations of
all the elements in the graph. It does this by first invoking assignCausality

and numberBonds on the graph object itself, then invoking the equations

method on each element and collecting the results. Bond graph element ob-
jects will, in general, return different constitutive equations depending on
the causality assignment of the attached bonds. Elements with a required
causality such as Se, Sf, and CC will raise an exception and abort the collec-
tion of equations if their equations method detects other than the required
causality since the constitutive equations of these elements are not defined
in that case.

Equations, the algebraic expressions which they contain, and the equation
sets into which they are collected are all implemented by the symbolic algebra
library described in Section 4.4.

4.3.5 Model reductions

There are certain structural manipulations of a bond graph model that do
not change its behaviour in simulation. These may be applied to reduce the
complexity of a model, just as the rules of algebra are applied to reduce com-
plex expressions to simpler ones. Five such manipulations are automated by
the bond graph library and all bond graph objects built by the library have a
reduce method that applies them in the order given below. It is advisable to

86

invoke the reduce method before extracting equations for simulation since it
is simple (computationally inexpensive) to apply them. Although detecting
where these reductions are applicable requires an examination of every junc-
tion in the graph and all the junction’s neighbours, that is outweighed by the
algebraic manipulations it obviates. These bond graph reductions produce
a model with fewer constitutive equations and often, if there are loops, with
fewer algebraic loops. The latter is a particularly large gain since resolving
algebraic loops (the implementation of the procedure for which is described
in Section 4.4.3) involves extensive manipulations of sets of equations that
may be very large. The implemented bond graph reductions are:

1. Remove junctions with less than 3 bonds

2. Merge adjacent like junctions

3. Merge resistors bonded to a common junction

4. Merge capacitors bonded to a common effort junction

5. Merge inertias bonded to a common flow junction

These five model reduction steps are illustrated in figures 4.1 to 4.5.
In the first manipulation, any 0 or 1 junction having only one bond is

removed from the model along with the attached bond. Any junction having
only two bonds is likewise removed along with both its bonds and a single new
bond put in their place. For this and the second manipulation, the equiv-
alence of the model before and after follows directly from the constitutive
equations of the 0 and 1 junctions elements.

In the third manipulation, some number of R elements, all bonded to
the same junction and removed and a single new R element is put in their
place. For elements with the linear constitutive equation given by equation
4.1 there are two cases, depending on the junction type. Handling of non-
linear elements is not automated by the library. If the attached junction is a
1 element, the resistance parameter of the new R element is simply the sum
of the parameters of the replaced elements. If the attached junction is a 0
element, the resistance parameter of the new R element is req where

req =
1

1

r1

+
1

r2

+ . . . +
1

rn

(4.1)

87

These are the familiar rules for electrical resistances in series and parallel.
The fourth and fifth manipulations handle the case shown in 2.12 and an

even simpler case than is shown in 2.13, respectively. The same electrical
and mechanical analogies apply. Capacitors in parallel can be replaced by a
single capacitor have the sum of the replaced capacitances. Rigidly joined
inertias are effectively one mass.

To illustrate the application of the model reduction rules described above,
figure 4.6 shows a randomly generated bond graph model that contains: junc-
tions with less than 3 bonds, adjacent like junctions, and multiple resistors
bonded to a common junction. Figures 4.7, 4.8, and 4.9 show the application
of the first 3 steps in the automated model reduction method. The 4th and
5th are not applicable to this model. Listing 4.5 gives the collected consti-
tutive equations of the original model (figure 4.6) and figure 4.10 shows the
algebraic dependencies between them. Listing 4.6 gives the collected consti-
tutive equations of the reduced model (figure 4.9) and figure 4.11 shows the
algebraic dependencies between them.

X 1
3

Y
4

X 01 Y2

X Y
3

X Y1

Figure 4.1: Model reductions step 1: remove trivial junctions

88

W

1

6

X

7

Y

Z

1
8

9

10

W

0

1

X 2

Y

Z

03
4

5

W
1

6

X

7

Y

Z

9

10

W

0

1

X

2

Y

Z

4

5

Figure 4.2: Model reductions step 2: merge adjacent like junctions

89

X 16

Y

7

R:r1
8

R:r2

9

R:r3

10

X 01

Y

2

R:r1
3

R:r2

4

R:r3

5

X 16 Y7

R:(r1+r2+r3)

8

X 01

Y
2

R:r_eq
3

Figure 4.3: Model reductions step 3: merge resistors bonded to a common
junctions

90

X 01

Y

2

C:c1
3

C:c2

4

C:c3

5

X 01

Y
2

C:(c1+c2+c3)

3

Figure 4.4: Model reductions step 4: merge capacitors bonded to a common
effort junctions

X 11

Y

2

I:i1
3

I:i2

4

I:i3

5

X 11

Y
2

I:(i1+i2+i3)

3

Figure 4.5: Model reductions step 5: merge inertias bonded to a common
flow junctions

91

Se:Se4

1

4

I:I1

1

1

R:R15

15

0

2

R:R14

14

0

0

9

R:R11

11

I:I12

12

R:R13

13

1

3

0

0

7

5

R:R6

6

8

10

Figure 4.6: A randomly generated model containing: trivial junctions, adja-
cent like junctions, and multiple resistors bonded to a common junction

92

Se:Se4

1

3

I:I1

1

1

R:R15

9

0

2

R:R14

8

0

11

R:R11

5

I:I12

6

R:R13

7

10

R:R6

4

Figure 4.7: The model from figure 4.6, with trivial junctions removed

93

Se:Se4

1

2

I:I1

1

1

R:R15

7

0

9

R:R11

4

I:I12

5

R:R13

6

R:R14

10

8

R:R6

3

Figure 4.8: The model from figure 4.6, with trivial junctions removed and
adjacent like junctions merged

94

Se:Se4

1

2

I:I1

1

1

R:R15

5

0

7

I:I12

4

R:Req

8

6

R:R6

3

Figure 4.9: The model from figure 4.6, with trivial junctions removed, ad-
jacent like junctions merged and resistors bonded to a common junction
merged

95

f13

f3

e2

e1

p1

p12

f12

f15

e15

e11

f11

f8

f7

f1

f9

e5

e7

f6

e6

f5

f4

e4

e12

f2

e3

e9 e13

f14

f10

e8

e10

e14

i0

Figure 4.10: Algebraic dependencies within equations extracted from the
model of figure 4.6 and listing 4.5

96

e4

p4

p1

f1

e2

e6

f4

f6

e1

e7

f5

e5

f3

e3

f2

e8

f7

f8

i0

Figure 4.11: Algebraic dependencies within equations extracted from the
reduced model of figure 4.9 and listing 4.6

97

Listing 4.5: Equations from the model in figure 4.6

e1 = (e2+(−1.0∗ e15))
e2 = e10
e3 = e8
e4 = i0
e5 = (e4+(−1.0∗ e6))
e6 = (f6 ∗32 .0)
e7 = e5
e8 = e7
e9 = e3
e10 = e9
e11 = e3
e12 = e3
e13 = e3
e14 = e10
e15 = (f15 ∗45 .0)
f 1 = (p1/−78.0)
f 2 = f1
f3 = (f9+f11+f12+f13)
f 4 = f5
f5 = f7
f6 = f5
f7 = f8
f8 = f3
f9 = f10
f10 = (f2+f14)
f11 = (e11 /45 .0)
f12 = (p12 /0.0429619641442)
f13 = (e13 /7137.88689084)
f14 = (e14 /93 .0)
f15 = f1
p1 dot = e1
p12 dot = e12

98

Listing 4.6: Equations from the reduced model in figure 4.9

e1 = (e7+(−1.0∗ e5))
e2 = i0
e3 = (f3 ∗32 .0)
e4 = e6
e5 = (f5 ∗45 .0)
e6 = (e2+(−1.0∗ e3))
e7 = e6
e8 = e6
f1 = (p1/−78.0)
f 2 = f6
f3 = f6
f4 = (p4 /0.0429619641442)
f 5 = f1
f6 = (f4+f7+f8)
f 7 = f1
f8 = (e8 /30.197788376)
p1 dot = e1
p4 dot = e4

99

4.4 An object-oriented symbolic algebra li-

brary

An object-oriented symbolic algebra library was written as part of this work.
It is used by the bond graph library to produce equations in a modular
way depending on causality assignment, and by the symbolic regression code
for similar reasons. It is capable of several simple and widely applicable
algebraic manipulations as well as some more specialized recipes such as
reducing equations produced by the bond graph library to state space form
even if they contain algebraic loops.

4.4.1 Basic data structures

The library implements three basic objects and specializations thereof: an
algebraic expression, an equation, and a equation set.

Expression objects can be evaluated given a table in which to look for the
value of any variables they contain. Expression objects have methods that
list any variables they contain, test if the expression is constant (contains
no variables), list any nested sub-expressions (each variable, constant and
operator is an expression in itself), replace any one sub-expression with an-
other, and other more specialized algebraic manipulations. Base expression
objects are never used themselves, leaf nodes from the object inheritance
graph shown in figure 4.12 are used. That figure indicates that Operator is
a type of Expression and Div (division) is a type of Operator. Operator

has all the attributes of Expression but may modify or add some, and so on
for CommutativeOperator and all of the practical objects (leaf nodes in the
graph). Each type of practical object accepts some number of sub-expressions
which may be of the same or any other type. Constant and Variable objects
accept no sub-expressions. Cos and Sin operators accept one sub-expression
each. Div, Greater, and Lesser accept two, ordered sub-expressions. The
commutative operators Add and Mul accept any number of sub-expressions,
the order of which is immaterial.

Equation objects are composed of two expression objects (a left-hand
side and a right) and methods to list all variables, expressions, and sub-
expressions in the equations; replace any expression appearing in the equation
with another; as well as several more elaborate algebraic tests and manipu-
lations described in the sections that follow.

100

 Operator

Expression

Variable Constant

Div Greater Lesser CommutativeOperator

Add Mul

Sin Cos

Figure 4.12: Algebraic object inheritance diagram

Equation sets are collections of equations that contain no duplicates.
Equation set objects support similar methods to equations and expressions
(list all variables, replace one expression with another across all equations
in the set, etc.) as well as a number of methods that are specific to collec-
tions of equations. Those include recursive backsubstitution of the equations
from the set into any other equation, provided the original set is in a certain
“declarative” form; detection of this form; detection of algebraic loops; and
resolution of algebraic loops. Easily the most complex manipulation that is
automated by the library, algebraic loops are discussed in section 4.4.3.

The Calculus.py module extends the basic algebra library (Algebra.py)
with a Diff operator and a type of equation set called StateSpace. A
StateSpace object is constructed from an ordinary equation set by a process
described in Section 2.5.1. Diff takes a single sub-expression and is a place-
holder for first order differentiation of that expression with respect to time
(a variable called “t” is always assumed to exist in any state space equation
set).

101

4.4.2 Basic reductions and manipulations

Expression objects support the following basic manipulations.

• Substitutions (search and replace)

• Get list of variables

• Aggregate constants

• Collapse constant expressions

• Convert constant divisors to multiplication

• Aggregate commutative operators

• Remove single operand commutative operators

• Expand distributive operators

Substitutions and getting a list of variables are self-explanatory. “Ag-
gregate constants” replaces multiple Constant objects that appear as direct
sub-expressions of a commutative operator with one equivalent Constant ob-
ject. “Collapse constant expressions” detects expressions that contain no
variables, evaluates them on the spot and replaces the entire expression with
one Constant object.

“Convert constant divisors to multiplication” detects Div objects that
have a Constant object as their second sub-expression (the divisor) and re-
places the Div with a Mul and the Constant with a new Constant whose value
is the reciprocal of the original. “Aggregate commutative operators” detects
occurrences of a commutative operator within the direct sub-expressions of
a like operator. It joins them into one like operator having all the sub-
expressions of both.

CommutativeOperator objects accept any number of sub-expressions (the
operands). “Remove single operand commutative operators” detects occur-
rences of a commutative operator with just one operand and replaces them
with their one sub-expression. CommutativeOperator objects with only one
sub-expression are null or “do nothing” operations. A single operand Add is
assumed to add zero to its operand and a single operand Mul is assumed to
multiply by one. These may arise after aggregating constants if the operator

102

had only constant sub-expressions. Removing them allows other manipula-
tions to proceed.

“Expand distributive operators” detects a Mul object with at least one
sub-expression that is an Add object. It selects the first such sub-expression
it finds and replaces the Mul object with a new Add object. The operands
to this new Add object are Mul objects each of which has as operands one of
the operands from the original Add object as well as all of the operands of
the original Mul object except for the original Add object.

Expression objects also support the following more specialized manipu-
lations which make use of the above basic manipulations.

• Drive expression towards polynomial (iterative)

• Collect like terms (from a polynomial)

“Drive expression towards polynomial” is a sequence of basic manipula-
tions that, when applied repeatedly, is a heuristic for putting expressions into
polynomial form. Polynomial form is defined here to mean an Add object,
the operands of which are all either Constant, Variable, or Mul objects.
If they are Mul objects then they have only two operands themselves, one
of which is a Constant and the other of which is a Variable object. Not
all expressions can be manipulated into this form but the isPolynomial

method on Expression objects detects when it has been achieved. “Drive
expression towards polynomial” is primarily used while resolving algebraic
loops in equation sets extracted from linear bond graph models, in which case
the preconditions exist to make a polynomial form always achievable. The
towardsPolynomial method on Expression objects applies the following
sequence of operations each time it is invoked:

1. Aggregate constants

2. Convert constant divisors

3. Aggregate commutative operators

4. Expand distributive operators.

Equation objects support the following manipulations which make use of the
above Expression object manipulations.

• Reduce equation to polynomial form

103

• Collect like terms (from a polynomial form equation)

• Solve polynomial form equation for any variable.

“Reduce equation to polynomial form” invokes towardsPolynomial on the
left and right-hand side expressions of the equation repeatedly until isPolynomial
gives a true result for each. “Collect like terms” examines the variables in
the operands of the Add objects on either side of a polynomial form equa-
tion and collects them such that there is only one operand between those
Add objects that contains any one variable. The result may not be in the
polynomial form defined above but can be driven there again by invoking the
equation’s towardsPolynomial method. Equation objects have a solveFor

method that, given a variable appearing in the equation attempts to put
the equation in polynomial form then collects like terms, isolates the term
containing that variable on one side of the equation and divides through by
any constant factor. Of course this works only for equations that can be put
in the polynomial form defined above. The solveFor method attempts to
put the equation in polynomial form by invoking the towardsPolynomial

repeatedly, stopping either when the isPolynomial method gives a true re-
sult or after a number of iterations proportional to the size of the equation
(number of Expression objects it contains). If the iteration limit is reached,
then it is presumed not possible to put the equation in polynomial form, and
the solveFor method fails.

EquationSet objects support the following manipulations which make
use of the above Equation and Expression object manipulations.

• Detect and resolve algebraic loop(s)

• Recursive backsubstitution from declarative form equations

• Reduce equation set to state space form

These are described in detail in the next two sections.

4.4.3 Algebraic loop detection and resolution

Equation sets extracted from bond graph models sometimes contain algebraic
loops in which dependencies of a variable include itself. Here, the dependen-
cies of a variable are defined to be the variables on the right-hand side of
its declarative form equation plus the dependencies of all of those. Recall

104

that equations extracted from a bond graph are all in declarative form. Al-
gebraic loops, if not identified and resolved, will cause infinite regression in
the process of reducing equations to state space form by back-substitution
of variables declared by algebraic equations into the differential equations,
as described in Section 2.5.1. Loops in the dependency graph which pass
through a differential operator are not problematic to this process. These
differential-algebraic loops encode the linkage among state variables and need
not be resolved before hand.

Algebraic loops do not represent any general physical attributes of the
model as do the causal linkages described in Section 2.3.1 (figures 2.12 and
2.12). They are simply computational inconveniences. Fortunately, for linear
systems (bond graph models containing only the standard elements described
in Section 2.2), it is always possible to resolve (break) algebraic loops and
the process has been automated as part of this work. Less fortunately, the
process is not easily generalized to non-linear systems which may contain
complex trigonometric expressions and non-invertible functions.

The process, in brief, is to identify algebraic loops with a depth-first
search of the dependency graphs. The search is started once from each node
(variable) in the graph that appears as the left-hand side of an algebraic
declarative equation. Once identified, a purely algebraic loop is resolved by

1. Traversing the loop and collapsing the declarative equations for all loop
variables into one equation by back substitution into the declarative
equation for the first loop variable

2. Expanding distributive operators, aggregating constants and commu-
tative operators

3. Collecting like terms

4. Isolating the first loop variable

The result of the first step is a new declarative equation for the first loop
variable which contains only the variable itself and non-loop variables on the
right-hand side. It is always possible, by applying the operations listed in
the second step, to reduce the right-hand expression of the collapsed loop
equation to the form of a sum of products where each product is between a
variable and a constant. This is possible because the algebraic declarative
equations extracted from bond graph models have one of only two forms

A = B · C

105

and

D = E1 + E2 + · · ·+ En

where C is a constant and any of E1 . . . En may be prefixed by a negative
sign. The third and fourth steps bring the product containing the first loop
variable out of the sum and onto the right-hand side, then factor out the
variable and divide through by the constant part.

The result of this process is a new declarative equation for one loop vari-
able in terms only of variables from outside the loop. This equation is used
to replace the original declarative equation in the set, breaking the loop. For
sets of equations that contain multiple (and possibly overlapping) algebraic
loops, the process can be applied repeatedly to break one loop at a time,
substituting the result back into the set before searching again for loops. It
is important that this is done sequentially since attempting to solve all loops
are once before substituting the collapsed and refactored equations back into
the set often results in an equal number of different loops in the now changed
equation set.

Listing 4.7 outlines the process for the loop in the reduced model shown
in figure 4.9. The resulting set of equations is given in listing 4.8. The
dependency graph for those equations is given in figure 4.13 and shows no
remaining algebraic loops. The entire process is automated.

Listing 4.7: Resolving a loop in the reduced model

loop : [’ e6 ’ , ’ e8 ’ , ’ f8 ’ , ’ f6 ’ , ’ f3 ’ , ’ e3 ’]
e8 = e6
f8 = (e8 /30.197788376)
e3 = (f3 ∗32 .0)
f 3 = f6
f6 = (f4+f7+f8)
e6 = (e2+(−1.0∗ e3))

c o l l a p s i n g
e6 = (e2+(−1.0∗((f 4+f7+(e6 /30 . 197788376))∗32 . 0)))

expanding and aggregat ing
i t e r a t i o n s : 3 True True
e6 = (e2+(f4 ∗−32.0)+(f7 ∗−32.0)+(e6 ∗−1.05968025213))

c o l l e c t i n g

106

(e6+(−1.0∗(e6 ∗ −1.05968025213)))
= (e2+(f4 ∗−32.0)+(f7 ∗−32.0))

expanding and aggregat ing
i t e r a t i o n s : 2 True True
(e6+(e6 ∗1 .05968025213)) = (e2+(f4 ∗−32.0)+(f7 ∗−32.0))

i s o l a t i n g
e6 = (((e2 ∗1.0)+(f4 ∗−32.0)+(f7 ∗ −32.0))/2.05968025213)
done

Listing 4.8: Equations from the reduced model with loops resolved

e1 = (e7+(−1.0∗ e5))
e2 = i0
e3 = (f3 ∗32 .0)
e4 = e6
e5 = (f5 ∗45 .0)
e6 = (((e2 ∗1.0)+(f4 ∗−32.0)+(f7 ∗ −32.0))/2.05968025213)
e7 = e6
e8 = e6
f1 = (p1/−78.0)
f 2 = f6
f3 = f6
f4 = (p4 /0.0429619641442)
f 5 = f1
f6 = (f4+f7+f8)
f 7 = f1
f8 = (e8 /30.197788376)
p1 dot = e1
p4 dot = e4

4.4.4 Reducing equations to state-space form

Equations generated by the bond graph modelling library described in Sec-
tion 4.3 always appear in “declarative form” meaning that they have on the
left-hand side either a single, bare variable or the first time derivative of a
variable. Moreover, no variable ever appears on the left-hand side of more

107

e4

p4

p1

f1

e2

e6

f4

f6

e1

e7

f5

e5

f3

e3

f2

f7

f8

e8

i0

Figure 4.13: Algebraic dependencies within the reduced model with loops
resolved

108

than one equation. These two properties are crucial to the procedure for
reducing sets of equations to state space form. If either condition does not
exist (for example because the bond graph model has integral causality for
some elements) then the procedure is aborted. After checking that all equa-
tions are in declarative form, checking for algebraic loops and resolving any
that appear, the procedure has three steps.

1. Identify state, input, and other variables

2. Back-substitute until only state and input variables on right-hand side

3. Split state and readout equation sets

State variables are those that appear within a differential. These are the
energy variables from each storage element in the bond graph model. The
value of these variable at any point in time encodes the state of the system,
that is the precise distribution of energy within it. Since these variables
together entirely describe the state of the system, a vector formed by them
positions the system within a state-space. The state-space form being sought
is one in which a numerical integrator can be used to solve for the value of
this state vector over time. That is, for the systems trajectory through state
space.

Input variables are those that do not appear on the left-hand side of any
declarative form equation. Since there is no explicit definition for them in
the equation set, and there will not be one in the reduced set either, these
variables represent inputs to the system. Other variables are those that
appear on the left-hand side of a purely algebraic (non-differential) equation.
These are parameters of the system that can later be solved for in terms of
the state variables.

In the second step, the right-hand side of non-differential equations is
substituted into the right-hand sides of the all equations wherever the left-
hand side variable of those non-differential equations appears. This continues
recursively until all equations have only input and state variables on their
right-hand sides. If the equation set contains algebraic loops then this pro-
cess will never terminate, so it is very important to detect and resolve and
algebraic loops before attempting reduction to state space form.

The result of this recursive back-substitution is a set of declarative form
equations, some differential and some purely algebraic, and all having only
state and input variables on the right-hand side. The third step is to segregate

109

the differential equations from the purely algebraic ones. The differential
equations are in declarative form for the state vector and will be passed
to a numerical integration routine to find the system trajectory in state
space given a sequence of input variable values over time. The remaining
purely algebraic equations can be used to solve for any of their left-hand side
variables given the system trajectory and the input sequences.

4.4.5 Simulation

Once a state space equation set has been constructed, it can be solved over
any range of time for which a sequence of input values is available. Au-
tonomous system, with no inputs can be solved for arbitrary time ranges
of course. The differential equations from a state space equation set are
solved by numerical integration using the SciPy [37] provided interface to
the LSODA [32] integrator. The integration routine solves for the system
trajectory in state space by integrating both sides of the state variable declar-
ative form differential equations. This is the fundamental reason why integral
causality is preferred to differential causality in bond graph models. Numer-
ical differentiation with a centred difference implies knowledge of the future,
whereas numerical integration is a simple summing up over the past.

Inputs, if any, are read from a file then interpolated on-the-fly to allow
the integration routine to evaluate the input at any point within the available
range of simulation time. Zeroth order (constant) and a first order (linear)
interpolators are implemented. The zeroth order hold function was used for
all simulation results presented in chapter 5.

Once the system trajectory is in hand, it and the interpolated inputs
are used to solve the remaining algebraic equations across the same range
of simulated time for any interesting non-state variables. This is a straight-
forward application of the algebraic expression solving capabilities described
in previous sections.

4.5 A typed genetic programming system

A strongly typed genetic programming system requires extra attention to
the design of the crossover and mutation operators. These operators must
ensure that the type system is adhered to so that the result of any operation
is still a valid program in the language.

110

The design described here isolates the crossover and mutation operators
from any details of the problem being solved by the genetic algorithm. To
solve a different class of problem (e.g. graph-based modelling instead of sym-
bolic regression), a new set of program node types is implement. That is, the
grammar for a different genetic programming language is defined. Each new
node type derives from a base class implementing the crossover and mutation
mechanisms in a generic way. To interoperate with those mechanisms, each
node type must have the following attributes:

type a unique type identifier

min children an integer, the minimum number of children it will accept

max children an integer, the maximum number of children it will accept

child types a list of types at least max children long

Each node must also provide a method (function) that may be invoked
to compose a partial solution to the problem from the results of invoking the
same method on its children (the nodes below it in the program tree). The
“composed partial solution” returned by the root node of a genetic program
is taken to be a solution to the whole problem (e.g. a set of differential-
algebraic equations or a complete bond graph).

Optionally, a kernel of a solution may be passed in to the root node when
it is invoked. That kernel is a prototype solution to the problem incorporating
whatever a priori knowledge the experimenter has. It might be a set of
equations that form a low order approximation of the system behaviour, or
an idealized graph model, or a graph model that is highly detailed in parts
that have been identified by other methods and sketched in very simply in
other parts. The invoked method of each node may pass all or part of the
kernel on to its children when calling them, use all or part of the kernel when
composing its result, or even ignore the kernel entirely (removing part of the
original kernel from the ultimate result). These details are specific to the
design of the node types with a particular genetic programming language
grammar and the overall genetic programming framework is not affected
by these choices. For example, the genetic programming type system for
symbolic regression presented in section 4.5.3 does not use a kernel while the
system for bond graphs presented in section 4.5.4 does use a kernel in the
form of a bond graph model.

111

4.5.1 Strongly typed mutation

The implemented mutation operator for strongly typed tree structured rep-
resentations proceeds in three steps.

1. Choose a node at random from the parent

2. Generate a new random tree whose root has the same type as the chosen
node

3. Copy the parent but replace the subtree rooted at the chosen node with
the new random tree

In the first step a choice is made uniformly among all nodes. It is not
weighted by the position of the node within the tree or by the type of the
node. In the second step it is always possible to generate a tree rooted
with a node of the same type as the chosen node since all nodes in the parent
(including the chosen node) come from the function and terminal set of which
the replacement tree will be built. In the third step of the mutation operator
for strongly typed tree structured representations, the parent tree is copied
with replacement of the chosen subtree.

An attempt is made also to create the new tree at approximately the same
size (number of nodes) and depth as the subtree to be replaced. The tree is
constructed breadth first. Each time a new node is added, the required type
is first checked and a list of functions and terminals conforming to that type
is assembled. A function or terminal is chosen from the set at random, with
functions preferred over terminals by a configurable ratio. If the tree exceeds
either the size or depth of the tree to be replaced, then terminals are used
wherever possible (i.e. a function will only be used if no terminal conforms
to the required type). For the type systems (genetic programming language
grammars) described in sections 4.5.3 and 4.5.4 this most often results in not
more than one more layer of leaf nodes being added to the tree. This works
out so well because the tree is constructed breadth first and in these type
systems there are very few function types that accept only other function
types as children and these are closely tied to the one type used as the root
of a full genetic program so their children all tend to be filled in before the
tree hits a size or depth limit.

The tree creation procedure described here is also used to create random
individuals at the start of a genetic programming run. In that case the size

112

and depth limits imposed on the initial population are arbitrary and left to
the experimenter to chose for each run.

4.5.2 Strongly typed crossover

The implemented mutation operator for strongly typed tree structured rep-
resentations proceeds in three steps.

1. Find common node types by intersecting the node type sets of the
parents

2. List all nodes from the first parent conforming to one of the common
types

3. Choose at random from the list

4. List all nodes from the second parent conforming to the same type as
the chosen node

5. Choose at random from the list

6. Copy the first parent but replace the subtree rooted at the first chosen
node with a copy of that rooted at the second

If the set of common types is empty, crossover cannot proceed and the genetic
algorithm selects a new pair of parents.

4.5.3 A grammar for symbolic regression on dynamic
systems

This section describes some challenges encountered while designing a genetic
programming grammar (type system) for symbolic regression targeted at
modelling dynamic systems and presents the finished design.

Symbolic regression refers to the use of genetic algorithms to evolve a
symbolic expression that fits some given sampled data. In contrast to linear
regression and other types of curve fitting, the structure of the expression
is not specified before hand. The grammar for this conventional form of
symbolic regression consists of random constant values, a node representing
the independent variable, and standard algebraic operators (with the possible
replacement of division by an operator protected against division by zero).

113

This grammar is typeless or “mono-typed”. The result of symbolic regression
is a tree structured algebraic expression, a scalar function of one variable.
The genetic programming grammar for bond graphs given in section 4.5.3
uses this conventional form of symbolic regression, with the omission of any
independent variable nodes, to evolve constant valued expressions for any
needed parameters of graph elements.

Symbolic regression as a technique for identifying dynamic systems presents
additional challenges. The system under test may by multi-input and multi-
output, and being dynamic requires that the regressed symbolic model have
some representation of state. The chosen (and obvious, perhaps) represen-
tation is a set of equations in state space form, such as those extracted and
reduced from a bond graph model with all integral causality (see section
4.4.4).

Recall that a state space equation set consists of two subsets. The state
equations are first order differential equations. The differential operands on
the left-hand side of these equations make up the state vector. The readout
equations are a set of declarative form purely algebraic equations that define
a number of output variables in terms of the state and input variables. For a
black-box system identification problem, it is desired to specify the number of
inputs and the number of outputs but nothing further. The number of state
variables (length of the state vector) should not need to be pre-specified. It
is simple enough to draw up a tree-structured representation of a state space
equation set, but the desire to not pre-specify the number of states requires
that the representation contain some facility by which the genetic algorithm
can vary the number and interconnection of the state equations in the course
of applying the usual genetic operators (crossover and mutation).

In addition, the operation that adds a new state equation should disrupt
as little as possible any existing structure in a partially successful program.
Simply making the new state available for later integration into the model
is enough. Given a tree structured representation in which a “state space
equation set” sits above a “state equation set” and a “readout equation set”
each of which sit above a number of equations, there are several ways in
which new state equations might be added to the “state equation set”.

1. A new “blank” state equation could be added where “blank” means,
for example, that the right-hand side is constant

2. A new random state equation could be added where the right-hand side
is a random expression in terms of input and state variables

114

3. An existing state equation could be copied, leaving the copies untied
and free to diverge in future generations.

These all leave open the question of how the new state variable is linked
(eventually) into the existing set of state equations. Also, if a state equation
is removed (because a crossover or mutation operator deletes that part of
the program tree) there is the question of what to do with references to the
deleted state variable within the other state equations and within the readout
equations.

The implemented solution assigns to each state variable an index on some
interval (a real number between 0 and 1, for example). References to state
variables made from the right-hand side of state and readout equations do not
link directly to any program object representing the state variable. Rather
they link to an index on the interval. The indices assigned to state variables
and indices assigned to references to state variables need not align exactly.
When it comes time to evaluate the program, references to a state on the
right-hand side of any equations are resolved to state variables defined on
the left-hand side of state equations by starting from the reference index and
searching in one direction, modulo the length of the interval, until the first
state variable index is encountered.

When a new random state equation is introduced (e.g. through mutation)
it is given a random index on the interval. When a new state equation is
introduced by copying another (e.g. through crossover) it gets exactly the
same index as the original. When the program is evaluated, immediately
prior to resolving state variable references, the duplicate state variable indices
are resolved as follows. Starting from one end of the interval and proceeding
in the opposite direction to the variable resolution search, any duplicate index
is replaced by a number half way between its original index and the next state
equation index (with wrap around at the interval boundaries). Overall, this
design has some desirable properties, including:

• Random expressions can be generated that refer to any number of state
variables and all references will resolve to an actual state variable, no
matter how many states the program describes at this or any later
point in the genetic programming run.

• Adding an identical copy of a state equation has no affect until the
original or the copy is modified, so crossover that simply adds a state
is not destructive to any advantages the program already has.

115

• When one of those equations is modified, the change has no effect on
parts of the system that were not already dependent on the original
state equation (but half, on average, of the references to the original
state variable become references to the new state variable).

The second and third points are important since other designs considered
before arriving at this one, such as numbering the state equations and using
very large numbers modulo the final number of equations to reference the
state variables, would reorganize the entire system every time a new state
equation was introduced. That is, every change to the number of states would
be a major structural change across the entire system even if the new state
is not referenced anywhere in the readout or other state equations. This new
scheme allows both small, incremental changes (such as the introduction of
a new state equation by copying and later modifying in some small way an
old one) and large changes (such as part or all of the state equation set being
swapped with an entirely different set) both through the standard crossover
operation.

The type system is illustrated in table 4.5.3. The first column gives a
name to every every possible node. The second column lists the type to
which each node conforms. This determines which positions within a valid
program that node may legally occupy. The third column lists the types of
the new positions (if any) that the node opens up within a program. These
are the types that nodes appearing below this one in a program tree must
conform to.

Every program tree is rooted at a DynamicSystem node. The program is
evaluated by calling on the root node (a DynamicSystem instance) to produce
a result. It will return a state space equation set using the symbolic algebra
library described earlier in this chapter (i.e. the same implementation used
by the bond graph modelling library). The DynamicSystem node does this
by first calling on its children to produce a set of state and readout equations,
then resolving variable references using the index method described above,
and finally combining all the equations into one state space equation set
object. StateEquationSet and OutputEquationSet nodes produce their
result by calling on their first child to produce an equation and their second
child, if present, to produce a set of equations, then returning the aggregate of
both. StateEquation and OutputEquation nodes call on their own children
for the parts to build an equation compatible with the simulation code, and
so on.

116

Node Type Child types
DynamicSystem DynamicSystem StateEquationSet, OutputEquationSet

StateEquationSet StateEquationSet StateEquation, StateEquationSet
StateEquation StateEquation StateVariableLHS, Expression

OutputEquationSet OutputEquationSet OutputEquation, OutputEquationSet
OutputEquation OutputEquation OutputVariable, Expression

StateVariableLHS StateVariableLHS
StateVariableRHS Expression

OutputVariable OutputVariable
InputVariable Expression

Constant Expression
Add Expression Expression, Expression
Mul Expression Expression, Expression
Div Expression Expression, Expression
Cos Expression Expression
Sin Expression Expression

Greater Expression Expression, Expression
Lesser Expression Expression, Expression

Table 4.1: Grammar for symbolic regression on dynamic systems

117

4.5.4 A grammar for genetic programming bond graphs

This section presents a genetic programming grammar (type system) that can
be used to generate bond graph models including any constant parameters
of the elements. Used for system identification this does combined structural
and parametric identification. Genetic programs from this language are each
rooted at a Kernel node. This node embeds an ordinary bond graph model,
some elements of which have been marked as replaceable by the program. The
grammar, as given, only allows bonds and constant parameters of elements
to be replaced but could be extended to other elements or even connected
subgraphs to be replaced.

If a constant parameter of some element (for example the capacitance of
a C element) is marked as replaceable in the kernel, that creates an open-
ing for a new node conforming to the Expression type below the kernel in
the program. The Expression types are all borrowed from the symbolic
regression grammar presented in the previous section. Importantly, all of
the variable nodes have been omitted so the expressions generated here are
always constant valued.

If a bond is marked as replaceable in the kernel, that creates an opening
for a new node conforming to the bond type below the kernel in the pro-
gram. Two nodes in table 4.5.4 conform to that type. When the program
is evaluated, these nodes replace the given bond with two bonds joined by
a 0- or a 1-junction. Consequently, they create openings for two new nodes
conforming to the bond type, one conforming to either the effort-in or
the effort-out type and an unlimited number of nodes conforming to the
complementary type.

The effort-in and effort-out types apply to nodes that will insert
some number of elements joined to the rest of the graph by one bond and
having preferred causality such that the bond has causality effort-in or effort-
out from the rest of the graph. The nodes included in table 4.5.4 each insert
just one element plus the attaching bond. These considerations ensure that,
if sequential causality assignment (SCAP) applied to the kernel model would
produce an integral causality model, then SCAP will produce an integral
causality model from the output of any genetic program in the grammar as
well. If an integral causality model is desired (because, for example, only a
differential equation solver is available, not a differential-algebraic solver, and
integral causality models produce state-space models), then this is a great ef-
ficiency advantage. The grammar will not produce models incompatible with

118

the solver, constraining the genetic algorithm to not waste time generating
models that will only be discarded.

The child types column for the Kernel node is left blank since the list of
openings below the kernel is specific to the kernel and which elements have
been marked replaceable. The child types column for the Constant node is
left blank because it is a terminal node and presents no openings below itself
in a program tree.

Node Type Child types
Kernel kernel

InsertCommonEffortJunction bond bond, bond, effort-in, effort-out*
InsertCommonFlowJunction bond bond, bond, effort-in*, effort-out

AttachInertia effort-out Expression, bond
AttachCapacitor effort-in Expression, bond

AttachResistorEffortIn effort-in Expression, bond
AttachResistorEffortOut effort-out Expression, bond

Constant Expression
Add Expression Expression, Expression
Mul Expression Expression, Expression
Div Expression Expression, Expression

Table 4.2: Grammar for genetic programming bond graphs

119

Chapter 5

Results and discussion

5.1 Bond graph modelling and simulation

Included below are two simple, linear models using only standard, linear
bond graph elements and four non-linear models using modulated, complex,
and compound elements. The models are each named after a mechanical
analog. Simulations are performed using step and noise inputs or, for the
autonomous models, starting from a non-equilibrium state.

5.1.1 Simple spring-mass-damper system

Figure 5.1 shows a simple, idealized, linear spring-mass-damper system in
schematic form. The system consists of a mass, m, attached to a spring,
c, and a dashpot, r, in parallel. An equivalent bond graph model for this
system is shown in figure 5.2. The element parameters are

C = 1.96

I = 0.002

R = 0.02

Equations 5.1 to 5.10 are the collected constitutive equations from each node
in the system. The e, f , p, and q variables measure effort, flow, momentum,
and displacement on the like numbered bonds. The applied effort from the
source element is marked E.

120

ṗ3 = e3 (5.1)

q̇1 = f1 (5.2)

e1 = (q1/1.96) (5.3)

e2 = (f2 ∗ 0.02) (5.4)

e3 = (e4 + (−1.0 ∗ e1) + (−1.0 ∗ e2)) (5.5)

e4 = E (5.6)

f1 = f3 (5.7)

f2 = f3 (5.8)

f3 = (p3/0.002) (5.9)

f4 = f3 (5.10)

Equations 5.11 and 5.12 are the differential state equations and equations
5.13 to 5.20 are the readout equations for the remaining non-state variables.
Both are produced by the automated procedure described in Section 4.4.4.
There are two state variables p3 and q1. These are the energy variables of
the two storage elements (C and I). Note that variable E does not appear
on the left-hand side of any state or readout equation. It is an input to the
system.

ṗ3 = (E + (−1.0 ∗ (q1/1.96)) + (−1.0 ∗ ((p3/0.002) ∗ 0.02))) (5.11)

q̇1 = (p3/0.002) (5.12)

e1 = (q1/1.96) (5.13)

e2 = ((p3/0.002) ∗ 0.02) (5.14)

e3 = (E + (−1.0 ∗ (q1/1.96)) + (−1.0 ∗ ((p3/0.002) ∗ 0.02))) (5.15)

e4 = E (5.16)

f1 = (p3/0.002) (5.17)

f2 = (p3/0.002) (5.18)

f3 = (p3/0.002) (5.19)

f4 = (p3/0.002) (5.20)

121

The state variable values are found by numerical integration of the state
equations. The value of E at any point in simulated time is interpolated
from a prepared data file as needed. The remaining non-state and non-input
variables are evaluated across simulated time by substituting state variable
values into the right-hand side of readout equations as needed.

Figure 5.3 shows the model responding to a unit step in the applied force,
E. The displacement and flow variables of the 1–C bond are plotted. Since
the junction is a common flow (“1”) junction, all 4 bonds have the same
displacement and flow value (equations 5.7, 5.8, 5.10). f1 and q1 shown in
figure 5.3 are the speed and position of the spring, the mass, and the damper.
Predictably, the speed rises immediately as the force is applied. It crosses
zero again at each of the position extrema. The position changes smoothly,
with inflection points at the speed extrema. As the work done by the applied
force is dissipated through the damper, the system reaches a new steady
state with zero speed and a positive position offset where the spring and the
applied force reach an equilibrium.

Figure 5.4 shows the model responding to unit magnitude uniform random
noise in the applied force, E. This input signal and model response were used
for the experiments described in Section 5.3. A broad spectrum signal, such
as uniform random noise, exercises more of the dynamics of the system, which
is important for identification.

122

Figure 5.1: Schematic diagram of a simple spring-mass-damper system

C:spring

R:damper

I:mass

1

1

2

3
Se:force 4

Figure 5.2: Bond graph model of the system from figure 5.1

123

0.0 0.5 1.0 1.5 2.0
t

-10

-5

0

5

10

15

20

f1
q1

E

Figure 5.3: Response of the spring-mass-damper model from figure 5.2 to a
unit step input

0.0 0.5 1.0 1.5 2.0
t

-10

-5

0

5

10

f1
q1

E

Figure 5.4: Response of the spring-mass-damper model from figure 5.2 to a
unit magnitude uniform random noise input

124

5.1.2 Multiple spring-mass-damper system

Figure 5.5 shows, in schematic form, a series of point masses connected by
idealized, linear spring–dashpot shock absorbers. An equivalent bond graph
model for this system is given in figure 5.6. The element parameters are

C1 = C2 = C3 = 1.96

I1 = I2 = I3 = 0.002

R1 = R2 = R3 = 0.02

There are 38 constitutive equations in the model. When reduced to form,
the differential state equations are as given in equations 5.21 to 5.21.

ṗ2 = (E + (−1.0 ∗ ((((p2/0.002) + (−1.0 ∗ (p8/0.002))) ∗ 0.02)

+(q6/1.96))))

ṗ8 = (((((p2/0.002) + (−1.0 ∗ (p8/0.002))) ∗ 0.02) + (q6/1.96))

+(−1.0 ∗ ((((p8/0.002) + (−1.0 ∗ (p14/0.002))) ∗ 0.02)

+(q12/1.96))))

˙p14 = (((((p8/0.002) + (−1.0 ∗ (p14/0.002))) ∗ 0.02) + (q12/1.96))

+(−1.0 ∗ ((p14/0.002) ∗ 0.02)) + (−1.0 ∗ (q16/1.96)))

q̇6 = ((p2/0.002) + (−1.0 ∗ (p8/0.002)))

˙q12 = ((p8/0.002) + (−1.0 ∗ (p14/0.002)))

˙q16 = (p14/0.002)

Figure 5.7 shows the multiple spring-mass-damper system modelled in
figure 5.6 responding to a unit step in the applied force, E. Variables q6,
q12, and q16 are plotted, showing the displacement of the 3 springs from
their unsprung lengths. When the step input is applied, q6 rises first as it is
most directly coupled to the input, followed by q12 then q16. The system is
damped, but not critically, and so oscillates before settling at a new steady
state. Since the capacitances are identical, all springs are displaced by an
equal amount at steady state.

Figure 5.8 shows the multiple spring-mass-damper system modelled in
figure 5.6 responding to unit magnitude uniform random noise in the applied
force, E. The spring (capacitor) displacements are shown again. Here, the

125

system acts as a sort of mechanical filter. The input signal, E, is broad spec-
trum but the output signal at subsequent stages (q6, q12, q16) is increasingly
smooth.

Figure 5.5: Schematic diagram of a multiple spring-mass-damper system

Se:E 11

I:m1

C:c1

R:r1

I:m2

C:c2

R:r2

I:m3

C:c3

R:r32

0

3 1

8

09

1

14

16

15

1
6

5

1 12

11

7

4

13

10

Figure 5.6: Bond graph model of the system from figure 5.5

126

0 1 2 3 4 5
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
q6

q12

q16

E

Figure 5.7: Response of the multiple spring-mass-damper model from figure
5.6 to a unit step in the applied force, E

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0
q6

q12

q16

E

Figure 5.8: Response of the multiple spring-mass-damper model from figure
5.6 to unit magnitude uniform random noise in the applied force, E

127

5.1.3 Elastic collision with a horizontal surface

Figure 5.9 shows an elastic ball released from some height above a rigid
horizontal surface. Figure 5.10 is a bond graph model of the system using
the CC element defined in section 2.4.3. The included R element represents
viscous drag on the ball from the environment.

Parametric details of the model are as follows. The inertia, I, (mass of
the ball) is 0.002; the capacitance, C, (inverse spring constant of the ball) is
0.25; the capacitance switching threshold, r, (radius of the ball) is 1.0; the
resistance, R, (drag coefficient) is 0.001; and the effort source is a constant
-9.81 times the inertia (force of gravity on the ball).

Figure 5.11 shows the motion of centre of mass (capacitor displacement)
of the bouncing ball modelled in figure 5.10 plotted against time. The ball
is released from a position above the surface, falls, and bounces repeatedly.
Each bounce is shorter in time and displacement than the last, as energy is
dissipated through the sink element, R. The low point of each bounce is not
as low as the last since the ball strikes the surface ever more gently and is
not compressed as much.

Figure 5.9: An elastic ball bouncing off a rigid horizontal surface

128

Se (E)

1

1

I (I) R (R)

3 2

CC (C, r)

4

Figure 5.10: Bond graph using a special switched C-element to model an
elastic ball bouncing off a rigid horizontal surface

0 2 4 6 8 10
t

0

2

4

6

8

10

q
4

Figure 5.11: Response of the bouncing ball model from figure 5.10 released
above a rigid horizontal surface

129

5.1.4 Suspended planar pendulum

Figure 2.19 shows a planar pendulum in schematic form. An equivalent bond
graph model is shown in figure 5.12.

Note that the pin-joint is suspended by a parallel damper and spring
in the horizontal and vertical directions. The model in figure 5.12 avoids
differential causality by not rigidly coupling the joined end to the ground.
The joint subgraph of the bond graph model represents a pin joint with some
horizontal and vertical compliance. The spring constant of this compliance
can be made arbitrarily high, but the resulting differential equations used in
simulation will be accordingly stiff.

If not connected at the joint, the pendulum-body would enjoy 3 degrees
of freedom: horizontal and vertical translation of the centre of mass, plus ro-
tation about the centre. These are reflected in the pendulum body subgraph
of the bond graph model by 3 inertia elements, the flow variables associated
with which represent the horizontal, vertical and angular momentum of pen-
dulum body. An ideal pin joint, perfectly rigid in the horizontal and vertical
directions, would constrain the pendulum-body to have only one degree of
freedom. The horizontal and vertical position (and speed) of the pendulum-
body would be entirely dependent on its angular position (and speed). A
literal model is easily drawn up in bond graph notation by bonding constant
zero flow sources to the common flow junctions representing the horizontal
and vertical flow of the fixed end of the pendulum-body. That model has
3 storage elements (horizontal, vertical, and rotational inertias) but only 1
degree of freedom so it will necessarily show derivative causality on 2 of the
inertia elements. Exactly which two are dependent and which one is indepen-
dent will be determined by the node ordering used in causality assignment.

Three common flow (“1”) junctions track the horizontal, vertical, and
rotational speed of the pendulum body. Attached to these are activated
bonds leading to integrating signal blocks (“INT”). Integrating the horizon-
tal, vertical, and rotational flow gives the corresponding position signals. The
rotational position signal is fed into four other signal blocks (not shown) each
of which performs a scaling and trigonometric function to produce the mod-
ulating signal for one of the four modulated transformer (“MTF”) elements.
Those unseen signal blocks perform the following operations, where θ is the
output of signal block “INT1” (that is, rotational position: the integral of

130

rotational flow signal a3).

mxA = 10 ∗ cos(θ)

myA = 10 ∗ sin(θ)

mxB = −10 ∗ cos(θ)

myB = −10 ∗ sin(θ)

There are 65 other constitutive equations in the model. When reduced
to state space form, the differential state equations are:

˙na1 = (p1/10.0)

˙na2 = (p2/10.0)

˙na3 = (p4/11.0)

ṗ1 = (((−1.0 ∗ (q21/0.01)) + (−1.0 ∗ (((p1/10.0)

+((10.0 ∗ cos(na3)) ∗ (p4/11.0))) ∗ 0.8))) + 0.0)

ṗ2 = (−98.1 + ((−1.0 ∗ (q24/0.01)) + (−1.0 ∗ (((p2/10.0)

+((10.0 ∗ sin(na3)) ∗ (p4/11.0))) ∗ 0.8))) + 0.0)

ṗ4 = (((10.0 ∗ cos(na3)) ∗ ((−1.0 ∗ (q21/0.01))

+(−1.0 ∗ (((p1/10.0) + ((10.0 ∗ cos(na3)) ∗ (p4/11.0))) ∗ 0.8))))

+((10.0 ∗ sin(na3)) ∗ ((−1.0 ∗ (q24/0.01)) + (−1.0 ∗ (((p2/10.0)

+((10.0 ∗ sin(na3)) ∗ (p4/11.0))) ∗ 0.8)))) + ((−10.0 ∗ cos(na3)) ∗ 0.0)

+((−10.0 ∗ sin(na3)) ∗ 0.0) + (−1.0 ∗ ((p4/11.0) ∗ 0.5)))

˙q21 = ((p1/10.0) + ((10.0 ∗ cos(na3)) ∗ (p4/11.0)))

˙q24 = ((p2/10.0) + ((10.0 ∗ sin(na3)) ∗ (p4/11.0)))

Figure 5.13 shows the planar pendulum modelled in figure 5.12 respond-
ing to an initial displacement. The vertical displacement of the centre of
mass (int a2) and the extension of the vertical suspending spring (q24) are
plotted. The joint stiffness has been reduced to clearly illustrated the hor-
izontal and vertical compliance in the pin joint. The upper extremum of
the centre position cycle decreases over time as energy is dissipated from the
system and the pendulum swings through lesser angles. The initial impact
of the pendulum’s downward momentum being arrested by the spring causes
a low frequency vibration in the spring that can be seen in the variable lower
extremum on the pendulum centre position and spring extension near the

131

start of the plot. The more persistent cycle shows the spring extending dur-
ing the lower part of the pendulum swing and contracting to near zero at the
high points.

I:m

1

1

TINT1

a1

I:m

1

2

TINT2

a2

Se:mg

3

1

I:J

4

R:0.5

5

INT1

a3

0

6

MTF
mxA

10

0

7

MTF
myA

11

89

0

12

MTF
mxB

18

Se:FxB

13

0

14

MTF
myB

19

Se:FyB

15

1617

1

20

C:0.01

21

R:0.8

22

1

23

C:0.01

24

R:0.8

25

Figure 5.12: Bond graph model of the system from figure 2.19

132

0 20 40 60 80 100
t

-12

-10

-8

-6

-4

-2

0

int_a2

q24

Figure 5.13: Response of the pendulum model figure 5.12 released from an
initial horizontal position

5.1.5 Triple planar pendulum

Figure 5.17 shows a triple planar pendulum with damped-elastic joints in
schematic form on the left and an equivalent bond graph model using com-
pound elements on the right. There are 104 constitutive equations in the
model. When reduced to state space form, there are 24 differential state
equations (equations 5.21 to 5.21).

Figures 5.14 through 5.16 show the response of the triple planar pendu-
lum modelled in figure 5.17 after being released from an initial position with
all 3 links laid out horizontally. Figure 5.14 plots the vertical position of the
centres of mass of the 3 pendulum bodies. Figure 5.15 plots the horizon-
tal positions. Figure 5.16 plots the angular displacement of each link from
horizontal.

133

˙V phib0 = ((0.0 + (((xj0/0.001) + ((0.0 + (−1.0 ∗ (V xCb0 + (10.0 ∗ V phib0

∗sin(phib0)))))/0.001)) ∗ 10.0 ∗ sin(phib0)) + (−1.0 ∗ ((yj0/0.001)

+((0.0 + (−1.0 ∗ (V yCb0 + (−1.0 ∗ 10.0 ∗ V phib0 ∗ cos(phib0)))))

/0.001)) ∗ 10.0 ∗ cos(phib0)) + (−1.0 ∗ 0.0) + (((xj1/0.001)

+(((V xCb0 + (−1.0 ∗ 10.0 ∗ V phib0 ∗ sin(phib0))) + (−1.0

∗(V xCb1 + (10.0 ∗ V phib1 ∗ sin(phib1)))))/0.001))

∗10.0 ∗ sin(phib0)) + (−1.0 ∗ ((yj1/0.001) + (((V yCb0 + (10.0

∗V phib0 ∗ cos(phib0))) + (−1.0 ∗ (V yCb1 + (−1.0 ∗ 10.0

∗V phib1 ∗ cos(phib1)))))/0.001)) ∗ 10.0 ∗ cos(phib0)))/50.0)
˙V phib1 = ((0.0 + (((xj1/0.001) + (((V xCb0 + (−1.0 ∗ 10.0 ∗ V phib0

∗sin(phib0))) + (−1.0 ∗ (V xCb1 + (10.0 ∗ V phib1

∗sin(phib1)))))/0.001)) ∗ 10.0 ∗ sin(phib1)) + (−1.0

∗((yj1/0.001) + (((V yCb0 + (10.0 ∗ V phib0 ∗ cos(phib0)))

+(−1.0 ∗ (V yCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ cos(phib1)))))

/0.001)) ∗ 10.0 ∗ cos(phib1)) + (−1.0 ∗ 0.0) + (((xj2/0.001)

+(((V xCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ sin(phib1))) + (−1.0

∗(V xCb2 + (10.0 ∗ V phib2 ∗ sin(phib2)))))/0.001)) ∗ 10.0

∗sin(phib1)) + (−1.0 ∗ ((yj2/0.001) + (((V yCb1 + (10.0

∗V phib1 ∗ cos(phib1))) + (−1.0 ∗ (V yCb2 + (−1.0 ∗ 10.0

∗V phib2 ∗ cos(phib2)))))/0.001)) ∗ 10.0 ∗ cos(phib1)))/50.0)
˙V phib2 = ((0.0 + (((xj2/0.001) + (((V xCb1 + (−1.0 ∗ 10.0 ∗ V phib1

∗sin(phib1))) + (−1.0 ∗ (V xCb2 + (10.0 ∗ V phib2

∗sin(phib2)))))/0.001)) ∗ 10.0 ∗ sin(phib2)) + (−1.0

∗((yj2/0.001) + (((V yCb1 + (10.0 ∗ V phib1 ∗ cos(phib1)))

+(−1.0 ∗ (V yCb2 + (−1.0 ∗ 10.0 ∗ V phib2 ∗ cos(phib2)))))/0.001))

∗10.0 ∗ cos(phib2)) + (−1.0 ∗ 0.0) + (0.0 ∗ 10.0 ∗ sin(phib2))

+(−1.0 ∗ 0.0 ∗ 10.0 ∗ cos(phib2)))/50.0)

134

˙V xCb0 = ((((xj0/0.001) + ((0.0 + (−1.0 ∗ (V xCb0 + (10.0 ∗ V phib0

∗sin(phib0)))))/0.001)) + (−1.0 ∗ ((xj1/0.001)

+(((V xCb0 + (−1.0 ∗ 10.0 ∗ V phib0 ∗ sin(phib0)))

+(−1.0 ∗ (V xCb1 + (10.0 ∗ V phib1 ∗ sin(phib1)))))

/0.001))))/10.0)
˙V xCb1 = ((((xj1/0.001) + (((V xCb0 + (−1.0 ∗ 10.0 ∗ V phib0

∗sin(phib0))) + (−1.0 ∗ (V xCb1 + (10.0 ∗ V phib1

∗sin(phib1)))))/0.001)) + (−1.0 ∗ ((xj2/0.001)

+(((V xCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ sin(phib1)))

+(−1.0 ∗ (V xCb2 + (10.0 ∗ V phib2 ∗ sin(phib2)))))

/0.001))))/10.0)
˙V xCb2 = ((((xj2/0.001) + (((V xCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ sin(phib1)))

+(−1.0 ∗ (V xCb2 + (10.0 ∗ V phib2 ∗ sin(phib2)))))/0.001))

+(−1.0 ∗ 0.0))/10.0)
˙V yCb0 = ((((yj0/0.001) + ((0.0 + (−1.0 ∗ (V yCb0 + (−1.0 ∗ 10.0 ∗ V phib0

∗cos(phib0)))))/0.001)) + (−1.0 ∗ ((yj1/0.001) + (((V yCb0

+(10.0 ∗ V phib0 ∗ cos(phib0))) + (−1.0 ∗ (V yCb1 + (−1.0 ∗ 10.0

∗V phib1 ∗ cos(phib1)))))/0.001))) + (−1.0 ∗ 10.0 ∗ 9.81))/10.0)
˙V yCb1 = ((((yj1/0.001) + (((V yCb0 + (10.0 ∗ V phib0 ∗ cos(phib0)))

+(−1.0 ∗ (V yCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ cos(phib1)))))/0.001))

+(−1.0 ∗ ((yj2/0.001) + (((V yCb1 + (10.0 ∗ V phib1 ∗ cos(phib1)))

+(−1.0 ∗ (V yCb2 + (−1.0 ∗ 10.0 ∗ V phib2 ∗ cos(phib2)))))/0.001)))

+(−1.0 ∗ 10.0 ∗ 9.81))/10.0)
˙V yCb2 = ((((yj2/0.001) + (((V yCb1 + (10.0 ∗ V phib1 ∗ cos(phib1)))

+(−1.0 ∗ (V yCb2 + (−1.0 ∗ 10.0 ∗ V phib2 ∗ cos(phib2)))))/0.001))

+(−1.0 ∗ 0.0) + (−1.0 ∗ 10.0 ∗ 9.81))/10.0)

˙phib0 = V phib0

˙phib1 = V phib1

˙phib2 = V phib2

˙xCb0 = V xCb0
˙xCb1 = V xCb1
˙xCb2 = V xCb2 135

˙xj0 = (0.0 + (−1.0 ∗ (V xCb0 + (10.0 ∗ V phib0 ∗ sin(phib0)))))
˙xj1 = ((V xCb0 + (−1.0 ∗ 10.0 ∗ V phib0 ∗ sin(phib0)))

+(−1.0 ∗ (V xCb1 + (10.0 ∗ V phib1 ∗ sin(phib1)))))
˙xj2 = ((V xCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ sin(phib1)))

+(−1.0 ∗ (V xCb2 + (10.0 ∗ V phib2 ∗ sin(phib2)))))
˙yCb0 = V yCb0
˙yCb1 = V yCb1
˙yCb2 = V yCb2
˙yj0 = (0.0 + (−1.0 ∗ (V yCb0 + (−1.0 ∗ 10.0 ∗ V phib0 ∗ cos(phib0)))))
˙yj1 = ((V yCb0 + (10.0 ∗ V phib0 ∗ cos(phib0)))

+(−1.0 ∗ (V yCb1 + (−1.0 ∗ 10.0 ∗ V phib1 ∗ cos(phib1)))))
˙yj2 = ((V yCb1 + (10.0 ∗ V phib1 ∗ cos(phib1)))

+(−1.0 ∗ (V yCb2 + (−1.0 ∗ 10.0 ∗ V phib2 ∗ cos(phib2)))))

0 5 10 15 20 25 30
t

-50

-40

-30

-20

-10

0
yC_b0

yC_b1

yC_b2

Figure 5.14: Response of the triple pendulum model figure 5.17 released from
an initial horizontal arrangement – vertical displacement of pendulum body
centres

136

0 5 10 15 20 25 30

t

-40

-20

0

20

40

xC_b0

xC_b1

xC_b2

Figure 5.15: Response of the triple pendulum model figure 5.17 released
from an initial horizontal arrangement – horizontal displacement of pendulum
body centres

0 5 10 15 20 25 30
t

-4

-3

-2

-1

0

phi_b0

phi_b1

phi_b2

Figure 5.16: Response of the triple pendulum model figure 5.17 released from
an initial horizontal position – angular position of pendulum bodies

137

Link 1

Joint 1

Link 2

Joint 2

Link 3

Joint 3

 e/f
 (x)

 e/f
 (y)

 e/f
 (x)

 e/f
 (y)

 e/f
 (x)

 e/f
 (y)

 e/f
 (x)

 e/f
 (y)

 e/f
 (x)

 e/f
 (y)

Figure 5.17: Schematic diagram and compound element bond graph model
of a triple planar pendulum

138

5.1.6 Linked elastic collisions

Figure 5.18 shows a rigid bar with damped-elastic bumpers at each end in
schematic form. The system consists of a rigid link element, L, as used above
in 5.1.4 representing the bar; two switched capacitor elements, CCa, CCb
representing elastic collision between the tips and a rigid horizontal surface;
unswitched vertical damping at each end and on rotation (not shown in the
schematic) representing drag on the bar as it tumbles. An equivalent bond
graph model for this system is shown in figure 5.19.

Figure 5.20 shows the bar-with-bumpers modelled in figure 5.19 released
above a rigid horizontal surface. inta2 is the vertical displacement of the
centre of mass above the horizontal surface. inta3 is the angular displacement
of the bar from vertical. q21 and q24 are the vertical displacements of the
two end points above the surface. The bar is released level to the horizontal
surface so inta2, q21, and q24 (height of the centre, left tip, and right tip)
are coincident and inta3 (angular displacement) is steady at π/2 before the
bar tips strike the ground at height 1, equal to the unsprung length, q, of
the contact compliances. The contact compliance on one side has twice the
capacitance (half the stiffness) of the other so it compresses further on impact
then bounces higher as the bar rotates in the air.

Figure 5.18: Schematic diagram of a rigid bar with contact compliance and
viscous drag at each end

139

I:m

1

1

TINT1

a1

I:m

1

2

TINT2

a2

Se:mg

3

1

I:J

4

R:0.5

5

INT1

a3

0

6

MTF
mxA

11

Se:FxA=0

7

0

8

MTF
myA

12

910

0

13

MTF
mxB

18

Se:FxB=0

14

0

15

MTF
myB

19

1617

1

20

CC:0.01

21

R:0.8

22

1

23

CC:0.005

24

R:0.8

25

Figure 5.19: Bond graph model of the system from figure 5.18

0 2 4 6 8 10
t

0

1

2

3

4

5
int_a2

int_a3

q21

q24

Figure 5.20: Response of the bar-with-bumpers model from figure 5.19 re-
leased above a rigid horizontal surface

140

5.2 Symbolic regression of a static function

As an early proof of the genetic programming software a static function
approximation problem was solved by symbolic regression and some obser-
vations of the system performance were made. The genetic programming
system at that time was mono-typed with a special division operator to pro-
tect against divide-by-zero errors. Four aspects of the genetic programming
system performance were measured.

1. Population fitness (summarized as minimum, mean, and maximum pro-
gram fitness each generation)

2. Population diversity (the number of structurally unique programs in
each generation)

3. Program age (the number of generations that each program had been
present in the population)

4. Program size (summarized as minimum, mean, and maximum number
of nodes in a program)

The particular symbolic regression problem chosen consisted of 100 samples
of the function x2 + 2 at integer values of x between −50 and +50. The
fitness evaluation consisted of finding the total absolute error between the
candidate and the target samples and normalizing that value onto the interval
(0, 1] where a perfect candidate with zero error was awarded a fitness of 1.
Exceptionally, where the candidate was found to perform division by zero or
to return the special value NaN (“not a number”) a fitness value of zero was
awarded. Over 50 genetic programming runs were performed, all with the
nominal crossover probability set at 0.8, the mutation probability set at 0.2,
and the number of generations limited to 500 but with a variety of population
sizes.

5.2.1 Population dynamics

Plots of the four measured aspects of genetic programming run performance
are shown for two particularly interesting runs (run “A” and run “B”) in
figures 5.21 to 5.28. For both runs the population size was fixed at 500
individuals.

141

The fitness plot for run “A” shows a very typical slow initial progress
and low initial fitness. Given that the number of programs that could be
randomly generated even within the size limits placed on members of the
initial random population, it would be very rare indeed for a sizable number
or even one individual to have a fitness value that is not very low. The initial
best, mean and worst fitness values in both runs are all extremely low. The
other characteristic of run “A” fitness that is very typical is the long initial
stretch of slow progress. Runs “A” and “B” similarly take tens of generations
for the best of generation fitness to exceed 0.1.

The mean fitness trend in run “A” can be seen on close inspection to make
its first break from the “floor” near generation 20. At this same generation
the beginning of a sharp decline in population diversity can be seen. From
this, one can conclude that around generation 20 a new individual appeared
with significantly greater than average fitness and quickly came to dominate
the population. In run “A” the mean program size begins to decrease at
generation 20 and reaches a minimum around generation 30 corresponding to
the population diversity minimum for this run. From this, one can infer that
the newly dominant individual was of less than average size when introduced.
By generation 30 there were less than 40 unique program structures in a
population of 500. As there came to be more and more individuals of the
dominant (and smaller than average) type, the mean program size necessarily
decreased as well. When the population diversity later rose, many of these
newly introduced program structures must have been larger than the recently
dominant one since the mean program size also increased.

Figure 5.24 (“Program age in run A”) has been marked to indicate the
generation in which the oldest ever individual for that run was created, near
generation 25. The oldest (maximum age), most fit (maximum fitness), and
largest (maximum size) individuals are of course not necessarily or even likely
the same program.

Run “B” experiences an even more severe loss of diversity falling to just
20 unique program structures in its 100th generation. The sharp decrease in
population diversity between generations 50 and 100 corresponds exactly to
the sharp increase in mean program fitness over the same interval. At the
end of that time, the mean program fitness has risen to almost match that
of the most fit program where it stays for over 300 generations. The sudden
rise in mean fitness and decline in diversity is a dramatic example of one
extremely successful design overwhelming all others. The entirely flat fitness
trend for the ensuing 300 generations is an equally dramatic example of the

142

adverse effects of low population diversity on genetic programming search
progress. In effect the inherent parallelism of the method has been reduced.
Although this is not the same as reducing the population size since multiple
concurrent crossovers with identical parents are still likely to produce varied
offspring due to the random choice of crossover points, it has a similar effect.
During this 300 generation “slump” the mean program age rises steadily with
an almost perfectly linear slope of just less than unity indicating that there
is some, but very little population turnover. The algorithm is exploiting one
program structure and small variations in the neighbourhood that differs
only by leaf node values. There is very little exploration of new program
structures happening.

It was often observed that crises in one of the measured aspects of genetic
programming were accompanied by sudden changes in other aspects. In
general not much can be inferred about one aspect by observing the others
with the possible exceptions of inferring the arrival of an individual with
dramatically higher than average fitness from sudden decreases in population
diversity or changes in mean program size. In both cases it is the dominance
of the new program structure in the population that is being observed and
this inference would not be possible if the genetic programming system took
active measures to ensure population diversity.

Note also that although the peak program size is sometimes recorded
in excess of the declared ceiling of 100 nodes, this is simple an artifact of
the order in which fitness evaluation and statistics logging were performed
each generation. Individuals of excessive size were recorded at the point
of fitness evaluation were barred from participating in crossover, mutation,
or reproduction due to their zero fitness score and so could not enter the
population of the following generation.

5.2.2 Algebraic reductions

The non-parsimonious tendencies of typical genetic programming output is
well known and often commented on. A successful result, however, is al-
ways functionally equivalent in some testable ways to the target or goal.
Specifically, it excels at the particular fitness test in use. Sometimes there
are structural equivalences that can be exploited to produce a simplified or
reduced representation which is nonetheless entirely equivalent to the orig-
inal in a functional sense. In symbolic regression the exploitable structural
equivalences are simply the rules of algebra. Even a very small set of alge-

143

Figure 5.21: Fitness in run A – progress slow initially and while size limiting
in effect

Figure 5.22: Diversity in run A – early crisis is reflected in size and age trends

144

Figure 5.23: Program size in run A – mean size approaches ceiling (100
nodes)

Figure 5.24: Program age in run A – bold line extrapolates birth of oldest
program

145

Figure 5.25: Fitness of run B – progress stalled by population convergence

Figure 5.26: Diversity of run B – early loss of diversity causing stalled
progress

146

Figure 5.27: Program size in run B – early domination by smaller than
average schema

Figure 5.28: Program age in run B – low population turnover mid-run be-
tween crisis

147

braic reduction rules capable of producing reduced results which are in many
cases vastly more legible. The algebraic reduction rules implemented at the
time these experiments were performed are listed below in s-expression form
(LISP prefix notation).

(- x x) replaced by (0)

(- x 0) replaced by (x)

(+ x 0) replaced by (x)

(+ 0 x) replaced by (x)

(/ x x) replaced by (1)

(/ 0 x) replaced by (0) for all x.

All of these reductions operate on a single function node and its children.
Only two properties of the children are checked: first is either child a constant
value node and equal to zero or one, and second, are the children equal to
each other.

One other type of simplification was performed as well. Any subtree con-
taining only function nodes and constant value terminal nodes was replaced
by a single constant value node. The value of this new node is found by eval-
uating the subtree at an arbitrary value of the independent variable. This
“trick” alone is responsible for many reductions that are more dramatic than
those produced by all the other rules listed above.

It is not at all clear by inspecting the raw expression in figure 5.29, a best
approximation that successfully terminated one run after 41 generations,
that it approximates x2 + 2. The raw expression is simply too large, and
contains misleading operations (trigonometry and division). However, the
reduced expression in figure 5.30 is very obviously a good approximation to
the target expression. All of these gains in clarity are had by recognizing
that the entire right branch of the root Add node is a constant expression
containing no variables. It evaluates to very nearly 2.

148

Figure 5.29: A best approximation of x2 + 2.0 after 41 generations

149

Figure 5.30: The reduced expression

150

5.3 Exploring genetic neighbourhoods by per-

turbation of an ideal

The symbolic regression for dynamic systems genetic programming grammar
presented in section 4.5.3 is here evaluated by sampling the neighbourhood
of a manually constructed “ideal” program. The ideal is constructed so as
to have exactly the same differential state update equations and one of the
output equations of the model described in Section 5.1.1. The neighbourhood
of this ideal is sampled by repeatedly applying the mutation operator to fresh
copies of the ideal. This generates a large number of new genetic programs
that are “near” to the ideal (they differ by only the subtree rooted at the
mutation point). All of the generated programs are fitness tested against the
response of the ideal to a uniform random noise input, as shown in figure 5.4.

To quantify nearness, a metric for pairwise distance between tree struc-
tures is defined. In this metric, distance is equal to the size (number of nodes)
of the subtree rooted at the first node that does not match in a breadth-first
traversal of both trees. Since the corresponding subtrees in the original and
the mutant differ, the size of the largest subtree is used. This metric is sym-
metric (the distance between two trees is independent of the order they are
given in). Under this metric identical trees have a distance of 0, trees that
differ by only one leaf node have a distance of 1, and so on. This is a form
of “edit distance”. It is the number of nodes that would have to be added,
deleted, or replaced to transform one program into the other.

Figure 5.32 shows the “hand crafted” ideal symbolic regression tree. Table
5.3 shows the mean fitness of programs by distance and the total number of
programs found at that distance within the sample. Figure 5.31 plots mean
fitness versus tree-distance from the ideal. Distances at which fewer than 10
programs were found are omitted.

The point of these results is that the representation in question produces
a fitness landscape that rises on approaching the ideal. If edit distance as
defined above is taken as an estimate of the amount of work the genetic
algorithm will have to do to reach the ideal starting from the mutant, then
these results suggest the given representation will be well-behaved in genetic
programming experiments. If instead the fitness landscape had fallen off
approaching the ideal, the representation would be called “deceptive”. The
heuristic by which genetic algorithms operate (“good” solutions have good
parts and “goodness” is measured by the fitness test) would be misled in

151

Distance Mean fitness Count
1.0 0.000469 2212.0
3.0 0.000282 503.0
5.0 0.000346 66.0
7.0 0.000363 36.0
9.0 0.000231 25.0
11.0 0.000164 16.0
13.0 0.000143 10.0
15.0 0.000071 10.0
17.0 0.000102 9.0
19.0 0.000221 1.0
23.0 0.0 2.0
25.0 0.0 2.0
27.0 0.0 1.0
29.0 0.000286 5.0
35.0 0.0 1.0
51.0 0.000715 1.0

Table 5.1: A sampling of the neighbourhood of a “hand crafted” dynamic
system symbolic regression tree that outputs equations 5.1, 5.2, and 5.7

152

that case. Another pathologically difficult problem for genetic programming
would be one in which the fitness landscape is entirely flat and low at all
points not exactly coincident with the ideal. In such cases fitness-guided
search such as genetic programming can do no better than a random search.

0 2 4 6 8 10 12 14 16 18

Distance

0

1

2

3

4

5
x1e-4

Figure 5.31: Mean fitness versus tree-distance from the ideal. Bars show
standard error. Series truncated at first point with only one sample.

5.4 Discussion

5.4.1 On bond graphs

Bond graphs are a good choice of modelling language for several reasons. In
short, bond graphs encode structure in physically meaningful and computa-
tionally useful ways. Bond graphs are a modular modelling language in which
a subsystem, once modelled, can be reused elsewhere. Every element in the
basic bond graph modelling language models a single physical phenomena.
These can be interconnected freely but the language provides qualitative
insight into the physical consequences of some modelling decisions. These
insights come from the available model reductions (a sort of algebra for bond
graphs) and from the augmented bond graph in which a causal direction

153

DynamicSystem

StateEquationSet OutputEquation

StateEquation StateEquationSet

StateVariableLHS Div

StateVariableRHS Constant

StateEquation

StateVariableLHS Add

Add Mul

InputVariable Mul

Constant Div

StateVariableRHS Constant

Constant Mul

Div Constant

StateVariableRHS Constant

OutputVariable Div

StateVariableRHS Constant

Figure 5.32: The hand crafted “ideal” symbolic regression tree

154

has been assigned to every bond. These qualitative insights may be helpful
during an interactive or iterative grey-box system identification exercise.

Model reductions generate alternate, behaviourally equivalent but struc-
turally simplified models. This may highlight areas where multiple parts in
a model have been used to represent one physical part in the system. Model
reductions are also computationally valuable when using bond graphs with
genetic programming since the reduced model will have fewer equations. The
algebraic manipulations required between generating the bond graph model
and solving the equations numerically are more complex than the bond graph
reductions so it is best to simplify as early as possible. A smaller set of equa-
tions will also be quicker to evaluate numerically (provided it is no more stiff
than the original system) simply because the right-hand side of the state
equations will be shorter and faster to evaluate at each point along the inte-
gration.

Causality assignment produces an augmented bond graph from which it
is simple to tell whether a state-space formulation of the model equations
will be possible. If not, then the model is over specified and has fewer state
variables than discrete energy storing elements. Some storage elements are
dependent on others and the reason (inertias with common flow, capacitors
with common effort, etc.) can often be linked to physically intuitive notions
about the system under test and the way it is abstracted into the model.

As a corollary to the fact that bond graph models encode structure in
physically meaningful ways, bond graphs present a smaller search space for
genetic algorithms (or any other search technique) to explore than do some
other representations. There is always a physical interpretation for any bond
graph in a choice of domain (electrical, solid body mechanical, hydraulic).
The interpretation may not be realizable in size or scale, but it exists. There
are signal flow graphs and sets of differential equations, to give two examples,
for which no physical interpretation exists in a given domain. A signal-flow
graph and a set of differential equations can each be extracted from any bond
graph model (the former simply by splitting each bond into an effort signal
and a flow signal) but the reverse is not true. In both transformations some
information about the physical structure is lost.

Finally, bond graphs are an attractive modelling language because they
scale smoothly from simple linear systems, where additional automated trans-
formations are possible and for which a great body of analysis exists, to
complex nonlinear and even non-analytic (numerical or computational only)
models without losing any of the above advantages. A model can start out

155

small, simple, and linear but grow large, complex, and non-linear over the
course of some experiments without ever having to stop and recode the model
in a new language.

Bond graphs have distinct disadvantages, however, all of which come
down to being the wrong sort of abstraction for some applications. As men-
tioned in the introduction to this thesis, there are no perfect models. All
models are abstractions that trade off fidelity for simplicity. The art of mod-
elling is to decide or discover which aspects of the system are important to
the exercise and so must be included in a model, and which aspects are not
important and can be dropped for simplicity. A modelling language that
presents abstractions at just the right level of detail can help this task along.
Bond graphs present abstractions (elements and bond) with more physical
detail than a signal-flow graph or a set of differential equations but with
less detail than, for example a free body diagram for solid-body mechanics
applications.

A modelling language which is too abstract will be inconveniently dis-
tracting both to human experimenters and to search algorithms such as ge-
netic programming. Planar and 3-D solid body mechanics applications are
one area where bond graphs can be faulted in this regard.

Fundamental to the bond graph modelling paradigm is the requirement
for power bond variables to be given in compatible units. For mechanics
applications they must also either be given with respect to one global frame
of reference or complicated subgraphs must be introduced for coordinate
transformation purposes. Although libraries of such joint transformations
have been published, the result of this technique is that parts of a model
do not represent power transfer within the system but rather happen to
produce the correct equations to transform coordinates between adjacent
parts of the model. These inconvenient work-arounds for limitations of the
modelling language can be distracting. All models presented in this thesis use
a single, global frame of reference which precludes, for example, modelling
body-aligned compliance in the triple-pendulum pin joints.

The highly abstract representations presented by the bond graph mod-
elling language can also be “distracting” to a search algorithm such as genetic
programming and lower its efficiency by allowing many models that are valid
within the language but physically senseless with respect to a particular ap-
plication. Consider the rigid link with connection points at either end used
in the single and triple pendulum models and in the linked elastic collisions
model. If this subgraph were presented to the genetic programming system

156

as part of a larger model, there is every chance that the algorithm would at
some point generate models containing internal modifications that destroyed
the symmetry of that subgraph in a way physically senseless in terms of rigid
bodies. The rate at which such valid-but-unhelpful models are generated will
be in direct proportion to the ratio of the size of the rigid body sub-model
to the whole model within the genetic program.

Encapsulating the rigid-link sub-model as was done for the triple pen-
dulum model alleviates these problems at the cost of effectively inventing a
new and very specialized modelling language. In order to be reusable, the
rigid link sub-model includes three state variables. This leads directly to the
need for “suspended” pin joints in the pendulum models to avoid differential
causality and the need for a differential-algebraic solver. A modelling lan-
guage wholly dedicated to rigid body mechanical applications would have the
context on hand to be able to insert a single degree of freedom model where
appropriate. It would also be much less abstract and therefore also much less
widely applicable (for example to electrical or hydraulic applications) than
are bond graphs.

5.4.2 On genetic programming

Genetic programming has several desirable properties as a search algorithm
to be used for system identification. Overall, genetic programming requires
very little problem-specific information in order to begin but it also provides
two mechanisms by which any additional information about the problem can
be taken advantage of. The basic requirements for the application of genetic
programming to system identification are a generative grammar for models
and a fitness test. Additional problem-specific insight can be provided either
within the fitness test (to reject undesirable models) or in the form of a
more restrictive grammar (to reduce the size of the search space, which is
preferable). Some modelling languages make it easier to specify restrictive
genetic grammars than do others because of the way each encodes physical
structure.

The use of indirection through a genetic grammar means that the exact
structure of need not be pre-specified. This allows genetic programming to
perform simultaneous structure and parameter identification. It also allows
the structure to grow or shrink in the course of identification. Many other
modelling and identification schemes require that the model size be specified
ahead of time (for example, the number of layers and nodes per layer must

157

be chosen for a neural network).
In contrast to some other bio-mimetic search algorithms such as swarm

and ant colony algorithms, and the venerable simplex algorithm, genetic
programming solutions need not exist within a metric space. Some concept of
distance between genetic programs may be useful in evaluating a particular
genetic representation or genetic programming implementation, but one is
not required.

A grey-box system identification is easily implemented by seeding the ini-
tial genetic population with instances of a model encoding any prior knowl-
edge or by providing this model as input to each genetic program when it is
evaluated by the fitness function. In fact the algorithm can be interrupted
and subjected to this kind of external “help” at any point. Genetic pro-
gramming is extensible in many ways. It is easily hybridized with other
search techniques such as parametric hill climbing or simulated annealing
by introducing new operators that are applied either occasionally or before
every fitness evaluation and by varying the choice of operators over time.
The latter choice (applying some new optimizing operator before each fitness
evaluation) is a sort of search within a search algorithm. A simulated an-
nealing with genetic programming hybrid is made by varying the likelihood
of choosing each genetic operator over the course of a run according to some
schedule.

Genetic programming is easily parallelizable for distribution across a lo-
cal or wide area network in one of several ways. One particular scheme
(island model) has been attributed in the literature with performance gains
that are super-linear in the degree of parallelism. It is fortunate that these
parallelization options are available since genetic algorithms are notoriously
computationally expensive.

Computational expense is chief among the detractions of genetic program-
ing but not the only one. Because they use so little problem-specific knowl-
edge, genetic algorithms may be needlessly inefficient when such knowledge
is available, unless it can be used to reduce the search space by refining the
structural grammar. This has, in effect, been stated already in this section
but it is worth repeating while underlining that it may not always be a simple
matter to encode knowledge of the system under test in a suitably restrictive
genetic grammar. Encoding this knowledge in the fitness test is easier (sim-
ply assign arbitrarily low fitness to models that do not meet expectations)
but much less efficient since these rejected genetic programs are produced,
stored in the population, and evaluated at some expense in processing time

158

and memory.
Finally, some problems are deceptively hard, and genetic algorithms offer

no help in identifying them. Genetic algorithms can be envisioned as ex-
ploring a “fitness landscape” and seeking a global maximum thereon. The
fitness landscape of deceptive problems provide no, or negative, feedback
about proximity to the global optimum. They may also use a genetic repre-
sentation in which the crossover and mutation operators are often destructive,
cutting through and breaking apart useful sub-models. The argument that
bond graphs are too abstract for some rigid body mechanics applications
is an example. Since genetic algorithms, including tree-structured genetic
programming, offer no special feedback or guidance when a hard problem
is encountered, and since empirical studies of genetic programming are so
expensive in computer time, it can be difficult to predict in which situations
genetic programming will bear fruit.

159

Chapter 6

Summary and conclusions

Black-box identification of general non-linear dynamic systems with any num-
ber of inputs and outputs is a hard problem. It is the most general and
encompassing class of problems in system identification. The project behind
this thesis set out, over-ambitiously without question, to create a software
tool that would address this most general class of identification problems in
a very flexible way. The aim was to create a system that would allow an ex-
perimenter to insert as much or as little information as was available about
the system under test before or during an identification, to allow this infor-
mation to be specified in a way that is natural to the task, and to have the
algorithm make good use of it. Additionally, it was desired that the resulting
model should be in a form that is “natural” to the experimenter. Questions
of efficient identification were deliberately set aside even from the beginning
with one exception: all structural identification problems are at heart search
problems within a space defined by the modelling language. These spaces
can be very large, infinite if the model size is not bounded, so the most im-
portant step that can be taken towards an efficient structural identification
algorithm is to provide an easy mechanism by which an experimenter can
limit the solution space by adding any information they may have about the
system.

Bond graphs are a flexible and “natural” modelling language for many
applications and genetic programming is a general purpose heuristic search
algorithm that is flexible in useful ways. The work leading up to this thesis
produced software tools for modelling with bond graphs, a strongly typed
genetic programming implementation, and genetic programming grammars
that define search spaces for linear and non-linear bond graph models and

160

symbolic regression of differential equations in state-space form. The bond
graph modelling implementation is demonstrated with several simulations of
multi-body mechanical systems. The genetic programming implementation
is checked by applying it to symbolic regression of a static function. The
neighbourhood of a manually constructed “ideal” genetic program modelling
a particular dynamic system is examined to show that the fitness landscape
is shaped in a way that will drive the genetic algorithm towards the given
ideal.

6.1 Extensions and future work

6.1.1 Additional experiments

It should be very clear that many of the original goals of this project (de-
sign of a flexible software system for black- and grey-box identification of
non-linear dynamic systems) were not met. It is expected, for example, that
bond graphs are a much more efficient representation for use with genetic
programming in identifying dynamic system models than is direct symbolic
regression of differential equations. This remains untested. A suitable exper-
iment would involve many genetic programming runs with each representa-
tion on one or more identification problems. Population size times average
number of generations until a solution is found would be a suitable metric
for comparison. This metric is the average number of fitness evaluations
performed in the course of the search. Since fitness evaluation (involving
simulation and comparison of simulation results to stored signals) is by far
the most computationally intensive aspect of the search, this is a good and
easily calculated measure of the total amount of computer time required.

It would be interesting to repeat the genetic neighbourhood explorations
with the genetic programming grammar for bond graphs. For comparison,
the ideal should be designed such that its constitutive equations, when ex-
tracted and reduced to state space form, are identical to the equation set
produced by the symbolic regression ideal.

There should be no great difference in run time for the fitness evaluation
of bond graph models and symbolic regression programs that address the
same identification problem. If some method were available to automatically
create a genetic program of each type that produced identical behaviour (one
is suggested in the next section) then this could also be tested with a much

161

larger (and better randomized) sample size than could reasonably be created
by hand.

Parametric identification with bond graphs by symbolic regression of con-
stant valued expressions for element parameters is expected to be faster than
black box identification of the entire structure and parameter set. It is not
expected to be less computationally intensive than conventional direct meth-
ods (such as linear least squares) when they are available. Also, the perfor-
mance of parametric identification by symbolic regression is independent of
the representation chosen for the unchanging structure, be it bond graph,
(unchanging) symbolic regression tree, or anything else.

Starting from the accomplished static function approximation results, a
good course would be to attempt:

1. Parametric identification of a linear dynamic system by symbolic re-
gression

2. Structural and parametric identification of a linear dynamic system
using bond graphs

3. Parametric identification of a non-linear dynamic system using bond
graphs.

4. Structural and parametric identification of a non-linear dynamic system
using bond graphs.

At each stage the simplest imaginable system should be attempted first: a
spring-mass system before a spring-mass-damper system before a multi-body
spring-mass-damper system. For a simple non-linear system, the “bouncing
ball” example would be interesting or a non-linear (e.g. progressive stiffen-
ing) spring could be modelled. In the first case the two parameters of the
CC element need to be discovered by the algorithm. In the later case the
spring curve, that is the effort-displacement relation for the non-linear C el-
ement, would need to be discovered (by symbolic regression even though the
remainder of the model is a bond graph).

If they were to find any more use as a modelling tool in their own right,
outside of the system identification tasks that were the goal of this project,
then the bond graph library would benefit from verification against one or
more established modelling tools; either a bond graph modelling application
such as 20sim or domain specific tools such as Spice and Adams.

162

6.1.2 Software improvements

To make the tools more widely interoperable, the “.bg” file format for bond
graph model storage should be replaced with a file format known to and in
use by other software. GraphML, an XML schema for exchanging graphs of
all types, may be a good choice.

To facilitate grey-box identification experiments, a routine could be writ-
ten which produces a minimal program from any phenotypic expression. For
example, given an equation set, return a symbolic regression program that
would generate it or, given a bond graph model, return a program that would
generate it from the empty kernel. This would be a useful tool for boot-
strapping experiments from existing models. Presently, such initial genetic
programs must be formulated manually.

The software written in the course of producing this thesis contains in-
complete implementations of schedulers and network protocols for both island
model distributed genetic programming and centralized genetic programming
with distributed fitness evaluation. If large problems are tackled, one of these
(or equivalent parallel processing capabilities) will be needed.

Differential-algebraic equation solvers (DAE solvers) are available. The
numerical simulation code could be extended to use one when reduction to
state-space form fails on mixed-causality bond graph models.

Several possible software optimizations were noted during development
but not implemented. Fitness evaluations could be cached or memoized
such that duplicate genetic programs appearing in the population do not
incur duplicate work by the fitness test (easily the most expensive part of
the process in system identification applications). Memoization is a classic
time/space computing trade-off. Execution time is reduced at the cost of
storing past results. To limit the total cost, not all cached results are kept,
or they are not kept indefinitely. The implementation can be as simple as a
finite table sorted in least-recently-used order and mapping genetic programs
(or some short, unique key derived from them) to cached results.

Most tree methods in the software are implemented recursively. Exam-
ples of trees include algebraic expressions, equations, and equation sets and
genetic programs. Methods on these trees include evaluating an algebraic
expression or a genetic program, listing all the variables contained in an al-
gebraic expression, and so on. These methods are implemented such that the
root node invokes the like-named method on the nodes below it aggregating
their results in some way as they do to the nodes below them. The stan-

163

dard Python interpreter (called cPython when it is necessary to distinguish
it from alternates) is implemented in C and uses the underlying stack to store
context frames each time a new method is invoked. While the software is
processing very large tree structures, the Python interpreter will use quite
a bit of memory, to the detriment of other processes. This is exacerbated
by the Python interpreter being not especially aggressive about returning
previously allocated but currently unused memory to the operating system.
It is always possible to rewrite a recursive algorithm in an iterative form,
though the expression may not be as clear or concise. This could be done in
many areas of the software if memory use becomes an issue during larger ex-
periments. If the trees become so large as to overflow the stack, the software
could also be run on top of Stackless Python [77], a python interpreter that
does not use the underlying C stack to store context frames.

164

Bibliography

[1] Netlib repository at UTK and ORNL. http://www.netlib.org/.

[2] Dynasim AB. Dymola, dynamic modeling laboratory. http://www.

dynasim.se/dymola.htm, 2006.

[3] Paul-Michael Agapow. Information criteria. http://www.agapow.net/
science/maths/info criteria.html, 2003.

[4] R. R. Allen. Multiport models for the kinematic and dynamic analysis
of gear power transmiffions. Transactions of the ASME, 101:258–267,
April 1979.

[5] B. Bamieh and L. Giarré. Identification of linear parameter varying mod-
els. International Journal of Robust and Nonlinear Control, 12(9):841–
853, 2002.

[6] J.S. Bendat. Nonlinear Systems Techniques and Applications. Wiley
Interscience, New York, NY, 2002.

[7] P. Bendotti and B. Bodenheimer. Linear parameter-varying versus linear
time-invariant control design for a pressurized water reactor. Interna-
tional Journal of Robust and Nonlinear Control, 9(13):969–995, 1999.

[8] S. H. Birkett and P. H. Roe. The mathematical foundations of bond
graphs-i. algebraic theory. Journal of the Franklin Institute, (326):329–
250, 1989.

[9] S. H. Birkett and P. H. Roe. The mathematical foundations of bond
graphs-ii. duality. Journal of the Franklin Institute, (326):691–708, 1989.

165

http://www.netlib.org/
http://www.dynasim.se/dymola.htm
http://www.dynasim.se/dymola.htm
http://www.agapow.net/science/maths/info_criteria.html
http://www.agapow.net/science/maths/info_criteria.html

[10] S. H. Birkett and P. H. Roe. The mathematical foundations of bond
graphs-iii. matroid theory. Journal of the Franklin Institute, (327):87–
108, 1990.

[11] S. H. Birkett and P. H. Roe. The mathematical foundations of bond
graphs-iv. matrix representation and causality. Journal of the Franklin
Institute, (327):109–128, 1990.

[12] B. Bodenheimer, P. Bendotti, and M. Kantner. Linear parameter-
varying control of a ducted fan engine. International Journal of Robust
and Nonlinear Control, 6(9-10):1023–1044, 1996.

[13] S. Boyd and L. O. Chua. Fading memory and the problem of approxi-
mating nonlinear operators with volterra series. IEEE Transactions on
Circuits and Systems, pages 1150–1171, 1985.

[14] Elizabeth Bradley, Matthew Easley, and Reinhard Stolle. Reasoning
about nonlinear system identification. Artificial Intelligence, 133(1-
2):139–188, 2001.

[15] P.J. Costa Branco and J.A. Dente. A fuzzy relational identification
algorithm and its application to predict the behaviour of a motor drive
system. Fuzzy Sets and Systems, pages 343–354, 2000.

[16] F.E. Cellier, M. Otter, and H. Elmqvist. Bond graph modeling of vari-
able structure systems. Proc. ICBGM’95, 2nd SCS Intl. Conf. on Bond
Graph Modeling and Simulation, pages 49–55, 1995.

[17] Ali Çinar. Nonlinear time series models for multivariable dynamic pro-
cesses. InCINC’94 – The first International Chemometrics InterNet
Conference, session on chemometrics in dynamic systems, 1994.

[18] Nichael Lynn Cramer. A representation for the adaptive generation of
simple sequential programs. In Proceedings of the First International
Conference on Genetic Algorithms and their Applications, pages 183–
187, Pittsburgh USA, July 24-26 1985. Carnegie Mellon University.

[19] Vjekoslav Damić and John Montgomery. Mechatronics by bond graphs:
an object-oriented approach to modelling and simulation. Springer-
Verlag, Berlin Heidelberg, 2003.

166

[20] B. Danielson, J. Foster, and D. Frincke. Gabsys: Using genetic algo-
rithms to breed a combustion engine. IEEE International Conference
on Evolutionary Computation, 1998.

[21] Darxus. Springgraph. http://www.chaosreigns.com/code/

springgraph/, 2002.

[22] K. De Jong. On using genetic algorithms to search program spaces.
In Proceedings of the Second International Conference on Genetic Algo-
rithms, pages 210–216, Cambridge, MA, July 28-31 1987.

[23] S. Dzeroski and L. Todorovski. Discovering dynamics. Proc. Tenth
International Conference on Machine Learning, pages 97–103, 1993.

[24] S. Dzeroski and L. Todorovski. Discovering dynamics: from inductive
logic programming to machine discovery. Journal of Intelligent Infor-
mation Systems, 4:89–108, 1993.

[25] John Ellson et al. Graphviz - graph visualization software. http://

www.graphviz.org/.

[26] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence Though Sim-
ulated Evolution. John Wiley and Sons, New York, USA, 1966.

[27] Richard Forsyth. Beagle - a darwinian approach to pattern recognition.
Kybernetes, 10:159–166, 1981.

[28] Peter Gawthrop and Lorcan Smith. Metamodelling: Bond Graphs and
Dynamic Systems. Prentice-Hall Inc., 1996.

[29] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison Wesley, 1989.

[30] E. D. Goodman, K. Seo, Z. Fan, J. Hu, and R. C. Rosenberg. Auto-
mated design of mechatronic systems: Novel search methods and mod-
ular primitives to enable real world applications. 2003 NSF Design,
Service and Manufacturing Grantees and Research Conference, 1994.

[31] Erik Goodman. Galopps 3.2.4 - the “genetic algorithm optimized for
portability and parallelism system”. http://garage.cse.msu.edu/

software/galopps/, August 25 2002.

167

http://www.chaosreigns.com/code/springgraph/
http://www.chaosreigns.com/code/springgraph/
http://www.graphviz.org/
http://www.graphviz.org/
http://garage.cse.msu.edu/software/galopps/
http://garage.cse.msu.edu/software/galopps/

[32] Alan C. Hindmarsh. Odepack, a systematized collection of ode solvers.
pages 55–64, North-Holland, Amsterdam, August 1983. MIT Press.

[33] S. Hofmann, T. Treichl, and D. Schroder. Identification and observation
of mechatronic systems including multidimensional nonlinear dynamic
functions. 7th International Workshop on Advanced Motion Control,
pages 285–290, 2002.

[34] John Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[35] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks 2, pages 359–366,
1989.

[36] John Hunter. Pylab (matplotlib): a python 2d plotting library. http:

//matplotlib.sourceforge.net/, 2003.

[37] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open source
scientific tools for python. http://www.scipy.org/, 2001.

[38] A. Juditsky, H. Hjalmärsson, A. Benveniste, B. Delyon, L. Ljung,
J. Sjöberg, and Q. Zhang. Nonlinear black-box modelling in system
identification: mathematical foundations. Automatica, 31, 1995.

[39] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. Sys-
tem dynamics: a unified approach. John Wiley & Sons, second edition,
1990.

[40] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. Sys-
tem Dynamics: Modeling and Simulation of Mechatronic Systems. John
Wiley & Sons, third edition, 2000.

[41] Maarten Keijzer. Scientific Discovery Using Genetic Programming. PhD
thesis, Danish Technical University, Lyngby, Denmark, March 25 2002.

[42] G.J. Klir. Architecture of Systems Problem Solving. Plenum Press, 1985.

[43] John R. Koza. Genetic Programming, on the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, Massachusetts,
1992.

168

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://www.scipy.org/

[44] John R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, Massachusetts, 1994.

[45] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.
Keane. Genetic Programming III; Darwinian Invention and Problem
Solving. Morgan Kauffman Publishers, Inc., 340 Pine Street, Sixth
Floor, 1999.

[46] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-
lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV; Routine
Human-competitive Machine Intelligence. Kluwer Academic Publishers,
2003.

[47] V. Leite, R. Araujo, and D. Freitas. A new online identification method-
ology for flux and parameters estimation of vector controlled induction
motors. IEEE International Electric Machines and Drives Conference,
1:449–455, 2003.

[48] Fei Chun Ma and Sok Han Tong. Real time parameters identification
of ship dynamic using the extended kalman filter and the second order
filter. Proceedings of 2003 IEEE Conference on Control Applications,
pages 1245–1250, 2003.

[49] Aahz Maruch. Typing: Strong vs. weak, static vs. dynamic. http:

//www.artima.com/weblogs/viewpost.jsp?thread=7590, July 2003.

[50] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM, 1960.

[51] Pieter J. Mosterman. Hybrid Dynamic Systems: A hybrid bond graph
modeling paradigm and its application in diagnosis. PhD thesis, Van-
derbilt University, May 1997.

[52] Michael Negnevitsky. Artificial Intelligence. Addison Wesley, 2002.

[53] M. Nikolaou and D. Mantha. Efficient nonlinear modeling using wavelets
and related compression techniques. NSF Workshop on Nonlinear Model
Predictive Control, 1998.

[54] Michael O’Neill and Conor Ryan. Evolving multi-line compilable c pro-
grams. In Proceedings of the Second European Workshop on Genetic
Programming, pages 83–92, London, UK, 1999. Springer-Verlag.

169

http://www.artima.com/weblogs/viewpost.jsp?thread=7590
http://www.artima.com/weblogs/viewpost.jsp?thread=7590

[55] George F. Oster and David M. Auslander. The memristor: A new bond
graph element. Transactions of the ASME, Journal of Dynamic Systems,
Measurement, and Control, 94(3):249–252, 1972.

[56] Chris Paredis. Composable simulation and design, project overview.
Technical report, CompSim Project Group, Carnegie Mellon University,
2001.

[57] Henry M. Paynter. Analysis and Design of Engineering Systems. The
M.I.T. Press, Cambridge, Massachusetts, 1961.

[58] Timothy Perkis. Stack-based genetic programming. In Proceedings of
the IEEE World Congress on Computational Intelligence, 1994.

[59] Charles L. Phillips and H. Troy Nagle. Digital Control System Analy-
sis and Design. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 3rd
edition, 1995.

[60] R. Poli and W. B. Langdon. A new schema theory for genetic program-
ming with one-point crossover and point mutation. In International
Conference on Genetic Programming, GP’97, pages 278–285, Stanford,
1997. Morgan Kaufmann.

[61] Cristian Pop, Amir Khajepour, Jan P. Huissoon, and Aftab E. Patla.
Bondgraph modeling and model evaluation of human locomotion using
experimental data. March 2000.

[62] PSF. Python copyright notice and license. http://www.python.org/

doc/Copyright.html, 2005.

[63] Bill Punch and Douglas Zongker. lil-gp genetic programming system.
http://garage.cse.msu.edu/software/lil-gp/, September 1998.

[64] A. Rogers and A. Prügel-Bennett. Theoretical Aspects of Evolutionary
Computing, chapter Modelling the Dynamics of a Steady State Genetic
Algorithm, pages 57–68. Springer, 1999.

[65] R. C. Rosenberg. The gyrobondgraph: A canonical form for multiport
systems models. Proceedings ASME Winter Annual Conference, 1976.

170

http://www.python.org/doc/Copyright.html
http://www.python.org/doc/Copyright.html
http://garage.cse.msu.edu/software/lil-gp/

[66] R. C. Rosenberg and D. C. Karnopp. A definition of the bond graph
language. Journal of Dynamic Systems, Measurement, and Control,
pages 179–182, September 1972.

[67] Ronald C. Rosenberg and Dean Karnopp. Introduction to Physical Sys-
tem Dynamics. McGraw-Hill Publishing Company, New York, New
York, 1983.

[68] Conor Ryan, J. J. Collins, and Michael O Neill. Grammatical evolution:
Evolving programs for an arbitrary language. In Wolfgang Banzhaf, Ric-
cardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors, Proceed-
ings of the First European Workshop on Genetic Programming, volume
1391, pages 83–95, Paris, France, 1998. Springer-Verlag.

[69] Kazumi Saito, Pat Langley, Trond Grenager, and Christpher Potter.
Computational revision of quantitative scientific models. Proceedings
of the 3rd International Conference on Discovery Science (DS2001),
LNAI2226:336–349, 2001.

[70] I. Scott and B. Mlllgrew. Orthonormal function neural network for
nonlinear system modeling. IEEE International Conference on Neural
Networks, 4:1847–1852, 1996.

[71] K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg. Toward
an automated design method for multi-domain dynamic systems using
bond graphs and genetic programming. Mechatronics, 13(8-9):851–885,
2003.

[72] Pete Shinners et al. Pygame: Python game development. http://

pygame.org/, 2000.

[73] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P-Y. Gloren-
nec, H. Hjalmärsson, and A. Juditsky. Nonlinear black-box modelling in
system identification: mathematical foundations. Automatica, 31, 1995.

[74] Reinhard Stolle and Elizabeth Bradley. Opportunistic modeling. Pro-
ceedings IJCAI Workshop Engineering Problems for Qualitative Reason-
ing, 1997.

171

http://pygame.org/
http://pygame.org/

[75] Reinhard Stolle and Elizabeth Bradley. Multimodal reasoning for au-
tomatic model construction. Proceedings Fifteenth National Conference
on Artificial Intelligence, 1998.

[76] Matthew J. Streeter, Martin A. Keane, and John R. Koza. Routine
duplication of post-2000 patented inventions by means of genetic pro-
gramming. In James A. Foster, Evelyne Lutton, Julian Miller, Conor
Ryan, and Andrea G. B. Tettamanzi, editors, Genetic Programming,
Proceedings of the 5th European Conference, EuroGP 2002, volume 2278
of LNCS, pages 26–36, Kinsale, Ireland, 2002. Springer-Verlag.

[77] Christian Tismer. Stackless python, a python implementation that does
not use the c stack. http://stackless.com/, 1999.

[78] L. Todorovski. Declarative bias in equation discovery. Master’s thesis,
Faculty of Computer and Information Science, Ljubljana, Slovenia, 1998.

[79] L. Todorovski and S. Dzeroski. Declarative bias in equation discovery.
Proc. Fourteenth International Conference on Machine Learning, pages
376–384, 1997.

[80] L. Todorovski and S. Dzeroski. Theory revision in equation discovery.
Lecture Notes in Computer Science, 2001.

[81] T. Treichl, S. Hofmann, and D. Schroder. Identification of nonlinear dy-
namic miso systems with orthonormal base function models. Proceedings
of the 2002 IEEE International Symposium on Industrial Electronics, 1,
2002.

[82] Guido van Rossum. Computer programming for everybody: A scouting
expedition for the programmers of tomorrow. CNRI Proposal 90120-1a,
Corporation for National Research Initiatives, July 1999.

[83] Guido van Rossum et al. Python programming language. http://

python.org/, 1990.

[84] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing,
pages 65–85, 1994.

[85] W. J. Wilson. System Identification (E&CE 683 course notes). Univer-
sity of Waterloo, Waterloo, Canada, September 2004.

172

http://stackless.com/
http://python.org/
http://python.org/

[86] Ashraf A. Zeid and Chih-Hung Chung. Bond graph modeling of multi-
body systems: A library of three-dimensional joints. Journal of the
Franklin Institute, (329):605–636, 1992.

173

	Introduction
	System identification
	Black box and grey box problems
	Static and dynamic models
	Parametric and non-parametric models
	Linear and nonlinear models
	Optimization, search, machine learning
	Some model types and identification techniques
	Locally linear models
	Nonparametric modelling
	Volterra function series models
	Two special models in terms of Volterra series
	Least squares identification of Volterra series models
	Nonparametric modelling as function approximation
	Neural networks
	Parametric modelling
	Differential and difference equations
	Information criteria--heuristics for choosing model order
	Fuzzy relational models
	Graph-based models

	Contributions of this thesis

	Bond graphs
	Energy based lumped parameter models
	Standard bond graph elements
	Bonds
	Storage elements
	Source elements
	Sink elements
	Junctions

	Augmented bond graphs
	Integral and derivative causality
	Sequential causality assignment procedure

	Additional bond graph elements
	Activated bonds and signal blocks
	Modulated elements
	Complex elements
	Compound elements

	Simulation
	State space models
	Mixed causality models

	Genetic programming
	Models, programs, and machine learning
	History of genetic programming
	Genetic operators
	The crossover operator
	The mutation operator
	The replication operator
	Fitness proportional selection

	Generational genetic algorithms
	Building blocks and schemata
	Tree structured programs
	The crossover operator for tree structures
	The mutation operator for tree structures
	Other operators on tree structures

	Symbolic regression
	Closure or strong typing
	Genetic programming as indirect search
	Search tuning
	Controlling program size
	Maintaining population diversity

	Implementation
	Program structure
	Formats and representations

	External tools
	The Python programming language
	The SciPy numerical libraries
	Graph layout and visualization with Graphviz

	A bond graph modelling library
	Basic data structures
	Adding elements and bonds, traversing a graph
	Assigning causality
	Extracting equations
	Model reductions

	An object-oriented symbolic algebra library
	Basic data structures
	Basic reductions and manipulations
	Algebraic loop detection and resolution
	Reducing equations to state-space form
	Simulation

	A typed genetic programming system
	Strongly typed mutation
	Strongly typed crossover
	A grammar for symbolic regression on dynamic systems
	A grammar for genetic programming bond graphs

	Results and discussion
	Bond graph modelling and simulation
	Simple spring-mass-damper system
	Multiple spring-mass-damper system
	Elastic collision with a horizontal surface
	Suspended planar pendulum
	Triple planar pendulum
	Linked elastic collisions

	Symbolic regression of a static function
	Population dynamics
	Algebraic reductions

	Exploring genetic neighbourhoods by perturbation of an ideal
	Discussion
	On bond graphs
	On genetic programming

	Summary and conclusions
	Extensions and future work
	Additional experiments
	Software improvements

