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Abstract 

If the primary sequence of a protein is known, what is its three-dimensional structure?  

This is one of the most challenging problems in molecular biology and has many applications 

in proteomics. During the last three decades, this issue has been extensively researched.  

Techniques such as the protein folding approach have been demonstrated to be promising in 

predicting the core areas of proteins - α -helices and β -strands. However, loops that contain 

no regular units of secondary structure elements remain the most difficult regions for 

prediction.    

The protein loop prediction problem is to predict the spatial structure of a loop given the 

primary sequence of a protein and the spatial structures of all the other regions.  There are 

two major approaches used to conduct loop prediction – the ab initio folding and database 

searching methods.  The loop prediction accuracy is unsatisfactory because of the hyper-

variable property of the loops.  

The key contribution proposed by this thesis is a novel fragment assembly algorithm using 

branch-and-cut to tackle the loop prediction problem. We present various pruning rules to 

reduce the search space and to speed up the finding of good loop candidates.  The algorithm 

has the advantages of the database-search approach and ensures that the predicted loops are 

physically reasonable. The algorithm also benefits from ab initio folding since it enumerates 

all the possible loops in the discrete approximation of the conformation space. 

We implemented the proposed algorithm as a protein loop prediction tool named 

LoopLocker.  A test set from CASP6, the world wide protein structure prediction 

competition, was used to evaluate the performance of LoopLocker. Experimental results 

showed that LoopLocker is capable of predicting loops of 4, 8, 11-12, 13-15 residues with 

average RMSD errors of 0.452, 1.410, 1.741 and 1.895 
O
A  respectively.  In the PDB, more 

than 90% loops are fewer than 15 residues. This concludes that our fragment assembly 

algorithm is successful in tackling the loop prediction problem.  
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Chapter 1 
Introduction 

 

1.1 Motivations and Challenges 

We study the protein loop prediction problem in this thesis. 

Scientists have achieved major advances in the field of molecular biology.  A large number 

of genome sequences have been available due to the advances in genome sequence 

technologies. Computer programs have been implemented to organize, analyze and search 

the exponentially growing genome sequence databases. Right after the so-called genomics 

revolution, the proteomics revolution is underway.  However, the on-going proteomics 

revolution is impeded by an obstacle: protein structures and functions.  

Biochemists believe that a protein’s spatial structure largely determines its functions. 

Therefore, to understand a protein’s role in health and diseases, and to explore ways to 

control its actions, scientists first attempt to determine the spatial structure of a protein. 

Unlike the genome sequence, the experimental determination of protein structures is much 

more challenging. Currently, the three-dimensional (3D) structure of a protein can be 

obtained by using x-ray crystallography or nuclear magnetic resonance spectroscopy (NMR).  

Unfortunately, both laboratory methods are very expensive and time-consuming. Even 

worse, the techniques may fail for proteins that are difficult to crystallize, especially 

membrane proteins.   

Searching for an accurate computational method to predict protein 3D structure is of great 

interest. Owing to its urgent impact on mankind, protein 3D structure prediction is 

considered to be one of the most critical problems in bioinformatics. Many computer tools 

have been developed to predict protein 3D structures. For example, Xu et. al. have developed 

an innovative protein structure predictor, RAPTOR based on optimal threading by linear 
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programming[Xu03].  However, RAPTOR focuses primarily on the 3D structure of core 

regions (helices and strands).  

The loop problem remains one of the most difficult parts of protein structure prediction. 

Loops are the segments that do not correspond to regular units of secondary structures of a 

protein and loops exhibit more flexibility. Though some loops are only known as connectors 

between secondary structures, other loops play important function roles. For example, loops 

contribute to active and binding sites.   

Due to the functional properties, the loop prediction problem has gained great attention.  

Recently other secondary structures of proteins are predicted with reasonable accuracy. 

However, the progress of loop prediction has been lagging and the loop prediction problem 

challenges our understanding of the physical chemical principles of protein structures. 

1.2 Contributions 

The major contributions of this thesis are: 

1) We propose a fragment assembly algorithm through the branch-and-cut search. We 

introduce a variety of pruning rules to efficiently reduce the search space and conduct 

branch-and-cut. The algorithm integrates the advantages of both ab initio folding and 

database search methods.  

2) We implemented the fragment assembly algorithm as a loop prediction tool, LoopLocker.   

The performance of LoopLocker is evaluated on a test set of CASP6. The approach has 

proved potentially useful to predict 90% of the protein loops. The average RMSD errors of 

loops up to 15 residues are less than 2 O
A . The overall performance of LoopLocker is 

comparable to that of Loopy [Xia02], one of the most commonly used loop prediction tools. 

LoopLocker is capable of achieving better accuracy for loops of more than 6 residues. 

1.3 Organization of This Thesis 

In this thesis, we present the design and test results of a fragment assembly algorithm for 

the loop prediction. The rest of this thesis is organized as follows:  
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Chapter 2 covers the biological background for the protein (and loop) prediction.  We define 

the loop prediction problem in this chapter and summarize the related works. We also give a 

study of examples of current loop prediction programs and algorithms.  

Chapter 3 proposes a fragment assembly algorithm on loop prediction.  We introduce the 

energy function used in the algorithm and report how to build a loop fragment library on the 

PDB. We present the design of the fragment assembly algorithms and explain the branch-

and-cut techniques of the algorithm. 

Chapter 4 presents some experimental results for the loop prediction performance of our 

fragment assembly algorithm. We report the distribution of protein loop lengths in the PDB 

and prove that our algorithm can predict 90% of loops with average RMSD errors lower than 

2 O
A . In addition, we compare our algorithm with another loop predictor, Loopy [Xia02]. 

Finally, Chapter 5 concludes this thesis and discusses the strengths and limitations of our 

algorithm and gives discussion of future work. 



 

 4 

 

Chapter 2 
Background and Loop Prediction Problem 

This chapter presents an overview of the biological fundamentals concerned 

with our protein loop prediction. We cover the biological background, especially 

the four levels of proteins structures in Section 2.1.  We introduce the definitions, 

classification and functions of protein loop in Section 2.2.  In Section 2.3, we 

summarize the related work and give a study of examples of existing loop 

prediction algorithms and tools. 

2.1 Protein Structure and Prediction 

In this subsection, first we introduce the four levels of protein structure. Then 

the protein structure prediction is explained  

2.1.1 Protein Structure 

A protein is a complex biological macromolecule and consists of a sequence of 

amino acids. The amino acid sequence is encoded by a gene in a genome.  

Proteins are building blocks of many cellular functions. For instance, fibrous 

proteins contribute to skin, hair, bone and other fibrous tissues. Water-soluble 

globular proteins form as enzymes to mediate and catalyze most of the 

biochemical reactions that occur in cells. Membrane proteins stay in the cell’s 

membrane to mediate the exchange of molecules and enable the transfer of 

signals across cellular boundaries [Gre97]. 

Protein spatial conformations can be parsed into four different levels: primary 

sequence, secondary structure, tertiary structure and quaternary structure.  These 

levels of protein structures are covered in this section.  
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Figure 2.1 The Peptide Bond Joining Two Amino Acids When Synthesizing a Protein 

(Taken from [Gre97]) 
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2.1.1.1 Amino Acids 

There are twenty different types of amino acids and amino acids are connected 

end-to-end during protein synthesis by peptide bonds. The sequence of peptide 

bonds shapes a “main chain” or “backbone” of the proteins. Various side chains 

project from the backbone.  The amino acids contained in a polypeptide are also 

referred as residues. 

Table 2.1 Categories of Amino Acids Based on Their Properties 

Properties Amino acids Description 

Hydrophobic 
FM,I,L,V,  

Hydrophobic amino 
acids stay in the interior 
of a protein. 

Hydrophilic RQ,N,K,H,E,D,  
The hydrophilic residues 
tend to stay in the 
exterior 

Positively charged RK,H,  

Negatively charged ED,  

Opposite charged amino 
acids may form salt 
bridges 

Polar but not charged TS,Q,N,  

Non-polar VP,M,L,I,G,A,  

Polar amino acids may 
participate in hydrogen 
bonding 

 

As shown in Figure 2.1, an amino acid contains an amino group ( NH2- ), also 

called the N-terminal, a central α -carbon atom, a hydrogen atom ( H- ), a 

carboxyl group ( COOH- ), and a side-chain R group. The side chain R  groups 

vary from a single hydrogen atom to an aromatic ring.  According to the 

properties of their side chains, amino acids can be classified into several groups: 

hydrophobic (water-repelling) or hydrophilic (water-loving), positively or 

negatively charged and polar or non-polar. The hydrophilic residues tend to 

remain on the exterior, interacting with the water molecules surrounding the 

proteins to stabilize the conformation of the proteins. On the contrary, 

hydrophobic amino acids prefer positions in the interior of the proteins, staying 
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away from the outside aqueous solutions.  Two amino acids with opposite 

charges may form a salt bridge and these interactions influence the shape of the 

proteins. Table 2.1 categorizes the twenty amino acids according to their 

properties [Zim03 and Tan04]: 

2.1.1.2 Different Levels of Protein Structures 

Protein structure is classified into different levels: primary structure, secondary 

structure, tertiary structure and quaternary structure.   

Primary Structure 

Figure 2.1 illustrates the peptide joining process when synthesizing a protein. 

Two amino acids are linked to form peptide bond by a chemical reaction in 

which a water molecule ( OH2 ) is released. As a result, the C in the carboxyl 

group ( COOH- ) of one amino acid is connected to the N  in the amino group 

( 2NH- ) of the other amino acid.   This forms a N-C  bond called the peptide 

bond.  

Primary structure is defined as the sequence of amino acids in a protein.  This 

sequence of amino acids starts from the -NH 2 group ( N  terminal), terminates at 

the carboxyl group ( C  terminal). The linear sequence itself reveals no spatial 

conformation of the protein. However, the protein science researchers follow the 

belief that the spatial conformation of a protein is governed by the primary 

sequence [Anf73] though some exceptions are known. For example, the folding 

process of some proteins cannot be performed without the existence of chaperone 

proteins.  Alternatively, prion disease is believed to result from the responsible 

protein that arrives at a pathogenic state by misfolding from a normal state. Thus 

the dogma is tacitly assumed for most of the cases to predict and compare the 

structures of globular proteins [Gre97].  

Secondary Structure 

Proteins display a variety of secondary structures that reflect common 

structural elements in a local region of the polypeptide chain: −α helices, 

−β strands and various loops that serve to join −α helices and −β strands to 
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larger tertiary structures. Strong hydrogen bonds exist among the residues within 

a secondary structure element.  One property of loops which differs from helices 

and strands is that the bonds among the residues inside a loop are relatively weak. 

 

Figure 2.2 Examples of Helix, Sheets and Loops in E. coli Asparagine Synthetase (PDB: 

12as). The segment is part of chain A of the protein 12as and starts from residue 4 to 

residue 67. The helix strands and loops are in red, yellow and grey respectively (Drawn 

by Protein Explorer).   

An −α helix is shaped by strong hydrogen bonds between two residues which 

are four positions apart in the primary sequence. An −α helix whose appearance 

is like a spiral, is frequently represented as a ribbon or cylinder forming a spiral 

in protein visualization tools.  A −β sheet is formed by an arrangement of 

individual −β strands tied together by hydrogen bonds.  Figure 2.2 illustrates 

examples of the −α helix, −β strand and loops in an example protein, E. coli 

asparagine synthetase (PDB: 12as). 
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Tertiary Structure 

Secondary structures group to form compact globular structures and these 

groups represent the tertiary structure of an entire protein due to long-range 

interactions.   Figure 2.3 presents the 3D structure of an example protein 1sum 

taken from the PDB and drawn by Protein Explorer [Mar02]. We use folds to 

denote the type of tertiary structure of a protein.  Though the protein sequences 

vary dramatically, the folds are fewer [Muz95, Hol96, Ore94, Ore97 and Pea00].   

 

Figure 2.3 Three-Dimensional Structure of a Thermotoga Maritima Phosphate-uptake 

Regulation Factor (PDB: 1sum). Taken from the PDB and drawn by Protein Explorer. 

 

The restriction of the number of protein folds facilitates the protein structure 

prediction.  An observation is that two proteins of more than 100 residues have 

very similar conformations even if the sequence identity is as low as 35% 

[Ros99]. 
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Quaternary Structure 

Many large globular proteins contain multiple polypeptide chains.  Though 

each chain folds independently, the chains tie together by various forces such as 

hydrogen bonds or disulfide bonds. Such a multi-chain protein is called a 

complex. For a complex, quaternary structure represents the spatial relationship 

among all the chains. Figure 2.4 illustrates human glutathione transferase P1-1 

(PDB: 10gs), a protein complex consisting of two chains. 

 

Figure 2.4 An Example of the Quaternary Structure of Human Glutathione Transferase 

P1-1 (PDB:10gs) . 10gs is a protein made up of two chains. Drawn by Protein Explorer. 

2.1.1.3  Dihedral Angles in Protein 

Dihedral angles (also known as torsional angles or torsions) are important 

features to describe protein conformations. Though protein conformations vary 

widely, bond lengths and bond angles remain rigid. With this assumption, the 
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only adjustable parameters in the backbone are the dihedral angles. So the 

dihedral angles determine the protein conformation.  

There are two types of dihedral angles within the protein backbone, namely the 

phi (ϕ ) and psi (ψ ).  Figure 2.5 depicts these two dihedral angles along the 

backbone of a protein (taken from [Tan04]). The diagram also illustrates the 

three types of bonds connecting the backbone atoms. The N-C  bond (that is, the 

peptide bond), the αC-N  bond and C-Cα  bond.  

 

Figure 2.5 Dihedral Angles along the Backbone of a Protein. Heavy lines indicate 

peptide bonds. 

We provide the formal definitions of the dihedral angles as follows. To facilitate 

the discussion of the algorithm in Chapter 3, the definition of another dihedral 

angle concerned with side-chains, γ  is also presented, 

Def 2.1  ),(P 21 bb=  is a plane determined by two non-collinear, adjacent bonds 

1b  and 2b  

Def 2.2 21d PPih →=  is the dihedral angle from plane 1P  to 2P  

Def 2.3  ),(),( CCCNCNNC −−→−−= αααϕ .  

Def 2.4  ),(),( NCCCCCCN −−→−−= αααψ .  

Def 2.5  ),(),( CCRCRCCN −−→−−= ααααγ  where R is the side chain 

group.  

2.1.2 Protein Structure Prediction 

The significance of recognizing and predicting protein structures is 

demonstrated by the fact that it is the basis for identifying the protein’s function. 
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In addition, the protein structures are required for computational drug docking 

techniques.  

Researchers have been making endeavors to determine the structures of proteins 

during the last several decades. Established in 1971, the Protein Data Bank 

(PDB) was created by the Brookhaven National Laboratory and originally 

contained 7 structures [Ber77, Ber00, Ber03, and Mor05]. The 3D structures of 

large biological molecules, including proteins and nucleic acids, have been 

deposited into the PDB.  

Growth of the PDB demonstrates the progress of human beings to understand 

proteins structures. In 1996, there were 966 protein structures deposited into the 

PDB while the total was 4,434. The yearly and total structures reached 5,073 and 

31,358 respectively in 2003[Ber03].  Despite the fact that the numbers of protein 

structures increased dramatically, it has proven quite daunting to understand and 

predict the protein structures. Proteins are distinct from the structure of other 

biological macromolecules such as DNA. Proteins are complex and irregular 

structures. 

Based on the thermodynamics hypothesis, which states that matter seeks a 

minimum free-energy state, we can optimize the energy to predict or recognize a 

protein structure. In addition, we can also use statistical methods and maximize a 

likelihood function. Another way is to minimize an error function.  

Researchers have another hypothesis that structure determines function. Thus we 

can compare structures and determine whether they are in the same “family”. We 

would like to recognize or predict structure based on one sequence information. 

If the hypothesis is true that the structure can be predicted from sequence, it will 

bring a revolution to the pharmaceutical industry.  Scientists will be able to 

design and test drugs in silico (in the computer), rather than in vivo (in an 

organism or living cell), or in vitro (in a test tube) [Gre97]. 

Byrd and Neumaier proposed a simplified approach to address the issue of 

determining the positions of a protein’s atoms in order to optimize the total free 

energy [Byr96 and Neu97].  Even the simplified models may misleadingly output 
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one of many local minima. Due to the computational complexity, it is difficult to 

obtain the accurate energy evaluation even for protein with as few as 50 residues. 

In consequence, approximation models are widely used.  

Amino acids can be categorized to hydrophobic or hydrophilic. Hydrophobic 

amino acids are not readily solvated in water while hydrophilic residues are. This 

simplification of amino acids induces an optimization model that aims to 

maximize interactions between spatially adjacent pairs of hydrophobic side 

chains. This optimization model can be used together with a lattice model of 

protein folding [Dil85, Lau89, Dil95 and Gre97]. The adjacency is restricted to a 

lattice of points that can be defined as a discrete approximation, or grid, in space. 

The principle is that hydrophobic interaction contributes a considerable portion 

of the free energy equation. Generally this model shows preference for 

conformations that have the hydrophobic amino acid residues clustered on the 

inside, covered by the hydrophilic residues [Gre97]. 

Protein structure prediction has been demonstrated to be NP-hard or NP-

complete for different lattice models [Atk99, Ber98, Cre98 and Har97] and these 

give us insights into the computational tractability of the protein structure 

prediction problem. To tackle the computational complexity, performance-

guaranteed algorithms are proposed to achieve polynomial running time but the 

tradeoff is that the results are approximated.   

2.2 Loop and Loop Prediction Problem 

In this section, we discuss the concept of a loop and cover its functions in 

proteins. Then the loop prediction problem is defined. 

2.2.1 Definition and Classifications of Loops 

Loops in proteins can be defined as regions that do not correspond to regular 

units of secondary structure such as −α helices or −β strands [Her97 and 

Xia02].  −α helices and −β strands in a protein are parts of the core region. In 
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other words, loops are also known as regions in proteins outside core regions.   In 

this thesis, we follow this definition.  

Loops can be loosely classified into two categories: coils and turns. However, 

there are various definitions of these categories. Tanford [Tan70] referred to the 

random coil state of a polymer as a state in which free rotation can occur around 

every rotatable bond. Shortle assumed a random coil as a state in which no 

interactions between side-chains are present [Sho96].  In contrast, Smith and his 

co-authors described the notion that the dihedral angles φ and ψ  of one residue 

in a random coil are independent of the φ  and ψ  of every other residue [Ber77]. 

Turns are three or four residue loops to connect two secondary structures and 

usually change the chain direction. −β turns are categorized into a limited 

number of families [Sib89 and Mat94].  

Another general classification of loops was given by Ring and his colleagues 

[Rin92]. Loops are classified into three types (strap, omega, and zeta loops). 

However, they failed to provide a method for predicting the type of a particular 

loop sequence, given hydrophobic periodicity or amino acid positional 

preferences.  

2.2.2 Functions and Significance of Loops 

It seems that some loops serve as no more than connectors between secondary 

structures. However, many loops play significant functional roles. For instance, 

some loops determine protein stability and folding pathways [Xia02]. 

In many cases, loops often determine the functional specificity of a protein. 

Loops contribute to active and binding sites. Fiser et. al. [Fis00] gave more 

examples: binding of metal ions by metal-binding proteins [Lu97], small protein 

toxins by their receptors [Wu96], antigens by immunoglobulins [Baj96], 

mononucleotides by a variety of proteins [Kin99], protein substrates by serine 

proteases [Per95], and DNA by DNA binding proteins [Jon99 and Fis00]. 

There are hyper-variable loops residing in antibodies [Amz79, Fin86 and Bru88]. 

Loops connect the seven-helix-bundle of membrane-bound bactieriorhodopsin 
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[Hen90]. In addition, the transiently formed non-hydrogen-bonded loops appear 

to underlie protein hydrogen exchange processes [Eng84 and Eng92]. 

2.2.3 Loop Prediction Problem 

The (protein) loop prediction problem is also known as the loop modeling 

problem or the loop closure problem.  The loop prediction problem aims to find 

the native conformation for a given loop that fits the two stem regions of the loop 

[Xia02].  Here stems are defined as the main-chain atoms that precede and follow 

the loop, but are not part of it. The stems are part of the core region and the loop 

spans the region between stems. 

Considering the importance of the functioning properties, the loop prediction 

problem has gained considerable attention.  Recently secondary structures of 

proteins can be predicted with acceptable accuracy because they are well 

conserved. Loops exhibit the intrinsic property that their sequence and structures 

are variable.  For example, in antibodies, there are often specificity differences 

among family members. This variability results in the particular complication of 

the loop prediction problem. Due to its very nature, homology methods are 

usually not applicable.  Therefore, the problem also can be treated as an 

important test of our understanding of the physical chemical principles that 

determine protein structure [Xia02]  

In this thesis, we do not consider the loops (usually random coils) at the 

beginning and the end of the polypeptide chain.  Two reasons justify our 

neglecting of the loops in this category: First, the loops on the terminals are 

thought to be an unfolded region. Second, the loop prediction problem is often 

expressed with the assumption that the atom coordinates of the two stems are 

known.  

A notable observation of the loop prediction problem is that the accuracy of the 

predictions is dominated primarily by the accuracy of the energy function, rather 

than the thoroughness of the optimizer [Fis00]. 
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2.3 Related Work 

The materials to be discussed in this section concern two major parts: the 

related works of two major approaches to conduct loop prediction and some 

examples of current loop prediction algorithms and tools. 

2.3.1 Approaches to Loop Structure Prediction 

During the last decades, a variety of loop prediction tools have been proposed. 

In nature, the loop prediction problem is a mini protein folding problem. Thus, 

not surprisingly, these methods can be basically divided into ab initio folding 

techniques, and database search algorithms both of which are also widely used to 

conduct protein prediction. 

2.3.1.1 Ab Initio Folding Strategy 

The ab initio folding strategy explores all the theoretic conformation candidate 

loops and selects the loop with the minimal value of energy function or scoring 

function. The algorithms can be deterministic. The pioneering loop building 

technique was started by Go and Scheraga [Go70]. 

Go and others tackled the problem by modeling the loop building into an 

equation-solving problem. They solved a set of algebraic equations that illustrate 

the geometric property of the loop region [Go70, Bru85, Pal91, Man94, Man95, 

and Wed99].  However, Go and Scheraga’s approach is restricted for loops with 

no more than six degrees of freedom [Go70].    

To conquer the issue of longer loop building, heuristics and sampling techniques 

have been used. The ab initio method should be capable of sampling a large 

conformation space ( C -space) in order to maximize the probability that a native 

or very similar conformation is covered. Due to the computational difficulty of 

long loops, the C -space has to be discrete [Kol05]. Often all the possible 

continuous conformations are approximated by a restricted set of discrete (φ ,ψ ) 

dihedrals and we simplify the loop prediction problem by sampling the dihedral 

set in a uniform or biased way [Bru85, Mou86, Dud90 and Dea00].  A variety of 
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optimization methods have been designed to refine the initial loops achieved 

after the sampling processes.  Among these methods, a lot are concerned with 

artificial intelligence such as the Monte Carlo search with simulated annealing 

[Col93 and Car93], genetic algorithms [McG93 and Rin94] and dynamics 

simulations [Bruc90].  Other approached are enlightened either by an advanced 

computing algorithm or the biological properties of the protein structures such as 

molecular, dynamic programming [Vaj90 and Fin92], and bond scaling with 

relaxation [Zhe93a, Zhe93b and Ros95 and Zhe96] 

Interestingly the loop prediction problem is very similar to the robotic kinematics 

problem [Can03b, Lav00, and Kol05].  First, both problems can be modeled by 

the degrees of freedom describing some angles or dihedral angles because the 

dihedral angles are the major adjustable parameters in the problems [Can03b].  

Second, both are closure problems. For robotics, an end effector (a robot hand) 

must reach for an object in space by adjusting joint angles and arm lengths. For 

loop prediction, dihedral angles must be adjusted to move the C-terminal residue 

of a segment to superimpose on a fixed stem in the protein. Resulting from this 

similarity, optimization methods for the loop prediction problem have been 

directly benefited by robotics. Canutescu [Can03b] and Wan [Wan91] described 

a cycle coordinate descent (CCD) algorithm.  Canutescu’s CCD algorithm was 

also an extension of Shenkin’s “random tweak” algorithm [Fin86].  In the 

random tweak method, a series of iteration steps are taken to modify the dihedral 

angles of the loop to satisfy the distance constraints between the stem residues.  

2.3.1.2 Database Search Algorithms 

The rapidly increasing information in the Protein Data Bank (PDB) [Ber77 and 

Ber03] helps the protein loop prediction problem [Kol05].  As of 2006, there are 

more than thirty thousand experimentally determined protein structures [Ber03].  

The wealth of information in the PDB has led to an alternative approach to the ab 

initio folding technique. That is, loops can be built by searching the database for 

ideal loop candidates, based on geometric fitness criteria. The very idea of a 

database search was originally given by Jones et. al. [Jon86]. The attractiveness 
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of this method is the guaranteeing of rapid output which has reasonable 

conformations.  Unfortunately Fidelis and his co-colleagues questioned the 

effectiveness by concluding that the use of fragments from the PDB was not 

valid unless the lengths of the loops are no more than four residues.  The 

invalidity results from the incompleteness of the databases when the lengths of 

the loops increase.  This disadvantage of the database search was partially 

reduced due to the enormous increase in the PDB in the last years.  The database 

search approach is proven to be valid for longer loops. The upper bound is nine 

residues according to vanVlijmen and Karplus [Van97] while Du and his co-

authors [Du03] contend that the database approach is shown to be good for loops 

as long as 15 residues.  

2.3.2  Study of Examples 

2.3.2.1 Loopy 

Loopy is a loop prediction tool developed by Xiang [Xia02]. The Loopy 

program first generates multiple initial conformations using an ab-initio method. 

Then all the conformations are closed employing the random tweak method. 

Next Loopy conducts fast energy minimization in dihedral angle space and uses 

the SCAP [Xia01 and Jac02] program to pack the side-chains.  

Since the accuracy of the energy function determines the accuracy of the 

prediction, Xiang and colleagues proposed a colony energy function to account 

for the shape of the potential curve. Their energy function adds a term to favor 

conformations that are close in structure to other conformations. It is called a 

colony energy function because each conformation generated is viewed as 

representing a colony of points.  The advantage of the colony energy function is 

that it tends to select conformations that are located in broad energy basins. It has 

been shown that the colony energy strategy significantly improves the results 

obtained from the potential function alone. 

The colony energy function can be viewed as an effective heuristic that favors 

conformations with many neighbors and consequently improves loop prediction. 
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The choice of this energy function is justified by an observation of Shortle et. al 

[Sho98] that those with the largest number of neighbors are most likely to be 

closest to the native conformation. This observation is used to argue that native 

conformations may be located in broad energy basins.  

It is reported that even with a simple energy function, Loopy can generate 

comparable results with the best result reported before 2002 [Xia02].  

2.3.2.2 The Inverse Kinematics Loop-prediction Program 

Kolodny and her colleagues develop a loop-prediction program which uses 

inverse kinematics [Kol05]. A widely-used idea to construct structural models 

for new proteins is to assemble fragments from known protein structures. They 

also use this idea and take the loop prediction as an application of the inverse 

kinematics problem.  Inverse kinematics is defined as the process of 

characterizing the geometry of an open kinematics chain consisting rigid links 

given the position of its end points. This process occurs frequently in robotics, 

where it is formulated as computing the geometry of a closed chain system 

corresponding to a given end-effector configuration. Kolodny’s algorithm 

generates the conformations of candidate loops that fit in a gap of given length in 

a protein structure framework. The method then concatenates small fragments of 

protein chosen from small libraries of representative fragments. It is claimed that 

the approach succeeds since it takes advantages of both the ab initio method and 

database approaches. The program was tested on 427 loops, varying from 4 to 14 

residues. The top predictions vary between 0.3 and 4.2 Å for 4-residue loops and 

1.5 and 3.1 Å for 14-residue loops, respectively. 

2.3.2.3 ModLoop  

ModLoop was developed by Fiser at the Laboratories of Molecular Biophysics, 

Pels Family Center for Biochemistry and Structural Biology [Fis00 and Fis03]. 

ModLoop is a web server to automatically model loops in protein structures 

[Fis03]. It relies on the loop modeling routines in MODELLER [Mar00] that 

predicts the loop conformations by satisfaction of spatial restraints, without 
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relying on a database of known protein structures.  It is claimed that ModLoop 

significantly improved the accuracy of loop predictions in protein structures. The 

positions of all non-hydrogen atoms of the loop are optimized in a specific 

environment with respect to a pseudo energy function. 

Again, the success of ModLoop lies in its energy function.  The prototype of 

ModLoop’s energy function is the CHARMM-22 force field [Mac98a and 

Mac98b]. It accounts for the bond length, bond angle and improper dihedral 

angle terms. In addition, Fiser and co-authors improve it by considering 

statistical preferences for the main-chain and side-chain dihedral angles, and 

statistical preferences for non-bonded atomic contacts that depend on the two 

atom types, their distance through space, and separation in sequence. The energy 

function is further optimized with the method of conjugate gradients together 

with molecular dynamics and simulated annealing.  

It is claimed that the method is flexible and can predict any subset of atoms. It is 

technically suitable for modeling of loops with bound ligands and several 

interacting loops. 
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Chapter 3 
Loop Prediction by Fragment Assembly 

In this chapter, we propose a loop prediction algorithm by fragment assembly. 

The approach is an integration of database-based and ab initio folding methods.  

For each loop segment to be predicted, a series of small fragments, chosen from 

the library of loop fragments, are concatenated. Our approach has the advantages 

of the database search approach since it makes use of the known loop structures 

and results in physically reasonable conformations. In addition, our approach 

benefits from the ab initio method because we enumerate all the loop candidates 

of the discrete conformation space. 

Section 3.1 discusses the energy function we use in the algorithm. In Section 3.2, 

we describe how to build the loop fragment library and process the fragments in 

it. In Section 3.3, we present the loop prediction algorithm. 

3.1 Energy Function 

A potential energy function is a mathematical function to calculate the energy 

score for a chemical structure.  A force field includes equations and parameters 

that relate chemical structures and conformation to energy.   So we can take a 

force field as an energy equation plus the parameters associated with it. Energy 

functions are essential for protein structure predictions.   

There are two versions of CHARMM which are most widely used – CHARMM-

19 and CHARMM-22 [Bro83, Mac98a and Mac98b]. In our algorithm, we 

choose CHARMM-19, which is simpler and ignore non-polar hydrogen atoms. 

Thus CHARMM-19 saves some computational cost. The equation of 

CHARMM-19 is:  
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MacKerell explained the equation and the parameters associated with it [Mac03 

and Mac04]. In the above equation, the first three terms sum over bonds, angles, 

and dihedrals. The last term sums over pairs of atoms indexed by i  and j  up 

interactions with some exceptions. This term represents electrostatics that utilizes 

partial charges iq  on every single atom that interacts via Coulomb’s law. The 

combination of dispersion and exchange repulsion forces, usually referred to as 

the ‘‘van der Waals” forces, is described by a Lennard-Jones 6-12 potential that 

describes interactions between atoms or molecules during collisions.  We omit 

the Urey-Bradley term describing interactions between the two terminal atoms of 

a 3-atom bond angle in the CHARMM force field due to the limitation of 

computation capability. 

Table 3.1 shows the meanings of the constants except the non-bonded term. 

Table 3.2 explains the constants in non-bonded term. 

Table 3.1 Notations in the CHARMM Energy Equation 

Variables Equilibrium terms Force constants 

b  Bond length 
0b  Bonds 

bK  Bonds 

θ  Angle 
0θ  Angles 

θK  Angles 

φ  Dihedral n  Dihedral multiplicity 
φK  Dihedral 

  δ  Dihedral phase   
   

 

Table 3.2 Notations of the Nonbond Term in CHARMM  

iq  partial atomic charge 

ijr  distance between atom i  and j  

D dielectric constant 
ε Lennard-Jones (LJ, vdW) well-depth 

Rmin LJ radius (Rmin/2 in CHARMM) 
D , dielectric constant, equals to 1. That is, we choose the vacuum force field. 

 

To obtain ji ,minR  and  ji,ε , CHARMM has its combing rules as follows: 
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 R   R  R jmin imin ji,min +=                                                [3.2] 

   = jiji, εεε ⋅                                                           [3.3] 

 

Figure 3.1 Schematic View of Force Field Interactions. The circled numbers 1-5 denote 

atoms and covalent bonds are represented by heavy solid lines while non-bonded 

interactions are indicated by a light, dashed line (Taken from [Pon03]) 

 

Non-bonded interactions are calculated as the last term in Equation [3.1] between 

atom pairs with some exceptions. Non-bonded interactions can be adjusted by 

applying a factor SW and we follow the rule of the factor as in Table 3.3. 

Table 3.3 Non-bonded Interactions between Atoms 

Atom Pair Factor 
1-2 0 
1-3 0 
1-4 E14FAC  

Others 1 
Atom 1, 2, 3, 4 refer to the atoms in Figure 3.1. 

As indicated in Table 3.3, the interaction between atom pair 1-4 is calculated by 

applying a factor E14FAC  whose value depends on the type of the force field 

and its version. In CHARMM-19, 0.4E14FAC = . In CHARMM-

22, 1.0E14FAC = . 

To simplify the computation, we only consider the non-bonded interaction when 

the distance of the atom pair, r  is no larger than a cutoff threshold  T . For 

instance, the cutoff threshold  T  can be in the range of 10 
O
A and 14 

O
A.  That is, 
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we compute the non-bonded interaction according to the energy function when 

Tr ≤  and assign 0 when Tr > . 

In summary, we can rewrite the non-bonded item of the CHARMM-19 energy 

equation with the parameters we choose: 
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A10T =  is the cutoff threshold                                       [3.4] 

3.2 Loop Fragment Library Building 

In this section, we describe how to build the loop fragment library. Building 

the library is divided in several steps. First, we retrieve the raw loop fragments 

from the PDB. Second, we store the geometric properties (dihedrals) to reduce 

the size of the library. Then we sort, format the library and remove the 

redundancy. Finally we build an index for the fragment library to facilitate 

library searches. Figure 3.2 depicts the building process of the library.  

3.2.1 Raw Loop Fragment Retrieving 

First we retrieve all the raw loop fragments from the PDB (Protein Data Bank).  

There are many software tools or libraries which can be utilized to extract the secondary 

structures (including loops) from the PDB files. For instance, BALL (Biochemical 

Algorithms Library, [Kol00]) provides interfaces to classify secondary structure into 5 

categories – Helix, Coil, Strand, Turn and Unknown. However, the accuracy of the 

BALL’s secondary structure division is suspicious according to the observation of our 

experiments and the results of protein visualization software tools such as protein 
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explorer. We chose MolAuto [Kra91], a program to locate secondary structures within 

the protein 3D structures.  In each loop file, we include the loop segment as well as the 

left and right stem of the loop (if any). The atom coordinates of the segments; the chain 

ID and the resolution are also included in the loop data files.  

 

Figure 3.2 Loop Fragment Library Building 

There were 29,038 protein structure files in the PDB in May 2005 (excluding 

some PDB files with missing residues). We obtained 497,731 loop fragments in 

total in the original loop library. On average, there are 17.14 loop fragments for 

each PDB file. 

3.2.2 Loop Geometric Properties’ Extraction  

Considering the huge number of loop fragments in our original library, it is 

inefficient to search the whole library to find the best candidate for the loop 
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being predicted. Thus we initiated a series of library processing steps to cluster 

the data. 

The solution is to store the loop fragment’s amino acid sequences and the 

dihedral angles. We divide a loop segment into fragments of k  residues ( k  is a 

parameter to be adjusted).   A library is constructed by enumerating all the k -

mer (that is, k -residue) fragments in the original loop data files. We generate the 

sequences and the 3D structure for all the k -mer fragments. For instance, for a 

loop data file with the protein sequence nA....AAA 321 , each k -mer 1i1ii AAA −++ k ( 

1,...2,1 +−= kni ) will have an entry in the library. 

We employ the geometric characteristics of the loop residues to compact the data 

size and cluster the representative fragments. These techniques serve to reduce 

search space and eventually speed up the prediction.   

We store the dihedral angles of the fragments. In each entry in the library, there 

are a k -mer protein subsequence and 3k  dihedrals: γψϕ ,, . The definitions of 

these dihedrals are given in Def 2.1 – Def 2.5 in Section 2.1.2.3.  

For each entry in the library, the format is  

kkkS γψϕγψϕ  , , .., ,. , , , 111  

where S is the protein sub-sequence of the k-mer ; ii ψϕ ,   and iγ  are three 

dihedral angles associated with residue i ( ki ,..,1= ). Among the dihedrals, ii ψϕ ,  

are dihedral angles associated with the protein backbone while iγ  is related to 

the side chain. The dihedral angles range from 0  to 180 O . The dihedral angles of 

the protein backbone, ϕ , ψ  and the side chain dihedral γ  are sufficient to 

describe the full conformation of a protein because the bond lengths and bond 

angles are assumed to be  rigid under normal conditions [Hen85].  
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3.2.3 Fragment Sorting, Formatting and Redundancy Removing 

All the library entries are examined to ensure a universal format is followed. 

The entries are aligned to facilitate the search. Particularly, we ensure that each 

entry in the library has exactly the same length. This property will enable random 

access to any entry of the library. 

After an entry is created for each original loop fragment, we sort all the entries in 

the ascending alphabet order. The keyword is the protein sub-sequence S .   

We also exclude the redundant entries in the library after it is sorted. Consider a 

threshold T and two entries: kddddSEntry 33211   .., ,. , , ,: 1  and 

kddddSEntry 3,22322211   .., ,. , , ,: 2  in the library, where 1S  and 2S  are k-mer 

protein subsequences and ijd  is a dihedral angle ( k3j1 2, , 1i ≤≤= ).   

Def 3.1 1Entry  and 2Entry  form a redundant loop pair if and only if  

21 SS =  and T≤− |dd| 2j1j   where kj 3,...,2,1=                         [3.5] 

If  1entry  and 2entry  is a redundant loop pair, 2entry  is removed from the loop 

library. 

3.2.4 Index Building 

An index for the library is constructed to facilitate the library search. For each 

possible k-mer protein subsequence, we generate an entry in the index file. An 

entry ii num S  (where iS  is the protein sequence of a k-mer, and inum  is an 

integer) in the index means that the first subsequence iS  appears in line inum .  

3.3 The Fragment Assembly Algorithm 

We provide the fragment assembly algorithm in this section.  First, we explain 

the high-level idea of the algorithm.  Second, we present the procedure that 

calculates fragment-level energy scores in the algorithm. Third, we describe the 

assembly rules and pruning rules of the algorithm based on branch-and-cut.  

Then the side-chain packing process is covered. Inline side chain packing is 
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applied as a pruning rule and removes conformations which have conflicts 

between the side-chain and the backbone. We also describe the use of geometric 

loop properties to ensure loop closure. Finally, we give the algorithm description 

and analyze the time complexity. 

3.3.1 High-level Idea 

In this algorithm, only loop segments of no fewer than 3 residues are 

considered. Loop segments shorter than 3 residues are not discussed as they are 

trivial cases. 

First we describe the idea of the algorithm in an informal way. The loop-

modeling algorithm is a fragment assembly approach based on a loop library. For 

a loop segment of n residues ( kn ≥ ) to be predicted, it is divided into  ⎡ ⎤n/k=P  

k -mer fragments.  For each k -mer loop fragment except the last fragment, we 

select M candidates from the loop library.  The current-level fragment is 

assembled with the previous-level fragment by sampling the discrete set of 

dihedral angles. Then all the combinations of the loop fragment candidates are 

explored by calculating the energy scores.  We calculate its conformation by the 

planar peptide unit property in the last fragment to ensure the loop closure. 

Figure 3.3 presents the process of the algorithm.  

A natural way to assemble adjacent fragments is to allow overlaps.  However, we 

do not choose this strategy but assemble fragments by sampling the discrete set 

of the dihedral angles instead.  The reason is that the overlapping approach may 

result in a search space which does not include the optimal solution.  

In the following several paragraphs we define some concepts and model the 

fragment assembly by overlapping as a graph problem and. Then we explain why 

the overlapping strategy is not chosen. 

We define the concept of the compatible overlap: for two adjacent fragments 

f1and f2 . Both f1and f2  have k residues.  We denote the residue sequences of 

f1and f2  as 11
2

1
11 ..S ksss=  and 22

2
2
12 ..S ksss= .  For each residue, we store the 3k 
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dihedral angles in the fragment library and the dihedral angles are defined as Def 

2.1 to Def 2.3 in Chapter 2.  
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Figure 3.3 The Fragment Assembly Algorithm for Loop Prediction 

The algorithm uses the branch-and-cut techniques to search for the best conformation by minimizing the energy function.
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We denote the dihedral angle sequences of f1 and f2  as 

><><>< 1111
2

1
2

1
2

1
1

1
1

1
1 ,,,..,,,,,, kkk γψϕγψϕγψϕ  and ><><>< 2222

2
2
2

2
2

2
1

2
1

2
1 ,,,..,,,,,, kkk γψϕγψϕγψϕ .   

The last b  residues of f1  and the first b  residues of  f2  are compatibly 

overlapped if and only if the difference of each corresponding dihedral angle for 

each overlapping residue is no more than a threshold τ  where πτ <<  is a 

constant. That is: 

τϕϕ ≤−+− || 21
iibk  

τψψ ≤−+− || 21
iibk  

τγγ ≤−+− || 21
iibk  

bi ,..,2,1=  

If the last b  residues of f1  and the first b  residues of  f2  are compatibly 

overlapped, we define that f1  and f2  are a compatible pair. 

We can model the overlapping as a graph problem:  We denote each candidate 

structure of the loop fragment as a node in a graph (see Figure 3.4).   

If two fragments in the adjacent levels are compatible, an edge is added to join 

the two corresponding nodes.  Then we add a source node S  and a sink node T  

in the graph.  The source node S  is joined with all the fragments in level 1 while 

all the nodes in level P  are linked to the sink node T  as shown in Figure 3.4. 

Thus each path from S  to T  “joins” the fragments and represents a candidate 

structure. We are interested in finding the path representing the candidate 

structure that is most similar to the native structure of the loop.  

The size of the search space equals to the numbers of the paths from S  to T . The 

overlapping strategy has the seemingly advantage of reducing the search space 

significantly because we can only explore all the paths from the source S  to the 

sink T .  However, an optimal solution to the loop prediction problem should 

satisfy several conditions. For example, the loop candidate should span on the 

region between the two stems and ensure the loop closure.  In addition, the 

energy score of the optimal solution is minimal of all loop candidates. 

Unfortunately, it is possible that the optimal solution does not match any path in 
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the search space because the compatible pairs sharing similar dihedral angles in 

the PDB are very limited. 

There are two approaches to tackle the obstacle. First, we can obtain a larger 

search space by increasing the number of the candidate structures sampled in 

each level. Unfortunately, this is not feasible due to the limited size of the PDB.   

Second, we can assemble the fragments by a non-overlapping approach and 

adjust the dihedral angles between adjacent fragments.  In our algorithm, we 

choose the latter strategy to increase the possibility that the search space includes 

an optimal solution.  

 

Figure 3.4 Modeling the Fragment Assembly by Overlapping as a Graph Problem 
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3.3.2  Fragment-based Energy Calculation 

CHARMM-19 [3.1] used in this algorithm is an all-atom energy function. We can 

rewrite it as a residue-level energy function as follows: 
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where ir  denotes residue i  and n  denotes the segment number. )( irE  denotes the energy 

of bond, angle, dihedral and non-bonded terms associated only with atoms inside residue 

i .  ),( ji rrE  denotes the energy of bond, angle, dihedral and non-bonded terms associated 

only with atoms between residue i  and residue j . 

Further, we can also revise it into a fragment-level as follows: 
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where i  denotes the fragment level. iE  denotes the energy of bond, angle, dihedral and 

non-bonded terms associated only with atoms inside fragment level i .  ijE  denotes the 

energy of bond, angle, dihedral and non-bonded terms associated only with atoms 

between fragment levels indexed by i  and j . 

Then we can calculate the minimum energy scores by browsing a P -level search tree.  

In the branch-and-cut search, the energy function is computed level by level. 
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Equation [3.8] denotes the current energy on fragment p .  Thus we can calculate the 

energy of the isolated loop region inductively as follows  

V(P) V =                                                          [3.9] 
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In [3.9], V(P) V =  denotes the energy of whole loop region. 

3.3.3 Assembly Rules 

We split the loop into fragments and choose fragment candidates from the library. 

However, how do we assemble the fragments together to determine whether they can 

merge into a reasonable conformation?    

Here we focus on the assembly techniques of the protein backbone. Side-chain packing is 

explained later in this section. As explained earlier, the bond lengths and angles in the 

peptide chain are rigid under normal conditions [Hen85]. The dihedral angles of the 

protein backbone, ϕ , ψ  are sufficient to describe the full conformation of a protein 

backbone. 

Another biochemical property we can take advantage of is the planar peptide unit.  The 

traditional way to divide the peptide chain is by peptide bonds ( N-C ).  However, there 

is another way to divide the backbone into repeating units which represent the structural 

properties of proteins [Bra99].  It is desirable to divide a peptide chain into peptide units 

that begin with a 
αC  atom to the next 

αC  atom (see Figure 3.5).   The reason is that all 

atoms in such a unit are fixed in a plane with the bond lengths and bond angles very 

consistent nearly the same in all units in all proteins.  

When the positions of a residue are given, we can determine the positions of N and 
αC  

atoms in the neighboring residue, using the planar peptide unit property and the rigid 

bond lengths and angles.  Given the values of the two dihedral angles, ϕ  and ψ , other 

atoms in the neighboring residue are also fixed.   
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Figure 3.5 Part of a Polypeptide Chain that is Divided into Peptide Units, Described by the shadowed blocks in the Diagram. 

Each peptide unit, which is a planar, consists of the αC  atom, the OC'=  groups of the residue as well as the NH group 

and the αC  of the next residue. 
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To vary ϕ  and ψ  in the continuous space is not feasible due to the computational 

complexity. Fortunately, ϕ  and ψ  also have equilibrium terms 0ϕ  and 0ψ . We assume 

that the offset of ϕ  (and ψ ) is  U .  Theoretically, ππ ≤≤− U . However, a large offset 

of ϕ  or ψ  will increase the energy score dramatically, we require π<<|U| . In order to 

overcome computational difficulty, <ϕ ,ψ > is discretized into a finite number of states 

close to the equilibrium state >,< 00 ψϕ ,   The discretized increment of dihedrals is Δ . 

The dihedral pair <ϕ ,ψ > will satisfy the condition: 

>j , <> , < 00 Δ+Δ+= ψϕψϕ i  

where  UiU ≤Δ≤−  

UjU ≤Δ≤−  

π<<U  is a constant 

j i,  are integers and   π<<Δ ||  is a constant .                [3.12] 

The number of states for  <ϕ ,ψ > is 2)/2( ΔU  at each fragment level. 

3.3.4 Pruning Rules 

Pruning rules are critical for a branch-and-cut algorithm to reduce the search space. In 

this subsection, we discuss the various pruning rules and how to use them to remove 

unwanted branches.  

Assume the current level is p ( Pp < ), the pruning rules are as follows: 

(Rule 1) Loop Closure Rule 

If the fragment candidate makes it infeasible to ensure a loop closure, the branch is 

removed.  

As shown in UNRES model [Liw97], the αα CC −   distance should be 3.8 O
A . The length 

3.8 O
A  corresponds to the trans-peptide bond.  Assume that residue pkr  is the last residue 

in fragment level p  and the right stem of the loop region is denoted as 1nr + . Here we 

measure the distance of the  αC  of pkr  to the αC  of 1nr + .   Let tpbL  denote the length of 

the trans-peptide bond. Let |,| BA  denote the distance between two atoms A and B. Then 

if  
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εαα +−+>+ tpbnpk LpknrCrC )1(|)(),(| 1  ( ε  is a constant    )  

O

tpb AL 8.3=                                                                         [3.13] 

the branch will be removed.  It is advised that in [3.13], we include a small constant ε  to 

accommodate an acceptable error.  In some cases, we can not close the loop but the 

results are still acceptable if the loop structure is correctly predicted. In implementation, 

ε  is a constant varying from 2 to 3.8
O
A .  

(Rule 2)  Energy Rule 

If minVV(p) >  where minV  is the current minimum of energy function, we discard the 

current branch.  

3.3.5 Inline Side-chain Packing 

Generally, researchers decompose their efforts to predict protein structures in two 

phases. First, the conformation of the backbone is predicted by either performing protein 

threading programs or homology search software packages. Second, the side-chain atoms 

coordinates are predicted assuming the positions of the backbone atoms are given. This 

decomposed approach is taken because it helps to overcome the computational challenge.  

Our algorithm uses a different approach.  Side-chain prediction is combined with the loop 

prediction program.  In our loop-prediction algorithm, TreePack is invoked to conduct the 

side-chain packing. 

TreePack employs a novel algorithm based on tree decomposition and it is capable of 

achieving the globally optimal solution of the side-chain packing problem very efficiently 

[Xu05]. The computational complexity of TreePack’s algorithm is )  M)n O((N 1tw
rot

++  

where N  is the number of residues in the protein segment, M  is the number of 

interacting residue pairs,  n rot  is the average number of rotamers for each residue and 

 logN)O(N tw 2/3∈  is the tree width of the residue interaction graph.  It is shown that 

 n rot  is around 3.5, tw  is only 3 or 4 for most of the test proteins. The small values of the 

constants result in much less running time.  TreePack performs five times faster than 

another side-chain assignment tool, SCWRL3.0 [Can03a] on all test proteins in the 

SCWRL benchmark.   
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In our algorithm, an optimized branch-and-cut tree is explored to find the optimal 

conformation of the loop. The depth of the search tree is ⎡ ⎤n/k=P . We invoke TreePack 

for side-chain packing between the level 2/P  and cP +2/ ( c  is a small constant).  In 

those levels, we conduct side-chain packing before moving deeper in the search tree.  

The inline side-chain packing during loop prediction brings advantages. First, side-chain 

packing helps to exclude physically unreasonable conformations.  Those conformations 

which leave no enough space to pack the side-chains will be excluded earlier. Second, the 

inline side-chain packing accelerates the process to search the upper bound of the 

minimum energy.  Both advantages of the inline side-chain packing result in less running 

time.  

The inline side-chain packing process is only invoked for the levels between 2/P  and 

cP +2/  due to its computational challenge. If we conduct the side-chain packing too 

early, only the first few residues of the loop are predicted. At that time, the atoms are 

sparsely distributed. The inclusion of side-chains will seldom have conflict. On the 

contrary, if we apply the side-chains during the late phase of the search, too many 

branches make it impractical to invoke a side-chain packing process. 

So here we add one more pruning rule for the algorithm: 

(Rule 3) Side-chain Rule 

In level p ( cPpP +≤≤ 2/2/ ), we recompute the energy by adding side-chain scores: 

∑
<

+−=
pi

piEpV ),()1((p)V ///                              [3.16] 

where /V  and /E  denote the energies including the side-chain’s contribution.  If  

min
/ V(p)V > , the branch is removed from the search tree. 

3.3.6 Geometric Loop Closure 

After assembling fragments, geometric features of proteins are used to ensure loop 

closure. For the last loop fragment whose length is no longer than k , we use the 

geometrical properties to determine its conformations rather than to search the library.  
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Since k  is a small constant, we have sufficient constraints to calculate the coordinates of 

the atoms in this fragment. For a loop of n residues, the last fragment, the P -th fragment, 

contains residue nPk ,..,1)1( +−  where ⎡ ⎤n/k=P . Let residue 1n +  denote the right stem 

of the whole loop region. Thus residue )1( −Pk  precedes and residue 1n +  follows the 

P -th fragment. 

The following constraints are used to determine the conformation: 

(1) Border constraints:  The atom coordinates of loop residue )1( −Pk  and residues 

1n +  are known;  

(2) Planar peptide unit constraints: Each planar peptide unit consists of the αC  atom, 

the OC =  group of residue ir  as well as the NH  group and the Cα  atom of residue 1ir + ; 

(3) Bond length and angle constraints: The bond lengths and angles inside peptide 

chains are rigid; 

The only degrees of freedom for the protein backbone are the two dihedral angles phi (ϕ ) 

and psi (ψ ) for each peptide link. To reduce the computational difficulty, the dihedral 

pair <ϕ ,ψ > is discretized into a finite number of states close to the equilibrium state of  

>,< 00 ϕϕ . We can determine the conformation of the last fragment, given the 

geometrical conditions and the discrete set of dihedral angles.   We choose the solution of 

dihedral angles which result in the minimum energy.  

3.3.7  The Description of the Fragment Assembly Algorithm  

Our fragment assembly algorithm by branch-and-cut for solving the loop prediction 

problem is as follows:  

(Algorithm 1)  The fragment assembly for loop prediction by branch-and-cut 

1. For a loop of n residues, where kn ≥  and k  is the size of fragment. Divide the loop 

into  ⎡ ⎤n/k=P  k -mer fragments.  

2. Initialization: ∞←minV ;  null best_node← . 

3. Sample M loop fragments in level 1 and construct 1nd - Mnd  for the M fragments 
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for nd = 1nd  to Mnd   

call  branch-and-cut ( nd , 1). 

4. Output minV  and best_node. 

Procedure  branch-and-cut (currentNode cur_node, Level p ) 

If  Pp < { 

 1) Compute the fragment-level energy score, )_( nodecurV , as shown in [3.9]  

and [3.10]. 

2) Side-chain packing: If cPP +≤≤ 2/p2/ , recompute the energy score  

)_( nodecurV ,by adding the side chain packing as shown in [3.16]. Then 

apply Rule 3.  

3) Apply Rule 1: If loop closure is not feasible, return  

Apply Rule 2: If  )_( nodecurV minV> ,  return. 

4) Sample M candidates for loop fragment in level 1+p  and generate the 

discrete set of dihedral angles between level  p  and 1+p .  

5) Construct the node set Nodes for fragment level 1+p  and each node 

represents a fragment candidate for the next level and a state of dihedral angles. 

6) For each new_node in the set Nodes, branch-and-cut( new_node, p+1 ). 

} 

Else if  Pp =  { 

Apply the geometric loop closure process described in Subsection 3.3.6 and compute 

the energy of the whole loop, assign it to )_( nodecurV . 

If  )_( nodecurV minV< , reset  ←minV  )_( nodecurV  and best_node 

← cur_node. 

return. 

} 

 

The time complexity of the fragment assembly algorithm is analyzed as follows:  In the 

worst case, all the nodes in the search tree are exhaustively browsed. The level of the 

search tree is ⎡ ⎤n/kP =  where n  denotes the number of residues in the loop and k  
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denotes the fragment length.  For each non-leaf node, we choose M  fragments from the 

library.  A finite set of states of phi(ϕ ) and psi (ψ ) can be adjusted to assemble 

neighboring fragments.  There are 2)/2( ΔU  states where U  is the maximum offset of 

dihedrals and Δ  is the discrete increment of dihedrals. So the time complexity of the 

algorithm in the worst case is )()))/2((()))/2((( //22 knknP ZOMUOMUO =Δ=Δ  

where MUZ 2)/2( Δ=  is a constant.   

The time complexity looks scary but the experiments show that the pruning rules are 

effective to reduce the search space. The average running time for loops of 10 residues is 

less than 30 minutes. For loops of 15 residues, the average running time is about 10 

hours. More details are provided in Chapter 4. 
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Chapter 4 
Experimental Results 

 

We implemented the fragment algorithm presented in Chapter 4 as a loop prediction 

tool, LoopLocker. In this chapter, we evaluate the performance of LoopLocker on the test 

set of CASP6.  In Section 4.1, we present the distribution of the loop length in the PDB.  

The experiment shows that short loops dominate in the PDB. 81% and 91% loops are no 

longer than 10 and 14 residues respectively. In Section 4.2, we explain the criteria of the 

experiments. In Section 4.3, we run the LoopLocker on a test set from CASP6 consisting 

of 20 proteins and 225 loops. LoopLocker generates prediction with average backbone 

RMSD errors from 0.143 to 1.916 
O
A . Then we compare the performance of LoopLocker 

and another loop-prediction program, Loopy, in Section 4.4. The experimental results 

demonstrate that LoopLocker’s performance is comparable to Loopy.   In Section 4.5, we 

give discussions and draw the conclusions for LoopLocker. 

4.1 Distribution of Loop Lengths 

The statistics of the basic properties of protein loops such as the distribution of loop 

length is not thoroughly studied to the best of our knowledge.  We computed all the loops 

found in the current PDB. Table 4.1 shows the distribution of loop lengths. 

We use MolAuto [Kra91] which locates secondary structure in the protein 3D structure 

by one of several different criteria. MolAuto produces a good first-approximation 

secondary structure picture from a coordinate file (usually, the PDB file). 

A simple observation of Table 4.1 is that loops are generally very short:  Around 51%, 

81% and 91% of loops are no longer than 5, 10, and 14 residues in lengths respectively.  

However, very long loops exist. We find loops longer than 100 residues. For example, 

there is a loop of 183 residues in the human LDL receptor (PDB: 1n7d). 
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Our loop-prediction program is only capable of predicting loops no longer than 15 

residues with average RMSD error of less than 2
O
A . The statistics of loop length justifies 

the fact that our program can tackle most of the loops in proteins. 

4.2 Criteria for the Experiments 

We select 20 proteins and 225 loops from CASP6 (The Sixth Critical Assessment of 

Techniques for Protein Structure Prediction) as the test set. In this section, we explain the 

criteria for the choice of the test set. Several assessment methods can be used to 

evaluation the accuracy of prediction and we choose RMSD to assess the accuracy. 

4.2.1 Criteria for the Test Set 

A thorough evaluation of loop prediction algorithm requires testing a given method on 

as many different loops as completely as possible.  Because the accuracy of the prediction 

for different loops might vary considerably, it is thus desirable to test the fragment 

assembly method on various loops.  

Our protein testing set is a subset of the target list of CASP6 (The Sixth Critical 

Assessment of Techniques for Protein Structure Prediction), the worldwide protein 

structure prediction competition [Mou04].  The main goal of CASP6 was to obtain an in-

depth and objective assessment of the current abilities and inabilities in the area of 

protein structure prediction. Participants of CASP6 tried to predict as much as possible 

about a set of structures soon to be known [Mou04]. These were not ‘post-dictions’ 

targeting already known structures but they were true predictions.   

The testing set contains 20 proteins in the CASP6 target list, and they are selected 

according to the following criteria: 

(1) Only monomers, proteins consisting of a single chain, are selected.  We focus on the 

experimental result of monomers to minimize interweave of different chains. If a loop is 

participating in recognition, it is likely to undergo some conformational change when 

bound to other chains; 

(2)  The loops on the N- or C-termini are not used because the loops on the two terminals 

of the polypeptides are generally considers to be unfolded regions; 
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Table 4.1 Distribution of Loop Lengths in the PDB 

L p(L) (%) P(L)(%) 
1 10.38 10.38 

2 7.51 17.89 

3 12.11 30.00 

4 10.25 40.25 

5 10.69 50.94 

6 9.91 60.85 

7 7.14 67.99 

8 5.38 73.37 

9 4.13 77.50 

10 3.94 81.45 

11 3.20 84.60 

12 2.51 87.16 

13 1.90 89.06 

14 1.75 90.80 

15 or above 9.19 100 

L denotes the loop length, p(L) denotes the percentage 

of loops of L residues and P(L) denotes the percentage 

of loops of no longer than L residues in the PDB.  
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Figure 4.1 Distribution of the Test Set 
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 (3)  The resolution of each protein file in the PDB is less than  5.2  
O
A .  

The total number of loops of 3-15 residues long is 225. The numbers of the loops in different 

lengths in the test set is given in Table 4.2. Figure 4.1 depicts the distribution of loops in 

various lengths. 

Table 4.2 Distribution of the Test Set 

L 3 4 5 6 7 8 9 10 11-12 13-15 
N 48 43 50 22 19 11 9 12 9 12 

L is the loop length while N is the numbers of loops in the test set 

 

It is advised that we exclude all the sequences in CASP6 when building the loop fragment 

library used for the algorithm. The exclusion avoids the overlap of library data and testing 

data, and thus ensures the reliability of the accuracy of the prediction of CASP6. 

4.2.2 Criteria for the Evaluation 

The accuracy of a single loop prediction (or a protein segment in general) is evaluated by 

comparing it with the native conformation.  A variety of assessment methods for comparing 

the predicted and native conformation exists including GDT, TM_Score and RMSD.   

GDT (Global Distance Test) is a measure of the similarity between two protein structures 

with identical amino acid sequences but different tertiary structures [Zem04].  The GDT 

score is calculated as the largest set of amino acid residues' alpha carbon atoms in the native 

structure falling within a defined distance cutoff of their position in the experimental 

structure.  Typically the GDT score is calculated under several cutoff distances, and scores 

usually increase with increasing cutoff.  GDT scores are used as major assessment criteria in 

the production of results from CASP competition [Mou04].   

TM-score also calculates the similarity of topologies of two protein structures [Zha04]. 

However, it is claimed to quantitatively access the quality of protein structure predictions 

relative to native. A score in the range of (0,1]  is assigned to each comparison. Based on 



 

 47

statistics, if a template or model has a TM-score no more than 0.17, it indicates that the 

prediction is nothing more than a random selection from the PDB library.   

RMSD (Root-Mean-Square Deviation) is the most widely-common assessment method. The 

RMSD error is further distinguished into global and local RMSD. The global RMSD is 

calculated from the superposition of the whole structures except the loop. The local RMSD is 

calculated from the superposition of the compared loop atoms only.  It is possible that when 

using the local RMSD, the loop can be poorly oriented to the rest of the protein though it is 

actually correctly predicted. Thus the local score will be lower than the global score.  As 

shown by Fiser and his colleagues [Fis00], two RMSDs are correlated. The global score is 

roughly 1.5 times of the local score.  In this thesis, we base our observation on the local 

RMSD. If no further specification, the unit of measurement of RMSD errors is angstrom (
O
A  

m1010−= ) in this chapter. In addition, we measure the RMSD of the backbone atoms only in 

this chapter. 

4.3 Performance of LoopLocker 

We present the experimental results of LoopLocker on the test set of CASP6 in this section. 

We explain the performance of LoopLocker by evaluating its prediction accuracy and 

running time. Specific examples are also given to show LoopLocker’s performance on three 

proteins. 

4.3.1 Prediction Accuracy 

We conducted the experiments on a server using an Intel Pentium4 CPU with two 3 GHz 

processors, 4G RAM running Debian Linux in the heavy computing environment of the 

Bioinformatics Group at the University of Waterloo.  

The quality of our algorithm on the loops with the length between 3 and 15 is demonstrated 

by the test set consisting of twenty proteins in the CASP6.  We first conducted the 

experiments and recorded the performance for minimum, average and maximum RMSD 

errors of the test set.   
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Table 4.3 Overall Performance of the Fragment Assembly Algorithm 

L 3 4 5 6 7 8 9 10 11~12 13~15 

N 48 43 40 22 19 11 9 12 9 12 

Aver 0.143 0.453 0.622 0.807 0.929 1.410 1.627 1.916 1.741 1.895 

Max 0.580 1.909 1.872 1.745 1.964 2.148 2.612 2.883 2.590 2.541 

Min 0.011 0.100 0.161 0.220 0.273 0.215 0.585 0.674 1.003 0.796 

 

L denotes the loop length, N denote the numbers of loops of L-residues in the test set.  Aver  is the average RMSD error of the 

predicted structure and the native loop in the group of L-residue loops. Max and Min denote the maximum and minimum RMSD error 

of the predicted structure and the native loop in the current groups of L-residue loops respectively.  The metric unit for Aver, Max and 

Min is angstrom (
O
A m1010−= ). 
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Figure 4.2 Experimental Result on the Test Set of CASP6 

L denotes the loop length while RMSD (Root Median Square Deviation) error is used to evaluate the accuracy of the prediction. The red, blue and 

brown lines denote the the maximum, average and minimum RMSD error respectively.   

From the figure, our algorithm is capable of predicting loop of the length 3 ~ 15 with average RMSD errors from 0.143 O
A  to 1.916 O

A   respectively 

and the maximum RMSD error of the prediction of loops are less than 3 O
A  . 
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Figure 4.3 Comparison of the Native Conformations and the Loop Structures Generated by 

LoopLocker.  The diagram is drawn by PyMOL [Del02].1vkk (73-86) means that the loop starts at 

residue 73 and ends at residue 86. 1wde (71-85) means that the loop starts at residue 71 and ends at 

residue 85. The native conformations of the loops are shown as the green lines, and the loops 

generated by LoopLocker are shown as the read lines. The backbone RMSD of the predicted loop for 

1vkk(73-86) is 0.796
O
A, while the backbone RMSD of the predicted loop for 1wde(71-85) is 2.541

O
A. 
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Table 4.4 The Running Time of the Fragment Assembly Algorithm 

L 3 4 5 6 7 8 9 10 11 12 13 14 15 

T 17.34 63.17 68.79 52.96 162.76 446.87 640.55 1502.2 2124.2 19849.2 27732.6 34775.1 38595.1

L denotes the loop length while T denotes the average running time for L-residue loops (in seconds) 

 

 

Figure 4.4 The Running Time of LoopLocker 
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Table 4.5 Experimental Results for the Protein, 1sum 

CID B B B B B B B B 
bRes 35 70 107 138 145 172 209 216 
eRes 39 75 118 142 148 174 213 219 

L 5 6 12 5 4 3 5 4 
RMSD 0.793 0.734 1.399 0.693 0.137 0.136 1.872 0.302 

 

CID denotes the chain ID. bRes and eRes denote the beginning and ending residues of the 

loop. L is the loop length.  RMSD is the RMSD error of the predicted structure and the native 

loop structure and measured. The measurement of RMSD is angstrom (
O
A m1010−= ). 

 

 

 

 

Table 4.6 Experimental Results for the Protein, 1w53 

CID A A A 

bRes 22 40 59 

eRes 24 44 65 

L 3 5 7 

RMSD 0.223 0.279 1.065 

 

CID denotes the chain ID. bRes and eRes denote the beginning and ending residues of the 

loop. L is the loop length. RMSD is the RMSD error of the predicted structure and the native 

loop structure and measured. The measurement of RMSD is angstrom (
O
A m1010−= ). 
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The overall performance is presented in Table 4.3. According to the results shown, our 

fragment assembly algorithm on the improved branch-and-cut is capable of predicting loops 

of 3 to 15 residues in length with accuracy between 0.011 
O
A to 2.883 

O
A.  The prediction 

varies between 0.011 and 1.909 for four-residue loops, between 0.215 
O
A and 2.148 

O
A for 

eight-residue loops and between 1.003 
O
A  and 2.590 

O
A  for eleven or twelve-residue loops 

respectively.  The average RMSD error that is the best evaluation of the prediction accuracy 

ranges from 0.143 
O
A  to 1.916 

O
A. Figure 4.2 shows that the average RMSD errors increase 

nearly linearly when the loop length increases. In addition, we compare the loop structures 

generated by LoopLocker and the native conformations of two loops in Figure 4.3.  

4.3.2  Running Time 

The running time of the algorithm is given in Table 4.4. The average running time for 3-

residue loops is 17.34 seconds while the average running time for 15-residues is  38595.14 

seconds (10hours 43minutes and 15.14seconds). From Figure 4.4, the running time increases 

dramatically when the loop length is larger than 7.  

4.3.3 Specific Examples 

In this subsection, we present some loop prediction examples generated by our algorithm 

in the CASP6 evaluation. 

Table 4.5 depicts the experimental results of the protein 1sum.  From Table 4.5, we can see 

that our algorithm is capable of predicting loops ranging from 4 to 12 residues with RMSD 

errors of 0.137 
O
A to 1.872 

O
A. The longest loop, which has 12 residues, is predicted with a 

RMSD error of only 1.399. However, our algorithm has relatively large RMSD errors on a 

short loop of only 5 residues.  The loop B209-213 (where B denotes the chain ID. 209 and 

213 are the loop beginning and ending residue numbers respectively) is predicted with an 

RMSD error of 1.872.   

Table 4.6 gives the experimental results of protein 1w53.  From the table, we can see that our 

algorithm predicted all the three residues of 3, 5 and 7 residues respectively with RMSD 

errors of 0.223 
O
A, 0.279 

O
A and 1.065 

O
A. This is a fairly good prediction. 
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Table 4.7 Experimental Results for the Protein, 1wj9 

CID A A A A A A A A A A 
bRes 9 39 49 64 72 80 133 138 183 195 
eRes 13 45 58 69 77 94 135 146 185 208 

L 5 7 10 6 6 15 3 9 3 14 
RMSD 0.277 1.557 1.004 0.220 1.745 2.190 0.011 1.067 0.115 1.447 

CID denotes the chain ID. bRes and eRes denote the beginning and ending residues of the 

loop. L is the loop length. RMSD is the RMSD error of the predicted structure and the native 

loop structure and measured. The measurement of RMSD is angstrom (
O
A m1010−= ). 
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Figure 4.5 Prediction Results of the Protein 1wj9 

L denotes the loop length and RMSD error is used evaluate the prediction accuracy. The black line denotes the prediction trend line. 
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Table 4.8 Comparison of LoopLocker and Loopy 

L 3 4 5 6 7 8 9 10 11-12 13-15 
N 48 43 40 22 19 11 9 12 9 12 
LoopLocker 0.143 0.452 0.622 0.807 0.929 1.410 1.627 1.916 1.741 1.895 

Aver Loopy 0.080 0.343 0.430 0.998 1.073 1.641 1.748 1.391 2.850 3.518 
LoopLocker 0.580 1.909 1.872 1.745 1.964 2.148 2.612 2.883 2.59 2.541 Max 

Loopy 0.403 1.598 1.877 2.460 3.216 3.175 3.609 2.462 4.061 5.118 
LoopLocker 0.011 0.100 0.161 0.220 0.273 0.215 0.585 0.674 1.003 0.796 Min 

Loopy 0.008 0.041 0.082 0.251 0.211 0.384 0.570 0.452 1.481 2.524 
L and N denote the loop length and numbers of loops in the current group respectively.  Aver, Max and Min are the 

average, maximum and minimum RMSD errors in the group. The metric unit for Aver, Max and Min is angstrom 

(
O
A m1010−= ). 
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Figure 4.6 Comparison of LoopLocker and Loopy 

For loops fewer than 6 residues, Loopy is slightly better than LoopLocker.  For loops of 6-15 residues, the average RMSD errors of loopLocker 

are usually smaller. We conclude that LoopLocker's performance is comparable to that of loopy. We give a conservative conclusion for two 

reasons. First, the performance of LoopLocker is only slightly better than that of Loopy for loops of 6 to 15 residues in most cases. Second, the 

number of loops between 11 and 15 is limited. 
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Table 4.7 displays the experimental results of the protein 1wj9. From the table, we can see 

that our algorithm predict loops ranging from 3 to 15 residues with RMSD errors of 0.011 
O
A 

and 2.190 
O
A. The minimum and maximum RMSD errors are matched with the two loops 

with minimum and maximum lengths respectively. Two loops of 6 and 7 residues are 

predicted with RMSD errors of 1.745 
O
A and 1.557 

O
A. The two dots represent two bad cases 

as shown in Figure 4.5.  However, the three loops no fewer than 10 residues were predicted 

with RMSD errors of 1.004
O
A, 1.447

O
A and 2.190 

O
A. Considering the lengths of the loops in 

this protein, we claim this prediction is successful.  

4.4 Comparison with an Existing Tool 

4.4.1 Overall Performance Comparison 

There are a number of existing loop prediction tools.  We choose to compare our algorithm 

with Loopy [Xoa02] which is one of the most commonly used predictors. 

Loopy was developed by Zexin Xiang in Barry Honig's lab at Columbia University and it is a 

tool for protein loop prediction, sequence mutation and addition of a missing protein 

segment. We focus on comparing our results with its performance in loop prediction.  

We have also run Loopy on the same test set of CASP6. The comparison of the performance 

of LoopLocker and Loopy is provided in Table 4.8.  `From the table, the performance of 

Loopy is better than LoopLocker when the loop length is fewer than 6 residues.  Loopy not 

only shows lower average RMSD errors but also results in lower maximum and minimum 

RMSD errors in almost every group.  However, the performances of the two tools are quite 

close. The average RMSD errors of LoopLocker for loops with 3 to 5 residues ranges from 

0.143 
O
A and 0.622 

O
A. We can safely claim that the prediction of LoopLocker is successful. 

Figure 4.6 shows that for loops of 6 to 15 residues, the performance of LoopLocker is better 

with lower average RMSD errors in the most groups. The only exception is that for the group 

of 10-residue loops, the average RMSD errors of LoopLocker is 1.916 
O
A while that of Loopy 

is only 1.391
O
A . For the two groups, loops of 11-12 and 13-15 residues, LoopLocker exceeds  
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Table 4.9 Comparison of LoopLocker and Loopy on 6-residue Loops 

RMSD PDB ID Loop Position 
LoopLocker Loopy 

1sum B70-75 0.734 0.756 
1vjv A304-309 0.886 0.453 
1vkk A115-120 0.488 0.409 
1vkw A47-52  0.792 1.418 
1vkw A121-126 0.807 0.537 
1vlc A50-55 0.299 1.736 
1vlc A187-192  0.485 0.348 
1vlc A322-327 1.012 0.302 
1wde A250-255 1.456 0.747 
1w81 A267-272 0.568 1.927 
1w8k A267-272 0.537 1.447 
1whz A17-22  0.932 0.422 
1whz A33-38 0.504 1.219 
1wgb A71-76 1.735 0.251 
1wj9 A64-69 0.22 1.014 
1wj9 A72-77 1.745 1.827 
1xfk A95-100 1.205 1.288 
1xfk A190-195 0.815 0.662 
1xfk A227-232 0.903 1.74 
1xg8 A6-11 0.57 0.513 
1xg8 A14-19 0.255 0.487 
1xg8 A34-39 0.795 2.46 

Average 
RMSD 

 0.837 0.998 

In the column of loop position, B70-75 means the loop starts at residue 70 and ends at 75 

in Chain B. The metric unit for RMSD is angstrom (
O
A m1010 −= ). The performances of 

the two loop-prediction tools are very close. The average RMSD error of LoopLocker is 

slightly lower. Among the 22 loops, LoopLocker gives superior results in 12 loops, 

about half of the 8-residue loop group. 



 

 60

 

 

Table 4.10 Comparison of LoopLocker and Loopy on 8-residue Loops 

RMSD PDB ID Loop Position 

LoopLocker Loopy 
1vjv A254-261 1.714 0.621 
1vjv A264-271 1.419 2.27 
1vjv A440-447 1.116 1.643 
1vjv A454-461 0.215 0.384 

1vkk A60-67  0.868 0.903 

1vkk A23-30 1.698 2.254 

1wd5 A19 26 2.066 2.446 

1wd5 A177-184 2.148 2.125 

1xfk A58-65 1.758 1.595 

1xfk A217-224 1.505 0.635 

1xg8 A66-73 1.008 3.175 

Average 
RMSD 

 1.410 1.641 

 

In the column of loop position, A254-261 means the loop starts at residue 254 and ends 

at 261 in Chain A. The metric unit for RMSD error is angstrom (
O
A m1010−= ). 

Judging from the data, the performances of the two loop-prediction tools are very close. 

The average RMSD error of LoopLocker is slightly lower. Among the 11 loops, 

LoopLocker gives superior results in 7 loops while Loopy predicts the other 4 loops with 

better accuracy. 
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Table 4.11 Comparison of LoopLocker and Loopy on 10-residue Loops 

RMSD PDB ID Loop Position 

LoopLocker Loopy 
1tvg A77-86  1.193 2.182 
1vjv A145-154  0.917 1.783 
1vjv A173-182  2.401 1.349 

1vjv A329-338  2.166 0.646 

1wde A237-246 2.461 2.147 

1w81 A90-99  2.883 1.381 

1w81 A419-428  2.409 0.489 

1w8k A90-99  2.812 0.452 

1wck A100-109  1.91 0.774 

1wj9 A49-58 1.004 1.07 

1xfk A78-87 0.674 1.952 

1xg8 A46-55 2.161 2.462 
Average 
RMSD 

 1.916 1.391 

 

In the column of loop position, A77-86 means the loop starts at residue 77 and ends at 

86 in Chain A. The metric unit for Aver, Max and Min is angstrom (
O
A m1010−= ). 

Judging from the data, the performances of Loopy is superior in the 10-residue loop 

group. Among the 12 loops, LoopLocker predicts 5 loops more accurately while Loopy 

exceeds in the other 7 loops. 
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Loopy with lower average RMSD errors and the maximum and minimum RMSD errors in 

the groups show the superiority of LoopLocker. 

4.4.2 Specific Examples 

In this subsection, we show some examples comparing the performance of the two loop-

prediction tools in three groups. 

Table 4.9 presents the experimental results on the 6-residue loop group. From the table, we 

conclude that their performances are quite close. The average RMSD error of LoopLocker 

for 6-residue loops is 0.807 
O
A  while that of Loopy is 0.998 

O
A . The difference is not large. 

Among all the 22 loops in this group, LoopLocker generates more accurate prediction results 

for 12 loops, more than half of the loops in the group. 

The result for 8-residue loops is provided in Table 4.10. Similarly LoopLocker achieves 

slightly lower average RMSD error. The average RMSD errors of LoopLocker and Loopy 

are 1.410 
O
A  and 1.641 

O
A  respectively.  Among all the 11 loops, LoopLocker has lower 

RMSD errors in 7 loops.  

For 10-residue loops, Loopy obtains a much lower average RMSD error than that of 

LoopLocker (see Table 4.11).  The average RMSD errors of LoopLocker and Loopy are 

1.916 
O
A and 1.391

O
A. In addition LoopLocker also provides better result in more test cases – 

Among 12 loops, Loopy leads in 7 cases. 

4.5 Discussions and Summary 

In this chapter, we evaluate the performance of our fragment assembly algorithm by 

conducting experiments on the test set of 20 proteins and 225 loops of CASP6. 

We obtain average RMSD errors ranging from 0.143 
O
A to 1.916 

O
A on the test set.  The loop 

lengths vary from 3 to 15 residues. Based on our analysis in Section 5.1, 90 percent of loops 

are no more than 15 residues. Our algorithm is capable of generating reasonable 

conformations (with an average RMSD error less than 2 
O
A)  for  90%  of the loops in the 
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PDB. We claim that our fragment assembly algorithm based on the improved branch-and-cut 

techniques is efficacious. 

We compared the experimental results with Loopy [Xia02].  The overage performances of 

the two systems are quite close. Loopy obtains lower average RMSD errors for loops up to 5 

residues while LoopLocker exceeds for loops of 6 to 15 residues except that Loopy 

dominates with a lower average RMSD error for the 10-residue loop group.   

From the test we have obtained, the accuracy of LoopLocker decreases slower than that of 

Loopy. When the loop lengths increase, the average, maximum and minimum RMSD errors 

of LoopLocker increase slower than those of Loopy.  Among all the 225 loops tested, the 

worst case for LoopLocker is the loop A90-99 in protein 1w81, and the RMSD error is 

2.883
O
A. None of the loops is predicted with a RMSD error larger than 3

O
A. However, Loopy 

generates prediction with RMSD error larger than 3 
O
A in at least 8 loops among the 225-loop 

test set (See Table 4.12). The trend is also represented by Figure 4.6. Average RMSD errors 

of Loopy rise faster when the loop length is longer than 10. 

Table 4.12 Loops Predicted with RMSD Error Larger Than 3
O
A by Loopy 

PDB ID Loop Position Loop 
Lenth 

RMSD 

1tvg A8-14 7 3.216 
1vkk A73-86 14 4.459 
1wde A174-184 11 4.061 
1w8k A68-78 11 4.017 

1wgb A84-98 15 5.118 

1wjg A107-120 14 4.128 

1wj9 A195-208 14 3.617 

1xg8 A66-73 8 3.175 

In the column of loop position, A77-86 means the loop starts at residue 

77 and ends at 86 in chain A 
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We present a conservative conclusion here that the performance of LoopLocker is 

comparable to Loopy for two reasons. First, LoopLocker’s performance is slightly worse 

than that of Loopy for the groups of 3, 4, 5 and 10-residue loops.   

Second, though LoopLocker exceeds with lower RMSD errors for loops of 11-15 residues, 

the size of the loops of 11-15 residues is limited. We test only 21 loops of 11-15 residues. 

LoopLocker has some drawbacks compared with Loopy. First, LoopLocker requires much 

more memory than Loopy. LoopLocker builds a loop fragment library of 147Mb while 

Loopy is an ab-initio method. The latter only requires a rotamer library of less than 20 Mb. 

Searching the large library consumes much space. Second, the running time of LoopLocker 

is much larger than that of Loopy. LoopLocker uses a fragment assembly algorithm based on 

branch-and-cut techniques.  The time complexity of our algorithm is exponential in general. 

Loopy is capable of generating its predictions in less than one minute for loops up to 15 

residues. Though for the 15-residue loop A71-85 in protein 1wde, the running time is about 

519 seconds.  Unfortunately LoopLocker can only provide prediction for 14 or 15-residues 

after 10 hours on average (see Table 4.4). Third, Loopy can be applied to loops longer than 

15 residues while LoopLocker is practically incapable of conducting prediction on the longer 

loops considering the exponential time complexity. 
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Chapter 5 
Conclusions and Future Work 

In this chapter, we review the work of this thesis. In section 5.1, conclusions are provided 

on our fragment assembly algorithm.  We summarize the experimental results of LoopLocker, 

the loop prediction tool based on our algorithm. In section 5.2, we discuss future work to 

extend our research on the loop prediction problem. 

5.1 Conclusions 

Scientists are interested in predicting the spatial structures of proteins by computational 

algorithms. The loop prediction problem is an important subfield of the protein structure 

prediction but it is extraordinarily hard – The protein loop prediction problem can be seen as 

a mini protein folding problem that is NP-hard [Ung93 and Har97].  Thus a polynomial 

algorithm for loop prediction is highly unlikely to be found.  The accurate prediction of loops 

becomes more difficult due to the biochemical properties of loops.  

In this thesis, we propose a fragment assembly algorithm through branch-and-cut search for 

the loop prediction problem.  We introduce a variety of techniques to effectively explore the 

conformation space of loop candidates and prune unwanted branches. The algorithm shares 

the advantage of database-search methods by generating physically reasonable conformations. 

It also benefits from ab initio folding since we are able to enumerate all loop candidates in a 

discrete conformation space. 

We implemented a loop-prediction tool – LoopLocker based on our fragment assembly 

algorithm.  The performance of LoopLocker is evaluated on a test set from CASP6 consisting 

of 20 proteins and 225 loops.  LoopLocker can provide prediction results with average 

RMSD errors of 0.143 
O
A to 1.916 

O
A  for 3 to 15-residue loops.  Among all the 225 loops in 

the test set, none of the prediction has an RMSD error larger than 2.883 
O
A.  Because 90% of 

loops in the PDB are no longer than 15 residues in lengths, we claim that our algorithm is 

capable of predicting the spatial structures of protein loops very effectively. 
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We compare LoopLocker with another loop-prediction tool, Loopy [Xia02].  LoopLocker is 

capable of generating experimental results with similar average RMSD errors compared to 

Loopy. LoopLocker gives more accurate experimental results for most loops from 6 to 15 

residues in length. In addition, LoopLocker performs better in the worst cases.  

This thesis demonstrates that the fragment assembly approach through branch-and-cut 

techniques is a powerful tool for solving the loop prediction problem. 

5.2 Future Work 

Though proven to conduct loop prediction for a majority of loops in the PDB, our fragment 

assembly algorithm also exhibits some drawbacks. An analysis of the drawbacks opens up 

many possibilities for our future work.  

We hope to decrease the running time of our fragment assembly algorithm. The quality of 

protein predictions is judged mainly by the accuracy and our algorithm is successful in this 

sense. However, we face difficulties in predicting the conformations of the loops longer than 

15 residues in less than 24 hours. Other loop-prediction tools, for example, Loopy, generate 

predictions much faster than LoopLocker.   

An optimized fragment library is helpful to achieve faster speed. Currently the loop fragment 

library is 147Mb in size.  We will try to use clustering techniques to obtain a more compact 

fragment library without sacrificing the comprehensiveness of loop structure information. 

Reduced search space will result in faster speed. 

The time complexity of branch-and-cut search algorithms is generally exponential. A quick 

search depends on good pruning rules to efficiently remove unwanted branches.  We will 

explore more complicated pruning rules for our loop prediction algorithm. 

Instead of depth-first search (DFS), we may try best-first search (BFS) [Pea84] or greedy 

best search [Rus03].  Best-first search can expand the most promising node chosen according 

to some heuristics rules. We can use heuristics and attempt to predict how close the end of a 

path is to the solution (a minimum state of energy score). Thus those paths which are 

predicted to be closer to a minimum state are explored first. A well-designed heuristic 
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evaluation function will help to decrease the upper bound of the minimum energy. We can 

also incorporate heuristics to compute the prior upper bound of the minimum energy of the 

loop before exhaustive search. With a prior-computed bound, the search space will be 

reduced. 

We can also incorporate randomized techniques to address the non-regular property of loops. 

It is known that loops exhibit significant structural variations [Koe02].  By randomly 

selecting some loop fragment candidates from the libraries, the algorithm can increase its 

possibility to sample good fragments. The fragment assembly algorithm in this thesis 

samples only the same-sequence fragments from the library. However, we tentatively tried to 

select randomly chosen fragments from the library and find that this may result in lower 

RMSD errors.  We plan to integrate the fragment assembly with the sequence alignment 

algorithm. For example, the sampling of fragments can be based on scoring matrices such as 

BLOSUM (Blocks Substitution Matrix) [Hen92] and PAM (Point Accepted Mutation) 

[Day68, Day72, Day79a and Day79b].  A combined sampling technique to choose fragments 

is worthy trying. The choice of fragments should include the fragment whose amino acid 

sequences are the same, or similar (by using BLOSUM or PAM) or “don’t care” (random 

chosen fragment). The “don’t care” fragments are selected to address the loop’s structural 

variation.  

Finally, different energy functions for loop prediction are worth exploring. The accuracy of 

the energy function is critical for the success of a loop prediction algorithm. Currently with a 

relatively simplified energy function, CHARMM-19, we achieve encouraging result for 

protein loop predictions. However, it is likely that we may discard good loop conformations 

because their energy scores are not minimized. CHARMM-19 only describes the thermo 

chemical properties of proteins. We can also explore statistical terms in our energy function 

to increase the accuracy of the prediction. 
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