
Scarf’s Theorem

and Applications in Combinatorics

by

Caroline Rioux

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2006

c© Caroline Rioux, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

A theorem due to Scarf in 1967 is examined in detail. Several versions of this theorem
exist, some which appear at first unrelated. Two versions can be shown to be equivalent
to a result due to Sperner in 1928: for a proper labelling of the vertices in a simplicial
subdivision of an n-simplex, there exists at least one elementary simplex which carries all
labels {0, 1, . . . , n}. A third version is more akin to Dantzig’s simplex method and is also
examined.

In recent years many new applications in combinatorics have been found, and we present
several of them. Two applications are in the area of fair division: cake cutting and rent
partitioning. Two others are graph theoretic: showing the existence of a fractional stable
matching in a hypergraph and the existence of a fractional kernel in a directed graph. For
these last two, we also show the second implies the first.
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Chapter 1

Introduction

In 1928, Sperner ([30]) proved a lemma which a year later led to a short proof in [19] of
Brouwer’s Fixed Point Theorem ([6]). This theorem states that any continuous function
of a space onto itself must have a point which is fixed by the mapping.

Although the existence of a fixed point was known, no procedure short of exhaustive
search could produce such a point. Just under 40 years later, Scarf published two papers
([25, 26]) which presented a procedure for finding a fixed point and which were later shown
to be an abstraction of Sperner’s Lemma ([20]). In the same year, and independently of
Scarf, Cohen ([9]) provided a constructive proof of Sperner’s Lemma which also led to such
a procedure. See [11, 12, 20, 25] for more details on calculating fixed points in a continuous
mapping using Scarf’s procedure.

There has been some confusion in recent years on whether Scarf’s result should be
known as Scarf’s Theorem or Scarf’s Lemma. Adding to this confusion is the fact that
Scarf’s result and procedure have been stated in many different forms, some of which
appear unrelated. For example, it is stated in [1] that Scarf himself used the result to
prove his famous theorem on the core of an n-person game, and so it acquired the title of
lemma. However, in Scarf’s original paper ([26]) the main theorem was a corollary to the
result we are discussing. Given that it was originally stated as a theorem and that it is
referred to as such in other literature ([2, 20, 34]), we will use the term Scarf’s Theorem
throughout this thesis.

Being an economist and game theorist, Scarf used this result to draw many conclusions
in these fields ([28]). As mentioned before, this included finding the core of an n-person
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game ([26]), as well as finding the equilibrium price in a market economy ([27]). More
recently, Scarf’s Theorem has been applied to combinatorics and graph theory, and it is
these applications which this thesis will examine fully.

In order to see the similarities and differences between Scarf’s Theorem and Sperner’s
Lemma, we present the latter here, restricted and simplified to 2 dimensions. Let T be
a triangle whose vertices have labels 0, 1, 2. Subdivide T into smaller triangles ensuring
that the intersection of two small triangles is either empty, a vertex, or a full face of both
triangles. The vertices that lie on a face of T must take a label from one of the face’s
endpoints. The vertices in the interior of T can be labelled arbitrarily from 0, 1, 2.

Figure 1.1: Sperner’s Lemma for triangles

Sperner’s Lemma for triangles. For such a subdivision and labelling of T , there exists
at least one small triangle which carries all labels 0, 1, 2.

In Sperner’s Lemma, there are two important concepts: the triangulation and the
labelling. Each of these concepts has been abstracted by Scarf. As mentioned before,
Scarf’s Theorem has been stated in many forms. What ties them together is their proofs,
which all follow the same pattern.

In this thesis we will examine three statements of Scarf’s Theorem. In the first, called
Scarf’s Theorem on primitive sets, the concept of a triangulation is replaced by a set of
“primitive“ sets, which are sets of points in R

n with special properties. The labelling
however is very similar to the Sperner labelling described above. The second, Scarf’s

2



Theorem on subdivisions, also involves triangulations and can be viewed as a simplification
of Sperner’s Lemma. Instead of having many triangles touch the three faces of T , the
triangulation is restricted so that only one triangle is allowed to touch each face. This leads
to a simpler proof of Sperner’s Lemma that will not require induction. Again, the labelling
used in this version is similar to Sperner’s labelling. Both these versions can be shown to be
equivalent to Sperner’s Lemma, and vary only in formulation and proof technique. They are
also both topological in nature. The third, called Scarf’s Extension Theorem, abstracts
both the idea of labelling and the triangulation given in Sperner’s Lemma. Instead of
integers, the labels become columns of a matrix B. The triangulation in also replaced by
a matrix C, in which certain sets of columns can be viewed as primitive sets. Further, if
we associate a system of equations B~x = ~b with the matrix B, Scarf’s Extension Theorem
dictates a basic feasible solution to this system that also has a meaningful interpretation
in the matrix C. Here the formulation more closely resembles a linear program than a
topological statement.

It is worth mentioning that similar work has been done by Lovász in [21], where the
labels of Sperner’s Lemma are abstracted to the ground set of a matroid. We will however
focus just on the work of Scarf in this thesis.

As mentioned earlier we will also examine combinatorial applications of Scarf’s The-
orem. We will apply Scarf’s Theorem on primitive sets and Scarf’s Theorem on subdivisions
to problems in fair division. Fair division is an area of mathematics which involves the
partition of goods between parties in a way which is “fair”, based on different definitions
of fair. Here we focus on envy-free division: a partitioning in which not only does every
party believe they have received a fair portion of the whole with respect to their preference
set, but further do not envy any one else’s share. The first application will be cake-cutting
using Sperner’s Lemma, and the second will be rent partitioning and room assignment
using Scarf’s Theorem. See [22] for more on fair division.

Scarf’s Extension Theorem will also be applied to graph theory. Two problems will be
examined, the first being finding fractional kernels in directed graphs, work done by Ahar-
oni and Fleiner in [1]. The second application will be finding fractional stable matchings
in hypergraphs, an extension of the stable marriage problem. This is one application out
of many presented by Aharoni and Holzman in [2]. It is interesting to note that although
Scarf’s Theorem was used initially to provide an explicit procedure for finding solutions,
in the applications we will see it will be used only to show the existence of such solutions.
However, given Scarf’s procedure it would be possible to find an explicit solution, and we
do so for fractional stable matchings in the appendix. Finally, we show that the theorem on
fractional stable matchings can be implied by the theorem on fractional kernels in directed
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graphs.

1.1 Outline of the thesis

Given the topological and linear programming versions of Scarf’s Theorem, this thesis will
be logically separated into two halves.

In Chapter 2 we will introduce the necessary topological background for the under-
standing of the theorem as stated in Chapters 3 and 4. Chapter 4 will further focus on
the similarities between Scarf’s Theorem and Sperner’s Lemma. Applications of Scarf’s
Theorem in this form will be examined in Chapter 5.

Similarly in Chapter 6, the basics of linear programming and the simplex method are
examined, followed by a generalized statement of Scarf’s Theorem in Chapter 7. Finally,
Chapter 8 will present two applications of Scarf’s Extension Theorem as seen in Chapter 7.

The graph theory terminology used throughout is standard. Refer to [10] for basic
terminology and results.
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Chapter 2

Simplicial Complexes

2.1 Geometric Complexes

This section serves to provide basic definitions about simplicial complexes when viewed as
geometric objects in Euclidean space. The following set of basic definitions are taken from
[18, 23, 24].

Definition 2.1. The set R
m (Euclidean m-space) is the totality of ordered m-tuples of real

numbers. An element X of R
m is written

X = (x0, x1, . . . , xm−1)

where each xi is a real number called a coordinate of the element X. An element of R
m

is called a point.

Definition 2.2. Let P = {X0, X1, . . . , Xn} be a finite subset of R
m. Then the hyperplane

spanned by P, denoted π(X0, X1, . . . , Xn) or π(P ), is the set of all points X of R
m that

can be written

X =

n
∑

i=0

λiX
i where

n
∑

i=0

λi = 1

and each λi is a real number.

For example, consider X0 = (0, 1), X1 = (1, 0) and X2 = (2,−1) (see Figure 2.1). Then
π(X0, X1) is the line going through X0 and X1. Also note that π(X0, X1, X2) = π(X0, X1)
since X2 lies on the same line as X0 and X1 (X2 = (−1)X0 + 2X1).
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Figure 2.1: Hyperplane spanned by points

These three points do not create a plane as might be expected because they are not
geometrically independent, as defined here.

Definition 2.3. A finite subset P = {X0, X1, . . . , Xn} of R
m is said to be geometrically

independent if P is not contained in π(Q) for any proper subset Q of P .

Definition 2.4. Let P = {X0, X1, . . . , Xn} be a geometrically independent subset of R
m.

The hyperplane π(P ) is called an n-dimensional hyperplane or n-hyperplane.

For example, a 1-hyperplane is a line, a 2-hyperplane is a plane, and so on.

Now we are ready to introduce the concepts of a simplex, a simplicial complex and a
pseudomanifold.

Definition 2.5. Let P = {X0, X1, . . . , Xn} be a geometrically independent subset of R
m.

Then the simplex spanned by P, denoted σ(P ) or σ(X0, X1, . . . , Xn), is the set of all
points X of R

m that can be written

X =
n

∑

i=0

λiX
i,

n
∑

i=0

λi = 1, λi ≥ 0 for i = 0, 1, . . . , n.

The set σ(P ) is also called the convex hull of P . We say σ(P ) is an n-dimensional
simplex or simply an n-simplex.

For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex a triangle
and so on, as pictured in Figure 2.2.
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Figure 2.2: The first four n-simplices

Each point X i is a vertex or equivalently an extreme point of σ(X0, X1, . . . , Xn).

Definition 2.6. The k-simplex spanned by a subset {Xj0, Xj1, . . . , Xjk} of P = {X0, X1, . . . , Xn}
is called a k-face, or simply face of σ(P ). In particular, σ(P ) is its own face.

Note that 0-faces are vertices of σ(P ). We call (n − 1)-faces facets. Further, each
n-simplex has a single (−1)-face: the empty set. All faces of σ(P ) apart from its (−1)-face
and σ(P ) itself are called proper faces of σ(P ). The union of all proper faces is called
the boundary of σ(P ).

Simplices can be viewed as the building blocks for simplicial complexes.

Definition 2.7. A (geometric) simplicial complex K is a set of simplices of varying
dimensions satisfying the following conditions:

1. if σ ∈ K, then every proper face of σ is also in K.

2. if σ1, σ2 ∈ K, then σ1 ∩ σ2 is a face of both of them.

The highest dimension of the simplices of K is the dimension of K. A 0-simplex in K
is called a vertex of K.

Note that σ1, σ2 can be disjoint in K when they solely share their (−1)-face, the empty
set.

Figure 2.3 presents a simplicial complex K of dimension 2. Since σ(b, c, f) ∈ K, we have
σ(b, c), σ(c, f), σ(b, f) ∈ K and σ(b), σ(c), σ(f) ∈ K. Note that not all maximal simplices
need to be of dimension 2. For example σ(c, d) ∈ K, but it is not a face of any 2-simplex
of K.
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Figure 2.3: Simplicial complex of dimension 2

Definition 2.8. If L is a subcollection of a simplicial complex K that contains all faces of
its elements, then L is a simplicial complex in its own right; it is called a subcomplex of
K.

One subcomplex of K is the collection of all simplices of K of dimension at most p,
denoted K(p). In particular, K(0) are the vertices of K.

Finally, a special type of simplicial complex, the pseudomanifold, is introduced.

Definition 2.9. An n-dimensional pseudomanifold, or simply an n-pseudomanifold
is a simplicial complex K such that

1. Every simplex of K is a face of some n-simplex of K.

2. Every (n − 1)-simplex of K is the face of exactly two n-simplices of K.

3. If σ and σ′ are n-simplices of K, there is a finite sequence σ = σ1, σ2, . . . , σm = σ′

of n-simplices of K such that σi and σi+1 have an (n − 1)-face in common for 1 ≤
i ≤ m − 1.

Figure 2.4 presents two examples of pseudomanifolds. The first is of dimension 1.
Note that each 0-simplex (vertex) is the face of exactly two 1-simplices. The second is
a 2-pseudomanifold, realized on the surface of a sphere. The area “outside” the main
triangle is also a 2-simplex of the pseudomanifold. The dotted path outlines a sequence of
2-simplices that satisfies condition 3 for two particular simplices in the complex. Several
admissible sequences between these two simplices exist.
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Figure 2.4: Examples of pseudomanifolds

2.2 Abstract Complexes

The geometric objects of Section 2.1 can be abstracted to sets with special properties. We
will show at the end of the section that these two views are equivalent. We first abstract
each of the definitions introduced in the previous section, using [18, 20, 29] as sources.

Definition 2.10. An (abstract) simplicial complex K is a finite set of elements
{X0, X1, . . . , Xn} called vertices together with a collection of subsets called simplices
satisfying the following conditions:

1. Every set consisting of a single vertex is a simplex.

2. Any non-empty subset of a simplex is a simplex.

A simplex containing n+1 vertices is called an n-simplex or n-dimensional simplex.
The highest dimension of the simplices of K is the dimension of K. If σ′ ⊆ σ then σ′ is
called a face of σ, (a proper face if ∅ 6= σ′ 6= σ). A subcollection of K that is itself a
simplicial complex is called a subcomplex of K. One subcomplex of K is the collection
of all simplices of K of dimension at most p, denoted K(p). As before, K(0) denotes the
vertices of K.
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Note that a graph on vertex set V and edge set E can be viewed as a simplicial complex
of dimension 1. We simply need to associate each v ∈ V with a 0-simplex (satisfies condition
1) and each e ∈ E with a 1-simplex. Then condition 2 is satisfied, as any non-empty subset
of a 1-simplex (one of its end points) is also a simplex.

Because the collection of simplices is a set, we cannot allow multiple edges, nor can we
allow loops, as each 1-simplex must be a subset of the 0-simplices.

In Figure 2.4, we can view the left pseudomanifold as a graph, in which case it is simply
a cycle.

Definition 2.11. A pseudomanifold on the point set P = {X0, X1, . . . , XN}, with
N ≥ n, is a family D of sets of n + 1 points from P , called n-simplices, satisfying:

1. if a set of n points is a subset of a set of D, then it is a subset of exactly two sets of
D.

2. if F, F ′ ∈ D then there exists a sequence of subsets of D, F = F1, F2, . . . , Fk = F ′,
such that |Fi ∩ Fi+1| = n for i = 1, . . . , k − 1.

Definition 2.12. Two simplicial complexes (abstract or geometric) K1, K2 are said to be

isomorphic provided there exists a bijective function f : K
(0)
1 → K

(0)
2 from the vertices of

K1 to the vertices of K2 having the property that a subset {Xj0, Xj1, . . . , Xjk} of K
(0)
1 is

the set of vertices of a simplex in K1 if and only if {f(Xj0), f(Xj1), . . . , f(Xjk)} is the set
of vertices of a simplex in K2.

If an abstract simplicial complex K1 is isomorphic to a geometric simplicial complex
K2, then K2 is said to be a realization of K1.

Abstract simplicial complexes can always be realized in some Euclidean space. Below
are two proofs of this fact: one which lets the dimension of R

m grow quite freely, and
another which provides a tight bound on the dimension of R

m.

Theorem 2.13. ([18, Chapter 1, Theorem 18]) Every abstract simplicial complex K1 has
a realization K2 in some Euclidean space R

m.

Proof. Let {X0, X1, . . . , Xm} be the vertices of the abstract simplicial complex K1. In
Euclidean space R

m consider an m-simplex s = σ(Y 0, Y 1, . . . , Y m). The simplicial complex
K2 is taken to be the subcomplex of s given by the rule: σ(Y j0, Y j1, . . . , Y jk) is in K2 if
and only if σ(Xj0, Xj1, . . . , Xjk) is a simplex in K1.
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It is now clear that the function f : K
(0)
1 → K

(0)
2 given by f(X i) = Y i is an isomorphism.

Theorem 2.14. ([31, Section 0.2.3], [15, Theorem 3.19]) Any abstract simplicial complex
of dimension n has a realization in R

2n+1.

First, examine an example for the case of n = 1. We want to realize a 1-dimensional
simplicial complex, in other words a graph, in R

3. If we allow the edges to bend or curve,
then the realization is easy.

However, we can strive for an embedding where all edges are straight. For this, we need
to put the vertices of the graph on a curve that bends enough not to admit 4 coplanar
points. If we find such a curve, then any two edges cannot intersect other than at common
end-points, as that would imply the four end points of those two edges are coplanar.

We claim the following curve, defined by a parameter t, admits no 4 coplanar points.

x = t y = t2 z = t3.

Suppose for a contradiction that t1, t2, t3, t4 define four distinct points on the plane
ax + by + cz = d. Then the equation

at + bt2 + ct3 = d

has 4 distinct roots, which is impossible.

Proof (of Theorem 2.14). We can apply the argument used in the above example to a
simplicial complex of arbitrary dimension. Let K be an abstract simplicial complex of
dimension n on the point set P = {X0, . . . , XN}, N > n. We want to find a geometric
simplicial complex K ′ in R

2n+1 and a bijection f from the vertices of K to the vertices of
K ′ that preserves the simplices of K in K ′.

Let
x1 = t, x2 = t2, . . . , x2n+1 = t2n+1,

be the parametric equation of a curve in R
2n+1. Further, let f be the bijection f(X i) =

(i, i2, . . . , i2n+1) mapping the points of P to points on the curve.
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We claim that all sets of 2n + 2 points {f(X i)} are geometrically independent. If this
were not true, then the 2n + 2 points would lie in some 2n-hyperplane, say a1x1 + a2x2 +
· · ·+a2n+1x2n+1 = d. This cannot be, as it implies the curve a1t+a2t

2+· · ·+a2n+1t
2n+1 = d

admits 2n + 2 distinct roots.

Recall that if a set of points Q is geometrically independent, then no point X lies on a
hyperplane spanned by a set P ⊂ Q unless X ∈ P .

Now we want to show that if two simplices σ1, σ2 of K have non-empty intersection,
then under f , the intersection f(σ1) ∩ f(σ2) is a face of both f(σ1) and f(σ2).

Let σ1 = {Xj0, . . . , Xjs, . . . , Xjt} and σ2 = {Xjs, . . . , Xjt, . . . , Xju}. Note that since σ1

and σ2 intersect in at least one point and the dimension of K is n, we have u < 2n + 2.
Further, f(σ1) and f(σ2) share at least the simplex f(σ(Xjs, . . . , Xjt)) of dimension t− s.
We only need to show they intersect in no more than this common face.

Suppose to the contrary that f(σ1)∩ f(σ2) ⊃ f(σ(Xjs, . . . , Xjt)), and let X ∈
(

f(σ1)∩
f(σ2)

)

\f(σ(Xjs, . . . , Xjt)). For ease of notation, let Y i = f(X i).

Since X lies in both simplices f(σ1) and f(σ2), we have

X = λ0Y
j0 + · · · + λsY

js + · · ·+ λtY
jt , where λ0 + · · ·+ λt = 1, λ0, . . . , λt ≥ 0 and

X = δsY
js + · · ·+ δtY

jt + · · ·+ δuY
ju, where δs + · · ·+ δu = 1, δs, . . . , δu ≥ 0.

Now given that X /∈ f(σ(Xjs, . . . , Xjt)), there must be a λi 6= 0 with i < s. Say it is λk.
Then we have

λkY
jk = X −

(

λ0Y
j0 + · · ·+ λk−1Y

jk−1 + λk+1Y
jk+1 + · · ·+ λsY

js + · · ·+ λtY
jt
)

=
(

δsY
js + · · ·+ δuY

ju
)

−
(

λ0Y
j0 + · · · + λk−1Y

jk−1 + λk+1Y
jk+1 + · · ·+ λtY

jt
)

and so

Y jk =

(

δsY
js + · · ·+ δuY

ju
)

−
(

λ0Y
j0 + · · ·+ λk−1Y

jk−1 + λk+1Y
jk+1 + · · ·+ λtY

jt
)

λk

Now we have (δs + · · · + δu) − (λ0 + · · · + λk−1 + λk+1 + · · · + λt) = 1 − (1 − λk) = λk

hence the sum of all scalars on the right hand side is 1. This means that f(Xjk) lies on
the hyperplane π

(

f(Xj0), . . . , f(Xjk−1), f(Xjk+1), . . . , f(Xju)
)

. Contradiction, the points
{f(Xj0), . . . , f(Xju)} are not geometrically independent.

We can similarly prove that if σ1 and σ2 are disjoint, then f(σ1) ∩ f(σ2) must also be
disjoint.

Therefore our bijection f is indeed a realization of K.
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Figure 2.5: Incorrect realization of an abstract simplex

Figure 2.5 shows an example of the above argument for σ1 = {X0, X1, X2, X3}, σ2 =
{X3, X4, X5}. Here we have the point f(X5) which lies on π

(

f(X0), f(X1), f (X3)
)

.

The 2n + 1 bound is tight. For n = 1, this is Kuratowski’s Theorem: not all graphs
(simplicial complexes of dimension 1) can be embedded in the plane without edge crossings.
For higher dimensions, this was proved by Van Kampen in 1932 ([35]).

2.3 Subdivisions

We examine simplicial complexes further by allowing simplices to be subdivided into smaller
simplices. This procedure is also called a triangulation because of the 2-dimensional case.
Definitions come from [17, 27].

Definition 2.15. Let σ be an n-simplex. A collection of n-simplices σ1, σ2, . . . , σk is called
a simplicial subdivision of σ if

1. σ is contained in the union of the simplices σ1, σ2, . . . , σk,

2. σ1, σ2, . . . , σk are each contained in σ, and

3. The intersection of any two simplices is a face of both of them.

Vertices of σ1, σ2, . . . , σk that are not vertices of σ are called vertices of the subdivision.
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The simplices σ1, σ2, . . . , σk are called simplices of the subdivision or simply ele-

mentary simplices.

Condition 3 forbids the simplices of the subdivision from interacting in non intuitive
ways, some of which are drawn in Figure 2.6 for 2-simplices.

Figure 2.6: Forbidden intersections of two 2-simplices of a subdivision

Note that the collection of all faces of σ1, σ2, . . . , σk forms a simplicial complex.

Definition 2.16 (Restricted Subdivision). A simplicial subdivision of σ is said to be re-
stricted if no vertices of the subdivision lie on the boundary of σ.

Figure 2.7 gives three subdivisions of a 2-simplex. The first is the trivial subdivision,
while the third (Figure 2.7 c)) is restricted.

Figure 2.7: Example of simplex subdivisions
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It can be shown that the simplices of a restricted subdivision of a simplex σ along with
the original simplex σ form a pseudomanifold. For example, the restricted subdivision of
Figure 2.7 c) is realized in Figure 2.8 by adding the original simplex as the outside face on
the sphere.

Figure 2.8: Restricted subdivision realized as a pseudomanifold

Lemma 2.17. Let σ1, σ2, . . . , σk be a collection of simplices that form a restricted subdi-
vision of a simplex σ. Then the simplices σ, σ1, σ2, . . . , σk along with all their proper faces
form a pseudomanifold.

One proof of this result can be found in [7, Section 7-5, Theorem 10] but the technique
used is beyond the scope of this thesis. To motivate the lemma, we examine the case where
σ is a 2-simplex.

Proof (for σ a 2-simplex). Relabel σ as σ0 to help with notation. Let K be a simplicial
complex consisting of σ0, σ1, σ2, . . . , σk and all their proper faces. To show K is a pseudo-
manifold, we must show 3 properties:

1. Every simplex of K is a face of one of σ0, σ1, . . . , σk, which is true by con-
struction of K.

2. Every 1-simplex of K is a face of exactly 2 2-simplices from σ0, σ1, . . . , σk.

Suppose first that a 1-simplex τ is a face of 3 2-simplices, say σh, σi and σj . Then
3 triangles intersect in that line segment. By Definition 2.15, each pair of triangles
must intersect in a full face. Note that if one of the triangles is σ0, this is ensured by
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the fact that the subdivision is restricted. Further, each triangle must lie within σ0.
This is impossible: three triangles cannot both lie in the same plane and intersect
only in a common line (see Figure 2.9). Suppose second that a 1-simplex τ is a face of

Figure 2.9: Possible intersections of 3 triangles in R
3

only 1 2-simplex. Then τ must lie on the boundary σ0 as otherwise it would separate
at least 2 triangles. Now since the subdivision is restricted, there are no boundary
points, hence τ must be one of the faces of σ0. Moreover τ must be the face of at
least one simplex of the subdivision, the one that covers the interior that borders on
τ (given that the subdivision must by definition cover all of σ0). Hence τ is the face
of exactly 2 triangles.

3. Every 2-simplex in the subdivision is connected by an alternating path of

1-simplices and 2-simplices. This easily follows from part 2 and the fact that the
subdivision is of a single connected simplex.

Lastly, we introduce another special subdivision, called the barycentric subdivision.

Definition 2.18. The barycentre (centre of mass) of a simplex σ = (X0, . . . , Xn) is the

point Y =
n

∑

i=0

λiX
i where the coefficients λi are all equal, namely λi = 1/(n + 1) for each

i.

The barycentre of a 0-simplex is itself, the barycentre of a 1-simplex is its midpoint,
and so forth.
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Figure 2.10: Barycentric subdivision of a 2-simplex

Definition 2.19. The barycentric subdivision of an n-dimensional simplex
σ = σ(X0, X1, . . . , Xn) consists of (n + 1)! simplices. Each one, say σ(t0, t1, . . . , tn), can
be associated with a permutation {s0, s1, . . . , sn} of {X0, X1, . . . , Xn}, in such a way that
each vertex ti is the barycentre of the simplex σ(s0, s1, . . . , si).

Figure 2.10 shows the barycentric subdivision of a 2-simplex. For example, the sim-
plex S1 = σ(s0, s1, s2) is associated with the permutation {X2, X0, X1}, because s0 is
the barycentre of σ(X2), s1 is the barycentre of σ(X2, X0) and s2 is the barycentre of
σ(X2, X0, X1). Similarly S2, S3, . . . , S6 have associated permutations.
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Chapter 3

Scarf’s Theorem on Primitive Sets

In this chapter we will examine the first of many versions of Scarf’s Theorem. We will
need the concepts of primitive sets, covering simplices and labellings.

3.1 Primitive Sets and Covering Simplices

We will first restrict our attention to a specific simplex, called the standard simplex, and
then study a set P of points taken from this simplex and its hyperplane. Definitions in
this section come from [20, 25].

Denote by S the n-simplex σ(e0, e1, . . . , en), where {e0, e1, . . . , en} are the points
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}. The simplex S is called the standard sim-

plex and can also be written as

S = {X = (x0, x1, . . . , xn)| all xk ≥ 0,
∑

xk = 1}.

Refer to Figure 3.1 for representations of the standard 1- and 2-simplices.

Now consider a set P of points in R
n+1 of size N + 1, N ≥ n. The first n + 1 points in
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Figure 3.1: Example of standard simplices

the collection do not lie in S and have the form:

X0 = (1 − n, 1, 1, . . . , 1)

X1 = (1, 1 − n, 1, . . . , 1)
...

...

Xn = (1, 1, 1, . . . , 1 − n)

Note that the points X0, X1, . . . , Xn lie on the same hyperplane as the points e0, e1, . . . , en,
that is, π(X0, X1, . . . , Xn) = π(e0, e1, . . . , en). One way to see this is to note that the sum
of the coordinates of all points is 1.

Next, the points Xn+1, Xn+2, . . . , XN of P are points taken arbitrarily within the in-
terior of S.

From this ground set P we will be interested in subsets of size n + 1. Such a subset
will be called primitive if it satisfies the following condition.

Definition 3.1. A set of n+1 points W = {Xj0, Xj1, . . . , Xjn} chosen from P = {X0, . . . , XN}
is called primitive if there is no point Xj ∈ P such that xj

k > min{xj0
k , xj1

k , . . . , xjn

k } for
all k. We call a point Xj ∈ W with xj

k = min{xj0
k , xj1

k , . . . , xjn

k } a minimizer in k .
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For example, for S a 2-simplex and

P = {X0 = (−1, 1, 1), X1 = (1,−1, 1), X2 = (1, 1 − 1), X3 = (
1

3
,
1

3
,
1

3
), X4 = (

1

2
,
1

4
,
1

4
)},

the set {X0, X1, X4} is not primitive because every coordinate x3
i of X3 is greater than

the ith coordinate of the minimizer in i. Indeed,

x3
0 =

1

3
> min{x0

0, x
1
0, x

4
0} = −1,

x3
1 =

1

3
> min{x0

1, x
1
1, x

4
1} = −1,

x3
2 =

1

3
> min{x0

2, x
1
2, x

4
2} =

1

4
.

A more intuitive way of understanding primitive sets will be presented later in this
section. It requires the notion of a covering simplex.

Definition 3.2. The covering simplex of a set of n+1 points W = {Xj0, Xj1, . . . , Xjn}
from P is defined as {X|xk ≥ min{xj0

k , xj1
k , . . . , xjn

k } for all k} ∩ S.

The proof that a covering simplex is indeed a simplex is deferred to the end of this
section. Geometrically, the covering simplex of a set W is the minimal simplex whose faces
are parallel to the faces of S and that contains all the points of W which are also in S.

Figure 3.2: Examples of covering simplices
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Refer to Figure 3.2 for some examples of covering simplices. Figure 3.2 a) exhibits the
covering simplex of the set W = {X3, X4, X5}. If W includes points from {X0, . . . , Xn},
which lie outside of S, then the covering simplex of W will not contain them, as shown
in Figure 3.2 b). Also note that not every point of W need be contained in a face of its
covering simplex, as in Figure 3.2 c).

Primitive sets can also be interpreted geometrically. A set W of n + 1 points from P is
primitive if no point of P lies in the interior of its covering simplex. Indeed, if there existed
a point X of P in the interior of the covering simplex, then xi > min{xj0

i , xj1
i , . . . , xjn

i } (note
the strictly greater than), for all i, which contradicts the definition of a primitive set.

Figure 3.3: Primitive sets

In Figure 3.3 a), for P = {X0, . . . , X7}, there are two sets W 1 = {X4, X5, X7} and
W 2 = {X5, X6, X7} of n + 1 points. The first is not primitive because X3 lies in the
interior of its covering simplex. The set W 2 however is primitive because no point of P
lies in the interior of its covering simplex (in dotted lines). It is also possible for a point in
W itself to lie in the interior of its covering simplex, as seen in Figure 3.2 c). That set is
thus not primitive.

The set W = {X3, X4, X5} in Figure 3.3 b) is primitive, yet one of its points, X3, is
redundant. Primitive sets of this form are called degenerate and are not desirable. To
avoid them, the following assumption is made.

Definition 3.3 (Non-Degeneracy Assumption). For each i = 0, . . . , n, the value of
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min{xj0
i , xj1

i , . . . , xjn

i } is unique for every set of n + 1 points {Xj0, Xj1, . . . , Xjn} of P .

Lemma 3.4. The Non-Degeneracy Assumption ensures that every point in a primitive set
of n+1 points W = {Xj0, Xj1, . . . , Xjn} from P is the minimizer in exactly one coordinate.
That is, there is a one-to-one correspondence between a point of W and a minimum-valued
coordinate.

Proof. Let W = {Xj0, Xj1, . . . , Xjn} be a primitive set of n + 1 members of P . Define a
function fW : {0, 1, . . . , n} → W . The function takes a coordinate k ∈ {0, 1, . . . , n} to a
point X in W which achieves the minimum in coordinate k.

By the Non-Degeneracy Assumption, that minimum is unique for every W , thus fW is
well defined.

The codomain of fW is finite and has the same size as the domain. Hence to show fW

is one-to-one and onto, only one of these properties needs to be demonstrated.

Suppose fW is not onto, and there exists a point Xji ∈ W which achieves the minimum
in no coordinate. Then it must be that for all k, xji

k > min{xj0
k , xj1

k , . . . , xjn

k }. This implies
that W is not primitive. Contradiction.

Hence fW is one-to-one and onto, and there exists a unique correspondence between
points in a primitive set and a minimum-valued coordinate.

As promised earlier, the proof that a covering simplex is indeed a simplex is presented
here. It is not difficult but it is lengthy.

Lemma 3.5. The covering simplex of a set of n + 1 points {Xj0, Xj1, . . . , Xjn} from P is
indeed a simplex.

Proof. Let W = {Xj0, Xj1, . . . , Xjn} be any set of n + 1 members of P , and let C be the
covering simplex of W , where C = {X|xk ≥ min{xj0

k , xj1
k , . . . , xjn

k } for all k} ∩ S.

To show C is a simplex, we display n+1 geometrically independent points whose convex
hull is C.

First, let mi = max{min{xj0
i , xj1

i , . . . , xjn

i }, 0}. Notice that mk ≥ 0.

Then rewrite C = {X|xk ≥ mk for all k} ∩ S. The extra condition that mk ≥ 0 is
redundant because all points in S have coordinates which are greater than or equal to 0.

Claim 3.5.1. m0 + m1 + · · · + mn < 1.
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Proof. First, consider the case where W ∩S = ∅. There is only one such set of n+1 points
in P , namely W = {X0, . . . , Xn}. Given that X i = (xi

0, x
i
1, . . . , x

i
n) where

xi
k =

{

1 − n k = i
1 otherwise

,

then we have m0 = m1 = · · · = mn = 0. Hence m0 + m1 + · · ·+ mn = 0 < 1.

Now assume W ∩ S 6= ∅ and begin by showing m0 + m1 + · · ·+ mn ≤ 1.

Take a point X ∈ W ∩ S. Then X ∈ S and so x0 + x1 + . . . + xn = 1 and xk ≥ 0 for
all k. Further X ∈ W , and since mk = max{min{xj0

i , xj1
i , . . . , xjn

i }, 0}, xk ≥ mk for all k.
Therefore,

1 = x0 + x1 + · · · + xn

≥ m0 + m1 + · · · + mn (3.1)

The equality in equation (3.1) only holds if xi = mi for all i. We consider two cases:

1. Say there exists any other point X ′ ∈ W ∩ S. Then x′
k > mk, for some k (note the

strictly greater than, given that X ′ cannot achieve the minimum in every coordinate,
otherwise X ′ = X).

Then 1 =

n
∑

k=0

x′
k >

n
∑

k=0

mk = 1. Contradiction.

2. If no such second point X ′ ∈ W ∩ S exists, then all other points in W come from
{X0, . . . , Xn}. Say they are the points {Xj1, . . . , Xjn}. But then mjk

= 0, for all
k = 1, . . . , n.

Hence 1 =
n

∑

k=0

xk =
n

∑

k=0

mk = mj0 + mj1 + · · ·+ mjn
= mj0 + 0 + · · ·+ 0 = mj0 .

Then X is one of the points ei, an extreme point of S. Contradiction, X must be
taken from the interior of S.

Therefore we have m0 + m1 + · · ·+ mn < 1
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Now consider the following points Y 0, . . . , Y n:

Y 0 = (1 − (m1 + m2 + · · · + mn), m1, m2, . . . , mn)

Y 1 = (m0, 1 − (m0 + m2 + · · ·+ mn), m2, . . . , mn)
...

...

Y n = (m0, m1, m2, . . . , 1 − (m0 + m1 + m2 + · · · + mn−1))

We claim that these points are extremal in C. First we show Y 0, Y 1, . . . , Y n are geo-
metrically independent.

Claim 3.5.2. The points Y 0, Y 1, . . . , Y n are geometrically independent.

Proof. Suppose for a contradiction that Y i = λ0Y
0+· · ·+λi−1Y

i−1+λi+1Y
i+1+· · ·+λnY n,

with λ0 +λ1 + · · ·+λi−1 +λi+1 + · · ·+λn = 1. Rewriting we have λ0Y
0 + · · ·+λi−1Y

i−1 +
λiY

i + λi+1Y
i+1 + · · · + λnY

n = 0 with λi = −1. Hence equivalently, we show that
λ0Y

0 + · · ·+λnY
n = 0 and λ0 +λ1 + · · ·+λn = 0 implies λ0 = λ1 = · · · = λn = 0. Consider

the following augmented system [ Y 0 Y 1 · · · Y n | 0 ].















1 − m0 − m1 − · · · − mn m0 · · · m0 0
m1 1 − m0 − m2 − · · · − mn · · · m1 0
m2 m2 · · · m2 0
...

...
. . .

...
...

mn mn · · · 1 − m0 − m1 − · · · − mn−1 0















.

If we can row reduce the first n + 1 columns to the identity matrix, the final column
will yield the unique zero solution for λ. First, add rows 1, . . . , n and add to row 0 to get:















1 1 . . . 1 0
m1 1 − m0 − m2 − · · · − mn . . . m1 0
m2 m2 . . . m2 0
...

...
. . .

...
...

mn mn . . . 1 − m0 − m1 − · · · − mn−1 0















.

Next, eliminate the entries below the 1 in the 0th column. First multiply the 0th row
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by m1 and subtract it from the first row. Follow similarly on rows 2, . . . , n to get:















1 1 . . . 1 0
0 1 − m0 − m1 − · · · − mn . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 − m0 − m1 − · · · − mn 0















.

We can divide all rows except the 0th by 1−m0 −m1 −· · ·−mn, which by Claim 3.5.1
is greater than 0. Finally, by subtracting the sum of rows 1, · · · , n from the 0th row, we
get the identity matrix.















1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















.

Therefore the only solution to λ0Y
0 + · · ·+λnY

n = 0 and λ0 +λ1 + · · ·+λn = 0 is λ0 =
λ1 = · · · = λn = 0. Hence the points Y 0, Y 1, . . . , Y n are geometrically independent.

It remains to be shown that σ(Y 0, Y 1, . . . , Y n) = C. The following two claims conclude
the proof.

Claim 3.5.3. σ(Y 0, Y 1, . . . , Y n) ⊆ C.

Claim 3.5.4. C ⊆ σ(Y 0, Y 1, . . . , Y n).

Proof of Claim 3.5.3. To show the convex hull of Y 0, Y 1, . . . , Y n is contained in C, we
ensure all linear combinations of Y 0, Y 1, . . . , Y n where the sum of the scalars is 1 belong
to C.

Let λ0, λ1, . . . , λn be non-negative scalars such that
n

∑

k=0

λk = 1. Examine

Z = λ0Y
0+λ1Y

1+· · ·+λnY
n =











λ0(1 − (m1 + m2 + · · ·+ mn)) + λ1m0 + · · ·+ λnm0

λ0m1 + λ1(1 − (m0 + m2 + · · · + mn)) + · · ·+ λnm1
...

λ0mn + λ1mn + · · · + λn(1 − (m0 + m1 + · · ·+ mn−1))











.
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We have Z ∈ C if and only if
n

∑

k=0

zk = 1, zk ≥ 0 for all k, and zk ≥ mk for all k. Given

that mk ≥ 0 for all k, only the first and last are shown.

First,

n
∑

k=0

zk = λ0 + λ1 + · · ·+ λn, and λ0 + λ1 + · · · + λn = 1 by definition.

Now to show zk ≥ mk for all k, look at the first component; the others are worked
similarly.

z0 = λ0(1 − (m1 + m2 + · · · + mn)) + λ1m0 + λ2m0 + · · · + λnm0

= λ0 − λ0(m1 + m2 + · · ·+ mn) + m0(λ1 + λ2 + · · · + λn)

= λ0 − λ0(m1 + m2 + · · ·+ mn) + m0(1 − λ0), since λ0 + λ1 + · · · + λn = 1

= λ0 − λ0(m1 + m2 + · · ·+ mn) + m0 − λ0m0

= λ0 − λ0(m0 + m1 + m2 + · · ·+ mn) + m0

= λ0(1 − (m0 + m1 + m2 + · · · + mn)) + m0

≥ m0, since m0 + m1 + · · · + mn < 1 by Claim 3.5.1 and λ0 ≥ 0.

Hence the convex hull of Y 0, Y 1, . . . , Y n is contained in C.

Proof of Claim 3.5.4. To show C ⊆ σ(Y 0, Y 1, . . . , Y n), consider any point X = (x0, . . . , xn) ∈

C. It is necessary to find non-negative scalars λ0, λ1, . . . , λn with
n

∑

k=0

λk = 1 where
n

∑

k=0

λkY
k = X.

Then X will belong to the convex hull of {Y 0, Y 1, . . . , Y n}.

Let














λ0

λ1

λ2
...

λn















=















x0−m0

1−m0−m1−···−mn
x1−m1

1−m0−m1−···−mn
x2−m2

1−m0−m1−···−mn

...
xn−mn

1−m0−m1−···−mn















It remains to be shown that these scalars satisfy all conditions.

Claim 3.5.5. λk ≥ 0 for all k ∈ {0, 1, . . . , n} and
n

∑

k=0

λk = 1.
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Proof. Because X ∈ C, by definition xk ≥ mk for all k, and by Claim 3.5.1, m0 + m1 +
· · · + mn < 1 so the numerator is non-negative and the denominator is positive. Hence
λk ≥ 0.

Next examine

n
∑

k=0

λk =
x0 − m0

1 − m0 − m1 − · · · − mn

+
x1 − m1

1 − m0 − m1 − · · · − mn

+ · · ·+
xn − mn

1 − m0 − m1 − · · · − mn

=
x0 + x1 + · · ·+ xn − m0 − m1 − · · · − mn

1 − m0 − m1 − · · · − mn

=
1 − m0 − m1 − · · · − mn

1 − m0 − m1 − · · · − mn

, since x0 + x1 + · · ·+ xn = 1

= 1.

Finally we show that
n

∑

k=0

λkY
k = X.

n
∑

k=0

λkY
k =











λ0(1 − (m1 + m2 + · · ·+ mn)) + λ1m0 + · · ·+ λnm0

λ0m1 + λ1(1 − (m0 + m2 + · · · + mn)) + · · ·+ λnm1
...

λ0mn + λ1mn + · · · + λn(1 − (m0 + m1 + · · ·+ mn−1))











.

We show the first component is x0, the others are worked similarly.

λ0(1 − (m1 + m2 + · · · + mn)) + λ1m0 + λ2m0 + · · ·+ λnm0

= λ0(1 − (m0 + m1 + m2 + · · · + mn)) + m0, as shown in Claim 3.5.3

=
x0 − m0

1 − m0 − m1 − · · · − mn

(1 − (m0 + m1 + m2 + · · ·+ mn)) + m0

= x0.

Therefore we conclude that C ⊆ σ(Y 0, Y 1, . . . , Y n).
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3.2 Labellings

Recall that S is the standard n-simplex and that P is a set of points from R
n+1 whose first

n + 1 points have the form:

X0 = (1 − n, 1, 1, . . . , 1)

X1 = (1, 1 − n, 1, . . . , 1)
...

...

Xn = (1, 1, 1, . . . , 1 − n)

and whose remaining points Xn+1, Xn+2, . . . , XN are taken arbitrarily within the interior
of S.

Definition 3.6. Points in P are said to be properly labelled by ℓ if ℓ(X) ∈ {0, 1, . . . , n}
and if ℓ(Xj) = j for j = 0, . . . , n.

Additionally, a primitive set whose points carry a complete set of labels {0, 1, . . . , n} is
said to be fully labelled by ℓ.

3.3 Scarf’s Theorem on Primitive Sets

We will examine many forms of Scarf’s Theorem; this one is a version sightly modified by
Kuhn ([20]) and involves proper labellings and primitive sets.

Theorem 3.7 (Scarf’s Theorem on primitive sets, [20]). Let subdivision points Xn+1, . . . , XN

be chosen from the interior of S so as to satisfy the Non-Degeneracy Assumption. Let ℓ be
a proper labelling of P . Then there exists an odd number of fully labelled primitive sets.

In order to prove Theorem 3.7, we will require the following important lemma, due to
Scarf in [25].

Lemma 3.8 ([25, Lemma 1]). Let W = {Xj0, Xj1, . . . , Xjn} be a primitive set, and let
Xjt be a given point in that list. Then there exists exactly one other point Xjh in P with
jh 6= jt such that the set {Xj0, Xj1, . . . , Xjt−1, Xjh, Xjt+1, . . . , Xjn} is either a primitive set
or (exceptionally) the set {X0, X1, . . . , Xn}.
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Figure 3.4: Change of primitive set on 2-simplex

Proof. First consider the non-exceptional case. Refer to Figure 3.4 a) to help with the
proof.

Let W = {Xj0, Xj1, . . . , Xjn} be a primitive set and Xjt a point in that set. Label the
points in W such that the minimizer in i is Xji, that is, such that xji

i = min{xj0
i , xj1

i , . . . , xjn

i }.
We are guaranteed by Lemma 3.4 to find such a unique minimum.

To find the substitution point Xjh we will appeal to the geometric interpretation. When
Xjt is removed from W , we lose the minimizer in t. Let Xju be the point in W with the
second lowest value in the tth coordinate (This point is also unique by Lemma 3.4).

Note that Xju is not one of the first n+1 points of P , namely ju > n. If on the contrary
X i, i 6= t had the second minimum (with a tth coordinate of value 1), then no other point
in W would lie in the interior of S, which is the exceptional case. Further, X t cannot have
the second minimum, as its tth coordinate is 1−n, which is minimum over all of P . Hence
ju > n and Xju is the new minimizer in t.

The goal is to find a new point Xjh to replace Xju as the minimizer in u. To do this
we gradually move the face (of the covering simplex) containing Xju, parallel to itself, by
lowering the uth coordinate and taking Xjh to be the first point to touch this face and
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satisfying:

xjh

i > xji

i , i 6= t, u

and
xjh

t > xju

t .

These conditions ensure Xjh does not become a minimizer in any coordinate but u.
Note that the first point satisfying those conditions could be Xjh = Xu. This is the case
when no point in S satisfies the above conditions, hence we must look outside of S. First,
we claim that Xu cannot already lie in W . This follows from the fact that Xju is the
minimizer in u, yet Xu has the minimum uth coordinate over all of P (with uth coordinate
1 − n). Hence if Xu were in W , it would be Xju. Yet we concluded above that ju > n,
therefore Xu is not in W .

It follows that some replacement point Xjh can be found.

By taking Xju as the point with the second minimum in the tth position and taking Xjh

as the first point encountered, we guarantee that W ′ = {Xj0, . . . , Xjt−1, Xjh, Xjt+1, . . . , Xjn}
is a primitive set.

It remains to show that Xjh is unique in P . We do so with the following three obser-
vations.

1. If W ′ = {Xj0, . . . , Xjt−1, X ′, Xjt+1, . . . , Xjn} forms a primitive set, then for i 6= t, u,
Xji must be the minimizer in i. Suppose not, and that some Xji becomes the
minimizer in a coordinate other than i.

The only point to leave W is Xjt . Hence Xji, i 6= t, u cannot become the minimizer
in any coordinate but t, otherwise it would replace a minimizer which was originally
in W and is still in W ′. Now Xji cannot be the minimizer in t, unless i = u, since
Xju has the second minimum in the tth coordinate by construction, and is in W ′.

Thus xji

i = min{xj0
i , . . . , x

jt−1

i , x′
i, x

jt+1

i , . . . , xjn

i }, i 6= t, u.

There are two remaining possibilities: either X ′ is the minimizer in t and Xju the
minimizer in u, or vice versa.

2. If W ′ = {Xj0, . . . , Xjt−1, X ′, Xjt+1, . . . , Xjn} forms a primitive set, and X ′ 6= Xjt,
then X ′ must be the minimizer in u and Xju the minimizer in t. Otherwise we would
have Xji as the minimizer in i for all i 6= t, and X ′ as the minimizer in t. But
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this would either leave X ′ in the interior of the covering simplex of W (if x′
t > xjt

t )
or Xjt in the interior of the covering simplex of W ′ (if x′

t < xjt

t ), both of which
are impossible. We conclude that X ′ = Xjt, and we are back where we started.
Therefore we must have X ′ as the minimizer in u and Xju as the minimizer in t.

3. If {Xj0, . . . , Xjt−1, X ′, Xjt+1, . . . , Xjn} forms a primitive set, and X ′ 6= Xjt, then X ′

must be the point Xjh described above. This follows from the fact that we picked
Xjh to be the first to touch the face containing Xju as we lowered its uth coordinate.

Now we need only handle the exceptional case. Refer to Figure 3.4 b). Let W =
{Xj0, Xj1, . . . , Xjn} be a primitive set and Xjt be the only point of W in the interior of S.
Say the only point from {X0, X1, . . . , Xn} not in W is Xh.

Then it must be that Xjt is the minimizer in h, since X i is clearly the minimizer in
i, i 6= h (with ith coordinate 1 − n). If this is the case, then there is no unique point
with a second minimum hth coordinate, as all other points in W have hth coordinate 1.
Furthermore, no interior point can be introduced to replace Xjt as that would make Xjt

lie in the interior of the new covering simplex, and cause the new set not to be primitive.

In this case we replace Xjt by Xh, and the new set is {X0, X1, . . . , Xn}.

We can now return to Theorem 3.7, whose proof is adapted from [27].

Proof. (of Theorem 3.7)

We first find one primitive set with a complete set of labels.

Consider the set W = {X, X1, X2, . . . , Xn}, where X is the point in the interior of
S with the largest 0th coordinate. Note that W is primitive, otherwise a point in P has
0th coordinate larger than min{x0, x

1
0, x

2
0, . . . , x

n
0} = min{x0, 1, 1, . . . , 1} = x0, which is

impossible by construction.

If ℓ(X) = 0, we are done, as ℓ(X1) = 1, ℓ(X2) = 2, . . . , ℓ(Xn) = n by the rules of a
proper labelling. Otherwise ℓ(X) is one of {1, 2, . . . , n} and collides with one of ℓ(X i), i 6= 0,
say ℓ(Xk). If we remove Xk from W , by Lemma 3.8, we can find a unique point X ′ such
that W ′ = {X, X1, . . . , Xk−1, X ′, Xk+1, . . . , Xn} is primitive.

Now, if ℓ(X ′) = 0, we are done. At each step we have a primitive set of n + 1 points,
n of which have labels {1, 2, . . . , n} and one newly introduced point X. If ℓ(X) = 0, we

31



are done, otherwise by removing the point Xk with ℓ(Xk) = ℓ(X), we can find exactly one
replacement point.

Because the number of primitive sets is finite, if we show there is no revisiting of prim-
itive sets, this process must terminate. Either it terminates with a fully labelled primitive
set, or with the set {X0, X1, X2, . . . , Xn}, which is fully labelled but not primitive. In
this latter case, X0 must be the last point to have been introduced, because had it been
introduced earlier, our procedure would have terminated. (ℓ(X0) = 0). Hence the state
before this one was a primitive set {X, X1, X2, . . . , Xn}, with X an interior point. In order
for this set to be primitive X must be the point in the interior of S with the largest 0th
coordinate, and is unique by the Non-Degeneracy Assumption. This state is therefore our
starting state. Hence we only need to show that no state, including our starting state, is
ever revisited.

Assume for a contradiction that W is the first primitive set to be revisited. If it is not
the initial set then it can be reached by one of two subsets of W with n distinct labels. But
both of these subsets would have been encountered in our first pass through W , therefore
W is not the first set to be revisited. Similarly, if W is the initial set ({X1, . . . , Xn} plus
one other interior point) then it can only be reached through one subset of n points of
W having distinct labels, since the set {X0, X1, . . . , Xn} is not primitive. But this set we
would have seen in our first pass. Therefore no set is ever revisited.

Now suppose there exists another fully labelled set W , one which was not found by
the above procedure. Then by a similar argument, we must be able to remove the point
having label 0 in W and find another primitive set. Proceeding as above, we can travel from
primitive set to primitive set, without revisiting any set and reach another fully labelled
primitive set. That is, every additional fully labelled sets must come in pairs. Along with
the original one we found, there exists an odd number of fully labelled sets.
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Chapter 4

Scarf’s Theorem and Sperner’s

Lemma

Scarf’s Theorem of Chapter 3 can be reformulated slightly and shown to be equivalent to
a well known result in Topology: Sperner’s Lemma. We defer to the end of the chapter
the details of the lemma as well as the proof of equivalence between the two results.
First we examine the reformulation of Scarf’s Theorem, which we call Scarf’s Theorem on
subdivisions. Though it is significantly different from the version seen in Chapter 3, what
links these two versions together is their proofs: they are the same but written in different
language.

4.1 Scarf’s Theorem on Subdivisions

This version of the theorem comes from Scarf in [27]. Let σ = σ(X0, X1, . . . , Xn) be a
simplex. Suppose σ has a restricted subdivision and that {Xn+1, . . . , XN} are the vertices
of the subdivision.

Note that the definition of X0, X1, . . . , Xn here is different from that of Chapter 3. Here
they represent the extreme points of σ, and not the special points lying on the hyperplane
of σ.

We introduce a very similar labelling rule to the one presented in Definition 3.6, this
time acting on vertices of the subdivision.
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Definition 4.1. Let σ1, . . . , σk form a restricted subdivision of a simplex
σ = σ(X0, X1, . . . , Xn), and let Xn+1, . . . , XN be the vertices of the subdivision. We say
the restricted subdivision is properly labelled by ℓ if for the points {X0, X1, . . . , XN},
ℓ(Xj) ∈ {0, 1, . . . , n} for all j and ℓ(Xj) = j, for j = 0, . . . , n.

Further, a simplex whose vertices have all labels {0, 1, . . . , n} is said to be fully labelled

by ℓ.

See Figure 4.1 for an example of a properly labelled 2-simplex.

Figure 4.1: Proper labelling of a 2-simplex

Theorem 4.2 (Scarf’s Theorem on Subdivisions, [27, Lemma 3.3]). Let σ1, . . . , σk be a
collection of simplices that form a restricted subdivision of the simplex σ, and let ℓ be a
proper labelling. Then there exists an odd number of fully labelled elementary simplices.

Proof. Relabel σ to σ0 to help with notation.

First construct a graph G = (V, E) from the simplex and its subdivision. Associate a
vertex vi to each simplex σi, i = 0, . . . , k.

If a facet of the subdivision has vertices with labels {1, 2, . . . , n}, we call it a fully

labelled facet. Two vertices of V are joined by an edge if their associated simplices share
a fully labelled facet.

Note that because the subdivision is restricted, σ0 shares its facets with elementary
simplices.

We make the following claims about G:
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Figure 4.2: Constructing a graph from a simplicial subdivision

Claim 4.2.1. All vertices have degree at most 2. Further, vertices of degree 1 correspond
to fully labelled simplices.

Proof. A vertex vi is connected to vj if and only if σi and σj share a fully labelled facet.
If no facet of σi is fully labelled, then deg(vi) = 0. Now suppose σi has a facet with labels
{1, 2, . . . , n}. Then σi only has one more extreme point X which is not contained in that
facet.

If ℓ(X) = 0, then σi is fully labelled and cannot contain any other fully labelled facets.
In this case deg(vi) = 1.

Otherwise ℓ(X) ∈ {1, 2, . . . , n}, and collides with the label of a unique point in the fully
labelled facet, say X ′. There exists exactly one other fully labelled facet of σi, namely the
one obtained by interchanging X and X ′. Hence deg(vi) = 2.

Claim 4.2.2. The degree of v0 is one.

Proof. Here v0 corresponds to the standard simplex σ0, which is fully labelled by construc-
tion, hence by Claim 4.2.1, v0 has degree 1.

Claim 4.2.3. The number of vertices of degree 1 in G is even.

Proof. G is a collection of paths and cycles, hence by a standard Graph Theory result, the
number of vertices of degree 1 is even (adding up the pairs of path end points).

One of the fully labelled simplices is σ0, which is not an elementary simplex, hence the
number of fully labelled elementary simplices is odd.
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4.2 Sperner’s Lemma

As noted in the beginning of the chapter, Scarf’s Theorem on subdivisions is equivalent to
Sperner’s Lemma ([30]).

First, we examine Sperner’s Lemma in its most common form, and prove it using a com-
binatorial method, taken from [4]. It will involve the standard simplex S = σ(e0, e1, . . . , en),
where the points e0, e1, . . . , en are {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

The labelling rule we will use is called a Sperner labelling. It is very similar to the
labelling rule introduced in Section 4.1.

Definition 4.3. Let S1, . . . , Sk form a simplicial subdivision of the standard simplex S,
and let Xn+1, . . . , XN be the vertices of the subdivision. Let ℓ be a labelling rule such that
ℓ(X) is one of the indices i for which xi > 0. Then we say ℓ is a Sperner labelling.

This labelling is similar to the labelling in Definition 4.1 because if we considered a
restricted subdivision of the standard simplex, the points X0, X1, . . . , Xn would receive

labels ℓ(X i) = i, given that xi
k =

{

1 if k = i
0 otherwise

. Further, the interior points of S could

receive any label from {0, 1, . . . , n} since none of their coordinates have value 0. Refer back
to Figure 4.1.

Note however that the simplicial subdivision need not be restricted. As Figure 4.3
demonstrates, vertices on the boundary of S have a restricted choice for labels. These
vertices lie on one of the hyperplanes xi = 0, and therefore cannot be labelled by i. For
example, the face σ((1, 0, 0), (0, 1, 0)) is on the plane x2 = 0 and so vertices on that face
can have label 0 or 1 but not 2.

Note also that the labelling rule can be abstracted to any simplex, not only the standard
simplex. The rule is then more cumbersome to state, but note that the proof below will
not assume the simplex is standard.

Theorem 4.4 (Sperner’s Lemma, [4, p. 421]). Let S1, . . . , Sk form a simplicial subdivision
of the standard n-simplex S, and ℓ be a Sperner labelling on that subdivision. Then there
exists an odd number of elementary simplices Si with vertices carrying a complete set of
labels. In particular, there is at least one.

Proof. The proof is by induction on n, the dimension of the simplex, with n ≥ 1.
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Figure 4.3: Sperner labelling for a standard 2-simplex

A simplicial subdivision of a 1-simplex S is simply a line segment which has been
subdivided into smaller elementary segments. The vertices of S are labelled 0 and 1, while
the vertices of the subdivision are labelled arbitrarily from {0, 1}. We must show that the
number of elementary segments carrying both labels {0, 1} is odd.

We first count the occurrences of the label 0 by considering the elementary segments
with one end point labelled 0. They fall in two categories, either they have the other
end point labelled 0, or the other end point labelled 1. Let a be the number of elementary
segments labelled {0, 0}, and b the number of elementary segments labelled {0, 1}. The first
contributes 2a occurrences of the label 0, while the second only accounts for b occurrences
of the label 0. In total, there are 2a + b occurrences of the 0 label.

Now we examine S as a whole. Only one of its end points is labelled 0, and this endpoint
is adjacent to only one elementary segment. Therefore all other occurrences of the label 0
occur in the interior of the segment, and are twice accounted for. Hence 2a + b must be
odd, which implies b is odd, which is what we wanted to show.

Assume now that a properly labelled k-simplex contains an odd number of fully labelled
elementary simplices and examine the case where n = k + 1.

We will count the number of facets in the subdivision that carry all labels {1, 2, . . . , k}
(but not 0). Let b be the number of fully labelled elementary simplices in S. Each of
those contributes one fully labelled facet to our count. Let a be the number of elementary
simplices with a fully labelled facets but are missing the label 0. These simplices only have
one more vertex not in the facet, whose label must collide with a label of a point in the
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facet. Interchanging these two points yields exactly one other fully labelled facet. Hence
we account for 2a fully labelled facets, and the total is 2a + b.

Some of these facets lie in the interior of S, others on the boundary. If they occur
on the boundary they must occur on the unique facet of S admitting labels {1, 2, . . . , k},
because all other facets of S admit the label 0. This facet is of dimension k, hence by the
induction hypothesis the number of fully labelled facets contributed from the boundary is
odd. If the fully labelled facets occur on the interior of S, they are accounted for twice,
once for each simplex on either side of the facet. Hence the total number of fully labelled
facets accounted for is odd, implying that 2a + b and so b is also odd.

In a Sperner labelled n-simplex, the number of fully labelled elementary simplices is
odd.

4.3 Scarf’s Theorem and Sperner’s Lemma

Now we are ready to show that Sperner’s Lemma and Scarf’s Theorem are equivalent.
To show Scarf’s Theorem as a corollary to Sperner’s Lemma, we will use the fact that
restricted subdivisions are a special class of subdivisions.

Theorem 4.4 (Sperner’s Lemma). Let S1, . . . , Sk form a simplicial subdivision of the
standard n-simplex S, and ℓ be a Sperner labelling on that subdivision. Then there exists
an odd number of elementary simplices Si with vertices carrying a complete set of labels.
In particular, there is at least one.

Corollary 4.5 (Scarf’s Theorem). Let σ1, . . . , σk be a collection of simplices that form a
restricted subdivision of a simplex σ, and let ℓ be a proper labelling. Then there exists an
odd number of fully labelled elementary simplices.

Proof. As mentioned in the previous section, Sperner’s Lemma applies even if σ is not the
the standard simplex, as long as the labelling rule mimics the Sperner labelling. Indeed,
it was also discussed previously how a proper labelling rule on a restricted subdivision is
the same as a Sperner labelling.

Now given that a restricted subdivision is a special case of a simplicial subdivision,
Theorem 4.4 applies and yields an odd number of fully labelled elementary simplices.
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In reformulating the theorem on subdivisions, Scarf has contributed to the proof of
Sperner’s Lemma in two ways.

First, the proof of Theorem 4.2 is constructive, unlike the counting argument used in
the proof of Theorem 4.4. It makes it possible to find a fully labelled simplex without the
use of exhaustive search: by following the unique path in G which started at v0. We will
argue at the end of Section 7.2 why this is better than exhaustive search.

Secondly, the proof of Theorem 4.2 does not require induction. This is because we
examine restricted subdivisions only, and so the boundary of the simplex contains only one
fully labelled facet, as opposed to an odd number of them.

Here is how we can show Sperner’s Lemma using Scarf’s Theorem on subdivisions.

Theorem 4.2 (Scarf’s Theorem). Let σ1, . . . , σk be a collection of simplices that form a
restricted subdivision of a simplex σ, and let ℓ be a proper labelling. Then there exists an
odd number of fully labelled elementary simplices.

Corollary 4.6 (Sperner’s Lemma). Let S1, . . . , Sk form a simplicial subdivision of the
standard n-simplex S, and ℓ a Sperner labelling on that subdivision. Then there exists an
odd number of elementary simplices Si with vertices carrying a complete set of labels.

Proof. To prove Sperner’s Lemma using Scarf’s Theorem, we first embed the standard
simplex S in a larger simplex σ with vertices t0, t1, . . . , tn. We then extend the simplicial
subdivision of S to a restricted simplicial subdivision of σ by introducing the following
simplices.

Take an arbitrary subset U of {0, 1, . . . , n} with u < n + 1 members. Consider a
collection of n + 1 − u vertices of the face of S defined by xi = 0 for i ∈ U , and which lie
in a single simplex of the subdivision of S. These n + 1 − u vertices in S are augmented
by the u vertices ti for i ∈ U in order to define a simplex in the larger subdivision. See
Figure 4.4.

Apply Theorem 4.2 with l(ti) = i + 1 mod (n + 1).

It remains to be shown that any completely labelled simplex must lie entirely in S. A
completely labelled simplex may contain the vertices ti for i ∈ U , and n + 1 − u other
vertices on the face xi = 0 for i ∈ U . Since these n + 1 − u vertices (by Sperner labelling)
will be different from the members of U , the vertices ti’s must bear all U labels. But the
ti’s have labels that differ from U by construction, since l(ti) = i + 1 mod (n + 1). Hence
the fully labelled simplex must lie entirely in S.
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Figure 4.4: Forming a restricted subdivision from S in σ

Kuhn ([20]) also showed Scarf’s Theorem on primitive sets can be implied by Sperner’s
Lemma. To make the equivalence we will use the fact that the family of primitive sets of
P defines a pseudomanifold. We will also need a modified version of Sperner’s Lemma, one
that is abstracted to pseudomanifolds.

Theorem 4.7 (Sperner’s Lemma on pseudomanifolds, [20]). Let D be an abstract (n +
1)-pseudomanifold on the point set P = {X0, X1, . . . , Xn, Xn+1, . . . , XN}, and let P be
properly labelled according to Definition 3.6. If we remove the simplex {X0, X1, . . . , Xn},
then there exists an odd number of sets in D, each with a complete set of labels {0, 1, .., n}.

The pseudomanifold embodies the properties of a subdivision that are required for the
proof to hold. Also recall that a restricted subdivision defines a pseudomanifold (Lemma
2.17), which is yet another way to relate Sperner’s Lemma and Scarf’s Theorem on subdi-
visions.

Proof. We will use a counting argument as in the proof of Theorem 4.4. However, we will
consider D as a whole first, and later remove the set {X0, X1, . . . , Xn}.

Let b be the number of fully labelled simplices in D.
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First we count the number of n-subsets of the simplices of D that carry all labels
{1, 2, . . . , n} (but not 0). Call these fully labelled n-subsets.

Each fully labelled set of D contributes exactly one fully labelled n-subset to our count.
There are b of these.

Let a be the number of sets in D with a fully labelled n-subset but missing the label
0. These sets only have one more element not in the fully labelled n-subset, whose label
must collide with a label of a point in the subset. Interchanging these two points yields
exactly one other fully labelled n-subset. Hence we account for 2a fully labelled n-subsets,
and the total is 2a + b.

Because D is a pseudomanifold, every n-subset is a subset of exactly 2 sets of D. Hence
2a + b must be even, as we have counted each fully labelled n-subset twice. Therefore b,
the number of fully labelled sets of D, is even.

However, because the fully labelled set {X0, X1, . . . , Xn} has been removed from D, we
have one fewer. Therefore there exists an odd number of sets in D, each with a complete
set of labels {0, 1, .., n}.

Note that no induction was needed here, because a pseudomanifold has no boundary.

Now Scarf’s Theorem on primitive sets states that within the family of properly labelled
primitive sets, an odd number of them are fully labelled. Hence if we can establish that the
family of primitive sets, along with the extra set {X0, . . . , Xn} forms a pseudomanifold, we
can use the above form of Sperner’s Lemma to conclude that an odd number of primitive
sets are fully labelled.

Therefore we establish that Scarf’s Theorem on primitive sets is implied by Sperner’s
Lemma as stated above. Here is the required lemma.

Lemma 4.8 ( [20]). Let subdivision points Xn+1, Xn+2, . . . , XN be chosen arbitrarily within
the interior of a standard simplex S so as to satisfy the Non-Degeneracy Assumption. Then
the family of primitive sets from P together with {X0, X1, . . . , Xn} defines a pseudomani-
fold.

Proof. It was established in the proof of Theorem 3.7 that there exists at least one primitive
set, namely the set {X1, . . . , Xn} along with the subdivision point X in the interior of S
with the largest 0th coordinate.

Now we want to show that if a set of n points is a subset of a primitive set, then it
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is a subset of exactly two primitive sets, or (exceptionally) of a primitive set and the set
{X0, X1, . . . , Xn}.

In other words, if given a primitive set {Xj0, Xj1, . . . , Xjn} and a specific point Xjt

in that set, we can find exactly one other point Xjh in P with jh 6= jt such that the
set {Xj0, Xj1, . . . , Xjt−1, Xjh, Xjt+1, . . . , Xjn} is either primitive or (exceptionally) the set
{X0, X1, . . . , Xn}, we are done.

But this is exactly Lemma 3.8.

Lastly, we need to show that this pseudomanifold is connected, namely that we can
find a sequence between any two primitive sets. This follows from the fact that a single
simplex is considered.

Therefore by associating an abstract simplex with each primitive set and taking those
simplices along with the set {X0, X1, . . . , Xn}, we define a pseudomanifold.

In order to show that Sperner’s Lemma is implied by Scarf’s Theorem as in Theorem 3.7,
we just need to observe that the only property of the primitive sets of Theorem 3.7 that is
required for the proof is that they form a pseudomanifold. Therefore it is possible to show
that Scarf’s Theorem on primitive sets is also equivalent to Sperner’s Lemma.
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Chapter 5

Applications of Scarf’s Theorem

In order to motivate the combinatorial value of this topology-based theorem, we present
here two applications of Scarf’s Theorem as presented in Chapter 4. The first application
is more theoretical: using Scarf’s Theorem we prove a result which is similar but uses a
different labelling rule.

Second, we will examine an application to an area called fair division, which deals with
the partition of goods among parties in an equitable way.

5.1 Dual labelling

As a first application we show how Scarf’s Theorem can be used to prove a similar result
using a slightly different labelling rule. This was first presented in [27].

Definition 5.1. Let S1, S2, . . . , Sk form a subdivision of the standard n-simplex S. We
say the subdivision is sufficiently fine if no simplex of the subdivision has non-empty
intersection with every hyperplane xi = 0, i ∈ {0, . . . , n}.

The trivial subdivision is an obvious subdivision which is not sufficiently fine. However,
it is not the only one. Figure 5.1 shows a subdivision of the standard 2-simplex which is
not sufficiently fine because S3 intersects with the planes x0 = 0, x1 = 0, and x2 = 0.

Definition 5.2. Let S = σ(X0, X1, . . . , Xn) be the standard simplex and S1, S2, . . . , Sk

form a subdivision which is sufficiently fine. Further, let {Xn+1, Xn+2, . . . , XN} be the
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Figure 5.1: A subdivision which is not sufficiently fine

vertices of the subdivision. Let ℓ be a labelling rule on P = {X0, X1, . . . , XN} such that
ℓ(X) ∈ {0, 1, . . . , n} and for points X on the boundary of S, ℓ(X) is an index for which
xi = 0. Then we say that P is Scarf labelled.

See Figure 5.2 for a Scarf labelled 2-simplex. This rule can be thought of as the dual
to the Sperner labelling of Definition 4.3.

Figure 5.2: Scarf labelled 2-simplex

Lemma 5.3 ([27, Lemma 3.5]). Let S = σ(X0, X1, . . . , Xn) be the standard simplex and
S1, S2, . . . , Sk form a subdivision which is sufficiently fine. Further, let {Xn+1, Xn+2, . . . , XN}
be the vertices of the subdivision, and let ℓ be a Scarf labelling on P = {X0, X1, . . . , XN}.

44



Then there exists an odd number of fully labelled simplices of the subdivision.

Proof. We embed S in a larger simplex σ = σ(t0, t1, . . . , tn). Then we extend the subdivi-
sion of S to a restricted subdivision of σ.

Consider a subset U of {0, 1, . . . , n} with u < n + 1 members. Take n + 1 − u vertices
from the boundary of S that lie on the intersection of xi = 0, i ∈ U and which lie in a
single simplex of the subdivision of S. Extend these n+1−u vertices with u vertices from
σ, namely ti, i ∈ U . See Figure 5.3.

Figure 5.3: Extending a subdivision of S to a restricted subdivision of σ

We label the vertices t0, t1, . . . , tn by l(ti) = i. This new construction satisfies the
conditions of Theorem 4.2, namely we have a restricted subdivision with a proper labelling.
Hence the new subdivision must contain an odd number of fully labelled simplices. We
must show these simplices lie entirely within S.

Suppose for a contradiction that a fully labelled simplex contains all vertices ti, i ∈ U ,
for some fixed U , and n + 1 − u vertices from the intersection of the faces xi = 0, i ∈ U .

Vertices ti have label i, which implies that the n + 1 − u vertices from the boundary
of S must have all labels from {0, 1, . . . , n}\U . Being on the boundary of S, these vertices
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have a particular label only if the corresponding coordinate is zero. Hence for each label i
in {0, 1, . . . , n}\U , there exists a vertex on the face xi = 0.

Also, being on the intersection of all faces xi = 0, i ∈ U it follows that these n + 1 − u
vertices have their ith coordinate 0, i ∈ U .

So there are vertices from this simplex that lie on every face of S, that is, xi = 0,
i ∈ {0, 1, . . . , n}, which contradicts our assumption that the subdivision is sufficiently fine.

It follows that any fully labelled simplex must lie entirely within S.

5.2 Fair Division

The problem of fair division aims at partitioning a resource between multiple parties in
a way that is “fair”. There are many possible definitions of fair, the easiest of which is
“equal”. For example, to divide a chocolate cake between 3 people we could say it is fair
to give each person 1/3 of the cake’s volume.

Yet it is possible to be much more precise, and ask that each participant, with respect
to their own preference set, feel they received a fair share of the whole.

In envy-free division, we ensure that further, no participant prefers any other parti-
cipant’s share.

We will apply Scarf’s Theorem to the problem of partitioning rent between house-mates
in a lodging house. To introduce some of the techniques, we will first start by examining
an application of Sperner’s Lemma, whose formulation was given by Su in [32].

5.2.1 Cake-Cutting using Sperner’s Lemma

Suppose a cake is to be divided between multiple parties. We will show that under minimal
assumptions, there exists a partition of the cake which is envy-free, according to each
participant’s preference set.

Theorem 5.4 ([32, Section 3]). Assume that the participants are hungry; meaning a par-
ticipant prefers any piece of cake over nothing. Then there exists an envy-free division of
the cake.
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Proof. Suppose we have n + 1 participants, {p0, . . . , pn}.

Consider the standard n-simplex S = σ(X0, X1, . . . , Xn). Suppose we can find a sub-
division and a labelling of S which, when using labels {p0, p1, . . . , pn}, has every simplex
of the subdivision fully labelled. We call such a labelling a labelling by ownership and
if a vertex X is labelled by pi, we say pi is the owner of X.

We claim such a subdivision and labelling pair always exists. Recall that the barycentric
subdivision of an n-dimensional simplex S consists of (n+1)! simplices. Each one, say with
vertices t0, t1, . . . , tn, can be associated with a permutation {s0, s1, . . . , sn} of the vertices
of S, in such a way that each vertex ti is the barycentre of σ(s0, s1, . . . , si).

Label the vertices as follows: the barycentre of each 0-simplex of S is labelled p0, the
barycentre of each 1-simplex of S is labelled p1, and so on, until we label the barycentre of
the n-simplex S by pn. This way the triangulation will indeed be labelled by ownership.
To see this, note that each simplex in the subdivision has as vertices various barycentres.
In fact, exactly one vertex is the barycentre of a 0-simplex, exactly one is the barycentre
of a 1-simplex, and so on. See Figure 5.4 a).

Figure 5.4: Barycentric subdivisions and labelling by ownership

For a finer subdivision we can iterate this process, subdividing each simplex of the
subdivision using barycentric subdivision again. To label such a mesh, say the process was
carried out m times. If we let all the vertices from the (m − 1)th iteration be labelled p0,
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then we can proceed as above for each elementary simplex being subdivided in the mth
iteration. Again, we ensure the labelling is by ownership.

Figure 5.4 b) displays the process iterated once more (m = 2) on a 2-simplex.

Now we want to associate a particular partition of the cake with each vertex. One
natural way to do this is to use the coordinates of each vertex as percentages of cake.
Recall that on the standard simplex, the sum of the coordinates of any point is 1.

Participants are allowed to have different preference sets. In particular, one person
could prefer a piece at the end of the cake over one in the middle. Further, the cake may
be heterogeneous, half vanilla, half chocolate for example, which may also influence one’s
preference.

Therefore it is not sufficient to state what amount of cake each participant receives,
instead we must decide exactly which piece is assigned to each participant. To represent
these ideas, consider a rectangular cake of length 1 with n knives floating over it. All knives
are parallel to each other and positioned perpendicular to the long side of the cake. Each
knife’s movement is restricted to the space between its two neighbours, or one neighbour
and the end of the cake.

Figure 5.5: Partitioning a cake into n + 1 pieces

Now measure the size of a piece by the distance between two knives, or between a knife
and the end of the cake. Then the sum of the sizes of all n + 1 pieces is 1, and the size of
each piece is non-negative.

We associate with each vertex X = (x0, x1, . . . , xn) of the subdivision a cake partition.
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For example the subdivision point X0 = (1, 0, . . . , 0) represents the partition where the
first piece is the whole cake, while all other pieces have size 0.

In order to apply Sperner’s Lemma, we require a Sperner labelling of the vertices. We
form one by asking the owner of vertex X which piece (from {0, 1, . . . , n}) they would
prefer if the subdivision given by X was carried out. Because the players are hungry, the
vertices on the boundary of S will necessarily receive a label corresponding to a non-zero
coordinate. This new labelling is therefore a Sperner labelling.

Applying Sperner’s Lemma to this simplex, we are guaranteed to find a fully labelled
simplex of the subdivision, that is one with labels {0, . . . , n}. This simplex was labelled by
ownership, hence we have found a simplex where each participant picked a different piece.

If the subdivision is not very fine, the n + 1 vertices of the simplex represent very
different partitions of the cake. Luckily we can take a subdivision that is very fine, say
one where the distance between any two vertices of the same elementary simplex is less
than ǫ. Then by picking an acceptable small amount ǫ, say at the level of crumbs, we can
find a fully labelled simplex where each participant picked a different piece and all vertices
represent the same partition of the cake up to ǫ.

5.2.2 Rent Partitioning using Scarf’s Theorem

Suppose a few people decide to rent a house together. We are interested in finding a
partition of the rent and an assignment of rooms which is envy-free.

What makes rent partitioning more difficult than cake-cutting is that each participant
is trying to simultaneously maximize his room assignment (according to his preference set)
while minimizing the cost. Therefore we are handling both goods and burdens in the same
problem. Further, this problem involves both a discrete component (room assignments)
and a continuous component (price of the rooms), whereas the cake-cutting problem only
involved a continuous component.

We will show that under a small set of assumptions, it is always possible to find such
an envy-free partition. This formulation is also due to Su in [32].

Theorem 5.5 ([32, Section 6]). Suppose n + 1 house-mates in an (n + 1)-bedroom house
must find a room assignment and partition the rent. Also, suppose that the following
conditions hold:

1. Good House. In any partition of the rent, each person finds some room acceptable.
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2. Miserly Tenants. Each person prefers a free room (one that costs no rent) to a
non-free room.

Then there exists a partition of the rent so that each person prefers a different room.

Proof. Suppose there are n+1 house-mates, and n+1 rooms to assign, numbered 0, 1, . . . , n.
Let xi denote the price of the ith room, and suppose that the total rent is 1. Then
x0 + x1 + . . . + xn = 1 and xi ≥ 0. We see that the set of all pricing schemes S forms a
standard n-simplex.

We choose an acceptable ǫ, a difference in rent which is inconsequential to the house-
mates, say a penny. As done previously, we triangulate S using a barycentric subdivision,
and ensure that no two vertices of an elementary simplex lie more than ǫ apart. Then,
label the subdivision by ownership.

Figure 5.6: From a labelling by ownership to a Scarf labelling

Construct a new labelling from the old by asking the owner at each vertex X in the
triangulation which room they would prefer if the rent was partitioned according to X. By
Condition 1, each tenant will find some room acceptable.

We claim that this new labelling is a Scarf labelling as in Definition 5.2. To see this,
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note that along the boundary of S, some rooms are free (xi = 0), and so by Condition 2,
a tenant will always prefer one of those rooms.

By Lemma 5.3, we are guaranteed to find a fully labelled simplex in the subdivision.
Given that the triangulation was also labelled by ownership, we have found a simplex where
each tenant picked a different room. Since the subdivision was very fine, the vertices of
this simplex represent the same pricing scheme, up to ǫ.

51



Chapter 6

Linear Programming and the

Simplex Method

Although the two formulations of Scarf’s Theorem presented earlier are very topological
in nature, Scarf’s original formulation in [26] was as a series of constraints, not unlike a
linear program.

Despite several differences between Scarf’s procedure and classic linear programming,
it will be useful to study Dantzig’s simplex algorithm for guidance. We begin with some
linear algebra background and then introduce linear programs and the simplex method.

In this section we will prefer the term vector over point because of its historical use
in this field. They are to be treated equivalently, though we will often overline symbols for
vectors with an arrow (~ ) for emphasis.

6.1 Linear Algebra for Linear Programming

The mathematical background for this section is adapted from [3, 16].

Definition 6.1. A vector X from R
m is said to be a linear combination of the vectors

X0, X1, . . . , Xk from R
m if X can be written

X = λ0X
0 + λ1X

1 + · · ·+ λkX
k (6.1)

for some real set of scalars λi.
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Definition 6.2. A set of vectors X0, X1, . . . , Xn from R
m is said to be linearly depend-

ent if there exists scalars λi not all zero such that

λ0X
0 + λ1X

1 + · · ·+ λnX
n = 0. (6.2)

If the only set of λi for which (6.2) holds is λ0 = λ1 = · · · = λn = 0, then the set of vectors
is said to be linearly independent.

Definition 6.3. A set of vectors X0, X1, . . . , Xn from R
m is said to span R

m if every
vector in R

m can be written as a linear combination of X0, X1, . . . , Xn.

Note that the unit vectors e0, e1, . . . , em−1 span R
m.

Now the concept of a basis of a set of vectors can be introduced.

Definition 6.4. A basis for a set of vectors S is a linearly independent spanning subset
of S.

For example, for S = R
m, the subset consisting of the unit vectors e0, e1, . . . , em−1 is

linearly independent and spans R
m, therefore it is a basis for R

m.

Let {X0, X1, . . . , XN} be a finite set of candidate vectors for the basis of some subset
S of R

n+1. Suppose we place the vectors X i as columns of a matrix A and want to find
a subset of the columns of A that spans S and is linearly independent. This is equivalent
to finding a square (n + 1) × (n + 1) submatrix B of A which is non-singular. To express

any vector X as a linear combination of vectors in the basis, we can solve B~λ = X as
~λ = B−1Ẋ.

Recall that if B is non-singular then there exists a series of elementary row operations
that can be performed on B to obtain the identity matrix In+1. See [3, Section 2.2] for
more on elementary row operations and matrix inverses.

6.2 Linear Programs in Standard Form

Linear Programming is the task of optimizing (maximizing or minimizing) some function
with respect to a set of linear constraints. Definitions in this section are taken from [3, 13].
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Consider the general system of n + 1 linear equations in N + 1 unknowns

a00x0 + a01x1 + · · · + a0NxN = b0

a10x0 + a11x1 + · · · + a1NxN = b1
...

...
...

...
an0x0 + an1x1 + · · · + anNxN = bn

(6.3)

where x0, x1, . . . , xn are the unknowns and the other quantities are given constants.

Supposing that these equations are consistent, it may still be impossible to determine
a solution uniquely. This is the case if (n + 1) < (N + 1), or if (n + 1) ≥ (N + 1) but the
system is linearly dependent.

In that case the following constraints can be added:

xj ≥ 0 j = 0, 1, . . . , N (6.4)

and
maximize c0x0 + c1x1 + · · ·+ cNxN (6.5)

where c0, c1, . . . , cN are given constants. The task is then to maximize (6.5) subject to
(6.4) and the indeterminate system (6.3).

Definition 6.5. A system of equality constraints as in (6.3), together with a non-negativity
constraint on the variables as in (6.4) and an objective function to maximize as in
(6.5) is called a linear program in standard equality form.

It is also possible to study linear programs in other forms, the most notable being the
standard inequality form where all equality signs (=) in (6.3) are replaced by less than
or equal to signs (≤).

Such a linear program can be written as

maximize c0x0 + c1x1 + · · · + cNxN

subject to a00x0 + a01x1 + · · · + a0NxN ≤ b0

a10x0 + a11x1 + · · · + a1NxN ≤ b1
...

...
...

...
an0x0 + an1x1 + · · · + anNxN ≤ bn

x0 , x1 , . . . , xN ≥ 0
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It is simple to transform a system in standard inequality form to one in standard
equality form with the use of slack variables.

For each inequality constraint

ai0x0 + ai1x1 + · · · + aiNxN ≤ bi

define
si = bi − (ai0x0 + ai1x1 + · · · + aiNxN ).

Note that si is non-negative, hence the constraint can be replaced by

ai0x0 + ai1x1 + · · ·+ aiNxN + si = bi

and si ≥ 0.

The variable si is called a slack variable because it measures the slack created by the
inequality. Repeating for every constraint, the system becomes

maximize c0x0 + c1x1 + · · · + cNxN

subject to a00x0 + a01x1 + · · · + a0NxN + s0 = b0

a10x0 + a11x1 + · · · + a1NxN + s1 = b1
...

...
...

. . .
...

an0x0 + an1x1 + · · · + anNxN + sn = bn

x0 , x1 , . . . , xN , s0 , s1 . . . , sn ≥ 0

Linear programming applies to many other situations where the constraints are a mix-
ture of inequalities, equations and even negative variables, but these forms will not be
necessary for our understanding of Scarf’s Theorem.

Consider the following example on 2 variables with 3 inequality constraints.

maximize x0 + x1

subject to x0 + 2x1 ≤ 14
3x0 + x1 ≤ 17
x0 − x1 ≤ 3
x0 , x1 ≥ 0

(6.6)
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First, the geometric interpretation of this system is pictured in Figure 6.1. Each inequal-
ity represents a half-plane in R

2, hence their intersection together with the non-negativity
constraints defines a region of possible solutions. We call this region the feasible region.
Further, the “corners” of the feasible region F are called the extreme points of F , as we
can think of this region as the convex hull of these points.

On the right, the dotted lines represent the objective functions at different evaluations
of x0, x1.

Figure 6.1: Geometric interpretation of a linear program

We examine several solutions that satisfy the inequality constraints.

(x0, x1) = (1, 2) (6.7)

(x0, x1) = (0,−3) (6.8)

(x0, x1) = (5, 2) (6.9)

(x0, x1) = (4, 5) (6.10)

Rewriting the problem in standard equality form:
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maximize z = x0 + x1

subject to x0 + 2x1 + s0 = 14
3x0 + x1 + s1 = 17
x0 − x1 + s2 = 3
x0 , x1 , s0 , s1 , s2 ≥ 0

The above solutions now correspond to

(x0, x1, s0, s1, s2) = (1, 2, 9, 12, 4) (6.11)

(x0, x1, s0, s1, s2) = (0,−3, 20, 20, 0) (6.12)

(x0, x1, s0, s1, s2) = (5, 2, 5, 0, 0) (6.13)

(x0, x1, s0, s1, s2) = (4, 5, 0, 0, 4) (6.14)

Note that the vector that maximizes x0 + x1, namely the vector (4, 5), is one of the
extreme points of the feasible region. Further, note that all extreme points have 2 of
their coordinates zero. This is either because two of the original inequalities are met with
equality, hence the “slack” drops to zero, or because the vector lies on one of the axes
xi = 0. Solutions of this form will be important in the simplex method. Lastly, the vector
(0,−3) satisfies all inequalities but does not lie in the feasible region because x1 < 0.

An equivalent but simpler way of writing a linear program in standard equality form is

max ~c T~x

s.t. A~x = ~b
~x ≥ 0

where ~c is a vector in R
N+1, ~b is a vector in R

n+1, ~x is a variable vector in R
N+1 and

A = (aij) is an (n + 1) × (N + 1) real matrix.

In our example,

~c = (1, 1, 0, 0, 0)T , A =





1 2 1 0 0
3 1 0 1 0
1 −1 0 0 1



 , and ~b = (14, 17, 3)T .

Suppose A contains n+1 linearly independent columns. Then it is possible to rearrange
A as A = [B|M ], where B is a non-singular matrix. We call the matrix B the basic matrix
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since the columns of B form a basis for R
n+1. Accordingly, the matrix M is called the

non-basic matrix.

Let us decompose ~x into components of B, ~xB = (x0, x1, . . . , xn) and components of

M , ~xM = (xn+1, xn+2, . . . , xN). Now A~x = ~b can be rewritten [B|M ]

[

~xB

~xM

]

= ~b or

equivalently B~xB + M~xM = ~b. Since B is non-singular, we can solve for ~xB = B−1~b −
B−1M~xM . If we want a unique solution to the system, we can assign arbitrary values to
the components of ~xM . Assigning ~xM = ~0 yields what is called a basic solution defined
by B.

Further, if the basic solution lies within the feasible region, we say it is a basic feasible

solution. Note that a basic feasible solution is simply a basic solution which is also non-
negative. The basis associated with a basic feasible solution is called a feasible basis.

The solutions (6.13) and (6.14) in the previous example were basic feasible solutions.
Solution (6.12) was basic but not feasible.

If a basic solution has some basic variables with value 0, namely if the basic solution
contains more than |M | 0-valued coordinates, then we say that the basis associated with
that solution is degenerate. If a system contains any basis that is degenerate, then we
say the system is degenerate.

Figure 6.2: Degenerate system of linear equations

See an example of a degenerate system in Figure 6.2. The vector X is a degenerate
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basic feasible solution because it lies on three constraints at once. Degenerate solutions
are not desirable and we will see in the next section how to avoid them.

6.3 The Simplex Method

It can be shown that ~x is a basic feasible solution to the system {A~x = ~b, ~x ≥ 0} if and only
if ~x is an extreme point of the feasible region (see [3, Section 3.2, Theorem 1]). Further,
it can be shown that if an optimal solution exists, then there exists an optimal solution
which is a basic feasible solution (see [3, Section 3.2, Theorem 3]). This is the basis of
Dantzig’s simplex method: instead of searching the entire feasible region F , restrict the
search to the extreme points of F . Further, we travel from one extreme point to the next
only if it increases our objective function.

Suppose we have a linear program with N +1 variables and n+1 constraints. It can be
shown that in practice the simplex algorithm is quite fast: the total number of iterations
grows linearly in the number of constraints n+1. Given that there are

(

N+1
n+1

)

basic feasible
solutions in total, this is much faster than looking at all basic feasible solutions. However,
there exist examples where the simplex method does not perform well, and where the
number of iterations grows exponentially in the number of variables N +1. These examples
are hard to construct and rarely happen in practice, hence the simplex method is still a
practical and efficient way to solve linear programs. For more details on the efficiency of
the simplex method, see [8, Chapter 4].

To show how the simplex method works, we will consider the example (6.6) from above.

For ease of notation, we will let an index set J ⊂ {0, 1, . . . , N + 1} denote a basis for
a particular system. For example the set J = {0, 2, 5} represents the basis consisting of
columns {0, 2, 5} of the matrix A.

From our original problem in standard equality form we have:

maximize z = x0 + x1

subject to x0 + 2x1 + x2 = 14
3x0 + x1 + x3 = 17
x0 − x1 + x4 = 3
x0 , x1 , x2 , x3 , x4 ≥ 0

.

Note that the basis associated with the problem is J0 = {2, 3, 4}, since these columns
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form an identity matrix. We rewrite it in tableau form, a form that ignores the non-
negativity constraints and includes the objective function as the first equality. We get

z − x0 − x1 = 0
x0 + 2x1 + x2 = 14

3x0 + x1 + x3 = 17
x0 − x1 + x4 = 3

.

From the basis J0 = {2, 3, 4} we can determine the basic feasible solution associ-
ated with the tableau. Recall that non-basic variables have value 0, so here x0 and
x1 are 0. Therefore the basic feasible solution can be read easily from the tableau:
~x = (0, 0, 14, 17, 3). Further, the objective function has value z = 0, since x0 and x1

have value 0.

In order to increase the value of the objective function, consider all variables in the
first row that have negative coefficient. If we choose one of these variables and let its value
augment from 0 to a non-zero value t, keeping all other non-basic variables at 0, then the
value of the objective function will increase, as all variables are non-negative.

However, we must make sure in doing so that the basic solution remains feasible. For
example, say we let the value of x0 increase, with value t, t > 0, and keep the value of all
other non-basic variables at 0.

This induces the following solution x(t):

z(t) = 0 + t

x0(t) = t

x1(t) = 0

x2(t) = 14 − t

x3(t) = 17 − 3t

x4(t) = 3 − t

Yet all variables xi must remain non-negative, hence 14 − t ≥ 0, 17 − 3t ≥ 0 and
t − 3 ≥ 0. This yields the following conditions on t: t ≤ 14, t ≤ 17

3
and t ≤ 3. Therefore

if we pick t = 3, all variables will remain feasible, and exactly one variable will become 0,
namely x4. Hence we say one variable x0 entered the basis and one variable x4 left the
basis. Our new basis is J1 = {0, 2, 3}.
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We want to rearrange the tableau to reflect this new basis, namely we want the columns
{0, 2, 3} to form an identity matrix. Columns 2 and 3 are already in the right form, but
column 0 needs to be reduced to (0, 0, 1)T . To do so we eliminate the two unwanted entries
in that column by performing elementary row operations on the tableau. We also eliminate
the variable x0 from the objective function row. This change of basis operation is called a
pivot step. Here is the new tableau.

z − 2x1 + x4 = 3
3x1 + x2 − x4 = 11
4x1 + x3 − 3x4 = 8

x0 − x1 + x4 = 3

From this tableau the basic feasible solution can be read right away, since the value for
non-basic variables is 0: ~x = {3, 0, 11, 8, 0}. Further, the new objective value is the top
number in the last column: 3, which is bigger than our old value 0. Let us perform a few
more pivot steps.

This time, say we pick x1, with coefficient −2 to enter the basis, with value t > 0. Then
the following solution x(t) can be derived:

z(t) = 3 + 2t

x0(t) = 3 + t

x1(t) = t

x2(t) = 11 − 3t

x3(t) = 8 − 4t

x4(t) = 0

This leads to the following conditions on t:

3 + t ≥ 0 =⇒ t ≥ −3,

11 − 3t ≥ 0 =⇒ t ≤
11

3
, and

8 − 4t ≥ 0 =⇒ t ≤ 2.

Note that because the coefficient of t for the first condition is positive, it does not help
determine a value of t for which exactly one variable will become 0, as every non-negative
value of t will keep this variable non-negative. If every condition has positive t coefficient,
we conclude the problem is unbounded, and no maximum objective value can be found.
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Therefore in choosing the leaving variable, we only need to consider those coefficients in
the entering variable’s column which are positive, and so will give t a negative coefficient.

We can pick t = 2 and then x3 = 0, meaning x3 leaves the basis. Our new basis is
J2 = {0, 1, 2}. The associated basic feasible solution is ~x = (5, 2, 5, 0, 0), which is solution
(6.13). Rewriting the tableau to isolate the new basis vector, we get:

z + 1
2
x3 − 1

2
x4 = 7

x2 − 3
4
x3 + 5

4
x4 = 5

x1 + 1
4
x3 − 3

4
x4 = 2

x0 + 1
4
x3 + 1

4
x4 = 5

Next choose x4 to enter the basis with value t > 0. We have the following conditions on
t: t ≤ 4 and t ≤ 20. Pick t = 4 and then x2 leaves the basis. Our new basis is J3 = {0, 1, 4}
and the associated tableau is:

z + 4
5
x2 + 2

5
x3 = 9

4
5
x2 − 3

5
x3 + x4 = 4

x1 + 3
5
x2 − 1

5
x3 = 5

x0 − 1
5
x2 + 2

5
x3 = 4

.

Now notice no coefficient in the objective function row is negative, so there is no variable
we can introduce to augment the objective value, therefore our basic feasible solution,
~x = {4, 5, 0, 0, 4}, must be optimal. Note that it is the same solution as the one we found
by the graphical method, solution (6.14).

Refer to Figure 6.3 for the graphical path we followed to get to the optimal solution.

We make the following important observations:

1. The variable x4 first left and then re-entered the basis. Is it possible to revisit a
previously seen basis? This is called cycling and must be avoided to ensure the
procedure terminates.
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Figure 6.3: Path followed by the simplex method

2. As mentioned before, if the set of solutions {~x ≥ 0 : A~x = ~b} is bounded, then we
ensure that at every step some leaving variable can be found.

3. In order for our system to be non-degenerate, we must ensure that at every pivot,
only one variable leaves the basis. In other words, if picking a particular value of t
causes two or more variables to become 0 simultaneously, then our new solution will
be degenerate.

Examples of cycling exist, but are rare and difficult to construct. Still, we would like a
way to avoid it. Luckily, there are many rules that prevent cycling. One method is due to
Bland ([5]) and is called the smallest subscript rule: of all possible entering variables
choose the one with the smallest subscript, and of all leaving variables, choose one with
the smallest subscipt. This guarantees no cycling. Given that Scarf’s Extension Theorem
uses the simplex method in a slightly different way, a proof that cycling does not occur is
deferred to Chapter 7, in the proof of Theorem 7.4.

To address Observation 2, we present the following theorem which will be sufficient for
our application of the simplex method in Sections 8.1 and 8.2.

Theorem 6.6. Let A be an (n+1)×(N +1) matrix where aij ∈ R+, and where A contains

no column of zeros. Let ~b ∈ R
n+1
+ and ~x ∈ R

N+1. Then the set {~x ≥ 0 : A~x = ~b} is bounded.
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Proof. Rewrite A~x = ~b as















a00x0 + a01x1 + a02x2 + . . . + a0NxN

a10x0 + a11x1 + a12x2 + . . . + a1NxN

a20x0 + a21x1 + a22x2 + . . . + a2NxN

...
...

...
...

an0x0 + an1x1 + an2x2 + . . . + anNxN















=















b0

b1

b2
...
bn















Then because A contains no column of zeros, for all i ∈ {0, . . . , N}, xi has a non-
zero coefficient on some row of A~x. Further, since all values aij , and all values bi are

non-negative, there must be a bound on each xi. Therefore the set {~x ≥ 0 : A~x = ~b} is
bounded.

Combining Observation 3 and Observation 2, we have the following theorem.

Theorem 6.7. Let the system A~x = ~b be non-degenerate and the set of solutions {~x ≥ 0 :

A~x = ~b} be bounded. For any non-basic variable which enters the basis at some step of the
simplex method, there is a unique leaving variable.

Of course introducing a variable with non-negative coefficient in the objective function
may not be useful, but a pivot step can still be performed.

Finally, to address Observation 3, the idea will be to perturb the values of ~b slightly.
This is shown for two dimensions in Figure 6.4. If we perturb each value bi by a different
small amount ǫi, with ǫ0 > ǫ1 > · · · > ǫn, then it can be shown that with a special rule to
choose the leaving variable, this system is equivalent to the original and yet non-degenerate.

In general this is called the perturbed problem. See [8, Theorem 3.2] for full details,
including a proof of correctness. We will examine a special case of the perturbation method,
called the Lexicographical Method.

6.4 The Lexicographical Simplex Method

To guarantee that the system {A~x = ~b, ~x ≥ 0} is non-degenerate, we perturb the elements

of ~b by small amounts ǫ0, ǫ1, . . . , ǫn such that ǫ0 > ǫ1 > · · · > ǫn. Instead of picking values
for ǫ0, ǫ1, . . . , ǫn, we note that if we choose one small value ǫ and set ǫi = ǫi+1 then we
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Figure 6.4: The Perturbed Problem

indeed have ǫ0 > ǫ1 > · · · > ǫn. Further, if we can pick ǫ such that ǫi ≫ ǫi+1, then the ǫ’s
do not influence each other when we take small linear combinations of them. We will see
later how we can pick such an ǫ.

Because of this, in practise we do not choose an explicit value for ǫ, but instead keep
track of the coefficients of ǫi as they are manipulated by the elementary row operations on
A.

More precisely, at any point in the simplex method, the right hand side of the system
will be of the form

bi + βi0ǫ
1 + . . . + βinǫ

n+1.

Therefore in our tableau form, we can add one column for each ǫi, and perform the
same elementary row operations on these added columns as we do on the original system.
This will record the values βij.

Examine the example (6.6), now with the right hand side perturbed.
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z − x0 − x1 = 0
x0 + 2x1 + x2 = 14 + ǫ

3x0 + x1 + x3 = 17 + ǫ2

x0 − x1 + x4 = 3 + ǫ3

We examine a pivot step for the tableau above. According to the smallest subscript
rule, we pick x0 to enter the basis and let it have value t, t > 0. Then we have the following
solution ~x(t):

z(t) = 0 + t

x0(t) = t

x1(t) = 0

x2(t) = 14 + ǫ − t

x3(t) = 17 + ǫ2 − 3t

x4(t) = 3 + ǫ3 − t

Now similarly to before, we want to pick the first variable which becomes 0 as t increases.
Here we easily detect x4 to be such a variable, but if two of the bi entries were equal, we
would need to look at the ǫ’s to break the tie. We will express the conditions on t in the
following way:

t ≤
(14, 1, 0, 0)

1

t ≤
(17, 0, 1, 0)

1

t ≤
(3, 0, 0, 1)

1

where the first coordinate is bi and the others represent the ǫ’s. By

(bj , βj0, βj1, . . . , βjn)

ajk

,

we mean

(
bj

ajk

,
βj0

ajk

,
βj1

ajk

, . . . ,
βjn

ajk

).
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If we pick the lexicographical minimum of those three conditions, we will pick the first
condition to reach 0 as t is increased.

Recall that (a0, a1, . . . , an) is lexicographically smaller than (b0, b1, . . . , bn) if (a0 < b0)
or (a0 = b0 and a1 < b1) or (a0 = b0, a1 = b1 and a2 < b2), and so forth until (ai = bi, i < n
and an < bn).

The general procedure is as follows. Choosing an entering variable xk is done as before,
by choosing a variable whose coefficient in the first row is negative.

Recall that we are trying to ensure a unique leaving variable at every step, and guarantee
the associated basis is non-degenerate. To choose the leaving variable xℓ in such a tableau,
consider all rows j such that the coefficient of xk, ajk is positive: this ensures the coefficient
of t is negative, as before. If the problem is bounded we are guaranteed to find at least
one such row. Of those, pick the one where

(bj, βj0, βj1, . . . , βjn)

ajk

is the lexicographical minimum. Then the unique basis vector in that row is the leaving
variable.

This will always yield a unique choice, otherwise we have
βjℓ

ajk
= βiℓ

aik
for all ℓ and i 6= j.

Yet we started with the columns for ǫ0, ǫ1, . . . , ǫn as an identity matrix and only performed
elementary row operations on it. Hence we cannot have two rows be multiples of one
another, as that would imply we have a singular matrix.

It may seem like adding these extra n + 1 columns will create more work and require
double the storage, but in our first tableau, the basis columns also form an identity matrix.
Therefore we can forego the recording of the ǫi altogether, and instead keep track of the
coefficients βij by examining the corresponding coefficients of the original basis columns.

Two pivots steps later, the above example would become:

z + 4
5
x2 + 2

5
x3 = 9 + 4

5
ǫ + 2

5
ǫ2

4
5
x2 − 3

5
x3 + x4 = 4 + 4

5
ǫ − 3

5
ǫ2 + ǫ3

x1 + 3
5
x2 − 1

5
x3 = 5 + 3

5
ǫ − 1

5
ǫ2

x0 − 1
5
x2 + 2

5
x3 = 4 − 1

5
ǫ + 2

5
ǫ2

.
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Note that the original basis columns {2, 3, 4} are the same as the columns for {ǫ, ǫ2, ǫ3}.

We need to ensure we can pick an ǫ value which is small enough to make this possible.
The number of iterations is bounded by the number of possible bases, given that we do not
cycle. There are

(

N+1
n+1

)

possible bases. Next, when we perform elementary row operations,
we will multiply a row by at most the largest entry in the matrix A. Suppose the largest

entry has value m. A coefficient in our matrix will then be at most m(N+1

n+1). Hence picking

ǫ =
(

m(N+1

n+1)
)−1

ensures the ǫi’s do not interfere with each other, and maintain the property ǫi > ǫi+1.

An example using the lexicographical simplex method is presented in Appendix A.
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Chapter 7

An Extension Theorem of Scarf

The first two versions of Scarf’s Theorem were topological in nature, and were shown to
be equivalent to Sperner’s Lemma. The final version we examine, called Scarf’s Extension
Theorem, abstracts the concepts introduced earlier and gives a result which is more general
than Sperner’s Lemma.

At first this version may seem unrelated to the other two versions, since it involves
matrices and solutions to linear programs in standard equality form. Therefore we will start
with an intermediary formulation which will first express Scarf’s Theorem on primitive sets
in matrix form. Once this transformation is understood, it is a small step to understand
the full Extension Theorem.

7.1 Scarf’s Theorem in Matrix form

We start with Scarf’s Theorem on primitive sets (Theorem 3.7). Recall that in this version
of the Theorem, we have a set P = {X0, . . . , XN} of N + 1 points, where the first n + 1,
{X0, X1, . . . , Xn}, are the points

X0 = (1 − n, 1, 1, . . . , 1)

X1 = (1, 1 − n, 1, . . . , 1)
...

...

Xn = (1, 1, 1, . . . , 1 − n)
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and the remaining points {Xn+1, . . . , XN} are chosen arbitrarily within the interior of the
standard n-simplex S = σ(e0, e1, . . . , en), so as to satisfy the Non-Degeneracy Assumption
(Definition 3.3).

Place each point Xj as the jth column of an (n + 1) × (N + 1) matrix C.

The Non-Degeneracy Assumption ensures that within all sets of n + 1 columns of C,
each row has a unique minimum.

Recall that for a subset of n + 1 points W = {Xj0, Xj1, . . . , Xjn} of P , a minimizer
in k is a point in W that achieves the minimum value in coordinate k. We extend the
terminology to this matrix form and say that for an index set J = {j0, . . . , jn} of columns
of C, a column which achieves the minimum in row k is called a minimizer in k.

Now we can also extend the idea of a primitive set. A set W = {Xj0, Xj1, . . . , Xjn} of
n+1 points of P is primitive if no point X of P has all coordinates xk > min{xj0

k , xj1
k , . . . , xjn

k }.

Definition 7.1. Let J = {j0, j1, . . . , jn} be an index set representing n + 1 columns of C.
If no column q of C has ckq > min{ckj0, ckj1, . . . , ckjn

} for all rows k, we say that J forms
an ordinal basis for C.

The term “ordinal basis” is used here instead of “primitive set” to imply a parallel with
linear programming of Chapter 6, and its use will become clear later on.

Let q, s be two columns of C. If for a particular row k, ckq ≤ cks, then we say that
column s dominates column q at (row) k. Note that if ckq = cks, then q also dominates
s. In particular, every column dominates itself at every row.

For a set of columns J , if a minimizer in k dominates a column q at k, then all columns
in J dominate q at k, as the minimizer has the minimum kth entry. Hence alternatively,
J forms an ordinal basis for C if each column of C is dominated by all columns of J at
some row.

For example, consider the following matrix C, corresponding to Figure 3.3 a):

C =









X0 X1 X2 X3 X4 [X5] [X6] [X7]
−1 1 1 0.45 0.3 [0.20] 0.35 0.40

1 −1 1 0.15 0.1 0.35 0.40 [0.25]
1 1 −1 0.40 0.6 0.45 [0.25] 0.35









and the set of columns J = {5, 6, 7}. The row minima with respect to J are marked within
square brackets ([ ]) for each row. Then J forms an ordinal basis because columns {0, 5}
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are dominated by all columns of J at 0, columns {1, 3, 4, 7} are dominated by all columns
of J at 1 and columns {2, 6} are dominated by all columns of J at 2.

We can also easily verify that the set J ′ = {4, 5, 7} is not an ordinal basis because
column 3 is not dominated at any row by all columns of J ′.

C =









X0 X1 X2 X3 [X4] [X5] X6 [X7]
−1 1 1 0.45 0.3 [0.20] 0.35 0.40

1 −1 1 0.15 [0.1] 0.35 0.40 0.25
1 1 −1 0.40 0.6 0.45 0.25 [0.35]









Now that we have abstracted the primitive sets in a matrix C, we form a second
(n +1)× (N + 1) matrix B to represent the labelling. The ijth entry of B is 1 if the point
Xj has label i. Because the first n + 1 points of P , X0, . . . , Xn, are labelled 0, 1, . . . , n
respectively, the first n + 1 columns of B form an identity matrix . Note that each column
contains exactly one 1, since each vertex is given exactly one label. Below is an example
of a matrix B. Note that the set J = {5, 6, 7} is fully labelled.









X0 X1 X2 X3 X4 X5 X6 X7

1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 1









If B and C are matrices as above, we say they are in standard form.

In order to simplify the test for a fully labelled simplex, we introduce the concept of a
characteristic vector.

Definition 7.2. The characteristic vector ~α of a subset J of {0, . . . , N} is given by

αi =

{

1 i ∈ J
0 otherwise

.

Now a fully labelled set of n + 1 points corresponds to a set J whose characteristic
vector ~α satisfies B~α = ~1. To see this, notice that multiplying B by ~α counts (within the
columns J) the 1’s on each row of B. Hence if B~α = ~1, there is exactly one 1 in each row
of the columns of J , namely a vector with each label.

Definition 7.3. Let J be an index set representing n + 1 columns of C, and let ~α be its
characteristic vector. Further, let ~b = ~1. If B~α = ~b, then we say J is a feasible basis for
B.
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To draw a parallel with the ideas of Chapter 6, the system {B~α = ~b, ~α ≥ 0} can be
thought of as a linear program in standard equality form. In fact, the first n + 1 columns
of B always form an identity matrix and so act as slack variables for the system. One
element is missing to make it complete: an objective function. Here instead of an objective
function to maximize, we will use the whole of C to guide the choice of entering variables.
We defer the full details until later in the chapter. Note further that ~α is the basic feasible
solution to B~x = ~b with respect to J .

Now to conclude the abstraction, we note that a fully labelled primitive set corresponds
to a set J of n + 1 columns which is both a feasible basis for B and an ordinal basis for C.

We are ready to formulate Scarf’s Theorem in matrix form.

Theorem 7.4. Let B and C be two (n+1)×(N +1) matrices in standard form. Then there
exists an odd number of bases J which are feasible for B and ordinal for C. In particular,
there is at least one.

This theorem is a reformulation of Theorem 3.7, hence we already know it to be true.
However, it will be useful to prove it once more using the tools of linear programming,
which will help for the Extension Theorem we will see later on. The procedure we will
use is very similar to the simplex method studied in Chapter 6. Given that we have two
matrices and no objective function, we will first need to define two different pivoting rules.

Lemma 7.5. Let J = {j0, . . . , jn} represent the columns of a feasible basis for B, and let
h be an arbitrary column not in this collection. Then there exists a unique feasible basis J ′

consisting of column h and n columns of the original basis. We call this change of basis a
feasible pivot step.

Proof. If J is feasible for B, then it must be that columns {j0, j1, . . . , jn} form (up to a
reordering of the columns) an identity matrix. This is equivalent to having one column
with each label. When we consider J ∪ {h}, there must then be 2 columns with the same
label, h and say jk. Then J ′ = J ∪ {h}\{jk} is the required basis. It is clearly unique.

Lemma 7.6 ([26, Lemma 2]). Let J = {j0, . . . , jn} represent the columns of an ordinal
basis for C and jt an arbitrary column in J . Assume j0, j1, . . . , jt−1, jt+1, . . . , jn are not all
selected from the first n+1 columns of C. Then there is a unique column jh 6= jt for which
J ′ = {j0, j1, . . . , jt−1, jh, jt+1, . . . , jn} is an ordinal basis. We call this change of basis an
ordinal pivot step.
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Proof. Because J is an ordinal basis, each column is a minimizer in some row (by the Non-
Degeneracy Assumption). Relabel the columns of J so that the column ji is the minimizer
in row i.

By removing jt, one column (say column ju) will become the minimizer in two rows,
one of which is new (row t) and the other which is from the original basis (row u). We
want column ju to become the minimizer in row t, so we need to find a new column jh to
act as the minimizer in row u.

Let U be the set of columns U = {j : cij > ciji
, i 6= u, t and ctj > ctju

}. Columns in
U cannot become the minimizer in any row but u, as ciji

is the minimum value in row i,
i 6= u, t and ctju

is the new minimum value in row t. Note in particular that no column of
J can belong to U .

First we show U 6= ∅. We claim that column u of C belongs to U . Recall that

ciu =

{

1 − n, i = u
1 otherwise

.

If u were already in J , then u would be the minimizer in u, as cuu is minimal over all of
C, hence u = ju. Yet ju was picked to be the new minimizer in row t, and column u has a
tth entry which is maximal over the row. This implies that no other column j, j > n lies
in J , contradicting our assumption. Hence u /∈ J . Further, 1 = ciu > ciji

, i 6= u, t and 1 =
ctu > ctju

and so u ∈ U .

Of all columns j in U , pick the column jh that maximizes cuj. This will ensure the new
basis is ordinal. Let J ′ = J ∪ {jh}\{jt}.

Column ji, i 6= u, t is still the minimizer in row i for J ′. Column ju is now the minimizer
in t, and jh is the new minimizer in u.

Now we examine every column in C to verify that J ′ is indeed an ordinal basis.

• If a column jk was previously dominated by all columns of J at i = 0, 1, . . . , n,
i 6= t, u, then it is still dominated at i by all columns of J ′, since those minimizers
did not change.

• If jk was dominated by all columns of J at row t, then it is still dominated at t by
all columns of J ′, as the new minimizer in t, ju, has tth entry larger than the old
minimizer’s tth entry, jt, by choice of ju.
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• Finally, if jk was dominated by all columns of J solely at row u, jk ∈ U , by construc-
tion of U . Since jh was taken as the column in U with the maximal uth coordinate,
jk is now dominated at u by all of J ′.

Each column in C is dominated by all columns of J ′ at some row, hence this new set is an
ordinal basis for C.

To show jh is the only possible column leading to an ordinal basis, suppose to the con-
trary that J∗ = {j0, j1, . . . , jt−1, j

∗, jt+1, . . . , jn} is an ordinal basis. We make the following
observations.

1. When j∗ is added to replace jt, ji, i 6= u, t must be the minimizer in i for J∗. If it
became the minimizer in i 6= u, t, then column ji, which remains in J∗ would now
not be dominated by all columns of J∗ at any row. Therefore all ji, i 6= u, t stay as
minimizers in i.

2. For rows t and u we have two possibilities. Either column j∗ is the new minimizer in t
and ju remains the minimizer in u or vice-versa. We claim that the former case is the
original basis J . To see this, we will show that in J , jt dominated j∗ at t, and that in
J∗, j∗ dominates jt at t. This can only mean ctj∗ = ctjt

and by the Non-Degeneracy
Assumption, j∗ = jt, implying J∗ = J .

The basis J was ordinal, hence every column of J dominated j∗ at some row. To
find which row, note that in the new basis J∗, j∗ is dominated at t and no other
row. Since columns ji, i 6= t are the minimizers in i for both J and J∗, j∗ must be
dominated at t with respect to J also. Therefore every column of J dominates j∗ at
row t. In particular, jt dominates j∗ at t.

Now since the new basis J∗ is ordinal, every column of J∗ dominates jt at some row.
To find which row, we note that in J , column jt was dominated at t and no other
row. Given that columns ji, i 6= t are the minimizers in J and J∗ in row i, every
column of J∗ dominates jt at row t. In particular, j∗ dominates jt at t.

3. Hence the only possibility is to have column j∗ be the new minimizer in u and ju is
the new minimizer in t. Then j∗ = jh, as from all eligible columns we picked one
which maximized the uth coordinate.
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To prove Theorem 7.4, the procedure will be very similar to the simplex method on B.
However, instead of an objective function from which to choose entering variables, we use
a pivot on C to indicate the variables to enter the basis.

Now we are ready to prove Scarf’s Theorem, restated here for convenience.

Theorem 7.4 Let B and C be two (n+1)×(N +1) matrices in standard form. Then there
exists an odd number of bases J which are feasible for B and ordinal for C. In particular,
there is at least one.

Proof. First we exhibit a set which is an ordinal basis for C and another very similar set
which is a feasible basis for B. The basis JB = {0, 1, . . . , n} is clearly feasible for B, as it
represents an identity matrix.

Now, consider JC = {j, 1, . . . , n} where j is taken from all columns k > n so as to
maximize c0k. Then JC is ordinal for C. This follows because all columns c of C are either
in J (and then dominated by themselves) or are the columns {0, n + 1, n + 2, . . . , N + 1},
in which case they are dominated by all columns of J at 0.

We will say the two bases are in proper form if they have the following relationship:

JB = {0, j1, . . . , jn} (7.1)

JC = {j0, j1, . . . , jn} (7.2)

with j0 6= 0. Clearly the initial bases stated above are in proper form.

The cleverness of the algorithm is to maintain this relationship at each step. Few
operations on the two bases will enable us to maintain proper form.

The only operation that can be performed on (7.1) is to add j0 to it (feasible pivot
step). By Lemma 7.5, some column must then leave. If column 0 leaves, meaning that
J ′

B = JC = {j0, j1, . . . , jn}, we are done, as we have found a basis which is both feasible for
B and ordinal for C. Otherwise some other column ji leaves. We can rearrange J ′

B, JC to
get

J ′
B = {0, j0, j1, . . . , ji−1, ji+1, . . . , jn}

JC = {ji, j0, j1, . . . , ji−1, ji+1, . . . , jn}.

Then J ′
B, JC are in proper form.

As for (7.2), the only possibility is to pivot by removing j0. Then some column must
enter the basis, by Lemma 7.6. It is possible that column 0 enters the basis, at which point
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J ′
C = JB = {0, j1, . . . , jn} and we are done. Otherwise some column h 6= 0 is introduced,

leaving

JB = {0, j1, . . . , jn}

J ′
C = {h, j1, . . . , jn}.

There are however restrictions of ordinal pivot steps, namely we cannot pivot in the
case where j1, . . . , jn are all selected from the first n + 1 columns of C. This only happens
when

JB = {0, 1, . . . , n} and

JC = {j, 1, . . . , n}

which is precisely our initial state. Hence from this initial state only one pivot step can be
taken, the feasible pivot step of introducing j to JB. From all other positions where the
bases have the correct relationship, we have two options: to take a feasible pivot step or
an ordinal pivot step.

The complete algorithm is as follows. Starting from the above stated initial pair, intro-
duce j0 to JB to obtain J ′

B = JB ∪ {j0}\{ji}. From here, we have two pivots possible, but
one will take us back to the initial position (to introduce ji to JB). Hence the only option is
to do an ordinal pivot step on JC by removing ji to get J ′

C = {h, j0, . . . , ji−1, ji+1, . . . , jn}.

At each step we have exactly one pivot step to take, and we only stop when we arrive
to a state where JB = JC . There are a finite number of steps, and if cycling is impossible,
then we are guaranteed to reach a winning configuration.

To see that cycling is impossible, say the initial pair of bases is the first state to be
repeated. Then this means there are two ways to reach the initial position, the one we
used to leave the state the first time through, and the one used to return to it. This is a
contradiction, by Lemma 7.6.

Now say that some other state which is not the initial state is the first to be repeated.
In this case we have three ways to reach this state, the two used to enter and leave the
state the first time through, and the third used to revisit the state. Again by Lemmas 7.6
and 7.5, only 2 ways exist.

Hence no state is ever repeated and there exists a set J which is both feasible for B
and ordinal for C.
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Now suppose there exists any other basis J ′ with this property. We have either

J ′
B = {0, j1, . . . , jn}

J ′
C = {0, j1, . . . , jn}

or

J ′
B = {j0, j1, . . . , jn}

J ′
C = {j0, j1, . . . , jn}.

In the first case we can pivot on J ′
C by removing 0 from it and proceeding as above

until we find another state J ′′ which is feasible for B and ordinal for C.

In the second case our only option is to pivot on J ′
B by adding 0 to it. Again we can

then pivot from state to state until we arrive at another basis J ′′ which is feasible for B
and ordinal for C.

This means that all other additional bases J ′ come in pairs. Hence the total number of
bases which are feasible for B and ordinal for C is odd.

7.2 Scarf’s Extension Theorem

The key to understanding Scarf’s Extension Theorem is to note that working with primitive
sets introduces structure that is not necessary to the proof of the theorem. By isolating
the properties of primitive sets and labellings that are required for the functioning of the
procedure, we can abstract the theorem to a much more general case.

In fact, it was not relevant that B represented a labelling rule. Any system of linear
constraints with associated non-negativity constraints will do, as long as the first n + 1
columns form an identity matrix.

As seen in Chapter 6, Theorem 6.7, if the problem is non-degenerate and the set
{~α ∈ R

n+1
+ : B~α = ~b} is bounded, any column can be introduced to a feasible basis and

exactly one column will be eliminated.

Now for the matrix C, if we can guarantee that given an ordinal basis J and one column
to remove, we can find a unique replacement that preserves J as ordinal, we can apply the
procedure outlined in the previous section.

Here are the properties of C that are required:
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1. The Non-Degeneracy Assumption must hold, namely for every set of n + 1 columns
of C, the minimum in each row must be unique.

2. Let C = [C1|C2] where C1 is the square submatrix defined by the first n + 1 columns
of C. Then the elements on the diagonal of C1 must be minimal in their row over all
of C.

3. The elements off the diagonal of C1, say in row i, must be greater than the elements
of C2 in row i.

Note that it is not important for the points to lie in any simplex.

Finally, we also need initial bases for B, C that are in proper form. If the first n +
1 columns of B form an identity matrix then the bases JB = {0, 1, . . . , n} and JC =
{j, 1, 2, . . . , n} where j is the column in C with the largest 0th component, are in proper
form.

Therefore we can abstract the theorem in the following way.

Theorem 7.7 (Scarf’s Extension Theorem, [26, Theorem 2]). Let n < N and let B be an
(n + 1) × (N + 1) matrix such that the first n + 1 columns of B form an identity matrix.

Let ~b be a non-negative vector in R
n+1
+ , such that the set {~x ∈ R

n+1
+ : B~x = ~b} is bounded.

Let C be an (n + 1)× (N + 1) matrix for which the Non-Degeneracy Assumption holds
and such that cii < cik < cij for i, j ≤ n, i 6= j and k > n.

Then there exists an odd number of sets J that form a feasible basis for B and an
ordinal basis for C. In particular, there is at least one.

Note that once we have a feasible basis for B, we can find a basic feasible solution ~α
to B~x = ~b, as described in Chapter 6.

To see that this is indeed an abstraction of the previous theorem, see for example the
matrices B and C below. They are in the form of Theorem 7.7 but cannot be realized on
a simplex with labelling. Note that if all the entries on a row of C are distinct, then the
Non-Degeneracy Assumption is trivially met.

B =





1 0 0 2 5 3 7 3
0 1 0 1 4 3 0 2
0 0 1 1 2 3 1 1



C =





0 11 12 3 4 5 6 7
10 0 12 4 5 6 7 8
10 11 0 5 6 7 8 9
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To prove this version of the theorem not much needs to be done. We require two unique
replacement lemmas as in the previous section.

Lemma 7.8 ([26, Lemma 1]). Let ~b be a non-negative vector such that the set {~x ≥ 0 :

B~x = ~b} is bounded. Let J represent the columns of a feasible basis for B, and let h be an
arbitrary column not in J . Then there exists a procedure to determine a feasible basis J ′

consisting of column h and n columns of the original basis. Moreover, the basis found by
this procedure is unique.

Proof. If the system {B~x = ~b} is non-degenerate, then we can perform a feasible pivot

step and from Theorem 6.7, we have that the new basis is unique. If the system {B~x = ~b}

is degenerate, we can solve instead the perturbed problem {B~x = ~b′} as discussed in

Section 6.4. Now since the set {~x ≥ 0 : B~x = ~b} is bounded, so is {~x ≥ 0 : B~x = ~b′}. Then
we can apply Theorem 6.7 to find a unique leaving variable, and hence a unique feasible
basis.

Recall that this change of basis is called a feasible pivot step.

Lemma 7.9 ([26, Lemma 2]). Let J = {j0, . . . , jn} represent the columns of an ordinal
basis for C and jt an arbitrary column in J . Assume j0, j1, . . . , jt−1, jt+1, . . . , jn are not all
selected from the first n+ 1 columns of C. Then there is a unique column h 6= jt for which
J ′ = {j0, j1, . . . , jt−1, jh, jt+1, . . . , jn} is an ordinal basis. We call this change of basis an
ordinal pivot step.

Given that we chose the properties of C to ensure the proof of Lemma 7.6 is still valid,
the proof is the same as before.

Further, the proof of Theorem 7.7 is the same as the proof of Theorem 7.4, replacing
the two unique replacement lemmas by the ones above.

Finally, a note on efficiency. It was mentioned in the introduction that Scarf’s procedure
is an efficient way to find fixed points. Because this procedure follows the simplex method
closely, it has similar running time. As mentioned in Section 6.3, even though in theory the
number of iterations of the simplex method can be exponential in the number of columns of
B and C, in practice it is linear in the number of rows of B and C. Because by exhaustive
search we would have to examine

(

N+1
n+1

)

possible bases, Scarf’s procedure is more efficient.

79



Chapter 8

Applications of Scarf’s Extension

Theorem

This abstraction of Scarf’s Theorem has many direct applications to combinatorics and
graph theory. We will examine two of these applications, the first is work done by Aharoni
and Holzman in [2]. The second is one of many applications published by Aharoni and
Fleiner in [1].

8.1 Fractional Kernels in Directed Graphs

We will be interested to show the existence of fractional kernels in directed graphs un-
der minimal assumptions. We first introduce some definitions about directed graphs and
kernels.

8.1.1 Background

Recall that a directed graph or digraph D is a pair (V, A) where V is the set of vertices

and A is a subset of V × V called arcs.

If the arc (u, v) ∈ A but (v, u) /∈ A, we say (u, v) is irreversible. A directed cycle,
of a digraph is a cycle in which all arcs have the same direction. A directed cycle is called
proper if all of its arcs are irreversible.
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A set of vertices K is called a clique if every pair of vertices in K is joined by at least
one arc.

Definition 8.1. The in-neighbourhood of v ∈ V , denoted I(v), is v together with all
the vertices sending an arc to v.

Definition 8.2. A subset U of the vertex set V is said to be dominating if for all vertices
v, U ∩I(v) 6= ∅. The subset U is said to be independent if no two vertices of U are joined
by an arc. Further, if U is both independent and dominating, it is a kernel of D.

For example in Figure 8.1 a) the set of vertices {d, e} is dominating but not independent.
However, the set {c, d} is both dominating and independent, therefore it forms a kernel for
D. Also note that all arcs apart from (d, e) and (e, d) are irreversible.

Figure 8.1: Kernel and fractional kernel of a digraph D

We now define the fractional counterparts to the above definitions.

Definition 8.3. A non-negative function f on V is called fractionally dominating if

for every vertex v,
∑

u∈I(v)

f(u) ≥ 1. This can be strengthened to
∑

u∈K

f(u) ≥ 1 for some

clique K in I(v). If this holds for every vertex v in V , we call f strongly dominating.

Definition 8.4. A non-negative function f on V is called fractionally independent if
∑

u∈K

f(u) ≤ 1 for every clique K in D.

Definition 8.5. A (strong) fractional kernel is a function on V which is both frac-
tionally independent and fractionally (strongly) dominating.
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In Figure 8.1 b) the function f on V is a fractional kernel. One may easily verify that f
is fractionally dominating. To see that f is fractionally independent, first recall that each
arc in A is also a clique. Now each clique K ∈ A ∪ {{a, b, d}, {a, b, c}, {b, c, e}, {b, d, e}}

satisfies
∑

u∈K

f(u) ≤ 1, for example for K = {a, b, d},
∑

u∈K

f(u) = 0.25 + 0 + 0.5 ≤ 1.

However f is not strongly dominating because none of the cliques K ∈ {{a, c}, {a, d}}

in I(a), have
∑

u∈K

f(u) ≥ 1. Changing f(a) to 0.5 would however yield a strong fractional

kernel.

8.1.2 Fractional Kernels in Digraphs

Let D be a graph consisting of a single clique that contains a proper directed cycle going
through all vertices (Hamiltonian). Such a graph cannot contain a fractional kernel. To see

this, recall that in order for the fractional kernel to be independent, we need
∑

u∈K

f(u) ≤ 1

for every clique K in D, therefore
∑

v∈V

f(v) ≤ 1. If the clique contains a proper directed

cycle going through all vertices, then no vertex has in-degree greater than |V |−2, therefore
the size of any in-neighbourhood is at most |V | − 1. Therefore there exist vertices v and

x such that f(v) > 0 and v /∈ I(x), and so
∑

u∈I(x)

f(u) < 1. In order to be dominating we

need
∑

u∈I(v)

f(u) ≥ 1 for all vertices v. Contradiction.

In fact we show that directed cycles in cliques are the only obstacle in finding a frac-
tional kernel. We will examine clique-acyclic digraphs, that is digraphs where no clique
contains a proper directed cycle.

Note however that the complete 2-clique, namely vertices u, v with arcs (u, v) and (v, u)
does not constitute a proper directed cycle since neither of its arcs are irreversible. We can
now state the following theorem.

Theorem 8.6 ([2, Theorem 1.1]). Every clique-acyclic digraph has a strong fractional
kernel.

Proof. Let D = (V, A) be a clique-acyclic digraph. Let K0, . . . , Kn be all maximal cliques
in D. We form a digraph D′ from D as follows:
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1. Add n + 1 vertices, say z0, z1, . . . , zn to V to get V ′.

2. For all v in each maximal clique Ki, add the arcs (v, zi) to A.

Now define Ki′ = Ki ∪ {zi} to be the maximal cliques in D′. See Figure 8.2.

Figure 8.2: Constructing Ki′ from Ki

If D is clique-acyclic, so is D′, since all arcs added to Ki end at zi. Hence there exists
a linear order in the vertices of Ki′, >i, where if (u, v) is an irreversible arc of Ki′, then
u >i v. Note that some vertices may lie in many cliques and so may be in many linear
orders. Further, zi is the minimum in >i, as all arcs point to it. We say that the height

of zi in >i is 0.

Let w0 = z0, w1 = z1, . . . , wn = zn, wn+1, wn+2, . . . , wN be an enumeration of all the
vertices in D′.

Define an (n + 1) × (N + 1) matrix C as follows:

1. If wj /∈ Ki′ for some i, j then cij = M − j, where M is some number bigger than
|V | + N .

2. If wj ∈ Ki′ then let cij be the height of wj in the linear order >i of Ki′.
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Note that j ≤ N and M > |V | + N . Therefore M − j > |V | + N − j ≥ |V | and so is
strictly greater than the labels cij which are the height of wj in the linear order >i of Ki′.

Let B be the incidence matrix of the cliques Ki′, namely bij =

{

1 wj ∈ Ki′

0 otherwise
. Then

B is also an (n + 1) × (N + 1) matrix. You can see an example construction for matrices
B, C in Figure 8.3 and Table 8.1.

Finally, let ~b = ~1 be the column vector of all 1’s. Now we can check that the matrices
B, C satisfy the conditions of Scarf’s Theorem.

Since the vertices zi belong solely to the clique Ki′, the first n+1 columns of B indeed
form an identity matrix. Further, the set {~x ∈ R

n+1
+ : B~x = ~b} is bounded by Theorem 6.6,

since all entries of B are positive, ~b is positive, and B contains no column of zeros, as every
vertex lies in some clique.

As for the matrix C, we have cii = 0 as the vertices zi have height 0 in the linear order
>i. Also, since zi belongs solely to Ki′, cij = M−j, for j ≤ n, j 6= i. Hence for j ≤ n, k > n,
we have cii < cik < cij because either 0 < M − k < M − j or 0 < height of wk < M − j.
Further, the Non-Degeneracy Assumption is met as all elements of a row are distinct.
Therefore the conditions for Theorem 7.7 are met.

Apply Theorem 7.7 to obtain at least one J , a subset of size n+1 of {0, 1, . . . , N}, and
an associated basic feasible solution ~α to B~x = ~1.

For the example in Figure 8.3, one solution is J = {1, 5, 8} and ~α = (0, 0, 0, 0, 0, 1, 0, 0, 1)T .
Here the solution is integer, not fractional, but in general we would expect a fractional solu-
tion.

Define a function f on V by f(wj) = αj, j = n + 1, . . . , N . We claim that f is a
fractional kernel of D.

To see that f is fractionally independent in D, note first that f(wj) is non-negative.
Also, multiplying the clique incidence matrix B by ~α yields exactly the vector of all 1’s.

This means that
∑

wj∈Ki′

αj = 1, and so, restricting to Ki yields
∑

wj∈Ki

αj =
∑

wj∈Ki

f(wj) ≤

∑

wj∈Ki′

αj = 1 for each clique Ki, as required.

We now show f is strongly dominating. We know J forms an ordinal basis for C. That
is, each column of C is dominated by all columns in J at some row i. Let wk ∈ V , so
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k ≥ n + 1, and say column k is dominated at row t. Restrict the clique Kt′ to elements of
J by Kt

J = {wj ∈ Kt′ : j ∈ J}.

Claim 8.6.1. Kt
J is a subset of I(wk).

Proof. First note that the in-neighbourhood of wk is the same in D as in D′.

Assume there exists a vertex wj in Kt
J but not in I(wk). Then since wj ∈ Kt′, ctj is

the height of wj in >t, and so ctj ≤ |Kt′| − 1.

However, column j is in the basis J , and column k is dominated at row t, hence j
dominates k at t, namely

ctk ≤ ctj . (8.1)

Therefore, ctk ≤ ctj ≤ |Kt′| − 1, hence wk must also belong to Kt′, otherwise ctk would be
M − k > |Kt′| − 1.

So we have both wk and wj in the clique Kt′, meaning the arc (wk, wj) or (wj, wk)
exists. By assumption, wj is not in the in-neighbourhood of wk, hence only the arc (wk, wj)
exists, and is irreversible. This means wk is higher in the linear order >t than wj, and
hence ctk > ctj . This contradicts (8.1).

Now Kt
J ⊆ I(wk) so

∑

wj∈Ki′

αj =
∑

wj∈Ki
J

αj = 1 ≥ 1. (8.2)

We have equality between
∑

wj∈Ki′

αj and
∑

wj∈Ki
J

αj because the vertices in Ki
J are the only

ones with non-zero αj values, given that J is a basis. Hence f is strongly dominating, and
a fractional kernel of D.

8.2 Fractional Stable Matchings

The last application we examine is an abstraction of stable matchings to hypergraphs.
First we review some definitions, which come from [1]. See [10] for a full graph theory
introduction.
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Figure 8.3: Example of D′ construction

Table 8.1: Appropriate B and C matrices for Figure 8.3

B =









w0 w1 w2 w3 w4 w5 w6 w7 w8

1 0 0 1 1 1 0 0 0
0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 1









C =









w0 [w1] w2 w3 w4 [w5] w6 w7 [w8]
0 14 13 1 2 [3] 9 8 7

15 [0] 13 12 11 1 2 8 7
15 14 0 12 11 10 2 1 [3]









Here are example matrices B, C for the graph D′ in Figure 8.3. We have |V | = 6, N = 8,
so pick M = 6 + 8 + 1 = 15.
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8.2.1 Background

Recall that in a graph G = (V, E), a matching M is a subset of E such that each vertex
in V is incident to no more than one edge in M .

Let <v be a linear order on the edges incident with vertex v. A matching is said to be
stable if for every edge e not in the matching, there exists an edge m in the matching which
meets e at v and where e <v m. The origins of stable matchings are in the stable marriage
problem: given a set of men, a set of women and pairs of male-female acquaintances, can
we marry acquainted men and women so that of all pairs that are acquainted but not
married, at least one person in the pair prefers their spouse.

Gale and Shapley ([14]) proved that for a bipartite graph, such a stable matching always
exists.

Stable matchings cannot always be found in general graphs, for example a 3-cycle
{a, b, c} with {a, c} <a {a, b}, {a, b} <b {b, c} and {b, c} <c {a, c} admits no stable match-
ing. If we allow the matching to be fractional however, we can find a fractional stable
matching, as proved in [33].

Definition 8.7. A fractional matching is a non-negative function f on the edges of a

graph G such that for all v ∈ V ,
∑

v incident to e

f(e) ≤ 1.

A fractional matching is said to be stable if each edge e has an endpoint v for which
∑

v incident to e′,e≤ve′

f(e′) = 1. Here e ≤v e′ means e <v e′ or e = e′.

For the example above, a function f which assigns 1/2 to every edge is a fractional
stable matching. We can extend these definitions to hypergraphs.

Definition 8.8. A hypergraph H is a pair (V, E) where V is a set of vertices and E is
a set of subsets of V called hyperedges.

Note that in a hypergraph, edges link a family of vertices, as opposed to the traditional
2 vertices.

Definition 8.9. A hypergraphic preference system is a pair (H,O), where H = (V, E)
is a hypergraph, and O = {<v: v ∈ V } is a family of linear orders <v. Each linear order
<v acts on the set of edges containing the vertex v.
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Definition 8.10. A non-negative function f on the hyperedges of H is said to be a frac-

tional matching if
∑

v∈h

f(h) ≤ 1 for all vertices v. Further, we say a fractional matching

is stable if every hyperedge e contains a vertex v such that
∑

v∈h,e≤vh

f(h) = 1.

Figure 8.4: Fractional stable matching on a hypergraph

For example, Figure 8.4 shows a hypergraph on 8 vertices and 3 hyperedges. Each
vertex has an ordering of the edges to which it is incident. The function f associated with
each edge, namely f(e0) = f(e1) = f(e2) = 1/2, is a fractional stable matching. Since no
vertex lies in more than 2 edges, it is easy to see f is a fractional matching. To see it is

stable, note that for e0, there exists a vertex, b, for which
∑

b∈h,e0≤bh

f(h) = f(e0)+f(e1) = 1.

Similarly, there exists such a vertex, i or j, for e1 and one for e2, namely c.

8.2.2 Fractional Stable Matchings in Hypergraphs

We will show, using Scarf’s Extension Theorem, that there exists a fractional stable match-
ing for every hypergraphic preference system.

Theorem 8.11 ([1, Theorem 2.1]). In any hypergraphic preference system, there exists a
fractional stable matching.

Proof. Let (H,O) be a hypergraphic preference system, and say that the hypergraph H is
on n + 1 vertices and N − n hyperedges.
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Let B′ be the incidence matrix of H , namely the (n + 1) × (N − n) matrix where the
rows correspond to vertices of H and the columns to hyperedges. If a vertex v belongs to
a hyperedge e, then b′ve = 1, and 0 otherwise. Now let B be B′ with an identity matrix
adjoined to its left.

Let C ′ be the (n + 1) × (N − n) matrix defined as follows:

1. If the vertex v lies in hyperedge e, then let c′ve be the height of e in the linear order
<v.

2. If the vertex v does not lie in some hyperedge e, then let c′ve = M − j, where
M ≥ |V | + 2|E| and j is the index of the column of e plus |V |.

Construct C by adjoining a square matrix to the left of C ′, ensuring the conditions
of Theorem 7.7 are met. For instance let the diagonal entries be −1 and the off diagonal
entries be integers M − j, where j is the index of the column.

Finally, let ~b = ~1, where ~1 is the vector of all ones.

For the example in Figure 8.4, the appropriate matrices B, C are outlined in Table
8.2.

Now check that B, C satisfy the conditions of Theorem 7.7. Both B and C are (n +
1) × (N + 1) matrices.

By construction, the first n+1 columns of B form an identity matrix. Further, all entries
of B are from {0, 1}, and there are no columns of zeros, as every hyperedge (column)

contains at least one vertex. Since ~b = ~1, the set {~x ∈ R
N+1
+ |B~x = ~b} is bounded by

Theorem 6.6.

The matrix C has cii < cik < cij for 0 ≤ i, j ≤ n, i 6= j and k > n by construction.
Further, M ≥ |V | + 2|E| and j ≤ |V | + |E|, we have M − j ≥ |E| and so the entries from
vertices not in a particular hyperedge do not interfere with the entries which are the height
of a vertex in a linear order. Therefore the Non-Degeneracy Assumption is met because
all entries in a row are distinct.

We can apply Theorem 7.7 and find at least one subset J of {0, 1, . . . , N} with |J | = n+1
which is feasible for B and ordinal for C. Associated with J is a basic feasible solution
~α ∈ R

N+1
+ to B~x = ~b.

First we restrict ~α to the hyperedges E, and denote it ~α|E. Let k be a column of B′,
and ek be the hyperedge represented by k. Define f(ek) = αk.
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Table 8.2: Appropriate matrices B and C for Figure 8.4

B =

























a 1 1
b 1 1 1
c 1 1 1
d 1 1
g 1 1
h 1 1
i 1 1 1
j 1 1 1

























C =





























[a] b c [d] [g] [h] i j [e0] [e1] [e2]
a −1 14 13 12 11 10 9 8 0 6 5
b 15 −1 13 12 11 10 9 8 0 6 1
c 15 14 −1 12 11 10 9 8 7 1 0
d 15 14 13 −1 11 10 9 8 7 6 0
g 15 14 13 12 −1 10 9 8 7 6 0
h 15 14 13 12 11 −1 9 8 7 0 5
i 15 14 13 12 11 10 −1 8 1 0 5
j 15 14 13 12 11 10 9 −1 1 0 5
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We claim that f is a fractional stable matching.

To show f is a fractional matching, first note that f is non-negative. Secondly, we

require that for all v ∈ V ,
∑

v incident to e

f(e) ≤ 1. That is equivalent to multiplying the

row representing v of B′ by ~α|E. Yet we have B~α = ~1, and so restricting to E, we have
B′~α|E ≤ B~α = 1.

To show f is stable, we must show that for every hyperedge e, there exists a vertex v

such that
∑

v∈h,e≤vh

f(h) = 1. Because J is an ordinal basis for C, e must be dominated at

some row (i.e., vertex) v by every column in J .

Claim 8.11.1. The vertex v is a vertex in e for which
∑

v∈h,e≤vh

f(h) = 1.

Proof. First we show v ∈ e.

Note that the column v cannot be in J . This is because cvv = −1 is minimal over
the entire row, and therefore cannot dominate e at v. However, if v /∈ J , in the equation
B~α = ~1 we get no contribution from bvv = 1. Hence there must be some edge in J that
contains v, say edge h.

Since h ∈ J , h must dominate e at v (cve ≤ cvh) and so by Condition 2 above, v ∈ e,
otherwise we would have cve > cvh.

Therefore any column h that contributes to B~α = ~1 is an edge of H and dominates e

at v, and so we have
∑

v∈h,e≤vh

f(h) = 1.

Thus f is a fractional stable matching.

8.3 A Second Proof for Fractional Stable Matchings

It is in fact possible to abstract Theorem 8.6 of Section 8.1 and from it derive Theorem
8.11 from Section 8.2.

From the hypergraphic preference system (H,O), construct a digraph D = (V, A) as
follows:
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• For every hyperedge e of H , add a vertex ve to V .

• For any two vertices ve, vf of D, send an arc from ve to vf if there exists a vertex w
in H common to e and f and f <w e.

See Figure 8.5 for an example construction of D.

Figure 8.5: Constructing a directed graph from a hypergraphic preference system

We make the following claim.

Claim 8.12. Each vertex of H induces an acyclic clique in D.

Proof. Let v be any vertex of H , and say it is incident to k hyperedges, e1, e2, . . . , ek. If
k = 1, then v will induce no directed edges in D. Otherwise, there exists a linear order <v

on all the ei, say ek <v ek−1 <v . . . <v e1. In D, each ei corresponds to a vertex vei, and
since the hyperedges ei share a vertex v in H , there are directed edges between them in
D, corresponding to the linear order <v.

Namely, there is a directed edge from vek to each of {vek−1, . . . , ve1}, a directed edge
from vek−1 to each of {vek−2, . . . , ve1}, and so on until we have a directed edge between ve2

and ve1.

Clearly the vertices ve1 , ve2, . . . , vek , form a clique, and further it is acyclic because the
edges are always directed from vei to vej , where i > j.

There may be “incidental” cliques formed in D, namely cliques that do not correspond
to a vertex of H . For example in Figure 8.5 there are 2 3-cliques which are not acyclic,
but neither corresponds to a vertex of H . Hence we can modify Theorem 8.6 to focus only
on the cliques in which we are interested. We state this abstraction here.
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Theorem 8.13. Let D = (V, A) be a digraph that is a union of acyclic cliques K1, K2, . . . , Kt.
Then D has a strong fractional kernel with respect to these specified cliques.

Here by a strong fractional kernel with respect to the cliques K1, K2, . . . , Kt, we mean
a non-negative function f on V which satisfies the following two conditions:

1. The function f is strongly dominating: for every vertex v in V , there exists j

such that
∑

u∈K

f(u) ≥ 1 for some clique K ∈ I(v) ∩ Kj .

2. The function f is fractionally independent: for every clique Kj , 1 ≤ j ≤ t,
∑

u∈Kj

f(u) ≤ 1.

The proof is the same as before, except that we consider the maximal cliques within
this list as opposed to all maximal cliques in the directed graph.

Now we have this final claim.

Claim 8.14. Let D be the directed graph constructed as above from a hypergraphic pref-
erence system (H = (V, E),O), and let {Kv : v ∈ V } be the cliques of D corresponding to
vertices in H. Then a strong fractional kernel with respect to the cliques {Kv : v ∈ V (H)}
is a fractional stable matching for (H,O).

Proof. Let ve1, . . . , vek be an enumeration of the vertices of D, and let v1, . . . , vt be an
enumeration of the vertices of H . Then by Theorem 8.13, we can find a strong fractional
kernel with respect to the cliques Kv1 , . . . , Kvt . Namely, we have a non-negative function
f on the vertices of D so that:

1. For every vertex vei, i = 1, . . . , k, there exists j such that
∑

u∈K

f(u) ≥ 1 for some

clique K in I(vei) ∩ Kvj .

2. For every clique Kvj , j = 1, . . . , t,
∑

u∈K
vj

f(u) ≤ 1.

Recall that every vertex vei of D corresponds to a hyperedge ei of H , and that each
clique Kvj of D corresponds a vertex vj of H . The in-neighbourhood of a vertex vei of
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D is vei along with all vertices ve sending an arc to vei . Therefore in H it represents the
hyperedge ei along with all hyperedges e which are higher than ei in the linear order of
some vertex v in ei. When we restrict the in-neighbourhood to a particular clique Kvj in
D, we are in H restricting to all hyperedges e which are higher than ei in the linear order
of vj. Therefore in H , we have a non-negative function f on the hyperedges of H such that

1. For every hyperedge ei, i = 1, . . . , k,
∑

ei≤
vj e

f(e) ≥ 1 for some vertex vj in ei.

2. For every vertex vj , j = 1, . . . , t,
∑

e incident to vi

f(e) ≤ 1.

This is almost a fractional stable matching for H . Recall that we want a non-negative
function f for which:

1. Every hyperedge e contains a vertex v such that
∑

v∈h,e≤vh

f(h) = 1, and

2. For every vertex v,
∑

v∈h

f(h) ≤ 1.

But equality holds in the first condition, as was shown in equation (8.2).

Hence we have shown the existence of a fractional stable matching in a hypergraph is
implied by the existence of a strong fractional kernel in an associated directed graph.
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Appendix A

Example of Stable Fractional

Matchings in Hypergraphs

Figure A.1: Example hypergraph with preference sets

We will find a fractional matching for the hypergraphic preference system (H,O) in
Figure A.1, using Scarf’s Extension Theorem. The purpose of this section is to show how
Scarf’s Extension Theorem works, and so this example was chosen because it is solved in
a small number of steps while still giving a matching with is not integral.

We could solve it directly using the method of Section 8.2, but instead we will transform
the system into a directed graph and find a strong fractional kernel using the method of
Section 8.3.

Recall that to form the digraph D from a hypergraphic preference system (H,O), we
do the following:
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• For every hyperedge e of H , add a vertex ve to D.

• For any two vertices ve, vf of D, send an arc from ve to vf if there exists a vertex w
in H common to e and f and f <w e.

Applying this to the hypergraph of Figure A.1, we get Figure A.2.

Figure A.2: Transforming a hypergraphic preference system into a directed graph

The cliques in which we are interested are the ones corresponding to vertices of H ,
namely i, j, b and c. Given that i and j represent the same clique, we will consider only
one of them, say i. Note further that D contains a 3-clique which is not acyclic. Since it
does not correspond to a vertex of H , we can still apply Theorem 8.13. According to the
proof of this theorem, we add 3 vertices to D, one for each clique, and send arcs from all
vertices in each clique to these new vertices. See Figure A.3. We also give a linear order
on the vertices in each clique.

There are N + 1 = 6 vertices and n + 1 = 3 cliques. Recall that B is the 3 × 6 clique-
incidence matrix, while C is defined as follows. Let w be a vertex of D and K a clique of
D. Let c be the entry in the column for w and the row for K in C.

1. If w /∈ K then c = M − j, where M is some number bigger than |V |+N = 3+5 = 8,
and j is the index for the column w.

2. If w ∈ K then c is the height of w in the linear order of K.

Finally, we let ~b be the vector of all 1s.
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Figure A.3: Adding extra vertices for each clique of D

For the directed graph of Figure A.3, here are matrices B, C that satisfy these condi-
tions:

B =









wi wb wc e0 e1 e2

Ki 1 1 1
Kb 1 1 1
Kc 1 1 1









C =









wi wb wc e0 e1 e2

Ki 0 8 7 2 5 1
Kb 9 0 7 1 2 4
Kc 9 8 0 6 1 2









We will find a stable fractional matching in H by finding a basis which is feasible for
B and ordinal for C and an associated basic feasible solution ~x ∈ R6

+ to B~x = ~b. Then if
we restrict ~x to the hyperedges of H , ~x|E will be a fractional stable matching.

A.1 Scarf’s Extension Algorithm

The first step is to find two bases JB = {wi, j1, j2} and JC = {j0, j1, j2} with j0 6= wi where
JB is feasible for B and JC is ordinal for C. The first is easy to find (the first 3 columns
of B will do).
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To find a basis which is ordinal for C, we start with the columns {1, 2} and add the
column h from {e0, e1, e2} for which cwih is maximum. This is column e1.

Hence our initial bases are

JB = {wi, wb, wc}

JC = {e1, wb, wc}.

Step 1: Add e1 to JB.

RREF (B|~b) = [B|~b] =









wi wb wc e0 e1 e2 ~b
Ki 1 1 1 1
Kb 1 1 1 1
Kc 1 1 1 1









Note that our initial basis consists of the columns {wi, wb, wc}, and so to find the
lexicographical minimum, we will always look at the entries in these columns. To determine
which column leaves the basis, we want to find the lexicographical minimum of the following
3-tuple:

− wi

(1,0,1,0)
1

wb

(1,0,0,1)
1

wc

Column wc leaves the basis. Swap columns wc and e1.

[B|~b] =









wi wb e1 e0 wc e2 ~b
Ki 1 1 1 1
Kb 1 1 1 1
Kc 1 1 1 1









The new pair of bases is

JB = {wi, wb, e1}

JC = {wc, wb, e1}.
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Step 2: Remove wc from JC

In doing so column e1 now has 2 row minimizers, u = Ki (old) and Kc (new).

C =









wi [wb] wc e0 [e1] e2

Ki 0 8 7 2 [5] 1
Kb 9 [0] 7 1 2 4
Kc 9 8 0 6 [1] 2









Next we examine all columns h with cih > min {cij |j = j1, j2} for all i 6= u. These are
{wi, e0, e2}. Of those, we pick one that maximizes cuh = cKih. Hence column e0 enters the
basis.

JB = {wi, wb, e1}

JC = {e0, wb, e1}

Step 3: Add e0 to JB.

RREF (B|~b) =









wi wb e1 e0 wc e2 ~b
Ki 1 1 1 1
Kb 1 1 −1 −1 0
Kc 1 1 1 1









To determine which column leaves the basis, we want to find the lexicographical min-
imum of the following 3-tuple:

(1,1,0,0)
1

wi

(0,0,1,−1)
1

wb

− wc

Column wb leaves the basis. Swap columns wb and e0.
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[B|~b] =









wi e0 e1 wb wc e2 ~b
Ki 1 1 1 1
Kb 1 1 −1 −1 0
Kc 1 1 1 1









The new pair of bases is

JB = {wi, e0, e1}

JC = {wb, e0, e1}.

Step 4: Remove wb from JC

In doing so column e0 now has 2 row minimizers, u = Ki (old) and Kb (new).

C =









wi wb wc [e0] [e1] e2

Ki 0 8 7 [2] 5 1
Kb 9 0 7 [1] 2 4
Kc 9 8 0 6 [1] 2









Next we examine all columns h with cih > min {cij |j = j1, j2} for all i 6= u. These are
{wi, e2}. Of those, we pick one that maximizes cuh = cKih. Hence column e2 enters the
basis.

JB = {wi, e0, e1}

JC = {e2, e0, e1}

Step 5: Add e2 to JB.

RREF (B|~b) =









wi e0 e1 wb wc e2 ~b
Ki 1 −1 1 2 1
Kb 1 1 −1 −1 0
Kc 1 1 1 1
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To determine which column leaves the basis, we want to find the lexicographical min-
imum of the following 3-tuple:

(1,1,−1,1)
2

wi

− wb

(1,0,0,1)
1

wc

Column wi leaves the basis, and we are done. To find the associated solution, we first
swap columns wi and e2.

[B|~b] =









e2 e0 e1 wb wc wi ~b
Ki 2 −1 1 1 1
Kb −1 1 1 −1 0
Kc 1 1 1 1 1









Finally, row reduce [B|~b]:

RREF (B|~b) =









e2 e0 e1 wb wc wi ~b
Ki 1 −0.5 0.5 0.5 0.5
Kb 1 0.5 −0.5 0.5 0.5
Kc 1 0.5 0.5 −0.5 0.5









So the final solution is:

α =

0 wi

0 wb

0 wc

0.5 e0

0.5 e1

0.5 e2

.

And so restricting to the edges of H , we get a fractional stable matching where each
edges has weight 1

2
. This is the same as the solution we found in Section 8.2.1.
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barycentric subdivision, 17, 47, 50
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basic matrix, 57
basic solution, 58
basis, 53

degenerate, 58
feasible, 58, 71
ordinal, 70

boundary, 7

cake cutting, 46
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degenerate
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proper, 80
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fractionally, 81
strongly, 81
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Euclidean Space, 5
extreme point, 7, 56
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of abstract simplex, 9
proper, 7, 9

facet, 7
fully labelled, 34

fair division, 46
cake cutting, 46
rent partitioning, 49

feasible basis, 58, 71
feasible pivot step, 72, 79
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feasible region, 56, 59
fractional kernel, 81
fractional matching, 87

of hypergraph, 88
stable, 87, 88

fractional stable matching, 87, 88
fractionally dominating, 81
fractionally independent, 81
fully labelled

facet, 34
primitive set, 28
simplex, 34

geometrically independent, 6

height, 89
in a linear order, 83

hyperedge, 87
hypergraph, 87
hypergraphic preference system, 87
hyperplane

n-dimensional, 6
spanned by a set, 5

in-neighbourhood, 81
independence

fractional, 81
geometric, 6
linear, 53
of a vertex set, 81

irreversible arc, 80
isomorphism

of complexes, 10

kernel, 81
fractional, 81

labelling
by ownership, 47

of a subdivision, 34
primitive, 28
Scarf, 44
Sperner, 36

lexicographical minimum, 67
linear combination, 52
linear program, 54

unbounded, 61
linearly dependent, 53
linearly independent, 53

matching
fractional, 87, 88
of graph, 87
stable, 87

minimizer, 19, 70

non-basic matrix, 58
Non-Degeneracy Assumption, 21

objective function, 54
ordinal basis, 70
ordinal pivot step, 72, 79
owner

of a vertex, 47

perturbed problem, 64
pivot step, 61

feasible, 72, 79
ordinal, 72, 79

point, 5
primitive set, 19

degenerate, 21
fully labelled, 28

proper directed cycle, 80
proper labelling

of a primitive set, 28
of a subdivision, 34, 36

pseudomanifold
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abstract, 10
geometric, 8

realization of complexes, 10, 11
rent partitioning, 49
restricted subdivision, 14

S, standard simplex, 18
Scarf labelling, 44
Scarf’s Extension Theorem, 78
Scarf’s Theorem

extended, 78
in matrix form, 72
on primitive sets, 28
on subdivisions, 34

simplex
n-dimensional, abstract, 9
n-dimensional, geometric, 6
covering, 20
elementary, 14
fully labelled, 34
of the subdivision, 14
spanned by a set, 6
standard, 18

simplicial complex
abstract, 9
dimension of, 7, 9
geometric, 7

slack variable, 55
smallest subscript rule, 63
spanning set, 53
Sperner labelling, 36
Sperner’s Lemma, 36, 38

on pseudomanifolds, 40
standard equality form, 54
standard form, matrices in, 71
standard inequality form, 54
strong fractional kernel, 81

strongly dominating, 81
subcomplex

abstract, 9
geometric, 8

subdivision, 13
barycentric, 17, 47, 50
restricted, 14
sufficiently fine, 43
vertices of the, 13

sufficiently fine, 43

tableau, in simplex method, 60
triangulation, 13

unbounded linear program, 61

vector, 52
vertex

of a digraph, 80
of a simplex, 7
of hypergraph, 87
of simplicial complex, 7, 9
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