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Abstract

With the increasing number of images generated every day, textual annotation of im-

ages becomes impractical and inefficient. Thus, content-based image retrieval (CBIR) has

received considerable interest in recent years. For comparing images, CBIR uses generic im-

age features which are traditionally either intensity-based (color and texture) or geometry-

based (shape and topology); the latter is generally less developed than the former. A

common limitation of the existing geometry-based retrieval systems is not considering si-

multaneously both shape and topology of image objects (or components) which may reveal

important properties of the scene being analyzed.

This work presents a geometry-based image retrieval approach for multi-object images.

We commence with developing an effective shape matching method for closed boundaries.

Then, a structured representation, called curvature tree (CT), is introduced to extend the

shape matching approach to handle images containing multiple objects with possible holes.

We also propose an algorithm, based on Gestalt principles, to detect and extract high-level

boundaries (or envelopes), which may evolve as a result of the spatial arrangement of a

group of image objects.

At first, a shape retrieval method using triangle-area representation (TAR) is presented

for non-rigid shapes with closed boundaries. The TAR is a 2D matrix that utilizes the ar-

eas of the triangles formed by the boundary points to measure the convexity/concavity

of each point at different scales (or triangle side lengths). This representation is effective

in capturing both local and global characteristics of a shape, invariant to translation, ro-

tation, scaling and shear, and robust against noise and moderate amounts of occlusion.

For matching, two algorithms are introduced. The first algorithm matches concavity max-

ima points extracted from TAR image obtained by thresholding the TAR. In the second

matching algorithm, dynamic space warping (DSW) is employed to search efficiently for

the optimal (least cost) correspondence between the points of two shapes. Then, a dis-

similarity measure is derived based on the optimal correspondence. Experimental results

using the MPEG-7 CE-1 database of 1400 shapes show the superiority of our method over
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other recent methods in the literature.

Then, a geometry-based image retrieval system is developed for multi-object images.

We model both shape and topology of image objects including holes using a structured

representation called curvature tree (CT). The hierarchy of the CT reflects the inclusion

relationships between the objects and holes. To facilitate shape-based matching, the TAR

of each object and hole is stored at the corresponding node in the CT. The similarity be-

tween two CTs is measured based on the maximum similarity subtree isomorphism (MSSI)

where a one-to-one correspondence is established between the nodes of the two trees. Our

matching scheme agrees with many recent findings in psychology about the human percep-

tion of multi-object images. Two algorithms are introduced to solve the MSSI problem: an

approximate and an exact. The approximate algorithm follows a continuous optimization

approach for maximal clique detection of an auxiliary graph derived from the two CTs

where the obtained solution most likely corresponds to a MSSI. In the exact algorithm,

a recursive procedure searches directly for the MSSI from all possible isomorphisms. The

search space is drastically reduced due to the nonnegative property of the employed node

similarity measure. Both algorithms have polynomial-time computational complexity and

use the DSW as the similarity measure between the attributed nodes. Experiments on a

database of 13500 real and synthesized medical images and a database of 1580 logo images

have shown the effectiveness of the proposed method.

The purpose of the last part of this thesis is to allow for high-level shape retrieval in

multi-object images by detecting and extracting the envelope of high-level object groupings

in the image. Motivated by studies in Gestalt theory, a new algorithm for the envelope

detection and extraction is proposed that works in two stages. The first stage detects the

envelope (if exists) and groups its objects based on their proximity, shape similarity and

orientation using hierarchical clustering techniques. In the second stage, each grouping

is merged using morphological operations and then further refined using concavity tree

reconstruction to eliminate odd concavities in the extracted envelope. Experiment on a set

of 110 logo images demonstrates the feasibility of our approach.
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Chapter 1

Introduction

Shape is a concept which is widely understood yet difficult to define formally. The hu-

man perception of shapes is a high-level concept whereas mathematical definitions tend

to describe shape with low-level features. However, for 2-D objects, Marshall [73] tried

to define shape as a function of position and direction of simply connected curves within

the two-dimensional field. Shape is an important visual information that has received

much attention from researchers in pattern recognition and computer vision in the past

few decades. Most existing techniques for shape analysis and recognition are concerned

with single-object shapes, i.e. the silhouette of an object. This thesis investigates different

issues related to the matching and retrieval of multi-object shape images.

1.1 Definitions

Before going through the details of our work, we define some terminologies that will be used

in the context of this thesis. We commence by defining a shape image, then, we proceed

to each of object and hole, single- and multi-object shapes, an envelope, and closed and

open boundaries.

Shape image: in the context of our work, a shape image is a binary image that contains

one or more connected components of pixels. We assume the image objects are

already segmented and their boundaries are well identified; therefore, binary images
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are considered.

Objects and holes: an object is a set of connected foreground pixels. Similarly, a hole is

a set of connected background pixels which are surrounded by foreground pixels, i.e.,

a hole is contained in an object. By this definition, each object (hole) may contain

one or more holes (objects). Note that any object (hole) can not directly contain

another object (hole).

Single- and multi-object shapes: we mean by a single-object shape a binary image

that contains only one filled object (with no holes). On the other hand, a multi-object

shape is a binary image that contains one object with at least one hole or more than

one object with possible holes. Fig. 1.1 shows an illustrative example.

(a) (b)

Figure 1.1: Examples of (a) single-object and (b) multi-object shapes.

Envelopes: an envelope is a high-level virtual boundary, which reflects a meaningful

shape as perceived by humans, of a group of objects (or holes) as a result of their

spatial arrangement. This concept is discussed in Chapter 5.

Open and closed boundaries: an open boundary has a unique and distinct start and

end points when traversed in certain direction, as shown in Fig. 1.2 (a). Conversely,

a closed boundary starts and ends at the same point which can be any point on the

boundary, as shown in Fig. 1.2 (b). In this thesis, unless mentioned otherwise, a

boundary refers to a closed boundary.
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(a) (b)

Figure 1.2: Examples of (a) an open and (b) closed boundaries.

1.2 Motivations

Due to the recent developments in digital imaging technologies, an increasing number of

images are generated everyday. Millions of images are available via the internet. Therefore,

there is a growing interest in finding images in large collections or from remote databases.

In order to achieve this task, images have to be represented by specific features. Early

attempts tried to use textual annotation of images and then search images using their

annotations. Clearly, this method is not practical for large databases. In addition, the

textual annotation of image content by itself is a difficult and subjective process. Therefore,

searching images using generic features has received considerable attention in recent years.

Fig. 1.3 shows categorization of the generic image features as geometry-based (shape and

topology) or intensity-based (texture and color). Shape is considered the most promising

for the identification of entities in an image. It can be argued that most real subjects

are easily identified using only their silhouettes. A user survey in [64] indicated that 71%

of the users were interested in retrieval by shape. This thesis focuses on the geometric

information, including shape and topology, for content-based image retrieval.

In a typical image, the scene may contain many objects, each of which may include

holes and other objects. Human perception of such scenes depends, not only on the shapes

of individual objects and holes, but also, on how they are spatially arranged. For instance,

consider the binary images in Fig. 1.4. Images (a) and (b) are similar to each other

because they have identical external boundaries. At the same time, images (b) and (c)

share similarity in their topological structure. Thus, both shape and topology information

contribute, although in different amounts, to the overall similarity between two images.
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Figure 1.3: Categorization of the features for content-based image retrieval.

(a) (b) (c)

Figure 1.4: An illustration of the shape similarity concept. See text for details.
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(a) (b) (c)

Figure 1.5: Illustration of the role of the spatial configuration in shape similarity. See text

for details.

Fig. 1.5 shows another example of the role of the spatial arrangement on how a group

of objects is perceived as a whole. Image (a) shows a trademark image which contains

three triangles. However, when these triangles are arranged in a different way, as shown

in image (b), the new image looks similar to image (c). Note that images (a) and (c)

are not similar. We conclude that different arrangements of the same objects can lead to

completely different perceived shapes.

The main motivation of this research is to establish a successful strategy for measuring

the similarity between two multi-object shape images. We found support for our observa-

tions in the literature of psychology. Biederman [21] concluded that different arrangements

of the same objects of one subject can easily lead to a different subject. He also argued that

certain relations between objects, such as the relative size and the spatial configuration,

determine the identity of a shape. Another notion by Lowe [71] states that the similarity

between two groups of objects does not equal the sum of the similarities between individual

objects. In conclusion, the proposed approach for measuring the similarity between two

multi-object shape images (presented in Chapter 4) considers both shape and topology at

once, agrees with recent studies in Psychology about the human similarity comparison pro-

cess and works in polynomial-time complexity. To our best knowledge, no such technique

exists in the literature so far.
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1.3 Research Objectives

The main objective of this research is to develop, implement and evaluate a prototype

system for multi-object shape matching and retrieval. We model both shape and topology

of image objects including holes using a structured representation called curvature tree

(CT). The hierarchy of the CT reflects the inclusion relationships between the objects

and holes. To facilitate shape-based matching, triangle-area representation (TAR) of each

object and hole is stored at the corresponding node in the CT. The similarity between two

CTs is measured based on the maximum similarity subtree isomorphism (MSSI), where a

one-to-one correspondence is established between the nodes of the two trees. An effective

shape matching algorithm, called dynamic space warping (DSW), is developed to measure

the similarity between the attributed nodes. Our matching scheme agrees with many recent

findings in psychology about the human perception of multi-object images. To allow high-

level shape retrieval in multi-object images, an algorithm for detecting and extracting the

envelope of high-level object groupings in the image is proposed; motivated by studies in

Gestalt theory [120].

Fig. 1.6 illustrates the different modules of our proposed system. The user presents a

query image and the system retrieves images from the database ranked according to their

similarity with the query. At first, a preprocessing stage removes noise and labels objects

and holes of the image. For gray-scale images, different types of noise removal methods

exist [9, 7]. Since only binary images are considered in this research, a binary noise removal

method is adopted. Then, the CT representation of the image objects is constructed to

encode both shape and topology. As in most retrieval systems, the computation of the CT

for the database images is performed off-line whereas the query CT is computed at the

time of retrieval. For measuring the similarity, attributed tree matching module matches

the query with the database images, ranks them according to their similarity with the

query and provides the user with a number of top ranked images according to the user

preference. A shape matching algorithm is used during the matching process to measure

the shape similarity between the tree nodes.
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Figure 1.6: Block diagram of the proposed multi-object shape retrieval system.
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1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 presents background information and review of the related work in the lit-

erature. The background includes the main methodologies for representing and

describing shapes, distances for measuring the similarity between images and the

performance evaluation of retrieval systems.

Chapter 3 is concerned with single-object shape representation and matching. In this

chapter, two shape descriptors are derived from the triangle-area representation of

the external boundary of an object. Then, two matching algorithms are developed

based on each description.

Chapter 4 introduces the curvature tree (CT) as a tool for representing multi-object

shapes and explains the CT properties. Two matching algorithms, an approximate

and an exact, are proposed to measure the similarity between two CTs. The proposed

system is employed in two application domains; namely, medical image retrieval and

logo retrieval.

Chapter 5 proposes an algorithm for detecting and extracting high-level envelopes of

object groupings in multi-object images based on Gestalt principles.

Chapter 6 summarizes the main contributions of this thesis and suggests areas for future

work.
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Chapter 2

Background and Review

This chapter presents a background about the shape representation and matching method-

ologies and the criteria for evaluating the retrieval performance of shape retrieval systems.

The last section presents a detailed review of the shape analysis methods in the literature.

The reader can refer to standard books in the literature for more information about digital

image processing [47] and pattern recognition [108].

2.1 Shape Representation and Description

Shape representation means obtaining a set of features characterizing the shape in such a

way that it becomes possible to reconstruct the shape from such features. Shape description

is the extraction of shape features in order to quantify important properties of the shape;

however, the extracted features are not necessary sufficient to reconstruct the shape.

A wide range of shape representation and description methods have been proposed and

many of them have been implemented into commercial systems [70]. The effectiveness of

a shape retrieval system depends mainly on the type of the shape descriptor used and the

efficiency of the shape matching function. There are some criteria that should be taken

into consideration when developing a shape descriptor, which include [92]:

Uniqueness : a shape needs to be represented uniquely; otherwise, the retrieved shapes

may not be similar to the query shape.
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Invariance : it is highly desirable for a representation to be invariant to geometric trans-

formations such as the affine transformations which include translation, scale, rota-

tion and skewness.

Robustness : to be suitable for practical applications, moderate amounts of noise and

deformations should have no (or at least little) impact on the representation.

Scalability : the discrimination ability of a representation should be independent of, or

at least slightly affected by, the number of shapes it describes.

Efficiency : a representation must be computationally efficient in order to be applicable

in real-time.

Compactness : a representation must be compact for storage purposes.

There are many classifications of the shape representation techniques [31, 137] depend-

ing on the nature of their inputs (contour-based vs region-based) or the nature of their

outputs (global or numeric vs structural or non-numeric). Global techniques usually com-

pute a numerical feature vector for a shape. Then, the matching is conducted using a

simple metric distance such as the Euclidean distance or the city block distance. On the

other hand, structural techniques divide shapes into segments called primitives. They dif-

fer in the selection and organization of these primitives. The similarity matching in this

case is usually performed using string or graph matching. Fig. 2.1 shows the hierarchy

of these classifications. The remainder of this section discusses samples from the existing

shape representations according to the classification in Fig. 2.1. It should be mentioned

that there are techniques based on combination of global and structural representations;

for example, a structural representation decomposes a shape into primitives and a global

descriptor is extracted for each primitive [6].

2.1.1 Global contour-based techniques

Circularity

Circularity reflects the compactness of the contour of an object. It is defined as:
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Figure 2.1: Classification of shape representation techniques.
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Circularity =
Perimeter2

Area
(2.1)

Circularity has large values for elongated objects and it is roughly correlated with the

complexity of the contour. It has a minimum value of 4π for a circle. It is also invariant

to scaling, translation and rotation.

Fourier descriptors

Fourier descriptors are the complex coefficients of the Fourier series expansion of waveforms.

Given a shape in 2D space, the horizontal x(k) and the vertical y(k) coordinates of the

contour points can be expressed as [136]:

p(k) = x(k) + jy(k) (2.2)

where k = 0, 1, ...., N − 1 and N is the number of the contour points. The discrete Fourier

transform (DFT) of p(k) is:

a(u) =
1

N

N−1∑

k=0

p(k) exp [−j2πuk/N ] (2.3)

for u = 0, 1, ...., N − 1. The complex coefficients a(u) are called the Fourier descriptors

of the contour. In practice, only the first few descriptors are enough to characterize the

contour. This representation has the advantage of reducing the 2D problem to two 1D

problems.

2.1.2 Structural contour-based techniques

Chain codes

Chain codes were introduced by Freeman [44]. In this approach, an arbitrary curve is

represented by a sequence of vectors of unit length and a set of possible directions. From a

selected starting point, a chain code can be generated by using 4-directional or 8-directional

chain code, as seen in Fig. 2.2. N -directional chain code is also possible. Fig. 2.3 shows

an example of representing a shape using 4-directional chain code. This method suffers

from being sensitive to noise and to the starting point.
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(a) (b)

Figure 2.2: Chain codes numbering schemes: 4-directional (a) and 8-directional (b).

Figure 2.3: 4-directional chain code of a shape.
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Curvature scale space

The curvature scale space (CSS) representation of a contour is obtained by tracking the

positions of inflection points in that contour as it is gradually smoothed by low-pass Gaus-

sian filters of variable widths (σ) [79]. As σ increases, the contour becomes smoother and

less significant inflection points are eliminated, as shown in Fig. 2.4(a). The result of

plotting the inflection points versus σ is known as CSS image as shown in Fig. 2.4(b).

This approach is of particular interest since it shares some similarities with part of our

work.

(a) (b)

Figure 2.4: Contour smoothing (a) and the resulted CSS image (b).

An efficient computation of the curvature scale space representation using B-spline

wavelets was proposed by Wang et al. [132, 131]. Their method provides an alternative

to the classical Gaussian-based scale space representation while being much more efficient

and relying on the well-established wavelet theory.

Polygon decomposition

Here, the shape is broken down into line segments using polygon approximation [48]. Then,

the polygon vertices are used as primitives. The feature vector for each primitive is a

4-element string of the internal angle, distance from the next vertex and its x and y

coordinates. For efficiency, only a fixed number of sharpest vertices are considered. While

this method had worked for artificial drawings, it is impractical for natural objects.
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2.1.3 Global region-based techniques

Geometric moment invariants

Hu published the first significant paper on the use of moment invariants for 2D pattern

recognition applications [51]. Given a binary image f(x, y), moments of order (p + q) are

defined as:

mpq =
∑

x

∑

y

xpyqf(x, y) (2.4)

The central moments of f(x, y) are defined as:

µpq =
∑

x

∑

y

(x− x̄)p(y − ȳ)qf(x, y) (2.5)

where x̄ = m10/m00 and ȳ = m01/m00. Then, the normalized central moments are com-

puted:

ηpq =
µpq

µλ
00

, s.t. λ = 1 +
p + q

2
and (p + q) ≥ 2 (2.6)

The second and third order moments, which are invariant to translation, scale and

rotation, were used by Hu to derive his well-known seven moment invariants:

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12) (η30 + η12)
(
(η30 + η12)

2 − 3 (η21 + η03)
2)+

(3η21 − η03) (η21 + η03)
(
3 (η30 + η12)

2 − (η21 + η03)
2)

φ6 = (η20 − η02)
(
(η30 + η12)

2 − (η21 + η03)
2)+ 4η11 (η30 + η12) (η21 + η03)

φ7 = (3η21 − η30) (η30 + η12)
(
(η30 + η12)

2 − 3 (η21 + η03)
2)−

(η30 − 3η12) (η21 + η03)
(
3 (η30 + η12)

2 − (η21 + η03)
2)

(2.7)
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Major Axis Orientation

The major axis of an object is the straight line segment joining the two points farthest

from each other. The major axis orientation is defined as the angle between the x-axis and

the axis around which the object can be rotated with minimum inertia [47]. This feature

is particularly important to find out how a group of objects are aligned. Using (2.5), this

angle is given by:

θ =
1

2
tan−1 2µ11

µ20 − µ02

(2.8)

Eccentricity

The minor axis of an object is perpendicular to the major axis and of length equals the

width of the minimum-area rectangle that contains the object. The eccentricity is the ratio

of the major axis to the minor axis. Its normalized value ranges from zero (circle) to one

(line) and it is useful to eliminate highly dissimilar shapes from further matching. Using

(2.5), the normalized eccentricity is given by:

Eccentricity =
(µ20 − µ02)

2 + 4µ2
11

(µ20 + µ02)
2 (2.9)

Solidity

The solidity is defined as the ratio of the shape’s area to the area of its convex hull. The

solidity measures the deviation of a shape from being totally convex.

Aspect ratio

The aspect ratio is the ratio of the width to the height of the shape. It can be computed

from the minimum bounding rectangle of the shape.

16



2.1.4 Structural region-based techniques

Convex hull and concavity trees

A region R is convex if and only if for any two points P1, P2 ∈ R, the whole line segment

whose end points are P1 and P2 is also inside R. The convex hull of a region is the smallest

convex region H which satisfies the condition R ⊆ H [118]. This definition of the convex

hull is the most general one and includes the multi-object convex hull (MOCH). Fig. 2.5

shows the convex hull of an elephant’s shape.

(a) (b)

Figure 2.5: An object (a) and its convex hull (b).

The convex hull can be used to build a tree structure of region concavity called concavity

tree [115]. A concavity tree is constructed recursively during the generation of the convex

hull. This concept is illustrated in Fig. 2.6, where the convex hull of the whole region is

constructed first, and convex hulls of concave residua are found next. The resulting convex

hulls of concave residua of the regions from previous steps are searched until no concave

residuum exists. Thus, the nodes in a concavity tree represent convex hulls and the root

represents the convex hull of all objects in the image. Nodes in the first level represent the

convex hulls of the concavities (or holes) and nodes in the second level represent convex

hulls of meta-concavities, and so on. The resulting tree is a shape representation of the

region.
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Figure 2.6: Concavity tree construction.

Medial axis transform

Like the convex hull, the skeleton of an object can be employed for shape description.

The basic idea is to eliminate redundant information while retaining only the topological

structure of the object. The medial axis is the locus of the centers of maximal circles

that fit within the shape [70], as illustrated in Fig. 2.7. The skeleton is then segmented

and represented as a graph according to certain criteria. The matching between shapes

becomes graph matching problem. This method is sensitive to noise and requires high

computations.

2.2 Distance Measures

A distance measure, sometimes referred to as dissimilarity measure, is a function that

quantifies the dissimilarity between two patterns based on their descriptors. For image

retrieval, measuring the dissimilarity between a query image and a database image is
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Figure 2.7: Medial axis of a rectangle.

required to rank the database images according to their similarity with the query. It is

usually desirable for a distance to be a metric. Given a set of patterns S = {x, y, z} and a

distance d, such that d : S × S →R, d is a metric if it satisfies the following conditions:

1. d(x, y) = 0 ⇔ x = y (self identity).

2. d(x, y) > 0 if x 6= y (positivity).

3. d(x, y) = d(y, x) (symmetry).

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A distance that satisfies the first three conditions and violates the triangle inequality

is called semi-metric. Although the metric property is useful in many applications such

as image database indexing, many studies in psychology concluded that human similarity

judgements do not obey the metric properties. In particular, the human judgement violates

the triangle inequality and is not symmetric [124, 11]. This fact is illustrated in Fig. 2.8,

where shapes a and b are similar, i.e., d(a, b) is small. Similarly, d(b, c) is small. Whereas

shapes a and c are very different, i.e., d(a, c) is large. So, d(a, b) + d(b, c) < d(a, c), which

violates the triangle inequality.

Many researchers in the shape analysis community have reported that a metric distance

is not suitable for meaningful shape retrieval [18, 127]. In order to make use of the metric

advantages, in [19, 6] a shape is decomposed into primitives and a metric distance is used

to retrieve the primitives which are used in a final (nonmetric) similarity function. In

the following, samples of the distance measures used in the shape analysis literature are

reviewed. It should be emphasized that the choice of an appropriate distance measure

depends mainly on the employed shape representation and description method.

19



Figure 2.8: An example shows the triangle inequality failure in the human similarity judge-

ment. See text for explanation.

2.2.1 Minkowski distance (Lp)

A large number of statistical shape analysis methods use the Lp distance as a similarity

measure. It works for vectors of a fixed size. Let x, y ∈ Rn, Lp is defined as:

Lp(x, y) =

(
n∑

i=1

|xi − yi|
p

)1/p

(2.10)

where p > 0. For p = 1, Lp becomes the Manhattan or sum of absolute difference (SAD)

distance. When p = 2, Lp becomes the well-known Euclidean distance. Lp is a metric.

2.2.2 Earth mover’s distance

The earth mover’s distance (EMD) is suitable for matching incomplete or partially-occluded

patterns. The EMD measures the minimum amount of work needed to transform one pat-

tern (the supplier) to the other (the receiver) by moving weights under certain constraints.

Each point in the supplier and the receiver patterns can be viewed as a mass and hole,

respectively, at the location of that point. Then, the EMD measures the minimum amount

of work to fill the holes with the mass. Formally, given two weighted point patterns

A = {Ai, W (Ai)} and B = {Bi, W (Bi)}, where i ∈ 〈1, m〉, j ∈ 〈1, n〉 and Ai and Bj are

points with associated wights W (Ai) and W (Bj). Let fij be the flow from location Ai to

Bj , F is the matrix of elements fij and dij is a distance between Ai and Bj (for instance,

the Euclidean distance). Then, the EMD is defined as [28]:
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EMD(A, B) =

min
m∑

i=1

n∑
j=1

fijdij

m∑
i=1

n∑
j=1

fij

(2.11)

subject to fij ≥ 0,
m∑

i=1

fij ≤ W (Bj),
n∑

j=1

fij ≤W (Ai), and

m∑
i=1

n∑
j=1

fij = min(
m∑

i=1

W (Ai),
n∑

j=1

W (Bj)). These constraints prevents a supplier point

from giving more weight than it has and a receiver point from getting more weight than

it needs. The EMD has been applied for image retrieval based on color [105] and shape

[45, 46].

2.2.3 Graph matching

In structural image representation, graphs are usually employed where nodes represent

primitives and edges describe relationships between these primitives. Therefore, graph

theory has attracted many researchers in pattern recognition and computer vision. Graph

theory is a huge area and many different kinds of graphs exist in the literature with enor-

mous number of applications in various areas such as chemistry, geography and engineering.

More details about the classes of graphs can be found in standard textbooks of graph the-

ory, such as [15].

The comparison between two graphs is performed using some form of graph matching.

Graph matching is the process of finding a correspondence between the nodes and the edges

of two graphs that satisfies some constraints ensuring that substructures in one graph are

mapped to similar substructures in the other. A good recent survey paper about the graph

matching in pattern recognition can be found in [30].

Graph matching methods can be classified into two broad categories. The first contains

exact graph matching methods that require strict correspondence among graphs. The

second category defines inexact matching, which can handle minor differences between

graphs. The last category is of great interest to pattern recognition applications where

patterns are subjected to noise and deformations. In both categories, the matching can

be performed in different ways, depending on the application. A correspondence between
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two graphs that preserves the adjacency between nodes is called subgraph isomorphism. If

this correspondence is one-to-one, then it is called graph isomorphism. Another interesting

type of matching maps a subgraph of the first graph to an isomorphic subgraph of the

second one. Since such a mapping is not uniquely defined, usually the goal is to find the

largest subgraph for which such mapping exists. This problem is known in the literature

as the maximum common subgraph (MCS) of the two graphs.

Another way of graph matching is to introduce a set of graph edit operations including

node insertion, node deletion and node substitution. Once each operation is assigned a

cost, the lowest cost sequence of operations needed to transform one graph into the other

is computed. This cost is called the graph edit cost, which can be considered as the cost of

the matching.

2.3 Performance evaluation

Evaluation of retrieval performance is a crucial problem in content-based image retrieval,

mainly due to the subjectivity of the human similarity judgement. The evaluation of a

shape retrieval system depends on the application domain [25]. However, many differ-

ent methods for measuring the performance of a system have been created and used by

researchers. Perhaps the most widely used measure, for retrieval effectiveness, in the lit-

erature is the precision and recall (PR) graph [82]. Precision measures the accuracy of

retrieval and recall measures the ability of retrieving relevant images from the database.

Higher precision and recall values mean better performance. PR graphs offer a convenient

way to assess and compare the performances of different systems in one graph. Precision

and recall are given by:

Precision =
number of relevant retrieved images

number of retrieved images
(2.12)

Recall =
number of relevant retrieved images

number of relevant images
(2.13)

Computing the recall requires the ground truth to be provided for all database images.

When the ground truth is unknown, some researchers plot the precision as a function of
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the number of retrieved images. Another effectiveness measure is the F-measure, which

is usually used by information retrieval community [97]. The F-measure provides a single

number between zero (worst) to one (best), rather than a graph, and is given by:

F =
2

n

n∑

i=1

Precision(i)× Recall(i)

Precision(i) + Recall(i)
(2.14)

where n is the number of precision-recall pairs.

It is also important to evaluate the system robustness against conditions that images

may undergo in practice such as discretization noise, affine transformations (translation,

scale, rotation and skewness) and occlusion. To perform such evaluation, the retrieval

accuracy, at a particular recall, is monitored as the influence of each condition increases.

To measure the retrieval efficiency, the time complexity measure is usually used which

reflects the running time of an algorithm on various machines [24]. In order to make

the complexity measure sufficiently universal, it is usually assumed that computations are

performed as elementary operations such as arithmetic and comparison operations. Since

we are interested only in the asymptotic of the execution time, the number of elementary

operations will be considered as its time complexity. In our case, the time complexity is a

function of the input.

2.4 Related work

In this section, we present a literature review of some of the existing shape matching

techniques that can, either partially or completely, handle multi-object shapes. There are

many ways to categorize shape representation techniques; for instance, region-based versus

boundary-based and global versus structural. From object multiplicity point of view, we

categorize the existing techniques as single-object versus multi-object. The latter is more

generic and it includes our proposed method. The reader can refer to this section for more

details about methods mentioned during the performance comparisons in the following

chapters of this thesis.
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2.4.1 Single-object shape matching methods

They are also called silhouette-based. The majority of the existing techniques for shape

representation and matching fall into this category. An obvious limitation of all these

techniques is either they can not describe a multi-object shape or their extension to the

multi-object case is nontrivial. However, there are two main motivations to study these

methods. Firstly, a single-object shape is a particular case of a multi-object shape. Sec-

ondly, many issues and problems related to both categories are by far better studied and

researched in the case of single-object shapes. These issues include descriptor compact-

ness, robustness to noise, scalability, invariance to affine transformations, and efficiency

and effectiveness of the matching.

The multi-scale approach for shape representation and matching is considered the most

promising. It can be argued that human perception of shapes is a multi-scale by nature. In

addition, many interesting shape properties are revealed at different scale levels. Another

advantage includes its invariance to moderate amounts of deformations and noise. In the

following, recent shape matching methods are reviewed.

Curvature Scale Space

One of the most well-researched single-object shape representations is the curvature scale

space (CSS) method proposed by Mokhtarian and Mackworth [78, 79], which has been

selected for MPEG-7 standard [84]. It works on the external boundary of an object. At first,

a parameterized representation of the contour points, in terms of the x and y coordinates,

is extracted which results in two 1-D curves. Then, each 1-D curve is repeatedly convolved

with a Gaussian kernel with increasing standard deviation σ (or scale level) to gradually

smooth the contour at different scale levels. At each scale, the curvature of each contour

point is measured by:

c(u, σ) =
ẋ(u, σ)ÿ(u, σ)− ẍ(u, σ)ẏ(u, σ)

(ẋ(u, σ)2 + ẏ(u, σ)2)3/2
(2.15)

where c is the curvature at location u and scale σ, ẋ and ẍ are the first and second

derivatives of x, respectively. By setting (2.15) to zero, the inflection points (curvature zero

crossings) are located at each scale. This results in a binary image, called CSS image, where
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the foreground and background pixels represent concave and convex segments, respectively,

as shown in Fig. 2.9. More specifically, it shows the end-points of the concave segments

along the contour (the horizontal axis) at each scale level (the vertical axis). As the scale

level increases, the smoothing effect increases and the number of inflection points decreases

until the contour becomes totally convex. Only the maxima of the CSS images’ contours are

used for matching two shapes [2]. In order to achieve rotation or starting point invariance,

correspondence between two sets of maxima points is established by finding the optimum

horizontal shift of one CSS image with respect to the other that results in the least cost,

which represents the dissimilarity function. The cost is defined in terms of the differences

of the scale levels of the corresponding maxima. Many heuristics are employed to find

the best correspondence efficiently. This method exhibits certain degree of robustness to

affine transformation [1], where in another implementation explicit estimation of the affine

parameters using the least squares approach was employed to verify the matching results

[76]. The main limitations of the CSS method include its limited representation to only

the concave segments and its failure to discriminate a shallow concavity from a deep one.

For instance, totally convex shapes like squares and triangles have the same CSS image,

which is only the background. Another disadvantage is the requirement for a large number

of scales to obtain the CSS image (may exceed 400).
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Figure 2.9: The CSS image of a bird shape.
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Multi-scale Wavelet-Based

Elrube et al. [40, 39] proposed a multi-scale wavelet-based (MWB) representation for

single-object shapes. In their method, a closed-contour is represented by its x and y coor-

dinates and 1-D dyadic wavelet transform is applied separately to each coordinate sequence

in order to decompose the contour into multi-scale levels. Then, invariant moments are

computed for the approximation and detail coefficients at each scale level. This scheme pro-

vides coarse-to-fine matching in order to eliminate dissimilar shapes. It was demonstrated

to perform well under affine transformations and small boundary deformations.

Multi-scale Convexity Concavity

In a recent work, Adamek and O’Connor proposed another multi-scale representation for

closed contours that makes use of both concavities and convexities of all contour points

[3]. It is called multi-scale convexity concavity (MCC) representation, which is a 2-D ma-

trix where each column describes a contour point at different scales (rows). The contour

smoothing is done in the same way as the CSS method [79]. However, a new measure for

the curvature is used based on the relative displacement of a contour point with respect to

its position in the preceding scale level. This idea is motivated by the observation when

smoothing a closed contour, convex and concave points are moved inside and outside the

contour, respectively. The amount of displacement reflects the curvature degree. After-

wards, the matching is done using a dynamic programming (DP) approach where a global

optimal match is searched between two MCC representations using a DP table. In the DP

table, each entry denotes the distance between two points (one from each contour). This

distance is chosen to be the sum of absolute differences between the columns of each point

in the MCC matrices. The search for the optimal match is restricted with many heuristics;

for instance, no more than two points on one contour are matched to a single point on the

other. The rotation invariance is achieved in similar manner as the CSS method, i.e., by

repeating the algorithm for each contour point as the starting point. The MCC was able

to achieve better average accuracy (84.9%) than the CSS method (80.5%) when they were

tested on the MPEG-7 dataset. However, the MCC is computationally expensive, O(N3)

where N is the number of contour points. The robustness of the MCC method to affine

transformation was not demonstrated.
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Dynamic Programming

Milios et al. proposed one of the earliest approaches for matching shapes using dynamic

programming [75, 92]. In their approach, implicit multi-scale matching takes place through

matching merged contour segments in order to avoid the cost of computing the scale space

explicitly. At first, the contour is approximated into polygons using cubic B-splines and

inflection points are located, which segments the contour into convex and concave segments.

Then, a set of geometrical features are computed for each segment to guide the merging

process. The DP algorithm examines all possible merges of small segments of one shape to

match with larger segments of the other and selects the best merge, i.e., that results in the

minimum cost. An upper limit K is imposed on the maximum number of merged segments

to compromise speed with accuracy. The rotation invariance is achieved in similar way to

the MCC method. In the case both shapes are closed, the complexity of the algorithm

is O(M3N2), where M and N are the number of inflection points of the two contours,

and reduces to O(K2M2N) when K is considered. The authors did not report superior

performance over other existing methods. The main limitations of this method include

the lack of robustness to the general affine transformations and the high computational

complexity of the matching process.

WARP

Bartolini et al. proposed a method for shape matching and retrieval based on the Fourier

descriptors that is called WARP [16]. They chose to use the phase of the Fourier descrip-

tors and claimed to outperform the state-of-the-art Fourier-based methods. At first, the

low-frequency coefficients are normalized in terms of translation, scale and rotation. For

matching, the inverse discrete Fourier transform is used to obtain normalized versions of

the original contours in the spatial domain. Then, a DP method is employed to find the

similarity between the two transformed contours. Although this technique outperformed

other Fourier-based methods, the authors reported less retrieval accuracy than the CSS

method [2]. Besides, WARP is not invariant to the general affine transformation.
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Inner Distance Shape Context

Ling and Jacobs were mainly motivated by computing a distance for articulated shapes

[69]. The inner-distance, which is the length of the shortest path between two boundary

points within the shape boundary, was derived to be invariant to shape articulation. The

authors claim that the inner-distance is the natural replacement to the well-known Eu-

clidean distance. In order to apply the inner-distance for shape matching and retrieval,

the authors extended the shape context method [17] using this distance and called it inner-

distance shape context (IDSC). Then, DP is used for matching shapes after calculating the

IDSC distances. The retrieval performance on the MPEG-7 dataset is 85.4% which is the

highest published performance so far. The main disadvantage of this method is the use of

different parameter settings for different databases. This method has not been tested on

geometrically transformed shapes.

Curve Edit Distance

Sebastian et al. proposed a curve alignment approach, which is called curve edit distance

(CED), for matching open and closed curves [109]. In their method, the correspondence

between the points of the two curves is controlled by the relative difference in their spatial

location and their curvature. Then, a matching function is defined as the minimum cost

of such correspondence. The search for the optimal correspondence is made efficient by

decomposing each curve into segments, then ideally solved using DP. Moreover, merging,

deletion and addition of curve segments are allowed in order to account for shape defor-

mations. The complexity of this method is O(N2 log N) for closed curves and the authors

reported 78.2% accuracy for MPEG-7 retrieval test.

Beam Angle Statistics

Arica and Vural proposed another descriptor for closed contours based on the curvature

information of all boundary points, which is called Beam Angle Statistics (BAS) [10]. In

BAS, the curvature at each boundary point is viewed as a random variable that draws its

values from the angles between each equally-distant neighboring points at that point. Then,

few order moments are computed for the random variable at each point. For measuring
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the similarity, DP is used to find the best correspondence that minimizes the Euclidean

distance between the signatures of two shapes. The authors reported 82.4% accuracy using

the MPEG-7 retrieval test.

Visual Parts

In another recent work, Latecki et al. presented a shape matching approach that works

directly on the the closed boundaries [65, 67, 68]. It is based on visual parts (VP), where

(part of) a database shape is simplified in the context of the query shape prior to their

matching. The simplification process includes the elimination of particular points from the

database shape such that the similarity to the query shape is maximized. The main disad-

vantage of this method is the high computational complexity of the matching algorithm,

which is O(N3 log N) where N is the number of the boundary points.

2.4.2 Multi-object shape matching methods

Two main approaches exist in the literature that deal with the matching of multi-object

images. The first approach is based on features extracted from the whole image, i.e.,

global features, such as invariant moments [51], Zernike moment magnitudes (ZMMs) [59,

62], geometric features [41], and combination of invariant moments and edge directions

histograms [55]. While the global features have the advantages of being compact and

efficient for matching, local information and spatial configuration of image objects are lost.

In the second approach, features for each object are extracted and then combined

into a single distance measure for matching. While these methods overcome some of

the limitations of the global methods by including the contribution of each object in the

final similarity function, they still ignore the topological structure of the image and do

not account for the unmatched objects in the similarity measure. Another limitation of

weighted-sum distances is that the number of parameters to be tuned is proportional to

the number of objects in both images.
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Zernike Moments Magnitudes

The Zernike moment magnitudes (ZMMs) is one of the most effective and widely used

global shape descriptors. ZMMS has been selected as the MPEG-7 CE-2 region-based

shape descriptor [56]. The Zernike moment of order n and repetition m for a digital image

f(x, y) is defined as [59]:

Znm =
n + 1

π

∑

x

∑

y

f(x, y)V ∗
nm (ρ, θ), x2 + y2 ≤ 1 (2.16)

where n ≥ 0, |m| ≤ n, n− |m| is even, ρ and θ are the length and the angle of vector from

origin to (x, y) pixel, and Vnm(ρ, θ) is the set of Zernike polynomials defined as:

Vnm (ρ, θ) = Rnm(ρ) exp(jmθ) (2.17)

The radial component Rnm(ρ) is the defined as:

Rnm (ρ) =

n−|m|
2∑

k=0

(−1)k (n− k)!

k!
(

n+|m|
2
− k
)
!
(

n−|m|
2
− k
)
!
ρn−2k (2.18)

To compute the ZMMs, the origin of the image is assumed to be at its centroid to

achieve translation invariance. For scale invariance, the area of the image is normalized

to a constant area. The Zernike polynomials are orthogonal; therefore, ZMMs are non-

redundant. In [61], 36 ZMMs of order and repetition from 0 to 10 are used as feature vector

and the SAD is used as a dissimilarity function. Instead of treating the ZMMs equally,

Kim and Kim proposed the use of selected ZMMs in probabilistic framework for trademark

retrieval [62]. Regardless of how many objects in the image, 90 ZMMs are computed for

each image in the database, which are used to estimate the distribution model for each

feature. When a query image is preprocessed, the distribution models help in selecting the

most dominant features which are then matched using the Euclidean distance.

Two stage hierarchy

Jain and Vailaya proposed another global approach for trademark retrieval [126, 55].

The edge direction histogram and invariant moments of the image are used to prune the
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database and select candidate images when a query image is presented. Then, these can-

didates are screened using a deformable template matching process that works on the edge

map of the filled images.

Query By Image Content

The QBIC (Query By Image Content) system from IBM uses the generic image features,

which include color, texture and shape to retrieve images in a database similar to a query

image [42, 41]. QBIC uses geometric features to represent the shape of an object, which

include area, circularity, eccentricity, major axis orientation and invariant moments for a

total of 20 features. These features are extracted for each object in the database images.

However, the query shape is restricted to include only one object. For matching, a weighted

Euclidean distance is used to retrieve the image which includes the most similar object to

the query object. A trademark retrieval system that is based on QBIC was developed [32].

However, there is no report for the performance of the system.

System for Trademark Archival and Registration

Wu et al. proposed STAR (System for Trademark Archival and Registration) that uses

both color and shape for retrieval [135, 63]. The shape is represented in terms of combina-

tion of contour-based (Fourier descriptors) and region-based (invariant moments) features.

Objects in the image are segmented manually by the user through an interactive user in-

terface. Once an object or a group of objects is selected by the user, their features are

computed and stored. The overall similarity measure is a weighted sum of the individual

distances between objects in the query and database images.

Attributed Relational Graph

Petrakis et al. proposed a graph-based approach, called attributed relational graph (ARG),

for multi-object image retrieval [91, 94]. The ARG is a variant of the region adjacency graph

(RAG) where nodes represent objects and edges between the nodes represent their spatial

relationships. In the ARG, node attributes describe the corresponding object which include

area, roundness (the ratio of the smallest to the largest second moment), and orientation
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(the angle between the horizontal axis and the major axis of the object). For encoding the

spatial relationships, edge weights include the minimum distance between the boundaries

of two objects and the angle of the line connecting their centroids. To achieve scale and

rotation invariance, these features are normalized with respect to the largest object in

the image. For matching two ARGs, a graph edit distance between between two ARGs

is computed using the least-cost sequence of node/edge deletions and substitutions. The

ARG edit distance is optimal but it has exponential computational complexity. Therefore,

ARG matching is approximated as a bipartite matching between two sets of nodes which

is solved in polynomial-time using the Hungarian method.

Automatic Retrieval of Trademark Images by Shape ANalysis

The ARTISAN (Automatic Retrieval of Trademark Images by Shape ANalysis) project

seeks to develop and evaluate a prototype shape retrieval system for trademark images

[35, 37]. The system segments a trademark image into regions based on a set of rules that

uses heuristic measures such as proximity and parallelism of objects. Then, the boundaries

of these regions are approximated by straight-line and circular-arc segments and a set of

geometrical features are computed for each region. For matching, the dissimilarity function

between the query and a database images is computed as the average of the closest distances

between the objects in both images. The authors reported better performance over the

whole image matching [36].

Closed contours

Pen and Chen used closed contours for trademark recognition [89]. Trademark images are

first decomposed into sets of closed contours which are encoded using chain code method. A

two-step string matching algorithm is then used to compute similarities between the closed

contours in the query and the database images. Finally, the maximum and the average of

the contour similarities are integrated as the whole trademark similarity measure.
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Negative shape feature

Soffer and Samet presented a method to match logos based on positive and negative shape

features [117]. A positive shape means an object and negative shape means the resulted

holes after enclosing the logo in a minimum bounding box. Then, several geometric features

are computed for the extracted regions. Here, the similarity function is the average of the

pairwise distances between each region in one image and the closest region in the other

which allows many-to-one matching between the regions in the two images.

Retrieval by Spatial Similarity

Retrieval by spatial similarity (RSS) approach, for multi-object image retrieval, focuses

only on the spatial relationships between the image objects in measuring the similarity

function [26, 49, 38]. Basically, spatial methods work on symbolic images1 which limits

their use in fully automated systems. Although these methods have many application

domains such as geographical information systems (GIS), spatial methods ignore the shape

information.

Concavity graphs

Elbadawy and Kamel proposed the concept of concavity graphs to describe multi-object

shape images [13]. Their work was originally motivated by concavity trees which are more

useful for single-object images and their application to multi-object images has shortcom-

ings. The concavity graph is a directed graph with a unique root. There are five types

of nodes where each node describes a region. A node is classified as an object (o), a hole

(h), a concavity (c), a multiple object (mo) or a multiple hole (mh). To describe each

region, a vector of its global features is stored at the corresponding node. Fig. 2.10 shows

the concavity graph of a multi-object image. Matching concavity graphs is still an open

problem.

1A symbolic image is a logical representation of the original image where the image objects are uniquely

labeled with symbolic names.
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Figure 2.10: A multi-object image (left) and its concavity graph (right).

2.5 Discussions

In this chapter, we have reviewed many techniques in the literature that deal with single-

and multi-object shape representation and matching. We note that the single-object shape

matching problem has received much greater attention from researches than the multi-

object case. In addition, most researchers in shape analysis have not devoted enough

attention to the recent advances in other areas such as cognitive science and psychology

and focused on the computational aspects of their algorithms. Indeed, this is part of a

larger problem known as ’the semantic gap’ in content-based image retrieval.

For single-object shape matching, dynamic programming has proven to be an effective

approach. Most methods, which have achieved high retrieval accuracy, used dynamic pro-

gramming for the matching. Although dynamic programming demands high computations,

heuristics are usually employed to reduce the computations. For shape description, global

descriptors such as moments are simple and fast to compute; however, they don’t provide

high discrimination capability and cannot describe local variations. On the other hand,

structural descriptors provide high discrimination and capture fine shape details, but these

descriptors demand complex matching algorithms.

Most of the multi-object shape matching methods are global, which means they handle

multiple objects implicitly. The object-based methods only combine the contributions of

individual objects; thus, ignoring the spatial relationships between the objects. Recently,

the MPEG-7 community have selected the CSS and the ZMMs methods as the contour-

based and the region-based shape description and matching standards, respectively, after
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comprehensive comparative experiments with other methods in the literature. Therefore,

we included these methods for comparison in our experiments throughout this thesis.
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Chapter 3

Single-Object Shape Matching and

Retrieval

Single-object shape matching constitutes the kernel of the multi-object shape matching

method proposed in this thesis. As will be explained in Chapter 4, the shape of each

individual object is essential in comparing two multi-object images. In this chapter, two

single-object shape matching methods are introduced based on triangle-area representation

(TAR) of closed boundaries; a representation computed from the area of triangles formed

by equidistant triplet points on the shape boundary [104, 5, 103].

Shape matching is the process of associating primitives of two shapes, generally, in a

point-by-point manner. For shape retrieval, shape matching is employed to measure the

dissimilarity between a query shape and stored shapes in a database in order to rank the

stored shapes according to their similarity with the query shape. The remainder of this

chapter is organized as follows. Section 3.1 gives an introduction to the subject. TAR is

introduced in Section 3.2. Then, the two matching algorithms are explained in Section 3.3.

Experimental results are shown in Section 3.4. Finally, a summary is given in Section 3.5

with discussions.
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3.1 Introduction

Shape matching is a critical step in shape retrieval systems. The performance and the

complexity of a shape matching method is largely dependent on the invariance, robustness,

stability, and uniqueness of the applied shape representation method. A literature survey

of shape representation and matching methods is given in Section 2.4.

The multi-scale approach for shape representation and matching is considered the most

promising. It can be argues that the human perception of shapes is a multi-scale process

by nature. As a human perceives a shape, global features of the shape dominate the

human’s attention. Then, finer details of the shape become more apparent. Global shape

descriptors are generally robust to moderate amounts of noise; however, global descriptors

face major difficulties in capturing fine details of shape boundaries. On the other hand,

local shape descriptors are superior in describing fine details, but local descriptors are

usually sensitive to noise. Therefore, in our opinion, the two requirements, namely, the

robustness to noise and the discrimination of fine details, conflict with each other and

the choice between them is context-dependent unless another semantic-based measure is

employed to distinguish between noise and fine details information.

The representation of shapes requires a number of criteria to be satisfied for reliable

shape matching and retrieval. It should be invariant to geometrical transformations such as

rotation, scale, translation, and skew. This requirement arises from the problem of project-

ing the 3D real world objects into 2D images. In addition, a shape representation should

satisfy the following criteria: high discrimination capability, computational efficiency, ro-

bustness to distortion and noise, compactness, generality of the application, and handling

large image databases without heavy degradation in the performance. These criteria are

also required by the MPEG-7 standard for measuring the similarity between shapes [74].

Fig. 3.1 shows a block diagram of the two shape matching methods proposed in this

chapter. After the boundary of an input image is extracted, the triangle-area represen-

tation (TAR) is computed from the parameterized boundary points. In the first method,

TAR-concavity image (TAR-CI) is obtained by thresholding TAR signatures. Since the

characteristics of TAR-CI are similar to those of the curvature scale-space (CSS) image,

a modified version of the CSS matching algorithm [2] is developed for matching concavity

peaks of two TAR-CIs. Our experiments show that this matching scheme achieves slightly
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Figure 3.1: Block diagram of the two proposed shape matching methods.

better accuracy than the CSS method [77], which has been selected for MPEG-7 standard

after comprehensive comparative experiments with many other methods [84], with consid-

erable reduction in the computational complexity. In the second method, normalized TAR

signatures are matched directly in a point-by-point manner using an efficient dynamic pro-

gramming algorithm called dynamic space warping (DSW) that efficiently searches for the

optimal (least cost) correspondence between the points of two shapes. Unlike concavity-

based methods such as the first method and the CSS method, the convexity/concavity of

each boundary point is utilized in the matching. The main contribution of this method is

the higher retrieval accuracy than all published shape retrieval methods so far by a good

margin based on the MPEG-7 CE-shape-1 part B retrieval test which constitutes the most

comprehensive shape retrieval test in the literature until now.

3.2 Triangle-Area Representation of Closed Bound-

aries

The triangle-area representation (TAR) is computed from the area of the virtual triangles

formed by the points of the shape boundary. In the following, the framework for obtaining

TAR of an arbitrary single-object shape is presented. From the computed TAR, two shape

descriptors are derived; namely, TAR-concavity image (TAR-CI) and TAR signatures.
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Given a single-object binary image, the shape is extracted using the bug-following tech-

nique [95]. Each boundary point is represented by its x and y coordinates and separated

parameterized contour sequences xn and yn are obtained and re-sampled to N points. In

this thesis, N = 128 unless mentioned otherwise. Then, the curvature of each point is mea-

sured using the triangle-area representation (TAR) as follows. For each three consecutive

points (xn−ts , yn−ts), (xn, yn), and (xn+ts , yn+ts), where n ∈ 〈1, N〉 and ts ∈ 〈1, Ts〉 is the

triangle side length1, the signed area of the triangle formed by these points is given by:

TAR(n, ts) =
1

2
det




xn−ts yn−ts 1

xn yn 1

xn+ts yn+ts 1


 (3.1)

When the boundary is traversed in counter clock-wise direction, positive, negative and

zero values of TAR mean convex, concave and straight-line points, respectively. Fig. 3.2

demonstrates these three types of the triangle area. The triangles at the edge points are

formed by considering the periodicity of the closed boundary. The complete TAR signature

for the hammer shape is also shown in Fig. 3.2. By Increasing the length of the triangle

sides, i.e., considering farther points, the function of (3.1) will represent longer variations

along the boundary.

The choice of the number of scales, i.e., triangle side lengths (Ts), is constrained by the

implied periodicity of the closed boundaries. More specifically, for a closed contour of N

points:

TAR(n, ts) =





−TAR(n, N + 1− ts) ts = 1 . . . ⌊N−1
2
⌋

0 at ts = N
2

and N is even

does not exist at ts = N
2

and N is odd

(3.2)

where ⌊N−1
2
⌋ is the floor value of N−1

2
. The first line in (3.2) shows the odd symmetry

property of the triangle area versus the triangle side length ts. Also, at ts equals the

middle point of the boundary, the value of the triangle area depends on N , the total

1Here, ts refers to the separation between the indices of the current point and any of its equally-separated

neighbors (representing the triangle vertices) in the parameterized boundary sequence.
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Figure 3.2: Three different types of the triangle-area values and TAR signature for the

hammer shape.

number of points on that boundary. If N is odd, then there will be no zero-crossing

inflection points on the area curve. Usually, researchers tend to use an even number of

points on the shape boundary. In this case, the inflection (zero-crossing) point exists at

ts = N
2
, where TAR(n, N

2
) = 0. Fig. 3.3 illustrates the odd symmetry property of TAR
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signature that is computed for only one point on the shape boundary of the Misk shape.
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Figure 3.3: Illustration of the odd symmetry of the triangle-area signatures. The upper

part shows two virtual triangles for computing TAR signature shown in the bottom part.

The circled point on the boundary is the middle-point, which is also considered as the

inflection point for TAR signature.
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3.2.1 TAR under general affine transformations

For a 2D shape, represented by its boundary sequences, xn and yn, and subjected to an

affine transformation, the relation between the original and the distorted sequences is given

by:

[
x̂n

ŷn

]
=

[
a b

c d

][
xn

yn

]
+

[
e

f

]
(3.3)

where x̂ and ŷ are the affine distorted sequences, e and f represent translation, and a,

b, c and d reflect scale, rotation and shear. The effect of the translation parameters is

easily eliminated by normalizing the shape boundary with respect to its centroid. This

normalization is achieved by subtracting from each boundary sequence its mean value. By

substituting (3.3) into (3.1), we obtain:

ˆTAR(n, ts) = (ad− bc) TAR(n, ts) (3.4)

where ˆTAR is the affine transformed version of TAR. It is clear that ˆTAR is relatively

invariant to the affine transformations. Absolute invariance can be achieved by dividing
ˆTAR by its maximum value. A complete affine test is given in the experimental results

section of this chapter.

3.2.2 TAR-Concavity Image

TAR-concavity image (TAR-CI) is a binary 2D plot that shows the indices of concave

segments along the boundary at different scale levels, i.e., triangle side lengths [104, 103,

102]. To obtain TAR-CI of a given shape, the function of (3.1) is computed at gradually

increasing values of the triangle side length (ts) and, at each ts, the indices of the negative-

valued (or concave) points are located in TAR-CI. The value of ts starts from 1 to a

maximum value of ⌊N−1
2
⌋ or until the computed values of (3.1) at all boundary points

become positive. Thus, the horizontal and vertical axes represent the boundary point

index and the triangle side length (ts), respectively. Fig. 3.4 illustrates TAR-CI for a

camel shape with samples of its TAR computed at ts = 5, 10, 15, 20, and 30. The thick

dots on the horizontal axis of each TAR sequence indicate the indices of concave points.
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Note that TAR sequence at ts = 30 is all positive; therefore, it does not contain any concave

point.

20 40 60 80 100 120

5
10
15
20

30

A Camel Shape

TAR at different triangle side lengths

TAR image of the camel shape

x−coordinates of the negative values

Figure 3.4: Illustration of the computation of TAR-CI. The second column shows TAR

signatures computed at specific triangle-side lengths. TAR-CI (third column) is obtained

using all the triangle-side lengths from 1 to 30.

In comparison with the CSS image [76], [77] (see Section 2.4 for details), both the CSS

image and TAR-CI describe concavities along the boundary at different scale levels. Fig.

3.5 shows TAR-CI and the CSS image of the pentagon shape (device0-18 image in the

MPEG-7 database). It is clear that both images represent the major five concavities of

the shape. However, there are two major differences between the two images. Firstly,

they use different functions to measure the curvature; TAR-CI is derived from the affine

invariant function of (3.1) whereas only the zero crossings of the CSS function of (2.15)

are affine invariant [76]. Secondly, the scale parameter (or the vertical axis) of TAR-CI is

the triangle-side length (ts) while in the CSS image the standard deviation of the Gaussian

kernel (σ) is the scale parameter as the boundary is gradually smoothed. This difference

has great implication on the computational complexity of each method. TAR-CI requires

simple computations of (3.1) with a number of iterations upper-bounded by N/2, where
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N is the number of the boundary points, due to the implied periodicity of TAR function

(see Fig. 3.3); therefore, the computational complexity of TAR-CI is O(N2/2) or O(N2).

On the other hand, the CSS image requires convolving the boundary’s curvature signature

(2.15) with Gaussian kernel of different width at each iteration. Besides the demanding

convolution operations, the number of iterations in the CSS image is not upper-bounded

and depends on the depth of a shape’s concavities. Fig. 3.6 shows TAR-CI (of 60 iterations)

and the CSS image (of 438 iterations) of the bat shape. Table 3.1 shows some statistics of

the number of iterations required for computing TAR-CIs and the CSS images of the 1400

shapes of the MPEG-7 database. In terms of computational complexity, it is obvious that

TAR-CI is significantly less demanding and better characterized than the CSS image.

Table 3.1: Statistics of the number of iterations required for computing each of TAR-CI

and the CSS image over 1400 shapes of the MPEG-7 database.

Statistic CSS image TAR-CI

Mean 278.4 60

Standard deviation 144.4 0

Maximum 500 60

3.2.3 TAR signatures

Here, TAR signatures at different scales are normalized and used directly for the matching.

Therefore, TAR signatures form a 2-dimensional surface reflecting the value of TAR func-

tion of (3.1) for each boundary point at each scale or triangle-side length, ts (see Fig. 3.7).

Unlike TAR-CI which only indicates whether a boundary point is convex or concave, TAR

signature represents the degree of convexity/concavity of each boundary point at a given

scale and distinguishes straight-line points as well. Therefore, TAR signatures matrix is

regarded as a more informative representation than TAR-CI.

Many researchers have used the area of the triangle formed by the boundary points

as the basis for shape representations [98, 52, 113, 112, 101, 39]. These methods use a

global measure, i.e., the total sum of the signature, for the signature normalization. In this
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Figure 3.5: An example of (a) a pentagon shape, (b) its TAR-CI and (c) its CSS image.

thesis, all possible scale levels are systematically used for computing TAR, whereas the

method of [113] uses selected scale levels. Besides, the normalization of TAR signatures

is performed locally by dividing TAR signature at each scale, ts, by the maximum TAR’s

absolute value at that scale, whereas the normalization is made globally in [113]. Fig.

3.7 demonstrates the difference between the local and the global normalization of the

signatures. The local normalization ensures equal contribution of different scale levels

during the matching process and prevents the domination of scale levels yielding large

areas (the signature values at ts close to N/4, see Fig. 3.3).
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Figure 3.6: Aa example of (a) a bat shape, (b) its TAR-CI and (c) its CSS image.
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Figure 3.7: 3D plots of TAR signatures (ts = 1 to 63 and N = 128) for the shape in

Fig. 3.3. The two plots differ only in the normalization method of the signatures. TAR

signatures normalized: (a) locally per scale, and (b) globally according to [113].
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3.3 Shape Matching

In this section, two shape matching algorithms are introduced. The first algorithm matches

TAR-CI maxima points of two shapes (explained in Subsection 3.2.2). The algorithm de-

veloped in this thesis is a modified version of the CSS matching algorithm [2] to accom-

modate TAR-CI properties. In the second algorithm, TAR signatures (Subsection 3.2.3)

are matched directly via an efficient dynamic programming approach called dynamic space

warping (DSW). In both algorithms, simple geometric features are added to the matching

function to further increase the accuracy and to provide means for indexing.

3.3.1 TAR-CI maxima matching

TAR-CI descriptor is extracted from the maxima points of TAR-CI regions. Since TAR-

CI is a binary image, the maxima points are easily extracted using connected-component

labeling technique. Fig. 3.8 shows two examples of maxima points extraction from TAR-

CIs of the apple and the horse shapes. Intuitively, these maxima points represent the depth

and the location of concave segments and convex segments contained in larger concavities.

For matching, only the maxima of concavity regions starting at the initial scale (ts = 1)

are considered. Besides, a lower bound is set for a maximum to be at least 10% of the

largest maximum in TAR-CI.

Now, the algorithm for matching two sets of TAR-CI maxima points is presented. It is a

modified version of the CSS matching approach [2] adapted to accommodate the properties

of TAR-CI. The main idea behind the CSS matching strategy is to establish a correspon-

dence between the maxima points of a query shape, Q, and those of a stored shape in the

database, D. This correspondence maps each query maximum to at most one maximum

in the database shape to obtain a meaningful mapping that is used to measure the dissim-

ilarity between the two shapes. Since the maxima locations are sensitive to the starting

point of the extracted boundary (or the rotation angle), several most likely initial corre-

spondences between the maxima points of two shapes are explored. In [2], only one initial

correspondence is fully extended and considered in the dissimilarity function. However, a

robust matching should take into account several possible rotation angles or starting points.

Our implementation of TAR-CI maxima matching has two main modifications to the CSS
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Figure 3.8: Illustration of (up) two shapes, (middle) their TAR-CIs and (bottom) the

maxima points extraction.
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matching approach introduced in [2]. Firstly, more than one initial correspondence are

fully explored to increase the robustness to the rotation angle of the shapes. Our experi-

ments have shown that considering the two least-cost initial correspondences increases the

matching accuracy with minor increase in the computational complexity of the matching

process. The second modification is to reduce the lower bound parameter that controls the

selection of the initial correspondences. This parameter requires a query maximum to be at

least 80% of the selected database maximum. In our implementation, this parameter is set

to 50% to increase the number of initial correspondences. The reason behind this selection

is based on the the observation that TAR-CI usually has a significantly lower number of

scales than the CSS image of the same shape (see Subsection 3.2.2); thus, the variance

of TAR-CI maxima values is significantly lower than that of the CSS maxima values and

exploring more initial correspondences becomes desirable to increase the robustness to the

rotation angle.

A pseudo-code of TAR-CI maxima matching algorithm is detailed in Algorithm 3.1.

The main algorithm, MaxMatch(.), is based on match(.) function given in Algorithm

3.2. MaxMatch(.) looks at four alternatives for computing the match(.) function. The

first two alternatives ensures the symmetry of the matching function by switching the

positions of the query and the database maxima sets whereas the other two alternatives

makes the matching function invariant to the flipping transformation of the shapes. The

dissimilarity measure returned by the algorithm is the sum of the Euclidean distances

between the matched TAR-CI maxima points and the values of any unmatched TAR-CI

maxima points.

3.3.2 Dynamic Space Warping

In the following, a brief review about the origin of Dynamic Time Warping2 (DTW) and

how some researchers applied it to the shape matching problem is presented. Then, the

description of our DSW algorithm to measure the similarity between two shapes based on

their TARs is given followed by the definition of the dissimilarity function.

2In this thesis, the analogous terminology Dynamic Space Warping (DSW) is used instead of DTW

since still images are space-variant as opposed to speech which is time-variant.
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Algorithm 3.1 TAR-CI maxima matching (main algorithm): d = MaxMatch(M q , Md)

Notation:

Md is a set of maxima in a database TAR-CI.

M q is a set of maxima in a query TAR-CI.

nd is the number of maxima in Md.

nq is the number of maxima in M q.

yd(i) and xd(i) are the scale and the location of Md(i), respectively.

yq(j) and xq(j) are the scale and the location of M q(j), respectively.

Γij is a candidate match initialized as Γij(1) = (Md(i), M q(j)).

cij is the cost associated to Γij.

τij is the location shift of Γij.

Md
ij ⊂ Md and M q

ij ⊂M q associated to Γij and Γij .

yd
ij(k) and xd

ij(k) are the scale and the location of Md
ij(k), respectively.

yq
ij(l) and xq

ij(l) are the scale and the location of M q
ij(l), respectively.

∅ is the empty set.

Require: yd(i) ≥ yd(i + 1), yd(nd) ≥ yd(1)/10, yq(j) ≥ yq(j + 1), and yq(nq) ≥ yq(1)/10

1: c1 ← match(Md, M q)

2: c2 ← match(M q , Md)

3: for i = 1 to nq {To account for flipping the query} do

4: xq(i)← N − xq(i)

5: end for

6: c3 ← match(Md, M q)

7: c4 ← match(M q , Md)

8: return d = min(c1, c2, c3, c4)
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Algorithm 3.2 TAR-CI matching function: c = match( Md, M q)

1: Initialization step.

Γ11 ← {(M
d(1), M q(1))}

c11 ← abs(yd(1)− yq(1))

τ11 ← xd(1)− xq(1)

Md
11 ←Md − {Md(1)} and M q

11 ←M q − {M q(1)}

2: for all Md(k) s. t. yd(k) ≥ 0.5 ∗ yq(1) and k > 1 do

Γk1 ← {(M
d(k), M q(1))}

ck1 ← abs(yd(k)− yq(1))

τk1 ← xd(k)− xq(1)

Md
k1 ←Md − {Md(k)} and M q

k1 ← M q − {M q(1)}

end for

3: repeat 2 for all Md(l) s. t. yd(l) ≥ 0.5yq(2) and l ≥ 1 to get Γl2, cl2, τl2, Md
l2, M q

l2.

4: for all Γij do {expand all candidate matches}

if M q
ij = ∅ then

cij ← cij + yd
ij(1)

Md
ij ←Md

ij − {M
d
ij(1)}

else

locate Md
ij(k) closest to M q

ij(1) s. t. abs(xd
ij(k)− xq

ij(1)) ≤ 0.1 ∗N

if Md
ij(k) exists then

cij ← cij +
√(

yd
ij(k)− yq

ij(1)
)2

+
(
xd

ij(k)− xq
ij(1)

)2

Γij ← Γij ∪
{(

Md
ij(k), M q

ij(1)
)}

Md
ij ← Md

ij −
{
Md

ij(k)
}

M q
ij ← M q

ij −
{
M q

ij(1)
}

else

cij ← cij + yq
ij(1)

M q
ij ← M q

ij − {M
q
ij(1)}

end if

end if

end for

5: repeat 4 for Γkl and Γmn with lowest costs until M q
kl = Md

kl = M q
mn = Md

mn = ∅

return c = min(ckl, cmn)
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DTW in shape matching

The idea of using dynamic programming for matching 1D sequences originally came from

the speech recognition community [53, 106, 33], where optimal alignment between two 1D

sequences is searched via a dynamic programming approach called dynamic time warp-

ing (DTW). In the past few years, several researchers adopted DTW for 1D sequences

alignment and matching [16, 130]. Unlike the Euclidean distance, which provides one-to-

one alignment, nonlinear alignment can be achieved by the DTW where one point on the

sequence can be aligned to one or more points on another sequence.

Recently, many researchers have applied DTW in the 2D shape matching problem.

In [92], a DP table is used to find the least cost match between segments of two curves.

Merging of segments is allowed during the matching to facilitate a more meaningful corre-

spondence between segments. However, this increases the complexity of matching. In the

MCC method [3], the DP algorithm searches for the optimal correspondence between the

N -points boundaries. A window, which limits the optimal path to be around the diagonal,

is used to make the search more efficient. Another constraint that limits a single point of

one contour to correspond to a maximum of two points on the other contour is enforced,

which limits the generality of the method and demands more computations. In an attempt

to reduce the size of the DP search space, the WARP method [16] applies DTW on nor-

malized points after applying the inverse discrete Fourier transform. In [109], the optimal

path in the DP table is used to define an edit distance metric that transforms one shape

into the other.

Finding the minimum cost distance using DSW

Now, the DSW algorithm that is used to compute the dissimilarity between two closed

boundaries based on their TAR signature matrices is described [5]. At first, it is necessary

to define the distance between two individual boundary points. Let TARQ(n, ts) and

TARD(n, ts) be TAR signature matrices for a query shape Q and a database shape D,

where n ∈ 〈1, N〉 is the index of the boundary points and ts ∈ 〈1, Ts〉 is the triangle-side

length. Then, the distance between the two boundary points n ∈ Q and m ∈ D is defined

as:
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Figure 3.9: DSW table.

Dp(n, m) =
1

Ts

Ts∑

ts=1

|TARQ (n, ts)− TARD (m, ts)| (3.5)

Then, an N ×N distance table, DT , is constructed to find the optimal correspondence

between the points of the two boundaries. The columns of DT represent the points of one

boundary and the rows represent the points of the other. Initially, the elements of DT are

set as:

DTinitial (n, m) =

{
0, max (1, n− w + 1) ≤ m ≤ min(N, n + w − 1)

∞, otherwise
(3.6)

where n, m ∈ 〈1, N〉, w is a predefined diagonal width for DT as illustrated in Fig. 3.9, and

max(a, b) and min(a, b) are the maximum and minimum values of a and b, respectively.

Only the elements of DT that fall within the w-width diagonal are updated during the

DSW search. This initialization of DT avoids computing the distances between all the

points of the two boundaries and restricts the distance computation to only those points

more likely corresponding to each other. Therefore, the computational complexity is largely

reduced while more meaningful correspondences are obtained.
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Starting at an arbitrary TAR point for both boundaries of a query shape Q and a

database shape D, the distance table DT is searched, through the diagonal window of

width w, left-to-right and up-to-bottom starting from the upper-left element, as shown in

Fig. 3.9. The first row and first column elements are initialized as the distance between

the corresponding points using (3.5). Then, the rest of the zero-valued elements of DT are

updated as:

DT (n, m) = Dp (n, m) + min





DT (n− 1, m)

DT (n− 1, m− 1)

DT (n, m− 1)

(3.7)

The least cost path through the distance table is the value of element DT (N, N) cor-

responding to the best matching between the two TAR points according to the selected

starting points. However, it is clear that the established correspondence is sensitive to the

starting point of each TAR. In order to achieve starting point (or rotation) invariance, it

is sufficient to fix the starting point of one TAR and try all N starting points of the other

TAR. Moreover, invariant to the mirror transformation can be obtained by flipping the

points of one TAR and repeating the search for the N starting points again. The final

least cost correspondence, denoted by DTmin, is taken as the minimum value of DT (N, N)

among all 2N runs of the DSW table search.

The dissimilarity measure

Following the approach presented in [3], the dissimilarity function (Ddis) is chosen as the

minimum cost distance DTmin normalized by the shape complexity (SC) of each boundary.

The motivation behind this normalization is based on the observation that the sensitivity of

the human perception to the boundary variations reduces as the shape complexity increases.

Here, the shape complexity is considered as the average, over all boundary points, of the

absolute differences between the maximum and minimum TAR signature values at all scale

levels (or triangle side lengths):

SC =
1

N

N∑

n=1

∣∣∣∣ max
1≤ts≤Ts

{TAR (n, ts)} − min
1≤ts≤Ts

{TAR (n, ts)}

∣∣∣∣ (3.8)
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Then, the dissimilarity function between a query shape Q and a database shape D is

given by:

Ddis (Q,D) =
DTmin (Q,D)

K + SCQ + SCD

(3.9)

where DTmin(Q,D) is the minimum cost distance between the two shapes Q and D com-

puted using the DSW table search described earlier in this section and SCQ and SCD are

the complexities of shapes Q and D, respectively. A constant K is added to prevent the

domination of the denominator when the complexities are very small. In our experiments,

K is set to 1. Fig. 3.10 shows two examples of similar shapes with small and large shape

complexities, respectively.

In many practical applications, normalizing the shape dissimilarity function within a

dynamic range, for instance between 0 and 1, is a fundamental requirement or, at least,

highly desirable. Obviously, this normalization allows computing the similarity function

directly from the dissimilarity (by subtracting the latter from its upper bound). In this

thesis, the dissimilarity normalization is essential to facilitate combining the contributions

of different single-object shape similarities of two multi-object shape images into one simi-

larity function. Without such normalization, a single similarity value between two shapes

in the two multi-object images may dominate the other similarity values just because its

magnitude is large. In conclusion, normalizing the shape similarity function ensures equal

emphasis of each individual distance within the overall similarity function (as detailed in

Chapter 4). Here, the function of (3.9) has a lower bound of 0 (when Q = D) since it

represents a sum of absolute differences (or positive values); therefore, it is sufficient to

maintain an upper bound on its value. For this purpose, (3.9) is divided by LQD, the

length of the least-cost path through the DSW table (see Fig. 3.9), to give the final DSW

distance:

DSW (Q,D) =
Ddis (Q,D)

2LQD
(3.10)

Since (3.10) is a normalized dissimilarity function, the analogous similarity function is

given as :
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SC = 0.21

(a)

SC = 0.29

(b)

SC = 1.82

(c)

SC = 1.77

(d)

Figure 3.10: Two examples of similar shapes with small shape complexities (panels a and

b) and with large shape complexities (panels c and d).

DSWsim (Q,D) = 1−
Ddis (Q,D)

2LQD
(3.11)

Selecting the search window width (w)

Restricting the DSW table search to be within a w-diagonal window has three main ad-

vantages. Firstly, it avoids matching one point in the first shape with a farther point in

the other; thus, more meaningful correspondences are obtained. Secondly, it limits the
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maximum number of points of one shape that can be matched to a single point in the

other shape. Thirdly, the computational complexity is significantly reduced.

The limitations on the search window have been studied in many fields. In speech

processing, where the DTW was firstly originated, the optimal window is selected around

10% of the original sequence width. Recently, Ratanamahatana and Keogh [96] proved

that the 10% width, widely selected by the data mining community, is too large for data

mining applications and suggested using 4% as an optimal width for such applications.

In this thesis, our experiments show that selecting w = 3 as the DSW width achieves

good accuracy (which is approximately 2.5% of N = 128) and larger values increase the

computations without improving the performance. While there is no solid study about the

window selection in the shape analysis community (due to the recent adaptation of dynamic

programming), our selection agrees with Adamek and O’Connor [3] selection for the same

application. In their work, the window width is selected about 5%; however, they imposed

another restriction that limits the maximum number of points in one shape corresponding

to a single point in the other shape which is intuitively equivalent to reducing the window

width by a magnitude.

3.3.3 Geometric features

In many practical applications, it is highly desirable that the shape descriptor provides

means for indexing in order to organize the database efficiently. Abbasi et al. [2] used

a set of global features, i.e., circularity, eccentricity, and aspect ratio, at an initial stage

to discard very dissimilar shapes and increase the discrimination power of the descriptor.

Jain and Vailaya [55] used invariant moments and histograms of edge directions for fast

pruning of the database.

In this work, a set of simple geometric features are used to further increase the dis-

crimination ability of the dissimilarity function and to allow indexing the database shapes.

These features include aspect ratio (AR), eccentricity (E) and solidity (S). These features

contain considerable information about the global properties of a shape. However, since

some dissimilar shapes have comparable global features, the indexing using the global fea-

tures comes at the price of the accuracy. Therefore, the final dissimilarity function between

a query shape Q and a database shape D using TAR-CI matching (described in Algorithm
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3.1) is given as:

̂MaxMatch(Q,D) = αAR |ARQ −ARD|+αE |EQ − ED|+αS |SQ − SD|+MaxMatch(Q,D)

(3.12)

where ARQ, EQ, and SQ are the aspect ratio, eccentricity, and solidity of the query shape

Q (same for the database shape D), and αAR, αE and αS are the associated weights.

Similarly, the final dissimilarity function between a query shape Q and a database shape

D using the DSW matching, given by (3.10) is given as:

D̂SW (Q,D) = αAR |ARQ − ARD|+ αE |EQ − ED|+ αS |SQ − SD|+ DSW (Q,D) (3.13)

Our experiments show that both (3.12) and (3.13) performs effectively under a wide

range of the weight values, which supports the generality of our approach.

3.4 Computational Complexity

The complexity of each of TAR and the two matching algorithms is evaluated separately.

Note that both matching algorithms presented in Section 3.3 are based on the same rep-

resentation. It should also be noted that the complexity of the matching stage is more

critical since the representation of the database images can be computed prior to the time

of the matching whereas the matching usually takes place between the query image and

most (if not all) the database images.

3.4.1 TAR

TAR computation involves calculating the triangle area, according to (3.1), at each of the N

points of the boundary. In addition, at each boundary point, the triangle area is calculated

at different scales (or triangle side lengths). Typically, there are N−1
2

scales (see Section

3.2). Therefore, the computational complexity of TAR stage is O
(
N.N−1

2

)
or O (N2). The

extraction of TAR-CI maxima is performed using a simple connected-component labeling

of the binary TAR-CI which has a resolution of N−1
2
× N . For TAR signatures, they are

used directly for the matching and no feature extraction is required.
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3.4.2 TAR-CI maxima matching

The complexity of the function match(.) (given by Algorithm 3.2) depends on the number

of concavities and sub-convexities of both shapes which is by far less than the number

of the boundary points (N); therefore, it is reasonable to assume the number of maxima

points to be O (log(N)). The function match(.) creates at most O (2log(N)) initial cor-

respondences of which the best two correspondences are fully extended. Since expanding

a correspondence requires comparing each maximum in the query set with all maxima in

the database set, the correspondence expansion has O (log(N).log(N)) or O (log2(N)) com-

plexity and the full expansion of the best two correspondences requires O (2log2(N)). Thus,

the complexity of the function match(.) becomes O (2log(N) + 2log2(N)). The main func-

tion MaxMatch(.) (given by Algorithm 3.1) uses the function match(.) four times; thus,

the overall complexity becomes O (4(2log(N) + 2log2(N))) or O (log2(N)). Including the

geometric features in the matching function of (3.12) does not affect the complexity of the

algorithm since this addition requires only three computations of the absolute difference

operation.

3.4.3 DSW matching

For the DSW matching function of (3.10), the length of the least-cost path L is computed

during the table search for computing Ddis; thus, the latter governs the complexity of

the algorithm. Each of the each of the shape complexity terms SCQ and SCD in the

denominator of (3.9) requires O (N) complexity as given by (3.8). For the minimum cost

distance term DTmin given by (3.7), the DSW table search is restricted within the diagonal

w-width window; thus, the DSW table search complexity is O (wN) (usually w ≪ N).

Since the DSW search is repeated for N starting points, the complexity becomes O (wN2).

Finally, by considering the flipping operation, the total complexity of the matching stage

turns out to be O (2wN2) or O (N2) (for N = 128, our experiments show that w = 3 is

good enough and larger w doesn’t achieve better results).

60



3.5 Experimental Results

In this section, the performance of each of the proposed matching algorithms (Section

3.3) is evaluated and compared with existing methods in the literature using five standard

experiments on two benchmark shape databases. The first three experiments investigate

the robustness of the matching methods to the affine transformation distortions; namely,

the robustness to scale (MPEG-7 CE-shape-1 part A1 test), the robustness to rotation

(MPEG-7 CE-shape-1 part A2), and the robustness against skew. Then, the results of

MPEG-7 CE-shape-1 part B retrieval test, which is the most comprehensive shape retrieval

test in the literature so far, are presented. Finally, the robustness to partial occlusion is

tested.

Two standard shape databases are used. The first is the well-known MPEG-7 CE-

Shape-1 database [66] which consists of 1400 images semantically classified into 70 classes.

The shapes of this database are derived from natural objects, man-made objects, objects

extracted from cartoons, and manually-drawn objects under various rigid and non-rigid

deformations (a sample of the database is shown in Fig. 3.11). The importance of this

database is due to the fact that it is the only set that is used to objectively evaluate the

performance of various shape descriptors [67]. The other database is the Kimia’s database

[110] which contains 99 images for 9 categories as shown in Fig. 3.12. There are 11 images

for each category and most of the images are partially occluded.

3.5.1 Robustness to scaling and rotation

Here, the results of our method, according to the MPEG-7 Core Experiment CE-Shape-1

part A1 (for scaling) and part A2 (for rotation) tests, are presented. The database used

in part A1 includes 420 shapes, 70 basic shapes from the MPEG-7 CE-Shape-1 database

(one shape per class) and 5 derived shapes from each basic shape by scaling the images

with factors 2, 0.3, 0.25, 0.2, and 0.1. Each of the 420 shapes is used as a query and the

number of correct matches among the first 6 retrieved shapes represents the accuracy of

that query. The overall accuracy is the average of the accuracy values of all the queries.

Similarly, the database used for part A2 test consists of 420 shapes as in part A1, but

the derived images are obtained by rotating each basic image with angles 9, 36, 45, 90,
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Figure 3.11: Sample of the MPEG-7 CE-shape-1 database.

Figure 3.12: Kimia’s database.
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and 150 degrees. The overall accuracy is evaluated as in part A1.

Table 3.2 summarizes the results of both tests for our two matching methods along with

four other methods from the literature. The Curvature Scale Space (CSS) method is due to

Mokhtarian et al. [77, 2] and has been selected as the MPEG-7 standard for the boundary-

based shape descriptor after comprehensive experiments. The other three methods are the

Beam Angle Statistics (BAS) [10], the Zernike moment magnitudes (ZMMs) [61], and the

Visual Parts (VP)[65] (see Section 2.4 for details). The results in the table clearly shows

that the DSW matching, given by (3.10), performs better than the others even without

using the global parameters of the shapes. Using DSW with the global features, given by

(3.13), further improves the performance. Regarding the MaxMatch function of (3.12), its

performance is comparable to that of the CSS matching and slightly lower than the ZMMs

according to these tests.

Table 3.2: Comparison of the results of different methods on the MPEG-7 CE-shape-1 part

A test.
Test BAS [10] CSS [77] ZMMs [61] VP [65] ̂MaxMatch DSW D̂SW

Part A1 90.87% 92.86% 93.15% 88.65% 92.93% 96.1% 98.7%

Part A2 100% 100% 100% 100% 100% 100% 100%

3.5.2 Robustness to skew

In this experiment, the robustness of each of the MaxMatch and the DSW matching al-

gorithms to the skew distortion is tested and compared to that of the CSS. The distorted

shapes are obtained by transforming the original 70 shapes representing the MPEG-7

dataset groups using equation (3.3). The parameters used to obtain these shapes are

b = [0, 0.4, 0.8, 1.5, 2, 3, 4, 6]. A sample of these distorted shapes are shown in Fig. 3.13.

Fig. 3.14 shows the precision-recall curves of the CSS method [77], ̂MaxMatch function

of (3.12), and D̂SW function of (3.13). The plots demonstrate that the MaxMatch method

achieves higher accuracy than the CSS at all recalls and the DSW method is the best

according to this test.
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Figure 3.13: Sample of the skew distorted shapes.
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Figure 3.14: Skew test precision-recall curves for the CSS, the ̂MaxMatch, and the D̂SW

methods.
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Table 3.3: Comparison of the results of different methods on the MPEG-7 CE-shape-1 part

B (bulls-eye) test.

Test BAS [10] CSS [77] ZMMs [61] VP [65] MCC [3] WARP [16]

Part B 82.37% 81.12% 70.63% 76.45% 84.93% 58.50%

Test CED [109] IDSC [69] MaxMatch ̂MaxMatch DSW D̂SW

Part B 78.17% 85.40% 77.20% 81.30% 87.13% 87.75%

3.5.3 Similarity retrieval test

The retrieval effectiveness of our two matching methods are evaluated using the MPEG-7

Core Experiment CE-Shape-1 part B test (also known as bulls-eye test), which is the main

part of CE-Shape-1. All the 1400 images of the MPEG-7 database were used here. Each

image is used as a query; then, the number of correct matches was counted in the first

40 retrieved shapes. As stated in [66], a 100% retrieval rate in this case is not possible

using only the shape information since many classes contain very different objects. In our

opinion, this shape retrieval test is the most challenging in the literature so far.

Table 3.3 shows the results of the MaxMatch and the DSW methods and many recent

methods; namely, BAS [10], CSS [77], ZMMs [61], VP [65], MCC [3], WARP [16], CED

[109], and IDSC [69] (see Section 2.4 for details). The best performance based on the bulls-

eye test was reported as 85.4% [69]. Our DSW method outperforms all existing methods

in the retrieval accuracy (87.13%) even without using the global parameters. Fig. 3.15

shows the breakdown of the total retrieval rate into the retrieval rates for each class for

both the D̂SW and the MCC [3]. To get better insight about the retrieval performance of

our methods, Fig. 3.16 show the precision-recall curves of our two matching methods and

the CSS. Clearly, the DSW outperforms both the CSS and the MaxMatch with a good

margin at all recalls even without using the global parameters.

3.5.4 Retrieval using the Kimia’s database

In this test, the Kimia’s database [110] is used. As shown in Fig. 3.12, partial occlusion

is the main factor of variation among shapes of the same category. Each shape in the

database is considered as a query and the first 10 retrieved shapes, excluding the query,
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Figure 3.15: Results of the MPEG-7 CE-shape-1 part B test for each class for both the

D̂SW and the MCC methods.

are determined. Then, the correct retrievals for each ranking, over all 99 shapes, are

counted. Table 3.4 summarizes these results for the DSW and three other methods. Note

that the maximum number of possible correct retrievals in each case is 99. The shock

graph edit (SGE) method [110] breaks down a shape’s skeleton into parts (or shocks)

and represents them as graph nodes and their relations as graph edges; thus, it handles

partial occlusions explicitly. The SGE outperforms the shape context method [17] in this

test. However, the performance of the SGE method on the MPEG-7 part B test was not

reported. In contrast, the IDSC method [69] slightly outperforms the SGE method. Table

3.4 also shows the results of ̂MaxMatch given by (3.12), DSW given by (3.10), and D̂SW

given by (3.13). Our latter method achieves comparable performance to the IDSC method

according to this test.
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Figure 3.16: Retrieval precision-recall curves for the CSS, the ̂MaxMatch,the DSW, and

the D̂SW methods.

Table 3.4: Results on Kimia database of 99 shapes. The table shows the number of correct

retrievals, over all 99 shapes, at different rankings. See text for details.

Method Ranking of the retrieved shape

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Shape Context [17] 97 91 88 85 84 77 75 66 56 37

SGE [110] 99 99 99 98 98 97 96 95 93 82

IDSC [69] 99 99 99 98 98 97 97 98 94 79
̂MaxMatch 99 97 94 91 88 84 76 67 57 40

DSW 99 99 96 97 96 94 91 84 70 45

D̂SW 99 99 99 98 98 97 98 95 93 80
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3.6 Conclusions and Discussions

In this chapter, two single-object shape matching algorithms are introduced. For shape

description, both algorithms employ the triangle-area representation (TAR) of a shape’s

boundary which measures the convexity/concavity of each boundary point using the area of

the triangle formed by equidistant boundary points at different scales. The first matching

algorithm, called MaxMatch, searches for the best correspondence between the maxima

points of two TAR-concavity images, i.e., binary images of concavity regions obtained by

thresholding TAR of each boundary. In the second matching algorithm, the optimal cor-

respondence between the points of two boundaries is searched efficiently using dynamic

space warping (DSW). Based on the established correspondence in both matching meth-

ods, a dissimilarity function is derived. Global shape features, including aspect ratio,

eccentricity and solidity, are incorporated in the dissimilarity function to further increase

the discrimination ability and to facilitate indexing in large shape databases. Both tech-

niques are invariant to translation, rotation, scaling and skew. Our experiments show that

MaxMatch outperforms the curvature scale-space (CSS) method [1, 77], which has been

selected for MPEG-7 standard after comprehensive comparative experiments with many

other methods [84]. For the MPEG-7 CE-shape-1 part B test, which is considered the most

comprehensive shape retrieval test yet, the DSW method outperforms all existing methods

by a good margin.

Table 3.5 shows a comparison between the MaxMatch and the DSW methods. It is clear

that DSW achieves higher accuracy than MaxMatch. Regarding computational complexity,

MaxMatch requires less computations; however, it requires extracting the maxima points

whereas DSW works directly on TAR signatures without any feature extraction. The

processing times reported in the table are per query shape and obtained using Matlab

c©(version 7.0) program running on Pentium IV 3.0 GHz PC. It should be noted that

the codes are not optimized and better speeds can be obtained using other programming

languages such as C and C++. Another desirable property of DSW is that it can be easily

used for measuring the similarity between two shapes since its value is normalized between

0 and 1. For these reasons, the DSW matching is used in the multi-object shape matching

described in Chapter 4.
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Table 3.5: Comparison between MaxMatch and DSW.

Method MaxMatch DSW

Complexity O (log2(N)) O (N2)

Accuracy (bullseye test) 81.30% 87.75%

Compactness log(N) points N × Ts matrix

Average representation time 16 msec 16 msec

Average feature extraction time 36 msec N/A

Average matching time 3 msec 15 msec

Normalized No Yes
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Chapter 4

Multi-Object Shape Representation

and Matching

In this chapter, curvature tree (CT) is introduced as a tool for representing and match-

ing multi-object shape images [8]. The main aim is to provide a unified framework for

geometry-based image retrieval that includes the shape and the topology of objects and

holes comprising a multi-object image1. In the following, an introduction to the subject is

given in Section 4.1. Then, a review of recent psychological findings, related to the human

inference about comparing multi-object images, is presented in Section 4.2. The CT is

introduced in Section 4.3; Section 4.4 explains an approximate and an exact CT matching

algorithms. Section 4.5 discusses the computational complexity followed by experimental

results in Section 4.6. Finally, we conclude our work in Section 4.7.

4.1 Introduction

With the ever-increasing number of digital images generated everyday, textual annotation

of images becomes impractical and inefficient for image description and retrieval. This

trend is mainly motivated by the rapid advances in imaging technologies and the availability

of the internet access virtually everywhere. Thus, content-based image retrieval (CBIR) has

1In this thesis, we assume the objects in an image are already segmented and their boundaries are well

identified. Therefore, binary images are considered.
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received considerable attention in recent years from researchers in various fields [116, 128].

For comparing images, CBIR uses generic image features which are traditionally either

intensity-based (color and texture) or geometry-based (shape and topology). Many systems

have been proposed for CBIR; among the most popular ones are QBIC from IBM [42],

Virage [12], and Photobook from MIT [90]. Geometry-based image retrieval is generally

less developed than the intensity-based retrieval; for example, the QBIC system is more

successful in the intensity-based than in the geometry-based search [127]. Currently, multi-

object image representation and matching is an active area for research.

A common limitation of the existing geometry-based retrieval systems is not consider-

ing simultaneously both shape and topology of image objects (or components) which may

reveal important properties of the scene being analyzed. In a recent study from the visual

cognition community, Markman and Gentner [72] concluded that structural relations be-

tween image components play a central role in the human similarity comparison process.

An earlier finding by Lowe [71] states that the similarity between two groups of objects

does not equal the sum of similarities between the individual objects.

In this chapter, the CT is introduced as a tool for multi-object image representation and

matching. The aim is to provide a unified framework for geometry-based image retrieval

that includes the shape and topology of objects and holes composing an image. More

specifically, the CT is a hierarchical data structure that reflects the inclusion relationships

among objects and holes. It consists of nodes and edges where each node stores shape

descriptor of the closed boundary corresponding to an object or hole. For measuring the

similarity between two multi-object images, their CTs are matched based on the notion

of maximum similarity subtree isomorphism (MSSI). This matching scheme is highly de-

sirable since it handles both shape and topology at once. The matching scheme comes in

accordance with many recent findings from the visual cognition community about compar-

ing multi-object images (see Section 4.2). To the author’s best knowledge, the derivation

of a similarity measure between two multi-object shapes based on structural isomorphism

is novel. Two attributed tree matching algorithms are introduced to solve the MSSI prob-

lem: an approximate and an exact. The approximate algorithm follows a continuous op-

timization approach that transforms the MSSI problem, which is a discrete combinatorial

optimization problem, to the continuous domain, uses continuous optimization techniques
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to solve the problem, and then transforms the solution back to the discrete domain. In

this algorithm, the continuous optimization method, proposed by Pelillo et al. [88, 87, 86],

is adapted with two modifications. The motivations for these modifications are to avoid

spurious solutions (which cannot be mapped back to the discrete domain) when the op-

timum solution is not unique and to limit the number of computations for solving the

MSSI problem (as explained in Section 4.4). In the other algorithm, an exact solution to

the MSSI problem is searched by recursively computing all possible subtree isomorphisms

between two CTs and then selecting the one yielding maximum similarity. Although the

MSSI problem is NP-hard for unordered trees such as our CT, the nonnegative property of

the similarity function between the nodes of two CTs drastically reduces the search space

for the optimum solution and enables the algorithm to work in polynomial time.

The choice between the approximate and the exact algorithms is a tradeoff between

accuracy and speed. As will be shown theoretically and experimentally, the approximate

algorithm achieves acceptable accuracy compared to the exact algorithm with considerable

improvement in the computational complexity. The performance of the proposed approach

is evaluated using two application domains: logo retrieval from a database of 1580 logo

images and retrieval of medical images from a database of 13500 Magnetic Resonance Im-

ages (MRI). In both applications, comparisons with the state-of-the-art methods from the

literature are presented. The experimental results prove the superiority of the proposed ap-

proach for obtaining more meaningful retrieval results as compared to the existing methods

in both applications.

4.2 Image Comparison in Psychology

Advances in signal processing and applied mathematics have enabled researchers to de-

velop sophisticated techniques to analyze the geometric content of images. Although such

methods are effective in capturing low-level image features, the gap between these low-level

features and high-level semantics is still wide [34]. Humans perform image comparisons

efficiently and effortlessly; however, it is not the case for machines. In the following, we re-

view recent studies in the psychological literature about how humans perceive and compare

multi-object images. This is particularly important in developing computational models

72



that satisfy the user requirements in retrieving similar images.

Gestalt theory suggests four principles known as Gestalt principles of perception [120]

that include proximity, size and shape similarity, continuity, and closure. Although the

mechanisms behind these principles are still unclear, they provide a strong evidence that

humans do not perceive multi-object images as purely the sum of the individual objects,

which also has been noted by Lowe [71]. Biederman [21] concluded that different arrange-

ment of the same objects of an image can easily lead to a completely different perceived

image.

According to our literature review in visual cognition, the most relevant work to rep-

resenting and comparing multi-object images is due to Markman and Gentner [72]. Their

study provides more details about the comparison process in the human cognition system.

They concluded that carrying out similarity comparisons involves structured representa-

tions and such comparisons work to align these structures. In addition, the similarity

comparison possesses the following characteristics:

• Consistency : the similarity comparison is constrained by a one-to-one correspon-

dence, that is, each element in one representation can be matched to at most one

element in the other representation.

• Systematicity : the similarity comparison is driven by a search for correspondence that

preserves connections between the representation elements. In other words, matching

connected elements is preferred over matching isolated elements. In relation with our

work, the connectivity refers to the object level, i.e, the topological relations between

objects and holes, and does not refer to the pixel connectivity.

• Subjectivity : different people might generate different interpretations of the similarity

between the same images, so as the same person does at different times. This property

justifies the difficulty in evaluating content-based image retrieval systems.

As explained in the rest of this chapter, these findings constitute the main motivations

for the proposed similarity function between two multi-object images. We believe that any

computational model for measuring the image similarity should benefit from the advances

in related fields such as psychology.
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4.3 Curvature Trees

The curvature tree (CT) is a structured representation of a multi-object binary image that

describes both shape and topology of objects and holes comprising the image2. Formally,

the CT is a rooted, directed, unordered, and acyclic graph T = (V, E), where V is a set of

nodes and E is a set of edges. The CT has a single root node at level 0 representing the

background, the external contours of the primary objects are stored at the first level nodes,

and the contours of possible holes are at the second level nodes, and so on. Therefore, the

tree hierarchy reflects the inclusion relationships between the objects and holes. To facili-

tate shape-based matching, triangle-area representation (TAR) of each closed boundary of

an object or hole is stored at the corresponding node (Subsection 3.2.3).

Figures 4.1 and 4.2 show illustrative examples of the CTs of two simple multi-object

images. By analyzing the curvature tree of Fig. 4.1 alone, one can deduce that the image

contains one primary object with a primary hole, three secondary objects are contained

in that hole, and two secondary holes are contained in each secondary object. The shape

information of each object and hole is stored at the corresponding node as its TAR signa-

ture.

Many researchers have suggested different tree representations for gray-scale images.

For example, Salembier and Garrido [107] proposed binary partition tree (BPT), where

initial image partitions are merged following a sequential, pairwise fashion. Therefore, the

BPT hierarchy reflects the merging sequence and the topological relationships between

the regions cannot be easily identified. In another work, Monasse and Guichard [80, 81]

proposed tree representation of gray-scale images that employs a region-growing algorithm

to detect connected components and then organizes them based on their inclusion relation-

ships. In fact, our CT exhibits the same structure as the inclusion tree in [80] for binary

images. However, the CT differs in the stored information in the nodes and its application

to measure the similarity between images.

2In the context of this thesis, an object (hole) is a connected set of foreground (background) pixels.
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Figure 4.1: An example of a multi-object image and its CT.
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Figure 4.2: A multi-object image and its CT.
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4.3.1 Curvature tree construction

Given a multi-object shape image, we want to represent it using its curvature tree. The pro-

cess of curvature tree construction is simple and efficient. In addition, it describes a shape

image uniquely and robustly. Each tree node stores TAR signatures of the corresponding

object/hole. The edges between nodes can be weighted to reflect a spatial relationship be-

tween a parent node and its child node. The choice of such spatial relationship depends on

the application. For instance, the medical images used in our experiments, which contain

manually-segmented objects, allow overlapping to occur between the objects; therefore, the

edges are weighted to reflect the percentage of inclusion. All curvature trees have a single

root node at level 0 representing the background. Primary objects in the image are at the

first level, possible holes in the primary objects are at the second level and objects inside

these holes are at the third level, and so on. Thus, the inclusion relationships between

objects and holes can be clearly followed. The algorithm that builds the curvature tree

from a shape image is summarized as follows:

1. Insert the root node at level 0 (denotes the background).

2. Label all isolated objects. For each object:

(a) Insert a node in the next tree level.

(b) Store TAR signatures and the global features of the corresponding object/hole.

(c) Compute the edge’s weight (if applicable).

(d) Search for internal holes. For each hole (if any):

i. Insert a node in the next tree level.

ii. Repeat 2 (b, c).

iii. Repeat step 2 for the objects contained in the hole (if any).

3. Stop when all objects and holes have been visited.

In our implementation, the CT of a given multi-object shape image is stored in a

hierarchical data structure called cell array. A desirable feature of the cell array is the

provision to store data of different types and sizes; for instance, a cell array can store
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Figure 4.3: The cell arrays of the CTs of (top) Fig. 4.1 and (bottom) Fig. 4.2.

vectors or matrices of real numbers, strings of alphabets, and/or another cell array. The

first element of the CT’s cell array stores information pertaining to the root node; the

other elements are cell arrays of the primary objects. Similarly, the first element in each

cell array stores information of the corresponding node and the other elements are cell

arrays of the children nodes. Thus, each subtree in the CT is stored in a cell array. Fig.

4.3 shows the plots of the cell arrays of the CTs in Figures 4.1 and 4.2. The data stored

at each node, which are used during the matching process, include TAR signatures of the

corresponding shape, a set of global features (area, aspect ratio, eccentricity, and solidity),

the node index, the indices of the children nodes, and the level of the node (the length of

the shortest path joining the node with the root node).
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4.3.2 Curvature tree properties

Curvature tree possesses many properties that distinguish it from other trees. These prop-

erties are critical for developing an effective matching method. The properties include the

following:

• The CT is a rooted, directed, weighted, unordered, and attributed tree.

• The number of nodes of the CT equals the total number of objects and holes in

the image. This means that the order and the size of the tree grow linearly with

the complexity of the image, which is desirable for both representing and matching

multi-object images.

• The hierarchy of the CT reflects the inclusion relationships between objects and holes.

• If applicable, the weight of each edge represents a spatial relationship between the

parent and the child nodes (for example, the percentage of the included area or the

spatial distance).

• The incoming degree of all nodes equals one except for the root node, which has an

incoming degree of zero. This property is highly desirable for the matching since it

allows including the weights of the edges in the node similarity function.

• The CT is invariant to the inversion (i.e., taking the negative) of the image. Inverting

the background from black (white) to white (black) causes insertion (deletion) of a

child node of the root node whose boundary follows the frame of the image. The

image inversion causes a defect to statistical image descriptors such as moments

since they are computed from the foreground pixels.

• The CT is a scale-space representation of the image where the scale is directly the

shape area. Large scale objects appear near the root node whereas small scale objects

appear near the leaf nodes.

From these properties, it can be deduced that the CT overcomes some limitations of the

region adjacency graph (RAG) [99], which encodes the neighborhood relationships between

79



objects and does not follow a hierarchical structure. In addition, the tree matching is a

much easier problem than the graph matching. There are polynomial-time algorithms for

attributed tree matching where such algorithm does not exist for attributed graph matching

[30].

4.4 Attributed Tree Matching

The main aim is to measure the similarity between two multi-object images using their

CTs. As discussed in Section 4.2, interesting recent findings in psychology strongly suggest

that such similarity should follow a one-to-one correspondence between structured repre-

sentations of the two images [72]. Therefore, we propose a similarity function based on the

maximum similarity subtree isomorphism (MSSI) between the two CTs. This matching

scheme is desirable since it allows matching whole or part of one image with whole or

part of the other image. In the following, an approximate and an exact algorithms are

introduced to solve the MSSI problem; then, the similarity function is proposed which is

based on the MSSI solution.

4.4.1 Notations and definitions

We first introduce some graph theoretic notations and definitions. More details can be

found in the graph theory literature such as [50, 15]. An attributed graph is a triple

G = (V, E , δ), where V is the set of nodes, E is the set of edges, and δ is a function that

assigns attributes δ(u) to each node u ∈ V. The order of G is the number of nodes and

its size is the number of edges. Two nodes u, v ∈ V are said to be adjacent, denoted by

u ∼ v, if they are connected by an edge. A path is a sequence of distinct nodes u0u1...un

such that ui−1 ∼ ui, for i = 1...n. If u0 = un, the path is called a cycle. A graph is said to

be connected if there is a path between any two nodes. The path distance between u and

v, d(u, v), is the length of the shortest path joining them. A subgraph F of G is the graph

having a set of nodes H ⊂ V and any two nodes in F are adjacent if and only if they are

adjacent in G.

A tree is a connected graph with no cycles. An attributed tree has attributes stored at

its nodes. A weighted tree is the one with weights assigned to its edges. A rooted tree has a
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distinguished node called the root. The level of a node u in a rooted tree, denoted by l(u),

is the length of the path connecting the root node to u. Note that the rooted tree implies

a multi-level organization of the tree nodes. Moreover, if u ∼ v and l(u)− l(v) = −1, then

u is the parent of v and, conversely, v is a child of u. Note that any node in a rooted tree

has exactly one parent node, except the root, whereas the node can have any number of

children; a node that does not have any child node is called a leaf. An ordered tree respects

the order of the children nodes at any tree level whereas, in an unordered tree, the children

nodes do not follow any order.

Let T1 = (V1, E1, δ1) and T2 = (V2, E2, δ2) be two rooted and attributed trees, H1 ⊆

V1 and H2 ⊆ V2. A subtree isomorphism is a mapping φ : H1 → H2 that preserves

both adjacency and hierarchical relations between the nodes of each subtree. In matching

attributed trees, the isomorphism should also pair similar nodes. Let ω(δ1(u), δ2(v)) be a

similarity function between nodes u ∈ T1 and v ∈ T2 based on their attributes (their TAR

signatures in our case). Then, the overall similarity Ω between the subtrees H1 and H2

induced by φ can be defined as follows:

Ω(φ) =
∑

u∈H1

ω (δ1(u), δ2(φ(u))) (4.1)

The isomorphism φ is maximal similarity subtree isomorphism if there is no other sub-

tree isomorphism φ′ : H1
′ → H2

′ such that H1 ⊂ H1
′ and Ω(φ) < Ω(φ′). It is called

maximum similarity subtree isomorphism if Ω(φ) is largest among all possible isomor-

phisms.

4.4.2 Approximate tree matching

Approximate solutions to the MSSI problem demand less computations than exact so-

lutions which is a desirable property in most pattern recognition and computer vision

applications. In this thesis, a continuous optimization method proposed recently by Pelillo

et al. [88, 87, 86] is adapted with two modifications. As explained in the rest of this

section, the motivations for these modifications are to improve the accuracy by avoiding

spurious solutions of (4.5) when the global minimum is not unique and to limit the number

of computations for solving the MSSI problem [8]. The main steps of the algorithm are

summarized as follow:
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1. Derive an auxiliary graph, called weighted tree association graph (WTAG), from the

two CTs to be matched.

2. Compute the maximal clique of the derived WTAG using continuous optimization

techniques.

3. The maximal clique corresponds to maximal subtree isomorphism and the clique’s

weight is the solution of the MSSI problem.

In the following, an explanation of each of these steps is provided with more details.

Association graphs and the MSSI problem

At first, an auxiliary graph G = (V, E , ω) is derived from the two trees T1 and T2 that

is called weighted tree association graph (WTAG), where V = V1 × V2, ω is a similarity

function that assigns positive weights to the nodes in V (the DSW similarity function of

(3.11) in our application), and E is defined as follows: for any two nodes (u1, u2) and (v1, v2)

in V, where u1, v1 ∈ V1 and u2, v2 ∈ V2, we have (u1, u2) ∼ (v1, v2) ⇔ d(u1, v1) = d(u2, v2)

and l(u1)− l(v1) = l(u2)− l(v2).

Fig. 4.4 illustrates the WTAG construction procedure. Nodes 1 and 2 in the first

tree have the same structural relation as nodes a and b in the other tree; therefore, there

is an edge between nodes (1, a) and (2, b) in the corresponding WTAG. Intuitively, the

hierarchical relations between the tree nodes are encoded in the flat structure of the WTAG;

enabling the use of powerful continuous optimization techniques to solve the MSSI problem.

A clique in G is a fully connected subgraph. A maximal weight clique in G is not

contained in any other larger weight clique and the maximum weight clique has largest

total weight. The following theorem is essential to solve the MSSI problem (see [22] for

proof).

Theorem 5.1

Any maximal (maximum) similarity subtree isomorphism between two attributed trees in-

duces a maximal (maximum) weight clique in the corresponding WTAG, and vice versa.
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Figure 4.4: Two trees (a) and their WTAG (b).
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Based on this theorem, solving the MSSI between two attributed trees and the max-

imum clique detection of their WTAG are equivalent. In the example of Fig. 4.4, there

are four maximum subtree isomorphisms between the two trees in panel (a); namely,

φ1 : {1 → a, 2 → b, 3 → c}, φ2 : {1 → a, 2 → c, 3 → b}, φ3 : {3 → a, 4 → b, 5 → c},

and φ4 : {3 → a, 5 → b, 4 → c} (note that the trees are unordered and the nodes are

assumed to have the same attributes). Each of these isomorphisms has an order of three.

On the other hand, the WTAG of panel (b) has four maximum cliques having a cardi-

nality of three; namely, {(1, a), (2, b), (3, c)}, {(1, a), (2, c), (3, b)}, {(3, a), (4, b), (5, c)}, and

{(3, a), (5, b), (4, c)}. These four cliques are equivalent to the four isomorphisms between

the two trees. In the following, an approximate solution of the maximum clique detection

problem is presented based on a continuous optimization formulation.

Approximating the maximum clique using continuous optimization

To solve the maximum weight clique problem using continuous optimization, let ẑ be a

characteristic vector of any subset of nodes C ⊆ V defined as :

ẑi =

{
ω(ui)/Ω(C) if ui ∈ C

0 otherwise
(4.2)

where i ∈ 〈1, |V|〉 (|V| is the number of nodes in V) and Ω(C) =
∑

uj∈C
ω(uj) is the total

weight of C. Also, consider the following quadratic function:

f(z) = zTWz (4.3)

where z is |V| × 1 vector that satisfies eT z = 1 and zi ≥ 0, e is the unit vector with

i ∈ 〈1, |V|〉, and W = λeeT − B is a symmetric real matrix where B = (bij) is a |V| × |V|

matrix defined as:

bij =





1
2ω(ui)

if i = j

0 if i 6= j andui ∼ uj

1
2ω(ui)

+ 1
2ω(uj )

otherwise

(4.4)
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and λ = max(bij).

Bomze [22, 23] proved that global (local) maxima of zTBz (and hence minima of f)

correspond to maximum (maximal) cliques of the WTAG. The following dynamical system,

which is called replicator equation, is used to find the minimum value of (4.3):

zi(t + 1) = zi(t)
(Wz(t))i

z(t)TWz(t)
(4.5)

where t is the iteration number and zi is the i-th element of the vector z. An interesting

property of (4.5) is the asymptotic convergence to a stable local minimizer of f that

corresponds to the characteristic vector of a maximal weight clique of the WTAG. As

reported in [88], the basins of attraction of the global minimizer of (4.3) are quite large;

consequently, the solution obtained by (4.5) is most likely global and corresponds to the

maximum weight clique which approximately solves our original MSSI problem.

In [88], the initialization of (4.5) is made with an equal-weight vector, i. e., zi(0) = 1/ |V|

for all i. However, a major problem with this initialization occurs particularly when the

global solution is not unique. In this case, a spurious solution is obtained that does

not correspond to a characteristic vector and thus the solution cannot be mapped to the

discrete domain. In our implementation, (4.5) is initialized with uniformly distributed

random numbers between zero and one and then normalized to ensure their sum equals

one. Our experiments show that this initialization effectively avoids the spurious solutions

and achieves faster convergence. Fig. 4.5 shows the locus of each element in the vector z

during the computation of (4.5) when matching the two CTs in the figure. The nodes are

assumed to have the same attributes; thus, the nodes of the WTAG have similar weights.

In this example, there are 18 MSSI solutions since node 1 in the CT of panel (b) can be

matched to any of the nodes 1, 5, or 9 in the CT of panel (a) and, in each case, there are 6

possible combinations for matching the three children of each node (because the children

are not ordered). The uniform initialization in [88] returns a spurious solution that cannot

be mapped back to the discrete domain because z is not in the characteristic form whereas

the random initialization in this thesis converges to a global solution. Note that there is

overlapping between more than one loci of zi. Fig. 4.6 shows the convergence values of

zi for the uniform and random initializations and the loci of f in each case. Clearly, the

uniform initialization returns a local minimum (f = 0.75) while the random initialization
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returns the global minimum (f = 0.125).

In our implementation, the number of iterations in (4.5) is limited to be equal to |V|

(the number of nodes in the WTAG) which achieves robust performance and gives better

assessment of the computational complexity of our algorithm. As shown in the example of

Fig.4.5, fast convergence of (4.5) is obtained in less than 10 iterations (here, |V| = 48).
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Figure 4.5: Illustration of the dynamics of (4.5) when matching the two trees in (a) and

(b); with uniform initialization as in [88] (c) and with random initialization (d).
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Figure 4.6: The final values of zi and the loci of f for matching the two trees in Fig. 4.5

with uniform (a) and (c) and random (b) and (d) initializations of (4.5).

The MSSI solution

Once the replicator equation of (4.5) converges to a stable solution, an approximation of the

MSSI between the two CTs is directly detected. Each non-zero element in the characteristic

vector z corresponds to a node in a maximal clique of the WTAG which in turn induces

a mapping between two nodes in the CTs. Therefore, the mapping from the continuous

domain to the discrete domain is straightforward. In the example of Fig. 4.6(b), the four

non-zero elements of the characteristic vector corresponds to matching nodes 9, 10, 12, and

11 of the CT of Fig. 4.5(a) with nodes 1, 2, 3, and 4 of the CT of Fig. 4.5(b), respectively.
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4.4.3 Exact tree matching

In this method, an exact solution to the MSSI problem is computed. Unlike the previous

method, where the obtained isomorphism is maximal, the obtained isomorphism here is

guaranteed to be maximum. The exact algorithm works directly on two CTs and does

not require any auxiliary structure. More specifically, the algorithm recursively searches

for all possible isomorphisms between two trees and selects the one yielding the maximum

similarity. Such an exhaustive search is computationally expensive; for two trees having

n and m nodes, respectively, there are nm possible isomorphisms to be searched between

subtrees rooted at each two nodes in the two trees. Fortunately, due to the nonnegative

property of the employed similarity function between the attributed nodes, i.e., the DSW

similarity function given by (3.11), without loss of generality, the search space reduces

to n + m possible isomorphisms. The reason for this reduction is as follows. Suppose

an isomorphism φ̃(ũ, ṽ) is induced between two subtrees rooted at two arbitrary non-root

nodes ũ ∈ T1 and ṽ ∈ T2, with parent nodes u and v, respectively. Since the node

similarity function is nonnegative, adding u and v to the isomorphism φ̃ increases its

similarity weight or, at least, does not change it, i.e., Ω (φ (u, v)) ≥ Ω(φ̃ (ũ, ṽ)). To achieve

maximum similarity, an isomorphism has to include the parent nodes of the subtrees’ root

nodes until the root of either tree is included in the isomorphism. Therefore, the MSSI

must include at least one of the root nodes of the two trees. In this case, the number of

possible isomorphisms, which are candidates for MSSI, reduces to n + m.

Algorithm 4.1 is a pseudo-code of our exact tree matching algorithm. It accepts two

CTs as inputs and returns their MSSI along with its weight. The algorithm examines

all subtree isomorphisms, between the nodes of the first CT and the root of the other

CT and vice versa, and returns the isomorphism yielding maximum similarity. The main

function, ExactMatch, uses the function TreeMatch of Algorithm 4.2 to find the MSSI

between two subtrees rooted at u ∈ T1 and v ∈ T2. TreeMatch initializes the isomorphism

with u→ v and its weight with ω (u, v). If both u and v are non-leaf nodes (both have at

least a child node), then an optimal assignment procedure assigns the child node(s) of u

to the child node(s) of v such that the sum of the pairwise similarities is maximum. This

assignment problem is known as bipartite matching; for two sets of n1 and n2 elements

and n1 ≥ n2, there are n1!/(n1 − n2)! possible mappings between the elements of the two
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sets (n1! is the factorial of n1). For this purpose, the Hungarian method is employed which

has polynomial-time complexity of O(n1n
2
2) [83, 85]. TreeMatch recursively matches the

nodes of the subtrees rooted at u and v at different tree levels. This algorithm is similar to

the algorithm in [122, 123] except that the latter returns only the weight of the maximum

isomorphism and does not return the isomorphism itself.

Algorithm 4.1 Exact tree matching (main algorithm): [φ, Ω] = ExactMatch(T1, T2)

Notation:

T1, T2 are two CTs to be matched.

φ is a MSSI between the two trees.

Ω is the total weight of φ.

1: Ω← 0

2: for each node ui ∈ T1 do

3: [map, sim]← TreeMatch(ui, root(T2))

4: if sim > Ω then

5: Ω← sim

6: φ← map

7: end if

8: end for

9: for each node vj ∈ T2 do

10: [map, sim]← TreeMatch(root(T1), vj)

11: if sim > Ω then

12: Ω← sim

13: φ← map

14: end if

15: end for

16: return φ, Ω

4.4.4 The similarity function

The decision on the similarity function between two multi-object images depends on the

application under consideration according to the user requirements. Our method can
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Algorithm 4.2 Exact subtree matching: [map, sim] = TreeMatch(u, v)

Notation:

nu is the number of children of u.

nv is the number of children of v.

δ(u) is TAR signatures of node u (as described in Subsection 3.2.3).

ω is the similarity function DSWsim given by (3.11).

W is the similarity matrix between the child nodes of u and v.

hungarian(A) is an optimal assignment function that assigns the rows to the columns

of the cost matrix A.

1: sim← ω(u, v)

2: map← {(u, v)}

3: if nu 6= 0 and nv 6= 0 then

4: for each child node ci of u do

5: for each child node cj of v do

6: [M(i, j), W (i, j)] = TreeMatch(ci, cj)

7: end for

8: end for

9: [assign, cost] = hungarian(max(W ) ∗ ones(nu, nv)−W )

10: sim← sim + max(W ) ∗min(nu, nv)− cost

11: map← map ∪ assign

12: end if

13: return map, sim

90



handle various types of queries. For example, in some applications the user is interested

in the objects of a database image similar to the objects in the query image; thus, the

remainder portion of the database image is insignificant. In this case, the similarity function

can be considered as the weight of the MSSI, Ω. Another example is an application where

the user presents a query of single-object shape which means a linear search of the CT

nodes of a database image. In the most general case, we propose a similarity function

that accounts for the matched objects of two multi-object images as well as the unmatched

objects. Once the weight of the MSSI, Ω, is obtained, the final similarity function between

two CTs is defined as:

DCT =
Ω

2

(
1

|T1|
+

1

|T2|

)
(4.6)

Note that DCT equals Ω normalized by the number of nodes in each CT. This normal-

ization accounts for the unmatched parts in the two CTs.

4.5 Computational Complexity

4.5.1 CT representation

The CT of a multi-object image of n shapes has n nodes; therefore, the order of the CT

grows linearly with the number of objects and holes in the image. Each node stores TAR

of the corresponding shape. Since TAR computation has complexity of O (N2), where N

is number of the boundary points (see Section 3.4 for details), the overall complexity of

the CT construction is O (nN2).

4.5.2 Approximate CT matching

Matching a CT of n nodes with another CT of m nodes requires the construction of their

WTAG of nm nodes and the weight of each node is computed using the DSW matching of

complexity O (N2) (as described in Section 3.4). The search for the MSSI solution using

(4.5) has complexity O(nm), since the number of iterations equals the cardinality of the

WTAG. Therefore, the complexity of the WTAG construction is O (nmN2) which is also
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the complexity of the approximate CT matching. Note that the complexity of the matching

is invariant to the topological parameters of the CT such as the number of tree levels.

4.5.3 Exact CT matching

The computational complexity of our exact matching algorithm heavily depends on the

number of CT levels and the branching factor (i.e., the number of children of a CT node);

therefore, characterizing the algorithm’s complexity is difficult. Let b be the maximum

branching factor. For matching two CTs of n and m nodes, the main algorithm ExactMatch

(of Algorithm 4.1) actually computes at most nm bipartite matchings: one for each possible

pair of nodes from the two trees. The bipartite matching under nodes ui ∈ T1 with pi

children and vj ∈ T2 with qj children, using the Hungarian procedure, has complexity

O (max(pi, qj)piqj) ≤ O (bpiqj). Summing over all possible matches, we have
n∑

i=1

m∑
j=1

bpiqj =

bnm. As in the approximate matching algorithm, the node similarity is measured using

the DSW algorithm of complexity O(N2), where N is the number of the boundary points.

Therefore, the complexity of our exact CT matching algorithm is O (bnmN2).

4.6 Experimental Results

We demonstrate the performance of our method using two application domains of image

retrieval. The first application is retrieval of medical images from a database of 13500 real

and synthesized medical images. In the second application, retrieval of logos is conducted

on a database of 1580 logo images. In both applications, the shape of individual objects

as well as their topological structure are essential to determine the image identity. In the

following, detailed explanations of the experimental setups, evaluation methods, database

images and comparisons with relevant methods in the literature are presented.

4.6.1 Retrieval of medical images

Here, a database of 13500 real and synthesized medical images is used [93]. The database

consists of 124 real MRI (Magnetic Resonance Imaging) images manually segmented by
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tracing the boundaries of the image objects. Fig. 4.7 shows an example MRI image and its

segmented image. The rest of the database images were produced from the original images

by allowing the objects in the original images to rotate, scale, and translate by certain

amounts controlled by a random number generator. In addition to these transformations,

objects having random sizes, shapes and positions are added to the derived images. All

images contain between 4 to 8 objects.

The evaluation is based on human relevance judgements as reported in [91]. Two

images are considered similar if they contain similar objects in similar spatial relationships.

Besides, the similarity is judged based on the query image, that is, a database image may

contain extra objects without affecting the similarity but not the query. The following

performance measures are used to evaluate the retrieval performance:

Precision which is the ratio of the number of relevant retrieved images to the total

number of retrieved images.

Recall which is the ratio of the number of relevant retrieved images to the number of

relevant images in the database. To compute recall, all database images relevant to

the query have to be known. However, comparing every query with all 13500 database

images by a human referee is practically impossible. To overcome this problem, the

sampling method, known as pooling method in text retrieval community [129], is

employed which results in labeling part of the database images as explained in the

rest of this section.

Ranking quality (Rq) which measures the goodness of the retrieval ranking, that is, the

method retrieves relevant images before the irrelevant images. The higher the value

of Rq the better the ranking quality of a method and vice versa. Note that Rq is

independent from the accuracy. Rq is computed as follows:

1. Each retrieved image is assigned a rank number according to its order and judged

as relevant or irrelevant with respect to the query image.

2. Pairs of the retrieved images are taken such that each pair contains a relevant

and irrelevant images and the relevant one is first and the irrelevant is second.
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Figure 4.7: A medical image and its manually segmented image.
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3. Let S+ be the number of pairs with the relevant image’s ranking better than the

ranking of the irrelevant image, S− is the number of pairs with the irrelevant

image’s ranking better, and S = S+ + S−. Rq is computed as:

Rq =

{
1
2

(
1 + S+−S−

S

)
if S > 0

1 otherwise
(4.7)

Since the objects of the images in this database are manually segmented, overlapping

between the objects can occur which makes the inclusion relationships not clearly identified.

Therefore, the CT construction and matching are modified accordingly. In this application,

the CT edges are weighted to reflect the amount of inclusion of a child node in its parent

node. To resolve the inclusion ambiguity caused by the overlapping, let object u with area

Au and object v with are Av have an overlapping with area Auv such that Au > Av. Then,

node v is inserted in the CT as a child to the node u and the weight of the edge ~uv equals

Auv/Av. For the approximate and the exact CT matching algorithms, since the incoming

degree to any node in the CT equals one (except the root), only the node similarity function

(ω) is modified to include the edge weights as follows. Let u1, v1 ∈ T1, u2, v2 ∈ T2, and ζ1

and ζ2 the weights of the edges ~u1v1 and ~u2v2, respectively. Then, the similarity between

nodes v1 and v2 is redefined as:

ω(v1, v2) = 1−
(
α1 |ζ1 − ζ2|+ α2|Âv1

− Âv2
|+ α3DSW (δ(v1), δ(v2))

)
(4.8)

where Âv1
is the normalized area of v1 obtained by dividing Av1

by the area of the largest

object in T1 in order to achieve scale invariance (same for Âv2
), DSW is the dissimilarity

function given by (3.10), and αi are positive weights such that
3∑

i=1

αi = 1 to maintain

0 ≤ ω ≤ 1. In our experiments, α1 = 0.15, α2 = 0.35, and α3 = 0.5 (these values are not

optimized).

In the retrieval test, precision-recall pairs are computed as follows. Twenty query

images (shown in Fig. 4.8) are presented and, for each query, the system retrieves the best

50 matches out of the 13500 database images. In [91], the results of 5 methods and 19 of

their variants are reported which demanded 24000 comparisons by human referees (each

method required 20× 50 = 1000 comparisons). Based on our estimate, these comparisons
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resulted in labeling 42 % of the database images as relevant/irrelevant to any of the 20

queries. For consistency, we used the labeled database images as templates to classify the

unlabeled retrievals for each query. Then, the ground truth is updated and the precision-

recall curves are computed as shown in Fig. 4.9. Each point in the figure is the average

over the 20 query images; thus, each curve consists of 50 points. The figure shows the

results of the proposed method with the approximate and the exact matching algorithms

(as described in Section 4.4) and the ARG method [91] with two matching approaches: the

graph edit distance and the Hungarian method (see Section 2.4 for details). Clearly, the

proposed method outperforms the ARG method which performed better than many other

methods [91].

Another test is performed based on the ground truth provided in [91] alone. For each

query, the system retrieves the best 50 matches and the number of relevant images, nr,

and the number of irrelevant images, ni, are counted. Note that both the relevant and

irrelevant images are provided by the ground truth given in [91]; thus, our judgement in

the evaluation is not considered in this test. Then, the accuracy for each query is computed

as nr/(nr + ni). Table 4.1 shows the accuracy of our method is significantly higher than

that of the ARG method.

Table 4.1: The accuracy of different methods on the medical images database based on the

ground truth provided in [91].

Method ARG+Hung. ARG+ED Proposed (approx.) Proposed (exact)

Accuracy 24% 29.60% 39.60% 40.91%

Regarding the quality of retrieval quality (Rq), Table 4.2 shows that the proposed

method also outperforms the ARG method. Figs. 4.10 and 4.11 demonstrate two example

queries and the first 6 matches retrieved by the exact CT matching algorithm (Algorithm

4.1). For clarity, the isomorphism returned by the algorithm is shown by objects with same

labels in the query and each retrieved image. The identification number in the database is

shown above each image.
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Figure 4.8: The 20 query medical images used in the our experiment.
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Figure 4.9: Precision-recall curves of the proposed method with approximate and exact

matching, and the ARG method with edit distance and Hungarian method [91].
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The object labels denote the isomorphism returned by the algorithm.
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Table 4.2: The ranking quality of different methods on the medical images database.

Method ARG+Hung. ARG+ED Proposed (approx.) Proposed (exact)

Rq 0.0890 0.2390 0.5316 0.5431

4.6.2 Logo retrieval

A trademark is either a word, phrase, symbol or design, or combination of words, phrases,

symbols or designs, which identifies and distinguishes the source of goods or services of

one party from those of others [125]. A logo (or trademark) image is a good example of

multi-object image where the shape of the individual objects as well as their topological

structure are essential to determine the image identity. There are millions of registered

trademarks worldwide; for example, there are more than one million in the U.S. [125]

and more than 300,000 [27] in Canada. Logo retrieval is an extremely challenging task.

At present, the most widely used method for organizing trademark image databases is

the Vienna classification originated by the World Intellectual Property Organization [133].

This method assigns manual codes to trademarks such that similar images are given the

same codes. However, manual classification is both time-consuming and inaccurate. With

the growing number of registered trademarks, automated logo retrieval can significantly

simplify the manual retrieval task.

A database of 1580 logo images is used to evaluate our proposed method. Part of these

images are taken from the MPEG-7 CE-2 database of logo images [60] (images containing

texture or purely text are excluded here). The rest of the database images are obtained

from the database of 1100 logo images in [55]. Since the original images are provided

in gray-scale format, preprocessing is required to transform them into binary format. At

first, a simple thresholding operation transforms the images into the binary format which

introduces binary impulse noise. Then, the binary noise removal algorithm in [111] is used

to remove the noise.
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Unlabeled logo images

A retrieval test is conducted on the database of 1580 logo images. Since the original images

are not labeled and the the similarity between logos is subjective, it is recommended to

include the human judgement in the evaluation. For this purpose, 24 query logos were

used. For each query, the system measures its similarity with all database logos according

to the similarity function given by (4.6) and provides a ranked list of logos. Then, we asked

five persons to determine whether the top-five retrieved logos are similar to the query or

not and decided the similarity based on the majority vote (in [92], the evaluation is based

on the judgments by four persons). Therefore, each person performed 120 comparisons.

We compared the performance of our method with two approaches. The first method is

based on Zernike moment magnitudes (ZMMs) as global features and the sum of absolute

difference (SAD) distance to measure the similarity [62, 61]. This method has been selected

as the MPEG-7 CE-2 region-based shape descriptor [56]. The second approach is an object-

based method that uses similarity function as in [117] (see Section 2.4), but based on our

DSW as the similarity measure between the objects. Fig. 4.12 plots the average accuracy

over the 24 queries versus the retrieved logo ranking for the three methods. An example

that shows a query and the top three retrieved logos by each method is shown in Fig. 4.13.

Note that the object-based method was able to retrieve logos of similar objects regardless

of their topology; all retrieved images have object of rectangular shape. On the other hand,

the ZMMs method retrieved dissimilar logos as expected from most global methods [55].

Clearly, our proposed approach provides more meaningful retrievals based on this test with

the exact matching algorithm slightly outperforms the approximate matching algorithm.

Labeled logo images

To compute recall, the database images have to be classified into groups according to their

similarity. However, labeling all 1580 images is an extremely difficult task. Here, 246

logo images from the logo database used in the previous test are grouped into 17 classes.

The number of logo images (mi) for the i-th class ranges from 7 to 28. The manually

grouped images in [61, 62] constitute about 40% of these images and are used as templates

to manually group the rest of the images. Samples of these images are shown in Fig. 4.14

(for classes 1 to 9) and Fig. 4.15 (for classes 10 to 17). Each logo image is presented as
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Figure 4.12: Results of the logo retrieval test using 24 queries and database of 1580 logos

for the proposed (exact and approximate), the object-based and the ZMMs methods.
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Figure 4.13: An example of (top) a query image, and the top-three retrieved logos of (2nd

row) the proposed, (3rd row) the object-based and (last row) the ZMMs methods.
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a query and the system sorts the rest of the images according to their similarity with the

query. The accuracy for each query, belonging to class i, is computed as the number of the

relevant images among the first mi retrieved images. Fig. 4.16 shows the average accuracy

for each class. Obviously, our proposed method outperforms the other two methods based

on this test with a good margin.

Another test is based on the precision and the recall for each query. Since the number

of relevant images is not fixed for all query images, computing the exact average precision-

recall is not possible. Therefore, another effectiveness measure used by the information

retrieval community, the F-measure [97], is computed for each query (see Section 2.3). Fig.

4.17 shows the average F-measure for each class in the database. The results of this test

comes in accordance with those of the previous tests which confirms the advantage of our

method over the others.

4.7 Conclusions and Discussions

In this chapter, the CT is introduced as a structured representation of multi-object shape

images that encodes both shape and topology. Motivated by recent findings in psychology,

the matching of two CTs is formulated as a maximum similarity subtree isomorphism

(MSSI) problem. Two matching algorithms are developed which work in polynomial time.

The first follows a continuous optimization approach that approximately solves the MSSI

problem efficiently. The second algorithm guarantees finding an exact solution to the MSSI

problem. We applied our method in two image retrieval application domains: retrieval of

medical images and logo retrieval. Experiments with a database of 13500 medical images

and a database of 1580 logos show the superiority of the proposed method over other

methods in the literature.

The main strengths and limitations of the proposed approach for retrieving multi-object

images are summarized in the following points:

• Accuracy: the proposed method has the advantage of achieving higher retrieval

accuracy than many other methods in the literature based on medical imaging and

logo retrieval applications.
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Figure 4.14: Sample of the labeled logo database images of class 1 (top row) to class 9

(bottom row).
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Figure 4.15: Sample of the labeled logo database images of class 10 (top row) to class 17

(bottom row).
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Figure 4.16: The average accuracy for each class of the labeled logo database of 246 images

for the proposed (exact and approximate), the object-based and the ZMMs methods.
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Figure 4.17: The average F-measure for each class of the labeled logo database of 246 images

for the proposed (exact and approximate), the object-based and the ZMMs methods.

• Flexibility: the proposed method handles various types of queries. The user can

search a database for images containing a particular object or multiple objects with

specific structural relationships; taking into consideration the shape of the objects,

their topology, or both shape and topology at once.

• Invariance: the rotation of (part of) the image objects can change the order of

the sibling nodes in the corresponding CT; therefore, the employed tree matching

method is invariant to the rotation angle of the image since it works for unordered

trees. Regarding scale, the CT is clearly invariant to the scale of the image. In

addition, the CT representation is invariant to negative transformation of the binary

image; changing the background/foreground from 0/1 to 1/0 only adds/deletes a

child node to the root node.

• Complexity: the proposed method has polynomial-time complexity; a property

highly recommended in most retrieval applications. In our implementation using
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Matlab c©(version 7.0) program running on Pentium IV 3.0 GHz PC, the average

times for matching two images are approximately 0.5 seconds for the approximate

matching and 0.6 seconds for the exact matching. It should be noted that the codes

are not optimized and better speeds can be obtained using other programming lan-

guages such as C and C++. The ZMMs method is much faster (takes less than 0.1

milliseconds for matching two images). One possible way to speed-up the retrieval

time is to use a hybrid design of two-level hierarchy, similar to that in [55], where

the ZMMs method is used in the first stage to prune the database (by excluding very

dissimilar images) and the CT matching is used in the second stage to refine the

matching.

• Robustness: in this thesis, the segmentation is assumed to be already done and

the object boundary is clearly identified. In practice, noise and partial occlusion can

drastically change the topology of the CT. One way to overcome this limitation is to

use mathematical morphology in the segmentation stage which is the basis for our

future work in this area. For instance, if a dilation or erosion operation changes the

topology of an image’s CT, then both CTs are used for representing the image.
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Chapter 5

Envelope Detection of Multi-Object

Shapes

In Chapter 3, the aim is to measure the similarity between two single-object shape images.

Then, Chapter 4 provides a solution to measure the similarity between images, containing

multiple objects with holes, based on both shape and topology. However, the previous

two chapters do not address the problem of detecting high-level boundaries resulting from

certain arrangements of a group of objects such as in Fig. 5.1. The purpose of the work

presented in this chapter is to allow for high-level shape representation and matching in

multi-object images by detecting and extracting the envelope of high-level object groupings

in the image. A new approach for the envelope detection and extraction is proposed which

is mainly motivated by studies in Gestalt theory. The proposed approach works in two

main stages. The first stage detects the envelope (if exists) and groups its objects using

clustering techniques. Two algorithms are proposed for the object grouping. In the second

stage, the high-level boundary of the envelope is extracted using morphological operations

and then further refined using concavity tree reconstruction to eliminate odd concavities in

the extracted envelope. Experiment on a set of logo images demonstrates the effectiveness

of our approach.

The remainder of this chapter is organized as follows. Section 5.1 gives an introduction

to the subject. Then, Section 5.2 reviews the main Gestalt principles. The proposed

approach is explained in Section 5.3 and the experimental results are presented in Section
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5.4. Finally, Section 5.5 concludes the work of this chapter.

5.1 Introduction

Semantic image retrieval has recently emerged as a result of the fact that most users do not

require to retrieve images based on only their low-level features [34]. Existing techniques fall

behind that target. The ability of an image retrieval system to extract all or most relevant

information from an image is a necessary first step for the understanding of its content.

As an example, multi-object images contain more shape information than the mere sum of

the shape information of the individual components. A group of objects can be spatially

arranged such that their envelope has a semantically high-level shape. Fig. 5.1 shows

two multi-object images containing the same objects with different spatial arrangements.

Clearly, this difference significantly changes the way we perceive the images. The objects

of the image in the left of the figure form a star-shaped envelope whereas the objects

of the other image form a rectangular envelope. Our aim is to detect and extract such

envelopes which is useful as a mean for higher level interpretation of the shape information

in the scene being analyzed (it may as well be an end by itself such as in the logo retrieval

application).

The envelope concept was first originated by Eakins et al. in the context of their AR-

TISAN system for trademark retrieval [37]. They suggested grouping boundary segments

based on their proximity and shape features as part of an ongoing research; however, no

detailed method was reported. In [57], an adaptive selection scheme between Zernike mo-

ments and geometric primitives, obtained using the Hough transform, is used for trademark

feature extraction. The authors claim that these features capture Gestalt-based features

which include symmetry, continuity, proximity, parallelism and closure. However, this

method does not detect high-level envelopes.

In this chapter, an approach for envelope detection and extraction in multi-object

shapes is proposed. It consists of two main stages. In the first, a hierarchical clustering

algorithm is used to group objects based on both their “physical” proximity, as well as

their shape similarity. Two approaches are implemented to decide the final grouping of

the objects: a heuristic-based approach and an approach based on evidence accumulation
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Figure 5.1: Two multi-object images containing the same object and with totally different

perceived envelopes.

proposed in [43]. In the second stage, morphological operations are used to merge the

components in each of the grouping identified in the first stage without changing their

size. The envelope is then extracted by reconstructing the merged component using its

concavity tree to eliminate odd concavities. Segmentation of the objects in an image is

an important process for successful automatic image retrieval. For natural images, this

process is very challenging and beyond the scope of this thesis. Therefore, we assume that

objects are already segmented and their boundaries are well identified.

5.2 Perceptual Grouping

Although the grouping task is made effortlessly by humans, it is not the case for machines.

Mathematical models tend to describe low-level features effectively but fail in high-level

interpretation. Our approach for objects grouping is based on the perceptual grouping

principles where low-level image features and hierarchical clustering are employed to make

decisions about the proximity, shape similarity and orientation of a group of objects.

A study by Biederman [21] suggests that the human visual system quickly assumes
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and uses collinearity, curvature, parallelism, and adjacency of a group of objects in order

to perceive them as a whole. Another study by Witkin and Tenenbaum [134] defined

what is so-called non-accidental properties that the brain uses for inferring a scene. These

properties include collinearity, co-curvilinearity, symmetry, parallelism, and convergence.

Gestalt theory provides an interpretation of the human perception of visually similar

objects into groups [120]. Gestalt theory provides four main principles about the human

perception which include proximity, similarity, continuity and closure. Fig. 5.2 illustrates

these principles. The objects in panel (a) are grouped into one square due to their proximity

whereas the objects in panel (b) are grouped into two groups due to their similarity (i.e.

circles and triangles). The four objects in panel (c) form a cross symbol because the

human perception assumes continuity in this case. Although the four objects in panel (d)

are separated from each other, they are perceived as a square since our perception assumes

closure. While these principles were derived from observations, the mechanisms behind

them are still unclear. Our approach models the first three principles; the fourth principle

is very difficult to model.

5.3 The Proposed method

Given a multi-object binary image, the aim is to detect and extract any envelope formed

by a group of objects. This is achieved in two steps. At first, hierarchical clustering is

used to group the objects forming the envelope based on their proximity, shape similarity

and orientation. Secondly, morphological operations are used to merge the objects in each

grouping and the envelope is then extracted by reconstructing the merged object from its

concavity tree; thus, removing any artifacts along the envelope boundary.

5.3.1 Object Grouping

Brain research showed experimentally that the processing of proximity and other features

are performed separately [120]. Therefore, in our approach, objects are grouped separately

based on their proximity, shape similarity, and orientation using hierarchical clustering.

Then, the final grouping is decided using two approaches. The first is based on a set

of heuristic rules while the second approach is based on a recent method for combining
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Figure 5.2: Illustration of the Gestalt principles of human perception: (a) proximity, (b)

similarity, (c) continuity and (d) closure.
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multiple clusterings called evidence accumulation [43]. In the following, we describe the

feature extraction process for the proximity, the shape similarity and the orientation.

Proximity: the definition of a spatial distance between two objects that reflects the

human judgment of such distance is not yet clear. Obviously, the shortest distance

is totally independent of their shape. However, a desirable property of the distance

is to be sensitive to all points in both objects. Therefore, the Hausdorff distance is

adopted [100]. The Hausdorff distance between two sets of points is the maximum

distance of a set to the nearest point in the other set. More formally, the Hausdorff

distance h(X, Y ) between two objects X and Y is defined as:

h(X, Y ) = max
x∈X

{
min
y∈Y
{d(x, y)}

}
(5.1)

where x and y are points of objects X and Y , respectively, and d is the Euclidean

distance. In order to make the distance function symmetric, a more general definition

of Hausdorff distance would be:

H(X, Y ) = min {h(X, Y ), h(Y, X)} (5.2)

It is sufficient to consider only the boundary points of the two objects. Furthermore,

we consider only the vertices of their convex hulls. This reduces the computations

dramatically with minor effect on the performance.

Shape similarity: based on the observation that objects forming an envelope do not have

complex boundaries, global shape descriptors are expected to describe the objects

effectively. Another reason for choosing global descriptors is their compactness, which

allows efficient computing of the distances between them. Here, the shape of an object

is described by its area, eccentricity and solidity [31].

Orientation: the orientation of an object is taken as the orientation of its major axis,

which is the straight line segment joining the two points farthest from each other.

The major axis orientation is defined as the angle between the horizontal axis and

the axis around which the object can be rotated with minimum inertia [31]. This
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feature is particularly important because objects may form an envelope, although

they are not similar in shape, when they are aligned in parallel or in series.

Here, a hierarchical clustering algorithm [54] is applied to the distance matrices of prox-

imity, shape similarity, and orientation. Srivastava et al. applied hierarchical clustering to

group similar silhouettes to search shape databases efficiently [119]. The result is a hierar-

chical tree, called dendrogram, which is not a single set of clusters, but rather a multi-level

hierarchy where clusters at one level are joined as clusters at the next higher level as shown

in Fig. 5.3. In our application, clusters are defined when there is a clear cut in the dendro-

gram. In this case, the compactness of a cluster is defined by how similar its members are.

For proximity and shape similarity groupings, deciding to cut the dendrogram based on

the maximum lifetime1 has a major drawback, that is, a single large distance can dominate

the decision when the inter-class or intra-class variation is large. Here, the cutting decision

is based on statistics, including the mean and the standard deviation, computed from the

distances under each node in the dendrogram. To achieve scale invariance, the standard

deviations of all nodes are normalized to have zero mean and unity variance. Intuitively,

a node with small normalized standard deviation most likely groups proximal (or similar

objects), and vice versa. Therefore, a threshold is set for cutting the dendrogram based on

the normalized standard deviation (which is evaluated experimentally to be equal to one).

For orientation-based grouping, the dendrogram cut is made directly at the desired angle,

which is considered to be ten degrees.

An illustrative example is shown in Fig. 5.3. Panel (a) shows the input multi-object

shape. The results of hierarchical clustering based on proximity, shape similarity, and

orientation are shown in panels (b), (d), and (f), respectively. The horizontal line in each

dendrogram shows the location of deciding the groups. Grouping based on proximity, shape

similarity and orientation result in two groups, four groups and one group, respectively.

The final grouping of the image objects is made based on the initial mentioned group-

ings. For this purpose, two approaches are presented as follows.

1The lifetime is the difference between the distances at two successive nodes.
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Figure 5.3: An example of object grouping and envelope extraction. See text for details.
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Heuristic-based grouping

In this approach, the final grouping of the image objects is decided using heuristic rules

[4]. As shown in the block diagram of Fig. 5.4, two alternative groupings are considered

based on the initial groupings. In the first, objects that belong to the same proximal and

shape similarity groups are judged as one group. The second alternative regards objects

of the same proximal and orientation groups as one group. The alternative that results

in lower number of groups is considered as the final grouping. For example, the grouping

based on the proximity and the shape similarity of the image objects in Fig. 5.3 results

in 6 groups whereas the grouping based on the proximity and the orientation results in 2

groups; therefore, the latter is considered as the final grouping as shown in panel (c).

Grouping based on evidence accumulation

A systematic approach for deciding the final grouping is obtained using a recent method in

the literature about combining multiple clusterings using evidence accumulation [43]. Fig.

5.5 shows a block diagram of the object grouping using the evidence accumulation. Here,

the outcomes of four initial groupings are considered as evidences which are accumulated

in a new distance matrix. Note that, unlike the previous approach, the area is considered

separately from the other shape features. Then, hierarchical clustering is applied on this

matrix to decide the final grouping. In the following, we describe the application of this

method on our grouping problem.

Assume there are M initial groupings (here, M = 4) of m image objects. The grouping

ensemble is defined as:

Gi =
{
Ci

1, C
i
2, ...., C

i
ki

}
(5.3)

where Ci
j is the jth cluster in the grouping Gi with ki clusters and i ∈ 〈1, M〉. Then, a

voting scheme combines the outcomes of the initial groupings using a co-occurrence matrix,

D, of object pairs defined as:

D(p, q) =
mpq

M
(5.4)
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Figure 5.4: Block diagram of the heuristic-based object grouping.
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Figure 5.5: Block diagram of the object grouping based evidence accumulation.

where mpq is the number of times the objects p and q are assigned to the same cluster

Ci
j among the M initial groupings. To decide the final grouping, hierarchical clustering is

applied on D and the dendrogram cutting is done based on the maximum lifetime. An

example illustrating this process is shown in Fig. 5.6. Clearly, the maximum lifetime in

the co-occurrence matrix dendrogram, of panel (b), partitions the image objects into two

clusters as shown in panel (c).

5.3.2 Envelope Extraction

This is the second stage towards the extraction of the semantic envelope. The input to

this stage is the output of the object grouping stage; specifically, a labeled matrix of the

object groupings in the image where objects belonging to the same group are assigned the

same label. There are two sub-steps in this stage: the first is to morphologically merge the

objects in each grouping; the second is to extract the envelope of the merged objects using

a contour-based concavity tree reconstruction algorithm. A requirement of the second step

is that it is passed an image with a single component.
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Figure 5.6: Illustration of the object grouping using evidence accumulation; (a) input

image, (b) dendrogram of the co-occurrence matrix D, (c) the final grouping and (d) the

extracted envelope.
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Merging the groups

For each grouping identified in stage one, the constituent objects are repeatedly dilated

using a 3×3 structuring element until the resulting grouping has only one component. If

the dilation operation was performed n times, and the envelope is extracted at this stage,

it would be n pixels larger than it should (because of the dilation). We need then to

shrink the merged component n pixels, but without splitting it. The shrinking can be

done using an erosion operation with a (2n + 1)× (2n + 1) structuring element. However,

the erosion might (or might not) split the merged component. A splitting will occur if

the (square) structuring element cannot slip through the neck joining pairs of (original)

components. To get around this problem, we morphologically close the merged component

with a diamond shaped structuring element with a main-diagonal of 2n + 1 pixels. This

will always guarantee that the subsequent erosion will not split the merged component, as

the square structuring element will now be always guaranteed to pass through the necks.

If we proceed with the envelope extraction at this stage, the resulting envelope will have

small odd concavities resulting from the morphological operations.

Extracting the envelope

The merged component identified in the above stage can now be used to extract the

envelope. The contour of the merged component could be used as the envelope at this stage;

however, it needs to be smoothed. This task is delegated to a contour-based concavity tree

extraction algorithm [14] that will eliminate concavities smaller than a given threshold.

This threshold varies with the gaps in between the original components. It is currently

set to four times the area of the structuring element used in the erosion step. Fig. 5.7

illustrates the merging and envelope extraction processes. Note that only two tree nodes

(including the root) were used for the envelope reconstruction from the corresponding

concavity tree in each of the two envelopes.
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Figure 5.7: Illustration of the merging and envelope extraction process; (a) input image

with two groupings, (b) result of merging, (c) concavity trees used to extract the envelope,

(d) the resulting envelope and (e) the output image.
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5.4 Experimental Results

The proposed approach was implemented and its performance was evaluated on a set of

110 trademark images containing a varying number of objects with various orientations

and shapes. The outcomes of the object grouping stage were subjectively correct for 79

images using the heuristic-based approach and 93 images using the evidence accumulation

approach. Moreover, when the envelope extraction algorithm was applied to each of the

correctly grouped images, a subjectively correct envelope was extracted. Fig. 5.8 and Fig.

5.9 show samples of correct grouping and envelope extraction.

5.5 Conclusions and Discussions

Envelope extraction is a very important stage towards high-level shape representation

and similarity matching. In this chapter, an approach for object grouping and envelope

detection is proposed. The proposed approach utilizes the proximity and shape similarity

between objects and their orientations for grouping them. Hierarchical clustering allows

such utilization. The fusion of the outcomes of the initial groupings is achieved using

two approaches. The first is based on heuristics and the second is based on evidence

accumulation. The latter is more systematic and provided better performance. Then, the

envelope of each group of objects is approximated by means of morphological operations.

A contour-based approach for concavity tree reconstruction is employed to smooth the

extracted envelope.

The envelope detection approach provides a tool for exploring more shape information

than that of the individual image objects. Our approach detects envelopes in multi-object

images with variable number of clusters. The extension to shape-based image retrieval can

be easily made by applying shape matching techniques, as in Chapter 3, on the extracted

envelope to obtain more meaningful retrievals.
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Figure 5.8: Samples of correct object grouping and envelope extraction; (left column) input

images, (middle column) the grouping results and (right column) the extracted envelopes.
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Figure 5.9: Samples of correct object grouping and envelope extraction; (left column) input

images, (middle column) the grouping results and (right column) the extracted envelopes.
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Chapter 6

Conclusions and Future Work

6.1 Contributions

• TAR-CI maxima matching is invariant to the affine transformations and outper-

forms the CSS method, which has been selected as the MPEG-7 CE-1 standard for

boundary-based shape description and matching, in terms of both retrieval accuracy

and computational complexity.

• The dynamic space warping algorithm for shape matching achieves the best retrieval

performance, compared to all published methods in the literature so far, based on

the MPEG-7 CE-1 part B retrieval test. Although the DSW is more complex than

TAR-CI matching, the former has quadratic complexity in terms of the number of

boundary points.

• The curvature tree encodes both shape and topology of multi-object shape images,

is easy to construct and grows linearly with the number of objects in an image.

• Two algorithms are developed for curvature tree matching: an approximate and an

exact. The exact (approximate) algorithm returns an exact (approximate) solution

to the maximum similarity subtree isomorphism. The solution includes the weight of

the isomorphism and the isomorphism itself. Both algorithms have polynomial-time

complexity.
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• The similarity function between two multi-object images is based on the maximum

similarity subtree isomorphism between their curvature trees and takes into consid-

eration the unmatched shapes in the images, which comes in accordance with recent

findings in psychology. Besides, the similarity function is normalized between zero

and one. This property is particularly important when incorporating other image

features such as color or texture in a unified similarity function for retrieval.

• The curvature tree matching (either approximate or exact) achieves better retrieval

performance than the state-of-the-art methods in two application domains. In med-

ical image retrieval, the proposed method outperforms the ARG method using a

database of 13500 real and synthesized medical images. The second application is

logo retrieval where the proposed method outperforms the ZMMs, which has been

selected as the MPEG-7 CE-2 standard for region-based shape description and match-

ing.

• The proposed multi-object shape matching method handles various types of queries.

The user can search a database for images containing a particular object or multiple

objects with specific geometrical relationships; taking into consideration the shape

of the objects, their topology, or both shape and topology at once.

• A new algorithm for detecting and extracting high-level envelopes of object groupings

in multi-object images is developed based on Gestalt principles. This algorithm helps

in obtaining more meaningful shape retrieval.

• A standard database of 1580 multi-object logo images is constructed, which include

diverse types of real and synthesized shapes, for evaluation purposes of object-based

shape retrieval systems. All images are composed of disjoint objects and, up to the

author’s best knowledge, there is no such database that is publicly available. A subset

of 246 images from this database is manually classified into 17 groups and another

subset of 110 images includes high-level envelopes.
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6.2 Future Work

• Although the MPEG-7 and Kimia’s shape databases used in our experiments include

partially occluded shapes, the problem of partial occlusion has not been studied

deeply in this thesis. Partial occlusion occurs in different forms; for instance, it can

be modeled as missing parts of the image or as another unknown object occluding

(part of) the image. Theoretically speaking, the curvature tree matching approach

establishes an object-based correspondence; therefore, it is expected to perform well

under missing objects up to certain extent. However, in practice, noise and partial

occlusion can drastically change the topology of the curvature tree. One way to

overcome this limitation is to use mathematical morphology in the segmentation

stage. For instance, if a dilation or erosion operation changes the topology of an

image’s curvature tree, then both trees are used for representing the image. In this

thesis, the segmentation is assumed already done.

• Database indexing is very critical for fast image retrieval especially in large image

databases. An indexing scheme reduces the number of database images for the com-

parison with the query at the time of retrieval. Indexing methods are either exact

or approximate. Many indexing methods for graph structures exist in the literature

[114, 121]. Another alternative is to use two-level hierarchy similar to [55]. Global

features, such as Zernike moments magnitudes (ZMMs) and/or shape complexity

(SC), can be used for indexing and fast pruning of the database images. Then,

candidate images are further refined using the curvature tree matching.

• Relevance feedback in content-based image retrieval has received great attention in

recent years. Including human judgments in the similarity function improves the

quality of retrieval and reduces the semantic gap problem. An important future

direction of our work is to devise an architecture that incorporates the user judgement

of the retrieved images to improve the quality of future retrievals. For instance, the

user can directly adjusts some parameters of the system. Another recent direction

in this area is to include positive and negative examples in a probabilistic framework

[58], that is, the user can give examples that are very dissimilar to the query which

the system should avoid during the retrieval.
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• Directional relations between image objects (for example, object A is above object

B) are particularly important in some application domains such as geographical in-

formation systems (GIS). A possible way to encode the directional relations in the

curvature tree representation is to assign weights reflecting these relations to the tree

edges. The relations can be defined with respect to a reference point in the image;

for instance, the centroid of the largest object or the center point of the image.

• Another research direction is to extend the curvature tree matching approach to gray-

scale and/or color images using automatic segmentation based on texture and/or

color. In this case, texture and/or color features of the image objects are included in

the node attributes for matching and retrieval.

• In Chapter 4, the continuous optimization approach for solving the maximum sim-

ilarity subtree isomorphism problem returns an approximate solution. A possible

future direction is to formulate the minimization of the quadratic function of (4.3)

as a constrained optimization problem on the variables of the function [29]. For the

exact curvature tree matching algorithm, the bipartite matching procedure consti-

tutes the kernel of the algorithm. In this thesis, the Hungarian method is employed.

However, more efficient procedures can be used [20].

6.3 List of Publications

6.3.1 Journal papers

1. N. Alajlan, M. S. Kamel, and E. Jernigan. Detail preserving impulse noise removal.

Signal Processing: Image Communication, 19(10):993-1003, November 2004.

2. I. El Rube, N. Alajlan, M. S. Kamel, M. Ahmed, and G. Freeman. MTAR: a ro-

bust 2D shape representation. International Journal of Image and Graphics (IJIG),

6(3):421–443, July 2006.

3. N. Alajlan, M. S. Kamel, and G. Freeman. Multi-Object image retrieval based
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