
Attaching Social Interactions Surrounding

Software Changes to the Release History of an

Evolving Software System

by

Olga Baysal

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©Olga Baysal, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Open source software is designed, developed and maintained by means of electronic media.

These media include discussions on a variety of issues reflecting the evolution of a software

system, such as reports on bugs and their fixes, new feature requests, design change,

refactoring tasks, test plans, etc. Often this valuable information is simply buried as plain

text in the mailing archives.

We believe that email interactions collected prior to a product release are related to its

source code modifications, or if they do not immediately correlate to change events of the

current release, they might affect changes happening in future revisions.

In this work, we propose a method to reason about the nature of software changes

by mining and correlating electronic mailing list archives. Our approach is based on the

assumption that developers use meaningful names and their domain knowledge in defining

source code identifiers, such as classes and methods. We employ natural language process-

ing techniques to find similarity between source code change history and history of public

interactions surrounding these changes. Exact string matching is applied to find a set of

common concepts between discussion vocabulary and changed code vocabulary.

We apply our correlation method on two software systems, LSEdit and Apache Ant.

The results of these exploratory case studies demonstrate the evidence of similarity between

the content of free-form text emails among developers and the actual modifications in the

code.

We identify a set of correlation patterns between discussion and changed code vocab-

ularies and discover that some releases referred to as minor should instead fall under the

major category. These patterns can be used to give estimations about the type of a change

and time needed to implement it.

iii

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Professor Andrew

Malton, who was very helpful throughout my studies. His constant encouragement and

support made this work successful. This work was financially supported by the Software

Telecommunications Group through the Ontario Research and Development Challenge

Fund (ORDCF).

I am also very grateful to my readers Professor Michael Godfrey and Professor Daniel

Berry for their time to review this thesis and for their helpful suggestions and detailed

comments that have greatly improved this work.

Special thanks to Dr. Ian Davis for proving the base facts to my case study and for

many helpful discussions about evolution of LSEdit.

My warmest thanks to all current and former members of the Software Architectural

Group, University of Waterloo who have participated in my research study. I greatly

appreciate their valuable input, their time and effort. Many thanks to my friend and

colleague Xinyi Dong, without whom I won’t be able to complete this thesis in time.

Thank you for all our fruitful discussions on correlating public discussion with architectural

changes, all your valuable technical writing advices and making long working days at the

lab more enjoyable.

I am deeply indebted to my family - my mama and papa, sister Elena and brother

Viktor. In spite of being located on the other continent for the past few years, they yet

gave my tremendous support by inspiring, encouraging and praying for me.

I am very thankful to my new family and friends in Canada. They all have accepted me

with warmth and openness. I love you all and will never forget the time and support you

gave when I needed them most. I am very lucky and proud to be a member of Kuzucuoglu

family.

iv

Finally, I would like to thank a very special person, my husband, for all his support,

patience, understanding and unconditional love. He is the one who encouraged we the

most in pursuing my Master’s and making it all happen by putting aside his own career.

v

Dedication

To you, my dear parents and my loving husband Timuçin, I dedicate this thesis.

vi

Contents

1 Introduction 1

1.1 Motivating Idea . 2

1.2 Problem Definition . 4

1.3 Overview of Proposed Solution . 5

1.4 Organization . 6

1.5 Contributions . 7

2 Background and Related Work 9

2.1 Software Architecture and Software Change 9

2.1.1 Software Architecture vs. Detailed Design 9

2.1.2 Planning for Change and Reuse . 11

2.1.3 Architecture in Practice . 13

2.2 Mining Software Repositories to Detect Change Patterns 15

2.3 Recovering Trace Links Between Code and Documentation 18

3 An Approach for Correlating Emails with Source Code Changes 21

3.1 Change Event–Topic Correlation . 22

3.2 Conceptual Similarity Method . 24

vi

3.2.1 Building the Discussion Vocabulary 27

3.2.2 Building the Changed Code Vocabulary 29

3.2.3 Comparison of the Vocabularies . 32

3.3 Summary . 38

4 Empirical Case Studies 39

4.1 LSEdit Case Study . 39

4.1.1 Change Event–Topic Correlation 43

4.1.2 Conceptual Similarity Method . 45

4.2 Apache Ant Case Study . 51

4.2.1 Conceptual Similarity Method . 53

4.3 Discussion . 60

4.3.1 Comparison of Case Studies . 60

4.3.2 Correlation Patterns . 61

4.3.3 Weaknesses of Our Approach . 63

4.4 Summary . 64

5 Future Work 66

6 Conclusions 69

A LSEdit Results 79

vii

List of Tables

3.1 The output of diff represented as a delta 26

4.1 Size of release history and email archives for LSEdit and Apache Ant . . . 40

4.2 Sizes of discussion vocabularies for Ant . 53

4.3 Size of changed code vocabulary for Ant 54

4.4 Correlation matrices for regular vocabulary 57

4.5 Correlation matrices for new vocabulary 58

4.6 Correlation matrices for repeated vocabulary 58

4.7 Comparison of the results for LSEdit and Ant 61

4.8 Comparison Table . 62

4.9 “Major” minor releases for LSEdit and Ant 63

A.1 Size of discussion vocabularies for LSEdit 79

A.2 Size of changed code vocabularies for LSEdit 83

viii

List of Figures

3.1 A scatter plot depicting change event-topic correlation 23

3.2 Building discussion vocabulary . 28

3.3 Finding new topic vocabulary . 29

3.4 Finding repeated topic vocabulary . 30

3.5 Building changed code vocabulary . 31

3.6 Finding correlation between two vocabularies 33

3.7 How discussion vocabulary affects future changes 34

3.8 How many changes were discussed earlier. 34

3.9 Correlation of new topic vocabulary with changed code vocabulary 35

3.10 How new topic affects source code changes. 35

3.11 Correlation between repeated topic and changed code vocabularies 36

3.12 How repeated topic relates to the code changes 36

3.13 Finding maintenance vocabulary . 37

4.1 LSEdit Release Distribution . 41

4.2 Email Distribution Across Release History of LSEdit 41

4.3 Change event distribution for LSEdit . 42

4.4 LSEdit Change-Topic Correlation . 44

4.5 LSEdit Change-Message Correlation . 44

ix

4.6 Ratio of New and Repeated Topics in Discussion Vocabulary for LSEdit . . 46

4.7 Regular . 47

4.8 New . 49

4.9 Repeated . 49

4.10 Release Distribution of Apache Ant . 51

4.11 Email Distribution Across Release History of Apache Ant 52

4.12 Ratio of New and Repeated Topics in Discussion Vocabulary for Ant . . . 55

4.13 Results for Ant . 56

x

Chapter 1

Introduction

The architecture of a software system, however that term be defined [15, 23, 34], must

provide terms of reference, a common mental model [20], for discussion of feature imple-

mentation, design change, change impact, and migration tasks. A well-documented archi-

tectural view is a critical element of the development of a software system, and because of

the wide range of stakeholder concerns throughout a long and large software development

history, much work in software architecture has concentrated on documenting multiple

architectural views [7, 23,41].

Architectural reverse engineering is the semi-automatic recovery of architectural views

from available artifacts, especially source code. Existing techniques of architectural reverse

engineering [29, 31, 33, 41] to discover the evolution architecture of an existing software

system are based on the mining source code control repositories.

1

2 Attaching Social Interactions Surrounding Software Changes to the Release History

1.1 Motivating Idea

Imagine that there were a tool that could store a record of all public interactions preceding

each release of a software system and collected during its development process. At any

time, the tool could suggest to a developer what would be the amount and the type

of changes in the upcoming version, and show the location of the code where the next

modifications will occur. This intelligent application would essentially predict the future

behavior of software changes based on the size and length of the current discussion, number

and role of its participants, and most importantly, the issues that were brought up by the

participants.

Thus, developers armed with such a powerful tool, would spend less time managing

changes at the architectural level, the maintenance task that might become very costly as

this type of changes affect larger parts of the system and thus, they are more expensive to

implement.

Although the idea of developing such an application sounds very promising, the current

research in the area of distinguishing architectural changes leaves much to be desired.

Therefore, this thesis is aimed at providing a possible path forward for designing techniques

and approaches to monitor, plan, and predict software changes.

Regardless of the software system and the development process, there is always a lot

of useful information produced during that process. For example, the interactions and

communications among developers can be a useful source of information about the soft-

ware. In fact, communications by means of electronic mail is the only possible way for the

developers working on an open source project, to interact with each other remotely. An

open source product is designed, developed and maintained through community cooper-

ation. Participants of an open source culture modify the product and redistribute it to

the community [36, 52]. These interactive communities contribute to open source project

Introduction 3

through electronic media. Therefore, these media consist of the discussions on a variety

of issues surrounding the evolution of the open source software product such as reports

on bugs and their fixes, new feature requests, design change, refactoring tasks, test plans,

etc. Even end users are able to contribute to the open source project by writing a problem

report or a request for a new functionality and submitting it electronically.

Most of the time this information is lost as developers ignore the enormous amount of

mailing listing archives that can be used to understand the nature of the changes. Our

hypothesis is based on the belief by Nedstam et al. [32] that “an architectural change

does not only need to be technically sound, but it also needs to be anchored firmly in the

organization”. Architectural changes can originate from various sources but they are always

initiated by the architects, developers and managers. Thus, we believe that electronic media

surrounding the evolution of a software system can be used to make recommendations about

the nature of the changes that are likely to happen next.

Most software system documentation such as design documents, user manuals, main-

tenance journals, consists of free-text documents [1]. Such documents contain free-form

natural language text and carry valuable information about the application domain. For

example, user manuals include technical regulations. Free text is often used to explain the

content of instructions, for example, comments in the source code, or to make understand-

ing easier, for example, user manuals provide assistance to non-technical readers.

Public interactions consist of free-text documents expressed in a natural language and

are conducted between software developers, architects, project managers, users, etc. This

data is collected from mailing listings, forums, bug reports, new feature requests, and so

on during the evolution process of a system.

Discovering a correlation between the free-text email archives associated with the de-

velopment and maintenance cycle of a software system and its source code can be helpful

4 Attaching Social Interactions Surrounding Software Changes to the Release History

in number of ways:

• Impact Analysis

Nowadays, virtual teams, whose members work from different locations and time

zones, are very popular [46]. Developers of such teams often communicate through

electronic mails by submitting requests for new features, bug reports or even ex-

changing ideas about possible architectural enhancements of a system. Thus, any

suggested change is first described in an email message and will later propagate to

the source code. Establishing the correlation between the content of the mail and

the source code will help developers to identify the chunks of code affected by the

proposed change [2].

• Maintenance

As mentioned earlier, maintenance cost can be reduced by monitoring interactions

among developers and foreseeing the severity of upcoming changes.

• Guidance for Software Development

Techniques to monitor and predict software changes assist developers managing these

changes and give guidance for software development.

1.2 Problem Definition

Discovering and understanding non-trivial relations between different artifacts of a soft-

ware system is certainly interesting and important in overall understanding of the system.

Our research idea originates from real life observation. When people tend to discuss, in-

tensively and widely, different issues about a phenomenon, the phenomenon will undergo

some significant changes in the future.

Introduction 5

Unfortunately, the archives of public communications surrounding software changes,

are often left behind and the knowledge contained in this resource is simply forgotten or

disregarded.

Thus, our research question was therefore refined to: how can we make use of human

interactions surrounding the evolution of a system in order to detect and predict architec-

tural changes of the system? What is the correlation, if any, between the content of the

email archives and the actual modifications of the source code?

In this work we present a novel approach of making recommendations about software

changes during the evolution of a system by making use of the collected mailing list archives.

1.3 Overview of Proposed Solution

Unlike other reverse engineering techniques, finding correlation between free-text discus-

sions and source code components cannot be done using compiler techniques due to the

difficulty of applying syntactic analysis to natural language sentences.

In our approach we used the techniques of the Natural Language Processing(NLP). Such

techniques have been suggested to benefit research in reverse engineering [22]. Despite their

success in many areas, NLP methods are little used in software engineering. Similar to

Biggerstaff [5] and Antoniol [1], our assumption is that developers use meaningful names

in programs for the classes, methods, functions, types, and variables. These names of

program items are mapped to the content of emails in order to find common concepts—

words that are common for the vocabularies of the emails and source code. For this work,

the vocabulary of a document is the set of words appearing in the document.

For each released version of a software system, we generated two vocabularies:

1. vocabulary of the changed code;

6 Attaching Social Interactions Surrounding Software Changes to the Release History

2. vocabulary of the discussion surrounding the changes.

To compute a correlation model, we compare each discussion vocabulary of a certain

release against the vocabulary of actual code changes for the same release and for the whole

collection of the following releases in the release history.

A high score indicates a high probability that a particular list of concepts discussed

prior to a release is relevant to the actual code modifications of that release. We interpret

concept similarity as an indication of the existence of correlation between the two artifacts,

mailing list archives and release history. Later, the behavior of the calculated correlation is

analyzed to find the patterns of correlation between the two artifacts. Detecting correlation

patterns can be used in predicting future software changes.

1.4 Organization

Chapter 2 presents related and background work including the existing techniques on

identifying software changes from the source code, or using data mining methods to make

recommendations on change prediction based on the past events occurred in the system. A

brief overview of the current work in applying AI techniques in software engineering such

as finding dependencies between documentation and source code is given in this chapter

as well.

Chapter 3 describes the novel approach of correlating the history of public discussions

about a particular software system with the system’s source code change history in order

to understand the nature of software changes and perhaps to forecast future modifications.

We described the process of developing correlation model using NLP techniques to find

relation links between free-form text messages and structured statements of the source

code. We speculate that communications recorded prior to a particular product release,

Introduction 7

may not correlate to this release’s change events, but might affect the changes happening

in future revisions.

Chapter 4 provides case studies and the results that were obtained after applying our

approach on two open source software systems, LSEdit [40] and Apache Ant [14]. We then

compare the results of two case studies, reveal a list of correlation patterns and discuss the

weaknesses of our approach.

Chapter 5 discusses possible directions of future work in the area of identifying and

predicting software changes.

Finally, Chapter 6 outlines the contributions of our work.

1.5 Contributions

Our primary goal has been to create a method of identifying architectural changes. With

this goal in mind, we discovered latent, information-rich relations between the source code

changes and the public communications involving those changes.

The major contribution of this thesis is the proposal of a novel approach to make

recommendations about the essence of software changes by mining both the release history

and mailing list archives. Our approach is based on correlating the vocabulary extracted

from e-mail messages with the vocabulary of source code changes.

We have contributed to the understanding of the nature of software changes by at-

taching social interactions surrounding those changes during the development process of a

system.

The empirical contribution of the thesis is the application of proposed approach on

two open source projects LSEdit and Apache Ant. The case studies demonstrate that

our method can be used in understanding the architecture of a large software system.

8 Attaching Social Interactions Surrounding Software Changes to the Release History

Furthermore, we believe that by monitoring social interactions during the development

process, in particularly newly introduced concepts, we could tell about the nature that is

architectural or non-architectural, and the location of future changes.

Chapter 2

Background and Related Work

This chapter provides an overview of the existing research in different areas related to our

study. We begin by discussing the usefulness and importance of software architecture,

providing the foundation for our research. We provide the summary of the data mining

approaches to detect change patterns, as well as the techniques used to recover traceability

links between different artifacts.

2.1 Software Architecture and Software Change

We start the discussion with describing our understanding of the notion of software archi-

tecture, its change and importance during the lifecycle of a system.

2.1.1 Software Architecture vs. Detailed Design

Software architecture is a growing but relatively young discipline, thus, there is no single,

precise definition.

Several definitions of software architecture can be found in research literature.

9

10 Attaching Social Interactions Surrounding Software Changes to the Release History

According to Garlan and Shaw [15], software architecture “involves the description of

elements from which systems are built, interactions among those elements, patterns that

guide their composition, and constraints on these patterns”.

Perry and Wolf [34] defined architecture as a set of architectural elements that have a

particular form, explicated by a set of rationales. The term “architecture” is often used

as a synonym for design of a system [13], but it is not what we mean under software

architecture.

A well received definition of software architecture was suggested by Bass et al. is “the

structure of the system which comprises software elements, the externally visible properties

of those elements, and the relationships among them” [4]. This definition intentionally

does not specify what the elements of the system and relationships among them are. For

example, it could be an object, a database, a graphical user interface, a library or anything.

Architecture is more of an abstraction of a system that hides details of the elements that

do not affect the way how they relate to or interact with other elements.

Architecture is concerned with the selection of architectural elements, their interactions

to provide a framework for the design. Design is concerned with detailed interfaces of the

design elements, their algorithms and data types needed to support the architecture [34].

There, in practice, the difference between architecture and design lies in the degree of an

abstraction. Software architecture provides the overall picture of the system’s components

and their interactions at the highest level of abstraction, where only main subsystems and

their dependencies are revealed. At the design level this picture is more detailed. Each

subsystem is broken down into smaller modules and relationships among these modules

are exposed.

For the purpose of software reusability, architectural reuse is more beneficial, as it

does not involve details about how elements of a system communicate with each other.

Background and Related Work 11

Elements interact with each other by means of interfaces, which carry domain specific

details. Architecture is not interested in these low level, non-architectural details, therefore

architectural reuse is more desirable as it can be applied at a large-scale.

2.1.2 Planning for Change and Reuse

When designing an architecture for a product or a family of products, it is crucial to build

structures that will allow a system to reach its quality goals. One of the main goals is to

prepare software for change [3]. Planning for change results in reduction of maintenance

cost and increase in quality attributes.

When preparing software for change, an architect will try to predict possible changes

and design the architecture in such a way that all elements engaged in the change will be

put together in a single component. Software quality metrics, like cohesion and coupling,

can also assist architect with managing future changes. Architectural components with

high cohesion and low coupling increase probability that future changes will affect only

a single component [4]. Architecture should support design that any scheduled change

would require minimum effort to implement it and thus, make a system easier to evolve

and maintain.

Development of new software systems from reusable blocks is possibly easier and faster

than building them from the scratch. Two decades of previous research in software engi-

neering was dedicated in finding techniques to support software reuse, component interac-

tions, domain-specific architectures, etc.

Earlier reuse research was focused on reuse of code-level entities like classes, subroutines

and data structures. But software reusability is not limited to the reuse of a source code

only. In fact, various artifacts of a software lifecycle, including designs, test data and

documentation, can be reused. According to Jones [21], there are ten potentially reusable

12 Attaching Social Interactions Surrounding Software Changes to the Release History

kinds of artifacts of software projects such as:

• source code,

• architectures,

• data,

• designs,

• documentation,

• estimates or templates,

• human interfaces,

• plans,

• requirements,

• test cases.

Research literature offers various definitions, metrics, taxonomies, and reusability sys-

tems to assist with reusability issues on different artifacts.

Reuse at the architectural level is more common when developing a family of prod-

ucts [8]. A family of products includes software systems that share common features and

parts. Most successful software organizations today plan product lines rather than a single

product. Therefore, software architecture needs to address product family concerns. Ar-

chitecture designed for the entire family becomes the main asset of the company. These

architectures provide design decisions that can apply across the family and can apply to

individual systems, providing variation in their features and capabilities.

Background and Related Work 13

Multiple releases of a single system support enhancements on the functional level or

improve quality attributes of a system. They can also be considered as a product family.

Transferable abstractions [4] that are the architectures that can be moved from one release

to another, are most beneficial if they are exploited earlier in the lifecycle. Such abstractions

will ensure gradual evolution and easy maintenance of a software system.

At the end, product line architectures always show big payoffs in cost, time and product

quality [4].

2.1.3 Architecture in Practice

There are many reasons to study software architecture, including:

• Early design decisions

It is the most difficult to get the right architectural design at the fist stage of a

development process and it is the hardest and most costly to change it later. The

right decisions about architecture form the ground for the successful path in the

system development, its deployment and maintenance.

• Assistance with reasoning about and managing changes

It is well know [24], that around 80 percent of software cost occur after its deploy-

ment. Most work of developers fall into the maintenance phase. Every software

system changes, sometimes with difficulty. Architectural changes are most difficult

to implement. They affect the way elements interact with each other in a system,

and most probably they will require changes all over the system. Non-architectural

changes are more desirable as they are easier to implement. Thus, assessing proposed

changes and their risks require good understanding of the current design.

14 Attaching Social Interactions Surrounding Software Changes to the Release History

• Systematic reuse

Software architectures can be applied to the systems with similar functional require-

ment and quality attributes. Architectural decisions can be reused across multiple

systems, in other words, at large scale.

• Communication vehicle for stakeholders

This reason addresses the major importance of the architecture. Each stakeholder of a

software system - user, developer, tester, project manager, architect - expects different

characteristics from a software systems that are all affected by the architecture. For

example, users want more reliable and secure systems, while customers concern with

the cost of a project and its rapid delivery.

According to Holt, software architecture is best thought of as a mental model that

servers to facilitate development and understanding of a system and communication be-

tween its stakeholders [20]. Architecture provides different stakeholders the means and the

basis for communication, discussions, negotiations and understanding.

Since a software architecture provides a mental model for discussions on design change,

feature implementation, migration tasks, the question is, “Is the reverse true?” Can we

use communication during development process to reason about software architecture and

its changes?

Our hypothesis is that interactions between stakeholders can certainly be used to reason

about software changes, give recommendations about their nature and may be even predict

changes to happen next.

Background and Related Work 15

2.2 Mining Software Repositories to Detect Change

Patterns

Most maintenance tasks focus on managing all sorts of changes happening to the system.

It is important that software maintainers understand structural and architectural evolution

that the system has experienced in the past.

Data mining is an automated extraction of hidden information from a large data set.

It usually involves searching for patterns in large volumes of information. Data mining,

sometimes called market basket analysis [50], is used often to recover valuable information

from the resources initially collected for other intents and purposes. Hand described data

mining as “the process of secondary analysis of large data aimed at finding unsuspected

relationships which are of interest or value to the database owners” [18].

Software artifacts are normally stored in and managed from software repositories. For

example, source file versions are located in source code repositories, email messages are

kept in mailing archives, problem reports and feature requests are recorded in bug-tracking

systems, design documents are included in project documentation. Analysis of these repos-

itories of information can certainly benefit to a developer. Hence, data mining techniques

can be applied to these repositories in order to retrieve useful information about latent

dependencies between various types of artifacts.

Considerable amount of research has been done in the area of data mining where his-

torical data was analyzed to learn about the nature of software changes [30,42,55], to find

change patterns [46,47,56] and even to predict future changes [19,39].

Detecting structural changes and change patterns is recognized by the research com-

munity as one of the most difficult task in architectural reverse engineering.

Godfrey and Tu [42] investigated a way to detect and model structural changes such as

16 Attaching Social Interactions Surrounding Software Changes to the Release History

moving and renaming, by performing origin analysis [41]. Origin analysis is used to reason

about where, how and why the design changes have occurred in the system. The approach

is based on a detailed analysis of call relations and entities at the function level. Beagle

tool [42] was implemented to support origin analysis of a structural evolution of a software

system. Later Zou and Godfrey [16] has extended the Beagle tool with the techniques of

applying origin analysis to detect function and file merges and splits that have occurred

from one version to another. They demonstrated that locating merges and splits is helpful

in discovering some of the original context of the design changes.

Wu investigated the punctuated evolution [55]. He observed that software architec-

ture mainly changes during the punctuation periods that are the periods of sudden and

discontinuous change. Punctuated evolution can be determined by analyzing changes to

structural dependencies at the file level and functional growth in number of files. He mea-

sured file level dependency change based on either incoming or outgoing dependencies.

Based on these metrics, he presented the development history of a software system us-

ing technique of evolution spectrograph, a color-coded graph. This tool can be used to

highlight major change events across historical sequence of software releases.

Zimmermann et al. [47] presented a data mining approach over Concurrent Versions

System(CVS) repositories to recommend source code that is relevant to a given source

code fragment. Their approach is based on the association rules to identify changes, detect

coupling fine-grained entities and to predict future or missing changes.

Ying et al. [56] suggested to use market basket analysis techniques to assist developer

with identifying relevant source code during modification task. They determined change

patterns, sets of files that were changed together frequently in the past, by applying data

mining techniques on the historical data of the source code. Their approach consists of

three stages. First, they extracted useful information that is what files were checked in

Background and Related Work 17

together, from the software configuration management (SCM) system. Then they applied

frequent pattern mining algorithm to find change patterns from the source code. Each

change pattern consists of the names of the source files that have been changed together

frequently in the past. These change patterns are used to give recommendations on the

files relevant to a particular change task by providing a name of the file that is more likely

to be involved in this task. In contrast to Zimmermann, Ying can suggest only files, not

finer-grained entities like functions or variables.

Mockus et al. [30] studied a large legacy system to test the hypothesis that a textual

description of a change retrieved from the historic version control data can be used to

determine the purpose of software changes and to understand and diagnose the state of

a software project. They discovered four types of changes: adding new functionality that

is adaptive, fixing faults, defined as corrective, restructuring code to accommodate future

changes as a perfective type, and code inspection changes that involve both corrective and

perfective changes. Their classification of changes showed the strong relations between size

and type of maintenance task and the time required to make a change.

Shirabad et al. [39] used machine learning techniques to extract models from the past

experience that can be used in future predictions. They showed that data obtained from

software update record can be used to find relations between files to predict whether change

in one file may require the change in another file. Their experiments concluded that com-

bining text based features with syntactic attributes from source code and problem reports

improves the results. In our approach we also combined text-based such as comments,

and syntactic attributes such as class names and method names, of a source code while

building the vocabulary vector of the change code from one version to the next.

Hipikat [46] is a tool that gives recommendation about the project information a de-

veloper should consider during a modification task. This project information is formed

18 Attaching Social Interactions Surrounding Software Changes to the Release History

from a number of different artifacts, including source code versions, change tasks reports,

newsgroup messages, email messages and documentation. When presenting recommenda-

tion to a developer, relationships links are used to determine relevant artifacts to the task

being performed. Similar to Hipikat, we tried to relate the source code release history

with the email messages collected during the development process. However, while Hipikat

makes recommendation about similar change completed in the past, we aim providing

recommendation about future changes.

Hassan and Holt [19] used historical source control systems to predict change propaga-

tion. Change propagation is used to determine how changes made in a particular file, will

effect modifications in other files, called co-change files. Co-change files are those that need

to be modified as soon as new feature or bug fix take place in a system. When new changes

happen to the file, other files need to be modified at the same time to keep the system

updated and consistent with these new changes. They presented some heuristics for change

propagation, as well as the approach to study various change propagation models [19].

Our approach involves discovering non-trivial relationships between artifacts of different

types such as source code changes and email discussion surrounding those changes. We

applied data mining techniques on the release history of a software system and email

archives collected during the lifetime of this system for the purpose of recovering useful

information about the correlation between these resources.

2.3 Recovering Trace Links Between Code and Doc-

umentation

Several researchers have investigated relationships between software artifacts. Existing

literature [1,25,28] has shown that Information Retrieval (IR) methods can be successfully

Background and Related Work 19

used in recovering trace links between software artifacts of different types. These methods

are based on finding textual similarity between the artifacts. The main assumption behind

this is the fact that most of the software documentation is text based and that developers

use meaningful source code identifiers.

Antoniol et al . [1] have proposed a semi-automatic approach for recovering trace links

between free-text documentation such as manual pages and functional requirements, and

source code classes. They used IR techniques to rank the documents against the query

consisting of the source code identifiers. Two IR models, probabilistic and vector space

model, were applied and experimentally evaluated in two case studies. They tried to

map domain concepts found in documentation to code fragments by applying exact string

matching algorithm. The results of these studies were assessed by IR metrics, precision

and recall. Both models showed promising results. However vector space model will be a

better choice in the case of the smaller size of the software engineering documentation.

Marcus and Maletic [28] used Latent Semantic Indexing (LSI), an extension of the vector

space model, that searches for concepts rather than searching for terms. They applied their

model on the same case studies [1] and compared the performances of LSI with the vector

space and probabilistic models. Their results showed a very good performance of applying

LSI model without the need for morphological analysis such as stemming, of the terms

which was essential for the vector space and probabilistic models to reach similar results.

De Lucia et al . [25] used the LSI model also for trace link recovery to deal with any

type of software artifacts, including requirement and design artifacts, test cases and code

classes.

Our approach also aims at finding relations between two artifacts, mailing list archives

and source code. However, we did not apply some predefined IR models, for example,

VSM or LSI, but rather we use NLP methods in text analysis to identify correlation

20 Attaching Social Interactions Surrounding Software Changes to the Release History

corpus between code and electronic interactions among developers. In order to determine

correlation between two artifacts, they need to have common concepts in their vocabularies.

Thus, correlation process is only possible if both artifacts are written in the same natural

language, for example, English. Human communications are mainly represented as natural

language texts, while source code can hardly be defined as English prose. Therefore, our

main assumption is that developers use natural language in writing source code as well as

their domain knowledge in defining source code identifers.

Chapter 3

An Approach for Correlating Email

Interactions with Source Code

Changes

Although free-form natural language text documentation was found to be useful to recover

trace links [1], it is unknown whether communications between stakeholders, represented in

a form of free-text documents, can help to reason about the nature of changes. IR methods

deal with text categorization problems by determining a set of documents relevant to user

query. Since we are not interested in retrieving email messages to match a particular user

query and to rank retrieved data, but rather in discovering correlation between electronic

documentations and changes in the source code, we had to design an algorithm that is

lightweight and able to compare the data of these two artifacts.

Our method to find correlation between source code changes and natural language com-

munications is based on textual similarly between a discussion vocabulary and a changed

code vocabulary. Thus, our premise is that developers use their domain knowledge to

21

22 Attaching Social Interactions Surrounding Software Changes to the Release History

give meaningful names to their identifiers of program entities and are consistent with their

usage.

This chapter characterizes the input data, describes two correlation approaches and

gives details for each step of the methods.

3.1 Change Event–Topic Correlation

Since the evidence of correlation between source code changes and email interactions is

unknown, our first approach aimed at finding out whether there is a potential association

between source code and email discussions.

A scatter plot was used to determine how discussions around the changes relate to the

actual modifications in the source code.

A scatter plot, also known as a scatter diagram or a scatter graph, is a graph used in

statistics to visually display and compare two or more sets of data by displaying points,

each having a coordinate on a horizontal and a vertical axis [53]. The idea is that two

data sets are lined up along X and Y axes, and dots are used to indicate the presence of

similarity between two sets.

First data set represents the number of topics that are threads, extracted from the

content of the discussions. The second data is obtained from the source code and portrays

the number of change events occurred between two sequential releases. We used class-level

granularity to measure change events by counting the number of classes that have been

changed such as deleted, added or modified. Both data sets are then transferred to the

scatter plot, in which “number of topics” is assigned to the vertical axis and “number of

changes” to the horizontal axis. A single dot on the scatter plot, for example at point

(20,10), would represent a release with twenty source code changes and whose discussion

An Approach for Correlating Email Interactions with Source Code Changes 23

consists of ten topics. The scatter plot representing all releases would demonstrate a visual

comparison of the two sets of data and be used to conclude what kind of relationship exists

between them.

Figure 3.1: A scatter plot depicting change event-topic correlation

A positive that is rising, trendline in a scatter plot will represent a high similarity, while

the negative relationship will be indicated by a falling diagonal, showing a low degree

of similarity. Linear trendline is automatically added to a chart, as we used MS Excel

application to chart data. The trendline shows a slope of data points and can be calculated

using the following formula:

y = m ∗ x + b, (3.1)

where m = SLOPE(y,x) and b = INTERCEPT(y,x).

24 Attaching Social Interactions Surrounding Software Changes to the Release History

Since we believe that email discussions and code changes are correlated, we expect to

see many dots along the rising diagonal indicating a high degree of similarity between

them.

Figure 3.1 shows an example of the expected relationship between discussion topics and

modifications in the code. This scatter plot demonstrates a positive linear relationship

between two data sets—more topics engaged in the discussion, in other words, longer

discussions, correspond to larger amount of changes found in the system, and few topics

that are shorter discussions, lead to less changes.

Thus, scatter plots are helpful in detecting the degree of correlation such as strong or

weak, between two variables and in indicating how much one variable is affected by another.

However, they are not able to suggest what is the similarity between two variables and how

one affects another. Consider the case, when most of the interactions contain various bug

reports. Obviously, changes affected by this sort of discussions would simply be bug fixes

and nothing else. And on the contrary, bigger changes are not necessary affected by big

debates, the system might undergo some planned, not spontaneous or immediate, changes,

for example, restructuring tasks.

In fact, the results of our case study, shown in Figure 4.4, reveal this kind of evidence

confirming the weakness of this approach. Chapter 4.1 discusses these findings in details.

3.2 Conceptual Similarity Method

Conceptual similarity method uses the terms extracted from the discussions and identifiers

extracted from the code to find correlation between natural langauge electronic commu-

nications and source code changes. According to Definitions 1 and 2, these terms form

a discussion vocabulary, and the identifiers form a changed code vocabulary. Later these

An Approach for Correlating Email Interactions with Source Code Changes 25

vocabularies are compared in order to determine their common concepts - terms that ap-

pear in both vocabularies. A term becomes a concept if it is defined in the code as well

as represented in human communications. This set of common concepts represents the

correlation between these vocabularies.

The input data consists of the archives of electronic mails and release history of a soft-

ware. Both the source code and the mailing archives need to be decomposed into the proper

granularity to define the document, which later will be used to construct vocabularies.

As a general practice in IR, when dealing with natural language, a paragraph or section

is used as the granularity of a document. Since the content of email messages is usually

smaller than a section or a paragraph of a document, obviously message granularity is too

small. Similar, in source code the concepts like function, module, class or file can define

granularity level. For example, Maletic used functions in procedural code [26] and class

definitions in OO code [27].

In our work, we aim at mapping electronic interactions to the source code changes.

Therefore, each file is treated as a textual document. This allows us to compare correspond-

ing files across release history and to compute a difference, defined as delta, representing

source code changes between two sequential releases.

A release history of a software system, denoted by R, is a set of versions deployed

during the development process of the system. R = {r1, r2, ..., rk}, where k is the total

number of released versions, k = |R|.
A mailing archive consists of a large amount of email messages. Each email message

can refer to different structures of the source code like a function, a method or a class and

so on. As we are interested in matching code modifications of a complete release with the

electronic discussions that caused them, email messages have to be organized to form a

discussion of that release.

26 Attaching Social Interactions Surrounding Software Changes to the Release History

171c4

< * Copyright (c) 1999 The Apache Software Foundation. All rights

−−−
> * Copyright (c) 2001 The Apache Software Foundation. All rights

153a688,690

> public boolean execute() throws BuildException {
> attributes.log(“Using classic compiler”, Project.MSGVERBOSE);

> Commandline cmd = setupJavacCommand();

Table 3.1: The output of diff represented as a delta

Since the message granularity is too small to be used in our work, we define a discussion

document as follows: a discussion document d is a set of email messages originated between

two sequential releases. Discussion document di consists of all the email interactions that

occur between release ri and its preceding release ri−1. The email interactions prior to the

first release are not considered because the first release is the starting point for identifying

changes and its preceding discussion is omitted.

Hence, a discussion corpus D̄ is defined as a set of discussion documents D̄ = {d1, d2,

..., dn}. The total number of documents in the corpus is n = |D̄| = k-1. Therefore, to form

a discussion corpus, email messages are arranged into documents, one document for each

release to allow the linking between release discussion and version modifications.

Each source file is considered as a textual document. To be able to relate a discussion

document with the source code, the content of all the files that represent a software system,

is joined together into one document.

A source code document denoted by c, is a set of all the source files for a single release.

Therefore, ci represents a source code document for release i.

An Approach for Correlating Email Interactions with Source Code Changes 27

We used fine grained analysis of release repositories to recover the history of source

code modifications indicated by lines that have been added, deleted and changed during

the evolution of a source file. Each release represented by the source file document is

compared to its predecessor by running Unix utility diff . Table 3.2 shows the output of a

diff command performed on two source code documents. In the example, the line 171 of the

first document was changed to line 4 in the second document. And at line 153 three new

lines were added. The result of this comparison is stored in deltas. Each delta contains a

line by line difference, such as added, deleted and changed lines, between two source code

documents, thus ∆i = ci - ci−1. Therefore, a corpus of code changes C̄ is a set of deltas C̄

= {∆1, ∆2, ..., ∆m}. The total number of deltas in the corpus is m = |C̄| = k-1, k ∈ R.

The process of finding correlation between the discussion document and source code

changes embedded in delta consists of the following steps:

1. Building the discussion vocabulary by extracting terms from the discussion document.

2. Building the changed code vocabulary by extracting identifiers from delta.

3. Comparing discussion and changed code vocabularies.

Let us explain each step in detail.

3.2.1 Building the Discussion Vocabulary

Definition 1 A discussion vocabulary D, also referred as regular discussion vocabulary, is

a set of terms extracted from a discussion document, D ≤ d.

Figure 3.2 shows the process of constructing a discussion vocabulary for each document

in the discussion corpus.

This stage is performed in five steps:

28 Attaching Social Interactions Surrounding Software Changes to the Release History

1. First, each attachment or email header containing a date and time of a message, a

subject, the name of an author, a recipient is removed as it does not carry information.

2. In the second step, each number or punctuation, such as a comma, period, quotation

mark, bracket, hyphen, is eliminated.

3. In the third step, each capital letter is transformed into its lower case letter.

4. The next step includes sorting and duplicate removal.

5. Finally, a list of stop words [44] is applied to eliminate most common English words

that are articles, prepositions, etc.

Discussion

Document

Discussion

Vocabulary

Header and

Attachment

Removal

Punctuation and

Numbers Removal

Letters

Transformation

Sorting and

Duplicates

Removal

Stop Words

Removal

Figure 3.2: Building discussion vocabulary

Analyzing discussion documents, we introduce a few more types of vocabulary that we

expect carry valuable information.

New topic vocabulary is denoted as N and calculated as a relative complement of the

discussion vocabulary of a preceded release in the discussion vocabulary of a current release:

Ni = Di −Di−1. (3.2)

New topic identifies all the new words that appear in the release discussion but not in

the previous release.

Figure 3.3 displays the method of obtaining new topic vocabulary. The boxes represent

discussion documents D1 and D2. New topic vocabulary is shown as the dotted area N2 =

D2 - D1.

An Approach for Correlating Email Interactions with Source Code Changes 29

D1

D2

D2

N2

Figure 3.3: Finding new topic vocabulary

Repeated topic vocabulary described as P, consists of all the terms found in both discus-

sion vocabulary of the current release and discussion vocabulary of the previous release. It

is defined as:

Pi = Di

⋂
Di−1. (3.3)

Repeated topic defines all the common words that discussion documents share with

each other.

In Figure 3.4 a repeated topic vocabulary is demonstrated as the intersection between

the boxes filled with horizontal lines.

3.2.2 Building the Changed Code Vocabulary

Definition 2 A changed code vocabulary or simply change vocabulary C is a set of iden-

tifiers extracted from a delta, C ≤ ∆. Changed vocabulary Ci contains all the identifier

names obtained from a ∆i.

Domain knowledge and concepts are embedded in the source code through identifier

30 Attaching Social Interactions Surrounding Software Changes to the Release History

D1

D2

P2

Figure 3.4: Finding repeated topic vocabulary

names and comments. Identifiers are textual tokens that name program entities, such

as variables, types, classes, functions, methods, etc. Comments are used in the code

mainly to explain developers’ intentions about a certain function or an algorithm [48].

They are particularly important in open source projects when the code is shared between

many developers who may never have met. Comments provide a better understanding and

guidance throughout the code.

Therefore, we use identifier names and comments to map the source code to human

communication.

Figure 3.5 demonstrates the process of building changed code vocabulary:

1. Identifier extraction separates the names of identifiers such as classes, methods, and

comments, from the rest of the source code.

2. Identifier separation splits identifiers into two or more simple words, for example, a

class name DataInputStream would be split into three separate words - Data, Input

and Stream. Identifier separation enriches the corpus and improves the results for

the reason that separated identifiers are closer in form to natural language words

An Approach for Correlating Email Interactions with Source Code Changes 31

used in communication.

3. Numbers and punctuation, including special symbols like #, %, $ etc., removal purges

all non-alphabetic symbols.

4. Letters transformation changes capital letters into lower case ones.

5. Sorting and duplicate removal gets rid of repeated words and groups remaining words

alphabetically.

6. Stop words removal eliminates useless words from the vocabulary.

Code Changes
Code Change

Vocabulary

Identifiers

Extraction

Punctuation and

Numbers

Removal

Letters

Transformation

Sorting and

Duplicates

Removal

Stop Words

Removal

Identifiers

Separation

Figure 3.5: Building changed code vocabulary

The process of building discussion vocabulary as shown in Figure 3.2, slightly differs

from the process of building discussion vocabulary that is presented in Figure 3.5. Both

processes include text normalization activities, such as: punctuation and numbers removal,

letters transformation, sorting and removal of duplicates and stop words. However, when

dealing with discussion document we consider all the words as terms that build a discus-

sion vocabulary, but for each code document we are interested in extracting only specific

identifiers to build a changed code vocabulary. Identifiers [51] are names assigned to the

program entities like variables, types, classes and so on. We use such identifiers to refer

to the higher-level concepts found in the electronic discussions, making correlation process

possible.

32 Attaching Social Interactions Surrounding Software Changes to the Release History

3.2.3 Comparison of the Vocabularies

The final stage of the approach deals with comparing two generated vocabularies. In order

to compare discussion vocabulary with the changed code vocabulary, we first need to define

a measure of correlation, also called as similarity or association, between two vocabularies.

IR offers various measures of similarity between two documents [45]. The simplest

definition is presented as:

| X
⋂

Y | (3.4)

where X and Y are the documents.

We adopted this definition (3.4) to state the measure of correlation between two vo-

cabularies.

A correlation between discussion vocabulary and changed code vocabulary is a set of

terms that two vocabularies have in common, also called common concepts, corr(D,C) =

D
⋂

C.

Thus, the evidence of correlation or association is based on the number of common

concepts, in other words, on the presence or absence of terms in the vocabularies.

Figure 3.6 illustrates the process of comparing two vocabularies and determining their

common concepts - terms that appear in both vocabularies. A box shape represents a

discussion vocabulary D of some release i and a circle represents a changed code vocabulary

C of a release j. A set of common concepts or correlation sij between vocabularies Di and

Cj is the intersection of two shapes shown as a pattern-filled area.

We next present an enhancement of a correlation measure, given in Definition 3.2.3, for

two vocabularies. Following this, we propose two new correlation measures as:

corrD(D, C) =
| D ⋂

C |
| D | , 0 ≤ corrD(D, C) ≤ 1 (3.5)

An Approach for Correlating Email Interactions with Source Code Changes 33

Di

Cj

sij

Figure 3.6: Finding correlation between two vocabularies

and

corrC(D, C) =
| D ⋂

C |
| C | , 0 ≤ corrC(D,C) ≤ 1 (3.6)

where corrD is correlation with respect to D and corrC is correlation with respect to C.

The first measures how D relates to the C, while the second measures how C has been

faced in D. In other words, correlation corrD corresponds to how much of the source code

changes are discussed by stakeholders. While the second one corrC determines how much

of the discussed issues are actually found in changes.

To find out how a discussion might affect future changes that is corrC , is demonstrated

in Figure 3.7. Here, the strength of correlation between discussion vocabulary D1 and

change vocabularies C1, C2 and C3 respectively, varies. The larger area of the intersection

between the box and the circle, the stronger correlation between the vocabularies. The

highest degree of correlation is shown between discussion vocabulary D1 and changed code

vocabulary C3.

Figure 3.8 displays corrD, indicating how much of a change in a release was actually

34 Attaching Social Interactions Surrounding Software Changes to the Release History

mentioned in earlier discussions. Such findings can prove that older email interactions

affect newer releases if the degree of correlation between newer change code vocabulary

and older discussion vocabulary is higher than the one between the former one and newer

discussion vocabulary. In the example, the correlation between C3 and D2, denoted as s23

is higher than the correlation between C3 and D3 expressed by s33.

Next, we examine how new topic relates to the source code changes. In Figure 3.9,

correlation s22 shows that a new topic affects more than one third of all the modifications

in the source code.

Figure 3.10 displays correlation of a new topic vocabulary N2 between two discussions

with changed code vocabularies C2 and C3. A set of common concepts s22 is larger than

a set s23, revealing a stronger association of new topic vocabulary with changed code

D1

C1

s11

s13

C2

C3

s12

Figure 3.7: How discussion vocabulary

affects future changes

C3

D1

D2

D3

s23

s13

s33

Figure 3.8: How many changes were dis-

cussed earlier.

An Approach for Correlating Email Interactions with Source Code Changes 35

N2 C2N2

C2s22

Figure 3.9: Correlation of new topic vo-

cabulary with changed code vocabulary

N2

C3

s23

C2

s22

Figure 3.10: How new topic affects

source code changes.

vocabulary C2.

To determine a correlation between the repeated topic vocabulary and the changed

code vocabulary, shown in Figure 3.11, we identify a set of terms that are present in both

vocabularies s22. This type of correlation shows whether words that are repeated from

one discussion to another reflect the changes in the source code.

Figure 3.12 illustrates a correlation of repeated topic vocabulary P2 with the changed

code vocabularies C2 and C3 respectively.

We calculate correlation values between changed code vocabularies and discussion vo-

cabularies of different types such as regular, new topic, repeated topic, for the complete

release history of a system. To store the generated data we use matrices.

A correlation matrix [49] is computed to indicate the strength of the relationships

between discussion vocabularies and changed code vocabularies for the complete release

36 Attaching Social Interactions Surrounding Software Changes to the Release History

P2

C2

P2

s22

Figure 3.11: Correlation between re-

peated topic and changed code vocabu-

laries

C2

C3

C2

P2

s22

s23

Figure 3.12: How repeated topic relates

to the code changes

history of a system.

Definition 3 A correlation matrix is a k × k matrix S = (sij), where (sij) is corr(Di,Cj).

A correlation matrix S is an upper or lower triangular matrix, which is shown in 3.7, where

entries below or above, for lower triangle, the main diagonal are zeros sij = 0 if i > j :

s11 s12 s13 . . s1k

0 s22 s23 s2k

0 0 s33 .

. . .

. . .

0 . . . 0 skk

(3.7)

Zero values are explained by the fact that every correlation matrix has a mirror-image

quality above or below the diagonal, where the correlation between release i and release j

An Approach for Correlating Email Interactions with Source Code Changes 37

is always equal to the correlation between release j and release i. Thus, there is no need to

show both triangles.

To locate the correlation for any pair of vocabularies, find the value for the row (dis-

cussion) and a column (changed code) for those two vocabularies.

Several correlation matrices are generated. Each matrix is characterized by the correla-

tion measure from Definition 3.2.3, (3.6) and (3.5) and the type of a discussion vocabulary

used at the comparison stage.

Analyzing discussion vocabularies, we can define what are the most discussed issues

that were addressed during the evolution of a system, called maintenance vocabulary.

Maintenance vocabulary is built by determining the terms that are shared across complete

release history. Figure 3.13 depicts the process of finding maintenance vocabulary across

several releases by revealing their common terms. Maintenance vocabulary denoted as M,

is shown as an intersection of the three boxes representing discussion vocabularies D1, D2

and D3.

D1

D2

D3

M

Figure 3.13: Finding maintenance vocabulary

38 Attaching Social Interactions Surrounding Software Changes to the Release History

3.3 Summary

This chapter explains two approaches for correlating mailing list discussions surrounding

the change with the actual modifications of the source code.

The first approach compares two sets of data by representing their relevancy using

scatter graph. The association is calculated based on correlating the quantity of topics or

the mail count with the quantity of change events occurred in the code.

The second approach is based on determining the conceptual similarity between two

vocabularies, extracted from the artifacts, by finding concepts that are shared between

those vocabularies.

Chapter 4

Empirical Case Studies

Chapter 3 presents two approaches to correlate source code changes with communications

by electronic media. Chapter 4 reports our application of the proposed correlation methods

in two case studies. The goal is to assess how well our approach of correlating software

changes with the email interactions among stakeholders performs on systems with different

characteristics. The studies systems have different sizes of both the release history and

email interactions. Table 4.1 summarizes the details of the systems. The results of the

experiments are compared and analyzed to identify correlation patterns.

4.1 LSEdit Case Study

The first case study was a freely available graph visualization tool, called LSEdit [40],

developed by the Software Architecture Group at the University of Waterloo. LSEdit (the

name stands for Landscape Editor) is a tool used in reverse engineering to display and

explore graphs representing software architecture. LSEdit is a Java-based system. Its size

has grown from 137 files in release 6.0.1 up to 144 files in release 7.1.25, and LSEdit still

39

40 Attaching Social Interactions Surrounding Software Changes to the Release History

continues to evolve. Over the three and half years, the number of files remained almost

the same, while the number of classes has increased significantly from 137 classes to 348

classes.

The goal of this case study is to determine the correlation between the source code mod-

ifications recorded in the release history and human communications among developers,

users, and a programmer.

System Number of Releases Number of Email Messages

LSEdit 118 495

Apache Ant 16 67377

Table 4.1: Size of release history and mailing list archives for LSEdit and Apache Ant

Table 4.1 indicates the size of the release history and the number of collected electronic

mails for two systems. For LSEdit, we examined only 91 sequential released versions

starting from release 6.0.1 to release 7.1.25. Figure 4.1 illustrates that releases are not

evenly distributed over time. For example, after one and half years there was only one

version released. It was a huge rewrite of LSEdit to work under Swing framework.

Email archives were formed by collecting electronic mails from the current and former

members of the Software Architecture Group lab. The collected data included emails

from the main developer of a system, three professors who were actively involved in the

development process of LSEdit, around twenty graduate students, and a number of other

people from the academic environment participated in the past discussions about LSEdit.

Since we were interested only in the interactions that surrounded the changes of a system,

we manually analyzed the data removing all the irrelevant emails which have nothing

to do with the maintenance tasks on LSEdit. After eliminating irrelevant emails, the

discussion corpus for this case study contained only 495 emails. Collected emails were

Empirical Case Studies 41

0

5

10

15

20

25

30

35

6 12 18 24 30 36 42 48

Time Interval (months)

N
u

m
b

e
r

o
f

R
e
le

a
s
e
s

Figure 4.1: LSEdit Release Distribution

0

5

10

15

20

25

6
.0

.2

6
.0

.5

6
.0

.8

6
.0

.1
1

6
.0

.1
4

6
.0

.1
7

6
.0

.2
0

7
.0

.5

7
.0

.8

7
.0

.1
2

7
.0

.1
5

7
.0

.1
8

7
.0

.2
1

7
.0

.2
4

7
.0

.2
8

7
.0

.3
1

7
.0

.3
5

7
.0

.3
8

7
.0

.4
1

7
.0

.4
4

7
.0

.4
7

7
.0

.5
0

7
.0

.5
3

7
.0

.5
6

7
.0

.5
9

7
.1

.6

7
.1

.1
4

7
.1

.1
7

7
.1

.2
0

7
.1

.2
3

Release

#
 o

f
E

m
a

il
s

Figure 4.2: Email Distribution Across Release History of LSEdit

grouped according to the time frame they originated in. Time frame is defined by the date

when a release was deployed. Hence, each of the 90 releases had a corresponding discussion

42 Attaching Social Interactions Surrounding Software Changes to the Release History

document consisting of the emails originated during the development period of that release.

The first release is the starting point, and its corresponding discussion document contains

no messages. For this reason, the first release is not included in the correlation process.

Figure 4.3: Change event distribution for LSEdit

Email distribution across release history of LSEdit is shown in Figure 4.2. Each point

on the curve represents a single release. The vertical scale defines the size of the discussion

document of a certain release or in order words, the number of emails that corresponds

to that release. The figure shows that nine releases of LSEdit have a zero-sized discussion

document. The largest discussion document consists of 23 emails and belongs to the release

Empirical Case Studies 43

7.0.25.

Figure 4.3 shows change distribution for all releases of LSEdit. To recover change event

information we used class-level granularity. For object-oriented systems of small or medium

size, a class is a very convenient unit to measure changes [6]. The total number of changes

includes the number of added, deleted and modified classes. As in Figure 4.2, each bar

delineates a release and a corresponding value of changes is indicated on the vertical axis.

Overall, LSEdit is a small-size system with a very poor discussion corpus but rich

release history.

4.1.1 Change Event–Topic Correlation

The results of our change event–topic correlation are shown in Figure 4.4. There are 90

dots in the scatter plot, each of which corresponds to a single release. The rising trendline,

bold and black line, indicates a positive correlation between number of topics and quantity

of changes. However, it is obvious that there is no strong correlation among these two

variables, because most of the dots are not distributed along the trendline as we would

expect. On the contrary, we observe that dots are distributed in two directions. The two

red lines show the actual trend lines in this scatter plot.

The presence of two trend lines can be interpreted as follows: the first trendline that

is above the black trendline, defines the correlation between large number of topics with a

small number of changes. This describes that modifications were originated from the user

side, which explains the small amount of changes as users usually report bugs, and theses

small changes represent bug fixes. The second trendline, shown below the main diagonal,

demonstrates a lot of changes with the lack of discussions, which reveals that these changes

might have been initiated from the developer of a system.

We also made an attempt to associate changes with the number of messages rather

44 Attaching Social Interactions Surrounding Software Changes to the Release History

Figure 4.4: LSEdit Change-Topic Correlation

Figure 4.5: LSEdit Change-Message Correlation

Empirical Case Studies 45

than the number of topics. The results, shown in Figure 4.5, are similar to those depicted

in Figure 4.4.

Both scatter plots demonstrated the weakness of this correlation method: comparing

the quantity of topics or messages with the number of changes does not necessarily confirm

the evidence of correlation between discussions and code changes. For this reason, we

decided not to apply this method on the other software system.

4.1.2 Conceptual Similarity Method

Due to poor email communication during the development process of LSEdit, the size of its

discussion vocabulary for each release is quite small, as illustrated in Table A.1. It varies

from a minimum of 0 to a maximum of 969 terms per vocabulary. An average discussion

vocabulary contains about 252 terms. Zero-sized vocabularies are quite common for the

LSEdit case study, because such a large number of versions were released during the three

and half year time interval. Figure 4.6 displays the the size of the discussion vocabulary

for 26 out of 90 releases. It also depicts the content of the discussions with respect to the

word quality, new words or repeated ones. The lower part of a bar represents new topic

vocabulary, while the upper part represents repeated topic.

Figure 4.6 demonstrates that discussion vocabulary for each release mostly contains new

terms. This can be explained by the fact that the size of a typical discussion of LSEdit

is very small. Thus, emails contain interactions about the issues on new functionality,

rather than on various problems and their fixes which would result in repetition of the

same words.

Building changed code vocabulary, we decided to use class names, method names and

comments embedded in the source code to ensure the generation of a rich enough vocab-

ulary. Hence, source code identifiers were generated with the scripts that extract class

46 Attaching Social Interactions Surrounding Software Changes to the Release History

names, method names and comments.

Identifier separation process was concerned with the characteristics of a domain. When

developers assign names to their program identifiers, they use their domain knowledge

and expertise. Coding style of a developer also affects name selection. For OO domain

such as Java in our case studies, there are two commonly used conventions for naming

identifiers: one is using underscore “ ” as a separate between several words, for example,

text box, and the other one is using letter capitalization for word separation, for example,

textBox, TextBox, TextBOX. All identifiers that follow either of these rules are separated

into basic words, for our examples text and box, text and Box, Text and Box, Text and BOX

respectively.

Table A.2 displays the size of the changed code vocabulary that ranges from 0 to 1797

keywords per vocabulary. The average vocabulary for LSEdit consists of 229 terms. The

number is not large, but neither is LSEdit, being a small-size system.

Figures 4.7, 4.8 and 4.9 show the results we obtained in correlating different types of

Figure 4.6: Ratio of New and Repeated Topics in Discussion Vocabulary for LSEdit

Empirical Case Studies 47

Figure 4.7: Regular

discussion vocabulary such as regular, new and repeated, with changed code vocabulary

for LSEdit. In each figure a solid line depicts correlation with respect to discussion that

is corrD, and a dashed line shows correlation with respect to the changes that is corrC .

Figure 4.7 shows the comparison of corrD and corrC for the regular discussion vocabulary

and corresponding changed vocabulary of the same release. The corrC values are slightly

better than corrD. We can see that 10 out of 90 releases have 0% correlation ratio,

which was expected because several releases have an empty discussion vocabulary. This

vocabulary type is quite common for LSEdit due to the fact that some releases were

issued on the same or the very next day. Almost half of the total number of releases have

correlation ratio corrC of over 20%, which means that in every other release at least one fifth

of discussed issues is actually implemented. And only one release has a correlation value of

over 50%. For the prediction purposes, we would be more interested in corrD, indicating if

discussion is able to anticipate the changes. The results are not very satisfying. For most

releases it is typical that communication occurred prior to a release deployment, affects

the modifications in that release with probability of less than 30%. In only two releases,

this probability goes above 50%. The conclusion is that the regular type of discussion

48 Attaching Social Interactions Surrounding Software Changes to the Release History

vocabulary is not very useful in detecting big changes.

Let us take a look at the new topic vocabulary and its correlation with the code changes.

Figure 4.8 shows the obtained results. The results are close to the ones in Figure 4.7. The

number of releases with zero correlation between their discussion and code vocabularies

is even larger, 15 releases. The discussion vocabularies of these 15 releases simply do not

contain any new words or words that are peculiar only to the current release in regard

to the discussion vocabulary of the preceding release. Without considering the first 15

releases, the outliers, 40% of all releases have their discussion correlated to the changes

with correlation ratio over 10% for corrD and 62% for corrC . Only 5% of the release history

has corrD value above than 40%.

Figure 4.9 demonstrates the results of finding similarity between changed code vocab-

ularies and repeated topic of discussion. The result for this type of discussion differ from

those shown in two previous figures. The curve, representing corrD, is higher corrC curve.

However, the behavior of the corrC is very similar to the one described in Figure 4.8. There

are more of the releases with zero correlation coefficient for both corrD and corrC . Twenty

five of the total number of releases did not show any similarity, because several releases

had a zero-size changed code vocabulary, which is similar to the previous corrC curves.

The main explanation of a bigger number of releases with 0% correlation coefficient is that

common concepts between code changes and repeated topics are quite infrequent due to

the fact most LSEdit discussions contain new topic terms rather then repeated ones, as

shown in Figure 4.6.

As mentioned earlier, we are more interested in the corrD, because it reveals how

discussions affect changes. If we don’t count zero-correlation releases, 78% of all releases

have correlation value of over 10%, 20% over 30% and 9% of releases higher than 50%.

So far, these results are the best for LSEdit case study. Therefore, we can conclude that

Empirical Case Studies 49

Figure 4.8: New

Figure 4.9: Repeated

50 Attaching Social Interactions Surrounding Software Changes to the Release History

repeated topic vocabulary has the highest correlation value with the changes in the code.

This statement supports the hypothesis that discussions are related to the modifications

in the code.

Next, we computed the similarity between discussion vocabulary of a certain release

with the changed code vocabulary of all the releases that follow this release for a complete

release history of LSEdit. We are unable to present the results due to space limitations,

as it would require to display 90 × 90 correlation matrices. Rather, we summarize the

interesting findings from the computed correlation values:

• Compared to minor releases, major releases hold higher correlation ratios between

discussion and changed code vocabularies.

• A repeated topic is more likely than a new topic vocabulary to be implemented in

major releases.

• A repeated topic is more likely than a new topic vocabulary to affect code changes.

• Discussions of minor releases always contribute to the changes in major releases.

• Code modifications implement new topic rather than repeated topic vocabulary.

After the conclusion that repeated words seemed to be most helpful to predict code

changes, we decided to recover a maintenance vocabulary for LSEdit. A maintenance vo-

cabulary is formed by the words that are shared by every single release. Unfortunately,

we were not able to compute it, even in the case when zero-size vocabularies are omit-

ted. Again the failure to compute maintenance vocabulary is caused by empty discussion

intervals during the evolution of LSEdit. Another reason is that the typical discussion

vocabulary is too small for there to be common terms among them.

Empirical Case Studies 51

4.2 Apache Ant Case Study

The software system used for the second case study is Apache Ant [14]. Apache Ant is a

Java build tool. Ant is as an evolving software system of a medium-size, which contains

666 files) and written in Java. We have chosen this system because it is a open source

software under the Apache Software License of Version 1.1 and Version 2.0, and therefore

all the development information is publicly available. But obviously, we are interested only

in the source code distribution and the mailing list archives.

In our case study, we investigated the complete release history of Ant consisting of

16 versions, as shown in Table 4.1. Email archives accumulated during the development

process of Ant tool, are of significant size, 67377 emails. We considered electronic commu-

nications among developers only. User mailing lists were not analyzed for the reason that

users mainly concern about bug fix issues rather than issues of architectural nature.

0

1

2

3

6 12 18 24 30 36 42 48 54 60

Time Interval (months)

N
u

m
b

e
r

o
f

R
e

le
a

s
e

s

Figure 4.10: Release Distribution of Apache Ant

Figure 4.10 displays the distribution of release history of Apache Ant that was analyzed

52 Attaching Social Interactions Surrounding Software Changes to the Release History

0

50

100

150

200

250

1.2 1.3 1.4 1.4.1 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5

Release

#
 o

f
E

m
a

il
s

 (
h

u
n

d
re

d
s

)

Figure 4.11: Email Distribution Across Release History of Apache Ant

in this study. Releases are almost evenly distributed over three years of Ant’s lifecycle.

After one and half year there was a longer time interval, which is expected in the case of

delivering a major release. In fact, release 1.5 includes significant amount of new features-

tasks. A new naming convention for Ant’s releases was introduced also in release 1.5.

Email distribution across the release history of Apache Ant is shown in Figure 4.11. The

largest discussion document, about Release 1.5, consists of over 20K email messages, while

the smallest one, about Release 1.6.5, has 565 emails. On average, without accounting the

highest peak of email distribution curve, the size of a discussion document is about 3K

emails.

Before disclosing the results of our conceptual similarity method for Ant study, we need

to mention that we did not apply the change event–topic correlation method on Ant due to

the weaknesses of the approach. For more details refer to the Chapter 3.1 and Chapter 4.1.

Empirical Case Studies 53

Release Regular New Repeated

1.2 6907 2690 4217

1.3 11318 6493 4825

1.4 11136 4810 6326

1.41 3975 787 3188

1.5 16508 13031 3477

1.5.1 7099 1616 5483

1.5.2 9106 4672 4434

1.5.3 4353 1173 3180

1.5.4 8336 5213 3123

1.6.0 7978 3582 4396

1.6.1 4727 1542 3185

1.6.2 7114 4030 3084

1.6.3 9798 5300 4498

1.6.4 2752 481 2271

1.6.5 2458 1160 1298

Table 4.2: Sizes of discussion vocabularies for Ant

4.2.1 Conceptual Similarity Method

Table 4.2 summarizes the sizes of three different types of a discussion vocabulary. The first

column, Release, represents the release number, the next three columns, Regular, New

and Repeated, represent the size of a regular, new and repeated discussion vocabularies

respectively. Each regular discussion vocabulary is composed of both the new and repeated

words. Hence, the sum of the total number of terms in new vocabulary with the total num-

ber of terms in repeated vocabulary defines the size of the regular discussion vocabulary.

The largest discussion vocabulary contains 16508 terms and belongs to the release 1.5,

54 Attaching Social Interactions Surrounding Software Changes to the Release History

which also has the largest vocabulary document. The maximum size of regular discussion

vocabulary is 16508, new vocabulary is 13031 and repeated vocabulary is 6326 terms. On

average, a discussion vocabulary has 7571 terms. Comparing to LSEdit, having 252 terms

in an average discussion vocabulary, it is extremely large.

Release Size Release Size

1.2 2249 1.5.4 290

1.3 2965 1.6.0 5931

1.4 3699 1.6.1 395

1.4.1 3660 1.6.2 1303

1.5 5144 1.6.3 1324

1.5.1 227 1.6.4 12

1.5.2 819 1.6.5 21

1.5.3 5044

Table 4.3: Size of changed code vocabulary for Ant

We observed that for most releases discussion vocabularies contain repeated topic vo-

cabulary rather than new topic, as illustrated in Figure 4.12. It is expected from extensive

discussions with large vocabularies to involve repetition of words.

Changed code vocabulary of Ant was constructed in the same way as the one for

LSEdit, described in Chapter 4.1.2. We focused on comments, class and method names as

source code identifiers to build changed code vocabularies for Ant. The size of the changed

code vocabulary for each release is presented in Table 4.3. Each vocabulary ranges in

size, starting from 12 to almost 6000 keywords per vocabulary. The average vocabulary

contains about 2200 words, which is ten times bigger than the average size of changed code

vocabulary for LSEdit.

Being a mid-size system, Ant has much richer vocabularies of both discussion and

Empirical Case Studies 55

Figure 4.12: Ratio of New and Repeated Topics in Discussion Vocabulary for Ant

changes than LSEdit, so we expect to see a better performance of our correlation method.

Figure 4.13 shows the results obtained in this case. Similar to Figures 4.7, 4.8 and

4.9, this figure represents the results of the correlation of changed code vocabulary with

various types of the discussion vocabulary. We observed several things. First, we can

see that regular and repeated topic vocabularies, denoted by dashed lines, have a high

ratio of corrC , which is more than 70% for regular one and above 60% for repeated one.

This shows the evidence of correlation between the changes and the email vocabulary, the

more modifications made in source code, the more changes occur in discussion vocabulary.

However, the correlation corrC of these vocabularies with the code changes is not very

high, 17% on average for regular and 28% for repeated vocabulary. Thus, it is hard to tell

about the influence of the content of the email interactions on the source code changes.

56 Attaching Social Interactions Surrounding Software Changes to the Release History

Figure 4.13: Results for Ant

Next, we noticed similar behavior of the curves Regular corrC and Repeated corrC . These

two dashed lines follow similar change patterns, except for the correlation value in release

1.5, in which the size of repeated discussion is much smaller compared to the one of new

topic discussion, therefore it reduces the number of common concepts and the correlation

value.

Analyzing the results, we noticed that some correlation values are not as high as we

would expect, even in the case when a release has large discussion and changed code

vocabularies. We examined how the discussion of each release relates to the source changes

in the releases that come next. Therefore, next we concentrated on discovering latent

correlation. The word “latent” means potential but not evident or active, it also means

hidden [10].

When revealing latent correlation between the discussion of the current release with

Empirical Case Studies 57

1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0

1.5 22% 1% 4% 22% 2% 25% 1.5 72% 94% 89% 72% 88% 69%

1.5.1 3% 9% 38% 3% 41% 1.5.1 89% 79% 53% 81% 50%

1.5.2 8% 34% 3% 37% 1.5.2 85% 61% 84% 57%

1.5.3 49% 5% 53% 1.5.3 42% 74% 39%

1.5.4 3% 39% 1.5.4 85% 55%

1.6.0 40% 1.6.0 53%

Table 4.4: Correlation matrices represent corrD(left) and corrC(right) for regular vocabu-

lary.

the code modifications of the releases following next, we observed an interesting behavior

of the values in the correlation matrices of several Ant releases. Tables 4.4, 4.5 and

4.6 show these correlation matrices. Each table shows the correlation between discussion

vocabulary of a given release with the changed code vocabularies of that release and all

the other releases that come after it.

For example, in in Table 4.4, the first correlation value 22% represents the correlation

ratio of the discussion vocabulary of the release 1.5 with the changed code vocabulary for

the corresponding release 1.5. The next value in the same row, 1%, stands for the corre-

lation ratio between discussion vocabulary of the release 1.5 and changed code vocabulary

of the release 1.5.1.

In this table, the values of corrD in major releases, that are shown in bold, are much

higher than those in the minor releases, meaning that discussions of any minor releases are

more likely to affect the changes in major releases than in minor ones. The discussions of

major releases relate to the changes in those releases with the average correlation ratio of

36%. Contrary to corrD, the values of corrC are higher in minor releases than in major

ones, meaning that on average 85% of actual code changes in minor releases correspond to

58 Attaching Social Interactions Surrounding Software Changes to the Release History

1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0

1.5 13% 0% 1% 13% 0% 15% 1.5 33% 12% 22% 33% 17% 33%

1.5.1 0% 0% 5% 0% 7% 1.5.1 1% 1% 2% 1% 2%

1.5.2 2% 14% 0% 17% 1.5.2 9% 13% 6% 13%

1.5.3 13% 0% 16% 1.5.3 3% 1% 3%

1.5.4 1% 22% 1.5.4 12% 19%

1.6.0 14% 1.6.0 9%

Table 4.5: Correlation matrices represent corrD(left) and corrC(right) for new vocabulary.

1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0 1.5 1.5.1 1.5.2 1.5.3 1.5.4 1.6.0

1.5 57% 5% 16% 57% 6% 61% 1.5 39% 81% 67% 39% 71% 36%

1.5.1 4% 12% 47% 4% 52% 1.5.1 88% 78% 52% 81% 48%

1.5.2 14% 55% 5% 59% 1.5.2 76% 48% 79% 44%

1.5.3 62% 7% 67% 1.5.3 39% 72% 36%

1.5.4 7% 68% 1.5.4 73% 36%

1.6.0 60% 1.6.0 45%

Table 4.6: Correlation matrices represent corrD(left) and corrC(right) for repeated vocab-

ulary.

the ones discussed in the electronic communication.

Comparing the results in Tables 4.5 and 4.6, we draw the following conclusions:

• A repeated topic is more likely than a new topic of a discussion vocabulary to affect

code changes. It is not surprising as Ant’s discussion vocabularies mostly contain

repeated topics.

• A repeated topic is more likely than a new topic to be implemented in minor releases.

Empirical Case Studies 59

• A new topic, in general, is weakly related to the changes as the correlation ratio is

less than 15% . In rare cases of correlation, it associates with the changes of Ant’s

major releases.

• Code modifications tend to implement repeated topic rather than new topic vocab-

ulary.

We also noticed that release 1.5.3 doesn’t behave as a minor release. All the results in

tables show that the correlation values for this release follow the same correlation patterns

as major releases do.

Maintenance vocabulary of Ant consists of following 34 concepts: add ant apache at-

tribute class code constructor date default defaults directory element exception execute file flag

method names new optional output path project property run set sets software source string

task use used version. These words are the concepts mentioned in the email interactions

happened prior to every single release except for the last two releases. We decided not

to consider releases 1.6.4 and 1.6.5 for the reason that their vocabularies share only 1-2

terms. If we did include the last two releases in our calculation, the maintenance vocabu-

lary would contain these 1-2 terms in the best case. In fact, the maintenance vocabulary

for the complete release history for Apache Ant is empty.

We noticed that some concepts in the maintenance vocabulary like constructor and

exception are related to the program items, for example maintaining Ant system, developers

are interested in the robust exception mechanisms. Others, like task, project, attribute and

property are mainly domain concepts used as the keywords in a build file.

60 Attaching Social Interactions Surrounding Software Changes to the Release History

4.3 Discussion

This section we begin by comparing the results of our experiments on two software systems.

We then present the correlation patterns discovered by analyzing the results of the case

studies. At the end, we discuss some weak points of our approach.

4.3.1 Comparison of Case Studies

Comparing the two case studies, the obvious difference is in the data used to validate our

approach: the release history of Ant consists of only 16 versions, while the size of mailing

list archives is very significant, shown in Table 4.1. On the contrary, LSEdit has a very big

release history containing 91 released versions and a poor collection of emails.

The results are not as promising as we hoped. Table 4.7 summarizes the correlation

results for both case studies, LSEdit and Apache Ant. The best results are achieved on

correlating regular and repeated topic discussion vocabularies in Ant case study. The av-

erage values of corrC for these vocabularies are 71% and 63% respectively, while maximum

values hit the 88-89% level. Even their bottom level exceeds 39%. This tells us that there

are a lot of changes in the source code that were actually discussed in the emails. And

that the repeated topic, not new one, of the discussion vocabulary is implemented in the

changes. These findings can be used in the case when there are a lot of modifications in

the code but the discussion surrounding these changes is not large. Then we can justify

that these changes were actually discussed earlier, in previous discussions.

For both studies, the correlation values corrD are very low for any type of the discussion

vocabulary. This shows it would be very difficult, almost impossible, to predict code

modifications from the content of the emails.

The conclusion of the results is that issues which are repeated the most, are the ones

Empirical Case Studies 61

LSEdit Ant

Regular New Repeated Regular New Repeated

corrD corrC corrD corrC corrD corrC corrD corrC corrD corrC corrD corrC

avg 11% 17% 9% 11% 15% 6% 17% 71% 5% 9% 28% 63%

max 50% 60% 43% 40% 65% 47% 49% 89% 14% 33% 62% 88%

min 0% 0% 0% 0% 0% 0% 0% 42% 0% 0% 0% 39%

Table 4.7: Comparison of the results for LSEdit and Ant

that will be implemented in the code. Our understanding of repeated topic originally

was the following: we considered these words to be trivial as they were about everyday

maintenance tasks like bug fixes. A new interpretation of the topic vocabulary goes other

way around. These are the words that carry importance of the issues discussed. If the

matter is talked about again and again, it might be of big concern.

We were not able to compare maintenance vocabularies of LSEdit and Ant, because

for LSEdit case study we were simply unable to determine one. The reason for this is

the quality of the discussion vocabularies, which contain mostly new topics. In order to

identify maintenance vocabulary, discussions should have some words in common, which

is not the case for LSEdit case study.

4.3.2 Correlation Patterns

Table 4.8 presents a list of correlation patterns identified from the case studies on LSEdit

and Ant. We observed these patterns from the correlation matrices computed for various

types of discussion vocabularies, thus we grouped the patterns according to the vocabulary

type. The list of correlation patterns includes five patterns for the regular vocabulary, three

patterns for the new topic vocabulary and four patterns for the repeated topic vocabulary.

62 Attaching Social Interactions Surrounding Software Changes to the Release History

Discussion

Vocabulary Type

Correlation Pattern Apache Ant LSEdit

Regular

Correlation between discussion and

changes is higher in major releases than

in minor ones

X X

Discussions of minor releases affect

changes of major releases

X

Longer discussions predict more changes X hard to tell

Discussions contain more new topic than

repeated one

X

Discussions contain more repeated topic

than new one

X

New

New topic is implemented in changes of

major release

X X

Most changes are related to new topic of

the longest discussion

X hard to tell

Big changes are discussed in longer inter-

actions prior to the current release

X

Repeated

Repeated topic is higher correlated with

small changes and thus more found in mi-

nor release

X X

Code modifications implement new topic

vocabulary

X

Code modifications implement repeated

topic vocabulary

X

Big discussions contain less repeated vo-

cabulary than smaller ones

X

Table 4.8: Comparison Table

Empirical Case Studies 63

Applying our correlation patterns on both systems, we observed that some releases

considered as minor in fact, are similar to the characteristics of major releases for the

following reasons:

• they all have correlation values similar to those of most of the major releases in the

system,

• they do not conform to the same correlation patterns as the rest of the minor releases.

We believe that these releases should be analyzed in details and later be treated as major

ones.

The Table 4.9 summarize the releases for both LSEdit and Ant, that we believe should

be labelled as major ones.

System Release

LSEdit 6.0.13, 7.0.12, 7.0.28, 7.1.6, 7.1.13, 7.1.15

Ant 1.6.3

Table 4.9: “Major” minor releases for LSEdit and Ant

4.3.3 Weaknesses of Our Approach

The main idea of our correlation method is based on the assumption that developers use

application-domain knowledge when writing programs and particularly when assigning

names to program identifiers. Under this assumption, the changed code vocabulary shares

a large amount of terms with the discussion vocabulary. If the number of common words

decreases, our method will not achieve the same results as we obtained in our case studies.

And of course, our method can not be applied to the cases when email communications

64 Attaching Social Interactions Surrounding Software Changes to the Release History

are carried in a language different from the one used in assigning program identifiers and

writing comments.

When building changed code vocabulary, we extracted identifiers from the deltas com-

puted using Unix diff command. These deltas store lines of code that have been added,

deleted or modified. These approach of measuring changes in a system is very simple

to implement since it is easy to compute such deltas. However, diff -like tools determine

lexical difference and ignore the high-level structural changes of the software system. For

example, if a class has been renamed or a method has been moved to another class, these

will be counted as two change events: deleted line for the class renaming and added lines

for removing a method.

Source code metrics [11, 55], origin analysis [16, 42] and clone detection [37, 43] can

be used to detect structural changes like renames, moves, merges and splits. Therefore,

employing such techniques to identify source code changes can greatly improve the results

of our correlation approach.

We aimed at designing a lightweight approach to correlate email interactions with the

code modifications. Our method does not need a lot of computations or data preprocess-

ing when building vocabularies. The correlation is also computed by using exact string

matching algorithm. Clearly, the simplicity of the approach, does not let us to detect the

best possible correlation between two artifacts. To overcome this limitation, we propose

to use LSI model, details are discussed in Chapter 5.

4.4 Summary

Chapter 3 describes two approaches for finding similarity between emails interactions and

source code changes. This chapter presents the results of applying those two approaches

Empirical Case Studies 65

on two case studies with different characteristics of data.

Change event–topic correlation method demonstrated the existence of positive associ-

ation between the quantity of discussion topics and the quantity of the changes. However,

we could not detect a strong positive correlation between the two data sets, indeed we

found two linear relationships among them. Thus, this method can be used as a diagnostic

step in determining the presence of correlation.

The second method, based on the conceptual similarity between the vocabularies con-

structed from the mailing communication and modifications of code, demonstrated a better

performance. We could identify several correlation patterns. Some patterns are common

for both case studies, others differ from one system to another. The correlation values

between email discussions and code changes vary depending on the size and type of the

discussion vocabulary.

Chapter 5

Future Work

There are several future directions that can be followed to improve the results of our work.

The first immediate extension would be to implement our approach as a tool. We

eventually hope to build a tool to assist developers and architects to monitor, plan and

predict software changes. Right now our implementation is a set of scripts.

Although the results are promising to support future research in correlating social inter-

actions and code changes, the correlation model needs to be further validated in different

types of software systems to assess its performance. We should apply our approach on

various case studies analyzing systems written in different programming languages, with

different quality and quantity of mailing communication.

We could also include other types of electronic media, such as forums, online bug report

systems and so on, to correlate with source code changes in order to help developers predict

future ones.

In the process of building changed code vocabulary we extract identifiers of only pro-

gram entities like class declarations, method names and comments. In future case studies,

we should add variable names to the list of identifiers to enrich vocabulary of code changes.

66

Future Work 67

Enlarging change code vocabulary might improve the results of our correlation approach.

Our correlation method is lightweight, it does not employ any semantic information

when extracting keywords from the source code or email messages. To improve the results,

we should apply a morphological analysis such as stemming [35], on the extracted terms

that build discussion and changed code vocabularies. During the stemming process all

plural forms of words are converted into singular ones, for example, files to file, and various

forms of verbs are transformed into infinitives, for example, extracting and extracted will

be changed to extract. Such morphological analysis can improve the results [1], however it

will require additional computation. An alternative approach to achieve better correlation

is to use a technique suggested by Goldin and Berry [17]. They developed a tool that finds

commonalities between requirements by using a sliding window technique that compares

sentences character-by-character, with the space not treated differently. Their tool supports

automatic matching of subwords that share a common root, avoiding need for stemming.

Another possible future extension will be to perform term frequency analysis [38] -

counting the number of times each term occurs in a document. Assigning weights to terms

is a technique often used in information retrieval or text mining [54]. Weights are useful

to measure the importance of a word in a document. In longer documents, term frequency

is usually normalized to measure the actual importance of a term with a hight frequency

count. Obviously, the terms of the highest weight are most commonly used words, for

example, the, of, and, to, a, in, that [12], and in many cases they do not carry useful

information. But since our text normalization step includes stop list removal process, all

meaningless terms will be eliminated prior to term frequency computation.

Unlike WordNet [9] that accounts for semantic relationships between words, our corre-

lation model does not support synonym problem. Synonyms, words having similar or close

meanings, are treated as different words in our method. For example, words like change

68 Attaching Social Interactions Surrounding Software Changes to the Release History

and modification are carrying the same meaning, but yet we consider them as two distinct

concepts. To overcome this limitation, we can use LSI model in order to find similarity

between discussion document and changed code document. LSI model has shown good

results in recovering trace links between source code and documentation [28]. LSI finds

relevant documents by identifying similar concepts rather than single terms. Therefore,

LSI is able to solve synonym problem by producing a positive similarity between related

documents sharing no terms. LSI model also uses a term weight, the number of occurrences

of a term in a document, to solve the problem of rare words, providing a possible solution

for term frequency problem that our method lacks.

Chapter 6

Conclusions

This thesis describes our approach of attaching electronic communication history to the

change history of a software system to help developers identify architectural changes based

on the similarity of these two artifacts. We have validated our research question that con-

ceptual correlation can provide useful recommendations about source code modifications

by applying the approach to two open-source systems, LSEdit and Apache Ant. Although

the correlation ratio between public interactions and change history is not very high, we

can yet reveal valuable findings that human interactions can be very useful to propagate

future changes in the source code.

We compare and analyze the results of two case studies to determine correlation patterns

between two artifacts. These patterns support our hypothesis that discussions, in particular

those that include a newly introduced topic, are more likely to affect major revisions of

a system than minor ones, while a repeated topic, issues that are constantly discussed,

is implemented in minor releases, indicating that bugs are likely to be fixed as soon as

possible by issuing a minor revision.

We observed that a typical source code change is a function of the type of the discussion

69

70 Attaching Social Interactions Surrounding Software Changes to the Release History

vocabulary. A new topic has a higher correlation with the code modifications for small

discussion corpus than a repeated topic has, while a repeated topic is more related to the

changes of a system with a large amount of discussion documents than to the changes of

a system with poor discussion corpus.

Identified correlation patterns demonstrated the evidence of similarity between code

modifications and email discussions. These patterns can help developers manage subse-

quential changes.

We wanted to promote the use of social knowledge captured in electronic media during

the development of open source projects in understanding and managing software changes.

Our main premise, as described in Chapter 4.3.3, is that developers use their application

domain knowledge in writing code and particularly in naming source code identifiers. So the

names of source code items are likely to be related to the natural language words appeared

in email messages to propose, state, and discuss upcoming changes. Thus, under this

assumption, we are able to correlate source code changes with email messages. However,

the performance of our correlation method decreases when the number of common concepts

between the source code vocabulary and the discussion vocabulary reduces.

Recovered correlation patterns can be used to predict software changes by monitoring

the interactions among developers.

The thesis discusses the weaknesses of our approach, as well as possible future extensions

to improve this work. One of the main future directions is combining structural and

semantic information extracted from the changed code and discussion documents.

The contributions of this work are:

• We proposed a method to correlate email discussions with the source code changes

by finding common concepts between discussion and changed code vocabularies.

• We empirically evaluated our correlation models on two software systems.

Bibliography 71

• We identified correlation patterns that can help developers manage future modifica-

tions in the source code.

Bibliography

[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-

tore Merlo. Recovering traceability links between code and documentation. IEEE

Transactions on Software Engineering, 28(10):970–983, 2002.

[2] Robert S. Arnold and Shawn A. Bohner. Impact analysis - towards a framework for

comparison. In ICSM ’93: Proceedings of the Conference on Software Maintenance,

pages 292–301, Washington, DC, USA, 1993. IEEE Computer Society.

[3] Felix Bachmann and Len Bass. Managing variability in software architectures. In SSR

’01: Proceedings of the 2001 symposium on Software reusability, pages 126–132, New

York, NY, USA, 2001. ACM Press.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, Second

Edition. Addison-Wesley Professional, April 2003.

[5] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assign-

ment problem in program understanding. In Proceedings of the 15th International

Conference on Software Engineering, pages 482–498, Los Alamitos, CA, USA, 1993.

IEEE Computer Society Press.

72

Bibliography 73

[6] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Gunter Kniesel. To-

wards a taxonomy of software change: Research articles. J. Softw. Maint. Evol.,

17(5):309–332, 2005.

[7] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers,

and Reed Little. Documenting Software Architectures: Views and Beyond. Pearson

Education, 2002.

[8] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[9] Princeton University Cognitive Science Laboratory. Wordnet, a lexical database for

the english language).

http://wordnet.princeton.edu/. [Online; accessed 25-November-2006].

[10] Answers Corporation. Latent – Answers.com, world’s greatest encyclodictional-

manacapedia.

http://www.answers.com/latent. [Online; accessed 02-November-2006].

[11] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via

change metrics. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, pages 166–177,

New York, NY, USA, 2000. ACM Press.

[12] Net Dictionary. List of 2000 most frequntly used words (Brown corpus).

http://www.edict.com.hk/lexiconindex/. [Online; accessed 21-November-2006].

[13] Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In ICSE

’03: Proceedings of the 25th International Conference on Software Engineering, pages

149–159, Washington, DC, USA, 2003. IEEE Computer Society.

74 Attaching Social Interactions Surrounding Software Changes to the Release History

[14] The Apache Software Foundation. Apache ant. http://ant.apache.org/.

[15] David Garlan and Mary Shaw. An introduction to software architecture. In V. Am-

briola and G. Tortora, editors, Advances in Software Engineering and Knowledge En-

gineering, pages 1–39, Singapore, 1993. World Scientific Publishing Company.

[16] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and

splitting of source code entities. IEEE Trans. Softw. Eng., 31(2):166–181, 2005.

[17] Leah Goldin and Daniel M. Berry. Abstfinder, a prototype natural language text

abstraction finder for use in requirements elicitation. Automated Software Engg.,

4(4):375–412, 1997.

[18] David J. Hand. Data mining: Statistics and more? The American Statistician,

52(2):112–119, 1998.

[19] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software

systems. In ICSM ’04: Proceedings of the 20th IEEE International Conference on

Software Maintenance, pages 284–293, Washington, DC, USA, 2004. IEEE Computer

Society.

[20] Richard C. Holt. Software architecture as a shared mental model. In Proceedings of

the ASERC Workhop on Software Architecture, University of Alberta, aug 2002.

[21] Capers Jones. Software return on investment preliminary analysis. Software Produc-

tivity Research, Inc, 1993.

[22] Kostas Kontogiannis and Peter G. Selfridge. Workshop report: The two-day work-

shop on research issues in the intersection between software engineering and artificial

intelligence (held in conjunction with ICSE-16). Autom. Softw. Eng., 2(1):87–97, 1995.

Bibliography 75

[23] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):45–50,

1995.

[24] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

[25] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Enhancing

an artefact management system with traceability recovery features. In ICSM ’04: Pro-

ceedings of the 20th IEEE International Conference on Software Maintenance, pages

306–315, Washington, DC, USA, 2004. IEEE Computer Society.

[26] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension us-

ing semantic and structural information. In International Conference on Software

Engineering, pages 103–112, 2001.

[27] Jonathan I. Maletic and Naveen Valluri. Automatic software clustering via latent

semantic analysis. In ASE, pages 251–254, 1999.

[28] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code

traceability links using latent semantic indexing. In ICSE ’03: Proceedings of the 25th

International Conference on Software Engineering, pages 125–135, Washington, DC,

USA, 2003. IEEE Computer Society.

[29] Nenad Medvidović, Alexander Egyed, and Paul Grunbacher. Stemming architectural

erosion by coupling architectural discovery and recovery. In STRAW’03: Second Inter-

national SofTware Requirements to Architectures Workshop at ICSE 2003, Portland,

Oregon, USA, 2003.

[30] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes

using historic databases. In ICSM ’00: Proceedings of the International Conference

76 Attaching Social Interactions Surrounding Software Changes to the Release History

on Software Maintenance (ICSM’00), pages 120–130, Washington, DC, USA, 2000.

IEEE Computer Society.

[31] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software reflexion models:

Bridging the gap between design and implementation. IEEE Trans. Softw. Eng.,

27(4):364–380, 2001.

[32] Josef Nedstam, Even-Andre Karlsson, and Martin Host. The architectural change

process. In ISESE ’04: Proceedings of the 2004 International Symposium on Empirical

Software Engineering (ISESE’04), pages 27–36, Washington, DC, USA, 2004. IEEE

Computer Society.

[33] Ciaran O’Reilly, Philip Morrow, and David Bustard. Lightweight prevention of ar-

chitectural erosion. In IWPSE ’03: Proceedings of the 6th International Workshop

on Principles of Software Evolution, page 59, Washington, DC, USA, 2003. IEEE

Computer Society.

[34] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software

architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[35] Martin F. Porter. An algorithm for suffix stripping. pages 313–316, 1997.

[36] Eric Steven Raymond. O’Reilly & Associates, 1999. Originally appeared online in

1999.

[37] Filip Van Rysselberghe and Serge Demeyer. Reconstruction of successful software

evolution using clone detection. In IWPSE ’03: Proceedings of the 6th International

Workshop on Principles of Software Evolution, page 126, Washington, DC, USA, 2003.

IEEE Computer Society.

Bibliography 77

[38] Gerard Salton and Chris Buckley. Term weighting approaches in automatic text re-

trieval. Technical report, Ithaca, NY, USA, 1987.

[39] Jelber Sayyad-Shirabad, Timothy Lethbridge, and Stan Matwin. Mining the mainte-

nance history of a legacy software system. In ICSM, pages 95–104, 2003.

[40] University of Waterloo Software Architecture Group (SWAG). Lsedit.

http://www.swag.uwaterloo.ca/lsedit/index.html.

[41] Qiang Tu. On navigation and analysis of software architecture evolution. Master’s

thesis, University of Waterloo, Waterloo, ON, Canada, 1992.

[42] Qiang Tu and Michael W. Godfrey. The build-time software architecture view. In

ICSM, pages 398–407, 2001.

[43] Qiang Tu and Michael W. Godfrey. An integrated approach for studying architectural

evolution. In 10th International Workshop on Program Comprehension (IWPC’02),

pages 127–136. IEEE Computer Society Press, June 2002.

[44] Cornelis Joost van Rijsbergen. List of english stop words.

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words.

[Online; accessed 25-August-2006].

[45] Cornelis Joost Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer

Science, University of Glasgow, 1979.

[46] Davor Čubranić, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Hipikat: A

project memory for software development. IEEE Trans. Softw. Eng., 31(6):446–465,

2005.

78 Attaching Social Interactions Surrounding Software Changes to the Release History

[47] Peter Weissgerber and Stephan Diehl. Mining version histories to guide software

changes. IEEE Trans. Softw. Eng., 31(6):429–445, 2005. Student Member-Thomas

Zimmermann and Member-Andreas Zeller.

[48] Wikipedia. Comments — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Comments. [Online; accessed 26-October-2006].

[49] Wikipedia. Correlation matrices — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Correlation. [Online; accessed 05-October-2006].

[50] Wikipedia. Data mining — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Data_mining. [Online; accessed 15-October-2006].

[51] Wikipedia. Identifier — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Identifier. [Online; accessed 26-October-2006].

[52] Wikipedia. Open source — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Open_source. [Online; accessed 17-October-2006].

[53] Wikipedia. Scatterplot — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Scatterplot. [Online; accessed 28-October-2006].

[54] Wikipedia. Tf-idf — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Tf-idf. [Online; accessed 21-November-2006].

[55] Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, Univer-

sity of Waterloo, Waterloo, Ontario, Canada, 2006.

[56] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting

source code changes by mining change history. IEEE Trans. Softw. Eng., 30(9):574–

586, 2004.

Appendix A

LSEdit Results

Table A.1: Size of discussion vocabularies for LSEdit

Release Regular New Repeated

6.0.2 0 0 0

6.0.3 92 0 92

6.0.4 85 77 8

6.0.5 139 124 15

6.0.6 146 127 19

6.0.7 0 0 0

6.0.8 232 232 0

6.0.9 64 0 64

6.0.10 0 0 0

6.0.11 24 24 0

6.0.12 0 0 0

6.0.13 123 123 0

Continued on Next Page. . .

79

80 Attaching Social Interactions Surrounding Software Changes to the Release History

Table A.1 – Continued

Release Regular New Repeated

6.0.14 16 11 5

6.0.15 0 0 0

6.0.16 196 196 0

6.0.17 770 659 111

6.0.18 126 37 89

6.0.19 508 472 36

6.0.20 0 0 0

7.0.1 800 800 0

7.0.4 969 653 316

7.0.5 105 57 48

7.0.6 94 78 16

7.0.7 48 47 1

7.0.8 106 94 12

7.0.9 98 90 8

7.0.10 155 131 24

7.0.12 412 360 52

7.0.13 267 176 91

7.0.14 35 28 7

7.0.15 92 86 6

7.0.16 183 168 15

7.0.17 25 13 12

7.0.18 133 124 9

7.0.19 94 79 15

Continued on Next Page. . .

A 81

Table A.1 – Continued

Release Regular New Repeated

7.0.20 359 335 24

7.0.21 31 19 12

7.0.22 396 374 22

7.0.23 344 205 139

7.0.24 152 112 40

7.0.25 565 490 75

7.0.26 444 293 151

7.0.28 245 156 89

7.0.29 306 230 76

7.0.30 136 92 44

7.0.31 42 28 14

7.0.33 386 372 14

7.0.34 466 343 123

7.0.35 53 26 27

7.0.36 183 166 17

7.0.37 531 453 78

7.0.38 307 186 121

7.0.39 352 283 69

7.0.40 40 26 14

7.0.41 0 0 0

7.0.42 169 169 0

7.0.43 93 73 20

7.0.44 40 33 7

Continued on Next Page. . .

82 Attaching Social Interactions Surrounding Software Changes to the Release History

Table A.1 – Continued

Release Regular New Repeated

7.0.45 328 310 18

7.0.46 639 509 130

7.0.47 357 208 149

7.0.48 156 85 71

7.0.49 628 547 81

7.0.50 320 144 176

7.0.51 185 123 62

7.0.52 344 288 56

7.0.53 455 312 143

7.0.54 0 0 0

7.0.55 489 489 0

7.0.56 454 311 143

7.0.57 160 111 49

7.0.58 341 279 62

7.0.59 439 346 93

7.0.60 290 182 108

7.1.4 130 84 46

7.1.6 591 546 45

7.1.7 860 628 232

7.1.13 713 482 231

7.1.14 497 312 185

7.1.15 317 212 105

7.1.16 79 63 16

Continued on Next Page. . .

A 83

Table A.1 – Continued

Release Regular New Repeated

7.1.17 219 204 15

7.1.18 698 612 86

7.1.19 339 198 141

7.1.20 433 284 149

7.1.21 170 98 72

7.1.22 108 67 41

7.1.23 0 0 0

7.1.24 111 111 0

7.1.25 339 305 34

Table A.2: Size of changed code vocabularies for LSEdit

Release Size

6.0.2 1207

6.0.3 98

6.0.4 91

6.0.5 58

6.0.6 94

6.0.7 24

6.0.8 27

6.0.9 9

Continued on Next Page. . .

84 Attaching Social Interactions Surrounding Software Changes to the Release History

Table A.2 – Continued

Release Size

6.0.10 22

6.0.11 139

6.0.12 31

6.0.13 1347

6.0.14 83

6.0.15 188

6.0.16 151

6.0.17 300

6.0.18 41

6.0.19 57

6.0.20 227

7.0.1 1612

7.0.4 142

7.0.5 90

7.0.6 27

7.0.7 209

7.0.8 23

7.0.9 300

7.0.10 258

7.0.12 1353

7.0.13 113

Continued on Next Page. . .

A 85

Table A.2 – Continued

Release Size

7.0.14 61

7.0.15 183

7.0.16 50

7.0.17 76

7.0.18 142

7.0.19 22

7.0.20 115

7.0.21 62

7.0.22 178

7.0.23 143

7.0.24 106

7.0.25 552

7.0.26 153

7.0.28 1288

7.0.29 121

7.0.30 155

7.0.31 193

7.0.33 158

7.0.34 158

7.0.35 154

7.0.36 26

Continued on Next Page. . .

86 Attaching Social Interactions Surrounding Software Changes to the Release History

Table A.2 – Continued

Release Size

7.0.37 199

7.0.38 5

7.0.39 133

7.0.40 158

7.0.41 73

7.0.42 138

7.0.43 61

7.0.44 17

7.0.45 89

7.0.46 132

7.0.47 93

7.0.48 72

7.0.49 165

7.0.50 151

7.0.51 50

7.0.52 26

7.0.53 149

7.0.54 33

7.0.55 56

7.0.56 208

7.0.57 0

Continued on Next Page. . .

A 87

Table A.2 – Continued

Release Size

7.0.58 55

7.0.59 130

7.0.60 19

7.1.4 129

7.1.6 618

7.1.7 243

7.1.13 1797

7.1.14 959

7.1.15 1018

7.1.16 82

7.1.17 109

7.1.18 357

7.1.19 146

7.1.20 256

7.1.21 212

7.1.22 85

7.1.23 46

7.1.24 20

7.1.25 158

Index

corpus

code changes, 27

discussion, 26

correlation, 32

corrC , 33

corrD, 32

matrix, 36

delta, 26

document

discussion, 26

source code, 26

release history, 25

scatter plot, 22

similarity, 32

vocabulary

changed code, 29

discussion, 27

maintenance, 37

new topic, 28

repeated topic, 28

88

