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Abstract 

Plant development is complex and highly regulated.  Tens of thousands of genes 

have been sequenced for the model plant Arabidopsis thaliana, yet few have been 

functionally annotated and characterized.  This thesis describes the expression analysis and 

characterization of four genes in Arabidopsis.  Three of these belong to the eukaryotic 

translation initiation factor 5A (eIF5A) gene family, and the fourth encodes diacylglycerol 

acyltransferase 1 (DGAT1).  Putative roles for these genes in the development of Arabidopsis 

thaliana are described.  

eIF5A is the only known protein to contain the amino acid hypusine.  It has been 

demonstrated previously that eIF5A acts as a shuttle protein, moving specific mRNAs from 

the nucleus to the cytoplasm for translation.  In Arabidopsis thaliana (At), there are three 

isoforms of eIF5A, and it is clear from the present study that they each have a unique 

temporal and spatial expression pattern.  AteIF5A-1 and -2 are up-regulated during natural 

senescence and wounding/pathogenesis, respectively, and it is proposed that they regulate the 

onset of programmed cell death during these events.  AteIF5A-3 is up-regulated in elongating 

meristem of the root, and it is proposed that this isoform is involved in cell growth.   

Over-expression of the individual AteIF5A isoforms in planta resulted in pleiotropic 

phenotypes.  When AteIF5A-1 or AteIF5A-2 was over-expressed, the phenotypes observed 

were indicative of their putative roles in the translation of proteins required for programmed 

cell death.  When AteIF5A-3 was over-expressed, the phenotypes were indicative of a role for 

this protein in the regulation of cell and tissue elongation.   

Lipid analysis of rosette leaves from Arabidopsis thaliana revealed an accumulation 

of triacylglycerol with advancing leaf senescence coincident with an increase in the 

abundance and size of plastoglobuli.  The terminal step in the biosynthesis of triacylglycerol 

in Arabidopsis is catalyzed by DGAT1.  When gel blots of RNA isolated from rosette leaves 

at various stages of development were probed with the Arabidopsis EST clone, E6B2T7, 

which has been annotated as DGAT1, a steep increase in DGAT1 transcript levels was 

evident in the senescing leaves coincident with the accumulation of triacylglycerol.  The 
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increase in DGAT1 transcript correlated temporally with enhanced levels of DGAT1 protein 

detected immunologically.  Two lines of evidence indicated that the triacylglycerol of 

senescing leaves is synthesized in chloroplasts and sequesters fatty acids released from the 

catabolism of thylakoid galactolipids.  First, triacylglycerol isolated from senescing leaves 

proved to be enriched in hexadecatrienoic acid (16:3) and linolenic acid (18:3), which are 

normally present in thylakoid galactolipids.  Second, DGAT1 protein in senescing leaves was 

found to be associated with chloroplast membranes.  These findings collectively indicate that 

DGAT1 plays a role in senescence by sequestering fatty acids de-esterified from 

galactolipids into triacylglycerol. 
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Chapter 1: Arabidopsis thaliana: A Model Plant for Studying 
Development & Senescence 

1.1 Plant development: Arabidopsis thaliana 

Plant development is quite distinct in comparison to animal development.  There are 

four major features that account for this distinction (Jager et al., 2005).  First, plants are 

sessile organisms with no ability to move about.  This impacts significantly on how they 

respond developmentally to their environment.  Factors such as light, temperature and 

nutrient availability affect the growth rate, and in some cases the pattern of growth, of plants.  

Second, plant cells are surrounded by a rigid cell wall.  This cell wall imposes restrictions on 

cell behaviour during development limiting in particular their migration, which is a 

requirement for organ development in animals (Mathur, 2005).  The third feature that 

distinguishes plant development from animal development is the lack of overlap between 

embryogenesis and organogenesis.  Plant embryogenesis is mainly concerned with the 

production of groups of “stem” cells or meristems (Jager et al., 2005).  These stem cells are 

totipotent cells that become dormant in the seed, the dispersal unit of flowering plants, and 

are reactivated upon optimal growing conditions during germination.  Animal 

embryogenesis, on the other hand, gives rise to a mature embryo that already possesses the 

major organ systems of the post-embryonic organism.  A final distinguishing feature of plant 

development in comparison with animal development is that plant meristems can 

indeterminately produce new organs.  Shoot apical meristems primarily give rise to leaves to 

support photosynthesis, but also construct reproductive structures for seed production to 

ensure the continuation of the species.  Root apical meristems develop new root structures to 

increase surface area for absorption of water and minerals, thereby nutritionally maintaining 

the aerial structures as well as firmly anchoring the plant in the substrate.  By contrast, 

animal organogenesis is restricted to certain developmental stages during embryogenesis and 

cannot continue into adulthood.  Notwithstanding these substantial differences between plant 

and animal development, plant and animal cells share several common cell cycle features. 

Arabidopsis thaliana is a small flowering plant of the mustard family Brassicaceae 

(Bowman, 1994), which includes cultivated species such as canola, cabbage, cauliflower and 
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radish.  Arabidopsis is not an agronomic species, but offers many advantages for basic 

research in genetics and molecular biology.  In particular, its small size, short lifecycle and 

small diploid genome render it well suited to genetic screening techniques. The lifecycle 

(Figure 1-1) of Arabidopsis is approximately 6-8 weeks from germination to seed set, 

depending on the growing conditions and cultivar (Boyes et al., 2001).  During the 

Arabidopsis lifecycle, there is an obvious change from vegetative growth to reproductive 

growth.  Vegetative growth begins at germination.  During germination, the seedling emerges 

from the seed and continues to grow until it is capable of supporting the reproductive 

structures which produce seed for the next generation. Reproductive growth begins when the 

leaf meristem gives rise to the flower meristem and ensuing bolting, which is characterized 

by a significant increase in internode length.  Reproductive growth ends with seed set, which 

results in embryos encased within seeds. 

1.1.1 Vegetative growth 

1.1.1.1 Germination 

The seed is an extremely important stage in the lifecycle of a higher plant, as it 

ensures the survival of the species through times of unfavourable environmental conditions.  

Though it is important for a seed to remain dormant during such times, it is also of equal 

importance that, upon exposure to favourable growing conditions, the seed be capable of 

growing into a vital seedling.  Seedling establishment is critically dependent upon stored 

nutrient reserves that accumulate in the embryo during seed set and the ability of the embryo 

to mobilize these nutrients efficiently during germination. 

By definition, germination includes the sequential processes of initial water uptake 

by the seed, known as imbibition, to the point of radicle/primary root emergence (Bentsink 

and Koornneef, 2002).  Though not much has occurred that is visible to the naked eye during 

this period, germination is one of the most highly co-ordinated events in a plant’s lifecycle.  

A transcriptome study of dry seed and imbibition has demonstrated that more than half of all 

genes in Arabidopsis thaliana are represented in mRNA stored in seeds (Nakabayashi et al., 

2005), and that the mRNA profile of seeds imbibed for six hours is dramatically altered.  
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Figure 1-1: Growth stages during the lifespan of Arabidopsis thaliana (ecotype 

Columbia) 

A schematic illustration of the chronological progression of the principal growth stages for 

Arabidopsis thaliana.  The timeline and growth stages are defined according to Boyes et al. 

(2001).  Some features of the lifespan, such as rosette leaf number and time of transition to 

reproductive growth, can vary with growth conditions.  Events that occur during vegetative 

growth are indicated by blue bars, and events that occur during reproductive growth are 

indicated by red bars. 
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Specifically, embryogenic genes were largely down-regulated within six hours of imbibition.  

During the subsequent six hour period, there was extensive induction of metabolic genes 

involved in germination. 

The mobilization of food reserves during germination is a key element of seedling 

establishment, and for this to be achieved lipid and carbohydrate catabolizing enzymes must 

be up-regulated.  Arabidopsis thaliana is an oil seed as most of its food reserves are stored as 

lipid (Rylott et al., 2001).  In order to mobilize these lipid reserves to provide energy to the 

growing seedling, lipases and enzymes of the glyoxylate cycle, specifically malate synthase 

and isocitrate lyase, are up-regulated.  The coordination that is involved in the transcription 

and translation of essential genes during germination is controlled by plant growth regulators. 

The principal plant growth regulators that are involved in germination are abscisic 

acid (ABA), which is an inhibitor of germination, and gibberrellic acid (GA), which 

promotes germination.  It is the balance between ABA and GA rather than their absolute 

levels in the seed that controls dormancy and germination in Arabidopsis thaliana (McCarty, 

1995).  During imbibition, there is a dilution effect on ABA as the seed takes on water.  This 

dilution, along with de novo synthesis of GA, causes dormancy to be broken, and 

germination proceeds.  GA synthesis may be the most critical regulatory factor of 

germination in species like Arabidopsis that have imposed seed dormancy.  Other factors that 

affect germination of Arabidopsis include light and temperature.  In keeping with the fact 

that Arabidopsis has very small seeds, which are normally dispersed over the soil surface, 

seed germination is light-dependent in a manner that  is primarily mediated by the red and 

far-red photoreceptor phytochrome (Yamaguchi et al., 1998).  More specifically, 

phytochrome regulates bioactive GA levels during light-dependent seed germination.  

Temperature is another crucial external cue that controls seed germination.  In many winter 

species, like Arabidopsis, exposure of seeds to low temperature (typically between 2-5oC) 

immediately after imbibition for one or two days promotes germination.  This process, called 

stratification, is widely used in nature and the laboratory to improve the frequency and 

synchronization of germination.  Though it is not clearly understood how temperature 
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influences germination, there is evidence that the levels of GA are greatly increased in 

imbibed seeds exposed to lower temperatures (Yamauchi et al., 2004). 

Once germination is underway and the nutrient reserves are mobilized, the embryo 

begins to grow from the tips of each end of its axis, where the root and shoot apical 

meristems are located.  Meristems are organized cellular structures capable of indeterminate 

growth (Bowman, 1994).  Each meristem contains a structured core of undifferentiated 

“stem” cells which can divide and differentiate to produce adult tissues, whilst maintaining 

and regenerating the meristem.  While germination ends with the emergence of the radicle, 

this is just the beginning of seedling establishment.  The root must grow into a substrate, and 

the hypocotyl, which becomes the aerial portion of the plant, must fully emerge and begin 

growing new leafy structures capable of providing the seedling with sugars through 

photosynthesis, since at this point of seedling establishment the stored reserves in the seed or 

seedling are nearly exhausted. 

1.1.1.2 Leaf formation and growth 

Leaves are responsible for providing most of the fixed carbon in a plant and are 

critical to plant productivity and survival. As such, the health and development of leaves are 

of paramount importance to agriculture.  In spite of this, little is known about the genetic 

controls that underlie leaf development.  However, developmental landmarks have been 

defined to divide the process of leaf morphogenesis into three stages (Sinha, 1999).  Stage 1 

is the organogenesis stage where the cells on the flank of the shoot apical meristem are set 

aside as the founder cells of the initiating leaf.  This region is characterized by increased cell 

division rates and gives rise to the leaf primordium.  During Stage 2, the basic morphological 

domains for the growth and development of leaf parts are delimited.  Finally, cellular and 

tissue differentiation occurs during Stage 3 through coordinated processes of cell division, 

expansion and differentiation. 

Arabidopsis thaliana produces a rosette of leaves. The first leaves formed are 

juvenile and are bilaterally symmetric and round.  They occur in a decussate phyllotaxy. 

Adult leaves, which are slightly convex, radially symmetric, increasingly spatulate (oval) and 

situated in a spiral phyllotaxy, are formed subsequently (Bowman, 1994).  Rosette plants 
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have very little internode elongation between successive nodes (points at which the leaves 

are attached), and the rosettes are formed close to the soil.  The transition from juvenile to 

adult vegetative meristem generally occurs between leaf numbers four and five in 

Arabidopsis thaliana ecotype Columbia (Kerstetter and Poethig, 1998).   

Mature Arabidopsis leaves are typical of mesophytic dicotyledons.  The mesophyll 

tissues, which are the photosynthetic layers between the upper and lower epidermal layers, 

consist of an upper layer of elongate palisade cells and a lower spongy mesophyll layer with 

large intercellular airspaces.  The vasculature of Arabidopsis leaves is reticulate (net-like) 

and, consequently, the stomatal apertures are scattered. The stomata are more abundant on 

the abaxial (lower) epidermis than on the adaxial (upper) epidermis, whereas trichomes or 

hairs are more abundant on the adaxial surface.  Cell expansion results in a large increase in 

the mesophyll volume and intercellular air space of the leaves, with an accompanying 

increase in the vascular system.  After a leaf primordium has been laid down by the apical 

meristem, most of the growth of the leaf is due to cell expansion rather than cell division.  

Differentiation of the cells within these assorted layers occurs at slightly different times; for 

instance, the epidermal layers differentiate before the mesophyll layers.  Also, in contrast to 

the vascular tissues, the differentiation of the mesophyll starts at the leaf tip and proceeds 

towards the base of the leaf.  This creates a condition where within each developing leaf 

there are gradients of cells at varying stages of development, and after maturation, there are 

gradients of cells at varying stages of senescence. 

1.1.1.3 Leaf senescence 

Senescence is defined as the developmental stage that leads to death of cells, 

tissues, organs or even whole organisms (Bleecker and Patterson, 1997).  It is a type of 

programmed cell death, but occurs more slowly than other types of programmed cell death in 

plants, such as the hypersensitive response induced during pathogenesis, which are generally 

acute and rapid.  Senescence is distinct from developmental aging which is initiated, for 

example, during leaf development at the time of leaf primordial initiation.  Specifically, leaf 

senescence is initiated only after the leaf is fully expanded and mature.  To study whole plant 

senescence is very difficult as the senescence of different parts of the plant may influence the 



 

- 8 - 

development or the senescence of other parts.  In Arabidopsis thaliana there appears to be a 

strong relationship between age of leaves and the initiation of their senescence.  Unlike other 

monocarpic species (those that die after a single reproductive event), Arabidopsis appears to 

initiate leaf senescence independently of reproductive initiation (Nooden and Penney, 2001).  

Thus, since leaf senescence in Arabidopsis occurs in a reproducible, genetically controlled 

fashion, leaves of Arabidopsis are often used as a model system for senescence. 

After leaves of Arabidopsis thaliana are fully developed, they photosynthesize for a 

period of time, and then the cells of the mesophyll begin to senesce.  The cellular 

degeneration process during leaf senescence occurs under tight regulation and usually begins 

at a subcellular level within the chloroplasts (Matile, 1992).  Since leaf senescence requires 

active gene expression, the nucleus and mitochondria remain intact until the very final stages.  

As senescence progresses, most (~60-70%) of the nutrients “stored” in the cells are 

remobilized to the growing parts of the plants including young leaves, developing seeds and 

fruit (Matile, 1992).  This slow, orchestrated remobilization of nutrients is a characteristic 

that makes senescence distinct from other types of programmed cell death.  Consequently, 

senescence is not only a deterioration phenomenon, it is also crucial for the fitness of plants 

and is thought to be an evolutionarily acquired genetic process (Nooden, 1988). 

The timing and rate of senescence are affected by several growth regulators 

including, in particular, cytokinin and ethylene, but also methyl jasmonate, brassinosteroids 

and salicylic acid.  Cytokinin is a growth regulator that promotes maintenance of chloroplast 

structure and, when applied exogenously, delays leaf senescence in Arabidopsis thaliana 

(Lim et al., 2003).  Cytokinins can also reverse senescence after it has been initiated.  For 

instance, in transgenic plants expressing the transgene, isopentenyl transferase, a gene 

involved in cytokinin production, under the control of a senescence-associated promoter, leaf 

senescence is reversed after it has been initiated through the production of cytokinins 

triggered by the induction of senescence (Gan and Amasino, 1995; McCabe et al., 2001).  

Though cytokinin is an antagonist to senescence, there is a point of no return after senescence 

induction, beyond which the process cannot be reversed (Buchanan-Wollaston, 1997). 
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Another important growth regulator involved in the timing of senescence initiation 

is ethylene.  Ethylene is a gaseous growth inhibitor that has long been known to influence 

senescence initiation and increase the rate at which leaf senescence occurs (Grbic and 

Bleecker, 1995), but only after leaves reach a certain developmental stage.  Specifically, 

ethylene plays a role in coordinating the timely onset of leaf senescence in Arabdiopsis, but 

is not essential for the execution of senescence (Bleecker and Patterson, 1997).  For example, 

disruption of the ethylene-signalling pathway in ethylene-insensitive etr1-1 (ethylene 

response) Arabidopsis mutants only delays the onset of leaf senescence (Grbic and Bleecker, 

1995).  Other plants, particularly climacteric plants, are more sensitive to the senescence-

inducing influence of ethylene, particularly in respect of ethylene-sensitive organs like 

flowers (Thompson et al., 1982; Itzhaki et al., 1994; Orzaez et al., 1999). 

It is clear from mutational analysis that the growth regulators involved in leaf 

senescence influence gene expression.  Since senescence is a type of programmed cell death, 

de novo gene expression is essential, and the tight regulation of this expression is critical for 

ensuring that all pertinent steps are timed and executed flawlessly.  The signalling and 

transcriptional networks associated with senescence appear to be coarse regulators that 

determine when and where senescence begins.  The finer control of the actual execution of 

senescence entails cascades of activation and inactivation that, for the most part, appear to be 

regulated post-transcriptionally (Thomas et al., 2003).  Several factors including both 

endogenous and exogenous signals such as leaf age, growth regulators and stressors, are 

involved in the initiation of leaf senescence.  In Arabidopsis, although the initiation of leaf 

senescence is thought to be independent of the commencement of reproductive growth, the 

mobilization of nutrients from senescing leaves appears to be essential for proper seed fill. 

1.1.2 Reproductive growth 

1.1.2.1 Flowering and seed development 

In Arabidopsis, like other plants, the shoot apical meristem provides indeterminate 

organogenesis.  Changes in organogenesis occur through phase transitions in the meristem.  

Following embryogenesis, the shoot apical meristem produces vegetative structures, 
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characterized first by a juvenile stage and then an adult stage prior to the transition to a floral 

meristem.  Once the transition to flowering occurs, floral primordia initiate from the flanks of 

the shoot apical meristem, and floral organs develop.  Environmental conditions play a major 

role in the timing of the floral transition.  The number of rosette leaves formed prior to the 

transition to flowering varies with growth conditions, with low temperatures and short days 

retarding the transition of the apical meristem to a flower meristem (Bowman, 1994).  The 

Arabidopsis thaliana terminal flower meristem never develops into a flower itself, but 

remains indeterminate, forming flowers in a spiral phyllotaxy until the apex eventually 

senesces. 

Sexual reproduction in higher plants, like Arabidopsis, occurs in flowers.  Floral 

organ systems develop in four whorls as sepals, petals, stamen and carpels.  Pollen is 

produced in the anthers, which are part of the stamen.  Female gametes, the egg cells, are 

produced within the ovules that are housed within the carpel.  The mature flower of 

Arabidopsis thaliana has a simple structure typical of the Brassicaceae.  It has four free 

sepals and four petals, whose positions alternate with those of the sepals.  There are two 

shorter lateral stamens and four longer medial stamens.  The superior gynoecium, the pre-

fertilization structure housing the female parts, has two leaf-like carpels whose locules are 

separated by a false septum.  Ovules occur on either side of the septum, and after fertilization 

give rise to seeds. 

Fertilization and subsequent embryogenesis is the ultimate goal of sexual 

reproduction.  Unlike most Brassicaceae, Arabidopsis thaliana self-crosses at least 95% of 

the time, which can be desirable in a laboratory setting.  Flowering plants experience double 

fertilization, in which the central cell and the egg cell within the ovule are both fertilized to 

produce the endosperm and the embryo, respectively.  To complete fertilization, the pollen 

tube enters the ovule through the micropyle and delivers two haploid nuclei, one of which 

fuses with the nucleus of the egg cell giving rise to the zygote, while the other combines with 

the central cell.  The zygote goes through many complicated cell divisions to form the body 

of the embryo.  The tissue patterns in late-stage embryos are similar to those of seedlings, 

though cells in most tissues complete differentiation after germination. 
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The developing embryo undergoes many changes during embryogenesis.  Not only 

is the basic structure of the seedling laid down, but the events leading to seed dormancy are 

initiated.  Seed development from pollination to mature desiccated seeds occurs over 18 to 21 

days in Arabidopsis thaliana, ecotype Columbia (Koorneef and Karssen, 1994).  Lipids and 

other storage reserves accumulate between 8 and 16 days after flowering, with the maximum 

accumulation occurring between 9 and 14 days after flowering (Focks and Benning, 1998).  

During lipid deposition, the embryo undergoes the largest increase in size, mostly due to cell 

expansion.  Continued cell expansion throughout the embryo causes it to fill most of the 

embryo sac, crushing the endosperm.  At maturity with the onset of desiccation, the rate of 

reserve deposition slows down considerably, and the embryo decreases in size slightly 

through the loss of water.  Desiccation tolerance is typically a maturation-specific 

characteristic.  Maternal tissues and embryonic tissues synthesize ABA to induce seed 

dormancy.  Proteins essential to desiccation tolerance accumulate at this point.  Some of 

these, including LEA proteins (late embryogenesis abundant proteins) and heat shock 

proteins, are thought to protect membranes during the desiccation process.  The seed coat of 

Arabidopsis is formed by lignification of the outer integuments of the ovule and exerts a 

germination-restrictive action.  In Arabidopsis, phenolic compounds and their derivatives 

affect seed coat properties and influence dormancy and germination. 

1.1.2.2 Silique ripening 

The gynoecium is the pre-fertilization structure that develops into the fruit, 

commonly known as a silique.  The fruit-mediated seed-dispersal mechanism employed by 

Arabidopsis thaliana is such that the seeds are forcibly ejected from the silique as it 

“shatters”.  That is, the silique uses mechanical forces that build up as the fruit dries out in a 

process known as dehiscence.  Tissues required for fertilization are completely differentiated 

in a mature flower when the anthers shed their pollen onto the stigma located at the top of the 

ovary.  Tissues important for fruit dehiscence require signals after fertilization to complete 

their development. 
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1.2 Plant development is affected by environmental factors 

There is an urgent need to address challenges facing agriculture in the coming 

years, including pest and disease control, plant stress and yields.  Also, the necessary 

increases in crop production need to be achieved in a way that will avoid environmental 

degradation.  Small improvements in crop plant tolerances to various stresses have been 

accomplished by traditional plant breeding programs.  With the advent of biotechnology, a 

wide range of possibilities for increasing plant tolerance to environmental stresses is 

available and, in comparison to breeding programs, easy to employ. 

Plants are sessile organisms that respond to their environment through changes in 

development.  During its lifecycle, a plant will encounter several levels of stress.  Obviously, 

a lethal level of stress changes the outcome of the plant’s life.  However, it is sub-lethal stress 

that is the most common type of stress a plant encounters, and this type of stress has 

substantial effects on development.  Sub-lethal stress is a low level of stress that may initiate 

cessation of growth, either vegetative or reproductive, and/or initiate senescence, though 

usually only for a short period of time until the stress is alleviated and growth continues 

(black line Figure 1-2).  Though one event of sub-lethal stress may have only a modest effect 

on the plant, it is the culmination of many such events that leads to an overall loss of growth 

and, in crop plants, a loss in yield.  Several studies have been initiated using Arabidopsis 

thaliana as a model system to further understand the effects of sublethal stress and develop 

methods to decrease its effects on growth and development either by increasing tolerance to 

the stress  (blue line Figure 1-2) (Gilmour et al., 1992; Thomashow, 1999; Xu et al., 2004; Yi 

et al., 2004) or increasing the growth rate of the plant (green line Figure 1-2) (Hu et al., 

2003; Lee et al., 2003; Camp, 2005).  Strategies for increasing yield using biotechnology 

necessitate the identification of target genes for increasing yield as well as how the gene 

expression should be modulated for the desired trait(s). 

In the current study, several genes involved in the development and senescence of 

Arabidopsis have been characterized.  First, three regulatory genes, all different isoforms of 

eukaryotic translation initiation factor 5A (eIF5A), were isolated.  Previous studies with yeast 

and cultured mammalian cells have indicated that eIF5A regulates the translation 
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Figure 1-2: The effects of sub-lethal stress on plant growth 

During plant growth (▬), episodes of sublethal stress (indicated by the red arrows) are 

encountered which result in cessation of growth and/or initiation of senescence, followed by 

recovery and continuation of growth.  The overall effect of this loss of growing time is a 

decrease in yield.  Biotechnology or breeding methods are employed either to:  (1) increase 

tolerance of plants to sublethal stress such that it  has no impact on the growth rate (▬) or,  

(2) increase the growth rate (▬) of the plant so that, though it is still sensitive to sublethal 

stress, the overall yield is increased due to faster growth during optimum times. 
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of mRNAs required for cell division and cell death, although the exact mechanism 

underlying this regulation has not been elucidated (Caraglia et al., 2003; Xu et al., 2004).  

eIF5A in plants is largely unexplored.  In the present study, three eIF5A genes were 

identified in Arabidopsis thaliana, and their putative functions were characterized by analysis 

of expression patterns and alteration of their expression in planta.  A proposed role for each 

of the eIF5A isoforms in Arabidopsis development is described.  Second, the gene encoding 

diacylglycerol acyltransferase, which mediates the final step of triacylglycerol synthesis, has 

been shown to play a role in the execution of leaf senescence and perhaps in the maintenance 

of chloroplast structure. 
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Chapter 2: The Three Isoforms of Eukaryotic Translation Initiation 
Factor 5A (eIF5A) in Arabidopsis thaliana are Differentially 

Expressed 

2.1 Introduction 

Protein synthesis, termed translation, is a central process in all living cells and is the 

last step in the transmission of genetic information stored in DNA.  It occurs on ribosomal 

particles and consists of three phases: initiation, elongation and termination.  Translation 

appears to be primarily regulated during initiation (Caraglia et al., 2001), and there are 

indications that translational control may be just as important as transcriptional control, 

especially in relation to disease states such as cancer (Clemens and Bommer, 1999).  One of 

the proteins known to be involved in the regulation of translation initiation is eukaryotic 

translation initiation factor 5A (eIF5A).  Indeed, studies with yeast and human cell lines have 

indicated that regulation of translation initiation by eIF5A may be an inherent feature of both 

cell proliferation (Caraglia et al., 1999; Caraglia et al., 2001; Parker and Gerner, 2002) and 

cell death (Lee et al., 2002; Li et al., 2004; Taylor et al., 2004). 

2.1.1 eIF5A contains the amino acid hypusine 

The unusual, strongly basic amino acid hypusine was first isolated in 1971 from 

extracts of bovine brain by Shiba et al. (1971).  The structure was determined to be Nε-(4-

amino-2-hydroxybutyl)lysine and was named hypusine, a designation derived from the two 

compounds, hydroxyputrescine and lysine, from which it is formed (Shiba et al., 1971).  To 

date, hypusine has proven to be ubiquitous in animal tissues, both in free form and associated 

with protein, although it is likely that the detected free hypusine is actually a proteolytic 

degradation product.  Yet it took nearly a decade after identifying hypusine as an amino acid 

to identify the specific protein that contains this amino acid.  Park et al. (1981) discovered a 

single hypusine-containing protein in mammalian cells and later identified it as eukaryotic 

translation initiation factor 5A, abbreviated to eIF5A (Cooper et al., 1982)1.  eIF5A was 

                                                 
1 Prior to 1989 when the nomenclature for translation factors was revised, eIF5A was referred to as eIF4D, but 
for consistency, eIF5A will be used throughout this study, even when referring to published reports in which the 
older terminology is used 
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discovered while studying the role of polyamines as physiological substrates for 

transglutaminases in normal lymphocytes treated with a mitogen and [3H]-labelled putrescine 

(Park et al., 1981).  Hypusine was shown to be a constituent amino acid of a small acidic 

protein (Mr~18,000) of lymphocytes, and it was further demonstrated that its 4-amino-2-

hydroxybutyl moiety is derived from the butylamine portion of spermidine (Park et al., 

1981).  The appearance of hypusine, however, appeared to be specific to cells that were 

mitogen-stimulated in these early studies, and it was barely detectable in resting cells 

(Cooper et al., 1982).  This observation that the rate of hypusine synthesis correlated with 

growth and cell division became a feature of subsequent eIF5A and hypusine research (Park 

et al., 1993; Bevec et al., 1994; Byers et al., 1994; Park et al., 1997; Jannsson et al., 2000; 

Caraglia et al., 2001), although more recently it has been demonstrated that the role of eIF5A 

in mammalian cells is far more complex than initially envisaged. 

The initial identification of eIF5A as a translation initiation factor was through its 

isolation from ribosomes of rabbit reticulocytes as a protein component that stimulated the 

initiation phase of eukaryotic translation (Kemper et al., 1976).  The connection between 

eIF5A as a translation factor and the unknown hypusine-containing protein was made 

through a co-migration experiment by two-dimensional gel electrophoresis of both proteins 

(Cooper et al., 1983).  Unlike other characterized initiation factors, eIF5A is a very abundant 

protein, largely found in the cytoplasm, with only a small amount associated with the 

ribosomes.  eIF5A was shown not to have an influence on formation of the 80S initiation 

complex, but was able to stimulate methionyl-puromycin synthesis in vitro (Smit-McBride et 

al., 1989).  It is not certain, however, whether eIF5A functions as a translation initiation 

factor in vivo since the deletion of eIF5A in yeast only leads to a 30% decrease in protein 

synthesis (Kang and Hershey, 1994).  In further support of the contention that eIF5A is not 

required for global protein synthesis, mammalian cells treated with mimosine, an inhibitor of 

hypusination, have been shown to have only a slight reduction in polysome abundance in 

comparison with control cells (Hanauske-Abel et al., 1995).  Thus, although eIF5A has in 

fact been shown to be associated with a translating 80S ribosomal complex in mammalian 

cells and appears to be involved in translation (Jao and Chen, 2005), there is still no 

conclusive evidence that it is essential for translation initiation in vivo. 
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2.1.2 eIF5A is ubiquitous in eukaryotes and archaebacteria 

The hypusine-containing protein, eIF5A, has been found in a variety of mammals 

(Shiba et al., 1971; Park, 1988; Smit-McBride et al., 1989; Wolff et al., 1992; Chen et al., 

1996; Tome and Gerner, 1996), plants (Mehta et al., 1991; Pay et al., 1991; Chamot and 

Kuhlemeier, 1992; Wang et al., 2001; Chou et al., 2004) and archaebacteria (Bartig et al., 

1992), but not in eubacteria (Gordon et al., 1987).  Eubacteria lack a hypusine-modified 

eIF5A equivalent.  However, the sequence similarity between archaebacterial eIF5A and 

eubacterial elongation factor (EF)-P is significant enough to assume that the two are 

homologous proteins (Kyrpides and Woese, 1998).  EF-P is a small acidic protein essential 

for stimulation of peptide bond synthesis (Glick and Ganoza, 1975).  It has been shown to be 

essential for viability in Escherichia coli, and is present in all eubacterial genomes examined 

so far (Aoki et al., 1997). 

Though eIF5A is common to members of such a diverse group as the eukaryotes, it 

is a highly conserved protein.  The hypusine-containing region has interspecies conservation, 

and a sequence of 12 amino acids containing the hypusine residue has been strictly conserved 

throughout eukaryotic evolution, from fungi through plants, insects and mammals 

(Hanauske-Abel et al., 1994).  The 12 amino acid sequence surrounding this amino acid 

residue, Ser-Thr-Ser-Lys-Thr-Gly-Lys*-His-Gly-His-Ala-Lys-2, is identical in all 

eukaryotes, suggesting that this sequence is important for recognition by post-translational 

hypusination enzymes and/or possibly a crucial cellular function (Park et al., 1997). 

2.1.2.1 Structural characteristics of eIF5A 

X-ray diffraction studies of unhypusinated eIF5A from two Archaea species show 

that it is composed of two well-defined domains attached by a flexible hinge (Kim et al., 

1998; Peat et al., 1998).  The flexible hinge between the two domains allows for 

conformational changes in the protein when it is in the precursor form, the intermediate form 

or the mature form with the hypusine conversion complete (Joao et al., 1995; Facchiano et 

al., 2001).  The N-terminal domain is folded in a β-roll architecture and bears the hypusine 

                                                 
2 The “*” designates the lysine that is converted to hypusine 
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residue in an exposed loop (Kim et al., 1998).  The C-terminal domain is organized in a β-

barrel structure with five β-strands.  The structure of eIF5A, and in particular the structure of 

the C-terminal domain, suggest that eIF5A may interact with nucleic acids, specifically 

RNA.  This notion is substantiated by several studies (Liu et al., 1997; Xu and Chen, 2001; 

Xu et al., 2004).  Also, hypusine is a 2-fold positively charged amino acid and resembles 

nucleic acid-binding polyamines. 

The discovery of more than one isoform of eIF5A was made first for chicken (Dou 

and Chen, 1989) then in the yeast species Saccharomyces cerevisiae (Schnier et al., 1991). 

The two eIF5A isoforms detected in chick embryo proved to be two distinct proteins with 

different polypeptide backbones that exhibited a high degree of identity (Wolff et al., 1992).  

It was initially believed that other species may only have one isoform, but with the 

availability of better sequencing, it is now known that there are at least two isoforms of 

eIF5A in all species, and they are not functionally redundant.  The only exception, is the two 

isoforms found in yeast, which both appear to regulate cell proliferation (Schnier et al., 

1991). 

eIF5A has a strong propensity for self-polymerization and association with other 

macromolecules in the absence of reducing agents (Kemper et al., 1976; Park et al., 1986; 

Chung et al., 1991).  Whether the dimeric form of eIF5A is important for its interaction with 

other members of the protein synthetic system or any of its other activities, is not known.  

Also, whether various isoforms of eIF5A interact with each other within a given species is 

unknown. 

2.1.2.2 Hypusine is synthesized by deoxyhypusine synthase and deoxyhypusine 

hydroxylase 

It has been established that the biosynthesis of hypusine occurs on eIF5A precursor 

protein through a two-step post-translational modification involving lysine and spermidine as 

precursors (Figure 2-1).  Several studies proved spermidine to be the specific precursor and 

not other polyamines (Park et al., 1981; Murphey and Gerner, 1987; Wolff et al., 1990; 

Chattopadhyay et al., 2003).  The exact structural input of lysine and spermidine to hypusine 
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formation was determined in a series of experiments using specific isotopically labelled 

precursors (Park et al., 1981; Park et al., 1984; Park et al., 1986).  Whether or not the isotope 

was incorporated into the hypusine indicated which portions of lysine and spermidine 

participate in hypusine formation.  The first step in hypusine formation involves the 

conversion of a specific lysine on precursor eIF5A protein to deoxyhypusine (Figure 2-1).  

The identification of deoxyhypusine as an intermediate in hypusine biosynthesis was made in 

Chinese hamster ovary cells that had been treated with metal chelators (Park et al., 1982).  

The formation of deoxyhypusine is catalyzed by the enzyme deoxyhypusine synthase (DHS; 

EC 1.1.1.249).  Whether a eukaryote contains two or more isoforms of eIF5A, there is only 

one way that hypusine is formed on the protein.  Furthermore, there is presently only one 

isoform of DHS known for all species annotated (Joe et al., 1995; Yan et al., 1996). 

DHS catalyzes a multistep reaction involving two substrates, spermidine and eIF5A 

precursor protein, and utilizes the cofactor, nicotinamide adenine dinucleotide (NAD).  DHS 

is highly specific for each substrate and cofactor.  The reaction involves an enzyme-imine 

intermediate formed between the 4-amino-butyl moiety from spermidine and the ε-amino 

group of Lys329 in the human enzyme (Wolff et al., 1997).  This intermediate is essential for 

the overall reaction. Upon addition of the eIF5A precursor, the butylamine moiety from the 

enzyme-imine intermediate is transferred to Lys50 of the eIF5A precursor and is reduced to 

form deoxyhypusine (Wolff et al., 1990; Park et al., 1993; Park et al., 1997; Wolff et al., 

1997).  The binding of eIF5A to DHS is not affected by truncation of either the N- (9 amino 

acids) or C-terminal (64 amino acids) half (Thompson et al., 2003), indicating that the 

interaction is specific to the middle of eIF5A. The native DHS enzyme exists as a tetramer of 

four identical subunits of 40kDa to 43kDa, depending on the species (Liao et al., 1998), 

although it binds only one molecule of eIF5A at a time (Lee et al., 1999).  There is 

significant sequence identity across diverse species of annotated DHS, and the enzyme has 

been shown to be essential for mammalian cell viability (Park et al., 1998). The amino acid 

sequence of DHS is highly conserved, especially in the C-terminal half, and the enzymes of 

different species share similar physical and catalytic properties, so much so that the enzymes 
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Figure 2-1: Post-translational modification of eIF5A 

Hypusination of eIF5A occurs post-translationally and involves two enzymatic steps.  In the 

first step, deoxyhypusine synthase catalyzes the NAD-dependent transfer of the butylamine 

moiety of spermidine to the ε-amino group of a specific lysine residue of the eIF5A precursor 

to form the intermediate deoxyhypusine.  In the second step, mediated by deoxyhypusine 

hydroxylase, the deoxyhypusine residue is converted to hypusine. Hypusinated eIF5A is 

believed to be the active form of the protein.  Schematic redrawn from Park et al. (1993). 



 

- 22 - 

 

 

 

 

 

 

 

Spermidine

NH2(CH2)3NHCH2CH2CH2CH2NH2

NH2

CH2

CH2

CH2

CH2

eIF5A
Intermediate

eIF5A precursor
Inactive form

NH2

(CH2)4

Lysine

Deoxyhypusine 
Synthase

Hypusine

eIF5A
Active form

Deoxyhypusine
Hydroxylase

Deoxyhypusine

NH
(CH2)4 (CH2)4

NH2

CH2

CH2

H-C-OH

CH2

NH

Spermidine

NH2(CH2)3NHCH2CH2CH2CH2NH2

NH2

CH2

CH2

CH2

CH2

eIF5A
Intermediate

eIF5A precursor
Inactive form

NH2

(CH2)4

Lysine

Deoxyhypusine 
Synthase

Hypusine

eIF5A
Active form

Deoxyhypusine
Hydroxylase

Deoxyhypusine

NH
(CH2)4 (CH2)4

NH2

CH2

CH2

H-C-OH

CH2

NH



 

- 23 - 

display cross-species activity with heterologous eIF5A precursors (Park et al., 1998; Wang et 

al., 2001). 

The content of deoxyhypusinated eIF5A is normally very low in cultured 

mammalian cells, and thus the conversion of this intermediate to hypusinated eIF5A does not 

appear to be rate-limiting (Beninati et al., 1990).  The NADH formed in the first step of the 

reaction is used for the hydroxylation at carbon 2 of the 4-aminobutyl portion of the 

deoxyhypusine residue required in the last step (Figure 2-1), which is mediated by 

deoxyhypusine hydroxylase (DHH; EC 1.14.99.29).  The activity of this enzyme was first 

demonstrated in vitro using crude lysates of cells that were grown with metal chelators.  

Several assays were developed for the hydroxylase (Abbruzzese et al., 1986, 1986), and it 

was partially purified from rat testis (Abbruzzese et al., 1986).  DHH is thought to be related 

to other hydroxylating enzymes and is effectively inhibited by mimosine.  Mimosine and 

mimosine-like compounds directly interact with the active site of DHH in vitro (Hanauske-

Abel et al., 1994; McCaffrey et al., 1995), though fast recovery of cellular DHH activity 

occurs after mimosine removal.  The gene encoding DHH has recently been sequenced (Park 

et al., 2006).  Inhibition of DHH by certain metal-chelating compounds suggests a role for a 

tightly-bound metal at the active site of the enzyme (Beninati et al., 1990; Wolff et al., 

1995). 

2.1.2.3 Hypusine is an essential amino acid for normal cell function 

Hypusine-containing eIF5A is thought to be involved in both cellular proliferation 

and cell death (Tome and Gerner, 1997; Caraglia et al., 2001; Caraglia et al., 2003).  eIF5A 

is proposed to be responsible for the translation of a subset of proteins that are required for 

G1/S transition in eukaryotes (Hanauske-Abel et al., 1995; Chan et al., 2002).  It is 

recognized that a large number of growth-related mRNAs are under strict post-transcriptional 

control, and that even small changes in the expression of a single translation factor can 

dramatically alter the balance in their production (Hershey and Miyamoto, 2000).  Most data 

concerning eIF5A as a regulator of proliferation have been collected from yeast.  Yeast have 

two isoforms of eIF5A that appear to be functionally redundant (Schwelberger et al., 1993).  

Double knock-out yeast eIF5A mutants are not able to form viable spores (Schnier et al., 
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1991); however, as long as one isoform remains functional the yeast grow normally 

(Schwelberger et al., 1993).  Double knock-out eIF5A mutations in yeast can also be rescued 

by the transient expression of human eIF5A (Schwelberger et al., 1993).  

More recently, literature pertaining to eIF5A has shifted into a new light, and its 

role in apoptosis has come to stage.  There are two schools of thought on the involvement of 

eIF5A in apoptosis.  The first is that eIF5A protects cells from apoptosis, and the second is 

that eIF5A promotes apoptosis.  These conflicting data and interpretations are possibly due to 

differences among experiments in the level of hypusination or perhaps lack of distinction 

between different isoforms, which may have different functions.  In Li et al. (2004), eIF5A 

over-expression induced p53-dependent apoptosis.  Further to this, the specific down-

regulation of eIF5A by small interfering RNA (siRNA) resulted in a reduced level of p53 

protein (Li et al., 2004).  Since then, it has been demonstrated that eIF5A is required for the 

proper expression of p53, a pro-apoptotic protein, in tumour necrosis factor (TNF)-α treated 

colon cancer cells and that eIF5A is rapidly translocated to the nuclear compartment during 

apoptosis (Taylor et al., submitted 2006).  Indeed, it has been reported that unhypusinated 

eIF5A is capable of nuclear localization (Jin et al., 2003), and that it is the unmodified eIF5A 

that accumulates during apoptosis (Tome et al., 1997; Tome and Gerner, 1997; Beninati et 

al., 1998; Caraglia et al., 2003).  Further evidence of eIF5A involvement in apoptosis was 

demonstrated by the protection effect that siRNA against eIF5A has on TNF-α and 

camptothecin-induced apoptosis of lamina cribosa cells isolated from human optic nerve 

heads (Taylor et al., 2004). 

Conversely, it has been demonstrated for fibroblast cells that depression of eIF5A 

activity, through DHS inhibitors, is correlated with induction of apoptosis induced by 

interferon (IFN)-α (Caraglia et al., 1999; Caraglia et al., 2001).  In addition, inhibition of the 

hypusine modification was found to protect human umbilical vein endothelial cells from 

serum starvation-induced apoptosis (Lee et al., 2002).  When leukemic cells were treated 

with ubiquitin-proteasome (UP) inhibitors, there was an observed accumulation of 

unmodified eIF5A (Jin et al., 2003).  Also in mammalian cells, excess putrescine 

accumulation inhibits the formation of hypusine in eIF5A and induces apoptosis (Tome et 
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al., 1997; Tome and Gerner, 1997; Bergeron et al., 1998).  It consistently appears that 

accumulation of the unmodified form of eIF5A through hypusination inhibition is correlated 

to apoptosis, whereas the specific down-regulation of eIF5A post-transcriptionally, with 

siRNA, protects the cells from apoptosis.  Under normal cell growth conditions, it is the 

translation of eIF5A mRNA that is probably the rate-limiting step in eIF5A expression.  

Bevec et al. (1994) first demonstrated that eIF5A mRNA in a number of human tissues and 

in various mammalian cell lines is constitutively expressed.  While the uncertainty within the 

literature as to whether eIF5A actively induces apoptosis continues, it is interesting to note 

that in plant systems there is a marked up-regulation of eIF5A and DHS during senescence of 

leaves and fruit (Wang et al., 2001), which is analogous to cell death/apoptosis in 

mammalian cells. 

It was observed fairly early in eIF5A research that blocking hypusine formation 

greatly altered cellular function.  Many studies used inhibitors of polyamine synthesis in 

addition to inhibitors of DHS or DHH.  Several mono-, di-, and polyamines that have 

structural features similar to spermidine inhibit DHS activity in vitro (Jakus et al., 1993).  It 

is well established that polyamines are required for cell growth, not just because of their 

involvement in the post-translation activation of eIF5A, but also in other more non-specific 

interactions with nucleic acids (Goyns, 1982; Cohen, 1998; Igarashi and Kashiwagi, 2000).  

Spermidine is the only polyamine that is required for hypusine formation (Gerner et al., 

1986; Wolff et al., 1990; Byers et al., 1993; Chattopadhyay et al., 2003).  A common 

inhibitor of polyamine synthesis, DFMO (α-difluoromethylornithine), has been used to 

observe the effects of polyamine depletion on cell proliferation as well as hypusination of 

eIF5A (Gerner et al., 1986; Park and Wolff, 1988; Chen and Chen, 1997; Parker and Gerner, 

2002).  Depletion of polyamines in the presence of DFMO was shown to inhibit hypusination 

of eIF5A and, accordingly, disrupt normal cell function (Parker and Gerner, 2002; Nishimura 

et al., 2005).  In addition, DFMO-mediated depletion of cellular polyamines was shown to 

inhibit cell proliferation in an eIF5A-independent manner (Nishimura et al., 2005). 

Mammalian cells treated with inhibitors of DHS or DHH also exhibit inhibition of 

growth. For example, when Chinese hamster ovary cells or neuroblastoma cells were treated 
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with DHS inhibitors, cytostasis was induced, but it proved to be reversible with removal of 

the inhibitors (Park et al., 1994; Chen et al., 1996).  DHS inhibitors normally used in these 

experiments include guanylated diamines such as N1-guanyl-1,7-diaminoheptane (GC7) and 

N1-guanyl-1,8-diaminooctane (Jakus et al., 1993).  GC7 is the most common and probably 

the most effective inhibitor of DHS available.  Treatment of cells with GC7, including 

archaebacteria, induces cell cycle arrest (Lee et al., 1995; Chen et al., 1996; Shi et al., 1996; 

Kruse et al., 2000; Lu et al., 2000; Lee et al., 2002; Caraglia et al., 2003).  Inhibitors of DHH 

also exert strong antiproliferative effects on various types of mammalian cells, including 

several human cancer cell lines (Hanauske-Abel et al., 1994; Lee et al., 1995; Csonga et al., 

1996; Andrus et al., 1998; Clement et al., 2002), though the efficacy of DHH inhibition 

varies with cell type, mainly due to uptake differences (Clement et al., 2002).  The metal 

chelator, mimosine, which is an inhibitor of DHH, has been shown to be an antiproliferative 

agent as well (Hanauske-Abel et al., 1994).  However, while mimosine inhibits DHH, it also 

inhibits other hydroxylases within the cell and may cause other secondary effects (Clement et 

al., 2002).   

2.1.3 eIF5A is a nucleocytoplasmic shuttle protein that has mRNA binding 
capabilities 

Studies with mammalian cells have indicated that most of the cellular eIF5A is 

localized to the cytoplasm and, therein, is found in two associations, one free and another 

bound to the endoplasmic reticulum (Shi et al., 1996).  It was recently demonstrated through 

tandem affinity purification and mass spectrometry that eIF5A interacts with translating 80S 

ribosomal complexes (Jao and Chen, 2005).  This interaction is sensitive to RNase and is 

dependent on the formation of hypusine (Jao and Chen, 2005).  Some of the cellular eIF5A 

interacts with the general nuclear export receptor, CRM1, and is shuttled between the nucleus 

and the cytoplasm (Rosorius et al., 1999).  eIF5A is also involved in protein-protein 

interactions with exportin-4.  The hypusine modification is part of the signal that allows 

eIF5A to access the exportin-4 pathway (Lipowsky et al., 2000).  These findings have raised 

new possibilities for the function of eIF5A as a nucleocytoplasmic shuttle protein of mRNAs, 

specifically subsets of mRNAs required for the execution of one or more specific cellular 
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functions. Of particular note in this context is the finding that eIF5A is far more abundant 

than other translation initiation factors and is similarly abundant to Ran, a protein involved in 

nuclear export.  This high abundance might explain why higher eukaryotic cells appear to 

employ a specialized pathway for eIF5A nuclear export.  Indeed, eIF5A could act as an 

adapter molecule between the general mRNA nuclear export pathway and the export of 

specific mRNAs required for immediate translation to execute rapid cellular responses. 

While it is not generally known which mRNAs eIF5A translocates, a few attempts 

at finding these targets have been made (Liu et al., 1997; Xu and Chen, 2001; Xu et al., 

2004).  In vitro studies have shown that eIF5A binds to Rev response element RNA of HIV 

and U6 snRNA (Liu et al., 1997), and that hypusine is required for a sequence-specific 

interaction of eIF5A with mRNA (Xu and Chen, 2001).  Xu et al. (2004) were successful at 

cloning some eIF5A mRNA binding targets through differential display PCR from HeLa 

cells and were able to demonstrate corresponding electrophoretic mobility-shifts.  However, 

most of the clones were not characterized genes and some were not annotated.  Another 

difficulty in finding eIF5A targets is that, unlike DNA-binding proteins, many RNA-binding 

proteins target structural elements, such as hairpins, bulges and stem-loops, instead of 

defined sequences (Varani, 1998). 

2.1.4 Role of eIF5A in human diseases 

It has been reported that the expression of eIF5A is highly correlated to several 

pathways involved in human diseases.  Not only is there a correlation to disease state, but 

also to inflammation and cell death (Bevec et al., 1994; Bevec et al., 1996; Kruse et al., 

2000; Boone et al., 2004; Taylor et al., 2004). 

2.1.4.1 HIV 

The unexpected finding that eIF5A is a cellular cofactor for the HIV-1 Rev trans-

activator protein has provided a target for retroviral therapy as well as an interesting 

opportunity for exploring further the function of eIF5A in vivo.  Rev is a trans-regulator 

protein of HIV-1 which acts at the post-transcriptional level by mediating the transport of 

viral mRNAs from the nucleus to the cytoplasm (Bevec and Hauber, 1997).  Rev is essential 
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for the expression of HIV-1 structural proteins and enzymes required for production of 

progeny virions.  Ruhl et al. (1993) demonstrated that nuclear export of Rev is dependent on 

the nucleocytoplasmic shuttling properties of eIF5A.  Lymphocytes with mutated eIF5A 

were not able to replicate HIV-1; though the eIF5A mutant protein was able to bind Rev, it 

was not able to translocate it out of the nucleus resulting in blockage of replication (Bevec et 

al., 1996).  Moreover, microinjection studies have demonstrated that antibodies directed 

against eIF5A specifically block the nucleocytoplasmic viral mRNA translocation mediated 

by HIV-1 Rev (Schatz et al., 1998; Elfgang et al., 1999).  Inhibition of hypusination also 

blocks eIF5A translocation out of the nucleus, and this finding has lead to large-scale testing 

of inhibitors of DHS (Sommer et al., 2004) and DHH as putative antiretroviral drugs (Andrus 

et al., 1998).  The DHH inhibitor, mimosine, was shown to suppress replication of HIV-1 

and, in a concentration-dependent manner, to engender a reduction of polysomal HIV-1 

mRNA (Andrus et al., 1998).  While DHS and DHH inhibitors could be effective means of 

inhibiting HIV-1 replication in vitro, these compounds are quite toxic to humans, and thus a 

more specific non-toxic inhibitor of eIF5A would be a better therapy for HIV-1 positive 

patients. 

2.1.4.2 Cancer 

The specific role that eIF5A plays in proliferation and apoptosis of cancer cells is 

somewhat confusing in light of contradictory results and interpretations in the literature.  The 

confusion appears to rest mainly in the lack of a distinction between the isoforms of 

mammalian eIF5A and their functions.  Specifically, since yeast eIF5A isoforms have been 

demonstrated to be functionally redundant, the same was assumed about mammalian eIF5A 

isoforms (Schnier et al., 1991).  Only recently have the two human eIF5A isoforms been 

described as functionally distinct (Clement et al., 2003).  Indeed, it is now known that the 

human isoforms, HseIF5A-1 and HseIF5A-2, have unique expression patterns and correlate 

with different cellular events.  It would appear that HseIF5A-1 is ubiquitously expressed at 

the mRNA level (Bevec et al., 1994) and is associated with the regulation of apoptosis 

(Clement et al., 2003), whereas HseIF5A-2 is associated with the regulation of proliferation 

and has a role in the development of malignant phenotypes of certain cancers (Clement et al., 
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2003).  Indeed, it has been proposed that HseIF5A-2 is an oncogene, as it is located at 3q26 

within a region frequently amplified in ovarian cancer and over-expressed in a majority of 

ovarian tumours and ovarian cancer cell lines (Guan et al., 2001).  eIF5A expression has also 

been detected in lung adenocarcinomas.  Through immunohistochemical analysis, elevated 

eIF5A protein expression was detected in tumours showing poor differentiation, although this 

increase in protein was not correlated with a corresponding increase in eIF5A mRNA (Chen 

et al., 2003).  This suggests that eIF5A may be post-transcriptionally regulated. 

The observation that a decrease in cellular hypusine levels inhibits the growth of 

mammalian cells has lead to the proposal that a potential target for anti-cancer agents is 

disruption of the post-translational modification of eIF5A.  Studies with epidermoid KB cells 

revealed a reduction in eIF5A, measured by Western blot, when the cells were induced to 

undergo apoptosis by treatment with IFN-α (Caraglia et al., 2003).  Further to this, treatment 

with the DHS inhibitor, GC7, resulted in growth inhibition of cells treated with IFN-

α (Caraglia et al., 2003).  These and other observations suggest a critical role for eIF5A in 

the modulation of cell proliferation and cell death in cancer cells.  For example, loss of 

hypusinated eIF5A in heat-stressed human pancreatic cancer cells (MIA PaCa-2) was 

implicated as an important factor in the stress-induced death of MIA PaCa-2 cells (Takeuchi 

et al., 2002). 

2.1.4.3 Regulation of the immune system 

The immune system requires complex regulation of gene expression for normal 

function.  It has been demonstrated that eIF5A plays a part in the up-regulation of 

inflammatory cytokines (Boone et al., 2004), is involved in the stimulation of T cells (Park et 

al., 1981; Cooper et al., 1982; Bevec et al., 1994) and is essential for the maturation of 

dendritic cells (Kruse et al., 2000).  Only low levels of eIF5A mRNA were detectable in 

unstimulated peripheral blood mononuclear cells (PBMCs) derived from healthy human 

donors (Bevec et al., 1994), but the levels were high in differentiated human tissue, 

stimulated PBMCs and PBMCs isolated from HIV patients.  Specifically, eIF5A gene 

induction was easily achieved by stimulation with PHA and PMA as well as with the more T-

cell-specific triggers, anti-CD3 mAb, anti-TCR a/b mAb, a combination of anti-CD3 and 
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anti-CD28 mAbs, and superantigen SEA (Bevec et al., 1994).  These data demonstrate that 

the eIF5A gene is strongly induced in human PBMCs by T-lymphocyte-stimulating agents, 

and it is hypothesized to be involved in the transport of specific mRNAs encoding proteins 

required for effective T-cell immune responses or proliferation.  Further to this, when eIF5A 

is down-regulated by siRNA in PBMCs, the up-regulation of TNF-α in response to 

stimulation with PMA is reduced by at least half (Boone et al., 2004).  Also, down-regulation 

of eIF5A by siRNA in U937 cells results in the down-regulation of toll-like receptor 4 (TLR-

4) and TNF receptor 1 (TNFR1) (Boone et al., 2004).  TLR-4 and TNFR1 are involved in the 

induction of proinflammatory cytokines including TNF-α and interleukin-1β. 

The expression of eIF5A significantly increases during dendritic cell maturation, 

and hypusine formation appears to be essential for this process (Kruse et al., 2000).  CD83 is 

a specific marker that is up-regulated at the very end of dendritic cell maturation and cannot 

be detected on immature dendritic cell precursors.  Kruse et al. (2000) demonstrated that the 

up-regulation of CD83 is closely mirrored by the expression pattern for eIF5A, and that the 

inhibition of hypusine formation by the DHS inhibitor, GC7, resulted in inhibition of CD83 

cell surface expression.  Interestingly, CD83 mRNA still accumulated within the dendritic 

cell precursors, but remained within the nucleus.  In maturing dendritic cells, where eIF5A is 

active, CD83 mRNA is localized in the cytoplasm available for translation (Kruse et al., 

2000), presumably by reason of the nucleocytoplasmic shuttling properties of eIF5A. 

2.1.5 The plant isoforms of eIF5A 

A plant protein with a molecular weight of about 18 kDa that proved capable of  

incorporating radioactivity from spermidine was first identified in tobacco tissue culture 

(Apelbaum et al., 1988).  Almost twenty years later, the role of eIF5A and DHS in plants is 

still an area that is largely unexplored with only a handful of publications dedicated to this 

topic.  DHS and eIF5A isoforms have been isolated and partially characterized for several 

plant species including Senecio vernalis (Ober et al., 2003), rice (Mehta et al., 1991; Mehta 

et al., 1994; Chou et al., 2004), tomato (Wang et al., 2001; Wang et al., 2005), Arabidopsis 

(Wang et al., 2001; Wang et al., 2003), tobacco (Chamot and Kuhlemeier, 1992; Ober and 
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Hartmann, 1999), maize (Dresselhaus et al., 1999), and rubber tree Hevea brasiliensis (Chow 

et al., 2003).  The gene for DHH has not yet been characterized in plants. 

It has been demonstrated in rice (Chou et al., 2004) and in tomato (Wang et al., 

2001) that there are more than two isoforms of eIF5A in plants.  It would appear through 

preliminary experimental data, as well as EST localization data, that plants have an isoform 

of eIF5A that is specific for cell growth and several isoforms that are specific for different 

types of cell death.  While there are more than two isoforms of eIF5A in plants, there is still 

only one isoform of DHS in each species examined to date, which presumably services all 

the isoforms of eIF5A.  In fact, when DHS expression is constitutively suppressed by 

antisense, there are several phenotypes including delayed natural leaf senescence, delayed 

bolting, increased rosette leaf and root biomass and enhanced seed yield (Wang et al., 2003).  

It is possible that these pleiotropic effects are due to inhibition of hypusine formation on 

different isoforms of eIF5A.  These pleiotropic effects are reduced when DHS is down-

regulated using a leaf specific Rubisco promoter (Jamal, 2004) or when specific eIF5A 

isoforms are down-regulated (Gatsukovich, 2004; Tshin, 2004). 

It is evident that DHS and eIF5A have central roles in development in plants 

(Dresselhaus et al., 1999; Wang et al., 2003; Chou et al., 2004; Wang et al., 2005).  The 

finding that eIF5A is expressed in senescing tissues, a developmental phase that encompasses 

programmed cell death, was very interesting as it was established at a point in time when, 

according to the literature, eIF5A was only implicated in cell proliferation.  Further to this, 

antisense suppression of DHS was shown to inhibit natural leaf senescence in Arabidopsis 

thaliana (Wang et al., 2003).  That there is differential expression of genes encoding eIF5A 

also indicates that in plants the isoforms are not functionally redundant (Chamot and 

Kuhlemeier, 1992; Wang et al., 2001; Chow et al., 2003; Chou et al., 2004). 

Up-regulation of eIF5A occurs in plant tissues undergoing cell proliferation 

(Dresselhaus et al., 1999), stressed tissues (Wang et al., 2001; Wang et al., 2003; Chou et al., 

2004; Han et al., 2004) and senescing tissues (Wang et al., 2001; Wang et al., 2003; Wang et 

al., 2005).  The programmed cell death that occurs prematurely due to stress has been shown 

to require its own subset of mRNAs, distinct from those required for programmed cell death 
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accompanying senescence.  It is thus plausible that these subsets of mRNA are translocated 

by different isoforms of eIF5A.  This could also be true for subsets of mRNA required for 

cell proliferation or cell growth.  For Arabidopsis thaliana (At), three isoforms of eIF5A have 

been annotated in GenBank.  Wang et al. (2001) demonstrated that AteIF5A-1 is up-regulated 

during natural leaf senescence, as it was cloned from a senescing leaf library.  The results of 

the present study indicate that the other two isoforms of AteIF5A play a role in cell death 

associated with wounding  (AteIF5A-2) and cell expansion (AteIF5A-3) (Thompson et al., 

2004).  This information has been gleaned through a detailed analysis of the expression 

patterns of the isoforms of AteIF5A and also through analysis of the phenotypes obtained by 

over-expression of AteIF5A isoforms in planta. 
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2.2 Materials and Methods 

2.2.1 Sequence alignment of eIF5A 

Sequences for eIF5A from Homo sapiens (Hs; human), Saccharomyces cerevisiae 

(Sc; yeast), Tetraodon nigroviridis (Tn; spotted green pufferfish), Arabidopsis thaliana (At), 

Lycopersicon esculentum (Le; tomato) and Methanococcus jannaschii (Mj) were found 

through the Entrez Homepage (http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi).  Most, if 

not all animals have at least two isoforms of eIF5A.  Archaebacteria such as Mj only have 

one isoform.  Plants tend to have at least three isoforms of eIF5A.  All species however only 

have one copy of DHS (Joe et al., 1995; Yan et al., 1996).  The protein sequences of Hs1 

(AAH01832), Hs2 (AAF98810), Sc1 (CAA89575), Sc2 (CAA39693), Tn1 (CAG00705), 

Tn2 (CAF89591), At1 (AAG53646), At2 (AAL06956), At3 (AAL31161), Le1 (AAG53647), 

Le2 (AAG53648), Le3 (AAG53649), Le4 (AAG53650), and Mj (AAB99231) were aligned 

using T-COFFEE at http://www.ch.embnet.org/software/ TCoffee.html.  T-COFFEE is a 

multiple sequence alignment program that combines the information from alignment 

programs DIALIGN and CLUSTALW to produce a new multiple sequence that has the best 

agreement within all these methods (Notredame et al., 2000).  The resulting sequence 

alignment was colour coded to indicate which amino acids in the sequence were identical 

(red), which were conserved substitutions (orange) and which were semi-conserved 

substitutions (yellow) in all of the aligned sequences. Amino acids that were not highlighted 

with colour did not exhibit these degrees of conservation in all sequences. 

The degree of similarity and identity for all the aligned sequences listed above was 

determined using the BLAST 2 Sequences tool available at http://www.ncbi.nlm.nih.gov/ 

blast/bl2seq/wblast2.cgi.  This tool uses the BLAST engine for local alignment of two given 

sequences (Tatusova and Madden, 1999).  The program that was used was blastp with matrix 

BLOSUM62 with all the settings at default (open gap 11; extension gap 1; expect 10; word 

size 3; filter on).  The identities and similarities for each pair-wise alignment obtained with 

these settings are summarized in Table 2-1 in the Results section. 
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2.2.2 Arabidopsis thaliana eIF5A isoforms 

The entire genome sequence of Arabidopsis thaliana is available on GenBank.  The 

first Arabidopsis thaliana (At) eIF5A was sequenced and its hypusination proven 

experimentally by Wang et al. (2001).  This AteIF5A was isolated from a senescing leaf 

library, and was similar in sequence to tomato eIF5A (LeeIF5A-4).  Since it was the first of 

the AteIF5As cloned in our lab, it was named AteIF5A-1.  The sequence of AteIF5A-1 was 

used to BLAST against the Arabidopsis genome, and the other two isoforms were thus 

identified.  These were termed AteIF5A-2 and AteIF5A-3.  By mapping these sequences onto 

chromosome 1 using the mapping tool available at 

http://www.arabidopsis.org/jsp/ChromosomeMap/tool.jsp, it was evident that these AteIF5A 

genes occur in order along the length of the chromosome where AteIF5A-1 has the locus tag 

of At1g13950, AteIF5A-2 has the locus tag of At1g26630, and AteIF5A-3 has the locus tag of 

At1g69410.  The corresponding genomic, protein, and coding sequences/mRNA were found 

and aligned for AteIF5A-1 (AE005172, AAG53646, AY117272), AteIF5A-2 (T24P13.1, 

AAL06956, AY084827), and AteIF5A-3 (AC018364, AAL31161, AY087040). 

2.2.3 Protein expression of AteIF5A  

2.2.3.1 Antibody production and purification 

AteIF5As are highly identical at the amino acid level, especially at the N-terminal 

region and the central region of the proteins (See Results Figure 2-4).  In order to obtain 

antibodies that are isoform specific, peptides were designed against regions in the isoforms of 

AteIF5A that appeared to be unique.  An additional cysteine residue was added to each 

peptide at the N-terminus for conjugation with Keyhole Limpet Hemocyanin (KLH; Sigma).  

The sequences used were: CNDDTLLQQIKS for AteIF5A-1, CTDDGLTAQMRL for 

AteIF5A-2 and CTDEALLTQLKN for AteIF5A-3.  When these sequences were submitted to 

protein BLAST (short nearly exact sequences; limited by Arabidopsis thaliana; expected 

number 20000; word size 2; Matrix PAM90; Gap cost 91), the significant sequences that 

were found in the database matched only the respective AteIF5A.  The peptides were 

synthesized at the University of Western Ontario Peptide Synthesis facility. 
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The carrier protein, Keyhole Limpet Hemocyanin (Sigma; KLH), was conjugated to 

the N-terminal cysteine of the peptide using m-maleimidobenzoyl-N-hydroxysuccinimide 

ester (MBS) according to Drenckhahn et al. (1993) and Collawn and Patterson (1999).  

Dissolved KLH (10mg/mL in water) was mixed dropwise with dissolved MBS (10mg/mL in 

dimethylformamide) and stirred at room temperature for 30 minutes.  The MBS-KLH 

complex was separated from the free MBS by a Sephadex 25 column.  The fractions 

collected with the activated MBS-KLH, identified as a peak in absorbance at 280nm, were 

pooled, and the pH was adjusted to 7.4.  Approximately 1mg of each of the AteIF5A peptides 

was added to 1mg of MBS-KLH complex.  Under nitrogen, the peptides were allowed to 

conjugate to the MBS-KLH complex for 3 hours at room temperature with gentle rotation.  

The resulting AteIF5A peptide-KLH conjugates were dialyzed against phosphate buffered 

saline (PBS) at 4oC overnight. 

The antibodies were raised in rabbits housed in the animal care facility in the 

Department of Biology according to the University of Waterloo’s Animal Care Standard 

Operating Procedures.  The initial immunization was performed with a peptide conjugate 

emulsion in Freund’s complete adjuvant (mixed 1:1; Sigma), and the subsequent injections 

consisted of peptide conjugate emulsion in Freund’s incomplete adjuvant (mixed 1:1; 

Sigma).  The rabbits were injected four times at two-week intervals with the linked peptides.  

Two weeks after the final injection, the rabbits were exsanguinated, and the antisera were 

amassed through clotting of the collected blood. 

Antibodies were column-purified using SulphoLink Coupling Gel (Pierce) as 

described by the manufacturer with some changes.  The peptides were dissolved in 1mL of 

equilibration buffer containing 20% DMSO and 4M urea as there were some solvation 

problems in equilibration buffer alone.  Also the A280 readings were not very accurate for 

these particular peptides, as they were very small and contained few amino acids with double 

bonds.  Accordingly, fractions collected from the column were checked by dot blot 

hybridizations against peptide dotted on nitrocellulose membranes in order to confirm the 

coupling efficiency of the peptides to the column.  For the affinity purification step, the 

serum collected from the final bleed was added directly (1mL at a time) to the column and 
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allowed to incubate at room temperature for 1 hour.  The purified antibody was eluted by 

applying 5 column volumes of elution buffer (0.1M glycine, pH 2.8).  Fractions of 0.5mL 

were collected and neutralized by adding 25μL of 1M Tris, pH 9.5.  Elution was monitored 

by A280, and the fractions with a high reading were pooled and dialyzed overnight against 3 

litres of PBS.  The purified antibodies were aliquoted and stored at -20oC.  The titre of the 

purified antibody was determined using some of the remaining peptide for dot blots, and 

dilutions were optimized through Western blotting of tissues over-expressing the 

corresponding AteIF5A.  The following dilutions were used for Western blotting: AteIF5A-1 

(1:100), AteIF5A-2 (1:500), and AteIF5A-3 (1:100).  The following dilutions were used for 

confocal microscopy: AteIF5A-2 (1:50) and AteIF5A-3 (1:25). 

2.2.3.2 Plant material 

2.2.3.2.1 Plants grown in soil 

Seeds of Arabidopsis thaliana, ecotype Columbia, were grown in Promix BX soil 

(Premier Brands, Brampton, ON, Canada) in flats containing 32 cells.  Freshly seeded flats 

were maintained at 4oC for 2 days and then transferred to a growth chamber operating at 

22oC with 16-h light/ 8-h dark cycles.  Lighting at 150 μmol radiation m-2.s-1 was provided by 

cool-white fluorescent bulbs.  Whole rosettes were collected at one week intervals from 2-

weeks to 7-weeks of age for Western blotting.  Flowers were also collected at various stages 

defined within the Results section for Western blotting.  As well, 3-week-old rosette leaves 

were collected for genomic DNA isolation for PCR.  All tissues were flash-frozen in liquid 

nitrogen and were either used immediately or stored at -80oC until required. 

2.2.3.2.2 Plants grown on MS media plates 

Approximately 100mg of Arabidopsis thaliana, ecotype Columbia, seed was 

surface sterilized in 1% (v/v) sodium hypochlorite and 0.1% (v/v) Tween 80 for 10 minutes 

on a rotator.  The seeds were washed 4 times with sterilized water before being plated onto 

sterile, ½ Murashige and Skoog Basal medium (MS; 2.2g/L) supplemented with 1% (w/v) 

sucrose, 0.5g/L 2-[N-Morpholino] ethanesulfonic acid (MES) and 0.7% (w/v) bacteriological 

agar (Murashige and Skoog, 1962).  The plated seeds were maintained at 4oC for 2 days in 
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the dark to synchronize germination, and then transferred to a growth chamber operating at 

22oC with 16-h light/ 8-h dark cycles.  Seedlings were collected 2 to 8 days after 

germination, flash frozen in liquid nitrogen and stored at -80oC until used for protein 

extraction for Western blotting. 

2.2.3.2.3 Infection of Arabidopsis thaliana rosette leaves with Pseudomonas syringae 

2.2.3.2.3.1 Inoculum preparation 

Virulent Pseudomonas syringae pv. Tomato DC3000 (virulent Pst DC3000; 

containing pVSP61), a kind gift from Dr. Robin Cameron, McMaster University, Hamilton, 

Ontario, was used to induce a disease response in Arabidopsis thaliana plants.  Bacterial 

cultures were grown on a shaker using King’s B media (Whalen et al., 1991) containing 50 

μg/mL kanamycin at 28oC until the cultures reached mid-log growth (OD600=0.6 to 1.0).  The 

cultures were centrifuged at 2500g for 10 minutes in a swinging bucket rotor, and the 

bacterial pellets were resuspended in 5mL 10mM MgCl2.  The inoculum was made by 

diluting the bacteria to 106 colony forming units (CFU)/mL, where, OD600=0.002 of Pst 

DC3000 is 1 × 106 cfu/mL.   

2.2.3.2.3.2 Inoculation procedure 

Seeds of Arabidopsis thaliana ecotype Columbia were sown on Promix BX soil 

(Premier Brands, Brampton, ON, Canada) in flats containing 32 growth cells.  The seeded 

flats were maintained at 4oC for 2 days and transferred to a growth chamber with a 

photoperiod of 16h light/8h dark.  Rosette leaves of 4-week-old plants were infected with the 

virulent strain of Pst DC3000.  The abaxial surface of the rosette leaves was pressure 

infiltrated with inoculum using a 1mL syringe without a needle until the leaf was water-

soaked and the apoplast filled.  Plants were given one of two treatments: mock-inoculation 

with 10mM MgCl2 or virulent Pst DC3000 (106 CFU/mL in 10mM MgCl2).  The inoculated 

leaves were harvested at 0h, 24h, 48h, and 72h after treatment.  Mock infected leaves and 

leaves infected with virulent Pst DC3000 were frozen in liquid nitrogen and stored at -80oC 

for further analysis or fixed for confocal analysis (see Section 2.2.3.4.1). 
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2.2.3.2.4 Wounding Arabidopsis thaliana plants with a haemostat 

Arabidopsis thaliana plants were grown to 3.5-weeks of age under normal growth 

chamber conditions described above.  Rosette leaves were wounded by crushing with a 

haemostat alongside the midvein (Orozco-Cardenas and Ryan, 1999).  The wounded leaves 

were collected at 0h, 2h, 4h, 5h, 6h, 7h, and 8h after wounding.  All tissue was flash-frozen 

in liquid nitrogen and stored at -80oC until used for protein extraction for Western blotting. 

2.2.3.3 Protein fractionation and Western blotting 

Tissues were homogenized in buffer (~0.5g/mL; 50mM EPPS, pH 7.4, 0.25M 

sorbitol, 10mM EDTA, 2mM EGTA, 1mM DTT, 10mM amino-n-caproic acid, 1:100 v/v 

Sigma Protease Inhibitor Cocktail for plant tissues) in an Eppendorf tube with an Eppendorf 

tube-sized pestle, or in a small mortar with a small pestle.  Protein was quantified according 

to Ghosh et al. (1988).  SDS-PAGE was performed on Mini protein Dual Slab cells (BioRad, 

Mississauga, Ontario), and the gels (12% polyacrylamide) were stained with Coomassie 

brilliant blue R250 (Fairbanks et al., 1971) or transferred to polyvinyldiene difluoride 

(PVDF) membranes using the semi-dry transfer method (semi-dry transfer cell, Bio-Rad, 

Hercules, CA) and stained after transfer.  The blots were blocked for 30s in 1mg/mL 

polyvinyl alcohol (Miranda et al., 1993) and for 1 hour in PBS containing 0.1% (v/v) Tween 

20 and 5% (w/v) powdered milk.  Primary antibody (purified antibody against the 

corresponding AteIF5A) was diluted in PBS containing 0.1% (v/v) Tween 20 and 1% (w/v) 

powdered milk.  Antigen was visualized using secondary antibody coupled to alkaline 

phosphatase, made in goat against rabbit IgG (Bioshop, Burlington, Ontario) and the 

phosphatase substrates, NBT and BCIP (BioRad, Mississauga, ON). 

2.2.3.4 Confocal Microscopy 

2.2.3.4.1 AteIF5A-2 expression and TUNEL 

Discs of leaves that had either been inoculated 24h and 72h previously with virulent 

Pst DC3000 strain and uninfected leaves from line 2-3F (see Section 2.2.6.1) that over-

expressed AteIF5A-2 were stained for DNA fragmentation by Terminal deoxynucleotidyl 

transferase (TdT)-mediated dUTP Nick-End Labelling (TUNEL) and immunostained for 
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AteIF5A-2 expression.  The tissue discs were cut from the centre portion of the leaves with a 

cork borer (0.4 cm diameter).  The tissue samples were immediately vacuum-infiltrated with 

fixing buffer (4% paraformaldehyde in PBS) for 10 minutes.  Fixed samples were used right 

away for TUNEL staining and immunolocalization of AteIF5A-2.  First, the samples were 

labelled using the Promega DeadEnd™ Fluorometric TUNEL System.  Briefly, the tissue 

segments were washed in PBS several times at room temperature to remove the 

paraformaldehyde and permeablized in 1% Triton X in PBS for 15 minutes.  The tissue 

segments were then covered with 100μL of equilibration buffer and allowed to equilibrate for 

5-10 minutes.  The rTdT reaction mixture was prepared (50 μL per leaf segment).  The tissue 

segments were blotted to remove excess equilibration buffer, covered with the rTdT reaction 

mixture and placed on slides in a humidified chamber kept at 37oC for 60 minutes to allow 

the tailing reaction to occur.  All steps from this point were light sensitive and were thus 

performed in the dark.  The reaction was terminated by washing the tissue in 2X SSC for 15 

minutes.  The samples were then washed with PBS twice for 10 minutes at room temperature 

before incubation with primary antibody against AteIF5A-2 (1:50) in 1% BSA (v/w) in PBS 

for two hours.  The samples were washed three times for 10 minutes each in a relatively large 

volume of PBS and then incubated with goat anti-rabbit secondary antibody conjugated to 

TRITC [Sigma; 1:100 in 1% BSA (w/v) in PBS] for one hour.  After the secondary antibody 

incubation, the samples were washed three times for 10 minutes each in PBS and then 

mounted on slides in 70% glycerol.  For optimal visualization by confocal microscopy #1.5 

cover slips were used.  The samples were observed using a Zeiss LSM 510 confocal laser 

scanning microscope attached to an axiovert-inverted microscope.  This is an optimized 

protocol, obtained by testing several variations. 

2.2.3.4.2 AteIF5A-3 expression 

Seedlings germinated under etiolating conditions on sterile filter paper with sterile 

water were used for observing the expression patterns of AteIF5A-3.  The seedlings were 

fixed by vacuum infiltration of 4% paraformaldehyde for 10 minutes.  They were washed 4 

times in PBS, labelled with primary (AteIF5A-3) antibody (1:25) and then secondary 
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antibody conjugated with FITC.  Subsequent washes and mounting on slides were as 

described in section 2.2.3.4.1. 

2.2.4 Production of transgenic Arabidopsis thaliana plants over-expressing 
AteIF5A-1, AteIF5A-2 or AteIF5A-3 

2.2.4.1 Primer design for amplification of the AteIF5A isoforms 

AteIF5A isoforms are highly similar in the coding region, but have distinct 

untranslated regions.  Plants over-expressing AteIF5A-1 were produced by Zhongda Liu (J. 

E. Thompson’s laboratory) using the coding region of the cDNA, amplified from a plasmid 

containing the cDNA cloned by Tzann-Wei Wang (J. E. Thompson’s laboratory).  Plants 

over-expressing AteIF5A-2 and AteIF5A-3 were created using the entire gene sequence 

amplified from genomic DNA, from the approximate beginning of the 5`UTR and to the end 

of the 3`UTR.  The 5`UTR and 3`UTR were identified using EST sequence information and 

genomic sequence information in the GenBank database.  Unique restriction sites3 were 

added to the ends of the primers for ligation in the sense orientation behind the 35S2 

promoter in the pKYLX71 binary vector (Figure 2-2).  For AteIF5A-1, the upstream primer 

was 5` GAAGCTCGAGGCTGCAACCATGTCC 3`, and the downstream primer was 5` 

GGGGAGCTCTTGTTAGTCTCACTTGG 3`.  For AteIF5A-2 the upstream primer was 5` 

CTCGAGTGCTCACTTCTCTCTCTTAGG 3` and the downstream primer was 5` 

GAGCTCA AGAATAACATCTCATAAGAAAC 3`.  The upstream primer for AteIF5A-3 

was 5` CTCGAGCTAAACTCCATTCGCTGACTTCGC 3` and the downstream primer was 

5` GAGCTCTAGTAAATATAAGAGTGTCTTGC 3`.  The restriction sites that were added 

to the primers for all AteIF5A constructs were XhoI and SacI.  The PCR fragment from 

AteIF5A-1 cDNA was digested and ligated into pKYLX71-35S2 binary vector directly.  The 

PCR fragments of AteIF5A-2 and AteIF5A-3 amplified from genomic DNA were first 

subcloned into pGEM®-T Easy Vector and then into pKYLX71-35S2 binary vector. 

 

                                                 
3 The restriction sites are indicated as underlined, and the start and stop codons of AteIF5A-1 are indicated in 
bold. 
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Figure 2-2: Map of binary vector, pKYLX71-35S2 

The binary vector, pKYLX71-35S2, contains tetracycline resistance (Tetr) for transformant 

selection in E. coli and A. tumefaciens, and kanamycin resistance (Kanr) for seed 

transformant selection on MS plates containing kanamycin.  The origin of replication (pRK2 

ori) permits the plasmid to be maintained in A. tumefaciens.  The 35S promoter is a strong 

constitutive promoter isolated from cauliflower mosaic virus; the vector contains 2 

consecutive copies (35S2).  The multiple cloning site (MCS) contains several unique 

restriction enzyme (RE) sites for specific directional ligation of an insert behind the 35S2 

promoter.  rbcS3` is the 3` end containing the terminator sequence of ribulose-1,5-

bisphosphate carboxylase small subunit gene.  The left (TL) and right (TR) borders define the 

T-DNA region that is integrated into the genome during plant transformation.   
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2.2.4.2 Isolation of genomic DNA from Arabidopsis thaliana 

Genomic DNA was isolated from 3-week-old rosette leaf tissue.  The tissue was 

homogenized in extraction buffer (200mM Tris pH 7.5, 250mM NaCl, 25mM EDTA, 0.5% 

SDS), and the resulting homogenate was vortexed for 15 seconds.  The debris was removed 

by centrifugation in a microcentrifuge at maximum speed for 1 minute.  The supernatant was 

collected and mixed in a 1:1 ratio with isopropanol, vortexed and left at room temperature for 

2 minutes.  A pellet was collected by centrifugation in a microcentrifuge at maximum speed 

for 5 minutes, washed with 70% ethanol and vacuum-dried for 2 minutes.  The dried pellet 

was resuspended in water, chloroform (1:1) was added, and the sample was vortexed.  After 

centrifugation in a microcentrifuge at maximum speed for 2 minutes, the top layer was 

collected and treated with 20μL salt (3M sodium acetate) and 2 volumes of ethanol for 

precipitation at -20oC for 30 minutes.  The purified genomic DNA was then centrifuged at 

maximum speed for 30 minutes in a microcentrifuge, dried and resuspended gently in water 

for PCR.  

2.2.4.3 Cloning of AteIF5A-2 or AteIF5A-3 into pGEM®-T Easy Vector 

PCR was performed with the primers described above (Section 2.2.4.1).  The PCR 

reaction mixture contained 1x Taq polymerase reaction buffer, 1U Taq polymerase, 0.2mM 

dNTP, 2mM MgCl2, and 15pmols of each specific primer.   The reaction was initiated with a 

hot start at 95oC for 10 minutes, and the first cycle consisted of 1 minute denaturing 

temperature of 95oC, 1 minute annealing temperature of 55oC, and 1 minute extension 

temperature of 72oC.  The following 29 cycles consisted of the same denaturing, annealing 

and extension durations and temperatures.  The final extension at 72oC was for 10 minutes.  

The PCR products were separated by 1% agarose gel electrophoresis, cut out and retrieved 

by Millipore Ultrafree-DNA for DNA Extraction from Agarose spin columns (Millipore 

Corporation, Bedford, MA) according to manufacturer’s directions. 

Purified PCR products of AteIF5A-2 or AteIF5A-3 were ligated into pGEM®-T Easy 

Vector according to directions provided by Promega.  Briefly, PCR products were mixed in a 

3:1 ratio with pGEM®-T Easy Vector and 3 Weiss Units T4 DNA ligase in Rapid Ligation 
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Buffer [30mM Tris-HCl, 10mM MgCl2, 10mM DTT, 1mM ATP, and 5% polyethylene 

glycol (MW8000, ACS Grade) pH 7.8] provided in the Promega pGEM®-T Easy Vector 

System Kit (Promega Corporation, Madison WI).  The ligation reaction was incubated 

overnight at 15oC and transformed into competent E. coli DH5-α cell suspension (Kushner, 

1978).  The transformation mixture was first incubated on ice for 30 minutes, then heat-

shocked for 90 seconds at 42oC and allowed to recover at 37oC for 1 hour after the addition 

of 1mL 2xYT broth.  The transformed cells were pelleted, resuspended in a small volume of 

2x YT broth and plated on agar plates containing 50μg/mL ampicillin for selection.  Only 

transformants are able to grow on the ampicillin-containing plates as the pGEM®-T Easy 

Vector provides ampicillin resistance to the cells.  Transformants were selected and screened 

for the PCR product insert ligated into the pGEM®-T Easy Vector.   

Colonies that grew on selection media were grown in 5mL 2xYT broth containing 

50μg/mL ampicillin overnight at 37oC.  The recombinant plasmids from the selected colonies 

were purified using Wizard Prep DNA Purification Kit (Promega).  The plasmid DNA was 

digested with EcoRI for 1hour at 37oC and visualized on a 1% agarose gel for verification 

that the AteIF5A-2 or AteIF5A-3 insert sizes were present.  The positive plasmids were then 

sequenced by the Core Molecular Biology Facility (University of Waterloo, Waterloo, ON) 

for confirmation. 

2.2.4.4 Cloning of AteIF5A-2 or AteIF5A-3 into pKYLX71-35S2 

The constructs of pGEM: AteIF5A-2 and pGEM: AteIF5A-3 were double-digested 

with XhoI and SacI, and ligated into the binary vector, pKYLX71-35S2 (Figure 2-2), kindly 

provided by Dr. B. Moffat, that had also been digested with XhoI and SacI (Figure 2-3).  

These enzyme digestions ensured that AteIF5A-2 and AteIF5A-3 would be inserted in the 

sense orientation in front of the cauliflower mosaic virus double 35S promoter of the binary 

vector pKYLX71-35S2 (Schardl et al., 1987).  The ligation reaction mixtures comprised 1μg 

of binary vector and 3μg of the insert  in ligation buffer [30mM Tris-HCl, 10mM MgCl2, 

10mM DTT, 1mM ATP, and 5% polyethylene glycol (MW8000, ACS Grade) pH 7.8] with 3 

Weiss units of T4 DNA Ligase (Fermentas). The ligation mixture was incubated overnight at 

15oC and transformed into competent E. coli DH5-α cell suspension (Kushner, 1978).  The  
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Figure 2-3: Flowchart illustrating the production and selection of transgenic plants 

over-expressing AteIF5A-1, AteIF5A-2 or AteIF5A-3 

The red asterisks denote steps at which the inserts were sequenced for accuracy.   
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transformation was performed as described above (Section 2.2.4.3).  The transformed cells 

were pelleted, resuspended in a small volume of 2x YT broth and plated on agar plates 

containing 50μg/mL tetracycline for selection.  Only transformants are able to grow on the 

tetracycline-containing plates as the binary vector pKYLX71-35S2 provides tetracycline 

resistance to bacterial cells.  Transformants were screened for the AteIF5A-2 and AteIF5A-3 

inserts by PCR and by double digestion with XhoI and SacI, and the inserts were sequenced 

by the Core Molecular Biology Facility (University of Waterloo, Waterloo, ON) for sequence 

accuracy. 

2.2.4.5 Agrobacterium tumefaciens electroporation and selection 

The constructs pKYLX71: AteIF5A-2 and pKYLX71: AteIF5A-3 were 

electroporated into competent Agrobacterium tumefaciens GV3010 (Figure 2-3).  The 

preparation of competent Agrobacterium cells was obtained by inoculating a single colony in 

5mL of 2xYT broth containing 50μg/mL of rifampicin, and 50μg/mL gentamycin and 

growing the suspension overnight at 28oC on a Forma Scientific Orbital Shaker (Fisher 

Scientific) at 280rpm.  This overnight culture was used to inoculate 30mL cultures of 2xYT 

containing 50μg/mL of rifampicin, and 50μg/mL gentamycin, and the newly inoculated 

cultures were grown until the OD600 was between 0.5 and 0.8, cooled and centrifuged in an 

SS-34 rotor (Sorvall) at 2000 g for 15 minutes.  The pellets were resuspended in 50mL of 

ice-cold water and centrifuged at 2000 g for 15 minutes.  This washing procedure was 

repeated for a total of four times to remove salts and dead cells.  The final pellet was 

resuspended in 40mL ice cold 10% (v/v) glycerol in water and centrifuged at 2000 g for 15 

minutes, and this procedure of resuspension in glycerol and centrifugation was repeated.  The 

final pellet was resuspended in 100μL ice-cold 10% glycerol, mixed well, divided into 

aliquots of 100μl and stored on ice.  

For electroporation of the DNA constructs into competent Agrobacterium cells, the 

100μL aliquots were each mixed well with 500ng of DNA construct.  The bacteria:vector 

mixture was then transferred to a pre-cooled electroporation cuvette and placed in the Gene 

Pulser (Biorad) adjusted to the following settings: 2.5kV, 25μF, and 200Ω.  After 

electroporation, 1mL 2xYT broth was added, and the suspension was transferred to a culture 
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tube.  The electroporated cultures were incubated at 28oC, 280rpm, for 3 hours to allow them 

to recover, and then 2mL 2x YT broth was added as well as 50μg/mL of rifampicin and 

50μg/mL gentamycin.  After 2 days of growing in culture, the electroporated cells were 

plated on tetracycline, gentamycin and rifampicin (all at 50μg/mL) and grown for an 

additional 2 days.  The resulting colonies were screened for pKYLX71: AteIF5A-2 or 

pKYLX71: AteIF5A-3 by PCR and by double digestion with SacI and XhoI.  The inserts 

were visualized by separation on a 1% agarose gel. 

2.2.4.6 Plant transformation 

Agrobacterium tumefaciens GV3010 containing either pKYLX71: AteIF5A-2 or 

pKYLX71: AteIF5A-3 was used for transformation of 4-week-old wild type Arabidopsis 

thaliana plants (ecotype Columbia) (Figure 2-3). To prepare the bacterial slurry used for 

plant transformation, a single colony of transformed A. tumefaciens was inoculated into 5mL 

of 2x YT broth containing 50μg/mL of tetracycline, 50μg/mL of rifampicin, and 50μg/mL 

gentamycin.  After 2 days of growth at 28oC in a Forma Scientific Orbital Shaker (Fisher 

Scientific) at 280rpm, the resultant culture was used to inoculate 35mL (total) of 2xYT 

containing 50μg/mL of rifampicin, and 50μg/mL gentamycin.  The 35mL culture was grown 

overnight at 28oC, 280rpm, and used to inoculate 500mL of 2xYT with 50μg/mL of 

rifampicin and 50μg/mL gentamycin.  Again the culture was grown overnight at 28oC, 

280rpm, to an OD600 of about 2.0. 

These cultures were then transferred to two 250mL tubes before centrifugation for 

15 minutes at 1945 g at 4oC in a GSA rotor (Sorvall).  The pellets were resuspended in 

500mL of infiltration media [1.1g MS salts, 25g sucrose, 0.25g MES, pH5.7 with KOH, 

100ng/mL benzylaminopurine and 50μl Vac-In-Stuff (Silwet L-77; Lehle Seeds)] and placed 

in a large plastic dish in a vacuum desiccator with 4 large rubber stoppers.  Five pots 

containing 8 plants each at the right stage of development were used sequentially for 

infiltration.  Each pot was first inverted over a trash can to remove any loose soil, then was 

placed (still inverted) into a plastic container in the glass desiccator so that the 4 large rubber 

stoppers acted as stand for the inverted pot, thus allowing the bolts, but not the rosettes, to  

dip into the bacterial slurry.  The plants were then subjected to a vacuum (400mm Hg) in this 



 

- 49 - 

inverted state for 10 minutes.  The vacuum-infiltrated plants were then allowed to recover 

and grown to maturity. New flower buds were removed daily to increase seed screening 

efficiency.  After several weeks when the siliques were dry and seed matured, the seeds were 

collected from each pot and pooled. 

2.2.4.7 Selecting plant transformants and segregation analysis  

To identify primary transformants, T1 seeds from the vacuum-infiltrated T0 plants 

were surface sterilized in a solution of 1% (v/v) sodium hypochlorite and 0.1% (v/v) Tween 

80 for 20 minutes on a rotator, rinsed four times with sterile water, and resuspended in sterile 

0.8% agar.  The resuspended seeds were then planted onto sterile, half-strength Murashige 

and Skoog (MS) medium (2.2g/L) supplemented with 1% (w/v) sucrose, 0.5g/L MES, 0.7% 

(w/v) bacteriological agar and 40 to 50 μg/mL kanamycin (Murashige and Skoog, 1962).  

Only transformants are able to grow on the kanamycin-containing plates since the binary 

vector provides the kanamycin resistance gene to the transformant seedlings (Figure 2-3).  

Seedlings that do not harbour the binary vector become yellow and die, as there is no 

kanamycin resistance gene.  Wild-type (WT) seed as well as seed from a homozygous line 

containing empty pKYLX71-35S2 vector (BIN) were used as controls,  and were plated onto 

MS medium without kanamycin and kanamycin-containing plates, respectively.  The BIN 

control is useful in demonstrating the effect kanamycin has on growth of the seedlings as 

well as the effect of random integration of the binary vector into the genome of Arabidopsis 

thaliana.  A small amount of wild type seed was plated onto a small area of each kanamycin 

plate as well in order to make sure the medium contained enough kanamycin for selection of 

transformants.  

The seeded plates were kept at 4oC for 2 days to synchronize germination.  After 2 

days, the plates were transferred to growth chambers where they grew for an additional 7 

days under 16-h light/ 8-h dark cycles at 20±2oC.  Lighting was maintained at 150μmol 

radiation m-2.s-1 and was provided by cool-white fluorescent bulbs.  The efficiency of 

transformation of Arabidopsis thaliana plants with pKYLX71: AteIF5A-1, pKYLX71: 

AteIF5A-2 and pKYLX71: AteIF5A-3 was determined.   
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2.2.5 Phenotypic analysis of AteIF5A-1 over-expressing transgenic plants 

2.2.5.1 Selection and naming of lines over-expressing AteIF5A-1 

When T1 seedlings over-expressing AteIF5A-1 were 10 days-old, they were 

transplanted to Promix BX soil (Premier Brands, Brampton, Ontario) in flats containing 32 

cells.  Green tags were used to label the AteIF5A-1 over-expressing plants.  Corresponding 

wild type (WT) seedlings in MS plates without kanamycin and empty binary vector (BIN) 

seedling in MS plates with kanamycin were transplanted into soil at the same time.  White 

tags were used to label the WT plants and yellow tags were used to label the BIN plants.  

These transplanted T1 generation plants were then transferred into a growth chamber 

operating at 22oC with 16-h light/ 8-h dark cycles.  Lighting at 150 μmol radiation m-2.s-1 was 

provided by cool-white fluorescent bulbs. 

There were 48 AteIF5A-1 over-expressing T1 plants transplanted from MS plates to 

soil, and they were named 1-1, 1-2, 1-3 etc., where the first number denotes the AteIF5A 

isoform and the second number indicates the T1 plant line number.  All of the seeds from the 

T1 plants were collected as they became available.  Some of the plants exhibited different 

development timelines, and thus the seeds matured at different times.  The T2 seeds collected 

from the T1 plants were quantified by measurement of volume in a 1mL glass syringe that 

had 10μL markings and also by weight.  Several lines were chosen for T2 analysis based on 

phenotypic characteristics.  Seed from these lines was sterilized and plated on selective MS 

plates, and 8 sister lines were carried through for each mother line selected.  The sister lines 

were labelled with a letter, for example 1-4A.  Again, the first number indicates the isoform 

of AteIF5A over-expressed, the second number indicates the mother line from the T1 

generation, and the letter indicates the sister line of the T2 generation. Age-matched WT and 

BIN seeds were used as controls. 

2.2.5.2 Photographic record of AteIF5A-1 over-expressing plants 

As the T1 generation plants over-expressing AteIF5A-1 grew to maturity, 

photographic and written records were maintained.  Photographs were taken when the plants 

were 10 days, 3-weeks, 4-weeks, 5-weeks and 6-weeks of age.  During growth of the T2 



 

- 51 - 

generation of plants over-expressing AteIF5A-1, photographs were taken at 10 days, 3.5-

weeks, 4-weeks, 5-weeks, 6-weeks and 7-weeks of age.  Plants were observed daily for 

phenotype and watering needs. 

2.2.6 Phenotypic analysis of AteIF5A-2 over-expressing transgenic plants 

2.2.6.1 Selection and naming of the lines over-expressing AteIF5A-2 

T1 seedlings over-expressing AteIF5A-2 were transplanted at 10 days of age from 

MS plates to soil and grown to maturity.  The AteIF5A-2 over-expressing plants were 

labelled with pink tags, and corresponding WT and BIN plants were labelled with white and 

yellow tags, respectively.  A total of 14 T1 transformants over-expressing AteIF5A-2 were 

maintained.  The lines were named by number, for example 2-1, 2-2, 2-3 etc., where the first 

number denotes the AteIF5A isoform over-expressed and the second number indicates the T1 

plant line number.  Only 9 of the 14 T1 plants proved capable of growing to maturity and 

producing seed.  These seeds were collected and quantified by volume and weight.  All of the 

lines that produced seed were carried through to the T2 generation.  Eight sister lines were 

carried through for each T1 mother line and were designated by letter, for example, 2-1A up 

to 2-1H, where the first number denotes the AteIF5A isoform over-expressed, the second 

number indicates the mother line from the T1 generation and the letter indicates the line 

established in the T2 generation.  The T1 line, 2-12, only produced about 30 T2 seeds, and 

from these only one was capable of growing on kanamycin MS plates yielding a single T2 

line called 2-12A.  Corresponding age- matched WT and BIN seeds were grown alongside 

the T2 plants over-expressing AteIF5A-2.  The first cauline leaf was harvested at 4-weeks of 

age for Western blot analysis of all T2 plants over-expressing AteIF5A-2.  Only 2-3F and 2-

9A were brought to T3 as they were used for an infection experiment with the virulent strain 

of Pst DC3000 and TUNEL analysis. 

2.2.6.2 Photographic record of over-expressing AteIF5A-2 plants 

Photographic and written observations were maintained throughout the lifecycle of 

the T1 and T2 over-expressing AteIF5A-2 plants.  Photographs of T1 plants were taken at 3-

weeks, 4-weeks, 5-weeks, and 6-weeks of age.  Photographs of T2 plants were taken at 10 
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days, 2-weeks, 3-weeks, 4-weeks, 5-weeks, 6-weeks, and 7-weeks of age.  Plants were 

observed daily for phenotype and watering needs. 

2.2.7 Phenotypic analysis of AteIF5A-3 over-expressing transgenic plants 

2.2.7.1 Selection and naming of the lines over-expressing AteIF5A-3 

T1 seedlings over-expressing AteIF5A-3 were transplanted at 10 days of age from 

MS plates to soil.  The AteIF5A-3 over-expressing plants were labelled with blue tags, 

whereas corresponding WT and BIN plants were labelled with white tags and yellow tags, 

respectively.  A total of 16 T1 transformants over-expressing AteIF5A-3 were maintained.  

The lines were named by number, for example 3-1, 3-2, 3-3 etc., where the first number 

indicates the AteIF5A isoform over-expressed and the second number indicates the T1 mother 

line.  The selection of T2 generation transformants was achieved by scoring germination on 

kanamycin MS plates.  The T1 line, 3-12, produced no transformants on the selectable media 

and was not included in any further work.  For each of lines 3-1 through 3-16 (minus line 3-

12) of the AteIF5A-3 over-expressing plants, 8 sister lines were carried through to the T2 

generation.  These were named A through H so that, for example, for the T1 line 1, the T2 

generation plants were named 3-1A, 3-1B, 3-1C, etc.   

The first cauline leaf from each sister line of AteIF5A-3 over-expressing T2 plants 

was collected for protein analysis.  Total extracted protein was fractionated by 12% SDS-

PAGE and transferred to a PVDF membrane.  The blot was probed with antibodies against 

AteIF5A-3 at a 1:50 dilution.  Control total protein was extracted from the first cauline leaf 

of wild type and empty binary vector control plants.  These Western blots as well as 

phenotypic observations were used to select lines to be carried through to T3 generation.  The 

levels of AteIF5A-3 expression in the AteIF5A-3 over-expression plants were categorized as: 

high-level expression, medium-level expression, low-level expression, and no expression 

(presumably due to co-suppression).  Two lines were chosen for each of the levels of 

expression, and 12 plants from each line were transplanted.  The actual T2 lines selected 

were: 3-1A, 3-2D, 3-4D, 3-8D, 3-9H, 3-11C, 3-15A, and 3-16C, and they were all carried 
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through to T3.  For T3 nomenclature, a number was inserted following the letter denoting the 

T2 line. 

2.2.7.2 Photographic record of plants over-expressing AteIF5A-3 

Morphological phenotypes of the AteIF5A-3 over-expression lines and 

corresponding WT and BIN controls were recorded photographically during segregation.  

Photographs for the T1 AteIF5A-3 over-expressing plants were taken at 10 days, 3-weeks, 4-

weeks, and 5-weeks of age.  Photographs for the T2 AteIF5A-3 over-expressing plants were 

taken at 10 days, 3-weeks, 4-weeks, 5-weeks and 6-weeks of age.  Photographs for the T3 

AteIF5A-3 over-expressing plants were taken 10 days, 3-weeks, 4-weeks, 5-weeks, 6-weeks, 

7-weeks and 8-weeks of age.  Plants were observed daily for phenotype and watering needs. 

2.2.7.3 Seed measurements 

T3 seeds collected from T2 plants over-expressing AteIF5A-3 were quantified, and 

seed size (length and width) was measured.  Total seed yield by weight was measured using a 

Sartorius analytical digitized balance, and seed volume was determined using a glass 1mL 

syringe that was graduated every 10μL.  To determine seed size, the seeds were placed on a 

slide containing a micrometer and viewed on an Olympus BX51 Microscope.  Photographs 

of the seeds on the micrometer were taken with a Spot Insight Color Camera (Diagnostic 

Instruments Inc.) attached to a Compaq Evo D500 (Compaq Company Corporation; Intel® 

Pentium 4 CPU 1.7GHz, 262 MG RAM, running Windows 2000).  Using Image-Pro Express 

Version 4.0 for Windows™, measurements of 10 seeds for each sister line were made using 

the micrometer in the image for size calibration.  The measurements were imported into 

Microsoft Excel, and measurements of seed length and width were determined.  Seed volume 

was calculated using the equation for volume of an ellipsoid (4/3πa2b), where a is the minor 

axis length and b is the major axis length (Kiyosue et al., 1999). 
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2.3 Results 

2.3.1 eIF5A is a highly conserved protein across Kingdoms 

Sequences of eIF5A were obtained from GenBank for eukaryotic Kingdoms and the 

Archaea Kingdom.  The sequences were aligned using COFFEE-T, and the similarities of 

aligned amino acids indicated by colour coding (Figure 2-4).  Identical amino acids are 

indicated in red, residues that are conserved are indicated in orange, and semi-conserved 

amino acid substitutions are indicated in yellow.  A high degree of sequence identity and 

similarity occurs in the N-terminus portion of the protein, especially in the vicinity of the 

lysine residue that undergoes modification to hypusine.  This lysine residue is indicated by an 

asterisk in Figure 2-4.  Even in regions of non-identity, the amino acid changes are often 

conserved in the N-terminus.  The N-terminus and the C-terminus of eIF5A are attached by a 

flexible hinge region (Kim et al., 1998), where a conserved proline residue is present and is 

indicated by the number sign (#) in Figure 2-4.  The C-terminus lacks conservation across the 

Kingdoms,  though is more similar within the eukaryotic species than between the eukaryotes 

and Archaea species.  The C-terminus is thought to bind mRNA, and it is likely that the 

specificity of the binding is dependent on the variations in the eIF5A protein sequences, 

especially in the central portion of the C-terminus (Figure 2-4). 

The sequences aligned in Figure 2-4 were subjected to BLAST 2 Sequences at 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi using the blastp program, BLOSUM62 

matrix, with the default settings.  A table was created to summarize the identities and 

similarities between respective sequences retrieved using these defaults (Table 2-1).  It was 

determined that eIF5A is a highly conserved protein, and that the sequences are at least 53% 

similar, even across these very diverse Kingdoms.  The lowest degree of identity between 

species was 31%, and this occurred in the comparison between Methanococcus jannaschii 

(Mj) and Arabidopsis thaliana (At) eIF5As.  However, these proteins were still 54% similar 

to each other (Table 2-1). Interestingly, some of the identities for eIF5A isoforms within a 

species calculated by BLAST 2 Sequences were less than the identities calculated between 

species (Table 2-1).  For example, the sequences for Tetraodon nigroviridis (Tn; spotted 
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Figure 2-4: Alignment of eIF5A proteins for six species 

Protein alignment of eIF5A isoforms for Homo sapiens (Hs; human), Saccharomyces 

cerevisiae (Sc; yeast), Tetraodon nigroviridis (Tn; spotted green pufferfish), Arabidopsis 

thaliana (At), Lycopersicon esculentum (Le; tomato) and Methanococcus jannaschii (Mj) are 

illustrated.  The conserved lysine residue that is converted to hypusine through post-

translational modification is indicated by an asterisk (*).  The conserved proline residue 

within the hinge region is indicated by the number sign (#).  The identical amino acids in all 

the sequences are coloured red, the conserved amino acids in all the sequences are coloured 

orange and the semi-conserved amino acids in all the sequences are coloured yellow. 
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Table 2-1: Identities and similarities between isoforms of eIF5A for six species 

*I = identity; S= similarity 

Hs= Homo sapiens (Human); Sc=Saccharomyces cerevisiae (yeast); Tn=Tetraodon 

nigroviridis (spotted green puffer fish); At=Arabidopsis thaliana; Le=Lycopersicon 

esculentum (tomato); Mj=Methanococcus jannaschii 
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green pufferfish) and human (Hs) were only 70% identical to each other and 84% identical to 

each other, respectively (Table 2-1).  Similarly, Arabidopsis thaliana (At) isoforms were also 

82-86% identical to each other.  Tomato (Lycopersicon esculentum; Le) exhibited the highest 

levels of identity, 89-93%, between its isoforms (Table 2-1).   

2.3.2 Arabidopsis thaliana has three isoforms of eIF5A 

The entire genome of Arabidopsis thaliana is sequenced and available on public 

domain databases. Thus through BLAST searches of ESTs and genomic BAC sequences, it 

was determined that there are three sequences of eIF5A in Arabidopsis and that they are all 

located on the first chromosome (Figure 2-5A).  They were numbered according to their 

order when mapped along the first chromosome, where the first one cloned from senescing 

tissue by Wang et al. (2001) coincidently happened to be located closest to the top of 

chromosome 1 at gene locus At1g13950 and was dubbed AteIF5A-1.  The other two isoforms 

that followed in order along chromosome 1 are AteIF5A-2 and AteIF5A-3, which are found at 

loci At1g26630 and At1g69410, respectively.  The inferred amino acid sequences of 

AteIF5A isoforms are very similar to each other with up to 94% similarity (Figure 2-5B). 

There are, however, some differences in sequence in the C-termini of the isoforms, and in 

keeping with this synthetic peptides from these regions were used to make isoform-specific 

antibodies (Figure 2-5B). 

The nucleotide sequence for AteIF5A-1 is 79% identical to that for AteIF5A-2 and 

81% identical to that for AteIF5A-3 (Figure 2-6).  It has been demonstrated through large 

scale analysis of the Arabidopsis thaliana genome that the region containing AteIF5A-2 was 

duplicated into the region containing AteIF5A-3 (Blanc et al., 2000).  Thus it is likely that 

AteIF5A-3 originated from AteIF5A-2.  This duplication does, however, appear to be ancient 

as the lengths and number of introns differ between these two genes.  Indeed, the introns for 

AteIF5A-1, AteIF5A-2 and AteIF5A-3 do not show any major similarities except where the 

splice sites are located.  
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Figure 2-5: Chromosomal mapping of AteIF5A genes and alignment of the amino acid 

sequences of their cognate proteins 

A. Spatial distribution of AteIF5A genes mapped along chromosome 1 of Arabidopsis 

thaliana by the map viewer at http://www.arabidopsis.org/servlets/mapper.  The top of the 

chromosome is oriented to the left.  AteIF5A-1 has the locus tag At1g13950, AteIF5A-2 has 

the locus tag At1g26630, and AteIF5A-3 has the locus tag At1g69410.  B.  The amino acid 

alignment of AteIF5A isoforms.  Identical amino acids are highlighted in green.  The peptide 

sequences used as antigens to make isoform-specific antibodies are delineated by a pink box. 
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1 MSDEEHHFESSDAGASKTYPQQAGTIRKNGYIVIKNRPCKVVEVSTSKTGKHGHAKCHFV
2 MSDDEHHFEASESGASKTYPQSAGNIRKGGHIVIKNRPCKVVEVSTSKTGKHGHAKCHFV
3 MSDDEHHFESSDAGASKTYPQQAGNIRKGGHIVIKGRPCKVVEVSTSKTGKHGHAKCHFV
 
 
1 AIDIFTSKKLEDIVPSSHNCDVPHVNRTDYQLIDISEDGYVSLLTDNGSTKDDLKLPNDD
2 AIDIFTAKKLEDIVPSSHNCDVPHVNRVDYQLIDITEDGFVSLLTDSGGTKDDLKLPTDD
3 AIDIFTSKKLEDIVPSSHNCDVPHVNRVDYQLIDISEDGFVSLLTDNGSTKDDLKLPTDE
 
 
1 TLLQQIKSGFDDGKDLVVSVMSAMGEEQINALKDIGPK 
2 GLTAQMRLGFDEGKDIVVSVMSSMGEEQICAVKEVGGGK 
3 ALLTQLKNGFEEGKDIVVSVMSAMGEEQMCALKEVGPK 

AT1G13950 AT1G26630 AT1G69410

1

A. 

B.

AteIF5A-1 AteIF5A-2 AteIF5A-3
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Figure 2-6: Alignment of the coding regions of AteIF5A gene family members 

The isoforms are indicated as 1, 2, and 3 for AteIF5A-1, AteIF5A-2 and AteIF5A-3, 

respectively.  Identical nucleotides in all three sequences are indicated in red. 
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1 atgtccgacgaggagcatcactttgagtccagtgacgccggagcgtccaaaacctaccctcaacaagctggaaccatcc
2 atgtctgacgacgagcaccactttgaggccagcgaatccggagcttccaagacctatcctcaatcagccggtaacatcc
3 atgtcagacgacgagcatcacttcgaatccagcgacgccggagcttctaagacttatcctcaacaagccggtaacattc

1 gtaagaatggttacatcgtcatcaaaaatcgtccctgcaaggttgttgaggtttcaacctcgaagactggcaagcatgg
2 gtaaaggtggtcacatcgtcatcaaaaaccgtccctgcaaggttgttgaggtttcgacttccaaaactggcaagcacgg
3 gtaaaggtggtcacatcgtcatcaagggacgtccctgcaaggtggttgaggtatcgacttcgaagactgggaagcatgg

1 tcatgctaaatgtcattttgtagctattgatatcttcaccagcaagaaactcgaagatattgttccttcttcccacaat
2 tcacgccaaatgtcactttgttgctattgatatcttcactgctaagaagcttgaagatattgttccatcttcccacaat
3 tcacgccaagtgtcactttgttgccattgatatctttacttctaagaagcttgaagatatcgttccttcttcccacaat

1 tgtgatgttcctcatgtcaaccgtactgattatcagctgattgacatttctgaagatggatatgtcagtttgttgactg
2 tgtgatgttccacatgtgaaccgtgttgattaccagttgattgatatcactgaggatggcttcgtgagccttctcactg
3 tgtgatgttccacatgtgaatcgtgttgattatcagttgattgatatctctgaagatggctttgttagtcttcttactg

1 ataacggtagtaccaaggatgaccttaagctccctaatgatgacactctgctccaacagatcaagagtgggtttgatga
2 acagtggtggcaccaaggatgatctcaagcttcccaccgatgatggtctcaccgcccagatgaggcttggattcgatga
3 ataatggtagcactaaggatgatctgaagctgccaacagatgaagctttactcacacagctcaagaatggatttgagga

1 tggaaaagatctagtggtgagtgtgatgtcagctatgggagaggaacagatcaatgctcttaaggacatcggtcccaag
2 gggaaaggatattgtggtgtctgtcatgtcttccatgggagaggagcagatctgtgccgtcaaggaagttggtggtggc  
3 gggtaaggatattgttgtgtctgtcatgtctgcaatgggagaggagcagatgtgtgctctcaaggaagttggtcccaag

1 ---tga
2 aagtaa
3 ---taa
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2.3.3 AteIF5A isoforms are differentially expressed spatially and temporally 

2.3.3.1 Expression of AteIF5A isoforms in rosette leaves 

The expression patterns of AteIF5A isoforms in rosette leaves were determined by 

Western blotting.  Rosette leaves were collected from wild type Arabidopsis thaliana plants, 

and total protein was extracted and fractionated for Western blotting.  The only isoform 

expressed during normal development and senescence of Arabidopsis thaliana rosette leaves 

detectable by Western blotting proved to be AteIF5A-1 (Figure 2-7).  The expression of 

AteIF5A-1 is discernible starting at 3-weeks of age of the rosette leaves.  The expression of 

AteIF5A-1 increases at 5-weeks of age when leaf senescence is engaged and is maintained at 

high levels of expression through 6 and 7-weeks of age. 

2.3.3.2 Expression of AteIF5A isoforms in seedlings 

Since leaf senescence has often been compared to cotyledon senescence, it was of 

interest to see if AteIF5A-1 is also expressed during cotyledon senescence after germination.  

Seedlings were grown on MS plates and collected two to eight days after germination.  The 

proteins from these seedlings were fractionated for Western blotting and probed with 

AteIF5A isoform-specific antibodies.  The Western analysis indicated that all three isoforms 

of AteIF5A are up-regulated during germination of Arabidopsis thaliana seedlings on MS 

plates, though each isoform displayed a unique expression pattern.  Specifically AteIF5A-1 

was up-regulated from two days after germination to five days after germination, which is 

coincident with post germinative cotyledon senescence (Figure 2-8).  The primary leaves of 

the seedling emerge at or around five days after germination, and from this point onwards the 

seedling becomes dependent on photosynthesis as the lipid stores within the seedling are all 

but exhausted (Bentsink and Koornneef, 2002). 

AteIF5A-2 is expressed throughout seedling development, but the levels of 

expression are faint and variable (Figure 2-8).  Gatsukovich (2004) and this thesis describe 

AteIF5A-2 as the isoform that is responsive to wounding and pathogenesis.  That AteIF5A-2 

is not expressed at detectable levels during development and senescence of rosette leaves was 

determined by Western blotting (Figure 2-7).  Moreover, constitutive down-regulation of 
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Figure 2-7: Western blot illustrating the expression of AteIF5A isoforms during 

development and senescence of Arabidopsis thaliana rosette leaves 

A. Western blot of AteIF5A isoforms in total protein (10μg/lane) isolated from the rosette 

leaves of 2- through 7-week-old Arabidopsis plants.  The blots were probed with antibodies 

raised against isoform-specific peptides.  AteIF5A is detected at approximately 17kDa.  B.  

SDS-PAGE stained with Coomassie Brilliant Blue corresponding to the AteIF5A-1 blot.  The 

molecular masses of the marker are indicated on the left.  Loading controls for AteIF5A-2 

and AteIF5A-3 blots were similar. 
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Figure 2-8: Western blots of AteIF5A isoforms in developing seedlings 

A. Photographs of the seedlings 2 through to 8 days after germination.  B.  Western blots of 

AteIF5A isoforms (indicated to the left) in total protein (10μg/lane) isolated from the 

developing seedlings.  The lanes correspond to the images of the seedlings above them.  The 

blots were probed with antibody raised against isoform specific peptides and visualized by a 

colorimetric reaction.  AteIF5A is detected at approximately 17kDa.  C.  SDS-PAGE stained 

with Coomassie Brilliant Blue corresponding to the AteIF5A-1 blot.  The molecular masses 

of the marker are indicated on the left.  Loading controls for AteIF5A-2 and AteIF5A-3 blots 

were similar. 
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AteIF5A-2 does not have any obvious developmental effects (Gatsukovich, 2004).  These 

observations are consistent with the view that AteIF5A-2 is not involved in vegetative 

development per se.  Thus, the up-regulation of AteIF5A-2 during germination and seedling 

establishment on MS plates (Figure 2-8) may be due to wounding of the roots during growth 

through an unnatural medium such as MS media or wounding incurred during collection. 

The expression of AteIF5A-3 increases during seedling growth and establishment.   

The other dominant feature of germination and seedling establishment, aside from cotyledon 

senescence, is growth.  That there are two isoforms of eIF5A in mammalian cells, one 

regulating cell death and the other cell division, is well documented and widely accepted 

(Caraglia et al., 2003; Clement et al., 2003; Thompson et al., 2004).  It has recently been 

proposed that in plants there are two or three, depending on the species, death isoforms of 

eIF5A and one growth isoform (Thompson et al., 2004).  That AteIF5A-1 and AteIF5A-2 are 

involved in regulation of cell death during senescence and wounding, respectively, has been 

demonstrated (Duguay, 2004; Gatsukovich, 2004; Tshin, 2004; Liu et al., submitted 2006).  

The function of AteIF5A-3 has not been clearly established to date, although evidence 

presented later in this dissertation indicates that it is involved in root elongation. This 

contention is consistent with the finding that it is up-regulated during seedling development 

and establishment (Figure 2-8). 

2.3.3.3 Expression of AteIF5A isoforms in flowers and fruit 

To investigate the expression patterns of the AteIF5A isoforms during flower and 

fruit formation, a Western blot of total protein extracts from Arabidopsis thaliana flowers 

and fruit was performed using isoform-specific antibodies (Figure 2-9).  The flowers were 

harvested at the bud stage, when they were completely closed, through to the point where the 

siliques began to ripen and turn yellow (Figure 2-9A).  All three isoforms of AteIF5A were 

up-regulated during this stage of development, but each displayed unique expression patterns 

(Figure 2-9B). 

AteIF5A-1 was detectable during flowering and fruit development by Western 

blotting (Figure 2-9B). Expression of this isoform increases during pollen senescence (first 

lane; Figure 2-9B), petal senescence (third lane; Figure 2-9B) and silique senescence (lanes 7 
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Figure 2-9: Western blots of AteIF5A isoforms in developing flowers and fruit 

A. Photographs of the flower buds, flowers and silique development.  B.  Western blots of 

AteIF5A isoforms (indicated to the left) in total protein (10μg/lane) isolated from the 

developing flowers and fruit.  The lanes correspond to the images of the flowers and fruit 

above them.  The blots were probed with antibody raised against isoform specific peptides.  

AteIF5A is detected at approximately 17kDa.  C.  SDS-PAGE stained with Coomassie 

Brilliant Blue corresponding to the AteIF5A-1 blot.  The final lane containing protein from 

the most mature silique has a different profile than the other lanes, but is similarly loaded as 

determined by densitometry.  The molecular masses of the marker are indicated on the left.  

Loading controls for AteIF5A-1 and AteIF5A-2 blots were similar.  
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and 8; Figure 2-9B).  The double band that is present in this Western and others throughout 

this dissertation may be due to phosphorylation.  eIF5A is known to be phosphorylated in 

vivo in yeast (Kang et al., 1993). 

AteIF5A-2 was up-regulated very slightly just as the petals began to emerge (third 

lane, Figure 2-9B), which corresponds with fertilization (Bowman, 1994).  Fertilization 

requires the growth of a pollen tube, which penetrates the maternal tissues causing a 

wounding effect (Lantin et al., 1999).  Thus, it is possible that the expression of AteIF5A-2 

does occur developmentally and has a role in developmentally-prompted wounding such as 

fertilization and root growth through medium.   

AteIF5A-3 protein is up-regulated during the bud stage, as the flower tissues are 

elongating and remains detectable until the silique begins to emerge from the top of the 

petals (lanes 1 to 4, Figure 2-9B).  AteIF5A-3 is not detectable during the transition from 

flower to silique, but is once again up-regulated near the end of silique maturation (lanes 6 

and 7, Figure 2-9B). This corresponds with the time during development when the embryos 

are elongating and the seeds are filling with storage reserves (Ruuska et al., 2002).  As the 

siliques senesce and the seeds are matured, AteIF5A-3 is not detectable (lane 8, Figure 2-

9B). 

2.3.4  AteIF5A-1 and AteIF5A-2 are regulators of programmed cell death in 
development and disease 

To observe the effects of these putative regulators of programmed cell death in 

development and disease, they were constitutively over-expressed in planta using the cDNA 

of AteIF5A-1 and the genomic version of the AteIF5A-2 gene driven by the cauliflower 

mosaic virus double 35S promoter. 

2.3.4.1 Plants over-expressing AteIF5A-1 exhibit four main phenotypes 

Plants over-expressing AteIF5A-1 cDNA were produced by Zhongda Liu (J. E. 

Thompson’s laboratory) using the sequence aligned in Figure 2-10.  Over-expressing 

AteIF5A-1 seeds (T1 generation) were plated on MS plates containing the selective antibiotic, 
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Figure 2-10: Alignment of the AteIF5A-1 coding sequence and amino acid sequence of 

its cognate protein  

The coding sequence of AteIF5A-1 is underlined.  The primers used for amplification for 

production of the AteIF5A-1 cDNA for over-expression in plants are indicated in red.  The 

stop codon is indicated in blue, and the peptide used for the production of isoform-specific 

antibodies is indicated in green. 
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kanamycin.  The seeds that contained the AteIF5A-1 insertion were capable of growing on 

the selection medium.  The transformation efficiency of the T1 seeds was 0.58%.  There were 

48 seedlings resistant to the kanamycin selection, and they were all transplanted onto soil at 

10 days of age.  The four main phenotypes that were observed included plants with small 

rosettes and thin spindly bolts (Figure 2-11), plants with long thin rosette leaves or petioles 

(Figure 2-12), plants that displayed early leaf senescence (Figure 2-13) and plants that had 

delayed growth (Figure 2-14).  The lines illustrated in Figures 2-11 to 2-14 were carried 

through to the T2 generation. 

The T1 plants over-expressing AteIF5A-1 that had  small rosettes and thin spindly 

bolts (1-4, 1-12, 1-39) all started out with very small rosette leaves (Figure 2-11A).  Bolting 

times of these lines were essentially the same as for control plants (Figure 2-11B), though the 

bolts were spindly, shorter and fell over easily (Figure 2-11C).  When these lines were taken 

to T2, and eight sister lines were observed from each mother line, most of them lost the small 

and spindly phenotype.  The sister lines of 1-4 developed an early leaf senescence phenotype.  

Most of the T2 sister lines of 1-12 (6 out of 8) lost the spindly phenotype and were 

comparable to the WT and BIN controls.  The sister lines of 1-39 developed a new phenotype 

where the leaves were more serrated than control leaves and yellowish in colour.  In fact, the 

pattern of yellowing of the rosette leaves, cauline leaves and sepals in the T2 sister lines of 1-

39 was similar to the early leaf senescence phenotype described in this chapter. 

The second phenotype of AteIF5A-1 over-expressing plants, long thin rosette leaves 

or petioles coincident with a loss of leaf phyllotaxy is illustrated in Figure 2-12.  Arabidopsis 

thaliana adult leaves are arranged in a spiral phyllotaxy.  These lines exhibited opposite 

phyllotaxy, similar to that of the juvenile leaves.  These T1 lines also exhibited delayed 

bolting and leaf senescence (Figures 2-12A and B).  In addition, Line 1-21 exhibited unusual 

flower morphology where the stigmatic papillae were elongated (Figure 2-12C).  While line 

1-48 did not exhibit the same flower morphology, several of the inflorescence stems were 

fused together (Figure 2-12D).  Thus, it would appear that both the vegetative meristem and 

the reproductive meristem are affected by over-expression of AteIF5A-1.  The T2 seeds of 

line 1-21 were severely affected in that most of them did not germinate. This may reflect the 
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Figure 2-11: T1 plants over-expressing AteIF5A-1 cDNA: Small rosettes and thin bolts 

phenotype 

A.  Lines 1-4, 1-12 and 1-39 at 3-weeks of age compared to control wild type (WT) and 

empty binary vector (BIN) plants.  The rosettes are highlighted by green circles.  B.  The 

rosettes of the same lines as in A at 5-weeks of age.  C.  Side view of plants at 5-weeks of 

age. 
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Figure 2-12: T1 plants over-expressing AteIF5A-1 cDNA: Long thin leaves and/or 

petioles phenotype 

A.  Lines 1-21 and 1-48 at 4-weeks of age compared to the control wild type (WT) and 

empty binary vector (BIN) plants.  Elongated leaf blades (white arrows) and/or elongated 

petioles (yellow arrows) in comparison with control plants are evident in the rosette leaves.  

B.  Lines 1-21 and 1-48 compared to the WT and BIN control plants at 6-weeks of age are 

less senescent.  C. Line 1-21 exhibited elongated stigmatic papillae (red arrow) at the top of 

the style compared to WT control plants.  D.  Line 1-48 (4-weeks of age) had several 

inflorescences fused together (white bracket). 
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Figure 2-13: T1 plants over-expressing AteIF5A-1 cDNA: Early leaf senescence 

phenotype 

A. Line 1-37 at 3-weeks of age compared to control wild type (WT) and empty binary vector 

(BIN) plants.  B.  Line 1-37 at 4-weeks of age compared to WT and BIN plants.  The leaves 

and sepals exhibiting early senescence are indicated by white arrows. 
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Figure 2-14: T1 plants over-expressing AteIF5A-1 cDNA: Delayed growth phenotype 

A. Lines 1-11 and 1-46 (within green circle) and control wild type (WT) and empty binary 

vector (BIN) plants at 3-weeks of age.  B.  Lines 1-11 and 1-46 rosettes compared to control 

WT and BIN rosettes at 6-weeks of age.  C.  Lines 1-11 and 1-46 compared to control WT 

and BIN plants at 6-weeks of age, showing the whole plant. 
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fact that the elongated stigmatic papillae interfered with fertilization. Line 1-48 acquired a 

leaf morphology even more similar to that of juvenile leaves in that the leaf blades were more 

rounded and the petioles elongated. 

The third phenotype observed for plants over-expressing AteIF5A-1 was 

characterized by early leaf senescence (Figure 2-13).  It was demonstrated by Western 

blotting that the AteIF5A-1 protein is up-regulated during leaf (Figure 2-7) and cotyledon 

(Figure 2-8) senescence.  Line 1-37, even at 3-weeks of age, exhibited signs of chlorosis in 

younger leaves of the rosette (Figure 2-13A).  Senescence of rosette leaves in Arabidopsis 

thaliana is thought to be mainly due to aging signals (Nooden and Penney, 2001; Lim et al., 

2003).  The over-expression of AteIF5A-1 may be a sufficient signal to initiate leaf 

senescence, indicative of its regulatory function.  The T2 sister lines of 1-37 still displayed 

early senescence, but only in the cauline leaves and the sepals of the flower, not in the rosette 

leaves (Figure 2-13B).  Interestingly, early cauline leaf senescence is apparent in mutations 

that affect the growth of the shoot meristem (Nooden and Penney, 2001).  That growth and 

senescence are antagonistic is a common theme in the literature.  

The final phenotype of AteIF5A-1 over-expressing plants that was observed is 

delayed growth.  Most of the T1 plants, 18 out of 48, over-expressing AteIF5A-1 exhibited 

this phenotype.  There were varying degrees to which growth was delayed, and it was 

evaluated by size comparison of the rosettes and differences in bolting times.  Interestingly,  

some of the lines exhibiting delayed growth in comparison with control plants early in 

development showed increased growth during the later stages of development and caught up 

to the control plants and in some instances surpassed them in size.  For example, lines 1-11 

and 1-46 started out small compared to the WT and BIN controls (Figure 2-14A).  However, 

by the time they were 6-weeks-old they were similar to WT and BIN plants in size, rosette 

area and bolt height (Figure 2-14B).  The main difference at this stage of development is the 

delay in senescence of the rosettes (Figure 2-14B) and flowers (Figure 2-14C).  It would 

seem that the entire lifecycle of these plants is delayed.  The T2 sister lines of 1-11 and 1-46 

lost this phenotype of delayed growth.  The T2 sister lines derived from line 1-46 looked 
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similar to wild type throughout development and the T2 sister lines derived from 1-11 gained 

the long leaf and petiole phenotype. 

2.3.4.2 AteIF5A-2 is up-regulated coincident with TUNEL labelling 

Specific post-transcriptional up-regulation of AteIF5A-2 during wounding and 

pathogenesis has been demonstrated (Gatsukovich, 2004).  To determine whether AteIF5A-2 

is associated with programmed cell death, its expression following pathogen ingression was 

examined by confocal microscopy.  Programmed cell death was detected by TUNEL 

staining, and AteIF5A-2 protein was detected with a TRITC–conjugated secondary antibody 

against the rabbit-produced AteIF5A-2 –specific antibody (Figure 2-15).  The TUNEL 

technique has often been used to identify apoptotic mammalian cells by detecting in situ 

nuclei containing fragmented DNA (Gorczyca et al., 1994), and it has been adapted for the 

detection of programmed cell death in plants (Wang et al., 1996).  Leaves of wild type 

Arabidopsis thaliana plants were infected by syringe-inoculation with virulent Pst DC3000.  

At 24 hours and 72 hours after inoculation, leaf sections were stained for AteIF5A-2 protein 

and TUNEL.  Examination of these sections by confocal microscopy indicated that the up-

regulation of AteIF5A-2 protein following infection and measurable cell death by TUNEL 

labelling are concurrent (Figure 2-15).  There was a positive correlation between the length 

of time post-inoculation of the virulent strain of Pst DC3000 and the extent of TUNEL label.  

The earlier time points had fewer TUNEL-stained nuclei indicating less cell death (Figure 2-

15).  Interestingly, especially noticeable at the 24 hour time point is the overlapping labelling 

of AteIF5A-2 with the TUNEL label.  It is apparent, therefore, that up-regulation of 

AteIF5A-2 following infection correlates with the onset of programmed cell death. 

2.3.4.2.1 Analysis of plants over-expressing AteIF5A-2 

Plants over-expressing AteIF5A-2 were created by vacuum infiltration of 

Agrobacterium containing the construct pKYLX71: AteIF5A-2 using the floral dip method  

(Clough and Bent, 1998).  The nucleotide sequence that was used for over-expression is 

aligned with its cognate protein sequence in Figure 2-16.  The T1 seeds collected from the  



 

- 86 - 

 

 

 

 

 

 

 

 

 

Figure 2-15:  AteIF5A-2 expression and TUNEL labelling in Arabidopsis leaf tissue 24 

and 72 hours post-infection with virulent Pst DC3000 

Confocal images at time points 24 hours post-inoculation and 72 hours post-inoculation with 

virulent Pst DC3000.  The 24 hour time points do not have the chlorophyll autofluorescence 

(Auto) shown for the 24 hour time point as it interferes with the detection of AteIF5A-2: 

TRITC and TUNEL (FITC).  At 72 hours, there is less chlorophyll autofluorescence (Auto) 

as the leaf tissue is dying and massive chlorosis has set in.  There are more nuclei labelled 

with TUNEL in the 72 hour sample.  The merged images are located to the far right.  White 

size bars = 50μm.
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Figure 2-16: Alignment of the AteIF5A-2 gene sequence with its cognate protein 

sequence 

The entire gene sequence of AteIF5A-2 is aligned with its cognate protein sequence.  The 

primers that were used for amplification for the production of the AteIF5A-2 over-expressing 

plants are indicated in red.  The exons of the AteIF5A-2 gene are underlined, and the 4 

introns within are unformatted. The stop codon is indicated in blue, and the peptide used for 

the production of isoform-specific antibodies is indicated in green. 
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vacuum-infiltrated plants (T0) were spread on MS plates containing kanamycin for selection 

of transformants.  The transformation efficiency for plants over-expressing AteIF5A-2 was 

0.56%.  There were 14 transformants that were transplanted to soil alongside the control wild 

type (WT) and empty binary vector transformed seedlings (BIN).  A common phenotype 

among these 14 T1 generation plants was stunted growth (Figure 2-17A).  Severely stunted 

plants were scored as being less than 50% the size of WT or BIN controls, moderately 

stunted lines were scored as being 50-75% the size of WT or BIN controls and plants that 

were classified as similar to WT or BIN controls were at least 75% the size of the controls.  

Lines 2-1, 2-4, 2-6, 2-8, 2-10, 2-11, 2-12, 2-13 and 2-14 were severely stunted (Figure 2-

17B), and of these lines 2-6, 2-8, 2-10, 2-13, and 2-14 did not produce any seed.  Lines 2-2 

and 2-3 were moderately stunted, whereas lines 2-5, 2-7 and 2-9 grew similarly to the WT or 

BIN control plants (Figure 2-17).  The stunted plants also exhibited yellow leaves, purple 

cotyledons, curled up leaves and changes in flower morphology.  It is interesting to note that 

the seedlings did not look any different from each other or the control plants on the selection 

media plates.  The stunted growth phenotype was only observable after a few weeks of 

growth in soil after transplanting.  It is possible that during transplant the roots were damaged 

slightly, a consequence of transplanting that is unavoidable, and the plants were not able to 

recover.  Damage as a result of transplanting would be a type of wounding.  AteIF5A-2 is up-

regulated in leaves 4 hours after wounding with a haemostat (Figure 2-18) and during 

pathogen ingress (Gatsukovich, 2004).  If AteIF5A-2 is involved in regulation of cell death 

that results from wounding, the constitutive over-expression of AteIF5A-2 could result in 

constitutive up-regulation of cell death and impair the plant’s inability to recover from 

transplanting.  The cell death as a result of a wound effect would counteract the plant’s 

ability to grow.  This phenotype was also observed in T2 generation plants and hence 

heritable.  The T2 generation included 8 sister lines from mother lines 2-1, 2-2, 2-3, 2-4, 2-5, 

2-7, 2-8 and  2-11.  The other T1 plants died and did not produce seed.  Also T2 seed from 2-

12 only amounted to less than 10μl, and only one T2 plant germinated and grew on the 

selection media. 

There were 65 lines in the T2 generation, and lines 2-3H and 2-4G died after a few 
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Figure 2-17: T1 plants over-expressing AteIF5A-2 

A. Lines 2-1 through to 2-14 of the T1 plants, 4-weeks of age, over-expressing AteIF5A-2 

compared to corresponding control wild type (WT) and empty binary vector (BIN) 

transformed plants.  B.  Detail of lines that were severely stunted at 4-weeks of age.  Rosettes 

are located within the pink circles.  Only line 2-12 of these severely stunted plants bolted and 

produced a few seeds. 
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Figure 2-18: Western blot analysis of AteIF5A-2 in 3.5-week-old haemostat-wounded 

rosette leaves 

A.  Western blot probed with isoform-specific antibodies against AteIF5A-2.  Lanes 

correspond to hours after wounding.  AteIF5A-2 is detected at approximately 17kDa. B. 

Corresponding SDS-PAGE.  Each lane contained 10μg of protein, and the gel was stained 

with Coomassie Brilliant Blue.  The approximate molecular weights are indicated on the left. 
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weeks in soil.  Most of the T2 generation plants displayed some phenotype.  Indeed, 

only 6 out of 63 were not distinguishable from the wild type (WT) or empty binary vector 

control (BIN) plants.  The first phenotype that was noticeable was that some of the seed for 

several lines did not germinate (Figure 2-19A).  Lines exhibiting this phenotype included 2-

1, 2-2, 2-3, 2-4 and 2-12.  It was not determined why these seeds were not able to germinate, 

but it is possible that the over-expression of AteIF5A-2 either caused ovule abortion or 

inhibited embryo growth.  High levels of AteIF5A-2 expression would be similar to a 

constitutive wounding effect.  Arabidopsis plants that are under high levels of stress 

experience high levels of ovule abortion, creating empty seeds that are not able to germinate 

(Sun et al., 2004).  Several phenotypes were observed in the rosettes of T2 generation plants 

over-expressing AteIF5A-2 including curved up leaves (Figure 2-19B), severe stunting 

(Figure 2-19C) and chlorosis and spontaneous lesion formation (Figure 2-19D).  These are all 

phenotypes that reflect an effect on the vegetative meristem and differentiated mesophyll 

cells.  The curved up leaves and the severe stunting of the rosette are a direct result of 

decreased cell growth (Charrier et al., 2002).  Chlorosis and spontaneous lesion formation, 

which are also observed during pathogen ingress (Katagiri et al., 2002), reflect death of 

mesophyll cells (Greenberg, 1997).   

Phenotypes of the inflorescence of T2 AteIF5A-2 over-expressing plants include an 

increase in basal branches (Figure 2-19E), early bolting (Figure 2-19F) and small stunted 

siliques (Figure 2-19G).  One way in which plants respond to pathogen ingress as well as 

other stresses is to accelerate the transition to reproduction (Martinex-Zapater et al., 1994; 

Tienderen et al., 1996; Bradley et al., 1997; Pigliucci and Schmitt, 1999).  Thus early bolting 

as well as changes in branch architecture, for example, an increase in basal branches, likely 

reflect stress induced by over-expression of AteIF5A-2.  The small stunted silique phenotype 

may be a direct consequence of increased cell death within the reproductive tissues brought 

on by the over-expression of AteIF5A-2.  To investigate whether precocious cell death 

occurred in transgenic plants over-expressing AteIF5A-2, leaves of 3-week-old plants were 

excised and immediately fixed in paraformaldehyde.  Great care was taken not to damage the 

tissue in any way.  After fixation, the leaves were TUNEL-labelled and also labelled for 
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Figure 2-19: Phenotypes of T2 plants over-expressing AteIF5A-2 

A. Example of compromised germination exhibited in T2 generation plants over-expressing 

AteIF5A-2 derived from line 2-1 at 10 days of age.  The arrows indicate seeds (brownish 

spots) that did not germinate.  B.  Line 2-4C at 3-weeks of age illustrating the curled leaf 

phenotype.  C.  Line 2-3D at 5-weeks of age illustrating the severely stunted phenotype.  D. 

Line 2-2B at 3-weeks of age illustrating necrotic lesions (indicated by white arrows) and 

premature chlorosis.  E. Line 2-7C at 5-weeks of age illustrating enhanced basal 

inflorescence branches compared to wild type (WT) and empty binary vector (BIN) plants.  

F.  Line 2-5C shown here at 3-weeks of age, bolted almost an entire week earlier than the 

WT and BIN control plants.  G.  Line 2-4H at 7-weeks of age illustrating short, stunted 

siliques that contained few seeds compared to WT and BIN control siliques.  Size bars = 

1cm. 
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AteIF5A-2 expression using secondary antibody conjugated to TRITC.  TUNEL labelling 

reflecting programmed cell death was evident in the leaves of line 2-3F (Figure 2-20).  The 

over-expression of AteIF5A-2 resulted in strong labelling of AteIF5A-2 in situ.  TUNEL 

labelling of nuclei within line 2-3F occurred in groups of cells, indicating that neighbouring 

cells adjacent to ones undergoing programmed cell death are also affected possibly due to 

intercellular communication. 

There was a correlation between the level of AteIF5A-2 expression in the AteIF5A-

2 over-expressing plant and their physical stature (Figure 2-21).  Specifically, higher levels 

of over-expression, as demonstrated by Western blotting, resulted in more severely stunted 

growth.  There was also an observed influence of AteIF5A-2 over-expression on seed yield.  

Plants with high levels of AteIF5A-2 expression had severely compromised fecundity 

(Figure 2-21).  Gatsukovich (2004) demonstrated that the expression of AteIF5A-2 is post-

transcriptionally regulated. That is, AteIF5A-2 mRNA proved to be constitutively expressed 

in wild-type plants, and protein was not expressed until the plants were either wounded or 

infected with a pathogen. Of interest is the finding in the present study that this post-

transcriptional regulation of AteIF5A-2 translation is overcome in AteIF5A-2 over-

expressing transgenic plants.  Indeed, AteIF5A-2 protein was clearly detectable in the 

transgenic plants by Western blotting in the absence of wounding or pathogen inoculation 

(Figure 2-21 and Figure 2-22A).  Moreover, the level of AteIF5A-2 expression in lines 2-3F 

and 2-9A when infected with virulent Pst DC3000 for 72 hours was comparable to WT 

AteIF5A-2 expression, being 90 and 120%, respectively, of the WT level as measured by 

densitometry (Figure 2-22B). 

2.3.5 AteIF5A-3 is a regulator of cell growth 

2.3.5.1 Over-expression of AteIF5A-3 in transgenic plants 

To investigate the role of AteIF5A-3, transgenic plants over-expressing AteIF5A-3 

were generated and analyzed. The sequence of the AteIF5A-3 gene with the sequence of its 

cognate protein is illustrated in Figure 2-23.  T1 generation seeds were grown on selection 

media plates, and 16 transformants grew.  The transformation efficiency was 0.56%.  
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Figure 2-20: AteIF5A-2 expression and TUNEL labelling in leaves of Arabidopsis plants 

over-expressing AteIF5A-2 

Confocal images of TUNEL labelled nuclei and AteIF5A-2: TRITC in a leaf of a 3-week-old 

plant over-expressing AteIF5A-2 (line 2-3F). Size bar= 50μm. 
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Figure 2-21: T2 generation plants over-expressing AteIF5A-2 are extremely stunted 

A. Photographs of plants over-expressing AteIF5A-2.  Plants are ordered from the most 

stunted to the least stunted, with the wild type (WT) and binary vector (BIN) control to the 

far right.  B.  Western blot of 5μg total protein isolated from cauline leaves corresponding to 

the lines above.  The blot was probed with AteIF5A-2-specific antibody.  AteIF5A-2 is 

detected at approximately 17kDa.  C. Seed yield obtained from each line expressed as weight 

in mg.  Standard errors of the means are shown for WT and BIN plants; n=10. 
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Figure 2-22: Expression levels of AteIF5A-2 in virulent Pst DC3000-infected and 

uninfected leaves of T2 plants over-expressing AteIF5A-2 

A. Western blot showing AteIF5A-2 protein expression in uninfected leaves of wild-type 

(WT) plants and plants over-expressing AteIF5A-2 (Lines 2-3F and 2-9A).  AteIF5A-2 is 

detected at approximately 17kDa.  The corresponding SDS-PAGE stained with Coomassie 

Brilliant Blue is illustrated.  B.  Western blot showing AteIF5A-2 protein expression in 

leaves of wild-type (WT) plants and plants over-expressing AteIF5A-2 (Lines 2-3F and 2-9A) 

before infection (0h) and 72 hours (72h) after infection with virulent Pst DC3000.  AteIF5A-

2 is detected at approximately 17kDa.  The corresponding SDS-PAGE stained with 

Coomassie Brilliant Blue is illustrated with the approximate molecular weights shown on the 

left.  [These infections were performed by Yulia Gatsukovich]. 
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Figure 2-23: Alignment of the nucleotide sequence of AteIF5A-3 and the amino acid 

sequence of its cognate protein 

The entire gene sequence of AteIF5A-3 is aligned with its cognate protein sequence.  The 

primers that were used for amplification for the production of AteIF5A-3 over-expressing 

plants are indicated in red.  The exons of the AteIF5A-3 gene are underlined, and the 3 

introns are unformatted.  The stop codon is indicated in blue, and the peptide used for the 

production of isoform-specific antibodies is indicated in green. 
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The phenotypes for T1 are illustrated in Figure 2-24, and ranged from very similar to wild 

type (WT) or binary vector (BIN) controls (Lines 3-1, 3-3, 3-5, 3-6, 3-7, 3-8, 3-10, 3-11, 3-

12, 3-13, 3-14, 3-15 and 3-16) to being moderately stunted (Lines 3-2, 3-4, 3-9).  All 16 lines 

were carried through to T2 generation, with each mother line giving rise to 8 sister lines 

designated A to H.  Line 12 did not produce any transformants in the T2 generation as 

determined by the kanamycin screen and was likely a null line.  Line 12 was not used for any 

further analysis. 

The T2 generation plants over-expressing AteIF5A-3 had more exaggerated 

phenotypes than was evident for T1 plants.  The plants were grouped based on the level of 

AteIF5A-3 expression in cauline leaves determined by Western blotting (Figure 2-25).  Since 

most of the sister lines (A-H) demonstrated similar phenotypes and similar protein expression 

within a mother line, the Western blot depicted in Figure 2-25 was performed with protein 

only from sister line A to get a general comparison of AteIF5A-3 expression. The relative 

level of expression observed in these sister lines can be categorized as high (lines derived 

from 3-1, 3-2, 3-3, 3-10, 3-13), medium (lines derived from 3-4, 3-5, 3- 6, 3-15), low (lines 

derived from 3-7, 3-8, 3-9, 3-14) or none (lines derived from derived from 3-11, 3-16, and 

WT/BIN controls).  A summary of all the phenotypes observed in the T2 lines is presented in 

Table 2-2.  The two most consistent features of the plants over-expressing AteIF5A-3 with 

detectable AteIF5A-3 protein are an increase in seed size and rounder leaf morphology 

(Table 2-2).  Plants over-expressing AteIF5A-3 that showed co-suppression, as demonstrated 

by Western blotting, also had a seed phenotype, specifically seeds that were smaller than 

those for WT and BIN controls (Table 2-2).  The sister lines from the T2 generation that were 

brought through to the T3 generation were chosen based on phenotype as well as the level of 

expression of AteIF5A-3 and are indicated by coloured ovals in Figure 2-25.   

T2 lines 3-1A and 3-2A exhibited high levels of AteIF5A-3 expression in cauline 

leaves.  Lines 3-1A to 3-1H were very uniform in their phenotype (Figure 2-26A showing 

lines 3-1A to 3-1D only).  All of the T2 sister lines from mother line 3-1 had large round 

leaves that were darker green than those of WT and BIN controls (Figure 2-26A).  They also 

exhibited a delay in bolting and rosette senescence (Figure 2-26A). Lines 3-2A to 3-2H also  
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Figure 2-24: Photographs of T1 plants over-expressing AteIF5A-3 

Transgenic lines 3-1 through 3-16 over-expressing AteIF5A-3 are compared to control wild 

type (WT) and empty binary vector (BIN) transformed plants. 
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Figure 2-25:  Western blot analysis of leaves from T2 plants over-expressing AteIF5A-3 

A. Western blot probed with isoform-specific antibodies against AteIF5A-3.  Lanes 

correspond to the lines indicated above. AteIF5A-3 is detected at approximately 17kDa. 

Lines for which phenotypes are described in the text are indicated by coloured ovals.  The 

black ovals indicate lines that exhibit high levels of AteIF5A-3 over-expression.  The dark-

blue ovals indicate lines that exhibit medium levels of AteIF5A-3 over-expression. The light-

blue ovals indicate lines that exhibit low levels of AteIF5A-3 over-expression.  The white 

outlined ovals indicate lines that exhibit co-suppression of AteIF5A-3.  B. Corresponding 

SDS-PAGE gels.  Each lane contained 20μg of protein, and the gel was stained with 

Coomassie Brilliant Blue.  The approximate molecular weights are indicated on the left. 
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Table 2-2: Summary of phenotypes exhibited by T2 plants over-expressing AteIF5A-3 

Rosette Size/Bolt Size: N= normal; S= small; L=large; VL=very large 

Seed Size: N= normal; SM= small; SL=slightly larger; L= large; VL=very large 

Seed Yield: L=low; N=normal; H=high 

Leaf Morphology: N= normal; S= small; R= round; C=curled; L=elongated; B=bilobed 

Colour: DG= dark green; G=green (normal); LG= light green 
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Figure 2-26: Photographs of T2 plants with high levels of AteIF5A-3 over-expression 

A.  T2 lines 3-1A through 3-1D are indicated by blue tags and exhibit the phenotypes of large 

dark green leaves and delayed bolting and senescence.  The wild type (WT) and binary 

control (BIN) plants are indicated by white and yellow tags, respectively.  B.  T2 lines 3-2A 

through 3-2D are indicated by blue tags and exhibit the phenotypes of small round leaves that 

were light green in colour, delayed bolting and senescence and very large seeds.  The wild 

type (WT) and binary control (BIN) plants are indicated by white and yellow tags, 

respectively. 
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exhibited a delay in bolting and rosette leaf senescence (Figure 2-26B showing lines 3-2A to 

3-2D only). These plants also had very large seeds. 

Of the lines exhibiting medium levels of AteIF5A-3 expression, lines 3-4A to 3-4H 

were similar in stature to wild type plants, but displayed delayed rosette leaf senescence and 

had very bushy bolts (Figure 2-27A).  These bushy bolts resulted in seed yield that was 

higher than that for WT or BIN controls, and in the case of line 3-4C the seed yield was 2.2-

fold more than that for WT or BIN.  A second set of transgenic lines with a medium level of 

AteIF5A-3 expression, lines 3-15A through to 3-15H, are illustrated in Figure 2-27B.  These 

plants were also very similar to wild type plants, but the area that the rosette occupied was 

larger than for the WT and BIN controls.  The leaves of the rosette were also rounder at the 

tips than were the control leaves. 

T2 lines 3-8A through 3-8H had low levels of AteIF5A-3 expression.  These plants 

had very large leaves and large rosettes compared to the control WT and BIN plants (Figure 

2-28A).  The leaves also appeared to be wider and rounder than the leaves of the control 

plants.  These lines, like all lines that were not co-suppressed, produced seeds that were 

larger than those of WT and BIN control plants, and the seeds of these lines had the highest 

seed weight: seed size ratio.  Another set of lines with low levels of AteIF5A-3 expression, 

lines 3-9A to 3-9H, are illustrated in Figure 2-28B.  These lines exhibited an initial delay in 

growth, but eventually surpassed the WT and BIN controls in stature.  The rosette leaves 

were initially small and round, but expanded into large rosette leaves that exhibited delayed 

senescence.  Bolting too was delayed, and the bolts remained shorter than those of control 

plants (Figure 2-28B).   

T2 lines 3-11A and 3-16A of the AteIF5A-3 over-expressing plants have no up-

regulated expression of AteIF5A-3 in their cauline leaves.  This presumably reflects co-

suppression which would also result in silencing of the corresponding endogenous gene.  

That the transgene is present is evident from the fact that seedlings grew on kanamycin-

containing MS plates.  Plants of these lines proved to have a similar stature to that of control 

plants (Figure 29A and Figure 29B), but their distinguishing feature is small seed size (Table 

2-2).  Seed size is a phenotype of all the over-expressing AteIF5A-3 lines, where plants 
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Figure 2-27: Photographs of T2 plants with medium levels of AteIF5A-3 over-expression 

A.  T2 lines 3-4A through 3-4D are indicated with blue tags and exhibit the phenotypes of 

large leaves, delayed senescence, bushy bolts and high seed yield.  The wild type (WT) and 

binary control (BIN) plants are indicated by white and yellow tags, respectively.  B.  T2 lines 

3-15A through to 3-15D are indicated with blue tags and exhibit the phenotypes of large 

round leaves and delayed bolting.  The wild type (WT) and binary control (BIN) plants are 

indicated by white and yellow tags, respectively. 
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Figure 2-28: Photographs of T2 plants with low levels of AteIF5A-3 over-expression 

A.  T2 lines 3-8A through 3-8D are indicated with blue tags and exhibit the phenotypes of 

large round leaves and very dense seeds (high weight: size ratio).  The wild type (WT) and 

binary control (BIN) plants are indicated by white and yellow tags respectively.  B.  T2 lines 

3-9E through to 3-9H are indicated with blue tags and exhibit the phenotypes of delayed 

growth of the rosette leaves, round rosette leaves, delayed bolting and delayed senescence.  

The wild type (WT) and binary control (BIN) plants are indicated by white and yellow tags, 

respectively. 



 

- 120 - 



 

- 121 - 

 

 

 

 

 
 

 

 

 
 

Figure 2-29: Photographs of T2 plants with co-suppression of AteIF5A-3 expression 

A.  T2 lines 3-11A through 3-11D are indicated with blue tags and looked very similar to the 

wild type (WT) and binary control (BIN) plants indicated by white and yellow tags 

respectively, though they also had very small seeds.  B.  T2 lines 3-16A through 3-16D are 

indicated with blue tags and exhibit the small seed phenotype as well as large leaves and 

large bolts.  The wild type (WT) and binary control (BIN) plants are indicated by white and 

yellow tags, respectively. 
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that display some level of AteIF5A-3 expression have significantly larger seeds than the 

control WT or BIN plants.  The lines with suspected co-suppression have smaller seeds than 

the WT or BIN control plants. 

The sizes of T3 seeds produced by the T2 plants characterized above were measured. 

Photographs were taken of the seeds for each line (the largest and the smallest seeds 

measured are shown in Figure 2-30), and measurements were made on the photographs in 

silico using Image-Pro Express Version 4.0 for Windows™.  For each line and for the WT 

and BIN controls, ten seeds were measured and the volumes calculated according to Kiyosue 

et al. (1999).  It was found that the high expression lines 3-2A to 3-2H (Figure 2-30C and 

Figure 2-31) had seeds that were up to 3 times larger than those of WT and BIN control 

plants (Figure 2-30A and Figure 2-31).  By contrast, lines with the lowest AteIF5A-3 

expression (Lines 3-11A to 3-11H and 3-16A to 3-16H) produced seeds that were only 86-

88% of the size of WT or BIN control seeds (Figure 2-30B and Figure 2-31).  The average 

seed size for each line was expressed as nm3 (Figure 2-32) and was calculated using an 

equation for the volume of an ellipsoid since seeds from Arabidopsis thaliana are 

approximately ellipsoid (Kiyosue et al., 1999).  The measured size of the control seeds 

(Figure 2-31) is within the published Arabidopsis seed size range (Boyes et al., 2001).  Seed 

size is controlled by the growing embryo, the endosperm and/or the maternal tissues (Riefler 

et al., 2006).  These findings are consistent with the notion that seed size is maternally 

controlled and that the level of AteIF5A-3 expression in these tissues may regulate this 

phenomenon.  Furthermore, not only were the seeds of high expressing lines affected, but 

fruit development, which is controlled solely by gene expression of maternal tissues 

(Dinneny and Yanofsky, 2004), was also affected.  Normally, Arabidopsis siliques are 

composed of 2 valves or locules that are separated by a false septum or partition.  T3 plants 

derived from the high AteIF5A-3-expressing T2 lines, 3-2A to 3-2H, had 4 valves on their 

siliques and 3 partitions, likely the result of 4 fused carpels rather than 2 as in the WT (Figure 

2-30D).  
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Figure 2-30: Analysis of seed and siliques from transgenic plants over-expressing 

AteIF5A-3 

A. Seeds from control wild type (WT) and empty binary vector transformed (BIN) plants.  B.  

T3 seeds from lines producing the smallest seeds.  C.  T3 seeds from lines producing the 

largest seeds.  D.  Siliques of T3 plants and wild type (WT) control plants.  
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Figure 2-31: Size of T3 seeds from T2 plants over-expressing AteIF5A-3 

A total of 10 seeds were measured for each line.  The transgenic lines over-expressing 

AteIF5A-3 are indicated in blue.  The empty binary vector (BIN) and wild type (WT) control 

plants are indicated in yellow and white, respectively. 
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               To examine phenotype heritability for AteIF5A-3 over-expressing lines in more 

detail, T3 seeds from mother lines 3-1A, 3-2D, 3-4D, 3-15A, 3-8D, 3-9H, 3-11C and 3-16C 

were screened on kanamycin plates and the resultant seedlings transplanted to soil.  Several 

other T3 sister lines over-expressing AteIF5A-3 did not germinate, including 3-1B, 3-1D, 3-

1E, 3-1F, 3-1G, 3-2H, 3-14B.  Many of the phenotypes that were described for the T2 

generation were not as apparent in the T3 generation.  However, a phenotype that was 

observed in many T3 lines was an increase in petal number (Figure 2-32A).  There were also 

instances of bilobed leaves (Figure 2-32B) similar to what was observed in T2 plants, and 

several lines produced more than one leaf at each node (Figure 2-32B).  These phenotypes 

are reflective of interrupted cell division within the meristems during organogenesis (Hu et 

al., 2003).  Fused bolts (Figure 2-32B) is also indicative of interrupted cell division, 

specifically cell separation, in the inflorescence meristem (Ohno et al., 2003) 

2.3.5.2 Localization of AteIF5A-3 expression 

Since very little is known about expression of the endogenous AteIF5A-3 gene, the 

localization of its cognate protein was examined by confocal microscopy.  By subjecting the 

2kb region upstream of AteIF5A-3 gene to PLACE (http://www.dna.affrc.go.jp/PLACE/ 

index.html), several interesting tissue-specific promoter elements were identified.  

Specifically, some seed storage and ABA responsive elements were identified, as well as 

pollen and root specific motifs.  Furthermore Birnbaum et al. (2003) used cell sorting to sort 

the different tissues of Arabidopsis root expressing tissue-specific GFP and then subjected 

the mRNA from these sorted cells to microarray analysis.  From the raw data (Birnbaum et 

al., 2003), it is apparent that AteIF5A-3 transcript is present in root tissues, specifically 

within the zone of elongation and the area in which cells differentiate, but not in the apical 

meristem region. 

That AteIF5A-3 is expressed in developing seedlings was demonstrated by Western 

blotting (Figures 2-8).  To confirm this, confocal microscopy was performed using purified 

AteIF5A-3 antiserum and goat-anti-rabbit IgG secondary antibody conjugated to FITC 

(Figure 2-33).  It was found that expression of AteIF5A-3 was detectable in the developing 

roots of emerging seedlings, specifically in the root cap, the zone of elongation and 
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Figure 2-32: Photographs illustrating some phenotypes of T3 plants over-expressing 

AteIF5A-3 

A.  Several lines of T3 plants over-expressing AteIF5A-3 had extra flower petals (indicated 

by red arrows).  B.  T3 plants also exhibited bilobed leaves (line 3-2D7) and multiple leaves 

per node (line 3-9H6) (indicated by white arrow).  There were also instances of fused bolts 

and strange bolt morphology (indicated by a blue arrow).   
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Figure 2-33: Confocal microscopy images of AteIF5A-3 expression in seedlings and 

flowers 

A.  Expression of AteIF5A-3 detected by FITC labelling in an emerging root from a wild-

type seed.  The image is a composite of 20 optical slices.  B.  Expression of AteIF5A-3 

detected by FITC labelling in a 4 day old wild-type seedling.  This image is a composite of 

17 optical slices.  C.  Expression of AteIF5A-3 detected by FITC labelling in the root tip of 

an 8 day old wild-type seedling.  The image is a composite of 17 optical slices.  D.  

Expression of AteIF5A-3 detected by FITC labelling in pollen associated with the stigma of a 

35 day-old wild-type plant.  The image is a composite of 13 optical slices.  Size bars = 

100μm 
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elongating root hairs (Figure 2-33A to C). For 4-day-old seedlings, the expression of 

AteIF5A-3 was observed in all tissue layers, but was highest in the epidermis and lateral root 

cap.  There was no obvious expression in the shoot of the seedling (Figure 2-33B).  The 

expression pattern in the root was even more brilliant in 8 day old seedlings (Figure 2-33C).  

That the expression of AteIF5A-3 is not evident in the meristem region indicates that it is 

probably not involved in cell division directly, but rather is involved in the elongation and 

differentiation of cells in the zone of elongation and during maturation of roots.  These 

findings are consistent with the microarray data found in Birnbaum et al. (2003).  Even 

though there was no detectable expression in the shoots of these seedlings, this does not 

preclude the possibility that AteIF5A-3 is normally expressed in shoots, as the seedlings used 

in these experiments were grown under conditions of etiolation.  

That there is up-regulation of AteIF5A-3 during flower development was 

determined by Western blotting (Figure 2-9).  This was confirmed by confocal microscopy 

after labelling of flowers with purified AteIF5A-3 antibody and FITC conjugated secondary 

antibody (Figure 2-33D).  AteIF5A-3 was detectable in pollen grains associated with the 

stigma, and only pollen associated with the stigma (Figure 2-33D). This is consistent with the 

proposed function of AteIF5A-3 in cell elongation, as pollen associated with the stigma 

grows a pollen tube that penetrates the maternal tissues to fertilize the eggs stored within 

(Edlund et al., 2004).  It is not clear from these experiments whether AteIF5A-3 is also 

expressed in unfertilized eggs, but there is a report of stored eIF5A transcripts in unfertilized 

eggs of maize (Dresselhaus et al., 1999).   

The expression of AteIF5A-3 in the roots of transgenic lines over-expressing 

AteIF5A-3 was also visualized by confocal microscopy.  Plant roots for line 3-2D,  which has 

high levels of AteIF5A-3 expression,  labelled very intensely throughout the root tip, with the 

exception of the quiescent centre just above the root cap (Figure 2-34B).  The quiescent 

centre is a metabolically inactive area of the root tip (Birnbaum et al., 2003).  By contrast, 

the intensity of the AteIF5A-3 labelling in the roots of co-suppressed transgenic plants was 

much reduced in comparison with wild-type plants (Figure 2-34C and Figure 2-34D).  

Furthermore, these roots either lacked root caps, or had very small root caps, and the minimal  
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Figure 2-34: Confocal microscopy images of AteIF5A-3 expression in seedling roots of 

wild type and transgenic plants 

A.  Expression of AteIF5A-3 detected by FITC labelling in an 8 day old wild-type (WT) 

seedling.  The image is a composite of 17 optical slices.  B.  Expression of AteIF5A-3 

detected by FITC labelling in the root of an 8 day old seedling of T3 transgenic plant derived 

from line 3-2D.  This image is one optical section.  C.  Expression of AteIF5A-3 detected by 

FITC labelling in the root of an 8 day old seedling of T3 transgenic plant derived from line 3-

11C.  This image is one optical section.  D.  Expression of AteIF5A-3 detected by FITC 

labelling in the root of an 8 day old seedling of T3 transgenic plant derived from line 3-16C.  

This image is one optical section.   Size bars = 100μm. 
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expression of AteIF5A-3 that was detectable was mainly in the epidermis (Figure 2-34C and 

Figure 2-34D).  It is known that the epidermal layer controls the extent to which roots 

elongate (Scheres et al., 2002), and it is likely that the detected AteIF5A-3 is from the 

endogenous gene.  Co-suppression normally results in systemic gene down-regulation.  That 

the co-suppression plants have AteIF5A-3 expression in the epidermis of the root presumably 

reflects lack of transfer of small interfering RNA from the phloem to the epidermis.  This 

tissue is largely isolated from the rest of the plant as it contains only small simple 

plasmodesmata, does not have the large branched plasmodesmata required for small 

interfering RNA translocation and is relatively symplastically isolated from the rest of the 

root (Duckett et al., 1994). 

The subcellular localization of AteIF5A-3 expression was also assessed by confocal 

microscopy.  AteIF5A-3 was clearly evident in the cytoplasm and in the nuclei of cortical 

cells of the zone of elongation (Figure 2-35).  eIF5A is known to act as a nucleocytoplasmic 

shuttle in mammalian systems (Rosorius et al., 1999; Jao and Chen, 2002).  Thus, the 

expression of AteIF5A-3 in the nuclei and cytoplasm of cortical cells within the zone of 

elongation of the root implies that it may act as a nucleocytoplasmic shuttle in plants as well. 
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Figure 2-35: Confocal microscopy images of AteIF5A-3 subcellular localization in root 

cortical cells 

Expression of AteIF5A-3 detected by FITC labelling in the cortex of an 8 day old wild type 

(WT) seedling root (leftmost image).  Differential interference contrast (DIC) image is in the 

center, and the merged image of DIC and FITC is to the far right.  Images are single optical 

slices. Size bars = 10μm. 
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2.4 Discussion 

Cells have many means by which they regulate gene expression.  In addition to 

transcription, several such mechanisms involve RNA-protein interactions. RNA processing, 

translation and degradation are also very potent methods of gene regulation.  Recent reports 

have  implicated RNA-binding proteins in the regulation of hormone signalling (Razem et 

al., 2006) and circadian rhythms in plants (Fedoroff, 2002; Mussgnug et al., 2005).  RNA-

binding proteins commonly have more than one function and can often link two separate 

processes, such as intracellular localization and translation (Fedoroff, 2002).  Not only do 

RNA-binding proteins bind to nucleic acids, they also mediate protein-protein interactions.  

For example, eIF5A, which is thought to be a nucleocytoplasmic shuttle, facilitating the 

movement of specific subsets of mRNAs from the nucleus into the cytoplasm for translation 

(Henderson and Percipalle, 1997; Shi et al., 1997; Rosorius et al., 1999), has been shown to 

have specific interactions with RNA (Bartig et al., 1992; Campbell et al., 1994; Xu et al., 

2004) and with proteins (Kang et al., 1993; Ruhl et al., 1993; Valentini et al., 2002).  RNA-

protein interactions tend to be more difficult to observe than transcription factor-DNA 

interactions, as they are not usually sequence-specific, but rather entail three dimensional 

interactions (Varani, 1998).  Attempts to discover the mRNA binding partners of eIF5A have 

not been very fruitful (Liu et al., 1997; Xu and Chen, 2001; Xu et al., 2004), though 

downstream effects of down-regulation of the expression of eIF5A or its activation by 

hypusination have been observed (Kruse et al., 2000; Boone et al., 2004; Li et al., 2004; 

Taylor et al., 2004). 

Development in plants and animals requires a balance between cell growth and cell 

death.  In mammalian cells, eIF5A has been shown to be involved in both of these disparate 

events in an isoform-specific manor (Cracchiolo et al., 2004), and thus eIF5A has been called 

the translational switch between cell growth and cell death (Jin et al., 2003; Thompson et al., 

2004).  That the protein sequences of eIF5A in plants are highly similar to mammalian and 

yeast eIF5A, suggests that the protein has similar functions in plants and mammals.  

Arabidopsis thaliana has three isoforms of eIF5A, all of which are found on 

chromosome 1.  Each of these isoforms displays a unique expression pattern and unique 
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phenotypes when over-expressed in planta. Wang et al. (2001) first identified and 

functionally annotated an eIF5A sequence in Arabidopsis (AteIF5A-1).  The cDNA for 

AteIF5A-1 was isolated from a library created from mRNA expressed in senescing leaves and 

proved to be similar to tomato LeeIF5A-4.  The sequence for AteIF5A-1 corresponds to the 

At1g13950 gene locus on chromosome 1 in Arabidopsis thaliana.  When this sequence was 

used to BLAST the Arabidopsis genome, two additional eIF5A sequences, also on 

chromosome 1, were identified and were denoted as AteIF5A-2 (At1g26630) and AteIF5A-3 

(At1g69410).   

At the time the experiments reported in this thesis were initiated, not much was 

known about the isoforms of eIF5A in Arabidopsis.  In fact, they were only annotated as 

being similar to tomato LeeIF5A-4 or as an unknown protein.  There was very limited EST 

information, and it was not known where the isoforms were expressed. It has since been 

determined through the work of this thesis as well as of others in our laboratory that 

AteIF5A-1 is the senescence associated isoform, AteIF5A-2 is the wounding and pathogenesis 

associated isoform and AteIF5A-3 is the growth associated isoform.  The temporal and spatial 

expression patterns for the AteIF5A isoforms documented herein were determined using 

isoform-specific antibodies, and it is proposed that since their expression patterns are unique, 

they transport different subsets of mRNA from the nucleus to the cytoplasm for translation.     

While AteIF5A-1 seems to have a regulatory role in leaf senescence (Figure 2-7), it 

also has a known function in xylogenesis (Duguay, 2004; Tshin, 2004; Liu et al., submitted 

2006).  Duguay (2004) determined the expression pattern of AteIF5A-1 transcript using the 

reporter gene, GUS, driven by the AteIF5A-1 promoter.  His work as well as that of Tshin 

(2004) and Liu et al. (submitted 2006) demonstrated that AteIF5A-1 is important for the 

formation of xylem.  Xylogenesis is a form of programmed cell death (Greenberg, 1996; 

Richberg et al., 1998).  When differentiating tracheary elements in the Zinnia model system 

were treated with actinomycin D or cyclihexamide, maturation by programmed cell death 

was blocked (Fukuda and Komamine, 1983).  This suggests that cell death required for the 

maturation of tracheary elements of the xylem requires protein synthesis.  AteIF5A-1 was 

cloned from senescing tissues by Wang et al. (2001) and, as demonstrated in this thesis, is 
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up-regulated in senescing rosette leaves, senescing cotyledons and senescing reproductive 

organs.  These expression patterns are consistent with the GUS expression analysis 

performed by Duguay (2004) of the AteIF5A-1 promoter.  Given that AteIF5A-1 and its 

cognate protein are up-regulated during both senescence and xylogenesis, it is reasonable to 

hypothesize that AteIF5A-1 is involved in different types of programmed cell death 

associated with development.   

The induction of senescence and programmed cell death during xylogenesis appears 

to be regulated by the hypusinated form of AteIF5A-1. This is apparent from the finding that  

deoxyhypusine synthase (AtDHS) is up-regulated in parallel with AteIF5A-1 during leaf and 

cotyledon senescence (Wang et al., 2003; Duguay, 2004).  The constitutive down-regulation 

of DHS resulted in many phenotypes, including pollen sterility (Wang et al., 2005).  

However, the down-regulation of DHS specifically in leaves, regulated by a leaf-specific 

RbsS2 promoter, resulted in delayed leaf senescence by approximately one week (Jamal, 

2004).  This delay in the onset of senescence was attributed to the delay in activation of the 

AteIF5A-1 isoform regulating senescence.  The over-expression of AteIF5A-1 resulted in 

phenotypes attributable to increased cell death, namely delayed growth and premature 

senescence. 

To investigate further the possible role of AteIF5A-1 in programmed cell death, 

Arabidopsis plants over-expressing AteIF5A-1 cDNA were generated by Zhongda Liu of Dr. 

J. E. Thompson’s laboratory.  Liu et al. (submitted 2006) observed that these transgenic 

plants had increased levels of xylem.  Moreover, corresponding transgenic plants with 

suppressed AteIF5A-1 exhibited decreased xylem development in comparison with control 

plants.  Thus, it seems clear that the amount of xylem formed correlates with the level of 

AteIF5A-1 expression.  In the present study, additional phenotypes of the plants over-

expressing AteIF5A-1 were identified and characterized.  The main phenotypes that were 

observed included small rosettes and spindly bolts, long thin rosette leaves or petioles, early 

rosette leaf senescence and delayed growth.  This array of phenotypes indicates that 

AteIF5A-1 has a broad influence on plant development.  The delayed growth phenotype was 

particularly prominent and is illustrative of the antagonistic relationship between growth and 
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senescence.  In fact, it has been demonstrated that there is a direct relationship between the 

differentiation of xylem tracheary elements and inhibition of cell expansion (Lee and 

Roberts, 2004) .  Furthermore, death repressing proteins have been shown to promote growth 

and development of plants (Yang et al., 2006).  The finding in the present study that 

AteIF5A-1, which promotes cell death, appears to repress growth and development when 

over-expressed in transgenic plants is consistent with these earlier observations. 

Evidence obtained in the present study has indicated that AteIF5A-2 is also 

involved in cell death, specifically premature cell death induced by pathogen ingression or 

wounding. Plant-pathogen interactions are either compatible or incompatible.  During the 

incompatible interaction, the plant’s defence system is activated, and the cells within the 

region of infection undergo programmed cell death known as the hypersensitive response 

(HR).  HR leads to systemic acquired resistance (SAR), though it is now thought that the 

programmed cell death that occurs during HR is not necessary for SAR and may be a second 

layer of defence if a certain threshold of defence stress signals is reached (Pozo et al., 2004).  

Depending on their lifestyle, whether biotrophic or necrotrophic, pathogens suppress or 

promote programmed cell death to induce disease susceptibility.  Facultative necrotrophic 

pathogens, such as Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), start off as 

biotrophs, living on the nutrients available within the apoplast, but subsequently become 

necrotrophic by inducing host programmed cell death and the ensuing release of host cell 

nutrients.  Experimental evidence suggests that the timing of host programmed cell death is 

crucial in determining the outcome of the disease state (Pozo et al., 2004).  Early HR-based 

programmed cell death in the host leads to resistance by isolating the pathogen to the 

apoplast with no chance of receiving more nutrients from the host; thus the induction of 

disease is averted.  The later-onset of disease-associated cell death is normally suppressed by 

the pathogen initially, but once infection is established the pathogen initiates host cell death 

(Katagiri et al., 2002).  Recent evidence has demonstrated that the cell death accompanying 

development of the disease state includes programmed cell death (Abramovitch and Martin, 

2004; Pozo et al., 2004).   
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Gatsukovich (2004) determined the time-course of AteIF5A-2 expression during 

compatible and incompatible interactions of virulent Pst DC3000 and avirulent Pst DC3000, 

respectively, with Arabidopsis thaliana.  When wild type Arabidopsis plants were infected 

with virulent Pst DC3000, AteIF5A-2 expression increased at 24 hours and peaked at 72 

hours post inoculation.  When wild type Arabidopsis plants were infected with avirulent Pst 

DC3000, AteIF5A-2 expression increased at 24 hours, but by 72 hours had diminished to 

background levels.  Thus, the timing of the up-regulation of AteIF5A-2 following treatment 

with either avirulent or virulent bacteria coincides with host cell death (Katagiri et al., 2002).  

Moreover, down-regulation of AteIF5A-2 abrogates the development of virulent Pst DC3000 

disease symptoms (Gatsukovich, 2004).  That AteIF5A-2 regulates the occurrence of cell 

death during pathogenesis was demonstrated by constitutive down-regulation using the 3` 

UTR (Gatsukovich, 2004) and the constitutive over-expression of AteIF5A-2 in this thesis.  

eIF5A is known to be a regulator of apoptosis in mammalian cells (Caraglia et al., 2001; Li 

et al., 2004; Taylor et al., 2004; Taylor et al., submitted 2006), and is likely a regulator of 

programmed cell death in plants cells too.  Specifically, AteIF5A-2 appears to be a regulator 

of programmed cell death during compatible and incompatible interactions with Pst DC3000.   

It is generally recognized that development of the disease state following 

necrotrophic infection reflects the progressive onset of programmed cell death. (Beers and 

McDowell, 2001; Greenberg and Yao, 2004; Pozo et al., 2004).  In the present study, 

evidence indicating that AteIF5A-2 is involved in the induction of this programmed cell 

death was obtained by confocal microscopy. Leaves of Arabidopsis plants infected with 

virulent Pst DC3000 were TUNEL labelled and also labelled with TRITC-conjugated 

secondary antibodies against AteIF5A-2 primary antibodies.  At 24 hours after inoculation, 

there was no visible chlorosis associated with disease in the infected leaves, but at the 

microscopic level there was detectable AteIF5A-2 coincident with TUNEL labelling. The 

latter depicts DNA fragmentation associated with programmed cell death (Ning et al., 2002). 

By 72 hours after infection with virulent Pst DC3000, the typical disease symptoms of 

necrotic lesions surrounded by diffuse chlorosis were clearly evident, and there was strong 

up-regulation of AteIF5A-2 coincident with TUNEL labelling.  That AteIF5A-2 antibody and 

TUNEL were labelling the same cells in the infected leaves at 24 and 72 hours post-
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inoculation indicates that AteIF5A-2 is involved in the regulation of cell death during 

pathogenesis.  The TUNEL-positive reaction is considered as a better index of death by 

programmed cell death than other cell death markers such as fluorescein diacetate and Evan’s 

Blue (Ning et al., 2002).  Furthermore, there was an overlap of the TUNEL-positive nuclei 

and AteIF5A-2 protein detected with TRITC, which is consistent with the contention that 

eIF5A functions as a shuttle protein, recruiting specific subsets of mRNA from the nucleus.  

This finding is also consistent with reports that there is an accumulation of eIF5A within the 

nuclei of mammalian cells undergoing apoptosis (Tome et al., 1997; Tome and Gerner, 1997; 

Beninati et al., 1998; Caraglia et al., 2003; Jin et al., 2003).   

Wounding and pathogenesis both result in massive programmed cell death.  

Wounding is a common stress in plants engendered by weather or insect feeding (Cheong et 

al., 2002).  Damaged plant tissues provide entrance points for pathogen invasion, and thus  

wounding and pathogen responses share common components in their signalling pathways 

(Maleck and Dietrich, 1999).  For example, certain phytohormones, including jasmonic acid, 

are involved in both phenomena (Lantin et al., 1999; Orozco-Cardenas and Ryan, 1999; 

Cheong et al., 2002).  The mRNA levels change by approximately 8% in the event of 

wounding, and a large number of these encode signalling molecules (Cheong et al., 2002).  

Both wounding and pathogen ingress induce expression of a large number of genes encoding 

transcription factors including AP2 (Cheong et al., 2002), WRKY (Yu et al., 2001) and 

MYB (Urao et al., 1993) families.  Through the up-regulation of defence genes, the area in 

which the wound has occurred becomes resistant to pathogen ingress.  Further to this, the 

cells around the wound site undergo programmed cell death, and SAR is initiated.   

The finding in the present study that AteIF5A-2 is strongly up-regulated within 4 

hours post-wounding suggests that it plays a role in programmed cell death associated with 

wounding.  Moreover, AteIF5A-2 expression increases more quickly in the event of 

wounding than following Pst DC3000 ingression.  This presumably reflects the time it takes 

for Pst DC3000 to colonize the apoplast and generate an association with a plant cell.  It is 

possible that the pili puncturing cellular membranes are the signals for AteIF5A-2 up-

regulation in both the compatible and incompatible interactions.   



 

- 145 - 

AteIF5A-2 appears to be post-transcriptionally regulated in that its mRNA is 

constitutively expressed, whereas the protein is only up-regulated post- infection or after 

wounding (Gatsukovich, 2004).  It is clear from the present study that this post-

transcriptional control is overcome in plants over-expressing AteIF5A-2.  One possible 

interpretation of this finding is that translation is triggered by a threshold level of AteIF5A-2 

transcript, a threshold that is exceeded in the event of constitutive over-expression.  There 

may also be an upper threshold for the expression of AteIF5A-2 protein as was demonstrated 

by time-course Western blots of plants over-expressing AteIF5A-2 infected with virulent Pst 

DC3000.  At 72 hours post- infection with virulent Pst DC3000, the level of AteIF5A-2 

expression obtained was 90 to 120% of that for wild type plants similarly infected.  It would 

appear, therefore, that the upper level of expression obtained in the over-expression lines 

infected with virulent Pst DC3000 is similar to the peak level of expression in wild type 

plants.   

In the T1 plants over-expressing AteIF5A-2, over a third of the plants died before 

bolting and did not produce any seeds.  The T2 plants, however, did not exhibit this lethal 

phenotype.  Rather, they exhibited a phenotype similar to that observed for spontaneous cell 

death mutants (Dietrich et al., 1994; Pilloff et al., 2002).  These lines also exhibited 

spontaneous cell death envisaged by TUNEL labelling.  However, the AteIF5A-2 over-

expressing plants are not resistant to the development of disease induced by virulent 

Pseudomonas syringae infection in the way that some spontaneous cell death mutants are 

(Dietrich et al., 1994; Pilloff et al., 2002; Senda and Ogawa, 2004; Gatsukovich et al., 

submitted 2006).  Instead, the phenotype of the AteIF5A-2 over-expressing plants appears to 

reflect increased programmed cell death rather than enhancement of the signalling pathway 

for HR.   There is obviously some overlap in the resistance and cell death pathways (Heath, 

2000), but it would appear that AteIF5A-2 is not involved in the resistance pathway but 

rather is solely involved in promoting programmed cell death induced by interactions with 

pathogens.   

Decreased fecundity, early bolting, severe stunting, spontaneous necrotic lesions, 

and increased basal inflorescence branching were phenotypes of T2 plants over-expressing 
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AteIF5A-2.  These are also the developmental phenotypes documented previously for plants 

that are chronically infected with Pseudomonas syringae (Korves and Bergelson, 2003).  

Flowering in Arabidopsis is stress-induced; indeed, precocious flowering enables life-cycle 

completion under conditions that are unfavourable for survival (Simpson et al., 1999).  The 

short and thin siliques seen in the over-expressing AteIF5A-2 lines can be likened to reduced 

fruit size and ovule abortion observed in the event of salt stress (Sun et al., 2004), suggesting 

that over-expression of AteIF5A-2 may simulate the effects of stress.  Of particular interest is 

the finding that the level of AteIF5A-2 over-expression correlated very closely with the 

degree of stunted growth.  Specifically, the lines that were the most stunted had the highest 

level of expression, whereas the lines that were less stunted had lower levels of expression.  

The more stunted plants also produced much less seed than the plants that were less stunted.  

These are phenotypes of plants with severely compromised growth.  These phenotypic 

effects have also been observed in plants with high pathogen load (Korves and Bergelson, 

2003).  

It is clear from the results presented in this thesis and from other studies conducted 

in Thompson’s lab that AteIF5A-1 and AteIF5A-2 both regulate programmed cell death.  Just 

as plant growth was inhibited by over-expression of AteIF5A-2, it was also inhibited by over-

expression of AteIF5A-1, though the effects were not as extreme as for the AteIF5A-2 over-

expressing plants.  The proposed function of AteIF5A-1 is to facilitate the translation of 

mRNAs involved in cell death during natural senescence and xylogenesis (Liu et al., 

submitted 2006).  The formation of these transcripts is developmentally regulated, and if the 

mRNAs recognized by AteIF5A-1 are not present within the cells over-expressing the 

protein, the phenotypic effect of up-regulated AteIF5A-1 would not be apparent.  The 

proposed function of AteIF5A-2 is to facilitate the translation of mRNAs involved in cell 

death during wounding or pathogen ingress.  All cells in a plant, though some better than 

others, are capable of mounting a wound or pathogenesis response.  Moreover, AteIF5A-2 

transcript, but not protein, is constitutively expressed.  Thus up-regulation of AteIF5A-2 is 

likely to have a more pronounced effect than is up-regulation of AteIF5A-1, and one of these 

effects is clearly suppression of growth. This is in keeping with the fact that growth ceases 
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coincident with the induction of senescence whether it occurs naturally or prematurely in 

response to stress (Sun et al., 2004; Thompson et al., 2004; Camp, 2005).   

Plant tissues are formed by coordinated cell division and cell expansion.  Plant cells 

are circumscribed by a rigid cell wall matrix.  A new wall is deposited during cell division, 

locking the orientation and position of the daughter cells.  The final form of a tissue or organ 

is due to different patterns of cell proliferation and cell expansion.  Thus, the term ‘growth’ 

in plants encompasses both cell division and cell expansion.  In yeast and certain mammalian 

cells, eIF5A has been shown to play a role in the cell cycle and to be required for cell 

proliferation (Park et al., 1993; Park et al., 1997; Chan et al., 2002; Nishimura et al., 2005).  

That AteIF5A-3 was found to be up-regulated during seedling growth and during the growth 

phases of flower development in this thesis suggests that this isoform of eIF5A in 

Arabidopsis is involved in growth.   

To further investigate this hypothesis, plants over-expressing AteIF5A-3 were 

created and analyzed.  T1 plants over-expressing AteIF5A-3 did not exhibit growth patterns 

that were significantly different from those of corresponding control plants. However, T2 

plants over-expressing AteIF5A-3 did have a phenotype and were easily scored into four 

phenotypic categories that correlated with the level of AteIF5A-3 over-expression detected 

by immunoblotting.  The most predominant phenotypes were a change in leaf and flower 

morphology and an increase in seed size, and these phenotypes were inherited by T3 plants. 

The phenotypes of AteIF5A-3 over-expressing plants appear to at least in part 

reflect an effect of the protein on the vegetative and flower meristems.  This is evident from 

the fact that several of these transgenic lines developed leaves with different shape (round or 

bilobed) or flowers with increased petal numbers. Whether these phenotypes are 

exaggerations of wild type phenotypes or induced by precocious translation of mRNAs 

involved in development remains to be elucidated, though the latter is more likely.  Growth 

in plants requires coordinated control of cell division and cell expansion.  The constitutive 

over-expression of AteIF5A-3 may have caused an imbalance in these two processes required 

for proper two-dimensional control of leaf shape and three-dimensional control of body form.  

In support of this, it has been noted previously that plants with mutations affecting leaf 
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elongation exhibit rounded leaves (Tsukaya, 2002), much like the phenotype of AteIF5A-3 

over-expressing plants.   

Two patterns of plant cell expansion are recognized.  One is diffuse growth in 

which the process of growth is dispersed over a large area of the cell. This growth pattern is, 

for example, exhibited by epidermal cells (Mathur, 2005).  The second pattern of cell 

expansion is termed tip growth, where the growth process is limited to a small region that 

extends to form a tubular structure (Mathur, 2005).  Through examination of microarray data 

in public domains, it was found that AteIF5A-3 is greatly up-regulated in the zone of 

elongation in roots (Birnbaum et al., 2003).  Furthermore, analysis of the promoter of 

AteIF5A-3 by PLACE (http://www.dna.affrc.go.jp/PLACE/index.html) revealed that there 

are several pollen-specific motifs within the AteIF5A-3 promoter.  Pollen and root tips 

exhibit tip growth, and the finding that the AteIF5A-3 promoter contains pollen-specific 

elements suggests that its cognate protein is involved in fertilization.   

That AteIF5A-3 transcript abundance has been shown to increase in growing root 

tips (Birnbaum et al., 2003) together with the fact that its promoter contains pollen-specific 

elements were used as starting points for expression analysis of AteIF5A-3 in the present 

study.  Confocal microscopy provided evidence for the presence of AteIF5A-3 protein in 

roots and pollen.  In roots, the protein was discernible in the zone of elongation, in the region 

of maturation and in the epidermis and cortical layers.  That AteIF5A-3 was also expressed in 

the tips of root hairs is consistent with the finding that it is also present in pollen associated 

with the stigma.  Tip growing structures have similar gene expression and are regulated by 

similar means (Bucher et al., 2002; Xu et al., 2005).  Tip growing structures such as root 

hairs and pollen tubes are also dependent on cytoskeleton components for directional growth.  

Recently, it was demonstrated that eIF5A is essential for establishing actin polarity during 

bud formation in Saccharomyces cerevisiae (Zanelli and Valentini, 2005).  Furthermore, 

yeast eIF5A mutants exhibited a cell shape change similar to that induced by defects in cell 

wall integrity pathways (Chatterjee et al., 2006).  That eIF5A in yeast is essential for cell size 

and growth is consistent with the proposed function of AteIF5A-3 in root hairs and pollen of 

Arabidopsis. 
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When DHS is highly suppressed in tomato plants the pollen grains are severely 

affected and are sterile (Wang et al., 2005).  This is presumably due to the decreased 

hypusination of the growth isoform in the tomato pollen.  The growth isoform, AteIF5A-3, in 

Arabidopsis is expressed in pollen, and only in pollen associated with the stigma and not in 

pollen within the anther.  Pollen associated with the stigma undergoes rapid cell elongation to 

produce a pollen tube.  Growth of the pollen tube is essential for fertilization.  Pollen not 

capable of growing a pollen tube would be sterile (Piffanelli et al., 1998).  Some of the T3 

seeds from the co-suppression lines when plated on selection medium did not germinate, 

indicating that perhaps there was no embryo and fertilization did not take place as the pollen 

tubes were incapable of growing.  Upon revisiting the images taken of the seeds in Figure 2-

30, it is evident that some of the seeds in the co-suppression lines appear to be empty and in 

fact do not contain embryos.   

Strong antisense down-regulation of DHS has been shown to interfere with flower 

and fruit development, a finding that was interpreted as reflecting reduced capacity for 

hypusination of eIF5A (Wang et al., 2005).  Dresselhaus et al. (1999) demonstrated that 

eIF5A transcripts are stored in unfertilized egg cells of maize.  They hypothesized that in this 

metabolically inactive state the egg prepares for selective mRNA translation that would be 

quickly prompted after fertilization.  That AteIF5A-3 has a role in the female side of 

fertilization has yet to be determined.  It is clear, however, from the present study that 

AteIF5A-3 affects fruit and seed formation as demonstrated by the increase in seed size and 

changed silique morphology in AteIF5A-3-up-regulated lines.  The superior gynoecium of 

Arabidopsis thaliana has two carpels whose locules are separated by a false septum (Smyth 

et al., 1990).  The siliques of plants over-expressing AteIF5A-3 that produced the largest 

seeds had 4 locules and 3 partitions, likely the result of 4 fused carpels rather than 2 as in the 

wild type.  The size of the seeds produced within siliques is determined by maternal gene 

expression (Kiyosue et al., 1999).  The size of the seeds that were produced in the over-

expressing AteIF5A-3 plants proved to be positively correlated with AteIF5A-3 expression.  

Many of the genes that are expressed during embryogenesis are also expressed at the 

beginning of germination, which is essentially a continuation of embryogenesis.  Genome-

wide profiling of stored mRNA in Arabidopsis thaliana seeds revealed  the presence of 
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AteIF5A-2 and AteIF5A-3 transcripts in high abundance (Nakabayashi et al., 2005).  Since 

AteIF5A-2 expression is constitutive, this finding is no surprise. The presence of AteIF5A-3 

transcripts in the seeds presumably reflects the need for translation of mRNAs required for 

radicle elongation during germination.   

Gene duplications and gene families often encode, or are assumed to encode, proteins 

with similar or overlapping functions.  However, it is apparent from the present study that the 

eIF5A genes of Arabidopsis thaliana have different roles in cell death and cell growth.  

AteIF5A-1 appears to play a role in cell death during xylem development and 

cotyledon/leaf/flower senescence.  AteIF5A-2 transcript is constitutively expressed, and 

expression of the cognate protein is up-regulated during pathogen ingress or wounding.  

AteIF5A-3 is expressed in the elongating meristems of roots, root hairs and pollen associated 

with the stigma and may be involved in the elongation of these cells.  That these proteins 

have the very specific post-translational modification of hypusination and that eIF5A is the 

only known protein to contain this modification is indicative of their importance in the 

regulation of plant development.  While the exact function of eIF5A isoforms in plant cells is 

yet to be elucidated, this study has revealed that regulation of their expression is complex and 

that they have distinct functions.  
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Chapter 3: Characterization of Diacylglycerol Acyltransferase 1 
(DGAT1) in Arabidopsis thaliana4 

3.1 Introduction 

Lipids (Greek: lipos, fat) are a structurally diverse group of macromolecules that 

are preferentially soluble in nonaqueous solvents.  They comprise a plethora of fatty acid-

containing compounds, including pigments and secondary metabolites.  Lipid bilayers are the 

major barriers defining the perimeter of the cell as well as cell organelles, providing 

compartmentalization of biochemical and physiological processes.  In addition to their 

structural role, lipids are important metabolic intermediates and products, and also serve as 

signalling molecules and sources of energy.  Each plant cell contains a diverse range of 

lipids, often associated with different cellular structures, and, in addition, some plant species 

contain highly specialized lipids. 

3.1.1 Lipid classes commonly found in plants 

Plants have five general classes of lipid that can be easily separated by thin layer 

chromatography: polar lipids, diacylglycerols, free fatty acids, triacylglycerols, and steryl and 

wax esters.  Typically, these different types of lipids have distinguishable functions in the 

cell.  The lipids vary in fatty acid saturation and chain length.  Plant lipid metabolism is 

inherently complex due primarily to the cellular compartmentalization of eukaryotic and 

prokaryotic pathways of lipid synthesis and the extensive intermixing of lipid pools between 

these compartments. 

3.1.2 Most fatty acids are esterified 

Fatty acids are carboxylic acids with long-chain hydrocarbon side groups.  All fatty 

acids in plants are synthesized within the plastids (Ohlrogge and Jaworski, 1997).  During 

fatty acid biosynthesis, a repeated sequence of reactions incorporates acetyl moieties of 

acetyl-CoA onto the growing hydrocarbon chain.  The most common fatty acids, which are 

present in both membranes and storage lipids, are the C16 and C18 fatty acids that are 
                                                 
4 Some of the work presented in this chapter has been published in Plant Physiology (2002) 129: 1616-1626 
with co-authors C. D. Froese and J. E. Thompson 
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completely saturated or contain up to three double bonds.  More than 300 different fatty acids 

occur in plants (Millar et al., 2000).  Fatty acids that cannot be described by usual synthesis 

algorithms are considered “unusual” (Hellyer et al., 1999).  Several unusual fatty acids such 

as lauric (12:0), erucic (22:1) and ricinoleic acid (18:1-OH) are of substantial commercial 

importance (Voelker and Kinney, 2001).  Less is known about the mechanisms for synthesis 

and accumulation of unusual fatty acids.  Most unusual fatty acids occur exclusively in seed 

oils and may serve a defence function as some are toxic or indigestible (Badami and Patil, 

1981).  Free unesterified fatty acids are found in minute amounts in phloem sap (Madey et 

al., 2002), associated with proteins (Taniguchi, 1999; Somerville et al., 2000) and tend to 

accumulate during senescence within membranes (Barclay and McKersie, 1994; Thompson 

et al., 1997; Thompson et al., 1998).  Free fatty acids are toxic due to their detergent-like 

effects on membranes (Thomas, 1984). 

Most fatty acids are esterified to glycerol, giving rise to glycerolipids.  There are 

three principal types of glycerolipids in plants: triacylglycerols, phospholipids, and 

glyceroglycolipids.  The latter two are polar lipids and are typically found in membranes.  

Membrane glycerolipids have fatty acids attached to both the sn-1 and sn-2 positions of the 

glycerol backbone and a polar head group attached to the sn-3 position.  If all three positions 

on glycerol are esterified with fatty acids, a triacylglycerol structure results that is not 

suitable for membrane structure as it lacks the amphipathic property of polar lipids. 

3.1.2.1 Polar lipids are the main components of membranes 

Lipids serve many functions in plants, though the most important function is their 

role as the major component of biological membranes.  The hydrophobic barrier conferred 

upon membranes by their lipids is critical for life, serving to separate cells from their 

surroundings and the contents of organelles from the cytoplasm.  Polar lipids are amphipathic 

and have both a hydrophilic head group and hydrophobic fatty acid tails (Somerville et al., 

2000).  This property allows polar lipids to form bilayers (Singer and Nicolson, 1972).  Lipid 

bilayers prevent the free diffusion of hydrophilic molecules between the cellular organelles 

as well as in and out of cells.  This compartmentalization ensures that only specific molecules 

are transported in and out of the cell and between compartments through selective, vectorial 
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transport proteins.  There are two main groups of polar lipids in plants: glyceroglycolipids 

and phospholipids (Ohlrogge and Browse, 1995).  The thylakoid membranes of chloroplasts, 

in which the light reactions of photosynthesis take place, primarily contain 

glyceroglycolipids.  Membranes external to plastids are composed mainly of mixtures of 

phospholipids. 

3.1.2.1.1 Phospholipids of plants 

Phospholipids are synthesized by esterification of fatty acids to the two hydroxyl 

groups of sn-glycerol 3-phosphate to produce phosphatidic acid (Ohlrogge and Browse, 

1995).  The products of fatty acid synthesis in plastids may be incorporated directly into 

chloroplast glycerolipids or exported to the cytoplasm as CoA esters which are then 

incorporated into endoplasmic reticulum glycerolipids.  The first major product of 

glycerolipid synthesis is phosphatidic acid (Somerville et al., 2000).  Phosphatidic acids 

formed in the plastids by means of the “prokaryotic pathway” and in the endoplasmic 

reticulum through the “eukaryotic pathway” differ in fatty acyl composition and position 

(Millar et al., 2000).  The enzymes that perform these acylations have substrate specificity 

and, consequently, the prokaryotic pathway initially gives rise to glycerolipids with 

hexadecanoic acid (16:0) at the sn-2 position and in most cases oleic acid (18:1) at the sn-1 

position.  By contrast,  the glycerolipid products of the eukaryotic pathway are highly 

enriched in C18 fatty acids, and if hexadecanoic acid (16:0) is present it is in the sn-1 position 

(Ohlrogge and Browse, 1995).  These fatty acids, once incorporated into glycerolipids, can 

undergo desaturation by membrane- bound desaturases of the endoplasmic reticulum or 

plastid (Slabas and Fawcett, 1992).  All phospholipids are derived from phosphatidic acid by 

esterification of a polar head group to the phosphoryl group (Somerville et al., 2000).  For 

example, the phosphatidic acid produced by the endoplasmic reticulum gives rise to 

phosphatidylcholine, phosphatidylethanolamine, phosphotidylserine and phosphatidylinositol 

(Ohlrogge and Browse, 1995).  The only phospholipid derived from prokaryotic synthesis is 

phosphatidylglycerol (Somerville et al., 2000). 

3.1.2.1.2 Glyceroglycolipids of plants 
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The eukaryotic pathway is the principal route of glycerolipid synthesis in all 

nonphotosynthetic tissues as well as in the photosynthetic tissue of higher plants (Doermann 

and Benning, 2002).  The phosphatidic acid produced through the eukaryotic pathway is used 

for phospholipid synthesis as well as chloroplast glyceroglycolipid synthesis.  Plants that 

employ only the eukaryotic pathway for the synthesis of glyceroglycolipids are termed 18:3 

plants, because the fatty acids incorporated in the glyceroglycolipids of these plants contain 

only linolenic acid (18:3) as the polyunsaturated fatty acid component (Awai et al., 2001).  

Plants that synthesize glyceroglycolipids from precursors of the eukaryotic pathway utilize 

the diacylglycerol moiety of phosphatidylcholine released by a phosphatidylcholine 

phosphatase.  The diacylglycerol moiety enters the diacylglycerol pool within the chloroplast 

envelope, where it is then incorporated into the glyceroglycolipids of the chloroplast 

(Ohlrogge and Browse, 1995).  Some plants, including spinach and Arabidopsis, are known 

as 16:3 plants and depend heavily on the prokaryotic fatty acid synthesis pathway for 

glyceroglycolipid formation. The glyceroglycolipids of these plants contain the 

polyunsaturated fatty acids, hexadecatrienoic acid (16:3) and linolenic acid (18:3) (Jarvis et 

al., 2000).   

Glyceroglycolipids have a galactosyl or sulfoquinovosyl head group.  The 

glyceroglycolipids of the chloroplasts include the galactolipids, monogalactosyl 

diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and the sulfolipid 

sulfoquinovosyl diacylglycerol (SQD).  These unusual lipids are found almost exclusively in 

the thylakoid membrane except, for example, under conditions of phosphate starvation where 

DGDG is substituted for phospholipids in extraplastidial membranes such as the plasma 

membrane (Andersson et al., 2005; Nakamura et al., 2005) and mitochondrial membranes 

(Jouhet et al., 2004).  The thylakoid membrane is the internal photosynthetic membrane of 

higher plant chloroplasts and is the most abundant membrane found in nature (Lee, 2000).  

Only about 10% of thylakoid membrane lipid is phospholipid, specifically 

phosphatidylglycerol, and of the remainder, 50% is MGDG, and 30% DGDG (Harwood and 

Russell, 1984). 
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In Arabidopsis, the diacylglycerol moieties incorporated into galactolipids are 

derived from the prokaryotic and eukaryotic pathways in approximately equal proportions 

(Doermann and Benning, 2002).  MGDG is predominantly synthesized from prokaryotic-

derived diacylglycerol and is characterized by a high content of hexadecatrienoic acid (16:3) 

(Miege et al., 1999).  In this case, the diacylglycerol moiety is derived from phosphatidic 

acid, which is cleaved by a plastid phosphatidic acid phosphatase.  DGDG is mostly of 

eukaryotic origin and therefore contains linolenic acid (18:3) rather than hexadecatrienoic 

acid (16:3).  The MGDG and DGDG synthases are localized on the inner and outer envelopes 

of the chloroplast, and in Arabidopsis there are three isoforms of MGDG synthase and two 

isoforms of DGDG synthase (Froehlich et al., 2001).  Since MGDG and DGDG are 

synthesized in the non-photosynthetic membranes of the chloroplast, they must be 

transported to the thylakoids. It is thought that the galactolipids synthesized in the outer 

envelope are transported to the inner envelope by lipid transfer proteins (Sánchez-Fernández 

et al., 2001).  For the transport of MGDG and DGDG from the inner envelope to the 

thylakoids, a vesicular mechanism has been proposed.  For example, in plants that are 

adapting to low temperatures it has been observed that vesicles formed from the inner 

envelope appear in the stroma (Kroll et al., 2001).  Thus, galactolipids are probably 

transported in the form of vesicles from their site of synthesis to the thylakoid membranes.  

Not only do the galactolipids, MGDG and DGDG, have unique head groups, they 

are also unusual in that they contain two highly unsaturated fatty acyl chains, typically 

linolenic acid (18:3), leading to unique packing properties when compared to other 

membrane lipids.  Most other membrane lipids contain one saturated and one unsaturated 

fatty acid chain.  MGDG, although a polar amphipathic lipid, does not spontaneously form 

bilayers in water (Lee, 2000).  This is due to its conical shape.  By contrast, 

phosphatidylcholine has a cylindrical shape and does form bilayers in water.  The head group 

of MGDG is larger than choline, but still smaller than the volume occupied by two 

polyunsaturated fatty acid chains, thus accounting for its conical shape.  Cones do not pack 

well into planar arrays, preferring to assume curved structures (Lee, 2000).  Obviously, 

biological membranes, which are bilayered, cannot be built from lipids that take on this 

conformation.  However MGDG lies in tight association with chlorophyll a/b protein, which 
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forces it into a bilayer conformation (Jarvis et al., 2000).  DGDG has a larger head group 

than MGDG that occupies a volume comparable to the girth of the two polyunsaturated fatty 

acids and thus, like phosphatidylcholine, is cylindrical in shape.  The different shape of 

thylakoid lipids together with their association with proteins enables the stacked arrangement 

of the grana.  Stacking leads to a very precise distribution of the components of 

photosynthesis within the plane of the thylakoid membrane.  Specifically, photosystem I is 

highly enriched in the stromal thylakoid membranes, and photosystem II is concentrated in 

the stacked thylakoid membranes (Lee, 2000).  MGDG, presumably because of its conical 

shape, is essential for thylakoid stacking (Jarvis et al., 2000). 

3.1.2.2 Triacylglycerols are storage lipids 

The fats and oils that occur in plants and animals consist largely of triacylglycerols, 

which are also referred to as triglycerides or neutral fats (Somerville et al., 2000).  These 

non-polar, water-insoluble substances are fatty acid tri-esters of glycerol.  Plant oils are 

usually richer in unsaturated fatty acids than are animal fats, as the lower melting points of 

oils imply.  While animals use fats for energy storage, plants use them mainly for carbon 

storage.  On a mass basis, the ATP yield from catabolism to carbon dioxide and water is 

approximately twice as high for triacylglycerols as for carbohydrates.  In cases where a 

compact seed is advantageous for facilitating dispersal, the carbon and energy required for 

seed germination are stored in the form of triacylglycerols rather than starch.  Plant 

triacylglycerols are mainly found in seeds and pollen, though most tissues are capable of 

synthesizing small amounts of triacylglycerol (Hobbs et al., 1999). 

3.1.2.2.1 Enzymes that catalyze triacylglycerol synthesis 

Triacylglycerol formation can either be acyl-CoA dependent or acyl-CoA 

independent.  One gene family known to be involved in acyl-CoA independent 

triacylglycerol synthesis is that encoding phospholipid: diacylglycerol acyltransferase 

(PDAT).  This enzyme catalyzes triacylglycerol formation using phospholipids such as 

phosphatidylcholine or phosphatidylethanolamine as acyl donors for diacylglycerol 

esterification (Banas et al., 2000).  PDAT activity has been reported in sunflower, castor 
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bean, Crepis plaestina and yeast microsomes (Dahlqvist et al., 2000; Oelkers et al., 2000).  

The physiological function of PDAT is yet to be determined, but it is speculated to be 

involved in the esterification of unusual fatty acids in oilseeds (Banas et al., 2000) and to 

play a role in regulating the fatty acid composition of membrane lipids (Dahlqvist et al., 

2000).  PDAT is not the foremost enzyme for triacylglycerol synthesis in seed-oil deposition.  

In fact, knockout lines of PDAT in Arabidopsis have essentially the same seed fatty acid 

content and composition as wild type plants (Mhaske et al., 2005). 

Enzymes that are the major contributors to seed triacylglycerol formation are 

unique to the Kennedy pathway in which diacylglycerol and acyl-CoA are substrates.  There 

are two gene families known to encode enzymes that mediate triacylglycerol formation 

through this “classic” pathway, DGAT1 and DGAT2.  The first DGAT gene to be cloned, 

DGAT1, has high sequence similarity to sterol acyltransferase (Cases et al., 1998).  DGAT2 

was first found in the oleaginous fungus, Morteriella ramanniana (Cases et al., 2001; 

Lardizabal et al., 2001).  DGAT2 genes have no sequence similarity to DGAT1, but appear 

to be ubiquitous in fungi, plants and mammals.  In humans, there are several DGAT2 

isoforms and only one DGAT1 isoform.  These families of triacylglycerol- synthesizing 

enzymes have been characterized in humans as a target for potential therapeutics for obesity 

(Chen and Farese, 2000).  In yet another alternative mechanism for triacylglycerol synthesis 

in animals and plants, diacylglycerol-diacylglycerol-transacylase mediates its formation 

using diacylglycerol as an acyl donor and acceptor, although no gene coding such a 

transacylase has been identified yet (Stobart et al., 1997).  That there are four enzymes 

mediating triacylglycerol formation raises the possibility that they contribute to the 

accumulation of triacylglycerol at different stages of plant development and possibly in 

different cellular compartments. 

Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) mediates the final acylation 

step in the synthesis of triacylglycerol from diacylglycerol.  DGAT1 is present in most plant 

organs, including leaves, petals, fruits, anthers and developing seeds (Hobbs et al., 1999; Zou 

et al., 1999).  Early plant DGAT research was largely limited to studies of activity profiles in 

homogenates or of membranes isolated from various tissues including developing seeds and 



 

- 158 - 

microspore-derived embryos (Martin and Wilson, 1984; Wilson and Kwanyuan, 1986; 

Ichihara et al., 1988; Sakaki et al., 1990; Sakaki et al., 1990; Stobart et al., 1997).  These 

early studies included partial purification of DGAT from cotyledons of germinating soybean 

seeds (Kwanyuen and Wilson, 1986), microsomal membranes of developing safflower seeds 

(Stobart et al., 1997) and ozone-treated spinach leaves (Martin and Wilson, 1984).  A 

DGAT1 gene was first cloned from mouse, and homologous DGAT1 genes have since been 

cloned from Arabidopsis and other plants.  There is only one DGAT1 gene in Arabidopsis, 

and mutants of DGAT1 have demonstrated that this gene contributes significantly to 

triacylglycerol synthesis in developing seeds (Katavic et al., 1995; Zou et al., 1999; Jako et 

al., 2001).   

The Arabidopsis thaliana DGAT1 gene (At2g19450) is found on chromosome II, 

approximately 17.5±3cM from the sti locus and 8±2cM from the cp2 locus (Zou et al., 1999).  

It has been established that the Arabidopsis expressed sequence tag (EST) clone E6B2T7 

corresponds to the DGAT1 gene, and the full-length cDNA for DGAT1 (approximately 

2.0kb) has been sequenced (Hobbs et al., 1999).  An EMS-induced DGAT1 Arabidopsis 

mutant has been shown to have lower seed oil deposition (Zou et al., 1999) as well as altered 

triacylglycerol fatty acid composition.  Specifically, the triacylglycerol of mutant seeds 

(AS11) in comparison to that of wild-type seeds has reduced eicosenoic acid (20:1), reduced 

oleic acid (18:1) and enhanced linolenic acid (18:3) (Katavic et al., 1995).  AS11 seeds also 

accumulate diacylglycerol, a precursor to triacylglycerol, indicating that the reduction in 

triacylglycerol synthesis was not due to a lack of substrate.  The mutant phenotype was 

rescued by transformation with DGAT1 expressed in the sense orientation driven by a seed 

specific promoter, confirming that it was attributable to malfunctioning DGAT1 (Jako et al., 

2001).  Several studies, including over-expression of DGAT1, have demonstrated that there 

is a correlation between DGAT1 expression levels and seed oil content suggesting that 

DGAT1 catalyzes the rate-limiting step in triacylglycerol biosynthesis (Ichihara et al., 1988; 

Zou et al., 1999; Bouvier-Nave et al., 2000; Jako et al., 2001). 
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3.1.3 Lipid bodies in plants 

Triacylglycerols are usually packaged into lipid- and protein-containing particles 

termed lipid bodies.  Most triacylglycerol-containing lipid bodies have similar morphologies, 

where the triacylglycerol is localized in the central portion of the particle and is surrounded 

by a monolayer of phospholipids associated with a stabilizing protein.  Plants have different 

types of lipid bodies including the oil bodies of seeds and plastoglobuli of the chloroplasts. 

3.1.3.1 Seed oil bodies 

In seeds, triacylglycerol is synthesized within the membranes of the endoplasmic 

reticulum and subsequently released into the cytosol as oil bodies (Huang, 1992).  True 

oilseeds can accumulate oil bodies as one of their major storage reserves in amounts of 20 to 

70% of the total seed weight (Murphy, 2001).  The storage triacylglycerol is localized in the 

interior of the oil body, and the surfaces of the oil bodies are coated with a monolayer of 

phospholipids.  In oil bodies of desiccation tolerant seeds, the phospholipid monolayer is 

associated with a protein termed oleosin (Huang, 1996).  The acyl chains of the phospholipid 

monolayer and the central hydrophobic domain of oleosin are embedded in the 

triacylglycerol interior of the oil body (Murphy, 1993).  Oleosin is a small structural protein 

that is thought to prevent coalescence of oil bodies during seed rehydration (Hills et al., 

1993) and may act as a platform for triacylglycerol lipases (Huang, 1996).  Also, the greater 

surface area to volume ratio that oleosin-containing lipid bodies maintain may facilitate 

efficient breakdown of the storage lipid within (Napier et al., 1996). Certain oleogenic fruits 

that lack stabilizing proteins such as oleosins have very large oil globules that are not 

metabolized (Giannoulia et al., 2000). 

That oil bodies originate from the endoplasmic reticulum is consistent with the 

finding that enzymes of triacylglycerol synthesis, including DGAT, are present in 

microsomal membrane fractions, which are known to contain vesicles of endoplasmic 

reticulum (Kwanyuen and Wilson, 1986).  In addition, triacylglycerol can be synthesized in 

vitro in the presence of microsomes isolated from developing seeds (Lacey et al., 1999).  Oil 

bodies are formed during the final stages of seed development when the storage 

triacylglycerol accumulates.  They form from endoplasmic reticulum, where localized 
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accumulation of triacylglycerol within the monolayers of the endoplasmic reticulum occurs 

(Lacey et al., 1999).  That is, triacylglycerol tends to accumulate at its site of synthesis, 

rather than equilibrate with the bulk pool of membrane lipids (Murphy, 2001).  The oleosins 

associated with oil bodies are synthesized in association with the endoplasmic reticulum and 

are co-translationally inserted into the membrane (Hills et al., 1993).  The physical forces 

resulting from the accumulation of triacylglycerol within the membrane bilayer cause the oil 

body to bud into the cytosol (Napier et al., 1996), taking some of the endoplasmic reticulum 

phospholipids as a half-unit membrane as well as the membrane associated oleosins.  Oil 

bodies have never been reported in the lumen of endoplasmic reticulum, indicating that the 

release of these particles is vectorial. Lipid particles in animal cells are similarly formed 

(Brindley and Hubscher, 1965; Murphy, 2001). 

Although triacylglycerol formation in seeds is believed to occur in the endoplasmic 

reticulum, there have been several reports indicating that purified chloroplast envelope 

membranes from leaves are also capable of synthesizing this storage lipid (Siebertz et al., 

1979; Martin and Wilson, 1983, 1984).  Moreover, triacylglycerol is known to be present in 

plastoglobuli, which are lipid bodies localized in the stroma of chloroplasts (Martin and 

Wilson, 1984).  DGAT is unique to the triacylglycerol biosynthetic pathway (Bao and 

Ohlrogge, 1999) and the finding that different types of membranes are capable of 

synthesizing triacylglycerol suggests that DGAT may have more than one subcellular 

localization. 

3.1.3.2 Chloroplastic lipid bodies 

Plastids are maternally inherited organelles that serve to distinguish plant cells from 

animal cells.  All plastids, be they chloroplasts, etioplasts, chromoplasts or amyloplasts, 

originate from proplastids, which have little or no internal structure (Bauer et al., 2000).  

While plastids are capable of synthesizing many of their own proteins, the majority of 

chloroplast proteins are encoded by the nuclear genome and synthesized as precursors in the 

cytosol. Chloroplasts are the chlorophyll-containing plastids of leaves.  Leaf plastids undergo 

a sequence of structural changes during development to form these photosynthetic organelles.  

Once they are fully developed, chloroplasts are very complex and contain six subcellular 
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compartments, namely the outer envelope membrane, the inner envelope membrane, the 

intermembrane space, the stroma, the thylakoid membranes and the thylakoid lumen.  

Chloroplasts typify healthy leaf tissues, and as the leaf tissues age and begin to senesce, the 

chloroplast changes through a precise process of degradation leading to the development of 

organelles termed gerontoplasts (Sitte et al., 1980).  Chlorophyll degradation, a hallmark of 

leaf senescence, is a symptom of the transition of chloroplasts to gerontoplasts.  This 

conversion is reversible in the leaves of many species (Gan and Amasino, 1995; Novikova et 

al., 1999) and is controlled by nuclear gene expression (Matile, 1992).   

Plastids contain lipid particles, and the best studied of these are the plastoglobuli.  

Plastoglobuli are similar in structure to other lipid bodies and vary in their size and numbers 

depending on the species of plant as well as the developmental stage.  The size and number 

of plastoglobuli increases during senescence.  Thus, fully developed gerontoplasts consist of 

a still intact envelope surrounding a number of large plastoglobuli.  However, plastoglobuli 

are also present in the chloroplasts of young healthy leaves.  The contents of young 

plastoglobuli and those of older leaves differ in composition, and it has been suggested that 

plastoglobuli in chloroplasts of young leaves may serve as a source of reserve components 

for thylakoid formation (Sarafis, 1998).  Plastoglobuli have been reported to contain proteins, 

polar lipids, pigments and neutral lipids including triacylglycerol (Steinmuller and Tevini, 

1985; Sarafis, 1998), implying that chloroplasts contain the required acyltransferases and 

lipid-body-stabilizing proteins for their formation.  Some reports on plastoglobuli 

composition, however, contradict other reports, and thus it has been suggested that there are 

in fact two distinguishable populations of particles.  Some plastoglobuli particles have been 

reported to contain photosynthetic protein catabolites (Ghosh et al., 1994) and cytochrome f 

(Smith et al., 2000), and it has been proposed that these particles may be involved in 

thylakoid membrane turnover in healthy leaves. 

During leaf senescence, both the number and the size of plastoglobuli increase 

dramatically as the thylakoid membranes are dismantled (Thomas, 1982; Matile, 1992).  

Clearly, these plastid lipid bodies are serving as temporary stores for the neutral lipid 

breakdown products of the photosynthetic membranes.  The contents of the plastoglobuli are 
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apparently salvaged by the parent plant before leaf abscission (Steinmuller and Tevini, 1985), 

but the mechanisms underlying this remain to be elucidated. During leaf senescence, there 

are ultrastructural changes to chloroplasts that include swelling of thylakoids and an increase 

in size and abundance of plastoglobuli (Barton, 1966; Meier and Lichtenthaler, 1982; 

Kolodziejek et al., 2003).  It is thought that the degradation of the thylakoid membranes is 

responsible for the increase in plastoglobuli.  The ultrastructural changes within chloroplasts 

are correlated with changes in the level of pigments (Kolodziejek et al., 2003), specifically 

the decline in chlorophyll.  The ultrastructural changes of chloroplasts during senescence are 

reminiscent of changes caused by different environmental agents that induce oxidative stress 

(Mostowska, 1999).  For example, there is also an increase in plastoglobuli abundance during 

oxidative stress leading to premature senescence.  Cell membranes are one of the first targets 

of plant stress (Levitt, 1972).  The maintenance and/or breakdown of membranes under stress 

may be an important strategy for tolerance.  Even algae grown under sub-optimal conditions 

are known to accumulate triacylglycerol within their chloroplasts (Cohen et al., 2000).  The 

appearance of large and abundant plastoglobuli in stressed leaves is coincident with the 

catabolism of polar lipids, especially MGDG (El-Hafid et al., 1989; Sahsah et al., 1998; 

Kaniuga et al., 1999). 

As is the case for oil bodies, it is thought that there is a protein involved in 

prevention of coalescence of plastoglobuli.  An abundant protein termed the plastid lipid-

associated protein (PAP) has been reported to bind to the boundary of plastoglobuli in 

chromoplasts and other plastids of capsicum (Pozueta-Romero et al., 1997).  Another older 

name for PAP is fibrillin (Deruere et al., 1994).  PAP-related proteins appear to be a part of a 

well-conserved group expressed both in dicotyledonous and monocotyledonous plants.  PAP 

is present in most plastid types and is associated with the lipid bodies of plastids (Ting et al., 

1998).  When PAP from pepper was over-expressed in tobacco, there was a change in both 

the number and distribution of plastoglobuli (Rey et al., 2000).  Specifically, there were more 

plastoglobuli in both the chloroplasts and chromoplasts of the transgenic plants, and the 

plastoglobuli, rather than being separate, had formed clusters.  Interestingly these PAP-over-

expressing plants also exhibited enhanced growth during high light stress (Rey et al., 2000). 
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3.1.4 Lipases 

Enzymes that de-esterify fatty acids from complex lipids are termed lipases.  They 

are hydrolytic enzymes found in all forms of life (Bishop, 1971).  They are involved in many 

aspects of the cell function including mobilization of storage lipid, catabolism of membrane 

lipids during senescence and stress, and release of fatty acids that are important in cell-

signalling cascades.  Lipases are classified by the substrate they catabolize.  Many lipases 

contain a 10 amino acid consensus sequence, [LIV]-X-[LIVAFY]-[LIAMVST]-G-[HYWV]-

S-X-G-[GSTAC], termed the lipase consensus sequence (Derewenda and Derewenda, 1991).  

Some lipases are non-specific and can cleave fatty acids from a variety of substrates 

including phospholipids, wax esters and triacylglycerols (Beisson et al., 2000).  True lipases 

are defined as enzymes that attack triacylglycerols at an oil-water interface, and they are also 

known as triacylglycerol acyl hydrolases (Galliard, 1980).  Other lipases like galactolipases 

and some phospholipases belong to the group of enzymes termed lipolytic acyl hydrolases 

(Galliard, 1980).  These latter two lipases utilize polar membrane lipids rather than 

triacylglycerols as substrates. 

3.1.4.1 Phospholipases 

Phospholipids are glycerolipids with two esterified fatty acids at the sn-1 and sn-2 

positions with a phosphate and associated polar head group at the sn-3 position (Somerville 

et al., 2000).  Not only are phospholipids the structural basis of cellular membranes, they are 

also precursors for the generation of cellular regulators.  Hydrolysis of phospholipids by 

phospholipases is often the first step in generating lipid and lipid-derived messengers.  

Phospholipids can be hydrolyzed by phospholipases, which are classified on the basis of their 

point of attack. 

Phospholipase D, which forms phosphatidic acid, is the best characterized 

phospholipase, and there are several isoforms of this enzyme in Arabidopsis (Wang, 2000).  

There are reports that phospholipase D plays a role in senescence (Ryu and Wang, 1995; 

Wang, 2000).  During senescence, membranes lose structural integrity due to a loss of 

membrane phospholipids and a relative increase in free fatty acids and sterols (Thompson, 

1988).  It appears that phospholipase D has several subcellular localizations and that it is 
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involved in the release of signalling molecules during wounding and senescence (Fan et al., 

1999; Wang, 2000).  Phospholipase C releases diacylglycerol, a known cellular signalling 

molecule.  Diacylglycerol is known to activate kinases, specifically protein kinase C, and 

thus several downstream operations (Munnik et al., 1998).  Phospholipase A2, catalyzes de-

esterification of the fatty acid in the sn-2 position of phospholipids.  Certain isozymes of 

phospholipase A2 are known to release the fatty acid, linolenic acid (18:3), leading to the 

formation of jasmonic acid and related signalling molecules (Wang, 2001).  Thus 

phospholipase A2 initiates the octadecanoid pathway, which in turn regulates such cellular 

processes as wounding and the defence response. 

3.1.4.2 Galactolipases 

Galactolipases de-esterify fatty acid moieties from galactolipids and have been 

assayed in senescing leaves and even partially purified from senescing leaves of several 

species of plants (Anderson et al., 1974; Gemel and Kaniuga, 1987; O'Sullivan et al., 1987; 

El-Hafid et al., 1989; Kaniuga et al., 1999).  Galactolipase activity increases during 

senescence and under conditions of environmental stress (Sastry and Kates, 1964; Anderson 

et al., 1974; O'Sullivan et al., 1987; El-Hafid et al., 1989; Engelmann-Sylvestre et al., 1989; 

Kaniuga et al., 1999; Kim et al., 2001; Matos et al., 2001).  Galactolipase appears to be 

associated with the stromal surface of thylakoid membranes (O'Sullivan et al., 1987) and 

exhibits autocatalytic activation attributable to the detergent-like action of  linolenic acid 

(18:3) released by its action on galactolipids (Galliard, 1971).  However, cloning of the genes 

encoding galactolipases and full characterization of their function in plant development and 

senescence has yet to be accomplished. 

3.1.4.3 Triacylglycerol lipases 

The initial step in the conversion of stored lipid to carbohydrate is the breakdown of 

triacylglycerols stored in the oil bodies by lipases.  The mobilization of seed lipid occurs 

during imbibition and germination.  The initial imbibition of water leads to cell expansion 

and release of the new seedling from the seed coat.  Triacylglycerols stored in the seed lipid 

bodies are hydrolyzed to glycerol and fatty acids.  This is followed by β-oxidation of the 
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fatty acids to produce acetyl-CoA.  The fatty acids are oxidized in a type of peroxisome 

termed glyoxysomes (DeBellis and Nishimura, 1991).  Glyoxysomes are capable of 

metabolizing acetyl-CoA to succinate, which is transported to the mitochondrion where it is 

converted first to oxaloacetate and then to malate.  The process ends in the cytosol where 

malate is converted to glucose through gluconeogenesis, and then to sucrose or other phloem 

mobile sugars (Graham et al., 1990).  In many plants, triacylglycerols also appear to serve as 

precursors for the rapid synthesis of membrane phospholipids to support pollen tube growth 

(Murphy, 2001). 

Triacylglycerol lipase de-esterifies the fatty acids at each of the sn positions of 

triacylglycerol (Somerville et al., 2000).  Lipid bodies from fully dehydrated seeds tend to be 

resistant to lipase attack (Murphy, 1993).  In castor bean endosperm, the triacylglycerol  

lipase is associated with the oil body phospholipid monolayer (Ory et al., 1960; Ory, 1969).  

Oil bodies of corn (Lin et al., 1983; Lin and Huang, 1984) and cotton (Smaoui and Cherif, 

2000) also exhibit lipase activity, but in peanut (Jacks et al., 1967) and soybean (Lin et al., 

1982), triacylglycerol lipase activity is present instead in the glyoxysomes.  During the 

breakdown of lipids, oil bodies and glyoxysomes are generally in close physical association.  

Triacylglycerol lipase activity is thought to be influenced by oil body oleosins, which 

harbour a putative lipase attachment site.  Oleosins also maintain a high surface area to 

volume ratio, which increases the accessibility of the stored triacylglycerol molecules to 

lipases (Napier et al., 1996). 

Despite the massive scale of lipolysis in germinating oil seeds, the triacylglycerol 

lipases responsible have yet to be completely characterized.  Studies of lipase activity in 

germinating seedlings indicate that physiologically active lipase is soluble and co-isolates 

with both membranes and lipid bodies (Lin et al., 1983).  The lipase must associate with lipid 

bodies in order to access its triacylglycerol substrate, but it seems likely that lipolysis occurs 

in association with a site where the catabolized products are further utilized, for example 

glyoxysomes (Lin et al., 1982) or the endoplasmic reticulum (Antonian, 1988).  A putative 

triacylglycerol lipase has been cloned and characterized in our lab (Padham, 2002).  This 

triacylglycerol lipase appears to be multifunctional and very important for plant growth and 
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development.  For example, its suppression in transgenic plants resulted stunted growth 

which was partially rescued by the addition of sucrose during germination (Padham, 2002).  

This suggests that it is involved in mobilization of seed triacylglycerol.  However, this lipase  

is also present in chloroplasts and increases in abundance in senescing leaves (Padham, 

2002). 

3.1.5 The role of lipid bodies and lipid metabolizing enzymes during 
development in plants 

The presence of lipid bodies in different plant tissues together with their formation 

at specific stages of development and following episodes of environmental stress implies that 

enzymes involved in the synthesis and catabolism of lipids play an important role in 

development and the response of plants to stress.  Support for this contention includes the 

finding that down-regulation of a triacylglycerol lipase delays seedling establishment and 

results in stunted growth (Padham, 2002).  Also, plants that carry mutations in an MGDG 

synthase gene have compromised photosynthesis (Jarvis et al., 2000).  As well, suppression 

of SAG101, as senescence-associated lipolytic acyl hydrolase, has been shown to delay leaf 

senescence, whereas over-expression of the same gene resulted in  precocious leaf 

senescence (He and Gan, 2002).   

The present study demonstrates that DGAT1 is up-regulated during senescence of 

Arabidopsis leaves in a manner that is temporally correlated with increased levels of 

thylakoid fatty acids in triacylglycerol.  The chloroplast is the first organelle of mesophyll 

cells to be affected by senescence, and the onset of chloroplast senescence appears to be 

initiated by nuclear-encoded proteins (Matile, 1992).  Recruitment of membrane carbon from 

senescing leaves, particularly senescing chloroplasts, to growing parts of the plant is a key 

feature of leaf senescence, and it involves de-esterification of thylakoid lipids and conversion 

of the resultant free fatty acids to phloem-mobile sucrose (Matile, 1992).  De-esterification of 

thylakoid lipids appears to be mediated by one or more senescence-induced galactolipases 

(Engelmann-Sylvestre et al., 1989).  The results of the present study indicate that formation 

of triacylglycerol may be an intermediate step in this mobilization of membrane lipid carbon 

to phloem-mobile sucrose during leaf senescence.  
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3.2 Materials and Methods 

3.2.1 In silico analysis of Arabidopsis thaliana DGAT1 

3.2.1.1 DGAT1 sequence from Arabidopsis thaliana 

A search was performed for the sequence of Arabidopsis thaliana DGAT at the 

Entrez Homepage (http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi).  DGAT1 (At2g19450) 

is not the annotated gene name.  However, the corresponding protein has since been 

described as DGAT1 (Lu et al., 2003).  By following the links to the mRNA, protein or 

genomic sequence, the respective sequences were obtained and aligned manually (Figure 3-

1).  Also, a region 2 kilobases upstream of the DGAT1 start codon (ATG) was used for the 

promoter analysis. 

3.2.1.2 Detection of putative signalling sequences in DGAT1 protein 

Several online programs for plant protein signalling sequences were used for the 

detection of putative signalling sequences in the DGAT1 amino acid sequence (AAK96671).  

Programs used for this purpose were ScanProsite (http://au.expasy.org/prosite/), PSORT 

version 6.4 (http://psort.nibb.ac.jp/), TargetP (http://www.cbs.dtu.dk/services/TargetP/), 

ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) and Predotar (http://genoplante-

info.infobiogen.fr/predotar/predotar.html). 

3.2.1.3 Alignment of DGAT1 sequences from different plant species 

The Arabidopsis thaliana DGAT1 protein sequence (AAK96671) was submitted 

into the protein-protein BLAST (blastp) search engine (http://www.ncbi.nlm.nih.gov/ 

BLAST/) to find DGAT1 annotated for other plant species.  Sequences for six representative 

oil-producing plant species were chosen and aligned using DIALIGN available at 

http://bibiserv.techfak. uni-bielefeld.de/dialign with the threshold set to zero and N=5 

(Morgenstern, 1999). 
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Figure 3-1: Alignment of the DGAT1 gene with the DGAT1 protein sequence 

The 17 exons are underlined, with the 15 introns unformatted in between.  The EST clone 

E6B2T7 used for Northern blot analysis is indicated in yellow highlight and includes part of 

the 3'UTR and part of the coding sequence.  The C-terminal peptide that was used for the 

production of polyclonal antibodies is highlighted in blue.   
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3.2.1.4 Analysis of putative cis-acting elements of the DGAT1 promoter 

Putative cis-acting elements of the DGAT1 promoter were identified using the 

PLACE (Plant Cis-acting Regulatory DNA Elements) program 

(http://www.dna.affrc.go.jp/PLACE/).  A segment of genomic DNA, upstream of the 

DGAT1 start codon (ATG), 2 kilobases long was submitted to the PLACE Signal Scan 

Search.  A table summarizing some of the putative cis-acting elements identified by PLACE 

was compiled. 

3.2.2 Plant material 

Seeds of Arabidopsis thaliana, ecotype Columbia, were grown in Promix BX soil 

(Premier Brands, Brampton, Ontario, Canada) in 6-inch pots.  Freshly seeded pots were 

maintained at 4oC for 2 days and then transferred to a growth chamber operating at 22oC with 

16-h light/8-h dark cycles.  Lighting at 150 μmol radiation m-2.s-1 was provided by cool-white 

fluorescent bulbs.  Rosette leaves were harvested after 2, 3, 4, 5, and 6-weeks of growth.  

Roots, stems, cauline leaves, flowers and siliques were collected from 6-week-old plants. 

Harvested tissues were either used immediately or frozen in liquid nitrogen and stored at       

-80oC until analyzed. 

3.2.3 RNA analysis 

3.2.3.1 RNA isolation and fractionation 

Total RNA for Northern blot analysis was isolated from Arabidopsis thaliana 

rosette leaves according to standard protocol (Davis et al., 1986).  The plant tissue was 

ground to a fine powder in liquid nitrogen with a mortar and pestle.  The powder was added 

directly to 10-20mL GIT buffer (4M guanidine isothiocyanate, 25mM sodium acetate, pH 

6.0, 0.84mL 2-mercaptoethanol/100mL GIT buffer) in a 50mL Falcon tube and mixed well.  

The GIT buffer/plant tissue mixture was filtered through Miracloth and layered onto a 10mL 

cushion of cesium chloride in 35mL disposable polyallomer ultraclear centrifuge tubes.  The 

tubes were balanced and loaded onto a SW28 Ti ultracentrifuge rotor and centrifuged 

overnight (~16 hours) at 90000 g in a Beckman Ultracentrifuge at a maximum temperature of 
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10oC.  The RNA pellet at the bottom of the tube was rinsed briefly with cold 70% ethanol 

and resuspended in resuspension buffer (0.5M sodium acetate, pH 5.2).  The RNA was then 

either ethanol- precipitated directly or extracted with phenol: chloroform: isoamyl alcohol 

(25:24:1) before ethanol precipitation.  Ethanol precipitation was carried out at -80oC for at 

least 2 hours.  The RNA precipitate was centrifuged into a pellet in a microcentrifuge at 

maximum speed at 4oC.  The resulting pellet was washed in 70% ethanol, dried and 

resuspended in DEPC-treated water, the volume of which depended on the size of the RNA 

pellet.  RNA quantity and quality were measured with a spectrophotometer. An adjusted 

OD260, which gave a more accurate RNA quantity, was calculated using the formula: 

OD260adjusted= OD260-│OD240-OD280│-OD320.  RNA was aliquoted into 10μg amounts and 

stored at -80oC. 

3.2.3.2 Northern blotting 

Purified RNA was fractionated on a 1% agarose formaldehyde denaturing gel (1% 

agarose, 9% formaldehyde, in 1X MOPS [20mM MOPS, 5mM sodium acetate, 1mM EDTA, 

pH 7.0]) and transferred to nylon membranes (Hybond-N+, Amersham Biosciences, UK).  

Briefly, the quantified RNA was mixed with 20μL Ross Hardison solution (60% formamide, 

20% formaldehyde, 0.8% bromophenol blue in 1X MOPS), and 0.5μL ethidium bromide 

(0.5μL/μL).  The RNA was heated to 65oC for 5 minutes and immediately placed on ice to 

cool before loading onto the 1% agarose formaldehyde denaturing gel submerged in cooled 

1X MOPS.  Electrophoresis was performed at 210V for 10 minutes, forcing the sample into 

the gel, then continued at 75V for 1.5-2 hours.  The RNA was transferred to nylon membrane 

through upward capillary action, with 10X SSC buffer (1.5M sodium chloride, 0.15M 

sodium citrate – 2H2O, pH 7.0) overnight (Davis et al., 1986).  The transferred RNA was 

cross-linked with UV and photographed for a loading control.  Immobilized RNA was pre-

hybridized for 2 hours in a pre-hybridization solution (40% formamide, 6X SSC, 1X 

Denhart’s solution, 0.5% SDS, 2mg denatured salmon sperm DNA) at 42oC in the 

hybridization oven.  During the pre-hybridization, the radio-labelled probe was synthesized 

using DGAT1 EST clone, E6B2T7 (Arabidopsis Biological Resource Center, OH, USA; 

highlighted in yellow in Figure 3-1).  E6B2T7 was labelled with [α-32P]-dCTP using a 
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random primer kit (Boehringer Mannheim) and passed through a Sephadex G-50 column to 

remove any unincorporated [α-32P]-dCTP.  The prehybridization solution was removed and 

the membranes were hybridized with denatured 1x106 cpm/mL DGAT1 probe overnight at 

42oC.  The hybridized membranes were washed twice in 2X SSC (0.3M sodium chloride, 

0.03M sodium citrate, pH 7.0) containing 0.1% SDS at 42oC for 15 minutes and twice in 1X 

SSC containing 0.1% SDS at 42oC for 30 minutes.  Hybridization was visualized by 

autoradiography after an overnight exposure at -80oC. 

3.2.4 Protein analysis 

3.2.4.1 Antibody production 

Antibodies were raised in a rabbit against a synthetic DGAT1 peptide 

(CVLLYYHDLMNRKGSMS; highlighted in blue in Figure 2-1), which corresponds to the 

C-terminus of the native protein.  This 17 amino acid sequence was chosen because of its 

hydrophilicity, antigenicity, and its uniqueness.  The peptide was synthesized in the 

laboratory of Dr. G. Lajoie (Department of Chemistry, University of Waterloo).  The carrier 

protein, Keyhole Limpet Hemocyanin (Sigma), was conjugated to the N-terminal cysteine of 

the peptide using m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) according to 

Drenckhahn et al. (1993) and Collawn and Patterson (1999).  Briefly, dissolved KLH 

(10mg/mL in water) was mixed dropwise with MBS dissolved in dimethylformamide (DMF-

MBS; 10mg/mL) while stirred with a mini stir bar at room temperature for 30 minutes.  The 

MBS-KLH complex was added slowly to a Sephadex 25 column to separate the activated 

MBS-KLH from the free MBS.  Fractions of 15 drops were collected in glass test tubes and 

were analyzed for their A280 using a spectrophotometer.  The fractions with the activated 

MBS-KLH, identified as a peak in absorbance, were pooled together and adjusted to pH 7.4.  

In a screw-cap vial, 1 mg DGAT1 peptide was added to 1 mg of MBS-KLH.  The tube was 

sealed under nitrogen and rotated gently at room temperature for 3 hours.  The resulting 

DGAT1-KLH conjugate was dialyzed twice against 3 litres of PBS at 4oC for 3-4 hours.  

Antibodies were raised in a rabbit housed in the animal care facility in the 

Department of Biology according to the University of Waterloo’s Animal Care Standard 
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Operating Procedures. The initial immunization was performed with the DGAT1-KLH 

complex emulsified in Freund’s complete adjuvant (mixed 1:1; Sigma).  The rabbit was 

injected three more times at two-week intervals with the linked peptide in Freund’s 

incomplete adjuvant (mixed 1:1; Sigma).  Two weeks after the final injection, the rabbit was 

exsanguinated, and the serum was collected. 

Antibodies were column-purified using SulphoLink Coupling Gel (Pierce) as 

described by the manufacturer.  The SulfoLink Gel was brought to room temperature before 

making a 1mL packed column, which was equilibrated with 6 column volumes of 

equilibration buffer (50mM Tris, 5mM EDTA-Na, pH 8.5).  The peptide (~1mg) was 

dissolved in 1mL equilibration buffer and incubated in the column for 15 minutes with 

mixing and 30 minutes without mixing, all at room temperature.  The excess buffer was 

drained, and the column was washed with 3 column volumes of equilibration buffer.  The 

A280 was monitored during the washes to determine coupling efficiency.  The non-specific 

binding sites left on the gel were filled by incubating the column with a 50mM cysteine 

solution in equilibration buffer (1mL solution was added per 2mL column volume) for 15 

minutes with mixing and 30 minutes without mixing.  The column was washed with 16 

column volumes of 1M sodium chloride and 16 volumes of degassed 0.05% sodium azide in 

PBS and stored overnight, upright at 4oC.  After the column and reagents were all brought to 

room temperature, the column was washed with 3 column volumes of PBS to remove the 

sodium azide.  The serum collected from the final bleed was added directly (1mL at a time) 

to the column and allowed to incubate at room temperature for 1 hour.  In between serum 

additions (3 in total), the column was washed with 8 column volumes of PBS.  The purified 

antibody was eluted by applying 5 column volumes of elution buffer (0.1M glycine, pH 2.8).  

Fractions of about 1mL were collected and neutralized by adding 50μl of 1M Tris, pH 9.5.  

Elution was monitored by A280, and the fractions with a high reading were pooled and 

dialyzed overnight against 3 litres of PBS.  The purified antibody was aliquoted and stored at 

-20oC.  The titre of the purified antibody was determined using some of the remaining 

peptide.  The DGAT1 antibody was used at a dilution of 1:500 for Western blotting and 1:50 

for confocal microscopy. 
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Antibodies were also raised against cytochrome P450-cinnamate-4-hydroxylase 

fusion protein by Lily Lu (Lu, 1999) and cytochrome f peptide by Dr. Matthew Smith (Smith 

et al., 2000). 

Polyclonal antibodies against formate dehydrogenase were generously provided by 

Dr. Catherine Colas des Francs-Small (Université Paris-Sud, Orsay Cedex, France). 

3.2.4.2 Protein extractions 

3.2.4.2.1 Protein extraction from intact tissues 

Rosette leaves, stem, cauline leaves, root, flower and silique tissues were 

homogenized (0.5g/mL) in buffer (50mM EPPS, pH 7.4, 0.25M sorbitol, 10mM EDTA, 

2mM EGTA, 1mM DTT, 10mM amino-n-caproic acid, 1mM PMSF, 1mM benzamine, 1mM 

chymostatin) in a mortar and pestle.  The homogenates were filtered through Miracloth, and 

protein was quantified according to (Ghosh et al., 1988) using bovine serum albumin as a 

standard.  Briefly, samples were diluted in 4X SDS loading buffer (200mM Tris, 40% [v/v] 

glycerol, 8% [w/v] SDS, 20% [v/v] 2-mercaptothanol, 0.5% [w/v] bromophenol blue) and 

dotted on Whatman 3M blotting paper (2μL per dot).  After the dots dried, they were stained 

in Coomassie brilliant blue stain (50% [v/v] methanol, 12.5% [v/v] acetic acid, 0.1% [w/v] 

Coomassie brilliant blue R250) for 1 hour and destained in several changes of 40% (v/v) 

methanol and 10% (v/v) acetic acid to remove background stain.  Protein concentration was 

determined by densitometry using a series of BSA standard spots on the same blots as a 

comparison.  The dried dotted Whatman paper was scanned into a computer using an HP 

3200 Scanjet and the integrated volume of each dot measured using ImageQuant software. 

3.2.4.2.2 Isolation of chloroplasts and chloroplastic fractions 

Intact, physiologically active chloroplasts were purified from 4.5-week-old 

Arabidopsis thaliana rosettes (Kunst, 1998).  Briefly (Figure 2-2), 20g of leaves from plants 

dark-treated for 24 hours were floated on ice-water for 30 minutes, blotted dry and 

homogenized with a Sorvall Omni-mixer in 200mL of homogenization buffer (0.45 M 

sorbitol, 20mM tricine-KOH, pH8.4, 10mM EDTA, 10mM sodium bicarbonate) and a drop 
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Figure 3-2: Isolation of intact chloroplasts and chloroplastic fractions 

Chloroplasts were isolated from 4.5-week old rosette leaves. The isolated chloroplasts were 

lysed to release the stroma from the membrane fractions. The proteins of intact chloroplasts, 

stroma fraction and the membrane fractions were all separated by SDS-PAGE for Western 

blotting. Intact chloroplasts were also assayed for cytochrome c oxidase to ensure no 

mitochondrion contamination. HB = homogenization buffer, RB= resuspension buffer and 

LB = lysis buffer. 
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Dark treat plants for 24 h

Float leaves on ice-water for 30 min

Homogenize in HB & filter through Miracloth

Centrifuge at 280 g for 90s (brake on)

Resuspend pellet in cold RB Discard supernatant

Layer on 50% Percoll gradient

Centrifuge at 13300 g for 6 min (brake off)

Collect lower diffuse band containing intact chloroplasts

Wash chloroplasts in 3 volumes RB in two tubes 

Resuspend 1 pellet in RB 
(Intact Chloroplasts)

Resuspend 2nd pellet in LB

Incubate on ice for 30 min in the dark

Add 1 volume 2x RB

Centrifuge at 12000 g for 10 min

Collect supernatant 
(Stroma)

Resuspend pellet in RB 
(thylakoid & envelope 

membranes)
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 of antifoam (Sigma).  The homogenate was filtered through Miracloth into a beaker on ice.  

The filtered homogenate was then centrifuged in a Sorvall SS-34 rotor at 280 g for 90 

seconds with the brake on.  The pellets were resuspended gently with a soft brush in 1mL of 

ice-cold resuspension buffer (0.3M sorbitol, 20mM tricine-KOH, pH7.6, 5mM magnesium 

chloride, 2.5mM EDTA).  This suspension was layered on a Percoll gradient and centrifuged 

in a Sorvall HB-4 rotor at 13300 g for 6 minutes with the brake off.  The lower diffuse band 

comprising intact chloroplasts was collected with a glass pipette, washed once in three 

volumes of resuspension buffer (in two tubes).  Of the resulting pellets, one was resuspended 

in 1mL of resuspension buffer and the second was lysed as described below to obtain the 

chloroplastic fractions (stroma and membranes). 

Chloroplast membranes were obtained as described by Ghosh et al. (1994). 

Gradient-purified chloroplasts were pelleted and lysed in 1mL of lysis buffer (10mM tricine, 

pH 7.6, containing 5mM magnesium chloride) on ice in the dark for 30 minutes.  At the end 

of this period, 1mL of 2X resuspension buffer was added, and the chloroplast membranes (a 

composite of envelope membranes and thylakoids) were pelleted by centrifugation at 

maximum speed for 10 minutes in a microcentrifuge at 4oC.  The supernatant was collected 

as the stroma, which was centrifuged again at maximum speed for 10 minutes in a 

microcentrifuge at 4oC to pellet any membrane contaminants.  The stroma was concentrated 

by dehydration to one third the original volume.  The membrane pellet produced by the lysis 

was washed three times to remove any contaminating stroma by resuspension in 1.5mL of 

resuspension buffer and centrifugation at maximum speed for 10 minutes in a 

microcentrifuge at 4oC.  The final membrane pellet was resuspended in 0.5mL of 

resuspension buffer.  

The isolated intact chloroplasts and the chloroplastic fractions (stroma and 

membranes) were diluted in 4X SDS loading buffer.  Proteins were quantified as described 

above.  Alternatively, fresh intact chloroplasts were used for cytochrome c oxidase enzyme 

assay immediately. 

3.2.4.2.3 Enzyme assay 
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Cytochrome c oxidase was assayed as a marker for mitochondrial inner envelope 

membrane (Hodges and Leonard, 1974).  The assay mixture [100mM KPO4, pH 6.7, 1mM 

EDTA, 0.5% (w/v) Tween 80, and 1mM reduced cytochrome c (reduced by the addition of a 

few grains of sodium dithionite)] was freshly prepared before use.  The reaction was started 

by the addition of approximately 50μg of membrane protein (from microsomal membranes 

or purified chloroplasts) at room temperature.  The oxidation of cytochrome c was monitored 

as a change in absorbance at 550nm over a period of 3 minutes. 

3.2.4.2.4 Gradient fractionation of microsomes 

Microsomal membranes from rosettes and developing siliques were fractionated on 

a continuous sucrose gradient. For isolation of microsomes, rosette leaves (10g) from 4.5-

week-old Arabidopsis thaliana plants were homogenized in 100mL buffer (3mM Tris HCl, 

pH 7.5, 2mM EDTA, 250mM mannitol, 2mM DTT, 1mM PMSF, 5% (w/v) PVP) for 45 

seconds in a Sorvall Omnimixer and for an additional minute in a Polytron homogenizer.  

Developing siliques (5g) from 6-week-old plants were homogenized in 50mL of the same 

buffer, first in a mortar and pestle with glass beads, then, as for leaves, for 45 seconds in a 

Sorvall Omnimixer and for an additional minute in a Polytron homogenizer.  The 

homogenates were filtered through four layers of cheesecloth and centrifuged in a Sorvall 

SS-34 rotor at 8000 g for 20 minutes at 4oC.  The supernatant was collected and centrifuged 

at 100000 g in a 60Ti rotor in a Beckman Ultracentrifuge for 1 hour at 4oC.  The resulting 

pellets of microsomal membranes were resuspended in 6mL of storage buffer (6mM Tris-

HCl, pH 7.5, 10% (w/v) glycerol, 250mM mannitol, 2mM DTT, 1mM PMSF), layered on a 

continuous sucrose density gradient (10-40% w/v) and centrifuged in a Beckman SW-28 

rotor at 70000 g for 2 hours at 4oC.  Fractions (20 drops/fraction) were collected from the 

bottom, and 10μl from each fraction was used to determine the sucrose concentration with a 

hand refractometer (Bausch and Lomb).  The fractions were diluted five fold with storage 

buffer, centrifuged at 100000 g on a 60Ti rotor in a Beckman Ultracentrifuge for 1 hour at 

4oC and the pellets resuspended in 100μL storage buffer.  For Western blots, 15μl of each 

fraction was mixed with 5μL 4X SDS-loading buffer and fractionated by SDS-PAGE. 
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3.2.4.3 Protein fractionation  

SDS-PAGE was performed on Mini protein Dual Slab cells (BioRad, Mississauga, 

Ontario) using 1-1.5mm thick 4% acrylamide stacking gel and 10-12% acrylamide separating 

gels (Laemmli, 1970).  The gels were either stained with Coomassie brilliant blue R250 

(Fairbanks et al., 1971) or transferred to polyvinyldiene difluoride (PVDF) membranes using 

the semi-dry transfer method (Trans-Blot® Semi-Dry Electrophoretic Transfer cell, Bio-Rad, 

Hercules, CA).  Specifically, the gels stained with Coomassie brilliant blue R250 were 

stained for at least one hour in staining buffer (50% methanol, 12.5% acetic acid, 0.1% 

Coomassie brilliant blue R250) and destained until all background stain was removed in 

destaining buffer (40% methanol, 10% acetic acid).  The gels that were transferred to PVDF 

membranes were first equilibrated in cold transfer buffer (48mM Tris, 39mM glycine, 

0.0375% SDS [w/v], pH 9.2, 20% [v/v] methanol), along with the PVDF membranes (pre-

wetted in methanol) and filter papers, for 15 minutes.  The membrane was sandwiched with 

the acrylamide gel, between sheets of filter paper cut to size, in the semi-dry transfer 

apparatus.  Power to the transfer apparatus was provided by a BioRad power supply, which 

transferred the proteins of the mini-gels for 30 minutes at 15V (current limit was set to 

5.5mA/cm2).  After the transfer was complete, the gel was stained as described earlier to 

check for even loading/transfer of proteins.  The membrane was blocked and probed as 

described below. 

3.2.4.4 Western blotting 

The PVDF blots were blocked for 30s in 1mg/mL polyvinyl alcohol (Miranda et al., 

1993) and for one hour in phosphate-buffered saline containing 0.05% (v/v) Tween 20 (PBS-

T) and 5% (w/v) powdered milk.  After blocking, the blots were incubated with primary 

antibody, which was diluted in PBS-T with 1% (w/v) powdered milk (1:500 for DGAT1 

purified antibody, cytochrome f antibody and cytochrome P450-cinnamate-4-hydroxylase 

antibody; or 1:250 for the formate dehydrogenase antibody).  Blots were then washed 3 times 

in PBS-T for 10 minutes each before incubation for one hour in PBS-T, 1% (w/v) milk with 

secondary antibody coupled to alkaline phosphatase and produced in goat against rabbit IgG 

(1:1000; Chemicon, Temecula, CA). After the secondary antibody incubation, the 



 

- 180 - 

membranes were washed once with PBS-T containing 1% Triton-X for 10 minutes, then 

three times in PBS-T for 10 minutes each.  To visualize the bands, membranes were exposed 

to 10mL alkaline phosphatase reaction buffer (100mM Tris-HCl, pH 9.5, 100mM sodium 

chloride, 5mM magnesium chloride) and the alkaline phosphatase substrates, nitro blue 

tetrazolium (NBT; 66μl of 50mg/mL stock in 70% [v/v] dimethylformamide per 10mL 

reaction) and bromochloroindolyl phosphate (BCIP; 33μl of 50mg/mL stock in 

dimethylformamide per 10mL reaction; BioRad, Mississauga, ON).  The colour reaction was 

terminated by washing the blots quickly and thoroughly with water.  As soon as the blots 

dried, they were scanned into a computer using an HP 3200 Scanjet. 

3.2.5 Lipid analysis 

3.2.5.1 Lipid extraction 

For lipid analysis, 20g of rosette leaf tissue from 3- or 6-week-old Arabidopsis 

thaliana plants were homogenized in 60mL of buffer (50mM EPPS, pH 7.4, 0.25M sorbitol, 

10mM EDTA, 2mM EGTA, 1mM DTT, 10mM amino-n-caproic acid, 4% (w/v) PVPP) for 

45 seconds in a Sorvall Omnimixer and for an additional minute on a Polytron homogenizer 

(Figure 3-3).  The homogenate was filtered through 4 layers of cheesecloth and centrifuged 

in a Sorvall SS-34 rotor at 3000 g for 10 minutes.  The resulting sediment largely consisted 

of starch since the tissue homogenization was of sufficient intensity to disrupt cell organelles 

which, if intact, might partially sediment under these conditions of centrifugation.  An aliquot 

of the homogenate supernatant was stored at -20oC for total lipid extraction, while the rest of 

the homogenate was further centrifuged to collect the microsomal membranes.  In order to 

pellet the microsomal membranes, the homogenate supernatant was centrifuged in a 

Beckman 60Ti rotor at 100000 g for 1 hour.  The pellets were resuspended in 

homogenization buffer and stored at -20oC. 

               Total lipids were extracted according to Bligh and Dyer (1959).  All solvents 

used were HPLC grade, and work was done under a flow of nitrogen as much as possible to 

prevent lipid oxidation (Bligh and Dyer, 1959).  Internal standards (diheptadecanoyl L-α-

phosphatidylcholine, diarachidin, heptadecanoic acid, triheptadecanoic acid, and cholesteryl
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Figure 3-3: Lipid extraction, thin layer chromatography and gas chromatography/mass 

spectrometry sample preparation 

Lipids were extracted from homogenate and microsomal membranes of pre-senescent (3-

week-old) and senescent (6-week-old) rosette leaves.  Total lipids were extracted from each 

sample as well as the different lipid classes (viz., polar lipids, diacylglycerols, free fatty 

acids, triacylglycerols, and steryl and wax esters) that were resolved by thin-layer 

chromatography.  Fatty acids from each fraction and lipid class were transmethylated for 

GCMS analysis. 
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Lipid Extraction:

•Add 3 volumes of 1:2 chloroform: methanol, vortex & let stand 10 min.

•Add 1 volume of chloroform & vortex.

•Add 0.8 volumes of 0.73% NaCl & vortex.

•Allow phases to separate & collect bottom lipid phase.

•Dry lipid fraction under N2 on a heating block & add a few drops of 6:1chloroform: methanol.

Add internal standard

Add internal standard

Thin Layer Chromatography:

•Cut lanes on silica plate (control, homogenate, microsomal membranes & cytosol) & activate 
in a heated oven for at least 15 min.

•After the plate has cooled, streak lipid extract on lanes under a N2 stream.

•Resolve lipids in a neutral lipid tank (70:30:1 petroleum ether: diethyl ether: acetic acid) & 
develop in a tank containing vapourized iodine until bands appear.

Preparation for GC-MS injections:

•Scrape each lipid class (polar lipids, free fatty acids, diacylglycerols, triacylglycerols, sterols & 
wax esters) from the homogenate, microsomal membranes & cytosol lanes into separate 
glass test tubes.

•Add 2.5ml of 2:1:0.8 methanol: chloroform: water & vortex.

•Spin down silica & remove solvent layer with a glass pipette.  Repeat wash of silica.

•Add 1.5ml chloroform & 2 ml water to each tube & vortex. Cover & let separate O/N.

•Transfer bottom lipid layer to a lipid vial & dry under nitrogen.

•Add 1ml boron trifluoride/methanol, vortex & seal under nitrogen. Incubate 1 h at 90oC.

•Cool for 15 min.  Add 1ml hexane & 0.5ml water, vortex & allow phases to separate.

•Remove top hexane phase & repeat hexane extraction.

•Pool hexane collections & dry under N2. 

•Resuspend in several drops of hexane (store at -20oC or inject into GCMS).

Centrifuge at 100000 g for 12 h
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 arachidate) were added to the homogenate and microsomal membrane fraction prior to 

extraction.  These five standard lipid classes contained the unusual fatty acids heptadecanoic 

acid (17:0) or eicosanoic acid (20:0).  The amount of internal standard added to each sample 

was based on an estimation of lipid content.  All glassware used for lipid extractions was 

cleaned with Decon detergent (BDH Inc., Toronto, Ontario) to minimize sources of lipid 

contamination.  Three volumes of chloroform:methanol (1:2) were added to each sample, 

vortexed vigorously and allowed to stand for 10 minutes before another volume of 

chloroform was added and vortexed vigorously.  In order to separate the lipid soluble fraction 

from the aqueous soluble fraction, 0.8 volumes of 0.73% sodium chloride was added and 

vortexed.  The tubes were then covered with saran wrap, and the suspension was allowed to 

separate into three phases.  The top phase was the aqueous phase, the middle phase was a 

white proteineacous phase and the bottom phase was the lipid (chloroform) phase.  The 

bottom layer was removed with a glass Pasteur pipette by bubbling down through the first 

two phases before drawing up the lipid phase.  The lipid phase was dried down in 

spectrometry grade lipid vials under a stream of nitrogen in a heating block.  A few drops of 

chloroform:methanol (6:1) were added to each of the extracted lipids, and the vials were 

sealed under nitrogen.  An aliquot of total lipids was taken from each sample (homogenate 

and microsomal membranes), and the remaining lipids were used for thin layer 

chromatography fractionation.  Extracted lipids were stored at -20oC.  

3.2.5.2 Thin Layer Chromatography (TLC) 

Lipid extracts were fractionated by thin layer chromatography (Yao et al., 1991), 

against authentic unsaturated lipid standards (dileoyl L-α-phosphatidylethanolamine, 

dilinolenin, linolenic acid, trilenolein, cholesteryl arachidonate).  The silica plates (SIL G-25, 

0.25mm silica gel layer, Macherey-Nagel, Germany) were formatted into three lanes; one for 

the standards and one for each sample, and were activated in a drying oven for at least 15 

minutes and cooled in a dry tank. 

The lipid extracts from homogenate and microsomal membranes were streaked 

under a stream of nitrogen gas onto the lanes of the silica plate.  The lipids were resolved in a 

non-polar lipid tank (70mL petroleum ether, 30mL diethyl ether, 1mL acetic acid and a sheet 
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of filter paper to facilitate the buffer to wick up and fill the tank with vapour), prepared an 

hour before needed.  The plate was removed from the non-polar lipid tank when the solvent 

front almost reached the top of the plate.  The bands corresponding to the separated  lipid 

classes were visualized after being exposed to vapourized iodine in a developing tank.  The 

iodine reacts with the double bonds of the unsaturated fatty acids, resulting in the appearance 

of yellowish-brown bands.  The developed plate was scanned into a computer using an HP 

3200 Scanjet, and the lipid classes were marked off with a pencil.  The silica corresponding 

to each lipid class (viz.,  polar lipids, diacylglycerols, free fatty acids, triacylglycerols, and 

steryl and wax esters) within each sample (homogenate and microsomal membranes) was 

scraped off with clean razor blades.  The lipids were extracted from the silica in glass test 

tubes with the addition of 2.5mL of methanol: chloroform: water (2:1:0.8), vortexing and 

slow centrifugation on a tabletop centrifuge to separate the silica and lipid phases.  The lipid 

phase was removed to a clean test tube with a glass pipette.  The silica was washed again 

with the methanol: chloroform: water mixture and the collected lipid phase was removed and 

added to the previous fraction collected.  To further purify the lipid extract, 1.5mL 

chloroform and 2mL of water were added to each tube, vortexed and left to separate into a 

top aqueous phase and bottom lipid phase.  The bottom phase was collected into a 

spectrometry grade lipid vial and dried under nitrogen.  These samples were either prepared 

immediately for gas chromatography mass spectrometry analysis or stored at -20oC in 

chloroform: methanol (6:1). 

3.2.5.3 Gas Chromatography Mass Spectrometry (GCMS) analysis 

Fatty acids of the separated lipid fractions were transmethylated (Morrison and 

Smith, 1964) and the resultant fatty acid methyl esters were quantified by gas 

chromatography-mass spectrometry (GCMS) (HP-5890 series II gas chromatograph 

equipped with a DB Wax column (30 x 0.25mm ID, 0.25μm film [JandW Scientific]) and a 

mass detector [HP-5970] with a scan range of m/z 35-150 operating at 0.16sec/scan).  

Transmethylation breaks the ester bond of the fatty acid moiety to its backbone and replaces 

it with a methyl group, giving rise to a fatty acid methyl ester, and this was performed by the 

addition of 1mL boron tri-fluoride methanol to dried lipid samples.  The samples were sealed 
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under nitrogen, vortexed and incubated in a 90oC water bath for one hour.  After the lipid 

samples were cooled to room temperature, the fatty acid methyl esters were extracted by the 

addition of 1mL of hexane and 0.5mL of water to each vial, and vortexed.  The upper non-

polar phase was collected into a clean lipid vial.  The lower aqueous phase was washed twice 

with 1mL hexane to reduce fatty acid loss.  The upper phases were pooled together and dried 

under a continuous stream of nitrogen.  The dried fatty acids were then resuspended in 

several drops of hexane, sealed under nitrogen and stored at -20oC until GCMS injection. 

Fatty acid content as well as the identity of fatty acid species present in the lipid 

extracts were analyzed using GCMS.  The temperature program was optimized for the 

separation of a commercially-available mixture of 37 fatty acid methyl ester standards 

(Product No. L 9405, Sigma Chemical, St. Louis, MO).  The oven temperature was initially 

held at 80oC for 5 minutes and then increased at 10oC per min to 100oC (held for 10 

minutes), 160oC (held for 20 minutes) and finally 220oC (held for 51 minutes). The resulting 

peaks on the chromatographs were integrated using MS ChemStation data analysis software 

(HP G1034C), and the identity of each fatty acid species was verified using the 

NIST/EPA/NIH Mass Spectral Library (HP, version 1.1a, Standard Reference Database 1A).  

The fatty acid methyl esters were quantified against the internal standards (heptadecanoic 

acid methyl ester [17:0] and arachidic acid methyl ester [20:0]) added prior to lipid 

extraction. 

3.2.6 Microscopy 

3.2.6.1 Electron microscopy 

Segments of tissue (~2mm2) cut from the centre of the first leaf pair from 3- and 6-

week-old Arabidopsis thaliana plants were vacuum-infiltrated with 0.02 M sodium 

phosphate buffer (pH 7.2) and fixed in 4% glutaraldehyde in 0.02 M sodium phosphate 

buffer (pH 7.2) overnight at 4oC.  The samples were then washed 4 times in 0.02 M 

phosphate buffer (pH 7.2), post-fixed in 1% osmium tetroxide in 0.02 M phosphate buffer 

(pH 7.2) for 2 hours at 4oC and washed 4 times in water for 30 minutes.  They were then 

dehydrated in a graded series of acetone, washed 4 times in 100% acetone for 30 minutes and 
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embedded in Epon-Araldite.  Ultrathin sections (70-90nm) were stained in lead citrate and 

uranyl acetate and examined with a Philips CM 10 electron microscope operating at 60kV. 

3.2.6.2 Confocal microscopy 

Leaf discs (~4mm in diameter) were cut from the centre portion of the first leaf 

pairs of 4- to 6-week old leaves.  Alternatively, developing seeds (embryos) were collected at 

varying stages of development and treated as described below for leaf tissue.  The samples 

were immediately vacuum-infiltrated with 4% paraformaldehyde in phosphate buffered 

saline (PBS) for 10 minutes, then stored at 4oC until stained.  The disks and embryos were 

washed with PBS twice for 30 minutes at room temperature to remove the fixative and once 

with 1% Triton X in PBS for 15 minutes to permeablize the tissue.  The fixed and 

permeablized tissues were then gently rocked overnight at room temperature with purified 

primary antibody against either DGAT1 (1:50) or the chloroplastic triacylglycerol lipase 

(AAD24845; 1:50) in 1% BSA in PBS.  The tissues were washed twice in PBS, for 30 

minutes each, at room temperature before incubation with the goat anti-rabbit secondary 

antibody conjugated to FITC [Sigma; 1:100 in 1% BSA (w/v) in PBS] for two hours in the 

dark.  The samples were washed two times for 30 minutes each in PBS and then were 

mounted on slides in 70% glycerol.  Number 1.5 cover slips were used for optimal 

visualization by confocal microscopy.  The samples were observed using a Zeiss LSM 510 

confocal laser scanning microscope attached to an axiovert-inverted microscope.  
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3.3 Results 

3.3.1 DGAT1 is a highly conserved protein in plants 

The protein (AAK96671), mRNA (AY054480) and genomic (AC005917) 

sequences for DGAT1 from Arabidopsis thaliana (At2g19450) were obtained from the 

Entrez Homepage.  These sequences have been described elsewhere as DGAT1 (Lardizabal 

et al., 2001; Lu et al., 2003), and are more similar to sterol acyltransferase than to any of the 

other enzymes involved in triacylglycerol synthesis (Lardizabal et al., 2001).  The full length 

cDNA of DGAT1 is 1988bp long, containing an open reading frame of 1563bp encoding a 

protein of 520 amino acids.  DGAT1 from Arabidopsis (At2g19450) is found on 

chromosome II, approximately 17.5±3cM from the sti locus and 8±2cM from the cp2 locus 

(Zou et al., 1999).  The DGAT1 protein sequence from Arabidopsis (AAK96671) was used 

to perform a BLASTp search for annotated DGAT1 sequences in other species.  While the 

DGAT1 protein sequence from humans (BAC66170) was about 38% identical, the identity 

shared between Arabidopsis and other plant species, especially other eudicots, was up to 

85%.  Six of the annotated species from GenBank were chosen for sequence alignment with 

Arabidopsis DGAT1 (Figure 3-4).  These plant species were chosen as representative oil 

producing eudicots, in which oil is the major form of carbon storage found either in seeds or 

fruits.  These six sequences and the Arabidopsis DGAT1 sequence were submitted to the 

DIALIGN program with the threshold set to zero and N=5 (Morgenstern, 1999).  The 

identical amino acids in the alignment (Figure 3-4) are indicated in yellow highlight. 

Brassica napus (canola) is 85% identical to Arabidopsis.  The species Topaeolum majus 

(nasturtium), Ricinus communis (castor bean), and Olea europaea (olive) are all 69% 

identical to Arabidopsis, and Perilla frutescens (beefsteak mint) and Nicotiana tabacum 

(tobacco) are 65% and 67% identical to Arabidopsis,  respectively.  Most of the identity is 

found within the conserved MBOAT domain (Membrane Bound O-Acyl Transferase) 

indicated by the red box (Figure 3-4).  Not only is most of the identity found in this region, 

even where there are some differences in sequence there is still a high level of similarity as 

indicated by the double row of stars below the sequence.  All plant DGAT1s 
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Figure 3-4: Alignment of DGAT1 for seven oil-producing plant species 

Protein alignment of DGAT1 from Arabidopsis thaliana, Brassica napus, Tropaeolum 

majus, Ricinus communis, Olea europaea, Perilla frutescens, and Nicotiana tabacum.  All of 

these plant species are eudicots and produce oil as the major form of carbon storage in either 

their seeds or fruits.  These DGAT1s are members of the MBOAT (Membrane Bound O-

Acyl Transferase) family, characterized by a conserved domain indicated by the red box.  

The active site (HKW-X-X-RH-X-Y-X-P) for DGAT1 is underlined within the MBOAT.  

Identical aligned amino acid sequences found in all 7 species are indicated in yellow 

highlight.  A double row of stars indicates the regions of high similarity as determined by 

DIALIGN (Morgenstern, 1999), and a single row of stars indicates regions of lower 

similarity.  Capital letters denote aligned amino acids and lower case letters denote residues 

that do not align, and have no similarity. 
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are divergent in the N-terminus and residues 243-268 (Milcamps et al., 2005).  The 

underlined active site HKW-X-X-RH-X-Y-X-P for DGAT1 (Figure 3-4) is also found within 

the MBOAT domain (Zou et al., 1999).  

3.3.2 DGAT1 is an integral membrane protein with many hydrophobic regions 

DGAT1 is a membrane bound protein with many transmembrane domains.  A Kyte 

and Doolittle hydrophobicity plot suggests that the protein contains 8 or 9 membrane 

spanning domains (Figure 3-5A).  The regions that have a hydropathy score above zero 

represent the hydrophobic regions of the amino acid sequence, where regions above a 

hydropathy score of about 2 signify extremely hydrophobic regions, designating that region 

as a strong candidate for a transmembrane domain (Kyte and Doolittle, 1982).  Several other 

transmembrane prediction programs available at www.expasy.org also predict 8 or 9 

membrane spanning domains.  There is currently no crystal structure for DGAT1, but others 

have also reported that there are likely 9 membrane spanning domains (Hobbs et al., 1999; 

Bouvier-Nave et al., 2000; Weselake et al., 2004).  Figures 3-5B and Figure 3-5C illustrate 

the putative membrane orientations of DGAT1 if it had 8 or 9 membrane spanning domains, 

respectively.  The N-terminus is predicted to be cytosolic, and this has been confirmed in 

canola through the use of polyclonal antibodies against the N-terminus (Weselake et al., 

2004). DGAT1 may also form tetramers, though this conformation is not necessary for 

enzyme activity (Cheng et al., 2001). 

3.3.3 DGAT1 is expressed in most organs of Arabidopsis thaliana and has a 
multi-element promoter 

The extent to which DGAT1 is expressed in different organs of Arabidopsis 

thaliana plants was assessed by Western-blot analysis (Figure 3-6).  Total protein from roots, 

stems, cauline leaves, flowers and siliques was collected from 6-week-old plants, fractionated 

by SDS-PAGE and blotted on PVDF membranes.  At this stage of development, the roots 

were a mixture of developed and growing structures, the stems and cauline leaves were still 

growing and developing, the flowers were a mixture of senescing and pre-senescent 

inflorescences, and the siliques were developing but had not yet reached maturity. 
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Figure 3-5: DGAT1 hydropathy plot and putative transmembrane spanning domains 

A.  A Kyte and Doolittle hydropathy plot of Arabidopsis DGAT1.  The hydropathy score is 

indicated on the ordinate, where the positive numbers indicate the hydrophobic regions and 

the negative numbers designate the hydrophilic regions (Kyte and Doolittle, 1982).  The 

window position is indicated on the abscissa and corresponds to the amino acids in the 

DGAT1 sequence.  The hydropathy score of zero is indicated by the black line, and the 

putative transmembrane domains are indicated at the top of the graph.  The domain numbers 

in red are the most likely transmembrane domains, where domain 5, indicated in blue, falls 

just below the threshold of 2 for a transmembrane domain and could be a hydrophobic 

domain that is not transmembrane.  The C-terminus peptide that was used for antibody 

production, identified by the blue box, is in the hydrophilic range of hydropathy score.  B.  

Diagram illustrating the putative membrane topology for Arabidopsis DGAT1 with 8 

transmembrane helices.  Domain 5 is just below the threshold of highly hydrophobic 

composition as shown in A and could be part of the cytosolic face of DGAT1.  C.  Diagram 

illustrating the putative membrane topology for Arabidopsis DGAT1 with 9 transmembrane 

helices.  This is probably the most likely scenario.  The C-terminus peptide corresponding to 

the sequence used for antibody production is indicated as a blue line in both B. and C. 
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Figure 3-6: DGAT1 expression in various organs of Arabidopsis thaliana 

A. Western blot probed with antibody raised against a synthetic peptide of DGAT1.  

R=Roots, ST=stem, L=cauline leaf, FL=flowers, and SIL=siliques.  The apparent molecular 

mass of the immunodetected polypeptide is indicated in kilodaltons.  B. SDS-PAGE stained 

with Coomassie Brilliant Blue.  Lanes are as in A, and the molecular mass markers are 

indicated on the left.  Each lane contained 10μg of protein, and the lanes were confirmed to 

be equally loaded by densitometry. 
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The blots were probed with polyclonal antibodies raised against a synthetic peptide 

corresponding to the last 17 amino acids of the C terminus of DGAT1.  Probing the blots 

with DGAT1 antibody revealed that the protein is present in all of these organs, although it is 

most abundant in roots and siliques and least abundant in cauline leaves (Figure 3-6).  The 

expected size of DGAT1 protein is 59kDa, though others have detected it at 51kDa (Hobbs et 

al., 1999; Bouvier-Nave et al., 2000; Hobbs and Hills, 2000; Lu et al., 2003).  The 

polypeptide that was routinely detected in the Western blots probed with purified DGAT1 

antibody in this study was only 29kDa in size (Figure 3-6) and is presumably a proteolytic 

catabolite of the native protein.  This was observed throughout most experiments, though a 

band at 51kDa was also detectable in certain circumstances (see Results section 3.3.8).   

Since DGAT1 was detectable in various organs in Arabidopsis thaliana, it is 

presumably regulated by a complex promoter.  The promoter region of the genomic 

counterpart of DGAT1 was analyzed for the presence of cis-acting elements.  To achieve 

this, a 2 kilobase genomic sequence upstream from the start codon (ATG) was entered into 

the PLACE program.  PLACE is a database of motifs found in plant cis-acting regulatory 

DNA elements, all from previously published reports.  In addition to the motifs originally 

reported, their variations in other genes or in other plant species reported later are also 

compiled (Higo et al., 1999).  Some of the motifs identified during the promoter analysis of 

DGAT1 are illustrated in alphabetical order in Table 3-1.  It should be noted that these motif 

sites are only putative.  Several motifs that were predicted by PLACE were not included in 

this table due to their unknown role in Arabidopsis or their short length (short sequences are 

more likely to occur randomly).  Regardless, a wide range of putative regulatory DNA 

elements was identified in the promoter region of DGAT1, signifying that DGAT1 has a 

multi-element promoter and consistent with the finding that DGAT1 protein is expressed in 

many different organs of Arabidopsis thaliana (Figure 3-6).   

It was not surprising to see motifs involved in seed-specific expression (-300 

ELEMENT, CANBNAPA, MYB1AT, and MYCCONSENSUSAT), since Arabidopsis is an 

oil- seed plant, where oil consists mostly of triacylglycerol, and DGAT1 is involved in the 

final acylation of triacylglycerol synthesis.  Another well characterized tissue for 
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Table 3-1: Putative cis-acting elements predicted in the DGAT1 promoter region by 

PLACE 



 

- 197 - 

 



 

- 198 - 

triacylglycerol synthesis is pollen (Lu et al., 2003), and a pollen-specific element also 

appears as a putative element in the DGAT1 promoter (POLLEN1LELAT52).  Elements that 

are responsive to water stress, ABA, cold or dehydration (LTRECOREATCOR15, 

MYB1AT, MYB2AT and MYCCONSENSUSAT) could also be part of the seed-specific 

compilation of cis-acting elements.  Another group of putative motifs are those governed by 

circadian rhythms and light (-10PEHVPSED, GT1GMSCAM4, IBOX, and IBOXCORE).  

Since several of these putative motifs are present in the DGAT1 promoter, it appears that 

light may have an influence on the expression of the DGAT1 gene.  Two motifs on the 

DGAT1 promoter are also implicated as appearing in plastid genes (-10PEHVPSED and 

BOXIINTPATPB).  Many plastid proteins are nuclear encoded, and many are regulated by 

light.  Some putative elements in the DGAT1 promoter are involved in stresses other than 

those associated with seed development, including salt stress (GT1GMSCAM4), 

pathogenesis (ASF1MOTIFCAMV, GT1GMSCAM4, and WBOXATNPR1) and salicylic 

acid –induced stress (ASF1MOTIFCAMV, and WBOXATNPR1).   

Most of the putative motifs listed in Table 3-1 are influenced at least in part by 

growth regulators.  Water stress is an inducer of ABA, which can increase tolerance to water 

stress by the induction of ABA responsive genes.  The cognate proteins of many ABA 

responsive genes increase tolerance to water stress by protecting against, or repairing, 

osmotic stress-induced damage.  ABA is also an important growth regulator involved in the 

induction of seed dormancy.  Putative ABA responsive elements (LTRECOREATCOR15, 

MYB1AT, and MYCCONSENSUSAT) are present in the DGAT1 promoter sequence.  

Another growth regulator with a putative response element (ARR1AT) in the DGAT1 

promoter sequence is cytokinin.  Cytokinin is involved in maintaining the integrity of 

chloroplasts, and induces chloroplast-associated gene expression.  The presence of the 

cytokinin response element in the DGAT1 promoter is consistent with the presence of other 

putative cis-acting elements involved in light regulation and plastid expression.  The 

antagonist to the physiological effects of cytokinin is ethylene, another important growth 

regulator.  A putative response element for ethylene, (ERELEE4), is also predicted in the 

DGAT1 promoter sequence.  Ethylene is an inducer of senescence, which is a developmental 
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phase leading to death of tissues.  Leaf senescence is often studied in Arabidopsis thaliana as 

it is a co-ordinated, reproducible event in its lifecycle.  

3.3.4 DGAT1 is expressed at low levels constitutively and is up-regulated at 
the onset of senescence in Arabidopsis thaliana rosettes 

Changes in the levels of DGAT1 transcript and its cognate protein during 

development and senescence of Arabidopsis thaliana rosette leaves were examined by 

Northern- and Western- blot analysis, respectively.  Photographs of Arabidopsis rosettes 

harvested from 2- through 6-week-old plants are illustrated in Figure 1-1.  At 2-weeks of age, 

the rosette leaves are still small and juvenile, but they increase in number and enlarge 

substantially between 2 and 4-weeks of age.  By week 5, leaf senescence has engaged, and at 

week 6 the older leaves are visibly yellow reflecting significant depletion of chlorophyll as 

senescence progresses. 

The DGAT1 EST clone, E6B2T7, was used as a probe for Northern analysis.  The 

sequence corresponding to E6B2T7 is highlighted in Figure 3-1.  DGAT1 transcript was 

detectable in total RNA preparations from all ages of rosette leaves, indicating that there is a 

basal level of constitutive DGAT1 expression at the transcript level (Figure 3-7).  However, 

the abundance of DGAT1 mRNA changed during leaf development.  Specifically, levels 

were lowest for 2-week-old plants, higher for 3- and 4-week-old plants and then increased 

again reaching very high levels in the visibly yellow leaves of the 6-week-old plants (Figure 

3-7).  Similar changes in the abundance of DGAT1 protein in rosette leaves were evident 

(Figure 3-8).  The protein was present in low amounts in the leaves from 2-, 3- and 4-week-

old plants, and then increased sharply through weeks 5 and 6, coincident with the onset of 

senescence. 

3.3.5 Increased abundance of triacylglycerols in senescent (6-week-old) 
rosette leaves relative to pre-senescent (3-week-old) rosette leaves of 
Arabidopsis thaliana 

DGAT1 catalyzes the final acylation, and is thought to be the rate-limiting step, in 

triacylglycerol synthesis (Ichihara et al., 1988).  Accordingly, the finding that DGAT1 
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Figure 3-7: Northern blot of DGAT1 during development and senescence of Arabidopsis 

thaliana rosette leaves 

A. Northern blot of total RNA isolated from rosette leaves of 2- through 6-week-old 

Arabidopsis plants.  The blot was hybridized with the Arabidopsis EST clone E6B2T7.  Each 

lane contained 10μg of RNA. Lanes correspond to age in weeks of the rosette leaves.  The 

apparent size of the detected band is indicated on the right.  B. Ethidium bromide detection of 

fractionated RNA after transfer to a nylon membrane to show equal loading. Lanes are as in 

A. 
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Figure 3-8:  Western blot of DGAT1 during development and senescence of Arabidopsis 

thaliana rosette leaves 

A.  Western blot of DGAT1 in total protein isolated from the rosette leaves of 2- through 6-

week-old Arabidopsis plants.  Each lane contained 10μg of protein.  The blot was probed 

with antibody raised against a synthetic peptide of DGAT1 and visualized by a colorimetric 

reaction.  The apparent molecular mass of the immunodetected polypeptide is indicated in 

kilodaltons. B. SDS-PAGE stained with Coomassie Brilliant Blue.  Molecular mass markers 

are indicated on the left.  Lanes correspond to the age in weeks of the rosette leaves. 
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transcript and cognate protein increase in parallel in senescing rosette leaves of Arabidopsis 

raised the possibility that there would be a parallel increase in triacylglycerol.  To test this, 

the lipid content and composition of rosette leaves that were pre-senescent (3-weeks-old) 

were compared to the lipid content and composition of senescent (6-week-old) rosette leaves. 

Five distinct classes of lipid, viz., polar lipid, diacylglycerols, free fatty acids, 

triacylglycerols and a mixture of steryl and wax esters were discernible in thin layer 

chromatograms of total homogenate lipid and microsomal membrane lipid isolated from the 

rosette leaves of 3- and 6-week-old plants (Figure 3-9).  Lipid extracts from homogenates 

contain total leaf lipid, and those from microsomal membranes contain lipid associated with 

organellar membranes, for example endoplasmic reticulum and chloroplast membranes, that 

form microsomes during homogenization (Cao and Huang, 1986; Stobart et al., 1986).  The 

rosette leaves of 3-week-old plants are still growing and maturing and have not yet initiated 

senescence, whereas the rosette leaves of 6-week-old plants are visibly chlorotic and have 

initiated senescence.  Likewise, the levels of DGAT1 transcript and protein are low in pre-

senescent (3-week-old) rosette leaves, and greatly induced in the senescent (6-week-old) 

rosette leaves.   

Several pigments co-resolved with the polar lipid, diacylglycerols, and steryl and 

wax esters in the homogenate and microsomal membrane fractions of the pre-senescent (3-

week-old) rosette leaves (Figure 3-9A).  These pigments were present to a much lesser extent 

in lipids extracted from the senescent (6-week-old) rosette leaves (Figure 3-9B) than the 

lipids extracted from the pre-senescent (3-week-old) rosette leaves (Figure 3-9A).  It should 

be noted that the lanes on the thin layer chromatograms were not loaded with equal amounts 

of lipid. Fractionated lipids were scraped from the plates under a stream of nitrogen with a 

clean razor for each of the lipid classes.  The lipids were re-extracted from the silica scraped 

from the plates and transmethylated to release fatty acid methyl esters in preparation for 

GCMS injection.  A total lipid aliquot removed from each sample prior to TLC separation 

was also transmethylated in preparation for GCMS injection.  These comprised the total lipid 

samples for the homogenate and microsomal membranes from pre-senescent (3-week-old) 

and senescent (6-week-old) rosette leaves. 
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Figure 3-9: Thin Layer Chromatograms (TLC) showing resolved lipid classes for pre-

senescent (3-week-old) and senescent (6-week-old) rosette leaves, stained with iodine 

vapour 

Representative TLC plates for lipids extracted from A.  Pre-senescent (3-week-old) rosette 

leaves; and B. Senescent (6-week-old) rosette leaves.  The lipids were resolved using a non-

polar solvent mixture and identified using a standard (S) mixture of known lipid classes.  For 

each age of tissue, total lipids extracted from homogenate (H) and microsomal membranes 

(M) were chromatographed.  The TLC plates were stained with iodine vapour until 

yellowish-brown bands were apparent.  Five distinct lipid classes were observed in each lane: 

PL=polar lipids, DAG=diacylglycerols, FFA=free fatty acids, TAG=triacylglycerols, 

SWE=steryl and wax esters.  The lanes were not equally loaded. The black lines separating 

the lipid classes delineate the regions scraped for the collection of each lipid class within 

each sample lane. 
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The levels of the different types of lipid were quantified in terms of their fatty acid 

equivalents and proved to be quite different for homogenate and microsomal membranes 

isolated from pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves (Figure 

3-10 and Figure 3-11).  For the homogenate and microsomal membrane fractions of pre-

senescent (3-week-old) rosette leaves, polar lipids comprised 84.76 ± 1.34% and 77.82 ± 

2.50% of the total lipid respectively (Figure 3-10 and Figure 3-11).  By comparison, for the 

homogenate and microsomal membranes of senescent (6-week-old) rosette leaves, polar 

lipids represented only 53.03 ± 5.45% (p=0.020) and 52.10 ± 2.54% (p=0.001), respectively, 

of the total lipid (Figure 3-10 and Figure 3-11). 

This reduction in polar lipids was largely accounted for by a corresponding increase 

in triacylglycerol and steryl and wax esters (Figure 3-10 and Figure 3-11).  For example, 

levels of triacylglycerol in the homogenate increased from 2.02 ± 0.12% of the total lipid for 

pre-senescent (3-week-old) leaves to 12.33 ± 2.20% (p=0.039) for senescent (6-week-old) 

leaves (Figure 3-10 and Figure 3-11).  In absolute terms, levels of triacylglycerol in the 

homogenate increased from 0.34 ± 0.01μg/g fresh weight for pre-senescent (3-week-old) 

leaves to 4.48 ± 0.38 μg/g fresh weight for senescent (6-week-old) leaves, which is a 13-fold 

increase in triacylglycerol (p=0.008).  Similarly, steryl and wax esters which comprise a mere 

1.22 ± 0.14% of the total lipid pool for homogenates of pre-senescent (3-week-old) rosette 

leaves increased to 16.40 ± 3.59% (p=0.049) of the total lipid pool in senescent (6-week-old) 

leaves (Figure 3-10 and Figure 3-11).  In absolute terms, steryl and wax esters increased from 

0.21 ± 0.03 μg/g fresh weight in the pre-senescent (3-week-old) leaves to 6.70 ± 2.55 μg/g 

fresh weights for senescent (6-week-old) leaves.  Although this difference is large and clearly 

represents a trend, it is not significant at the 95% level according to the student’s t-test, which 

generated a p-value of 0.124.  The enhancement in triacylglycerols and steryl and wax esters 

was also evident in the microsomal membranes where they increased by 4.2- and 5.3-fold 

respectively, between the pre-senescent (3-week-old) and senescent (6-week-old) leaves 

(Figure 3-10 and Figure 3-11).  There was also a significant 2.2-fold increase in free fatty 

acids in the microsomal membranes of senescent (6-week-old) rosettes compared to the 

microsomal membranes of pre-senescent (3-week-old) rosettes (p=0.004) (Figure 3-10).  
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Figure 3-10: Relative levels of lipid classes expressed as a percentage of the total lipid 

pool 

Relative levels of lipid classes in homogenate and microsomal membranes were quantified in 

terms of their fatty acid equivalents for pre-senescent (3-weeks-old) and senescent (6-week-

old) rosette leaves.  There were significant changes in the relative levels of polar lipids (PL), 

triacylglycerol (TAG) and steryl and wax esters (SWE) between pre-senescent (3-week-old) 

and senescent (6-week-old) rosette leaves for homogenate and microsomal membranes. 

DAG= diacylglycerols, FFA=free fatty acids. 
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Figure 3-11: Relative levels of lipid classes expressed as a percentage of the total lipid 

pool for homogenate and microsomal membranes 

Relative levels of lipids were quantified in terms of their fatty acid equivalents.  The top 

panel illustrates the decline in polar lipids (PL) in senescent (6-week-old) rosette leaves (■■))  

compared to the pre-senescent (3-week-old) rosette leaves (■).  The middle and bottom 

panels show the increase in triacylglycerols (TAG) and steryl and wax esters (SWE), 

respectively, in senescent (6-week-old) rosette leaves (■■))  compared to the pre-senescent (3-

week-old) rosette leaves (■). 



 

- 211 - 

 

 

 

PL

TAG

SWE

100
90
80
70
60
50
40
30
20
10

0

100
90
80
70
60
50
40
30
20
10

0

16
14
12

.

10
8
6
4
2
0

25

20

15

10

5

0

25

20

15

10

5

0

Homogenate Membrane

%
 o

f T
ot

al
 L

ip
id



 

- 212 - 

However, there was no significant change in the contribution that diacylglycerols made to the 

total leaf lipid pool between 3- and 6-weeks of age (homogenate p=0.190, microsomal 

membrane p=0.313). 

3.3.6 Fatty acid composition of homogenates and microsomal membranes 
isolated from pre-senescent (3-week-old) and senescent (6-week-old) rosette 
leaves 

The fatty acid compositions of homogenates and microsomal membranes isolated 

from pre-senescent (3-week-old) and senescent (6-week-old) leaves were analyzed by 

GCMS.  Levels of individual fatty acids were expressed as a percentage of the total fatty acid 

content.  The fatty acid profiles of the pre-senescent (3-week-old) and senescent (6-week-

old) rosette homogenates showed only a few differences in composition (Figure 3-12, top 

panel).  The predominant fatty acids in homogenate total lipid extracts for both the pre-

senescent (3-week-old) and senescent (6-week-old) rosette leaves were hexadecanoic acid 

(16:0), linoleic acid (18:2) and linolenic acid (18:3).  Those that differed significantly 

between homogenates of pre-senescent (3-week-old) and senescent (6-week-old) rosette 

leaves were myristic acid (14:0; p=0.050), oleic acid (18:1; p=0.011), linoleic acid (18:2; 

p=0.002), tetracosanoic acid (24:0; p=0.016) and hexacosanoic acid (26:0; p=0.008).  The 

fatty acid profiles of total lipid from isolated microsomal membranes of pre-senescent (3-

week-old) and senescent (6-week-old) rosette leaves also featured only small differences 

(Figure 3-12, lower panel).  Again the predominant fatty acids for both the pre-senescent (3-

week-old) and senescent (6-week-old) rosette leaves were hexadecanoic acid (16:0), linoleic 

acid (18:2) and linolenic acid (18:3).  The microsomal membrane fatty acids that differed 

significantly between pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

were lauric acid (12:0; p=0.003), myristic acid (14:0; p=0.011), hexadecenoic acid (16:1; 

p=0.009), linoleic acid (18:2; p=0.009), tricosanoic acid (23:0; p=0.006), tetracosanoic acid 

(24:0; p=0.026) and octacosanoic acid (28:0; p=0.029).  

In homogenates of pre-senescent (3-week-old) rosette leaves, the major 

triacylglycerol fatty acids proved to be hexadecanoic acid (16:0), stearic acid (18:0), and 

erucic acid (22:1; Figure 3-13 bottom panel).  By contrast, in the homogenate of senescing 
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Figure 3-12: Fatty acid profiles of total lipid extracts from homogenates and 

microsomal membranes isolated from pre-senescent (3-week-old) and senescent (6-

week-old) rosette leaves 

Levels of individual fatty acids are expressed as a percentage of the total fatty acids.  Total 

lipids were extracted from homogenates (top panel) and microsomal membranes (lower 

panel) isolated from pre-senescent (3-week-old) rosette leaves (■) and senescent (6-week-

old) rosette leaves (■■)).12:0=lauric acid, 14:0= myristic acid, 15:0= pentadecanoic acid, 16:0= 

hexadecanoic acid, 16:1= hexadecenoic acid, 16:3= hexadecatrienoic acid, 18:0= stearic acid, 

18:1= oleic acid, 18:2= linoleic acid, 18:3= linolenic acid, 22:0= docosanoic acid, 22:1= 

docosenoic acid, 23:0= tricosanoic acid, 24:0= tetracosanoic acid, 25:0= pentacosanoic acid, 

26:0= hexacosanoic acid, 28:0= octacosanoic acid. 
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(6-week-old) rosette leaves, the dominant triacylglycerol fatty acids included hexadecanoic 

acid (16:0), as for young leaves, as well as hexadecatrienoic acid (16:3), linoleic acid (18:2) 

and linolenic acid (18:3) ( Figure 3-13, bottom panel).  Linolenic acid (18:3) and 

hexadecatrienoic acid (16:3), which are normally associated with the galactolipids of 

chloroplast membranes (Awai et al., 2001), collectively accounted for 45.03% ± 2.07% of 

the total triacylglycerol fatty acid complement in homogenates of 6-week-old senescing 

leaves, and were not detectable in the triacylglycerol fraction of homogenates for pre-

senescent 3-week-old leaves (Figure 3-15 top panel).  Thus, the triacylglycerol in the older 

leaves would appear to be formed at least in part from fatty acids originating from 

chloroplast membranes.  Further to this, levels of linolenic acid (18:3) and hexadecatrienoic 

acid (16:3) in other lipid classes were also significantly increased between homogenates of 

senescent (6-week-old) rosette leaves and pre-senescent (3-week-old) rosette leaves. For 

example, for the free fatty acid and steryl and wax ester fractions they comprised 

12.89%±1.17 and 51.25% ± 0.004, respectively, of the total fatty acid complement for 6-

week-old senescing leaves and were not detectable in these fractions from 3-week-old pre-

senescent leaves (Figure 3-15, top panel). 

In the microsomal membranes of pre-senescent (3-week-old) leaves, the major 

triacylglycerol fatty acids included palmitic acid (16:0), stearic acid (18:0), erucic acid (22:1) 

as well as oleic acid (18:1) (Figure 3-14, bottom panel).  However, the microsomal 

membrane triacylglycerol fraction from senescent 6-week-old leaves contained not only oleic 

acid (18:1), but also hexadecanoic acid (16:0), hexadecatrienoic acid (16:3), linoleic acid 

(18:2) and linolenic acid (18:3) as the major fatty acid constituents (Figure 3-14, bottom 

panel).  Moreover, as was seen for the homogenates hexadecatrienoic acid (16:3) and 

linolenic acid (18:3) were not detectable in the triacylglycerol fraction of pre-senescent (3-

week-old) rosette leaves, but comprised 34.61% ± 1.62% of the total microsomal membrane 

triacylglycerol fatty acid complement in the senescent (6-week-old) rosette leaves (Figure 3-

15, middle panel). 

Unlike triacylglycerol, the fatty acid composition for the polar lipids remained 

relatively unchanged as senescence was engaged in the rosette leaves (Figure 3-13, top  



 

- 216 - 

 

 

 

 

 

 

 

 

Figure 3-13: Fatty acid composition of polar lipids and triacylglycerols in the 

homogenate of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves  

Levels of individual fatty acids in polar lipids (PL; upper panel) and triacylglycerol (TAG; 

lower panel) are expressed as a percentage of the total corresponding fatty acid pool. Pre-

senescent 3-week-old rosette leaves (■), senescent 6-week-old rosette leaves (■■))..  12:0=lauric 

acid, 14:0= myristic acid, 15:0= pentadecanoic acid, 16:0= hexadecanoic acid, 16:1= 

hexadecenoic acid, 16:2= hexadecadienoic acid, 16:3= hexadecatrienoic acid, 18:0= stearic 

acid, 18:1= oleic acid, 18:2= linoleic acid, 18:3= linolenic acid, 22:0= docosanoic acid, 22:1= 

erucic/ docosenoic acid, 23:0= tricosanoic acid, 24:0= tetracosanoic acid, 24:1= tetracosenoic 

acid, 25:0= pentacosanoic acid, 26:0= hexacosanoic acid. 
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Figure 3-14: Fatty acid composition of polar lipids and triacylglycerols in microsomal 

membranes of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

Levels of individual fatty acids in polar lipids (PL; upper panel) and triacylglycerol (TAG; 

lower panel) are expressed as a percentage of the total corresponding fatty acid pool.  Pre-

senescent 3-week-old rosette leaves (■), senescent 6-week-old rosette leaves (■■))..  12:0=lauric 

acid, 14:0= myristic acid, 15:0= pentadecanoic acid, 16:0= hexadecanoic acid, 16:1= 

hexadecenoic acid, 16:2= hexadecadienoic acid, 16:3= hexadecatrienoic acid, 18:0= stearic 

acid, 18:1= oleic acid, 18:2= linoleic acid, 18:3= linolenic acid, 22:0= docosanoic acid, 22:1= 

erucic/ docosenoic acid, 23:0= tricosanoic acid, 24:0= tetracosanoic acid, 24:1= tetracosenoic 

acid, 25:0= pentacosanoic acid, 26:0= hexacosanoic acid. 
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panel).  The major fatty acids associated with the polar lipids of the homogenate proved to be 

hexadecanoic acid (16:0) and two polyunsaturated fatty acids, linoleic acid (18:2) and 

linolenic acid (18:3).  These collectively accounted for 82.22% ± 0.59% of the total polar 

lipid fatty acid complement in the homogenates of pre-senescent (3-week-old) rosette leaves 

and 81.59% ± 5.80% of the total polar lipid fatty acid complement in senescent (6-week-old) 

rosette leaves.  The predominant fatty acids in the microsomal membrane polar lipids were 

again hexadecanoic acid (16:0), linoleic acid (18:2) and linolenic acid (18:3; Figure 3-14, top 

panel).  Interestingly, however, there was a significant reduction in hexadecatrienoic acid 

(16:3) in the polar lipids of microsomal membranes from senescent (6-week-old) rosette 

leaves in comparison with pre-senescent (3-week-old) rosette leaves (p=0.014).  This may at 

least in part account for the appearance of hexadecatrienoic acid (16:3) in the triacylglycerol 

fraction of microsomal membranes isolated from senescent (6-week-old) rosette leaves 

(Figure 3-14, bottom panel).  For young and senescing leaves, linolenic acid (18:3) was the 

dominant fatty acid in the polar lipid fraction (Figure 3-14, top panel).  Inasmuch as linolenic 

acid (18:3) is the major fatty acid of galactolipids, this indicates, as expected, that 

galactolipids are a substantial component of the polar lipid isolate.  The presence of 

hexadecatrienoic acid (16:3) in the polar lipid fraction also signifies the presence of 

galactolipids, for this fatty acid is uniquely chloroplastic in 16:3 plants such as Arabidopsis 

thaliana (Awai et al., 2001).  However, it is the appearance of hexadecatrienoic acid (16:3) 

in the free fatty acid, diacylglycerol, triacylglycerol and steryl and wax ester lipid classes that 

is particularly interesting (Figure 3-15). 

In the homogenates for pre-senescent (3-week-old) rosette leaves, hexadecatrienoic 

acid (16:3) was only found in the polar lipid fraction (Table 3-2).  The same proved to be true 

for the microsomal membrane fraction from pre-senescent (3-week-old) rosettes with the 

exception of a very small amount of hexadecatrienoic acid (16:3) in the free fatty acid 

fraction accounting for only 0.92% ± 0.47% of the total fatty acid pool (Table 3-2).  

However, there is a significant increase in hexadecatrienoic acid (16:3), particularly in 

triacylglycerol and steryl and wax esters of both homogenate and microsomal membrane 

fractions and in the free fatty acid complement of homogenate, for senescent (6-week-old)  
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Figure 3-15: Levels of the chloroplastic fatty acids, hexadecatrienoic acid (16:3) and 

linolenic acid (18:3), in different lipid classes extracted from homogenates and 

microsomal membranes isolated from pre-senescent (3-week-old) rosette leaves and 

senescent (6-week-old) rosette leaves 

The sums of the chloroplastic fatty acids, hexadecatrienoic acid (16:3) and linolenic acid 

(18:3), are expressed as a percentage of the total fatty acid pool for each of the lipid classes 

extracted from homogenates (top panel) and microsomal membranes (lower panel) isolated 

from pre-senescent (3-week-old) rosette leaves (■) and senescent (6-week-old) rosette leaves 

(■■)). PL=polar lipid, DAG=diacylglycerols, FFA=free fatty acids, TAG=triacylglycerols, 

SWE=steryl and wax esters. 
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Table 3-2: Hexadecatrienoic acid (16:3) in isolated lipid classes expressed as a 

percentage of the total fatty acid complement for homogenate and microsomal 

membranes of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

Homogenate Microsomal Membrane 
3wk 6wk 3wk 6wk 

Polar lipid 4.51±0.12 6.16±2.53 6.32±0.28 3.24±0.53* 

Diacylglycerol 0.00±0.00 2.96±0.55* 0.00±0.00 2.22±0.97 

Free fatty acids 0.00±0.00 3.14±0.40* 0.92±0.47 6.75±1.32 

Triacylglycerol 0.00±0.00 9.39±0.70* 0.00±0.00 8.30±1.40* 

Steryl and Wax esters 0.00±0.00 26.38±0.01* 0.00±0.00 12.61±0.95* 

 

* Indicates values that are significantly different between pre-senescent (3-week-old) and 

senescent (6-week-old) samples. p<0.05; n=3. 
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leaves (Table 3-2).  It can be assumed that the hexadecatrienoic acid in these fractions of 

senescent (6-week-old) leaves originated from chloroplast polar lipids. 

3.3.7 Chloroplast origin of triacylglycerol in senescent rosettes 

The finding that triacylglycerol from senescing rosette leaves of 6-week-old plants 

contains high levels of fatty acids derived from chloroplastic membranes suggests that the 

newly synthesized triacylglycerol is formed within chloroplasts.  This contention is 

additionally supported by electron microscopic observations indicating greatly increased 

abundance and size of plastoglobuli in the chloroplasts of senescent (6-week-old) rosette 

leaves in comparison with those of pre-senescent (3-week-old) rosette leaves (Figure 3-16).  

Plastoglobuli are known to contain triacylglycerol and are thought to be formed coincident 

with the dismantling of thylakoid membranes in senescing chloroplasts (Matile, 1992).  That 

DGAT1, the protein mediating the terminal step in triacylglycerol synthesis, is associated 

with chloroplasts was confirmed by Western-blot analysis (Figure 3-17).  Chloroplasts were 

isolated from 4.5-week-old rosette Arabidopsis leaves and subfractionated into membranes, a 

composite of thylakoid and envelope membranes, and stroma.  Immunoblots of chloroplasts 

and their purified subfractions probed with the DGAT1 peptide antibody revealed that the 

protein is present in intact chloroplasts, and enriched in the purified chloroplast membrane 

fraction, but is not detectable in stroma (Figure 3-17). 

The purity of the isolated chloroplasts was confirmed by Western-blot analysis 

(Figure 3-18) using antiserum for formate dehydrogenase, a marker for mitochondria (Frans-

Small et al., 1993), cytochrome P450-cinnamate-4-hydroxylase, a marker for endoplasmic 

reticulum (Young and Beevers, 1976),and cytochrome f, a marker for thylakoids (Smith et 

al., 2000).  Formate dehydrogenase, cytochrome P450-cinnamate-4-hydroxylase and 

cytochrome f were all detectable in immunoblots of microsomal membranes.  The presence 

of cytochrome P450-cinnamate-4-hydroxylase and cytochrome f in microsomes is in keeping 

with the fact that this fraction comprises small vesicles formed during tissue homogenization 

from all cellular membranes, including endoplasmic reticulum and thylakoids.  Formate 

dehydrogenase is a mitochondrial matrix enzyme which would be released into the cytosol 

during homogenization (Frans-Small et al., 1993), and its presence in the microsomal 
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Figure 3-16: Electron micrographs of chloroplasts in the mesophyll of a typical pre-

senescent (3-week-old) and senescent (6-week-old) rosette leaf 

A.  A young (3-week-old) rosette leaf chloroplast.  B.  A senescing (6-week-old) rosette leaf 

chloroplast.  S=starch granule; W=cell wall; P=plastoglobuli.  Bar=1μm. 
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Figure 3-17: Western blot analysis of DGAT1 localization in intact chloroplasts and 

chloroplastic fractions isolated from 4.5-week-old rosette leaves 

A. Western blot probed with antibody raised against a peptide of DGAT1.  I=Intact 

chloroplasts; M=Chloroplastic membranes; S=Stroma.  The apparent molecular mass of the 

immunodetected polypeptide is indicated in kilodaltons.  B. Corresponding SDS-PAGE.  

Each lane contained 5μg of protein, and the gel was stained with Coomassie Brilliant Blue.  

The molecular masses of the marker are indicated on the left.  Only the large 55kDa subunit 

of Rubisco is evident in Figure 2-17 inasmuch as the small 14kD subunit ran off the end of 

the gel under the conditions of electrophoresis deployed. 
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Figure 3-18: Western blot analysis of purified chloroplasts and microsomal membranes 

isolated from the rosette leaves of 4.5-week-old Arabidopsis thaliana plants. 

Each lane was loaded with 5μg of protein.  MM=microsomal membranes; IC=intact 

chloroplasts.  The blots were probed with polyclonal antibodies against cytochrome P450-

cinnamate-4-hydroxylase (C4H, top panel), formate dehydrogenase (FDH, middle panel), 

and cytochrome f (Cyt f, bottom panel). 
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fraction reflects the fact that cytosol is occluded within microsomal vesicles as they are 

formed.  Because formate dehydrogenase is a mitochondrial matrix enzyme and would not 

reveal the presence of mitochondrial membrane vesicles in the intact chloroplast fraction, 

levels of cytochrome c oxidase activity, a marker enzyme for mitochondrial inner membrane 

(Hodges and Leonard, 1974), were measured in the microsomal membranes and intact 

chloroplasts.  The specific activity of cytochrome c oxidase in the intact chloroplast fraction 

was only 1/25 of that for microsomal membranes, indicating that the purified chloroplast 

fraction is also essentially free of mitochondrial membrane.  That the cytochrome c oxidase 

activity was low in the purified chloroplasts, and there was no detectable cytochrome P450-

cinnamate-4-hydroxylase or formate dehydrogenase in Western blots of the purified 

chloroplasts, indicates that this fraction is essentially free of intact mitochondria and 

endoplasmic reticulum.  Only cytochrome f was detectable in intact chloroplasts (Figure 3-

18).  A further indication of the purity of the intact chloroplast fraction is the fact that 

cytochrome f, a marker for thylakoid membranes, is highly enriched in intact chloroplasts 

relative to microsomal membranes in immunoblots of the two fractions loaded with constant 

protein (Figure 3-18).  A similar enrichment in DGAT1 expression was seen in chloroplast 

membranes relative to intact chloroplasts (Figure 3-17). 

3.3.8 DGAT1 is targeted to the chloroplast in leaves and to the endoplasmic 
reticulum in developing siliques 

The enzymatic activity of DGAT1 is known to be associated with endoplasmic 

reticulum in oilseeds and to be a rate-limiting step in seed-filling of oil seeds  including 

Arabidopsis thaliana (Cases et al., 1998).  The findings that the DGAT1 protein is present in 

chloroplastic fractions of rosette leaves and that triacylglycerol accumulated during 

senescence also contains chloroplastic fatty acids, raises the questions of how DGAT1 

protein is targeted and what kinds of post-translational modifications it undergoes.  To assess 

this,   several protein-targeting programs and pattern-identifying programs identified in the 

Materials and Methods section were employed.  Scan Prosite is a database of protein families 

and domains.  It portrays biologically significant sites, patterns and profiles that enable 

association of a given protein sequence with known protein families.  Prosite identified 
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several putative phosphorylation sites, N-myristoylation sites as well as a leucine zipper 

domain in Arabidopsis DGAT1.  Relevant to this is the finding that DGAT1 in the adipose 

tissue of rat has been shown to be inactivated through phosphorylation mediated by a protein 

tyrosine kinase (Lau and Rodriguez, 1996).  Prosite only predicted one such site on 

Arabidopsis thaliana DGAT1; however it also predicted another 5 protein kinase C 

phosphorylation sites and 7 casein kinase II phosphorylation sites.  It is likely, therefore, that 

the activity or the dimerization of DGAT1 is regulated by phosphorylation.   

DGAT1 from Arabidopsis thaliana was identified as a member of the MBOAT 

family by BLASTp (see section 3.3.1).  Many membrane-associated proteins are N-

myristoylated, especially those that exhibit protein-protein interaction regulated by protein 

phosphorylation, calmodulin binding and membrane phospholipids (Taniguchi, 1999).  

Prosite predicted 10 putative N-myristoylation sites for Arabidopsis DGAT1, though only 

some of these are plausible as several lack an N-terminal glycine achieved through cleavage 

of the protein.  The most plausible site predicted is at Gly83, where the N-myristoylation 

predicted site is GGgdNN.  If DGAT1 were cleaved at this site and myristoylated, the 

resulting molecular weight would be approximately 51kDa, the size that was observed in 

certain samples by the author in this thesis (see Figure 3-19) as well as others (Hobbs et al., 

1999; Bouvier-Nave et al., 2000; Hobbs and Hills, 2000; Lu et al., 2003).   

Lastly, the leucine zipper domains that were predicted for Arabidopsis DGAT1 by 

Prosite are within the N-terminus, specifically within the transmembrane spanning domains 3 

and 4 (Figure 3-5).  Leucine zippers are involved in dimerization of proteins, which seems 

also to be suggested by the putative post-translational modifications of DGAT1 predicted by 

Prosite.  It has been demonstrated that the N-terminus of DGAT1 is involved in the formation 

of tetramers of  the human homologue (Cheng et al., 2001), though the mechanism is 

unknown.  It is likely that dimerization or tetramerization of DGAT1 is facilitated by several 

post-translational modifications. 

Inasmuch as DGAT1 appears to be targeted to the chloroplasts of leaves and is 

known to be targeted to the endoplasmic reticulum in seeds, several online programs were 

employed to identify putative targeting sequences within the DGAT1 amino acid sequence.  
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pSORT is a targeting prediction program that has specific plant-protein targeting sequence 

coded into its pattern recognition database.  There was no predicted N-terminal signal 

sequence for organellar targeting in Arabidopsis DGAT1 protein, but pSORT did predict 8 

transmembrane helices (see section 3.3.2).  Although there were no predicted N-terminal 

signal sequences in DGAT1, the second amino acid is alanine, which is a requirement for 

chloroplast-targeted proteins.  TargetP, ChloroP and Predatar also predicted no targeting 

sequences within the DGAT1 protein. However, these programs only use approximately the 

first 130 amino acids in a sequence, and it has been established that not all targeting 

sequences are terminal or for that matter cleaved (Woolhead et al., 2000).  Also, not only did 

these programs not recognize a chloroplast targeting sequence in Arabidopsis DGAT1, they 

did not recognize an endoplasmic reticulum targeting sequence either though it is well 

established that DGAT1 is associated with the endoplasmic reticulum of developing seeds 

(Kamisaka and Nakahara, 1996; Cases et al., 1998; Bao and Ohlrogge, 1999; Zou et al., 

1999). 

To ensure that the antibodies used to identify chloroplast DGAT1 were detecting 

the same DGAT1 that is associated with the endoplasmic reticulum of developing seeds, 

Western blots were performed on microsomal membranes isolated from developing siliques 

(Figure 3-19).  The microsomal membranes were fractionated by centrifugation through a 

linear sucrose gradient.  Each fraction collected was fractionated by SDS-PAGE and probed 

with a cytochrome P450-cinnamate-4-hydroxylase antibody as a marker for endoplasmic 

reticulum, and with DGAT1 antibody.  Western-blot analysis of sequentially removed 

fractions revealed a parallel distribution of cytochrome P450-cinnamate-4-hydroxylase and 

DGAT1 along the sucrose gradient fractions (Figure 3-19).  In these experiments, both the 

native DGAT1 protein at 51kDa and a 29kDa proteolytic catabolite of the native protein were 

detectable.  When microsomal membranes from rosette leaves of 4.5-week-old plants were 

similarly fractionated and analyzed by Western blotting (Figure 3-20), DGAT1 was not 

detectable in gradient fractions containing cytochrome P450-cinnamate-4-hydroxylase, but 

rather the fractions that contained cytochrome f, a marker for thylakoid membranes.  This 

parallel distribution of DGAT1 and a chloroplastic marker in leaves further substantiates the 

contention that, in leaves, DGAT1 is associated with chloroplast membranes and is consistent  
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Figure 3-19: Sucrose gradient fractionation of microsomal membranes isolated from 

developing siliques 

A. Sucrose concentration in consecutive fractions of the gradient after centrifugation. B. 

Western blot analysis of fractionated microsomes isolated from developing siliques of 

Arabidopsis plants.  The fractions were probed for cytochrome P450-cinnamate-4-hydroxylase 

(C4H) and DGAT1.  The lanes were loaded with equal volumes of the fractions from the 

sucrose gradient.  Lanes 3 through 12 and lanes 13 through 24 were separate gels run 

concurrently on the same electrophoresis apparatus.  Apparent molecular masses of the 

immunodetected polypeptides are indicated in kilodaltons. 
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Figure 3-20: Sucrose gradient fractionation of microsomal membranes isolated from 

4.5-week old leaves  

A. Sucrose concentration in consecutive fractions of the gradient after centrifugation. B. 

Western blot analysis of fractionated microsomes isolated from 4.5-week-old Arabidopsis 

rosette leaves.  The fractions were probed for cytochrome P450-cinnamate-4-hydroxylase 

(C4H), DGAT1 and cytochrome f (cyt f).  The lanes were loaded with equal volumes of the 

fractions from the sucrose gradient.  Lanes 1 through 10 and lanes 11 through 20 were 

separate gels run concurrently on the same electrophoresis apparatus.  Apparent molecular 

masses of the immunodetected polypeptides are indicated in kilodaltons. 
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with the finding that triacylglycerol accumulated in senescing leaves contains chloroplast- 

specific fatty acids. 

To further verify these findings, confocal microscopy was performed on developing 

embryos dissected from immature siliques and senescing leaf tissue from 5-week-old leaves 

(Figures 3-21A and Figure 3-21B, respectively).  The confocal data confirmed the presence 

of DGAT1 on the endoplasmic reticulum of cells within a developing embryo.  The label 

appeared to be associated with wispy membranes around the central vacuole of the cells 

(Figure 3-21A left image).  The embryos also exhibited autofluorescence of chlorophyll, 

which is a component of the thylakoid membranes (central image Figure 3-21A).  It is 

accepted that some photosynthesis occurs during embryogenesis, which is thought to be 

essential during seed filling to produce the required reducing energy for oil synthesis (Hills, 

2004).  DGAT1 label was also seen to a lesser degree in these small chloroplasts of the 

developing embryos (Figure 3-21A right image).   

In senescing leaves, DGAT1 proved to be associated with the membranes, including 

the envelope and the thylakoids, of the chloroplast (Figure 3-21B).  Though previous studies 

have demonstrated DGAT activity to be associated with the outer envelope membrane of 

spinach chloroplasts (Martin and Wilson, 1983, 1984), these assays were performed on 

disrupted young chloroplasts and in a different species.  The DGAT1 label exhibited on the 

thylakoids of Arabidopsis is quite strong (Figure 3-21B), and overlaps almost exactly with 

the chlorophyll autofluorescence (Figure 3-21B center and right images).DGAT1 label also 

appears to label the envelope membranes, which do not autofluoresce, as shown by a green 

halo around the autofluorescing thylakoids in the merged image (Figure 3-21B right image).  

3.3.9 The expression of DGAT1 is coincident with the expression of a 
chloroplastic triacylglycerol lipase  

It has been demonstrated that DGAT1 is up-regulated at the transcript and protein 

levels during senescence and is associated with the chloroplasts of rosette leaves.  The 

triacylglycerol population that accumulates within senescing leaves includes fatty acids that 

are typically chloroplastic and are likely catabolites released during degradation of thylakoid 
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Figure 3-21: Confocal microscopy of DGAT1 expression in developing embryos and 

senescing leaves and of triacylglycerol lipase expression in senescing leaves 

A. DGAT1 labelled with FITC is expressed on the ER of developing embryos. B. DGAT1 

labelled with FITC labels the membranes of chloroplasts in senescing rosette leaf tissue. C. 

Chloroplastic triacylglycerol lipase labelled with FITC colocalizes with the plastoglobuli 

within the chloroplasts. All size bars=5μm.  All images are 3D renderings of 5 serial optical 

sections and pseudocoloured. The cells and chloroplasts that are shown in Figure 3-21A are 

much smaller than the cells and chloroplasts of the mesophyll of a mature leaf shown in 

Figure 3-21B.  This is typical of cells that have not yet expanded or become involved in 

“professional” photosynthesis. 
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membranes.  If the plastoglobuli do in fact contain the triacylglycerol that is accumulated 

during senescence through the catabolism of the photosynthetic membranes, there must be a 

remobilization of the carbon stored in the triacylglycerol to translocate these nutrients to the 

developing seeds (Himelblau and Amasino, 2001).  For this, a triacylglycerol lipase that is 

up-regulated during senescence would be necessary.  In fact such a lipase has been identified 

and characterized in our laboratory (Padham, 2002).  This triacylglycerol lipase is up-

regulated during leaf senescence, is enriched in chloroplastic fractions, specifically in the 

stromal fraction, and is essential for plant survival.  In the present study, the expression of 

this triacylglycerol lipase was visualized using confocal microscopy and was seen to be 

associated with the plastoglobuli within the stroma of chloroplasts (Figure 3-21C).  That 

triacylglycerol lipase and DGAT1 are both localized in chloroplasts (Figure 3-21B and 

Figure 3-21C), indicates these two enzymes may act in concert to mobilize the lipids of 

senescing thylakoid membranes. 
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3.4 Discussion 

Senescence is a highly controlled sequence of events induced by changes in gene 

expression that ultimately leads to the death of cells, tissues or organs (Thompson et al., 

1998).  It occurs naturally at the end of the life span of an organ or, in the case of monocarpic 

senescence, the whole plant (Pic et al., 2002).  Senescence can be induced prematurely by a 

variety of environmental stresses, such as drought and pathogenesis (Woo et al., 2001).  

Though senescence has been described as a type of programmed cell death, it is unique in 

that there is an intricately regulated recruitment of nutrients from the senescing parts of the 

plant and their translocation to other tissues that are still developing and growing.  Leaf 

senescence is the most studied form of senescence and, especially at the molecular level, has 

been extensively examined in Arabidopsis thaliana.  One of the earliest manifestations of 

leaf senescence is depletion of chlorophyll reflecting the functional decline and dismantling 

of thylakoid membranes.  Loss of chlorophyll during foliar senescence is coupled to nutrient 

mobilization and resorption from leaf cells (Ougham et al., 2005).  It has been demonstrated 

that leaf senescence in Arabidopsis engenders extensive translocation of nutrients from the 

senescing leaves to the developing seeds (Himelblau and Amasino, 2001).  However, how 

the senescing leaf remains functional during this massive mobilization remains to be 

determined. 

In the present study, it was established that there is a temporal correlation between 

the increase in abundance and size of plastoglobuli and an increase in triacylglycerol 

synthesis in senescing rosette leaves of Arabidopsis.  Specifically, triacylglycerols were 13-

fold more abundant in the homogenates of senescent (6-week-old) rosette leaves than in pre-

senescent (3-week-old) rosette leaves.  Concurrently, the plastoglobuli were highly abundant 

in the electron micrographs of chloroplasts in senescent (6-week-old) leaves and sparsely 

present in those of the younger pre-senescent (3-week-old) leaves.  This temporal 

relationship and the knowledge that triacylglycerol is a major component of plastoglobuli 

(Steinmuller and Tevini, 1985) suggest that the incremental triacylglycerol in senescing 

leaves is predominately in plastoglobuli.  Indeed, microsomal membrane triacylglycerol, 

which would not include plastogobular triacylglycerol, was only 4-fold higher for senescent 
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(6-week-old) than for pre-senescent (3-week-old) leaves.  The microsomal membrane 

fractions were isolated after severe homogenization of leaves, which releases plastoglobuli 

from chloroplasts into the cytosol, and at the high centrifugation speeds required to isolate 

microsomes, plastoglobuli float to the top (Smith et al., 2000).  Additionally, the fatty acid 

composition of triacylglycerol in senescent (6-week-old) leaves was unlike that of younger 

pre-senescent (3-week-old) leaves.  The triacylglycerol of senescing leaves contained high 

levels of chloroplastic fatty acids, specifically hexadecatrienoic acid (16:3) and linolenic acid 

(18:3).  These two fatty acids collectively comprised 45.03% of the total fatty acid 

complement of triacylglycerol from senescing leaves and were not detectable in the 

triacylglycerol from the younger leaves.  Hexadecatrienoic acid (16:3) is only found in 

galactolipids, and although linolenic acid is present to a limited extent in phospholipids, it is 

the most abundant fatty acid of galactolipids (Miquel et al., 1998).  It is known that free fatty 

acids, specifically linolenic acid (18:3) and hexadecatrienoic acid (16:3), stimulate 

galactolipid:galactolipid galactosyltransferase, which catalyzes the conversion of MGDG to 

diacylglycerol (Sakaki et al., 1990) a substrate for triacylglycerol synthesis.  These findings 

collectively indicate that the enhanced triacylglycerol in senescing leaves is largely formed 

from thylakoid fatty acids released during galactolipid catabolism, and that the 

triacylglycerol is stored in plastoglobuli.  

The strong temporal correlation between the increase in abundance of plastoglobuli 

in senescing leaves and enhanced levels of triacylglycerol is consistent with the finding that 

there is also up-regulation of DGAT1 transcript as well as its cognate protein.  DGAT1 is a 

highly conserved protein in plants that catalyzes the terminal step in the pathway for 

triacylglycerol synthesis, one in which a fatty acid is added through an ester linkage to the 

sn-3 carbon of diacylglycerol (Hobbs and Hills, 2000).  It is the only enzyme in this pathway 

unique to triacylglycerol synthesis (Bao and Ohlrogge, 1999) and has been shown to be rate-

limiting (Jako et al., 2001).  Northern blots indicated that the transcript for DGAT1 is 

expressed constitutively during leaf expansion but increases sharply at the onset of 

senescence at 5-weeks of age.  The Northern blots of total RNA were probed with E6B2T7, 

an EST clone that has been annotated as DGAT1.  The reported size of Arabidopsis DGAT1 

mRNA is 2kb (Hobbs et al., 1999), and this is the size of the RNA detected on the Northern 
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blots.  A corresponding increase in DGAT1 protein was discerned by immunoblotting with 

antibodies raised against a synthetic peptide corresponding to the C-terminus of the protein.  

Interestingly, it has been reported for developing seeds of castor bean that the expression of 

DGAT mRNA and protein are not correlated indicating that RcDGAT is post-

transcriptionally regulated (He et al., 2004).  However, in senescing Arabidopsis leaves the 

increase in DGAT1 protein was only slightly delayed compared to the increase in transcript. 

The expected size of Arabidopsis DGAT1 protein is 59kDa, though others have 

reported bands at 51kDa on Western blots probed with DGAT1 antibody (Hobbs et al., 

1999). In the present study, the polypeptide typically detected in leaves of Arabidopsis by 

Western blotting was only 29kDa in size.  However, in some blots the native ~51kDa 

DGAT1 protein as well as the smaller 29 kDa catabolite were both detectable, especially for 

protein extracts from developing silique microsomal membranes.  This suggests that the 

29kDa polypeptide is a proteolytic catabolite of the native DGAT1 protein, formed during 

protein extraction and/or tissue fractionation despite the presence of protease inhibitors.  This 

contention is further supported by the fact that the peptide corresponding to the last 17 amino 

acids of the DGAT1 protein, which were used to generate the DGAT1 antibodies, showed no 

significant alignments other than to DGAT1 of Arabidopsis thaliana and Brassica napus, a 

close relative of Arabidopsis, when interrogated by BLAST.  Also, the native 51kDa DGAT1 

protein was clearly discernible in immunoblots of separated protein extracted from UV 

treated leaves of Brassica napus probed with the Arabidopsis antibody.  Further to this, the 

amino acid sequences for DGAT1 of Brassica napus and Arabidopsis are 85% identical over 

the length of the protein, and 16/17 amino acids were identical for the peptide used to 

generate the antiserum. 

That DGAT1 is present in chloroplasts isolated from Arabidopsis leaves further 

supports the proposal that the triacylglycerol accumulated in senescing rosette leaves is 

synthesized in the chloroplasts.  In light of this, DGAT1 might be expected to have a 

consensus chloroplast targeting sequence.  This is not the case, but as noted previously 

(Bauer et al., 2001), this does not preclude a chloroplastic localization.  Western blots of 

chloroplast subfractions revealed that DGAT1 is present in intact chloroplasts and enriched 

in chloroplastic membranes.  The chloroplast membrane fraction includes the chloroplast 
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envelope and thylakoid membranes.  DGAT1 protein was not, however, detected in the 

stromal fraction in the present study, further supporting the contention that it is membrane-

associated (Ichihara et al., 1988; Lacey et al., 1999; Bouvier-Nave et al., 2000).  These 

findings are also consistent with DGAT activity assays reported by Martin and Wilson 

(1984).  Measurements of DGAT activity in chloroplast subfractions from spinach showed 

activity in the membranes of the chloroplast, especially in the envelope membrane fraction, 

with some activity in the thylakoid membranes as well (Martin and Wilson, 1984).  This 

along with the fact that chloroplasts also have pools of acyl-CoA and diacylglycerol 

(Harwood and Stumpf, 1972; Betrams and Heinz, 1976; Sanchez and Mancha, 1981; 

Shimakata and Stumpf, 1982), which serve as substrates for DGAT1, indicates that 

chloroplasts are indeed capable of synthesizing triacylglycerol.  Chloroplast envelopes have 

the capacity to assemble many types of lipids and also contain lipid-metabolizing enzymes 

(Siebertz et al., 1979).  When envelope membranes and thylakoids were isolated and their 

lipids analyzed, there were surprisingly high levels of diacylglycerol in chloroplast envelopes 

and only trace amounts in thylakoids (Siebertz et al., 1979).  Moreover, both diacylglycerol 

and triacylglycerol fractions of chloroplast envelopes contained high proportions of 

hexadecatrienoic acid (16:3) and linolenic acid (18:3) (Siebertz et al., 1979). 

Although DGAT1 is detectable in chloroplasts, many studies have only focused on 

its localization with the endoplasmic reticulum in seeds (Little et al., 1994; Katavic et al., 

1995; Focks and Benning, 1998; Bao and Ohlrogge, 1999; Zou et al., 1999).  However, it is 

apparent from the present study that DGAT1 protein is expressed in most organs of 

Arabidopsis thaliana, indicating that most tissues are thus capable of producing 

triacylglycerol.  Not surprisingly, roots proved to have high levels of DGAT1 protein 

expression.  A mutation in a single gene (termed PICKLE) in Arabidopsis results in a 

massive accumulation of storage lipids, oleosins and proteins in the roots of affected plants 

(Henderson et al., 2004).  This demonstrates the ease with which root cells can be induced to 

express seed-like characteristics, including the formation of oleosins and lipid bodies.  

Though DGAT1 transcript levels within the various organs of Arabidopsis were not 

determined in the present study, others have reported that DGAT1 mRNA is detectable in 

most organs as well (Hobbs et al., 1999; Lu et al., 2003).  This highly distributed nature of 
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DGAT1 localization implies that it is regulated by a complex promoter, consisting of many 

different elements.  Lu et al. (2003) demonstrated this for plants expressing a GUS - DGAT1 

promoter construct.  GUS expression was evident in developing seeds, pollen, growing 

seedlings, root tips and was induced by glucose.  However, only low levels were observed in 

leaves.  It is unclear why DGAT1 is highly expressed during seed germination, where 

lipolytic activity is dominant.  One possible explanation is that there is separate subcellular 

compartmentalization of the synthetic and hydrolytic mechanisms associated with 

triacylglycerol metabolism in germinating cotyledons (Wilson and Kwanyuan, 1986). 

There have been reports that the most active triacylglycerol biosynthetic fraction of 

plant cells is microsomal membranes, which are normally equated with endoplasmic 

reticulum (Cao and Huang, 1986; Stobart et al., 1986).  However, the microsomal fraction is 

made up of a mixture of membrane vesicles, many of which are derived from endoplasmic 

reticulum, but some also originate from plasmalemma, Golgi and membranes of other 

organelles such as the plastid envelope (Cao and Huang, 1986; Herman, 1987).  In keeping 

with its association with the endoplasmic reticulum in seeds, DGAT1 was immunologically 

detectable in protein blots of microsomal membranes isolated from developing seeds of 

Arabidopsis in the present study.  However, it was not evident in Western blots of 

microsomal membranes corresponding to endoplasmic reticulum from rosette leaves, 

possibly because it is not an abundant protein in leaf endoplasmic reticulum or is only 

targeted to the chloroplasts in leaves. 

Plastoglobuli have often been compared to oil bodies, the triacylglycerol- 

containing storage particles in seeds (Murphy, 2001).  Not only do they both store 

triacylglycerol, but plastoglobuli contain fibrillin, which is analogous to oleosin, a structural 

protein associated with oil bodies (Pozueta-Romero et al., 1997; Kessler et al., 1999; Rey et 

al., 2000).  These structural proteins are thought to prevent coalescence of particles, whether 

they be plastoglobuli or oil bodies (Huang, 1996; Rey et al., 2000).  Rey et al. (2000) 

produced transgenic plants in which fibrillin was over-expressed.  These plants exhibited an 

increased abundance of plastoglobuli, even in young tissue, demonstrating that the 

availability of fibrillin regulates the formation of plastoglobuli in much the same way that 

oleosin regulates oil body formation (Huang, 1992). 
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The data presented in this thesis are consistent with the view that plastoglobuli are 

formed within chloroplast membranes through the action of DGAT1 and released from the 

membrane surface into a hydrophilic compartment.  Oil bodies are thought to be formed in a 

similar manner from endoplasmic reticulum membrane (Napier et al., 1996).  Late in 

senescence plastoglobuli shrink, presumably because of the action of a senescence induced 

triacylglycerol lipase (Matile, 1992).  It is apparent from immunolocalization analyses 

conducted in the present study that DGAT1 protein is associated with chloroplastic 

membranes and that there is a coincident up-regulated expression of a senescence induced 

triacylglycerol lipase in plastoglobuli.  Furthermore, like DGAT1 (Lu et al., 2003) this lipase 

is also upregulated in developing Arabidopsis seedlings (Padham, 2002).  Moreover, 

suppression of this lipase in transgenic plants resulted in stunted growth, reduced seed 

production, and an increased abundance of plastoglobuli in chloroplasts even before 

senescence is initiated (Padham et al., submitted 2006).  These observations were interpreted 

as indicating that this triacylglycerol lipase is essential for mobilizing the triacylglycerol 

carbon temporarily stored in plastoglobuli.  Thus, DGAT1 and the triacylglycerol lipase 

perform pivotal roles in the recruitment and mobilization of carbon in the chloroplast. 

Previous studies have demonstrated that there is a concurrent decrease in 

galactolipids and phospholipids and an increase in triacylglycerol synthesis during ozone 

stress (Sakaki et al., 1990; Sakaki et al., 1990).  Similarly, drought-stressed cotton leaves 

exhibit a significant decline in polar lipids and a parallel increase in triacylglycerol (El-Hafid 

et al., 1989).  Chloroplasts in drought-stressed leaves have an increased surface area and also 

appear to have a high number of tight associations with peroxisomes and mitochondria 

(Zellnig et al., 2004).  Sakaki et al.1990 have proposed that the activation of triacylglycerol 

synthesis in ozone-treated leaves functions to sequester fatty acids de-esterified from 

galactolipids in response to ozone stress.  By analogy, the senescence-related up-regulation 

of DGAT1 and subsequent synthesis of triacylglycerol may serve to temporarily sequester 

galactolipid fatty acids released during chloroplast senescence and thus be an intermediate 

step in the conversion of thylakoid fatty acid to energy or phloem-mobile sucrose by 

peroxisomes with the help of mitochondria.  Plants are incredible recyclers and do so by 

employing senescence and death for resource allocation (Thomas et al., 2003).  Trienoic fatty 
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acids, including hexadecatrienoic acid (16:3) and linolenic acid (18:3), are dominant fatty 

acid species in plant membrane lipids.  They are crucial for the adaptation of plants to abiotic 

stresses, especially temperature.  They are also involved in the production of reactive oxygen 

species during the hypersensitive response to pathogen ingression, resulting in programmed 

cell death and disease resistance.  These fatty acids thus appear to play an important role in 

the regulation of plant defence responses (Yaeno et al., 2004) and, when released during the 

developmental stage of senescence, need to be sequestered into triacylglycerol.  Besides its 

involvement in signalling, free linolenic acid (18:3), containing three double bonds, is highly 

susceptible to free radical attack.  Thus 18:3 is likely a substrate in the peroxidation reaction 

resulting in the formation of hydroperoxides.  Also, free fatty acids can act as fusogens, 

promoting membrane fusion.  These would render the membrane non-functional.  Therefore, 

as these fatty acids are released by galactolipases during senescence, in order for the 

membrane to remain functional, they need to be sequestered, and this appears to be achieved 

by their incorporation into neutral lipids such as triacylglycerols and steryl and wax esters. 

The chloroplast is the first organelle to show symptoms of senescence in mesophyll 

cells.  Specifically the thylakoid membranes are dismantled while leaving the chloroplast 

envelope intact until the very late stages of senescence (Peoples et al., 1980).  The thylakoid 

membranes are the most abundant membrane in nature (Lee, 2000), thus constituting a rich 

source of carbon and nitrogen equivalents.  These nutrients are mobilized during leaf 

senescence and are transported through the phloem to developing structures of the plant.  The 

thylakoid membranes are largely comprised of the galactolipids, 

monogalactosyldiacylglycerol (MGDG) and digalactosyldiaclyglycerol (DGDG).  In fact, 

together they comprise approximately 80% of the total lipid content of the thylakoids. As the 

chloroplasts senesce, the galactolipids are catabolized by senescence-induced galactolipases 

(O'Sullivan et al., 1987).  Indeed, there appears to be no galactolipase activity involved in 

galactolipid turnover, and degradation of MGDG and DGDG is specific to senescence or 

stress-induced senescence (O'Sullivan and Dalling, 1989).  Perturbed or destabilized 

membrane bilayers, such as those containing free fatty acids, are more susceptible to further 

degradation by lipases (Barclay and McKersie, 1994).  The contention that free fatty acids 



 

- 249 - 

released by galactolipases during senescence are stored temporarily is supported by the 

finding that both DGAT1 and triacylglycerol lipase are up-regulated in senescing leaves.   

A proposed model illustrating the fate of thylakoid fatty acids during senescence is illustrated 

in Figure 3-22.  Basically, the fatty acids that are released by galactolipases appear to be 

sequestered into triacylglycerol within the thylakoid membrane by DGAT1, and the 

triacylglycerol is in turn released into the stroma within plastoglobuli, which bleb from the 

thylakoid membrane surface.  This results in an increase in plastoglobuli number and size 

during senescence.  Although the precise role of plastoglobuli has not been elucidated, it is 

assumed based on their increase in size during thylakoid degradation, that they temporarily 

store thylakoid lipid metabolites, especially those liberated during leaf senescence (Sprey and 

Lichtenthaler, 1966; Lichtenthaler, 1969; Lichtenthaler and Weinert, 1970).  It is proposed 

here that triacylglycerols within the plastoglobuli are metabolized by a plastid triacylglycerol 

lipase.  It has also been  proposed that plastoglobuli are extruded through the chloroplast 

envelope membranes into the cytosol where they become associated with glyoxysomes 

(Guiamet et al., 1999).  This would enable the fatty acid equivalents of plastoglobular 

triacylglycerol to be metabolized by β-oxidation for energy production or gluconeogenesis 

leading to sucrose formation.  The conversion of leaf peroxisomes to glyoxysomes as 

senescence is initiated and the correlative up-regulation of the key glyoxylate cycle enzymes, 

malate synthase and isocitrate lyase, is established (DeBellis et al., 1990; DeBellis and 

Nishimura, 1991).  The fatty acids of thylakoid lipids are thus fuel for the senescence process 

as well as a source of carbon for the synthesis of phloem-mobile sucrose. During leaf 

senescence, even when the parenchyma cells become completely inactive, the vein system 

and particularly the phloem are completely functional, losing viability only late in senescence 

(Bieleski, 1995). 

It is clear that leaf senescence is a highly regulated and highly co-ordinated event.  

The role of DGAT1 during senescence may seem counterintuitive in that it is synthesizing 

molecules rather than catabolizing molecules during a developmental stage that has been 

often described as shift to catabolism.  Though DGAT1 may play an important role in 

controlling the catabolism of thylakoid lipids and preventing senescing cells from losing 
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Figure 3-22: Proposed roles of DGAT1, galactolipase and plastid triacylglycerol lipase 

in senescing chloroplasts 

As chloroplasts within the mesophyll differentiate into gerontoplasts, a major effort is made 

to salvage nitrogen and carbon stored in proteins and lipids, respectively.  Digalactosyl 

diacylglycerol (DGDG) and monogalactosyl diacylglycerol (MGDG) are the key lipid 

components of thylakoids.  Thylakoid membranes are depicted as flattish discs stacked 

together in chloroplasts, and as senescence progresses they become less tightly packed and 

become swollen.  Senescence-up-regulated galactolipases act on both MGDG and DGDG to 

release fatty acids from the sn-1 and sn-2 positions.  DGDG can also be initially converted to 

MGDG through the action of a senescence-specific α-galactosidase.  The free fatty acids that 

are released by galactolipase action would be toxic to the membranes and cause further 

uncontrolled catabolism.  It has been demonstrated that photosynthesis persists during the 

early stages of senescence, and thus the thylakoid membranes must remain intact as 

catabolism of galactolipids occurs.  It is proposed in this thesis that through the action of 

DGAT1 localized in the chloroplast, the free fatty acids are temporarily sequestered into 

triacylglycerol until they are further mobilized by triacylglycerol lipase.  This second 

catabolic step releases fatty acids in a controlled manner and feeds them directly into the 

glyoxysome where they are catabolized by β-oxidation for energy or are remobilized through 

the glyoxylate cycle and gluconeogenesis to produce phloem-mobile sucrose.   
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control over nutrient recruitment, this role may not be essential or may have redundant 

counterparts. For example, the reduction in DGAT1 activity in mutants does not appear to 

have any effect on the appearance of the plant, but rather only an effect on the seed oil 

content (Zou et al., 1999).  It is thought that senescence proceeds through several parallel 

pathways (He et al., 2001).  Accepting the notion that senescence is essential for the overall 

fitness of the plant, the strategy of having redundant pathways would be advantageous in the 

context of ensuring the fidelity of the senescence process.  Thus the model proposed in this 

chapter may not be the only way that carbon stores in the chloroplasts are degraded during 

senescence. 
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Chapter 4: General Discussion 

An understanding of fundamental aspects of plant biology is essential for the 

advancement of agriculture, especially in the context of using transgenic technology to 

enhance agronomically important traits. The model plant, Arabidopsis thaliana, has been 

used extensively for these types of studies, in part because its genome is fully sequenced and 

also because it has a short life cycle.  Moreover, Arabidopsis is closely related to canola, a 

major agronomic crop.  The need for other model systems for the purpose of crop 

enhancement is clear, however, and this is the underlying basis for ongoing efforts to 

sequence the genomes of major crop plants such as maize and rice. 

A major objective of bioengineering and breeding programs for crop plants is to 

increase yield.  Yield is a complex trait that involves many developmental processes, 

including organogenesis, morphogenesis, growth and differentiation.  Yield increases can be 

obtained indirectly through increasing tolerance or resistance to pests and other stressors.  

Other more direct approaches for increasing yield include enhancing growth and modifying 

the structure of the plant to better suit current farming practices.  While only small 

improvements have been made through breeding programs, bioengineering holds in prospect 

being able to greatly improve yield because of the ability to modulate the expression of 

individual genes (Camp, 2005). 

Crop losses to insect herbivory are in the order of 10-20% of total yield (Ferry et 

al., 2004), so it is not surprising that some of the first commercially available genetically 

modified crop plants included corn and cotton plants expressing Bt toxin from Bacillus 

thuringiensis, which  confers insect resistance.  While these transgenic plants express an 

exogenous gene obtained from bacteria, endogenous plant genes are also being studied for 

protection against herbivory and pathogenesis.  Plants invoke resistance mechanisms to 

achieve protection from herbivory and pathogenesis.  Both of these stresses induce aquired 

resistance, first locally in the area of pathogen ingress or wound, then systemically 

throughout the plant.  Several toxic or repellent molecules are produced by plants in response 

to wounding or pathogen ingress, including proteinase inhibitors (Gatehouse, 2002) and 

green leaf volatiles (Pare and Tumlinson, 1999).  In addition, the up-regulation of 
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pathogenesis-related (PR) proteins at the site of pathogen ingression leads to systemic 

acquired resistance.  Increased resistance to pests is often equated to increased yield, which  

may be indirect as a consequence of reduced plant death or direct through an increase in plant 

growth.  For example, the constitutive over-expression of maize PR-1 in tobacco resulted in 

improved growth and increased seed yield (Murillo et al., 2003).  The enhanced growth 

appeared to reflect in part a role for PR-1 in increasing symplastic sucrose transport.   

Down-regulation of AteIF5A-2 by antisense has been shown to abrogate the 

development of  disease induced by the bacterial pathogen, Pseudomonas syringae 

(Gatsukovich, 2004).  Pseudomonas syringae is a facultative necrotroph that is initially a 

biotrophic pathogen, but then induces plant host cells to die as it enters into its necrotrophic 

phase and causes disease (Katagiri et al., 2002). The down-regulation of AteIF5A-2 reduced 

programmed cell death induced by the pathogen. Interestingly, although AteIF5A-2 appears 

to be involved in the regulation of programmed cell death induced by wounding or disease, it 

is not required for the induction of systemic acquired resistance (Gatsukovich et al., 

submitted 2006).  Over-expression of AteIF5A-2 in the present study resulted in decreased 

fecundity and decreased plant size, traits that are not desirable in terms of yield.  However, 

down-regulation or knock-out of the wounding/pathogenesis responsive eIF5A in crop plants 

may lead to increased disease resistance and a decrease in yield losses due to pathogenesis.  

Programmed cell death also occurs during developmental senescence and post-

harvest senescence.  Loss of quality of fruits and vegetables after harvest is manifested by 

rapid deterioration in appearance, flavour and nutrient value.  Post-harvest senescence 

accounts for major losses in food crops.  Some of the molecular targets for reducing post-

harvest senescence and increasing shelf life of produce include proteins involved in ethylene 

biosynthesis (Eze et al., 1986; Park et al., 1992) and lipid catabolism  (Page et al., 2001; Lo 

et al., 2004).  It was demonstrated by Wang et al. (2005) that down-regulation of DHS in 

tomato fruit using antisense technology significantly delayed post-harvest fruit softening.  

Strong constitutive down-regulation of DHS, however, also had deleterious consequences, 

such as pollen sterility and delayed development (Wang et al., 2005).  By reducing DHS or 

the eIF5A isoform involved specifically in senescence selectively in harvestable organs, 

these deleterious effects can be reduced.  For example, leaf specific reduction of DHS led to 
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a delay in leaf senescence by at least a week without deleterious pleiotropic effects (Jamal, 

2004), indicating  that organ-specific down-regulation of this gene may be better suited for 

applications in agriculture.  Since AteIF5A-1 is involved in developmental programmed cell 

death, such as xylogenesis, it would be imperative to down-regulate it in an organ-specific 

manner.  

Plant architecture is determined by cell division and cell elongation. Accordingly, 

increased growth through manipulation of the cell-cycle or cell elongation has been studied 

with the ultimate goal of increasing organ size (Camp, 2005).  The cell-cycle machinery is 

highly conserved across eukaryotic kingdoms.   An interesting upstream regulator of cell 

division is ARGOS, where the over-expression of ARGOS in Arabidopsis resulted in a direct 

increase in leaf size (Hu et al., 2003).  Over-expression of expansins, which are involved in 

elongation,  in soybean stimulated an increase in root elongation, but there were problems 

with the aerial portions of the plant with respect to cellular organization in the leaves 

(Rochange et al., 2001).  The expression of expansins perhaps would benefit the plant more 

if the transgene expression was in the roots only.  The regulation of elongation in plants is 

finely tuned, and appears to be tightly linked to the level of gene expression.  This was 

apparent, for example, in the present study when AteIF5A-3 was over-expressed in 

Arabidopsis.  The more highly over-expressed the protein was, the larger the seeds became. 

Since over-expression of AteIF5A-3 appeared to have an effect on development, tissue-

specific over-expression of AteIF5A-3 may have better results for increasing yield.  For 

example, flower and fruit specific over-expression of AteIF5A-3 may lead to the same large 

seed phenotype without the changes in plant body form such as changes in leaf shape and 

phyllotaxy that were observed when the gene was constitutively over-expressed.  Increased 

seed size is a beneficial trait for oilseed plants, as there is a smaller surface area to volume 

ratio, making oil extraction more efficient.  

In summary, members of gene families tend to be lumped together, without specific 

functions of each member being teased out.  The eIF5A gene family in Arabidopsis thaliana 

is highly conserved, but individual members of this gene family exhibit different temporal 

and spatial expression patterns and appear to have distinct functions. 
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Increase in yield not only pertains to increase in biomass.  Specific products of 

plants, such as seed oil, are also of interest in respect of improving agriculture.  The selective 

over-expression of diacylglycerol acyltransferase 1 (DGAT1) in seeds has been shown to 

increase the seed oil content and seed weight of Arabidopsis thaliana (Jako et al., 2001).  

While constitutive DGAT1 over-expression has not been explored, in light of the present 

study it may offer some surprising advantages.  That DGAT1 is the limiting step in 

triacylglycerol formation is well documented (Ichihara et al., 1988; Bao and Ohlrogge, 

1999). The presence of DGAT1 associated with the chloroplasts of leaves and the concurrent 

increase in plastoglobuli demonstrated in the present study led to the hypothesis that DGAT1 

sequesters free fatty acids removed from the thylakoid membrane by lipases dismantling the 

chloroplasts during senescence.  The ability of DGAT1 to temporarily sequester free fatty 

acids in an inert form is especially important during times of stress and senescence.  Thus, 

constitutive over-expression of DGAT1 might lead to increased chloroplast health through 

the sequestering of free fatty acids throughout development and especially during episodes of 

stress and senescence.  Furthermore, mutants deficient in DGAT1 display increased 

sensitivity to various treatments including the application of exogenous abscisic acid and 

osmotic stress during germination and seedling development (Lu and Hills, 2002).  It is clear, 

therefore, that DGAT1 is an important target for enhancement of agricultural traits. 
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Appendix A: Statistical calculations for Chapter 3 

Table 6-1: Lipid classes expressed as a percentage of the total lipid pool for 
homogenates of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

 % of Total Fatty 
Acid Pool 

Standard Error *  

Lipid Class: 3 wk 6 wk 3 wk 6 wk P-Values** 
Polar lipids 84.76 53.03 1.34 5.45 0.020 
Diacylglycerols 6.74 9.63 0.40 1.83 0.190 
Free fatty acids 5.26 8.60 1.06 1.45 0.261 
Triacylglycerols 2.02 12.33 0.12 2.20 0.039 
Steryl/wax esters 1.22 16.40 0.14 3.59 0.049 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 

Table 6-2: Lipid classes expressed as a percentage of the total lipid pool for microsomal 
membranes of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

 % of Total Fatty 
Acid Pool 

Standard Error *  

Lipid Class: 3 wk 6 wk 3 wk 6 wk P-Values ** 
Polar lipids 77.82 52.10 2.50 2.54 0.001 
Diacylglycerols 5.42 5.22 0.91 1.16 0.313 
Free fatty acids 13.23 27.02 2.60 1.46 0.004 
Triacylglycerols 0.97 3.55 0.20 0.52 0.044 
Steryl/wax esters 2.56 12.12 0.55 0.37 0.001 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 

Table 6-3: Lipid classes expressed as μg lipid/g fresh weight (fwt) in the homogenates of 
pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

 μg lipid/g fwt Standard Error *  
Lipid Class: 3 wk 6 wk 3 wk 6 wk P-Values ** 
Polar lipids 14.48 20.57 1.12 4.60 0.223 
Diacylglycerols 1.15 3.53 0.09 0.44 0.025 
Free fatty acids 0.92 3.12 0.25 0.18 0.012 
Triacylglycerols 0.34 4.48 0.01 0.38 0.008 
Steryls/wax esters 0.21 6.70 0.03 2.55 0.124 
Total lipid aliquot 41.06 60.67 3.52 6.89 0.123 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 



 

- 303 - 

Table 6-4: Lipid classes expressed as μg lipid/g fresh weight (fwt) in the microsomal 
membranes of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves 

 μg lipid/g fwt Standard Error *  
Lipid Class: 3 wk 6 wk 3 wk 6 wk P-Values ** 
Polar lipids 63.29 33.20 5.21 5.48 0.055 
Diacylglycerols 4.47 3.11 1.01 0.49 0.475 
Free fatty acids 10.53 17.07 1.65 2.29 0.117 
Triacylglycerols 0.77 2.16 0.13 0.08 0.008 
Steryl/wax esters 2.04 7.72 0.36 1.21 0.054 
Total lipid aliquot 257.54 104.55 19.41 7.55 0.014 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 

Table 6-5: Fatty acid composition for homogenate total lipid of pre-senescent (3-week-
old) and senescent (6-week-old) rosette leaves 

 % of Total Standard Error *  
Fatty acid: 3 wk 6 wk 3 wk 6 wk P-Values ** 
12:0 0.00 1.54 0.00 0.44 0.074 
14:0 0.19 1.53 0.04 0.33 0.051 
15:0 0.19 0.67 0.01 0.17 0.094 
16:0 24.39 23.27 0.85 0.83 0.544 
16:1 2.97 2.23 0.36 0.24 0.220 
16:3 4.35 9.66 0.12 1.26 0.054 
18:0 0.58 0.85 0.28 0.29 0.549 
18:1 7.78 4.08 0.39 0.61 0.011 
18:2 25.83 15.17 0.05 0.45 0.002 
18:3 32.80 38.26 0.28 3.19 0.237 
22:0 0.16 0.52 0.06 0.17 0.155 
22:1 0.19 0.26 0.03 0.12 0.660 
24:0 0.57 1.76 0.19 0.05 0.016 
26:0 0.00 0.20 0.00 0.02 0.008 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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Table 6-6: Fatty acid composition for total lipids of microsomal membranes of pre-
senescent (3-week-old) and senescent (6-week-old) rosette leaves 

 % of Total Standard Error *  
Fatty acid: 3 wk 6 wk 3 wk 6 wk P-Values ** 
12:0 0.00 0.87 0.00 0.05 0.003 
14:0 0.21 1.01 0.03 0.07 0.011 
15:0 0.27 0.49 0.05 0.18 0.452 
16:0 23.51 26.36 0.44 1.56 0.204 
16:1 3.18 1.52 0.11 0.11 0.009 
16:3 6.18 6.37 0.32 0.58 0.818 
18:0 0.22 0.86 0.10 0.75 0.514 
18:1 7.04 6.23 0.35 0.43 0.376 
18:2 24.56 17.02 0.37 0.35 0.009 
18:3 34.06 32.89 0.31 3.92 0.799 
22:0 0.26 0.93 0.03 0.31 0.182 
22:1 0.04 0.31 0.02 0.19 0.297 
23:0 0.00 1.21 0.00 0.09 0.006 
24:0 0.49 2.66 0.26 0.11 0.026 
25:0 0.00 0.64 0.00 0.17 0.060 
26:0 0.00 0.58 0.00 0.24 0.132 
28:0 0.00 0.07 0.00 0.01 0.029 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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Table 6-7: Fatty acid composition for homogenate polar lipid and triacylglycerol of pre-
senescent (3-week-old) and senescent (6-week-old) rosette leaves  

 % of Total 
Fatty Acid Pool 

Standard Error *  

Lipid Class and 
Fatty acid: 

3 wk 6 wk 3 wk 6 wk P-Values ** 

Polar lipids      
14:0 0.09 0.15 0.01 0.02 0.174 
15:0 0.12 0.22 0.01 0.04 0.114 
16:0 20.87 16.18 1.07 0.93 0.125 
16:1 3.09 1.64 0.36 0.40 0.125 
16:3 3.82 3.27 0.08 1.10 0.678 
18:0 0.21 0.00 0.02 0.00 0.011 
18:1 6.14 2.62 0.21 0.67 0.042 
18:2 20.86 8.06 0.17 0.50 0.001 
18:3 27.96 19.03 0.89 2.77 0.133 
22:0 0.38 0.47 0.11 0.14 0.574 
22:1 0.23 0.00 0.03 0.00 0.021 
24:0 0.99 1.38 0.30 0.52 0.594 
Triacylglycerol      
12:0 0.00 0.06 0.00 0.02 0.102 
14:0 0.08 0.24 0.01 0.03 0.019 
15:0 0.03 0.12 0.00 0.01 0.010 
16:0 0.91 3.57 0.06 0.08 0.001 
16:1 0.00 0.04 0.00 0.02 0.192 
16:2 0.00 0.06 0.00 0.03 0.166 
16:3 0.00 1.16 0.00 0.07 0.004 
18:0 0.51 0.24 0.05 0.13 0.242 
18:1 0.00 0.73 0.00 0.10 0.017 
18:2 0.07 1.56 0.04 0.07 0.002 
18:3 0.00 4.40 0.00 0.24 0.003 
22:0 0.00 0.05 0.00 0.02 0.102 
22:1 0.42 0.10 0.13 0.04 0.085 
24:0 0.00 0.03 0.00 0.02 0.276 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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Table 6-8: Fatty acid composition for microsomal membrane polar lipid and 
triacylglycerol of pre-senescent (3-week-old) and senescent (6-week-old) rosette leaves  

 % of Total 
Fatty Acid Pool 

Standard Error *  

Lipid Class and 
Fatty acid: 

3 wk 6 wk 3 wk 6 wk P-Values ** 

Polar lipids      
14:0 0.12 0.13 0.02 0.03 0.864 
15:0 0.15 0.35 0.02 0.10 0.157 
16:0 17.99 14.47 1.19 1.36 0.136 
16:1 2.86 0.76 0.26 0.12 0.009 
16:3 4.91 1.67 0.18 0.23 0.014 
18:0 0.27 0.58 0.05 0.51 0.625 
18:1 6.07 2.71 0.24 0.10 0.003 
18:2 19.00 8.78 0.85 0.37 0.013 
18:3 25.05 18.57 0.34 0.90 0.034 
22:0 0.37 0.47 0.06 0.11 0.318 
22:1 0.00 0.23 0.00 0.14 0.240 
23:0 0.00 0.84 0.00 0.07 0.007 
24:0 1.04 1.70 0.09 0.11 0.071 
25:0 0.00 0.53 0.00 0.13 0.057 
26:0 0.00 0.31 0.00 0.12 0.124 
Triacylglycerol      
14:0 0.00 0.07 0.00 0.02 0.080 
15:0 0.02 0.04 0.01 0.01 0.185 
16:0 0.54 1.10 0.02 0.08 0.022 
16:1 0.00 0.01 0.00 0.00 0.070 
16:3 0.00 0.30 0.00 0.04 0.018 
18:0 0.11 0.15 0.05 0.06 0.781 
18:1 0.14 0.39 0.04 0.07 0.150 
18:2 0.06 0.37 0.01 0.03 0.013 
18:3 0.00 0.93 0.00 0.05 0.003 
22:0 0.00 0.04 0.00 0.01 0.038 
22:1 0.09 0.08 0.01 0.01 0.856 
24:0 0.00 0.07 0.00 0.00 0.002 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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Table 6-9: Levels of hexadecatrienoic acid (16:3) and linolenic acid (18:3) within each 
lipid class for homogenates of pre-senescent (3-week-old) and senescent (6-week-old) 
rosette leaves 

 % of Total 
Fatty Acid Pool 

Standard Error *  

Lipid Class and 
Fatty acid: 

3 wk 6 wk 3 wk 6 wk P-Values ** 

Polar lipids      
16:3 4.51 6.16 0.12 2.53 0.517 
18:3 32.99 35.88 1.28 6.41 0.689 
Sum 16:3 and 18:3 37.49 42.04 1.36 5.70 0.513 
Diacylglycerol      
16:3 0.00 2.96 0.00 0.55 0.022 
18:3 15.81 25.44 4.17 1.07 0.152 
Sum 16:3 and 18:3 15.81 28.40 4.17 1.39 0.190 
Free fatty acids      
16:3 0.00 3.14 0.00 0.40 0.011 
18:3 0.00 9.75 0.00 1.27 0.011 
Sum 16:3 and 18:3 0.00 12.89 0.00 1.17 0.005 
Triacylglycerol      
16:3 0.00 9.39 0.00 0.70 0.004 
18:3 0.00 35.64 0.00 2.34 0.003 
Sum 16:3 and 18:3 0.00 45.03 0.00 2.07 0.001 
Steryl and wax 
esters 

     

16:3 0.00 26.38 0.00 0.01 0.009 
18:3 0.00 24.86 0.00 0.01 0.004 
Sum 16:3 and 18:3 0.00 51.25 0.00 0.01 0.004 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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Table 6-10: Levels of hexadecatrienoic acid (16:3) and linolenic acid (18:3) within each 
lipid class for microsomal membranes of pre-senescent (3-week-old) and senescent (6-
week-old) rosette leaves 

 % of Total 
Fatty Acid Pool 

Standard Error *  

Lipid Class and 
Fatty acid: 

3 wk 6 wk 3 wk 6 wk P-Values ** 

Polar lipids      
16:3 6.32 3.24 0.28 0.53 0.041 
18:3 32.19 35.64 0.54 2.11 0.247 
Sum 16:3 and 18:3 38.50 38.88 0.55 2.12 0.874 
Diacylglycerol      
16:3 0.00 2.22 0.00 0.97 0.107 
18:3 12.95 25.57 0.80 2.60 0.014 
Sum 16:3 and 18:3 12.95 27.80 0.80 3.38 0.021 
Free fatty acids      
16:3 0.92 6.75 0.47 1.32 0.057 
18:3 11.12 22.22 1.74 3.99 0.129 
Sum 16:3 and 18:3 12.04 28.97 1.53 4.30 0.064 
Triacylglycerol      
16:3 0.00 8.30 0.00 1.40 0.018 
18:3 0.00 26.31 0.00 1.71 0.003 
Sum 16:3 and 18:3 0.00 34.61 0.00 1.62 0.001 
Steryl and wax 
esters 

     

16:3 0.00 12.61 0.00 0.95 0.004 
18:3 14.76 35.78 3.33 3.50 0.041 
Sum 16:3 and 18:3 14.76 48.40 3.33 2.69 0.015 
  *n=3 
**P-values were calculated using a two-tailed test with α=0.05 
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