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Abstract

Structural changes, including moving, renaming, merging and splitting are important

design change decisions made by programmers. However, during the process of software

evolution, this information often gets lost. Recovering instances of structural changes in the

past, as well as understanding them, are essential for us to achieve a better understanding

of how and why software changes.

In this thesis, we propose an approach that helps to recover and understand the lost

information of structural changes.
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Chapter 1

Introduction

1.1 Studying Software Evolution

Software must evolve over time to adapt to its ever-changing environment. The research

discipline of software evolution explores technical and managerial activities that can help

to ensure software continuously meet its organizational and business objectives.

Empirical studies of how software systems evolve have revealed that:

• Different software systems evolve differently. However, some common patterns and

“rules” have been observed to hold (e.g., Lehman’s laws [31]).

• Examining a software system from different perspectives, such as growth of code base

and user-visible features, helps to provide different views of software evolution.

• Visualization is often useful in both understanding the software evolution process

and discovering interesting phenomena or patterns.

Empirical studies differ in various ways, such as the type of software system under

study and the analysis technique being used. Among them, one important difference is

how they characterize the idea of software changes, the fundamental activity in software

evolution. Some researchers study lines of code (LOC) or number of modules to measure

growth of system or subsystem. Some derive metrics from change logs or other sources to

discover patterns of other properties of evolving software.

1



2 Toward an improved understanding of software change

To understand the nature of software evolution, we need a better understanding of

software change itself. That is, in additional to using a single metric summarizing all the

changes and try to understand them, we should be able to answer the “what/how/why”

questions: What changes have been made, and how? Why was software changed in this

way? We should be able to identify various software changes, understand them and then

learn from them.

There is a particular family of changes — structural changes — that has received rela-

tively little attention in software evolution research, although they are activities commonly

applied to improve software design and support future evolution. Structural changes, in-

cluding function/file moves, renames and merges/splits, are applied by maintainers during

refactoring or restructuring, to reduce the complexity of software and improve the cohesion,

so that the software becomes more flexible and easy to maintain in the future. Although

the raw effects of such changes may be plainly evident in the new artifacts, the original

“intent” of design changes is often lost, such as we might not know that the removal of

code from a file was actually caused by a specific functionality being extracted out to form

a new function. Recovery of structural changes can help developers to understand design

changes made in the past.

The ground work for the research described in this thesis on studying structural change

was performed by Tu and Godfrey [20, 36]. They investigated a set of techniques, called

origin analysis, to detect structural changes. In their approach, they derived origin infor-

mation of software entities by comparing their metric fingerprints and call relationships. To

support origin analysis, as well as other tasks in software evolution, they built a tool called

Beagle. Their case study of GCC showed that this approach could help us in identification

of function/file moves and renames.

However, this approach as implemented in its initial work had limitations: it has limited

interaction with users, thus reasoning about structural changes was hard to perform; it

was not flexible enough to deal with various situations in which structural changes may

occur; only simple changes, namely move and rename, were addressed; and no support was

provided for building a persistent evolution history of software changes.

Also identification of structural change instances is still not enough. We need to un-

derstand why changes occurred; we need to investigate whether there exist patterns and
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anti-patterns for software changes, so that we can apply them or avoid them in future

maintenance activities. We also want to capture intent behind changes.

1.2 Statement of the Problem

The statement of problem of this thesis is:

We can use improved “origin analysis”, visualization and categorization to achieve a

better understanding of software changes.

Given two versions of a software system, “origin analysis” is to find matching portions

of source code, where matching is defined as one was derived from the other. Compared

to its previous work [20, 36], we have made several improvements, including defining a

generalized matching model and adopting a semi-automatic and iterative process. All

these enhancements enable detection of function/file merges and splits, which was not

addressed before. Also, structural changes identification using improved origin analysis

has increased flexibility and accuracy, as human knowledge can be incorporated in the

analysis process.

We adopt a technique called “scatter plot” to visualize structural changes between

different releases. Our study shows that this visual aid not only helps to improve our un-

derstanding of structural changes identified, but also helps to discover new change instances

and patterns.

Our case study of PostgreSQL shows that using our approach we were able to identify

a large number of structural changes. Based on these change instances, our further anal-

ysis using categorization technique helps to recover even more knowledge about software

evolution.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows: In Chapter 2 we describe related

work, including software evolution and previous work of origin analysis. As relationships

exist between clone detection and origin analysis, we make a brief comparison between

the two in this chapter as well. In Chapter 3, we present the improved version of origin
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analysis and its tool support Beagle. Chapter 4 describes our case study of PostgreSQL,

including details of structural changes, summaries, and results obtained after applying

change analysis. Finally in Chapter 5, we summarize this thesis and discuss future work.



Chapter 2

Related Work

In this chapter, we describe previous research on software evolution, including empirical

studies on industrial software systems and open source software, as well as various tech-

niques used to visualize evolution history. We also discuss previous work of identifying

structural changes using origin analysis and the tool Beagle, which serves as the starting

point for our work. As origin analysis is related to clone detection and finding reusable

components in software reuse, we briefly discuss these research areas as well.

2.1 Software Evolution

It is well accepted that successful software has to be changed over time. Although it would

be ideal to be able to build a system that meets all the requirements for the future and

requires little maintenance effort during its lifetime, in reality, it is rarely, if ever possible.

We always build assumptions, both implicit and explicit, into a software system. As time

goes by, these assumptions may be violated, as the running environment of software —

including requirements, technical environment, development team and other factors —

change continuously [34]. Thus, we have to change the software itself to adapt to these

changes. The phenomenon of software aging is inevitable [33]; that is, the deterioration of

software quality and flexibility cannot be avoided; software becomes harder and harder to

be changed, no matter how excellent its initial architecture and design might be.

The research discipline of software evolution investigates various techniques, both tech-

5



6 Toward an improved understanding of software change

nical and managerial, to ensure that software continues to meet organizational and business

objectives in a cost effective way [1]. Although there is no generally accepted formal defini-

tion of software evolution, researchers have already agreed on the importance of studying

software system in its long term and have been investigating this both empirically and

theoretically.

Extensive empirical studies have proven to be effective in revealing the nature of soft-

ware evolution. They differ in the way that evolution is characterized: some study growth

of code base size, some investigate patterns of system functionalities. These studies may

also differ in other ways, such as techniques applied. Various visualization techniques have

been used in empirical studies. They have demonstrated great potential for detecting

patterns in software evolution.

In the remainder of this section, we first describe the major contributions of empirical

studies in software evolution in Section 2.1.1. Then, we review research on the evolution of

open source software in Section 2.1.2. In Section 2.1.3, we discuss visualization techniques

that are applied to software evolution. Finally, we summarize software evolution studies

in Section 2.1.4.

2.1.1 Empirical Study of Software Evolution

In empirical studies of software evolution, researchers make observations on software sys-

tems in the real world to examine how software evolves throughout its lifetime.

Lehman did his pioneering empirical study of software evolution on 20 releases of IBM’s

OS360 [31]. In this study, he formulated five laws of software evolution based on his obser-

vations and experiences. These laws, being amended and validated against more software

systems, were later increased to eight [29] — they are continuing change, increasing com-

plexity, self regulation, conservation of organizational stability, conservation of familiarity,

declining growth, declining quality and feedback system. The meaning of each law and

the year it was developed is described in Table 2.1. Although some of the laws, such as

continuing change, may seem obvious, it is surprising to observe that a large amount of

software systems from different domains appear to obey the same set of laws. Noticing

that the practical meaning of the laws to software engineering may not be well understood,

Lehman further illustrated over 50 rules for applications in software system process plan-
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ning, management and implementation, as well as suggestions for supporting tools to be

built [30].

Year Brief Name Law

1974 Continuing Change E-type systems must be continually adapted, else they become
progressively less satisfactory.

1974 Increasing Complexity As an E-type system evolves, its complexity increases unless
work is done to maintain or reduce it.

1974 Self Regulation E-type system evolution process is self regulating with distri-
bution of product and process measures close to normal.

1980 Conservation of Organiza-
tional Stability

The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.

1980 Conservation of Familiarity As an E-type evolves, all associated with it, developers, sales
personnel, users, for example, must maintain mastery of its
content and behavior to achieve satisfactory evolution. Ex-
cessive growth diminishes that mastery. Hence the average
incremental growth remains invariant as the system evolves.

1980 Continuing Growth The functional content of E-type systems must be continually
increased to maintain user satisfaction over their lifetime.

1996 Declining Quality The quality of E-type systems will appear to be declining un-
less they are rigorously maintained and adapted to operational
environment changes.

1996 Feedback System E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base.

Table 2.1: Laws of software evolution

Many studies of software evolution were surveyed by Kemerer and Slaughter in 1999

[25]. They examined empirical studies performed by seven groups of researchers and ob-

served that techniques used by them were limited, such as the sample size was limited

and only single variable OLS (ordinary least squares) regression model was applied in

pattern/trend analysis. They noted that these techniques were insufficient to meet the
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longitude nature of empirical study of software evolution, and proposed a set of new tech-

niques and methods. Some of these methods were borrowed from other research areas,

such as sequence analysis and phase mapping. They also presented the design of their new

approach that was based on large amounts of raw data, reliable procedures, and some new

techniques. They asserted that their new approach could be able to provide more insights

into the evolution process.

There were some other notable studies not mentioned in Kemerer and Slaughter’s sur-

vey. We now summarize them as well as some empirical studies done since 1999.

Gall et al. examined a release history of 20 versions of a telecommunication switching

system [16]. They measured system size using number of modules instead of LOC and in-

vestigated both the growth of the entire system and different subsystems. They discovered

that the evolutionary behavior of the whole system differs from that of different subsystems

— although the whole system seems stable, individual subsystems may exhibit high rate

of change over their lifespans.

Burd and Munro proposed two metrics based on calling structure to assess change of

maintainability when software evolves [14]. They assumed that maintainability was related

to comprehensibility, and comprehensibility was closely related to the calling structure. The

two metrics they used to measure maintainability were based on a count of the addition

and deletion of functions, and the change of dominance tree relations in the call graph.

From the case study of 30 versions of GCC, they found that both metrics seem to indicate

the same change of maintainability. After they verified these results by examining change

logs and interviewing maintainers, they concluded that the two metrics seem to be able to

offer some important insights into the comprehensibility and maintainability of software.

Antón and Potts investigated how system functionality grows and evolves by analyzing

the evolution of services in a domestic telephony system over 50 years [10]. They classified

services into categories and analyzed change of benefits and burdens of each category. They

found that functional evolution was punctuated over gradual enhancement. When a large

number of services are introduced, a small decline of the number of services and benefits

will usually follow. These findings seem to conform to results from FEAST project: rapid

functional evolution may lead to fission [2].

Barry and colleagues introduced software volatility as a measure of software evolution
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[12]. Software volatility consists of amplitude, periodicity, and dispersion, which mea-

sure the size of change, frequency of change, and variance of change respectively. In this

approach, data of software volatility were further categorized into eight classes, and a

volatility vector containing these volatility classes at different times was used to describe

the evolution of a system. Based on the case study of 23 software systems, four groups

of volatility patterns were discovered. For example, the two systems shown in Figure 2.1

and Figure 2.2 are in group 4, which can be characterized by constant large modification

with wide variance in the beginning and decreasing change size and frequency thereafter.

They also found that these two systems have same volatility patterns, as shown in the two

figures, although they have different life cycle volatilities.

Figure 2.1: System 10 life cycle volatility Figure 2.2: System 7 life cycle volatility

While many researchers are making observations on how software has evolved in the

past, some researchers have tried to build predictive models of software evolution. Ramil

and Lehman proposed six models to predict cost based on past evolution histories [35].

These models were built upon their previous observation in FEAST project [2]: the evolu-

tion of E-type software (software whose functionality evolves within an environment) has

regularities, patterns, and invariants. In all six predictive models, the estimated effort

required to evolve a system from time t to t + 1 is a function of activity from time t to

t+1. What makes a prediction model different is its measurement of activity from time t to

t + 1. They tested all the models on a data set covering 17 years evolution of a mainframe

operating system kernel, and found that all the models predicted lower efforts than two
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selected base models. The best model was based on coarse granularity. The phenomenon

that measures with coarse granularity demonstrate better quality than measure with fine

granularity was observed before, such as in [2, 28], where the number of modules seemed

to be a better indicator than LOC.

We list these works in Table 2.2 in chronological order.

Author Major contribution Data Evolution Path What to measure

Gall
1997
[16]

Observe difference
growth behaviors
for the whole system
and subsystems

Telecommunication
switching system,
20 releases over 21
months

Time series analy-
sis of growth at dif-
ferent architectural
granularities

Added, removed or
changed modules

Burd
1999
[14]

Propose two met-
rics measuring code
maintainability

30 versions of GCC History of proposed
metrics

Two metrics derived
from deletion and addi-
tion of functions, and
changes of dominance
relations

Ramil
2000
[35]

Predict cost as a
function of a suite of
metrics

ICL VME kernel Regression Number of mod-
ules/subsystems cre-
ated, changed or
handled

Antón
2001
[10]

Analyze the evolu-
tion of user-visible
features

Telephony service
over 50 years

Time series analysis Change of services, ben-
efit& burden

Barry
2003
[12]

Discover evolution-
ary patterns exist-
ing in real software
systems

23 software systems Phasic analysis Software volatility met-
rics

Table 2.2: Empirical study of software evolution
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2.1.2 Open Source Software Evolution

There is growing attention being paid to open source software (OSS) development by both

industry and the research community. Features of OSS, like free redistribution and access

to source code and derived works [6], make rapid evolutionary selection possible in OSS

development. A large number of successful OSS are now being widely used, such as the

GNU/Linux kernel, the GCC compiler suite, the PostgreSQL RDBMS and the Vim text

editor.

Godfrey and Tu examined the growth of Linux kernel over a six year period using

several metrics [19]. They found that the development releases of Linux kernel grew at a

super-linear rate, which contradicts Lehman and Turski’s inverse square growth rate hy-

pothesis [28, 37]. Similar as Gall did in [16], they examined the growth patterns of different

subsystems. The results showed that the rapid growth of driver subsystems contributed

most to the growth of whole system. They also suggested that the nature of the subsystems

and evolutionary patterns need to be investigated to gain a better understanding of how

and why the whole system has evolved.

In [32], Nakakoji and his colleagues studied not only the evolution of OSS systems,

but also the evolution of associated OSS communities. In their case studies of four OSS

projects, they found that different collaboration models within OSS community exist, and

that the difference in collaboration model results in different evolution patterns of OSS

systems and communities. Based on their findings, they proposed a classification of OSS

projects into three types: Exploration-Oriented (such as GNU software and Linux kernel),

Utility-Oriented (such as Linux excluding Linux kernel), and Service-Oriented (such as

PostgreSQL). The classification was based on following items: project objective, control

style, system evolution pattern and community structure.

Ye and Kishida extended the work in [32] towards a study of the motivation of OSS

developers in [38]. They argued that learning is one of the major motivational forces that

attract software developers and users to participate in OSS development and to become

member of OSS communities. This argument was based on learning theory: Legitimate

Peripheral Participation (LPP), which essentially says that learning takes place when mem-

bers of a community interact with each other in their daily practice. Noting that learning

is one of the major driving forces in OSS development, they pointed out several practical
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implications for this finding. For example, peripheral participation should be encouraged

and allowed by different means to motivate developers and users; also integration of edu-

cation and research with OSS might be a possible way to educate and train new software

professionals.

2.1.3 Visualization of Evolution History

Visualization of how software changed in the past can aid in improving our understanding

of software evolution. It helps maintainers to develop a mental picture of the software

history. It may also lead to discoveries of patterns and hidden rules that are embedded in

the large amount of data produced during software evolution.

Holt and Pak presented a tool GASE [21] to visualize software structural changes. For

a pair of versions, red, grey, and blue colors were used to display new changes, common

parts between two versions, and old parts respectively. By comparing the two graphs

visualizing the system structure in the old version and new version, as shown in Figure 2.3

and Figure 2.4 (colors were not shown in the two figures), significant restructuring could

be observed.

Figure 2.3: Old dependencies Figure 2.4: New dependencies

Gall et al. applied color and 3D in visualizing software release histories [17]. They

displayed system structure as a 2D or 3D graphs, and used time as the third dimension

of software release history. Different colors were used to represent different values of a
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property, such as release sequence number (RSN). When the data of system structure was

large, a view called “percentage bar” was used to offer a compact representation. For

a software release history, multiple views could be produced. For example, Figure 2.5

shows system structures at different time, where a hierarchical tree was used to display the

system structure in each release, and color of each program element in the trees represents

the version it was last changed. Figure 2.6 shows a compact view of the previous figure,

where a horizontal bar is a summary of how old entities are in a release: different ratios of

different colors in a bar represent how many entities remain unchanged ever since which

old version.

Figure 2.5: Visualizing release history

Figure 2.6: History with percentages

Lanza combined software metrics in visualization of software evolution [27]. In the

evolution matrix that displays the evolution of classes in a software system, two-dimensional

boxes are used to represent classes. The width and height of box represent values of any

two metrics, such as number of methods (NOM) and number of instance variables (NIV).

Classes in different releases were displayed at the same time. For example, Figure 2.7 shows

the evolution history of an example software system. With the help of evolution matrix,

classes with evolution patterns, such as pulsar (class that grows and shrinks repeatedly),
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and supernova (class that suddenly explodes in size), could be identified.

Figure 2.7: The evolution matrix of Sherlock

Cain and McCringdle investigated the combination of spatial and temporal visualization

in [15]. In this approach, software evolution process was displayed as a movie, where each

picture in the movie was generated from code in configuration management repository at

one particular time. As shown in Figure 2.8, a label represents a class, the size of the label

indicates the number of references to the class, and the color indicates the number of classes

that the class uses. By examining the change of size and/or color in the movie, different

phenomena of software evolution could be observed. For example as shown in Figure 2.8,

although it was initially hardly visible, class cBlock was growing in its importance, as the

number of references to it (represented as the size of the “cBlock” label) was increasing.

2.1.4 Summary

There is a significant body of work in empirical studies of software evolution. Researchers

have investigated software changes from various aspects for different types of software

systems using different analysis techniques. With or without aid from visualization tech-

niques, some patterns or rules have been discovered. Results from empirical studies can

be summarized as:
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Figure 2.8: Four consecutive images at two-month intervals

• Different software systems evolve in different ways. However, some common patterns

and “rules” may exist.

• It is useful to examine a software system from different perspectives to get a better

understanding of it.

• Visualization is often useful in both understanding software evolution process and

discovering interesting phenomena or patterns.

2.2 Previous Work on Origin Analysis and the Beagle

Tool

Although extensive empirical studies of software evolution have been conducted by many

researchers, few of them have focused on a better understanding of software changes them-

selves, the fundamental activities in software evolution. From the discussion in Section 2.1,

we can see that most researchers have tried to use one or a set of metrics to summarize
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software changes, such as lines of code (LOC) or software volatility. Although measuring a

software system using a set of numbers does help to reveal some patterns of how software

evolves, it often fails to provide answers to the “what/how/why” questions of software

changes: What changes have been made in the past? How? Why was software changed in

this way? As answers to these questions comprise a detailed story of how software evolves,

they are essential for a better understanding of the nature of software evolution.

There are various kinds of software changes. Among them, a particular type of change

— structural change — is important. Structural changes, including moves, renames and

merges/splits, are often applied by maintainers during refactoring or restructuring, to im-

prove the software design and support future evolution.

Structural changes are important because they reflect decisions of design changes made

in the past. While the raw effects of such changes may be plainly evident in the new

artifacts, the original intent of the design changes is often lost. Failure to identify and

understand them will greatly affect our understanding of software changes. These decisions,

once they are recovered, however, will become knowledge we can learn from, e.g., they may

include patterns that we can reuse in future maintenance.

Godfrey and Tu [20, 36] proposed an approach called origin analysis to track structural

changes during software evolution process. Basically, they used two techniques:

• Entity analysis — a fingerprint is created for each function based on its various

attributes, including S-complexity, D-complexity, Albrechts metric, Kafuras metric

and cyclomatic complexity.

• Relation analysis — entities are considered for similarity based on the commonalities

in various pre- and post-relational images, such as “are the two functions called by

the same clients ?”

For each function G that appeared to be “added” in a new version, and for each function

F that appeared to be “deleted” in an old version,

1. the entity analysis fingerprints were compared,

2. the calls and called by relational images were compared, and
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3. a simple string matching algorithm on the function prototypes was performed.

In their case study, they performed origin analysis on release change from GCC 2.7.2.3

to EGCS version 1.0. They found a large number of apparently new functions in EGCS 1.0

were actually old functions. For example, in parser subsystem, out of 848 apparently new

functions, only 460 were truly “new” and the remainders were very similar to functions in

older version.

2.3 Origin Analysis vs. Clone Detection

Origin analysis is related to clone detection [11, 23, 26, 13]: origin analysis borrows some

techniques from clone detection, such as metric-based fingerprint of a function; and clones

between two different versions may indicate instances of structural changes, such as file

move and rename. However, there still exist significant differences between them.

2.3.1 Clone Detection

Clone detection is used to find duplicate or near-duplicate code introduced in maintenance

activities. Code cloning occurs for a variety of reasons, such as under time constraints.

Clones can increase the cost of maintenance, because errors embedded in the code are also

copied at the same time when code is copied.

Different techniques exist for clone detection; four major groups are text-based, metrics-

based, AST-based and token-based.

Johnson discussed sources of textual similarity and possible applications of clone detec-

tion in [23]. He investigated the clones in two versions of GCC using text-based matching

and found a small part of the source files were clones in each version. He also demonstrated

that clone detection could be used to find structural changes at the file level between dif-

ferent releases: if two files from two different versions are actually clones, then the file in

new version may be just a moved or renamed version of the one in old version.

Baker presented a scalable approach to detect textually identical code in large software

systems [11]. This approach also supported a systematic substitution applied to codes to

increase flexibility, called p-match. By adopting an efficient algorithm based on a data
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structure p-suffix tree, the overall running time could be roughly linear, as demonstrated

in their case studies of two software systems. The case study also showed that in both

systems around 20% of the code was cloned (of at least 30 lines).

In [26], Kontogiannis proposed a metrics-based technique for detecting duplicate func-

tions. He used five metrics, including Kafura, S-Complexity, D-Complexity, McCabe and

Albrecht, to together form a function signature. If the Euclidean distance of two function

signatures is small, then the two functions are considered as clones. Results from case

studies of four software systems suggested that this approach was fast and could be easily

used. However, results were sensitive to the expected precision: high precision resulted

low recall rate, which means only a small part of clones were identified; when recall was

high, results had only low precision, which means many clones identified were actually not

clones.

Baxter and colleagues applied abstract syntax tree-based clone detection in [13]. They

applied a fast algorithm to detect subtree clones using a hashing technique, and then

identified sequences of clones and near-misses clones. In the case study of a process-control

system having 400K lines of code, they found that in the newer subsystems, percentages

of cloned code were higher; clones in utility programs were rarely “cleaned up”.

Toshihiro Kamiya and colleagues proposed a token-based clone detection system called

CCFinder [24]. They transformed input source text and compared token sequences to

extract code clones. They applied the CCFinder to various kinds of source codes in various

languages. Their case study showed that this approach was efficient and scalable to large

software systems. As another contribution, they used CCFinder to explore the differences

or similarity of two or more systems.

2.3.2 Using Clone Detection to Identify Structural Changes

Johnson applied clone detection to identify structural changes between two versions in [23].

He applied exact substring matching to files from two versions, and then put files into one

group if they were clones. These file groups were further clustered according to the number

of files in the group as well as release information. There are two clusters that contain

structural changes:
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• ABX — containing one file from the A release and one file from the B release with

different names.

• Cplx — containing three or more files.

In cluster ABX, as each file group contains two different files from two different releases

with same content, it may indicate a file rename has occurred. In the case study of GCC

compiler of version 2.3.3 and 2.5.8, a substantial number of file renames were found. These

renames were caused by reorganization of the configuration subdirectory.

Considering file groups in cluster Cplx, if all the files were in one release, then they were

just clones in one release; otherwise, they may represent instances of structural changes,

such as file move or rename, depending on other information. In cases of structural changes,

file names were used to guess the cause of changes.

In Johnson’s approach of detecting structural changes, only files were analyzed; fine-

grained software entities such as functions were not discussed; also, as text-based matching

does not consider semantics or syntax, it is sensitive to various changes, which are usually

unavoidable or even expected in the context of software evolution.

2.3.3 Origin Analysis vs. Clone Detection

From our above discussions, we can see that origin analysis is related to clone detection in

some perspectives. However, origin analysis is different from clone detection in following

aspects:

• Clone detection is usually applied to one version of software system, while origin

analysis is applied to two versions.

• The purpose of clone detection is to find “similar code fragments”, while origin anal-

ysis is to find “same software entities”. The difference between “similar” and “same”,

and between “code fragments” and “software entities” result in situations where re-

sults from origin analysis are not equivalent to results from clone detection.

• Techniques in clone detection have to be cheap to be applicable. While in origin

analysis, it may be still practical to adopt expensive techniques, as in many cases

only a small set of entities are involved.
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2.4 Finding Reusable Software Components

Origin analysis is also related to some techniques used to find reusable software components.

In software reuse, components stored in repository have to be found for specific reuse

purposes. There are several techniques to find components that meet with certain require-

ments, such as browsing a hierarchical organization of components. One technique that is

related to origin analysis is called signature matching [39], a library search technique based

on function type and module interface.

In signature matching, two functions are matched only if their types are the same, or

the same after some relaxations. Relaxation in a search was transformation performed

on types in the search, either on types in the query or the types in the library. Typical

predefined relaxations include rename and reorder etc.. As type information of a function

reveals what kinds of data is manipulated and is relatively stable during release changes,

signature matching can be a candidate technique adopted in origin analysis.

As we will see in Chapter 3 about improved origin analysis, we have a declaration-

matcher that compares two functions by comparing their formal parameter names. As a

function declaration is composed of both formal parameter name information and type

information, and we only consider the first one in our current implementation, we think

incorporating signature matching into origin analysis, as additional consideration to the

type information in the function declaration, will be an improvement to our approach in

the future.

2.5 Summary

In this chapter, we have reviewed related work to our research, including software evolution,

previous work on detecting structural changes using “origin analysis”, and finding reusable

software components. In the next chapter, we will present our improvements to origin

analysis, as well as improved version of its tool support Beagle.
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Improving Origin Analysis

From our discussion in Chapter 2, we can see that various aspects of software changes have

been investigated empirically to reveal patterns or rules in the evolution process. These

patterns and rules help us to gain a better understanding of how software evolves in its

lifetime.

Origin analysis and its tool support Beagle, as proposed in the initial work [20, 36], was

useful in identifying structural changes. In origin analysis, basically two major techniques

— entity analysis and relation analysis — were applied on those software entities that

appeared to be inserted into new version or deleted from old version. Simple structural

change, such as function moving and renaming, could be detected. However, there are

improvements need to be made: the analysis routines were performed all at once in a

batch with no interaction with end users; there was only limited support for reasoning

about structural changes; only two types of changes, move and remove, were discussed,

and complex changes, such as merge and split, were not addressed; all the results would

get lost if Beagle shuts down, thus no support was provided for building a persistent model

of evolution history.

In this chapter, we describe our improvements to origin analysis as well as the Beagle

support tool. The remainder of this chapter is organized as follows: Section 3.1 gives

the definition of origin analysis. Section 3.2 describes the major improvements to origin

analysis. Section 3.3 presents three basic steps in origin analysis, with their details dis-

cussed from Section 3.4 to 3.6. Section 3.7 discusses features in Beagle. Finally, Section 3.8

21
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describes how to detect structural changes of different types using our approach.

3.1 Definition of Origin Analysis

Origin analysis was defined as follows:

Suppose G is a software entity (such as a function, class, or file) that occurs in

a particular version of a software system, call it Vnew. Suppose further that G

did not “exist” in the previous version, call it Vorig, in the sense that there was

no like entity of the same name and/or location.

Origin analysis is the process of deciding if G is a program entity that was newly

introduced in Vnew, or if it should more accurately be viewed as a renamed,

moved, or otherwise changed version of an entity from Vorig, say F .

While this informal definition helps to show the intuition behind our research, origin

analysis as we have implemented and nvestigated it in this thesis is slightly more complex:

• Origin analysis can be performed in either direction: old-to-new, or new-to-old. That

is, the above formulation essentially asks the question: “Are these apparently new

entities really new?”; one might be just as interested in asking: “Are these apparently

deleted entities really gone from the new version?”. The original implementation of

origin analysis in the Beagle tool considered only the first question, but we now

support looking in both directions.

• Since merging and splitting of software entities may occur, there may be several Gis

that were split from a single F , and there may be several Fis that were merged into a

single G. It may also be the case that several Fis are merged into a G that is present

in both versions of the system (or analogously, an F that exists in both versions may

split off some of its “old” functionality into one or more “new” Gis into the new

version).
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3.2 Improved Origin Analysis

We note that while simple renaming and moving of entities are easy to define formally

and fairly easy to detect, the more general concept that G is a changed version of F is

not. A structural change can be as simple as moving a software entity to a new location,

or as complex as merging/splitting. Moreover, a single entity could be involved in several

structural changes between two releases of a system, or closely related entities may change

as a group all at once. Cases of structural changes can be so complicated that they are

hard to detect even by manual examination. Thus how to identify structural changes of

various forms remains as a difficult problem.

We believe origin analysis must be a semi-automatic approach to be useful; that is, a

user must apply experience and common sense to decide whether an entity is a changed

version of another. At the same time, computation must be cheap to achieve effective

human-computer interaction. Also, origin analysis must have a flexible structure, so that

the user can apply different technologies for various situations and reason about changes.

Extensibility is greatly appreciated, as new techniques may need to be added in the future.

We consider all the above requirements in our improved version of origin analysis.

Essentially, we have built a generalized model of matching and adopted an iterative and

interactive process. The generalized matching model characterizes software entities and

matching. It enables different matching techniques to be “plugged-in” or “unplugged”

when necessary. Performing origin analysis becomes semi-automatic and iterative. The

user has flexibility in choosing matching techniques. (S)he can also apply knowledge in

deciding real matches.

We have redesigned Beagle to support the improved version of origin analysis; the new

Beagle tool is a complete re-implementation.

3.2.1 Generalized Matching Model

“Matching” in a central concept in improved origin analysis. Generally speaking, it refers

to a process to find match candidates using a certain strategy, where match candidates

are pairs of software entities that one of them is a possible “origin” of the other. We have

generalized this concept into an abstract interface called Matcher and used “matcher” to
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refer to any object that implements this interface. Details of the interface will be given

in Section 3.5.1. As we make no assumptions for what is inside a matcher, matchers can

have different ways to produce match candidates, e.g., based on different definitions of how

similar two entities are. They can also coexist and be plugged in or unplugged easily. A

matcher may even use other matchers to provide its own matching service.

The generalized matching model reflects how we model structural change identification.

It involves other related concepts, including similarity measures and entity attributes. We

now examine this model in more details:

• Software entities are characterized using attributes.

We use attributes to represent those properties we choose to characterize software

entities. Different kinds of entities may have different attribute set. For example,

functions have the attributes of name, declaration, implementation metrics and call

relations, while files have attributes name and metrics. Common types of attributes

may exist for different types of entities; e.g., name is a common attribute for functions

and files.

• Different similarity measures can be defined based on entity attributes.

A similarity measure is used to indicate how closely related two entities are from a

certain perspective. For example, we can use the longest common subsequence of

two function names to define the similarity of functions from the perspective of their

names. Different similarities can be defined, such as on different sets of attributes.

Even for the same set of attributes, different similarity criteria may be used.

• Different matchers may use different similarity measures to implement their matching

strategies.

When matchers are based on different similarity measures, they are able to measure

how similar two entities are from different perspectives. Thus even in case that a

software entity changes in many aspects, we may still be able to track its origin

based on other aspects that remain roughly similar. For example, suppose we have a

matcher that is based on similarity of function declarations. If a function changes its

name as well as its implementation completely in a new version, but with no changes
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to its declaration, then we may be still able to detect this instance of move&rename

using the matcher that compares function declarations.

We can see the big advantage of adopting the generalized matching model in origin

analysis in flexibility. Now we are able to apply different strategies for different situations

of structural changes. We can also easily create a new strategy or remove an old one

without breaking the uniform structure of origin analysis.

3.2.2 Interactive and Iterative Process of Origin Analysis

The generalized matching model incorporates various techniques for origin analysis into one

unified framework. However, without an appropriate process of applying origin analysis, it

is still not enough for identification of structural changes in an effective and efficient way.

We adopt an interactive and iterative process for origin analysis to achieve flexibility and

accuracy in change identification.

The basic process of the improved origin analysis is a semi-automatic one: looking for

match candidates and then deciding which ones are real. User interaction is an integrated

part of it, as the user must choose matching strategies, make decisions over match candi-

dates, and reason about changes. Applying origin analysis is also iterative, with different

strategies applied on possibly different entities in different iterations. The iterative and

interactive process helps to improve the efficiency of origin analysis, which we will explain

in following paragraphs. Details of how to perform origin analysis will be described from

Section 3.3 to Section 3.6.

Like a library searching system, we consider two measures of how good a search system

is: recall and precision. Recall is a measure to the ability of a system to present all relevant

items, and precision is a measure to the ability of a system to present only relevant items.

In the context of origin analysis, recall represents the ability to capture all the real matches,

and precision represents the ability to present only real matches for user decision. An ideal

approach would be one that has high recall and high precision, which means that the

searching result is a small list of candidates containing real matches.

However, achieving high recall with high precision at the same time is not easy. For a

target entity, we may find multiple entities whose properties are similar to it. If we apply
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a strict matching strategy (one that sets tough conditions for entities to be considered as

candidates), such as setting a high threshold for similarity, then we may be able to get

a small list of candidates, but we may also risk not retrieving the real match at all at

the same time; if we apply a relaxed strategy, such as with a low threshold of similarity,

to ensure that the real match is in the candidates, then we may get a large number of

candidates, which imposes great effort for decision.

Using improved origin analysis, we are able to choose a matching strategy to be applied

in one iteration; we can further choose the entities to participate. By reasoning about

changes and by applying heuristics, we are able to reduce the problem caused by the

dilemma between recall and precision:

• Suppose a relaxed matching strategy is being applied. Considering that in many cases

the candidates can only come from particular entity sets — such as only apparently

deleted entities from an old release and apparently inserted entities from a new release

in case of function renames — we can set the candidates to be only these entities

without losing the real ones. If we perform the matching strategy on the reduced

entities, the size of the candidate set will decrease, and the decision will be easier to

make.

• For a strict strategy, as a real match may not be obtained, matching strategy can

be slackened in later iterations. At the same time, considering that a strict strategy

may result few candidates for each entity even applied on a large number of entities,

which means it is still easy to decide real matches, we can set the entities in the

matching to be large to increase the number of possible real matches identified in this

iteration. As matches identified in previous iterations may be excluded from matching

in later iterations when relaxed strategies are used, the more matches identified in

this iteration, less effort is required in later ones.

The combination of the improved model and process provides better support for deal-

ing with a variety of structural changes. For example, complex structural changes can

be detected by comparing entities from different perspectives using different matchers;

chained changes that involve entities dependent on each other, can be identified in multi-
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ple iterations. We will show examples of this phenomenon in the case study in the next

chapter.

3.2.3 Improved Tool Support

We have redesigned the Beagle tool to support the new model and new process of origin

analysis. We have adopted a plug-in architecture for different components supporting the

generalized matching interface. We have redesigned the database to support a persistent

model of software evolution, thus changes identified before are still available when Beagle

stops and starts. We have built various sub-tools for different phases of origin analysis.

We also incorporate visualization techniques in both structural change identification and

understanding, for example, we use a scatter plot to visualize structural changes for entities

in two versions. There are many other features in Beagle that provides additional support

for origin analysis, such as transactions, and navigation between matched entities.

We will describe more details of Beagle in Section 3.7.

3.3 Performing Origin Analysis

Origin analysis is performed iteratively, with each iteration consisting of following three

basic steps:

1. Defining matching space: SETorig and SETnew

The user defines an entity set from each of the two different versions to be involved

in matching; match candidates will be chosen from and only from these entities.

2. Matching

The user applies one or more matchers. Matchers are sub-tools that implement

matching strategies and produce match candidates.

3. Decision

The user decides if there are any real matches from match candidates. In this step,

the user needs to decide whether evidence is strong enough to make a commitment.
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(S)he may examine the output of Step 2 as well as other sources of information, such

as source code.

Figure 3.1 shows the data flow between the three steps.

Defining
matching space

Matching Decision

SETorig, SETnew

match candidates

structural changes

Beagle
repository

Figure 3.1: Three basic steps of origin analysis

The user can repeat the matching process for the same sets of entities until (s)he is

satisfied that the “correct” origins have been found or, alternatively, that no such entity

exist. In either case, once the decision has been made, it is recorded in the Beagle repository.

We will explain each step in details in following sections from 3.4 to 3.6.

3.4 Step 1: Defining Matching Space

We use SETorig and SETnew to denote the two sets of entities, from Vorig and Vnew respec-

tively, to be considered in matching. As we have discussed before, we must be careful in

setting up the two sets. We suggest some heuristics for this step.

• Consider whether the matching strategy to be applied in Step 2 is strict or relaxed. If

we are going to choose a strict matching strategy, such as exact name matching, then

we consider big matching space, since a strict matching strategy generally results a

small candidate list with high precision even on a big set of candidates. If it is a

relaxed one, consider other heuristics.
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• Consider the characteristics of the structural changes to be identified, and restrict

the matching space to only those entities that could be involved. For example, if

we want to identify function renames, we can restrict SETorig to be only entities

apparently deleted from Vorig and SETnew to be only entities apparently inserted

into Vnew. If we further know (or suspect) that these renames must have happened in

subsystem access, we can get an even smaller matching space by further restricting

SETorig and SETnew to be in subsystem access. This heuristic helps to reduce both

computation time and decision effort without sacrificing precision. It can be applied

to both relaxed and strict matching strategies.

• If possible, deliberately separate a big matching space into several small ones and

match them one by one. For example, try matching on only one subsystem each time,

considering that structural changes are generally performed in the same subsystem.

More heuristics may exist about how to define a good matching space. They can be

discovered through experimentation and may be peculiar to the system under study.

3.5 Step 2: Matching

Matching is a process that produces candidate matches for a defined matching space. To

make it flexible and extensible, we have generalized the notion of matching and built a set

of matchers that implement different matching techniques.

In the remainder of this section, we first present how we generalize the notion of match-

ing in subsection 3.5.1, including the Matcher interface and matcher plug-ins. Then we

describe five matchers we have implemented.

3.5.1 Generalized Matching

We generalize the notion of matching as follows:

Suppose we have two sets of entities from Vorig and Vnew, called SETorig and

SETnew respectively, matching is simply a process of producing a list of match

candidates in the form (target, candidate), where target is from Vorig, candidate
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is from Vnew, and candidate is an entity that is considered to be a possible match

to target.

Matching can also be performed in the other direction Vnew → Vorig, that is to

look for candidates from SETorig for entities in SETnew.

For simplicity of explanation, we will discuss the direction Vorig → Vnew only in the

remainder of this section, which means targets are in SETorig and candidates are in SETnew.

Note in our generalized matching, we put no restriction on the types of the entities —

they can be functions or files. We make no assumption about techniques used in matching

— they can be comparison based on two names, or comparison based on call relations, or

even both. Although we have not studied other types of software entities, such as global

variables, types and classes, incorporating them into this general model, is straightforward

task.

We define Matcher to be the common interface for all matching service providers,

called matchers. The Matcher interface defines a set of essential operations that each

matcher must support to provide its service. A matcher may have its own way to compute

similarities of entities and produce match candidates, but it must be able to communicate

with its clients via a common interface.

The Matcher interface, shown as Java code, defines two operations:

• Object chooseOption()

• Vector doMatch(Vector SETorig, Vector SETnew, Object option)

Method chooseOption allows matcher to be configured, such as whether the matching

should be exact or inexact, or the value of similarity threshold. Its implementation can

vary from matchers; the one used by most matchers we have implemented is to pop up a

dialog with configuration choices to be specified by the user. All the choices, once chosen,

consolidate into the configuration object returned by this method.

Method doMatch asks a matcher to perform its matching process. The three parameters

contain all the information needed for a matching: SETorig and SETnew are entity sets to

be searched for match candidates, and option specifies configuration of the matching. A

matcher applies its own algorithm to compare entity attributes, compute similarities, and
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select match candidates. The return value is a list of elements in the form of (F,G, r),

where F is a target entity from SETorig, G is a match candidate for F from SETnew,

and r is an object that contains detailed information of matching F and G (generally

including similarity measure and its computation details). Associating match details with

each candidate makes it easier to use matching results; for example the user can rank

candidates by similarities, or check how the similarity is computed when deciding real

matches.

3.5.2 Implemented Matchers

We have implemented five matchers, including four single attribute matchers that compare

only one attribute, and expression-matcher that allows comparison of multiple attributes

at the same time. The four single attribute matchers are name-matcher, declaration-

matcher, metrics-matcher, relation-matcher, considering attributes name, declaration,

metrics and call relations respectively. The name-matcher can be applied on all types

of entities, including functions, file and subsystems, while the other three can only be

applied to functions. The fifth matcher, expression-matcher, is built upon the four

single attribute matchers. It integrates services from other matchers and makes it possible

to query candidate considering multiple attributes at the same. Figure 3.2 shows the

relationship between the five matchers.

We note that there exists a viewer for each set of candidates produced by each matcher.

Viewers separate displaying match candidates from accessing the data directly, thus provide

additional flexibility for navigating candidates and reasoning about them. For example,

different viewers may be attached with match candidates produced by different matchers;

for the same candidate set, multiple displays are possible to provide multiple views. In

our current implementation, we have two viewers, simple-viewer and expr-viewer. All

the single attribute matchers use simple-viewer, and only expression-matcher uses

expr-viewer.

Using simple-viewer, we can query all the distinct targets ranked by best candidate

(the candidate having highest similarity with the target), and list all the candidates for

a given target ranked by similarity values. Using the other viewer, expr-viewer, we can

perform the similar ranked listing, but with additional constraints on the visible candi-
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Figure 3.2: Five matchers implemented

dates. The constraints are in form of boolean expressions. For example, an expression like

“name>0.5 & decl>0.5” will result that only match candidates, whose similarities com-

puted by name-matcher and declaration-matcher are both greater than 0.5, are included.

The expr-viewer requires the candidates to be organized in a 2D matrix data structure,

which is only supported by expression-matcher. As expr-viewer is closely related to the

2D matrix data structure, which is also the central data structure of expression-matcher,

we will discuss them all together in Section 3.5.2.

In additional to displaying candidates, viewers support manipulation of candidate set.

For example, we can delete a target, which will result in all its candidates being deleted.
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We can also delete arbitrary number of candidate of a target. These operations are useful,

as we may need to eliminate uninteresting results and focus only on particular candidates.

Although the four single attribute matchers are different in the attributes they compare,

they do share some commonality in their supporting options and matching algorithms. For

example, they generally support both inexact and exact matching; in the case of exact

matching, hashing technique is often used to reduce computation time. Also, they all

support threshold of similarity to reduce output size. Finally, their matching results are

all associated with simple-viewer.

In the remainder of this section, we will describe each matcher in more details. For each

matcher, we will focus on following aspects: similarity computation, options supported,

and running time analysis. When we discuss expression-matcher in Section 3.5.2, we

will describe the expr-viewer as well.

Name-matcher

Name-matcher compares names of software entities, including functions, files and subsys-

tems. Name is an important attribute for all the software entities, as it is generally a

description of an entity’s role or function. When the functionality of an entity changes, its

name might change as well. An entity may also changes its name because a new naming

convention is adopted. We will have more discussions in Section 4.5 about various cases of

function renaming.

• Similarity computation:

Name-matcher computes similarity of two names based on Longest Common Subse-

quence (LCS). The similarity of two names s1, s2 is defined as

length(LCS(s1, s2)) × 2

length(s1) + length(s2)

where LCS(s1, s2) is the longest common subsequence between s1 and s2, and length(s)

is the length of a string. For example, if two names are “PgDeleteAttribute” and

“DeleteAttribute”, then the LCS of the two is “DeleteAttribute”, and the similarity

is 15 × 2 ÷ (17 + 15) = 0.9375.
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Other approaches are possible, of course, to measure similarity of function names.

We can easily use a different measure, or even multiple measures in our approach.

• Option:

Name-matcher provides four options:

1. case sensitive or insensitive,

2. exact or inexact,

3. whether to apply a change schema (a rule of name change), and

4. threshold of similarity.

The first option is applied during LCS computation: if it is set to be case sensitive,

comparison of characters when LCS is computed is case sensitive, otherwise it is case

insensitive.

For the second option, if it is set to be exact, hashing technique will be applied

internally to reduce computation time to O(n + m). When it is set to be inexact, all

the n × m name pairs will be compared without optimization.

The third option is used in case that a name change schema is known or suspected.

A name change schema is a rule in the form “A → B”. Applying it on a string will

result all the substring As in the string be replaced with Bs. The change schema,

if there exists one, is applied on targets in SETorig before they are compared with

entity names in SETnew.

The last option, threshold of similarity, controls the candidates to be returned: only

candidates with similarity value bigger than or equals to the threshold are included

in the return list.

The four options can be used either individually or in combination.

• Complexity:

The running time for computing LCS for two strings is O(pq), where p, q are lengths

of the two strings. If we reasonably assume that p and q is less than a const for

names in a software system, then computing LCS requires const time.
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If no hashing technique is applied, then the running time for the whole matching

process is O(mn), where m is the number of entities in SETorig and n is the number

of entities in SETnew. If hashing is used in case of exact matching, then the running

time can be reduced to O(m + n).

Declaration-matcher

Declaration-matcher compares two functions based on their declarations. Similar to

name, a function declaration contains information about what a function does. Moreover,

it exposes the function interface that contains details about how other functions can in-

teract with this function. As the interface is exposed to others, its change may result

changes to all the other functions that use the function. As a result to avoid such a change

propagation, maintainers are often reluctant to change function declarations if it can still

remain unchanged. The resulting stability of function declarations, makes it a valuable

attribute in the detection of structural changes, especially for function renames.

• Similarity computation:

In our current implementation of declaration-matcher, we compare function dec-

larations by comparing names of formal parameters textually. We first concatenate

all the parameter names in a function declaration in alphabetic order into a string,

and then use the LCS to compute similarity. In the formation of the string, we choose

alphabetic order instead of the sequence order to ensure the comparison is insensitive

to parameter shuffling; we also choose formal parameter names rather than parameter

types to be able to avoid noise that might be caused by renaming of data types. The

disadvantage of not choosing the types is that we may have difficulties in matching

declarations whose parameter names are changed while types remain unchanged.

A possible improvement to our current method is to consider both the type and name

of formal parameters. Options can be provided to choose whether to match type only

or name only, or both type and name.

The similarity of two function declarations is defined based on LCS of the two strings,

s1 and s2, which are composed from formal parameter names:
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length(LCS(s1, s2)) × 2

length(s1) + length(s2)

where LCS(s1, s2) is the longest common subsequence between s1 and s2, and length(s)

is the length of a string s.

For example, suppose a function has a declaration looks like (int total, char*

str), then the string formed by concatenating formal parameter names in alphabetic

order is “str:total”. If another function declaration is (char** str, int total),

then the similarity of the two is 1.

• Option:

There are two options supported by declaration-matcher:

1. exact or inexact, and

2. threshold of similarity.

If the user chooses exact matching, then only match candidates with similarity 1.0

are returned. Otherwise, only match candidates whose similarity value is greater

than or equal to the threshold specified in the second option are returned. In exact

matching, hashing technique is used internally to reduce computation time.

• Complexity:

Similar to name-matcher, we reasonably assume that computing LCS requires const

time. Then if no hashing technique is applied as in the inexact matching, the running

time is O(mn). If hashing technique is used in the case of exact, the running time is

reduced to O(m + n).

Metrics-matcher

Metrics-matcher compares two functions based on their metrics information. The basic

rationale of this matcher is: if a function does not change much in a new version, then

moving to another place or changing to a new name, its value of metrics should be still

similar to that in old version.
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• Similarity computation:

We use five metrics A, B, C, D, and E to form a signature of a function. We omit

names of these metrics here, as we found several different selections of the metrics

set produce similar results.

Similarity of two function signatures, {A1, B1, C1, D1, E1} and {A2, B2, C2, D2, E2},
is define as:

SA + SB + SC + SD + SE

where SA, SB, SC , SD and SE are normalized similarity of each metric. For example,

A represents LOC (lines of code), and the value of SA is computed as follows:

SA = 0.2 if |A2 − A1| < 5

0.1 if 5 ≤ |A2 − A1| < 10

0 if 10 ≤ |A2 − A1|
Normalization of other metrics may be different from A, as they measure a function

from other perspectives. However, the basic idea — normalizing a value of difference

to 0 ∼ 0.2 by dividing it into several ranges and treating them separately — is the

same.

• Option:

We have one option for metrics-matcher: whether it is an exact matching or not.

If the matching is set to be exact, then only functions with exact same metric values

are considered to be candidates. We use a hashing technique to speed up an exact

matching process; hash code is an integer composed of values of all the five metrics

in a function signature.

• Complexity:

The running time for metrics-matcher with m entities in SETorig and n elements

in SETnew is O(mn), as similarity for each pair of entities needs to be computed.

In the case of exact matching when hashing technique is used, the running time is

reduced to O(m + n).
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Relation-matcher

There are many types of relation among software entities that can be used in entity com-

parison, such as inheritance, global variable use and includes. Currently, we focus on only

one type of relation — function call. We will consider other relation analysis in our future

work.

Relation-matcher compares two functions by their call relations. When a function

is renamed or moved, its call relations often remain similar. When a function merges

or splits, its call relations may merge or split as well. Moreover, patterns may exist in

the change of call relations. All these characteristics of call relation makes it an impor-

tant attribute in origin analysis. We will discuss detection of merges/splits using detailed

call relation analysis in Section 3.8.2. Here we only describe some basic information of

relation-matcher.

We first give some notations we use in this section:

1. caller(F ) : the set of functions that call F

2. callee(F ): the set of functions that F calls

3. call(F ): caller(F ) ∪ callee(F )

4. �s: number of elements in set s

5. �match(f, g) : the number of functions in set f that has matched functions in set g.

A function G is a matched function of F iff that G is the origin of F

• Similarity computation:

Similarity of call relations of two functions F , G is defined as follows:

(�match(caller(F ), caller(G)) + �match(callee(F ), callee(G))) × 2

�call(F ) + �call(G)

• Option:

We have one option for call relation based similarity computing: whether the match-

ing considers both callers and callees, or it considers just callers only or callees only.
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If the option is set to both callers and callees, then the similarity is the one we just

defined above. If the option is set to callers only, then only callers are matched and

the similarity becomes:

�match(caller(F ), caller(G)) × 2

�caller(F ) + �caller(G)

Similarly, if the option is set to callees only, the similarity is defined as:

�match(callee(F ), callee(G)) × 2

�callee(F ) + �callee(G)

Comparing functions based on combined similarity of both caller and callee sets is

a good technique for finding functions that have been moved or renamed, but it

works less well for finding merges/splits of patterns (discussed in Section 3.8.2), as

they require fine-grained analysis of call relations. Allowing the user to match on

similarity of only caller or only callee sets provides the additional flexibility to get a

more accurate ranking when merging or splitting is suspected to have occurred.

• Complexity:

The running time for relation-matcher with m entities in SETorig and n elements

in SETnew is O(mn). It is possible to improve this by hashing technique. We intend

to do this in the future.

Expression-matcher

Expression-matcher is a matcher that helps to integrate results from other matchers. It

allows the user to choose and name a set of matchers, then automatically invoke them.

After it obtains results produced by these matchers, it stores them as attributes into a

similarity matrix. By building such an integrated and attributed data model for match

candidates, it provides flexible query support for candidates, together with expr-viewer.

We first look at the central data structure used by both expression-matcher and

expr-viewer: the similarity matrix. Figure 3.3 shows its basic structure. Essentially, it

is a 2D matrix with attributes associated with each node (a cell in the matrix) indicating
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similarities. Its column entities are SETorig and row entities are SETnew. Each node(F,G)

— the node whose column entity is F and row entity is G — has a set of attributes, which

contains information about how different matchers match F with G. If a matcher named

m consider F and G as a pair of match candidates, and it computes their similarity as r,

then node(F,G) will have an attribute with name m and value equal to r, we denote it as

node(F,G).m = r. If the matcher m does not consider that F and G are a pair of match

candidates, then there is no attribute named m in node(F,G). If two matchers m1, m2

both think F and G are a pair of candidates, and they compute the similarity as r1, r2

respectively, then there will be two attributes node(F,G).m1 = r1 and node(F,G).m2 =

r2, as shown in Figure 3.3 .

G

H

I

D E F

node(F,G)

m1=0.7;
m2=0.8;

SETnew

SETorig

Figure 3.3: Similarity matrix

Now we look at how expression-matcher provides its enhanced query service for

results from other matchers.

First, like other matchers, options for matching needs to be configured in choose-

Matcher(). The user is allowed to choose several matchers and assign names for them

as their unique identifiers. These names are the only variables that a query expression

in expr-viewer can use. The user can even choose multiple instances for the same

matcher if (s)he assigns different names for them. Thus, it is possible to choose two

relation-matchers with names “rel-caller-only” and “rel-callee-only”, one comparing

callers only and the other comparing callees only. By doing this, we have additional
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flexibility to compare entities. Each chosen matcher instance needs to be configured too;

these configurations, together with chosen matcher instances and their names, become the

configuration of expression-matcher.

During matching, according to the configuration information, the expression- matcher

applies the chosen matchers one by one and processes candidates produced by each matcher

in following way: for each matcher named m, for each match candidate (F,G, r) returned,

it creates an attribute m with value r for node(F,G), that is letting node(F,G).m = r. In

this way, all the match candidates become attributes in the similarity matrix, ready to be

queried.

expr-viewer is the query engine that works with expression-matcher. It takes the

similarity matrix produced by expression-matcher, and supports querying of candidates

using expression-like requests. The query expression must be boolean, and its variables

must come from the names for matchers in the configuration of expression-matcher.

For example, a boolean expression “name>0.5 and decl>0.4” is a correct one, if “name”

and “decl” are names for two matchers, say name-matcher and declaration-matcher,

chosen when expression-matcher is configured. Editing query expressions is supported

by an expression editor as shown in Figure 3.4. In this editor, the user can choose expres-

sion variables from a list that contains all the available names (marked as selected simple

matchers in the figure). (S)he can also choose operators and edit literals to compose an

expression. Thus, specifying a boolean expression is an easy task.

Whenever a query expression is completed and submitted, expr-viewer will decide

candidates to be returned based on the results of evaluating it on nodes in the similarity

matrix. More specifically, if a node(F,G) has attribute values that satisfy the boolean

expression, then the pair of nodes( F , G) will be included in the candidate list. For

instance, if the expression is “name>0.5 and decl>0.4”, and node(F,G) in the matrix

has attributes name = 0.6 and decl = 0.3, then the expression is evaluated to false as the

value of attribute “decl” is smaller than 0.4. As a result, the pair of nodes (F , G) would

not be included in the query result.

The query facility provided by both expression-matcher and expr-viewer increases

the flexibility for examining match candidates. We can easily construct strict and re-

laxed matching strategies by building different expressions. For example, we can build a
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Figure 3.4: Expression editor of expr-viewer

strict matching strategy by writing an expression as “decl> 0.6 and caller>0.9 and

callee>0.8”; we can also build a relaxed one by specifying the expression as “decl>0.5”.

As match candidates have alread been stored in the similarity matrix, there is no need to

perform matching again and again when we try different matching strategies, thus greatly

improving the matching efficiency.

3.6 Step 3: Making the Decision

The final step in the origin analysis process is to make a decision about the “origin”s of

the functions and files being considered. After match candidates are produced in Step 2,

the user needs to decide which is the correct “origin” of an entity by examining different

sources of information:

• Details of similarity computing produced by matcher

A matcher generally associates a short description of how similarity is computed with

each pair of match candidates. For example, a description produced by relation-

matcher matching two functions F and G might be “==@→elog, >>@→heapClose,...”,

where “==@→elog” means that both F and G called function elog, and “>>@→heap-

Close” means that only F called heapClose. Compared with single-number similarity

value, this description gives more details about how similar two entities are.
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• Source code

Source code is a good place to find information that helps to make a decision. Com-

ments often indicate the functionality of a function or a file. Furthermore, in open

source software, the quality of comments is often high, as many developers depend on

them to understand and maintain the software system. Thus in origin analysis, we

can use the comments to decide “origin” of software entities, as well as to understand

the intention of design changes.

• Documentation

Useful documentation for deciding matches includes release notes and history infor-

mation kept in software configuration system, such as CVS log, etc.. These documents

usually have records about how the original developers thought about changes, thus

provide answers to “what has changed, and why”.

We may use some heuristics in the decision phases, such as applying multiple matchers

for cross-checking. Once decisions about matches are made, they are recorded in system

model. In our case study, we made regular use of source code and CVS log in deciding real

matches; this is detailed in the next Chapter.

3.7 The Beagle Tool

Beagle is a research tool that supports studying software evolution. It incorporates vari-

ous techniques and sub-tools from software metrics, software visualization and relational

database into an integrated platform. It allows users to query, visualize, and navigate

through a system’s history, and allows users to build persistent, annotated models of how

structural changes have impacted the design of the system.

The initial version of Beagle [36] supported origin analysis in a simplified mode. In

our improved version, we have redesigned the Beagle architecture to support the general-

ized matching model and the semi-automatic and iterative process of origin analysis. We

have added many new features to provide strong support for reasoning, identification and

understanding of software changes.
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In the remainder of this section, we will describe Beagle in more detail. First in Sec-

tion 3.7.1, we will show how the data in Beagle repository is collected and how it is man-

aged. In Section 3.7.2, we describe the architecture of Beagle. Then from Section 3.7.3

to Section 3.7.5, we demonstrate support in Beagle for various tasks in software evolution

study.

3.7.1 Collecting Facts for Beagle

Before we can perform any analysis task in Beagle, we need to collect and load facts into

Beagle repository. As in the previous version, the major data input to Beagle are facts

extracted from source code using reverse engineering techniques. We re-targeted Beagle to

facts produced by SWAGKIT [8], as it produces facts conforming to the Datrix model [22].

The completeness of Datrix model ensures more detailed information about the software

system is captured than was captured by the cfx extractor that was used by the previous

Beagle implementation. Figure 3.5 shows the data flow of facts.

Beagleraw pipeline facts

beagle_prep
metrics

data

admin

SWAGKIT
Understand

for C++

Beagle
repository

Figure 3.5: Collect facts

In the first step of the fact collection process, SWAGKIT produces facts of software

architecture for each version of the software system, including:
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• software entities at different granularities (e.g., subsystems, files, functions and vari-

ables),

• entity attributes (e.g., function name and line of definition),

• contain relations of entities (e.g., subsystem S contains file F1 and F2), and

• many other relations (e.g., variable use and function call).

Then beagle prep, a set of small programs that manipulate these raw facts using

relational calculator GROK [4], extract facts that are for Beagle usage only, including

follows:

• archInstance — entities at different architecture levels, including subsystems, C files

and functions defined in each C file,

• ssContain — contain relations among software entities,

• cRefersTo — function call relations, and

• cDefFuncName — formal parameter names of a function.

In parallel, metric data for functions and files are computed by Understanding for

C++ [9], forming a metrics report with predefined format for Beagle usage. The columns in

the report are:

Kind, Name, File, CountLineCode, CountLineComment, CountLineCodeDecl,

CountLineCodeExe, Cyclomatic, CyclomaticModified, CyclomaticStrict,

CountInput, CountOutput, MaxNesting

The meaning of each column is explained in Understanding for C++ [9]. Here we only

give a brief description of some important columns. Column “Kind” refers to the type of

the entity. If its value is “Function”, then it refers to a function. Column “Name” is the

name of the entity. Column “File” is the file that the entity is defined. All the remaining

columns are values of various metrics.

Once facts from both sources are ready, they can be loaded into the Beagle repository

using an interactive Java program called admin. admin supports both facts loading and

basic management of Beagle repository. Its major functions include:
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• create/delete/edit a system in Beagle,

• add/update/remove a version in a system,

• load/remove facts for a version, and

• preview entities at different architectural levels in a selected version.

Figure 3.6 shows a snapshot of the GUI for admin. The tree on the left shows all the

software systems that have been loaded in Beagle. The tree on the right displays entities

in a selected version; the structure of the tree corresponds to the ssContain relation among

software entities.

software
systems

releases

operations entities in
a release

Figure 3.6: Snapshot of admin

Facts can be stored in any relational database supporting SQL, for example DB2 in

our case. We choose to use a relational database as Beagle repository because it supports

standard and efficient querying even for huge amount of data, which is especially valuable
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in analyzing massive amount of facts in software evolution. The strong support of querying

in RDBMS also matches well with the “exploratory” nature of studying software evolution.

The database schema is based on previous version of Beagle, but we have performed many

optimizations, so that most queries involving human-computer interactions can be finished

within reasonable response time. We also add support for multiple software systems in

the repository, so that it is possible to analyze several software systems at the same time.

Moreover, we now support matches being saved in the database, thus matches would not get

lost if Beagle restarts. With matches for consecutive version changes saved in repository,

we are able to build an incremental and persistent model of evolution history.

3.7.2 Architecture

Beagle has a flexible architecture composed of matchers and other components. Figure 3.7

shows the architecture of Beagle. Matchers are plug-ins supporting different matching

strategies. All of the matchers, as well as most of the other analysis and visualization

components, use an internal data model, where entities are attributed objects. The internal

data model is first loaded from the persistent data model in Beagle repository, but the

two models are different: the internal data model contains intermediate information for

components at running time only, such as uncommitted matches, which does not exist

in the persistent data model. Components can use either data model. The evolution

history is a component to be implemented in the future to visualize the evolution history

in the persistent data model.

We have already discussed different matchers in details in Section 3.5.2. In the remain-

der of this section, we will focus more on other components in Beagle, including their main

functionalities, and how they work together to support origin analysis.

Figure 3.8 gives a snapshot of some components in Beagle.

Ignoring matchers, components in Beagle can be grouped into three groups by their

functionalities. Here, we only give a brief introduction of components in each group. Details

about them will be discussed in the following three sections.

• Basic information about software system

Entity tree, as shown in Figure 3.8, displays basic information of entities at differ-
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Figure 3.7: Architecture of Beagle

ent architectural levels for a given version. Details for a particular type of entities

are presented by the particular viewer for them, such as file viewer for files and

function viewer for functions.

• Special support for performing origin analysis

Tool support is provided for each phase in origin analysis: entity list allows the

user to choose entities to be involved in origin analysis; five built-in matchers im-

plement different techniques for matching; candidate viewer displays match candi-

dates and supports deciding on real matches. We also have transaction support that

allows the user to commit or rollback matches.

• Visualization and reporting
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Figure 3.8: Snapshot of Beagle

Scatter plot is the main tool we use to visualize detailed structural changes between

two versions. Moreover, match status graph based on dotty [3] displays match

status of descendants in a given file or subsystem.

Match report summarizes structural changes in a report. It computes the total

number of the descendants of a given root entity, and summarizes total number of

each type of structural changes.

Although we deliberately divide these components into three groups for explanation

purposes, they actually work together in Beagle. For example, when a match candidate in
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candidate viewer is selected, its image in entity tree will be highlighted so that the

user can easily know its location in system architecture. Also when a file or function is

right clicked in entity tree, a file viewer or function viewer can be triggered if the

“info” item on the pop-up menu is selected.

We will describe more details of major components in each group in following subsec-

tions.

3.7.3 Basic information about software system

Before the user is able to view the basic information of versions, (s)he needs to connect to

Beagle repository and then choose a pair of different versions for the same software system

to be studied. Figure 3.9 shows the dialog for connecting to a repository.

Figure 3.9: Connect to Beagle repository

Connecting to a Beagle repository is database independent, as we use the standard SQL

database access interface for Java program — JDBC [5] — to perform all the database

operations. If repository is successfully connected, a dialog asking the user to choose a

pair of versions will be pop up automatically, as shown in Figure 3.10. In this dialog, all

the systems available in this repository are displayed in the list box at the top. If the
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user selects a system among the list, all the versions for this system will be listed on the

left sorted by their release dates. The pair of selected versions are displayed on the right.

Direction of origin analysis — either old-to-new or new-to-old — is determined at this time:

if the user chooses the first version to be older than the second one, then the direction is

old-to-new. Otherwise, the direction is new-to-old.

Once two versions are chosen, entities at different architectural levels in the two versions

will be displayed in two entity trees respectively.

Figure 3.10: Choose a pair of versions to be loaded

Note if origin analysis has been performed before for the selected pair of versions, then

the user does not have to start from scratch. Instead, (s)he can choose to load matches from

Beagle repository into the internal data model and continue to work on them. This feature

enables us to reuse previous results and analyze structural changes in an incremental way.

In each entity tree, entities are displayed as a tree, with its parent-child relation

mapping to “contain” relationship between entities at different architectural levels, as

shown in Figure 3.8. Each entity in the tree has an icon attached showing its match

status from nine possible values: deleted, inserted, unchanged, moved, renamed, merged,
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split, combined (having at least two different match statuses listed before) and unknown

(nothing has been found, the default status). We use an icon, instead of a color, to

represent a match status, as it is often difficult to find a color mapping intuitively with a

match status. For example, what color should be used to represent status merged? Icons

can express complex ideas better than colors. Figure 3.11 shows the nine icons we use for

the nine match statuses:

deleted

inserted

unchanged

moved

renamed

merged

split

combined

unknown

Figure 3.11: Icons for nine match statuses

The match status is an entity attribute in the internal data model. Its value is set or

changed when matches are identified or deleted. For example, if the user has decided that

F is renamed to G in origin analysis, then both F and G will be changed to renamed status

in the internal data model automatically and their icons in entity tree will be changed as

well. Changes to match status are synchronized with changes to the internal data model,

thus whether matches are committed to Beagle repository or not, match statuses are always

changed when matches are changed.

Simple statistics of how many child entities in percentage have been matched is also dis-

played for each file and subsystem in the entity tree, thus the user can easily determine

if and where any unmatched entities might remain.

In additional to the basic operations for exploring a tree structure, such as expansion

and collapse, entity tree supports navigation between matched entities. If a function F

is matched to function G, then if F is double clicked in one entity tree, its matching

entity G in the other entity tree will be highlighted and be visible; the other direction

from G to F also works. If F matches to several Gs, such as split, then all the Gs will be

highlighted.

Entity tree also supports searching entities by name. If the user specifies the search

string to be “index”, then all the entities whose name contains substring “index”, such as
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“create index”, will be highlighted in the entity trees.

File viewer and function viewer display information related to a file or function,

such as metrics, call relations, source path and source code. Both viewers can are triggered

by double clicking a file or function in entity tree.

3.7.4 Support for Performing Origin Analysis

Beagle has components supporting each basic step of origin analysis. In the remainder

of this section, we will use how to perform each basic step as the main thread in our

description of these components.

• Step 1: defining matching space

Two entity lists, as shown in Figure 3.8, allow two sets of entities to be selected

to be involved in matching, the SETorig on the left and SETnew on the right. To

add entities into each set, the user only needs to select them in the entity tree

above it, and then add them as a batch by clicking an Add button. An option

for this action is to add all of their descendants recursively at the same time by

selecting R checkbox. Another option is to add entities only with particular match

status, such as only entities with unknown status. The user can also remove entities

from an entity list by selecting them and pressing the DEL key. Provided with

the flexibility of editing entity lists, the user can easily specify entities to be

participated in matching according to different situations.

• Step 2: matching

The major components supporting matching are the five built-in matchers: name-

matcher, declaration-matcher, metrics-matcher, relation-matcher and expres-

sion-matcher. In Beagle, they all appear as toolbar buttons, as shown in Figure 3.8.

Once SETorig and SETnew have been chosen in the two entity lists, clicking one of

the matcher buttons will start a new matching process.

When a matcher is clicked, it may pop up a dialog asking for options specific to the

chosen matching process. As matchers usually have specialized configuration options,
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dialogs are generally different from each other. Figure 3.12 shows the option dialog

for name-matcher.

Figure 3.12: Option dialog of name-matcher

In this option dialog, for each option for the name-matcher as we have already

discussed in Section 3.5.2, there is a group of controls that allow the user to specify

its value.

Option dialogs for other matchers are similar to that of the name-matcher; that is,

all provide an interactive way for specifying matching options.

Once options are chosen, the matcher will perform the matching process and produce

a list of match candidates. All of the candidates are displayed in candidate viewer,

as shown in Figure 3.13. Candidate viewer displays and allows manipulation of

match candidates. How candidates are displayed and manipulated is decided by the

viewer attached to each match candidate list, either simple-viewer or expr-viewer

in our current implementation.

If simple-viewer is attached, the candidate viewer can list all the distinct tar-

gets in SETorig on its left corner, ranked by their best candidate. If one of these
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targets is double clicked, candidate viewer will list all of its match candidates on

its right corner, ranked by their similarity values. These rankings indicate which

match candidates have high possibility to be real,thus the user can analyze them

first. Clicking a candidate will result its detailed match information — often includ-

ing how the similarity value is computed — displayed at the bottom of candidate

viewer. Generally, contents of match detail are different for different matchers.

Figure 3.13 shows an example of candidates produced by relation-matcher, whose

candidates are attached with simple-viewer. The user was looking for origins for

apparently deleted functions in heap.c in PostgreSQL in release 5.0. For function

DeleteTypeTuple, which was highlighted on the left , two functions in release 6.4.2

on the right were found to be similar with it. The best one was DeletePgTypeTuple

and why its similarity was 1.0 was displayed at the bottom: their call relations were

exactly the same (“==@→foo” means foo is a common callee, and “==bar→@”

means bar is a common caller).

similarity

details

Figure 3.13: Match detail from relation-matcher

With the other viewer, expr-viewer, the user can further specify which match can-

didates should be selected by inputting a boolean expression. As we have already

mentioned in Section 3.5.2, with expression-matcher integrating matching results

from other matchers and expr-viewer providing query capability, the user is able to

try different combinations of matching strategies.
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• Step 3: decision

The user may need to check various sources of information (e.g., source code) before

(s)he decides on real matches. This decision support is provided by components like

entity trees, candidate viewer and file viewer. Once the user has decided

that a pair of match is real, (s)he can specify the type of structural changes in a pop

up window and accept the match. Change will be visible at once in Beagle, as the

icon for each entity displaying match status will be updated.

Newly accepted matches actually only affect data in the internal data model. They

can be either committed or rolled back: if they are committed, they will affect the

persistent data model in Beagle repository and will be still visible in the next run

of Beagle; if they are rolled back, no change will be made to the Beagle repository,

and match statuses will be changed back in the internal data model, resulting entity

appearances in entity tree being changed back too.

The transaction support allows the user to “try matching”, which is useful in identifi-

cation of chained structural changes, as it requires multiple iterations, and discovery

of matches in later iterations rely on matches identified in previous iterations. Fig-

ure 3.14 shows the window that lists all the uncommitted matches. Using the two

buttons Commit and Rollback, the user can commit or rollback selected matches

from the uncommitted match list.

• Other support

There is also other support in Beagle for origin analysis. For example, the user can

perform a traditional matching on two selected root entities from two versions. In a

traditional matching, two descendent entities are considered to be a match if and only

if they have same paths to their selected root. The user can also match two entities

manually if (s)he finds strong evidence it, even if the five built-in matchers fail to

identify it. The user can also delete a match, if (s)he realizes a match is incorrectly

identified.

As mentioned before, the direction of origin analysis — old-to-new, or new-to-old —

is specified when two versions are chosen. As it is useful to perform origin analysis

from both directions for a given pair of versions, Beagle supports switching between
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Figure 3.14: Commit/Rollback matches

directions during origin analysis without losing any intermediate results. The switch-

ing operation is simple; the user only need to click a button, then the two entity

trees and candidate lists dedicated for two chosen versions will be switched,

resulting the direction of origin analysis being changed too.

There is a small helper tool that compares call relations of two sets of functions.

During the comparison, callers or callees that are within the set are omitted; only

callers and callees outside the set are considered to be callers and callees of the set.

Comparing call relations of a group instead of a single function is useful in merge/split

detection, where the union of callers or callees in a suspected merge/split instance

needs to be analyzed to identify patterns of merges/splits. We will describe details

of merge/split detection using origin analysis in Section 3.8.2.

3.7.5 Visualization and reporting

Beagle supports a variety of visualization tools for browsing structural changes of a software

system. One is scatter plot viewer, as shown in Figure 3.18. Scatter plots are well known

in clone detection research; the basic idea is that entities of interest (say functions or even

lines of code) are lined up along the X and Y axes, and dots or colored marks are used

to indicate the presence of an “interesting property” (or “hit”), usually that there is a
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nontrivial similarity between two entities.

In clone detection, it is typical to put the same entities along the X and Y axes (to

make the visualization feasible for large systems, sometimes only subsets of the system’s

entities are used). Of course, the diagonal should be a solid line of “hits”, but often other

patterns reveal themselves too, such as where several consecutive lines of code in different

parts of the system are similar, indicating that cloning may have occurred. Figure 3.15

shows a scatter plot in clone detection. The number on axes are lines of code in one

software system; dots in the plot represent code clones.

Figure 3.15: Scatter plot in clone detection

In origin analysis, we put two different versions of a system along the X and Y axes.

Entities on the axes, including files and functions, are ordered by their names with directory

information. On either axe, functions in the same file are next to each other. The left part

of Figure 3.16 shows an example of this. On both axes, blue rectangles represent functions;

white ones are files.

We have different types of “hits”, corresponding to different usages. Before we show

how to use scatter plot in different ways, we first describe how we address the scalability
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problem of scatter plot.

Scatter plots have limited scalability. When the number of entities to be visualized is

huge, the plot will also be huge, making it hard to gain a global view and examine details

at the same time. To address this problem, we create two views for a scatter plot: bird’s

eye view and detailed view. Bird’s eye view is actually a zoom-out version of the original

scatter plot. The user can use this global view to examine all the changes comprehensively

and discover patterns at a high level. If the user wants more details about a particular

area in bird’s eye view, (s)he can select this area, and use a detailed view to get more

information. Figure 3.16 displays the bird’s eye view (on the right) and detailed view (on

the left).

analyze.c
bird eye's view

parse_agg.c

parse_clause.c

parse_expr.c

parse_func.c

analyze.c

move

rename

split

Figure 3.16: Detailed view and bird’s eye view of scatter plot

We first use a scatter plot to visualize structural changes already identified between

two given sets of entities from two versions. We use a “hit” with grey color to indicate a

traditional match (a pair of entities with unchanged status). For other types of structural

changes, we use “hit”s with different bright colors. If a merge happens, the entity after the
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merge will have multiple “hit”s with those entities before merge. The “one-to-many-hits”

also applies in split case.

We expect to see many grey “hits” along the diagonal, representing stable entities, but

we also expect to see colored “hits” or breaks, where entities have been changed, added,

or deleted between versions. By observing the graph, we are able to gain a global view

of what have happened at a high level. For example, Figure 3.17 shows a stable file in a

release change: no function was deleted and no function was inserted; no structural change

occurred. Figure 3.18 shows file heap.c changing from release 6.4.2 to release 6.5 in our

case study of PostgreSQL. We can see that some functions in this file were renamed (red

rectangles), but in overall, this is still a stable file. Figure 3.16 shows the restructuring

of parser subsystem (containing over 150 functions) from release 6.2 to release 6.3.2 in

PostgreSQL. A large number of functions moves (yellow rectangles) and renames occurred.

Figure 3.17: Stable subsystem

As another usage, we are able to identify moves/merges/splits at high level by examining

scatter plots. For example in Figure 3.16, file analyze.c in release 6.2 split off a set of

new files in release 6.3.2, such as parse agg.c and parse clause.

We also use scatter plot to visualize other interesting properties in structural change

identification. For example, for each function that exists in both versions, we visualize
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Figure 3.18: Nearly stable subsystem

the similarities of its callers and callees respectively. For either callers or callees, we use

three different colors to indicate three cases of the number of change: no difference, little

difference, and big difference. We are particularly interested in functions that have big

decrease in their callees, as it may indicate that splits have occurred. Figure 3.19 shows an

example from our case study of PostgreSQL: from release 7.1.3 to 7.2, 17 functions originally

called by function gistbuild disappeared while a new function called gistbuildCallback

became a new callee. This finally led to discovery of a function split.

Another visualization tool we have implemented in Beagle is a hierarchical tree showing

match status of an entity’s descendants, as shown in Figure 3.20. Comparing with entity

tree, which displays match status for each entity as well, this graph is able to display a

large number of entities at multiple architectural levels at the same time. It is easier to see

how many entities have been matched and how many not. This visualization technique is

based on the tool dotty [3].

We also use a report to summarize matches in a file or subsystem, including total

number of entities in the file/subsystem, total number of entities that have performed each

type of structural change, and total number of entities that still remain unmatched etc..
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big difference
of callee

gistbuild

gistbuild

Figure 3.19: Scatter plot as an aid in detecting function split

Figure 3.20: Match status as a tree
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Figure 3.21 shows a report example.

Figure 3.21: Report summarizing structural changes

3.8 Detecting Structural Changes Using Beagle

Structural changes can occur at different architectural granularities. When they are at the

subsystem level — as files and subsystems are broken up, merged, and moved around —

significant changes to the design of the software system are being effected. When structural

changes are performed at the function level, this often reflects a fine tuning of the design,

as maintainers may strive to improve the cohesion of a function, file, or class or lessen its

coupling with other design entities. Since changes at the higher levels of design (i.e., file and
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subsystem) can be often inferred from changes at the lower levels, we have concentrated our

efforts on extracting and modeling information about structural changes at the function

level.

In the remainder of this section, we will describe how structural changes are identi-

fied. First Section 3.8.1 shows how to identify move and rename at the function level.

Section 3.8.2 describes how to identify merges and splits at the function level. Then Sec-

tion 3.8.3 explains detection of chained structural changes at the function level. Finally,

Section 3.8.4 describes identification of various kinds of structural change at the file level.

3.8.1 Move and Rename at the Function Level

We define a move as the case that an entity moves to another file or subsystem without

changing its name. If the name is changed at the same time of move, we call it a case of

rename instead.

According to our definition of a move, detecting move instances is a rather simple task:

only entities apparently deleted from Vorig and entities apparently inserted in Vnew need

to be chosen in the matching, and only name-matcher need to be applied to find entities

with the same names.

For a renaming, often we need to consider only the entities that are apparently deleted

from Vorig and the entities apparently inserted in Vnew in matching. However, due to

different cases of renames, multiple matchers may be needed in detecting renamings. For

example, if there was only a small change to the name, then name-matcher might be

able to detect the change; if the name changed significantly while the function declaration

remained the same, then declaration-matcher will work best. As it is generally easier

to make decisions for candidates produced by strict matching strategies, such as exact

declaration matching or “name>0.8 & decl>0.8” in expression-matcher, it is often more

efficient to try strict matching strategies first.

Sometimes a group of renames may follow a common changing schema, such as removing

the leading underscore. There are various cases that this may occur, as we will see in our

case study in Chapter 4. These schemas may be documented, or be observed from renaming

instances already identified. If we know or suspect such a case, choosing name-matcher

with the schema specified as part of the matching options, can be very useful in detecting
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more renames in the same group.

3.8.2 Merges/splits at the Function Level

Detection of N-way merges/splits at the function level is based on a detailed analysis of call

relations. Let us now consider how merging and splitting can affect the call relationships

between the various program entities. To simplify discussions somewhat, we will let N = 2.

Figure 3.22 shows the before and after of two functions, F1 and F2, being merged into a

single new function, G. Let us assume that in1, in2, and in denote the callers (clients) and

out1, out2, and out denote the callees of F1, F2, and G respectively.

F1 out1in1

F2 out2in2

G outin

Figure 3.22: Canonical two-way function merge

While there are many reasons why merges may occur, we have found three cases that

are relatively easy to detect by examining the call relationships:

1. Clone elimination — Two (or more) functions that perform similar tasks are merged

into one function in the new version.

A strong indicator of this phenomenon is

• in1 ∩ in2 ≈ ∅ ∧ in1 ∪ in2 ≈ in

• out1 ≈ out2 ≈ out

That is, F1 and F2 have no clients in common (if they are clones, why would one call

both?), and the union of the clients is the client set of the new function. Since the

three functions have roughly the same functionality, the set of outgoing calls for each

should be highly similar.
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F1in1

F2in2 G outin1 in2

outout1 out2

Figure 3.23: Clone elimination.

2. Service consolidation — Two (or more) functions that perform different services,

but are called at the same time by the same clients, are merged into a new, larger

function.

F1 out1

F2 out2

G

inin1 in2

in out1 out2

Figure 3.24: Service consolidation.

A strong indicator of this phenomenon is:

• in1 ≈ in2 ≈ in

• out1 ∪ out2 ≈ out

That is, the client sets of F1 and F2 are similar to each other as well as to the client

set of the new function G, and the union of the callees of F1 and F2 are similar to

that of G. Since F1 and F2 perform different tasks, there is no presumed overlap in

the callee sets.

3. Pipeline contraction — A function F1(the service provider) is only ever called by a
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single client F2. In the new version, either the client F1 consumes functionality of

the service provider F2 directly, or a new function is created that merges both the

client and service provider.

F1 out1

F2 out2

G out1 out2

in1

inin1

Figure 3.25: Pipeline contraction.

A strong indicator of this phenomenon is:

• F2 ∈ out1 ∧ in2 = {F1} ∧ in ≈ in1

• out1 ∪ out2 ≈ out

That is, the “service provider” function F2 is called only by its single client F1 in

the old version, and the client set of F1 and G are highly similar. Furthermore, the

callee set of the new function is similar to the union of the callee sets of F1 and F2.

Since, at least structurally, a split is the dual operation of a merge, we note that the

analogous patterns of

4. clone introduction,

5. service extraction, and

6. pipeline expansion

We detect merges/splits at function level by iteratively applying origin analysis. After

several iterations, we may find multiple candidate functions appear to have the same origin,

which indicates that a merge or split may have occurred. In this case, we examine the

detailed change of call relations to see why it happened. The helper tool comparing call

relations of two sets of functions discussed in Section 3.7 helps us in this phase.



68 Toward an improved understanding of software change

3.8.3 Chained Structural Changes at the Function Level

There are cases that structural changes — including move, rename, merge and split — are

chained; that is, entities involved depend on each other, thus discoveries of these changes

also depend on each other. Our iterative process of origin analysis proves to be useful to deal

with this situation. Here we give a real example taken from our case study of PostgreSQL

from release 6.4.2 to 6.5. At first, eight functions in geqo eval.c in optimizer geqo

subsystem, seemed to have been deleted. After performing some origin analysis, we found

that some functions had actually been merged into file joinrels.c in optimizer path

subsystem in release 6.5.

The call relations of eight functions in geqo eval.c and joinrels.c in the two releases

are shown in Figure 3.26 and 3.27 respectively. This example is complicated, so for the

sake of simplicity we have adopted some labelling conventions: a circle with a capital letter

label — such as A — denotes a “function of interest”; a rectangle with a lowercase label

and a number in parentheses — such as h(8) — denotes a set of functions that are callees

of the functions of interest, with the number indicating the cardinality of the set. A white

box indicates that this set of callees were callees only in one version; a grey box indicates

that they were callees in both versions. A grey box that has the same letter label but a

smaller (or larger) number denotes a subset (or superset) of the original callee set.

In the first iteration of origin analysis, we decided that E had been renamed to I, based

on their similar caller sets (not shown in the diagrams). Then we noticed that both D

and H have seven callees in common with (O) (since h(8) and h(7) have seven common

functions). After close examination, we concluded that D and H had been merged into

O. Next, we noticed that — after taking the above merging into account — the caller and

callee sets of C were similar to those of N : they have one common callee in A, and now D

and H had been matched to O. Also, G was now appeared to be similar to N : they have

a matched caller E and I, and one common callee in j(1) and j(3), plus callee H had been

matched O. After examining the source code, we decided that C and G had indeed been

merged into N , and by similar chain of evidence that B and F had been merged into M .

Thus, we can see that by applying matching iteratively, we succeeded in detecting three

chained merges that had occurred at the same time.
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Figure 3.26: Call relations in release 6.4.2
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3.8.4 Detecting Move/rename/merge/split at the File Level

In general, changes at the file level are detected manually in Beagle. Suppose a new file G

is found to be composed of functions from an old file F ; if they have the same name then

we say “F moves to G”, otherwise, we say “F is renamed to G”. If a new file G is found to

be composed of functions from two old files F1 and F2, then we say “F1 and F2 are merged

to G”. Similar is definition for split at the file level.

Figure 3.28 is the same as Figure 3.16 that we described before. In this figure, entities

from the old version and new version are located on X and Y respectively. We can see from

this figure that file analyze.c in the old version split off a few files, including parse agg.c,

parse clause.c, etc., as most functions in these new files were functions that moved from

analyze.c in the old version.

analyze.c
bird eye's view

parse_agg.c

parse_clause.c

parse_expr.c

parse_func.c

analyze.c

move

rename

split

Figure 3.28: Detect file merge using scatter plot
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3.9 Summary

In this chapter, we present our improvements to origin analysis, mainly including a general-

ized model of matching and an iterative and semi-automatic process. These improvements

enable us incorporate human knowledge into the analysis process; they also enable us to

add or remove matching techniques easily. Using the improved origin analysis, we are able

to detect four types of structural changes, including rename, move, merge and split, both

at the function level and file level. We can also detect structural changes that are “chained”

together using multiple iterations.

We describe the new tool Beagle that implements these improvements to origin analysis,

focusing on its data flow, architecture, and other new features supporting software evolu-

tion, such as navigation between entities involved in a structural change and transaction

support for origin analysis.

We borrow a technique called scatter plot to visualize structural changes between two

versions. We use it in both understanding the changes, and inferring structural changes at

high level from low level.

In the next chapter, we will describe the case study we have performed on an open

source software project PostgreSQL using techniques described in this chapter.



Chapter 4

Case Study

In this chapter, we describe a case study of structural changes in an open source software

system PostgreSQL. In previous work on origin analysis [36], only two releases were studied.

In our case study, we have applied origin analysis to 12 releases (covering more than

four years) of the PostgreSQL backend subsystem. In overall, we have identified a large

number of structural changes. We observed many interesting phenomena during our study,

such as “ripple effect” of changes (several changes caused by the same reason spanning

multiple releases), patterns of function merging/splitting, and function renaming caused

by data structure renaming. We categorized function moves to mine more knowledge. We

found that most functions move between existing files, and most functions move within

subsystems.

We will first introduce the candidate system PostgreSQL in Section 4.1. Then we

briefly describe all the structural changes identified in Section 4.2. In Section 4.3, we

present detailed structural changes in each release change. After that, in Section 4.4,

Section 4.5, and Section 4.6, we describe our further analysis and summary of different

types of changes, including function moves, function renames, and merges/splits.

4.1 PostgreSQL

PostgreSQL [7] is an open source object-relational database management system (OR-

DBMS), originally based on the POSTGRES system developed at the University of Cali-

72
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fornia at Berkeley. The original POSTGRES project started in 1986; it was abandoned in

1993 only to be reborn the following year as Postgres95. An SQL language interpreter was

then added, and its performance and maintainability were greatly improved due to many

internal changes. In 1996, the project was renamed as PostgreSQL, and since then many

new features have been added. It continues to evolve and is in widespread used, especially

within the Linux community. We have chosen to study it, as it is a well-known piece of

software of significant size and complexity.

For our case study, we selected 12 releases of PostgreSQL from 6.2 (Oct. 1997) to 7.2

(Feb. 2002). We decided to focus on the backend subsystem, which implements all of the

server functions. The backend subsystem is the largest in PostgreSQL; it comprises about

70% of the whole code base.

In raw numbers, from version 6.2 to 7.2 the backend subsystem of PostgreSQL grew

• from 186 KLOC to 279 KLOC,

• from 328 to 388 files, and

• from 3262 to 4531 functions.

Figure 4.1 shows the LOC (lines of code) of the backend subsystem in each release in

the study. We can see from this figure that PostgreSQL evolves continually in the four

years with an annual growth rate about 10%.

4.2 Summarized Structural Changes

We performed origin analysis on each consecutive pair of the 12 releases, including six major

release changes (in which the first or second number in the release number is changed, e.g.,

6.4.2 to 6.5) and five minor release changes (in which no change to the first or second

number in the release number, e.g., 7.0 to 7.0.3). We have summarized the number of each

type of structural change in each release change in Figure 4.2 (Y axe is the number of

changes). We note that the structural changes we have identified is only a subset of all the

structural changes that existed, of which we have no information about its total number.

For all the changes that we have identified, as we examined the source code and CVS log

before we made decision, we know that they did happen.
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Growth of PostgreSQL
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Figure 4.1: Growth of PostgreSQL

Perhaps unsurprising, we found that structural changes occurred much more often

during major release changes than that in minor release changes: the six largest number

of changes all happened in major release changes. Among the four minor release changes,

the largest number was 12 (from release 6.5 to 6.5.1), which was still much less than the

smallest number of all the major release changes ( 48 from release 6.3.2 to 6.4.2 ).

Two types of structural changes — move and rename — had largest number of instances,

231 and 370, which together accounted more than 88% of all the changes. Merges and splits

occurred less often, and the total number of instances we have detected in our study was

76.

Once matches have been detected using origin analysis, the number of apparently

deleted entities in Vorig and apparently inserted entities in Vnew will be reduced, which

gives a measure of the degree that origin analysis has helped us towards a correct under-

standing of the system structure. In Table 4.1 and Table 4.2, we list the change of the

apparently deleted and apparently inserted entities in six major release changes and five
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Figure 4.2: Structure changes in PostgreSQL

minor release changes respectively.

#deleted #inserted #deleted #inserted
6.2 -> 6.3.2 219 286 91 154 128 132 58% 46%
6.3.2 -> 6.4.2 208 263 160 215 48 48 23% 18%
6.4.2 -> 6.5 213 368 114 284 99 84 46% 23%
6.5.3 -> 7.0 509 954 309 741 200 213 39% 22%
7.0.3 -> 7.1 703 913 618 827 85 86 12% 9%
7.1.3 -> 7.2 199 533 144 471 55 62 28% 12%

change 
rate of 
#deleted

change 
rate of 
#inserteVorig->Vnew

before origin analysis after origin analysis
diff 
#deleted

diff 
#inserted

Table 4.1: Change of apparently deleted/inserted entities in major release changes

Comparing Table 4.1 with Table 4.2 we can see that before origin analysis, the numbers

of apparently deleted (column 1) and inserted entities (column 2) in major release changes

are much bigger than that in minor release changes. The average number of apparently

deleted entities and inserted entities equal to 342 and 553 in major release changes, while in

minor release changes they only equal to 4 and 9; particularly from release.5.2 to 6.5.3, no
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#deleted #inserted #deleted #inserted
6.5 -> 6.5.1 9 13 7 1 2 12 22% 92%
6.5.1-> 6.5.2 3 6 3 4 0 2 0% 33%
6.5.2 -> 6.5.3 0 0 0 0 0 0 NA NA
7.0 -> 7.0.3 1 7 1 7 0 0 0% 0%
7.1 -> 7.1.3 6 17 2 13 4 4 67% 24%

Vorig->Vnew
before origin analysis after origin analysis diff 

#deleted
diff 
#inserted

change 
rate of 

change 
rate of 

Table 4.2: Change of apparently deleted/inserted entities in minor release changes

apparently deleted or inserted entity at all. This difference contributes to the big difference

of the total number of structural changes identified between major release changes and

minor release changes, as shown in Figure 4.2.

We now focus on major release changes. Columns “diff #deleted” and “diff #inserted”

in Table 4.1 list how many apparently deleted entities and apparently inserted entities were

reduced after origin analysis. The last two columns also represent the same information,

but in percentage formats. We can learn from this table that, on average in our case study,

origin analysis helped us to identify origins of 35% apparently deleted entities and 22%

apparently inserted entities during major release changes. In some cases, such as from

release 6.2 to 6.3.2, the two ratios reach as high as 50% and 46%.

4.3 Detailed Structural Changes

In this section, we describe structural changes identified in each consecutive release change.

4.3.1 From Release 6.2 to 6.3.2

From release 6.2 (Oct 1997) to release 6.3.2 (Apr 1998), many new features and improve-

ments were added into PostgreSQL, such as supporting full SQL92 subselect capability

and socket interface for client/server connection. Before performing origin analysis, we

found that there were 3389 entities exist in both releases. As shown in Table 4.1, 219 en-

tities apparently deleted from release 6.2 and 286 entities apparently inserted into release

6.3.2. Using origin analysis, we found 95 instances of move, 29 instances of rename, and 13
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merges, which reduced apparently deleted entities by 58% and apparently inserted entities

by 46%, also shown in Table 4.1. Of all the instances of structural changes, most of them

occurred in parser subsystem.

In parser, functions in “old” files were redistributed throughout the subsystem; some

were placed in existing files, while others were grouped into “new” files. Most functions were

left intact themselves. For example, 23 functions were moved out from analyze.c in re-

lease 6.2 into six new files — parse agg.c, parse clause.c, parse func.c, parse oper.c,

parse target.c and parse expr.c, and 19 functions were moved out from catalog utils.c

into files parse func.c, parse oper.c, parse agg.c and parse type.c.

New files in release 6.3.2 were formed by functions in different old files. For example, the

new file parse agg.c was actually composed of function agg error in catalog utils.c,

four functions in analyze.c and ParseAgg in parse.c in release 6.2, and file parse func.c

was composed of four functions in analyze.c and eight functions in catalog utils.c.

The result of the reorganization is: functions related to “aggregates” from different files

in release 6.2 were grouped into file parse agg.c in release 6.3.2; similarly, functions dealing

with function calls were regrouped into file parse func.c, and functions related to clauses,

operators, nodes and relations were regrouped into files parse clause.c, parse oper.c,

parse node.c, and parse relation.c respectively. Compared to the old operation-based

file grouping — that all the functions of parsing, transforming from a parse tree into a

query tree and utilities were in parser.c, analyze.c and catalog utils.c respectively —

the new file grouping was based on objects being manipulated, such as all the functions

related to aggregates were grouped into parse agg.c.

Based on the structural changes at the function level, we identified merge/splits at

the file level, such as analyze.c split to parse agg.c, parse clause.c, parse func.c,

parse oper.c, parse target.c, and parse expr.c.

For this parser restructuring, we later found evidence in the CVS log of PostgreSQL

that said “break parser functions into smaller files, group together”.

We also identified three file moves between different subsystems: file aclchk.c moved

from tcop subsystem to catalog subsystem, variable.c from tcop to commands, and

file dbcommands.c from parser to commands. These file moves caused that 33 functions

appeared to be deleted from the old version and 33 appeared to be inserted into the
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new version before origin analysis. The evidence we found for the three file moves were

some descriptions in the CVS log, including “move variable.c to commands and aclchk.c

to catalog”, and “move dbcommands.c to commands. It should not be in the parser

directory”.

We identified total 29 renamings. Among them, 21 occurred to functions in catalog utils.c

in release 6.2; all of these functions moved at the same time of renaming, to parse type.c,

parse func.c or parse relation.c in release 6.3.2. A group of eleven renames in file

parse type.c in release 6.3.2 was interesting: their new function names followed the

format “inputOutput”, where “input” is the data to be processed and “Output” is the

returned data; for example, typeidTypeName is a function that returns the type name of

a given typeid, and typenameType is a function that returns a type structure given a type

name. As no naming convention could be observed from old names of these functions, it

appeared that a naming convention was newly adopted.

4.3.2 From Release 6.3.2 to 6.4.2

From release 6.3.2 (Apr 1998) to 6.4.2 (Dec 1998), again many new features were added.

We identified total 48 instances of renames in this release change. Additionally, four

groups with renaming rules were observed:

1. “mergesort” → “mergejoin”

Substring “mergesort” in a function name was replaced with “mergejoin”. Renames

conforming to this rule include:

• make mergesort → make mergejoin in createplan.c,

• mergesortop → mergejoinop in initsplan.c,

• cost mergesort → cost mergesort in costsize.c,

• create mergesort path → create mergejoin path in pathnode.c, and

• op mergesortable → op mergejoinable in lsyscache.c.
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Later, we found the evidence as well as the cause for this group of renames in the

CVS log: “MergeSort was sometimes called mergejoin and was confusing. Now it is

now only mergejoin”,

2. “Rel” → “RelOptInfo”

“Rel” in a function name was replaced with “RelOptInfo”. These renames were:

• readRel → readRelOptInfo in readfuncs.c,

• copyRel → copyRelOptInfo in copyfuncs.c, and

• outRel → outRelOptInfo in outfuncs.c.

We noticed that all the above functions in old release had embedded the name of a

data structure “Rel” into their names. In the new release, data structure “Rel” was

renamed to “RelOptInfo”. Thus we suspected the rename of data structure was the

cause for this group of function renames. We later found a description in CVS log

saying “Rename Rel to RelOptInfo”, which confirmed our hypothesis.

3. “JInfo” → “JoinInfo”

“JInfo” in a function name was replaced with “JoinInfo”. Involved functions were:

• equalJInfo → equalJoinInfo in equalfuncs.c,

• readJInfo → readJoinInfo in readfuncs.c,

• copyJInfo → copyJoinInfo in copyfuncs.c, and

• outJInfo → outJoinInfo in outfuncs.c.

We also discovered that a common substring “JInfo” in all the old function names was

a name of a data structure. The data structure “JInfo” was renamed to “JoinInfo”

in new release. Considering its high similarity with group “Rel” → “RelOptInfo”, we

believed that this group of renames was also caused by the rename of data structure.

4. “CInfo” → “ClauseInfo”

“CInfo” in a function name was replaced with “ClauseInfo”. Four function renames

fell into this group:
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• equalCInfo → equalClauseInfo in equalfuncs.c,

• readCInfo → readClauseInfo in readfuncs.c,

• copyCInfo → copyClauseInfo in copyfuncs.c, and

• outCInfo → outClauseInfo in outfuncs.c.

Same as previous two groups, “CInfo” was a data structure name and the data

structure was renamed to “ClauseInfo”. We believe the cause of these renamings was

the same: renaming of data structure.

In addition to above groups with renaming rules, we discovered another group of re-

names: in parse target.c, all the first character of function names became capitalized;

for example, expandAllTables was renamed to ExpandAllTables. As the old names had

already conformed to a naming convention, it seems the capitalization was only to change

to another naming convention.

4.3.3 From Release 6.4.2 to 6.5

According the release notes in PostgreSQL, release 6.5 (Jun 1999) “marks a major step in

the development team’s mastery of the source code”. In this release, major features were

added more easily due to the increasing size and experience of its worldwide development

team.

20 function moves were detected. 17 of them were caused by three file renames:

defind.c in commands subsystem was renamed to indexcmds.c; joinutils.c and clauseinfo.c

in optimizer were renamed to pathkeys.c and restrictinfo.c respectively.

A total of 70 function renames were identified, among them, we observed following

groups:

• 13 functions in 6 files were renamed following rule “temp” → “noname”;

Cause for this group of renames was that a table used to be called temp was renamed

to noname in new version.

• 4 functions in 4 files were renamed following rule “HInfo” → “HashInfo”;

Cause for this group was that data structure “HInfo” was renamed to “HashInfo”.
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• 4 functions in 4 files were renamed following rule “ClauseInfo” → “RestrictInfo”;

Cause for this group was that data structure “ClauseInfo” was renamed to “Restrict-

Info”.

• 9 functions in 5 files were renamed following rule “Aggreg” → “Aggref”;

Cause for this group was that data structure “Aggreg” was renamed to “Aggref”.

• 5 functions in 4 files were renamed following rule “JoinPath” → “NestPath”;

Cause for this group was: data structure “JoinPath” had an alias called “NestPath”

in new version, and functions handling nested loop changed to use the alias instead.

• 4 functions in heap.c removed substring “Pg” from their names;

We did not find description for this group of renames in CVS log or other documen-

tation. Our guess is that “Pg” — being part of a function name — is only to indicate

that this is a function of “PostgreSQL”. It was later found to be unnecessary, thus

the “Pg” was eliminated.

Of all the above groups of renames, four were related to data structure renaming. It

shows that problems might occur if the name of a data structure is used as part of a

function name.

For merges/splits, we discovered a group of function merges in optimizer subsystem.

Eight functions in file geqo eval.c in release 6.4.2 seemed at first to be deleted. After anal-

ysis, we found that five functions had been merged with five other functions in joinrels.c

because of their duplicated functionalities, such as gimme clause joins in geqo eval.c

and find clause joins in joinrels.c merged and became make rels by clause joins

in joinrels.c in new release. For the same reason, to eliminate near duplicate functions,

two functions in geqo paths.c merged with two other functions.

4.3.4 From Release 6.5 to 6.5.1, 6.5.1 to 6.5.2, and 6.5.2 to 6.5.3

Release 6.5 (Jun 1999) to 6.5.1 (Jul 1999), 6.5.1 to 6.5.2 (Sep 1999) and 6.5.2 to 6.5.3

(Oct 1999) are three consecutive minor release changes. The longest release interval was
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only two months. As we have shown in Table 4.2, only a small number of entities were

apparently deleted or inserted before origin analysis.

Using origin analysis, we identified twelve splits and two renames all together for all the

three release changes. Ten splits occurred from release 6.5 to 6.5.1. More precisely, they

are ten instances of partial clone elimination (we will describe this pattern in Section 4.6)

combined with pipeline extraction (described in Section 3.8.2). These splits resulted from

the introduction of a standardized way of expression tree walking; this design change

eliminated near-duplicate code in ten routines that visit an expression tree recursively.

We found this surprising, as we did not expect to see a major design restructuring

implemented by a minor release. We also noticed that as a result of implementing this

same walker mechanism, another split occurred from release 6.5.1 to 6.5.2.

4.3.5 From Release 6.5.3 to 7.0

According to release note, release 7.0 showed “continued growth of PostgreSQL”. “There

are more changes in 7.0 than in any previous release”. As a result, a huge number of

entities were apparently deleted (509) or inserted (954) before origin analysis. Also using

origin analysis, we found the largest number of structural changes in our case study: 86

function moves, 114 renames and 13 splits.

The largest number of changes occurred in utils/adt subsystem. At first glance, in

release 6.5.3:

• File dt.c was deleted. Among its 70 functions, 19 moved to datetime.c, 49 moved

to timestamp.c and 45 renamed&moved to timestamp.c. The 45 renames could be

grouped into two: 22 function renames following rule “timespan” → “interval” and

23 following rule “datetime” → “timestamp”.

• In file date.c, all of its functions moved to different files; 18 moved to nabstime.c;

21 functions were renamed&moved to nabstime.c; two renaming rules were observed

“interval” → “tinterval” and “timespan” →“interval”.

• In file datetime.c, all of its functions moved to different files; 25 moved to date.c;

other 5 renamed and moved to either date.c or nabstime.c, following renaming rule

“datetime” → “timestamp”.
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We noticed that the data structure “TimeSpan” was renamed to “Interval” and “Date-

Time” was renamed to “Timestamp”. Based on our similar findings in previous release

changes — that is renaming of data structure may result group of function renames —

we concluded that the renames following rules “timespan” →“interval” and “datetime” →
“timestamp” were also caused by rename of data structures.

In release 7.0 we found:

• In nabstime.c, 14 functions were old; among the other 42 functions, 39 were moved

from date.c.

• In datetime.c, only one was an old function; among the other 20 functions, 19 came

from dt.c.

• In date.c, there was only one old function; among the other 47 functions, 28 were

from datetime.c.

• In timestamp.c, only four were old functions; among the other 52 functions, 49 were

from dt.c.

Changes at the file level can be observed:

• Old file dt.c split off new file datetime.c and new file timestamp.c.

• Old file datetime.c merged to new date.c.

• Old file date.c merged into new file nabstime.c.

Combining all the observations in utils/adt subsystems together, we concluded that

a restructuring of files related to date/time occurred. In this restructuring, no new file was

created, and a huge number of functions just moved between existing files, with or without

renaming.

There were eight other function renames following rule “destroy” → “drop”, such as

heap destroy was renamed to heap drop. We did not find descriptions of why these

renames happened from documentation. We suspected they were caused by the change of

terminology.
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13 splits were detected in this release change: six of them resulted from the same expres-

sion walker mechanism first occurred in release 6.5.2; other six were caused by an expression

mutator mechanism similar to the expression walker, which supports a standardized way

to modify an expression tree.

4.3.6 From Release 7.0 to 7.0.3

We did not find any structural changes in this minor release change.

4.3.7 From Release 7.0.3 to 7.1

Release 7.1 (Apr 2001) focused on “removing limitations that have existed in the Post-

greSQL code for many years”. Using origin analysis, we identified total 17 moves and 65

renames.

We did not find any obvious group of moves.

For renames, 24 instances that occurred in file vacuum.c had their prefix “vc ” removed.

Other small changes were also made to the old names, such as adding a separator “ ” for

words in the name. Four functions in arrayfuncs.c removed their leading underscores.

4.3.8 From Release 7.1 to 7.1.3

From release 7.1 to 7.1.3 (Aug 2001), we found four function moves from file nbtcompare.c:

• bttextcmp moved to varlena.c,

• btabstimecmp moved to nabstime.c,

• btfloat8cmp moved to float.c, and

• btfloat4cmp moved to float.c.

All the moves were across subsystems. We noticed that it seemed reasonable to group

these functions either as they were in old release or in new release. For example, consider

the function bttextcmp which compares two texts: since it is a comparison function, it

could be grouped into file nbtcompare.c as it was in release 7.1. Alternatively, since it
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is a function that compares text, it is also reasonable to be grouped in file varlena.c

that handles text, as in release 7.1.3. These moves indicate that grouping by operations

(in release 6.3.2) was switching to grouping by objects (in release 6.4). This seemed to

be similar with the file regrouping in parser in release 6.3.2 that we have discussed in

Section 4.3.1, where a large number of functions were moved so that grouping based on

operations was replaced with grouping based on objects.

4.3.9 From Release 7.1.3 to 7.2

Release 7.2 (Feb 2002) “improves PostgreSQL for use in high-volume applications”. We

identified total three moves and 42 renames. There were two groups of renames:

• Four functions in vacuum.c added prefix “vac ” into their names, such as show rusage

became vac show rusage.

• Four functions in varbit.c removed “zp” from their names, such as zipbit became

bit.

We discovered four splits in four files in access subsystem. They were caused by a

newly introduced callback mechanism that allows tuple processing during index building.

4.4 Summary and Analysis of Moves

Moving a function or a file is a common technique to improve software design by regrouping

system functionalities. Developers may do this to increase module cohesion and decrease

inter-module coupling so that software becomes easier to maintain. In our case study, we

found a total of 231 instances of simple moves and also a large number of complex ones,

such as moves that were combined with a rename (we categorized them only as renames

when we summarized structural changes in Figure 4.2, but in this section, we include them

into our analysis). We were able to infer the intention behind some groups of moves. For

example from release 6.2 to 6.3.2 and release 6.5.3 to 7.0, a large number of moves were the

results of restructuring. Two groups of moves were found to conform a common regrouping

policy: switching from operation-based grouping to object-based grouping.
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In the remainder of this section, we will describe how we performed further analysis on

move instances identified, and what knowledge we can further obtain.

4.4.1 Multi-dimensional Categorization

Function moves can differ in various ways. Functions in a file can be moved out to form

a new file, or to merge into another existing file, with different structures and purposes.

Moves can be simple, with no other changes except the change of location, or complex,

such as when the name is changed at the same time. Moves can occur across different

subsystems or within a subsystem, with the former often having a larger impact on the

system structure than the latter.

To examine how moves have changed the system structure, we must consider them

from multiple perspectives. Thus we have created a multi-dimensional categorization for

analyzing moves. Basically, we group and summarize function moves from multiple dimen-

sions, with each of them focusing on one perspective. Then we mine useful information

by performing “drill-down” or “roll-up” on these dimensions. We have considered four di-

mensions: granularity, change complexity, locality, and ontology. We note that there exists

a conceptual overlap between granularity and ontology; we will discuss it after we explain

all the dimensions.

In the following discussions about each dimension, we suppose we are considering a

function move “F → G”, where function F was in file f in Vorig, and function G was in file

g in Vnew. Note G may have a different name with F , as function rename may occurred at

the same time of move.

Dimension: Granularity

The granularity dimension captures information about change structure. It also reflects

purpose of a move. We define four patterns by asking following two questions:

1. Did all of the functions in file f move to file g?

2. Did all the functions in file g come from file f?

Answers to above questions result in four patterns, as shown in Figure 4.3:
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• File-Move — File f moves to file g.

• Patch — Part of file f moves out and becomes part of file g.

• File-Merge — File f merges to file g.

• File-Split — Part of file f moves out and becomes an individual file g.

File-splitFile-merge

PatchFile-move

f g

f g f g

f g

Figure 4.3: Move patterns

Dimension: Change Complexity

The change complexity dimension focuses on how complicated a function move is. We use

a simple method to divide function moves into two complexity groups: if function F and G

have the same name, then we say it is a “simple move”; otherwise, we say it is a “complex

move”. There exist other ways to measure how complex a move is, of course. For example,

we will consider to relate complexity with the amount of changed lines of code in the future.
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Dimension: Locality

The third dimension measures the change of location in a function move. For a move

F → G, if f and g are in the same subsystem, when we say the location change is small;

otherwise, we say it is big. According to our definition, small location change means that

function moves within a subsystem, thus it has a relatively small impact on the system

structure. Big location change, on the other hand, means that move occur across subsystem

boundary, thus it has a bigger impact on the system structure.

Our measurement of move locality is a simplified one. It can be improved in the future,

such as in addition to distinguishing whether a move is within the same subsystem or not,

we may consider the relative path distance between the subsystems before and after move

as well.

Dimension: Ontology

In the dimension of ontology, we look at the apparent statuses of the two parent files (the

two files that contained the two functions involved in the moving) before origin analysis.

We answer the following two questions to characterize a move F → G along this dimension:

• Was the parent file f of F apparently deleted from Vorig?

• Was the parent file g of G apparently new in Vnew?

Answers to the two questions result in four groups:

• A — Both file f and g exist in both versions.

• B — File f exists in both versions and file g appears to be added.

• C — File f appears to be deleted and file g exists in both versions.

• D — File f appears to be deleted and file g appears to be added.

If combined with dimension granularity, this dimension helps to identify sub-cases of

move pattern. For example in pattern patch, comparing to the case that both f and g exist

in both version, it represents a different case if f is deleted and g is inserted. Including
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this dimension also enables us to relate what appear to be with what actually happened.

For instance, we might be able to answer such a question: “among the function moves in

apparently inserted files in Vnew, how many of them are actually resulted from file moves,

and how many are resulted from file merges?”

We note that this dimension may depend on the other dimension granularity in some

occasions. For example, if the move pattern is file-move, then file f must appear to be

deleted from Vorig and file g must appear to be inserted to Vnew. We may consider combining

these two dimensions in the future.

4.4.2 Categorizing Moves in PostgreSQL

Based on the rules of categorization we described in Section 4.4.1, we performed analysis

on the move instances identified in PostgreSQL. Table 4.3 summarizes the result: Dark

cells represent meaningless cases, which are caused by the dependency between dimension

granularity and ontology; “diff ss” and “same ss” are values on dimension locality, with

the first one representing that the move is across different subsystems and the second one

representing that the move is within the same subsystem.

A B C D A B C D
same ss 0 0 0 17 0 0 0 2 19
diff ss 0 0 0 33 0 0 0 0 33
same ss 59 25 28 17 32 5 46 0 212
diff ss 12 0 0 15 5 0 0 8 40
same ss 0 0 0 0 0 0 0 0 0
diff ss 0 0 0 0 0 0 0 0 0
same ss 0 11 0 0 0 0 0 0 11
diff ss 0 0 0 10 0 0 0 15 25

71 36 28 92 37 5 46 25 340

move only

File-move

SUM

SUM
move & rename

Patch

File-merge

File-split

Table 4.3: Categorization of moves ( grey means meaningless)
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From this table we can see that along dimension granularity:

1. No instance was found for pattern file-merge.

2. Of all the four patterns, pattern patch had the largest number of instances — 252,

among them 211 occurred within subsystem. We think this is quite reasonable,

because if a function F in f can move to file g, it means F is closely related to both

f and g, which is more likely to be true within a subsystem. The largest number of

instances (108) in this pattern occurred in category A, meaning both f and g exist

in both versions. This may imply that there used to exist quite a few problems with

grouping; it may also imply that considerable efforts had been made to solve these

problems. We also notice a large portion of function moves — 95 out of 252 — were

combined with rename. This may be caused by adaptation that had to be made

when a function moves to a new file host, such as changing its name to conform to a

different naming convention in the new file.

3. For pattern file-move, 50 out of total 52 were simple moves, with no changes to their

names. Compared to other patterns, the ratio of simple moves to complex moves

in this pattern is much higher, which may imply that when a function moves due

to a file move, it is less likely to perform other changes, as the requirement for the

function to adapt to a new file host does not exist. We found more instances in

this pattern occurred across subsystems than within subsystem, which is similar to

pattern file-split, but different from pattern patch. It may suggest that comparing

to fixing existing grouping mechanism (as in the case of pattern patch), patterns

producing new modules (including both file-move and file-split) are more likely to

occur across subsystems.

We now examine along the change complexity dimension. Except in category C, it

seems that most moves are just simple moves, only a relatively small number of moves

were accompanied by renames.

Along the locality dimension, we observed that many more instances (242) occurred

within subsystem than across subsystems (98). However, in patterns file-move and file-

split, the numbers of moves within subsystem are both less than that across subsystems.
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Since pattern patch has 212 instances within subsystem, which is about as twice the sum of

all the moves across subsystem in all the other patterns, in overall, moves within subsystem

are still dominant.

For dimension ontology, we found that A and D are two largest groups. In A, all the

instances are of pattern patch, which is actually the only possible pattern they can be. D

contributes to three patterns. Comparing to A, B and C, D has a bigger percentage of

instances occurred between different subsystems. This may suggest that function moves

from deleted files to added files are more likely to occur across subsystems than others.

4.4.3 Comparison between Two Restructuring Instances

We also found the categorization helps to identify different types of restructuring. For

example, as we discussed in Section 4.3.1 and Section 4.3.5, we have discovered two large

scale restructurings: from release 6.2 to 6.3.2 and release 6.5.3 to 7.0. We categorize moves

in the two cases in Table 4.4 and Table 4.5.

A B C D A B C D
same ss
diff ss 33
same ss 15 14 3
diff ss 9 6
same ss
diff ss
same ss 11
diff ss 15

move & rename

File-move

Patch

File-merge

move only

File-split

Table 4.4: Categorization of moves from release 6.2 to release 6.3.2

We can easily observe following differences between the two restructuring instances:

1. Table 4.4 has instances of three different patterns, while Table 4.5 only has instances

of pattern patch.
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A B C D A B C D
same ss
diff ss
same ss 49 6 23 3 29 45
diff ss 5 4
same ss
diff ss
same ss
diff ss

move & renamemove only

File-move

Patch

File-merge

File-split

Table 4.5: Categorization of moves from release 6.5.3 to release 7.0

2. Table 4.4 contains a large number of instances across different subsystems, while

most instances in Table 4.5 are within a single subsystem.

3. In Table 4.4, all the instances fell in B or D, which means new files were always

involved during the restructuring, while Table 4.5 only has a very small number of

instances in B and D.

4. Table 4.4 has no instance of A, which means no functions switch to another file.

However, in Table 4.5 A has the largest number of instances.

We can see from above discussions that the multi-dimensional categorization technique

can help us examine historical function moves more closely. We are able to mine more

knowledge by “drilling-down” or “rolling-up” along multiple dimensions. The dimensions

we have chosen in our case study reflect four perspectives that we found useful in studying

software evolution. There should exist other perspectives that are also interesting. Our

categorization technique has the flexibility to incorporate more dimensions in the future.
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4.5 Summary and Analysis of Renames

Renaming is a common technique that maintainers use to improve the code comprehensi-

bility. The reasons for a rename can be very different, such as to fix a wrong word in the

name, to be compliant with a naming convention, or to reflect changes in functionality.

In our case study, we found total 370 instances of renames, with a large portion of them

changed as groups. We were able to identify the cause of renames in some cases. For

example, a large number of renames actually resulted from the rename of data structure.

We found there was no unified naming convention in PostgreSQL, which became a

significant cause for renames. We observed different ways to separate words in a function

name, such as capitalizing the first letter of each word, or using “ ” as the word separator.

There also exist different ways to distinguish the first word with others, such as lowercasing

or capitalizing the first character word, adding a prefix “ ”, or even adding a prefix like

“vc ” to denote the file or subsystem that it was contained. Lack of a naming convention in

the whole development team resulted in function renames only to switch between different

conventions. For example, from release 7.0.3 to 7.1, eleven functions in vacuum.c removed

their prefix “vc ”. As a member of this rename group, vc updstats was renamed to

update relstats. Later in release 7.2, together with three other functions in vacuum.c

being added prefix “vac ”, update relstats was renamed again to vac update relstats.

We notice a “ripple effect” of renames; that is, similar types of changes span different

releases. For example, the leading underscore character was removed from one function in

6.4.2 to 6.5, three functions in 6.5.3 to 7.0, and five functions in 7.0.3 to 7.1.

As name serves as a part of the interface that a function exposes to others, if a function

name is changed, additional changes to other functions that use this function might be

necessary. Thus for those renamings that cause unnecessary confusion, we need to inves-

tigate ways to prevent them. We have summarized different situations of renames that we

have discovered during our case study, since identifying causes for renames in the past can

help us to avoid some of them in the future.

We have identified following situations for renames:

1. Replace abbreviation with meaningful word — Abbreviation in the name is hard to

understand or remember. It is replaced with a meaningful word. Example: genxprod
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→ gen cross product.

2. Replace a long name with a short one — A long name describing many details is re-

placed with a short summary-like one. Example: DoChdirAndInitDatabaseNameAndPath

→ VerifySystemDatabase.

3. Fix error — Fix a wrong name caused by misspelling, incomplete or overly descrip-

tion. Example: estimate disbursion → estimate dispersion.

4. Conform to a naming convention — Create a naming convention for entities, such as

separating words using “ ” or lowercase leading character. Example: qualcleanup

→ qual cleanup.

A naming convention can be more than lexical formatting. For example from release

6.2 to 6.3.2, we found 11 function names were changed to conform to format “in-

putOutput”, where “input” is the data to be processed and “Output” is the returned

data.

5. Change to a different naming convention — Different developers may adopt different

naming conventions. When a different developer becomes the maintainer, (s)he may

change the name so that it conforms to another naming convention. It may also

happen when a function moves to another file that uses a different naming convention.

Example: makeParseState → make parsestate.

6. Result from data structure change — Data structure name is embedded in func-

tion name. When the data structure is renamed, the function is renamed too. We

found a huge number of instances fallen into this category. Example: copyHInfo →
copyHashInfo.

7. Result from functionality changes — Function changes what it does, thus the name

changes too to reflect increased or decreased functionality.

Multiple cases can occur at the same time for one rename instance. For example, a

name is changed to follow a new naming convention; while at the same time, abbreviation

in the name is replaced with a full word.
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In summary, we found function renamings occurred often in the evolution of Post-

greSQL. Different situations caused these renamings. Some of them could be avoided

easily, e.g., in the case of fixing spelling error, spelling checking on function names can be

performed. Some require better management in the development team, e.g., in the case

of 4 and 5, a unified naming convention for the whole project might be helpful to avoid

them. Some do not have straightforward solutions yet, such as function renaming resulted

from data structure renaming. We feel that problems still exist as how to construct a good

name for a software entity.

4.6 Summary and Analysis of Merging/splitting

Merges/splits reflect more complex structural changes than moves or renames. The number

of total instances we have identified in our case study is much less than other types of

changes. However, we found that we learned interesting and important information about

the system’s evolution by studying them. For example, we notice a “ripple effect” of

merges/splits: ten splits from 6.5 to 6.5.1 were caused by introduction of a standardized

way of expression tree walking; from release 6.5.1 to 6.5.2, one more split occurred for

the same reason; from release 6.5.3 to 7.0, six more splits were detected due to the same

walker mechanism. We have observed similar “ripple effect” in renames, as discussed in

Section 4.5.

4.6.1 Two More Patterns

In addition to the merge/split cases patterns described in Section 3.8.2, we discovered two

more patterns in the course of our case study:

1. Parameterization — Two similar functions F1 and F2 are combined into a new func-

tion G by adding a parameter to distinguish different functionalities.

A strong indicator of this phenomenon is

• in1 ∪ in2 ≈ in

• out1 ≈ out2 ≈ out
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• dec11 ≈ decl2 ∧ decl1 ∪ decl2 ∪ paramnew ≈ decl

where decl1, decl2 and decl are function declarations for F1, F2 and G respec-

tively, and paramnew is the new parameter in decl and “≈” denotes lexical

similarity.

2. Partial clone elimination — A chunk of code found in two functions F1 and F2 are

clones. These clones are extracted out to form a new function G, which is called by

its parent functions F1 and F2.

F1in1

F2in2

outout1 out2

F1

F2

G

out1'

out2'
in1

in2

out1'

out2'

out

in

Figure 4.4: Partial clone elimination

A strong indicator of this phenomenon is

• in1 ∩ in2 ≈ ∅
• out1 ≈ out2 ≈ out

• in = (F1, F2)

where out1, out2 and decl are the callee sets of the common clone segment within F1

and F2.
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4.6.2 Combination of Patterns

As is common with the application of design patterns [18], we found that multiple patterns

of merging/splitting may be applied on the same entities at the same time. For example,

the creation of a standardized expression tree walker mechanism mentioned above involved

a combination of partial clone elimination and pipeline extraction (although we counted it

only as one instance in Figure 4.2 ). In this combination, partial clone elimination was first

applied on functions that share common code for visiting an expression tree, which resulted

the creation of a new function called expression tree walker. Then, pipeline extraction

was further applied on the “parent” functions (where the clones had just been removed

from): each of the parents split off the logic that detailed the peculiar way it walked the

tree into a new adapter [18] function, call it my walker, which the new, slimmed-down

parent became the sole client of.

When different merge/split patterns are applied at the same time, the change of call

relations can be complex and hard to reason about. Our current approach favors flexibility

and querying over automated pattern detection; we intend to add more automated support

for pattern detection in the future.

4.6.3 Instances of Different Patterns

In Table 4.6, we list the number of instances we found for each merge/split pattern as well

as some examples.

We were surprised to find only one instance of service consolidation in our case study.

A possible reason for this is that situations for this change to occur are relatively rare and

developers may not wish to merge different services after-the-fact if they are not quite sure

that these services should be combined into one. Patterns that relate to removing code

duplicates, including clone elimination, parameterization, and partial clone elimination

have a relatively large number of instances. This indicates that much effort had been put

to eliminate duplicate codes, routines, and idioms in PostgreSQL. It also suggests that

clones are good starting points for merge/split detection, and clone detection, although it

is different from origin analysis, can help to improve techniques in origin analysis.

When we considered these instances as a group, we found that the names of the en-
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Pattern(#) Examples Releases

clone elimination (7) getAttrName,get attname→
get attname

6.2 → 6.3.2

service consolidation (1) gettypelem,typtoout → getType-

OutAndElem

6.4.2 → 6.5

pipeline extraction (6+23) appendStringInfo → appendStringInfo,

enlargeStringInfo

6.4.2 → 6.5

parameterization (3) RelationSetLockForRead, RelationSet-

LockForWrite → LockRelation

6.4.2 → 6.5

partial clone elimination

(27)

finalize primnode,fix opid,... → expres-

sion tree walker

6.4.2 → 6.5

Table 4.6: Merge/split instances of different patterns

tities themselves often gave out information about the type of the change, such as when

gettypelem and typtoout were merged to getTypeOutAndElem, and appendStringInfo

split off enlargeStringInfo. This indicates that name is a valuable source of information

in merge/split detection.

4.6.4 Group of Merges/splits

Three groups of splits were detected:

1. 17 splits in ten files from four subsystems were caused by the introduction of the

walker mechanism mentioned above,

2. six splits in four files from two subsystems were caused by a mutator mechanism that

supports a standard way to modify an expression tree, and

3. four splits in four files in subsystem access were caused by a callback mechanism that

allows tuple processing during index building.

All three groups were caused by the introduction of a new mechanism. We wondered

how a group of changes scattered in different subsystems spanning multiple releases could
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be achieved. After we examined the CVS log of PostgreSQL, we found that all these changes

had the same author. This reminded us the fact that PostgreSQL has a core development

team, which enables the common author of a large number of files to restructure modules

relatively easily without worrying about “breaking” what other developers were doing. It

would be interesting to investigate whether the group change phenomena is different in

other OSS projects without a core development team.

4.6.5 Merges/splits at the File Level

We found two groups of merges/splits at the file level. The first one corresponded to a

large-scale restructuring in the parser subsystem from release 6.2 to 6.3.2. Functions in the

“old” files were redistributed throughout the subsystem; some were placed in existing files,

while others were grouped into “new” files. The functions themselves were not merged

or split, but left intact. For example, functions in analyze.c were moved into seven

files and a new file parse agg.c in release 6.3.2 was formed from function agg error

in catalog utils.c, four functions in analyze.c and ParseAgg in parse.c. The second

group resulted from the cleaning up of optimizer subsystem from release 6.4.2 to 6.5; most

functions in file geqo eval.c and geqo paths.c in optimizer geqo subsystem merged to

subsystem optimizer path.

We can see that total number of merges/splits at file level and the frequency appears

to be much smaller than that at function level. They happened only during major releases

changes, which is reasonable because structural changes at file level usually reflect a big

change to overall design, which is typically implemented only during major release changes.

4.7 Summary

In this chapter, we describe our case study of structural changes in the evolution process

of PostgreSQL. We have performed origin analysis on 12 releases of PostgreSQL over four

years, including six major release changes and five minor release changes. In overall, we

detected a large number of structural changes (679). We found in major release changes,

on average, at least one third of the functions that seemed to be deleted from old version

and 22% that seemed to be inserted into new version, were actually performing structural
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changes, including renaming, moving, merging and splitting. The structural changes that

actually existed might be much more than what we have detected, thus it seems that more

research on studying structural changes is necessary.

Based on the changes we have identified, we observed many interesting phenomena:

We found groups of changes occurred during restructuring; function merging and splitting

exhibited patterns, and similar to design patterns, they can be used in combination at the

same time; a set of changes caused by the same reason were scattered in multiple release

changes.

We also categorized function moves and mined more knowledge out of historical data.

We found 74% function moves occurred between existing files, and 71% occurred within

subsystems. We also summarized different causes for function renames. We found many

renames were caused by lack of unified naming convention. Many resulted from data

structure renaming.

In the next chapter, we conclude this thesis and discuss future work.
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Summary and Future Work

5.1 Summary

In this thesis, we present our approach to achieve an improved understanding of structural

changes during software evolution. We propose an improved version of origin analysis, as

well as its tool support in Beagle, to detect structural changes, including function/file move,

rename, merging and splitting. In our approach, we generalize the notion of matching

and adopt a flexible process, so that the detection can be guided by the user, and new

matching techniques can be incorporated as plug-ins. Compared to the initial version

of origin analysis, we are able to detect merging and splitting. We can also deal with

changes in more complex situations, such as when they are chained together. To better

understand structural changes, we use a technique called scatter plot to visualize changes

between two versions. Scatter plot is also useful in detection of changes. The tool Beagle

supports origin analysis in various ways, including navigation between entities involved in

changes, transaction support for change identification and building a persistent repository

of changes identified.

In our case study of 12 releases of PostgreSQL over four years, we detected a large

number of structural changes. We found that in six major release changes, on average,

at least one third of the functions that seemed to be deleted from the old version and

22% that seemed to be inserted into the new version, were actually caused by structural

changes. We also observed many interesting phenomena, such as a set of similar changes

101



102 Toward an improved understanding of software change

spanning multiple releases, group of function renamings caused by data structure renaming,

and patterns of merging/splitting. After categorizing function moves we have identified,

we found that most function moves were between existing files, and that most functions

moved within subsystems.

We believe our approach is promising towards a better understanding of software struc-

tural changes.

5.2 Future Work

One possible improvement to our approach is to investigate new sources of evidence. In

our current approach, the main evidence for change identification is drawn from source

code. We use only CVS log as an information source for verification. However, as the CVS

log records detailed historical data, and programmers often commit structural changes as

one operation, including when they perform renaming, moving, merging and splitting, it

would be interesting to investigate how the CVS log can act as a new source of evidence.

Another future project is to encode heuristics and build them into tool support. Heuris-

tics about change identification and change patterns are only “formless” information de-

rived from experiences in our current approach. As it is expensive to derive a good heuristic,

it is valuable to encode and add automation for it in tool support, so that this knowledge

can be reused to speed up analysis process. For example, patterns of merging/splitting are

detected manually in our current approach. Automation can be added if we can formally

expressing constraints that define this pattern.

There are some other parts of our approach that need to be improved in the future,

including incorporating type-based comparison into declaration-matcher, and optimiza-

tion of metrics-matcher etc..

We plan to perform more case studies to evaluate and provide feedback to improve our

current approach. We would like to know whether other software systems share the same

behavior with PostgreSQL. If there exist differences, then how to explain them.
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