
Generating Radiosity Maps

on the GPU

by

Gabriel Moreno-Fortuny

A thesis

presented to the University of Waterloo

in fultilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Gabriel Moreno-Fortuny, 2005

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Global illumination algorithms are used to render photorealistic images of 3D scenes

taking into account both direct lighting from the light source and light reflected from other

surfaces in the scene. Algorithms based on computing radiosity were among the first to

be used to calculate indirect lighting, although they make assumptions that work only for

diffusely reflecting surfaces. The classic radiosity approach divides a scene into multiple

patches and generates a linear system of equations which, when solved, gives the values

for the radiosity leaving each patch. This process can require extensive calculations and

is therefore very slow. An alternative to solving a large system of equations is to use a

Monte Carlo method of random sampling. In this approach, a large number of rays are

shot from each patch into its surroundings and the irradiance values obtained from these

rays are averaged to obtain a close approximation to the real value.

This thesis proposes the use of a Monte Carlo method to generate radiosity texture maps

on graphics hardware. By storing the radiosity values in textures, they are immediately

available for rendering, making this algorithm useful for interactive implementations. We

have built a framework to run this algorithm and using current graphics cards (NV6800

or higher) it is possible to execute it almost interactively for simple scenes and within

relatively low times for more complex scenes.

iii

Acknowledgements

Thanks to my supervisor, Mike McCool, who came up with many ideas and helped me

in much of the research. Thanks to the two selected readers, Stephen Mann and Peter

Forsyth, who gave me valuable feed back and support. Also thanks to the Computer

Graphics Lab members who helped me in solving many of the implementation issues.

Thanks to CONACYT who funded me. Thanks to my soul-mate, Flor, who supported me

through the hardest times. I would like to dedicate this thesis to her and to my parents

who gave me all the support I needed to get here in the first place.

iv

Contents

1 Introduction 1

2 Background 4

2.1 Illumination Methods . 4

2.1.1 Rasterization . 5

2.1.2 Ray Tracing . 5

2.1.3 Global Illumination . 6

2.2 The Classic Radiosity Approach . 7

2.2.1 Radiometry . 7

2.2.2 Solving the System . 11

2.2.3 Improvements and Optimizations 16

2.3 Stochastic Radiosity . 17

2.3.1 Monte Carlo Integration . 18

2.3.2 Stochastic Relaxation Methods . 19

2.3.3 Discrete Random Walk Methods . 19

2.4 Graphics Hardware . 20

2.4.1 Shading Languages . 21

2.4.2 General Purpose GPU Programming 22

2.4.3 Ray Tracing on Graphics Hardware 22

2.4.4 Radiosity on the Graphics Hardware 22

2.4.5 Texture Atlases . 23

v

3 The Algorithm 25

3.1 Linear Transport Operator . 26

3.2 Acquiring Lighting Contributions . 27

3.3 Initial Lighting Contribution . 29

3.4 Iterating the Series . 32

3.5 Programming steps . 34

4 Implementation Details 36

4.1 Sh as a Tool for GPU Radiosity Maps . 37

4.2 The Scene and Texture Atlas Modules . 38

4.3 The Ray Tracer . 40

4.4 The Radiosity Module and User Interface 42

4.4.1 Shader Passes . 42

4.4.2 Radiosity Calculation Stages . 43

5 Results 50

5.1 Validation . 50

5.1.1 Histogram Comparison . 51

5.1.2 Contour Comparison . 53

5.1.3 Pixel Differences . 53

5.1.4 Validation Analysis . 56

5.2 Sample Scenes . 57

6 Conclusion 64

6.1 Benefits . 64

6.2 Limitations . 65

6.3 Future Work . 66

A Glossary of Terms 68

B Mathematical Notation 75

vi

C Pseudocode Listing and Descriptions 79

C.1 Texture Atlas . 79

C.1.1 Triangle Pairing Function . 79

C.1.2 Recursive Texture Subdivision . 80

C.2 Shader Passes . 81

C.2.1 Geometry to Texture Vertex Shader 81

C.2.2 Texture to Texture Vertex Shader 82

C.2.3 Geometry to 2D Image Vertex Shader 82

C.3 Radiosity Initialization Stage . 83

C.3.1 Random Light Ray Generator (GLR) Fragment Shader 83

C.3.2 Direct Light Calculation (DL) Fragment Shader 83

C.4 Radiosity Iteration Stage . 84

C.4.1 Random Cosine Distribution Ray Generator (GCR) Fragment Shader 84

C.4.2 Indirect Light Calculation (IL) Fragment Shader 84

vii

List of Figures

2.1 Indirect lighting. 6

2.2 Radiometric quantities. 8

2.3 Radiance. 9

2.4 Irradiance and radiosity in terms of an integration of radiance. 9

2.5 Relation between incoming radiance, the BRDF and outgoing radiance. . . 12

2.6 Diffuse reflection from a surface. 12

2.7 Integration of surface areas. 15

2.8 Random walk. 20

2.9 Texture atlas. 23

3.1 The transport operator. 28

3.2 Rays of light distributed through the transport operator. 28

3.3 Calculating indirect illumination. 31

3.4 Calculating direct illumination. 31

4.1 General framework. 39

4.2 Texture atlas generation. 39

4.3 Vertex shader types. 44

4.4 Using the vertex shader to pass texture coordinates as an array of indices

to textures. 44

5.1 A comparison of the Cornell box images. 52

5.2 Contours for the Cornell box image at brightness values of 40, 70, 90, 120

and 140. 52

viii

5.3 Histograms for the Cornell box images. 53

5.4 Pixel differences between radiosity map generated image and two other ren-

dered images. 54

5.5 Pixel difference thresholds. 55

5.6 Progression of global illumination. 58

5.7 Alternative renderings. 58

5.8 Spheres and cube. 62

5.9 Toys. 62

5.10 Drinking teddy. 63

5.11 Jeep. 63

ix

List of Algorithms

4.1 Initialization stage. 46

4.2 Iteration stage. 48

C.1 Triangle pairing function. 79

C.2 Recursive texture subdivision function. 80

C.3 Geometry to texture (G2T) vertex shader. 81

C.4 Texture to texture (T2T) vertex shader. 82

C.5 Geometry to 2D image (G2I) vertex shader. 82

C.6 Random light ray generator (GLR) fragment shader. 83

C.7 Direct light calculation (DL) fragment shader. 83

C.8 Random cosine distribution ray generator (GCR) fragment shader. 84

C.9 Indirect light calculation (IL) fragment shader. 84

x

Chapter 1

Introduction

When trying to generate photorealistic images of 3D scenes, there are many aspects of

the physics of light that must be taken into account. One particular aspect is the way in

which objects affect the general illumination of a scene by reflecting or refracting light and

by casting shadows. Global illumination algorithms are those that specifically take this

aspect into account to generate photorealistic images.

The problem with calculating the global illumination of a scene is that an energy

equilibrium system must be solved. One approach to solve this problem is called radiosity,

after the units in which it represents its solution. This approach works exclusively for

objects with diffusely reflecting surfaces because it is possible to simplify the equations

that model the light interactions between these kinds of surfaces. Radiosity is based on

finite element discretization, that is, each surface is divided into small patches. For each

pair of patches a term called form factor, which geometrically relates the two patches, must

be computed. With this, a system of equations that relates all patches is generated, taking

into account emitted and received light as well as visibility between them.

Solving these systems requires a large amount of processing and can be very problematic

for complex scenes. Setting up the system in the first place is a problem because a large

number (O(n2)) of form factors are required and computing them all can be even more

expensive than actually solving the resulting system of equations. An easier alternative

that can give equally good results is to use a stochastic approach called Monte Carlo to

calculate the geometric relation given by the form factors. With a Monte Carlo approach,

1

Introduction 2

the solution to a problem is given by the expected value of a random variable, such that

it is possible to converge to that solution by generating many iterations of the random

variable. When using a Monte Carlo based method to solve a radiosity system, a large

number of rays with random directions are shot from one patch to another. The geometric

relation between the patches can be obtained from the probability that each ray coming

from one patch has of hitting each other patch. Using this in conjunction with iterative

matrix solving methods, it is possible to compute the complete solution to the system

without having to store or explicitly calculate form factors.

This thesis proposes the use a Monte Carlo method that is designed to take advantage

of the processing architecture offered by current Graphics Processing Units (GPUs) (for

example the NVIDIA GeForce 6800 and 7800). The main idea is to use textures to store

the different values required and to use multiple rendering passes to iteratively solve for

the final radiosity values. A texture atlas is created in which each texture element (texel)

represents a square patch in the scene. Using a GPU based ray tracer, the system can shoot

a ray from each of these texel patches and store the value of the radiosity emitted from

the surface it hits. Starting from any initial approximation, for instance one computed

exclusively from direct lighting, our system will rapidly converge to the correct solution.

This algorithm can be implemented with high efficiency and performance in current

GPUs and it is possible to have almost interactive renderings for small scenes. A simple

framework based on this approach has been implemented to show the potential of the

algorithm. It presents a scene with only direct illumination at first, but then progressively

converges to a radiosity solution. This allows the user to move around the scene without

having to wait for the complete solution to be obtained. Interaction with objects and light

sources in the scene is allowed and when these change, the radiosity solution is gradually

recomputed. Though a complete framework for this implementation is presented in this

thesis, there are many optimizations that can be added to obtain faster convergence and

higher quality images. It should be possible to have real interactive rates for a complete

solution in the near future because GPUs are improving rapidly and more optimizations

remain to be exploited for future implementations.

Chapter 2 of this thesis will explain all the background regarding the details of the pro-

posed algorithm and also mention some of the previous work done on this field. Chapter 3

Introduction 3

will explain the algorithm in detail and show mathematically how it works. Chapter 4 will

delve into the programming specifics and discuss the issues regarding GPU programming.

Chapter 5 will show some comparisons that were done to prove the validity of the algo-

rithm and will also show rendered examples of various test scenes. Finally, Chapter 6 will

summarize the conclusions obtained from this thesis and propose future extensions and

possible optimizations.

In addition, at the end of the thesis there are some helpful appendixes. Appendix A

has definitions of some of the technical terms used here. Appendix B describes the math-

ematical notation used in chapters 2 and 3. Lastly, Appendix C contains descriptions and

listings of pseudocode for various programs found in Chapter 4.

Chapter 2

Background

This chapter presents a brief history of the development of illumination methods and also

explains the mathematics behind the algorithm presented in this thesis. The first section

will give an overview of three types of rendering algorithms. The second and third sections

explain global illumination and specifically the mathematical background of the radiosity

approach. Finally, the last section describes the latest advancements in graphics hardware

and how global illumination methods have taken advantage of this.

2.1 Illumination Methods

Illumination methods can be divided into the following three types: rasterization, ray

tracing and global illumination. In all three methods a scene description is necessary

as input. This description includes many possible attributes for each object or polygon

making up the scene, among them vertex positions, normals, colors, and many more. In

addition, camera attributes that describe the point of view must also be included and can

include view position, view direction, field of view and others. Each of these methods is

described in the following subsections.

4

Background 5

2.1.1 Rasterization

Rasterization is the standard way to generate images for interactive 3D graphics like the

ones used in games and visualization systems. In this method, the input polygon attributes

go through a series of transformations and are projected onto a 2D coordinate system

with the correct perspective. For each projected polygon visible within a viewing window

grid, a series of fragments are generated that correspond to discrete grid samples of each

polygon. These fragments are further modified with shading operations that take into

account textures and other special effects before resulting in a final pixel color.

This method is efficient because each vertex is processed only once and the fragment

processing only applies to those fragments from polygons or sections of polygons that were

inside the viewport. In addition, each fragment is processed using only local information,

that is, the illumination calculations for a particular fragment do not include the rest

of the geometry. Current graphics processors are optimized to execute these operations

at extremely fast speeds and have multiple vertex and fragment processing units which

allow massive parallelism. However, lighting interactions between objects in a scene (like

shadows and reflections) are not easily computed this way, so the images generated often

lack realism.

2.1.2 Ray Tracing

In 1980, Turner Whited proposed the ray tracing approach to image generation [34]. Ray

tracing involves calculating the result of shooting or tracing a ray from the viewing point

into the scene to see what object it hits. Once the point where a surface was hit is known,

local surface shading can be performed and additional rays can be traced to achieve effects

like shadows, reflections and refractions.

This process is extremely time consuming because every time a ray is shot, it must

be compared with every single polygon to see if the ray was hit. To optimize this, many

algorithms have been developed that reduce the amount of geometry that must be checked

by the ray as it is traced through the scene. For example, one way is to use a grid to

divide the scene uniformly into 3D cells (called voxels) so that the ray only checks the

geometry within each voxel [11, 13, 30]. Another way is to use a kD-tree based method,

Background 6

which also divides the scene, but creates more divisions where the scene has more complex

geometry [19].

In general, ray tracing can be slow, but it takes into account more of the global physical

properties of illumination than rasterization. However, ray tracing on its own does not

consider indirect diffuse reflections.

2.1.3 Global Illumination

In real life, surfaces are not only directly illuminated by light sources, but also by light

reflected from other surfaces. The idea of global illumination is to take into account this

indirect light. In theory, every object in a scene can affect every other, making global

illumination a challenging problem.

Ray tracing includes shadows, which affect illumination, and can also take into account

reflected and refracted light, so in a way it can be considered a first step towards global

illumination. However, there are other relevant global aspects of illumination that can be

taken into account: illumination from reflections of diffuse surfaces, caustics (intense light

caused by reflective or refractive surfaces that bend and focus light), interactions of light

with participating media like gas or fog, bending of light due to heat and polarization, and

others.

light

dire
ct

di
re
ct

direct

indirect
indire

ct

indirect

ind
irec
t

indi
rect

indirect

Figure 2.1: Indirect lighting.

Background 7

Perhaps the most common effect that people relate to global illumination is that of

indirect diffuse lighting (see Figure 2.1). The first algorithm used to compute this compo-

nent of illumination was the radiosity algorithm, a finite element algorithm published by

researchers from Cornell University in 1984 [14]. Later, other algorithms were developed

to calculate other aspects of global illumination, and to address some of the limitations

of the radiosity approach. For example, an extension of ray tracing, path tracing [22],

recursively shoots a single ray in a random direction after hitting each surface and these

rays combine to generate random paths. For each pixel a large number of paths are then

followed to find the contribution of light that follows each path. These contributions are

averaged and result in an estimate of indirect lighting and can be used for many other

effects. Another example is photon mapping [20, 21] in which photon particles are shot

from the light sources and then a map of the photons’ directions and where they hit is

generated so that, in a second pass, indirect illumination and caustics can be calculated.

For the method proposed in this document, I make the same simplifying assumptions as

the original radiosity method but use a random sampling approach similar to that of path

tracing and create maps for additional passes as is done in photo mapping. The following

sections detail the mathematics behind the concept of calculating the radiosities of diffuse

surfaces.

2.2 The Classic Radiosity Approach

To explain how the radiosity of a scene is calculated using the classic finite element method,

it is necessary to first describe some concepts from the science of radiometry, the area of

study involved with the physical measurements of light. Here is a brief explanation of some

of the basic radiometric units, adapted from Advanced Global Illumination [9].

2.2.1 Radiometry

Light can be expressed as radiant power or flux : the total energy (light energy in this case)

that flows through a surface per unit of time (see Figure 2.2(a)), measured in Watts (W).

Two other useful quantities are incident radiant power, also known as irradiance, which

measures how much total light power arrives on a surface (see Figure 2.2(b)) and exitant

Background 8

radiant power which measures how much light leaves a surface (see Figure 2.2(c)). Exitant

radiant power is also known as radiosity and it is this concept from where this approach

gets its name, since we calculate how much radiosity leaves from each part of a scene. Both

irradiance and radiosity are measured in Watts per square meter (W/m2).

(a) Flux. (b) Irradiance. (c) Radiosity.

Figure 2.2: Radiometric quantities.

The most important measure used in radiometry is radiance, defined as flux per unit

projected area per unit solid angle. Radiance is a five dimensional quantity: a three

dimensional (x, y, z) position (represented in the equations in this document as x) and a

two dimensional solid angle (σ) with direction ~ω. It can be pictured as the amount of flux

that reaches or leaves a point on a given surface while going through a given area projected

on a hemisphere above that point (See Figure 2.3).

Radiance is also dependent on the wavelength of light energy, however, for the math-

ematical derivations found in this thesis we neglect this1. One important property of

radiance is that it is independent of the direction in which the flux is flowing. Thanks to

this property, it is possible to represent both radiosity and irradiance as an integration of

1In computer graphics, three colors are generally used to represent the whole range of light: red, green
and blue (RGB). Since all the computations are the same for the three color elements so the mathematical
derivations will be made assuming just a monochromatic color, that is, with only one albedo (ρ) value.

Background 9

x

σ

!ω

Figure 2.3: Radiance.

the radiance of small solid angles. This can be useful when simplifying equations, since

both radiosity and irradiance are three dimensional quantities, only dependent on position.

x Ω

!ωi

L i(
x,

!ω i
)N̂x

θi

dσ(!ωi)

(a) Irradiance from radiance.

x Ω

!ωo

L o
(x

,!ω
o)N̂x

θo

dσ(!ωo)

(b) Radiosity from radiance.

Figure 2.4: Irradiance and radiosity in terms of an integration of radiance.

We now mathematically relate these quantities. Irradiance, represented by the letter

E, is the total amount of radiance arriving at a point. We represent incoming radiance

with Li and express that it is arriving at a point x from direction ~ωi by using notation

Background 10

Li(x, ~ωi). The relation between E and Li is

E(x) =

∫
Ω

Li(x, ~ωi) cos(θi) dσ(~ωi). (2.1)

This equation shows that at point x, the irradiance is equal to the total integrated amount

of incoming radiance around a hemisphere Ω. Angle θi is the angle between direction vector

~ωi and the normal (N̂x) of the surface at point x. The cos(θi) term is necessary to take

into account the projection of the flow of incoming radiance against the surface. Finally,

dσ(ωi) is the solid angle measurement (at direction ~ωi) for the integration of hemisphere

(see Figure 2.4(a)).

In this document we will be using the common assumption that all vectors are always

pointing away from the surface of the point in question. To indicate the direction of the

flow of light, we will use the subscripts i for incoming and o for outgoing. Figure 2.4(a)

represents a large number of small solid angles integrated over hemisphere Ω. The thick

arrow represents one particular instance of these solid angles so that we can see how all

the values used in Equation 2.1 are geometrically related. The direction of the flow of

irradiance is indicated by the thick arrow and by the fact that the vector representing the

direction of the arrow (~ωi) has the subscript i.

Radiosity is usually represented by the letter B and is an integral over the total outgoing

radiance leaving a point. Outgoing radiance is represented by notation the Lo(x, ~ωo) (see

Figure 2.4(b)). The equation that relates radiance to radiosity is similar to Equation 2.1:

B(x) =

∫
Ω

Lo(x, ~ωo) cos(θo) dσ(~ωo). (2.2)

We can also relate outgoing flux, represented by Φo, to radiosity. It can be written as an

integral of radiosity over an area:

Φo =

∫
A

B(x) dAx (2.3)

If we assume a uniform radiosity over the whole surface, this last equation can be simplied

to

Φo = BA. (2.4)

Background 11

Another relevant concept is the bidirectional reflectance distribution function, or BRDF.

This function returns a reflectance value, that is, it describes the way in which a surface

point reflects light. For most light interactions, the BRDF is a complicated function that

depends on the position on the surface, angle of incidence of the light and of the reflected

outgoing angle. In radiometric terms, a BRDF can relate incoming radiance from direction

~ωi to outgoing radiance in direction ~ωo. The BRDF will be represented by the notation

f(x, ~ωi ↔ ~ωo) which means that BRDF f will return a reflectance value ρ for a given point

x for incoming radiance in direction ~ωi and outgoing direction ~ωo. The reflectance value

ρ is a number between zero and one, and gives the percentage of incoming light that is

reflected outwards. A BRDF equation describing the relation between incoming radiance

and outgoing radiance is

Lo(x, ~ωo) =

∫
Ω

f(x, ~ωi ↔ ~ωo)Li(x, ~ωi) cos(θi) dσ(~ωi). (2.5)

In this equation the outgoing radiance Lo(x, ~ωo) in direction ~ωo from point x will be equal

to the integration of radiance incoming from all possible directions ~ωi and weighted by the

value of the BRDF for each of those directions (see Figure 2.5).

2.2.2 Solving the System

Diffuse Surfaces

The radiosity approach works only with diffuse surfaces (also called Lambertian surfaces).

From a diffuse material all incoming light is equally reflected in all directions (see Fig-

ure 2.6). Diffuse surfaces conveniently have a BRDF that is constant: f(x, ~ωi ↔ ~ωo) =

ρ(x)/π, where reflectance ρ(x) is the albedo, a number that describes the percentage of

reflected light, of the surface at point x and π is a factor to maintain energy conservation.

This also means that from a diffuse surface the outgoing radiance does not depend on the

outgoing angle: it is the same in all directions.

For the classic radiosity algorithm, the system of the energy equilibrium of light within

a scene needs to be solved. In other words, we want to know how much radiance is being

emitted at each point of each scene surface based on incoming radiance from other points.

Background 12

xΩ

!ωi

L
i (x, !ω

i)

N̂x
θi !ωo

L o
(x,

!ω o
)

x

N̂x

θo

f (x,!ωi↔ !ωo)

dσ(!ωi)

Figure 2.5: Relation between incoming radiance, the BRDF and outgoing radiance.

Figure 2.6: Diffuse reflection from a surface.

Background 13

We can start by applying the diffuse surface simplification to Equation 2.5:

Lo(x) =

∫
Ω

ρ(x)

π
Li(x, ~ωi) cos(θi) dσ(~ωi). (2.6)

Notice that outgoing radiance Lo(x) is now only dependent on point x because the radiance

is equal for all angles. We have also substituted the generic BRDF f(x, ~ωi ↔ ~ωo) with the

diffuse BRDF ρ(x)/π.

We can now redefine the relationships between radiance and radiosity for diffuse sur-

faces. Equation 2.2 assumes that radiance may vary for different outgoing directions ~ωo,

however, for diffuse surfaces we know that it is constant in all directions. This means that

the integration over the hemisphere will be that constant value (Lo(x)) multiplied by π

due to the cosine term. The relationship is now simplified to

B(x) = πLo(x). (2.7)

By multiplying Equation 2.6 by π on both sides we can use the relation in Equation 2.7

to create an equation that relates radiosity to incoming radiance. We can also move ρ(x)

out of the integral since it is a constant for point x.

B(x) = ρ(x)

∫
Ω

Li(x, ~ωi) cos(θi) dσ(~ωi). (2.8)

It is also convenient to change all instances of radiance into radiosity. We can say that

the incoming radiance Li from a given direction is actually the outgoing radiance Lo from

another surface. Using this idea and the relation in Equation 2.7 we can substitute the Li

in Equation 2.8 with B′/π to give us

B(x) =
ρ(x)

π

∫
Ω

B′ cos(θ) dσ(~ωi). (2.9)

This equation is the basis for the radiosity map approach that this thesis is presenting.

The following subsections finish describing the way in which the classic approach finds the

radiosity values for the surface of a scene. The radiosity map approach will be explained

in Chaper 3.

Background 14

The Radiosity Equation

There are two components that make up radiosity B in a given scene: the direct light

component and the indirect light component and each can be calculated in different ways.

Therefore, it is convenient to separate B(x) into these two components:

B(x) = Be(x) + Bı(x), (2.10)

where Be(x) is the radiosity due to all direct light components and Bı(x) is the radiosity

due to all indirect light components. Traditional ray tracing methods can be used to obtain

the values for the direct component so the math will not be discussed here. However, the

equations for this are shown in Chapter 3.

Calculating the indirect light is not trivial. The classic radiosity approach tries to solve

this problem by dividing the scene into patches and changing Equation 2.9 for indirect light

into an integration over surfaces that relates each pair of patches instead of an integration

over a hemisphere (see Figure 2.7). The equation becomes2:

Bı(x) = ρ(x)

∫
S

K(x, y)B(y) dAy. (2.11)

This is now an integration over all surfaces in the scene. The radiosity B(y) is given off by a

point y on surface S, and K(x, y) is a function that defines the geometric relation between

point x and point y, including visibility, distance, and surface orientation. It also includes

the π term from the radiance to radiosity substitution. It is defined mathematically as

K(x, y) = V (x, y)
cos(θx) cos(θy)

πr2
xy

, (2.12)

where V (x, y) is equal to 1 if points x and y are mutually visible and equal to 0 if they are

not, r is the distance between points x and y, θx is the angle between the normal of the

surface at point x and the vector that points to y from x, and θy is the angle between that

same vector and the normal of the surface at point y.

After changing from hemispherical integration to surface integration, Equation 2.10

becomes

B(x) = Be + ρ(x)

∫
S

K(x, y)B(y) dAy. (2.13)

2A detailed explanation of the derivation from the hemispheric integration form to the surface integra-
tion can be found in [9].

Background 15

S

r xy

V(x,y) = 1
Visible

V(x,y) = 0
Not visible

B(
y)

θy

θx

x

y

N̂yN̂x

Figure 2.7: Integration of surface areas.

This is called the radiosity integral equation. By using an integral, we are implicitly

assuming that the patches are infinitely small. By changing the equation into a sumation

instead of an integral, we consider the patches to be small, but not infinitely small. The

sumation for each patch i of N total patches with constant radiosity on each is3:

Bi = Bei + ρi

N∑
j=0

FijBj. (2.14)

This is the final form of the radiosity equation and it gives a system of equations with N

variables, one for each patch. The Fij terms are called patch-to-patch form factors. These

terms come from the K(x, y) function and must be computed before the system can be

solved. They are defined by

Fij =
1

Ai

∫
Si

∫
Sj

K(x, y) dAy dAx. (2.15)

Solving the System

To solve the radiosity equation it is necessary to first compute the N ×N form factors and

then use them to solve the system of N equations. Solving the system of equations can

3A more detailed derivation from the integral form to the sumation form is found in [9].

Background 16

be done by using the Jacobi method, which is optimized for parallel processing systems or

Gauss-Seidel method which is better for sequential processing systems. A brief overview

of both methods will now be given.

The Jacobi iterative method solves equations of the type x = e + Ax. The idea is

to start with an arbitrary point x(0). Then, at each iteration the current point x(k) is

transformed into the next point x(k+1) by placing x(k) in the right-hand side of the equation:

x(k) = e + Ax(k). If A is a contractive matrix, which means |Ax| < |x| for all x, then the

sequence of points x(k) will always converge to the solution of the system (also called the

fixed point), regardless of the starting position.

The Jacobi method is an optimal method to be run in a system of parallel or dis-

tributed processors, since each component of the solution vector x(k) can be computed

independently. In the Gauss-Seidel method, each component (x
(k)
1 , x

(k)
2 . . . x

(k)
n) of the

solution vector is processed in sequence. However, once a new component has been gener-

ated, it is used in the processing of the next component. Because of this, the Gauss-Seidel

method converges twice as fast as the Jacobi method, but at the cost of losing parallelism

capabilities.

Both of these methods are excellent for systems such as the radiosity system which is

contractive since light reflections are energy conserving. Each iteration models a single

bounce of light interreflection in the scene and the equilibrium illumination is the solution

to which the iterations converge.

2.2.3 Improvements and Optimizations

Using the classic approach is complicated and time consuming. To get better results,

patches need to be as small as possible, meaning that the more patches, the better the

results. Unfortunately this can generate large systems of equations and lots of problems

when computing the form factors for complex scenes. Furthermore, the number of form

factors grows quadratically with the number of patches, and so the naive approach cannot

be used for large scenes.

There have been many improvements to the radiosity approach since the original paper

was published. One of the first optimizations was the use of the hemicube to calculate the

form factors [6]. To efficiently compute the double integral Equation 2.15, a hemicube (five

Background 17

planes forming half of a cube) is constructed around the center of each patch. The faces of

the hemicube are divided into pixels and each of this pixels has a precomputed delta form

factor based on its position on the hemicube. All the visible patches are then projected

onto each of the five faces and an approximation to the real form factor of a patch is given

by the sum of the delta form factors of the pixels that the patch covers.

In 1988 the Cornell team developed an approach called progressive refinement [7]. In

the classical approach, solving the equations by using an iterative method is equivalent to

gathering illumination contributions in each patch. For the progressive refinement method,

the idea is to shoot contributions from one patch onto the other patches, starting with the

light sources and going to the patches with the highest energy to shoot. In this way, it is

possible to generate a partial solution to the system after only calculating the form factors

for one patch. Each shooting step adds more contributions, gradually converging to the

complete solution.

Another important improvement to the classical approach was to divide into more

patches the areas where more detail was needed, like shadow boundaries or edges. The

classical adaptive algorithm was described by Cohen et al. and was called substructuring

[5]. This algorithm would proceed by considering the radiosity variation at the vertices

of a patch and would subdivide it if the difference exceeded some threshold. A similar

algorithm was Hierarchical radiosity by Hanrahan et al. [17] in which patches would be

subdivided based on their form factors sizes.

2.3 Stochastic Radiosity

In 1986 Kajiya published an analysis of the rendering equation [22], a form of the implicit

radiance Equation 2.5. This equation described the complete distribution of light in a

scene as a transport equation. Describing global illumination in a single equation made

it possible to use the concept of stochastic or Monte Carlo integration schemes based

on probabilistic methods to calculate additional physical effects. This way, it is possible

to calculate illumination due to area lights and produce soft shadows, as well as fuzzy

reflections that mimic metals or other reflective surfaces. While the original rendering

equation did not include a number of effects, such as participating media (fog or smoke),

Background 18

this concise mathematical model still covered a range of important effects and led to more

principled approaches to light transport.

2.3.1 Monte Carlo Integration

Around the middle of the 20th century, when computers were beginning to be designed, the

term Monte Carlo was used to describe mathematical techniques used to simulate stochastic

phenomenon by doing statistical sampling. The Monte Carlo approach to solving a problem

consists in defining a random variable such that its expected value will be the solution to

the problem. Some samples of the variable are generated and the average of these samples

is used as an estimate of the true solution.

In the case of computing an integral

I =

∫ 1

0

f(x) dx, (2.16)

the Monte Carlo approach considers N samples selected randomly over the integral’s do-

main to estimate its value. This is called using an estimator, denoted as 〈I〉. For Equa-

tion 2.16, assuming that the randomly selected variables have a uniform distribution, the

estimator would be

〈I〉 =
1

N

N∑
j=1

f(xj). (2.17)

This estimator is no more than a simple average of values obtained from evaluating the

function f(x) for each instance xi of the random variable x. It can be easily proved that

the expected value of this estimator is also the expected value of integral of the function,

E [I] = E [〈I〉] [9].

In Equation 2.17 the random variable x has a uniform probability distribution. This

means that each instance xi has an equal probability of being generated. If the random

variable had a non-uniform distribution based on some function p(x), then the expected

value would be weighed by this function and would now be

E [I] =

∫ 1

0

f(x)p(x) dx, (2.18)

Background 19

so it is necessary to divide by function p(x) when defining the estimator. Assuming a

non-uniform probability distribution of variables, based on function p(x), the estimator for

equation 2.16 is

〈I〉 =
1

N

N∑
j=1

f(xj)

p(xj)
. (2.19)

Function p(x) is called a probability distribution function (PDF). A PDF can be used

to increase convergence, that is, reduce the number of samples necessary to give a closer

approximation to the real answer. This is called importance sampling and in this case, the

PDF should be in some way proportional to the function we want to integrate.

According to Dutré et al. [9] there are two main approaches to solving radiosity sys-

tems represented by system of linear equations using Monte Carlo Methods: Stochastic

relaxation methods and discrete random walks.

2.3.2 Stochastic Relaxation Methods

The basic idea behind stochastic relaxation methods is to solve the radiosity system us-

ing an iterative solution method such as Jacobi or Gauss-Seidel while at the same time

acquiring the values for the form factors using random sampling [1, 4].

To obtain an approximation to the form factors, rays are shot for each patch and

the radiosities obtained are averaged by the number of samples. This essentially gives a

summation of radiosities weighed by their probability of being hit, their form factors, and

this forms the contractive matrix we can use to find the solution.

2.3.3 Discrete Random Walk Methods

Random walk methods have been used since the 1950s to solve systems similar to those

found in the radiosity problem. However, they were not specifically applied to radiosity

until 1996 [29]. In a discrete random walk method, there exists a particle that begins in

a random state and then is moved through various other states until it is absorbed (see

Figure 2.8).

The particle has a normalized probability $i of initially being in one of the N states and

there are different probabilities pij that the particle might go from one state to another in

Background 20

1

2

3

4
5

6

7

State A

State G

State F

State E

State D State C

State B

Figure 2.8: Random walk.

particular and there are also probabilities αi of the particle being absorbed or terminated.

The expected number of visits to each state before it is absorbed is called the collision

density (as it describes how many times the particle collided with a given state) and it is

represented by Ci. The collision density of a discrete random walk process can be found

by solving a linear system of equations of the form

Ci = N$i +
n∑

j=1

pjiCj. (2.20)

We can see that the random walk equation looks similar to the radiosity equation (2.14).

We can assume that the particles are photons being shot from the light sources and that

each state is a patch in the scene. In a random walk all the initial probabilities must sum

to one. The initial probability used can be the emitted light of each patch. To normalize

them we can divide the power of each emitted light by the total emitted light power. Then

by simulating a number of random walks, the collision density of the walk will give us the

light power at each patch.

2.4 Graphics Hardware

Graphics processors originally started as coprocessors with a fixed set of instructions that

received a stream of 3D geometry and output a 2D image by rasterization. There has been

Background 21

a tremendous boom in the industry of video games, visual effects and other related areas

and the need for high performance computation in these areas. Thanks to this, GPUs have

rapidly grown in complexity and processing power and have become more programmable,

while staying relatively inexpensive and widely available.

Current GPUs have two processing stages: The vertex shader and the fragment shader.

The vertex shader receives the sequence of vertices and can apply geometric transfor-

mations, while the fragment shader receives rasterized information and computes specific

shading algorithms. Originally both stages had fixed hardware but first the vertex shader

and more recently the fragment shader, where most of the computational power is found,

were infused with programmability.

2.4.1 Shading Languages

To facilitate the programming of 3D graphics and GPUs, specialized high level application

programming interfaces (APIs) have been developed, that give programmers easy to use

functions. For 3D graphics, the two most common APIs are OpenGL, created by SGI, and

Direct3D, from Microsoft. For GPU programming, the APIs are called shader languages.

Two popular ones are Cg from NVIDIA and HLSL, from Microsoft. These shader languages

allow the programmer to write simple high level code that will be translated to the GPU’s

machine code and will run whatever complex shading processes are desired.

In addition, there have recently been APIs that are oriented to running stream pro-

cesses. These are optimized for running sequences of instructions (called kernels) that are

applied on a large set of sequential data. This can be done in highly parallel ways and can

be run on clusters of computers, processors or a GPU. Two examples of these languages

are Buck’s Brook from Stanford [2] and McCool’s Sh from the University of Waterloo [23].

Because Sh combines the concept of stream programming with a shader language, it was

the best tool to implement the ideas proposed by this thesis and thus it was selected as

the main API.

Background 22

2.4.2 General Purpose GPU Programming

GPUs have become powerful, but accessible, parallel processors and programming them

for general purpose computation (as opposed to just graphics) has become increasingly

popular. However, programming for a GPU is not the same as prograaming for a CPU.

GPU programs avoid things like conditionals and loops because these were only recently

included as part of the hardware and tend to be inefficient. Many algorithms originally

created to be run on a CPU have been modified to run on a GPU, where they give better

performance. Among these are cryptography, database operations, fast Fourier transforma-

tions, the lattice Boltzmann method for fluid flow, segmentation, sound effects processing

and neural networks [35].

2.4.3 Ray Tracing on Graphics Hardware

One algorithm that was originally meant for CPUs, due to its large use of loops and

conditionals, is the ray tracing algorithm. In 2003, Purcell published a paper on running

a GPU ray tracer [28] and since then, there have been a few published implementations

of interactive ray tracers, though these ran only on small scenes. Even though at the

time GPUs were only meant for non-branching computation, Purcell predicted that GPUs

would soon incorporate conditionals and looping and proposed a framework that would use

this to efficiently calculate the intersections of traced rays with a scene. This framework

involved using a uniform grid as an acceleration structure and keeping all the relevant

information in precomputed floating point arrays, accessed as textures. This idea has since

been enhanced to use other accelerators [10]. As will be discussed later, the framework we

have implemented to calculate radiosity uses a ray tracer based on Purcell’s paper.

2.4.4 Radiosity on the Graphics Hardware

GPUs have already been used to calculate or to accelerate the calculation of radiosity

in a few published papers. Carr and Hart [4] used precomputed form factors and solved

the radiosity matrix on a GPU using Jacobi iterations. Irradiance caching, introduced by

Ward in 1988 [33], takes advantage of the fact that irradiance usually varies quite smoothly,

therefore it can be cached in a coarse data structure. When a lookup is done with this

Background 23

method, the data can be interpolated for nearby surfaces. This method has been modified

to work on a GPU by Gautron et al. [12]. Finaly, Coombe emphet al. recently implemented

a version of the progressive refinement radiosity algorithm with adaptive sampling on the

GPU [8].

2.4.5 Texture Atlases

Textures are arrays (usually of two dimensions but they can be of one or three dimen-

sions) of values that usually contain colors (stored as red, green, blue and sometimes a

transparency value) used to shade a 3D object. Textures were initially only used to simu-

late surface detail that was too fine to be defined by actual geometry. However, as GPUs

evolved, more tricks could be played with textures and this became the basis for many

shading algorithms. Textures are now oftened used to store intermediate values that will

later on be used for a final rendering. In addition, the values stored in textures are not

necessarily colors - they can be any arbitrary value.

Usually, each vertex in 3D geometry has a mapping to a rectangular shaped texture

map, one for each object, and this mapping is often precomputed or calculated by hand.

For certain algorithms it became necessary to have a way to take arbitrary geometry

and efficiently map it to a 2D texture. This process is called texture atlasing or texture

parameterization (see Figure 2.9). Unfortunately, texture atlasing will usually distort the

distribution and shape of the geometry in some way. Consequently, depending on the

application, different methods concentrate on preserving certain aspects of the geometry

like proportions, shape or connectivity.

Figure 2.9: Texture atlas.

Texture atlasing has a number of applications. A parameterized 3D object’s geometry

Background 24

can be recalculated in 2D to either reduce or increase its complexity [16]. Texture atlases are

also used in 3D painting programs to keep track of the surfaces changes of the objects. Carr

and Hart presented an overview of various methods to create automatic parameterizations

for texture atlases [3] and proposed a scheme that improved upon these.

Various radiosity methods have used textures to store intermediate parameters or fi-

nal representations of illumination values. The papers mentioned in Subsection 2.4.4 use

textures to store some intermediate parameters. Neilsen et al. [25] use a texture atlas to

store indices to form factor arrays and then use these to generate the actual surface tex-

tures that contain the illumination values. Similarly, the method proposed by this thesis

uses textures to store all the intermediate values and the final illumination values for the

radiosity solution so that they directly accessible to render the scene. In fact, our entire

solution runs on the GPU and generates the texture maps there, without any need to read

data back to the host.

No particular existing texture atlasing scheme was used for the implementation pre-

sented by this thesis. However, all the papers cited in this section were analyzed to obtain

ideas for the implementation of our own scheme. The scheme that was implemented focused

mainly on simplicity and ease of coding but lacks certain features. The exact implemen-

tation details are found in Section 4.2 while the possible improvements are explained in

Chapter refch:conclusion. It is important to mention that texture atlases are not the only

possible methods that could be used to parameterize the surface and store the computed

radiosity values. Other approaches like poly-cube maps [31] or geometry images [16] could

be used. These possible options are also described in Chapter 6.

Chapter 3

The Algorithm

The objective of this thesis is to present an algorithm that can solve the global illumination

problem for diffuse interreflection efficiently, avoiding the need to explicitly compute many

form factors or solve systems of equations. We also want an algorithm that can be easily

implemented and run on an advanced GPU. We assume, however, that we already have a

GPU ray tracer algorithm that runs reasonably fast.

Because we want to avoid setting up and solving a system of equations, we will instead

use the idea of a linear transport operator. This concept allows us to begin by calculating

radiosity due to direct illumination and then incrementally add the contribution of each

bounce of indirect light off of the surfaces in the scene.

To be able to compute the illumination, we first distribute sample points over all the

surfaces in the scene, similar to the way in which classic radiosity needs to divide a scene

into patches. This is done automatically by mapping the 3D geometry into a 2D texture

atlas. By using a texture parameterization, all the operations are executed on a simple 2D

array. A simple texture atlasing scheme is explained in Chapter 4.

Once the surfaces in the scene have been discretized into points, we calculate the radios-

ity due to direct illumination for each point and then iteratively compute the component

due to additional bounces of light, eventually converging to the complete solution. The

following sections explain the concept of the linear transport operator and the mathematics

necessary to compute radiosity due to direct and indirect components of the illumination.

25

The Algorithm 26

3.1 Linear Transport Operator

It is possible to describe the interaction of light with its environment by using linear trans-

port operators. The integral Equation 2.9 takes one bounce of radiosity and transports it

into another bounce. The right side of this equation can be considered a transport opera-

tor, which we can denote as T . This transport operator takes a distribution of radiance,

multiplies it by a reflectance value and then scatters it, generating a new distribution. A

function for the distribution of radiosity can be defined as

TB =
ρ(x)

π

∫
Ω

B cos(θ) dσ~ω. (3.1)

This equation can be interpreted as saying that radiosity B modified by the transport

operator T is equal to the integrated radiosity values one bounce away from surfaces

around a point (see Figure 3.1).

Operator T is contractive due to energy conservation. This can be seen mathematically

in that the reflected radiosity TB(x) will always be less than the integration of radiosities

B(y) over the hemisphere because this integration is multiplied by ρ(x) which is always

between zero and one.

We now define the total scene radiosity recursively in terms of the transport operator:

B = Be + TB. (3.2)

This recursive equation can be expanded into a series because the transport operator T is

contractive. If we operate on both sides of the equation by T , we get a new value of TB:

TB = TBe + TTB. (3.3)

We can substitute this to the original equation over and over:

B = Be + TBe + TTB,

B = Be + TBe + TTBe + TTTB,

B = Be + TBe + T 2Be + T 3Be + . . . + T nB.

The Algorithm 27

This is called the Newman series and is an important concept that path tracing and

random walk approaches use [9, 22, 32]:

B =
∞∑

n=0

T n Be. (3.4)

Geometrically, this expansion represents light being emitted from one surface, then

being distributed to other surfaces over and over again (see figure 3.2). We can approximate

a solution by truncating this series to a finite number of terms. Since T is contractive, the

omitted terms will decrease to zero as the number of bounces included in the summation

increases.

The more terms this series is expanded to, the closer it converges to the real solution.

If we can apply this operator directly we do not need to solve a system of equations.

3.2 Acquiring Lighting Contributions

To account for one execution of the transport operator we need to acquire lighting contribu-

tions from all surfaces that surround each point in a scene. Calculating these contributions

can be done using Equation 2.9. In classic radiosity, the hemispherical integration in this

equation needs to be changed to a surface integration to obtain an equation that is de-

pendent on all the other surfaces. However, since this requires each pair of patches to

be related, patch to patch form factors need to be computed. For this algorithm we will

assume that each patch is represented by a single point and integrate over a hemisphere

around that point. As we are integrating over a hemisphere and not relating patches, form

factors do not need to be explicitly computed.

To obtain the exact value of the incoming radiance at each interval in this integration

we must shoot a ray, find the first surface point it hits and obtain the value of radiosity

at that point. Shooting this ray is represented by function y = r(x, ~ω) and, because the

contribution will be from the first surface hit, there is no need to account for a visibility

term. For a given solid angle σ with direction ~ω we can shoot a ray in this direction and

obtain a point y. We can also separate the computation of radiosity B into first computing

the irradiance E and then multiplying by the reflectance ρ/π. In addition, we should move

The Algorithm 28

TB
B

Figure 3.1: The transport operator.

Be

Be

TB
e

TBe

TBe

TT
Be

TTBe

x

Figure 3.2: Rays of light distributed through the transport operator.

The Algorithm 29

the division by π to inside the integral since this will be an important factor when using

the Monte Carlo method. The irradiance function for the contribution of indirect light is

E(x) =

∫
Ω

B(y)
cos(θx)

π
dσ(~ω). (3.5)

And the radiosity for indirect lighting contributions will be

B(x) = ρ(x)E(x). (3.6)

This equation can be estimated by a summation of random ray samples (see Fig-

ure 3.3(b)). To obtain faster convergence, it is convenient to use an importance PDF to

generate the random rays. This means that instead of generating completely random rays,

the probabilities are weighed towards where the contribution of incoming radiance affects

the integrand more. In this case, light approaching the surface from the direction of the

normal has a greater contribution than light coming at an angle, due to the effect of the

cosine term. A cosine-weighed probability distribution function, that is, one that generates

more rays pointing towards the normal than towards gracing angles, gives better conver-

gence. The cosine-weighed probability distribution function is defined as p(x) = cos(θx)/π,

and it cancels out the equivalent terms in equation 3.5. The final estimator is therefore

simply

E(x) = E

[
1

M

M∑
i=1

B(yi)

]
. (3.7)

In this equation, operator E means the expected value. The more samples that are taken,

that is, the higher M is, the closer the result of the estimator will be to its expected value.

This form for Equation 3.5 helps to explain why the explicit computation of form factor

terms is not required. A form factor is a percentage that relates how much radiosity flows

from one patch to another. With Monte Carlo sampling, this percentage is accounted for

by the probability that each ray has of hitting a given patch.

3.3 Initial Lighting Contribution

If we sample randomly around the hemisphere of each point assuming that every patch

that is not light emitting is originally in a state of total darkness (B = 0) we will need a

The Algorithm 30

large number of samples before converging to a presentable approximation. If we assume

that light emitting patches (i.e. light sources) will have small surfaces in relation to the rest

of the scene, it is better if we calculate the initial transport of light by executing a point to

patch integration from each point to the light source. As in the classic approach, we can

divide radiosity at a point into two components, that of the initial lighting contribution

(Be) and that due to subsequent bounces of light in the scene (Bı):

B = Be + Bı. (3.8)

The term Bı can be calculated using the procedure described in the previous section.

For Be we can use equations 2.11 and 2.12 to calculate the integration of all surfaces that

emit light:

Be(x) =
ρ(x)

π

∫
S`

B`(y)V (x, y)
cos(θx) cos(θy)

r2
xy

dAy. (3.9)

The emitted light component of the radiosity at point x is equal to the integration of the

self emitted radiosity B`(y) over the surface area of all light sources Sl multiplied by the

surface reflectance ρ(x)/π at point x. As this is a point to surface integration, form factors

have to be taken into account: the inverse rxy squared law for distances and both the

projected area of the reflecting surface (cos(θx)), and the projected area of the light source

(cos(θy) onto the light vector (see Figure 3.4(a)). The function V (x, y) gives the visibility

between point x, on the surface, and point y, on the light source.

As in the previous section, it is convenient to separate Equation 3.9 into two steps.

First the integration of direct light B`, which gives us an irradiance value Ee:

Ee(x) =

∫
S`

B`(y)V (x, y)
cos(θx) cos(θy)

r2
xy

dAy. (3.10)

Then we multiply Ee by the reflectance ρ/π to obtain radiosity Be:

Be(x) =
ρ(x)

π
Ee(x). (3.11)

Again, we can use a Monte Carlo approach to approximate the irradiance function

Ee(x). We define an estimator whose expected value will be the contribution of light from

the direct light source. This estimator is based on Equation 3.10 but now point y is drawn

The Algorithm 31

x

y

θxN̂x !ω
B(
y)

Ω

dσ(!ω)

(a) Integration over the hemisphere.

Ω

y1

y5

y2

y4

y3

y6

x

(b) Shooting cosine distributed rays.

Figure 3.3: Calculating indirect illumination.

x

y

r xy θy

θx

!̂xy

S

N̂y

N̂x

B !
(y

)

(a) Integration of light surface.

S

V(x,y) = 0
Rays are
occluded

V(x,y) = 1

y3y2 y4y1 y5

x

(b) Shooting rays to the light source.

Figure 3.4: Calculating direct illumination.

The Algorithm 32

from a uniform probability distribution function p(y). We use a uniform sampling of the

light source area, which gives us p(y) = 1/A [9]. We can also assume that the light source

has equal radiosity accross its surface and use the relation shown in Equation 2.4 to have

flux instead of radiosity: B`(y) = Φ`/A. Inserting the PDF p(y) = 1/A in the denominator

to account for the probability distribution and substituting B` with Φ`/A cancels out the

A and leaves the equation in terms of flux Φ`.

Ee(x) = E

[
1

N

N∑
i=1

ΦlV (x, yi)
(N̂x · ˆ̀xyi

)(N̂yi
· −ˆ̀

xyi
)

πr2
xyi

]
. (3.12)

In this equation N̂x is the normal of the surface at point x, N̂yi
is the normal of the

light source at point yi and ˆ̀
xyi

is the vector that points from x to yi. All three are unit

vectors. The cosine terms cos(θx) and cos(θy) from Equation 3.10 are now represented by

dot products (N̂x · ˆ̀xyi
) and (N̂yi

· −ˆ̀
xyi

), respectively, since this is the notation used in

the pseudocode given in Chapter 4 and the actual implementation. To know the value of

visibility function V (x, y), a ray in the direction of `xy needs to be shot from point x using

a ray tracer to find if there are any occluders (see Figure 3.4(b)). The combination of these

terms is a point to patch form factor that relates point x with the area of the surface of

the light source A.

3.4 Iterating the Series

In Section 3.2 we explained that an indirect light contribution can be obtained using a

Monte Carlo method, assuming a cosine distribution PDF with equation Equation 3.7. If

we multiply the right side of this equation by the albedo ρ of the point we are analysing, we

get radiosity instead of irradiance and the equation becomes a Monte Carlo approximation

of the transport operator defined in Equation 3.1:

TB ≈ ρ
1

M

M∑
m=1

B. (3.13)

This converges to a contribution of light, and a summation of these terms converges to the

real light equilibrium solution according to the Neumann series shown in Equation 3.4.

The Algorithm 33

We can use this approximation to calculate the contribution from each bounce of light.

However, this means that for K bounces we need to iterate M ×K times. To reduce the

number of iterations, we present a different approximation to the Neumann series that

only iterates M , but that generates a small error for contributions of light after the second

bounce. Instead of each transport operation being approximated by an average of values,

each transport operation will obtain only one value:

T ′B = ρB. (3.14)

Instead of obtaining the average of contributions for each transported value, we will account

for K = M bounces of light and average all the transported contributions:

B ≈
∑K

k=1 T ′k B

K
. (3.15)

For lim K →∞ this series converges to the same value as the Neumann series. However,

for numbers smaller than infinity there are small differences. If we assume that the radiosity

due to the first bounce of light is given by Be and expand the Neumann series for K terms

we get

B = Be + TBe + T 2Be + T 3Be + . . . + TKBe. (3.16)

Expanding the series used by this framework, in terms of the original operator T , gives

B = Be + κ
(K)
1 TBe + κ

(K)
2 T 2Be + κ

(K)
3 T 3Be + . . . + κ

(K)
K TKBe, (3.17)

where κ
(m)
k is a number between zero and one that reduces the value of each contribution

k due to having the averaging done over the whole series. The value for κ1 is always equal

to 1 so the first term in the series is equal to that of the Neumann series. The equation

that defines the value of κ
(m)
k for each iteration for terms k > 1 is recursive:

κ
(m)
k =

∑m
n=k κ

(n−1)
k−1

m
. (3.18)

In this equation m is the total number of iterations. The equation states that the κ value

for each term k at each iteration m depends on the sum of the κ values for the previous

term for all previous iterations. The error ε
κ
(m)
k

= 1− κ
(m)
k for each term is reduced as M

The Algorithm 34

increases, but converges towards zero slower as the k value increases, that is, the higher

order terms converge slower.

Using the series given by Equation 3.15 for a limited but large number of iterations gives

us a solution that is accurate for the contributions due to the first few bounces but loses

power as more bounces are added. However, since the operator T is contractive, each ad-

ditional bounce contributes less and less, so the error to the total solution becomes smaller

for each additional bounce. This gives us a good approximation for only M iterations.

We also account for the radiosity (Be) due to the first bounce of light requiring iterating

before a close approximation can be obtained. To have an interactive environment we need

to reduce the number of iterations for Be since we need to have this value before we can

render an initial approximation. The solution is to first calculate Be based on a small

number of iterations and then continue to iterate Be as the transported terms in the series

shown in Equation 3.15 are also iterated. This will generate another small error term but

this error will also converge towards zero as more iterations are executed.

3.5 Programming steps

The sequence of steps necessary to calculate a radiosity map for a scene with the algorithm

presented by this thesis are as follows:

1. Create a texture atlas of the scene. This automatically divides the surface of the

scene into discrete sample points and map these points to a 2D array.

2. Initialize values for direct illumination, indirect illumination and total radiosity at

these discrete points.

3. Create an initial radiosity contribution Be based on irradiance from direct light. For

each sample point:

(a) Calculate its direct lighting contribution by shooting Ninit rays into random

locations on the light source.

(b) Compute the average of the radiosity contributed by these rays and store these

results into the direct illumination array.

The Algorithm 35

4. Iterate radiosity contributions from additional bounces (Bı) and continue iterating

radiosity from direct light (Be). For each sample point:

(a) While fewer than M samples have been generated, calculate one indirect lighting

sample by shooting a random ray over the hemisphere of that point and adding

to an array of accumulated indirect contributions the total radiosity (the sum

of the Be and Bı components) generated by the surface point that was hit.

(b) Compute the average of the accumulated indirect radiosity contributions Bı and

store this result in the indirect illumination array.

(c) While fewer than N samples have been generated, calculate direct lighting con-

tribution by shooting a ray into a random location on the light source and

accumulate this value.

(d) Compute the average of the radiosity contributed by these rays and store these

results into the direct illumination array.

(e) Add both indirect and direct lighting components and store the result in the

total radiosity array.

Chapter 4

Implementation Details

The radiosity algorithm presented in the previous chapter is the main contribution of this

thesis, however, an important part of the contribution is also the way in which various

programming elements have been combined to form an efficient framework to render ra-

diosity as a series of stream programs for GPUs. This chapter presents the structure of

that framework and has detailed pseudocode and descriptions explaining the more relevant

parts. Figure 4.1 shows a general view of the framework.

A file containing a scene description and the corresponding geometric data for the

objects within that scene are read as inputs. This data goes into a scene module which

bundles it up into data structures that the other modules can easily access. The data

is first passed to the texture atlas module where the whole geometry is mapped into a

2D representation of its surfaces, a texture map. This map is sent back to the scene

module, then the geometry for the scene is sent to the ray tracer module where it is placed

into an accelerator structure. In the case of the implementation done for this thesis, this

structure is a uniform 3D grid [28], but other structures can be used, as long as they

are implemented for a GPU. After these modules have been initialized with the data and

the necessary structures have been precomputed, the user interface (UI) module begins

a rendering loop. In this loop the radiosity module is first called to initialize various

texture maps that will contain the illumination information. The scene is then rendered

to the screen using an initial approximation of the global illumination. Only an initial

approximation is used to allow the program to have interactive frame rates for the user

36

Implementation Details 37

to move around the scene. While the interface is idle, the radiosity module will iterate to

converge the solution towards the real value and the UI module will smoothly merge the

initial approximation to the real value. As long as the light source and the geometry in the

scene remain static, the user may navigate around the scene in real time since the radiosity

solution is view-independent and rendering new view points only requires access to the

radiosity textures. Once the light source or the geometry are modified, it is necessary to

recompute the radiosity values and update the lookup textures.

The following sections give more details of this framework. In the first section there

is a discussion on the selection of the main tool used for this implementation, the Sh

language, and why it is adequate. Also in that section is an explanation of the way

GPUs are programmed. Section 4.2 describes the texture atlas module. Then, Section 4.3

discusses the ray tracer and scene modules. Finally, the radiosity mapping implementation

is explained as well as its interaction with the user interface in Section 4.4.

4.1 Sh as a Tool for GPU Radiosity Maps

The radiosity maps framework was written in C++, using OpenGL as its 3D API and

GLUT for a simple user interface.The shader library selected for this implementation is

the Sh Metaprogramming Language [23]. The name “Sh” comes from the word shader

(not to be confused with “shell”) because the original application for Sh was to write high

level GPU shader code. Sh is a C++ library based on templates. It has a steep learning

curve, but the resulting code is usually quite elegant. One of the main advantages of Sh is

that it can be used as a shader language and as a stream programming language because

it has multiple backends. In other words, the code it generates can be executed on a GPU,

a CPU or even on a cluster of PCs (though some modifications are necessary). Sh also

has various useful graphics utilities like a complete linear algebra library and an object file

loader for the obj format.

The main use for Sh in this theses is as a shader API. A shader program simply refers

to a series of instructions that will be executed in one of the two programmable pipeline

stages of the GPU: the vertex shader or the fragment shader. The vertex shader is usually

in charge of receiving geometry information, applying transformations to it and generating

Implementation Details 38

a 2D array of potential pixels (fragments) for the fragment shader to receive. The fragment

shader will then apply shading computations or any other complex calculations per pixel

and output a color value. As explained in the background chapter, these programmable

stages can also be used to compute other things more complex than simple geometric

transformations and shading calculations including, for example, finding the intersection

of a ray with a set of triangles or calculating radiosity and direct lighting values.

The fragment shader is usually used to do the heavy calculations. However, to avoid

generating shader programs that are too complex or that require the use of too many con-

ditionals or loops, the programs are subdivided and are executed as passes. The output of

the fragment shader is usually stored in a pixel buffer that is then output to a window on

the computer monitor. To store this output in a texture instead of a window is not com-

pletely trivial and the output path of the GPU must be configured adequately. A popular

open source library named RenderTexture by Harris [18] was used for this operation.

4.2 The Scene and Texture Atlas Modules

The scene module is in charge of handling every aspect of the geometry in the scene. It also

includes a parser to read text files that have the scene description. From these files the scene

module receives the geometry information for all the objects in the scene, including any

applied translations, rotations and scaling transformations. It then stores this information

in large textures that function as arrays of vertices, normals and other attributes. In

current graphics hardware, no more than four values can be retrieved from each texture

cell, however, since most of the quantities stored in textures have three dimensions, this is

not a problem. In addition to specific object details, the scene module also reads in other

general characteristics such as area light sources, background color, field of view and initial

viewing position and direction.

From the scene module, the vertex data is sent to the texture atlas module where it is

mapped to a 2D array (see Figure 4.3(a)). There has been a fair amount of research in the

field of creating texture atlases and a good source of information is Carr and Hart’s paper

on Meshed Atlases for Real-Time Procedural Solid Texturing [3]. In this paper Carr and

Hart talk about various methods for distributing triangles from a 3D description to a 2D

Implementation Details 39

User Interface
Output

Texture Atlas

Scene

Scene

Description

Object Data

Object Data
Object

Data

Ray Tracer

Accelerator
StructureAccelerator

StructureAccelerator
StructureAccelerator

Structure

Radiosity

Figure 4.1: General framework.

Figure 4.2: Texture atlas generation.

Implementation Details 40

array. This paper was used as a basis to the implementation of a simpler texture atlasing

scheme whose goal was only to demonstrate that global illumination implemented this way

would work. For elaborate applications, a more robust texture atlasing scheme should be

implemented.

In the scheme used for this framework the triangles are packed into pairs of neighbor-

ing triangles and the pairs are ordered by area (see Appendix C.1.1 for pesudocode).The

groups of triangle pairs are then recursively divided within the texture space using a simple

greedy algorithm that takes into account area size and triangle numbers, trying to evenly

distribute the areas of the triangles between the two sides, but without letting too many

triangles gather on one side. The texture space where they will be mapped onto is also

divided first vertically, then horizontally until only one triangle pair is in each division (see

Appendix C.1.2 for pseudocode).

This scheme is easy to implement and was done this way due to time constraints. The

result is an atlas that takes advantage of the whole texture space and tries to keep the

proportions of triangles close to that of the ones in the original geometry. However, no

attempt to avoid triangle deformation was made. Fortunately this is not a problem, except

for the case of long, skinny triangles.

When accessing the textures for the final rendering the texels are bi-linearly interpolated

to obtain a smooth look. Because unconnected triangles are next to each other on the

texture atlas, this would normally cause some of the colors from the nearby triangles to

bleed together. Carr and Hart proposed reducing the texture lookup by half a texel, which

works fine for pairs of triangles. This scheme, however, leaves some triangles on their

own. These “loner” triangles need a special lookup table that indicates what triangle it

should be connected to on the diagonal edge (or if it has no connection) so that the proper

interpolation can be done.

4.3 The Ray Tracer

The ray tracer is an important part of the radiosity algorithm. Having a ray tracer that

runs on the GPU allows the whole process to be run within the GPU since it is by shooting

rays that samples of the radiosity around the hemisphere of each point will be computed.

Implementation Details 41

The ray tracer for this implementation is based on the one published by Purcell [28].

For the ray tracer to work efficiently a good accelerator structure must be built, in this case

it is a uniform 3D grid. Normally it is convenient to have a grid of dimension of the cube

root of the number of triangles, however this data structure will eventually be represented

as a 2D texture array and so it is better to use dimension values that are powers of two,

since 2D textures sometimes have to abide to this.

After defining the dimensions of the uniform grid, the module proceeds to make a

bounding box around each of the triangles and to see in which of the voxels in the grid the

triangle is in. Then, for each voxel, the program calls a triangle-box intersection routine

to make sure that the triangle is really inside the voxel. Purcell’s approach to store this

data involves having three textures. One is the 3D texture that represents the grid and

is referenced by each voxel’s coordinates. Each cell in this texture contains pointers to a

second texture. The second texture contains lists of pointers to triangle data. There is

one list of pointers for each voxel and each list is delimited by a special symbol (−1 in

this implementation). These pointers are indexes that reference another texture, one that

contains the specific vertices and normals for each triangle.

Shooting a ray requires an input of a position and a direction. With this information the

module can define a position on the grid from where it will start traversing it, if it was hit.

Traversing the grid involves two loops. The first loop checks each voxel that is in the path of

the ray. For each voxel, the module looks up the 3D grid texture and obtains the pointer to

the second texture. The second loop goes through each triangle pointer found in the second

texture until it reaches the delimiter symbol. With each pointer, the module can access

the triangle information it points to and make a ray-triangle intersection test to see if that

triangle was hit. The output of the ray tracer is the ray length `, a barycentric coordinates

pair (uv) that describe exactly where the triangle was hit, and a triangle identification

number (−1 when nothing is hit). These values are stored in a 4-tuple variable called luvi

and are returned as output.

The ray tracer can also work with movable groups of objects. For this, a different grid

is created for each group of objects. Each group may be set to contain only one object to

create the ability of moving individual objects. For each grid, one pass is done and the

output luvi values are stored. When the next grid is processed, a check is made to see if

Implementation Details 42

the new ray length value ` is shorter than the previous one. If it is, then the new luvi value

is used, as this means that an object that was closer was hit in this grid. When a grid is

transformed by a movement (rotation or translation) these transformations are stored in a

matrix. Instead of recreating the grid, each ray shot throughout that grid is transformed

by the inverse of the given transformations, which has the same effect as transforming the

geometry inside that grid. Obviously, a transformation matrix needs to be stored for each

grid.

The pseudocode for various shaders is listed in the sections below, however, the shader

that executes the ray tracing passes (referred to as RT) will not be listed. This is because

it goes beyond the scope and contribution of this thesis. For more specific implementation

details consult [27] and [24].

4.4 The Radiosity Module and User Interface

The user interface (UI) module is in charge of joining all the modules and allowing the

user to interact with the scene. The first task of the UI module is to call the scene module

to initialize the geometric data. Once all the initialization has been executed, the UI

module goes into a rendering loop where it will be calling the radiosity module as needed

to calculate the radiosity maps. It will also be receiving input from the user to modify

the viewpoint, move objects or other possible actions. The UI module interacts with the

radiosity module by executing three computing stages: initialization, iteration and final

rendering. Each of these stages runs a series of shader passes that together perform the

radiosity calculations. In the following sections there is a detailed description of each stage

and an explanation of the types of passes used in each one.

4.4.1 Shader Passes

The radiosity module uses three types of passes, defined by the types of vertex shaders

(see Figure 4.3): Geometry to texture (G2T), texture to texture (T2T) and geometry to 2D

image (G2I).

The geometry to texture pass receives geometry, texture coordinates and other at-

tributes obtained from the scene module and generates a texture map based on the infor-

Implementation Details 43

mation selected in the fragment shader. This vertex shader is listed in Appendix C.2.1.

The texture to texture pass reads in one or more textures, processes them, and generates

another texture of the same size with new information (see Figure 4.3(b)). The vertex

shader pseudocode for this pass is listed in Appendix C.2.2. It is extremely simple as it

only acts as a pass-through sequence for the fragment shader. This kind of vertex shader

is used for general purpose computing executed on a GPU. It involves sending into the

vertex shader a single triangle of geometry using an orthographic projection (that is, with

no perspective) that is aligned such that only the center part of the triangle will be visible

in the viewport. The texture coordinates are also conveniently placed so that the center

of the triangle has exactly the range (0, 0) to (1, 1). This means that the fragment shader

will receive a sequence of texture coordinates that will be used to index the textures used

as data arrays (see Figure 4.4).

The geometry to 2D image pass receives geometry, texture coordinates and attributes

and additionally may read one or more texture maps. It then uses all these to generate a

2D image representing the 3D scene (see Figure 4.3(b)). This vertex shader is described

in Appendix C.2.3.

4.4.2 Radiosity Calculation Stages

This section describes in detail each of the stages where radiosity is calculated. As explained

previously, each stage executes a number of shader passes. For those passes that use either

the G2T or G2I passes, the fragment shader is relatively trivial and an explanation shall

be omitted. However, for those passes that use the T2T pass, the fragment shader is in

charge of doing all the processing so the shaders will be explained below.

Initialization

The initialization step is called the first time the program is run or immediately after any

geometry, including light sources, in the scene is moved. The first step in the initializa-

tion process generates arrays (textures) that contain surface positions, colors and normals

according to the texture atlas using G2T passes. There are also accumulator arrays that

store the sum of all the direct (Eue(x)) and indirect (Euı(x)) irradiance components before

Implementation Details 44

(a) Geometry to
Texture (G2T).

(b) Texture to
Texture (T2T).

(c) Geometry to
2D Image (G2I).

Figure 4.3: Vertex shader types.

Vertex Shader

(0,0)

(0,1)

(1,0)

(1,1)
View Window

Geometry
(0,2)

(2,0)(0,0)

Fragment
Shader

Output

Input Textures

[idx 0] [idx 1] [idx 2] etc...

Figure 4.4: Using the vertex shader to pass texture coordinates as an array of indices to

textures.

Implementation Details 45

they are divided by the number of rays that have been shot, and these must be cleared,

as well as the counters used to know how many rays have been shot. The clearing pass

(CL) is a T2T pass with a fragment shader that simply outputs the value (0, 0, 0) to all of

the output texture. It is important to note that all the texture arrays used to store color

values should use full floating point textures, otherwise there will be a noticeable banding

of colors due to the lack of precision.

Once all the values have been cleared, some initial approximations need to be calcu-

lated. If the hardware was fast enough, it would be possible to calculate the complete

radiosity solution during this step and just skip to the final rendering step without looping

through the iteration step. Unfortunately, current hardware is not fast enough for this

implementation and so it is convenient to simply generate a fast initial approximation and

progressively calculate the complete solution while the user interface is idle. This initial

approximation is the radiosity due to direct illumination Be.

To generate each sample, three T2T passes are needed. The first pass, referred to as

GLR (pseudocode in Appendix C.3.1) will generate a light ray randomly, that is, a ray

going from point x towards a random point in the light surface1. The second pass will

be the ray tracer pass (RT) and will return whether an object was found on the way to

the light surface or not. The final pass, named DL (pseudocode in Appendix C.3.2), will

add the contribution of the direct light, taking into account the mathematics discussed in

Section 3.3.

Once all the samples have been generated, another pass can average them and multiply

the result by the reflectance ρ and divide by π to get the correct initial approximation of

the direct light contribution to radiosity Be. The indirect light contribution to radiosity

Bı will start at zero, sot it must be cleared. Given this, the total radiosity B(x) can be

initialized with only the direct light contribution. See Pseudocode 4.1 for the complete

listing of steps for the initialization stage.

During the initialization stage it is be possible to execute additional steps, which will

accelerate the process of convergence. If a number of rays are precomputed for each texel,

1Although multiple light sources would be treated similarly, the implementation presented is specifically
for a single rectangular flat surface. It was made this way to avoid geometrical complications, however
the same math applies to having multiple sources or to having different shapes, only the generation of the
samples becomes more complicated.

Implementation Details 46

Algorithm 4.1 Initialization stage.

x← G2T // Generate positions map.

Nx ← G2T // Generate normals map.

ρ(x)← G2T // Generate colors map.

Bue(x)← CL // Clear direct radiosity accumulator component.

Buı(x)← CL // Clear indirect radiosity accumulator component.

for i = 1 to Ninit do

`xy ← GLR(x) // Generate array of random rays to the light surface.

V (x, y)← RT (`xy) // Shoot ray to find visibility and distance.

Eue(x)← Eue(x) + DL(lxy, V (x, y), Nx) // Accumulate light sample.

end for

Be(x)← ρ(x)
π

Eue(x)
Ninit

//Average and store direct lighting approximation.

Bı(x)← CL //Clear indirect radiosity contribution

N ← Ninit //Update direct ray counter.

M ← 0 //Initialize indirect ray counter.

B(x)← Be(x) //Initialize total radiosity.

Implementation Details 47

these rays can be used for extremely quick passes and thus an initial value of radiosity from

indirect lighting can be calculated. In practice, using an NVIDIA GeForce 6800 we were

able to store the necessary random rays for 75 passes of indirect illumination calculation

and had those passes executed at the initialization stage. The passes are the same as those

in the iteration stage so they will be explained there. For Chapter 5 where the results are

presented, the convergence timings were measured using precomputed rays, giving better

results than otherwise.

Iteration

The iteration step will be called as many times as necessary to converge to a good radiosity

approximation. The values N and M used in the pseudocode listings are iteration counters

for the direct and indirect lighting components respectively. Each execution of this stage

will run a sampling pass for either components as long as their iteration counters are below

their predefined limits. In general, the direct lighting component converges faster than the

indirect component and so requires fewer iterations. The exact iteration limits used for

this implementation are presented in Chapter 5.

Instead of having arbitrary numbers that limit the amounts of iterations, we could

test for convergence by computing the standard error and comparing agains a arbitrarily

defined error value. To do this we would have to compute the standard deviation at each

pixel and divide by the square root of the current amount of iterations. However, this

would require gathering the values of all the texels in the radiosity array and this is a

relatively slow operation, therefore it was decided that for this framework only predefined

limits would be used.

As the direct lighting calculation was already described in the initialization pass we

will now explain the indirect lighting calculation sequence. First a random ray must be

generated. This ray should point from the surface position x to a place over the hemisphere

surrounding the surface where point x is. A cosine distribution function is used to generate

this ray, as explained in Section 3.2. The formulas to do this are derived in [30] and [26].

Given two uniform random variables ε0 and ε1 between zero and one, a ray l will have a

cosine distribution if its x, y and z components are defined as:

lx = cos(2πε0

√
ε1),

Implementation Details 48

ly = sin(2πε0

√
ε1),

lz =
√

1− ε1.

Once this ray has been generated with the random cosine distribution ray generator,

referred to as GCR (pseudocode in Appendix C.4.1), the RT pass is used to see what the

ray hits. With the information from the ray tracing pass, an indirect lighting calculating

pass, referred to as IL (pseudocode in Appendix C.4.2), is executed to add the contribution

of the surface point that was hit. The IL shader is extremely simple and only needs to

access the radiosity emitted by the point (y) hit by the randomly shot ray. If nothing is

hit, then the background color is taken as the radiosity contribution.

Once both radiosity components have been iterated, the new approximations of both

contributions are added and stored in an array containing the total radiosity for each

sample point. See Pseudocode 4.2 for the complete listing of steps for the iteration stage.

Algorithm 4.2 Iteration stage.

lxy ← GLR(x) // Generate array of random rays to the light surface.

V (x, y)← RT (lxy) // Shoot ray to find visibility and distance.

Eue(x)← Eue(x) + DL(lxy, V (x, y), Nx) // Accumulate new direct light sample.

N ← N + 1 //increase direct light ray counter.

Be(x)← ρ(x)
π

Eue(x)
N

//Average direct lighting approximation.

lxy ← GLR(x) // Generate array of cosine distributed random rays.

y ← RT (lxy) //Shoot ray to find the first surface to be hit.

Eui(x)← Eui(x) + IL(y) // Accumulate new indirect light sample.

M ←M + 1 //increase indirect light ray counter.

Bı(x)← ρ(x)Eui(x)
M

//Average indirect lighting approximation.

B(x)← Be(x) + Bı(x) //Add and store both contributions.

In addition to accumulating the radiosity values, a blending process between iterations

has been added. Instead of using the radiance array B(x) for the final output, a blended

radiosity array is used. This array is initially cleared at the same time as the position,

color and normals are generated. From then on, it will always be gradually fading into

whatever value B(x) has from its previous value. This way, although in the background

Implementation Details 49

the real radiosity of the current scene is being computed, the output uses the previous

calculation of radiosity and slowly fades into the new one as it is calculated.

Final Render

The previous two subsections dealt with generating the textures that are mapped to the

surfaces of the objects. Once the blended radiosity texture is initialized, the geometry to

2D image shader pass is used to render the final output image which maps the B(x) texture

to the geometry. Since the B(x) texture is being progressively improved while the program

is idle, the user is free to navigate around the scene even though the final result may not

have been reached yet. The scene will be displayed with the current approximation and

this approximation will improve over time.

To properly display the values generated by the radiosity mapping calculations, the

colors must be tone mapped. This means modifying the output colors (c) so that they are

in the correct range for the computer monitor to display. There are various alternatives to

doing this but the one selected for this framework is

c =
c

k + c
.

A constant k is used to manually tune the tone mapping. The values for k found to give

visually pleasant results were between 0.1 and 0.02.

Chapter 5

Results

The results generated from this framework will now be presented. The first section of

this chapter gives a series of comparisons of a scene well known in the computer graphics

literature and uses these comparisons to validate the results of this method. A small

analysis of the results from these comparisons is presented at the end of that section. The

second section gives some rendering times using specific hardware and shows additional

scenes that demonstrate the potential of the algorithm.

5.1 Validation

The framework we present is intended to generate a 3D image that can be interactively

manipulated. Although the focus was placed on having a fast algorithm rather than a

predictive one, the mathematics that this framework uses are based on real world physics

and therefore the results are expected to be realistic.

To validate how close a 3D image of a scene is to its real world counterpart it is necessary

to build the real scene and take careful measurements of the illumination values reflected

from it. Then the values can be compared and the validity of the 3D image can be decided.

The people at Cornell University have carried out extensive research regarding this type

of validation [15]. They built the well known Cornell box, which is a simple scene consisting

of a small box and a long box inside a larger box that is missing the front side. The larger

box has the left side red, the right side green. The rest of the surfaces, including the smaller

50

Results 51

boxes, are gray. A small square surface light is shone into the top of the box to illuminate

it. The information gathered from the measurement data of this box is publicly available.

Unfortunately, most of this data is based on high precision spectral measurements that go

beyond the scope of this framework. More importantly, most of the data they have is for

a version of the Cornell box that has a perfectly specular surface, a mirror, as the material

for the long box.

The image shown in Figure 5.1(a) is sample RGB image of Cornell University’s baseline

renderings and we found it to be the most adequate to make our comparisons. We used

the geometric data publicly available from Cornell University to set up scene parameters

that could be used by the radiosity maps framework to display the Cornell box. As we

were unable to adequately transform the spectral data given as input, we manually tried

to find the closest approximation of lighting and reflectance values for the surfaces. The

image rendered by our approach is shown in Figure 5.1(b). This image was generated by

running our framework using a texture map with a resolution of 512 × 512, 200 direct

lighting samples and 2000 indirect lighting samples. These numbers are higher than those

shown for the sample scenes shown in the next section since we wanted to evaluate the

correctness of the algorithm in this stage and therefore needed the most accurate result

possible.

Another way to validate the radiosity map method is to use another a different rendering

algorithm. If the two algorithms are different enough, then obtaining identical results from

both is a good indication that they are both correct. This is because the probabilities of

them both having an error that generates the same output is low due to the methods being

so different. With this in mind, we also entered the inputs used for our approach to a

previously built path tracer and generated Figure 5.1(c) by letting the path tracer run for

a day, shooting 3000 paths per pixel and with each path reflecting a maximum of 5 times.

5.1.1 Histogram Comparison

Using an image editing program we generated the histograms of the luminosities of these

three images. A luminosity histogram shows a graph of the count of each pixel with the

same perceived brightness. The left side of the graph represents the darker pixels while the

right side represents the lighter ones. In Figure 5.3 we can see that the three histograms

Results 52

(a) Original Cornell box. (b) Radiosity mapped Cornell
box.

(c) Path traced Cornell box.

Figure 5.1: A comparison of the Cornell box images.

(a) Original Cornell Box con-
tours.

(b) Radiosity map Cornell box
contours.

(c) Path traced Cornell box
contours.

Figure 5.2: Contours for the Cornell box image at brightness values of 40, 70, 90, 120 and

140.

Results 53

follow the same pattern of peaks and valleys. This means that, while the exact brightness

may vary, the general illumination of the scenes is the same.

3000
3600

2400

4200

1800
1200
600

0 128 255

Pixel
Count

Pixel Value

(a) Original Cornell Box his-
togram.

3000
3600

2400

4200

1800
1200
600

Pixel
Count

0 128 255Pixel Value

(b) Path traced Cornell box
histogram.

3000
3600

2400

4200

1800
1200
600

Pixel
Count

0 128 255Pixel Value

(c) Radiosity map Cornell
box histogram.

Figure 5.3: Histograms for the Cornell box images.

5.1.2 Contour Comparison

We can trace contours at a given pixel brightness for each of the images. A contour line is

drawn wherever the brightness of the image goes through a given threshold. In Figure 5.2

we can see the contours for pixels passing at boundaries of 40, 70, 90, 120 and 140 (on a

scale of 0 to 255). It is clear to see that the three images have similar contours, but the

brightness values are shifted.

5.1.3 Pixel Differences

Another measure of comparison is to show the pixel differences between the two images.

Figure 5.4(a) shows the differences between the radiosity map rendered box and the original

Cornell box, while Figure 5.4(b) shows the differences between the radiosity map box and

the path traced version. The darker areas represent greater differences of colors while the

lighter areas have similar or identical values1.

In the comparison with the original Cornell box, most of the image has at least a small

difference in color. We can see that the wall on the right and the front face of the tall box

1A difference image commonly has dark areas for no difference and light areas for large differences,
however, the colors have been inverted for these images to make them printer friendly.

Results 54

(a) Pixel differences between ra-
diosity map image and original
Cornell image.

(b) Pixel differences between ra-
diosity map image and path
traced image.

Figure 5.4: Pixel differences between radiosity map generated image and two other rendered

images.

have similar colors. However, in the comparison with the path traced image the pixels are

almost identical.

To better observe the magnitude of the pixel differences, we can plot the histograms for

the differences and also render threshold images for specific difference levels. The images

shown in Figure 5.5 show pixel difference thresholds for levels of 10, 25 and 40. The scale

used for the levels is 0 for no difference and 255 for total difference (black against white

or vice-versa). In these images black pixels represent those pixels that have a higher pixel

difference than the level shown. In other words, the blacker the image is, the more pixels

have a higher difference than the selected level.

At a level of 40 of pixel difference, both images only show black pixels in object edges,

due to misalignment of the image renderings, and where resolution artifacts exist, mainly,

the area where the right face of the small box meets the floor. Almost all the pixel

differences (98% and 99.8% for the original box and the path traced box respectively) are

below this threshold level.

Results 55

10
45%

25
90%

40
98%

(a) Original Cornell box

10
96.5%

25
99.6%

40
99.8%

(b) Path traced Cornell box

Figure 5.5: Pixel difference thresholds.

Results 56

At a level of 25, the original Cornell box has some noticeable differences, mainly on

the shadows of the boxes and the highlight on the back wall. The path traced version still

shows no noticeable differences at this threshold. Only 10% of the pixels in the differences

with the original Cornell box have this difference level or higher.

Finally, at a level of 10, the differences with the original Cornell box show large areas

that have this difference or higher. In fact approximately half of the pixel differences are

above this level of threshold. The differences with the path traced version barely start to

show at this level.

5.1.4 Validation Analysis

From the luminosity histograms and the countour images, it is clear that there are shifts

in the perceived brightness levels. Shifts in brightness were expected between the radiosity

map box and the original box. In fact, there is a clear difference in brightness between the

image presented by Cornell and the other two images. This is probably due to different

tone mappings, though, and is not a reason for concern.

The images of pixel difference tolerances show other discrepancies between the images.

The differences in the edges, found at tolerance level 40, are related to sampling resolutions

when generating the scene and are expected. The texture resolution artefacts are caused

by having a texel in an area that is mostly obscured by an object but that, due to having

a low resolution, sticks out under the object.

At threshold level 25 the comparison with the original Cornell box shows a relatively

large area of pixel differences. One possible reason is due to discrepancies regarding the

light source. The light shape for our implementation is a square of variable size, however,

the one used for the original Cornell box is not exactly square in shape. More importantly,

the data for the light given are a reflectance value and wavelength values. Our framework

accepts a flux value and an RGB color for the light, which is not as physically accurate,

but is a necessary compromise for real-time rendering. In addition, the values for tone

mapping were tweaked manually, based only on perception. Therefore, it is really only

reasonable to compare these scenes qualitatively.

Even though these differences exist, they are very small. The discrepancies that are

above a threshold of 25 but below 40 are those that generate our greatest concern, but even

Results 57

these are only a 10%-15% difference in perceived brightness. It is clear that the differences

with the path traced version are minimal, having less than 4% of perceived difference in

all pixels.

5.2 Sample Scenes

This section presents some of the results of this framework. For the Cornell box scene,

discussed in the previous section, we present a broad number of timings that show how

different configurations affect performance. For all other scenes we have one or two timings

that give an idea of how the algorithm scales.

All the results shown here were generated using a computer running on Windows XP

and equipped with an Intel Pentium 4 processor running at 2.53GHz with 512MB of RAM

and an NVIDIA GeForce 6800 graphics card with 256MB of video RAM. The scenes were

rendered with 200 iterations for the direct lighting component and 800 for the indirect

lighting component. These values were not varied since each iteration always takes exactly

the same time for the same scene and configuration and it was found that these numbers

gave visually pleasing results.

For each scene the following values are shown: precomputation time, number of tri-

angles, texture resolution used, time to precompute 75 fixed rays and time to converge.

The precomputation time includes the time to load scene geometry, time to compute the

uniform grid and triangle lists for the ray tracer and time to create the texture atlases for

resolutions of 64× 64, 128× 128, 256× 256 and 512× 512. All times are in seconds.

Cornell Box

The final rendering of the Cornell box is shown in Figure 5.1(b). Its texture atlas can be

seen in Figure 4.3(b). Figure 5.6 shows the progression of the illumination on the scene

(using a texture atlas of 128×128 as more iterations are computed and Table 5.1 shows the

timings for the converged image using various texture atlas resolutions. It is important to

point out that Figure 5.6(a) shows a global illumination approximation that can be used

with real interactive rates.

Results 58

(a) After .263 seconds and 90
iterations.

(b) After 3.733 seconds and
205 iterations.

(c) After 7.611 seconds and
410 iterations.

Figure 5.6: Progression of global illumination.

(a) Different random samplings at each
texel.

(b) Moving the two internal boxes and
the light source.

Figure 5.7: Alternative renderings.

Results 59

Number of triangles 30

Precomputation time 2.946s

Texture Solution Precomputing

Resolution time 75 rays

64× 64 8.276s 0.478s

128× 128 15.865s 1.816s

256× 256 37.971s 3.431s

512× 512 144.815s 9.444s

(random sampling)

128× 128 38.115s —

(3 moving objects)

128× 128 24.689s —

Table 5.1: Cornell box scene timings.

In addition to the standard timings, for the Cornell box scene we present the time taken

using a more randomized sampling scheme (see Figure 5.7(a). For the timings shown in the

previous table, the random directions generated for the indirect lighting component are the

same for every texel per pass. Using a totally random direction in which each texel uses

different random directions per pass reduces cache coherency and makes the computation

process slower.

The ray tracer has a mode that allows the movement of objects without having to

recompute the acceleration structures (see Section 4.3). Our Cornell box scene was con-

figured to have three moving objects: the small box, the long box and the large box (see

Figure 5.7(b)). Having the ability to move these objects, however, slows the raytracer

somewhat, and rays cannot be precomputed. The timing for a 128×128 texture resolution

for three moving objects is shown at the bottom of Table 5.1.

Unfortunately we were unable to find performance data for other similar algorithms for

the same scene for comparison purposes, except for the path tracer. The path tracer took

about a day to complete the image shown in Figure 5.1(c) using 3000 samples per pixel

running on a machine equipped with dual Pentium 4 2.3GHz processors. However, this is

a relatively unoptimized implementation, and does not use the same GPU ray engine as

was used for our radiosity map implementation.

Results 60

Spheres and Cube

The spheres and cube scene shows a red, a yellow sphere and a gray cube floating inside a

box with green and gray walls (see Figure 5.8 and Table 5.2). This scene has a background

color with a slight greenish hue, which generates a brighter indirect illumination component

for those surfaces facing the open end of the surrounding box. This scene was used to

test the algorithm on smooth surfaces. The shading is still flat looking due to slight

discontinuities in the texture atlas.

Number of triangles 478

Precomputation time 3.278s

Texture Solution Precomputing

Resolution time 75 rays

128× 128 39.2436s 3.623

256× 256 104.166s 8.799

Table 5.2: Spheres and Cube scene timings.

Toys

The toys scene shows a teddy bear with some cubes and a ball (see Figure 5.9 and Ta-

ble 5.3). With the teddy bear, scene introduces an object with more complex geometry.

This means that a texture atlas with a higher resolution is needed to guarantee that every

triangle has at least one pixel assigned to it and that the larger triangles have enough

resolution to show shadow details.

Number of triangles 3426

Precomputation time 5.854s

Texture Solution Precomputing

Resolution time 75 rays

128× 128 86.1171s 7.009s

256× 256 229.452s 20.133s

Table 5.3: Toys scene timings.

Results 61

Drinking Teddy and Jeep

The drinking teddy (Figure 5.10 and Table 5.5) and jeep (Figure 5.11 and Table 5.4) scenes

are two other examples of the radiosity map approach at work. The drinking teddy scene

has a prominent bluish hue, generated from a blue background.

Number of triangles 3998

Precomputation time 4.5863s

Texture Solution Precomputing

Resolution time 75 rays

256× 256 260.632s 23.036s

Table 5.4: Jeep scene timings.

Number of triangles 3534

Precomputation time 4.082s

Texture Solution Precomputing

Resolution time 75 rays

256× 256 297.17s 26.1535

Table 5.5: Drinking teddy scene timings.

Results 62

(a) Direct lighting
component.

(b) Indirect lighting
component.

(c) Texture atlas. (d) Final output.

Figure 5.8: Spheres and cube.

(a) Direct lighting
component.

(b) Indirect lighting
component.

(c) Texture atlas. (d) Final output.

Figure 5.9: Toys.

Results 63

(a) Direct lighting
component.

(b) Indirect lighting
component.

(c) Texture atlas. (d) Final output.

Figure 5.10: Drinking teddy.

(a) Direct lighting
component.

(b) Indirect lighting
component.

(c) Texture atlas. (d) Final output.

Figure 5.11: Jeep.

Chapter 6

Conclusion

This thesis has presented an algorithm for efficiently calculating the radiosity of a scene

that can be executed completely within a GPU architecture by using a GPU based ray

tracer and a texture atlasing scheme to store the radiosity values. We believe that this

design has a lot of potential but we have also realized that there are some limitations that

have to be overcome. In this chapter we present these benefits and limitations as well as

some future work that can be accomplished to continue this research.

6.1 Benefits

Having a design that is completely run within a GPU has many advantages. GPUs are

advancing in speed and complexity much faster than CPUs are and that means that this

framework will be able to accept more complex geometry much sooner. Also, because

the resulting radiosity is stored in textures, the information can be used immediately to

render the scene, which makes this an excellent algorithm for interactive applications. The

fact that a texture atlas is used has an added benefit, it makes the computation time

depend more on the resolution of the textures used to compute radiosity and less on the

complexity of the scene. This allows for texture based adaptive resolution schemes to

improve the quality of the solution.

Although it is necessary to pre-compute acceleration structures for the ray tracer and a

texture atlas to map the surfaces in the scene, by using a Monte Carlo approach calculating

64

Conclusion 65

and storing form factors is avoided. By creating groups of precomputed data for each object

or group of objects, it is possible to change the positions of these groups in relation to the

scene without having to change the precomputed data. This allows for movement of objects

and light sources while still quickly generating the correct global illumination solution for

the modified scene.

In general this framework has potential for growth. Because it uses an embedded ray

tracer, it should be possible to use that ray tracer to add reflective and refractive elements

to the scene. The framework is also quite modular, so it should be easy to incorporate

it into existing projects, making this quite attractive to companies that have an already

defined system and want to incorporate an additional feature.

6.2 Limitations

Unfortunately, this algorithm has a few shortcomings. Although using a texture atlas

avoids the need to divide the scene into smaller elements, there are certain complications

brought upon by using textures. Even though the processing time is now proportional

to the resolution of the texture, this resolution has a lower bound that depends on the

number of triangles. There is also an upper bound which is the maximum texture size

allowed by the hardware, currently around 4096× 4096 texels. At least one pixel is needed

for each triangle and in addition, larger triangles require more texture space so that harsh

illumination changes like shadow boundaries are correct. At high resolutions, however,

the speed decreases enormously, which is why the scenes presented in Chapter 5 have a

relatively small polygon count.

Even though there is a lot of potential for expanding this algorithm, there are some

lighting effects, for example caustics, that may be difficult to achieve because they require

a shooting operation. The operations used in this framework are mainly gather operations,

that is, for each sample point, we compute the light that is arriving there. A shooting

operation requires that, for one sample point, all the other sample points affected by it

must be updated, and this is hard to compute efficiently using textures on a GPU.

The implementation of the texture map also needs some work. The primary problem

is that smooth surfaces look flat shaded because of the discontinuities between triangles

Conclusion 66

that are unconnected in the texture atlas but are connected in the object geometry.

6.3 Future Work

We have thought of many ideas to improve this algorithm and framework, some to reduce

the current limitations and others to take advantage of the existing potential.

For aesthetic purposes only, it would be a good idea to use the concept of the temporary

ambient term, proposed by the progressive refinement paper [5]. This would improve the

look of the presented image while the user is waiting for the solution to be calculated.

The texture atlasing limitations can be improved by having an adaptive resolution

scheme, using multiple textures or having a better atlasing scheme. Adaptive sampling

can also be used, especially to calculate the textures for occluded areas since these areas

usually require more resolution to look good. There are also alternatives to traditional

atlasing schemes. A method called polycube maps [31] projects 3D geometry into groups

of cubes and uses this projection to generate maps for seamless texturing. Another idea,

geometric images [16], proposes remeshing an arbitrary surface into a completely regular

structure such that it can be stored as a square image, allowing other attributes (such as

texture coordinates) to be parameterized to square image. Both methods are is still at an

early stage but they have potential for the kind of mapping used here.

Different scenes and even different parts of the same scene require fewer iterations

to converge to a stable value. The current framework was built using a fixed number of

iterations, however, an additional pass could be added that checks against a standard error

value. This would stop all processing on that pixel and once all pixels reach the tolerance,

the complete process would stop.

An important bottleneck is in the ray tracer, therefore any improvements that can be

made to shooting the rays will greatly increase speeds. Additionally, it may be possible to

reuse the information obtained from shooting the rays so that when the light sources are

moved, the rays do not have to be shot again.

The mathematics used to calculate direct and indirect lighting have been well analyzed,

however, there are still certain manipulations that can be done to obtain equations that

have the same results but with fewer calculations. The PDF used for the direct lighting

Conclusion 67

calculation can be changed to one of uniform sampling of the solid angle subtended by

the light source, as opposed to the uniform area sampling. Sampling based on the solid

angle would cancel various terms from the equation, similar to what is done in the indirect

illumination calculation in the next section. Another simple improvement is to use stratified

sampling, in which the random samples are grouped into specific regions to ensure that they

are well distributed. This might also improve coherence of ray directions, which should

improve the speed of raytracing.

All these optimizations and improvements should serve to advance the framework pre-

sented here. We believe that this idea could be used to improve the interaction and quality

visualization systems since it will a scene to have an illumination scheme that properly

adapts to changes within it.

Appendix A

Glossary of Terms

This glossary is to help the reader understand some terms which may not be described in

the main text. The definitions shown here are only in the context of this thesis and some

terms may have a broader meaning than the one given.

Affine Transformation Refers to geometric transformations such as scaling, rotation

and translation. In general an affine transformations preserve straight lines. This

means that, if in the original geometry there existed a straight line, it will still be

straight after the transformation.

Albedo Is a measure of reflectivity of a surface. In terms of illumination, an albedo is a

number that describes how much percentage of light falling on a surface is reflected in

a given direction. Except for special phenomena like fluorescence or phosphorescence,

this number is from zero to one.

Area Light Source An area light source represents a surface of finite size that emits

light. It is used to simulate ceiling lights or sunlight entering through a window.

Area light sources are more difficult to simulate than point light sources because in

real life an an area light source is made up of continuous flux flowing through every

point in the surface.

Array An array is a collection of data in which individual items can be quickly looked up

by using an indexing number.

68

Glossary of Terms 69

Backend In general terms this refers to the end stage of a process. In a graphics processing

system, the backend is the stage that interprets shader code and creates the adequate

low level instructions for whatever graphics hardware it is configured for.

Barycentric Coordinates Barycentric coordinates are a way to represent the position of

a point by specifying it in terms of three other positions. The mathematical formula

is y = wx0 + ux1 + (1− uw)x2, where y is the point we want to represent, w and u

are the barycentric coordinates that are used to weigh points x0, x1 and x2.

Bi-linear Interpolation Bi-linear interpolation is used when accessing a texture to gen-

erate a smooth variation between each texel. When a texture is accessed using bi-

linear interpolation, the resulting color is a weighed combination of the four nearest

texels to the given texture coordinate.

BRDF Bidirectional Reflectance Distribution Function. This is a function that describes

how light will be reflected on a surface. A BRDF depends on the position at the

surface, the incoming angle of light and the outgoing angle (or the view angle). The

function returns a reflectance value (an albedo) from zero to one (for surfaces that

conserve energy) that gives the percentage of incoming light that exits at the given

outgoing angle.

Buffer A buffer is a temporal data structure. In GPUs buffers are used to store textures

and results of computations so that they can be used in other computations or output

to the screen.

Cache Memory This is a fast but small and expensive memory located inside or very

close to a processor. When a texture is accessed, a large chunk of information in the

slower normal memory is stored in the cache memory and subsequent accesses to the

texture are first checked in the cache for faster access.

Cache Coherency Having cache coherency means having accesses to parts of memory

that are close together so that the cache is used efficiently.

Caustic Intense light caused by reflective or refractive surfaces that bend and focus light.

For example, the light generated by focusing sunlight with a magnifying glass is a

Glossary of Terms 70

caustic.

Contractive This refers to a matrix or in general any operator that, when multiplied by

a variable, reduces the absolute value of that variable. In mathematical terms if T is

a contractive operator, then |Tx| < |x|. This means that if a variable is repeatedly

multiplied by a contractive operator the result will converge to zero.

Cosine Distribution Function This is a PDF that has a probability density of a cosine

lobe. It is defined as p(x) = cos(θ)/π.

Cosine Term A term that relates the projection of one vector over another.

CPU Central Processing Unit. The CPU is the part of a computer that interprets and

carries out the instructions contained in the software. As opposed to the GPU of a

computer, the CPU is the main processor and is better at running code with many

loops and conditionals.

Energy Conserving Refers to the fact that a system that receives energy does not reflect

more energy than that which was received. For example a surface receiving light

energy will absorb some (which will be dissipated as heat) and reflect the remaining

light.

Field of View The angle that defines how much can be seen from a viewpoint (defined

by a camera or an eye). Your personal field of view is that part of the observable

world that you are able to see at any given moment.

Finite Element Method A numerical technique of finding solutions for a complicated

system by representing it with multiple simplified, discrete regions - i.e. finite ele-

ments.

Flux This is a fundamental radiometric quantity, also called radiant power that expresses

how much total energy flows through a surface per unit time.

Form Factor A term in the radiosity equation that accounts for the geometrical relation

between two patches.

Glossary of Terms 71

Fragment Shader The part of a GPU that processes individual fragments of geometry

before they become pixels. Usually, the purpose of a fragment shader is to compute

the color to be applied to a fragment or to compute the depth value for the fragment

or both. However, it may be used for more general purposes. The term fragment

shader can also refer to a shader program that will be executed in the fragment

shader unit.

Diffuse Reflection Given an irradiance distribution, a diffuse reflection occurs when the

reflected radiance on a surface is independent of the exitant direction. This means

that a rough or uneven surface receiving light will reflect it at many angles such that

an observer will always see that surface the same, regardless of the angle.

Dot Product This is an operation between two vectors that can be used to find out the

cosine relation between two vectors. It is defined as V ·W = VxWx + VyWy + VzWz.

It can also be defined as rvrw cos(θ) where θ is the angle between the vectors and rv

is the length of vector V and rw is the length of vector W .

Expected Value Is the average or mean of a random variable.

Global Illumination Refers to the group of methods that consider the interaction of

light between objects in a scene. Specifically, indirect diffuse illumination is one of

the most notable effects of global illumination.

GPU Graphics Processing Unit. A specialized processor in charge of generating the visual

output of a computer.

Inverse r2 Term A term needed to account for the dispersion of power as light, or any

form of energy travels from its source.

Irradiance This is the incident flux arriving on a surface, per unit surface area. It is the

counterpart of Radiosity.

Iteration Iteration is the repetition of a process, or a computational procedure in which a

cycle of operations is repeated, often to approximate the desired result more closely.

Glossary of Terms 72

KD-Tree Is a space-partitioning data structure for organizing points in a k-dimensional

space.

Light Source Any surface or point in space that gives off its own light.

Monte Carlo Integration A method of integrating functions by averaging a series of

random samples that fall in the domain of given function.

Normal A vector that is perpendicular to a surface.

Occluder An object that blocks the view.

Perspective Projection View of a 3D design in which each element is projected to the

screen along a line that intersects with the eyepoint.

Parser A parser is a computer program or a component of a program that analyses the

grammatical structure of an input, with respect to a given formal grammar, a process

known as parsing. In other words, it is a program that reads text and converts the

text into data the computer can easily understand.

Pixel The word pixel comes from combining “picture element”. It refers to the each cell

that makes up the grid of a viewing screen like a monitor.

PDF Probability Distribution Function.

Pipeline A set of data processing elements connected in series, so that the output of one

element is the input of the next one.

Pixel Shader See Fragment Shader.

Point Light Source A point light source is a representation of light that is an infinitely

small point from which all light is generated. A point light source is usually used to

represent candles or light bulbs. It is easy to calculate the contribution of a point

light source on a surface because the illumination comes from only one direction.

Radiosity Also referred to as Radiant Exitance, Radiosity is the exitant flux per unit

surface area. It is the counterpart of irradiance.

Glossary of Terms 73

Radiance Flux per unit projected area per unit solid angle. In other words, the amount

of power arriving to or leaving from a point on a surface, per unit solid angle and

per unit projected area.

Rasterization Rasterization is the task of taking an image described in an outline format,

and converting it into a series of dots for output on a grid display.

Ray Tracing Ray tracing involves calculating the results of shooting or tracing a ray from

the viewing point into the scene to see what object it hits. Once the point where a

surface was hit is known, local surface shading can be performed and additional rays

can be traced to achieve effects like shadows, reflections and refractions.

Reflectance The percentage of light reflected by a surface. In a diffuse reflector, light

is reflected equally in all directions, so the reflectance is constant, but in all other

non-diffuse surfaces, a BRDF function is necessary to describe exactly how much

light will be reflected in a given direction from a given incoming angle.

Rendering The process of creating an image meant to portray an object or scene, espe-

cially using computer graphics software

RenderTexture RenderTexture is a C++ class that supports the use of pbuffers for off

screen rendering.

RGB Red, Green, Blue. Is a common way to represent color in computer displays. The

three primary light colours, red, green and blue, are each given a value between 0 and

1. The combination of all three gives a wide range of colors, from black (all equal to

0) to white (all equal to 1).

Solid Angle A solid angle is the three dimensional analog of the ordinary angle. Instead

of two lines meeting at a vertex, though, one needs a three dimensional figure that

meets at a point. Simple examples of objects that do this are a cone or a pyramid.

The standard unit of solid angle is the steradian which is equal to radian squared.

Shader Program A shader program is executable code used to determine the final surface

properties of an object or image that is run on a GPU. This can include arbitrarily

Glossary of Terms 74

complex descriptions of light absorption and diffusion, texture mapping, reflection

and refraction, shadowing, surface displacement and post-processing effects. In addi-

tion, recent GPU architectures allow shader programs to also compute more general

purpose code.

Texel Texture Element. Refers to each unit of a texture map.

Texture Map A bitmap used to texture a 3D polygon model, including adjustments for

perspective correction, where vertices of the object model are mapped onto the 2D

texture bitmap. In addition to color and brightness, textures may also be encoded

with the properties of transparency and specular reflectivity.

Texture Atlas A complete map from a 3D structure to a 2D texture.

Texture Coordinate A coordinate that maps to a 2D image a position on the surface of

a 3D object.

Tuple A variable that consist of various components.

Unit Vector A vector whose length is exactly 1.

Uniform Grid A grid that is divided into equally sized cells.

Vertex A point in 3D space with a particular location defined by x, y, and z coordinates.

Vertex Shader The section of the GPU which is in charge of executing code that modifies

the geometry of the scene, as opposed to its shading.

Viewport A defined area for viewing information on a computer screen.

Vector A direction in 3D space defined by x, y, and z coordinates. A vector can be

described as the difference of two vertices.

Voxel Short for volume pixel. It refers to a unit or a cell of a a three-dimensional grid.

Appendix B

Mathematical Notation

The notation used in this thesis is based on papers by Veach [32] and Kajiya [22] and on

the book Advanced Global Illumination [9].

Vectors

An arrow over a variable indicates it is a vector, for example ~v. A hat over a variable

indicates it is a unit vector, in other words, its length is equal to one, for example N̂x.

Vectors will always be pointing outwards from surface points, regardless of the direction

of the quantity being measured.

~ω, ~ωi, ~ωo The vector ~ω is used to represent directions. A direction can also be represented

in spherical coordinates by two angles: The first angle, φ represents the azimuth and

is measured with regard to an arbitrary axis located tangent to the surface at point

x. The second angle, θ gives the elevation, measured from the normal vector Nx.

In [9] directions are written as capital Greek letters Θ and Ψ. However, in papers

like [32, 22] ~ω is used. This notation is more common so it is the one selected for

this thesis. Since vectors are, by convention, always pointing away from the surface

points, the direction of the quantity being measured is defined by the subscripts i for

incoming and o for outgoing.

~̀, ˆ̀ Light vector. Used to represent a vector pointing towards a point or area light source.

75

Mathematical Notation 76

N̂x N̂y Normals. Used to represent a vector perpendicular to a surface at a point. Normals

are always assumed to be unit vectors.

Subscripts

Subscripts are used to denote specific attributes of a given variable.

i Subscript i has the widest variety of meanings. In this document it has the following

uses:

• Incoming: Can be used to indicate that a vector is directed towards a surface

point. Usually used with solid angle vectors. Example ~ωi.

• Indirect: Indicates that a lighting quantity is produced by an integration of

indirect lighting contributions. The special ı version of i is used to indicate an

indirect component. It is usually used with radiance, irradiance or radiosity.

Example Bı.

• Count or Iteration: Used to indicate an iteration of a sumation. Can be used

as an indication of the iteration number or as an exponent value, in the case of

the Neumann series. Example
∑N

i=0 xi.

j Used only as a counter, similar to i.

e Emitted. Indicates that a lighting quantity is produced by an integration of direct or self

emitted lighting contributions. Usually used with radiance, irradiance or radiosity.

Example Be.

` Light source. Indicates that a lighting quantity is self emitted. In other words, it is

directly emitted by a light source. Example B`. The differences between B` and

Be should be clear: B` is light generated by a light source, while Be is direct light

reflected on a surface only once.

xy From point x to point y. Used to indicate the initial and ending point of a vector.

Example ~̀
xy.

Mathematical Notation 77

Radiometric Values

The radiometric values used in this thesis are: radiance (L), radiosity (B), irradiance (E)

and flux (Φ). The values can be a function based on a 3D point lying on a surface (e.i.

L(x)) or as a general value (e.i. B).

L, L(x), Lo(x, ωo), Li(x, ωi) Radiance. Since radiance is bi-directional, it can be arriving

at a surface point (Li(x, ωi)) or exiting it (Lo(x, ωo)). In the case of a diffuse surface,

outgoing radiance is all equal, so there is no need to write it in terms of a direction,

only of position (L(x)).

B, Be, Be(x), Bi(x) Radiosity. Because radiosity is always exiting a surface, there is no

need to use subscripts i or o (it would always be o). However, radiosity separated

into two components, one for radiosity generated from direct light sources Be and

one from indirect light Bi.

E, Ee, Ee(x), Ei(x) Irradiance. Irradiance is similar to radiosity in that it is unidirec-

tional, it only accounts for energy leaving a surface. Similarly, it can be separated

into indirect and direct components.

Ψ Flux. This represents the power (Watts) of the light.

Miscellaneous

N , M Iteration counts. Used to represent a maximum iteration count for summations.

Example
∑N

i=0 xi.

A Represents total surface.

Ω Represents a hemisphere of directions.

σ Represents a solid angle. A differential solid angle is so small, it can be represented by

a direction, in this case ~ω is used. In equations with integrations of spheres, dσ(~ω)

will be used to represent a differential solid angle.

θ Used as the angle between a given vector or direction and the normal of the surface that

the vector or direction point to or from.

Mathematical Notation 78

T Transport operator. A radiometric value operated by T is shot in a direction and then

scattered.

f(x, ~ωi ↔ ~ωo) BRDF. Will return a reflectance value ρ for a given point x for incoming

radiance in direction ~ωi and outgoing direction ~ωo.

Appendix C

Pseudocode Listing and Descriptions

This appendix has the pseudocode listings of functions and shader programs used in chapter

4.

C.1 Texture Atlas

C.1.1 Triangle Pairing Function

Algorithm C.1 Triangle pairing function.

for all unassigned T in S do

Set T as assigned

if there exists an unassigned triangle T ′ that shares an edge with T then

Set T ′ as assigned

Add pair T and pair T ′ to P

else

Add T with null pair to P

end if

end for

Sort P from smallest pair area to largest

return P

79

Pseudocode Listing and Descriptions 80

Input variable S contains a listing of the triangles T within the scene. For each of these

triangles, another triangle is searched that shares an edge with it. If a match is found,

they are packaged into a triangle pair structure and inserted into triangle pair list P . If no

unassigned adjacent triangle is found, then the triangle is inserted as a lone triangle into

list P . Once all triangles have been assigned, P is sorted in order of the area size of the

triangle pairs, from the smallest to largest and is returned as output (see algorithm C.1).

C.1.2 Recursive Texture Subdivision

Algorithm C.2 Recursive texture subdivision function.

if P has more than one triangle pair then

idx← beginning of P

repeat //Find tipping point.

LP ← P [begin] ..P [idx]

RP ← P [idx + 1] ..P [end]

LC ← LPtriangles/Ptriangles

RC ← RPtriangles/Ptriangles

LA← LParea/Parea

RA← RParea/Parea

LR← (K ∗ LC + LA)

RR← (K ∗RC + RA)

idx← idx + 1

until LP ≥ RP

Lxy ← lower half of xy //Divide texture coordinates on longest axis.

Rxy ← higher half of xy

call Recursive Division with LP and Lxy //Recursively divide left half.

call Recursive Division with RP and Rxy //Recursively divide right half.

else

Set TC ← xy for both triangles in pair

end if

An ordered list of triangle pairs P is given as input. If it has more than one triangle

Pseudocode Listing and Descriptions 81

pair it is iterated by an indexing variable idx. List P is then divided at idx point into

the left side LP and right side RP . For each iteration the ratio of the number of triangles

on each side to the total amount of triangles is stored in LC (left count) and RC (right

count) respectively. The area ratios are similarly stored in LA (left area) and RA (right

area). The ratio for amount of triangles is further weighed by a a constant K (A value of

K that was found through trial and error to give “good” distributions for the test scenes

was 1.5) . The ratios for each side are added as LR (left ratio) and RR (right ratio) and

when the LR becomes greater than or equal to RR, it means that a balancing point has

been found. After that, the input range of textures xy are divided evenly along the widest

axis into Lxy and Rxy (when divided along the y axis, the lower half is considered for

Lxy and the upper half for Rxy). This function is then recursively called for the left side

with LP and Lxy as inputs and for the right side with RP and Rxy as inputs. If input P

has only one triangle pair, then the xy coordinates are assigned to the TC list of texture

coordinates for the triangles in that pair and the function exits (see algorithm C.2).

C.2 Shader Passes

C.2.1 Geometry to Texture Vertex Shader

Algorithm C.3 Geometry to texture (G2T) vertex shader.

Input xin //Vertex position.

Input nin //Normal.

Input tcin //Texture Coordinates.

Input ρin //Color value.

M ← Model Transformation Matrix

D ← Device Coordinates Transformation Matrix

Output nout ←M · nin

Output xout ←M · xin

Output ρout ← ρin

Output pout ← D · tcin //fragment position.

Pseudocode Listing and Descriptions 82

The shader receives a stream of vertex positions (variable x is used for 3D positions, as

it is the same notation used in all the formulas in chapters 2 and 3), normal (n), texture

coordinate (tc) and color values (ρ). Additionally two matrices must be globally defined:

a model transformation matrix (M) that includes any rotations, translations or scaling

transformations applied to each object must be defined; and a device coordinates matrix

(D) that can transform texture coordinates (ranged from (0, 0) to (1, 1)) to device coor-

dinates (ranged from (−1,−1) to (1, 1))1. The input values are transformed as necessary

and sent as interpolated fragments to the fragment shader (see Algorithm C.3).

C.2.2 Texture to Texture Vertex Shader

Algorithm C.4 Texture to texture (T2T) vertex shader.

Input xin

Input tcin

Output pout ← xin //fragment position.

Output tcout ← tcin

C.2.3 Geometry to 2D Image Vertex Shader

Algorithm C.5 Geometry to 2D image (G2I) vertex shader.

Input xin //Vertex position.

Input tcin //Texture coordinates.

MV P ← Model, View and Perspective Transformation Matrix

∆tc← Displacement for texture coordinates //To avoid texture bleeding.

Output pout ←MV P · xin //fragment position.

Output tcout ← tcin −∆tc

1 Device coordinates are those used to define positions on a computer screen or window. Even though
the output will be stored in a texture, the fragment shader uses device coordinates to rasterize the image.

Pseudocode Listing and Descriptions 83

This shader is similar to the G2T shader but only receives a stream of vertex positions

(x) and texture coordinates (tc). In addition to the information from the model trans-

formation matrix, this shader requires knowledge of view transformations (to know the

camera viewpoint) and a perspective transformation (to convert 3D points to 2D points

in device coordinates). All this information is stored in matrix MV P and it is used to

transform the input vertices to device coordinates. The texture coordinates also need to

be displaced slightly to avoid texture bleeding as explained in section 4.2.

C.3 Radiosity Initialization Stage

C.3.1 Random Light Ray Generator (GLR) Fragment Shader

Algorithm C.6 Random light ray generator (GLR) fragment shader.

Input: x //Surface position.

y ← Random(Sl) //Generate a random point in the light surface.

Output: lxy ← (y − x) //Create a vector from the difference of two points.

C.3.2 Direct Light Calculation (DL) Fragment Shader

Algorithm C.7 Direct light calculation (DL) fragment shader.

Input: Nx //Normal.

Input: lxy //light ray.

Input: V (x, y) //Visibility between light point and surface point.

I(y)← Intensity of light

Ny ← Normal of light surface

rxy ← length(lxy)

lxy ← Normalize(lxy)

Output: Ee(x)← V (x, y)I(y) (Nx·lxy)(lxy ·Ny)

r2
xy

Pseudocode Listing and Descriptions 84

C.4 Radiosity Iteration Stage

C.4.1 Random Cosine Distribution Ray Generator (GCR) Frag-

ment Shader

Algorithm C.8 Random cosine distribution ray generator (GCR) fragment shader.

Input: x //Surface position

lΘ ← Random Cosine Distribution(Ω) //Generate a random ray using a cosine

distribution.

MNx ← Rotation Matrix // Matrix that aligns rays to the normal of x.

Output:lxy ←MNx · lθ//Transform lθ to align with the normal at x.

C.4.2 Indirect Light Calculation (IL) Fragment Shader

Algorithm C.9 Indirect light calculation (IL) fragment shader.

Input: y //surface point hit by ray.

if y exists then //if a surface was hit

Output: Ei(x)← B(y) //return radiosity at point hit.

else

Output: Ei(x)← Background Color //else return background color (usually

black).

end if

Bibliography

[1] P. Bekaert and H. Seidel. A theoretical comparison of Monte Carlo radiosity algo-

rithms. In Proc. 6th Fall Workshop on Vision, Modeling and Visualization, pages

257–264, 2001.

[2] I Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M Houston, and P. Hanra-

han. Brook for GPUs: stream computing on graphics hardware. In Proceedings of

SIGGRAPH 2004, pages 777–786, 2004.

[3] N Carr and John Hart. Meshed atlases for real-time procedural solid texturing. In

ACM Transactions of Graphics, Vol 21, No. 2, pages 106–131, 2002.

[4] N Carr and John Hart. GPU algorithms for radiosity and subsurface scattering. In

Graphics Hardware, 2003.

[5] M. Cohen, S. Chen, J. Wallace, and D. Greenberg. A progressive refinement approach

for realistic image synthesis. In Computer Graphics, pages 75–84, 1988.

[6] M. Cohen and D. Greenberg. The hemicube: A radiosity solution for complex envi-

ronments. In Computer Graphics, pages 31–40, 1985.

[7] M. Cohen, D. Greenberg, and D. Immel. An efficient radiosity approach for realistic

image synthesis. In IEEE Computer Graphics and Applications, pages 26–35, 1986.

[8] G. Coombe, M. Harris, and A. Lastra. Radiosity on graphics hardware. In Proceedings

of the 2004 conference on Graphics interface, pages 161–168, 2004.

[9] P. Dutré, P. Bekaert, and K. Bala. Advanced Global Illumination. AK Peters, 2003.

85

Pseudocode Listing and Descriptions 86

[10] T. Foley and J. Sugerman. KD-tree acceleration structures for a GPU ray tracer. In

Proceedings of EUROGRAPHICS on Graphics Hardware 2005, pages 15–22, 2005.

[11] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray-tracing system. In IEEE

Computer Graphics and Applications, 6(4), pages 16–26, 1986.

[12] P. Gautron, J. Krivanek, K. Bouatouch, and S. Pattanaik. Radiance cache splatting: A

GPU-friendly global illumination algorithm. In Eurographics Symposium on Rendering

2005, page 102, 2005.

[13] A. Glassner. An Introduction to Ray Tracing. Morgan Kaufmann, 1989.

[14] C. Goral, K. Torrance, D. Greenberg, and B Battaile. Modeling the interaction of

light between diffuse surfaces. In Proceedings of SIGGRAPH 1984, pages 213–222,

1984.

[15] D. Greenberg, K. Torrance, P. Shirley, J. Arvo, J. Ferwerda, S. Pattanaik, L. Lafor-

tune, B. Walter, S. Foo, and B. Trumbore. A framework for realistic image synthesis.

In SIGGRAPH 97 Conference Proceedings, pages 477–494, 1997.

[16] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In Proceedings of SIGGRAPH

2002, pages 355–361, 2002.

[17] P. Hanrahan, D. Salzman, and L. Aupeperle. A radiosity hierarchical radiosity algo-

rithm. In Proceedings of SIGGRAPH 1991, pages 197–206, 1991.

[18] M. Harris. Render to texture. http://www.markmark.net/misc/rendertexture.

html.

[19] V. Havran, J. Prikryl, and W. Purgathofer. Statistical comparison of ray-shooting

efficiency schemes. In Tech Report TR-186-2-00-14 Institute of Computer Graphics,

Vienna University of Technology, 2000.

[20] H. Jensen. Global illumination using photon maps. In Eurographics Rendering Work-

shop 1996, pages 21–30, 1996.

http://www.markmark.net/misc/rendertexture.html
http://www.markmark.net/misc/rendertexture.html

Pseudocode Listing and Descriptions 87

[21] H. Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.

[22] J. Kajiya. The rendering equation. In Proceedings of SIGGRAPH 1986, pages 143–

150, 1986.

[23] M. McCool, Z. Qin, and T. Popa. Shader metaprogramming. In Graphics Hardware

2002, pages 1–12, 2002.

[24] G. Moreno-Fortuny and M McCool. Unified stream processing ray tracer. In Poster at

GPGP: The ACM Workshop on General Purpose Computing on Graphics Processor,

and SIGGRAPH 2004, 2004.

[25] K. Nielsen and N. Christensen. Fast texture based form factor calculations for radiosity

using graphics hardware. In Journal of Graphics Tools 6(4), pages 1–12, 2002.

[26] M. Pharr and G. Humphreys. Physically Based Rendering. Morgan Kaufmann, 2005.

[27] T. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford University, 2004.

[28] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programable graphics

hardware. In Graphics Hardware 2003, pages 703–712, 2003.

[29] M. Sbert. Error and complexity of random walk Monte Carlo radiosity. In IEEE

Transactions on Visualization and Computer Graphics, pages 23–38, 1997.

[30] P. Shirley. Realistic Ray Tracing. AK Peters, 2000.

[31] M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycube-maps. In Proceedings

of SIGGRAPH 2004, pages 853–860, 2004.

[32] E. Veach and L. Guibas. Optimally combining sampling techniques for Monte Carlo

rendering. In Proceedings of SIGGRAPH 1995, pages 419–428, 1995.

[33] G. Ward, F. Rubinstein, and R. Clear. A ray tracing solution for diffuse interreflection.

In Proceedings of SIGGRAPH 1988, pages 85–92, 1988.

[34] T. Whitted. An improved illumination model for shaded display. In Communications

of the ACM 23:6, pages 343–349, 1980.

Pseudocode Listing and Descriptions 88

[35] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/GPGPU.

http://en.wikipedia.org/wiki/GPGPU

	Introduction
	Background
	Illumination Methods
	Rasterization
	Ray Tracing
	Global Illumination

	The Classic Radiosity Approach
	Radiometry
	Solving the System
	Improvements and Optimizations

	Stochastic Radiosity
	Monte Carlo Integration
	Stochastic Relaxation Methods
	Discrete Random Walk Methods

	Graphics Hardware
	Shading Languages
	General Purpose GPU Programming
	Ray Tracing on Graphics Hardware
	Radiosity on the Graphics Hardware
	Texture Atlases

	The Algorithm
	Linear Transport Operator
	Acquiring Lighting Contributions
	Initial Lighting Contribution
	Iterating the Series
	Programming steps

	Implementation Details
	Sh as a Tool for GPU Radiosity Maps
	The Scene and Texture Atlas Modules
	The Ray Tracer
	The Radiosity Module and User Interface
	Shader Passes
	Radiosity Calculation Stages

	Results
	Validation
	Histogram Comparison
	Contour Comparison
	Pixel Differences
	Validation Analysis

	Sample Scenes

	Conclusion
	Benefits
	Limitations
	Future Work

	Glossary of Terms
	Mathematical Notation
	Pseudocode Listing and Descriptions
	Texture Atlas
	Triangle Pairing Function
	Recursive Texture Subdivision

	Shader Passes
	Geometry to Texture Vertex Shader
	Texture to Texture Vertex Shader
	Geometry to 2D Image Vertex Shader

	Radiosity Initialization Stage
	Random Light Ray Generator (GLR) Fragment Shader
	Direct Light Calculation (DL) Fragment Shader

	Radiosity Iteration Stage
	Random Cosine Distribution Ray Generator (GCR) Fragment Shader
	Indirect Light Calculation (IL) Fragment Shader

