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Abstract

Glycosylation, the addition of one or more carbohydrates molecules to a

protein, is crucial for many cellular processes. Aberrant glycosylation is a

key marker for various diseases such as cancer and rheumatoid arthritis.

It has also recently been discovered that glycosylation is important in the

ability of the Human Immunodeficiency Virus (HIV) to evade recognition

by the immune system. Given the importance of glycosylation in disease,

major efforts are underway in life science research to investigate the gly-

come, the entire glycosylation profile of an organelle, cell or tissue type. To

date, little bioinformatics research has been performed in glycomics due to

the complexity of glycan structures and the low throughput of carbohydrate

analysis.

Recent advances in mass spectrometry (MS) have greatly facilitated the

analysis of the glycome. Increasingly, this technology is preferred over tra-

ditional methods of carbohydrate analysis which are often laborious and

unsuitable for low abundance glycoproteins. When subject to mass spec-

trometry with collision-induced dissociation, glycopeptides produce charac-

teristic MS/MS spectra that can be detected by visual inspection. However,

given the high volume of data output from proteome studies today, manually
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searching for glycopeptides is an impractical task. In this thesis, we present

a tool to automate the identification of glycopeptide spectra from MS/MS

data. Further, we discuss some methodologies to automate the elucidation

of the structure of the carbohydrate moiety of glycopeptides by adapting

traditional MS/MS ion searching techniques employed in peptide sequence

determination. MS/MS ion searching, a common technique in proteomics,

aims to interpret MS/MS spectra by correlating structures from a database

to the patterns represented in the spectrum.

The tool was tested on high throughput proteomics data and was shown

to identify 97% of all glycopeptides present in the test data. Further, the

tool assigned correct carbohydrate structures to many of these glycopeptide

MS/MS spectra. Applications of the tool in a proteomics environment for the

analysis of glycopeptide expression in cancer tissue will also be presented.
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Chapter 1

Introduction

The advent of highly sensitive analytical techniques and computer tech-

nology has provided life science researchers with the ability to analyze the

biology of an organism in its entirety. This type of large scale biological anal-

ysis has enabled research such as comparative expression analysis, where the

entire gene or protein expression profiles of two individuals, for example a

healthy patient and a patient carrying a specific disease, can be compared.

It is hoped that such research will provide biologists with the information

necessary to identify the key proteins involved in disease pathways, and

ultimately, identify drug targets.

With the completion of several genome sequencing projects, the next

major goal of life science research is to utilize genomic data to study the

corresponding protein complement, or proteome. Proteomics today consists

of two main goals: to identify all the proteins of a particular organism and

secondly, to characterize these proteins in terms of structure (structural pro-

teomics) and function (functional proteomics)[18]. The proteome however is

more complex than the genome since it is a dynamic entity; it can change
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with the state of development, the tissue or even the environmental con-

ditions of an organism. In addition, phenomena like alternate splicing1 and

post-translational modifications (section 1.2), can lead to a vast array of pro-

tein products, thus challenging the ’one-gene-one-protein’ classical dogma of

biology proposed by Beadle and Tatum[30]. The proteome is larger than the

genome, and its analysis is more complex. This flow of information in life

science research can be illustrated schematically as seen in figure 1.1.

1.1 Introduction to High Throughput Proteomics

Recent developments in technology have facilitated the analysis of hundreds

of genes or proteins simulataneously (see figure 1.1). Improvements in both

the sensitivity and the resolution of two main technologies, gel electrophore-

sis and mass spectrometry (MS), for the tasks of protein separation and

identification respectively, have enabled the field of proteomics to quickly

evolve. Only with these high throughput techniques, can we understand how

multiple proteins are regulated together and over various time points. In ad-

dition, the increased sensitivity enables the analysis of proteins expressed in

small quantities. These low abundance proteins, which are often biologically

interesting, are difficult to analyze since proteins cannot be amplified like

nucleic acids. In this section, we will describe these techniques, as well as

how they are applied in proteome research.
1Post-processing of mRNA involves ’splicing’ out various portions to create a final

product. Often, this splicing step is performed at different locations along the gene, leading
to a series of mRNA species.
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Figure 1.1: Large scale life science research. The development of high
throughput technology has enabled the analysis of the entire biological com-
plement of an organism. At each level of the flow of biological information,
there are several corresponding high throughput technologies to perform
large scale analysis (high throughput technology flow), and a specific area
of bioinformatics dedicated to its study (bioinformatics flow). The increase
in size of the boxes in the bioinformatics flow pipeline (not to scale) demon-
strate the increase in the complexity and volume of the data involved in its
analysis.
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1.1.1 Proteome Research Strategy

Today, there is a widely utilized strategy employed in high throughput pro-

teome research (Fig.1.2). Typically, samples obtained from different cellular

fractions are treated with an enzyme, usually trypsin, to cut them into

smaller pieces or peptides, which are easier to analyze than full proteins.

To further separate these peptides, they are processed by gel electrophoresis

and the resulting images are electronically retrieved by high resolution scan-

ners and analyzed using pattern recognition techniques to create proteome

maps. The proteins in the gel are subsequently excised and treated, and may

be further resolved using Liquid Chromatography (LC). To characterize the

separated proteins, in terms of mass and peptide sequence, the samples are

then usually subject to one or more rounds of mass spectrometry, typically

Electrospray Ionization (ESI) or matrix-assisted laser desorption ionization

(MALDI). The output from the mass spectrometer, MS/MS spectra, are sub-

sequently analyzed with sophisticated bioinformatics tools and technology.

This process can be visualized as shown in figure 1.2. In the next sections,

these techniques will be further described.

1.1.2 Protein Separation

The first step in the proteome research strategy is peptide separation, which

is achieved primarily by gel electrophoresis2. This technique allows the simul-

taneous separation of thousands of proteins according to various chemical

properties. The results of the separation can then be viewed as a peptide

’map’.

Some types of electrophoresis such as two-dimensional electrophoresis,
2In this thesis, we will use gel electrophoresis as a general term to encompass various

kinds of electrophoresis such as 1D, 2D, 2D-PAGE, 2D-SDS PAGE and so on.
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Figure 1.2: Typical strategy employed in proteome research (see text for
details). Figure adapted from Bakthiar and Tse (2000).

5



can resolve more than 10000 proteins simultaneously in a highly repro-

ducible way[14]. In addition, they can readily differentiate amongst many

post-translationally modified forms of a protein[14]. The weaknesses of 2D-

electrophoresis however is its inability to deal with certain classes of pro-

teins, such as highly hydrophobic proteins, very small proteins, and those

with isoelectric points at either extreme of the pH scale[14].

For protein separation, liquid chromatography (LC) is also commonly

used. In liquid chromatography, proteins are dissolved in a liquid phase, and

subsequently passed through several columns which separate the proteins

on a number of dimensions. Separation on the basis of hydrophobicity is

commonly employed in proteome research[2]. LC can be used for the direct

analysis of the samples, but increasingly, is being used in tandem with 2D-

electrophoresis to further concentrate proteins[29].

1.1.3 Protein Characterization - Mass Spectrometry

After separation, protein characterization is achieved by using mass spec-

trometry in most proteome projects (Fig.1.2). The goal of this technique is to

provide information about the mass and chemical composition of a specific

peptide. Developments of certain MS technologies such as electrospray ion-

ization (ESI) and matrix-assisted laser desorption/ionization (MALDI) have

made it possible to ionize and analyze large biomolecules[16]. Combined with

improved apparatus design and refinements in sample preparation methods,

mass spectrometry enables sensitive mass detection of the order of femto-

moles3. Such sensitivity has made mass spectrometry a popular method for
3The mole is the amount of substance of a system which contains as many elementary

entities as there are atoms in 0.012 kilogram of carbon-12; its symbol is ”mol.” A femtomole
represents 10−15 of a mole.
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analysis in a number of fields; it has been particularly successful in facilitat-

ing proteome research[16].

There are two main phases of mass spectrometry analysis of peptides.

In the first phase, MS, the mass and abundance of each peptide entering

the machine is measured. The output, a survey scan, lists all the peptides

with unique mass-to-charge (m/z) ratios. When peptides undergo MS, they

obtain one or more positive charges (z). The number of positive charges

each peptide obtains is based on various parameters used on the operation

of the mass spectrometer and the presence of various chemical groups on

the amino acids of the polypeptide.

The most abundant peptides obtained from MS are subsequently selected

for the second phase of mass spectrometry analysis, MS/MS4. Selected pep-

tides are bombarded with enough energy from the ion source to cause its

ionization and fragmentation into smaller peptides. Given that several iden-

tical peptides will enter the mass spectrometer for MS/MS when bombarded,

an array of fragmentation products are produced each representing breakage

at a specific bond5. The mass-to-charge ratios of the resulting fragments are

then displayed as a spectrum in which peaks are drawn at various m/z points

with heights proportional to the number of identical fragments observed at

this m/z value (Fig.1.3). By examining the distances between the peaks of

the MS/MS spectrum, the sequence of the peptide can be reconstructed. The

resulting peak spectrum representing the composition of the molecule, can

thus be used as a ”molecular fingerprint”. The process of MS/MS spectra

interpretation for peptides is further discussed in chapter 2.1.
4Other criteria are also used to select peptides for MS/MS such as directed inclusion
5Not all peptide bonds are liable to break with the same probability.
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Figure 1.3: An example of an MS/MS spectrum. The labeled peaks in the
spectrum represent the masses of peptide fragments. The x-axis represent
the mass-to-charge (m/z) and the y-axis represent the relative abundance of
that peak detected by the mass spectrometer. By calculating the distances
between the peaks, the order of the peptide’s fragmentation and thus the
peptide’s sequence can be inferred.
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1.1.4 Bioinformatics - Database technology and analytical

tools

After acquiring MS/MS spectra, these data are passed to various bioinfor-

matics tools for data storage and analysis. In proteome research, databases

play a crucial role. Some existing bioinformatic techniques for the analysis

of proteomics data are further described in section 2.2.1.

1.2 Post-translational Modifications and Glycosy-

lation

The previous section described details of proteomics research and how recent

technology has enabled the simultaneous analysis of several hundred pro-

teins to help elucidate complex disease pathways and protein interactions.

In many cases however, protein analysis alone is insufficient to accomplish

the goals of proteome studies. One factor that must be given special consid-

eration is protein Post-Translational Modification or PTM. Protein PTM,

the chemical modification of one or more amino acids in a protein chain, is

a common phenomenon. There are a large number of known PTMs which

occur in varying frequencies and have a wide range of roles in the alteration

of protein structure and function. PTMs are crucial in the structure and

function of many proteins and in the control of biochemical pathways[30].

Amongst the most ubiquitous and important PTMs is glycosylation.

Glycosylation As part of post-translation processing, proteins are often

modified with the addition of one of more carbohydrate structures (sugars

or glycans) forming glycoproteins[30]. The carbohydrate moiety of glycopro-
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teins, called oligosaccharides or glycans, are composed of individual sugar

residues or monosaccharides, which are covalently bonded together by glyco-

sidic bonds. Recent estimates suggest that glycosylation affects over 60% of

all proteins[26]. Protein glycosylation is crucial for many cellular processes

including cell-cell interactions, protein-protein interactions, protein folding

and trafficking, and is especially vital to the cell surface where it plays a key

role in the proper positioning and functioning of surface receptors[30].

Glycosylation also plays a key role in disease pathways and examina-

tion of the glycome, or total glycoprotein complement of a cell, tissue or

organism, is increasingly a priority in proteomics. Like the proteome, the

glycome is dynamic, and reflects the physiological state of a cell. Glycosyla-

tion patterns can mirror biological processes taking place inside the cell and

can alter with disease[26]. In rheumatoid arthritis for example, the levels of

fully galactosylated6 sugars decrease with disease activity[26]. In addition,

aberrant glycosylation profiles are a key diagnostic marker of certain types

of cancer. In a study of breast cancer glycosylation patterns, Whitehouse

et al. [32] showed that breast cancer tumor cells often had MUC1 mucins
7 which carried shorter and less complex glycans compared to normal cells.

Recently, viral coat glycosylation was also shown to be a key factor in the

ability of the Human Immunodeficiency Virus (HIV), responsible for the Ac-

quired Immunodeficiency Syndrome (AIDS) pandemic, to evade recognition

by the immune system[31].

Glycoprotein Strucure The carbohydrate moieties of glycoproteins are

attached to specific amino acid residues on peptides. There are two main
6Glycoproteins with attached galactose monosaccharide
7Mucins are large glycoproteins that carry many O-glycans
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Figure 1.4: Glycoproteins are synthesized in two main varieties. N-linked
glycoproteins are characterized mainly by carbohydrate attachment to an
Asparagine amino acid (N), while carbohydrate attachment in O-linked gly-
coproteins is either to a Serine (S) or a Threonine (T) residue.

classes of glycoproteins, O-linked and N-linked, based on the site of attach-

ment of the carbohydrate to the polypeptide chain. N-linked glycans are

attached to the protein only at the amino acid sequence NXS/T8 and are

covalently linked to the N residue. O-linked glycans are linked to any serine

or threonine amino acid in the polypeptide chain (Fig.1.4).
8N=asparagine, X=any amino acid, S=serine and T=threonine
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Carbohydrate Structure The glycan moiety of glycopeptides are com-

posed of monosaccharide residues. There are approximately 20 monosaccha-

ride residues of which 6 are commonly seen (see table 4.5.1). Glycans consist

of one or more monosaccharide residues bonded together by glycosidic bonds

to form polysaccharide chains. The glycan moieties often have very complex

structures and can be linear or highly branched depending on the pathways

used in its synthesis.

Depending on the type of glycan, O-linked or N-linked, the structure

of the glycans can vary greatly in terms of both size 9, structure and com-

position. The glycans found on mammalian N-linked glycoproteins have a

common core composition of HexNAc2Hex3 [10] as illustrated in figure 1.5.

Depending on the nature of the oligosaccharide chain attached to the com-

mon core, the glycan can further be classified as being oligomannose (or high-

mannose), complex or hybrid. Oligomannose glycans (Fig.1.5A) contain only

mannose residues, whereas complex type glycans have varied composition

and a variable number of antannae stemming from the core (Fig.1.5B) [10].

Complex type N-glycans show the largest structural variation resulting from

the combination of monosaccharides and the different number of antannae.

Hybrid-type N-glycans have the characteristic features of both complex-type

and high-mannose type glycans as seen in figure 1.5C [10]. The structures of

O-linked glycans is less defined than that of the N-linked glycans. O-linked

glycans are composed of six different cores, and can have varied structures

and compositions stemming from the cores[10].
9Sizes can range from di-, and tri-saccharides to hundreds of saccharides.
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Figure 1.5: The glycans of mammalian N-linked glycoproteins contain a com-
mon core structure of HexNAc2Hex3 as shown in this figure. Depending on
the structure stemming from the common core structure, a glycan can be
classified as oligomannose (A), complex (B) or complex (C).
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1.3 Introduction to Glycomics

Despite the importance of glycosylation in our understanding of diseases,

the analysis of protein glycosylation remains a low-throughput and laborious

task. One reason that protein glycosylation is difficult to analyze is that pro-

tein glycosylation is a complex process and glycoproteins have highly hetero-

geneous structures. Unlike the genetic code, there is no rigid template that

accurately specifies glycosylation patterns, but rather a complex assembly-

line system involving competition by hundreds of gene products[30]. It is not

uncommon for a glycoprotein to be processed with more than 100 alternative

glycans at a single glycosylation site[26].

The heterogeneity of glycoproteins arises at two main junctures in the

glycoprotein structure (Fig.1.6):

• Glycosylation sites on the protein (macroheterogeneity). A protein can

have one or more glycosylation sites, which may or may not be occu-

pied by a carbohydrate.

• Monosaccharide composition of the glycan (microheterogeneity). A

single glycosylation site can have a series of different carbohydrates,

or glycoforms, attached

The complexity of glycoprotein analysis is further complicated by the

fact that each cell, tissue, organ and organism exhibits different glycosyla-

tion patterns, which can change based on the cell’s state or activity. The

analysis of such immense variation in glycoprotein structure is very hard to

substantiate, and multiple analytical methods are needed to fully character-

ize glycoproteins.
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c) Unglycosylated
peptide -
macroheterogeneity

Figure 1.6: Glycopeptide heterogeneity. There are two types of glycopeptide
heterogeneity. This schematic illustrates a specific glycopeptide in 3a. The
coloured boxes represent the various monosaccharides comprising the glycan.
b)Example of microheterogeneity; this glycopeptide contains only mannose
sugars unlike 3a. The glycans in 3a and 3b are therefore glycoforms. c) Exam-
ple of macroheterogeneity; the glycosylation site of the original glycopeptide
is not occupied.
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In addition to structural complexity, glycoproteins are difficult to analyze

from an experimental standpoint. To fully capture and elucidate the glycan

structure of a glycoprotein involves several analytical steps that often require

a large amount of sample and which can be costly. Problems in glycoprotein

analysis are further described in section 1.3.5.

1.3.1 Glycome Research

Today many of the high throughput technologies used in proteomics are also

applicable to glycomics, and there have been several large scale glycomics

initiatives put forth. Researchers at Teikyo University in Japan for exam-

ple, have begun a project aimed at elucidating the glycome of Caenorhab-

ditis elegans, whose genome has already been completely sequenced and

annotated[17]. Similar to high throughput proteomics, glycomic projects

consist of two main steps : i) glycoprotein isolation, and ii) glycoprotein

identification. Although similar concepts are applied, the diversity and com-

plexity of glycoproteins require different methodologies for analysis (Fig.1.7).

1.3.2 Glycopeptide Isolation

In terms of separation techniques, electrophoresis is a commonly used tech-

nique when studying glycopeptides (Fig.1.7). Electrophoresis permits the

separation of different glycoforms, which are typically represented by one or

more diffuse bands during gel electrophoresis[30]. To isolate and visualize

the glycoproteins from the gel, there are several staining reagents that can

be used, the most common ones being lectin staining and immuno-staining.

Lectins are specialized glycoproteins for carbohydrate-binding[30]. They are

commonly used as probes to bind and isolate carbohydrate-containing molecules
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Glycopeptide 
Isolation and 
Deglycosylation

HPLC and/or MS of 
released glycans
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(Lectin)

Limited 
bioinformatic
tools

Figure 1.7: Common strategy employed in glycome research (see text for
details).
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and when applied to gels, will bind and stain the gel where glycoproteins

exist[30]. Alternately, carbohydrate-recognizing antibodies can be used to

bind and visualize the glycoproteins, a process called immunoblotting stain-

ing.

In many situations, LC methods are preferred to electrophoresis. For ex-

ample, some glycoconjugates do not enter ordinary gels or migrate only as

smears[30]. In these situations, LC, specifically lectin-affinity chromatogra-

phy is often preferred to 2D-electrophoresis. Chromatography columns can

be specially prepared with lectin to permit the binding of the carbohydrates

and thus glycosylated proteins. Furthermore, the lectin columns can be de-

signed to isolate a particular type of glycan for added specificity [30].

Once the glycoproteins are identified and isolated, they are deglycosy-

lated using chemical cleaving agents. The peptide moieties can further be

identified using protein characterization techniques discussed in the previous

section, and the released glycans characterized as described below.

1.3.3 Glycopeptide Characterization

The characterization of the released glycans entails determining three main

features: i) monosaccharide composition, ii) protein attachment site and iii)

sequence branching and linkage positions 10. Like in proteomics, advances

in mass spectrometry have made this technology a popular choice for gly-

copeptide analysis. When soft-ionization techniques are applied to treated

glycoproteins, MS analysis is capable of analyzing mixtures of oligosaccha-

rides and provides information about oligosaccharide molecular weight, the

heterogeneity of a sample and structural information such as branching[30].
10Determining the anomeric configurations of the monosaccharides is often another char-

acteristic examined in glycopeptide characterization
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Although not matching the level of sensitivity currently enjoyed by peptide

analysis (femtomole), advanced MS instrumentation is now capable of mass

profiling glycans at relatively high resolution and sensitivity (picomole), giv-

ing routine mass accuracy of 50-100 ppm11[30].

1.3.4 Bioinformatics Tools and Databases for Glycome Re-

search

Glycomics is a new and emerging field, and as such, there are very few

publicly available glycomics databases. GlycoSuiteDB12 is among the few

databases available publicly on the Internet since early 2001. It is a rela-

tional database that curates information from scientific literature on glyco-

protein derived glycan structures[6]. Since the structures registered in Gly-

coSuiteDB are only from reported glycans, there are a very small number

of entries so far. Another publicly available glycome database is O-Glycbase

curated by the Centre for Biological Sequencing from the Technical Uni-

versity of Denmark. O-GLYCBASE is a database of only O-glycosylated

proteins[19] which have at least one experimentally verified O-glycosylation

site. O-GLYCBASE is coordinated with NetOGlyc, a tool for predicting O-

linked glycosylation sites[19]. Both GlycoSuiteDB and O-GLYCBASE are

extensively cross-linked to various nucleotide and protein databases.

In terms of glycomic tools, there are also a relatively limited number of

publicly available tools. One tool, GlycoMod, is a tool that predicts possible

oligosaccharide structures from their experimentally determined masses[5].

Several other algorithms for automated glycan MS/MS spectra interpreta-

tion are discussed in section 4.2. As glycomics matures as a field, there will
11A measure of concentration. 1 ppm = 1 mg/liter. One ppm is 1 part in 1x106.
12http://www.glycosuitedb.com

19



likely be more databases and analysis tools available as currently exist in

proteomics.

1.3.5 Technical and Industrial Problems in Glycomics

Problems in Traditional Glycoprotein Analysis Glycoprotein anal-

ysis is still difficult despite the development of several analytical techniques.

In terms of industrial processing, glycoprotein analysis is a time-consuming,

costly process and low-throughput method due to the due complexity and

diversity of glycan structures. Glycoprotein analysis is also unsuitable in

some situations as traditional methods of analysis involve chemical degly-

cosylation. Deglycosylation requires a large sample amount to be effective

which may not be available in research projects where tissue samples are

limited. Moreover even without sample limitations, deglycosylation is often

unfavourable as the treatments usually damage the peptide precursors pre-

cluding further analysis of the peptide moiety for glycoprotein identification

[30].

The development of several soft-ionization techniques has provided tech-

nology that can circumvent the problems mentioned above. Fast Atom Bom-

bardment (FAB-MS), ESI-MS and MALDI-MS permit the analysis of intact

glycoconjugates without requiring chemical treatment[8].

Problems in Glycoprotein Analysis in Proteomic Data It is often

desirable to concomitantly analyze proteins and glycoproteins in a single

proteomic project. As mentioned above, samples for proteomic analysis are

often limited and there may not be enough sample for analysis geared to-

wards unmodified proteins followed by analysis specifically for glycoproteins.

Since ionization techniques used in proteomics are also applied in glycomics,
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it is possible to analyze proteins and glycoproteins simultaneously. However,

this concomitant analysis may not always be effective due to different chem-

ical characteristics and mass differences between glycoproteins and proteins.

When the parameters for MS analysis have been geared towards protein anal-

ysis, the carbohydrate groups of the glycopeptides mitigates against their

selection for MS/MS. For example, the upper mass limits of the mass spec-

trometer are often too low for glycopeptides, which generally have a greater

mass than peptides. In addition, LC techniques employed for protein analy-

sis may not be appropriate for glycoprotein analysis which generally require

a longer elution time given their hydrophilicity. Despite these problems, the

analysis of captured glycopeptides in proteomic data is important and can

still provide valuable biological information.

1.4 Research Problem

In proteome studies today, the analysis of glycopeptides is an increasingly

crucial task as researchers discover the link between aberrant glycosylation

profiles and disease. Since many of the glycopeptides of interest are often

found in low abundance, sensitive methods with low sample requirements are

necessary for analysis. In light of this requirement, the preferred technique

for glycopeptide analysis is mass spectrometry as described in Section 1.3.

Given the high volume of data output from proteome studies however, it is

impractical to manually detect and characterize all glycopeptides present.

As a result, there is a pressing need to automate glycopeptide discovery. In

this thesis we address the following problem:

Is it possible to detect, identify and characterize glycopeptides from high

throughput mass spectral data in a rapid and accurate manner?
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In our attempt to solve this problem, we will consider two sub-problems:

• How to identify glycopeptides from MS/MS spectra (Glycopeptide

Classification)

• How to elucidate the structure of the carbohydrate moiety of the iden-

tified glycopeptides (Glycan Analysis)

Each of these sub-problems will be presented in more detail in the fol-

lowing chapters of this thesis.

1.5 Thesis Overview

In this thesis, we propose a methodology for the automatic identification

and characterization of glycoproteins from ESI-MS/MS data. In Chapter

2, we discuss some of the problems involved in automatic MS/MS spectra

interpretation, and present some existing software and computational ap-

proaches available for this task in peptide analysis. In Chapter 3, we present

a technique for the identification of glycopeptide MS/MS spectra in pro-

teomic data. Chapter 4 presents an automated method for the analysis and

characterization of the glycan moiety of glycopeptides. Finally, we present

our results and conclusions in chapters 5 and 6 respectively.
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Chapter 2

Automated Analysis of

MS/MS Data in Proteomics

In this section, we will examine the basics of MS/MS spectra interpretation

and review some existing algorithms and techniques for automated MS/MS

spectra interpretation.

2.1 Interpretation of Peptide MS/MS Spectra

The process of MS/MS spectra interpretation is a time-consuming one and

requires the experience of a trained expert. Spectral interpretation for pep-

tides and proteins entails the analysis of the peaks of the spectrum and the

identification of the molecular fragments they represent. The entire molecule

can be reconstructed by observing the order in which the various fragments

appear.

Peptides are made of repeating amino acid units as illustrated in figure

2.1. To differentiate the start of the peptide from the end, each terminus of

23



the peptide is labeled; one terminus is called the N-terminus (amino termi-

nus) and the other the C-terminus (carboxyl terminus)1. When the amino

acids of the peptide fragment, they produce 2 types of ions: a b-type and a y-

type ion2. A b-ion and a y-ion represent the peptide fragment containing the

N- or C-terminus respectively3. Every b- and y-ion pair is complementary

and the combined masses of the b-ion and the y-ion should equal the mass

of the peptide. The interpretation of peptide MS/MS spectra thus begins

with the identification of a series of ions (b or y), between which there is a

mass difference equal to a specific amino acid. By detecting the entire series

of b- or y-ions and observing mass differences between them, the sequence

of the peptide can be reconstructed[28]. This process is illustrated in figure

2.2.

The process of reconstructing peptide sequence by observing peak differ-

ences in the spectrum, de novo sequencing, is difficult since peptide spectra

are complex. The following section describes some of the sources of com-

plexity in spectra interpretation, as well as how to recognize and manage

them.

2.1.1 Confounding Factors in Spectra Interpretation

Even in the absence of experimental error, MS/MS spectra can contain a

great deal of ambiguity as a result of complex molecular fragmentation pat-

terns. To fully and correctly reconstruct molecular structures from MS/MS

spectra requires careful consideration of several factors which are further
1The N terminus is where protein synthesis is initiated and the C terminus is where it

is terminated.
2There exist other types of ions as well such as x-ions and a-ions although they are

more rare.
3The appearance of a b-type ion or y-type ion depends on which of the fragments

obtained a positive charge during the fragmentation and ionization processes.
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Figure 2.1: This figure illustrates the structure of a protein. Proteins are
made up of repeating units of amino acids. There are 20 common amino
acids found in nature. In this figure, each circle represents one amino acid
unit which together form a polypeptide chain. In this diagram, interactions
between the various amino acids are also illustrated. These interactions are
partially responsible for conferring a three-dimensional structure to proteins.
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Figure 2.2: This figure illustrates the process of determining peptide se-
quence from MS/MS spectra. Part A shows an MS/MS spectrum for the
sequence SWR. To determine the peptide sequence requires the identifica-
tion of either the b-type or y-type peaks series shown in figures B and C
respectively. Once these series are identified, the peptide sequence can be
elucidated by examining the distances between the peaks and correlating
these distances to known amino acid masses.
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Figure 2.3: This figure illustrates some of the complicating factors in the in-
terpretation of peptide MS/MS spectra. Figure A represents an ideal spec-
trum for the peptide sequence SWR. In B, some complicating features of
MS/MS spectra such as water loss, missing peaks and multiply charged
peaks are illustrated (see text below for additional explanations).

described below. Figure 2.3 illustrates a realistic peptide spectrum with ex-

amples of some of these complicating factors.

Missing Peaks It is a common occurrence in MS/MS spectra that ex-

pected fragmentation peaks are missing. Although this phenomenon can be

caused by experimental parameters used, it may also be the result of the

inherent nature of a particular molecule under certain ionization conditions.

For example, the fragmentation on the C-terminal side of proline is often
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absent or is of reduced intensity, and often there is often a lack of frag-

mentation between the first and second amino acids of peptides when using

low-energy ionization[15]. In addition, in the case of peptides, certain amino

acids can bias fragmentation reducing the abundance of some fragments

significantly[15]. In figure 2.3b, the missing peak at m/z 274.112 causes the

b-type ion series to be discontinuous complicating peptide sequence deter-

mination.

Isotopes Given the accuracy of mass spectrometers4, the chemical iso-

topes of the carbon atoms of peptides may often be detected and a peak

displayed for each isotope5. Singly charged peptide isotopes can be recog-

nized by a specific pattern of adjacent peaks spaced by 1 mass unit[27]. Once

isotopic peaks are identified, they can either be combined to represent an av-

erage of the peak values, or one specific isotope can be selected to represent

the most common isotope.

Multiply Charged Species In the ionization of biomolecules, it is often

the case that the ions produced exist in several charged states, and for which

multiple peaks will be represented. It is a phenomenon that is particularly

noted in ESI-MS spectra in which peptides often obtain +2 or +3 charges. In

figure 2.3b, peak 448.225 is in reality a doubly charged peak whose real mass

is at 894.225. These multiply charged peaks can be identified by the spac-
4Not all mass spectrometers provide this level of accuracy. For those commonly em-

ployed in proteomics such as Q-TOF machines, this level of accuracy is achieved.
5Isotopes are atoms of the same element with a different mass. Isotopes of a par-

ticular atom often have the same chemical attributes, but often display different phys-
ical attributes; e.g., carbon-12, which is stable, and carbon-14, which is radioactive.
(http://www.academicpress.com/inscight/10211997/isotope2.htm)
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ing between adjacent peaks6: doubly charged peaks have spaces of 0.5 and

triply charged peaks have 0.333 daltons separating them. Removing multiply

charged ions by converting them to a singly charged m/z, or deconvoluting

the spectra, can greatly improve the overall clarity of the spectrum, mak-

ing interpretation less complicated. There are several programs available for

automatic spectral deconvolution which employ a variety of computational

approaches[11].

Adducts Formed During Ionization Another factor that often con-

founds mass spectra interpretation is the presence of additional peaks from

ions derived from side reactions with the sample fragments[15]. Neutral loss

of water (Fig.2.3b), sodium or ammonia adducts, frequently occur during

the ionization of certain peptide fragments[15]. For each fragment that un-

dergoes such reactions, there are adjacent peaks in the MS/MS spectrum

representing these adducts. In addition, spectra are frequently complicated

by ions that are fragmentation products of fragmentation products[15]. If

these doubly-ionized fragments are of a high enough intensity, they can be

misleading during sequence determination, as they cannot be explained by

any of the other fragmentation adducts, singly or multiply charged species.

Single units that are isobaric with coordinated units Another con-

founding factor in the interpretation of MS/MS spectra is that combina-

tions of some of the lower mass molecules have identical or nearly identical

masses of higher molecular weight molecules[15]. In the interpretation of car-

bohydrate spectra for example, one hexose residue and one NeuAc7 residue
6These peaks represent the isotopes of the species. At charge 1, the isotopes are sepa-

rated by 1 mass unit. Consequently, a doubly charged isotope will be separated by 0.5.
7NeuAc = N-acetyl neuraminic acid (sialic acid), NeuGc = N-glycolyl neuraminic acid
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combine together to give the same mass (453.1482 Da) as one deoxyhexose

residue plus one NeuGc13 residue (453.1482 Da)[5]. When interpreting a

spectrum, it is possible to overlook a cleavage ion between such disaccha-

rides and to incorrectly infer the presence of the corresponding higher mass

monosaccharide. Conversely, a high mass monosaccharide could be construed

as a disaccharide. Thus, all isobaric masses should be considered in spectra

interpretation, adding to the complexity of the interpretation process.

2.2 Algorithms for Automated MS Interpretation

Given the high volume of data produced and the time involved in man-

ual spectra interpretation, there have been several approaches put forth for

automatic MS/MS spectra interpretation. In general, there are two main

approaches to automated MS/MS interpretation. The first one involves the

development of algorithms to simulate the process of manual spectral in-

terpretation and analyzes the information contained in the spectra directly

to derive putative peptide sequences. The other main strategy makes use of

curated protein and nucleotide databases, and matches MS/MS spectra to

database protein sequences.

2.2.1 Database-Searching Programs for Peptide Sequencing

- MS/MS Ion Search

Since the idea of using databases for protein identification was first put forth

in 1993, there have been many approaches developed for this task. MS/MS

ion searching usually consists of an initial step, Peptide Mass Fingerprint-

ing (PMF) which aims to identify the parent protein of peptides based on

their experimentally derived mass. There are several approaches for this
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method including probabilistic techniques (Mascot) and techniques which

score matches based on the length of the peptide such as MS-Fit. To fur-

ther elucidate the amino acid sequence of the peptide, MS/MS ion searching

techniques are applied[25].

There have been several approaches put forth for MS/MS ion searching.

In general, they proceeds as follows (Fig.2.4):

• The database proteins are digested8 in silico, and the theoretical masses

of the peptides are obtained

• The experimental masses of the peptides obtained by MS are matched

to their parent proteins using PMF Techniques.

• The database peptides which have been matched to experimental pep-

tide are further fragmented in silico to produce a set of peaks corre-

sponding to theoretical peptide ionization fragments.

• The observed spectra obtained by MS/MS are correlated to the virtual

spectra by a variety of computational approaches, and a score assigned

based on the quality of the match.

• Based on the score, if the observed peptide is matched to a sequence

in the database, the corresponding entry is extracted. If the sequence

database does not contain the observed protein, many programs iden-

tify those entries which exhibit the closest homology, often equivalent

proteins from related species.

Most of the MS/MS ion searches differ in the scoring scheme for the

correlation of the virtual and experimental spectra. SEQUEST developed
8Usually with trypsin.

31



IN SILICO PROTEIN 
ANALYSIS

Protein isolation, 
Protein separation,
Tryptic digestion

MS data of peptides –
Experimental 

peptide masses

MS/MS data of 
peptides

In silico tryptic digestion
of  database proteins

Calculation of 
Peptide masses

In silico peptide 
fragmentation

If match score > threshold,
Putative peptide sequence

and parent protein assignment

PROTEIN ANALYSIS

Peptide Mass 
Fingerprinting 
(PMF)

MS/MS Ion 
Searching

ID of parent protein from 
peptide mass

Figure 2.4: Database searching programs for peptide sequencing. The us-
age of database technology for protein identification and characterization
consists of two main methods : Peptide Mass Fingerprinting (PMF) and
MS/MS ion searching. This schematic illustrates the general approach used
in these methods of which there are many variants. See text for details.
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by Yates et al, matches observed spectra to virtual spectra by using Fast

Fourier transforms [7]. Another program developed by Matrix Science, MAS-

COT, uses a probability-based scoring scheme to evaluate the quality of

a match. The fundamental approach is to calculate the probability that

the observed match between the experimental data set and each sequence

database entry is a chance event[25]. The match with the lowest probability

is reported as the best match. There are several other programs such as

MS-Tag, PepFrag and PeptideSearch, all which use different approaches to

address this problem[23].

Evaluation of method The benefits of database searching techniques are

numerous. They provide accurate peptide sequence elucidation and enable

the linking of experimental data to database information. In addition, this

method is fairly robust against missing peaks and other obfuscating factors

in MS/MS spectra analysis discussed in the previous section. This is mainly

because the matches are determined based on the overall fitting of the peaks.

PMF and MS/MS ion searches will likely improve with increases in the

sensitivity of MS technology, and fewer peptides will be needed to for protein

identification[7].

Despite the advantages of using database techniques for spectra inter-

pretation, there are several shortcomings in PMF and MS/MS ion search

techniques. For one, database searching cannot provide sequencing for pro-

teins that are not included in the particular database, such as novel proteins

or modified proteins9. This problem is especially relevant in proteomics as

many novel proteins are discovered. In addition, in silico digestion may
9Since many protein databases are created by from genomic information, modifications

are often not annotated.
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not always be accurate for several reasons such as missed or non-specific

cleavages, leading to false negatives[15]. Database techniques have also been

criticized for not scaling up very well with the length of a protein and size

of protein databases which are growing rapidly, since the probability of a

random match increases[4]. Pruning techniques have been applied to avoid

this situation, but it is at the cost of reduced accuracy[4]. Finally, protein

databases are often incorrectly annotated and as such can report false re-

sults. A summary of these points is presented in Table 2.2.1.
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Advantages
Disadvantages

• Permits protein identification
and peptide sequencing

• Provides link with biological
databases and access to in-
formation contained in cross-
linked databases

• Somewhat robust against
missing fragment peaks and
other factors leading to
MS/MS spectral complexity.

• Technology will likely im-
prove with increases in MS
mass accuracy

• Cannot be used for novel pro-
teins

• As database size increases,
may obtain more random
matches. If MS accuracy is
not proportionally increased,
there could be a drop in the
confidence level of the results

• Theoretical digestion and
fragmentation may not ad-
equately predict peptide
products (due to missed
cleavages, post-translational
modifications, or other rea-
sons), missing potential
matches.

• Dependent on database
accuracy, many proteomic
databases contain errors

• In general, cannot account for
modified peptides

Table 2.2.1 Evaluation of MS/MS Ion Searching Techniques.
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2.2.2 Algorithms for de novo sequencing

Apart from database techniques, there have been several algorithms devel-

oped to infer peptide sequences directly from the spectra themselves, simu-

lating the process of manual de novo sequencing. There are several programs

available that employ a variety of approaches such as dynamic programming

(PEAKS[21]), and graph theoretic approaches (Papayannopoulous[24]).

Evaluation of Method De novo sequencing techniques provide solutions

to many of the problems associated with database sequencing methods men-

tioned in the previous section. However, few of the de novo techniques have

enjoyed widespread use or success. This is partially because de novo methods

are highly dependent on the quality of the spectrum. Without much spec-

tra pre-processing, which can be computationally expensive, these methods

are generally not robust to noise and missing peaks. In addition, they do

not provide protein identification directly, and must be coordinated with

database techniques to determine the identity of the parent protein. A sum-

mary of the relative advantages and disadvantages of the de novo techniques

is listed below in table 2.2.2
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Advantages
Disadvantages

• Can provide information for
novel proteins

• Does not depend on database
technology - scalable with in-
creases in database size and
accuracy

• Relies on good quality spec-
tra; requires extensive spectra
deconvolution for efficient se-
quencing

Table 2.2.1 Evaluation of automated de novo sequencing techniques

2.3 Automated Spectra Interpretation - Summary

In general, automated spectra interpretation is a difficult problem. Due to

various obfuscating factors present in MS/MS spectra, it is often impos-

sible to determine a peptide sequence with absolute confidence. However,

even partial sequences derived automatically can provide useful sequence

information.

The two techniques discussed above are appropriate in different situa-

tion, and each have specific strengths and weaknesses. In general, database

searching techniques facilitate protein identification and are accurate when

the observed peptide is found in the protein databases. However, when deal-

ing with novel proteins de novo algorithms may be the preferred method.

In addition, they do not rely on the accuracy of the searched databases.

A coordination of the two techniques is commonly used, and offer a
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method of automatic results validation. Since the two methods use quite

different approaches, an agreement between them indicates a high likelihood

of a putative sequence being correct.
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Chapter 3

Glycopeptide Classification

The previous chapter provided an overview of automated mass spectra inter-

pretation in proteomics. We discussed some of the challenges of mass spectra

interpretation as well as a description of existing methods for automated

analysis. In this chapter, we present our design for a tool for glycopeptide

identification from high throughput ESI-MS/MS proteomic data.

3.1 Introduction

In problems involving classification, the main goal is to learn a mapping from

a vector of measurements x to a categorical variable Y [13]. The categorical

variable to be predicted will take values from the set C, c1, .., cm, where

each ci represents a unique class of objects[13]. Thus, the role of the classifier

is to take a input vector of attributes x = {X1,.., Xp}, for p attributes and

map these values to a score S which can be used to place x into one of m

bins of C.

In the identification of glycosylated spectra from ESI-MS/MS data, we
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would like to classify spectra as being glycosylated or non-glycosylated. For-

mally the problem can be stated as follows:

Problem: Given an input spectrum, E, with m attributes x = X1..Xm, map

x to a score S. Subsequently, use S to classify E as a glycopeptide or non-

glycopeptide.

A solution to this problem involves:

• Defining a model for glycopeptide spectra. This step entails listing the

attributes of glycopeptide spectra, and deriving a function for evalu-

ating each attribute in the experimental spectrum E

• Defining a score S based on the results of each attribute function

• Defining a mapping from score S to one of two classes: glycopeptide

or non-glycopeptide

These steps will be further discussed in this chapter.

3.2 Model for Glycopeptide ESI-MS/MS Spectra

In this section, we will discuss the features of glycosylated ESI-MS/MS spec-

tra. From this analysis, it will be possible to define an attribute list for the

glycopeptide model.

3.2.1 Glycopeptide Fragmentation

Glycopeptides fragment in a characteristic manner when subject to Collision-

Induced Dissociation (CID) and display a recognizable signature in their
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n Glycopeptides

Asn

. . . Naked peptide

Oxonium Ion

A

B

Figure 3.1: Schematic of N-linked glycopeptide fragmentation. Upon CID,
the more labile carbohydrate appendage dissociates typically leaving a back-
bone peptide with the first GlcNAc residue still attached. Full glycan frag-
mentation as shown in A. In B a partial glycopeptide fragment is shown.
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MS/MS spectra. The more labile glycosidic bonds of the carbohydrate moi-

ety are broken and the peptide backbone remains unfragmented (Fig. 3.1a).

The only monosaccharide of the glycan which does not usually fragment is

the first GlcNAc residue linked to the peptide moiety since the β-glycosylamine

linkage of GlcNAc to Asn is stronger than that of the glycosidic bonds

(Fig. 3.1a). Upon the breakage of each glycosidic bond, two fragmentation

products are produced: a low mass oxonium ion and a partially fragmented

glycopeptide (Fig. 3.1b). Figure 3.1 illustrates the process of glycosidic bond

breakage and complete glycopeptide fragmentation.

Since several copies of the same glycopeptide enter the MS/MS chamber

simultaneously, after CID there will exist several species of glycopeptides,

forming a mixture of various partially fragmented glycopeptides (Fig. 3.1b).

Each partially fragmented glycopeptide, which has a unique mass-to-charge

(mz) ratio, is registered by the mass spectrometer and a spectrum is pro-

duced illustrating the relative number of each type of fragment species.

3.2.2 Attributes of Glycopeptide Spectra

The unique fragmentation pattern of glycopeptides creates spectra which

are identifiable by visual inspection. In figure 3.2, the general appearance of

glycopeptide spectra is contrasted with those of random spectra (neither gly-

copeptide nor peptide) (Fig.3.2b), and peptide spectra (Fig.3.2c). In general,

glycopeptide spectra contain three characteristic features which differentiate

them from other types of MS/MS spectra: oxonium ions peaks, differential

peak densities, and peaks spaced by various saccharide combinations in the

high m/z range of the spectrum. A typical glycopeptide spectrum is illus-

trated in figure 3.3. Each of these features of glycopeptide spectra are further
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Figure 3.2: This figure illustrates the differences in the general appearance
of the spectra, in terms of peak distributions and intensities, between gly-
copeptides (A), random (neither glycopeptide nor peptide) (B) and peptides
(C).

described below.

Oxonium ions and high m/z range peaks The appearance of oxo-

nium ions in the low-m/z range of the spectrum is a key component in the

identification of glycopeptide spectra (Fig. 3.3). Commonly seen oxonium

ions are listed below in Table 3.2.2. As reported by Carr et al., the ob-

servation of some oxonium ions is more common than others. However, all

glycopeptide spectra contain the HexNAc+ ion (m/z 204) and most contain

a HexNAcHex+ ion (m/z 366). It is also common to observe a ladder of ox-
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m/z

0

916.0

204.1

366.1

325.1
205.1

611.3
528.2

733.0

841.1

1099.1

1017.5

979.0

1261.1

1179.5

1342.6

1422.7

Oxonium Ions Saccharide Spaced Peaks

HexNAc

Hex

Figure 3.3: A typical glycopeptide spectrum. In this spectrum, the three
main features of glycopeptide ESI-MS/MS spectra are illustrated. In the
low m/z range, several oxonium ion peaks such as m/z 204 (HexNAc) and
366 (HexNAcHex) are observed. In addition, differential peak densities are
observed throughout the spectrum; an area of low peak density is observed in
the mid-range of the spectrum. Peaks separated by various monosaccharide
combinations are also illustrated in the spectrum.
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onium ions in the low m/z range of the spectrum. In figure 3.3 for example,

there are oxonium ions at m/z 204 (HexNAc) and m/z 366 (HexNAcHex)

as well as one at m/z 528 which represents a combined fragment of 204 and

366.

Saccharide Composition
Oxonium Ion Mass

Hexose (Hex) 162.053

N-acetylhexosamine (HexNAc) 203.079

Deoxyhexose (dHex) 146.058

N-acetyl neuraminic acid or Sialic

Acid (NeuAc)

291.096

HexNac-Hex 365.132

Hex2 324.106

HexNAc2 406.159

HexNAc-Hex2 527.185

HexNAc-Hex-NeuAc 656.228

Table 3.2.2 Commonly seen monosaccharides in mammalian N-linked

glycans.

In addition to oxonium ions, the partially fragmented glycopeptides re-

sulting from glycosidic bond breakage are also recorded in the high m/z

range of the spectrum (see fig.3.1). Each representative peak is separated

by some combination of saccharide masses. By observing the differences be-

tween these peaks in the high m/z range, the structure of the glycan can be

reconstructed. In figure 3.3, the various saccharide spacings between peaks
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in the high m/z range are indicated.

Differential Peak Density Pattern Unlike peptide spectra, the distri-

bution of peaks in glycopeptide spectra is non-uniform as seen in figure 3.2.

Since the peptide backbone does not fragment, the oxonium ions and the

partial glycopeptide fragments are separated by a mass equivalent to the

unfragmented backbone. In the range representing the unfragmented back-

bone, generally the mid-range of the spectrum, there are very few peaks

(Fig. 3.3).

In the high m/z range, the peak density is generally quite high as there

are peaks representing each partial fragment with a unique mass to charge

ratio. In the low m/z range, the peaks are generally quite sparse as well

with the exception of the oxonium ions peaks (Fig. 3.3). This pattern of

differential peak density is also a key feature of glycopeptide spectra.

3.2.3 Variations in glycopeptide spectra

The previous section described some of the main characteristics of glycopep-

tide spectra. However, each of these features can appear in the spectrum to

varying degrees and as such our model for glycopeptide spectra should be

flexible enough to accommodate all variations.

Glycopeptide spectra can vary for several reasons:

• Glycan Composition and Structure - The presence of some monosac-

charides such as sialic acid as well as the structure of the glycan can

bias the fragmentation of the glycopeptide. As a result, glycan struc-

ture and composition can affect the quality of the spectrum in terms

of number, density and intensities of the peaks represented.
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A

B

C

Figure 3.4: This figure demonstrates the variation of glycopeptide spectra
that are observed. Part A illustrates a very noisy glycopeptide spectrum with
a great deal of background noise. B shows an ideal glycopeptide spectrum
in which all the attributes of glycopeptides are clearly visible. C illustrates
a spectrum which is an average quality spectrum which contains several
oxonium ion peaks but with only a few low intensity peaks in the high m/z
range.
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• Sample preparation and complexity. With increased sample complex-

ity, in terms of concentration and number of glycopeptides, there is

a greater risk of glycopeptides co-eluting and simultaneously entering

the mass spectrometer. If two different glycopeptides or peptides enter

at once, the resulting MS/MS spectrum can contain peaks from both

species. This problem can be resolved by changing some experimental

factors such as increasing the time gradient in the chromatographic

steps or using different sample preparation protocols.

• Parameters utilized in MS/MS acquisition - In addition to the samples

prepared for MS/MS, factors such as instrumentation can affect the

quality of the acquired MS/MS. For example, peak intensities can vary

with different mass spectrometers which have varying sensitivities. As

well, factors such as collision energy, matrix, charge state, and the type

of ion formed will cause glycopeptides to fragment to varying degrees

and thus affect the quality of the MS/MS spectrum[20].

3.2.4 Relative Importance of Each Feature to the Identifica-

tion of Glycopeptides

The presence of oxonium ions, partial glycan fragments and different peak

densities are the main features utilized by glycoprotein chemists in the iden-

tification of glycopeptides. However, it is quite common to observe each of

the features individually in non-glycopeptide spectra and as such, a combi-

nation of each of these features is necessary for the glycopeptide classifier to

be effective.

The discriminating ability of each feature was assessed and used to assign

the relative importance of each feature. The following weights were assigned
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to each feature:

• 50% - Oxonium Ion Presence. The presence of peaks located at known

oxonium ion m/z values is the most informative feature in glycopeptide

detection. Oxonium ion masses however are not completely unique1. In

figure 3.5, a peak with m/z 204.13 is highlighted. Although this mass

coincides with that of a HexNAc oxonium ion[30], this peak represents

a peptidic GK fragment. Thus, the presence of oxonium ions alone is

often insufficient for the identification of glycopeptides.

• 40% - Differential Peak Distribution. Although non-glycopeptide spec-

tra have mainly uniformly distributed peaks, it is likely that peak den-

sities can randomly vary in these spectra. Peak density alone therefore

is not a reliable metric for glycopeptide identification.

• 10% - Saccharide-spaced peaks in the high m/z range. It is highly likely

that peaks appearing in MS/MS spectra are separated by mass differ-

ences equal to various combinations of saccharides by chance alone.

For this reason, it is given a weight of only 10%. However, these spac-

ings may not appear contiguously and may not possess the correct

charge, and thus saccharide-spaced peaks should still be included in

the glycopeptide model.

1Oxonium ions have unique masses when given a high enough precision. For example, a
HexNAc oxonium ion has a precise mass of 204.09 whereas a peptidic y2-GK fragment has
mass 204.13. However since there is a limitation on the precision of the mass spectrometer
(0.1 daltons), there may be ambiguity in the assignment of this peaks.
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High intensity 
204.13

High Density of non-diagnostic peaks

Figure 3.5: This glycopeptide spectrum contains a high intensity peak at
mz/ 204.13, the same mass as a HexNAc oxonium ion fragment. However,
this spectrum represents a peptide. The 204.13 peak in this case represents
a y2-tryptic fragment of GK di-peptide.
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3.3 Functions for Glycopeptide Attribute Evalua-

tion

In this section, we will describe the functions used for evaluating each of the

attributes of glycopeptide spectra described in the previous section. Given

an input spectrum, the goal is to develop a function f for each feature which

returns a score reflecting the expression of the particular attribute in an

experimental spectrum. Standard mass spectrometers produce output as a

vector of pairs of real numbers (mz, intensity). Each function f therefore

takes in as input vector E which represents all (mz, intensity) pairs of the

experimental spectrum.

Each fi for attribute Xi was derived such that, based on the weights

assigned to each feature as described in the previous section, wi, the sum of

each wifi for an idealized glycopeptide spectrum can be normalized to a score

of 1. A total score S for glycopeptide classification can thus be described as:

S = fOxoniumIons ∗ 0.5 + fpeakdensity ∗ 0.4 + fpartialglycanfragments ∗ 0.1 (3.1)

Given the variations of glycopeptide spectra discussed in section 3.2.3,

each fi developed should be sensitive enough to assign a correct score to

noisy glycopeptide spectra while being discriminating enough to eliminate

false positives.

3.3.1 Oxonium Ions Attribute Function

An attribute function f to evaluate the presence of oxonium ions in an

MS/MS spectrum should return a value indicating our confidence that the
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appearance of peaks at the m/z values of oxonium ions is not random. To

accomplish this requires the incorporation of information other than just

peak m/z values.

Peak Significance Measures One of most important criteria in assessing

the validity of a peak in an MS/MS spectrum is its intensity. In general, there

is a higher probability that a more intense peak represents a valid fragment.

However, peak intensity also depends strongly on the physical and chemical

properties of the glycopeptides, so it is often incorrect to assume that intense

peaks are more valid than the weaker ones. In carbohydrate spectra, peaks

with low intensity often represent valid fragment structures, but which due

to the chemical property of the glycan, are less likely to ionize.

Since ESI-MS/MS spectra exhibit a great deal of random noise, in some

spectra almost at every m/z unit[33], during the processing of the data the

mass spectrometer determines the background noise level and normalizes all

peaks of the spectrum according to this value. A common metric used to

distinguish a valid peak from background noise is that the peak should be

at least 3 times as intense as the background noise level.

Multiple Oxonium Ions When several oxonium ions are found in the

spectrum, there is added confidence that the occurrence of each one is not a

random event. Further, as discussed in section 3.2.2 oxonium ions can form

a ladder of peaks. If multiple oxonium ions form a ladder of peaks, there is a

higher probability that the peaks are not random. For example, if significant

oxonium ions of 204 (HexNAc) and 366 (HexNAc-Hex) are both observed

in addition to a peak at m/z 528 representing (HexNAc2-Hex), the presence

of all 3 peaks simultaneously increases the probability that each individual
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peak represents a valid oxonium ion.

Peak Density In ideal glycopeptide spectra, fragments found in the low

m/z range should consist of only oxonium ions peaks (Fig. 3.3) since the

peptide backbone does not fragment. As such, the ratio of diagnostic peaks

to non-diagnostic peaks in this m/z range should be fairly high.

The density of peaks which do not represent oxonium ions is an addi-

tional metric which can assess the validity of the entire set of oxonium ions

observed in the spectrum. In the example illustrated in figure 3.5, the den-

sity of peaks surrounding the peak at m/z 204.13 suggests that the spectrum

does not represent a glycopeptide. If the set of all oxonium ion peaks are

among the most intense peaks in the low m/z range of a spectrum, there is

additional confidence that the oxonium ion peaks are valid.

Function for Oxonium Ions Evaluation The definition of a function

evaluating oxonium ion content incorporates a sum representing the validity

of each oxonium ion found in the spectrum and also an evaluation of the set

of all oxonium ion peaks found in the spectrum.

To evaluate the validity of the oxonium ion peaks, a score was derived

based on 3 factors:

• The sum of all the intensities of significant oxonium ions found in the

spectrum

• A constant factor α evaluating the presence of the oxonium ion in

glycopeptide spectra. Weights based on the probability of observing a

specific oxonium ion were assigned and these values incorporated into

the score.
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• A constant factor of β which evaluates the presence of an oxonium

ion ladder. If a peak representing a di- or tri-saccharide oxonium ion is

observed along with its component monosaccharides, a constant factor

of β is added to the score.

To incorporate information about the entire set of oxonium ions found,

a metric δ was derived to evaluate the ratio of non-oxonium ion peaks to

oxonium ion peaks in the low m/z range. This score was subtracted from the

peak validity score to penalize very dense spectra which randomly contain

peaks at oxonium ion m/z values.

Overall, the function for oxonium ion evaluation can be defined as fol-

lows:

fOxoniumIons = (
m∑

j=1

(αj + βj) ∗ Intensity(j))− δ

where m is the total number of significant oxonium ions detected in the

input spectrum.

3.3.2 Differential Peak Densities

The second most important feature, assigned a weight of 40% in the gly-

copeptide model (eqn.3.1), is the observation of a pattern of differential

peak density in the spectrum. The high m/z range peak density was not

considered as it was found that many of the spectra obtained were of low

quality and often did not contain many peaks contributing to an inflated

false positive rate.

To derive a measure of the sparsity of the low and mid-range m/z ranges,

a tally of the significant peaks which do not represent known oxonium ions
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was taken in each range. The number was then discretized to a score out

of 40 to represent 3 qualitative classifications of peak densities: sparse, not

sparse, and dense.

3.3.3 Monosaccharide Loss

Although most glycopeptide spectra can be identified by the presence of

oxonium ions and differential peak density, an additional metric used in the

identification of glycopeptide spectra is the presence of peaks separated by

combinations of monosaccharides (eqn.3.1). A simple function to assess this

feature in experimental spectra was a tally of the number of peaks separated

by masses of 203 (HexNAc) or 162 (Hex) in the high m/z range.

3.4 Score Significance

Once the score for each experimental spectrum is obtained based on equa-

tion 3.1, the score must be mapped to either represent a glycopeptide spec-

trum or a non-glycopeptide spectrum. To classify a spectrum as belonging to

a glycopeptide requires the establishment of a decision score. The selection

of an appropriate decision score is discussed further in section 5.4.
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Chapter 4

Glycan Analysis Module

As described in chapter 1, protein glycosylation can drastically alter pro-

tein function and structure. Each cell type produces glycans with specific

structures and monosaccharide compositions, which in turn affect the func-

tion of the glycoprotein. Given the close link between glycan structure and

function, structure elucidation is an important component of glycoprotein

analysis.

4.1 MS/MS For Glycan Analysis

Limitations of MS/MS analysis for glycan structure elucidation

Traditional methods of glycan structure determination such as methylation

analysis or exoglycosidase digestion[30] often require large amounts of sam-

ple and can not be processed in a high throughput manner. As previously

mentioned, mass spectrometry is increasingly a popular choice as it can

operate on very small amounts of sample[30] (see section 1.3.5). Despite

the popularity of mass spectrometry in glycan structure analysis, there are
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several limitations of utilizing this technique. For one, mass spectrometry

does not provide information about bond anomericity[30], a description of

the type of glycosidic bond (α or β) between each monosaccharide residue,

that can affect the chemical properties and function of the glycan[30]. In

addition, MS cannot distinguish between monosaccharides with the same

mass, e.g. hexoses glucose, mannose, galactose (mass 162); or hexosamines

glucosamine, galactosamine (mass 204)[6]. To obtain the exact structure

of glycans therefore, a combination of mass spectrometry and traditional

carbohydrate analysis methods must be used. Despite these limitations of

MS/MS in glycan structure elucidation, it can still provide valuable struc-

tural information.

Manual Analysis of Glycan Spectra The reconstruction of glycan

structures from glycopeptide MS/MS spectra is complex and labor-intensive.

Manual glycan structure determination involves detecting mass differences

between the high intensity peaks of the spectrum. The order in which the

mass differences are observed between the various peaks suggests the or-

der of monosaccharide dissociation and thus the composition of the glycan.

Multiple monosaccharide differences originating from the same peak and the

relative intensities of the peaks observed also suggests the branching points

in the glycan. With the incorporation of known rules about glycan structure

and biosynthesis, the branch points and the monosaccharide composition,

the glycan structure can be elucidated. Obfuscating factors such as missing

or additional peaks and multiply charged peaks in ESI-MS/MS however, can

complicate the task of glycan structure determination significantly.
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4.2 Exisiting Methods for Automated Glycan Anal-

ysis

Many existing methods for MS/MS spectra interpretation described in sec-

tion 2.2.1 deal primarily with peptide sequencing and are not directly ap-

plicable to the analysis of glycans. To date, there have been no techniques

developed for the automated glycan analysis from glycopeptide spectra, and

only a few methods for automated glycan analysis.

One of the earliest tools developed is the Saccharide Topology Analysis

Tool (STAT) developed by Gaucher et al. [12]. STAT is a web-based tool

that can extract glycan sequence information from a set of MS/MS spectra

for an oligosaccharide of up to 10 residues. Given information such as precur-

sor ion mass, possible monosaccharide moieties, charge carrier, and product

ion mass from the user, all possible structures are generated and evaluated

against experimental glycan spectra. The list of possible structures is given

a rating based on the likelihood that it is the correct sequence in accordance

with glycan biosynthetic rules and presented to the user.

Mizuno et al.,[22] have developed an automated program which assigns

known losses of monosaccharides to peaks in Post-Source Decay (PSD) spec-

tra of N-linked glycans. They have also developed a spectrum simulator to

generate hypothetical tandem mass spectra. The comparison is not auto-

mated and users must generate all structures they think are possible and

compare them manually. StrOligo developed by Ethier et al., [11] is another

tool for automated complex-type N-linked glycan analysis. StrOligo consists

of two main modules. The first one deconvolutes the MS/MS spectra and

creates a singly-charged peak representing multiply charged peaks to facil-

itate the process of glycan structure determination. It then analyzes the
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deconvoluted spectra to search for mono- and di-saccharide masses found

between the major peaks and creates a relationship tree between all the

masses found. The possible monosaccharide combinations for each peak in

the relationship tree is calculated and the most likely compositions presented

to the user who then selects the most likely structure. StrOligo was found to

be capable of determining the correct structure in 86% of the glycans ana-

lyzed and produced the top three top scoring results in 100% of the glycans

analyzed.

More recently, Lohmann et al [20] put forth Glyco-Fragment, a tool in-

tended to support the manual assignment of all peaks contained in the mass

spectra of complex carbohydrates. Glyco-Fragment is a web-based tool that

reads in a glycan structure, determines the molecular structure and generates

all possible fragments. However, there is no methodology to automatically

assign these fragment peaks to MS/MS spectra.

The automated methods described above are not all applicable to the

analysis of ESI-MS/MS glycopeptides. For one, all methods described above

were developed for the analysis of derivatized oligosaccharide spectra and

not glycopeptides. In addition, the methods of Ethier, Gaucher and Mizuno

are similar to de novo spectra analysis methods. Since glycopeptides in com-

plex mixtures do not ionize well in proteomic data[20], the resulting spectra

often contain missing peaks and may be of low quality and as such inap-

propriate for de novo techniques. Another limitation of existing methods for

automated glycan analysis is that they require input from the user regarding

the possible composition and structures of the glycans analyzed in the sam-

ple. In a high throughput environment however, obtaining this input may

not be feasible for reasons such as the high volume of data produced or the

user not having any insight into the types of glycans to be expected in the
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sample.

Given the drawbacks of the existing methods for automated glycan anal-

ysis, we present a methodology for automated glycan structure determina-

tion by adapting MS/MS ion searching techniques for glycan analysis.

4.3 MS/MS Ion Searching Techniques as applied

to glycopeptides

To automate the process of glycan structure elucidation from ESI-MS/MS

glycopeptide spectra, we present an approach based on the adaptation of

traditional techniques of MS/MS ion searching for glycan analysis (see sec-

tion 2.2.1).

Most MS/MS ion searching techniques thus far have catered to peptide

fragmentation and are not applicable to glycopeptide analysis. For applica-

tion to glycan analysis, existing peptide MS/MS ion searching techniques

need to be modified in two main respects:

• The branched structure of carbohydrates requires a unique model for

theoretical fragmentation (section 4.5).

• The unique features of glycopeptide spectra require a novel method

for spectra correlation (section 4.8).

As in traditional MS/MS ion searching, our approach for glycan ion

MS/MS ion searching involves three main steps:

1. Obtaining a suitable database of structures which could correlate to

the experimental spectra
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2. Generating theoretical spectra representing predicted fragmentation

products of each of the database entries

3. Correlating the theoretical spectra to the experimental spectra and

determining the most likely match.

Each of these steps will be further discussed in the following sections.

4.4 Glycan Database

A total of 4469 N-linked glycan structures were obtained from GlycoSuite

DB (Proteome Systems Limited) 1. GlycoSuiteDB is a relational database

that curates information from scientific literature on glycoprotein-derived

glycan strucures, their biological sources and the references in which the

glycan was described [6].

The glycans obtained from the database do not provide a complete set

of all N-glycans found in nature and it is possible that not all experimen-

tal glycan spectra match exactly with database glycans. As discussed in

section 2.2.1, the reliance of MS/MS ion searching techniques on the com-

pleteness of the database used is an inherent limitation of the technique.

However, a secondary goal of MS/MS ion searching techniques is to return

the most similar or homologous structure in the case where the experimen-

tal structure is not reported in the database. Since N-linked glycans have

a well-defined structure and are generated by similar biosynthentic mecha-

nisms, it is likely that the database will contain a similar glycan in case the

exact structure is not found in the database.
1Obtained in July 2002 with an academic license.
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4.5 Algorithm for Glycan Carbohydrate Fragmen-

tation

4.5.1 Characteristics of Glycan MS/MS Spectra

Unlike peptide fragmentation, carbohydrate fragmentation is complex due

to the presence of branches. Theoretical peptide fragments are created by

breaking each of the peptide bonds and adding the masses of the amino acids

of the resulting fragments. The number of partial fragments created will in

theory equal the number of peptide bonds present2 (Fig. 4.1a). Glycan frag-

mentation however is much more complex since there can be simultaneous

glycan fragmentatation along each branch of the glycan structure. As such,

the set of peaks produced will include some peaks representing combinations

of masses between partially fragmented branches (Fig. 4.2).

The number of fragments observed in carbohydrate spectra however, is

much smaller than the set of all predicted fragments. For one, not all frag-

ment species are produced with the same probability. The structure and

composition of each carbohydrate introduces a bias for the observation of

some fragmentation products more than others[12]. The chemical proper-

ties of individual monosaccharides can also introduce a fragmentation bias.

The weaker bond energy of sialic acid residues for example causes them to

dissociate more readily than other monosaccharides. Another factor influ-

encing the number of glycan fragments observed is the energy of dissociation

used for the fragmentation. High energy collisions will break more glycosidic

bonds in the structure and as such contribute to the observation of more

fragment species and more peaks in the spectrum. In the concomitant analy-
2Considering either the b-, or y- ion series
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b1  à b2 à b3  à b4   à b5

y5   ß y4   ß y3 ß y2   ß y1

HexNAc1
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HexNAc2

HexNAc3
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Man6HexNAc4
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A

B

Figure 4.1: This figure illustrates the fundamental difference between pep-
tide and carbohydrate fragmentation. Potential fragmentation points are
illustrated with double-ended arrows. A) The linear peptide molecule frag-
ments at the peptide bonds and creates b- or y-type ions. Peptides have as
many possible breakage points as there are residues and for any one type
of fragment product (i.e. b- vs. y-ions), the number of peaks produced is
at most the same as the number of bonds. The branched structure of car-
bohydrates as illustrated in B however, has potential fragmentation points
all along the structure. Since there are 2 branches for the structure in B,
there can be 2 simulataneous fragmentation events, one along each branch
resulting in a bigger set of possible peaks.
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Figure 4.2: The number of fragments derived from carbohydrate CID can
be quite large due to the need to consider fragmentation products across
branches. In this schematic, two CID species are illustrated. Species I and II
represent unique masses generated by partial fragmentation across the two
branches. Thus, in addition to having to consider fragmentation products
along each path, sub-tree combinations must also be examined.
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sis of glycopeptides and peptides, the energy of dissociation may not enable

the generation of all possible glycan fragments and as such only a subset of

all likely fragments are observed 3.

Another major reason that the number of observed peaks is much smaller

than all possible peaks is that many fragmentation products have the same

composition and thus the same m/z ratio. Carbohydrates in higher animals

are composed of a maximum of 6 monosaccharides of which two are rare

(Table 4.5.1). As such, for any glycan it is likely that various fragments

contain the same monosaccharide composition and thus produce only 1 peak

in the resulting MS/MS spectrum. and identical peak masses.

Monosaccharide
Mass

Hexose (galactose, glucose, man-

nose)

162.053

Hexosamine (GlcNAc, GalNAc) 203.079

Deoxyhexose (Fuc) 146.058

Sialic Acid (NeuAc) 291.096

Pentoses (Xyl) 132.042

Uronic Acid (GlcA, IdA) 176.032

Table 4.5.1 Commonly seen oxonium ion peaks in glycopeptide spectra.

3The energy of dissociation used during MS/MS acquisitions is determined by a scaling
function based on the mass of the species entering the MS/MS chamber. The function is
applied to a specific mass range which may be directed towards peptide analysis. Often,
glycopeptides surpass the upper peptide mass limit and when they enter the MS/MS
chamber and the energy determined by the scaling function, that of the upper limit of the
peptide mass range, is inadequate to produce all possible fragments.
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4.5.2 The Full Model of Glycan Fragmentation

Without a complex model for carbohydrate fragmentation, there is no sim-

ple method to predict the glycan fragments produced by CID. A simple

approach to this problem is to assume that all glycosidic bonds in the car-

bohydrate structure are equally susceptible to fragmentation and consider

all possible fragments. This model, the Full Model of Glycan Fragmentation,

while not realistic, provides a complete set of fragments.

One of the major drawbacks of this method is that the size of the set of

theoretical fragments generated can get very large. We can enumerate the

number of possible fragments that can be created by the Full Model of gly-

can fragmentation by considering N-linked glycans as rooted, binary trees.

N-linked carbohydrate structures found in nature all contain the pentasac-

charide core HexNAc2Man3 from which stems two antennae, or branches.

There are several tri-antennary structures although they are not as common

as bi-antennary structures4. Bi-antennary glycans therefore assume rooted,

binary tree structures with nodes representing the monosaccharide residues

and a root representing the initial HexNAc2Man portion of the N-linked

core (see structures illustrated in Fig. 4.4).

Let F be a set of all the possible unique masses that can be obtained

from the full fragmentation of a carbohydrate structure C. | F | can vary

depending on four main factors. The effects of each of these factors on | F |
is illustrated in figure 4.3.

• Glycan Size. The number of nodes, which in biological terms trans-

lates to the mass of the glycan, is directly proportional to the size of
4There are also some N-linked glycans with a single GlcNAc residue, called a bisecting

GlcNAc, attached to the core inaddition to the two antenna. These structures are rare
compared to N-linked glycans.
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the F (Fig.4.3). A simple example of this is illustrated in figure 4.3.

The smaller glycan in 4.3b will produce less fragments that the gly-

can in figure 4.3a. Even the addition of one extra residue, depending

on where it is added, can significantly increase the number of peaks

produced in the Full Model. In figure 4.3d, the effect of an extra core

Fucose residue increases the total fragmentation products by a factor

of 2 compared to the glycan in figure 4.3a.

• Glycan Topology For a carbohydrate structure with n nodes, there

are a total of (2n−3)!! different rooted, binary, tree topologies[9]. The

topology of the glycan can affect the number of peaks produced by the

Full Model. For a glycan with m branches, there can be any number of

fragmentation events from 1 to m since there is a maximum of 1 frag-

mentation event per branch. Thus, the topology directly affects the

number of possible branches, which in turn influences the number of

different mass combinations possible with full fragmentation. For ex-

ample, for two glycans with identical composition HexNAc5Man4, the

caterpillar topology illustrated in figure 4.4a produces more fragmen-

tation products compared to the more full glycan structure illustrated

in figure 4.4b in which there are many redundant masses produced. In

figure 4.4a there can be a maximum of two fragmentation events as no

two fragmentations can occur along the right branch of the structure.

• Monosaccharide Composition. Since the N-linked glycans of mam-

mals usually comprise of 6 unique monosaccharide masses [30], for each

topology there are a maximum of 6n different monosaccharide combi-

nations for n residues. In reality however, this number will be much less

as only some monosaccharide arrangements are biologically valid. In
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Figure 4.3: Effects of glycan size and monosaccharide composition on | F |.
In figure A we observe a glycan which under the full fragmentation model
produces 14 unique peak masses. When a similar structure with a reduced
number of nodes as illustrated in B, a less massive and complex glycan, is
fragmented with the Full model, |F| is reduced to 7. Figures C and D demon-
strate the effect of monosaccharide composition on |F|. In C, a high mannose
glycan with less monosaccharide variability but with similar topology to A,
produces a smaller set of peaks under the Full Model than A. Figure D il-
lustrates the effect of an additional branch, the core Fucose branch attached
to HexNAc2 which also increases the size of F.
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Figure 4.4: Effects of glycan structure on the number of peaks produced by
the Full Model. This schematic illustrates the difference of | F | between two
glycans with the identical monosaccharide composition, HexNAc5Man4. In
A) we observe a glycan with a caterpillar type topology which produces a
larger number of unique peak masses compared with the glycan with topol-
ogy illustrated in B. The combinations of branches in B produces redundant
masses and thus the set F is smaller.
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addition, since various combinations of monosaccharide will produce

identical masses, the actual number of possible peaks will be reduced.

In figure 4.3c, the effects of monosaccharide composition can be seen.

The leaves in figure 4.3c are all mannose as opposed to the leaves of

figure 4.3a which have a varied monosaccharide composition. The ad-

ditional HexNAc molecules in figure 4.3a, increase the total number of

unique mass combinations possible.

4.6 Evaluation of the Predictive Power of the Full

Model

The Full Model of glycan fragmentation produces the entire set of theoretical

glycan fragment peaks regardless of the likelihood of observing a particular

fragment. As previously mentioned, due to the chemical structure of glycans,

only a subset of all possible peaks is actually observed. Although the set of

peaks produced by the Full Model is complete, when the theoretical fragment

peaks are correlated to experimental spectra, the unlikely peak fragments

can be matched to random or noise peaks. This problem is illustrated in the

example in 4.5, in which an unlikely fragmentation product of the Full Model

is incorrectly matched to a peak in the experimental spectrum. Figure 4.5a

illustrates a glycan prior to fragmentation. Upon CID, the highly labile

terminal sialic acid residues of 4.5a will most likely dissociate before G1,

G2 and G3 as indicated in 4.5b. When the Full Model of fragmentation is

applied to 4.5a however, unlikely peaks such as those illustrated in 4.5b

will be produced. Given that in some spectra, there is a peak at almost

every m/z unit, it is possible that these unlikely fragments are incorrectly

matched.
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G2 G3G1
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Unlikely mass combinations: 
1506+G1, 1506+G2, 1506+G3

A

B

= Sialic Acid

= HexNAc

= Hex

Figure 4.5: This figure illustrates one drawback of the Full Model of Glycan
Fragmentation, namely the generation of unlikely fragmentation products.
In A, we see a glycan with composition HexNAc5Man5NeuAc3. Since sialic
acid is a highly labile molecule, fragments such as those observed in B, will
not be observed since the terminal sialic acid will dissociate before residues
G1, G2 and G3 as indicated. However, these unlikely peaks will be generated
in a theoretical fragmentation of A using the Full Model.
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Another potential problem with the Full Model is that it may not scale

well with increased glycan size. Unless an appropriate scoring scheme is

devised for the correlation of the theoretical and experimental spectra, larger

glycans will create a larger set of peaks and will be matched more frequently

to random peaks in the experimental spectrum.

4.6.1 The Path Model

As discussed in the previous section, the set of peaks created by the Full

Model of carbohydrate fragmentation can become very large depending on

the structure and size of the glycan and consequently lead to increased false

peak matches. In this section, we present an alternate fragmentation model

which produces a set of peaks S ⊆ F that are complete enough to correctly

match database glycan structures to experimental glycan spectra but which

do not produce a great number of unlikely fragment peaks.

In a previous study, Mizuno et al found that ions produced by single-bond

cleavages were more abundant than fragment ions resulting from multiple-

bond cleavages[22]. Further, they concluded that fragmentation initiated in a

branch proceeds to the end of the same branch[22]. Based on this result, the

Path Model of glycan fragmentation was developed. In this model, to obtain

all possible fragmentation products resulting from fragmentation along one

branch, an in-order traversal of the carbohydrate structure is performed.

The process of glycan analysis using the Path Model of fragmentation is

illustrated in figure 4.6.

One of the main advantages of the Path Model over the Full Model num-

ber is that the number of fragments produced is proportional to the number

of monosaccharides in the structure regardless of the size and topology of
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Figure 4.6: This figure illustrates glycan MS/MS ion searching using the
Path Model of glycan fragmentation. Peaks generated by the and in-order
traversal of the glycan structure (the Path Model) are overlaid on an exper-
imental spectrum and correlated.

the glycan. As such, the likelihood of false peak matches, especially in larger

glycans, may be smaller compared to those produced by the Full Model. The

Path Model of glycan fragmentation was implemented and it’s effectiveness

examined in section 5.7.
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4.7 Evaluation of the Predictive Power of the Path

Model

The Path Model for glycan fragmentation provides a solution to many of

the problems posed by the Full Model. However, in some situations, the

Path Model may be inadequate in returning a correct glycan structure. Al-

though the appearance of single-bond cleavages are more abundant than

multiple-bond cleavages[22], there may still be several peaks present repre-

senting multiple-bond breakages. Thus, a peak in the experimental spectrum

produced by the combination of monsaccharides between branches may be

matched to a structure that is longer along one branch. For example, in fig-

ure 4.7, the correct glycan structure (Fig.4.7a) is not returned as the peak

representing the combined mass between monosaccharides 4 and 5 is not

produced. Instead, the mass between 4 and 5 is produced by an incorrect

linear structure illustrated in figure 4.7b. When an MS/MS spectrum rep-

resenting the correct structure is interpreted manually, factors such as the

peak intensities and known rules about glycan structure would suggest the

actual structure of the spectrum is that of figure 4.7a and not figure 4.7b.

4.8 Algorithm for Spectra Correlation

After the creation of the theoretical spectrum modelling carbohydrate frag-

mentation, the theoretical spectrum is correlated with the experimental

spectrum in order to identify the correct glycan structure. In theory, the

best correlation will identify the glycan represented in the experimental

spectrum. Glycopeptide spectra correlation differs from existing methods

for peptide spectrum correlation in two main ways:
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Figure 4.7: This figure illustrates a potential problem with the Path Model.
The glycan in A is the correct structure matching the experimental spec-
trum. However, fragment 892, a combined mass fragment between residues
3,4 and 5, found in the experimental spectrum is not considered in the Path
Model. As such, when the Path Model is applied to the glycan in B which
contains fragment 892 as an extra Hex residue along one branch, this struc-
ture is returned as the correct glycan.
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• Unknown point of attachment of the glycan to the peptide

backbone. Since the peptide moiety of glycopeptides remains intact

after fragmentation, the peak representing the starting point of the

glycan is not immediately known. When analyzed manually, this peak,

the naked peptide peak, is determined by tracing monosaccharide loss

sequentially and finding the most likely point of attachment.

• Detecting branching patterns in the spectra. The peaks created

by theoretical fragmentation must also be correlated to the structure

of the glycan. It is possible that the set of theoretical fragments derived

from a glycan with an incorrect structure but similar composition be

falsely matched to an experimental spectrum. As such, glycan struc-

ture should be taken into account when deriving an appropriate scoring

scheme to evaluate the degree of matching between the theoretical and

experimental spectra.

In the following sections we describe the approaches used in the correla-

tion of the theoretical spectra and the experimental spectra of glycopeptides.

4.8.1 Naked Peptide Determination

In order to match the theoretical glycan peaks of the experimental spectrum,

we need to determine the offset of the peak representing the peptide moiety,

the ’naked peptide’ in the experimental spectrum. Since the naked peptide

peak of the glycopeptide is not always easily identifiable, it is necessary to

determine this point before the correlation of the spectra can begin.

In N-linked glycopeptide MS/MS spectra, the naked peptide peak with

an attached GlcNAc residue is typically amongst the most intense peaks

of the spectrum. A simple approach to determining the naked peptide is
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to generate a list of the most intense peaks in the high m/z range of the

spectrum, and try each one5 as a potential starting point. In theory, when

the correct database glycan is applied on the spectrum at the correct point,

there should a maximal number of matching peaks and thus the highest

correlation score. The top hits therefore, should provide the optimal sugar

structure matching the peaks as well as the most likely naked peptide.

Determining the most likely naked peptide peak also provides valuable

information required in matching the glycopeptide to its parent protein.

Once the exact mass of the peptide without the glycan moiety is deter-

mined, the peptide can be matched to its parent protein by the application

of Peptide Mass Fingerprinting (PMF) Techniques (see section 2.2.1). This

process is illustrated in figure 4.8.

4.9 Correlation of Theoretical and Experimental

Spectrum

From each naked peptide candidate, the peaks of the theoretical spectra

are matched to those in the experimental spectrum. To evaluate the degree

of matching, an appropriate scoring scheme must be developed. As with

MS/MS ion searching for peptides, the scoring scheme used in evaluating

the degree of matching between the theoretical and experimental spectrum

is crucial in the performance of the technique[1].

The majority of MS/MS ion searching programs incorporate 3 main fea-

tures:

• Number of matched peaks. This metric describes the number of
5Since the naked peptide could be a +2 or +3 charged peak, all of the charge states of

the naked peptide are also tried as potential starting points.
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Figure 4.8: The determination of the naked peptide peak enables the match-
ing of the glycopeptide to its parent protein. In the example illustrated in
this figure, the glycan shown is fragmented using the Path Model of glycan
fragmentation. These peaks are subsequently overlaid upon experimental
glycopeptide spectra and scored starting from various high intensity peaks
in the high m/z range, each a naked peptide candidate. From the highest
scoring match, the naked peptide and glycan are determined. The naked
peptide mass can then used to match the glycopeptide to its parent protein
using Peptide Mass Fingerprinting (PMF) techniques (see section 2.2.1.)
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theoretical peaks that are found in the experimental spectrum.

• Completeness of sequence ladder. In peptide spectra, if a complete

ladder of b- and y-ion fragments are found in the spectrum, there is a

greater probability that the peaks represent valid peptide fragments.

• Matched Peak Intensity. Since peak intensity represents the num-

ber of fragments found at the same mass, a higher peak intensity sug-

gests a higher likelihood that the peak represents a valid fragmenta-

tion product as discussed in section 3.3.1. To assess the validity of all

matched peaks and thus to the overall likelihood that the theoretical

and experimental spectra are correlated, the intensities of all matched

peaks are added to the correlation score.

In addition to these features common to most peptide MS/MS ion search-

ing techniques, various programs incorporate other specific information in

the evaluation of the matching between theoretical and experimental spec-

tra. For example, SCOPE developed by Bafna[1] utilizes a probabilistic scor-

ing function that incorporates detailed knowledge on how peptides fragment

and some specific features of peptide spectra. Prob ID developed by Zhang et

al, is another probabilistic approach which incorporates specific information

about the peaks of the experimental spectrum such as the presence of im-

monium ions and also evaluates noise and unmatched peaks in the spectrum

[33].

4.9.1 Glycan Spectra Correlation Scoring Scheme

In this section, we present a scoring scheme to evaluate the matching be-

tween the theoretical glycan spectra and experimental glycopeptide spectra.
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As with the scoring schemes used in peptide MS/MS ion searching, the

intensities and number of matched peaks are incorporated in the scoring

scheme. In addition to these common features, it is necessary to incorporate

some information on the structure of the glycan.

4.9.2 Isotope Modeling for Charge Determination

To generate the theoretical spectra to correlate to experimental glycopeptide

spectra, glycans from GlycoSuite DB were fragmented (using either the Path

or Full Model of glycan fragmentation) and the resulting peaks searched in

the experimental spectrum. When searching a theoretical peak in the ex-

perimental spectrum, the peak masses are checked in several charge states

as peaks in ESI-MS/MS spectra exist in +1, +2 and +3 charges. For this

reason, a model for isotope detection was developed in order to differentiate

between singly, doubly and triply charged peaks of the experimental spec-

trum. This process of isotope detection is a well-researched subject and there

are several approaches to this problem. As an initial approach, the charge

state of a peak was determined by determining the most intense peak in a

given window and observing the peak spacings surrounding the peak. Spac-

ings of 0.5 denoted doubly charged peaks, 0.33 triply charged peaks and 1.0

singly charged peaks. For a theoretical peak to match an experimental peak,

the corresponding charge states of the two peaks had to match to be scored.

Glycan Structure Evaluation Experienced glycoprotein chemists can

often recognize the structure of the glycan based on the overall appearance of

the spectrum. In addition to information about monosaccharide composition

by observing saccharide-spaced peak distances, other factors such as relative

peak intensities suggest the correct glycan structure. Oligomannose-type
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High mannose peaks

Figure 4.9: This spectrum represents an oligomannose glycopeptide. The
appearance of evenly spaced, intense peaks indicated in the figure suggests
the glycan type is high-mannose.

glycan spectra for example are easily identifiable by observing a series of

evenly spaced high intensity peaks (Fig.4.9.). Thus, determining the correct

structure of a glycan from MS/MS spectra in an automated fashion requires

thorough modelling of glycan fragmentation and the relative peak intensities

expected from fragmentation, a complex task.

As an alternative to verifying the structure of the entire glycan, we pro-

pose to examine glycan substructures. To achieve this task, the theoretical

fragments created along each branch of the database glycan are checked in

the experimental spectrum and a score assigned based on the appearance
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of contiguous fragment peaks. As previously mentioned, the observation of

contiguous fragments increases the probability that the fragments are valid

and that the structure represented by the theoretical spectrum is the correct

match. Checking for contiguous glycan fragments is also important in the

analysis of low-quality spectra in which the glycan fragment peaks may not

be very intense. In this case, intensity alone may be inadequate to indicate

the likelihood that a given peak represents a valid fragment. By combin-

ing information about the peak intensity with the appearance of contiguous

peaks, there is further evidence of the validity of a peak. For each contigu-

ous peak observed, a constant factor of β is added to increase the scores of

well-matching glycans.

Branch Score Each branch of the glycan structure is scored separately in

order to verify the glycan substructure. The score for each branch consists

of three main aspects:

• The sum of all the intensities of the matched peaks. The intensities of

all peaks in the spectrum which lie in a window of 1 dalton around the

theoretical peak and are found to be significant (at least 3 times the

level of background noise - see section 3.3.1), are summed and added

to the final score.

• The number of contiguous peaks along any one branch is also incorpo-

rated into the score. A factor of qβ where q is the number of contiguous

peaks observed and β a constant factor are added to the overall score.

• The ratio of the number of matched peaks to the number of peaks

expected by the fragmentation of the branch. By incorporating this
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information, branches that are identical in composition but which are

longer than the correct structure are penalized.

In formal terms, the branch score can be described as follows:

B =
i=m∑

i=0

intensity(i) + qβ + (m peaks/number of expected peaks) (4.1)

where m is the number of matched peaks and q is the number of con-

tiguous peaks found.

The overall score for the match of the entire glycan to the experimental

spectrum is taken as being the sum of all branch scores.

4.9.3 Glycan Analysis Viewer

To visualize the top glycan matches from GlycoSuite DB to experimental

glycopeptide spectra, a viewer was implemented in C++. The Glycan Anal-

ysis Viewer returns a list of the top 20 matches to the experimental spectrum

and indicates which peaks, and their charges, were identified in the structure.

An example of the viewer is shown in figure 4.10. The viewer facilitates sci-

entific validation of the structures returned by the Glycan Analysis Module

by indicating which peaks correlate to the suggested structures.
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Sequence returned: HexNAc2Man5

Figure 4.10: Example output from the Glycan Analysis Viewer. A high-
mannose type glycopeptide was matched to a glycan with structure
HexNAc2Man5 with the naked peptide at m/z 916.49. Matched peaks are
indicated with boxes. This structure assignment was validated as being cor-
rect.
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Chapter 5

Results

In this section, we discuss the performance of the Glycopeptide Classifier

and the Glycan Structure Analysis Module for the tasks of glycopeptide

classification from ESI-MS/MS data and N-glycan structure elucidation re-

spectively.

5.1 Implementation

An implementation of the Glycopeptide Classifier and Glycan Analysis Mod-

ule described in Chapter 3 was done in C++. This implementation was built

upon existing software developed at Caprion Pharmaceuticals Inc. (Mon-

treal) designed to analyse peptide spectra.

5.2 Input Data

A training set of 94648 spectra containing high quality glycopeptide spectra

was used to develop the models described in Chapters 3 and 4. The samples,

which consisted of normal and tumor tissue from patients afflicted with colon
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cancer, were obtained from Caprion Pharmaceuticals Inc.

Plasma membrane enriched extracts were obtained by immunoaffinity

selection, and the protein extracts were separated by gel electrophoresis.

Excised bands were digested by trypsin and analyzed by nano LC-MS/MS

at a flow rate of 400 nL/min on a Micromass Q-TOF Ultima. The eluting

peptides were ionized by electrospray and the peptide ions were automat-

ically selected and fragmented in a data dependent acquisition mode. The

MS/MS spectra were subsequently subject to data base searching for protein

identification with Mascot (Matrix Science). The tissue samples were run on

several machines varying in sensitivities ensuring that a variety of spectra

are produced in terms of quality. The data set was examined manually for

glycopeptides and a total of 188 glycopeptides were found in the sample.

5.3 Glycopeptide Classification Score Distribution

When the data data set described in section 5.2 was run through the Gly-

copeptide Classifier, the resulting scores were shown to be distributed as

illustrated in figure 5.1a. The majority of spectra were shown to have low

scores between 0 and 0.5 (fig 5.1). Although figure 5.1a suggests that no

scores above 1.1 were obtained, closer examination of the scores above 1

shows a distribution of scores as seen in figure 5.1b. All glycopeptides in the

sample were found to have glycopeptide classifications scores 0.8 or greater.

While verifying the spectra manually, there were several spectra that were

ambiguous or ’greyzone’ glycopeptide spectra which could not be positively

or negatively classified. These greyzone spectra were found to range from

scores of 0.7-1.2 and were classified as false positives. In any one ESI-MS/MS

sample, the number of greyzone glycopeptides can vary depending on the
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Figure 5.1: The distribution of glycopeptide classification scores for the test
set are illustrated in A. Figure B illustrates the distribution of scores above 1
which do not appear in A since the number of scores at 0 greatly outnumber
those above 1.

quality of the data and the parameters utilized in MS/MS (see section 3.2.3).

Based on this test set, an optimal glycopeptide decision score was estab-

lished. In the next section, we will discuss the selection of the decision score

as discussed in Chapter 3.

5.4 Glycopeptide Decision Score

Figure 5.1 illustrates that valid glycopeptides have a range of scores due

to variations of the glycopeptide spectra for reasons discussed in section
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3.2.3. To classify a spectrum as belonging to a glycopeptide, it is necessary

to establish a decision score D such that if S≤D, the spectrum is not a

glycopeptide and if S>D the spectrum is a glycopeptide.

There exist several methodologies for determining an accurate decision

score. As a preliminary approach, we selected the decision score based on

the optimal ratio of false negative to false positive glycopeptides of the data

(i.e. low false negative and low false positives). The scores returned by the

glycopeptide classifier were arranged into bins of 0.1 intervals, and a profile

of the false negatives, false positives and true positives calculated for each

bin. Figure 5.2 is a ROC plot representation of the accuracy of the classifier

for classification thresholds in the range of 0.7 to 1.4. Analysis was limited

to this range as below a threshold of 0.8, there were no more false negatives

detected and above a threshold of 1.2 there were no more false positives

detected 5.2.

Figure 5.2 illustrates that as the bins score increases, there is an increase

in the number of false negatives, indicated as a percentage at each bin label.

The opposite trend is observed for the number of false positives along the x-

axis. The trends of figure 5.2 illustrate that in general, spectra that receive

scores below 0.8 do not represent glycopeptides as there was an increase

in the number of false positives with no increase in true positives since

all glycopeptides had been detected at this score. Similarly, for spectra with

scores greater than 1.2, there was no increase in the number of false positives

and only an increase in the number of false negatives. Hits in the 0.9-1.1

range can be classified as glycopeptides with less confidence as there is a

mixture of false negatives and false positives in these bins.

The results of figure 5.2 suggest that 0.9 is an optimal glycosylation score

threshold. At thresholds higher than 0.9, the percentage of false negatives
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increases sharply. In increasing the threshold from 0.9 to 1.0, the false nega-

tive rate increases from 3.2% to 10.6%. In addition, decreasing the decision

score to 0.8 increases the false positive rate from 16% for a score of 0.9 to

28% for a score of 0.8. We would like our decision score to limit the number

of false negatives without creating too high a false positive rate. Since the

results of the Glycopeptide Classifier will have to be manually verified, too

high a false positive rate would limit the throughput of glycopeptide analy-

sis. As such, 0.9 is an appropriate threshold as there are a relatively small

number of false negatives (3%) and the false positive rate is significantly

smaller than the rate at the next lowest threshold of 0.8.

5.5 Sensitivity and Selectivity of the Glycopeptide

Classifier

To assess the accuracy of the glycopeptide classifier, the results were ana-

lyzed in terms of the selectivity and sensitivity of the classifier. The sen-

sitivity of the classifier refers to the ability of the software to identify gly-

copeptides which are not ideal and contain phenomena like noise and miss-

ing peaks; typical obfuscating factors in MS/MS spectra interpretation. In

contrast to sensitivity, selectivity refers to the ability of the classifier to dis-

tinguish spectra which represent true positives from spectra which contain

some glycopeptide spectra features but represent false positives.

An initial assessment of the selectivity and sensitivity of the classifier

is obtained by examining the global false positive and false negative rates.

Using a threshold of 0.9, a global false positive rate of 16% and a false

negative rate of 3% was observed.

Another means of assessing the selectivity of the classifier is by compar-
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Figure 5.2: This figure illustrates a ROC plot of the Glycopeptide Classifi-
cation Scores at various thresholds. The false negative rate at each decision
score is displayed adjacent to the score bin label. From this figure, 0.9 was
chosen as the optimal decision score as it returns the least number of false
negatives while retaining a false positive score of approximately 16%.
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ing the classification scores assigned to spectra of glycopeptides and non-

glycopeptides. As discussed in section 3.2.2 the spectra of peptide and gly-

copeptide differ in terms of the criteria used to classify glycopeptides. As

such, peptide spectra should receive lower glycopeptide classification scores

compared to glycopeptides. In a typical high throughput proteome study,

there are also a large portion of MS/MS spectra that represent neither gly-

copeptides nor peptides. Thus, in addition to being able to discriminate

between glycopeptides and peptides, the classifier should also be able to

identify random spectra as being non-glycosylated. It is likely that several

spectra among the random set will contain features similar to those of gly-

copeptides and thus may produce higher glycopeptide classification scores

than the peptide set. As such, the ability of the classifier to correctly classify

the random spectra as being non-glycosylated is a measure of selectivity.

MS/MS data sets were generated to test the accuracy of the glycopep-

tide classifier for peptide, glycopeptide and random spectra. The peptide

data were generated by obtaining MS/MS spectra which received a mini-

mum peptide matching score of 35 from Mascot(Matrix Science) MS/MS

ion searching techniques, indicating high quality peptide spectra. The gly-

copeptide data set consisted of all the glycopeptide spectra from the test set

described in section 5.2, and the random set consisted of MS/MS spectra

that were not identified as glycopeptides and which were also unassigned

by Mascot MS/MS ion searching software and thus not unambiguously pep-

tidic.

When run with on the glycopeptide classifier, the glycopeptide score dis-

tribution was shown to vary between data sets (Fig.5.3a). The glycopeptides

were shown to have scores distributed between 0.9 and 2.4 with the mean

glycopeptide classification score at 1.57. These results for the glycopeptide
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data set were shown to be significantly higher (p value < 0.01) 1 than those

of the validated peptides which demonstrated a mean glycopeptide classifi-

cation score of 0.26 (Fig.5.3a). No overlap between these two distributions

was observed further confirming the ability of the classifier to separate gly-

copeptide from peptide spectra. In between the peptide and glycopeptide

distributions were the scores of the random peptide sample, which demon-

strated slightly higher glycopeptide classification scores than the peptide set

(Fig.5.3a). Again, when the distributions of the two groups were compared,

they were found to be significantly different (p<0.01). In addition, there was

no significant overlap in scores between the random and glycopeptide groups

although 3.4% of the random spectra received high glycopeptide scores in

the range of 0.7-0.8. Upon investigation of these spectra, they were found

to randomly contain glycopeptide features such as significant peaks and/or

differential peak density distribution. This resolution of the random spec-

tra from the glycopeptide spectra indicates that the glycopeptide classifier

was sensitive enough to identify some noisy glycopeptide spectra (scores <

1.0) and also selective enough to separate random spectra which arbitrarily

contain some of the features of the glycopeptide model.

Peptide Coverage Scores To further test the results illustrated in figure5.3a,

the glycopeptide classifier was also evaluated by examining peptide cover-

age scores. Peptide Coverage Score is a measure of the ’peptidic’ quality

of a spectrum and indicates the percentage of a spectrum that is spanned

by amino acids and thus likely to represent a peptide spectrum. Peptide

coverage scores greater than 100 generally represent peptide spectra. It is
1Normality plots were generated for all three groups of data. Since the peptide and

random groups displayed non-normal behaviour, the Wilcoxon ranksum test (unpaired)
was applied to compare the glycopeptide classification scores of the three groups.
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expected that spectra that receive high glycopeptide scores should receive

low peptide coverage scores and vice versa.

As in the examination of the glycopeptide classification score, peptide

coverage was calculated for 3 sets of data: those displaying glycopeptide

classification scores greater than 0.9, 0-0.3 and 0.4-0.9 which roughly rep-

resent glycopeptide, peptide and random spectra respectively. The peptide

coverage scores for each of these data are shown in figure 5.3b.

Peptide coverage scores were shown to have an opposite trend to the gly-

cosylation scores. The highest scores were assigned to the low glycopeptide

classification score set (mean 94.5) and the lowest scores for the high gly-

copeptide classification score set (mean 19.2) (Fig. 5.3b). As was observed

in the glycosylation score distribution, there was no overlap between the

distributions of the low glycopeptide score group and the high glycopeptide

score group and they were found to be independent groups (p<0.01).

The scores for the mid-range glycopeptide score group (mean coverage

score of 56.8) were found to straddle the low and high-range glycopeptide

score groups. In addition, there was significant overlap of the mid-range

group with both the other groups (fig. 5.3b). This overlap between the mid-

range and low-glycopeptide classification scores shows that peptide cover-

age score are not adequate in separating these two groups. Peptide cover-

age analysis reveals that the glycopeptide model is accurate and that high

glycopeptide scores are selective and truly separate glycopeptide from non-

glycopeptide spectra.
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Figure 5.3: This figure illustrates the distribution of scores of three data sets:
glycopeptide (dark bars), peptide (white bars), and random spectra (grey
bars). A illustrates the glycopeptide classification scores for the three data
sets and B illustrates the peptide coverage scores for the same data.
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5.5.1 Performance Evaluation of Glycopeptide Classifier: Sum-

mary

In general, the glycopeptide classifier was found to be very effective at cor-

rectly identifying glycopeptide spectra. Out of 94648 spectra examined, the

classifier was able to identify 97% (at threshold 0.9) of the true positives

in the sample which equal roughly 0.2% of all spectra in the sample. At

this threshold, a false positive rate of 16% was found, which also includes

all greyzone glycopeptide spectra. In terms of execution time, the glycopep-

tide classifier was able to process 500 spectra per minute on a 1.3 gigahertz

processor.

5.6 Glycan Structure Analysis Module

Both the Full and Path models of glycan fragmentation were implemented

in C++ and run on the test set of glycopeptides.

The accuracy of the Glycan Analysis module will be evaluated on both

the Path and Full models of fragmentation. The following criteria will be

used to assess the performance of the Glycan Analysis Module:

• Percentage of hits returned with the correct naked peptide mass

• Similarity of the top structures returned to the correct structure

• Reproducibility of result in glycoforms

5.6.1 Data Sets for Glycan Analysis Module Evaluation

As discussed in Chapter 4, the performance of the Full and Path models is

expected to vary depending on the type of glycan analyzed. As such, the
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performance of both the Full and Path models will be examined separately

for both complex and oligomannose-type glycans (hybrid-type glycans were

not found among the data).

Since the elucidation of manual glycan structure evaluation is a labor-

intensive task, not all structure of the 188 identified glycopeptides in the

test set were analyzed. In addition, the quality of many of the glycopeptide

spectra obtained was low and contained many missing peaks. From the set of

acquired glycopeptides, only those spectra which were of high quality were

used in the evaluation of the Glycan Analysis Module. As is the case with all

MS/MS ion searching techniques, the success of the matching is dependent

on the spectra containing a fairly complete ladder of fragment peaks. In

the selection of the high quality glycopeptide spectra, those spectra which

contained more than 75% of the partial glycan fragment peaks predicted by

the Path Model were used for the evaluation of the glycan analysis mod-

ule. Once obtained, these spectra were pooled manually and separated into

two sets depending on whether the glycan was classified as being complex

or oligomannose. The oligomannose data set consisted of 15 high quality

spectra and the complex data set consisted of 12 high quality spectra.

5.6.2 Accuracy of Naked Peptide Identification

The accuracy of the program to correctly identify the starting point of the

glycan in the glycopeptide spectrum, the peak representing the naked pep-

tide, was assessed by observing the percentage of correct naked peptide

masses identified within a margin of one monosaccharide mass. In addition,

the correct charge of the naked peptide had to be correctly identified. In

general, it was found that for high quality spectra, both the Full and Path
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models performed equally well in determining the correct naked peptide and

that the results were not contingent on the type of glycan analyzed. It was

found however that for the set consisting of lower quality spectra, that the

accuracy of naked peptide detection was much lower.

Specifically, the oligomannose spectra set produced 12/15 of the correct

naked peptides and in the complex data set, 10/12 of the naked peptides

were correctly identified. In addition, for identical glycopeptides analyzed on

different machines or for glycoforms, the same naked peptide was returned.

For example, glycopeptides 948.80 and 1002.76 of the oligomannose data

set represent the same glycan with the higher mass glycopeptide containing

one extra Hexose residue2. When the path model was executed on these

glycoforms, peak 916.5 was identified as the correct naked peptide in both

cases.

Of the incorrectly assigned naked peptides, 75% were the result of a false

charge assignments for the naked peptides in the oligomannose data sets,

and 100% in the complex data set. If the isotopic distributions were not well

resolved, there was some ambiguity regarding the peak charge. As a result of

an incorrect charge assignment to the naked peptide, all subsequent peaks

were incorrectly assigned as well. An example of an ambiguous peak charge

is illustrated in figure 5.4 in which the separation between the peaks fall

between values of 0.33 indicating a triply charged series and 0.5, a doubly

charged series. This result is likely due to the collision of 2 different isotopic

distributions at the same m/z value. It is suspected that an improvement to

peak charge detection, by incorporating some information about the shape

of the distribution and the relative intensities of the peaks in the distribution
2Both the precursor 948.8 and 1002.8 are triply charged precursors. As such, a difference

of 162 is produced from the calculation:(1002.76-948.80)*3-3
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∆0.41

∆0.47

∆0.37

Figure 5.4: Example of an ambiguous charge assignment. In this doubly
charged distribution, there is a discrepancy between the observed peak mass
differences shown in the figure and the expected value of 0.5 typical of +2
isotopic distributions.

as done by Ethier et al. [11] could significantly improve the performance of

the tool in this regard.

During the analysis of the naked peptide detection accuracy, it was also

noted that the naked peptide peak with the additional GlcNAc residue was

not always among the most intense among the peaks in the high m/z range

as is typical of N-linked glyocpeptide spectra. If the actual naked peptide-

GlcNAc peak is not found amongst the set of the most intense peaks, it

may not be tested as a potential starting point. Figure 5.5 illustrates this
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phenomenon. In figure 5.5, the glycopeptide spectra of two identical gly-

copeptides analyzed in the same sample are shown. In figure 5.5A the peaks

are not as intense as those in figure 5.5B in which the naked peptide peak

is not represented. When the spectrum in 5.5B was analyzed with the Gly-

can Analysis Module, an incorrect naked peptide was selected as the glycan

starting point of the structure resulting in an incorrect glycan assignment.

This problem was found to be more prevalent in the analysis of low quality

spectra which were not considered in the current analysis. Methods to im-

prove naked peptide detection should be investigated in future versions of

this program.

5.7 Glycan Structure Elucidation

In addition to the detection of the correct naked peptide, the performance

of the glycan analysis module was also evaluated on its ability to return a

correct monosaccharide composition and glycan structure. To evaluate the

effectiveness of each fragmentation model in the elucidation of glycan struc-

ture, two main metrics were used. The first criteria examines the number of

observed peaks (no) found in the spectrum versus the number of peaks pre-

dicted by the fragmentation models (ne). For each glycopeptide in the com-

plex and oligomannose data sets, the structure of the glycan was examined

and the peaks representing the various partial fragments and their charges

identified. These observed peaks were matched against those correctly iden-

tified (in terms of m/z and charge) by the Glycan Analysis module. This

ratio of no/ne provides an assessment of the accuracy of the fragmentation

models. The other main metric was the ratio of the number of matched peaks

(nm) to the number of observed peaks (no). The ratio of nm/ no provides
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A

B

Naked Peptide Peak

Figure 5.5: The spectra illustrated in A and B represent the same glycopep-
tide (from Anti-Colorectal Carcinoma Heavy Chain )analyzed twice in the
same sample. The peaks in the spectrum in A are more intense than in B and
the naked peptide, m/z 944.3 as shown in A, is not located in the spectrum
of B. As such, an incorrect structure was reported for B when analyzed with
the Glycan Analysis Module.
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and assessment of the overall ability of the software to correctly identify the

partial fragments in the spectrum, both in terms of the fragments generated

by the fragmentation model as well as the performance of the tool in peak

detection and isotope identification. The other main criteria used to evalu-

ate the match was a qualitative assessment of the similarity of the structure

of the top hits to the structure of the glycan represented in the spectrum.

In the following sections, we will examine the accuracy of the Glycan

Analysis Module according to the criteria described above. The results will

be examined separately in the complex and oligomannose data sets, and

both the behaviour of the Path and Full Models compared in each data set.

5.7.1 Complex N-Glycan Structures

Fragmentation Models To examine the accuracy and completeness of

the set of theoretical fragments produced by the Full and Path fragmentation

models, the number of observed glycan fragment peaks of each spectrum

in the data set was compared to the number of fragments predicted by

each model (no/ne). The accuracy of the glycan fragmentation models as

applied to complex type glycans is summerized in Table 5.7.1. In general,

the ratio of observed peaks to predicted peaks in Full Model was found to be

approximately 0.32 suggesting that for the majority of complex N-glycans

only a small number of predicted peaks are actually produced. This surplus

in theoretical fragments is partially responsible for random peak matches

obtained by the Full Model (discussed further below).
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Precursor
m/z

Full:nm/no Path:
nm/no

Full: no/ne Path: no/ne

1199.91 0.875 0.635 0.241 1.0
1199.92 1.833 0.833 0.379 1.57
1199.929 0.916 0.167 0.379 1.57
1199.99 0.778 0.556 0.241 1.0
1201.99 1 0.667 0.25 0.857
1301.46 0.8 0.6 0.275 1.0
1301.46 0.889 0.778 0.275 1.0
1301.51 1.4 0.9 0.379 1.375
1301.52 1.3 0.7 0.448 1.625
1302.1 3.67 2.33 0.482 1.75
1303.5 0.667 0.667 0.166 0.5
1495.96 0.75 0.35 0.3 1.07
Average: 1.18 0.764 0.32 1.19

Table 5.7.1 Results for complex data. nm = number of matched glycan
peaks, no = number of observed glycan peaks, ne = number of expected

peaks from the fragmentation model.

The same ratio in the Path Model was found to be 1.19 indicating that all

predicted peaks are observed. Furthermore this ratio shows that in several

cases there are more peaks observed than predicted. This result can be

attributed to the fact that the Path Model does not take into account branch

combinations which contributes to a small number of observed peaks.

Glycan Composition In table 5.7.1, the ratio of matched peaks to ob-

served peaks (nm/no) is shown for the complex glycans using both the Full

and Path models. The average value of nm/no in the Full Model was com-

puted to be 1.18 and that of the Path Model was found to be 0.76, suggesting

that the Full Model was capable of identifying more partial glycan fragments
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in the spectrum. However, since the ratio in the Full Model is greater than

1, this result also suggests that the Full Model is matching peaks that are

not observed. As discussed above, the Full Model produces more fragments

than observed in the spectra. This surplus of peaks increases the likelihood of

incorrectly matching theoretical fragments to noise. Random peak matches

were noted in 11.5% of the Full Model matches and 7% of Path Model

matches.

In addition to matching false peaks, some peak matches were missed due

to incorrect charge assignments. In several cases, the theoretical fragment

was found in the experimental spectrum but not matched as the isotopic

distribution was incorrectly resolved (see section 5.6.2).

Glycan Structure In general, although the Path Model was able to

match less peaks, the structures returned by both the Full and Path models

were comparable. In figure 5.6 for example, the structures returned by both

the Full and Path models for precursor 1301.51 (+2), with 9 and 14 matched

peaks for the Path (Fig. 5.6b) and Full models (Fig. 5.6c) respectively, are

illustrated. In figure 5.6a, the correct structure is shown.

To compensate for the branch combination masses not examined by the

Path Model, the top hit returned by the Path Model (Fig. 5.6b) returns

a structure with two extra fucose residues. These extra fucose residues are

incorrectly matched to masses representing the combinations of the partial

glycan fragments at that point (residues 5 and 6 in figure 5.6b) plus the

labile core fucose molecule; masses which the Path Model does not take into

account. Similarly, the glycan returned by the Path Model incorporates an

additional Hex molecule (residue 3 in figure 5.6b) to account for a peak
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Figure 5.6: In this figure, the correct structure for the glycan of glycopeptide
with m/z 1301.51 in the complex data set is illustrated in A. Figures B and C
demonstrate the top hits returned by the Path and Full models respectively.
Residues not matched by the program are shown as being shaded.
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representing a combined fragment of residues (1+2+4). From the MS/MS

spectrum, this peak may appear to be valid. However, knowledge of glycan

structure and biosynthesis suggests this is not the correct structure of the

glycan.

Figure 5.6c shows the top structure returned by the Full Model of frag-

mentation. This hit contained all monosaccharides of 5.6a and some extrane-

ous peaks, residues 5,6,7,8. The scoring scheme did not sufficiently penalize

extra monosaccharides along this branch, and the incorrect structure pro-

duced the same score as did figure 5.6a. Since the Full Model took into

consideration branch mass combinations, a more accurate structure was re-

turned compared to the Path Model.

Although the above example shows that the Full Model can return more

accurate structures, the structure returned by the Path Model in figure 5.6b

is still a sufficient match since residues 1,2,4,5 were identified.

Effect of Glycan Size on Performance One possible explanation for

the comparable performance of the two fragmentation models for complex

N-glycans could be that the glycans tested in the data set are not large

enough to observe a significant difference in performance. As seen in table

5.7.1, there is a discrepancy in the number of expected peaks from the Full

Model and the Path Model. For example, for precursor 1301.52, there are 14

predicted peaks for the Path Model versus 29 for the Full Model. This differ-

ence is largely attributed to the core fucose residue attached (Fig.5.6a) which

contributes to half of the predicted peaks (i.e. each partial fragment with

and without the fucose residue combined). Without these fucose-combined

masses, the number of theoretical fragments for both models is approxi-

mately the same. However, as the size of the glycan increases and there
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are more branches, the number of fragments observed in the experimental

spectra may become larger in the Full versus the Path Model. For larger

glycans therefore, the Full Model may produce additional peaks necessary

for obtaining the correct structure.

To fully observe the effect of glycan size on the accuracy of the Full and

Path model would require a thorough examination of several large glycans.

However, these data are currently unavailable since the glycopeptides ana-

lyzed were obtained from high throughput proteomic data in which there is

an upper limit of 4000 daltons for mass. As a result, massive glycan structure

were not found among the complex test set.

A independent sample of ESI-MS/MS spectra representing a well-studied

glycoprotein, Bovine Fetuin (NCBI accesion: gi:27806751), was obtained and

tested with both the Path and Full models. Figure 5.7a shows the MS/MS

spectrum obtained for the glycopeptide and figure 5.7b shows the structure

of the glycan as reported by Carr et al[3]. In the spectrum of figure 5.8,

the high intensity peaks of the spectrum represent two series of peaks: one

series which represents one fragmentation event per glycan (i.e. along one

branch of the structure) in figure 5.7b and another series representing two

fragmentation events (all peaks greater than 1360 illustrated in figure 5.8).

The number of theoretical fragments for the structure was found to be

45 and 14 for the Full Model and Path models respectively. When run with

both the Full and Path models, the Full Model was shown to return a more

accurate structure as seen in figure 5.9b compared to that of the Path Model

in 5.9c.

In figure 5.9c, we see that only one branch of the structure is counted

in the scoring. However, in addition to hits returned with this structure, a

second series of hits was also returned in which a peak with the mass of

106



A

B

Naked Peptide, 813.0 (+2)

= Sialic Acid

= Hexose

= HexNAc

Figure 5.7: This figure illustrates the ESI-MS/MS spectrum of the Bovine
Fetuin glycopeptide with m/z 1495. Figure A displays the MS/MS spectrum
of the glycan moiety of the glycopeptide and B shows the real structure as
elucidated by Carr et al.[3]
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A

Naked Peptide, 813.0 (+2)

One fragmentation events -
masses along one path

2 Fragmentation events –
masses between two 

branches

Hit #2Hit #1

Figure 5.8: This figure illustrates the inability of the Path model to re-
turn the correct structure in the examination of large glycans. The entire
structure of the glycan was elucidated by the Path Model in two hits, each
representing one of the series represented in the spectrum. This problem can
be attributed the fact that the Path Model does not take combined masses
into account.
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Figure 5.9: This figure shows the structures returned by the Glycan Analysis
Module in the analysis of a glycopeptide from Bovine Fetuin. Figure A
shows the real structure of the glycan as described by Carr et al. Figures
B and C show the structures of the top hits returned by the Full and Path
Glycan Fragmentation Models respectively. The shaded residues in represent
residues that are incorrectly identified.
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residue 4 illustrated in 5.9a served as the naked peptide. Effectively, the

entire structure was elucidated in 2 hits representing series 1 in figure 5.8

and series 2 in figure 5.8.

This example illustrates that for larger glycans, the increased number of

peaks produced by the Full Model may provide information necessary for the

identification of the entire structure and that Path Model for large glycans

may only be effective in returning substructures. Further exploration of this

aspect should be carried out in the future.

Precursor
m/z

Full: nm/no Path:
nm/no

Full: no/ne Path: no/ne

876.89 2 1.14 0.467 0.636
881.75 2.14 1 0.78 1.0
917.399 0.857 0.857 0.466 0.636
948.759 0.5 1 0.67 0.857
948.77 0.714 0.714 0.67 0.857
948.786 0.429 1 0.67 0.857
948.808 1 1 0.67 0.857
948.81 2.16 1.66 0.67 0.857
1002.76 1.2 1.2 0.7 0.875
1002.78 1.67 1 0.7 0.875
1002.78 1 1 0.7 0.875
1021.27 1.125 1.125 1.11 1.25
1061.79 1.11 1 0.89 1.0
1102.307 1.11 1 1 1.125
1102.32 1.128 1.14 1 1.125

average: 1.14 1.02 0.72 0.89

Table 5.7.1 Results for oligomannose data. nm = number of matched
glycan peaks, no = number of observed glycan peaks, ne = number of

expected peaks from the fragmentation model.
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5.7.2 Oligomannose Glycans

This section examines the results of the Glycan Analysis module imple-

mented with both the Full and Path models of fragmentation on oligoman-

nose type glycopeptides.

Fragmentation Models Compared to the analysis of complex glycans,

the discrepancy in the ratio of observed peaks to theoretical peaks (no/ne)

in both models of glycan fragmentation was much smaller; ratios of 0.72 and

0.89 were observed for the Path and Full models respectively. This smaller

discrepancy was expected since there is smaller variability in monosaccharide

composition, and as discussed in section 5.7.1, the size of the set of peaks

produced by the Full Model is smaller than in complex glycans. Thus, for

oligomannose glycans, both fragmentation models performed similarly.

Monosaccharide Composition The average ratio of matched peaks to

observed peaks (nm/no) in oligomannose glycans was found to be 1.14 and

1.02 in the Full and Path models respectively. In all spectra of the oligoman-

nose data, the observed peaks were correlated to partial glycan fragments

in the spectra. Compared to complex glycans, there is a smaller discrepancy

in (nm/no) between the two models. This result is a direct consequence of

the smaller number of fragments produced for oligomannose glycans.

Glycan Structure When the Path Model of fragmentation was used in

the analysis of the oligomannose glycans, in all cases the correct structure
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was determined. The Full model of fragmentation was found to perform

worse than the Path model on oligomannose sugars. Out of all the oligoman-

nose spectra, 46% of spectra were assigned oligomannose structures among

the top 5 hits returned by the Glycan Analysis Module. Although in the

majority of oligomannose glycans suitable structures were returned, in 20%

of cases complex glycans were returned instead of oligomannose structures.

It is important to note however, that although an incorrect structure was

returned, many of the observed peak assignments were correct. The differ-

ence in the performance can be partially attributed to the fact that the

large number of peaks produced by the Full Model were matched to noise.

In figure 5.10a the spectrum for oligomannose glycan with m/z 876.88 and

composition HexNAc2Hex9 is illustrated. In the mid-high m/z range of the

spectrum there is some area of noise as shown. Since the Full Model of frag-

mentation produces a large set of theoretical fragments, many peaks are

matched to noise and as a result, one of the top hits returned by the model

is a complex glycan (Fig.5.10b). To avoid this type of random matching, a

more stringent measure to penalize unmatched peaks should be adopted.

5.8 Performance on Low Quality Spectra

When the Glycan Analysis Module was tested on spectra of lower quality

in which only 50-70% of the partial fragment peaks are present, there was

a marked degradation in the performance in both the Full and Path models

of fragmentation. Figure 5.11 shows the spectra of two glycoforms from the

same sample. Figure 5.11a is a high quality spectrum whereas the peaks of

the spectrum in figure 5.11b contain a much smaller number of high intensity

peaks. The output of the software for the spectrum in figure 5.11a produced
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B

High Mannose PeaksNoise PeaksA

= Hexose

= HexNAc

= Fucose

Figure 5.10: Example of matching of Full Model peaks to random noise.
Figure A illustrates the spectrum for an oligomannose glycopeptide. The
extraneous peaks produced by the Full Model were matched to some random
peaks as shown in A. As a result of this random matching, a complex glycan
as shown in B was incorrectly returned.
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A

B

Figure 5.11: In this figure, parts A and B represent the same glycopeptide
analyzed twice. However, since the quality of the spectrum in A is much
higher than that of B in terms of number of partial fragment peak obtained,
the structures returned for A were more accurate compared to B.

the correct glycan and the correct naked peptide. Since the peaks repre-

senting the naked peptide is not observed in the spectrum in figure 5.11b,

the correct naked peptide and the glycan structure were not returned. A re-

duction in accuracy is also observed with MS/MS ion searching techniques

when applied to low quality peptide spectra.
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5.9 Execution Time

In terms of execution time, the Glycan Analysis Module performed similarly

for the Path and Full Models. Although fewer peaks are produced by the

Path Model, there was not a significant increase in the time required for

matching. In addition, since the size of the glycans examined was small,

the additional time required for the matching of larger glycans could not be

examined. In general, an average of two spectra per minute were analyzed

by the Path Model. A similar performance was noted for the Full Model.

5.10 Application of Glycopeptide Classifier and Gly-

can Analysis Module in Differential Glyco-

protein Expression

The software presented in this thesis was integrated into a high throughput

proteomics pipeline to assist in differential glycopeptide expression studies

in normal and tumor tissue of patients afflicted with colon cancer. After

MS/MS spectra for the samples were acquired, they were run through both

the Glycopeptide Classifier and the Glycan Analysis Module. For a gly-

copeptide identified by the Glycopeptide classifier at m/z 1021.16, the MS

survey scans in this m/z range were analyzed in both the normal and tumor

tissues of a particular patient. Analysis of the survey scans revealed that the

peptide was upregulated in tumor tissue as illustrated by the large peak at

m/z 1021.16 in the tumor sample (fig.5.12b) versus the smaller peak at the

same m/z in the normal sample (fig.5.12c).

To match the differentially expressed glycopeptide to its parent protein,

another piece of software was implemented, the Protein ID module. The
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input to the Protein ID module is the mass of the naked peptide. The pro-

gram then attempts to match this mass to all tryptic peptides of the NCBi

database containing the NXS/T sequon common to all N-linked glycopro-

teins. Further, the software was enhanced to detect other PTMs and com-

binations of PTMs such as oxidation and methylation. For the upregulated

glycopeptide, the Glycan Analysis Module suggested an oligomannose gly-

can structure (HexNAc2Hex9) and a naked peptide m/z of 915.57. Using the

protein ID module, the naked peptide of the differentially expressed peptides

was matched to the protein Carcinoembryonic Antigen (CEA5 HUMAN), a

known glycoprotein marker for cancer.

This example illustrates the capabilities of the software developed in

this thesis to facilitate differential expression and drug target discovery in

glycomics.
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Figure 5.12: This figure illustrates the ability of the software to assist in dif-
ferential glycopeptide analysis. Part A illustrates the MS/MS spectrum of
a differentially expressed glycopeptide at m/z 1021.16 . Upon the examina-
tion of the survey scans of the tumor and normal tissues at this m/z range,
parts B and C respectively, the intensity of the peak at 1021 was found to
be much more intense in the survey scan of the tumor as opposed to that
of the normal sample and thus differentially expressed. Using the Protein
ID module, the glycopeptide was eventually mapped to Carcinoembryonic
Antigen (CEA5 HUMAN), a known protein marker for cancer.
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Chapter 6

Conclusions and Future

Work

6.1 Glycopeptide Classification

The glycopeptide classification module was found to be effective in the iden-

tification of glycopeptide spectra from ESI-MS/MS data. Out of 94648 spec-

tra examined in the test data set, 97% of all glycopeptides in the sample

were detected with a false positive rate of 16%.

To improve the false negatives rate, several aspects of the classifier can be

modified. Most of the missed glycopeptide spectra contained noise in the low

m/z range, and the score was reduced to reflect the density of non-oxonium

ion peaks in the low m/z range. It was often the case that there were valid

peaks surrounding oxonium ion peaks which according to the scoring scheme

developed in section 3.3.1, were to be penalized. For example, there were

often two additional peaks surrounding certain oxonium ions representing

two successive water losses from the ion which were regarded as extraneous
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peaks and penalized. Including information about these water loss peaks

and other peaks to be expected in the low m/z range could reduce the false

negative rate.

There are several techniques that could be applied to reduce the false

positive rate. However, closer examination of the nature of the false positives

showed that many of them could be classified as greyzone glycopeptide spec-

tra that can not be positively or negatively classified manually. Thus, we can

not be certain that the classes are perfectly separable and it may be neces-

sary to introduce a third greyzone class. Without introducing a third class,

it is also possible that the following techniques could increase the accuracy

of classification:

• Using more precise methods for determining the decision

score. The decision score for glycopeptide classification was deter-

mined using a straightforward approach of examining the false positive

to false negative ratios at every score bin and choosing the score of the

bin with the optimal ratio as the decision score. In most classification

problems including that of glycopeptide classification, the classes are

not perfectly separable, and at a given score S members of more than

one class can exist with a given probability. To maximize the separa-

tion between classes at a specific score, we can develop a discriminant

function f(x;θ) to maximize a specific measure of separation between

the classes. There are several known methods to derive this function,

such as Fisher’s Linear discriminant analysis method or perceptrons,

that may enable a more accurate classification.

To improve the separation between classes, it is also possible to use

Support Vector Machines (SVMs) which transform linear decision sur-
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faces to more complex surfaces by extending the measurement space[13].

It is possible that in a non-linear decision space more accurate sepa-

ration of the original data set is achieved. However, given that the

classes may not be perfectly separable, it is uncertain whether or not

SVMs would improve the classification accuracy of the Glycopeptide

Classifier.

• Incorporation of Probabilistic Information about Glycopep-

tide Spectra Features For each feature of the glycopeptide model,

constant weights were assigned to reward the appearance of several

features. In the scoring of the oxonium ions for example, constants α

and β were added to reward the appearance of a ladder of oxonium

ions. The values for these constants were decided in an ad hoc manner

based on the suggestions of a biologist. However, if the probability of

the specific ions appearing can be assessed by surveying a large number

of glycopeptide spectra, more precise weights can be assigned which

may increase the performance of the Glycopeptide Classifier. During

the development of the glycopeptide classifier however, we were lim-

ited to a small number of glycopeptide spectra and thus could not

implement probabilistic techniques.

6.2 Glycan Analysis Module

The performance of the glycan analysis module produced mixed results de-

pending on the type of glycan analyzed and the fragmentation model. In

general, it was found that the Path Model performed marginally better than

the Full Model in the analysis of oligomannose glycans. The opposite trend

was observed in the analysis of complex glycans. In addition, it is postulated
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that the Full Model is more effective in the analysis of larger glycans. Since

larger glycans produce spectra with more peaks representing mass combina-

tions, the additional masses combinations examined by the Full Model will

most likely produce more accurate results.

In terms of overall performance, neither model of fragmentation was

shown to be superior to the other. To improve the performance of the glycan

analysis module, a more accurate model of glycan fragmentation should be

developed. The section below discusses several strategies for creating a more

realistic model of glycan fragmentation.

6.2.1 Improved Model of Glycan Fragmentation

The following factors can be examined to produce a more accurate model of

theoretical glycan fragmentation:

• Incorporation of additional rules in glycan fragmentation.

The models of fragmentation developed did not include known sci-

entific rules about glycan fragmentation such as the lability of cer-

tain residues. As mentioned in section 4.6, there are some unlikely

fragmentation products that are still included in the set of theoreti-

cal fragments and which lead to random peak matches. By including

known rules about fragmentation, a more valid set of peaks can be

produced, increasing the likelihood of a correct match.

The incorporation of information about the intensity of each of the

glycan fragments may also help produce a more accurate model of

glycan fragmentation. In general, more intense glycan fragment peaks

represent common fragmentation products. For example, highly in-

tense peaks often occur at branch points as the specific product can

121



be derived by fragmentation along either of the branches attached at

that point. They can also occur at points to which highly labile sac-

charides are attached. For example, masses produced by the loss of a

sialic acid residue are often highly intense. Thus, if the correlation of

the theoretical and experimental spectra includes information regard-

ing intensity, it is possible that the accuracy of the hits returned may

increase.

• Determining the optimal number of fragmentation events.

The Path Model of glycan fragmentation, which produces fragments

based on one fragmentation event per glycan, was proposed as an al-

ternative to examining all possible simultaneous fragmentations across

branches. Analysis of the ratios of the number of observed peaks to

the number of predicted peaks by each fragmentation model however

revealed that the real number of observed fragmentation seemed to lie

somewhere between the Full and Path models. Although the true num-

ber of simultaneous branch fragmentation will vary according to the

glycan and experimental factors, we can try to determine whether or

not there is an optimal number of simultaneous fragmentation events.

For this study, we can simulate the theoretical spectra that would re-

sult from 1 to m simultaneous branch fragmentations where m is the

number of branches in the glycan, and compare them with observed

peaks. Techniques used in Monte Carlo simulations can be adapted for

this study.
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6.2.2 Future Testing

The Glycan Analysis Module was tested mainly on N-linked glycans ob-

tained from experimental data. As a result, only a small set of data was

obtained with little variability in the types of glycans analyzed. In the fu-

ture should the data become available, tests should be conducted on a more

comprehensive data set which should include:

• Larger Glycans. See section 5.7.1.

• O-linked glycans. The approaches of both the Glycopeptide Classifier

and the Glycan Analysis Module are applicable to the analysis of O-

linked glycans although these spectra display slight differences from

N-linked glycans. Since O-linked glycans also play a significant role in

diseases such as cancer, for a complete glycome study it is important

that the software is applicable to these glycans as well.

• Greater variation in the types of glycans. Glycans with different monosac-

charides and structures should be tested in the future since these fac-

tors can affect glycan fragmentation patterns.
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Glossary

Anomericity The a or b configuration of the glycosidic bond of a sugar to

another sugar.

b-ion Peptides are made of repeating amino acid units as illustrated in fig-

ure 2.1. To differentiate the start of the peptide from the end, each terminus

of the peptide is labeled; one terminus is called the N-terminus (amino ter-

minus) and the other the C-terminus (carboxyl terminus). The N terminus is

where protein synthesis is initiated and the C terminus is where it is termi-

nated. When the amino acids of the peptide fragment, they produce 2 types

of ions: a b-type and a y-type ion (there exist other types of ions as well

such as x-ions and a-ions although they are more rare). A b-ion and a y-ion

represent the peptide fragment containing the N- or C-terminus respectively.

Every b- and y-ion pair is complementary and the combined masses of the

b-ion and the y-ion should equal the mass of the peptide. The interpretation

of peptide MS/MS spectra thus begins with the identification of a series of

ions (b or y), between which there is a mass difference equal to a specific

amino acid. By detecting and entire series of b-or y-ions and observing mass

differences between them, the sequence of the peptide can be reconstructed.

Carbohydrate Same definition as glycan.

Collisional Induced Dissociation (CID) This is a technique whereby

precursor ions are made to undergo collision with a neutral gas to produce

fragments.
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Complex-type glycan N-linked glycan that has varied composition and a

variable number of antannae stemming from the core (see figure 1.5B). Com-

plex type N-glycans show the largest structural variation resulting from the

combination of monosaccharides and the different number of antannae.

de novo peptide sequencing The elucidation of peptide sequences from

an MS/MS spectrum directly. By observing distances between peaks in an

MS/MS spectrum, the order of peptide fragmentation, and thus the sequence

can be deduced.

Deconvolution For making MS/MS more easy to interpret, often the multi-

ply charged peaks are converted into their singly charged forms. This process

is MS/MS spectra deconvolution.

Electrospray Ionization (ESI) ESI is an ionization technique using ion

evaporation. The sample is dissolved in a mobile phase and pumped through

a capillary. The sample is then floated at high potential which confers a

charge to the peptide. The ionized peptides are then subject to MS. ESI

ionization is commonly used in proteomics, and was the mode of ionization

used to generate the data in this thesis.

Glycan General term used to refer to a di-,oligo-, or polysaccharide struc-

ture. In the context of glycoproteins, the glycans are the carbohydrate moi-

eties attached to the peptides.

Glycosidic bond The bond between a sugar and an alcohol. Also the bond

that links two sugars in disaccharides, oligosaccharides and polysaccharides.
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Glycoform When a single glycosylation site contains a series of different

carbohydrates (microheterogeneity), the glycoproteins with different glycans

are glycoforms of each other.

Greyzone spectra Those MS/MS spectra in which the underlying sequence

is ambiguous, even upon manual elucidation.

High-mannose-type glycan See definition for oligomannose-type glycan.

Hybrid-type glycan Hybrid-type N-glycans have the characteristic fea-

tures of both complex-type and high-mannose type glycans as seen in figure

1.5C.

Intensity (peak intensity) Y-axis measurement on an MS/MS spectrum.

For a fragment at a particular m/z, the intensity provides a measure of the

relative quantity of the peptide detected.

Isotope Atoms with the same atomic number differing in mass by one and

possessing nearly identical chemical properties. In the context of MS/MS

spectra, the various isotopes of the fragments are often found in a series

separated by 1 dalton. If the initial fragment was multiply charged with a

charge m, there will be a series of peaks spaced by 1/m m/z units.

Lability Lability refers to the ability of a particular monosaccharide to dis-

sociate during CID.
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Liquid chromatography (LC) Process used to separate complex mixtures

of peptides or proteins according to various factors such as hydrophobicity.

LC is often used in tandem with mass spectrometry; peptides separated by

LC enter the mass spectrometer in a coupled fashion.

Macroheterogeneity Macroheterogeneity refers to the phenomenon in which

a protein can have one or more glycosylation sites, which may or may not

be occupied by a carbohydrate.

Monosaccharide The base unit forming glycans. The most common types

of monossacharides are Hexoses (Man,Glc, Gal), HexNAc (GalNAc,GluNAc)

and NeuAc (sialic acid) and pentose. Multiple monosaccharide molecules

can be linked together in chains, to form disaccharides, trisaccharides, and

polysaccharides.

Microheterogeneity A particular glycoprotein may occur in forms that

differ in the structure of one or more of its carbohydrate units, a phenomenon

known microheterogeneity.

m/z The mass to charge ratio of an ion with ”z” being the exact integer

multiple of the charges on the ion. Since MS/MS spectra contain charged

species, the values of a fragment are reported as m/z.

Naked peptide Term used to signify the peak representing the peptide

without the glycan. During low-energy CID of glycopeptides, the naked

peptide peak itself is not always visible since the peptide moiety remains

intact with the first HexNAc of the glycan attached. The naked peptide
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peak+HexNAc is typically one of the most intense peaks in a glycopeptide

MS/MS spectrum.

Oligomannose-type glycan N-linked glycan in which all monosaccharides

attached to the common core of HexNAc2Hex3 are mannose residues (see

figure 1.5A).

Oligosaccharide A saccharide of a small number of monosaccharides, ei-

ther O or N linked to the next sugar.

Oxonium ion A class of salts derived from certain organic ethers or alco-

hols by adding a proton to the oxygen atom and thus producing a positive

ion. In the context of glycopeptide ESI-MS/MS spectra, oxonium ions are

the peaks at low m/z values which represent the monosaccharides or di-,

tri-saccharides (e.g. peaks at m/z 204 HexNAc, 366 HexNAcHex). Oxonium

ions are a key feature of glycopeptide MS/MS spectra.

Polysaccharide Polymers of more than ten monosaccharide residues linked

in branched or unbranched chains.

Sugar Same definition as glycan.

Survey scan After the peptides of a particular sample are ionized and sub-

ject to the first round of mass spectrometry, the masses and amount of each

peptide is recorded in a survey scan. Peptides from the survey scan are fur-

ther selected for a second round of MS for sequence determination.
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y-ion See definition for b-ion.


