
AN EMPIRICAL STUDY OF

DIFFERENT BRANCHING STRATEGIES FOR

CONSTRAINT SATISFACTION PROBLEMS

by

Vincent Park

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada 2004

c©Vincent Park, 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many real life problems can be formulated as constraint satisfaction problems (CSPs).

Backtracking search algorithms are usually employed to solve CSPs and in backtracking

search the choice of branching strategies can be critical since they specify how a search

algorithm can instantiate a variable and how a problem can be reduced into subproblems;

that is, they define a search tree. In spite of the apparent importance of the branching

strategy, there have been only a few empirical studies about different branching strategies

and they all have been tested exclusively for numerical constraints. In this thesis, we

employ the three most commonly used branching strategies in solving finite domain CSPs.

These branching strategies are described as follows: first, a branching strategy with strong

commitment assigns its variables in the early stage of the search as in k-Way branching;

second, 2-Way branching guides a search by branching one side with assigning a variable

and the other with eliminating the assigned value; third, the domain splitting strategy,

based on the least commitment principle, branches by dividing a variable’s domain rather

than by assigning a single value to a variable. In our experiments, we compared the

efficiency of different branching strategies in terms of their execution times and the number

of choice points in solving finite domain CSPs. Interestingly, our experiments provide

evidence that the choice of branching strategy for finite domain problems does not matter

much in most cases—provided we are using an effective variable ordering heuristic—as

domain splitting and 2-Way branching end up simulating k-Way branching. However, for

an optimization problem with large domain size, the branching strategy with the least

commitment principle can be more efficient than the other strategies. This empirical

study will hopefully interest other practitioners to take different branching schemes into

consideration in designing heuristics.

iii

Acknowledgements

First of all, I would like to express my gratitude to God for his help and support. As

I had experienced severe health problems during my graduate study, God had helped me

to overcome many difficult situations and he had given me the strength to move forward.

Without him, I would not be able to stand where I am standing now.

Also, I would like to show my sincere appreciation to my supervisor, Prof. Peter van

Beek for his support, advice, and encouragement throughout my whole graduate study

career and to my readers, Prof. Robin Cohen and Prof. Chrysanne DiMarco for their

invaluable feedback.

Furthermore, without the support from my personal friend, I would not be able to

complete my graduate study. Especially, I would like to take this opportunity to thank

Br. David Ernest, Fr. Eddie, Dr. Lockhead, Ignacio Davila Pazmino, Dr. Huayue Wu,

Dr. Martin Byung-Kuk Jeon, Je-Bum Joseph Park, Dr. In-Sop Song, Scott Birchall, Dr.

Jiye Li, Sunny Lam, Victor Ma, Oh-Ryung Seo, Se-Ah Rachel Park, Ju-Hyun Choi, Kath-

eryn Anderson, Nathaniel Anderson and Te-Eun Kim for their warm care and everlasting

friendship.

iv

Contents

1 Introduction 1

2 Background 7

2.1 Basic Definitions . 7

2.2 Constraint Propagation . 10

2.3 Backtracking Search (BT) . 11

3 Different Branching Strategies in a Search 21

3.1 Branching Strategies . 21

3.2 Heuristics: Branch Ordering Heuristics . 30

3.3 Related Work . 32

4 Experimental Setup 35

4.1 Problems . 35

4.1.1 The N -queens Problem . 35

4.1.2 The Golomb Ruler Problem . 36

4.1.3 The Car Sequencing Problem . 37

4.1.4 The Truck Scheduling Problem (TSP) 38

4.1.5 The Instruction Scheduling Problem 39

4.1.6 The Uniform Binary Random Problem 40

4.2 Implementation . 41

5 Experimental Results 48

5.1 Results for the N -queens Problems . 48

v

5.2 Results for the Golomb Ruler Problems . 51

5.3 Results for the Instruction Scheduling Problems 54

5.4 Results for the Car Sequencing Problems 56

5.5 Results for the Truck Scheduling Problems (TSP) 58

5.6 Results for the Uniform Binary Random Problems 59

6 Discussion 65

7 Conclusion 68

vi

List of Tables

4.1 Configurations in the car sequencing problem (taken from [6]) 38

4.2 Different branch ordering heuristics in ILOG 47

5.1 Running time of branching methods for the 20-queens problem 49

5.2 Running time of solving the N -queens problems with MinSize 50

5.3 Running time of solving the N -queens problems with MaxMin 50

5.4 Choice points of solving the N -queens problems with MinSize 50

5.5 Running time of branching methods for OGR with 8 marks 51

5.6 Running time of solving the Golomb ruler with Lex 52

5.7 Running time of solving the Golomb ruler with MinSize 52

5.8 Running time of solving the Golomb ruler with MinMin 52

5.9 Running time of solving the Golomb ruler with MinMax 53

5.10 Choice points of solving the Golomb ruler with Lex 53

5.11 Running time of branching methods in scheduling 394 instructions 54

5.12 Choice points of branching methods in scheduling 69 instructions 55

5.13 Running time of branching methods in the instruction scheduling problems 55

5.14 Running time of branching methods in sequencing 20 cars 56

5.15 Running time of branching methods with Lex in sequencing cars 57

5.16 Running time of branching methods with MinSize in sequencing cars . . . 57

5.17 Running time of branching methods with MaxMin in sequencing cars . . . 57

5.18 Running time of branching methods with MinMax in sequencing cars . . . 58

5.19 Choice points of branching methods with Lex in sequencing cars 58

5.20 Running time of branching methods in TSP with 7 customers 59

5.21 Choice points of branching methods in TSP with 7 customers 59

vii

5.22 Running time of branching methods in TSPs 60

5.23 Running time of branching methods with MaxSize in the random problem 61

5.24 Choice points of branching methods with MinSize in the random problem . 63

5.25 Running time of branching methods with Lex in the random problem . . . 64

viii

List of Figures

1.1 A search tree of k-Way branching . 3

1.2 A search tree of 2-Way branching . 4

1.3 A search tree of domain splitting strategy 4

3.1 A search trace of BT with k-Way in the 4-queens 22

3.2 A search trace of BT with 2-Way in the 4-queens 24

3.3 A search trace of BT with domain splitting in the 4-queens 25

3.4 A search trace of BT with FC for k-Way in the 4-queens 26

3.5 A search trace of BT with FC for 2-Way in the 4-queens 27

3.6 A search trace of BT with FC for domain splitting in the 4-queens 28

3.7 A search tree for k-Way in the 4-queens problem 29

3.8 A search tree for 2-Way that simulates k-Way 29

3.9 A search tree for domain splitting that simulates 2-Way 30

4.1 ILOG code for the N -queens problems from [6] 41

4.2 ILOG code for the objective function . 43

4.3 ILOG code for 2-Way branching . 44

4.4 ILOG code for domain splitting . 46

4.5 ILOG code for an enumeration algorithm called Generate 46

5.1 Running time of branching methods in the random problem 62

ix

List of Algorithms

1 Chronological Backtracking Algorithm . 12

2 Generic Backtracking Algorithm from [12] 14

3 Subroutine for chronological backtracking 15

4 Subroutine for BT with forward checking from [12] 16

5 Pseudo code of Update used in forward checking 16

6 Subroutine for Maintaining Arc Consistency (MAC) from [12] 18

7 Pseudo code for Arc Consistency (AC) algorithm in BT with AC 19

8 Pseudo code for Node Consistency (NC) algorithm in AC 20

9 Pseudo code of Revise-Domain in BT with AC 20

x

Chapter 1

Introduction

Many real life problems can be formulated as constraint satisfaction problems (CSPs) [8]

that are defined by three components, namely the variables, V , representing the entities

in a problem, the domains of the variables, D, signifying the possible combinations of

answers, and lastly the constraints, C, specifying the relations that hold in a solution and

mapping a problem into a solution. Among different CSPs, finite domain problems are

particularly interesting to us since they make up the largest class of real life problems

tackled by constraint programming (CP) systems [9]. CP languages providing constraints

over finite domains have proved to be ideal for solving such problems and have had the

most industrial impact [9]. In [12], Tsang also suggests that efficient algorithms can exploit

the finiteness in the number of variables and the size of domain. Henceforth, we only deal

with finite domain CSPs such as N -queens problems, optimal Golomb ruler problems,

car sequencing problems, truck scheduling problems, instruction scheduling problems, and

random problems—we will discuss these problems in more depth in Section 4.1.

To better understand modeling a CSP, we briefly define the 4-queens problem as a CSP.

The 4-queens problem is to find the legal arrangement of four queens on the four by four

chess board without imposing a threat to each other—for people who are not familiar with

chess, the problem is basically to occupy four squares in the four by four grids without

facing each other on the same column, on the same row or diagonally. As a CSP, we

can define a column of the board as a variable and a row of the board as a value. Then,

the assignment of a value to a variable will represent the location of a queen. Also, it is

1

2

possible to model a row as a variable and a column as a value since a grid of a chess board

is symmetrical. Formally, V = {x1, x2, x3, x4} and D = {d1, d2, d3, d4}. Then, arithmetic

constraints are used to find the legal position of four queens as follows:

• When 1 ≤ i, j ≤ 4, xi �= xj

• xi + i �= xj + j

• xi − i �= xj − j

In the ILOG environment [6]1 that aids us in carrying out the experiments, the primi-

tive constraint called alldiff is employed to ensure the inequality since this primitive

constraint is more efficient than arithmetic constraints. The model with alldiff is in-

troduced in Section 2.1. We will use this 4-queens problem as an example to illustrate

different concepts throughout this thesis.

In solving a CSP, usually a backtracking search is employed to find a solution. Dur-

ing the search, each variable has to be assigned a legal value in order to be a solution;

legal means that the assignment does not violate the constraints imposed on a variable or

variables. Labeling is used to guarantee that each variable is instantiated [9]. In labeling,

we have a choice of how to branch and assign. The concept of branching comes from the

Operations Research (OR) and SAT communities where it defines a search tree. However,

branching in labeling from the Constraint Programming (CP) community has a slightly

different meaning in that it could mean either all of the backtracking search process includ-

ing a variable ordering heuristic [9] or only the instantiation a variable as in [12]. In this

thesis, the notion of branching from OR and the definition from [12] are employed. Fur-

thermore, the backtracking search with full arc consistency (also refers to the backtracking

search with domain consistency) is exclusively used because it prunes more search spaces

than the other backtracking searches.

A variety of branching strategies are proposed to reduce the search space by taking

advantage of the structure of a particular problem, as a backtracking search, the most

expensive operator in a search, uses labeling to try different values for the variables [9]. We

1ILOG is a commercially available software package that provides a constraint programming library
written in C++ [6]. We have employed version 4.2 of ILOG in this thesis.

Introduction 3

. . .

. . .

... . . .

x1 = 1 x1 = 2

x2 = 1 x2 = 2 x2 = 3 x2 = 1 x2 = 2

x3 = 1 x3 = 2 x3 = 3 x3 = 3 x3 = 3x3 = 2x3 = 2x3 = 1 x3 = 1

Figure 1.1: An underlying search tree of k-Way branching that is exclusively used in

backtracking

mainly focus on three different branching strategies in labeling, analyzing and comparing

them. The names of the different branching strategies, k-Way and 2-Way branching, appear

in [10] and the domain splitting strategy is introduced in [2].

The first strategy, k-Way branching, assigns a value to a constrained variable in the

order of variables that is determined by a variable ordering heuristic, and this strategy

is used almost exclusively in CSP (as shown in Figure 1.12). Here, the branching factor

becomes equal to the maximum domain size since it has to instantiate each variable with

all the possible values in the domain in the predefined or dynamically arranged order.

Assuming that the size of domains are equal to d and there are n number of variables, then

the branching factor of a search tree, b, becomes equal to d, the depth of the tree is O (n)

and the number of nodes in the search tree is O (dn) or O (bn).

The second strategy, 2-Way branching, splits a domain of a variable into two sub-

domains so that one sub-domain contains a value that is assigned to a variable and the

other has the rest of the values in the domain excluding the assigned value. Solely based

on the membership, it splits a domain in two ways. This binary tree has depth larger

2Figures 1.1, 1.2, and 1.3 are the so called underlying search trees which are implicitly defined by the
branch ordering heuristic and the branching strategy in comparison with Figures 3.1, 3.2, 3.3, 3.4, 3.5,
and 3.6, which are actually the traces of a search algorithm.

4

11 =x 11 ≠x

12 =x 12 ≠x 21 =x 21 ≠x

.

Figure 1.2: An underlying search tree of 2-Way branching strategy with using equality

than n; more precisely, it would be O (d ∗ n). The number of nodes generated by 2-Way

branching is O
(
2d∗n), where the branching factor is two. It is also worth mentioning that 2-

Way branching can simulate k-Way branching with increasing depth, but k-Way branching

cannot simulate 2-Way branching [10]. The graphical illustration of 2-Way branching can

be found in Figure 1.2.

)(
2

)()(11
1

xMinxMaxx +≤)(
2

)()(11
1

xMinxMaxx +>

)(
2

)()(22
2

xMinxMaxx +≤)(
2

)()(22
2

xMinxMaxx +>

.

Figure 1.3: An underlying search tree of the domain splitting strategy with pivoting in the

middle of domain

The last strategy, called “domain splitting” (some literature also refers to it as di-

chotomic search [2]), repeatedly reduces the domain of each variable by splitting the cur-

Introduction 5

rent domain into subdomains that contain only some part of the original domain. Each

subdomain is mutually exclusive, meaning that there are no duplicate values in subdo-

mains. The most obvious example can be achieved by splitting at the middle point of the

domain with resulting subdomains as the lower and upper halves [9]. Domain splitting

employs the same idea as 2-Way branching; however, it is different since it splits in the

pivot that the user chooses instead of being based on the membership of a single assigned

value and it may most likely contain more than one value in subdomains. In this strategy,

there are parameters to be set to maximize the performance; for example, the size of sub-

domains, the number of subdomains and the pivot need to be set in order to define how

deep a search tree is, how large a search tree is, and how well a search tree guides to a

solution. The pictorial description of domain splitting is illustrated in Figure 1.3. With

the assumption that the search tree is binary, the depth of this tree becomes O (n ∗ log d),

and the upper bound of nodes in the tree is O
(
2n∗log d

)
. About the power of expressiveness,

domain splitting can simulate both 2-Way and k-Way branching, but 2-Way and k-Way

branching are not able to map domain splitting; therefore, it is safe to conclude that the

domain splitting strategy is the most expressive among three strategies and then followed

by 2-Way branching and k-Way branching in order.

Usually in labeling, branching strategies are often combined with variable and value

ordering heuristics. Variable ordering defines the order of branches to be explored in a

search tree and value ordering specifies the order of values to be assigned. From here on,

we adopt the notion of a branch ordering heuristic which signifies the variable ordering

heuristics that we have employed to test with branching strategies.

To the author’s knowledge, the comparison among different branching strategies in

solving finite domain CSPs has not been made so far. This thesis attempts to compare the

efficiency of different branching techniques with combinations of branch ordering heuristics

and, furthermore, to classify the types of problems that are beneficial in using particular

branching techniques. After extensive empirical studies, we observe that there is some

promising evidence supporting the fact that domain splitting seems to work better than

k-Way and 2-Way branching for an optimization problem with large domain; however, in

most cases, the choice of branching strategies becomes trivial when they are combined with

the most efficient variable ordering heuristics since their running times behave very alike as

6

domain splitting and 2-Way branching end up simulating k-Way branching. These results

show us that we need to design specialized heuristics to exploit the different branching

strategies so that the different branching strategies can be better used.

The remainder of the thesis is organized in the following manner. In Chapter 2, we

elucidate the basic definitions of CSP, constraint propagation, and backtracking search. In

Chapter 3, we discuss branching strategies in more depth and also present some of available

branch ordering heuristics. In addition, we review some of current work related to our re-

search. In Chapter 4, we explain how we set up the experiments. We describe the problems

used in this experiment and show how ILOG Solver [6] is used in the implementations. In

Chapter 5, the results of the experiments are reported and in Chapter 6, we analyze the

empirical data and evaluate our contributions. Lastly in Chapter 7, we conclude with a

glimpse of future research directions.

Chapter 2

Background

In this chapter, we present some necessary background information to understand this

thesis. In Section 2.1, we discuss some basic definitions and clarify some terminology that

we use throughout the thesis. Some methods to prune the search space are presented in

Section 2.2. Lastly, in Section 2.3, we introduce some basic techniques and algorithms

commonly used in solving constraint satisfaction problems.

2.1 Basic Definitions

A constraint satisfaction problem(CSP) consists of a set of n variables, X = {x1, . . . , xn};
a set of d values, D = {v1, . . . , vd}, where each variable xi ∈ X has an associated finite

domain dom(xi) ⊆ D of possible values; and a collection of m constraints, {C1, . . . , Cm}.
Each constraint Ci is a constraint over some set of variables, denoted by vars(Ci). Cxi,xj

also

signifies the constraint imposed between the variables i and j, meaning that vars(Cxi,xj
) =

{xi, xj}.
The following definitions in this section are adopted from [12].

Definition 1 (Label) A label is simply a variable-value pair that represents the assign-

ment of the value to the variable. x = v denotes the label of assigning the value v to the

variable x, and it is only meaningful if v is in the domain of x (i.e. v ∈ dom(x)).

Moreover, labeling means the process of assigning a value to a variable.

7

8

Definition 2 (Compound Label) A compound label is the simultaneous assignment

of values to a (possibly empty) set of variables.

Hereafter, we employ the notation {x1 = v1, x2 = v2, . . . , xn = vn} to denote the compound

label of assigning v1, v2, . . . , vn to x1, x2, . . . , xn respectively.

Definition 3 (Satisfies) If the variables of the compound label L are the same as those

variables of the elements of the compound labels in constraint C, then L satisfies C if

and only if L ∈ C. In other words, {x1 = v1, x2 = v2, . . . , xk = vk} satisfies Cx1,x2,...,xk
if

and only if {x1 = v1, x2 = v2, . . . , xk = vk} ∈ Cx1,x2,...,xk
.

The task in a CSP is to assign a value to each variable such that all the constraints are

satisfied simultaneously. A CSP is satisfiable if a solution tuple exists. A solution tuple of

a CSP means a compound label for all those variables which satisfy all constraints.

For instance, with the 4-queens problem as in the earlier example, the variables are

the four different columns, n = 4, X = {x1, x2, x3, x4}, and xi represents the ith column.

The domains of these variables are initially set to be the values of four different rows,

d = 4, D = 1, 2, 3, 4. The constraints in this particular problem can also be seen as follows:

• all the variables xi are pair-wise distinct.

• all the variables xi + i are pair-wise distinct.

• all the variables xi − i are pair-wise distinct.

A constraint such as alldiff can be employed to ensure the uniqueness of all the variables.

For example, alldiff(x1, x2, x3, x4) will make sure that all the variables are pair-wise

distinct—i.e. x1 �= x2, x1 �= x3, x1 �= x4, x2 �= x3, x2 �= x4, and x3 �= x4.

For 4-queens problem, there is more than one solution for the problem, and the com-

pound label, {x1 = 2, x2 = 4, x3 = 1, x4 = 3}, can be one of solutions. This compound label

specifies to place four queens at the following locations: the first queen in the cell at the

first column and the second row; the second queen in the cell at the second column and

the fourth row; the third queen in the cell at the third column and the first row; the fourth

queen in the cell at the fourth row and the third row.

Background 9

As shown in the 4-queens example, a CSP problem can have multiple solutions, and

in that case, sometimes, we are not only interested in the satisfiability of a constraint but

also wish to find the best solution. Depending on the number of solutions required, CSPs

can be classified into the three categories as follows [12]:

• CSPs in which one has to find any solution tuple.

• CSPs in which one has to find all solution tuples.

• CSPs in which one has to find optimal solutions, where optimality is defined according

to some domain knowledge.

Finding the best solution of a CSP is called an optimization problem. This requires

some way of specifying which solutions are better than others. The usual way of doing this

by giving an objective function that maps each solution to a real value. By convention, we

will assume that the aim is to minimize the objective function f . However, we can easily

change the function to find the maximum value as f is changed into −f . An example of an

optimization problem is an Optimal Golomb Ruler problem of which the goal is to minimize

the overall length in the ruler. The objective function for this problem can be simply to

minimize the last scale, say xn. So the objective function looks like f(xn) = min(xn). This

problem will be dealt with in more detail later in the problems section.

In this thesis, we have used six different finite domain problems to test the effectiveness

of the branching strategies. The problems are namely, the N -queens problems, the Golomb

ruler problems, the instruction scheduling problem, the car sequencing problem, the truck

scheduling problem, and random problems. We have chosen all finite problems since,

among different types of CSPs, finite domain problems make up the largest class of real

life problems tackled by Constraint Programming (CP) systems [9].

We can also distinguish CSPs into different problem classes based on the type of con-

straints. A binary CSP, or binary constraint problem, is a CSP with unary and binary

constraints only. A CSP with constraints not limited to unary and binary will be referred

to as a general CSP.

Therefore, on the merit of what types of constraints a problem employs and what kind

of solutions a problem has, we can categorize our test cases in the following way:

10

• the N -queens and the car sequencing problems are general satisfiable problems,

• the random problems are binary satisfiable problems,

• the Golomb ruler, instructions scheduling, and truck scheduling problems are general

optimization problems.

2.2 Constraint Propagation

The goal of propagation is to efficiently look for the potential false1 or valuation2 domains

in order to prune an unproductive search space. The following definitions are based on the

presentation in [9].

To find value and false domains efficiently, various techniques have been proposed. In

here, we closely look at domain consistency that we have extensively used in our experi-

ments since it propagates more tightly than the others. Due to its tightness, it also requires

more computation time, but we overlook this aspect because for the large problem size that

we have tested, the efficiency of domain consistency seems to out weigh its overhead cost.

Definition 4 (Domain consistency) A constraint C is domain consistent with do-

main D if for each variable x ∈ vars(C) and domain assignment v ∈ dom(x), there is an

assignment to the remaining variables in C, say x1, x3, . . . , xk, such that vj ∈ dom(xj) for

1 ≤ j ≤ k and {x = v, x1 = v1, x2 = v2, . . . xk = vk} is a solution of C. A CSP with

constraint C1 ∧ . . . ∧ Cm and domain D is domain consistent if each primitive constraint

Ci is domain consistent with D for 1 ≤ i ≤ m.

To elucidate better how the propagator works, the previous 4-queens example is used.

The propagator will proceed with the following steps to remove 1 from dom(x1) that

violates domain consistency:

• x1 = 1 and x2 = 1 violate x1 �= x2, and

1A domain is a false domain if some variable in the domain becomes empty and it indicates that the
original problem is unsatisfiable.

2A domain is a valuation domain if every variable in the domain has a single value left in their domain
and it indicates that the resulting assignment is a solution for the original problem.

Background 11

• x1 = 1 and x2 = 2 violate x1 − 1 �= x2 − 2, but

• x1 = 1 and x2 = 3 satisfy Cx1,x2.

• Similarly x1 = 2, x1 = 3 and x1 = 4 are tested.

• Then, the values for x2 are examined.

• Since all the values for x1 and x2 can have a satisfying assignment for the constraint

imposed between them, x1 and x2 indeed are domain consistent for Cx1,x2.

• However, further investigations with other constraints in C reveal that x1 = 1 cannot

have a successful assignment for Cx3,x4.

• Therefore, 1 /∈ dom(x1) in order to maintain domain consistency for the problem.

For other values in the domain, they are also iteratively and exhaustively examined

with every constraint in the problem, C = {Cx1,x2, Cx1,x3, Cx1,x4, Cx2,x3, Cx2,x4, Cx3,x4} and

those values that make a constraint domain inconsistent are removed from the domain. At

the end, the propagator ensures that all the constraints are domain consistent with the

newly updated domain. After propagating the domains, if a domain of a variable becomes

a valuation domain, it becomes a label for the variable in a solution, and if a domain of a

variable is a false domain, it means that the problem is unsatisfiable.

2.3 Backtracking Search (BT)

In this section, we discuss search strategies commonly used in CSP. We have solely em-

ployed with the backtracking search algorithm with full arc consistency since it has the

most pruning effect. For pedagogical reasons, we start by explaining chronological back-

tracking search (BT), then (BT) with forward checking and with full arc consistency as a

consistency based search. The material in this section is based on the presentation in [12].

12

Algorithm 1: Chronological Backtracking Algorithm

Algorithm: Chronological Backtracking(V, D, C, Branch)

begin
Backtrack(V, {} , D, C, Branch) ;

end

One of the simplest techniques for determining satisfiability of a CSP is chronological

backtracking. In backtracking, k-Way branching is to determine satisfiability of a CSP by

choosing one variable at a time, assigning one value for it at a time, and ensuring that the

newly selected label is compatible with the already assigned compound label. If the current

assignment violates any constraints imposed on the problem, then an alternative value in

its domain is tried. If at any stage, no value can be assigned to a variable without violating

any constraints, the label which was last selected is revised, meaning that an alternative

value is tried for the variable in the label. This process repeats itself until either a solution

is found or all the values in the domains of variables are exhaustively tried.

The 2-Way branching strategy backtracks similarly as k-Way does; however, it requires

more branches for a variable to be labeled than k-Way branching since after assigning a

value, v, to a variable, x, 2-Way branching adds a new constraint x �= v to the constraint,

C, rather than trying different values (refer to Algorithm 2).

Unlike the other two branching strategies, domain splitting does not instantiate a vari-

able unless the domain of a variable is a valuation domain. Rather, it splits a domain

into the two sub-domains on the merit of the predefined pivot point3. As a result, the

backtracking algorithm for domain splitting requires more steps to separate the domains

into small subdomains until either a valuation or a false domain is obtained. As shown in

Algorithm 2, the techniques for domain splitting to backtrack in case of a false domain are

very similar to the other branching strategies. The reason is that even in domain splitting,

a variable first needs to be assigned and tested for the satisfiability against constraints

before a search backtracks to find an alternative value.

3In this thesis, we employed the pivot point to be a middle of a domain; however, we are also aware
that there can be many other ways to divide a domain that exploit the domain information in order to
prune effectively.

Background 13

The pseudo code for the chronological backtracking algorithm is found in Algorithm 1.

Algorithm 1 calls the helper procedure, Backtrack in Algorithm 2. Algorithms 1 and 2 are

also employed in consistency based searches with the minor changes made in the subroutine

area in Algorithm 2. For chronological backtracking, the subroutine in Algorithm 3 can be

placed inside Algorithm 2.

14

Algorithm 2: Generic Backtracking Algorithm from [12]

Algorithm: Backtrack (UNLABELLED, COMPOUND-LABEL, D, C, BRANCH)

UNLABELLED is a set of variables to be labeled
COMPOUND-LABEL is a set of labels already committed to
D is a set of domains
C is a set of constraints
BRANCH specifies a branching strategy
begin

if UNLABELLED = {} then
return COMPOUND-LABEL ;

else
begin

Pick one variable x from UNLABELLED ;
repeat

if BRANCH = k-Way branching then
Pick one value v ∈ dom(x);
Delete v from dom(x);
if COMPOUND-LABEL ∪ {x = v} violates no constraints then

/* Here for Subroutine */

if BRANCH = 2-Way branching then
Pick one value v ∈ dom(x);
C = C ∪ x �= v;
if COMPOUND-LABEL ∪ {x = v} violates no constraints then

/* Here for Subroutine */

if BRANCH = domain splitting then
if dom(x) is a valuation then

Pick one value v ∈ dom(x);
Delete v from dom(x);
if COMPOUND-LABEL ∪ {x = v} violates no constraints then

/* Here for Subroutine */

else
divide dom(x) into two subdomains, dom1(x) and dom2(x);
D′ = {D − dom(x)} ∪ dom1(x);
Backtrack (UNLABELLED, COMPOUND-LABEL, D′, C, BRANCH);
D′ = {D − dom(x)} ∪ dom2(x);
Backtrack (UNLABELLED, COMPOUND-LABEL, D′, C, BRANCH);

until Dx = {};
return NIL;
/* signifying no solution */

end

end

Background 15

Algorithm 3: Subroutine for chronological backtracking

begin
RESULT← Backtrack (UNLABELLED−{x}, COMPOUND-LABEL∪{x = v}, D, C, BRANCH);
if RESULT �= NIL then

return RESULT ;

end

Chronological backtracking is sometimes referred to as a naive backtracking because it

is quite costly to use; it has the time complexity of O (m ∗ dn), and the space complexity is

O (n ∗ d). To improve the efficiency, CSPs are usually solved by interleaving backtracking

search with constraint propagation, such as forward checking and maintaining arc consis-

tency. These constraint propagations use the information of a current label to prune the

search space of future variables. With the help of an effective propagator, the potential

search space can be pruned; consequently, the resulting time complexity of the algorithm

can also dramatically be improved. We call these type of algorithms Lookahead algorithms.

The basic steps of Lookahead algorithms are as follows:

1. The search algorithm commits one label at a time,

2. simplifies the problem at each step in order to reduce the search space,

3. and detects unsatisifiability.

One of BT with Lookahead algorithms is Forward Checking (FC) that does exactly

the same thing as backtracking except that it maintains the invariance that for every

unlabeled variable there exists at least one value in its domain which is compatible with

the labels that have been committed [12]. To ensure that this is true, every time a label L

is committed, the propagator for FC will remove values from the domains of the unlabeled

variables which are incompatible with L. If the domain of any of the unlabeled variables

is reduced to a false domain, then L will be rejected. Otherwise, FC would try to label

the unlabeled variable, until all the variables have been labeled. In case all the labels

of the current variable have been rejected, FC will backtrack to the previous variable as

Backtracking does. If there is no variable to backtrack to, then the problem is insoluble

[12].

16

Algorithm 4: Subroutine for BT with forward checking from [12]

begin
D′ ← Update (UNLABELLED− {x} , D, C, {x = v});
if no domain in D′ is empty then

begin
RESULT ← Backtrack (UNLABELLED − {x}, COMPOUND-LABEL ∪ {x = v}), D′,
C);
if RESULT �= NIL then

return RESULT ;

end

end

In the pseudo code for BT with FC, Algorithm 2 employs Algorithm 4 as a subroutine.

In Algorithm 4, the Update procedure is first used to make sure that the domains are

consistent after the propagation, and the detail of this algorithm can be found in Algorithm

5.

Algorithm 5: Pseudo code of Update used in forward checking

Algorithm: Update (W, D, C, LABEL)

/* Update only considers binary constraints */
begin

D′ ← D;
foreach variable y ∈ W do

foreach value v ∈ D′
y do

if y = v is incompatible with LABEL with respect to the constraints in C then
D′

y ← D′
y − {v};

return D′;
end

To delineate more clearly about Update, the following example shows how Update

updates the domains of the 4-queens problem upon labeling x1 = 1:

• 1 is removed from dom(x2) since x2 = 1 violates x1 �= x2,

Background 17

• 2 is removed from dom(x2) since x2 = 2 violates x1 − 1 �= x2 − 2,

• 1 is removed from dom(x3) since x3 = 1 violates x1 �= x3,

• 3 is removed from dom(x3) since x3 = 3 violates x1 − 1 �= x3 − 3,

• 1 is removed from dom(x4) since x4 = 1 violates x1 �= x4, and

• 4 is removed from dom(x4) since x4 = 4 violates x1 − 1 �= x4 − 4.

In comparing forward checking with chronological backtracking, we find the main dif-

ference is that FC calls Update every time after a label is committed to (as shown in

Algorithm ’4’). If the frequent updates of domains of the unlabeled variables cause any

domain to be a false domain (empty domain), FC will reject the current label without

wasting computation time to explore the unproductive search space.

The other Lookahead algorithm is a backtracking search with the aid of full arc con-

sistency; this algorithm is usually referred to as the Maintaining Arc Consistency (MAC)

backtracking algorithm. Arc consistency (AC) is a special type of domain consistency

when the arity4 of constraints is less than or equal to 2. In this strategy, when a label is

committed, the values of unlabeled variables which are incompatible with the committed

label are removed from its domain. Furthermore, BT with AC ensures that unlabeled

variables are arc consistent with each other. In other words, it makes sure that there exists

a pair of compatible labels between every pair of unlabeled variables.

By spending more computational effort in problem reduction, the arc-consistency Looka-

head algorithm makes it possible to reject more redundant labels than forward checking.

In forwarding checking, the domains of the unlabeled variables are only checked against

the committed labels. It is possible to reduce the problem further by maintaining arc

consistency in each step after a label has been committed to.

For a better illustration, let’s consider the same example as in forward checking. Label

{x1 = 1} will prune {x2 = 1, x2 = 2, x3 = 1, x3 = 3, x4 = 1, x4 = 4} in forward checking,

but BT with AC will prune more search space than FC as follows:

4The arity of a constraint is the number of variables that the constraint restricts. For example, the
arity of Cx1,x2 is 2.

18

• First, {x2 = 1, x2 = 2, x3 = 1, x3 = 3, x4 = 1, x4 = 4}is eliminated as in FC.

• Then, only x2 = 3, and x2 = 4 are possible to be a label for x2, but BT with FC

further prunes x2 = 3 because x2 = 3 causes a conflict with labeling in x3, specifically

x3 = 2 and x3 = 4.

• Furthermore, as the label x2 = 4 is not arc consistent with x3 and x4, x2 = 4 is also

pruned and this makes dom(x2) a false domain; therefore, the algorithm backtracks

to x1 = 1 in order to try a different label for x1.

As shown in the above example, BT with AC prunes a search space very effectively.

To understand better about this algorithm, the pseudo code of the subroutine for BT with

AC is presented in algorithm 6.

Algorithm 6: Subroutine for Maintaining Arc Consistency (MAC) from [12]

begin
D′ ← Update (UNLABELLED− {x} , D, C, x = v);
/* Update is the same Update procedure used in Forward-Checking */
(UNLABELLED− {x}, D”, C) ← AC (UNLABELLED −{x}, D′, C);
if no domain ∈ D” is empty then

begin
RESULT← Backtrack (UNLABELLED−{x} , COMPOUND-LABEL∪{x = v} , D”, C);
if RESULT �= NIL then return RESULT ;

end

end

Background 19

Algorithm 7: Pseudo code for Arc Consistency (AC) algorithm in BT with AC

Algorithm: AC (V, D, C,)

begin
/* check first node consistency of variables */
NC (V, D, C);
Q← {x = y | Cx,y ∈ C};
repeat

CHANGED← FALSE;
foreach x = y ∈ Q do

CHANGED← (Revise-Domain (x = y, (Z, D, C)) or CHANGED);

until ¬CHANGED;
return (V, D, C);

end

The pseudo code of the procedure AC used in Algorithm 6 is presented in Algorithm

7 and Update in Algorithm 6 is the same as the Update in forward checking. Basically,

Algorithm 6 filters domain values as forward checking and prune more inconsistent values

in order to maintain arc consistency.

As mentioned earlier, arc-consistency is a special type of domain consistency when the

arity of a constraint is less than or equal to 2. AC in Algorithm 7 is employed to maintain

domain consistency. First, AC calls the procedure, NC, as in Algorithm 8 to enforce domain

consistency for constraints with arity, 15. Then, AC can maintain domain consistency for

the constraints of arity 2 with the aid of Revised-Domain in Algorithm 9 that removes any

values that do not satisfy the given constraints and extensively tries all the value pairs of

the variables for the constraints.

5In some literature, node consistency is defined as domain consistency for a constraint of arity 1

20

Algorithm 8: Pseudo code for Node Consistency (NC) algorithm in AC

Algorithm: NC (V, D, C)

begin
foreach variables x ∈ V do

foreach values v ∈ Dx do
if ¬ SATISFIES (x = v, Cx) then

Dx ← Dx − {v};

/* certain Dx may be updated */
return (V, D, C);

end

Algorithm 9: Pseudo code of Revise-Domain in BT with AC

Algorithm: Revise-Domain (V, D, C)

/* If there is no support for the given label, Revise-Domain removes the label from the domain
and returns true */
begin

DELETED ← FALSE ;
foreach values a ∈ Dx do

if there exists no b ∈ Dy such that SATISFIES ({x = a, y = b}, Cx,y) then
begin

Dx ← Dx − {a};
DELETED← TRUE;

end

return DELETED ;
end

Chapter 3

Different Branching Strategies in a

Search

This chapter consists of three sections, ‘Branching Strategies’, ‘Heuristics’ and ‘Related

Work’. First, we start with explaining the general concept of what “branching strategy”

means in CSP. In the second section, we discuss the details of how a variable can be selected

in a search tree, and we also define this process as branch ordering. Lastly, we investigate

some research in which branching strategies are employed.

3.1 Branching Strategies

In a backtracking search, many different ways to branch in a search tree have been proposed

to reduce the search space by taking advantage of the structure of a particular problem.

Here, we discuss only three of them; however, any combination of these three will also be

possible provided that they can take advantage of the structure of a problem and lead into

more effective pruning with the help of a propagator and a branching ordering heuristic.

First, k-Way branching instantiates each variable with all the possible values in the

domain according to the statically or dynamically arranged order. Most search trees that

appear in CSP are based on this strategy. The branching factor of a search tree with

k-Way branching, b1, is equal to d, the depth of the tree is O (n) and the total number of

1Throughout this thesis, we follow the notation introduced in the Introduction: b is for the branching

21

22

nodes in the search tree becomes O (dn) or O (bn).

In order to explain how a backtrack search actually uses k-Way branching, Figure 3.12

is prepared in solving the 4-queens example with the aid of chronological backtracking3 and

the minimum domain size heuristic which is a branch ordering heuristic to pick a variable

with the minimum number of values in its domain. This heuristic and other branching

ordering heuristics will be discussed in detail in the next section. The number of nodes

and the depth in this figure will not be exactly the same as the calculated numbers for a

search tree since the figure is a search trace of the algorithm which terminates once the

first solution is found. However, a search trace is employed here to give an overview of how

a search algorithm can use different branching strategies.

11 =x 21 =x 31 =x 41 =x

12 =x 22 =x 32 =x 42 =x 12 =x 22 =x 32 =x 42 =x

13 =x 23 =x 33 =x 43 =x 13 =x 23 =x 33 =x 43 =x 13 =x

14 =x 24 =x 34 =x 44 =x 14 =x 24 =x 34 =x

[Fail] [Fail] [Fail] [Fail] [Fail]

[Fail] [Fail] [Fail] [Fail] [Fail] [Fail] [Fail]

[Fail] [Fail] [Fail] [Fail] [Fail] [Fail] [Answer]

Figure 3.1: A search trace of chronological backtracking with k-Way branching in solving

4-queens problem

The search trace in Figure 3.1 illustrates that a chronological backtracking search with

k-Way inspects 26 nodes in 4 levels to find the first solution for the 4-queens problem.

factor, n for the number of variables, and d for the maximum size of domains
2Figure 3.2 and 3.3 are also prepared with the same way as Figure 3.1.
3Chronological backtracking is described in the Background section

Branching Strategies 23

Furthermore, this figure also suggests that chronological backtracking with k-Way also

generates a wider search tree than the backtracking with other branching strategies (shown

in Figure 3.2 and 3.3) as the branching factor for k-Way is 4 and the others are only 2.

Unlike k-Way, the 2-Way branching strategy splits a domain of a variable into two

sub-domains so that one sub-domain has an assigned value and the other takes the rest of

values in the domain without the assigned value. The resulting search tree is a binary tree

that has the depth of O (d ∗ n), and the number of nodes in the tree is O
(
2d∗n), where a

branching factor is 2. The overall size of the search tree for 2-Way is deeper and narrower

than the search tree for k-Way.

In Figure 3.2, we present how a chronological backtracking search with 2-Way traces in

solving 4-queens. 2-Way branching needs to examine 44 nodes in 10 levels. In comparison

with the search trace for k-Way branching in Figure 3.1, 2-Way creates a deeper and

narrower search trace.

Lastly, let us consider domain splitting, sometimes referred to as dichotomic search [2],

that repeatedly splits the domains of variables into subdomains containing only some part

of the original domain until a valuation domain is obtained. Each subdomain at the same

level of a search tree is mutually exclusive, meaning there is no duplication of values in

subdomains.

In domain splitting, we need to specify how a domain is split into subdomains. The

most obvious example of a pivot point can be a middle point that separates the domain

into two subdomains, the one with the lower half of the initial domain and the other with

upper half [9]. Using a middle point as a pivot, the depth of the search tree for domain

splitting becomes O (n ∗ log d), and the upper bound of nodes in the tree is O
(
2n∗log d

)
.

This binary search tree for domain splitting also has a deeper and wider tree than k-way,

but in comparison with 2-Way branching, domain splitting creates fewer nodes in less depth

if the pivot is in the middle. There can also be many different ways to split a domain. The

way to split domains can be like making subsets so that the ways to create subdomains

can be as many as the number of subsets of a domain. As a matter of fact, 2-Way is a

special form of domain splitting because 2-Way splits a domain in a predefined way where

one branch contains a valuation domain and the other has a subdomain with the rest of

the values.

24

11 =x 11 ≠x

[Answer]

12 =x 12 ≠x

22 =x 22 ≠x

32 =x 32 ≠x

13 =x 13 ≠x

23 =x 23 ≠x

33 =x 33 ≠x

43 =x 43 ≠x

42 =x 42 ≠x

13 =x 13 ≠x

23 =x 23 ≠x

14 =x 14 ≠x 33 =x 33 ≠x

24 =x 24 ≠x

34 =x 34 ≠x

44 =x 44 ≠x

43 =x 43 ≠x

21 =x 21 ≠x

12 =x 12 ≠x

22 =x 22 ≠x

32 =x 32 ≠x

42 =x 42 ≠x

13 =x 13 ≠x

14 =x 14 ≠x

24 =x 24 ≠x

34 =x 34 ≠x

[Fail]

[Fail]

[Fail]

[Fail]

[Fail]

[Fail] [Fail]

[Fail]

[Fail]

[Fail] [Fail]

[Fail]

[Fail]

[Fail] [Fail]

[Fail] [Fail]

[Fail]

[Fail]

[Fail]

[Fail]

[Fail]

Figure 3.2: A search trace of chronological backtracking with 2-Way branching in solving

4-queens problem

Branching Strategies 25

}2,1{1 =x }4,3{1 =x

}1{1 =x }2{1 =x

}2,1{2 =x }4,3{2 =x

}1{2 =x }2{2 =x }4{2 =x}3{2 =x

}2,1{3 =x }4,3{3 =x }2,1{3 =x }4,3{3 =x

}2,1{2 =x }4,3{2 =x

}1{2 =x }2{2 =x }3{2 =x }4{2 =x

}2,1{3 =x }4,3{3 =x

}1{3 =x }2{3 =x }1{3 =x }2{3 =x }2{3 =x}1{3 =x}3{3 =x }4{3 =x }3{3 =x }3{3 =x}4{3 =x }4{3 =x

}2,1{4 =x }4,3{4 =x }2,1{4 =x }4,3{4 =x

}1{4 =x }1{4 =x}2{4 =x }2{4 =x}3{4 =x }3{4 =x}4{4 =x

[Fail] [Fail]

[Fail] [Fail] [Fail] [Fail] [Fail]

[Fail] [Fail] [Fail]

[Fail] [Fail]

[Fail] [Fail] [Fail] [Fail] [Fail] [Fail] [Answer]

Figure 3.3: A search trace of chronological backtracking with domain splitting in solving

4-queens problem

The pictorial description of domain splitting that solves the 4-queens problem is illus-

trated in Figure 3.3. The chronological backtracking with domain splitting inspects 40

nodes in depth of 8 in order to find a solution, and this search trace is smaller than the

one with 2-Way.

Even with the larger sizes of a search tree and a search trace, the usage of 2-Way branch-

ing and domain splitting methods can be justified by the principle of least commitment.

This states that when making a choice for some variable we should make the choice which

commits us as little as possible. The advantage is that, if we detect unsatisfiability after

making a weak commitment, more of the search space is removed than if we detect unsat-

26

isfiability after a strong commitment. Moreover, according to [9], the branching strategies

with least commitment can be more beneficial to use in an optimization problem since they

can utilize more information to guide a search to obtain an optimal solution. In our test

cases, there has been an instance that supports this conjecture.

As in k-Way branching, assigning a variable to a single value is too restrictive to contain

much information. Domain splitting is less restrictive than k-Way and 2-Way branching

strategies, and 2-Way is less restrictive than k-Way. Domain splitting only removes half

of the remaining values in the variable’s domain rather than all but one. 2-Way also

carries more information in one side of branch than k-Way since one of the branches in

2-Way contains a subdomain rather than a single value. Therefore, the principle of least

commitment tells us to prefer domain splitting over the other branching strategies and

2-Way over k-Way.

11 =x 21 =x 31 =x 41 =x

32 =x 42 =x 42 =x

23 =x 13 =x

34 =x

[Fail]

[Fail]

[Answer]

Figure 3.4: A search trace of backtracking with forward checking for k-Way branching in

solving 4-queens problem

One of the apparent drawbacks of the least commitment principle is that less commit-

ment may result in too much information for the incomplete solver to determine satisfia-

bility or unsatisfiability. If a variable is least committed, this can be disadvantageous in

propagation because a strong propagation like forward checking requires that a variable is

Branching Strategies 27

committed to a value prior to propagation; 2-Way and domain splitting may not prune as

much of a search space as k-Way branching does in the early stage of a search. However,

they can have more freedom to choose the next variables and next values, which means

they have more choice points4 in a search tree. Moreover, they can utilize this information

to reduce the amount of backtracking and to prune more effectively in the later stage of a

search.

11 =x 11 ≠x

[Answer]

32 =x 32 ≠x

42 =x 42 ≠x

23 =x 23 ≠x

21 =x 21 ≠x

42 =x

13 =x

34 =x

[Fail]

[Fail][Fail]

[Fail]

Figure 3.5: A search trace of backtracking with forward checking for 2-Way branching in

solving 4-queens problem

In Figures 3.4, 3.5, and 3.6, we delineate how a search space can be pruned when

different branching strategies are employed in a search algorithm interleaved with a pruning

strategy, like a backtracking search with forward checking. The discrepancies among the

search traces of different branching strategies can be reduced as shown in Figures 3.4,

3.5, and 3.6. The effectiveness of the filtering strategy on different branching methods

can be easily observed when we compare Figures 3.4, 3.5, and 3.6 with Figures 3.1, 3.2,

and 3.3. The sizes of the search traces generated by backtracking with forward checking

4We employ the definition of choice point given in [9]: a state that has two or more children.

28

that is employed with the three different branching methods become very similar to each

other albeit there are 4 more nodes in 2-Way branching than in k-Way and 4 more than in

domain splitting—k-Way has 8 nodes and a depth of 4, domain splitting has 9 nodes and

a depth of 5, and 2-Way has 12 nodes and a depth of 5.

}2,1{1 =x }4,3{1 =x

}1{1 =x }2{1 =x

}3{2 =x }4{2 =x }4{2 =x

}2{3 =x }1{3 =x

}3{4 =x

[Fail]

[Fail]

[Answer]

Figure 3.6: A search trace of backtracking with forward checking for domain splitting in

solving 4-queens problem

The branching strategies with least commitment can be more efficient than the one

with strong commitment provided that the constraints involving the unlabeled variables

can provide substantial consistency information from the already split domain, despite the

fact that domain splitting and 2-Way branching produce a larger search tree than k-Way

branching. The reason behind this is that domain splitting may be able to eliminate half of

a variable’s possible domain values at once by adding a single constraint. This is an ideal

case; however, unfortunately, we have not been able to observe this in our experiments.

About the power of expressiveness among different branching strategies, Mitchell shows

that 2-Way branching can simulate k-Way branching but k-Way branching cannot express

2-Way [10]. Graphically, we show that a search tree of 2-Way branching in Figure 3.8

Branching Strategies 29

11 =x 21 =x 31 =x 41 =x

.

Figure 3.7: A part of a search tree for k-Way Branching in solving the 4-queens problem

simulates k-Way branching as presented in Figure 3.7 when solving the 4-queens problem.

11 =x 11 ≠x

41 =x 41 ≠x

21 =x 21 ≠x

31 =x 31 ≠x

.

.

. . .

.

. . .

Figure 3.8: A part of a search tree for 2-Way branching that simulates k-Way branching

Since 2-Way branching strategy is a special form of domain splitting, we can induce from

Mitchell’s claim that domain splitting can also simulate 2-Way branching and therefore,

k-Way as well. We give a pictorial description of how domain splitting can simulate 2-Way

branching in Figure 3.9. Consequently, it is safe to conclude that the domain splitting

strategy is the most expressive among three strategies, followed by 2-Way branching and,

lastly, k-Way branching.

30

. . .

}1{1 =x }4,3,2{1 =x

}2{1 =x }4,3{1 =x

}3{1 =x }4{1 =x

. . .

.

.

Figure 3.9: A part of a search tree for domain splitting that simulates 2-Way branching

3.2 Heuristics: Branch Ordering Heuristics

There are two choices to be made when a search algorithm assigns a value to a variable:

the order in which variables are assigned and the order in which the values for a particular

variable are explored [9]. In this thesis, we only focus on variable ordering heuristics.

Although a value ordering heuristic specifies how to explore the search tree, altering the

order in which variables are instantiated can have more dramatic effects on the size of

a search tree [9] as some choices of variables can lead into pruning a search space more

effectively than the other choices in propagation.

One of the most widely used branch ordering heuristics is based on the principle called

Fail First (FF). According to this principle saying, “to succeed, try first where you are

most likely to fail [4]”, it guides a search to choose a variable with fewer choices. Therefore,

it is advisable that the variables with many possible values are instantiated after those with

fewer values.

Based on FF, the minimum domain size ordering heuristic is proposed [9]. This heuristic

claims that choosing the variable with the smallest number of values in its domain allows

the potential failure of the entire branch to be determined quickly, thus guiding the search

to more profitable areas. A further motivation for this strategy is that, with luck, once

these variables are assigned a value, propagation will be able to trim the domains of the

remaining variables [9]. In much of the literature, there seems to be a consensus that this

heuristic seems to be very efficient, especially when the size of a problem is large.

Branching Strategies 31

Unlike the minimum domain size branch ordering, the maximum domain size branch

ordering heuristic prefers the variable with the maximum domain size; this works in the

exactly opposite way to the minimum domain size ordering. This heuristic is to choose a

variable with the most choices; therefore, a search is more likely to find a solution with

fewer fails. However, empirical studies show that the maximum domain size ordering works

worse in practice than the minimum domain size branching ordering in most cases [9].

Both the minimum domain size and maximum domain size ordering heuristics can

choose a variable either dynamically and statically5. When a branching ordering is static,

the order of variables is predefined before a search starts. In dynamic branch ordering,

a search algorithm updates the domains of variables during the search and a variable is

chosen based on the current domain information.

There can be other dynamic branch ordering heuristics like the greatest minimal bound,

greatest maximal bound, least minimal bound, and least maximal bound branch ordering

strategies. These heuristics work as follows:

• Greatest minimal bound variable ordering picks the variable with the largest value

in the lower bound of domain

• Least minimal bound variable ordering chooses the variable with the smallest value

in the lower bound of domain

• Greatest maximal bound variable ordering prefers the variable with the largest value

in the upper bound of domain

• Least maximal bound variable ordering first assigns the variable with the smallest

value in the upper bound of domain

It is also an important task to decide the order in which values are tried [14]. Ordering

a value in a domain will only change the order in which solutions are found. In other

words, a value ordering specifies the order in which a search explores a search tree. In

order to find a solution for a CSP more quickly, it seems a good heuristic to first assign

the least constraining value to a variable. This heuristic is based on the assumption that

the value which least reduces the domains of other variables is more likely to be a part

5In some literature, non-deterministically means dynamically and deterministically refers to statically.

32

of a solution. Also, there have been other value ordering heuristics proposed to exploit

the problem-specific knowledge in hope of picking a value that is more likely to lead to

a solution so that the computational time for a search to find a (first) solution improves.

Ordering of domain values can be also useful in evaluating optimization goals. In this case,

the values in domain are arranged so that the optimum solution can be found in the earlier

stage of a search.

3.3 Related Work

When solving numeric CSPs6, researchers seem to prefer domain splitting over the order

branching strategies [7]. Jussien and Lhomme claim that using a search called dynamic

domain splitting they were able to dramatically improve the search time for numeric CSPs.

Dynamic domain splitting is based on dynamic backtracking. Dynamic backtracking

relies on reducing backtracking [7] by utilizing the information of no-goods in case of failure

and unassigning the invalid assignment without modifying any other assignments. We can

think of dynamic backtracking as backtracking in a search space rather than in a search

tree [7]. Domain splitting is employed to add a constraint to eliminate the failed assignment

rather than to unassign a variable when a failure occurs.

It is interesting to see that Jussien and Lhomme have been able to improve the running

time with the aid of domain splitting on a continuous domain although they warn the

reader that the result is not comprehensive and in order to find out the effectiveness of

domain splitting, experiments with a larger scale need to be done [7].

As for finite domain problems, k-Way branching seems to be almost exclusively used.

However, Milano and van Hoeve introduce a search strategy called Decomposition Based

Search (DBS) [15], where a domain splitting strategy is employed to break down a finite

domain problem into subproblems. Their research is also particularly of interest to us

since they tested their algorithm with the aid of the ILOG Solver as we have done in our

experiments.

The unique features in their research are that DBS is based on two steps, subproblem

generation and subproblem solution, and domain splitting is only employed in subproblem

6Numeric CSPs are the constraint satisfaction problems that have a non-finite domain size.

Branching Strategies 33

generation [15]. Domain splitting is employed to decompose a problem into subproblems

with smaller subdomains, and the values in a domain are grouped into subdomains accord-

ing to a value ordering heuristic. The heuristic needs to rank a value with two levels of

accuracy: first, it should measure accurately how successful a value is; second, it is required

to discriminate among values with the same rank [15].

In a search, after a certain level that is defined by a user in a pre-search stage, domain

splitting is not employed to separate domains, but a search selector is instead used to

instantiate a variable. Although they mention that Depth-First Search that we have used

in our experiments can be a good choice as a search selector because it is usually much

faster than any specialized search strategies when subproblems are equally likely to be

successful, they employ Limited Discrepancy Search (LDS) to exploit the ranks that the

value ordering heuristic assigns to a value in the subproblem generation stage [15].

As test cases, they have tested DBS on two finite domain CSPs : the traveling salesman

problem as an optimization problem and the partial Latin square completion problem

as a satisfiable problem. They have analyzed test data of DBS by comparing with the

ones for a search without domain splitting, LDS, and they have reported that in both

problems, DBS is faster than LDS on average [15]. Furthermore, they also have made

an interesting observation saying that with the help of the pruning effect of a primitive

constraint like alldiff, the efficiency of domain splitting drops so that LDS becomes

faster than DBS [15]. This observation is in agreement with our finding as we exploit the

pruning power of the addiff constraint in our experiments.

Albeit no one has compared the effectiveness of different branching strategies in the

finite domain problem, Mitchell describes the expressive power of different branching strate-

gies in [10]. He uses resolution-like proof systems for finite-domain constraint satisfaction

problems in order to prove that 2-Way branching can simulate k-Way branching, but the

converse does not hold.

The proof systems employed in [10] are NG-RES that is suggested in de Kleer’s study

and C-RES that is introduced by Baker. With these proof systems, Mitchell explains

the expressiveness of k-Way and 2-Way branching. First he shows that 2-Way and k-

Way branching strategies can be expressed as C-RES and NG-RES respectively, and then

he claims that 2-Way branching can simulate k-Way since the proof system C-RES can

34

simulate NG-RES. In addition, he also points out that k-Way branching cannot simulate

2-Way because NG-RES cannot be translated into C-RES.

In our empirical studies, we have also gathered some data that give the evidence hat

2-Way branching indeed simulates k-Way branching; furthermore, with close observation,

we find out that 2-Way branching can be considered as a special form of domain splitting

that splits a domain into two in a way that one branch has a single value and the other

has the rest of the values.

Chapter 4

Experimental Setup

In this chapter, we explain how to model and implement different CSPs. In Section 4.1,

we classify the problems used in this experiment and elucidate the modeling process before

explaining the implementation. In Section 4.2, we show how the problems are solved in

the ILOG environment.

4.1 Problems

In order to compare the effectiveness of different branching strategies in solving CSPs, we

carefully chose the following problems: the N -queens, the car sequencing, and uniform

random binary problems as satisfiable problems and the Golomb ruler, the instruction

scheduling, and the truck routing problems as optimization problems.

4.1.1 The N-queens Problem

The N -queens problem is chosen because it is a well-known finite domain problem as

well as an arithmetic CSP. The N -queens problem involves placing N queens on an N ×N

chessboard in such a way that no queen can capture any other queens using the conventional

chess moves allowed to a queen. In other words, the problem is to select N squares on a

chessboard so that any pair of selected squares is never aligned vertically, horizontally, nor

diagonally [6].

35

36

One way of modeling this problem is to recognize that in any solution there is exactly

one queen in every column. For example, the variable xi represents the column number

of the queen in the ith column. These xi, 1 ≤ i ≤ N , correspond to the column variables.

Next, each column variable is given an initial domain, D, containing integers between 1

and N which signify the row numbers; i.e., dom(xi) = {1, . . . , N}. Then constraints, C,

are specified to ensure that no queen falls on the same row or diagonal as any other queen.

Recognizing the constraints of the problem can be stated in the following way. For every

pair of variables, (xi, xj), where i is different from j, a constraint xi �= xj guarantees that

each column have a distinct row value; and constraints, xi + i �= xj + j and xi− i �= xj − j,

together make sure that the diagonals are distinct. In the ILOG setting as shown in

Figure 4.1, the primitive constraint such as alldiff can be used to ensure the inequality

among variables. For example, alldiff(x) ensures that every x is different as in xi �= xj .

Similarly alldiff(xi − i) makes sure that the inequality, xi − i �= xj − j, holds so does

alldiff(xi + i) satisfy xi + i �= xj +j. When we compare this modeling with the definition

given in the ’Background’ section, we can easily notice that the modeling specifies how a

CSP is defined.

4.1.2 The Golomb Ruler Problem

For similar reasons as the N -queens problem, the Golomb ruler problem is selected. A

Golomb ruler is a set of non-negative integers such that the differences of any two distinct

pairs of the numbers from the set are not the same. This can be conceptually viewed

as a ruler constructed in a way that any two distinct marks in the ruler do not measure

the same distance. The Golomb ruler problem is the optimization problem of finding the

shortest Golomb ruler possible for a given number of marks.

With the same manner as how the N -queens are modeled, the Golomb ruler for N

marks is modeled as a CSP. The variable, xi, 1 ≤ i ≤ N , represents the location of the ith

mark in a ruler. The variables take a value from the domain, D = {d|1 ≤ d ≤ N2}. The

constraints, C, ensure the difference in length between any pair of marks in a ruler to be

distinct as follows:

• All the variables are arranged in ascending order,x1 < x2 < . . . < xN .

Experimental Setup 37

• All the differences of any combinations of two variables in the set are distinct, xk−xl �=
xm − xp, 1 ≤ k, l, m, p ≤ N .

One of the differences between the N -queens and the Golomb ruler problem is that the

Golomb ruler problem is required to find the optimal solution while N -queens is solved

once a solution is found. In CSPs, an objective function is introduced to evaluate solutions

and find the optimum. Usually, a minimization function is employed to select the optimal

solution that has the minimum value of the function. For instance, the Golomb ruler uses

the function of the last mark, xN , to evaluate a solution, meaning that the smaller the

value of xN , the shorter the ruler becomes; therefore, the objective function for the Golomb

ruler can be written as f (xn) = xn.

4.1.3 The Car Sequencing Problem

Since the car sequencing problem is a real-life problem that frequently arises on assembly

lines in factories in the automotive industry, this problem is chosen[6]. [6] describes the

problem in a follow way: An assembly line makes it possible to build many different

types of cars, where the types correspond to a basic model with selected options. In that

context, one type of vehicle can be seen as a particular configuration of options. It is also

possible to put multiple options on the same vehicle while it is on the assembly line so

any combination of options is possible to be manufactured on the assembly line. However,

because of the physical limitations such as the amount of time needed to install certain

options, a particular option cannot be installed on every vehicle on the line. This constraint

is defined by what we call the “capacity” of an option. The capacity of an option is usually

represented as a ratio p/q where for any sequence of q cars on the line, at most p of them

will have that option. The problem in car sequencing then consists of determining in which

order cars corresponding to each configuration should be assembled, while keeping in mind

that we must build a certain number of cars with the desired number of configurations.

For example, the problem is specified by 10 cars to build, 5 options available for instal-

lation, and 6 configurations required. Table 4.1.3 indicates which options belong to which

configuration: if ♣ is found in the cell of option i and configuration j, it indicates that

configuration j requires option i: a blank means configuration j does not require option i.

38

option capacity configurations

0 1 2 3 4 5

0 1/2 ♣ ♣ ♣
1 2/3 ♣ ♣ ♣
2 1/3 ♣ ♣
3 2/5 ♣ ♣ ♣
4 1/5 ♣
number of cars 1 1 2 2 2 2

Table 4.1: The example of configurations in the car sequencing problem (taken from [6])

The table also shows the capacity of each option as well as the number of cars to build for

each configuration.

For example, the chart in the table indicates that option 1 can be put on at most two cars

for any sequence of three cars. Option 1 is required by configurations 2, 3, and 5.

4.1.4 The Truck Scheduling Problem (TSP)

The truck scheduling problem can be seen as the traveling salesman problem, and because

it is a typical example of optimization problems, we consider this problem. For the truck

scheduling problem, we employ the problem specification given in [6] to model and imple-

ment. Suppose a truck driver has n customers to visit to deliver goods. The driver knows

where each customer is located and thus the distance to travel from one to another. We

further assume that the driver can start with any customer, but the tour has to end at the

location where the tour started. The driver may visit a customer in any order but cannot

visit any customer more than once. In other words, we want to find a tour (a cycle) visiting

all the customers. The goal of this problem is to minimize the total distance traveled to

complete this tour.

The problem is modeled in the following manner [6]:

• The starting point of the tour can be chosen arbitrarily since the driver has to visit

all the locations anyway; the starting point also becomes the ending point and n− 1

Experimental Setup 39

nodes represent the customers that neither start nor end the tour.

• Two arrays are introduced to measure the distance traveled, Distance and Length;

Distance[i][j] gives the distance between customer i and customer j and Length[i]

keeps the total distance traveled from start to customer i.

• The array called Next is used to keep neighborhood relations; Next[i] stores the

neighbors of customer i.

In other words to describe the problem, a problem is to find a shortest path via all the

nodes representing customers in a graph. Then, the nodes in the graph have the following

characteristics: first, the end node that represents the last customer has the value n in

a graph and it is used to index the above arrays; second, the start node where the tour

begins and ends is indexed as n + 1; third, the other nodes i are indexed as i. Then the

goal of the problem is to minimize Length[end].

4.1.5 The Instruction Scheduling Problem

Because instruction scheduling is one of the most important steps for improving the per-

formance of object code produced by a compiler [13], we include this problem in our exper-

iment. The local instruction scheduling problem is to find a minimum length instruction

schedule for a basic block subject to precedence, latency (delay), and resource constraints

[13]. We follow the experimental design set in [13], where local instruction scheduling for

single-issue processors with arbitrary latencies are implemented.

[13] defines the local instruction scheduling problem as follows: The standard labeled

directed acyclic graph (DAG) is used to represent a basic-block, where each node corre-

sponds to an instruction. l (i, j) indicates the latency needed between the instructions i

and j. For example, if an instruction j must not be executed until i has executed for l (i, j)

cycles, then there is an edge from i to j labeled with a positive integer l (i, j).

Given a labeled dependency DAG G = (N, E) for a basic-block, where N is a set of

nodes and E is a set of edges connecting nodes. We also need an array S to specify the

start times for the instructions. If we define S [i] for the start time of the instruction i, we

can derive the following constraints for the problem:

40

• No two instructions are issued simultaneously, S [i] �= S [j] , i, j ∈ N, i �= j.

• The start time of an instruction depends upon the start times and latencies of its

predecessors, S [j] ≥ S [i] + l (i, j) , (i, j) ∈ E

The goal of the local instruction scheduling problem is to minimize the total execution

time of the instructions and the objective function is to minimize max {S [i] |i ∈ N}

4.1.6 The Uniform Binary Random Problem

Many CSP researchers use random uniform instances to evaluate their constraint satisfac-

tion algorithms [1]. In spite of the fact that it is generally agreed that it is more important

to test the performance of their algorithms on real-world problems [1], Random problems

offer the following advantages for empirically evaluating the performance of CSP algorithms

[1]:

1. easy to study quantitatively,

2. easy to modify the parameters of problems,

3. easy to find the phase transition point,

4. easy to reproduce the data, and

5. easy to share with other researchers.

A random generator is employed in generating a random problem to produce uniform

and binary instances. It uses extensionally represented constraints, meaning that it enu-

merates invalid assignments between a pair of variables as a constraint. The randomness

is exploited in generating constraints, and rand2() is employed to guarantee the random-

ness [1]. Hence, each variable is equally likely to be selected in rand2(); so, the constraints

are uniformly distributed among variables.

Experimental Setup 41

4.2 Implementation

This section explains how a software package like the ILOG solver can be used in imple-

menting the search algorithm and the different heuristics to guide a search in solving CSPs

after modeling. Henceforth, we follow the specification of ILOG codes given in [6, 5].

For instance, the N -queens problem can easily be translated with the aid of built-in

ILOG commands embedded in the C++ language. To illustrate better, the code in Figure

4.1 is used as an example:

void main(int argc, char** argv) {

IlcManager m(IlcEdit);

IlcInt nqueen = (argc > 1) ? atoi(argv[1]) : 1000;

IlcIntVarArray x(m, nqueen, 0, nqueen-1),

x1(m, nqueen), x2(m, nqueen);

for (i=0; i<nqueen; i++) {

x1[i] = x[i] + i;

x2[i] = x[i] - i;

}

m.add(IlcAllDiff(x));

m.add(IlcAllDiff(x1));

m.add(IlcAllDiff(x2));

m.add(IlcGenerate(x, IlcChooseMinSize));

if (m.nextSolution()) {

for (i=0; i < nqueen ; i++)

m.out()<<x[i].getValue() << " ";

}

m.end();

return 0;

}

Figure 4.1: ILOG code for solving N -queens problems from [6]

In ILOG version 4.2, the constructor of the IlcManager class (as in Figure 4.1) has

to be called before defining constraints and generating a solution. When an instance of

IlcManager is created, it initializes internal data for the solver. That instance, known as

a manager, then handles input and output, memory allocation, and other general services

42

for all the constrained variables constructed for that instance and for all the constraints

and goals added to that instance. IlcManager can take one of two different arguments,

namely IlcEdit and IlcNoEdit. In the IlcNoEdit mode, IlcManager::add immediately

posts and propagates constraints; however, the IlcEdit mode delays the propagation after

IlcManager::nextSolution is called. Since we want to postpone the propagation until

all the constraints are gathered, we prefer the IlcEdit mode and all the experiments are

carried out in this mode.

ILOG also enables users to define variables for the solver [11]. IlcInt type is declared

for the nqueen variable (as defined in Figure 4.1) that takes an integer value for N in

N -queens problem. Programmers need to declare a variable as IlcIntVar if the variable

takes IlcInt values. IlcIntVarArray can also be used to declare the array of constrained

integer variables that represents a list of N distinct column variables ranging between 0

and N − 1.

Using built-in primitive IlcAllDiff for the alldiff constraint (as illustrated in Figure

4.1), IlcManager::add adds constraints through the arrays of the column variables from

1 to N in order to make sure that each queen does not fall on the same row or diagonal

as the remaining queens in the list. The reason for using primitive constraints rather than

specifying individually the relation among column variables is that it is more efficient since

a solver usually provides special propagation rules for its own primitives [9].

After setting up constraints, the labeling command, IlcGenerate (as in Figure 4.1),

is invoked to make sure that each variable is assigned to a value before looking for a

solution. IlcGenerate specifies the type of branching strategies; moreover, IlcGenerate

(as implemented in Figure 4.1) is employed for k-Way branching since the default type for

IlcGenerate in ILOG 4.2 is k-Way branching. Later in Figure 4.3, 4.4, and 4.5, we also

show the implementations of the other branching strategies.

To generate a solution, IlcManager::nextSolution needs to be called as in Figure

4.1. The first time nextSolution is used; it iteratively pops one goal from the goal stack

and executes it [5]. The execution of the goal can add other goals to the stack and can set

choice points. The execution of nextSolution terminates in two cases. First, when the

goal stack becomes empty, the function returns IlcTrue. Second, if a failure occurs and

no choice point with untried subgoals and correct labels exists, the function restores the

Experimental Setup 43

state of the invoking manager and returns IlcFalse.

At the end of a program, IlcManager::end is called as in Figure 4.1 to clean up the

Solver memory allocations associated with the invoking manager.

For the optimization problems, the objective function can be implemented with the

built-in predicate called setObjMin to find an optimal solution. IlcManager::setObjMin

(refer to Figure 4.2) takes a variable as its arguments [5]. This variable becomes the

objective to be minimized. This member function changes the behavior of nextSolution

(as in Figure 4.2) so that each time nextSolution is called, the new solution will yield a

better value for the cost variable. The last solution found will be the optimal solution.

//ILOG objective function built-in primitive

//Toggling the positive or negative sign enables users to solve

//the minimization or maximization problems without great effort

m.setObjMin(x[n-1]);

while(m.nextSolution()) {

...

//Keep enumerating the solutions as long as the current objective

//function value is better than the previous one, and

//the objective function value is updated to the current one.

//

}

Figure 4.2: ILOG code segment for the objective function

ILOG also provides several built-in predicates to implement different branching strate-

gies. IlcGoal IlcGenerate (const IlcIntVarArray, IlcChooseIntIndex) is used as

a default predicate to instantiate a value for a variable. IlcGenerate simulates the back-

tracking strategy, k-Way branching, and this predicate repeatedly chooses a variable, as-

signs a value to the variable, and checks the consistency of the current assignment until

every variable is instantiated.

The ILOG manual explains the execution of IlcGenerate as follows [6]: IlcGenerate

calls IlcInstantiate to create and return a goal in the algorithms searching for solutions.

The IlcInstantiate assigns a value to a constrained variable. It uses choice points so

that if a failure occurs as a result of that reversible assignment, another value will be

44

assigned to the constrained variable so that the search can continue. If a variable has

already been bound, meaning it has an evaluation domain, the IlcInstantiate does

nothing and succeeds. Otherwise, IlcInstantiate sets a choice point, and assigns a value

to the constrained variable. In case of failure, the “tried-and-failed” value is removed

from the domain of the constrained variable, and another value not yet used is tried

until a value assignment succeeds or the domain is exhausted. In that latter case, the

domain becomes empty, and the member function IlcManager::fail is called. Different

branch ordering heuristics can be employed by specifying IlcChooseIndex parameter. If

IlcChooseIndex is not set, variables are tried by default in lexicographical order.

The other branching strategies can readily be implemented in the ILOG setting. The

primitive called GOAL ILCGOALn (n stands for the number of variables) is used to define

2-Way branching and domain splitting. In the program shown in Figure 4.3, ILCGOAL1

defines the procedure called Instantiate and takes the other variable type IlcIntVar

which specifies the type of argument that Instantiate can take (refer to Figure 4.3).

First, it checks whether a variable is bound or not before committing a variable to a value,

and if the variable has more than one value in its domain, the procedure will assign the

minimum value in the domain. IlcOr is a logical ILOG operator, meaning “or,”and so

does IlcAnd mean “and.” The logical connectives are used to iterate Instantiate until

all the values for variables are exhaustively tried. The following code illustrates how ILOG

implements 2-Way branching.

ILCGOAL1(Instantiate, IlcIntVar, var) {

if (var.isBound())

return 0; //if variable is bound, do nothing

//Otherwise

else {

IlcInt val = var.getMin();

return IlcOr(var == val, IlcAnd(var != val, this));

}

}

Figure 4.3: ILOG code for 2-Way branching

As for domain splitting, it dynamically splits the domains of variables into two sub-

Experimental Setup 45

domains by pivoting a middle point. In a similar manner as how 2-Way branching is

implemented, domain splitting can be defined using ILCGOAL1. Figure 4.4 shows the ILOG

implementation of domain splitting. It specifies the procedure named Dichotomize (as in

Figure 4.4) and it repeatedly splits the domain into two halves rather than assigning with

the minimum value as in 2-Way branching.

Later upon calling the procedure ILCGOAL2, users can specify their branching strategy

to be either 2-Way branching or domain splitting. ILCGOAL2 takes three arguments as

elucidated in Figure 4.5: first, the name of the procedure that it defines, Generate; sec-

ond, the type of argument for the procedure, IlcIntVarArray; third, the parameter for

variable ordering heuristics, IlcChooseIntIndex. Generate is an enumeration algorithm

that guarantees to exhaustively try all values in the variables’s domains and find the legal

assignment if there is one. In order to bind each constrained variable, Generate can employ

different branching strategies that a user specifies. If it is 2-Way branching, we need to re-

turn IlcAnd(Instantiate(getManager(),vars[index]),this), and as for domain split-

ting, we instead use return IlcAnd(dichotomize(getManage(),vars[index],this) as

a return statement.

Generate also provides the parameter that controls the order in which variables an

values are tried during the search for a solution. This parameter for controlling the choice

of variables is set to direct the search toward productive branches of the tree for a solution

and to eliminate useless branches as early as possible in the search process. ILOG supplies

different built-in predicates for IlcChooseIndex to specify the variable ordering heuristic.

Some examples of IlcChooseIndex are shown in Table 4.2.

46

ILCGOAL1(Dichotomize, IlcIntVar, var) {

if (var.isBound())

return 0; //if variable is bound, do nothing

//Otherwise

else {

IlcInt Val = (var.getMin() + var.getMax())/2;

return IlcOr(var <= val, IlcAnd(var > val, this));

}

}

Figure 4.4: ILOG code for domain splitting

ILCGOAL2(Generate,

IlcIntVarArray, vars,

IlcChooseIntIndex, chooseIndex) {

IlcInt index = chooseIndex(vars);

if (index == -1)

return 0; //If there is not a variable left, do nothing

//Otherwise

else {

//Specify the branch strategy

return IlcAnd(Instantiate(getManager(),vars[index]),this);

//return IlcAnd(dichotomize(getManage(),vars[index],this);

}

}

Figure 4.5: ILOG code for an enumeration algorithm called Generate

Experimental Setup 47

Branch Ordering Heuristics Description

Lex It chooses the first unbound variable in the lexicographical order.

(Lexicographical Ordering) This is used as a default.

MinSize It chooses the variable with the domain that has the least cardinality.

(Minimum Domain Size Ordering) That is to select the variable with the smallest domain based on the Fail First principle.

MaxSize It chooses the variable with the domain that has the greatest cardinality.

(Maximum Domain Size Ordering) That is to select the variable with the largest domain.

MinMin It chooses the variable with the least minimal bound.

(Least Minimal Bound Ordering) That is to select the variable with the smallest value of the lower bound in the domains.

MaxMin It chooses the variable with the greatest minimal bound.

(Greatest Minimal Bound Ordering) That is to select the variable with the largest value of the lower bound in the domains.

MinMax It chooses the variable with the least maximal bound.

(Least Maximal Bound Ordering) That is to select the variable with the smallest value of the upper bound in the domains.

MaxMax It chooses the variable with the greatest maximal bound.

(Greatest Maximal Bound Ordering) That is to select the variable with the largest value of the upper bound in the domains.

Table 4.2: Table of different branching ordering strategies implemented in ILOG

Chapter 5

Experimental Results

In this chapter, we discuss the test results from the experiments designed and carried out

to compare the efficiency of different branching strategies in combination with currently

most used branch ordering heuristics when solving finite domain problems. The N-queens

problems are presented in Section 5.1, the Golomb ruler problems in Section 5.2, the

instruction scheduling problems in Section 5.3, the car sequencing problems in Section 5.4,

the truck scheduling problems in Section 5.5, and the uniform binary random problems

in Section 5.6. All the data were prepared using Visual C++ version 6.0 compiler and

ILOG constraint solver library version 4.2 on a system equipped with an Intel Pentium

4 processor and 512MB of memory. In presenting the experimental results, we present

data to only one decimal point, because the system timing routines are not accurate to

more digits of precision. Since we are interested in how fast branching strategies are in

solving different types of problems, we put an emphasis on the analysis of the execution

time; however, the number of choice points is used to elucidate some behavior of different

branching strategies if it is necessary.

5.1 Results for the N-queens Problems

First, different branch ordering heuristics are tested in placing 20 queens on the chessboard.

The results are shown in Table 5.1. By carefully observing the table, one can find minimum

domain size (MinSize) and greatest minimal bound (MaxMin) orderings are effective in

48

Experimental Results 49

solving 20-queens problems. On the order hand, maximum domain size (MaxSize) and

greatest maximal bound (MaxMax) ordering heuristics are very ineffective especially when

they are combined with the domain splitting strategy; as a matter of fact, they were

incomplete in the sense that the program did not halt within a reasonable amount of time.

We set the time limit as 100 seconds for the 20-queens problem and in both occasions, they

were not able to find a solution within 100 seconds.

The Execution Time (in seconds) Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 1.1 0.0 0.3 0.1 0.0 1.5 2.0

2-Way Branching 1.5 0.0 0.3 0.1 0.0 2.3 1.9

Domain Splitting 1.5 0.0 >100 1.2 0.0 1.6 >100

Table 5.1: The execution time of different branching strategies for the 20-queens problem

With the aid of the minimum domain size and greatest minimal bound orderings, we

carried out the tests for larger N -queens problems up to N = 1500. Tables 5.2 and 5.3

show the results respectively. In Table 5.2, we report the behavior of the running time of

the program with MinSize as the size of the problem increases. However, the experiments

with MaxMin, as shown in Table 5.3, does not reveal any useful information since the

program did not find the answer within 100 seconds when N is larger than 50. Among

different branch ordering heuristics that we have tested, the minimum domain size ordering

heuristic seems to be the most beneficial in solving larger N -queens.

For the N -queens problems, k-Way branching and 2-Way branching outperform domain

splitting and the difference between them increases as the number of queens increases.

When N is 1500, k-Way and 2-Way become two times faster than domain splitting (refer

to Table 5.2).

On top of this, there is another interesting point that is worthwhile to make here. The

values of k-Way branching and 2-Way branching seem to be identical and this leads us to

suspect that 2-Way branching might simulate k-Way branch when solving the N -queens

problems. As discussed in Mitchell’s paper [10], 2-Way branching can simulate k-Way

branching; however, k-Way cannot simulate 2-Way. Also when we compare the choice

points of k-Way and 2-Way branching, there is another empirical evidence that 2-Way

50

ends up simulating k-Way branching because the traces of choice points set by these two

branching strategies are exactly the same in Table 5.4. Besides the running time of a

program, the number of choice points can also be a good means to decide the efficiency of

a heuristic. This is because for the same problem, the size of the derivation tree is roughly

proportional to the number of choices in the tree [9].

The Execution Time (in seconds) N = 10 N = 50 N = 100 N = 1000 N = 1500

k-Way Branching 0 0 0.0 3.0 8.3

2-Way Branching 0 0 0.0 3.0 8.3

Domain Splitting 0.0 0.0 0.0 3.1 15.412

Table 5.2: The running time of solving the N -queens problems with MinSize

The Execution Time (in seconds) N = 10 N = 50 N = 100 N = 1000 N = 1500

k-Way Branching 0 > 100 > 100 > 100 > 100

2-Way Branching 0 > 100 > 100 > 100 > 100

Domain Splitting 0 > 100 > 100 > 100 > 100

Table 5.3: The running time of solving the N -queens problems with MaxMin

The Number of Choice Points N = 10 N = 50 N = 100 N = 1000 N = 1500

k-Way Branching 11 50 95 996 1492

2-Way Branching 11 50 95 996 1492

Domain Splitting 22 652 392 6315 13329

Table 5.4: The choice points of solving the N -queens problems with MinSize

In combination with the best currently available branch ordering heuristics, namely

minimum domain size variable ordering heuristic, domain splitting is not a good choice for

a branching strategy in solving large N -queens problems and the choice between 2-Way

and k-Way branching would not matter much since 2-Way simulates k-Way branching.

Experimental Results 51

5.2 Results for the Golomb Ruler Problems

Unlike N -queens, it is a little difficult to pick the best branch ordering heuristic for the

Golomb ruler problems. When there are fewer than 8 marks, the problems become too

trivial to solve, meaning that the running times are very close to zero and it is very difficult

to determine which branch orderings are better. In hope to collect more distinctive data, we

have experimented with larger marks; however, the manifest difference did not show until

the number of marks is more than 9 and when there are more than 9 marks, the problem

becomes very hard to solve in combination with certain branch ordering heuristics, namely

maximum domain size, greatest minimal bound, and greatest maximal bound heuristics.

Table 5.5 is prepared by solving the Golomb ruler with 8 marks and the table suggests that

lexicographical (Lex), minimum domain size (MinSize), least minimal bound (MinMin)

and least maximal bound (MinMax) heuristics might be more effective than maximum

domain size (MaxSize), greatest minimal bound (MaxMin), and greatest maximal bound

(MaxMax) in solving the Golomb ruler problems. Hence, for larger problem sizes, different

branching strategies are tested only with lexicographical, minimum domain size, least

minimal bound, and least maximal bound branch ordering heuristics.

The Execution Time (in seconds) Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 0.4 0.4 0.6 0.4 1.1 0.4 1.1

2-Way Branching 0.4 0.4 0.6 0.4 1.1 0.4 1.1

Domain Splitting 0.4 0.4 9.2 0.4 1.1 0.4 1.1

Table 5.5: The execution time of different branching strategies for the OGR with 8 marks

Since the execution time exceeds 1000 seconds when the number of marks is greater

than 10, the experiments were carried up to the Golomb rulers with 10 marks. The

following Tables 5.6, 5.7, 5.8 and 5.9 show the results from these experiments. Irrespective

of different branch orderings, one can observe from these tables that domain splitting works

better than 2-Way and k-Way branchings and the difference becomes more prominent as

the problem size increases.

In spite of the fact that domain splitting creates more choice points (as shown in Table

52

The Execution Time (in seconds) N = 3 N = 5 N = 7 N = 9 N = 10

k-Way Branching 0 0.0 0.0 4.6 52.8

2-Way Branching 0 0.0 0.0 4.7 52.4

Domain Splitting 0 0.0 0.0 4.5 50.4

Table 5.6: The running time of different branching strategies for the Golomb ruler problems

with lexicographical ordering

The Execution Time (in seconds) N = 3 N = 5 N = 7 N = 9 N = 10

k-Way Branching 0 0.0 0.0 5.0 56.2

2-Way Branching 0 0 0.0 4.9 55.9

Domain Splitting 0 0 0.0 4.7 52.8

Table 5.7: The running time of different branching strategies for the Golomb ruler problems

with minimum domain size ordering

The Execution Time (in seconds) N = 3 N = 5 N = 7 N = 9 N = 10

k-Way Branching 0 0.0 0.0 4.6 52.7

2-Way Branching 0 0.0 0.0 4.6 52.8

Domain Splitting 0 0 0.0 4.5 50.6

Table 5.8: The running time of different branching strategies for the Golomb ruler problems

with least minimal bound ordering

5.10), the running time of domain splitting seems to be a little faster than k-Way and

2-Way branching methods. For instance, when there are 10 marks in the ruler and lex-

icographical ordering is employed (refer to Table 5.6), domain splitting improves about

2 seconds; domain splitting takes 50.4 seconds to find the optimal solution while k-Way

branching does for 52.8 seconds and 2-Way for 52.4 seconds. The improvement of 2 seconds

sounds insignificant; however, if we take the problem size into consideration, we can sug-

gest that domain splitting works better than k-Way and 2-Way branching in the Golomb

Experimental Results 53

The Execution Time (in seconds) N = 3 N = 5 N = 7 N = 9 N = 10

k-Way Branching 0 0.0 0.0 4.6 52.6

2-Way Branching 0 0 0.0 4.7 52.3

Domain Splitting 0 0.0 0.0 4.5 50.5

Table 5.9: The running time of different branching strategies for the Golomb ruler problems

with least maximal bound ordering

ruler problems. Marriott and Stuckey [9] claim that domain splitting is beneficial for the

optimization problems since it employs the optimal partitioning principle. The detailed

description about the optimal partitioning is given in the Background section. Since the

Golomb ruler problem is an optimization problem and it has the domain size of O (N2) if

there are N marks, this empirical evidence supports the fact that domain splitting can be

a better branching strategy for optimization problems with large domain size.

Also one might point out that the values for 2-Way and k-Way branching in the tables

are almost alike within 0.4 seconds, and this suggests that 2-Way branching simulates k-

Way branching as in the N -queens problems. Even when comparing the number of choice

points, we are more confident to say that 2-Way and k-Way behave equally in solving the

Golomb ruler problems. Table 5.10 is introduced as an example to consolidate this claim.

It is prepared with the help of lexicographical ordering and the data in the table supports

that 2-Way branching simulates k-Way branching since there is no difference in the number

of choice points set by both branching strategies. This observation coincides with what we

have observed in the N -queens problems. For other branch ordering heuristics, the same

observation can be made, and we haven’t included them in order to avoid redundancy.

In comparison with N -queens, a wide range of branch ordering heuristics are beneficial

to use in the Golomb ruler problems, and in combination with them, domain splitting

seems to be a better choice for the large Golomb ruler problems. As for k-Way and 2-Way,

they behave in a similar manner irrespective of branch ordering heuristics. By inspecting

their identical running times and choice points, we are more confident to suggest that

2-Way simulates k-Way in solving the Golomb ruler problems as in N -queens.

54

The Number of Choice Points N = 3 N = 5 N = 7 N = 9 N = 10

k-Way Branching 0 13 713 41959 317620

2-Way Branching 0 13 713 41959 317620

Domain Splitting 0 16 726 42546 322280

Table 5.10: The choice points of different branching methods for the Golomb ruler problems

with lexicographical ordering

5.3 Results for the Instruction Scheduling Problems

In order to find out the best branch ordering heuristic or heuristics for instruction problems,

we chose the problem with 394 instructions as a benchmark. Table 5.11 shows the running

time of different branching strategies in 394 instructions. In the table, the greatest minimal

bound and greatest maximal bound heuristics seem to be more efficient than any other

heuristics.

The Execution Time (in seconds) Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 0.7 0.5 > 100 0.6 0.2 0.6 0.2

2-Way Branching 0.6 0.5 > 100 0.6 0.2 0.6 0.2

Domain Splitting 4.9 1.3 > 100 5.1 0.2 4.7 0.2

Table 5.11: The execution time of different branching strategies in scheduling 394 instruc-

tions

Choice Points Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 87 43 139 87 18 74 10

2-Way Branching 87 43 139 87 18 74 10

Domain Splitting 449 128 551 476 28 474 29

Table 5.12: The choice points of different branching strategies in scheduling 69 instructions

The test cases are designed to test the efficiency of different branching strategies in a

Experimental Results 55

following manner: the problems with 69, 111, 216, 381, 690, and 1006 instructions are to

find the optimal sequence of instructions in order to minimize the compilation time. With

the aid of minimum domain size, greatest minimal and greatest maximal bound heuristics,

we present the execution time of three branching strategies in Figure 5.13.

Branch Ordering Branching Strategies N = 69 N = 111 N = 216 N = 381 N = 690 N = 1006

MinSize k-Way Branching 0 0.0 0.1 0.1 0.4 1.8

MinSize 2-Way Branching 0.0 0.0 0.1 0.1 0.4 1.8

MinSize Domain Splitting 0.0 0.0 0.1 0.3 0.9 4.7

MaxMin k-Way Branching 0 0.0 0.0 0.1 0.5 >100

MaxMin 2-Way Branching 0 0.0 0.0 0.1 0.5 >100

MaxMin Domain Splitting 0.0 0.0 0.0 0.1 0.6 >100

MaxMax k-Way Branching 0.0 0.0 0.0 0.1 0.7 2.0

MaxMax 2-Way Branching 0.0 0.0 0.0 0.1 0.7 1.9

MaxMax Domain Splitting 0.0 0.0 0.1 0.1 0.6 16.1

Table 5.13: The execution time of different branching strategies in the instruction schedul-

ing problems

The interesting point can be observed in Table 5.13; that is, the entries for 2-Way

branching are almost the same as k-Way branching. With the empirical evidence as shown

in choice points of Table 5.12 that is prepared to schedule 69 instructions, we cautiously

presume that 2-Way branching also simulates k-Way branching in the instruction schedul-

ing problem. As for different branch ordering heuristics, the minimum domain size variable

ordering seems to be more efficient than the greatest maximal and the greatest minimal

bound as the problem size increases. In the greatest minimal bound ordering, when there

are 1006 instructions, it cannot even find the optimal solution within 100 seconds. Since

we set 100 seconds as the time limit, >100 means that it is incomplete in Table 5.13.

Even though this problem is an optimization problem, domain splitting does not show

any promising result as it did in OGR. Its running time gets very slow as the number

of instructions increases, and it eventually become less effective than k-Way and 2-Way

56

branching. The reason for this can be speculated in the algorithm employed from [13], and

in this paper, the algorithm is already optimal and fast. Therefore, it might be difficult to

improve on something already optimal.

5.4 Results for the Car Sequencing Problems

For the car sequencing problem, different branch ordering heuristics are tested and com-

pared in solving 20 cars with 5 options and 6 different configurations. The time limit is set

to 600 seconds. Table 5.14 shows that programs using lexicographical, minimum domain

size, greatest minimal bound and least maximal bound clearly outperform programs with

maximum domain size, least minimal bound and greatest maximal bound heuristics. Fur-

thermore, maximum domain size variable ordering and domain splitting are found to be

the worst combination in the car sequencing problem since the running time exceeds the

time limit, 600 seconds.

The Execution Time (in seconds) Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 0.3 0.4 3.2 1.6 0.3 0.3 0.9

2-Way Branching 0.3 0.4 3.5 1.6 0.3 0.3 0.8

Domain Splitting 0.3 0.4 > 600 7.7 0.3 0.3 438.5

Table 5.14: The running time of different branching strategies in sequencing 20 cars

For the larger problems, Tables 5.15, 5.16, 5.17, and 5.18 present the data for sequencing

cars up to 50 cars with Lex, MinSize, MaxMin, and MinMax correspondingly. In all

four tables, k-Way, 2-Way branching and domain splitting seem to perform in a similar

manner although the actual difference between domain splitting and k-Way branching is

at most 4 seconds and the difference between k-Way branching and 2-Way branching is

at most 2 seconds—in most cases, k-Way and 2-Way have an identical value. We can

notice the pattern in which domain splitting becomes more efficient than 2-Way and k-

Way branchings. For example, when there are 50 cars, domain splitting becomes faster

than any other branching in all the tables. Hence we cautiously claim that domain splitting

becomes more favorable irrespective of the choice of branch ordering as the problem size

Experimental Results 57

increases. When we compare the number of choice points set by three different branching

strategies in Table 5.19, domain splitting surprising generates less choice points than k-

Way and 2-Way. This observation also supports that domain splitting is more beneficial

to use in the car sequencing problems.

The Execution Time (in seconds) 10 cars 20 cars 30 cars 40 cars 50 cars

k-Way Branching 0.0 0.3 2.6 20.6 152.8

2-Way Branching 0.0 0.3 2.7 20.4 154.4

Domain Splitting 0.0 0.3 2.7 20.1 148.9

Table 5.15: The running time of different branching strategies with Lex in sequencing cars

The Execution Time (in seconds) 10 cars 20 cars 30 cars 40 cars 50 cars

k-Way Branching 0.0 0.4 2.8 21.2 153.0

2-Way Branching 0.0 0.4 2.6 20.5 153.7

Domain Splitting 0.0 0.4 2.7 20.1 150.7

Table 5.16: The running time of different branching strategies with MinSize in sequencing

cars

The Execution Time (in seconds) 10 cars 20 cars 30 cars 40 cars 50 cars

k-Way Branching 0.0 0.3 2.9 20.8 160.2

2-Way Branching 0.0 0.3 2.7 21.2 159.7

Domain Splitting 0.0 0.3 2.8 21.2 156.9

Table 5.17: The running time of different branching strategies with MaxMin in sequencing

cars

As for k-Way and 2-Way branchings, we once again presume that 2-Way branching

ends up simulating k-Way branching in ILOG when solving car sequence problems because

there is empirical evidence that k-Way is closely related to 2-Way branching. For instance,

58

The Execution Time (in seconds) 10 cars 20 cars 30 cars 40 cars 50 cars

k-Way Branching 0.0 0.3 2.4 20.2 149.9

2-Way Branching 0.0 0.3 2.7 20.4 151.0

Domain Splitting 0.0 0.3 2.7 20.2 147.8

Table 5.18: The running time of different branching strategies with MinMax in sequencing

cars

Table 5.19 shows the number of choice points set by the three different branching strategies

in combination with the lexicographical branch ordering heuristic. In the table, the values

for k-Way and 2-Way are exactly the same and it suggests that 2-Way behaves in the same

way as k-Way.

Choice Points 10 cars 20 cars 30 cars 40 cars 50 cars

k-Way Branching 3 769 5519 40156 289824

2-Way Branching 3 769 5519 40156 289824

Domain Splitting 6 733 5290 38492 277842

Table 5.19: The choice points of different branching strategies with Lex in sequencing cars

5.5 Results for the Truck Scheduling Problems (TSP)

In order to find a more efficient branch ordering heuristic for the truck scheduling problem

(TSP), we tested 7 different branch ordering upon solving TSP with 7 customers, and the

table 5.20 is obtained.

Solely based on the running time, it is extremely difficult to select efficient branch

ordering heuristics because the running times in table 5.20 are very alike within ±0.02

seconds; therefore, we compare the number of choice points among different branch order-

ings as shown in table 5.21. Taking choice points into account, we select lexicographical,

maximum domain size, greatest minimal bound, least maximal bound, greatest maximal

bound branch ordering heuristics to examine branching strategies in larger problems.

Experimental Results 59

The Execution Time (in seconds) Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 0.5 0.6 0.5 0.5 0.6 0.6 0.6

2-Way Branching 0.5 0.6 0.5 0.5 0.5 0.6 0.5

Domain Splitting 0.6 0.6 0.4 0.5 0.5 0.5 0.5

Table 5.20: The execution time of different branching strategies in TSP with 7 customers

The Number of Choice Points Lex MinSize MaxSize MinMin MaxMin MinMax MaxMax

k-Way Branching 37508 71434 33307 46744 37394 37497 37511

2-Way Branching 37508 71434 33307 46744 37394 37497 37511

Domain Splitting 37442 71382 36367 45183 37333 37411 52307

Table 5.21: The choice points of different branching strategies in TSP with 7 customers

The truck scheduling problem (TSP) is also an optimization problem as the OGR, and

as expected, domain splitting works better than 2-way and K-way branching if we employ

the least maximal bound ordering; when there are twelve customers, domain splitting can

find the shortest route for the truck in 246 seconds which is 12 seconds faster than k-Way

branching and 21 seconds faster than 2-Way branching. With other branch orderings, k-

Way branching seems to be fastest. Especially with maximum domain size ordering, k-Way

and 2-Way branchings are about 41 times faster than domain splitting. The closeness of

k-Way and 2-Way regardless of branch ordering heuristics is well elucidated in Table 5.22.

5.6 Results for the Uniform Binary Random Prob-

lems

Before testing, some parameters for the uniform binary random problems need to be set.

These are such as the number of variables, the number of values in the domain, the number

of constraints, the number of invalid assignments (no-goods), the random seed to generate

the random sequence, and the number of instances. Firstly, based on the personal pref-

erence, we chose the random problem with 32 variables, 10 values, 50 constraints, 100 for

60

Branch Ordering Branching Strategies 3 customers 5 customers 7 customers 9 customers 11 customers 12 customers

Lex k-Way Branching 0.4 0.4 0.5 1.9 39.5 307

Lex 2-Way Branching 0.4 0.4 0.5 1.8 41.9 321

Lex Domain Splitting 0.4 0.3 0.6 1.7 39.5 306

MaxSize k-Way Branching 0.5 0.4 0.5 0.9 2.0 7.3

MaxSize 2-Way Branching 0.5 0.4 0.5 0.8 2.1 7.6

MaxSize Domain Splitting 0.4 0.3 0.4 1.6 39 315

MaxMin k-Way Branching 0.4 0.4 0.6 1.6 23.8 221

MaxMin 2-Way Branching 0.4 0.4 0.5 1.7 25.5 228

MaxMin Domain Splitting 0.4 0.4 0.5 1.6 24.3 224

MinMax k-Way Branching 0.5 0.4 0.6 1.8 38.1 258

MinMax 2-Way Branching 0.4 0.4 0.6 1.9 40.2 267

MinMax Domain Splitting 0.4 0.4 0.5 1.8 36.7 246

MaxMax k-Way Branching 0.4 0.4 0.6 1.8 40.2 309

MaxMax 2-Way Branching 0.4 0.4 0.5 1.8 42.2 324

MaxMax Domain Splitting 0.3 0.3 0.5 2.1 38.1 344

Table 5.22: The execution time of different branching strategies in TSPs

the random seed, and 200 repetitions for each problem, and the number of invalid varies

from 1 to 100 as the small size problem. With these parameters, we ran tests to measure

the running time of different branching strategies also employing seven different branch

ordering heuristics. In this experiment, we found that some branch ordering heuristics are

too efficient to compare the effectiveness of different branching strategies, and some entries

in the data are very close to zero. The results are graphically shown in Figure 5.1

In order to analyze more effectively the data, we use a table to represent the data for

MaxSize that has the longest running time in Table 5.23. In order to emphasize the phase

transition that occurs when a problem becomes extremely difficult to solve, the number of

no-goods in Table 5.23 only ranges from 50 to 86 with the increments of 3 since the phase

transition for this particular instance is calculated as 77.

Experimental Results 61

0 20 40 60 80 100
0

1

2

3

4
Lexicographical

T
he

 E
xe

cu
tio

n
T

im
e

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

The Number of No−Goods

T
he

 E
xe

cu
tio

n
T

im
e

Minimum Domain Size

0 20 40 60 80 100
0

2

4

6

8
Least Minimal Bound

The Number of No−Goods

T
he

 E
xe

cu
tio

n
T

im
e

0 20 40 60 80 100
0

0.005

0.01

0.015
Greatest Minimal Bound

The Number of No−Goods

T
he

 E
xe

cu
tio

n
T

im
e

0 20 40 60 80 100
0

0.005

0.01

0.015
Least Maximal Bound

The Number of No−Goods

T
he

 E
xe

cu
tio

n
T

im
e

0 20 40 60 80 100
0

2

4

6

The Number of No−Goods

Geatest Maximal Bound

T
he

 E
xe

cu
tio

n
T

im
e

k−Way Branching
2−Way Branching
Domain Splitting

Figure 5.1: The running time of different branching strategies in solving the random prob-

lem with 32 variables

62

The number of no-goods k-Way branching 2-Way branching Domain Splitting

50 0.0 0.0 0.2

53 0.5 0.5 0.4

56 3.9 3.9 0.8

59 6.7 7.8 10.0

62 19.7 18.6 19.2

65 34.9 33.9 31.8

68 16.1 17.5 16.5

71 3.4 3.4 1.3

74 0.1 0.1 0.0

77 0.0 0.0 0.0

80 0.0 0.0 0.0

83 0.0 0.0 0.0

86 0.0 0.0 0.0

Table 5.23: The running time for different branching strategies combined with MaxSize in

solving the random problem with 32 variables (in seconds)

With the aid of the constrainedness , a phase transition point is calculated to make the

constrainedness equal to 1, and the constrainedness for the random problem is defined in

[3] as follows: K = n−1
2
∗ p1 ∗

log 1
1−p2

log m
where n is the number of variable, m is the number

of values, p1 is a constraint density, and p2 is a tightness. If we insert all the parameters

(n = 32, m = 10, K = 1, p1 = 0.1) and solve for p2, we can approximate the value of p2 as

0.77, meaning that there are approximately 77 no-goods.

This approximately coincides with the graphs in Figure 5.1; however, with lexicograph-

ical ordering, the phase transition happens around 50 no-goods and the one for MaxSize

happens to be around 65 in Table 5.23. Comparing the running times among the figures in

Figure 5.1 and Table 5.23, one can notice that minimum domain size branch ordering has

the most efficient execution time around the phase transition point. Another interesting

point about the random problem can be made—if the problem becomes very hard, around

the phase transition area, domain splitting and 2-Way branching ends up simulating k-Way

Experimental Results 63

branching.

The number of no-goods k-Way branching 2-Way branching Domain Splitting

50 29 29 54

53 27 27 49

56 25 25 44

59 23 25 39

62 22 23 35

65 24 24 35

68 25 25 31

71 8 8 9

74 1 1 1

77 0 0 0

80 0 0 0

83 0 0 0

86 0 0 0

Table 5.24: The number of choice points for different branching strategies combined with

MinSize in solving the random problem with 32 variables

When we compare the choice points for the random problem, we feel more confident to

claim that 2-Way branching simulates k-Way branching. We prepared Table 5.24 in the

same way as Table 5.23 except with the more efficient branch ordering heuristic, MinSize,

and the entries for k-Way and 2-Way branching seems to be very similar to each other.

If we take into consideration that each of the entries in Table 5.24 is the average of 200

different instances, the table shows some evidence that 2-Way branching simulates k-Way in

solving the random problem. Furthermore, Table 5.24 also suggests that domain splitting

is distinguishably different from the other two. As observed in the earlier experiments,

domain splitting generates more choice points than k-Way and 2-Way.

When the problem becomes harder to solve, the running times of different branching

methods tend to merge together at the phase transition state regardless of the choice of

branch ordering heuristics. This phenomenon can still be observed even in the larger

64

problems. For example, the data in Table 5.25 exhibits the same pattern. The table is

prepared by solving a random problem with 50 variables, 10 values, 122 constraints and

-100 random seed with the help of Lex, and truncated around the phase transition point.

The number of no-goods k-Way branching 2-Way branching Domain Splitting

50 0.9 0.9 0.9

52 1.2 1.8 1.7

54 7.6 7.6 7.1

56 11.6 11.5 11.1

58 2.0 2.0 1.9

60 0.8 0.8 0.7

62 0.1 0.1 0.1

64 0.0 0.0 0.0

66 0.0 0.0 0.0

68 0.0 0.0 0.0

70 0.0 0.0 0.0

72 0.0 0.0 0.0

Table 5.25: The running time of different branching strategies combined with Lex in solving

the random problem with 50 variables (in seconds)

Chapter 6

Discussion

In this section, we discuss the meaning of our experiments by comparing our test results

with the predictions made in some of the literature. Furthermore, we attempt to explain

some of the behaviors observed in the experiments.

Based on [9], the domain splitting strategy should work better than the others since it

follows the least commitment principle. This principle states that when making a choice

for some variable we should make the choice which commits us as little as possible [9].

The advantage of this is that, if we detect unsatisfiability after making a weak commit-

ment, more of the search space is removed than if we detect unsatisfiability after a strong

commitment. In k-Way and 2-Way branchings, setting a variable to a value commits the

variable to a single value, which is very restrictive. Domain splitting is less restrictive [9]

as it only removes half of the remaining values in the variable’s domain rather than all but

one. The principle of least commitment, therefore, tells us to prefer domain splitting since

the other labeling approaches lead to stronger commitment, and so does it prefer 2-Way

over k-Way branching because 2-Way commits less than k-Way [9].

Marriott and Stuckey [9] also point out that optimization problems can be good can-

didates to use domain splitting. The search for an optimal solution involves computing a

long sequence of answers, each slightly better than the last, until the optimal solution is

eventually reached. In a sense, the default minimization routine performs a linear search

through the solution space in which solutions are ordered by the best value of the objec-

tive function. However, domain splitting reduces the number of solutions considered by

65

66

performing a binary search through the solution space. Marriott and Stuckey refer to this

process as optimal partitioning and explain it in the following way. We first search for a

solution in the lower half of the range. If this is found, we then look for a better solution in

the lower half of the range. If there is no solution in the lower half of the range, we search in

the upper half of the range. At each step in the search we keep track of the minimum and

maximum values that the objective function can take. Our experiments provides empirical

evidence that domain splitting can be beneficial to solve optimization problems like optimal

Golomb ruler and truck scheduling problems. Although domain splitting only marginally

improves the execution time by at most 12 seconds, we can observe the pattern that the

amount of improvement becomes larger as the problem size increases; hence, it is reason-

able to conclude that domain splitting can be more beneficial when larger optimization

problems are solved.

In other finite domain problems, N -queens and instruction scheduling show that do-

main splitting is less efficient than k-Way and 2-Way branchings. The ineffectiveness of

domain splitting can be explained with the following statement: the fact that domain

splitting is not always advantageous as less commitment may also mean less information

for the incomplete solver to determine satisfiability or unsatisfiability [9]. For example,

propagation like forward checking becomes inefficient when a variable is not assigned. The

reason is that, in order for the propagator to check the consistency between the future

variables and the current assignment, the current variable has to be committed, meaning

that a variable is assigned to a value. Because domain splitting delays strong commitment,

the information that the propagator uses to prune the search space is less available in

domain splitting than in the other branching techniques. This was the case in the above

satisfiable problems, which favors the labeling strategies with strong commitment.

The other possible explanation for the inefficiency of domain splitting on the N -queens

problem can be found in [12], which states that benchmarks on different algorithms pro-

duced using the N -queens problem must be interpreted with caution. This is because the

N -queens problem has very specific features: first, it is a binary constraint problem; sec-

ond, every variable is constrained by every other variable, which need not be the case in

other problems [12]. More importantly, in the N -queens problem, each label for every vari-

able conflicts with at most three values of each other variable, regardless of the number of

Discussion 67

variables in the problem [12]. For example, the label, x1 = 2 meaning that the first column

variable is assigned to the value 2 (i.e. a queen is placed in the first column and the second

row) has conflict with other labels x2 = 1, x2 = 2, and x2 = 3. In the 8-queens problem,

for example, when 2 is assigned to Queen 1, there are 5 out of 8 values that Queen 2 can

take. But in the 1,000,000-queens problem, there are 999,997 out of 1,000,000 values that

Queen 2 can take after x1 = 2 has been committed to. Therefore, constraints get looser as

N grows larger [12]. For large N, it is well known that solutions to the N -queens problems

are more likely to be found by starting in the middle of the domain [9]. The uniqueness of

the N -queens problem contributes to the slowness of the program using domain splitting.

Another interesting finding of this experiment is that the trace of 2-Way is exactly the

same as the one of k-Way branching in most cases. Even in some testing cases such as in

random and car sequencing problems, domain splitting behaves similarly to k-Way and 2-

Way branchings. This suggests that domain splitting and 2-Way cannot utilize effectively

the least commitment principle in finite domain CSPs unlike as in numeric CSPs—domain

splitting seems to be very efficient in numeric CSPs [7].

We also were able to observe that different branch ordering heuristics cause different be-

havior of the running times of the branching strategies. With the help of the most efficient

branch ordering heuristics available for the problem, the difference among the branching

strategies becomes too insignificant to distinguish them. With careful consideration, we

realize that domain splitting and 2-Way simulate k-Way; they choose the same variables

and values. This observation makes us question the effectiveness of the current branch

ordering techniques on 2-Way branching and domain splitting. Since most heuristics are

designed specifically for k-Way branching, we might need some other ways to choose branch

ordering in a way to take full advantage of the least commitment principle.

The key of success in domain splitting lies in the fact that it is less likely to fail in

the early stage of the search and eventually leads to more effective pruning once more

information is available in a later search stage, because it delays committing until one of

domains is split into a singleton. In order to utilize domain splitting better, we first need

to find a more effective mechanism to collect the unsuccessful values into one group so that

we can reduce the search space once the information is available.

Chapter 7

Conclusion

For many constraint programs with finite domains, efficiency is synonymous with efficient

labeling and the constraint programmer is well advised to consider strategies for labeling

which reduce the search space and eventually lead to finding a solution faster [9]. Different

branching strategies in labeling are implemented and tested for their efficiency in this thesis.

When they are empirically compared, there is some evidence that domain splitting improves

the running time in optimization finite domain problems and the efficiency increases as the

problem gets larger because domain splitting follows the least commitment principle as

well as optimal partitioning.

However, most of our test cases for finite domain CSPs suggest that the choice of

branching strategies does not matter much—provided we are using an effective variable or-

dering heuristic. This result is rather surprising since domain splitting and 2-Way branch-

ing were predicted to be more efficient than k-Way branching. In our experiments, domain

splitting and 2-Way branching end up simulating k-Way branching, given the widely used

variable ordering heuristics we employed in our study.

The inefficiency of least committed branching strategies in finite domain CSPs can be

explained by the fact that the least commitment principle ends up reducing the useful

information for a propagator to effectively prune, as the principle always prefers a least

committed choice over strongly committed choices that contain more information. Also,

the intrinsic characteristics of the problems as in N -queens also contribute to the latency

of finding a solution. The N -queen problem is a binary constraint problem, and every

68

Conclusion 69

variable is constrained by every other variables. Furthermore, it is less constrained as N

grows. The least commitment principle seems to be more effective for the problems with

large sizes; however, in N -queens, it is not the case since constraints get looser as N grows

larger.

Based on these empirical studies, we hope that other practitioners follow up with our

experiments so that they can show that the branching strategies with least commitment

principle can work better than the other methods when the constraints involving the vari-

ables to be labeled can gain substantial consistency information from the split domains

provided that there is a heuristic available to utilize this information. In spite that domain

splitting also produces a larger derivation tree than k-Way and 2-Way branchings, when

there are many variables and their domains are large, domain splitting can be more effi-

cient than the other strategies. By splitting a domain into two halves, we may be able to

eliminate half of a variable’s possible domain values. It can be ideal to split a domain in

a way to separate all the inconsistent values from consistent values so that the propagator

can eliminate all the inconsistent domain values at once. Designing such a propagator,

splitting strategies, and specialized heuristics to better utilized the information carried in

2-Way branching and domain splitting are left for the future work.

In addition, the hybridized branching strategies can be also possible. At the different

levels of a search tree, different branching strategies can be employed to maximize the

pruning. For instance, first we employ domain splitting to delay any strong commitment,

but once we gain some information about the problem, we can reduce the search space by

committing strongly. In order to implement this, we first need to find a way to evaluate

the good level for different branching techniques. We also leave this topic for future work.

Bibliography

[1] Christian Bessiere. Random uniform CSP generators. Available online:

http://www.lirmm.fr/~bessiere/generator.html.

[2] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving a cutting-stock problem in

constraint logic programming. In Fifth International Conference on Logic Program-

ming, 1998.

[3] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In

Proc. AAAI-96, 1996.

[4] R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint satis-

faction problems. Artificial Intelligence, pages 14:263–313, 1980.

[5] ILOG. ILOG SOLVER:Reference Manual, 4.2 edition, 1998.

[6] ILOG. ILOG SOLVER:User Manual, 4.2 edition, 1998.

[7] Narendra Jussien and Oliver Lhomme. Dynamic domain splitting for numeric CSPs.

In Henri Prade, editor, Proceedings of the 13th European Conference on Artificial

Intelligence, 1998.

[8] Zeynep Kiziltan, Pierre Flener, and Brahim Hnich. Towards inferring labelling heuris-

tics for csp application domains. http://www.dis.uu.se/~pierref/astra.

[9] K. Marriott and P. J. Stuckey. Programming with Constraint: An Introduction. MIT

press, 1990.

70

Conclusion 71

[10] David G. Mitchell. Resolution and constraint satisfaction. Simon Fraser University,

Burnaby, Canada.

[11] J. F. Puget and M. Leconte. Beyond the blackbox: Constraints as objects. In J. Lloyd,

editor, Logic Programming: Proceedings of the 1995 International Symposium, pages

513–527. MIT Press, 1995.

[12] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[13] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue pro-

cessors with arbitrary latencies. In Proceedings of the Seventh International Confer-

ence on Principles and Practice of Constraint Programming, pages 625–639, Paphos,

Cyprus, 2001.

[14] Pascal van Hentenryck. Search and strategies in opl. ACM Transactions on Compu-

tational Logic, 1(2):285–320, October 2000.

[15] W. J. van Hoeve and M. Milano. Decomposition based search: A theoretical and

experimental evaluation. http://homepages.cwi.nl/~wjvh/papers/dbs.pdf.

	Introduction
	Background
	Basic Definitions
	Constraint Propagation
	Backtracking Search (BT)

	Different Branching Strategies in a Search
	Branching Strategies
	Heuristics: Branch Ordering Heuristics
	Related Work

	Experimental Setup
	Problems
	The N-queens Problem
	The Golomb Ruler Problem
	The Car Sequencing Problem
	The Truck Scheduling Problem (TSP)
	The Instruction Scheduling Problem
	The Uniform Binary Random Problem

	Implementation

	Experimental Results
	Results for the N-queens Problems
	Results for the Golomb Ruler Problems
	Results for the Instruction Scheduling Problems
	Results for the Car Sequencing Problems
	Results for the Truck Scheduling Problems (TSP)
	Results for the Uniform Binary Random Problems

	Discussion
	Conclusion

