
On Fine-Grained Access Control for
XML

by

Donghui Zhuo

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Donghui Zhuo 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

Donghui Zhuo

I understand that my thesis may be made electronically available to the public.

Donghui Zhuo

ii

Abstract

Fine-grained access control for XML is about controlling access to XML documents

at the granularity of individual elements or attributes. This thesis addresses two

problems related to XML access controls. The first is efficient, secure evaluation of

XPath expressions. We present a technique that secures path expressions by means

of query modification, and we show that the query modification algorithm is correct

under a language-independent semantics for secure query evaluation. The second

problem is to provide a compact, yet useful, representation of the access matrix.

Since determining a user’s privilege directly from access control policies can be

extremely inefficient, materializing the access matrix—the net effect of the access

control policies—is a common approach to speed up the authorization decision

making. The fine-grained nature of XML access controls, however, makes the space

cost of matrix materialization a significant issue. We present a codebook-based

technique that records access matrices compactly. Our experimental study shows

that the codebook approach exhibits significant space savings over other storage

schemes, such as the access control list and the compressed accessibility map. The

solutions to the above two problems provide a foundation for the development of an

efficient mechanism that enforces fine-grained access controls for XML databases

in the cases of query access.

iii

Acknowledgements

I would like to express my most sincere gratitude to my supervisor, Dr. Kenneth

Salem, who is a truly nice gentleman with immense knowledge and endless patience.

Without his insightful guidance and invaluable assistance, this thesis would not be

possible. I feel extremely lucky to be under his supervision. I am very much grateful

to my readers, Dr. Frank Tompa and Dr. Tamer Özsu, for their critical reviews and

useful suggestions on this thesis. I am also grateful to Ting Yu of the University of

Illinois, H.V. Jagadish of the University of Michigan, and Gary Promhouse of Open

Text Corporation, for providing the experiment data. I am forever indebted to my

parents, Tibang and Kuiqing, for their love and support. They are the persons who

brought me up and encouraged me to pursue science. Special thanks go to my elder

brother Lieguang, the best brother in the world, who has always been on my side

since my childhood. Lastly and most importantly, I want to thank my wife, Patty

Peng, for everything. This thesis is dedicated to you.

iv

Trademarks

LiveLink is a trademark of Open Text Corporation.

v

Contents

1 Introduction 1

1.1 Problems and Challenges . 2

1.1.1 Secure Query Evaluation . 2

1.1.2 Compact Representation of Access Matrix 3

1.2 Contributions . 4

1.3 Organization . 5

2 Preliminary Concepts 6

2.1 XPath . 6

2.2 Twig Query . 12

2.3 Access Control Basics . 13

2.3.1 Access Control Policies . 14

2.3.2 Access Control Mechanisms 18

3 Secure Query Evaluation 23

3.1 Models of XML Data and Access Control 24

3.2 Semantics of Secure Query Evaluation 27

vi

3.2.1 Cho’s semantics . 28

3.2.2 View Based Semantics . 29

3.3 Enforcement of Secure XPath Evaluation 32

3.3.1 Overview of the Query Modification Algorithm 33

3.3.2 Security Functions . 35

3.3.3 Query Rewriting Function 41

3.4 Proof Overview . 45

4 Compact Representation of Access Matrix 47

4.1 ACL, CL and AR . 48

4.2 Compressed Accessibility Map . 50

4.3 Codebook Based Scheme . 52

4.3.1 Vector Based Scheme . 53

4.3.2 Slab Based Scheme . 56

4.4 Experiment . 57

4.4.1 Hypothesis Verification . 57

4.4.2 Frequency Distribution of Access Control Vectors 61

4.4.3 Performance Evaluation . 64

5 Related Work 70

5.1 Models Proposed by Damiani and Bertino 71

5.2 XACL . 73

5.3 Optimizing the Secure Evaluation of Twig Queries 74

6 Conclusions 76

vii

6.1 Future Work . 77

A XPath Query Modification Algorithm 78

A.1 Definition of Query Rewriting Function 78

A.2 Definitions of Security Functions 80

B Correctness Proof of the XPath Query Modification Algorithm 88

B.1 Objective and Assumptions . 88

B.2 Notation . 89

B.3 Proof Skeleton . 89

B.4 Proof for Function Calls . 93

B.5 Proof for Comparison Operators . 102

B.6 Proof for Numeric Operators . 104

B.7 Proof for Navigation Operators . 105

B.8 Proof for Predicates . 106

B.9 Proof for Logical Operations . 106

Bibliography 108

viii

List of Tables

2.1 Access Matrix A . 18

2.2 Access Cube A′ . 20

3.1 Security Function List . 36

3.2 The Mapping from Insecure Functions to Secure Functions 39

3.3 The Mapping from Insecure Operators to Secure Functions 41

4.1 Authorization Relation . 50

4.2 Access Control Vector Analysis for Waterloo Data 59

4.3 Access Control Vector Analysis for LiveLink Data 60

ix

List of Figures

2.1 Examples of Twig Queries . 12

2.2 Directory Tree of the Toy File System 19

2.3 View Construction Mechanism vs Query Modification Mechanism . 21

3.1 An Example of an XML Document 26

3.2 Hierarchical Model of the XML Document 27

3.3 An (Invalid) Access Control Specification that Hides Mary’s Infor-

mation . 27

3.4 A Valid Access Control Specification that Hides Mary’s Information 32

3.5 Overview of the Query Modification Mechanism 34

3.6 A Valid Accessibility View . 38

3.7 XPath Query Rewriting Function 42

4.1 Compression Accessibility Map (CAM) 52

4.2 Codebook Implementation Schemes 54

4.3 Access Control Vector Analysis for CAM Data 62

4.4 Frequency Distribution of Access Control Vectors in LiveLink Data 63

4.5 Total Space Cost Comparison between ACV and SLAB 67

x

4.6 In-Memory Space Cost Comparison between ACV and SLAB 68

4.7 Space Cost Comparison between ACL, CAM and Codebook 69

xi

To Patty

xii

Chapter 1

Introduction

The eXtensible Markup Language (XML) is a markup language promoted and

standardized by the World Wide Web Consortium [31]. Largely because of its

simplicity and powerful ability to describe information structure, in the past few

years, XML has quickly grown to be the de facto standard of data representation

and data exchange over the web. The amount of data encoded in XML format is

increasing rapidly.

Given the sensitive nature of information, different XML documents or different

portions of an XML document may require different levels of protection. Consider

an XML document that contains the background and compensation information of

all employees of one company. It is very likely that the background information

is less secret and hence can be browsed by everyone in the company. The com-

pensation information, on the other hand, may be more secret and can only be

accessed by the employee and his/her managers. To protect information privacy,

one security question must be answered—how to control the access to XML data.

1

CHAPTER 1. INTRODUCTION 2

1.1 Problems and Challenges

The problem of providing access controls for XML data has attracted considerable

attention from both the security community and the database community in recent

years. Much of the work on XML access controls to date, however, has been

performed in the context of XML document management where the documents

to be protected tend to be small and the access requests are often requests for

browsing an entire document [3, 13, 2, 10, 8, 9]. Despite the importance of query

access to XML, relatively little work has been done to enforce access controls for

XML databases in the case of query access. Developing an efficient mechanism for

XML databases to control query-based access is therefore the central theme of this

thesis. In particular, we have focused our attention to two problems: the secure

evaluation of XML queries and the compact representation of access matrices.

These two problems relate to two fundamental components of an access control

mechanism: secure query evaluation is about the development of an effective and ef-

ficient enforcement mechanism that controls query-based access to XML databases,

and the compact representation of an access matrix is about the development of

an effective and efficient decision making mechanism for fine-grained XML access

controls.

1.1.1 Secure Query Evaluation

Secure query evaluation concerns the evaluation of XML queries in the presence

of access controls. It essentially requires the enforcement mechanism to guarantee

that user queries only access, and return, the data items (in XML databases) that

CHAPTER 1. INTRODUCTION 3

the user is allowed to access.

An intuitive approach to secure an XML query is to evaluate the query first and

then filter out inaccessible data items from the query result according to the access

control policies. This approach, although attractive, is not secure. It guarantees

that a user’s query won’t return unauthorized data; but it does not guarantee

that the query won’t touch (or check conditions on) unauthorized data during its

evaluation. An alternative approach is to create a user’s accessibility view first, as

if by removing all of the inaccessible data items from the original XML document,

and then evaluate the query against the user’s accessibility view. This approach

is secure and has been widely used to enforce access controls in the context of

XML document management [3, 13, 2, 10, 8, 9]. Unfortunately, when the XML

documents to be protected are large, this approach is not efficient, as generating a

user’s accessibility view is likely to be expensive. Therefore the first problem we are

going to explore is to develop an efficient enforcement mechanism that guarantees

the secure evaluation of XML queries.

1.1.2 Compact Representation of Access Matrix

A decision making mechanism is responsible for determining whether a user is au-

thorized to access a data item in a given mode on the basis of the user’s properties

and the access control policies. Given an authorization inquiry, a decision making

mechanism may derive the authorization decision directly from access control poli-

cies [18, 23, 3, 13, 2, 10, 8, 9]. However, when the policies are sophisticated, this

approach can be extremely inefficient.

CHAPTER 1. INTRODUCTION 4

As an access matrix1 captures the net effect of access control policies, one pos-

sible approach for fast authorization decision making is to materialize the access

matrix. For example, we can maintain, for each data item in the XML database,

an access control list recording the users who are authorized to access that data

item. This approach works well in coarse-grained access controls, e.g., in file sys-

tems and relational databases, where access controls are usually enforced at file

level or relation level. In the context of fine-grained access controls, however, it

exhibits significant space overhead. Consider an XML database of 1,000 users in

which every data item (e.g., every element) on average can be accessed by 10% of

the users. Under this approach, each data item in the database, on average, would

maintain a list of 100 users. If each user identifier occupies 2 bytes, the space cost

would be 200 bytes per data item, which is obviously too much, and this space

issue will further deteriorate if we allow access controls to be specified at the level

of attributes. Finding a compact representation for the access matrix is therefore

the second problem we are going to explore.

1.2 Contributions

This thesis makes two contributions. First, we present a technique that enforces the

secure evaluation of XPath expressions by means of query modification, and prove

that this query modification algorithm is correct under a language-independent

semantics for secure query evaluation. Second, we describe and evaluate a codebook

based scheme for the compact representation of access matrices. Our experimental

1The explanation of access matrix can be found in Section 2.3.2.

CHAPTER 1. INTRODUCTION 5

study reveals that the codebook scheme exhibits substantial space saving over other

schemes, such as the access control list and the compressed accessibility map. In

most cases, the space cost of the codebook scheme is less than 10% of that of the

CAM scheme.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, we review some

preliminary concepts, including XPath, twig queries, and the access control sys-

tems. In Chapter 3, we first introduce a language-independent semantics for secure

query evaluation. Then, on the basis of that semantics, we present a query modi-

fication algorithm for the secure evaluation of XPath expressions. An overview of

the correctness proof of the query modification algorithm is provided at the end of

the chapter. In Chapter 4, we propose a codebook scheme for the compact repre-

sentation of access matrices, and compare its space efficiency with other schemes.

We review some related work in Chapter 5 and conclude in Chapter 6.

Chapter 2

Preliminary Concepts

2.1 XPath

XPath1, as a language for addressing parts of an XML document, is the basis of

many XML languages, such as XSLT and XQuery [29]. It gets the name from the

use of path notations for navigating through the hierarchical structure of an XML

document.

XPath models an XML document as a tree of nodes. It defines seven types of

node: root node, element node, text node, attribute node, namespace node, pro-

cessing instruction node, and comment node. The primary syntactic construct in

XPath is called an expression. An XPath expression is always evaluated within a

context. The context, which is usually specified in the outside evaluation environ-

ment (e.g., in XSLT or XQuery), has five elements:

1At the time of this writing, XPath version 2.0 is still a work in progress. Here we introduce
the basic concepts of XPath version 1.0.

6

CHAPTER 2. PRELIMINARY CONCEPTS 7

1. A node, i.e., the context node

2. A pair of non-zero positive integers, i.e., the context position and the context

size

3. A set of variable bindings that contain the mapping from variable names to

variable values

4. A function library that contains a mapping from function names to function

definitions

5. A set of namespace declarations in scope for the expression that contains a

mapping from prefixes to namespace URIs

In this thesis, we will use a 6-tuple 〈context-node, context-position, context-size,

variable-bindings, function-library, namespace-decl〉 to denote a context. The result

of an XPath expression is always an object of one of the following four basic types:

1. A node set (an unordered collection of nodes without duplicates)

2. A boolean value (either true or false)

3. A number (a floating-point number)

4. A string (a sequence of UCS characters)

For example, the expression

/descendant::name

is evaluated to be a node-set which contains all name elements descended from the

document root. However, the expression

CHAPTER 2. PRELIMINARY CONCEPTS 8

/descendant::employee[descendant::name="John"]

/descendant::salary/child::textnode()

is evaluated to a string value, showing the salary of the employee whose name is

John.

The most important type of XPath expression is the location path; it selects

a set of nodes relative to the context node. A location path can be either a rela-

tive location path or an absolute location path. An absolute location path, which

starts with a forward slash (“/”), is evaluated with respect to the root node of the

document, whereas a relative location path, without the leading slash, is evaluated

with respect to the current context node. The following are some valid location

path expressions.

1. child::employee selects the employee elements which are children of the

context node

2. descendant::name selects the name elements which are descendants of the

context node

3. descendant::contact/child::name selects the name elements which are chil-

dren of the contact elements which, in turn, are descendants of the context

node

4. descendant::employee[last()] selects the last employee element which is

a descendant of the context node

5. /descendant::employee[position()=1]/descendant::salary selects the

salary element of the first employee

CHAPTER 2. PRELIMINARY CONCEPTS 9

6. /descendant::employee[descendant::salary>70000]/descendant::name

[starts-with(child::textnode(), "J")] selects the name elements of the

employees whose salary is greater than 70,000 and whose name starts with a

letter J

A location path consists of one or more location steps separated by “/”. For

example, the expression

descendant::employee/descendant::name

has two location steps: the descendant::employee and the descendant::name.

A location path is evaluated from left to right, one step at a time. The initial

step selects a set of nodes relative to a context node; each node in the result set

generated by the initial step, then, is used as a context node for the second step.

The union of the sets of nodes identified by the second step is the result of the

composition of the first two steps. If there exists a third step, each node in the

union will then be used as a context node for the evaluation of the third step, and

so on, until all of the location steps are processed.

The syntax of a location step is axisname::nodetest[predicate]*. For ex-

ample, in the expression

descendant::employee[last()]

descendant is the name of the axis, employee is the node test and [last()]

is a predicate. The axis name specifies the tree relationship between the nodes

to be selected and the context node. The node test specifies the node type and

the expanded-name of the nodes to be selected. The predicates are expressions

CHAPTER 2. PRELIMINARY CONCEPTS 10

used to further refine the node set selected by the axis and the node test. In our

example, the initial node set selected by the axis name and the node test (i.e.,

the descendant::employee) is a set containing all of the employee element nodes

which are children of the context node. This initial node set will be further refined

by predicate [last()]; the final result is therefore the set that contains the last

employee element node only.

Location paths, which are used to select nodes from an XML document, are just

special cases of XPath expressions. A general XPath expression is more powerful;

it allows users to do operations on the node sets selected by location paths. The

operations include function calls (e.g., the function last()), logical operations (e.g.,

and, or), numeric operations (e.g., +,-), and so on. For instance, an expression that

returns the employee names which starts with either a letter “J” or a letter “M”,

like

/descendant::employee

/descendant::name[starts-with(child::textnode(), "J")] |

/descendant::employee

/descendant::name[starts-with(child::textnode(), "M")]

involves several location paths, two function calls and one union operation. XPath

1.0 defines a core function library which must be supported by all XPath imple-

mentations. This core function library includes four categories of functions: node

set functions, string functions, boolean functions and number functions. Besides

that, XPath also permits users to extend the core function library by defining new

functions.

CHAPTER 2. PRELIMINARY CONCEPTS 11

In order to simplify the syntax of expressions, XPath 1.0 defines a set of syntac-

tic abbreviations. One of the most important abbreviation is that the axis name

“child::” can be omitted from a location step. For example, the expression

employee/name

is equivalent to the expression

child::employee/child::name

Other abbreviations include:

1. “@” is the abbreviation of “attribute::”

2. “.” is the abbreviation of “self::node()”

3. “..” is the abbreviation of “parent::node()”

4. “//” is the abbreviation of “/descendant-or-self::node()/”

For example, the expression

//contact[../employee/@gender="male"]

is an abbreviation of the expression

/descendant-or-self::node()/child::contact

[parent::node()/child::employee/attribute::gender="male"]

CHAPTER 2. PRELIMINARY CONCEPTS 12

2.2 Twig Query

A twig query, or a tree pattern query, is a rooted node-labeled tree such that

(1) its nodes are labeled by element tags or string values, (2) its edges are either

single edges (representing parent-child relationship) or double edges (representing

ancestor-descendant relationship), and (3) a subset of nodes is distinguished, usu-

ally with a star, indicating that they are in the query projection list [7].

*

*

employeelist

name

employeelist

employee

contact

name

(a)

(b)

Figure 2.1: Examples of Twig Queries

Figure 2.1 shows two examples of twig queries. Twig query (a) can be expressed

as a single XPath expression:

/child::employeelist/child::employee/child::contact/child::name

Twig query (b) can be expressed as

/child::employeelist/descendant::name

A twig query is answered by finding matchings. Suppose q is a twig query with

nodes (u1, . . . , un). A matching is a function that maps q’s nodes to nodes in

the database such that all node predicates are satisfied and, further, the structural

relationships (e.g., parent-child relationship or ancestor-descendant relationship)

between nodes in q are satisfied. A matching, which binds each node ui in the

CHAPTER 2. PRELIMINARY CONCEPTS 13

query to a node xi in the database, results in a binding tuple (x1,. . . ,xn). The final

answer to a twig query is produced by projecting out, from the binding tuples, the

nodes that are not in the projection list.

Comparing with XPath expressions, twig queries are relatively simple, as they

have only two axes, the child and the descendant, and they do not permit func-

tions and operators.

2.3 Access Control Basics

The goal of database security is to protect the secrecy, integrity, and availability of

data against unintentional or malicious threats.

Establishing a secure database is a complex task. Access control, which gov-

erns the direct access to databases, deals with only one of many crucial issues in

database security. Besides access control, the other security issues that must be

considered include authentication, auditing, and even the security control of the

underlying operating system and network. While these issues are equally impor-

tant for maintaining the security of a database, they are not in the scope of this

thesis.

An access control system is logically composed of two parts: an access control

policy that describes the security requirements and an access control mechanism

that enforces the given policy. Ideally, the specification of access control policies

should be distinct from the implementation of the access control mechanisms, in

which case, an access control policy can be enforced by different mechanisms, and

an access control mechanism can enforce multiple policies.

CHAPTER 2. PRELIMINARY CONCEPTS 14

2.3.1 Access Control Policies

An access control policy is a high level guideline that specifies the security require-

ments of a database; it describes the access privileges of the users in the database,

and states how the access privileges should be administered. In general, there are

three types of access control policies: discretionary policies, mandatory policies and

role based policies.

Discretionary Access Control Policy

Discretionary access control (DAC) policies govern access to objects2 on the basis

of user identities and authorizations [16]. A major property of discretionary policies

is that the decisions of granting and revoking access privileges (on an object) are

left to the discretion of individual users. In other words, in discretionary policies,

a user with a certain access privilege (e.g., read, write, or execute) is capable of

passing that privilege on to other users.

A discretionary access control policy can be specified as a collection of autho-

rizations, each of which, conceptually, is a 〈subject, object, mode〉 tuple, stating

that subject is authorized to access object in access mode3 mode. Since such an

authorization always grants a privilege to a user, it is also called a positive au-

thorization. A user’s request to access an object is checked against the specified

authorizations; if there exists an authorization stating that the user can access the

object in the specific mode, the access is granted, otherwise it is denied.

2We use the term object to refer to an arbitrary unit of access control in a database.
3We use the term access mode to refer to a privilege, e.g., read, write, or execute.

CHAPTER 2. PRELIMINARY CONCEPTS 15

However, in a large database with thousands of users and millions of objects,

specifying an access control policy in terms of positive authorizations in this manner

may be tedious. To ease the task of policy specification, implicit authorizations and

negative authorizations are introduced.

Implicit authorizations, in contrast to explicit authorizations, are not explicitly

specified by the users and the security administrators; instead, they are derived

from explicit authorizations, according to some pre-defined derivation rules. The

derivation rules, usually defined by the security administrators, direct how to derive

implicit authorizations from explicit authorizations. Suppose, for instance, there

is an explicit authorization stating that group faculty has read privilege on

the report document. This authorization may derive implicit authorizations for

the members of the faculty group. As a result, Professor Ross, who doesn’t

have explicit authorizations specified but is a member of group faculty, may be

permitted to read document report.

Whereas positive authorizations always grant privileges, a negative authoriza-

tion expresses the notion of denying a user’s access to an object. The adoption

of negative authorizations is largely due to the need to express exceptions. Con-

sider an example in which we want to authorize all members of group faculty the

privilege to read document report, except for Professor Ross. If only positive

authorizations are allowed, we have to specify one authorization for each member in

group faculty, excluding Ross. With negative and implicit authorizations, this

can be expressed by only two authorizations: a positive authorization for group

faculty and a negative authorization for Professor Ross.

CHAPTER 2. PRELIMINARY CONCEPTS 16

The coexistence of positive and negative authorizations, however, may introduce

conflicts. In our previous example, Ross, who has an explicit negative authorization

on document report, also has an implicit positive authorization as being a member

of the faculty. In this case some conflict resolution rules must be specified. In

short, the effect of implicit authorizations and negative authorizations is twofold.

On one hand, it largely simplifies the task of policy specification. On the other

hand, it greatly complicates the authorization decision making.

Although discretionary access control policies are flexible and widely used in

commercial environments, they have one inherent security flaw. They are unable

to secure the data flow in a system. This flaw makes the system vulnerable to Trojan

horse attacks. Systems that require data flow controls usually use mandatory access

control policies.

Mandatory Access Control Policy

Mandatory access control (MAC) policies govern access to objects based on the

sensitivity of the information contained in the objects and the trustworthiness of

users. In MAC, every object is assigned a security level, called classification, which

reflects the sensitivity of the information contained in the object; every user is as-

signed a security level, called clearance, which reflects the trustworthiness of the

user. Security levels are usually elements of a partially ordered set. For exam-

ple, a common set of security levels for military system is {topsecret, secret,

confidential, unclassified}, where topsecret is the most secure level and

unclassified is the least secure level.

Most mandatory policies impose the following two restrictions: (1) A subject is

CHAPTER 2. PRELIMINARY CONCEPTS 17

authorized to read an object only if the clearance of the subject is no less than the

classification of the object, and (2) a subject is authorized to write an object only

if its clearance is no higher than the object’s classification. Enforcement of these

two principles ensures that the information can only flow within the same security

level or upward to higher security levels, and, thus, can never leak to lower levels.

Mandatory access control policies and discretionary access control policies can be

used together to strengthen access controls.

Role Based Access Control Policy

Role based access control (RBAC) policies are supplements to the discretionary

policies and the mandatory policies. In RBAC, users are assigned roles based on

their competencies and responsibilities in the organization. The process of defining

roles is usually based on a thorough analysis of how an organization operates. The

operations the user is permitted to perform and the objects the user is authorized

to access are determined by the active roles the user assumes. Most systems allow

a single user to adopt different roles on different occasions. Also the same role

can be played by several users. Although the concept of role in RBAC resembles

the group in discretionary access controls, they are two different concepts. In

discretionary access controls, the allocation of access privileges to groups is usually

determined at the discretion of individual users, whereas in RBAC, the allocation

of access privileges to roles, as well as determination of membership in a role, are

determined by the security administrator.

CHAPTER 2. PRELIMINARY CONCEPTS 18

2.3.2 Access Control Mechanisms

An access control mechanism enforces a given access control policy by ensuring that

all direct access to the database is in accordance with that policy. An access control

mechanism has two basic functions: decision making and decision enforcement.

Decision Making

Decision making is a process of deriving access control decisions on the basis of

the user’s identity and the access control policies. Regardless how an access control

policy is specified, the net effect of a policy can be captured by a matrix, namely the

access matrix. The rows of the matrix represent users, and the columns represent

objects. A matrix entry, say A[s, o], contains the access modes in which user s is

authorized to access object o. Table 2.1 shows an access matrix for a toy file system

whose structure is shown in Figure 2.2. From the access matrix, we can tell that

user s1 has read and write privileges on object o1, and user s3 has only read

privileges on object o2, o4, and o5.

o1 o2 o3 o4 o5 o6
s1 r w
s2 r w r w r w
s3 r r r
s4 r r w w

Table 2.1: Access Matrix A

A common variation of the access matrix is the access cube whose three di-

mensions are user, object, and access mode, respectively. The entries of an access

cube are boolean values, either 1 or 0. An access cube entry, say A[s, o,m], is 1 if

CHAPTER 2. PRELIMINARY CONCEPTS 19

O1

O2 O3

O4 O5 O6

Figure 2.2: Directory Tree of the Toy File System

and only if user s is authorized to access object o in access mode m. The access

matrix and the access cube are two different representations of the access control

information or, equivalently, the net effect of the access control policies.

Suppose A′ is the access cube corresponding to the access matrix A in Table

2.1. Table 2.2 shows a planar expression of the access cube A′. Each table in Table

2.2 represents a slice of A′: Table (a) represents the slice of access mode read, and

table (b) represents the slice of access mode write. Access cube A′ tells us that

user s1 is authorized to read object o1, as the entry A′[s1, o1, read] is 1; and

user s1 is not authorized to write object o2, as the entry A′[s1, o2, write] is 0.

A spectrum of techniques can be used to implement decision making mecha-

nisms. At one end of the spectrum, the implementation does not materialize the

access matrix. Authorization decisions are always computed directly from access

control policies upon request. This approach is flexible in that it allows the security

administrators to change the access control policies at run time and the changes

become effective immediately after commitment. However, when the access control

policy is complex, this approach may be inefficient. At the other end of the spec-

trum, the implementation always materializes the access matrix. Consequently,

CHAPTER 2. PRELIMINARY CONCEPTS 20

o1 o2 o3 o4 o5 o6
s1 1 0 0 0 0 0
s2 0 1 0 1 1 0
s3 0 1 0 1 1 0
s4 1 0 1 0 0 0

(a) The read Slice

o1 o2 o3 o4 o5 o6
s1 1 0 0 0 0 0
s2 0 1 0 1 1 0
s3 0 0 0 0 0 0
s4 0 0 1 0 0 1

(b) The write Slice

Table 2.2: Access Cube A′

upon receiving an authorization inquiry, the decision making mechanism can locate

the answer in the materialized access matrix without computing it from scratch.

The trade-off between these two approaches is in the decision computation time

versus the decision search time. If we can somehow materialize the access matrix

in a data structure that takes little space and permits fast lookups, the second ap-

proach may become a promising solution to the speed problem of the first approach.

This is the problem that we are going to explore in Chapter 4.

Decision Enforcement

Decision enforcement is a process that guarantees that a user is always granted (or

denied) access to an object if the authorization decision is affirmative (or negative).

In the context of XML access controls, two techniques are commonly used to control

CHAPTER 2. PRELIMINARY CONCEPTS 21

query based access: the view construction approach and the query modification

approach.

(2)

(b)

Database
 D

q

q’u(D)

u

qu = q’u(D)

(1).View
Constuction

(a) Query
 Modification

qu

uq’

Accessibility View
 D’u

(D’u)

(D’u)

Figure 2.3: View Construction Mechanism vs Query Modification Mechanism

The basic concepts of these two approaches are illustrated in Figure 2.3, in

which D represents the base database and qu represents a query posted by user u.

Upon receiving a query qu, a view construction mechanism performs the following

two steps4: (1) create user u’s accessibility view D′
u. Conceptually, D′

u is created

by filtering out all of the objects (from D) which u is not authorized to access; (2)

evaluate query qu against D′
u. The view construction approach is widely used to

secure small XML documents [10, 8, 13]. However, when D is large, this approach

may become inefficient, as generating a user’s accessibility view is likely to be

expensive.

An alternative approach is query modification. As shown in Figure 2.3, upon

receiving query qu, the query modification mechanism will5 (a) rewrite query qu

to query q′u, and (b) evaluate the modified query q′u against the base database D.

4Refers to the steps marked as (1) and (2) in Figure 2.3.
5Refers to the steps marked as (a) and (b) in Figure 2.3.

CHAPTER 2. PRELIMINARY CONCEPTS 22

The query modification algorithm should guarantee that the result of evaluating q′u

against D is equal to the result of evaluating q against D′, i.e., q′u(D) should be

equal to qu(D
′
u).

The query modification approach exhibits a few advantages over the view con-

struction approach. First, it avoids the expensive computation of the accessibility

view. Second, it does not require changes to the query evaluator. Third, since

the modified queries are queries against the base database D, this approach allows

the query evaluator to utilize the existing indexes maintained on D. The down-

side of the query modification approach is that the query modification algorithm

is language dependent, i.e., different query languages require different modification

algorithms.

Chapter 3

Secure Query Evaluation

Secure query evaluation refers to the evaluation of queries with respect to the

issuer’s privileges, or, in other words, the evaluation of queries in the presence of

access controls.

With the increasing popularity of XML, managing XML documents using con-

ventional file management techniques is not sufficient; users require more flexible

query approaches and more reliable storage management. Driven by this demand,

research on XML data management has attracted considerable attention from the

database community in recent years. Many XML databases have been developed,

and many XML query languages have been proposed. A security problem brought

on by the emergence of XML databases is how to protect the XML data in case of

query access, or, how to evaluate XML queries securely so that sensitive information

won’t leak out to unauthorized users through query evaluation.

In this chapter we consider the secure evaluation of XPath expressions. We

have chosen XPath expressions as our focus because they are the means by which

23

CHAPTER 3. SECURE QUERY EVALUATION 24

major XML query languages, such as XSLT and XQuery, address parts of XML

documents [32, 30]. Specifically, we consider the path expressions defined in XPath

specification version 1.0, because, at the time of this writing, XPath 2.0 is still a

work in progress and not completely defined yet [29].

This chapter is organized as follows. In Section 3.1, we introduce the data model

and the security model that will be used in this chapter. In Section 3.2, we define

the semantics of secure query evaluation. Based on that semantics, we present a

technique that secures path expressions by means of query modification, in Section

3.3. Finally, in Section 3.4, we give a brief overview of the correctness proof of the

query modification algorithm.

3.1 Models of XML Data and Access Control

An XML database contains a collection of XML documents. Every XML docu-

ment has a logical hierarchical structure. A collection of XML documents, when

they are organized hierarchically, also has a hierarchical structure, just like files in

Unix can be organized hierarchically in a directory tree. Based on this observa-

tion, we model the data in an XML database as an ordered tree, namely an XML

database tree. The nodes represent various types of objects in the database, e.g.,

elements or attributes, and the arcs represent various types of relationships, e.g.,

element-subelement relationships or element-attribute relationships. Our model is

a simplification of the data model adopted by XPath 1.0. We do not distinguish

data type. No matter what type the object is, it is uniformly represented by a

node in the database tree. Moreover, we do not care whether an XML database

CHAPTER 3. SECURE QUERY EVALUATION 25

tree represents one single XML document or a collection of XML documents. As

far as what we are concerned, it represents the data in an XML database at the

finest granularity. Hereinafter, the term document and database will be used inter-

changeably to refer to XML data.

Figure 3.1 shows an example of an XML document whose corresponding hi-

erarchical model is shown in Figure 3.2. The number in each node is the node

identifier. This document records the contact and payroll information of the em-

ployees in one company. Every employee element contains one contact element

and one payroll element. The contact element records the employee’s name and

postcode, and the payroll element records the employee’s salary and bonus. In

addition, every employee element has one attribute indicating the gender of the

employee. This is the document we are going to use in the following sections to

explain the query modification algorithm.

Regarding access controls, as we have introduced in Chapter 2, the net effect of

an access control policy can be captured by an access cube, say A. Assuming that

U denotes the set of users, M denotes the set of access modes and O denotes the

set of objects in database D, the access cube A is a |U | × |O| × |M | 3-dimensional

cube that uniquely determines which user can access which object in a given access

mode.

Restricted to a specific user u and access mode m, the access cube A reduces

to a 0-1 vector in which every bit corresponds to an object in D. This vector can

be viewed as a labeling that assigns every node in the database tree a boolean tag,

either 1 or 0, indicating whether this node is accessible with respect to user u and

CHAPTER 3. SECURE QUERY EVALUATION 26

Figure 3.1 An Example of an XML Document
<employeelist>

<employee gender="male">

<contact>

<name> John </name>

<postcode> N4W2H8 </postcode>

</contact>

<payroll>

<salary> 75000 </salary>

<bonus> 20000 </bonus>

</payroll>

</employee>

<employee gender="female">

<contact>

<name> Mary </name>

<postcode> M3R5H3 </postcode>

</contact>

<payroll>

<salary> 85000 </salary>

<bonus> 20000 </bonus>

</payroll>

</employee>

</employeelist>

access mode m. If we say that an access cube captures the effect of an access control

policy, a labeled database tree, then, captures the effect of an access control policy

for a specific user and access mode.

We assume that the read mode, among many other access modes, is used to

control query access. Figure 3.3, for instance, shows a labeled database tree for

a user (perhaps the user John) who is not permitted to read Mary’s information,

except for her name.

CHAPTER 3. SECURE QUERY EVALUATION 27

employeelist

gender

employee

"Mary"

contact
gender

"female"

employee

"male"

salary bonus

 6

salary bonuspostcode

19

name

contact

"20000""75000" "N4W2H8""John"

payroll payroll

 1

 3

 8 7 9

 2

 4 5

1312 1110 14 15 16 17

18 20 21 22 23 24 25

name postcode

"85000" "20000" "M3R5H3"

Figure 3.2: Hierarchical Model of the XML Document

employeelist

gender

employee

"Mary"

contact
gender

"female"

employee

"male"

salary bonus

 6

salary bonuspostcode

19

name

contact

"20000""75000" "N4W2H8""John"

payroll payroll

 1

 3

 8 7 9

 2

 4 5

1312 1110 14 15 16 17

18 20 21 22 23 24 25

name postcode

"85000" "20000" "M3R5H3"

Figure 3.3: An (Invalid) Access Control Specification that Hides Mary’s Information

3.2 Semantics of Secure Query Evaluation

Before we are able to consider how to evaluate queries securely, we must first un-

derstand what the correct result of a query should be, when it is evaluated in the

presence of access controls.

Intuitively, we may say that a query is securely evaluated if the query uses and

returns only the data that the user is authorized to access. However, this statement

is too vague to be a definition—it does not define the verb “use” clearly. Consider

CHAPTER 3. SECURE QUERY EVALUATION 28

the following example. Suppose the labeled database tree Dur in Figure 3.3 reflects

user u’s read rights in database D, and user u wishes to evaluate expression

/descendant::name/child::textnode()

against database D to retrieve the string values of the names of all employees. What

should the safe answer to the query be? It is agreeable that the string John should

be in the result set, as the node itself is accessible and the evaluation (presumably)

does not use any inaccessible node. But what about the string Mary? Should it be

in the result set? In other words, do we use the inaccessible nodes 3 and 8, when we

navigate from node 1 to node 14? This question is unanswerable without further

clarification.

3.2.1 Cho’s semantics

SungRan Cho and his colleagues introduced a semantics for the secure evaluation

of twig queries [7]. According to Cho’s semantics, given a database D with access

controls and a twig query qu with nodes (u1, . . . , un) posed by user u, the safe

answer to query qu is determined by the following procedure:

1. Find out the set of binding tuples, say T . A binding tuple t ∈ T is of the

form (x1, . . . , xn) where xi is a node in D.

2. Generate, from set T , the set of safe binding tuples, say Ts. A binding tuple

t ∈ T is safe if, and only if, every component xi is accessible with respect to

user u.

CHAPTER 3. SECURE QUERY EVALUATION 29

3. Generate the safe answer to query qu by projecting set Ts onto the set of

nodes appearing in the projection list.

Suppose, for example, user u wishes to evaluate the twig query (a), shown in

Figure 2.1, against the labeled XML tree in Figure 3.3. This query will find two

binding tuples in database, 〈1, 2, 5, 10〉 and 〈1, 3, 8, 14〉, in which the second one is

unsafe, as it contains the inaccessible nodes 3 and 8. Therefore, the safe answer to

query (a) is the first name element (node 10), created by projecting out, from the

safe binding tuples, the nodes not appearing in the projection list. Similarly, twig

query (b) will find two binding tuples: 〈1, 10〉 and 〈1, 14〉. Since both of tuples are

safe, the safe answer to query (b) is a node set which contains both name elements.

This semantics, although clear, has one weakness: it is language dependent.

Since Cho’s semantics is defined in terms of bindings, a technique specific to the

evaluation of twig queries, it is difficult to apply it to other query languages whose

evaluations don’t rely on binding, like XPath or XQuery. An XML database, how-

ever, is supposed to be queried by various kinds of query languages, not just twig

queries. Ideally, the semantics of secure query evaluation should be defined inde-

pendently of the query language.

3.2.2 View Based Semantics

To settle the problem of Cho’s semantics, we define the semantics of secure query

evaluation in terms of a language independent concept: the accessibility view. An

accessibility view, as defined in Definition 1, is always associated with a user and

an access mode; it is a view (of the original database) that contains only the data

CHAPTER 3. SECURE QUERY EVALUATION 30

that the specific user is authorized to access in the given mode. Since this chapter

concerns the security controls for query access, we are especially interested in a

user’s read accessibility view, i.e., the accessibility view in read mode.

Definition 1 (Accessibility View) Let D = {V,E} be an XML database tree

where V is the set of nodes and E is the set of edges, A be an access cube specified

on D, u be a user and m be an access mode. The accessibility view of user u on

database D with respect to access mode m is D′
um = {V ′, E ′}, where V ′ = {o | o ∈

V ∧ A[u, o,m] = 1} and E ′ = {(p, q) | (p, q) ∈ E ∧ p ∈ V ′ ∧ q ∈ V ′}.

Given a database D with access controls and a query qu posted by user u, a

natural idea is that the correct result of query qu should be determined by the

following procedure:

1. Create user u’s read accessibility view D′
ur.

2. Evaluate query qu against D′
ur. The result of evaluating query qu against D′

ur

is defined as the correct result of the secure evaluation of query qu.

One problem with this natural idea is that a user’s read accessibility view may not

be a tree. For example, the read accessibility view implied by the labeled XML tree

in Figure 3.3 is not a tree, but a forest. From our standing, this view is invalid, as

we are not able to evaluate queries against it. To avoid the problem, we refine the

natural idea and define the semantics of secure query evaluation on a user’s valid

read accessibility view, a relatively narrow concept, as shown in the following two

definitions.

CHAPTER 3. SECURE QUERY EVALUATION 31

Definition 2 (Valid Accessibility View) Let D be an XML database tree, D′
ur

be user u’s read accessibility view. The view D′
ur is valid if, and only if, D′

ur is a

tree whose root is the same as the root of D.

Definition 3 (Secure Query Evaluation) Let D be an XML database tree, qu

be a query against D posed by user u, and D′
ur be user u’s valid read accessibility

view. The correct result of secure evaluation of query qu is defined to be the result

of evaluating query qu against user u’s valid read accessibility view, D′
ur.

A user’s read accessibility view is determined by the access control policy. In

general, an access control policy may generate valid read accessibility views, or

invalid read accessibility views, or both. Our semantics, however, requires that the

access control policy that is to be enforced must derive valid read accessibility views

only. In other words, if we classify access control policies into two categories—valid

access control policies and invalid access control policies—based on Definition 4,

only valid access control policies can be enforced by our semantics.

Definition 4 (Valid Access Control Policy) Let U be a set of users, D =

{V,E} be an XML database tree where V is a set of nodes and E is a set of edges,

P be an access control policy whose net effect is captured by an access cube A,

and r be the read mode. Security policy P is valid if, and only if, it does not

derive invalid read accessibility views, i.e., ∀p ∈ U,∀q ∈ V : A[p, q, r] = 0 → ¬∃t ∈
V s.t. (A[p, t, r] = 1 ∧ t is a descendant of q).

Defining the semantics of secure query evaluation on the basis of valid acces-

sibility views sounds like a considerable restriction. However, it is actually not,

CHAPTER 3. SECURE QUERY EVALUATION 32

provided that access controls can be specified at the granularity of individual at-

tributes. That is because we can always relax an invalid access control policy a

little bid to make it valid. For example, the invalid access controls illustrated in

Figure 3.3 can be relaxed by making the nodes 3 and 8 readable, as shown in Figure

3.4. These two access controls are not the same. For example, a user who wants

to count the number of employees may find two employees in the view of Figure

3.3, but only one employee in the view of Figure 3.4. Nonetheless, the valid access

controls in Figure 3.4 also successfully hide the contact and payroll information of

Mary, except for the existence of the employee element and the contact element.

employeelist

gender

employee

"Mary"

contact
gender

"female"

employee

"male"

salary bonus

 6

salary bonuspostcode

19

name

contact

"20000""75000" "N4W2H8""John"

payroll payroll

 1

 3

 8 7 9

 2

 4 5

1312 1110 14 16 17

18 20 21 22 23 24 25

name postcode

"85000" "20000" "M3R5H3"

15

Figure 3.4: A Valid Access Control Specification that Hides Mary’s Information

3.3 Enforcement of Secure XPath Evaluation

We have defined the semantics of secure query evaluation in the previous section.

In this section we consider the enforcement of secure query evaluation, in particular

the enforcement of the secure evaluation of XPath expressions. Assuming that D is

CHAPTER 3. SECURE QUERY EVALUATION 33

an XML database tree, P is a valid access control policy specified on D whose effect

is captured by the access cube A, and qu is an arbitrary XPath expression posted

by user u, our objective is to develop an enforcement mechanism that guarantees

the secure evaluation of qu, with respect to A. Hereinafter, we refer to the user u

as the context user.

As discussed in Chapter 2, there are two basic approaches for access control en-

forcement: the view construction approach and the query modification approach.

Because, as was explained earlier, the view construction approach is likely to be

expensive, in this section, we describe an approach that enforces the secure evalua-

tion of path expressions by means of query modification. Comparing with the view

construction approach, the query modification approach has the following three

advantages:

1. It avoids the expensive materialization of accessibility views.

2. Since the modified queries are still XPath expressions, they can be passed to

standard XPath evaluators for processing. No changes to an XPath evaluator

is required.

3. Since the modified queries are queries against the original database D, the

query evaluator may utilize the existing indexes maintained on D.

3.3.1 Overview of the Query Modification Algorithm

A correct query modification algorithm is the key to the success of the query mod-

ification approach. Appendix A shows a complete description of the XPath query

CHAPTER 3. SECURE QUERY EVALUATION 34

modification algorithm. The algorithm is composed of two parts: a query rewriting

function and a collection of security functions. The query rewriting function is the

heart of the modification algorithm—it defines how a query should be modified; the

security functions, on the other hand, are supporting functions defined in the query

modification algorithm to perform security-related activities. An implementation

of the query modification algorithm should include both parts.

Security
Policy

Security

Database
D

e

qu

e’

q’u

q’u

Functions

Mechanism
Decision

Query Mod
Function

XPath Evaluator
(D)

Figure 3.5: Overview of the Query Modification Mechanism

Figure 3.5 shows an overview of the query modification mechanism and its

interactions with other components. The two blocks surrounded by the dashed

lines are together referred to as the query modification mechanism. One is the

implementation of the query rewriting function; the other is the implementation of

the security functions. Given an XPath expression qu and its evaluating context

e, the query rewriting function transforms them into q′u and e′ respectively, and

passes them to a standard XPath evaluator.1 The XPath evaluator evaluates the

1Some readers may wonder why the query rewriting function modify the evaluating context e?
This question will be addressed later when we discuss the context modification.

CHAPTER 3. SECURE QUERY EVALUATION 35

rewritten expression q′u, under the context e′, against the original database D, and

returns the result. It is the responsibility of the query modification algorithm to

guarantee the correctness of the result, i.e., to guarantee that q′u(D), the result of

evaluating q′u against D, be equal to the result of evaluating qu against user u’s

read accessibility view, qu(D
′
ur).

For example, given an XPath expression qu that returns the string values of the

names of all employees, like

/descendant::employee

/descendant::name

/child::textnode()

the query rewriting function will rewrite it, for user u, into q′u as

/descendant::employee[sec-inview()]

/descendant::name[sec-inview()]

/child::textnode()[sec-inview()]

where the function sec-inview() is a security function for testing a user’s access

rights. We will introduce the security functions and the query rewriting function

in detail in the following two subsections.

3.3.2 Security Functions

Security functions are supporting functions defined in the query modification al-

gorithm to perform security-related activities. Table 3.1 shows a complete list of

security functions. Their definitions are provided in the Section A.2 of Appendix

CHAPTER 3. SECURE QUERY EVALUATION 36

Num Security Functions

1 boolean sec-inview()

2 string sec-string(object?)

3 string sec-string-value(node-set)

4 node-set sec-id(object)

5 number sec-number(object?)

6 number sec-sum(node-set)

7 number sec-string-length(string?)

8 string sec-normalize-space(string?)

9 boolean sec-eq(object, object)

10 boolean sec-ne(object, object)

11 boolean sec-le(object, object)

12 boolean sec-lt(object, object)

13 boolean sec-ge(object, object)

14 boolean sec-gt(object, object)

15 number sec-addition(object, object)

16 number sec-subtraction(object, object)

17 number sec-multiply(object, object)

18 number sec-div(object, object)

19 number sec-mod(object, object)

Table 3.1: Security Function List

A. In general, it is easy to tell security functions from XPath standard functions,

CHAPTER 3. SECURE QUERY EVALUATION 37

as the names of security functions are always prefixed by “sec-”.

We need security functions for two reasons. First, security functions provide a

means by which the XPath evaluator can communicate with the underlying decision

making mechanism. For example, sec-inview(), is a function that the XPath eval-

uator can use to check the access privileges for a user. Specifically, sec-inview()

returns true if, and only if, the context user is authorized to read the context node

under the access control policy. In other words, it returns true if, and only if,

A[u, cn, r] = 1, where u is the context user, cn is the context node and r is the read

mode.2

Second, security functions are used to replace the insecure functions and opera-

tors. XPath 1.0 defines a set of standard functions and operators, e.g., the function

string(), the function id(), the operator =, the operator +, and so on. Some of

them are insecure. This can be demonstrated by the following two examples.

Consider the standard string() function first. Suppose the tree in Figure 3.2

represents the database D, the labeled tree Dur in Figure 3.4 represents user u’s

read privileges on D, and the tree in Figure 3.6 represents user u’s accessibility

view D′
ur, derived from Dur. Suppose user u wishes to evaluate a path expression

string(/child::employeelist)

against D to retrieve the string value of the employeelist element. According to

the XPath specification, the standard string() function, when receiving a node

set as an input argument, will return the concatenation of the string-values of all

2The context user and context node are always available in the evaluation context. We will
explain this when we introduce the context modification.

CHAPTER 3. SECURE QUERY EVALUATION 38

employeelist

gender

employee

"Mary"

contact

employee

"male"
 6

salary bonuspostcode

19

name

contact

"20000""75000" "N4W2H8""John"

payroll

 1

 3

 8

 2

 4 5

1312 1110 14

18 20 21 22

name

Figure 3.6: A Valid Accessibility View

text node descendants of the first node in the given node set. Therefore, the result

of evaluating the above expression against D is the string

‘‘JohnN4W2H87500020000MaryM3R5H38500020000’’

According to our semantics of secure query evaluation, this result is insecure, as

it is not equal to the result of evaluating the same query against the accessibility

view D′
ur, i.e., the string “JohnN4W2H87500020000Mary”.

To prevent information from leaking through the insecure string() function, we

developed a secure version, the sec-string(), for the insecure string() function.

The semantics3 of sec-string() is very much like that of the standard string(),

except: when receiving a node set as the input argument, sec-string() will return

the concatenation of string-values of all accessible text node descendants of the

first node in the given node set. Consequently, a secure rewriting of the previous

expression is

sec-string(/child::employeelist)

3The formal definition of sec-string() can be found in Appendix A.2.

CHAPTER 3. SECURE QUERY EVALUATION 39

Besides the string() function, there are several other XPath standard functions

that are also insecure. Table 3.2 shows a list of all insecure XPath standard func-

tions, which must be replaced by the query modification algorithm, and their cor-

responding secure functions.

Insecure Functions Corresponding Secure Functions
node-set node-set

id(object) sec-id(object)

string string

string(object?) sec-string(object?)

number number

string-length(string?) sec-string-length(string?)

string string

normalize-space(string?) sec-normalize-space(string?)

number number

number(object?) sec-number(object?)

number number

sum(node-set) sec-sum(node-set)

Table 3.2: The Mapping from Insecure Functions to Secure Functions

Now consider an example of an insecure XPath operator. Suppose user u wishes

to evaluate an expression qu

/child::employeelist="JohnN4W2H87500020000MaryM3R5H38500020000"

against D to check if the string-value of the element employeelist equals that

given string. According to the XPath specification, if one operand of the operator

“=” is a node-set (e.g., /child::employeelist) and the other is a string, the result

of the comparison is true if, and only if, there is a node in the node-set such that

the string-value of that node is equal to the argument string; the string-value of a

CHAPTER 3. SECURE QUERY EVALUATION 40

node is computed as if by a call to the standard string() function. The previous

example has shown that the string value of element employeelist in D is

‘‘JohnN4W2H87500020000MaryM3R5H38500020000’’

Therefore, the result of evaluating qu against D is true. However, according to

our semantics, this result is insecure, as it is not equal to the result of evaluating qu

against D′
ur. The essential reason behind the insecurity of the operator “=” is that

the semantics of the standard “=” operator is defined on the standard string()

function, and the standard string() function, as we have shown, is insecure.

To prevent information from leaking through insecure XPath operators, we de-

veloped a secure function, the sec-eq(), for the insecure operator “=”. The seman-

tics of sec-eq() is very much like that of the standard comparison operator “=”.

But, unlike the standard comparison operator which is defined on the standard

string() function, sec-eq() is defined on the secure sec-string() function. As

a result, a secure rewriting of qu is

sec-eq(/child::employeelist,

"JohnN4W2H87500020000MaryM3R5H38500020000")

Table 3.3 shows a complete list of insecure XPath operators, which must be replaced

by the query modification algorithm, and their corresponding secure functions.

CHAPTER 3. SECURE QUERY EVALUATION 41

Insecure Operators Corresponding Secure Functions
= boolean sec-eq(object, object)

!= boolean sec-ne(object, object)

<= boolean sec-le(object, object)

< boolean sec-lt(object, object)

>= boolean sec-ge(object, object)

> boolean sec-gt(object, object)

+ number sec-addition(object, object)

- number sec-subtraction(object, object)

* number sec-multiply(object, object)

div number sec-div(object, object)

mod number sec-mod(object, object)

Table 3.3: The Mapping from Insecure Operators to Secure Functions

3.3.3 Query Rewriting Function

The pseudocode in Figure 3.7 summarizes the XPath query rewriting function4. The

query rewriting function has two parts: the query rewriting part and the context

rewriting part. It can be conceived as a function that takes two arguments—an

XPath expression qu and its initial evaluation context e—and returns the rewritten

expression q′u and the rewritten context e′. The query rewriting function assumes

that expression qu is in the verbose syntax.5

Query Modification Part

Given an XPath expression qu posted by user u, the query rewriting function will

rewrite it in the following three steps:

4The formal definition of the XPath query rewriting function is described in Section A.1.
5In order to keep the query rewriting function simple, we assume that the incoming XPath

expression is in the verbose syntax. However, it is easy to adapt the query rewriting function to
handle expressions in abbreviated syntax.

CHAPTER 3. SECURE QUERY EVALUATION 42

Figure 3.7 XPath Query Rewriting Function

Query-Rewriting(qu, e)
Begin

// 1. Query Rewriting
q′u ← qu

// a. Insert security check predicates
insert predicate [sec-inview()] after each occurrence
of clause Axis::NodeTest in q′u
// b. Replace insecure functions
replace every occurrence of insecure function in q′u
with its equivalent secure function.
// c. Replace insecure operators
replace every occurrence of insecure operator in q′u
with its equivalent secure function.

// 2. Context Rewriting
e′.context-node ← e.context-node
e′.context-position ← e.context-position
e′.context-size ← e.context-size
e′.namespace ← e.namespace
e′.variable-binding ← e.variable-binding ∪ {(u, context-user)}
e′.function-library ← e.function-library ∪ { sec-inview, sec-id, sec-string,
sec-sum, sec-string-length, sec-normalize-space, sec-numeric-add,
sec-numeric-subtract, sec-numeric-multiply, sec-numeric-divide,
sec-numeric-integer-divide, sec-numeric-mod, sec-numeric-unary-plus,
sec-numeric-unary-minus, sec-eq, sec-neq, sec-lt, sec-number,
sec-gt, sec-le, sec-ge, sec-string-value }
return q′u, e

′

End

1. Locate every occurrence of clause Axis::NodeTest in qu, and insert a predi-

cate [sec-inview()] immediately after each occurrence.

2. Replace every occurrence of insecure XPath functions in query qu with its

corresponding secure function, according to Table 3.2.

CHAPTER 3. SECURE QUERY EVALUATION 43

3. Replace every occurrence of insecure XPath operators in the query qu with

its corresponding secure function, according to Table 3.3.

For example, given a query qu that returns the postcodes of all employees, like

/descendant::employee/descendant::postcode

the query rewriting function will rewrite it to q′u as

/descendant::employee[sec-inview()]

/descendant::postcode[sec-inview()]

Similarly, a more complicated expression that returns the name of male employees

whose total income is greater than 100,000, like

/descendant::employee

[attribute::gender="male"]

[descendant::salary + descendant::bonus >= 100000]

/descendant::name

would be rewritten6 as

/descendant::employee[sec-inview()]

[sec-eq(attribute::gender[sec-inview()], "male")]

[sec-ge(sec-addition(descendant::salary[sec-inview()],

descendant::bonus[sec-inview()]), 10000)]

/client::name[sec-inview()]

6Since we require that the access control policy to be enforced must be valid, some of the
inserted predicates are actually unnecessary. We leave the optimization of rewritten queries for
future study.

CHAPTER 3. SECURE QUERY EVALUATION 44

Context Rewriting Part

Recall that a path expression is always evaluated within a context, and a context can

be modeled as a 6-tuple like 〈context-node, context-position, context-size, variable-

bindings, function-library, namespace-decl〉, in which the function-library consists

of a mapping from function names to function definitions and the variable-bindings

consists of a mapping from variable names to variable values.

In the previous sections, we have shown that the query rewriting function

rewrites a path expression by inserting the predicate [sec-inview()] and by re-

placing insecure functions and operators with their equivalent security functions.

Since the security functions are defined by the query modification algorithm, they

are not included in the function library of the initial context. Consequently, a

standard XPath evaluator has no idea how to process these security functions. In

addition, to process a security function, e.g., the sec-inview(), the XPath opera-

tor has to know who is the context user. This information, again, is not available in

the initial context. In order to enable an XPath evaluator to evaluate the rewritten

expressions, we have to add the missing information into the initial context.

The pseudocode in Figure 3.7 shows the definition of the rewritten context e′.

The context e′ is a superset of e. Besides the elements in e, e′ also includes a

variable u which is bound to the context user, and a name-definition mapping for

the security functions.

CHAPTER 3. SECURE QUERY EVALUATION 45

3.4 The Overview of the Correctness Proof of the

Query Modification Algorithm

In this section we give a overview of the correctness proof of the query modification

algorithm. The complete proof can be found in Appendix B.

Theorem 1 Let D be an XML database, D′
ur be a valid read accessibility view (on

D) for user u, and qu be an arbitrary XPath expression posted by u under context

e. The query modification algorithm will rewrite qu and e into q′u and e′ separately,

such that the result of evaluating qu against D′
ur under context e is equal to the

result of evaluating q′u against D under e′.

The objective of this proof is to show that the above theorem is true. The whole

proof idea is founded on one concept—the expression level. The XPath grammar

shows that there is a level structure in path expressions. For example, a complex

XPath expression can be conceived as an expression that applies operations7 to less

complex expressions; a less complex expression, in turn, can be conceived as an

expression that applies operations to even simpler expressions, and so on. The pro-

cess continues until it reaches the atomic expressions—the simplest expressions that

cannot be further decomposed. Based on this observation, we define the concept

of expression level as follows.

Definition 5 (Expression Level) Every XPath expression has its expression

level. Atomic expressions are expressions of level 1. An expression is of level k

7We use the term “operation” in a generic sense to refer to not only the standard logical,
numeric and comparison operations, but also the function calls and path navigations.

CHAPTER 3. SECURE QUERY EVALUATION 46

if it has at least one immediate sub-expression of level k − 1 and no immediate

sub-expression of level k or greater.

The level structure of an expression can be visualized as a tree, in which the

internal nodes represent operators and the leaves represent atomic expressions. The

number of steps of the longest path from the root to leaves represents the level of

that expression. A k-level path expression, for instance, can be visualized as a tree

of height k, in which the root represents the operation to be applied—e.g., a function

call or a logical and operation—and the subtrees represent the sub-expressions on

which the operation is to be applied. If we use L(XPath) to denote the set of all

XPath expressions and L(XPathk) to denote the set of k-level XPath expressions,

obviously we have
∞⋃

k=1

L(XPathk) = L(XPath)

We prove that the theorem holds for all XPath expressions by induction on the

expression level k.

Chapter 4

Compact Representation of

Access Matrix

In the previous section, we have proposed a query modification algorithm for the se-

cure evaluation of XPath expressions. Given an XPath expression, the query modifi-

cation algorithm will rewrite it into a secure expression containing the sec-inview()

function. Each evaluation of the sec-inview() involves an authorization decision,

for a specific user and object, on the basis of the access control policies. There-

fore, the performance of the decision making mechanism, the one that performs the

evaluation of sec-inview(), largely impacts the speed of secure query evaluation.

As was mentioned in Chapter 2, in discretionary access controls where the access

control policies are specified in terms of authorizations, the interactions between

authorizations may become extremely complex. Therefore determining a user’s

privilege directly from access control policies may be slow. A possible solution to

fast decision making is to materialize the access matrix. In this case, a decision

47

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 48

making mechanism can answer authorization inquiries by looking up the answers in

the materialized access matrix, without computing them from policies. However,

in the context of XML databases in which access controls can be specified at the

granularity of individual elements or attributes, the space cost of the matrix mate-

rialization becomes a serious issue. Storing the matrix as a two-dimensional array

is obviously not efficient. How to record the access matrix compactly is therefore

the problem we are going to explore in this chapter.

This chapter is organized as follows. In Section 4.1, we review a few conventional

implementations of the access matrix. In Section 4.2, we introduce the Compressed

Accessibility Map (CAM), a solution recently proposed by Jagadish and his col-

leagues to the same problem. We describe our codebook method in Section 4.3,

and evaluate its space efficiency in Section 4.4.

4.1 Access Control Lists, Capability Lists and

Authorization Relations

Access control lists and capability lists, commonly used in operating systems, are

two popular implementations of access matrices. Both approaches are based on one

observation: as an access matrix is usually large and sparse, i.e., most matrix entries

are empty, storing only non-empty matrix entries will achieve good compression.

Under the access control list approach, an access matrix is stored by columns.

That is, every object in the matrix is associated with a list of 〈user, access-mode〉
pairs, called an access control list, indicating the users and the corresponding access

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 49

modes granted on that object. Consider, for example, the access matrix in Table

2.1. The access control list of object o1 consists of 〈s1, read〉, 〈s1, write〉, and

〈s4, read〉. Likewise, the access control list of object o2 consists of 〈s2, read〉,
〈s2, write〉, and 〈s3, read〉. This implementation makes object-centric operations

easy to perform. Operations such as determining all of the users who have access

to a specific object or revoking all access to a given object can be easily performed

by examining or deleting the access control list of the object in question. However,

it complicates subject-centric operations. Revoking all of the access privileges of a

given user, for instance, requires a review of all access control lists.

Under the capability list approach, an access matrix is stored by rows. Every

subject in the matrix is associated with a list 〈object, access-mode〉, called a ca-

pability list, indicating the objects and the access modes for which the subject is

authorized. For example, the capability list of user s1 in Table 2.1 has two pairs:

〈o1, read〉 and 〈o1, write〉. The capability list of user s2 has six pairs: 〈o2,

read〉, 〈o2, write〉, 〈o4, read〉, 〈o4, write〉, 〈o5, read〉, and 〈o5, write〉. In

contrast to access control lists, capability lists make subject-centric operations easy

and object-centric operations hard. For example, it is easy to determine, for a given

user, all of the objects the user is authorized to access, but difficult to determine

all of the users who have privilege to access a specific object.

An authorization relation, or authorization table, is another popular represen-

tation of the access matrix [28]. The table shown in Table 4.1 is an authorization

relation for the access matrix in Table 2.1. Each row in the table represents one

authorization. If the table is sorted by users, as shown in this example, we get the

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 50

effect of capability lists. If the table is sorted by object, we get the effect of access

control lists. This representation is commonly used in relational databases.

User Access Mode Object
s1 read o1
s1 write o1
s2 read o2
s2 write o2
s2 read o4
s2 write o4
s2 read o5
s2 write o5
s3 read o2
s3 read o4
s3 read o5
s4 read o1
s4 read o3
s4 write o3
s4 write o6

Table 4.1: Authorization Relation

The aforementioned three techniques are proven successful in operating systems

and relational databases. However, as we mentioned, they are not good enough for

fine-grained XML access control.

4.2 Compressed Accessibility Map

The Compressed Accessibility Map (CAM) is a solution proposed by Jagadish and

his colleagues to the problem of the compact representation of an access matrix

[20]. The compression of CAM is achieved by exploiting the structural locality of

accessibility in hierarchical data.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 51

Recall that a labeled XML tree records a user’s privileges in a specific access

mode. As has just been described, one way to record a user’s privileges in a specific

access mode is to maintain, for that user, a capability list containing all of the

objects the user is authorized to access in the given mode. This capability list,

however, is redundant. Jagadish and his colleagues observed that the accessibility in

hierarchical data, e.g., in XML documents, exhibits strong structural locality. That

is, in a user’s labeled XML tree, the accessible nodes (or inaccessible nodes) tend

to cluster together. Therefore, instead of explicitly keeping a list of all accessible

objects, they record a labeled XML tree more compactly as a CAM tree. The

CAM tree only keeps some crucial nodes in a labeled XML tree, as well as some

additional information. From the crucial nodes and the additional information,

the system can efficiently infer a user’s privilege on any objects. A CAM tree is

a compact representation of a labeled XML tree. To record the complete access

control information, a system should maintain one CAM tree for each user and

access mode.

Jagadish and his colleagues developed algorithms to construct an optimal (min-

imum size) CAM tree for a given user and access mode, and devised an algorithm

for efficient lookup. The general idea of the CAM tree construction and lookup is

illustrated in the following example. Figure 4.1(a) is a labeled XML tree, where

square nodes are accessible and round nodes are not. Its corresponding CAM tree

is shown in Figure 4.1(b). Each node in a CAM tree has a label. The semantics

of the labels is defined as follows: if node x carries a label s+ (or s-), then node x

itself is accessible (or inaccessible); if node x carries a label d+ (or d-) and node x

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 52

is node y’s closest labeled ancestor, then node y is accessible (or inaccessible). For

example, node B can be inferred to be accessible because of its own s+ label. Node

U, however, should be inferred to be inaccessible, as its nearest labeled ancestor

(the node J) has a d- label.

A

Q R TS X

G

B D E

N PML

V WU

I

(d+, s+)

(d−, s+)

(d+, s+) (d−, s+)

A

B J K

F H KJ

C

(a)

(b)

Figure 4.1: Compression Accessibility Map (CAM)

4.3 Codebook Based Scheme

Both the capability lists and the CAM record access control information on a per-

subject basis. Their difference lies in the representation of capabilities. In the

former approach, a user’s capability is represented by a collection of lists, whereas

in the latter approach it is represented by a collection of CAM trees. A CAM tree

is usually more efficient, as it eliminates the redundancy of a capability list which is

caused by the so called structural locality of accessibility. This observation raises a

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 53

question: can similar improvements be made to access control lists? After all, most

operating systems use access control lists, rather than capability lists.1 The answer

to this question leads to the development of a new compact representation of the

access matrix which we are going to present in this and the following sections.

4.3.1 Vector Based Scheme

Suppose, initially, a system has just one access mode. The access cube is then a

|O| × |U | 2-dimensional matrix, where O is the set of objects and U is the set of

users. In this matrix, every object is associated with a |U |-bit 0-1 vector. Such a

vector is called an access control vector, for it records the accessibility pattern of

that object. Theoretically, each object may have a distinct access control vector; a

system with |O| objects and |U | users may have min(|O|, 2|U |) distinct access con-

trol vectors, which is potentially enormous. However, considering the hierarchical

structure of XML data and the propagative behaviors of access control policies, it is

reasonable to conjecture that objects closely positioned in an XML hierarchy may

share an identical accessibility pattern, and hence the actual number of distinct ac-

cess control vectors may be much less than the theoretical value. This hypothesis,

in fact, is the basis of our method. It will be experimentally validated in the next

section. For the time being, we continue the description of our method, assuming

that the hypothesis is true.

According to the hypothesis, the actual number of distinct access control vectors

in an XML database should be small. Thus, we store the access matrix in two

1This is presumably because object-centric operations happen more frequently in operation
systems and access control lists can handle object-centric operations gracefully.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 54

parts: an in-memory part and an on-disk part. The in-memory part is an array

that contains one copy of each distinct access control vector. We call this array

the access control codebook. The on-disk part maintains an index for each object.

This index, which points to an entry in the access control codebook, identifies the

proper access control vector for that object. We call these indexes access control

codes. The on-disk part can be implemented as a table, in which case the access

control information is kept completely separate from the database objects, or it can

be implemented by co-locating the indexes with the objects. In order to track the

usage of access control vectors, we maintain a reference counter for each vector in

the codebook, showing the number of objects currently sharing this vector. Figure

4.2 illustrates the above two implementation choices for the read slice of the access

cube A′ shown in Table 2.2.

S1 S2 S3 S4

1 0 0 1

0 1 1 0

0 0 0 1

C

1

3

O1

O2 O3

O4 O5 O6

(On Disk Part)

S1 S2 S3 S4

1 0 0 1

0 1 1 0

0 0 0 1

(On Disk Part)

C

1

3

Access Control Code

Access Control Code

Access Control Code

Access Control Code

Access Control Code

Access Control Code

O1

O2

O3

O5

O6

O4
0 0 0 0

1

Access Control Code Book
(In Memory Part)

0 0 0 0

1

Access Control Code Book
(In Memory Part)

1

1

Figure 4.2: Codebook Implementation Schemes

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 55

Under this scheme, authorization decision lookup is efficient. Since the access

control codebook is supposed to be in memory, the primary cost of a lookup oper-

ation is the time of locating the object to be accessed. Once the object is found,

we can easily follow the access control code to get the access control vector, and

determine the user’s accessibility accordingly. If the object in question has been

prefetched into memory, which is common in practice, a lookup operation can be

performed without accessing secondary storage. Object updates are trivial. Ob-

jects can be added into or removed from a database directly, probably with a few

minor changes to the codebook. Authorization updates are simple, too. Suppose

we want to change an object’s access control vector from �v1 to �v2. We first search

the codebook for vector �v2. If �v2 exists, we simply assign the code of �v2 to that

object; otherwise, we insert �v2 into the codebook first, and then assign its code to

that object. When the reference counter of an access control vector hits zero, the

vector becomes inactive. The system can either eliminate inactive vectors eagerly

or clean them up periodically. Subject updates are relatively complex. Adding a

new user, or deleting an existing user, may result in a dimensional change of the

codebook. Changing a user’s privileges on a set of objects, in the worst case, may

result in a code change on every object in that set.

The extra complexity related to subject updates is predictable, because our

method, as a variation of access control lists, inherently favors object-centric oper-

ations over subject-centric operations. We believe that efficient support for object-

centric operations is critical for systems in which object-centric operations appear

more frequently than subject-centric operations. In addition, implementing the

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 56

codebook as a 2-dimensional array, as demonstrated in this thesis, is just a ba-

sic approach. We believe that in some circumstances a more efficient codebook

implementation scheme can be developed, and the complexity of subject-centric

operations can be reduced. The efficient management of the codebook, however, is

not a focus of this thesis. We leave it for future study.

4.3.2 Slab Based Scheme

If a system has multiple access modes, say |M |, we have two choices. First, we can

view the |U | × |O| × |M | 3-dimensional access cube as a stack of |O| independent

slabs; each slab is a |U | × |M | 2-dimensional matrix, holding the complete access

control information for a specific object. Following this perspective, we continue

to record one code for every object; but the entries of codebook are “slabs” of

size |U | × |M |. Alternatively, we can view the 3-dimensional cube as |O| × |M | 1-

dimensional vectors; each vector has |U | bits, recording the complete access control

information for a specific object and access mode. In this case, the entries of

codebook are still vectors of size |U |; but for each object, we have to maintain |M |
codes, one for each access mode.

Suppose R denotes the size of one access control code, C denotes the size of

the reference counter, Vl denotes the number of distinct access control slabs, and

Vc denotes the number of distinct access control vectors. The space cost of the

slab approach and the vector approach can be calculated by formulas 4.1 and 4.2

respectively.

SIZEslab = |O| × R︸ ︷︷ ︸
on disk

+ Vl × (|M | × |U | + C)︸ ︷︷ ︸
in memory

(4.1)

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 57

SIZEvector = |O| × |M | × R︸ ︷︷ ︸
on disk

+ Vc × (|U | + C)︸ ︷︷ ︸
in memory

(4.2)

Both approaches have advantages and disadvantages. Since |O| is usually much

greater than |U | and |M |, the overall space cost is likely to be dominated by the

cost of the on-disk part. Comparing with the vector approach, the slab approach

has less overall space cost, as it has a smaller on-disk part; but it requires more

memory.

4.4 Experiment

The experiment has three objectives: (1) to verify the hypothesis, (2) to understand

the frequency distribution of access control vectors, and (3) to evaluate the space

efficiency of the codebook storage scheme.

4.4.1 Hypothesis Verification

The compression of our method is achieved on the basis of one hypothesis. That is,

in most systems, the number of distinct access control vectors (or slabs) is small.

In this subsection, we verify this hypothesis with experiments.

Since we could not find examples of production XML databases with fine-grained

access controls, we conducted experiments on three similar kinds of data sets. The

first consists of access control information from a shared Unix file system at the

University of Waterloo. The second consists of access control information from a

production instance of Open Text LiveLink, a hierarchical system that provides

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 58

Web-based knowledge management services for corporations. The third consists of

access control information from a collection of 50 Unix file systems. These 50 Unix

file systems were randomly selected from a larger collection of 433 Unix file systems

collected by Jagadish and his colleagues for the purpose of CAM evaluation. For

each of these three data sets, we count the number of distinct access control vectors

for each access mode, and the total number of distinct access control vectors across

all of the access modes. For each of the 50 Unix file systems in the third data set,

we also count the number of distinct access control slabs.

Waterloo File System

The first data set, collected at the University of Waterloo, describes access

controls for a shared Unix file system with 186 users and 1,541,759 files2. It

supports three access modes: read, write, and execute. The 186 users be-

long to 60 groups. The group membership information is specified in the

file /etc/group, and a file’s access control information is specified by a 9-

character permission code, like rwxrwxrwx. We interpret the group member-

ship information and permission codes with the standard Unix access control

semantics to determine a user’s access privilege.

The experiment was conducted in two steps. First, for each file in the file

system, we calculate three access control vectors, one for each access mode,

and partition them into three different result sets. An access control vector

is a 186-bit 0-1 vector, one bit per user, in which bit i is set to 1 if the

2We use the term file in a broad sense to refer to any valid entity in a Unix file system, e.g., a
file, a directory, or a symbolic link, etc.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 59

corresponding user is allowed to access that file in the appropriate access

mode. Then, we count the number of distinct vectors for each of the three

result sets, and the total number of distinct vectors for the union of the above

three result sets, respectively. Table 4.2 summarizes the experimental results.

Distinct Access
Mode Objects Users Control Vectors

read 1,541,759 186 250
write 1,541,759 186 278
execute 1,541,759 186 252

combined 1,541,759 186 564

Table 4.2: Access Control Vector Analysis for Waterloo Data

A system like this, in the worst case, may have 1,541,759 distinct access

control vectors, i.e., each object may hold one distinct access control vector.

However, Table 4.2 shows that the actual number of distinct access control

vectors is remarkably small: 250 in read mode, 278 in write mode, and 252

in execute mode. In total, we have only 564 distinct access control vectors

across three access modes, as shown in the “combined” mode.

LiveLink System

As the time of our data capture, the LiveLink system had 371,549 objects,

1,582 users, 7,057 groups and 10 access modes. The LiveLink system has a

much more sophisticated subject hierarchy. Unlike the Unix system, in which

a group contains only users, a group in the LiveLink system may contain other

groups. Authorizations specified on a group always propagate down to its

members. Table 4.3 shows the experimental results for the LiveLink system.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 60

Again, the number of distinct access control vectors for each individual access

mode is small, a little more than 4,000 in most cases. The number of distinct

access control vectors across access modes, as shown in the “combined” mode,

is also small—less than 10,000. It is easy to see that the number of distinct

access control vectors in the “combined” mode is much less than the sum

of the number of distinct vectors in each individual access mode. This fact

indicates that there are considerable amount of duplicates among the sets of

distinct access control vectors of each individual access mode.

Distinct Access
Mode Objects Users Control Vectors

checkout 371,549 1,582 4,235
creat node 371,549 1,582 3,926
delete 371,549 1,582 5,591
delete ver 371,549 1,582 4,273
edit attr 371,549 1,582 4,144
edit 371,549 1,582 4,362
modify 371,549 1,582 4,684
rm node 371,549 1,582 22
see content 371,549 1,582 4,325
see 371,549 1,582 4,198

combined 371,549 1,582 9,863

Table 4.3: Access Control Vector Analysis for LiveLink Data

CAM Data

In order to evaluate the space efficiency of CAM, Jagadish and his colleagues

collected access control information from 433 Unix file systems. We randomly

selected 50 file systems from those 433 systems for further study. For each

of the 50 file systems, we counted (1) the number of distinct access control

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 61

vectors for each individual access mode, (2) the number of distinct access

control vectors across all access modes, and (3) the number of distinct access

control slabs.

The experimental results are shown in Figure 4.3 on page 62. Three of the

plots show the number of access control vectors versus the number of users,

for read, write, and execute. Two show the number of distinct access control

vectors and access control slabs across all access modes versus the number

of users. The numbers of distinct access control vectors in those 50 file sys-

tems are consistently small. The maximum number of distinct access control

vectors (across all access modes) in any file systems is just a little more than

200. About 90% of the systems have less than 100 distinct access control

vectors. And, as we conjectured, the number of distinct slabs is greater than

the number of distinct access control vectors.

Our experiments on three different data sets all verified the hypothesis. Al-

though these three data sets are not XML data, they are well-defined hierarchical

data. It is reasonable for us to conjecture that the same property also exists in

XML data.

4.4.2 Frequency Distribution of Access Control Vectors

Our experiments also reveal that the frequency distribution of the access control

vectors in some large hierarchical data loosely follows Zipf’s law. Zipf’s law, named

after the Harvard linguistic professor George Kingsley Zipf, is the observation that

frequency of occurrence of some event (P), as a function of the rank (i) when the

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 62

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

di
st

in
ct

 a
cc

es
s

co
nt

ro
l v

ec
to

rs
 (

re
ad

 m
od

e)

number of users

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120 140 160 180 200

di
st

in
ct

 a
cc

es
s

co
nt

ro
l v

ec
to

rs
 (

w
rit

e
m

od
e)

number of users

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

di
st

in
ct

 a
cc

es
s

co
nt

ro
l v

ec
to

rs
 (

ex
ec

 m
od

e)

number of users

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120 140 160 180 200

di
st

in
ct

 a
cc

es
s

co
nt

ro
l v

ec
to

rs
 (

al
l m

od
es

)

number of users

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180 200

di
st

in
ct

 a
cc

es
s

co
nt

ro
l s

la
bs

number of users

Figure 4.3: Access Control Vector Analysis for CAM Data

rank is determined by the above frequency of occurrence, is a power-law function

Pi ∼ 1/iα where α is a constant parameter close to unity [33]. Plotted onto a

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 63

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

ac
ce

ss
 c

on
tr

ol
 v

ec
to

r
fr

eq
ue

nc
y

(lo
g

sc
al

e)

LiveLink access control vector rank (log scale)

Figure 4.4: Frequency Distribution of Access Control Vectors in LiveLink Data

double-logarithm diagram, the curve of Zipf’s distribution function is a descending

straight line with a slope close to −1.

Figure 4.4 shows the frequency distribution of the “combined” access control

vectors in the LiveLink system. We sort all of the distinct access control vectors in

the “combined” mode in descending order by the number of their occurrences. An

access control vector of rank 1 is the vector that appears most frequently, an access

control vector of rank 2 is the one that appears second most frequently, and so on.

Each spot in the diagram represents one distinct access control vector; its x-value

represents the rank of the access control vector, and its y-value shows the number

of occurrences. The curve shown in Figure 4.4, a descending straight line with a

minor deviation at the low end, demonstrates that the frequency distribution of the

access control vectors in the LiveLink system loosely follows Zipf’s law.

We do not yet know whether it is a property existing in all hierarchical data;

but, we know that it does exist in some large ones. Zipf’s law says that access

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 64

control vectors do not appear at the same rate. There are always a few vectors that

appear a lot of times and many vectors that appear only a few times. A possible

application of this property is that, if the codebook is too big to fit in memory, we

can cache a small portion of the codebook and still get a good hit ratio. We leave

the verification of this property and its possible applications for future study.

4.4.3 Performance Evaluation

In this subsection, we evaluate the performance of the newly proposed codebook

scheme from two perspectives. First, we compare the performance of the two differ-

ent implementation approaches: the access control vector approach and the access

control slab approach. Second, we compare, for each of the 50 file systems, the space

costs of the codebook scheme (implemented in the access control slab approach)

with that of two other techniques: the access control list and the CAM.

Vectors Versus Slabs

Recall that the total space cost of the codebook scheme includes two parts: the

on-disk part occupied by the access control codes and the in-memory part occupied

by the access control codebook. A codebook can be implemented either as an array

of access control vectors or as an array of access control slabs. The space cost of

the slab approach and the vector approach can be calculated by formulas 4.1 and

4.2 respectively.

In the following experiments, we assume that each access control code occupies

16 bits, which is sufficient to index 65,536 distinct access control vectors (or slabs).

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 65

For each of the 50 file systems in the CAM data set, we calculate its in-memory

space cost and total space cost under the two different implementation approaches.

Figure 4.5 shows the comparison between the total space costs of the two imple-

mentation approaches. The first diagram shows the results for the first 25 files and

the second diagram shows the results for the remaining 25 files. Figure 4.6 shows

the comparison between in-memory space cost (the size of the codebook) of the two

implementation approaches. As predicated, the slab approach uses less total space

than the vector approach. However, the slab approach requires more space in main

memory.

Comparisons between ACL, CAM and Codebook

Under the access control list approach, every object maintains |M | access control

lists, one for each access mode. We assume that an access control list consists of a

list of 〈user-id, pointer〉 pairs, where the user-id is a 16-bit user identifier and the

pointer is a 32-bit address pointing to the next pair in the list. That is, each pair

occupies 48 bits. The space cost of one access control list equals the number of

pairs (in the list) times the size of the pair (48 bits); and, the total space cost of

the access control list scheme is the sum of the sizes of all access control lists over

all of the objects, which can be calculated by the following formula:

CostACL = 48 ×
∑

i∈O,j∈M

|ACLij|

where O is a set of objects, M is a set of access modes, and |ACLij| is the number

of pairs in the access control list associated with object i and access mode j.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 66

Under the CAM approach, the system maintains |M | CAM trees for each user,

one for each access mode. In a system with |U | users, the total number of CAM

trees is |M | × |U |. The total space cost of the CAM scheme is the sum of the sizes

of all CAM trees, which can be calculated by the following formula:

CostCAM =
∑

i∈U,j∈M

|CAMij|

where U is a set of users, M is a set of access modes, and |CAMij| is the size of the

CAM tree for user i and access mode j.

The space cost of a specific CAM tree, say CAMi,j, can be calculated by multi-

plying the number of labeled nodes (in CAMi,j) with the size of a labeled node. We

assume that each labeled node occupies 131 bits. This assumption is in accordance

with Jagadish’s suggestion. Thus, the total of the CAM scheme can be expressed

by the following formula:

CostCAM = 131 ×
∑

i∈U,j∈M

NCAMij

where NCAMij
is the number of labeled nodes in CAMij. In this experiment, the

number of labeled nodes in CAM trees, i.e., the NCAMij
, was provided by Jagadish

and his colleagues.

Figure 4.7 shows the experimental results. The comparison reveals that our

codebook scheme is very space efficient. In most case, its space cost is less than

10% of that of the CAMs.

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 67

���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

to
ta

l s
pa

ce
 c

os
t (

lo
gs

ca
le

)

file systems

ACV
SLAB

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 10000

 100000

 1e+06

 1e+07

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

to
ta

l s
pa

ce
 c

os
t (

lo
gs

ca
le

 s
ca

le
)

file systems

ACV
SLAB

Figure 4.5: Total Space Cost Comparison between ACV and SLAB

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 68

���
���
���
���

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
em

or
y

co
st

 (
lo

gs
ca

le
)

file systems

ACV
SLAB

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

 1

 10

 100

 1000

 10000

 100000

 1e+06

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m
em

or
y

co
st

 (
lo

gs
ca

le
)

file systems

ACV
SLAB

Figure 4.6: In-Memory Space Cost Comparison between ACV and SLAB

CHAPTER 4. COMPACT REPRESENTATION OF ACCESS MATRIX 69

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

to
ta

l s
pa

ce
 c

os
t (

lo
gs

ca
le

)

file systems

ACL
CAM

CODEBOOK

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

to
ta

l s
pa

ce
 c

os
t (

lo
gs

ca
le

)

file systems

ACL
CAM

CODEBOOK

Figure 4.7: Space Cost Comparison between ACL, CAM and Codebook

Chapter 5

Related Work

Research on access controls can be traced back to the 1960s. At that time, the bulk

of the research laid in the development of mathematical models for access controls.

The goal was to find a simple high-level conceptual model to help researchers better

understand the structure and the behavior of an access control system and provide

researchers a tool for proving the correctness of an access control system. Of the

large number of access control models that were proposed, the Lampson model [24],

the Graham and Denning model [17], and the Harrision model [19] are milestones

for discretionary access controls; the Bell and LaPadula model [1], the Dion model

[11], and the Sea View model [14] are milestones for mandatory access controls.

With the emergence of object oriented databases, researchers began to consider

how to apply traditional access control models to protect this new data format.

As data items in object oriented databases usually have richer semantics and more

complex correlations, traditional access control models were extended to meet the

new requirements. Some representative efforts include the ORION model [26, 12]

70

CHAPTER 5. RELATED WORK 71

which is an extension to the discretionary model, and the Meadows model [5] which

is an extension to the mandatory model.1

Recent research on access controls focuses primarily on three areas. One is

the design and the implementation of role based access control models2 [15, 27].

Another is the development of the unified access control systems which is able to

specify and enforce multiple access control policies [4, 21, 22]. The third active area

is access controls for XML, which is also the focus of this work. In the remainder

of this chapter, we explore four research efforts related to XML access controls: (1)

the Damiani model, (2) the Bertino model, (3) the Kudo model, and (4) the opti-

mization of the secure evaluation of twig queries. Since CAM has been introduced

in Chapter 4, we will not discuss it here.

5.1 Models Proposed by Damiani and Bertino

Damiani et al. [10, 8, 9] and Bertino et al. [3, 13, 2] each independently proposed a

fine-grained access control model for XML. The structures of the models are fairly

similar: both of them are extensions to the traditional discretionary access control

models; both of them express access control requirements in XML syntax; both

of them define the semantics of access controls as a particular view on the XML

document; and both of them create the view by means of tree labeling and pruning.

Their difference lies in the details of designs, e.g., how to model a subject, how to

propagate authorizations, and so on. Here, we use Damiani’s model as an example

1Castano, Fugini and Samarati provide a complete description of access control models [6].
2Some latest information about RBAC can be found at http://csrc.nist.gov/rbac/.

CHAPTER 5. RELATED WORK 72

to introduce the major concepts of the models.

In Damiani’s model, each XML/DTD document is associated with one au-

thorization sheet. An authorization sheet is a well-formed XML document that

contains the authorization rules related to the document to be protected. Each

authorization rule is a 5-tuple 〈subject, object, action, sign, type〉, where:

Subject is the entity that requests access to the system.

Object is the resource to be protected. The object granularity on which access

controls can be specified spans from the DTD level to the element level, or

even down to the attribute level.

Action is the access mode. The model, at the time of its writing, supports the

read operation only, but it can be extended to incorporate other access modes.

Sign could be a “+” or a “-”, indicating whether the authorization rule is positive

or negative. A positive authorization states the situations in which access

should be authorized, whereas a negative authorization states the situations

in which access should be forbidden.

Type specifies the propagation option of the authorization. The model defines

eight propagation options, each of which derives implicit authorizations in a

different manner. For example, a “recursive” authorization specified on an

element will derive implicit authorizations for its subelements and attributes,

whereas a “local” authorization will derive implicit authorizations for its at-

tributes only.

CHAPTER 5. RELATED WORK 73

The semantics of access control for a user is defined as a view of the document,

namely the user’s accessibility view, which contains only the data that the user is

authorized to access. Damiani and his colleagues devised an algorithm to compute

the view by means of tree labeling and pruning. In the tree labeling process, the

algorithm traverses the document tree from the root, decides for each node whether

the user is authorized to access that node, and marks the node accordingly. The

result of the labeling process is a labeled document tree in which every node is

marked either “accessible” or “inaccessible.” The pruning process is then applied

on the labeled document tree to generate the user’s accessibility view by pruning

off all of the “inaccessible” nodes.3

The emphasis in this work is on the design of the XML access control model,

focusing on addressing some high level problems related to XML access controls,

such as: how to specify access control requirements, how to derive authorization

decisions, and how to enforce access controls, with little attention to the efficiency

of the access control mechanism.

5.2 XACL

While almost all of the existing access control models assume that a system either

authorizes or denies an access request, Kudo and his colleagues proposed a pro-

visional access control model that can provide more sophisticated access controls

[18, 23].

3In order to preserve the document structure, the pruning process will keep an inaccessible
element, if it has accessible descendants.

CHAPTER 5. RELATED WORK 74

A provisional access control model adds extended semantics to traditional ac-

cess control models. Instead of simply authorizing or denying a user’s request, a

provisional access control model is able to make a more flexible decision, e.g., telling

a user that his request will be authorized if he (and/or the system) takes certain

security actions prior to the authorization, say signing an agreement of terms and

conditions. The provisional access control model is shown to be useful in many

e-commerce applications, e.g., online auctions or online contracting, which require

conditional authorizations.

Kudo also proposed an XML access control language (XACL), on the basis

of the provisional authorization model, which allows the security administrators to

write flexible access control requirements in XML syntax. An implementation of an

XACL processor is available as a part of XML Security Suite, which is downloadable

at IBM’s alphaWorks website4.

5.3 Optimizing the Secure Evaluation of Twig

Queries

Cho and colleagues proposed techniques for optimizing the secure evaluation of

twig queries in a multi-level security model [7]. The semantics of secure query

evaluation of twig queries used in this work was introduced in Chapter 3. In their

model, security levels are specified as attributes at the granularity of XML elements,

but not every element has a security attribute. For an element without a specified

4The XML Security Suite is available at http://www.alphaworks.ibm.com/tech/xmlsecuritysuite/

CHAPTER 5. RELATED WORK 75

security attribute, its security level is inherited from its nearest ancestor with a

specified security level. Users can only access the elements whose security levels

are no higher than theirs.

The first contribution of this work is showing that a twig query can be se-

curely evaluated, in a multi-level security model, by means of query rewriting. The

essence of the query rewriting is to append additional security check predicates to

the original twig query. The security check predicate determines whether a user is

authorized to access a particular object, i.e., whether the user’s security level domi-

nates the object’s security level. For an element that inherits its security level from

its ancestors, such a security check requires a recursive computation to identify the

security level of the element’s nearest ancestor. Since such a recursive computation

is usually expensive, the second contribution of the work is developing a query op-

timization algorithm that can eliminate unnecessary access control predicates from

the rewritten queries by exploiting the security constraints specified in the schemas.

Our work differs from Cho’s work in several respects. First, we consider the

secure evaluation of XPath expressions, a query language that has more operators

than twig queries. Second, unlike Cho’s work, which is based on a binding based

semantics, our work is based on a view based semantics which is independent of

query languages. Third, we also consider the problem of space efficient representa-

tion of the access matrix, which is a key problem for achieving fast authorization

decision making.

Chapter 6

Conclusions

The first part of this thesis addressed the problem of secure evaluation of XPath

expressions. We started with the introduction of a language-independent seman-

tics for secure query evaluation. Based on this semantics, we proposed a query

modification algorithm for the secure evaluation of path expressions. Given a path

expression, the query modification algorithm rewrites it into a secure expression

whose evaluation uses and returns only the data the query issuer is authorized to

access. The correctness of this algorithm was proved under our semantics of secure

query evaluation.

The second part of the thesis addressed the problem of the compact representa-

tion of access matrices, which is critical to making efficient authorization decisions.

Our experimental study shows that the access matrices, although large, are very

redundant. By exploiting the redundancy, we developed a codebook scheme for

the compact storage of access matrices. The codebook scheme exhibits substantial

space savings over other storage schemes, such as the access control lists and the

76

CHAPTER 6. CONCLUSIONS 77

CAM. Savings are more than 90% in most cases.

These two techniques, combined together, provide a foundation for the efficient

enforcement of fine-grained access control for query-based access to XML databases.

6.1 Future Work

Our work is only an initial step toward the establishment of secure XML databases.

There are many issues that we plan to investigate. One immediate problem we want

to explore is the dynamic maintenance of the codebook. The codebook storage

scheme favors object-centric operations over subject-centric operations. Ideally, we

should develop a structure for the codebook that can adapt to the changes in the

subject hierarchy gracefully. Another problem we want to explore is how to combine

the best features of CAM and our codebook scheme. Currently, we maintain one

access control code for every object in the database. As an alternative, we can

maintain a CAM tree for the access control codes. This will not only save space,

but also improve the performance of bulk updates.

Appendix A

XPath Query Modification

Algorithm

The XPath query modification algorithm is composed of two parts: a query rewrit-

ing function and a collection of security functions. The query rewriting function is

the heart of the modification algorithm—it defines how a query should be modified;

the security functions, on the other hand, are supporting functions defined in the

query modification algorithm to perform security-related activities.

A.1 Definition of Query Rewriting Function

The query rewriting function is a function that takes two arguments—an XPath

expression qu posted by user u (the context user) and an initial evaluation context

e—and returns the rewritten expression q′u and the rewritten context e′.

Context Rewriting

78

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 79

Given a context e, the query rewriting function rewrites it to e′ as follows.

e′.context-node ← e.context-node

e′.context-position ← e.context-position

e′.context-size ← e.context-size

e′.namespace ← e.namespace

e′.variable-binding ← e.variable-binding ∪ {(u, context-user)}
e′.function-library ← e.function-library ∪ { sec-inview, sec-id, sec-string,
sec-sum, sec-string-length, sec-normalize-space, sec-numeric-add,

sec-numeric-subtract, sec-numeric-multiply, sec-numeric-divide,

sec-numeric-integer-divide, sec-numeric-mod, sec-numeric-unary-plus,

sec-numeric-unary-minus, sec-eq, sec-neq, sec-lt, sec-number,

sec-gt, sec-le, sec-ge, sec-string-value }

The rewritten context e′ is a superset of the context e. Besides the elements

in e, context e′ also includes a variable u which is bound to the context user,

and a name-definition mapping for the security functions.

Query Rewriting

Given a path expression qu posed by user u, the query rewriting function

rewrites it to q′u. Since the query rewriting is highly related to the structure

of path expressions, we define it in terms of a yacc specification [25].

The yacc specification in Figure A.1 is the main body of the definition of

the query rewriting. It consists of a collection of grammar rules that are

taken from the grammar of XPath specification version 1.0. For each of the

grammar rules, we specify an action which will be performed at each time the

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 80

rule is recognized. For example, the third and fourth lines in the specification

show that the following grammar rule

EqualityExpr ::= EqualityExpr ’=’ RelationalExpr.

is associated with the action

$$ = "sec-eq($1, $3)"

That means, if this rule is recognized, the string sec-eq($1, $3) will be

returned, where $1 and $3 are pseudo-variables that should be replaced by the

values of the nonterminal EqualityExpr and RelationalExpr on the right

side of the grammar rule.

It is worth mentioning that the specification in Figure A.1 is not complete.

Many XPath grammar rules are not included. For the sake of simplicity, we

omit the grammar rules that are not subject to rewriting. To get a complete

definition, one needs to add those missing rules back into this specification,

and specify, for each of those missing rules, one action that assigns the con-

catenation of the values of the symbols on the right hand side of the rule to

the symbol on the left hand side.

A.2 Definitions of Security Functions

Security functions are supporting functions defined in the query modification al-

gorithm to perform security-related activities. Table 3.1 shows all of the security

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 81

functions defined by the XPath query modification algorithm. Table 3.2 shows the

mapping from the insecure functions to their corresponding secure functions. Table

3.3 shows the mapping from the insecure operators to their corresponding secure

functions. We give the definitions of the security functions in this section.

Function: boolean sec-inview()

Given the evaluation context e and the access cube A, sec-inview() returns

true if, and only if, A[e.u, e.cn, r] = 1, where r refers to the read mode, e.u

and e.cn refer to the context user and the context node respectively.

Function: string sec-string(object?)

The sec-string() function returns the secure string value of an object.

1. If the argument is omitted, it defaults to a node set with the context

node as its only member.

2. If the object is an empty node set, an empty string is returned.

3. If the object is a non-empty node set that contains at least one accessible

node, the secure string value of the first node (in document order) in the

node set is returned, as if by a call to the sec-string-value() function.

If the object is a non-empty node that does not contain an accessible

node, an empty string is returned.

4. If the argument object is of other data types, the string value of object

is returned as if by a call to the standard string() function.

Function: string sec-string-value(nodeset)

The sec-string-value() function returns the secure string value of the argu-

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 82

ment node set. The argument is always a node-set that contains one accessible

node.

1. If the node in the argument nodeset is a root node, the concatenation

of the string values of all accessible text node descendants (in document

order) of the root node is returned.

2. If the node in the argument nodeset is an element node, the concate-

nation of the string values of all accessible text node descendants (in

document order) of the element node is returned.

3. If the node in the argument nodeset is of other Node types, e.g., an

attribute node, a namespace node, a processing instruction node, a com-

ment node, or a text node, its standard string value is returned, as if by

a call to the standard string() function.

Function: node-set sec-id(object)

The sec-id() function selects elements by their unique IDs.

1. If the argument is a node set, the result is computed in the following

two steps: (1) union the node sets generated by applying the standard

id() function to the secure string value of each node in the argument

node set; The secure string value of a node is computed as if by a call

to the sec-string(). (2) return the accessible nodes in the union.

2. If the argument is an object of any other type, the result is computed in

the following two step: (1) generate a node set by applying the standard

id() function to the string value of that argument object ; The string

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 83

value is computed as if by a call to the standard string() function. (2)

return the accessible nodes in the node set generated by the previous

step.

Function: number sec-number(object?)

The sec-number() function converts its argument to a number as follows.

1. If the argument is omitted, it defaults to a node-set with the context

node as its only member.

2. If the argument is a node set, the result is a number returned by ap-

plying the standard number() function to the secure string value of the

argument. The secure string value is produced as if by a call to the

sec-string() function.

3. If the argument is an object of other data types, the result is a number

returned by applying the standard number() function to that argument.

Function: number sec-sum(node-set)

The sec-sum() converts each node in the argument node set into a number

by calling the sec-number() function and returns the sum.

Function: number sec-string-length(string?)

If the argument is omitted, it defaults to the secure string value of the context

node. The secure value of the context node is produced as if by a call to the

sec-string() function.

Otherwise, the sec-string-length() returns the number of characters in

the string value of the argument by calling the standard string-length()

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 84

function.

Function: number sec-normalize-space(string?)

If the argument is omitted, it defaults to the secure string value of the context

node. The secure value of the context node is produced as if by a call to the

sec-string() function.

Otherwise, the sec-normalize-space() returns the normalized string of the

argument by calling the standard normalize-space() function.

Secure Functions for Comparison Operators

XPath 1.0 defines six comparison operators which include =, !=, <=, <, >= and

>. Their corresponding secure functions are: sec-eq(), sec-ne(), sec-le(),

sec-lt(), sec-ge() and sec-gt(). The semantics of these comparison se-

curity functions is the same as that of those standard comparison operators,

except that the standard comparison operators convert operants into numbers

or strings by calling the standard functions, like number() and string(), but

the comparison functions convert them by calling the secure functions, like

sec-number() and sec-string().

Secure Functions for Numeric Operators

XPath 1.0 defines five numeric operators which include +, -, *, div, and mod.

Their corresponding secure functions are: sec-addition(), sec-subtraction(),

sec-multiply(), sec-div() and sec-mod().

The semantics of the numeric security functions is the same as that of those

standard numeric operators, except that the standard numeric operators con-

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 85

vert operants to numbers by calling the standard number() function, but the

numeric security functions convert their arguments to numbers by calling the

secure sec-number() function.

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 86

Figure A.1 The Definition of The Query Rewriting

[4] EqualityExpr ::= RelationalExpr

{ $$ = $1 }

| EqualityExpr ’=’ RelationalExpr

{ $$ = "sec-eq($1, $3)" }

| EqualityExpr ’!=’ RelationalExpr

{ $$ = "sec-ne($1, $3)" }

[5] RelationalExpr ::= AdditiveExpr

{ $$ = $1 }

| RelationalExpr ’<’ AdditiveExpr

{ $$ = "sec-lt($1, $3)" }

| RelationalExpr ’>’ AdditiveExpr

{ $$ = "sec-gt($1, $3)" }

| RelationalExpr ’<=’ AdditiveExpr

{ $$ = "sec-le($1, $3)" }

| RelationalExpr ’>=’ AdditiveExpr

{ $$ = "sec-ge($1, $3)" }

[6] AdditiveExpr ::= MultiplicativeExpr

{ $$ = $1 }

| AdditiveExpr ’+’ MultiplicativeExpr

{ $$ = "sec-addition($1, $3)" }

| AdditiveExpr ’-’ MultiplicativeExpr

{ $$ = "sec-subtraction($1, $3)" }

[7] MultiplicativeExpr::= UnaryExpr

{ $$ = $1 }

| MultiplicativeExpr MultiplyOperator UnaryExpr

{ $$ = "sec-multiply($1, $3)" }

| MultiplicativeExpr ’div’ UnaryExpr

{ $$ = "sec-div($1, $3)" }

| MultiplicativeExpr ’mod’ UnaryExpr

{ $$ = "sec-mod($1, $3)" }

[16] Step ::= AxisSpecifier NodeTest Predicate*

{ $$ = "$1 $2 [sec-inview()] $3" }

APPENDIX A. XPATH QUERY MODIFICATION ALGORITHM 87

[35] FunctionName ::= Qname - NodeType

{ switch(Qname)

case id:

replace id with sec-id

case string:

replace string with sec-string

case string-length:

replace string-length with

sec-string-length

case normalize-space:

replace normalize-space with

sec-normalize-space

case number:

replace number with sec-number

case sum:

replace sum with sec-sum

case others:

do nothing

}

Appendix B

Correctness Proof of the XPath

Query Modification Algorithm

B.1 Objective and Assumptions

The objective of the proof is to show the correctness of Theorem 1. We prove it on

the basis of the following assumptions:

1. The root node of an XML document is accessible with respect to user u.

2. The context node nc in the initial context is accessible with respect to user u.

3. The original expression qu does not contain functions that are not defined in

the XPath core function library.

4. The input arguments of functions are always objects of the four basic types.

5. The original expression qu is in the verbose syntax.

88

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 89

B.2 Notation

1. D denotes an XML database instance.

2. D′
ur denotes the user u’s valid read accessibility view on D.

3. qu denotes an XPath expression, posted by u, whose corresponding rewritten

expression is q′u.

4. e denotes the initial evaluating context whose corresponding rewritten context

is e′.

5. e.u denotes the context user in evaluation context e.

6. qu(D) denotes the result of evaluating qu against D.

7. qu(D
′
ur) denotes the result of evaluating qu against the view D′

ur.

8. L(XPath) denotes the set of all XPath expressions.

9. L(XPathk) denotes the set of k-level XPath expressions.

B.3 Proof Skeleton

We prove that the theorem holds on L(XPath) by induction on the expression level

k.

Base Case:

We wish to show that the theorem holds for L(XPath1).

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 90

The grammar of XPath illustrates that an expression in L(XPath1), i.e., an

atomic expression, must be in one of the following five forms: a float number,

a quoted string literal, a variable reference, a location step without predicates,

or a function call without arguments. We prove that the theorem holds for

these five cases in three steps.

First step: suppose qu is an atomic expression in one of the first three forms.

According to the query modification algorithm, we have q′u = qu. If qu is in

one of the first three forms, the result of qu is independent of the database.

Thus, we have qu(D
′
ur) = q′u(D).

Second step: suppose qu is a location step without predicates. Then, qu

is either a relative expression in the form of Axis::NodeTest or an absolute

expression in the form of /Axis::NodeTest. The difference between a relative

expression and an absolute expression is that a relative expression is evaluated

with respect to the current context node, whereas, an absolute expression is

evaluated with respect to the document root. According to the assumption,

the context node (i.e., the e.nc) and the document root (addressed by “/”) are

both accessible with respect to the context user u. Thus the proof for these

two cases are actually the same. We give a proof for the relative expression

as an example.

According to the query modification algorithm, if qu is Axis::NodeTest, the

rewritten expression q′u would be Axis::NodeTest[sec-inview()].

Assume that n is an arbitrary node in Axis::NodeTest(D′
ur). It must satisfy

the following conditions:

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 91

1. n is an accessible node in D, as n ∈ D′
ur.

2. The relationship between n and the context node e.nc satisfies the Axis.

3. The node type and the expanded-name of n satisfies the NodeTest.

Consequently, n must also be a node in Axis::NodeTest[sec-inview()](D).

Similarly, assuming n is an arbitrary node in Axis::NodeTest[sec-inview()](D).

It must satisfy the following conditions:

1. The relationship between n and the context node e′.nc satisfies the Axis.

2. The node type and the expanded-name of n satisfies the NodeTest.

3. n is an accessible node in D. Since the security policy to be enforced is

a valid policy, we have n ∈ D′
ur.

Consequently, n must also be a node in Axis::NodeTest(D′
ur).

Therefore, we have q′u(D) = qu(D
′
ur).

Third step: suppose qu is a function call without arguments. The XPath spec-

ification shows that there are 11 standard functions that may not take argu-

ments. Of the 11 functions, 4 functions are insecure. They are the string(),

the string-length(), the normalize-space(), and the number(). We will

show the proof for these 4 insecure functions in Section B.4.

Hypothesis:

Assume that the theorem holds for L(XPathi), where 1 ≤ i ≤ k for some

integer k greater than or equal to 1.

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 92

Induction Step:

We wish to prove that the theorem holds for L(XPathk+1).

Recall that a (k + 1)-level expression is an expression that applies one opera-

tion to a number of subexpressions whose maximum level is k. According to

the hypothesis, we know that the theorem holds for all of the subexpressions.

Therefore, to prove that the theorem holds on a (k + 1)-level expression, we

just need to show that the rewriting of that operation is correct.

The following list illustrates all of the possible operations an expression may

take.

1. Comparison Operations: =, !=, <, >, <=, >=

2. Numeric Operations: +, -, div, mod, *

3. Logical Operations: or, and

4. Navigation Operators: /

5. Predicates: applying a “predicate” operation to an expression means

appending the predicate at the end of that expression.

6. Function Calls: applying a “function call” operation to a number of

expressions means calling that function with those expressions as argu-

ments.

We classify the operations into six categories: the comparison operations,

the numeric operations, the logical operations, the navigation operations, the

predicates, and the function calls. In the following sections, we will prove

that the rewriting of the operations in these six categories is correct.

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 93

B.4 Proof for Function Calls

Since the results of secure functions are solely determined by the evaluating context

and the input arguments (if available), it is easy to see that evaluating a secure

function against D′
ur equals evaluating that function against D, given the same

evaluating context and arguments. That is, the theorem holds if the (k + 1)-level

expression is a function call to a secure function.

In the remainder of this section, we prove that the theorem holds if the (k + 1)-

level expression is a function call to an insecure function.

Of the 27 standard functions defined by the XPath specification, 6 are insecure

functions: id(), string(), string-length(), normalize-space(), number(),

and sum(). We prove them separately.

string() Function

Suppose qu is string(p), where p is a k-level expression. According to the

query modification algorithm, the rewritten expression q′u is sec-string(p′),

where p′ is the rewritten expression for p. We prove that the theorem holds for

the expression qu in three steps. First step: suppose p(D′
ur) yields an object o

which is of one of the following three types: a number, a boolean, or a string.

According to the definition of sec-string(), the result of sec-string(p′)(D)

is equal to the result of string(p)(D). As the string value of o is independent

of the database, the result of string(p)(D) must be equal to the result of

string(p)(D′
ur). Thus, we have sec-string(p′)(D) = string(p)(D′

ur).

Second step: suppose p(D′
ur) yields a node set. If the node set is empty, it is

easy to see that the theorem holds, as both string(p)(D′
ur) and sec-string(p′)(D)

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 94

will return an empty string. If the node set is not empty, we assume that n is

the first node in the node set. Obviously, n is an accessible node that appears

in both D and D′
ur.

Assume that string(p)(D′
ur) yields a string s1, and sec-string(p′)(D) yields

a string s2. Let N1 be the set of text node descendants of n in D′
ur, and N2

be the set of accessible text node descendants of n in D. According to the

definition of the string() function, s1 is the concatenation of the string values

of the nodes in N1 in document order. Similarly, according to the definition

of sec-string() function, s2 is the concatenation of the string values of the

nodes in N2 in document order. Since D′
ur is a view of D, D′

ur and D must

share the same document order. Therefore, to prove that s1 is equal to s2,

we only need to show that N1 is equal to N2.

Pick an arbitrary node i from N1. According to the definition of N1, node i

must satisfy the following conditions:

1. i is a node in D′
ur. That is, i is an accessible node in D.

2. i is a text node.

3. i is a descendant of n.

Obviously, n ∈ N2, as it satisfies all of the criteria of N2.

Similarly, pick an arbitrary text node i from N2. According to the definition

of N2, node i must satisfy the following conditions:

1. i is a text node.

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 95

2. i is a node in D.

3. i is a descendant of n.

4. i is accessible.

Obviously, n ∈ N1, as it satisfies all of the criteria of N1.

Thus, we have N1 = N2.

A string() function may be called without arguments, in which case qu

is an atomic expression like string(), and the rewritten expression q′u is

sec-string(). According to the definition of string(), if the argument

is omitted, it defaults to a node set which contains only the context node.

That is, the expression string() is actually equivalent to the expression

string(N), where N is a node set that contains only the context node.

In the previous proof, we have shown that the theorem holds for expres-

sion string(N). Therefore, the theorem must also hold for the expression

string().

id() Function

Suppose qu is id(p), where p is a k-level expression. According to the query

modification algorithm, the rewritten expression q′u is sec-id(p′), where p′

is the rewritten expression for p. We prove that the theorem holds for the

expression qu in two steps.

First step: suppose p(D′
ur) yields an object o which is of one of the following

three types: a number, a boolean, or a string. We assume that id(p)(D′
ur)

yields the node set N1, and sec-id(p′)(D) yields the node set N2.

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 96

According to the definition of function id(), a node n ∈ N1 must satisfy the

following conditions.

1. n ∈ D′
ur. That is, n is an accessible node in D.

2. The id of n is a token that appears in the string value of p(D′
ur).

Similarly, according to the definition of function sec-id(), a node n ∈ N2

must satisfy the following conditions.

1. n is a node in D.

2. n is accessible

3. The id of n is a token that appears in the string value of p′(D).

According to hypothesis, we have p(D′
ur) = p′(D) = o. Since the string value

of o in D is equal to the string value of o in D′
ur, we have N1 = N2.

Second step: suppose p(D′
ur) yields a node set N . According to the definition

of sec-id(), a node n ∈ sec-id(p′)(D) must satisfy the following conditions:

1. n is a node in D.

2. n is accessible.

3. The id of node n appears in the concatenation of the secure string values

of the nodes in node set N in D.

Since the secure string value of a node in D is equal to its string value in D′
ur,

n must also be a node in id(p)(D′
ur).

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 97

Similarly, according to the definition of id(), a node n ∈ id(p)(D′
ur) must

satisfy the following conditions:

1. n is a node in D′
ur.

2. The id of node n appears in the concatenation of the string values of the

nodes in node set N in D′
ur.

Since the secure string value of a node in D is equal to its string value in D′
ur,

n must also be a node in sec-id(p′)(D).

Thus, we have sec-id(p′)(D) = id(p)(D′
ur)

number() Function

Suppose qu is number(p), where p is a k-level expression. According to the

query modification algorithm, the rewritten expression q′u is sec-number(p′),

where p′ is the rewritten expression for p. We prove that the theorem holds

for qu in two steps.

First step: suppose p(D′
ur) yields an object o which is in one of the following

three types: a number, a boolean, or a string. According to the definition of

sec-number(), sec-number(p′)(D) converts the object o to a number by call-

ing the standard number() function. As the number value of o is independent

of the database, it is easy to see that

sec-number(p′)(D) = number(p)(D′
ur)

Second step: suppose p(D′
ur) yields a node set N . According to the definition

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 98

of function sec-number(), the sec-number(p′)(D) converts the secure string

value of N to a number as if by calling the standard number() function. Since

the secure string value of a node set in D is equal to the string value of a

node set in D′
ur, we have

sec-number(p′)(D) = number(p)(D′
ur)

A number() function may be called without arguments, in which case qu is

an atomic expression like number(), and the rewritten expression q′u would

be sec-number(). According to the definition of function number(), if the

argument is omitted, it defaults to a node set that contains only the context

node. That is, the expression number() is actually equivalent to the expres-

sion number(N), where N is a node set that contains only the context node.

In the previous proof, we have shown that the theorem holds for the expres-

sion number(N). Therefore, it is obvious that the theorem also holds for the

expression number().

sum() Function

Suppose qu is sum(p), where p is a k-level expression that returns a node set.

According to the query modification algorithm, the rewritten expression q′u

must be sec-sum(p′), where p′ is the rewritten expression for p.

Suppose p(D′
ur) yields a node set N . According to the definition of function

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 99

sec-sum(), we have

sec-sum(p′)(D) =
∑
n∈N

sec-number(n)(D)

Since we have proven that

sec-number(n)(D) = number(n)(D′
ur)

it is easy to see that the following equations hold.

sec-sum(p′)(D) =
∑
n∈N

sec-number(n)(D)

=
∑
n∈N

number(n)(D′
ur)

= sum(p)(D′
ur)

string-length() Function

Suppose qu is string-length(p), where p is a k-level expression that returns

a string. According to the query modification algorithm, the rewritten expres-

sion q′u must be sec-string-length(p′), where p′ is the rewritten expression

for p.

Suppose qu(D
′
ur) yields a string s. According to the hypothesis, we have

qu(D
′
ur) = q′u(D) = s. According to the definition of sec-string-length(),

the sec-string-length(p)(D) will return the number of characters in string

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 100

s. It is easy to see that

string-length(p)(D′
ur) = sec-string-length(p′)(D)

A string-length() function may be called without arguments, in which

case qu is an atomic expression like string-length(), and the rewritten

expression q′u would be sec-string-length(). According to the definition

of function string-length(), if the argument is omitted, it defaults to the

string value of the context node. That is, assuming n is the context node and

s is the string value of n in D′
ur, the expression string-length()(D′

ur) will

return the number of characters in s. Similarly, according to the definition of

function sec-string-length(), if the argument is omitted, it defaults to the

secure string value the context node. In the previous proof, we have shown

that the string value of the context node in D′
ur is equal to the secure string

value of the context node in D, i.e., string(n)(D′
ur) = sec-string(n)(D).

Therefore, it is easy to see that the theorem also holds for the expression

string-length().

normalize-space() Function

Suppose qu is normalize-space(p), where p is a k-level expression that re-

turns a string. According to the query modification algorithm, the rewritten

expression q′u must be sec-string-length(p′), where p′ is the rewritten ex-

pression for p.

Suppose p(D′
ur) yields a string s. According to the hypothesis, we have

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 101

p(D′
ur) = p′(D) = s. According to the definition of sec-normalize-space(),

the sec-normalize-space(p)(D) will return the normalized string of s as if

by a call to the standard normalize-space() function. It is easy to see that

the following equation holds.

normalize-space(p)(D′
ur) = sec-normalize-space(p′)(D)

A normalize-space() function may be called without arguments, in which

case qu is an atomic expression like normalize-space(), and the rewritten

expression q′u would be sec-normalize-space(). According to the definition

of function normalize-space(), if the argument is omitted, it defaults to the

string value of the context node. That is, assuming n is the context node and

s is the string value of n in D′
ur, the expression normalize-space()(D′

ur) will

return the normalized string value of s. Similarly, according to the definition

of function sec-normalize-space(), if the argument is omitted, it defaults to

the secure string value the context node. In the previous proof, we have shown

that the string value of the context node in D′
ur is equal to the secure string

value of the context node in D, i.e., string(n)(D′
ur) = sec-string(n)(D).

Therefore, it is easy to see that the theorem also holds for the expression

normalize-space().

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 102

B.5 Proof for Comparison Operators

XPath 1.0 defines 6 comparison operators which include =, !=, <, >, <=, and >=.

Since the proof for comparison operators are quite similar, we show one example

proof for the = operator.

Suppose qu is an expression like p1 = p2, where p1 and p2 are two path expres-

sions whose levels are less than or equal to k. According to the query modification

algorithm, the rewritten expression q′u is sec-eq(p′1, p′2), where p′1 and p′2 are

rewritten expressions of p1 and p2 respectively.

Assume p1(D
′
ur) yields an object o1 and p2(D

′
ur) yields an object o2. We prove

that the theorem holds for the expression qu in three steps.

First step: suppose neither o1 nor o2 is a node set. If one of o1 and o2 is a

boolean, according to the definition of the operator =, the result of (p1 = p2)(D
′
ur)

is equal to the result of boolean(o1)(D
′
ur) = boolean(o2)(D

′
ur). According to the

definition of sec-eq(), the result of sec-eq(o1, o2)(D) is equal to the result of

boolean(o1)(D) = boolean(o2)(D). Since

boolean(o1)(D
′
ur) = boolean(o1)(D)

boolean(o2)(D
′
ur) = boolean(o2)(D)

it is easy to see that

(p1 = p2)(D
′
ur) = sec-eq(p′1, p

′
2)(D)

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 103

Similarly, if one of o1 and o2 is a number or a string, we can also prove that

(p1 = p2)(D
′
ur) = sec-eq(p′1, p

′
2)(D)

Second step: suppose that both o1 and o2 are node sets. If the result of (p1 =

p2)(D
′
ur) is true, according to the definition of the operator =, there must exist a

node n1 ∈ o1 and a node n2 ∈ o2 such that the string value of n1 in D′
ur is equal

to the string value of n2 in D′
ur. Since we have shown that the string value of a

node in D′
ur is equal to its secure string values in D, it is easy to see that the result

of sec-eq(p′1, p
′
2)(D) must be true. Similarly, if the result of sec-eq(p′1, p

′
2)(D) is

true, according to the definition of sec-eq(), there must exist a node n1 ∈ o1 and

a node n2 ∈ o2 such that the secure string value of n1 in D is equal to the secure

string value of n2 in D. Again, since the secure string value of a node in D is equal

to its string values in D′
ur, it is easy to see that the result of (p1 = p2)(D

′
ur) must

be true. Thus, we have (p1 = p2)(D
′
ur) = sec-eq(p′1, p

′
2)(D).

Third step: suppose that one of o1 and o2 is a node set. Without loss of

generality, we assume that o1 is a node set.

Suppose o2 is a number. If the result of (p1 = p2)(D
′
ur) is true, according

to the definition of the operator =, there must exist a node n1 ∈ o1 such that

the result of number(string(n1))(D
′
ur) = o2 is true. Since string(n1)(D

′
ur) =

sec-string(n1)(D), we know that number(sec-string(n1))(D) = o2 must be true.

Consequently, the result of sec-eq(p′1, p
′
2)(D) must be true. Similarly, if the result

of sec-eq(p′1, p
′
2)(D) is true, according to the definition of sec-eq, there must exist

a node n1 ∈ o1 such that the result of number(sec-string(n1))(D) = o2 is true.

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 104

Since sec-string(n1)(D) = string(n1)(D
′
ur), we know that number(string(n1))(D

′
ur) =

o2 must be true. Consequently, the result of (p1 = p2)(D
′
ur) must be true. Thus,

we have (p1 = p2)(D
′
ur) = sec-eq(p′1, p

′
2)(D).

Similarly, if o2 is a string or a boolean, we can also prove that (p1 = p2)(D
′
ur) =

sec-eq(p′1, p
′
2)(D).

B.6 Proof for Numeric Operators

XPath 1.0 defines 5 numeric operators which include +, -, *, div, and mod. Since

the proof for these numeric operators are quite similar, we show one example proof

for the + operator.

Suppose qu is an expression like p1+p2, where p1 and p2 are two path expressions

whose levels are less than or equal to k. According to the query modification

algorithm, the rewritten expression q′u is sec-add(p′1, p′2), where p′1 and p′2 are

rewritten expressions of p1 and p2 respectively.

According to the definition of numeric operators, (p1 + p2)(D
′
ur) will convert its

operands to numbers as if by a call to the standard number() function and return

the addition of the two numbers. According to the previous proof, we have

number(p1)(D
′
ur) = sec-number(p′1)(D)

number(p2)(D
′
ur) = sec-number(p′2)(D)

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 105

Therefore, we have

(p1 + p2)(D
′
ur) = number(p1)(D

′
ur) + number(p2)(D

′
ur)

= sec-number(p′1)(D) + sec-number(p′2)(D)

= sec-add(p′1, p
′
2)(D)

B.7 Proof for Navigation Operators

Suppose qu is an expression like p1/p2, where p1 and p2 are two path expressions

whose levels are less than or equal to k. According to the query modification algo-

rithm, the rewritten expression q′u is p′1/p
′
2, where p′1 and p′2 are rewritten expressions

of p1 and p2 respectively.

According to the definition, the result of (p1/p2)(D
′
ur) is computed in two steps.

First, p1(D
′
ur) is evaluated to generate a node set, say N1. Then, for each node in

N1, the expression p2(D
′
ur) is evaluated with that node as the context node. The

union of the sets of the nodes identified by p2(D
′
ur) is the final result set. According

to the hypothesis, we have

p1(D
′
ur) = p′1(D)

p2(D
′
ur) = p′2(D)

Thus, we have

(p1/p2)(D
′
ur) = (p′1/p

′
2)(D)

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 106

B.8 Proof for Predicates

Suppose qu is an expression like p1[p2], where p1 and p2 are two path expressions

whose levels are less than or equal to k According to the query modification algo-

rithm, the rewritten expression q′u is p′1[p
′
2], where p′1 and p′2 are rewritten expressions

of p1 and p2 respectively.

According to the definition, the result of p1[p2](D
′
ur) is computed in two steps.

First, p1(D
′
ur) is evaluated to generate a node set, say N1. Then, for each node

in N1, the expression p2(D
′
ur) is evaluated with that node as the context node;

if the p2(D
′
ur) evaluates to true, then the node is included in the final result set.

According to the hypothesis, we have

p1(D
′
ur) = p′1(D)

p2(D
′
ur) = p′2(D)

Thus, we have

p1[p2](D
′
ur) = p′1[p

′
2](D)

B.9 Proof for Logical Operations

XPath 1.0 defines 2 logical operators: the operator or and the operator and. Since

the proof for these 2 logical operators are quite similar, we show one example proof

for the or operator.

Suppose qu is an expression like p1 or p2, where p1 and p2 are two path expres-

sions whose levels are less than or equal to k. According to the query modification

APPENDIX B. CORRECTNESS PROOF OF THE XPATH QUERY
MODIFICATION ALGORITHM 107

algorithm, the rewritten expression q′u is p′1 or p′2, where p′1 and p′2 are rewritten

expressions of p1 and p2 respectively.

According to the definition of the operator ||, the expression (p1 or p2)(D
′
ur)

is true if at least one of boolean(p1)(D
′
ur) and boolean(p2)(D

′
ur) is true. Simi-

larly, the expression (p′1 or p′2)(D) is true if at least one of boolean(p′1)(D) and

boolean(p′2)(D) is true.

In the previous proofs, we have shown that

boolean(p1)(D
′
ur) = boolean(p′1)(D)

boolean(p2)(D
′
ur) = boolean(p′2)(D)

Obviously, we have

(p1 or p2)(D
′
ur) = (p′1 or p′2)(D)

�

Bibliography

[1] D. Ellion Bell and Leonard J. LaPadula. secure computer systems: mathemat-

ical foundations. http://citeseer.nj.nec.com/548063.html, March 1973.

[2] E. Bertino, S. Castano, and E. Ferrari. Securing XML documents with Author-

X. IEEE Internet Computing, 5(3):21–31, 2001.

[3] Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. Controlled

access and dissemination of XML documents. In Proceedings of the second

international workshop on Web information and data management, pages 22–

27. ACM Press, 1999. http://doi.acm.org/10.1145/319759.319770.

[4] Elisa Bertino, Sushil Jojodia, and Pierangela Samarati. Supporting mul-

tiple access control policies in database systems. In IEEE Symposium

on Security and Privacy, pages 94–109, citeseer.nj.nec.com/article/

bertino96supporting.html, May 1996.

[5] Meadows C. and Landwehr C.E. Designing a trusted application in an object-

oriented data model. In Research Directions in Database Security, Berlin, 1992.

Springer-Verlag.

108

BIBLIOGRAPHY 109

[6] S. Castano, M. G. Fugini, and P. Samarati. Database Security. ACM

Press/Addison-Wesley, New York, NY., 1995.

[7] SungRan Cho, Laks V.S. Lakshmanan, Sihem Amer-Yahia, and Divesh Srivas-

tava. Optimizing the secure evaluation of twig queries. In Proceedings of the

28th VLDB Conference, Hong Kong, China, 2002.

[8] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati. XML access

control systems: a component-based approach. In In 14th IFIP 11.3 Working

Conference in Database Security, 2000.

[9] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi,

and Pierangela Samarati. Securing XML documents. In Advances in

Database Technology - EDBT 2000, 7th International Conference on Ex-

tending Database Technology, Konstanz, Germany, March 27-31, 2000, Pro-

ceedings, volume 1777, pages 121–135, http://link.springer.de/link/

service/series/0558/bibs/1777/17770121.htm.

[10] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and

Pierangela Samarati. Design and implementation of an access control processor

for XML documents. WWW9 / Computer Networks, 33(1-6):59–75, 2000.

[11] L.C. Dion. A complete protection model. In Proc. IEEE Symp. on Security

and Privacy, Oakland, CA, April 1981.

[12] Bertino E. A view mechanism for object-oriented databases. In Proc. Int. Conf.

on Extending Database Technology (EDBT), Vienna, 1992. Springer-Verlag.

BIBLIOGRAPHY 110

[13] E.Bertino, M.Braun, S.Castano, E.Ferrari, and M.Mesiti. Author-X: a Java-

based system for XML data protection. In Proc. of the 14th Annual IFIP WG

11.3 Working Conference on Database Security, Netherlands, August 2000.

[14] D.E. Denning et al. The sea view security model. In Proc. IEEE Symp. on

Security and Privacy, Oakland, CA, April 1988.

[15] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. A

proposed standard for role based access control. ACM Transactions on Infor-

mation and System Security, 4, August 2001.

[16] Fort George and G. Meade. A guide to understanding discretionary

access control in trusted Systems. http://www.dsinet.org/textfiles/

rainbow-books/neon_orange.html, September 1987.

[17] G.S. Graham and P.J. Denning. Protection - principles and practice. In Proc.

Spring Joint. Comp. Conf, page 40. AFIPS Press, 1972.

[18] Satoshi Hada and Michiharu Kudo. XML access control language: provi-

sional authorization for XML documents. IBM, http://www.trl.ibm.com/

projects/xml/xacl/xacl-spec.html, October 2000.

[19] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in

operating systems. Communications of the ACM, 19(8):461–471, 1976.

[20] H.V. Jagadish, Divesh Srivastava, Laks V. S. Lakshmanan, and Ting Yu. Com-

pressed accessibility map: Efficient access control for XML. In Proceedings of

BIBLIOGRAPHY 111

the 28th VLDB Conference, citeseer.nj.nec.com/yu02compressed.html,

2002.

[21] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A logical language for ex-

pressing authorizations. In Proc. IEEE Symposium on Security and Privacy,

1997.

[22] S. Jajodia, P. Samarati, V.S. Subrahmanian, and Elisa Bertino. A unified

framework for enforcing multiple access control policies. In Proc. ACM SIG-

MOD Int’l. Conf. on Management of Data, pages 474–485, May 1997.

[23] Michiharu Kudo and Satoshi Hada. XML document security based on provi-

sional authorization. In Proceedings of the 7th ACM conference on Computer

and communications security, pages 87–96, http://doi.acm.org/10.1145/

352600.352613, 2000. ACM Press.

[24] B. W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium

on Information Science and Systems, reprinted in ACM Operating Systems

Review, volume 8, 1974.

[25] John Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly, second

edition, 1992.

[26] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for

next-generation database systems. ACM Transactions on Database Systems,

16(1):88–131, March 1991.

BIBLIOGRAPHY 112

[27] R. Sandhu, D.F. Ferraiolo, and D.R. Kuhn. The NIST model for role based

access control: Towards a unified standard. In Proceedings, 5th ACM Workshop

on Role Based Access Control, http://csrc.nist.gov/rbac/, July 2000.

[28] Ravi S. Sandhu and Pierrangela Samarati. Access control: principles and

practice. IEEE Communications Magazine, 32(9):40–48, 1994.

[29] World Wide Web Consortium, http://www.w3.org/TR/xpath. XML Path

Language (XPath), verson 1.0 edition, November 1999.

[30] World Wide Web Consortium, http://www.w3.org/TR/xslt. XSL Transfor-

mations (XSLT) Version 1.0, W3C recommendation edition, November 1999.

[31] World Wide Web Consortium, http://www.w3.org/TR/REC-xml. Extensible

Markup Language (XML) 1.0, second edition, October 2000.

[32] World Wide Web Consortium, http://www.w3.org/TR/xquery. XQuery 1.0:

An XML Query Language, W3C working draft edition, November 2002.

[33] George Kingsley Zipf. human behavior and the principle of least effort. Hafner

Publishing Company, Inc., 866 Third Avenue, New York. N.Y. 10022, 1972.

