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Abstract

Routing messages between pairs of nodes is one of the most fundamental tasks in any

distributed computing system. An Interval Routing Scheme (IRS) is a well-known,

space-eÆcient routing strategy for routing messages in a network. In this scheme,

each node of the network is assigned an integer label and each link at each node is

labeled with an interval. The interval assigned to a link l at a node v indicates the

set of destination addresses of the messages which should be forwarded through l at v.

When studying interval routing schemes, there are two main problems to be considered:

a) Which classes of networks do support a speci�c routing scheme? b) Assuming that

a given network supports IRS, how good are the paths traversed by messages? The

�rst problem is known as the characterization problem and has been studied for several

types of IRS. In this thesis, we study the characterization problem for various schemes

in which the labels assigned to the vertices are d-ary integer tuples (d-dimensional IRS)

and the label assigned to each link of the network is a list of d 1-dimensional intervals.

This is known as Multi-dimensional IRS (MIRS) and is an extension of the the original

IRS. We completely characterize the class of network which support MIRS for linear

(which has no cyclic intervals) and strict (which has no intervals assigned to a link at

a node v containing the label of v) MIRS. In real networks usually the costs of links

may vary over time (dynamic cost links). We also give a complete characterization for

the class of networks which support a certain type of MIRS which routes all messages

on shortest paths in a network with dynamic cost links. The main criterion used to

measure the quality of routing (the second problem) is the length of routing paths.

In this thesis we also investigate this problem for MIRS and prove two lower bounds

on the length of the longest routing path. These are the only known general results

for MIRS. Finally, we study the relationship between various types of MIRS and the

problem of drawing a hypergraph. Using some of our results we prove a tight bound

on the number of dimensions of the space needed to draw a hypergraph.

Key words: Computer networks, interval routing schemes, graph theory, multi-

dimensional, characterization, shortest path, dynamic, bounds.
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Chapter 1

Introduction

One of the most fundamental tasks in any network of parallel or distributed systems

is routing messages between pairs of nodes [Tan95, Tan96]. When sending a message

from a source to a destination, a decision has to be made as to which neighbor (i.e.

through which incident link) the message must be sent. The routing problem is the

problem of choosing such a neighbor.

A routing scheme is a strategy that determines which path a message, originating from a

known source and going to a known destination, should take in the network. Routing

schemes can be classi�ed into explicit and implicit ones [SK85]. In explicit routing

schemes each node of the network has an arbitrary label (name) and some detailed

routing information for all destinations is maintained at each node of the network.

The classic method for routing messages in a network is to store a routing table at each

node of the network; this is an explicit routing scheme. A routing table has one entry

for each destination node that indicates which outgoing link should be used to forward

a message going to that destination (Figure 1.1).

In implicit routing schemes, no detailed information is maintained; instead, labels are

assigned according to a scheme so that the information implicit in the labeling can

be used to choose the neighbor to which a message should be sent. It is usually

easy to develop implicit routing schemes when the network has a regular topology. For

example, if the underlying graph of the network is ring, we can easily label the nodes of

the network clockwise with consecutive integers. The node labeled i will send a message

with destination address j clockwise if and only if [j�i](mod n) < [i�j](mod n), where

1
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1

4
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1
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3

Forward toDestination
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3
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3

Routing Table for Node 2

4

Figure 1.1: A routing table.

n is the number of nodes in the network. Clearly, this routing scheme always routes

messages on the shortest path around the ring.

An explicit routing scheme requires �(n) space at each node of an n-node network,

which is not eÆcient (or maybe even feasible) for large networks of computers. In

other words, using explicit routing schemes we cannot scale the communication network

because the amount of space available at each node of the network is limited.

Techniques to decrease the amount of space needed at each node of the network have

been studied intensively [FJ86, ABNLP90, FGS93]. The general idea is to group the

destination addresses that correspond to the same outgoing link (at a node), and to

encode the group so that it is easy to verify if a given destination address is in the

group or not. In these routing schemes routing information is succinctly stored at each

node of the network in a preprocessing phase. Later, when a node needs to route a

message, it uses this preprocessed information to determine the link through which

the message should be forwarded. These routing schemes are called compact routing

schemes in general and usually are dynamically adjustable with the expansion of the

network.

In an interval labeling scheme, which was originally introduced by Santoro and Khatib

[SK85], each node of the network is assigned an integer label and integer intervals are

used to group destination addresses. Each link of the network at each node is assigned

an interval which encodes the information to route the messages in the network [vLT87].

Routing messages is completed in a distributed way. At each intermediate node v, if

the label of the node equals the destination address, dest, the routing process ends.
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Otherwise, the message is forwarded through a link labeled by an interval I, such that

dest 2 I.

An interval labeling scheme is said to be valid if for any pair of nodes s and t, a message

originating from s eventually reaches t. A valid interval labeling scheme is also called

an Interval Routing Scheme (IRS). Clearly, this method requires O(l) space at each

node of the network (where l is the number of links at the node), which is an eÆcient

allocation of memory compared to explicit routing schemes. Throughout this thesis,

we consider only valid interval labeling schemes.

It has been shown that an IRS can route messages on shortest paths on particular

network topologies, such as trees, rings, hyper-cubes, and others [SK85, vLT87, FJ89].

Unfortunately, this is not true in general networks; there are classes of networks which

do not have any IRS which routes messages on shortest paths. Many schemes have been

introduced in order to overcome this problem and to expand the classes of networks

which support IRS with the desired properties [BvLT91, FGNT98]. In designing such

schemes, the aim is to keep the memory eÆciency property and to gain other properties

(e.g. routing on shortest paths, bounds on the length of the routing paths, and so on).

A very interesting IRS is a Multi-dimensional Interval Routing Scheme (MIRS) in

which the labels assigned to the nodes are elements from INd (in the d-dimensional

case) and each link is labeled with a d-tuple ([a1; b1]; [a2; b2]; :::; [ad; bd]) of intervals,

a
i
; b

i
2 IN, for 1 6 i 6 d [FGNT98]. Messages are routed in a manner similar to that in

IRS.

The only known results about MIRS are for speci�c classes of networks like hypercubes,

grids, tori or for the one-dimensional case. In this thesis, we investigate di�erent aspects

of MIRS. More precisely, we characterize the class of networks which support various

types of MIRS. We also prove some lower and upper bounds on the length of routing

paths using any MIRS. These bounds can be used as a criteria for comparing this

routing scheme with other known routing schemes.

1.1 Overview

In this thesis we investigate di�erent characteristics of MIRS. Chapter 2 is devoted to

providing the concepts and de�nitions that the reader will require. In this chapter,
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we introduce some graph theoretic de�nitions and concepts and also give formal def-

initions of routing schemes, IRS, and some variants of IRS. We conclude this chapter

by reviewing some known results about IRS and briey sketching the results in the

rest of this thesis. In Chapter 3 we focus on the problem of characterizing the class

of networks which support MIRS. We give complete characterization of the networks

which support three variants of MIRS and show that in all these cases, increasing the

number of dimensions causes the class of networks supporting that speci�c variant of

MIRS to be strictly expanded.

Assuming that a given network supports a speci�c variant of MIRS, the most important

question is the quality of routing. We may have di�erent criteria to evaluate a routing

scheme such as the length of the routing paths, the time needed to route messages in

the intermediate nodes, and so on. In Chapter 4 we consider the quality of routing

problem and give some lower and upper bounds on the length of routing paths in some

variants of MIRS.

There is a strong relationship between the problem of �nding a MIRS for a given

network and the problem of drawing hypergraphs in multi-dimensional spaces. This

relationship is studied in Chapter 5. We use some of the results from the previous

sections to prove a tight bound on the number of dimensions of the space needed to

draw a hypergraph. Finally, we conclude this thesis in Chapter 6 which also contains

a list of open problems and some directions for future research.



Chapter 2

Preliminaries

2.1 Graph theoretic preliminaries

In this section we introduce graph theoretic de�nitions and mention several known

results which will be used later. Throughout this thesis, a network is modeled by a

graph G = (V;E). The set V of vertices of the graph represents nodes in the network

and the set E of edges represents the links between nodes in the network. For basic

graph theoretic de�nitions the reader is referred to standard texts [BM76, Wes96].

In any communication network each link connects two distinct nodes of the network

and there is usually at most one link connecting a pair of nodes. In graph theory, if

both endpoints of an edge e are the same the edge is said to be a self-loop. If there is

at most one edge between each pair of vertices in the graph, the graph is simple. The

underlying graph of any network in this thesis is assumed to be simple and without

any self-loops. If the edges of a graph are unordered pairs of vertices the graph is

undirected. If the underlying graph of a network is undirected the nodes incident to a

link of the network can exchange messages in both directions. We usually deal with

networks in which any node of the network can send (receive) a message to (from) any

other node in the network. If there is a path connecting each pair of vertices in the

graph G, G is connected and so is any network for which G is an underlying graph.

A vertex v of the graph G is called a cut-vertex if removing v disconnects G. A cut-

vertex in the graph G is sometimes called an articulation point of G. A graph having

5
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no cut-vertex is called a block. A block of a graph is a maximal subgraph that is a

block. Any graph is the union of its blocks. It is easy to verify that any two blocks of

the graph can share at most one vertex which is an articulation point. A vertex which

is not an articulation point is a non-articulation point. In any communication network,

articulation points are of higher importance than other nodes of the network. They

connect di�erent parts of the network and route messages between those parts.

Example 1. The graph depicted in Figure 2.1 (a) has a self-loop, is not connected and

since there are two edges connecting the same pair of vertices, is not simple. Graph G,

depicted in Figure 2.1 (b), is a simple, connected graph with no self-loops, the vertices

v3 and v4 are cut-vertices. The subgraph induced on vertices v1; v2 and v3 is a block

of G. Figure 2.1 (c) illustrates the blocks of G. In this �gure the vertices v1; v2; v5; v6,

and v7 are non-articulation points of G.

Similarly, we call an edge e of a graph G a cut-edge if removing e disconnects G. In a

communication network, a cut-edge corresponds to a link which connects two disjoint

parts of the network. A network with a cut-edge has a very low tolerance for any fault

at that cut-edge; therefore, networks are usually designed so that for any two disjoint

parts of the network there are at least two links connecting those parts. In graph

theoretic language, the underlying graph of such a network is called edge-biconnected;

a graph that has no cut-edges. If a maximal induced subgraph G0 of a graph G is

edge-biconnected, G0 is an edge-biconnected component of G. An edge connecting two

edge-biconnected components of a graph is called a bridge.

Example 2. In the graph G depicted in Figure 2.2 the subgraph G1 induced on ver-

tices v1; v2; :::; v6 is an edge-biconnected component of the graph. The subgraph G1 is

(b) (c)(a)

v3 v4 v4

v5

v7

v6

v1

v2

v3

v1

v2

v3 v4

v5

v7

v6

Figure 2.1: a) A graph with a self-loop which is neither connected or simple b) A simple

connected graph G c) Blocks of G.
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v3

v4

v5

v7

v8

v9

v1

v2

v6

G2G1

Figure 2.2: Edge-biconnected components of a graph.

composed of two blocks (one consisting of the vertices v1; v2, and v3 and the other con-

sisting of the vertices v3; v4; v5 and v6). The subgraph G2 induced on vertices v7; v8 and

v9 is also an edge-biconnected component. The edge (v6; v7) which connects the two

edge-biconnected components G1 and G2 is a bridge.

Observation 1. If G1 and G2 are two edge-biconnected components of a graph G, then

any path P connecting G1 and G2 goes through a unique bridge connected to G1.

In real communication networks, we usually have two type of nodes. One group of

nodes are those which operate as routers in the network. Each of these nodes is

usually connected to more than one other router in the network. Another type of node

is connected to just one node in the network and has to route any message through

that unique node. These are usually user terminals. Each router in the network may

be connected to zero or more such terminals. As we will see later, if we do not consider

terminals as parts of the network we may have di�erent properties than the case in

which terminals are considered as parts of the network.

(a) (b)

Figure 2.3: a) A graph G b) G-star.

De�nition 1. Given a graph G, a G-star graph is the graph G with zero or more
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leaves (nodes of degree 1 or terminals in a communication network) attached to each

of the nodes of G (see Figure 2.3).

De�nition 2. [Wes96] The product of graphs G = (V
G
; E

G
) and H = (V

H
; E

H
),

written G � H, is the graph with vertex set V
G
� V

H
speci�ed by putting the vertex

(u; v) adjacent to the vertex (u0; v0) if and only if (1) u = u0 and the edge (v; v0) 2 E
H
,

or (2) v = v0 and the edge (u; u0) 2 E
G
.

Figure 2.4 depicts an example of a product graph.

Figure 2.4: An example of a product graph.

2.2 Routing schemes

As mentioned earlier, throughout this thesis we assume that the underlying graph of any

network is simple, connected, and does not have any self-loops. For any edge (u; v) 2 E
we will use both (u; v) and (v; u) in order to assign two unidirectional labels to the

edge (as we will see later in this chapter), but the graph is assumed to be undirected.

It is also reasonable to assume that the networks and their underlying graph are �nite.

From now on, we will use a network and its underlying graph interchangeably, wherever

there is no ambiguity.

In a network with underlying graph G = (V;E), for any vertex x 2 V , we denote by

N(x) the set of vertices which are adjacent to x (the set of neighbors of x), that is

N(x) = fyjy 2 V and (x; y) 2 Eg. The number of vertices in this set is denoted by

deg(x). At each node of the network we can de�ne a routing function that determines

how to route messages at that node. In other words, if there is a message heading

towards a prespeci�ed destination address, the function speci�es through which of the

neighbors the message should be forwarded. A routing function for the whole network

is the union of routing functions at each node of the network. More precisely, a routing

function is de�ned as follows.
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De�nition 3. A routing function R of a graph G = (V;E) is a set of functions

R = fR
x
jx 2 V;R

x
: V ! (fxg [N(x))g

such that for any pair of vertices x; y 2 V there exists a sequence of vertices x =

x0; x1; :::; xk = y such that 8i; 0 6 i < k;R
xi
(y) = x

i+1 and R
y
(y) = y.

De�nition 4. An optimum routing function is a routing function which routes mes-

sages on shortest paths.

A routing scheme in general is a strategy which determines how to route messages

using a speci�ed routing function in a network. It determines the information needed

to be stored at each node of the network and the preprocessing needed to generate

that information. The routing scheme also indicates what happens at each node when

it needs to route a message towards a speci�c destination.

The routing scheme and the routing function are two separate concepts. We may have

two di�erent routing schemes which use the same routing function on a network and

therefore the paths a message traverses using each of these routing schemes are the

same. On the other hand, for a given routing scheme, we may be able to implement

di�erent routing functions. For example, using a routing table at each node of a network

is a routing scheme. In this routing scheme the information needed to route messages,

or the routing function, is stored at each node of the network in the form of a table.

Therefore, we can have many di�erent routing functions by assigning di�erent routing

tables to the nodes of the network, although the routing scheme is the same.

2.2.1 Properties of routing schemes

When routing messages in a network, there are several properties which are desirable

e.g. correctness, simplicity, low delay at intermediate nodes, short routing paths, high

throughput and low memory requirements. In this thesis we consider routing schemes in

which any message eventually reaches its destination. In other words, we are interested

only in the routing schemes which route messages correctly.
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In any routing scheme, we assume that the delay at each intermediate node is pro-

portional to the running time of the algorithm which determines through which link a

message should be forwarded. When using a routing table, for example, the running

time of this algorithm is O(log n) using a simple binary search. Obviously, we are

interested in algorithms which are fast.

The routing scheme may also have di�erent properties based on the characteristics of

the underlying network. For example, the cost of all links in the network can be the

same (uniform cost links) or may have di�erent costs (weighted links). The cost of

the links may be �xed, or may vary over time (dynamic cost links). A routing scheme

which works on a network with �xed cost links is called static and a routing scheme

used on a network with dynamic cost links is called a dynamic routing scheme.

Some of the characteristics of a routing scheme is based on the properties of the routing

function which is implemented in that routing scheme. For example, a routing scheme

which implements an optimum routing function is called an optimum routing scheme.

In the next section we introduce some routing schemes which have an eÆcient memory

usage and study their properties.

2.3 Compact routing schemes

Each routing scheme consists of some preprocessed information which is stored in the

nodes of the network and an algorithm which determines how to use this information

to route the messages in the network. There is a trade-o� between the complexity of

the algorithm and the amount of space needed to store the preprocessed information.

At one extreme, we can have a routing scheme which implements a very simple algo-

rithm but requires a lot of space. For example, we can have a routing table at each

node of the network and an algorithm which �nds an entry of the routing table which

corresponds to a speci�ed destination address and forwards the message to the node

mentioned in that entry of the routing table. This scheme uses a simple algorithm and,

assuming that we are given the routing function, it does not require a lot of prepro-

cessing. This method requires �(n) space at each node of the network, which is not

feasible for large networks of computers.
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At the other extreme, for some graphs like grids and hypercubes we can have an

algorithmwhich computes the routing path by using the address of the current node and

the destination address. Ideally, for general networks, we would like to have algorithms

which are simple and which use a small amount of space to store the preprocessed

information [TvL95, FGS93, NO99, Fre96]. Such routing schemes are called compact

routing schemes and have been studied extensively [FJ86, FJ88, FJ89, Cow99, KK96].

One example of such a routing scheme is a pre�x routing scheme [TvL95]. In this

scheme, we label each node of the network with a string, over some alphabet �, which

serves as a name. We also label each link at a node with a unique string, possibly by

�, the empty string. When a message arrives at a node u it is forwarded through the

link e such that the label of e is the maximum length pre�x of the destination address.

For example, if the destination address is abs and the link labels available are �; a; ab

and cb, then the message will be forwarded through the link with label ab.

00

10 11

01

1

0 0

1

0

1

1

0

e1

e2

e4

e3

Figure 2.5: An example of pre�x routing.

Example 3. Figure 2.5 illustrates an example of pre�x routing. In this example � =

f0; 1g. The label of each node and each outgoing link at each node is shown in the

�gure. If there is a message at the node labeled 00 with destination address 11, it is

forwarded through e1, which is labeled by 1, since it is the link leaving 00 with the

maximum length pre�x of 11. From node 10 the message is then forwarded through the

link e2.

Clearly, each link must be properly labeled so that for any pair of nodes s and t the

message originating from s eventually reaches t. Bakker et al. have shown the feasibility

of such a scheme in a dynamically growing network; a network which results from a

single node by adding new nodes and inserting new links. In this result, the adaption

cost is the time needed to change the labels of nodes and links after each insertion.
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Theorem 1. [BvLT93] There is a pre�x routing scheme for any dynamically growing

network. Insertions of the links and nodes require an adaption cost of O(1).

It has been proved that trees, rings of size less than four, complete graphs, complete

bipartite graphs, hypercubes and d-dimensional grids have optimum pre�x routing

schemes [BvLT93]. Unfortunately, the complete class of networks which have optimum

pre�x routing schemes has not yet been characterized.

Another example of a compact routing scheme is the boolean routing scheme which

was originally introduced by Flammini et al. [FGS93]. In this method, destinations

in the network are grouped together to share the same link at a node if they satisfy a

certain boolean predicate on their name labels. Each node of the network is assigned

a string of bits, and boolean predicates are assigned to the links based on the labels

of the nodes. Elementary boolean functions such as :;_ and ^ are used to form the

predicates.

00

10 11

01
1* 0*

1* 0*

*1

*0

*1

*0

Figure 2.6: An example of boolean routing.

Example 4. Figure 2.6 shows an example of a boolean routing scheme, where 0� is the
predicate bit1(v) = 0, �1 is the predicate bit2(v) = 1, and so on. Here, bit

i
(v) denotes

the ith bit of v counting from left to right. If a destination label satis�es more than one

predicate, any satis�ed predicate can be used to forward the message.

It has been shown that with no more than (2 log n)-bit strings as labels of the nodes,

one can design predicates such that there are optimum boolean routing schemes for

rings, trees, hypercubes, d-dimensional grids, complete graphs and complete bipartite

graphs [FGS93].
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In the following section we will continue the study of the trade-o� between the amount

of information needed at each node of the network and the complexity of the routing

algorithm. We will introduce another compact routing scheme and investigate its

properties.

2.4 Interval routing scheme

If the labels of the nodes in a network are integers, a natural method for encoding

the routing information at each node of the network is to use intervals as groups of

destination addresses. This method, which is known as Interval Routing Scheme (IRS),

is a well-known compact routing scheme and was originally introduced by Khatib and

Santoro [SK85]. It has been implemented in the C104 Router Chip which is used in

the INMOS T9000 Transputer design [INM91, WMT93].

De�nition 5. An interval I = [a; b] of f1; 2; :::; ng, where a; b 2 f1; 2; :::; ng, is the set
of integers i such that:

8<
:
a 6 i 6 b if a 6 b (linear interval); or

a 6 i 6 n or 1 6 i 6 b if a > b (cyclic interval)

De�nition 6. [SK85, FG98] We let G = (V;E) be a graph, such that jV j = n. An

interval routing function on G is a routing function R = fR
x
jx 2 V g on G de�ned by:

i) a one-to-one function L : V ! f1; 2; :::; ng which labels the vertices of G;

ii) a set of intervals I = fI
x;e
je = (x; y) 2 E and x; y 2 V g such that the following

properties are satis�ed:

� Union property:

([
e=(x;y)Ix;e) [ fL(x)g = f1; 2; :::; ng;

� Disjunction property:

8e = (x; y); e0 = (x; y0); y 6= y0) I
x;e
\ I

x;e
0 = ;;

� R
x
(y) = z , L(y) 2 I

x;e
, where e = (x; z).
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We denote an interval routing function with a pair (L;I) that satis�es the conditions
of De�nition 6. A routing scheme which uses an interval routing function is called an

Interval Routing Scheme or an IRS for short. In this routing scheme when a node v

has a message with destination address dest, if dest is not the same as the label of v

the message is forwarded through the link e whose label contains dest. If dest equals

the label of v, the routing process ends.

4

C 3

B

E1

2

A5

D

[3,5]

[1]
[2]

[4,1]

[3]

[]

[5,2]

[3,4]

[1,2]

[5] [3,4]

[2]

Figure 2.7: An example of interval routing.

Example 5. In the network depicted in Figure 2.7 if there is a message originating

from node B which is labeled by 2 and with destination address 4, since the label of the

destination is in the interval [3::4] the message will �rst be forwarded to node C. At

node C, since 4 belongs to the interval [4; 1] the message is forwarded to node D, which

is the destination address, and routing is completed.

An IRS requires �(deg(v) log n) space at a node v, where n is the number of nodes

in the network (2 � log n bits for each of the deg(v) intervals). This is more eÆcient

memory allocation than required by explicit routing methods e.g. using routing tables.

2.5 Variants of IRS

When studying characteristics of IRS, a natural question is: can we slightly change

IRS to improve various properties, e.g. the length of the routing paths? There are also
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cases in which due to a practical restriction we need to restrict the de�nition of IRS.

If we are able to �nd a scheme of type R on a speci�c network, the network is said to

support R, have R, or belong to the class of networks supporting R.

2.5.1 Linear, strict and optimum schemes

In designing very small and fast routing chips, testing whether an integer is in a linear

(not cyclic) interval is much easier than the same test for cyclic intervals. Therefore,

it might be interesting to consider an IRS in which the intervals assigned to the links

of the network are linear. This variation of IRS is called a Linear IRS or LIRS. The

IRS illustrated in Figure 2.7 is not an LIRS since some edges have cyclic intervals, e.g

the interval assigned to the link (C;D) is [4; 1], which is cyclic.

A Strict IRS or SIRS is an IRS in which the label assigned to a link l at a node v does

not contain the label of v. For example, the IRS illustrated in Figure 2.7 is strict.

Like any other routing scheme, an IRS is said to be an optimum IRS if it routes

messages on shortest paths.

2.5.2 Multi-label schemes

One way to make schemes more exible and the routing more eÆcient is to assign more

than one label to each link of the network. Instead of assigning just one interval to each

outgoing link we may assign k intervals to each link. This scheme is known as k-IRS.

Obviously, the scheme introduced in De�nition 6 is a 1-IRS. Since we can replace each

cyclic interval with at most two linear intervals, any network which supports a cyclic

IRS has a 2-LIRS. Bakker, Leeuwen and Tan have proved that the class of graphs

supporting LIRS with k (k > 1) intervals assigned to each link is a strict subset of the

class of graphs supporting LIRS with k + 1 intervals at each link [vLT87, BvLT91].

Clearly, the amount of information needed in a multi-label IRS is more than that of a

regular IRS. The following theorem states this fact more precisely.

Theorem 2. [Gav00] Every k-interval scheme on an n-node graph can be imple-

mented in each node x with log(n
K
) + log(K

d
) + (K � d) log d + O(log n) bits, which
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is in O(dk log(n=k)) bits, where K is the total number of intervals for the node x, and

d the number of links incident to x that have non-empty labels.

This theorem implies that every 1-interval scheme can be encoded with n + O(log n)

bits per node. It has been shown that for speci�c graphs we can reduce the number of

bits needed to route messages.

Theorem 3. [Gav00] Every n-node tree has a 1-SIRS which can be implemented with

O(
p
n) bits in each node.

2.5.3 Multi-dimensional schemes

A very interesting extension of an IRS is a Multi-dimensional Interval Routing Scheme

(MIRS) in which we assign multi-dimensional labels to the nodes and multi-dimensional

interval labels to the links of the network. This scheme was originally proposed by

Flammini et al. [FGNT98]. Before giving the formal de�nition of a MIRS let us de�ne

a multi-dimensional interval.

De�nition 7. A d-dimensional interval I = [a1::b1; a2::b2; :::; ad::bd] (ai; bi 2 1; 2; :::; n

for 1 6 i 6 d) is the set of all d-ary tuples, p = (p1; p2; :::; pd), such that a
i
6 p

i
6 b

i
,

for every i, 1 6 i 6 d.

De�nition 8. A d-dimensional interval routing scheme in an n-node network is an

IRS in which the labels assigned to the links are d-ary tuples of the form (p1; p2; :::; pd),

1 6 p
i
6 n, for 1 6 i 6 d. The labels assigned to links (at each node) are also d-

dimensional intervals. If k intervals are assigned to each link of the network (at each

node) we have a hk; di-MIRS.

By this de�nition, a 1-IRS is the same as a h1; 1i-MIRS. Any d-dimensional label asso-

ciated with a node of a network denotes a point in d-dimensional Cartesian space with

integer coordinates. We will use this point and the label interchangeably throughout

this thesis.



CHAPTER 2. PRELIMINARIES 17

If we omit the disjunction property from the de�nition of an IRS, we are able to

represent more than one (and maybe all) shortest paths between any pair of nodes

with an MIRS, which is called a multi-path MIRS. A multi-path MIRS is useful for

fault-tolerance and traÆc distribution in a network. Ru�zi�cka and �Stefankovi�c have

studied the trade-o� between the congestion and the space complexity of a multi-path

MIRS [R�S00].

It is easy to verify that the amount of space needed at each node of the network in a d-

dimensional MIRS is d times the amount of space needed in a 1-dimensional IRS. Since

usually d is much smaller than n, the number of nodes in the network, this amount

of space is still considered eÆcient compared to explicit routing schemes (e.g. routing

tables). In Chapter 3 we will show that by increasing d the class of networks which

support various multi-dimensional schemes is strictly expanded.

2.5.4 Dynamic versus static schemes

If the costs of the links are �xed over time we have an IRS with static cost links. In

real communication networks, the cost of the link may vary over time due to di�erent

reasons such as congestion in the network and overloaded links. Hence, it is natural

to assume that the costs of the links may vary over time but the labels of the nodes

are �xed. Like any other routing scheme, an IRS de�ned on such a network is said to

be an IRS with dynamic cost links. After each change in the costs of links we may or

may not be allowed to recompute the labels of the links. When the costs of the links

changes in the network, we can assume either that the labels of nodes remain the same

(static node names) or that nodes can be relabeled (dynamic node names).

2.5.5 Hybrid schemes

Any set of properties mentioned above can be combined into an IRS to form a hybrid

IRS. For example, we may have a multi-label, multi-dimensional and linear IRS with

dynamic cost links which is denoted by hk; di-MLIRS with dynamic cost links; here, k

is the number of intervals at each link and d is the number of dimensions.
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2.6 Evaluation of schemes

Considering a speci�c routing scheme, R, there are two important problems which

solving them determines if R is a suitable routing scheme for a given network or not.

The �rst problem is determining the class of networks which support R. This problem
is known as the characterization problem. Naturally, if a type of scheme is supported

by a large class of networks, it might be quite useful.

The second problem arises after �nding out the class of networks which support R.
Assuming that a given network belongs to the class of networks supporting R, the
important problem is �guring out how well the messages are routed by R. We may

have di�erent measures such as the length of the routing paths, the congestion of the

network (which is proportional to the number of messages which are routed through

each link), the delay of each message, and so on. This is known as the quality of routing

problem.

In this section we briey review some of the known results related to these problems.

2.6.1 Characterization Problem

The �rst important question in studying a scheme is: which class of networks support

this routing scheme? Santoro and Khatib have shown that every acyclic digraph has

a 1-SIRS [SK85]. For speci�c cases we have much better results. For example, it has

been shown that every graph which is a tree or a ring has an optimum 1-IRS [SK85].

For general graphs, van Leeuwen and Tan have proved the following theorem.

Theorem 4. [vLT87] All graphs support 1-SIRS and hence 1-IRS.

Proof. For a given graph G, we let T be a spanning tree of G, rooted at an arbitrary

node r. We let L be a depth �rst labeling from the root, where L(r) = 1 is the smallest

label.

For each vertex u of T we let M
u
be the maximum value of L(v) for all the vertices

v that belong to the subtree of T which is rooted at u. Any edge of G which is not

in T is assigned an empty interval in both directions. For an edge e = (u; v) in T ,
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assuming that u is the parent of v, we assign the label [L(v);M
v
] to e at node u. We

assign the interval ]M
v
+ 1;L(v)[ to the edge e at node v. It is a trivial task to verify

the correctness of this SIRS. �

Any path constructed by the routing function de�ned as in the proof of Theorem 4 is

embedded in a tree. Therefore, the length of any routing path is at most two times

the depth of the tree. If we choose T as a spanning tree of G which consists of the

shortest paths from the root to all other nodes in the network, it is easy to verify that

the length of the longest routing path is less than two times the diameter of the graph

G. This is not a shortest path between a pair of source and destination nodes, unless

G is a tree.

It is usually desirable to have an IRS which uses all links of the network. This may

reduce congestion in the links. It has been proved that every graph has a 1-SIRS such

that all links have non-empty labels [vLT87].

Ru�zi�cka has showed that not every network has an optimum IRS [Ru�z88]). On the

bright side, we know some speci�c classes of networks support optimum schemes. For

example, it has been shown that any graph which is a path, 2D-grid, or a complete

graph supports an optimum 1-SLIRS. Any graph which is a 2D-grid with column-wrap-

around, or a complete bipartite graph belongs to the class of networks supporting an

optimum 1-SIRS [vLT87].

Figure 2.8: The Y -graph.

As mentioned before, an LIRS is a scheme which does not have any cyclic intervals.

The following classes of graphs are known to support an optimum LIRS: complete

graphs, hypercubes, n-dimensional grids, rings of size at most four, n-dimensional tori

�n

i=1di with d
i
6 4 for each i, trees which do not contain the Y -graph (Figure 2.8) as

a subgraph [BvLT91], complete r-partite graphs K
n1;n2 ;:::;nr

with r > 2, n
i
> 1, the

product �n

i=1Gi
if the graph G

i
has an optimum LIRS for each i [KKR94], unit interval

graphs [FG98].
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(a) (b)

KernelElectrons

Figure 2.9: a) A lithium graph b) A weak lithium graph

De�nition 9. [FG94] A lithium graph is a connected graph with four connected sub-

graphs E1; E2; E3 and K such that

(i) each component E
i
, i = 1; 2; 3 has at least 2 vertices;

(ii) there is no edge connecting E
i
with E

j
for i; j = 1; 2; 3 and i 6= j;

(iii) each component E
i
, i = 1; 2; 3 is connected with K by exactly one bridge.

Fraigniaud and Gavoille have completely characterized the class of networks which

support an LIRS.

Theorem 5. [FG94] A graph G supports an LIRS if and only if it is not a lithium

graph.

We can verify that an interval graph cannot be a lithium graph. Therefore, based on

the previous theorem, every interval graph supports an LIRS. The class of networks

supporting an SLIRS has also been characterized by Fraigniaud and Gavoille.

De�nition 10. [FG94] A weak lithium graph is a graph with at least three bridges

that connect a connected component (the kernel) with three other distinct connected

components (the electrons).

In contrast to a lithium graph, in a weak lithium graph the cardinality of the electrons

does not matter.
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Theorem 6. [FG94] A graph G supports an SLIRS if and only if G is not a weak

lithium graph.

It is easy to show that if G and H are two graphs each with at least 2 vertices, then the

graph G �H cannot be a weak lithium graph. Therefore, G �H supports an SLIRS.

In Chapter 3 we generalize Theorem 5 to multi-dimensional schemes. We de�ne k-

windmill graphs as a generalization of lithium graphs (where a lithium graph is a

3-windmill graph) and show that a similar result holds for higher dimensions. More

precisely, a graph supports a h1; di-MLIRS if and only if it is not a (2d + 1)-windmill

graph. We also generalize the de�nition of weak lithium graphs to weak windmill

graphs and show that a graph supports a h1; di-MSLIRS if and only if it is not a weak

(2d+1)-windmill graph. The only characterization results for MIRS which were already

known are for speci�c regular graphs.

Theorem 7. [FGNT98] Any graph which is a d-grid, d-tori or a d-hypercube has an

optimum h1; di-MSIRS.

Fredrickson and Janardan have proved that a graph G with dynamic cost links has an

optimum SIRS if and only if G is an outer-planar graph [FJ86]. Tan and van Leeuwen

have shown that a graph G with dynamic cost links supports an optimum IRS if and

only if G is an outer-planar graph or a K4 [TvL95]. They also show that a graph G

with dynamic cost links has an optimum SIRS with dynamic node names if and only

if its biconnected components are either outer-planar or K4. Bakker et al. have shown

that a graph with dynamic cost links and dynamic node names has an optimum SLIRS

if and only if it is a line or a ring of size three or four [TvL95].

In a very restricted scheme we assume that the costs of the links are dynamic, but the

edge labels must be the same for any set of link costs.

De�nition 11. [BvLT91] A segment is either a C3-star graph with leaves attached to

only two of the cycle nodes or a C2-star graph (Figure 2.10). The two nodes of the

segment with leaves attached to them are called the head and the tail of the segment

respectively.
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head tail

(a) (b)

head tail

Figure 2.10: a) C3-star graph b) C2-star graph.

De�nition 12. [BvLT91] A centipede is either a segment or a centipede joined with

a segment. By joining we mean that the head of the centipede is identi�ed with the tail

of the segment that is \attached" to it i.e. all the neighbors of these two nodes now

become neighbors of the one new node. The head of the joined segment becomes the

head of the new centipede (Figure 2.11).

head tail

Figure 2.11: A centipede graph.

Bakker et al. have also shown that a graph with dynamic cost links and �xed link

labels has an optimum LIRS if and only if it is a centipede [BvLT91]. They also have

proved that a graph with dynamic cost links and dynamic node names has an optimum

LIRS if and only if it is a centipede, a K3-star or a K4-star.

In Chapter 3 we also consider the problem of characterizing the class of networks which

support an optimum h1; di-MSLIRS. We give a complete characterization of this class

of networks there and show that by increasing the number of dimensions, d, the class

of networks which support this scheme is also strictly expanded.

2.6.2 Quality of routing

The main quantity used to measure the quality of a routing scheme in this thesis is

the length of the routing paths. We usually consider the length of the longest routing

paths in the network, since it is a critical value for many applications.
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De�nition 13. [Gav00] Let R be an IRS on a graph G. The dilation of R, denoted by

dilation(R), is the length of the longest routing path which a message traverses. The

k-dilation of G, denoted by k-dilation(G), is the minimum over all the k-IRS R on G,

of the dilation of R.

For 1-IRS, Tse and Lau has shown that for every even D, there is a graph G of

diameter D and girth 2D such that 1-dilation(G) > 2D � 3 [TL97b]. Therefore, the

1-IRS proposed in the proof of Theorem 4 is close to the optimal. Unfortunately,

no upper bound is known for this value for LIRS. Eilam et al. have proved that for

every �xed D, there exists a graph G of diameter at least D such that every 1-LIRS

has a dilation at least D2=16. Moreover, G is planar and of maximum degree four

[EMZ96, EMZ99].

Clearly, if we allow more than one interval at each edge, it is possible to decrease the

dilation. Tse and Lau have proved a series of lower bounds for di�erent numbers of

intervals at each link. They have shown that there is a graph G with diameter D such

that for any 2-IRS the longest routing path is at least 5D=4�1 [TL95]. More generally,

they show that there exists a graph G such that for any k-IRS, k = 2; :::;
( 3
p
n), the

longest routing path is not shorter than 2k+1
2k

D � 1 and for k = 
( 3
p
n); :::;
(

p
n), the

longest routing path is not shorter than 6k+1
6k

D � 1. Kr�a�lovi�c et al. have proved an

upper bound and shown that for every n-node graph G of diameter D, there exists a

k 6 d
p
n lnne+ 1 such that k-dilation(G) 6 d3D=2e [KR�S00].

In Chapter 4 we investigate the quality of routing in MIRS. Similar to the characteri-

zation problem, the only previously known results in this case were for regular graphs

or for the 1-dimensional case. We show that for any integer values k and d, there is a

graph G which for any hk; di-MLIRS the length of the longest routing path is at least
3
2
D, where D is the diameter of the graph G. This bound is better than the 5

4
D � 1

lower bound of Tse and Lau, even though they just consider the 1-dimensional case

and here we consider the d-dimensional case. We also prove a lower bound of 
(D2=d)

for h1; di-MIRS and an upper bound for interval graphs.
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2.7 Interval routing and hypergraph drawing

A hypergraph can be viewed as a generalization of classical notion of a graph in which

each hyperedge represents a relationship between two or more vertices. In other words,

a hypergraph is an ordered pair (V;E), where V = fv1; v2; :::; vng is a set of vertices

and E = fe1; e2; :::; emg is a set of hyperedges, where each hyperedge e
i
, 1 6 i 6 m,

is a subset of V . We usually assume that each hyperedge has at least two vertices.

Figure 2.12 represents a possible graphical representation of a hypergraph in which

closed curves indicate hyperedges.

E2

E4

E1

v9

v4

v3

v1

v2 v5

v6

v8

v7

E3

Figure 2.12: A hypergraph H with 9 vertices and 4 hyperedges.

The problem of drawing graphs in the plane and in spaces with higher dimensions has

been studied for several years. In Chapter 5 we will introduce a speci�c drawing for

hypergraphs which we call a box representation of hypergraphs. We will show a strong

relationship between the problem of �nding a box representation for a hypergraph and

the problem of �nding a certain type of MIRS for graphs. We also prove a tight bound

on the number of dimensions of the space needed to draw a hypergraph, based on the

results we have for MIRS.



Chapter 3

Characterization results

When studying the characteristics of a scheme R one of the main problems is charac-

terizing the class of networks which support R. The solution to this problem is used to

determine if R can be used to route messages in a given network. The class of networks

supporting IRS have been characterized [SK85]. The class of networks which support

an LIRS or a SLIRS, which excludes a large class of networks, have been characterized

by Fraigniaud and Gavoille [FG94]. Fraigniaud and Gavoille de�ne a class of graphs

called lithium graphs (Section 2.6.1) and show that a network supports an LIRS if and

only if its underlying graph is not a lithium graph. They also de�ne a class of networks

called weak lithium graphs and show that a network supports an SLIRS if and only if

its underlying graph is not a weak lithium graph.

The only known classes of networks which support di�erent types of multi-dimensional

schemes are speci�c interconnection networks such as rings, grids, tori, hypercubes

and chordal rings [FGNT98]. In this chapter we investigate the problem of charac-

terizing classes of networks which support MIRS. We give a complete characterization

of the class of networks supporting h1; di-MLIRS (Section 3.1) and h1; di-MSLIRS

(Section 3.2). We also consider networks with dynamic cost link and completely char-

acterize the class of networks which support an optimum h1; di-MSLIRS with dynamic

cost links(Section 3.3).

25
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3.1 Characterization of networks supporting h1; di-

MLIRS

In order to give a complete characterization for the class of networks which support an

h1; di-MLIRS we start with examples of graphs which do not support h1; di-MLIRS.

Then, using the idea behind these examples, we introduce a class of graphs which do

not supporth1; di-MLIRS. Finally, we show that for any graph that is not in this class,

one can always construct a h1; di-MLIRS.

Bakker et al. [BvLT91] have shown that the graph shown in Figure 3.1 (a) (known

as the Y graph) does not have an LIRS (which is a h1; 1i-MLIRS). Here, we prove a

similar result in the d-dimensional case. First, let us start by generalizing the de�nition

of a Y graph.

(a) (b) (c)

first wing

u2

u3

u1

u4

u5
v1

v2

v4

v3
zv5

Figure 3.1: (a) The Y graph (b) The Y5 graph (c) A 5-windmill graph.

De�nition 14. The Y
k
graph is a graph having 2k+1 vertices u1; u2; :::; uk, v1; v2; :::; vk

and z. There is an edge connecting u
i
to v

i
, for every i, 1 6 i 6 k, and another edge

connecting each v
i
to z, 1 6 i 6 k (Figure 3.1 (b)). We call the subgraph consisting of

u
i
and v

i
the ith wing of the graph.

The Y graph of Figure 3.1 (a) is a Y3 graph by our new de�nition. To prove that the

Y3 graph does not have an LIRS let us assume it has an LIRS and the vertices of the
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graph are assigned integer labels taken from f1; 2; :::; 7g. Since we have three wings,

there is a wing, say the ith wing, which does not contain 1 or 7 (the minimum or the

maximum label). Now, the interval assigned to the edge (v
i
; z) at v

i
must contain both

1 and 7. Therefore, this interval contains the label of u
i
which is not possible.

We can prove a similar result for d-dimensional LIRS and for the Y2d+1 graph. In fact,

we can immediately observe that if each wing of the Y2d+1 graph had more than just

two vertices, as long as those vertices where not directly connected to the vertex z or

to the vertices in other wings, the graph cannot support a d-dimensional MLIRS. In

order to prove this more general statement, we de�ne a k-windmill graph as follows.

De�nition 15. A k-windmill graph is a connected graph with k + 1 connected com-

ponents A1; A2; :::; Ak
(arms of the k-windmill graph) and R (center of the k-windmill

graph) such that:

(i) each component A
i
; 1 6 i 6 k, has at least two vertices;

(ii) there is no edge connecting A
i
to A

j
for 1 6 i; j 6 k and i 6= j; and

(iii) each component A
i
; 1 6 i 6 k, is connected with R by exactly one bridge.

Figure 3.1 (c) illustrates a 5-windmill graph. Obviously, by this de�nition, a Y
k
graph

is also a k-windmill graph. Also, as Figure 3.1 (c) indicates, a k-windmill graph is an

i-windmill graph for any i, 1 6 i 6 k� 1. This can easily be shown by expanding R to

include A
i+1; :::; Ak

.

Lemma 1. Any (2d + 1)-windmill graph does not support a h1; di-MLIRS.

Before giving the proof of this lemma, let us start with a new de�nition which will

be used in the proof and in other sections. Let us consider a set of points P in d-

dimensional space. If for any dimension i, 1 6 i 6 d, the ith coordinate of a point b

in P is less than or equal to the ith coordinate of every other point in P , b is called

a minimum point for the ith dimension. A maximum point is de�ned similarly. A

boundary set B of P is a minimal set of points in P containing a minimum and a

maximum point for each dimension i; 1 6 i 6 d, where one point can be both the

minimum and the maximum point for the same or di�erent dimensions.
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Example 6. Figure 3.2 illustrates an example of a boundary set in 2-dimensional

space. Here, P = f1; : : : ; 7g and f1; 5; 7g is a boundary set of P . The set f2; 5; 7g is
also a boundary set of P . We note that point 7 is the maximum point for one dimension

and the minimum point for another dimension.

1

2

3

4

5

6

7

Figure 3.2: An example of a boundary set in 2-dimensional space.

For any set of points in d-dimensional space, the number of points in any boundary

set is at most 2d. It is easy to show that if an interval contains the points in the

boundary set B of a set of points P , it contains all points in P . Now we can easily

prove Lemma 1.

Proof. (Lemma 1) Let us assume, by way of contradiction, that there is a h1; di-
MLIRS for a given (2d + 1)-windmill graph (d > 1) and consider the boundary set B

of the vertices of the graph. We have at most 2d vertices in the boundary set B. Since

a (2d+1)-windmill graph has 2d+1 arms, there is an arm, say the jth arm, that does

not contain any vertex in the boundary set B. Every d-dimensional interval containing

all of the vertices in B contains all vertices of the (2d + 1)-windmill graph as well.

Thus, the interval assigned to the bridge connecting the jth arm to the center of the

(2d+ 1)-windmill graph, say (u; v) (u is in the jth arm and v is a vertex in the center

of the graph) contains all vertices in the (2d + 1)-windmill graph. The jth wing has

at least another vertex other than u, say u0. Thus, the interval assigned to the edge

(u; v) includes u0. Obviously, there is no path going through (u; v) to reach u0, which

is a contradiction. �

Lemma 1 introduces a class of graphs which do not support h1; di-MLIRS. In other

words, it states a necessary condition for a graph to support a h1; di-MLIRS. In the

following sections we will show that this is also a suÆcient condition.
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Fraigniaud and Gavoille have proved that a graph supports LIRS if and only if it is

not a lithium graph [FG94] (which is exactly the 3-windmill graph). We will use this

result as the basis for an inductive construction of a h1; di-MLIRS for a given graph

G. We start with new de�nitions.

G2
G1 (head)

G4
G3

Figure 3.3: The dashed curves indicate edge-biconnected components in this �gure.

The edge-biconnected components G1; G2; :::; G4 form a chain. The edge-biconnected
components G1; G2 and G3 form a perfect chain.

De�nition 16. In a graph G, a chain of edge-biconnected components, or a chain

for short, is a set of edge-biconnected components of G with a special ordering of these

edge-biconnected components, say G1; G2; :::; Gk
, such that for each i; 1 6 i 6 k � 1,

there is a bridge connecting G
i
to G

i+1. A chain is said to be perfect if:

(i) G1 is connected to exactly one bridge in G.

(ii) Each edge-biconnected component G
i
, 2 6 i 6 k is connected to exactly two bridges

in G.

(iii) If G0 is the edge-biconnected component in the graph G which is connected to G
k

and G0 6= G
k�1, then G0 is connected to at least three bridges.

We call G1 the head and G
k
the tail of the chain. Trivially if k = 1 then G1 is both

the head and the tail of the chain.

3.1.1 Properties of chains and k-windmill graphs

In this section we review properties of chains and k-windmill graphs. The �rst obser-

vation follows directly from the de�nition of a chain.
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Observation 2. A perfect chain in a graph G is a proper induced subgraph of G, and

the tail of a perfect chain (which is an edge-biconnected component) is connected to the

rest of the graph by a bridge.

The edge-biconnected components G1; G2; :::; G4 in the graph depicted in Figure 3.3

and the bridges connecting them form a chain. G1 and G4 are the head and the tail

of this chain, respectively. In this graph, if we consider the subgraph containing the

edge-biconnected components G1; G2 and G3 and the bridges connecting them, then

we have a perfect chain. The head of this perfect chain is G1 and the tail is G3. As

mentioned in Observation 2, G3 (which is the tail of the perfect chain) is connected to

G4 by a bridge and G4 is connected to more than two bridges. Since, G3 is connected

to exactly two bridges, the edge-biconnected components G1 and G2 does not form a

perfect chain.

G
r

Figure 3.4: Edge-biconnected components in a 3-windmill graph.

Lemma 2. If a graph G is a k-windmill graph for k > 3, then it is not a chain.

Proof. We consider each edge-biconnected component of G as a super-node. Clearly,

the resulting graph is a tree. Since G is a k-windmill graph (k > 3), there is a node v

in this tree such that the degree of v is at least 3 (the super-node G
r
in Figure 3.4).
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In any chain, each edge-biconnected component is connected to at most two other

edge-biconnected components. Therefore, G is not a chain. �

Lemma 3. Any non-trivial (having at least one vertex) graph G which is not a chain

contains a perfect chain as a proper induced subgraph.

Proof. SinceG is not a chain and is non-trivial, it has more than one edge-biconnected

component. It also has an edge-biconnected component which is connected to exactly

one bridge (otherwise the edge-biconnected components would form a cycle and this

would force the bridges connecting edge-biconnected components to be contained in

a cycle, a contradiction to the de�nition of a bridge). We denote this component by

G1, which is a chain consisting of one edge-biconnected component. Let us denote this

chain by C1. G1 is both the head and the tail of C1. In the ith iteration, we expand Ci

by adding to it a new edge-biconnected component. If G
i
denotes the tail of C

i
, since

C
i
6= G (G is not a chain) and G is connected, G

i
is connected to an edge-biconnected

component, say G
i+1, which is not in Ci

. If G
i+1 is connected to more than two bridges,

then C
i
is a perfect chain and is a proper induced subgraph of G. This completes the

proof. Otherwise, we expand C
i
to C

i+1 by adding G
i+1 and the bridge connecting

G
i
to G

i+1. The tail of the new chain C
i+1 is now G

i+1. If we repeat this step, the

algorithm will eventually terminate since G is �nite and not a chain. �

For example, in the graph depicted in Figure 3.3 we start with the edge-biconnected

component G1, which is connected to exactly one bridge (C1 = G1). G1 is connected

to the edge-biconnected component G2 which has exactly two bridges, so we let C2 be

the chain consisting of G1 and G2. Similarly, we add G3 to C2 to obtain C3. Now, G3

is connected to the edge-biconnected component G4, which is connected to more than

two bridges. This terminates our algorithm and the chain C3, which is the subgraph

consisting of G1; G2 and G3 and the bridges connecting them, is a perfect chain.

In constructing a h1; di-MLIRS, we will use this lemma in the induction step to reduce

the size of the graph. This reduction has a very nice property that is the heart of the

main proof, which is stated in the following lemma.

Lemma 4. If a graph G is not a chain and is not a k-windmill graph (k > 3), we

can remove any perfect chain from G and the resulting graph is not a (k� 1)-windmill

graph.
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C

R

B

D

P

A
i

A2A1

A
k�1

e

Figure 3.5: C and D will become arms in the k-windmill graph.

Proof. Since G is not a chain, by Lemma 3, there is a perfect chain C which is a

proper induced subgraph of G. We let G0 denote the graph G�C. We assume, to the

contrary, that G0 is a (k � 1)-windmill graph. By the de�nition of a (k � 1)-windmill

graph, G0 has k disjoint sets of vertices A1; A2; :::; Ak�1 and R. Since C is a perfect

chain, by Observation 2 its tail is connected to G0 by a bridge. C cannot be connected

to R, otherwise G would be a k-windmill graph. Let us assume that C is connected to

an edge-biconnected component, B, which is in the arm A
i
for some i, 1 6 i 6 k � 1

(Figure 3.5).

By part (iii) of the de�nition of a perfect chain, the edge-biconnected component B is

connected to at least three bridges, one connectingB to C and at least two other bridges

connecting B to some other edge-biconnected components in G0. By Observation 1 all

the paths connecting B and R go through one of the bridges connected to B, say e. We

let D be the edge-biconnected component which is connected to B and is not connected

to e.

Now, we expand R to contain B and all the edge-biconnected components in the arm

A
i
except D (and any edge-biconnected component which is attached to D). Since G

is a (k�1)-windmill graph it has k�2 arms other than A
i
. We can also consider C and

D as two new arms. Hence, G has k arms and is a k-windmill graph, a contradiction.

�
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3.1.2 Assigning Labels

In this section we will prove one of the main results of this chapter. First, we need to

show how to convert a d-dimensional IRS into a (d + 1)-dimensional IRS.

If a graphG supports a h1; di-MLIRS (h1; di-MSLIRS), we can convert the d-dimensional

scheme to a (d + 1)-dimensional one by adding a new coordinate to the labels of ver-

tices. The label of this coordinate is set to zero for all vertices. We also set the newly

added coordinate of each interval to be [0::0]. It is a trivial task to verify that this IRS

routes the messages exactly like the d-dimensional IRS. In other words, we can expand

a d-dimensional IRS to a (d+ 1)-dimensional IRS.

Lemma 5. If a graph G supports a h1; di-MLIRS (h1; di-MSLIRS) it also supports a

h1; d + 1i-MLIRS (h1; d + 1i-MSLIRS).

Now, we have all the tools we need to prove the main theorem of this section.

Theorem 8. A graph G has a h1; di-MLIRS if and only if it is not a (2d+1)-windmill

graph.

Proof. First, we show that if a graph is not in the class of (2d+ 1)-windmill graphs,

then it has a h1; di-MLIRS. We use induction on d, the number of dimensions. Fraig-

niaud and Gavoille [FG94] have proved that if a graph G is not a lithium graph, which

is exactly a 3-windmill graph, then there is a 1-LIRS for G (a h1; 1i-MLIRS). This is

the basis of our induction.

Let us suppose that for any i 6 d � 1, if a graph is not a (2i + 1)-windmill graph, it

has a h1; ii-MLIRS. Now, we want to show that if a graph G is not a (2d+1)-windmill

graph, d > 1, then it has a h1; di-MLIRS. We �rst show how to label the vertices of G.

Then, we describe how we can update intervals in each step of the induction. Finally,

we prove the correctness of this vertex and link labeling.

Labeling vertices:

Although G is not a (2d+1)-windmill graph it can be a (2d� 1)-windmill graph. If G

is not a (2d�1)-windmill graph, by the induction hypothesis it has a h1; d�1i-MLIRS
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and by Lemma 5, G also has a h1; di-MLIRS, completing the proof. Hence, we can

assume that G is a (2d� 1)-windmill graph and by recalling Lemma 2, we can assume

that G is not a chain. Therefore, by Lemma 3, G has a perfect chain, say C1, as a

proper induced subgraph. Since G is not a (2d + 1)-windmill graph and d > 1, by

applying Lemma 4 we can remove C1 and the resulting graph will not be a 2d-windmill

graph. Since 2d > 3, we can repeat these steps and remove another perfect chain, C2,

so that the resulting graph, G0, is not a (2d � 1)-windmill graph.

By the induction hypothesis, G0 has a h1; d�1i-MLIRS. We need to expand this labeling

to a h1; di-MLIRS for G.

G

G0

C1

u1

v1 v2

u2

C2

h1; 1i-MLIRS

h1; 1i-MLIRS

h1; d� 1i-MLIRS

The d-th axis

0

Figure 3.6: Expanding the labels of vertices in G0 to labels for vertices in G.

C1 and C2 are chains and therefore, by Lemma 2, they are not 3-windmill graphs.

Thus, by the induction hypothesis, there is a h1; 1i-MLIRS for each of them. In fact,

Fraigniaud and Gavoille have proved that if a given graph is not a 3-windmill (lithium)

graph, we can specify a vertex and �nd a labeling for the vertices such that the label

of the speci�ed vertex is 1 [FG94]. We �nd such a h1; 1i-MLIRS for C1 (C2) such that

the label for the vertex in C1 (C2) joining C1 (C2) to the rest of the graph G, say u1

(u2), is 1 (Figure 3.6).

To construct the new labeling for G, each vertex in G0 is assigned a d-dimensional

label in which the �rst d � 1 coordinates are the same as the labels in the linear

h1; d� 1i-MIRS corresponding to G0 and the dth coordinate is 0. Figure 3.6 illustrates

an example in which d = 3. The third coordinates of the labels assigned to the vertices

of G0 are all 0, so G0 lies in the plane passing through the �rst and the second axes.
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For now, we assume that the labels assigned to the vertices can have any integer values

(including 0 and negative integers) as their dth coordinates. We can later shift all the

labels such that the dth coordinates of all labels becomes positive.

Let (v1; u1) and (v2; u2) respectively denote the bridges connecting G
0 to C1 and C2 and

let v1 and v2 be vertices of G
0. We will set the �rst d� 1 coordinates of each vertex in

C1 to be equal to the �rst d� 1 coordinates of v1. The dth coordinates of vertex labels

in C1 are the labels assigned to vertices in the previously mentioned h1; 1i-MLIRS. In

Figure 3.6 the vertices in C1 all lie on the line passing through v1 and parallel to the

dth axis.

For the vertices in C2, we will similarly set the �rst d� 1 coordinates of each vertex to

be equal to the �rst d� 1 coordinates of v. If the label of a vertex v in the previously

mentioned h1; 1i-MLIRS is l(v), we assign �l(v) as the dth coordinates of the new

labeling (Figure 3.6). Now as mentioned before, we can shift the dth coordinate of all

the labels such that the dth coordinate of the vertex with minimum value becomes 1.

We let s denote the amount of this shifting and M denote the maximum value in the

dth coordinate of all new labels.

t

G

C1

C2

v2

M

The d-th axis

C2

v1 v2

C1

1::n

1::m

1::t

1

G0

s

I
0

v1
I

I
0

I

Figure 3.7: (a) Updating an interval in G0 (b) Updating an interval, which includes u1,

in C1 (I is the old interval, I 0 is the new one in both (a) and (b))

Updating Intervals:

We update intervals as follows: the �rst d � 1 coordinates of each interval assigned

to a link in G0 are the same as the (d � 1)-dimensional interval associated with that

edge in the h1; d � 1i-MLIRS de�ned on G0. The dth coordinates of all intervals are
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set to be [1::M ]. Any (d� 1)-dimensional interval in G0 that does not contain v1 or v2

will still contain the same set of vertices and any interval containing v1 (respectively

v2) will also contain all the vertices in C1 (C2). For example, the two dimensional

interval I, shown in Figure 3.7 (a), contains v1, so the new three-dimensional interval

I 0 contains all the vertices in C1. Since I does not contain v2, I
0 does not contain any

of the vertices in C2.

For the intervals associated with the links in C1 or C2, the �rst d � 1 coordinates are

set to [1::n]. To set the dth coordinate of each interval we will use the previously

mentioned h1; 1i-MLIRS. Let us assume that in the h1; 1i-MLIRS de�ned on C1 the

interval assigned to a link e is I
e
= [a::b]. If I

e
does not contain u1, the dth coordinate

of the newly assigned d-dimensional interval will be [a + s::b + s] (we shift the dth

coordinate by s units because we have already shifted the vertices in this dimension).

If I
e
contains u1, i.e. Ie = [1::b] for some b, the dth coordinate of the newly assigned

interval will be I
e
= [1::b+s]. This means that any 1-dimensional interval de�ned in C1

will be transformed into a d-dimensional interval containing the same set of vertices in

C1 and if it contains u1, it will also contain all the vertices in G
0 and C2. The interval I

depicted in Figure 3.7 (b) contains u1, so the new interval I 0 contains the set of vertices

in C1 that where in I and also all the vertices in C2 and G
0. We will analogously assign

intervals to the links in C2.

The only remaining labels to update are labels of the links (v1; u1); (u1; v1); (v2; u2) and

(u2; v2). The �rst d�1 coordinates of intervals associated with (v1; u1); (u1; v1); (v2; u2)

and (u2; v2) are set to [1::n] and the dth coordinates will respectively be [s+1::n]; [1::s];

[1::s� 1] and [s::n].

Correctness:

Now, let us consider a message originating from vertex w
s
and with destination w

t
.

If both w
s
and w

t
are in C1 (similarly C2 or G

0) one can easily check that the newly

de�ned h1; di-MLIRS will route the messages on the same path as the h1; 1i-MLIRS

de�ned on C1 (C2 or the h1; d�1i-MLIRS de�ned on G0). This is because if we consider

the set of vertices in C1 (C2 or G
0) each interval assigned to a link contains the same

set of vertices as it contained before expanding the labels to d dimensions. If w
s
is

in C1 and w
t
in G0, the message must go through the link (u1; v1) because this is the

only link connecting C1 to G
0. The intervals in C1 which contain w

t
are exactly the

intervals containing u1. Therefore, this message will be forwarded through the same

links as the links through which a message towards u1 would be forwarded. When the
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message reaches u1, the bridge (u1; v1) forwards the message to v1, because the interval

assigned to (u1; v1) contains all the vertices in G
0 and C2. The rest of the routing will

be the same as in the h1; d � 1i-MLIRS de�ned on G0.

We can show that if there is a message at node x (x = u2; v1 or v2) which is supposed

to be forwarded through the bridge connected to x, say e
x
(e

x
= (u2; v2); (v1; u1) or

(v2; u2) respectively), it will be sent to the other end of ex. Verifying the cases in which

w
s
is in C2 or G

0 is similar. Hence, a message originating at any vertex and going to

an arbitrary destination will eventually reach the destination, and the h1; di-MLIRS

routes messages on G properly.

We now have shown that if a graph is not in the class of (2d+1)-windmill graphs it has a

h1; di-MLIRS. Lemma 1 shows that no graph in this class can support a h1; di-MLIRS.

Combining these two results completes the proof of the theorem. �

Since for each d > 1, we have a (2d+1)-windmill graph which is not a (2d+3)-windmill

graph (for example the Y2d+1 graph), we can state the following corollary:

Corollary 1. The class of graphs supporting a h1; di-MLIRS is a strict subset of the

class of graphs supporting a h1; d + 1i-MLIRS.

In other words, increasing the number of dimensions increases the power of the routing

scheme.

3.2 Characterization of networks supporting h1; di-

MSLIRS

In this section we will give a characterization of the class of graphs supporting h1; di-
MSLIRS. We present new de�nitions and show that with slight changes in some steps

in proofs, we can use the same ideas used to characterize the class of graphs supporting

h1; di-MLIRS.

In proving Lemma 1, we needed to have at least two vertices in each arm of a (2d+1)-

windmill graph. Otherwise, if the arm which did not have any vertex in the boundary
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set, say A
i
, had just one vertex, say x, the interval assigned to the edge connecting A

i

to R could contain x and this was not a contradiction. If instead the intervals assigned

to the links are supposed to be strict, we could prove a similar lemma, even if we had

an arm having just one vertex. This is the main di�erence between the proofs of this

section and the previous one. More formally, let us start with a new de�nition.

Figure 3.8: A weak 5-windmill graph.

De�nition 17. A weak k-windmill graph is a connected graph G with k+1 connected

components A1; A2; :::; Ak
(arms) and R such that:

(i) there is no edge in G connecting A
i
to A

j
for 1 6 i; j 6 k and i 6= j;

(ii) each component A
i
; 1 6 i 6 k is connected to R by exactly one bridge (Figure 3.8).

Lemma 6. Any weak (2d + 1)-windmill graph does not have a h1; di-MLIRS.

Proof. The proof is similar to the proof of Lemma 1. We assume there is a h1; di-
MSLIRS for a given weak (2d+1)-windmill graph (d > 1) and de�ne the boundary set

as in the proof of Lemma 1. Since a weak (2d + 1)-windmill graph has 2d + 1 arms,

there is an arm, say the jth arm, that does not contain any vertex in the boundary set

B. Every d-dimensional interval containing all of the vertices in B contains all vertices

of the weak (2d + 1)-windmill graph as well. Thus, the interval assigned to the bridge

connecting the jth arm to the center of the (2d + 1)-windmill graph, say (u; v) (u is

in the jth arm and v is a vertex in the center of the graph) contains all vertices in the

weak (2d + 1)-windmill graph. In other words, the interval assigned to the link (u; v)

contains the label of u which is a contradiction to the fact that the routing scheme is

strict. �



CHAPTER 3. CHARACTERIZATION RESULTS 39

We can also verify, with the same argument as the proof of Lemma 4, that removing

any perfect chain from a graph G which is not a weak k-windmill graph will produce

a graph which is not a weak (k � 1)-windmill graph.

The only remaining step is to show that the induction basis and step are also valid in

constructing a h1; di-MSLIRS for any graph that is not a weak (2d+1)-windmill graph.

We already know that any graph which is not weak 3-windmill graph (a weak lithium

graph as de�ned in [FG94]) has a h1; 1i-MSLIRS, so the induction basis is true. Since

Lemmas 3 and 4 also work for weak windmill graphs and strict MIRS, the induction

step holds as well. This gives us the complete characterization of graph supporting

h1; di-MSLIRS as follows:

Theorem 9. A graph G has a h1; di-MSLIRS if and only if it is not a weak (2d+ 1)-

windmill graph.

Corollary 2. The class of graphs supporting a h1; di-MSLIRS is a strict subset of the

class of graphs supporting a h1; d + 1i-MSLIRS.

3.3 Optimum multi-dimensional schemes with dy-

namic cost links

The characterization problem for graphs supporting SIRS has been studied by Fredrick-

son and Janardan [FJ86] who characterized the class of graphs supporting optimum

SIRS with dynamic cost links. Bakker et al. give a complete characterization for the

class of networks supporting optimum LIRS [BvLT91]. They assume that the labels as-

signed to the links of the graph remain �xed, even if the costs of the links change. This

makes the class of graphs supporting optimum LIRS very restricted. Tan and Leeuwen

have also studied the problem of characterizing networks supporting optimum IRS with

dynamic cost links and have a characterization for this class of networks [TvL95].

In this section, we completely characterize the class of networks supporting an opti-

mum h1; di-MSLIRS with dynamic cost links. This is a natural generalization of the

characterization results (for the 1-dimensional case) mentioned above.
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3.3.1 Dividing d-dimensional space

In the following sections we will need a way to divide d-dimensional space and represent

the resulting subspaces. In this section, we introduce concepts and notation which

simplify this task.

The axes in d-dimensional space are denoted by x1; x2; :::; xd. Let us consider a point

p = (p1; p2; :::; pd) in d-dimensional space. A region in d-dimensional space having p as

the origin is a set of points in that space, such that for every point q = (q1; q2; :::; qd) in

the region the constraint q
i
C
i
p
i
holds for each dimension i, where C

i
is one of 6;=;> or

a null constraint meaning that there is no constraint on the ith coordinate of the points

in the region. We will use  ;�;!;$ to denote each of the four constraints 6;=;>

and the null constraint, respectively. To denote a region we use the coordinates of the

origin and add these symbols on top of each coordinate to show the type of constraint

in that dimension. If there is no constraint for the ith dimension of the region, the ith

coordinate of the origin can have any value. We use 0 for this coordinate for simplicity.

Example 7. The region R containing all the points in the second quadrant in the

plane, such that x1 � �1 and x2 � 1 is denoted by (
 ��1;�!1 ) (Figure 3.9).

1

-1

origin

R

x2

x1

Figure 3.9: The region R with two open directions in 2-dimensional space.

For a region R, if R contains points with in�nitely large positive (negative) values in

the ith dimension, the region is said to be open in the positive (negative) side of the ith

axis and the positive (negative) direction of the ith axis is said to be an open direction

for R and will be denoted by �!x
i
( �x

i
). It is worth mentioning that a region is de�ned
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by the origin and the set of open directions. The negative direction of the �rst axis

and the positive direction for the second axis are open in the region shown in example

7, so this region has two open directions. We can consider the d-dimensional space as a

region with origin (0; 0; :::; 0) and call it the universal region. This region has 2d open

directions (one positive and one negative direction for each of the d axes) and can be

denoted by ($0 ;$0 ; :::;$0 ).

A region S is said to be a subregion of a region R if the origin of S is in R and the set of

open directions of S is a subset of the open directions of R. We also say that two regions

R and S are disjoint if they have disjoint sets of open directions and neither origin is

inside the other region. The generalization to more than two regions is analogous. The

complement of a region R is a region, denoted by R, such that the origin of R is the

same as the origin of R and the set of of open directions of R is the complement of the

set of open directions of R relative to the set of open directions of the universal region.

Example 8. The complement of the region R = (
 ��1;�!1 ) is the region (

�!�1; �1 ).

There are points in the universal region that belong to neither R nor R. For example,

the point (0; 2) is not in R or R in the previous example.

For a point p = (p1; p2; :::; pd) and a subset U of the set of open directions of the

universal region, we de�ne a function move(P,U) which generates a new point p0 =

(p01; p
0

2; :::; p
0

d
) such that for the ith dimension, 1 6 i 6 d, p0

i
= p

i
if U does not contain

either the positive direction or the negative direction of the ith axis or if U contains

both of them. If S contains only the positive direction then p0
i
= p

i
+1 and if it contains

only the negative direction of the ith axis, p0
i
= p

i
� 1.

3.3.2 Constructing an optimum MIRS

In this section we characterize graphs supporting an optimum h1; di-MSLIRS with

dynamic cost links. We can consider the assignment of d-dimensional labels to the

vertices of a graph as assigning corresponding points in d-dimensional space to each

vertex. We will use a vertex and its corresponding point interchangeably.

We start with an observation about boundary sets.
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Observation 3. For a set of points Q in d-dimensional space and a boundary set B

of Q, any d-dimensional interval I containing all points in B contains all points of

Q. This is true because if p = (p1; p2; :::; pd) is an arbitrary point in Q, then for each

dimension i, 1 6 i 6 d, there is a minimum point m
i
and a maximum point M

i
in Q

(m
i
and M

i
can be the same) such that m

i
6 p

i
6M

i
. Since I contains these minimum

and maximum points, the ith dimension of I covers the ith dimension of p and so I

contains p. Therefore, I contains all of the points in Q.

In the following lemma, we use this observation to prove a restriction on the number of

non-articulation points in a graph supporting an optimum h1; di-MSLIRS with dynamic

cost links.

Lemma 7. Any connected non-trivial graph G with more than 2d non-articulation

points cannot support an optimum h1; di-MSLIRS with dynamic cost links.

Proof. If G has an optimum h1; di-MSLIRS with dynamic cost links, the points cor-

responding to the labels of the vertices in G will have a boundary set B of at most

2d points. Since G has more than 2d non-articulation points, we have at least one

non-articulation point, say v, such that the point corresponding to v is not in B.

G is a connected and non-trivial graph, so v has at least two adjacent vertices. We

let u be an arbitrarily chosen neighbor of v. Recalling that the links have dynamic

costs, and there must be a labeling of the links of G for any assignment of costs. We

can consider a case in which the cost of the link (v; u) is 1 and the cost of any other

link adjacent to v is arbitrarily large, say M (where M is at least n2). The cost of any

other link of the graph is set to be 1 (Figure 3.10).

Since v is a non-articulation point, the shortest path from v to any other vertex in G

must go through the link (v; u). To prove this, let us assume that the shortest path

from v to some other vertex t in G goes through a neighbor z of v such that z 6= u.

Since v is not an articulation point, if we remove v there exists a path connecting u

and z. The cost of this path is fewer than M because we have fewer than n2 links of

cost 1, and we know M > n2. Therefore, the path going from v to u, to z, and then

z to t, has a smaller cost than the path going from v to t through the edge (v; z).

This is a contradiction because the path from v to t passing through z is a shortest

path. If v instead were an articulation point, this argument would not work, because

by removing v the graph becomes disconnected.
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This argument together with Observation 3 shows that the interval I assigned to (v; u)

contains all other points including the points in the boundary set B. Therefore, I

contains v, which contradicts the fact that the IRS is strict. �

1

1

Path connecting

v

M

M
u

G

z

u and z t

Figure 3.10: Costs assigned to the links of the graph G. Here, we consider a case in

which M is at least n2.

In the following sections, we will show that the necessary condition stated in Lemma

7 is also a suÆcient condition for a graph to support an optimum h1; di-MSLIRS with

dynamic cost links. We will �rst give an algorithm to assign labels to the vertices of

the graph. Then, we will show that with those labels assigned to the vertices, and for

assignment of any costs to the links, one can always �nd a suitable set of labels for the

links so that the graph supports an optimum h1; di-MSLIRS.

Labels of Vertices

We consider a graph G supporting an optimum h1; di-MSLIRS with dynamic cost links.

There is a labeling of the vertices of G such that for any set of costs assigned to the

links of the graph, one can always �nd a suitable set of labels for the links. By Lemma

7, G has at most 2d non-articulation points. In this section we show how to �nd such

a labeling for the vertices of any graph having at most 2d non-articulation points.

We will use a structure, which we call the block tree of a graph, in order to �nd such

a labeling of vertices. This structure de�nes an ordering of the vertices of the graph,

based on which we will assign the labels to the vertices. By using this ordering we will

assign labels of vertices such that all the non-articulation points will be in a boundary

set and articulation points are placed so that they are not contained in any boundary

set. In other words, when we assign a point in d-dimensional space, this assignment
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is done in a way that in some direction (one of the 2d directions of the d-dimensional

space) this point is a minimum or a maximum point and we will not place any other

point beyond this one in that speci�c direction.

The block tree of a graph G, which is denoted by BT (G), is a structure in which each

block of the graph G is represented by a vertex. BT (G) also has one vertex for each

articulation point in G. Whenever there is no ambiguity, we will use the same name

for a block in G and its corresponding vertex in BT (G) and also for any articulation

point in G and its corresponding vertex in BT (G). If and only if an articulation point

v is in a block B of G, the corresponding vertices in BT (G) will be joined by an edge.

Figure 3.11 depicts an example of a block tree. The graph indicated in this example,

has four blocks B0; B1; B2; B3 and two articulation points u1 and u2. The vertex u1 is

connects B0; B1 and B2 in G, so in the block tree BT (G) the vertex representing u is

connected to the vertices representing B0; B1 and B2.

(b)(a) (c)

u1
v2

u2

B3

B0B1

B3

B2

v4

v6

v3

u1

v1

v5

v7

u2

B1
B0

B2

Figure 3.11: (a) A graph G (b) blocks of G and (c) the block tree of G.

It is a trivial task to verify that the block tree of a graph G is a tree (otherwise the

blocks of the graph form a cycle, which is impossible).

As mentioned earlier, we will use this tree (the block tree BT (G)) to assign labels to

the vertices of the graph G. We can consider BT (G) as a tree rooted at an arbitrary

block B0. To assign labels in d-dimensional space to the vertices of a graph G, we will

assign each vertex v a region in d-dimensional space. The label of a vertex v will then

be the origin of the region assigned to v.
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Intuitively, we will initially assign the whole d-dimensional space to the root B0 of the

block tree. Then we subdivide the regions assigned to the root of each subtree among

the vertices in that subtree. For a node v which is the root of more than one subtrees

the regions assigned to di�erent subtrees will be disjoint. This property will allow us

to assign intervals to the links of the graph without any conicts, as we will see later.

Formally, starting at the root B0 (an arbitrary block) of the block tree, we letB0; B1; B2;

::: be a topological sort of the blocks in BT (G). We denote by v1; v2; :::; v� (� 6 2d) the

list of all non-articulation points in B0 followed by the set of non-articulation points

in B1 and so on. For each non-articulation vertex, v
i
, (1 6 i 6 minf�; dg) we assign an

open direction OD(v
i
) which is the positive direction of the ith axis. If � > d, for each

v
i
, (d < i 6 �) we also assign an open direction OD(v

i
) which is the negative direction

of the (i� d)-th axis.

Example 9. The graph depicted in Figure 3.11 has 7 non-articulation points, so if we

want this graph to have an optimum h1; di-MSLIRS with dynamic cost links, d must be

at least 4. Recalling that the axes are denoted by x1; x2; x3; x4 then OD(v1); OD(v2); :::;

OD(v7) will be
�!x1;�!x2;�!x3;�!x4; �x1; �x2 and  �x3, respectively.

Now that each non-articulation point has an open direction, we assign a set of open

directions to each articulation point and each block in BT (G) as follows: the set of

open directions assigned to an articulation point v is the union of the open directions

of all non-articulation points in a subtree of BT (G) rooted at v. We denote this set by

OD(v).

Similarly, the set of open directions assigned to a vertex B in BT (G) representing

a block, which is denoted by OD(B), is the union of the open directions of all non-

articulation points in a subtree of BT (G) rooted at B. Obviously, this subtree includes

all non-articulation points in the block B.

Example 10. For the graph G denoted in Figure 3.11 (a), the block tree is depicted

in Figure 3.11 (b). Here, B0 is the root of the block tree. In this graph, OD(u1) =

OD(B2) = f �x2; �x3g which is the same as OD(v6)[OD(v7) (the non-articulation points

in the subtree rooted at B2 or u1).

The next step is to assign an origin to each set of open directions associated with a

vertex in BT (G). The origin of the region assigned to v (any vertex in BT (G)) will be
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(b)(a) (c)

B2

v1

B0

u1

B1

B0

v3

v2

v4

u2

u1

B2

B1

u2

X(v1)

X(B0)
X(v2)

x1

x2

X(B1)

X(B2)

X(u1)

X(u2)

X(v3)

X(v4)

Figure 3.12: (a) A graph G (b) The block tree of G rooted at B0 (c) The origin of each

region assigned to each block and each vertex in G.

denoted by X(v). This will be used for calculating the origin of each non-articulation

point later.

We start with block B0 and let X(B0) = (0; 0; :::; 0). If G has 2d non-articulation

points, recalling that we have already assigned all 2d open directions to B0, the region

assigned to B0 would be the universal region, ($0 ;$0 ; :::;$0 ). To compute the origin

of the region assigned to u, a child of a vertex v with a known origin, we let X 0(v; u) =

move(X(v); OD(v)). Then we let X(u) = move(X 0(v; u); OD(u)). This is the origin

of the region associated with u. Since the root of the tree BT (G) has a known origin,

by repeating this step every vertex in BT (G) will eventually have an origin.

If v is a non-articulation point in a block B of G, the origin of the region assigned to

v (which has exactly one open direction), X(v), is computed as follows: we �rst let

X 0(B; v) = move(X(B); OD(B)). Then we let X(v) = move(X 0(B; v); OD(v)) which

is the origin of the region assigned to v.

Example 11. In the graph G depicted in Figure 3.12 the region associated with B0 is

($0 ;$0 ). To �nd X(v1) we move X(B0) = (0; 0) in the direction of OD(B0) (which

includes all four directions) and obtain (0; 0). Then this point is moved in the direction

of OD(v1) which is �!x1. Therefore, X(v1) = (1; 0).
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In the optimum h1; di-MLIRS de�ned on G, we let the label assigned to each vertex

v, denoted by L(v), be the same as the origin of the region assigned to that vertex

(L(v) = X(v)). Figure 3.13 is the pseudo code for labeling the vertices of a graph G

(the Vertex Labeling algorithm or VL algorithm for short). We can verify that this

algorithm can be executed in O(n +m) time (where m is the number of edges in the

graph).

Before showing how to �nd the labels of links for a given set of link costs, we review

properties of the labels assigned to the vertices.

Observation 4. For a block B in G, we let X 0(B) = (a1; a2; :::; ad) be the point

resulting from moving X(B) in the direction of OD(B). If v is a non-articulation

point in B, then L(v) = (b1; b2; :::; bd) where bi = a
i
for all i, 1 6 i 6 d except for one

dimension j such that OD(v) = �x
j
or OD(v) = �!x

j
. In this dimension b

j
= a

j
+ 1 or

b
j
= a

j
� 1 based on the direction of OD(v).

Lemma 8. If v is a vertex in a block B or in the subtree of BT (G) rooted at B, the

region R
v
assigned to v by the VL algorithm, is a subregion of the region R

B
assigned

to B.

Proof. First, let us consider a point p in a region R. We let S be a subset of open

directions of R. The point p0 = move(p; S) is a point in R. We can repeat this with

another subset of open directions of R as many times as we want. The �nal point will

still be in R. This is exactly what happens to the origin of R
B
in the VL algorithm,

so X(v) is in R
B
.

The set of open directions assigned to any vertex in the subtree rooted at B (a non-

articulation vertex as well as an articulation vertex or a block) is a subset of open

directions of B. The origin of the region R
v
is in R

B
and the set of open directions of

R
v
is a subset of the set of open directions of R

B
. Therefore, R

v
is a subregion of R

B
.

�

If R
v
is the region assigned to a vertex v in BT (G), the previous lemma shows that all

vertices in the subtree of BT (G) rooted at v are in R
v
. With an argument similar to

that of the proof of Lemma 8 we can verify the following lemma.
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Lemma 9. Any vertex not in the subtree of BT (G) rooted at v is in the region R
v
.

Lemma 10. For e = (u; v) an edge in block B and z a vertex contained in a block

B0 6= B which is in the subtree of BT (G) rooted at B, if the shortest path from u to z

goes through e, then there is a shortest path from u to any other vertex t in the subtree

of BT (G) rooted at B which goes through e.

Proof. To verify this lemma, we notice that any shortest path going from u to any

vertex in the subtree of BT (G) rooted at B not including the node representing B

must go through the articulation point w connecting B to the rest of that subtree.

Since the shortest path from u to z (which is one of those shortest paths) goes through

e, there is a shortest path from u to w going through e. This path can be expanded to

a shortest path for any other vertex t by just adding the shortest path from w to t. �

In the following section, we show how to assign intervals to the links for any set of link

costs.

Labels of Links

In this section we show that for a given graph G and the labels assigned to the vertices

of G using the VL algorithm, introduced in Section 3.3.2, we can always �nd labels for

the links of G for any set of link costs. By this labeling of links, a message from any

source vertex to any destination vertex in G will be routed on a shortest path.

First, we show that if we consider the non-articulation vertices in one block, we can

always �nd labels for the links for any set of costs assigned to the links, so that the

messages are routed on shortest paths.

Lemma 11. With the labels assigned by the VL algorithm, for any subset C of the

non-articulation vertices in a block B, we can always �nd a d-dimensional interval

containing the vertices in C and no other non-articulation vertex in B.

Proof. We assume that X 0(B) is the point resulting from moving X(B) in the direc-

tion of OD(B). Without loss of generality, we can assume that X 0(B) = (0; 0; :::; 0)



CHAPTER 3. CHARACTERIZATION RESULTS 49

(otherwise we can shift every label by �X 0(B)). By Observation 4 one can verify

that the label of each non-articulation vertex v in B is of the form (0; 0; :::; 1; :::; 0) or

(0; 0; :::;�1; :::; 0) (exactly one coordinate is 1 or �1 and the rest of coordinates are all

0).

We letm
i
be �1 if there is a vertex in C having �1 as its ith coordinate and 0 otherwise.

Similarly, M
i
will be set to 1 if there is a vertex in C having 1 as the ith coordinate

and 0 otherwise. Obviously m
i
6 0 6M

i
.

For any non-articulation point v in C (with L(v) = (b1; b2; :::; bd)) and for any dimension

i, 1 6 i 6 d, we have m
i
6 b

i
6 M

i
. As a consequence, the d-dimensional interval

I = [m1::M1;m2::M2; :::;md
::M

d
] contains all the vertices in C.

We de�ne OD
C
= [OD(v) for all v 2 C. For any non-articulation vertex u in B � C,

OD(u) 62 OD
C
. Therefore, if L(u) = (b1; b2; :::; bd), there is a dimension j such that

b
j
< m

j
or b

j
> M

j
(this is the direction which belongs to OD(u) but not to OD

C
).

Hence, u is not in I and thus I contains exactly the vertices of B which are in C. �

The next step is to generalize this argument to the case in which C contains articulation

points of B, not including the parent of B in BT (G) (if it has any).

Lemma 12. With the labels assigned by the VL algorithm, for any subset C of the

vertices in a block B which does not include the parent of B in BT(G), we can always

�nd a d-dimensional interval containing exactly the vertices in C and no other vertex.

Proof. For any articulation point z, we let t(z) denote the number of non-articulation

points in the subtree(s) of BT (G) rooted at z. We also let B0 be the set resulting from

replacing each articulation point z in B with the a set of t(z) new non-articulation

points z1; z2; :::; zt (B
0 = B � fzg [ fz1; z2; :::; ztg for any articulation point z in B).

These new vertices (fz1; z2; :::; ztg) all together represent the articulation point z in

B. We run the VL algorithm one more time on the vertices in B0 assuming that

the vertices z1, z2, ..., zt are considered consecutively in the order of non-articulation

points and they get the same open directions as the open directions assigned to the

non-articulation points in the subtree(s) of BT (G) rooted at z.

Lemma 11 shows that for any subset C 0 of B0 there is an interval containing exactly the

vertices in C 0. If C contains the articulation point z, we let C 0 = C�fzg[fz1; z2; :::; ztg.
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By Lemma 11 there is an interval I containing exactly the vertices in C 0. If I contains

all of the points z1; z2; :::; zt, it is easy to show that it will also contain z. Hence, this

interval contains all the vertices in C. On the other hand, any vertex v in B � C is

in B0 � C 0. It means if I contains a vertex v in B � C, it also contains a point from

B0 � C 0 which is impossible by Lemma 11. �

Example 12. In graph G shown in Figure 3.12, the origin of the region associated

with B2 is (�4;�4) and moving this point in the direction of OD(B2) results in the

point (�5;�5), because OD(B2) contains the negative direction of both axes. If we

consider this point as the origin, the coordinates of X(v3) and X(v4) (v3 and v4 are

non-articulation points in B2) are (�1; 0) and (0;�1) respectively. If C = fv3; v4g then
the interval covering C would be I = [�1::0;�1::0].

In the VL algorithm, each block has at most one articulation point as its parent in

BT (G). For a block B and v the vertex in BT (G) which is the parent of B, Lemma 8

shows that all the vertices in the subtree of BT (G) rooted at B are contained in the

region R
B
. Lemma 9 states that any other vertex is in R

B
.

Lemma 13. If I is an interval in the region R
B
containing the articulation point v, we

can �nd another interval I 0 such that I 0 contains all the vertices in the subtree rooted

at v and the same set of points in R
B
as I. Also, if I is an interval in R

B
containing

v, we can �nd another interval I 0 such that I 0 contains all the vertices which are not

in the subtree rooted at v and the same set of points in R
B
as I.

Proof. If we repeatedly move L(v) (which is X(v)) in the direction of OD(B) and if

I 0 denotes the interval that contains the resulting point, we can verify that I 0 contains

the same set of points in R
B
as I. By moving L(v) suÆciently often in the direction

of OD(B), the new interval I 0 will also contain all points in R
B
(any point with �nite

coordinates which is in R
B
), which completes the proof. The other claim can be proved

similarly. �

Now, let us assume that we are given the costs of the links in a graph G and want

to �nd the labels for the links based on the labels given by the VL algorithm to the

vertices of G. The following lemma illustrates how to do this.
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Lemma 14. For any assignment of costs to the edges of a graph G, and with labels

assigned to the vertices of the graph by the VL algorithm, we can always �nd suitable

intervals for the links so that the result is an optimum h1; di-MSLIRS.

Proof. First, we will consider a link e = (u; v) and the set of vertices S
e
reachable (by

shortest paths) through e. The link e is in a block, say B, of G. We let Q1 = B \ S
e
,

that is, Q1 is the subset of vertices in B that are contained in S
e
. Let us consider a

vertex z which is a vertex in the subtree of BT (G) rooted at B. If z is not in B but

is contained in S
e
, by Lemma 10, S

e
also contains all the vertices in the subtree of

BT (G) containing z (we denote the vertices in this subtree by the set Q2). Finally, if

z is not in a child block of B, S
e
must contain all the vertices that are not children of

B (we denote the set containing all these vertices by Q3).

Lemma 12 shows that we can always �nd an interval covering exactly the vertices in

Q1. If there is any point in Q2 (or Q3) then the articulation point joining B to the

vertices in Q2 (Q3 respectively) must also be in Q1. This is because this articulation

point is the only vertex connecting B to the child subtree (or the vertices of G that

are not contained in the subtree rooted at B) and hence the only way to reach those

vertices. Lemma 13 shows that we can always �nd an interval containing the same set

of points in Q1 at the previously assigned interval, and covering all the points in Q2

(Q3). This completes the proof. �

Example 13. In the graph G of Figure 3.12, let us assume that the cost of the

edge (v1; v2) is extremely large and the cost of any other edge is 1. The interval as-

signed to the edge e = (v1; u1) should contain all the vertices, except v1. The interval

[�1::0;�1::1] contains Q1 = fv2; u1g. Therefore we can �nd another interval which

contains all vertices in the subtree of BT (G) rooted at u1 (Lemma 13). This interval

is [�6::0;�6::1].

Now we can easily prove the main result of this section.

Theorem 10. A graph G has an optimum h1; di-MSLIRS with dynamic cost links, if

and only if G has at most 2d non-articulation vertices.

Proof. Lemma 7 states that any graph having more than 2d non-articulation points

can not support an optimum h1; di-MSLIRS with dynamic cost links. By Lemma 14 if
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a graph G has at most 2d non-articulation points we can always �nd a �xed labeling

for the vertices such that for any costs assigned to the links, we can �nd intervals for

each link to support an optimum h1; di-MSLIRS. �

Corollary 3. The class of graphs supporting an optimum h1; di-MSLIRS with dynamic

cost links is a strict subset of the class of graphs supporting an optimum h1; d + 1i-
MSLIRS with dynamic cost links.

In this chapter we completely characterized the class of networks supporting three

variants of MIRS: h1; di-MLIRS, h1; di-MSLIRS and optimum h1; di-MSLIRS with dy-

namic cost links. We showed that increasing the number of dimensions in all these

routing schemes makes the routing scheme more powerful. These are the only known

general results for MIRS (for more than one dimension). In the following chapter, we

will study the quality of routing problem for MIRS.
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Algorithm VertexLabeling(G, BT );

Input: G (a simple connected and undirected graph).

BT (the block tree of G).

Output: L (an array containing a d-dimensional label for each vertex of G).

begin

let k  number of non-articulation points in G;

let d dk=2e;
let B0; B1; ::: be the DFS order of blocks in BT ;
let v1, v2, ..., vk be the order of non-articulation vertices

in B0; B1; ::: respectively;

for each v
i
, 1 6 i 6 d

let OD(v
i
) �!x

i
;

for each v
i
, d < i 6 k

let OD(v
i
)  ��x

i�d;
for each vertex v of BT

let OD(v) empty set;
for each non-articulation vertex u in the subtree of BT rooted at v

let OD(v) OD(v) [ fOD(u)g ;
let X(B0) (0; 0; :::; 0);
for each vertex v in BT such that X(v) is already known

for each child c of v

let Y  move(X(v); OD(v));
let X(c) move(Y;OD(c));

for each block B in G

for each non-articulation point v in B

let Y  move(X(B); OD(B));
let X(v) move(Y;OD(v));

for each vertex v in G

let L(v) X(v);

end;

Figure 3.13: Algorithm for labeling the vertices of a given graph G.



Chapter 4

Bounds on the length of routing

paths

A commonway to measure the eÆciency of a routing scheme is in terms of the maximum

length of a path which a message traverses. We will say that a routing scheme has

upper bound B
u
if for every graph the maximum path length is at most B

u
, and lower

bound B
l
if there exists a graph G for which the maximum path length is at least B

l
.

For interval routing, there is a trivial upper bound of 2D on the maximum length of the

routing path, where D is the diameter of the underlying graph [SK82]. The problem of

�nding a lower bound for routing schemes has been studied for several years and there

have been many improvements for this bound. Tse and Lau have proved a 2D � 3

lower bound which is very close to the best known upper bound [TL97a].

This quantity has also been studied for LIRS by Eilam et al. [EMZ99]. They construct

a graph and prove that using any LIRS the length of the longest path traversed by

a message in this graph is in 
(D2). They also present a family of graphs for which

this lower bound is tight, but the problem of �nding an upper bound for this quantity

remains open even for most known classes of graphs.

In this chapter, we introduce some upper and lower bounds for di�erent multi-dimensio-

nal schemes. In Section 4.1 we prove a lower bound of 3
2
D on the length of the longest

routing path under any hk; di-MLIRS. Then, in Section 4.2 we illustrate a lower bound

of 
(D2=d) for h1; di-MSLIRS and h1; di-MLIRS. Finally, in Section 4.3 we prove an

upper bound of O(D) for h1; di-MLIRS on interval graphs.

54
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4.1 A lower bound for hk; di-MLIRS

Tse and Lau have proved a 3
2
D lower bound on the length of the longest routing path

for h2; 1i-MLIRS where D is the diameter of the network [TL95]. We generalize their

result to the d-dimensional case in this section and prove a lower bound of 3
2
D for

hk; di-MLIRS.

4.1.1 Preliminary results

The labels assigned to the nodes of a network in a d-dimensional MIRS can be consid-

ered as points in d-dimensional space. Recalling this fact, in this section we show that

for any k 2 IN, there is a set of points P in d-dimensional space, such that a subset S

of P cannot be covered with k intervals without covering some point in P � S. In the

next section, we will use this result to construct a graph G and show that, no matter

how we assign d-dimensional labels to the vertices of this graph, if the longest routing

path is shorter than 3
2
D in G, there is an edge which requires more than k intervals.

In other words, for any hk; di-MLIRS on G the length of the longest routing path is at

least 3
2
D.

Let us consider a set of points x1; x2; :::; x2k+1 in one-dimensional space such that x
i
<

x
i+1, for 1 6 i 6 2k. Clearly, in order to cover exactly the points x1; x3; :::; x2k+1 in this

set we need to have at least k+1 intervals. The following de�nition illustrates how we

can generalize this technique to two dimensions.

De�nition 18. A set M of disjoint points in the plane is called nonincreasing (non-

decreasing), if for any two points p1 = (x1; y1) and p2 = (x2; y2) in M , x1 < x2 implies

y1 > y2 (y1 6 y2). If we sort these points in increasing order of their �rst coordinates,

we will have a nonincreasing (nondecreasing) path. The length of a path is the size of

the corresponding set of points. The point p with the largest �rst coordinate is called

the endpoint of a path W and we say that the path W ends at the point p.

De�nition 19. A set M of points in the plane is called monotone, if M is nonin-

creasing or nondecreasing. Similarly, a nonincreasing or nondecreasing path is called

a monotone path.
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We are looking for a set of points in the plane which have a subset that cannot be

covered by k intervals. More precisely, we de�ne a k-coverable subset S of a set of

points P as follows.

De�nition 20. A subset S of a set of points P in the d-dimensional space is called

k-coverable if there exist k intervals covering the points in S without containing any

other point in P � S. Let us consider a graph G = (V;E), a d-dimensional MIRS

de�ned on G and, a subset U of the vertices of G. We denote by P (V ) the set of points

corresponding to the vertices in V and by P (U) the set of points which corresponds to

the vertices in U . The set of vertices U is called k-coverable if P (U), which is a subset

of P (V ), is k-coverable.

Let us consider a monotone path Q de�ned by the points p1; p2; : : : ; p2k+1. Clearly, any

2-dimensional interval containing two points p
i
and p

j
(1 6 i < j 6 2k+1) will contain

all points p
m
, i 6 m 6 j). Therefore, in order to cover the points p1; p3; : : : ; p2k+1

without covering p2; p4; : : : ; p2k, we will need at least k + 1 intervals (one interval for

each point). Thus, we have proved the following lemma.

Lemma 15. A monotone path of length 2k + 1 has a subset which is not k-coverable.

The next step is to show that for any k 2 IN we can �nd a set of points P in the plane

which contains a monotone path of length at least k. The following lemma shows that

such a set of points always exists (for signi�cantly large jP j). This lemma was originally

proved by Er�os and Szekeres [ES35] but since we are going to generalize it, we give the

proof.

Lemma 16. For any set P consisting of at least (k � 1)2 + 1 disjoint points in the

plane, there exists a subset M of P such that jM j > k and M is monotone.

Proof. Each monotone path in the plane is either nondecreasing or nonincreasing or

both. For any point p 2 P , we let L+(p), (L�(p)) denote the length of the longest

nondecreasing (nonincreasing) path ending at point p. We consider two points p1 =

(x1; y1) and p2 = (x2; y2) and without loss of generality assume that x1 6 x2. Obviously

we have either L+(p2) > L+(p1) or L�(p2) > L�(p1). This means that if we assign
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each point p an ordered pair (L+(p); L�(p)), then for any two distinct points p1 and p2

we cannot have (L+(p1); L�(p1)) = (L+(p2); L�(p2)).

On the other hand, there exist at most (k � 1)2 pairs (a; b) such a; b 2 IN, 1 6 a < k

and 1 6 b < k. If we have (k � 1)2 + 1 or more disjoint points in the plane, since the

pair (L+(p); L�(p)) assigned to each point p is unique, we will have at least one point

p with L+(p) > k or L�(p) > k. This means p is the endpoint of a monotone path of

length at least k. �

(1; 1)

(1; 2)

(2; 1)

(2; 2)

(1; 3)

p1

p2

p3

p4

p5

Figure 4.1: A set of �ve points in the plane and a nondecreasing path of length three.

For example in the set of points illustrated in Figure 4.1 the pair incident to each point

p indicates (L+(p); L�(p)). This example is in two-dimensional space, so if we have �ve

points, we will have a monotone path of length three. The point p5 is the endpoint of

a nondecreasing path of length three in this example.

We have now shown that for any k 2 IN, there is a set of points P in the plane with a

subset S which is not k-coverable. To extend this result to higher dimensions we �rst

need to de�ne monotonicity in higher dimensions.

De�nition 21. In d-dimensional space, we let �
i
be the plane passing through the �rst

axis and the ith axis (2 6 i 6 d). A set M is called monotone in d-dimensional space

if the projection of all points in M on any �
i
; 2 6 i 6 d, produces a monotone set in

that plane. If we sort these points in M in increasing order of �rst coordinates we will

have a monotone path in d-dimensional space.

Observation 5. It is easy to verify that if M is a monotone set, then projecting points

in M to the plane passing through any two axes produces a monotone set in that plane.
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Now we can extend Lemma 16 to higher dimensions (this result has been independently

proved by Heinrich-Litan [HL00]).

Lemma 17. For any set P consisting of F(k; d) = (k � 1)2
d�1

+ 1 disjoint points

in d-dimensional space, there exists a subset M of P such that jM j > k and M is

monotone.

Proof. The proof is a trivial extension of the idea used in the proof of Lemma 16. Let

us consider a monotone path in d-dimensional space. By the de�nition of a monotone

path, the �rst coordinates of the points in M are in increasing order. For each other

coordinate i, 2 6 i 6 d, the order of points can be either nonincreasing or nondecreasing.

Since we have d � 1 coordinates other than the �rst one, and the points can be in a

nonincreasing or nondecreasing order in each of these d � 1 coordinates, we can have

2d�1 types of monotone paths.

Now let us consider a point p in P . For each of the 2d�1 di�erent monotone path

types, we can assign a number to p indicating the length of the longest monotone

path of that type ending at p. We let L0(p); L1(p); : : : ; L2(d�1)
�1(p) denote these num-

bers and assign a tuple (L0(p); L1(p); : : : ; L2(d�1)
�1(p)) to each point p in P . For

any two points p1 and p2 in P we cannot have (L0(p1); L1(p1); : : : ; L2(d�1)
�1(p1)) =

(L0(p2); L1(p2); : : : ; L2(d�1)
�1(p2)).

There are at most (k � 1)2
d�1

tuples of the form (a0; a1; : : : ; a2d�1
�1) such that a

i
< k

(0 6 i 6 2d�1 � 1). Since each point in P has a unique tuple, any set consisting of at

least (k � 1)2
d�1

+ 1 points has a point p such that L
i
(p) > k for some i; 0 6 i 6 2d�1.

This point is the endpoint of a monotone path of length at least k. �

4.1.2 Constructing the graph

In this section we construct a graph G which for any hk; di-MLIRS has a longest routing

path of length at least 3
2
D, where D is the diameter of G. The graph we are going to

construct is such that a subset U of its vertices (using the result of previous section) is

not k-coverable. We will show that there is an edge in the graph which must cover all

the vertices in U so that the length of the routing path is less than 3
2
D, which is not

feasible.
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We construct graphs G(r; w; t) for integer values r and w, 1 6 r < w, and for a non-

negative integer t which determines the diameter of the graph. The vertices of G(r; w; t)

include a set of verticesX = fu1; u2; :::; uwg. We can partition the set X into two parts

such that the �rst part has exactly r elements in � = (wr ) di�erent ways. We let Y
l
,

1 6 l 6 � be the set of elements in the �rst part and Z
l
be the set of elements in the

second part in the lth way of partitioning the set X.

The graph G(r; w; t) also has a vertex a
l
, 1 6 l 6 �, for each way of partitioning X into

two parts as described above. Each vertex a
l
has exactly two neighbors b

l
and c

l
. The

vertex b
l
, 1 6 l 6 �, is connected to each vertex in Y

l
by a path of length t+ 1. Also,

the vertex c
l
, 1 6 l 6 �, is connected to each vertex in Z

l
through a path of length

t+ 1.

We consider the messages originating from a
l
, 1 6 l 6 �, and going to the vertices u

i
,

1 6 i 6 w. Each such message must be routed through b
l
or c

l
since these are the only

neighbors of a
l
. If a message originating from a

l
and going towards a node in Y

l
is

not routed through b
l
it is easy to verify that the length of the routing path is greater

than 3
2
D. Now, if we can �nd a subset Y

i
of X which is not k-coverable (we will see

later in proof of Theorem 11 that by choosing suitable values for r and w based on

the values of k and d, such a subset Y
i
always exists), then the intervals assigned to

the edge (a
i
; b

i
) cannot cover all the vertices in Y

i
. Therefore, for some node in Y

i
the

message must be routed through c
i
, which results in a path of length at least 3

2
D.

Intuitively, the graph G(r; w; t) consists of three parts: (i) A set of w disjoint subgraphs,

called forks, where each fork G
f
, 1 6 f 6 w consisting of � parallel paths of length

t� 1 and a vertex u
f
which is connected to one endpoint of all these paths; (ii) a set

of � disjoint paths, where the ith path is b
i
; a

i
; c

i
; and (iii) a set of edges connecting

forks to the vertices in part (ii). We can consider partitioning X as partitioning forks

since each G
f
has exactly one element from X. For each way of partitioning X, b

l
is

connected to any fork which contains u
f
, an element from the �rst partition, and c

l
is

connected to all other forks (Figure 4.2).

More formally, we de�ne G(r; w; t) = (V;E), 1 6 r < w and 0 6 t, where V and E are

de�ned as follows.

V = fu
f
j 1 6 f 6 wg

[ fa
l
; b

l
; c

l
j 1 6 l 6 �g

[ fv
f;c;l
j 1 6 f 6 w; 1 6 c 6 t; 1 6 l 6 �g
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The edges of G(r; w; t) are composed of

i) edges connecting a
l
to b

l
and c

l
, 1 6 l 6 �;

ii) edges of the path (of length t+ 1) connecting b
l
to the vertices in Y

l
(1 6 l 6 �);

iii) edges of the path (of length t+ 1) connecting c
l
to the vertices in Z

l
(1 6 l 6 �).

More precisely:

E = f(a
l
; b

l
); (a

l
; c

l
)j 1 6 l 6 �g

[ f(u
f
; v

f;1;l)j 1 6 f 6 w; 1 6 l 6 �g
[ f(v

f;c;l
; v

f;c+1;l)j 1 6 f 6 w; 1 6 c 6 t� 1; 1 6 l 6 �g
[ f(b

l
; v

i;t;l
)j i 2 Y

l
; 1 6 l 6 �g

[ f(c
l
; v

i;t;l
)j i 2 Z

l
; 1 6 l 6 �g

Figure 4.2 illustrates parts of the graph G(2; 5; 2) as an example.

Proposition 1. The diameter D of the graph G(r; w; t) is 2t+ 4.

Proof. Let us consider the fork G
f
. There is a path of length at most t+2 from any

vertex in G
f
to a vertex a

l
for some l, 1 6 l 6 �. Therefore, the distance between any

pair of vertices in G
i
and G

j
, 1 6 i; j 6 w is at most 2t + 4. This is also true for the

vertices in fb
l
j 1 6 l 6 �g or fc

l
j 1 6 l 6 �g. Hence, D is at most 2t+4. We can verify

that for any i and j, 1 6 i; j 6 �, the distance between a
i
and a

j
is 2t + 4 (simply

going from a
i
to any vertex u

k
, 1 6 k 6 �, and then going to a

j
), so the diameter of

the graph G(r; w; t) is 2t+ 4. �

Now we can state the main theorem of this section.

Theorem 11. There is a graph G such that for any hk; di-MLIRS the length of the

longest routing path is at least 3
2
D, where D is the diameter of the graph G.
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u1

u2

u3

u4

u5

a1

a2

b1

b2

b
�

a
�

c
�

c2

c1

v2;1;1

v1;2;1

v1;1;2 v1;2;2

v1;1;� v1;2;�

v1;1;1

v3;1;1

Figure 4.2: Parts of the graph G(2; 5; 2).

Proof. Let us consider the graph G(r; w; t) where r = k + 1, w = F(2k + 1; d) (F is

the function de�ned in Lemma 17). For a given diameter D, we can choose the value

of t based on Proposition 1 to construct a graph with diameter D. We will show that

there is a vertex a
l
, 1 6 l 6 � such that the k intervals assigned to the link (a

l
; b

l
)

cannot cover all the vertices in Y
l
, and hence the message for some vertex in Y

l
is

forwarded through the edge (a
l
; c

l
) which resulting in a path of length at least 3t+ 6.

Suppose that there is a hk; di-MLIRS for this graph such that the length of the longest

routing path is less than 3
2
D. The d-dimensional label assigned to each vertex can be

considered as a point in d-dimensional space (with integer coordinates). We will use

these two representations interchangeably.

The set U = fu
f
j 1 6 f 6 wg has F(2k + 1; d) points. By Lemma 17, there is a
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subset M of these points which forms a monotone path and consists of at least 2k + 1

points. Lemma 15 indicates that M has a subset S containing k + 1 vertices which is

not k-coverable.

Since r = k + 1, there is an integer l, 1 6 l 6 �, such that Y
l
= S and therefore, Y

l

is not k-coverable. There are at most k intervals assigned to the edge (a
l
; b

l
). These

intervals cannot cover exactly the vertices in Y
l
, so either there is a vertex in Z

l
that is

routed through the edge (a
l
; b

l
) or there is a vertex in Y

l
which is routed through the

edge (a
l
; c

l
). In either case, the length of the routing path is at least 3t+ 6 or 3

2
D and

the proof is complete. �

In the next section we will prove a better bound for h1; di-MLIRS and h1; di-MSLIRS.

4.2 Lower bounds for h1; di-MLIRS and h1; di-MSLIRS

Eilam et al. have proved a lower bound of 
(D2) on the length of the longest path

traversed by a message using one-dimensional LIRS and SLIRS [EMZ99]. In this section

we generalize their result and show that for any d > 1, there is a graph which for any

h1; di-MSLIRS or h1; di-MLIRS the length of the longest routing path is 
(D2=d).

4.2.1 Bound for h1; di-MSLIRS

To prove this bound, �rst we construct a graph G
l;r
for a positive even integer l and an

odd integer r > 3. The graph G
l;r

consists of a r isomorphic subgraphs, called wings,

each having l2 + 1 vertices, say vi0; v
i

1; :::; v
i

l
2 for the ith wing. In the ith wing, each

vertex vi
j
is connected to the vertex vi

j+1, for 0 6 j < l2, and the vertex vi
cl
is connected

to the vertex vi(c+1)l, for 0 6 c < l. We also have edges between vi0 and v
(i mod r)+1
0 for

1 6 i 6 r (Figure 4.3).

We will show that there is a wing W of the graph G
l;r

such that d paths originating

from W , cover all edges in the W . Since each wing has �(D2) edges, there is a path

of length 
(D2=d).

Proposition 2. The diameter D of the graph G
l;r

is 3l � 2 + (r � 1)=2.
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Wing 5

Wing 1

Wing 2

Wing 3 Wing 4

v1
1

v1
2

v1
0

v2
0

v3
0

v4
0

v5
0

v1
17

v1
15

v3
15

Figure 4.3: The graph G4;5 (the distance between v
1
15 and v315 is 12 in this graph).

Proof. In each wing, the length of the shortest path from any vertex vi
j
to vi0 is at

most 3l=2 � 1. The vertices vi0, 1 6 i 6 r, form a cycle of length r, so the longest

distance between two vertices vi0 and vj0, 1 6 i; j 6 r, is at most (r � 1)=2. Thus, the

distance between any two vertices is at most 3l � 2 + (r � 1)=2. It is easy to verify

that the shortest path between v1
l
2
�l=2+1 and v

(r+1)=2

l
2
�l=2+1 is 3l � 2 + (r � 1)=2, and the

proposition follows (Figure 4.3). �

Each wing of the G
l;r

graph has 
(l2) edges. We will show that there is a path which

goes through at least 1
d

of these edges. Clearly, the length of this path is 
(l2=d).

Proposition 2 shows that the diameter of the graph is in �(l), so the length of this

path is in 
(D2=d).
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Theorem 12. For any d > 1 there is a graph G such that in any h1; ki-MSLIRS the

length of the longest routing path is in 
(D2=d).

Proof. For a given diameter, D > 1, let us consider the graph G
l;r

where l = 1
3
(D +

d+2) and r = 2d+1. These values are chosen so that the diameter of the graph is D.

This graph is not a weak (2d + 1)-windmill graph, thus by Theorem 9 in Section 3.2

there is a h1; di-MSLIRS de�ned on this graph. The labels assigned to the vertices of

the graph can be considered as points in d-dimensional space. We denote this set of

points by P .

We let B be an arbitrary boundary set for P (Section 3.1). Clearly, B has at most 2d

points. Since G
l;2d+1 has 2d+1 wings, there is a wing j which does not contain any of

the points in B. We claim that the length of the routing path from vj
l
2 to one of the

points in B is at least 
(D2=d).

Any interval containing all of the points in B will contain every other vertex in the

graph. Since the routing scheme is strict, any interval assigned to the edge (u; v) cannot

contain u. Therefore, the interval assigned an edge (u; v) cannot contain all the points

in B.

Removing any edges in the �rst wing creates a bridge in the graph. Thus, if there exists

an edge e whose label does not contain any points in B, there must be another edge (a

bridge resulting from removing e) having all those points which, as we just mentioned,

is not possible. Therefore, any edge in the �rst wing is part of at least one path going

from v1
l
2 to some point in B. Since we have l2 + l edges in the �rst wing and at most

2d paths, there is a path, say W , which has at least (l2 + l)=2d edges. Recalling that

l = 1
3
(D + d+ 2), we can immediately check the following.

The length of the path W >
l2 + l
2d

=
(D + d + 2)2=9 +D + d+ 2

2d

In other words, the length of the path is in 
(D2=d). �

In this proof, we use the fact that the routing scheme is strict. In the next section, we

will show that even if the routing scheme is not strict, we have the same lower bound

of 
(D2=d).
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4.2.2 Bound for h1; di-MLIRS

It might seem that not requiring the interval routing scheme to be strict would give us

more exibility. In this section, we will show that even in this case, there is a 
(D2=d)

lower bound on the length of the longest routing path.

u u0

Figure 4.4: A piece of the graph G0

l;r
.

Here, we use the graph G0

l;r
which is constructed from the graph G

l;r
in the following

way: For each node u in G
l;r
we add a neighbor u0 which is connected only to u via an

edge (u; u0) (Figure 4.4).

Theorem 13. For any d > 1 there is a graph G such that in any h1; ki-MLIRS de�ned

on G, the length of the longest routing path is in 
(D2=d).

Proof. The graph G0

l;r
is not a (2d + 1)-windmill graph, hence, by Theorem 8 in

Section 3.1.2 it has a h1; di-MLIRS.

The diameter of G0

l;r
is two greater than the diameter of G

l;r
. Hence, the diameter of

G0

l;r
is 3l + (r � 1)=2. If (u; v) is an edge in the underlying G

l;r
graph, the interval

assigned to (u; v) cannot contain u0 because the only way to reach u0 from u is through

the edge (u; u0). Therefore, with an argument similar to the proof of Theorem 12 we

can prove a lower bound of 
(D2=d) in this case. �
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4.3 An upper bound for interval graphs

Narayanan and Shende have shown that for any interval graph we can always �nd

an optimum IRS [NS98]. An interval graph is not a 3-windmill graph and therefore

supports LIRS. There is not a known upper bound for the length of the routing paths

induced by LIRS (one dimensional case) in interval graphs. In this section we will prove

an upper bound of 2D � 2 for this quantity where D is the diameter of the graph.

We consider an interval graph G. Each vertex in G has a corresponding interval,

say (s; t), in the interval representation of the graph. We let u
l
be the vertex with

the smallest s value, and u
r
be the vertex with the largest t value. We also denote

the shortest path from u
l
to u

r
by P = (u

l
= v1; v2; :::; vk = u

r
) and the interval

corresponding to the vertex v
i
by I

i
= (s

i
; t

i
), 1 6 i 6 k. The label of a vertex u is

denoted by l(u).

Proposition 3. For any i and j between 1 and k, if s
i
< s

j
then t

i
< t

j
.

Proof. If we have s
i
< s

j
but t

i
> t

j
, the interval I

j
is completely contained in the

interval I
i
(this implies v

j
6= u

l
or u

r
). By the de�nition of the interval graphs, any

neighbor of v
j
is also a neighbor of v

i
. Now it is easy to see that by removing v

j

the length of the shortest path is decreased, a contradiction to the minimality of the

shortest path. �

Theorem 14. For any interval graph G there is a 1-LIRS such that the length of any

routing path is in O(D).

Proof. We will proceed inductively: at step i (1 6 i 6 k) we consider an induced

subgraph of G, G
i
, whose vertex set consists of v

i
and any vertex u in G whose corre-

sponding interval lies completely to the left of the point t
i
.

Proposition 3 shows that the intervals corresponding to v1; v2; :::; vk have an ordering

that makes this iteration feasible. At each step i, the aim is to show that there is an

LIRS for G
i
such that the length of any routing path is at most 2(i� 1). We also show

that in this LIRS the label of v
i
is the maximum label among the vertices which have

been labeled so far.
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The statement is obvious for G1 and the length of the longest routing path is 0 in

this graph. Suppose that for i � 1 (2 6 i < k + 1) we have found an LIRS with the

stated properties. Any vertex u in G
i
that is not a vertex in G

i�1 is a neighbor of v
i

(otherwise the graph would be disconnected). If the number of such vertices is n
i
, we

label these vertices as follows: we arbitrarily label the neighbors of v
i
with l(v

i�1) + 1

to l(v
i�1) + n

i
and set l(v

i
) = l(v

i�1) + n
i
+ 1 (Figure 4.5).

5

6
7

8
v
i

v
i�1

Figure 4.5: Labeling the vertices and edges in an interval graph (Numbers indicate

sample labels).

We update the labels assigned to the edges in G
i�1 so that any message with both

origin and destination in G
i�1 will traverse the same path as it did before updating

the labels. The vertex v
i
routes messages between any vertex in G

i�1 and the vertices

in G
i
n G

i�1, i.e., any message originating from a vertex in G
i�1 towards a vertex in

G
i
nG

i�1 will be forwarded to v
i
via v

i�1 and then will be forwarded to the destination

(if v
i
is not the destination). Also, any message from a neighbor of v

i
(which is a vertex

in G
i
nG

i�1) will be forwarded to G
i
by going through v

i
and then v

i�1 (Figure 4.6).

G
i�1

v
i

Neighbors of v
i

v
i�1d

s

Figure 4.6: Routing messages between the vertices in G
i�1 and the neighbors of v

i
in

G
i
�G

i�1.

More formally we update the intervals as follows. First, for the intervals in G
i�1, if

any interval I = [s; t] containing l(v
i�1) (we know each vertex in G

i�1 is connected to

an edge with such an interval) we change I to [s; l(v
i
)]. This is feasible because the

label of v
i�1 is the largest label in Gi�1. This causes any message from a node in G

i�1

toward a node in G
i
n G

i�1 be forwarded to v
i�1 (messages take the same route as a

message directed to v
i�1). Any label in G

i�1 not containing l(v
i�1) is not changed.

Therefore routing within the vertices in G
i�1 does not change. Now we assign intervals

to the edges in G
i
nG

i�1. For each neighbor z of v
i
the label of the edge (z; v

i
) is set



CHAPTER 4. BOUNDS ON THE LENGTH OF ROUTING PATHS 68

to [1::l(v
i
)] and the label of the edge (v

i
; z) is set to [l(z)] (z sends every message to v

i

and v
i
sends messages with destination z to z). Finally, the edge (v

i�1; vi) is labeled

with [l(v
i�1)+ 1; l(v

i
)] and the edge (v

i
; v

i�1) is labeled with [1; l(v
i�1)]. Therefore vi�1

will forward any message to v
i
or one of its neighbors to v

i
and vice versa.

In the new routing scheme de�ned on G
i
, the length of routing paths in G

i�1 is not

increased and the length of the longest routing path in G
i
is at most two units more

than the length of the longest routing path in G
i�1. Using the induction hypothesis,

we can easily verify that the length of the longest routing path in G
i
is at most 2(i�1).

Obviously, v
i
has the maximum label in G

i
. Thus, G

i
satis�es the desired properties.

Since the length of the shortest path between u
l
and u

r
is at most D (k 6 D), the

length of any routing path in G is at most 2D � 2. �

Any upper bound for a h1; 1i-MLIRS is also an upper bound for any h1; di-MLIRS

(d > 2). Thus, the O(D) upper bound stated in this section hold for any h1; di-MLIRS.



Chapter 5

Interval routing and hypergraph

drawing

It is always nice to �nd out the relationship between two (or more) di�erent problems

and to extend the results in one area to the other. In this chapter we illustrate a strong

relationship between di�erent interval routing schemes and the problem of hypergraph

drawing. We use results from the previous chapters to prove a tight bound on the

number of dimensions of the space needed to draw a hypergraph.

In Section 5.1 we briey review known results and de�nitions of hypergraph drawings.

Then, in Section 5.1.1 we consider a speci�c graph drawing problem which is known

as the rectangle of inuence drawing. We generalize this idea to hypergraphs in Sec-

tion 5.1.2 and introduce a representation for hypergraphs in d-dimensional space which

is called box representation of hypergraphs. In Section 5.2 we study the relationship

between the problem of �nding a box representation for a hypergraph and results from

previous chapters. We show that any hypergraph with at most 2d vertices can be

drawn in d-dimensional space. We also show that there is a hypergraph with 2d + 1

vertices which cannot be drawn in d-dimensional space, and therefore 2d is an optimal

bound.

69
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5.1 Hypergraph drawing

The problem of drawing graphs in the plane and even in spaces of higher dimension

has been extensively studied [DBETT99]. The objective is to �nd a representation for

the graph in a speci�c space such that a pre-speci�ed measure is optimized. Here, the

pre-speci�ed measure can be the number of edge-crossings, the number of bends in the

edges, the area needed, the degree of symmetry, and so on. The existing algorithms

use one or more of these measures and try to optimize the drawing with respect to

the criterion or criteria selected. For example, in the well-known problem of �nding

a planar drawing of a (planar) graph, the measure to optimize is the number of edge-

crossings. Here, each vertex of the graph is represented by a point in the plane, each

edge is represented by an arc, and the goal is to �nd a representation of the graph

such that the number of edge-crossings is zero. The graph drawing problem has been

completely solved only for some special cases of graphs, and most algorithmic problems

in this area are NP-complete or even more diÆcult [DBETT99].

Since hypergraphs are generalization of graphs, it is natural to generalize the graph

drawing concepts into similar ones for hypergraphs. Johnson and Pollad introduced

two notions of planarity of hypergraphs, which was inspired by the Venn diagram

representations of sets, and presented some NP-completeness results [JP87].

M�akinen introduced two distinct kinds of hypergraph drawing [M�90]. In both cases,

vertices are represented by points in the plane. In the edge standard representation

of a hypergraph a hyperedge e is represented by connecting the points that represent

the vertices which are in e by smooth curved lines. Two vertices belong to the same

hyperedge if there is a smooth curve between the points that represent these vertices

(Figure 5.1 (a)). In the subset standard representation of a hypergraph, a hyperedge is

represented by a closed curve that contains exclusively the points that represent the

vertices in that hyperedge (Figure 5.1 (b)).

Hypergraph drawing has various applications. For example, in the theory of relational

databases there is a correspondence between database schemes and hypergraphs. A

database scheme consists of a set of relation schemes. Each relation scheme is a col-

lection of attributes. We can consider database schemes as hypergraphs, attributes

as the vertices, and relation schemes as hyperedges in those hypergraphs. Drawing of

these hypergraphs is used in the study of the cyclicity of database schemes. There are

other applications of hypergraph drawings e.g. representing functional dependency in
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(a) (b)

Figure 5.1: a) Edge standard representation of a hypergraph H b) Subset standard
representation of H.

database systems, and-or graphs in problem solving, Horn clauses in logic programming

and also speci�cation of concurrent systems.

5.1.1 Box representation of a graph

Let us consider a representation of a graph G in which each vertex is represented by a

point in the plane, and each edge e = (u; v) is represented by an axis-aligned rectangle

such that the points representing u and v are opposite corners of the rectangle and

there is no other point corresponding to a vertex of G inside the rectangle. This

representation of a graph is known as the rectangle of inuence drawing of the graph

[LLMW98]. If the rectangles representing edges of the graph are closed (open) sets this

representation is known as a closed (open) rectangle of inuence drawing. Figure 5.2 (a)

illustrates an example of a rectangle of inuence drawing. In this example, there is no

other point inside the rectangle de�ned by any two points. Hence, in the open model

we have a complete graph. On the other hand, in Figure 5.2 (b) the point w is on

the boundary of rectangle de�ned by u and v and therefore we cannot have an edge

connecting u and v in the closed model.

Liotta et al. have studied the problem of characterizing the class of graphs that admit

rectangle of inuence drawings for several classes of graphs like cycles, trees, and wheels

[LLMW98]. They show that for these classes testing whether a graph with n nodes

has a rectangle of inuence drawing can be done in O(n) time and that it is possible

to construct such a drawing if one exists.
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(a) (b)
v w

u

Figure 5.2: Example of rectangle of inuence drawing for (a) the open model and (b)

the closed model for the same set of vertices as in part (a).

With only a few slight changes in the de�nition of the rectangle of inuence drawing

we can generalize the idea of rectangle of inuence representation to d dimensions

(d > 2). Vertices of the graph are still represented by points in d-dimensional space.

We can have an edge between two vertices u and v if there is no other point in the

d-dimensional (for now let us assume that no coordinates of the points representing u

and v have the same value) axis-aligned box de�ned by the points representing u and

v. We call this a d-dimensional box representation of a graph. In the next section we

show how to generalize this idea to hypergraphs.

5.1.2 Box representation of a hypergraph

In the previous section we considered a representation for a graph in which each edge

was represented by a box in d-dimensional space. We can easily use this idea to de�ne

a box representation for hypergraphs.

De�nition 22. A box representation of a hypergraph H = (V;E) in d-dimensional

space is a representation of the hypergraph such that:

i) Each vertex in V is represented by a unique point in d-dimensional space.

ii) For each hyperedge e 2 E, there is an axis-aligned box [a1::b1; a2::b2; :::; ad::bd]

such that

a) a
i
6 b

i
for any i, 1 6 i 6 d; and
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b) for any point p = (p1; p2; :::; pd) corresponding to a vertex v in V , ai 6 p
i
6 b

i
,

for 1 6 i 6 d, if and only if v 2 e.

E1

E2

E3

E4

v1
v2

v3 v4 v5

v6
v7

v8
v9

Figure 5.3: Box representation for a hypergraph H.

In this de�nition, the points in a hyperedge e of the hypergraph do not necessarily lie

on the boundaries of the box representing e, but it is easy to verify that if H is a graph

the box representation of H is equivalent to the d-dimensional box representation of

graphs in the closed model.

Example 14. Let us consider the hypergraph H = (V;E), where V = fv1; v2; :::; v9g
and E = fe1; e2; e3; e4g such that e1 = fv1; v2; :::; v9g, e2 = fv3; v4; :::; v7g, e3 =

fv6; v7; v8g and e4 = fv7; v8; v9g (the hypergraph depicted in Figure 2.12). Figure 5.3

depicts a box representation for this hypergraph. For increased readability the rectangles

representing the hyperedges are replaced by rounded rectilinear shapes.

In the following section we will show the relationship between the problem of �nding

a box representation of a hypergraph and routing schemes.

5.2 Hypergraph drawing and IRS

Let us consider the problem of �nding an MIRS for a graph G = (V;E). We denote

by F(v;e) the set of destination addresses of the messages which should be forwarded

through the link e at node v. Now, let us consider a hypergraph H = (V 0; E0) such

that V 0 = V and the set of hyperedges of H is fF(v;e)jv 2 V; e 2 Eg. To be consistent
with the de�nition of a hypergraph, we consider hyperedges which contain at least two

vertices. We will call H the routing hypergraph of G.
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The problem of �nding a d-dimensional MIRS for G is equivalent to the problem of

�nding a d-dimensional box representation for H. To verify this claim, let us assume

that we have a d-dimensional MIRS for G. We can consider the labels of vertices in

G as coordinates of the vertices in d-dimensional space. For each hyperedge e in E0,

the interval assigned to the corresponding edge in E contains exactly the vertices in e.

Therefore, we have a box representation for H. On the other hand, we can similarly

show that if we can �nd a box representation for H, we will have an MIRS for G. In

the rest of this section, we will show some examples of the relation between the concept

of hypergraph drawing and �nding an MIRS on a graph.

5.2.1 Every hypergraph has a box representation

Lemma 11 in Section 3.3.2 shows how to �nd a labeling for the vertices of a graph such

that in any edge-biconnected component of the graph and for any subset of the vertices

there is a interval containing exactly those vertices. Similarly, if we have a hypergraph

with at most 2d vertices we can assign the vertices to the points (1; 0; :::; 0), (0; 1; :::; 0),

..., (0; 0; :::; 1), (�1; 0; :::; 0), (0;�1; :::; 0), ..., (0; 0; :::;�1) in d-dimensional space. We

can use a proof similar to that of Lemma 11 in Section 3.3.2 to show that for any subset

of vertices there is a box that contains exactly those vertices. Therefore, we have the

following theorem.

Theorem 15. For any hypergraph H with at most 2d vertices, there is a box represen-

tation in d-dimensional space.

Is it possible to �nd a box representation in a space with fewer dimensions? Clearly, if

we have a box representation for a hypergraph H we also have a box representation for

any hypergraph H 0 resulting from removing a number of hyperedges in H. We will use

this fact to show how we might be able to reduce the number of dimensions needed.

Let us consider a hypergraph H = (V;E) such that V = fv1; v2; :::; vng and E =

fe1; e2; :::; emg. We construct a graph G as follows. For each vertex v
i
, 1 6 i 6 n, G

has a corresponding vertex w
i
. For each hyperedge e

i
in E, 1 6 i 6 m, G also has a

vertex called u
i
. There is an edge (u

i
; w

j
) in G if v

j
is a vertex of e

i
in H. Also, all the

vertices u
i
, 1 6 i 6 m, are connected to a vertex in G called z (Figure 5.4). We assume

that G is the underlying graph of a network in which all links have arbitrary costs.
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w1

w3

w
n�1

w
n

u
m

z

u1

u2
w2

Figure 5.4: Constructing a graph based on a hypergraph.

Theorem 10 in Section 3.3.2 shows that if G has k non-articulation points, then there

is an optimum dk=2e-dimensional MLIRS for G. The shortest path going from z to

the vertices in e
i
goes through the edge (z; u

i
). Hence, the interval assigned to the link

(z; u
i
) in G corresponds to the box which represents the edge e

i
in H and therefore we

have box representation for H. Since k 6 n, we need at most dn=2e dimensions which

might be better than the previous result for some cases.

5.2.2 Not every hypergraph has a d-dimensional box repre-

sentation

In this section we show that for every d > 2 there is a hypergraph which does not have

a box representation in d-dimensional space. To prove this we will use the notion of

boundary sets introduced in Section 3.1. Let us consider a hypergraph H = (V;E)

where V = fv1; v2; :::; v2d+1g and E is the set of all subset of V which have exactly 2d

elements. Let us assume that H has a box representation in d-dimensional space and

denote the boundary set of the vertices of H by B. In Section 3.1 we showed that B

has at most 2d vertices. Since H has 2d+1 vertices there is a vertex in H, say v, such

that v is not in B. Since H has a hyperedge for every subset of V with 2d elements,

there is a hyperedge, say e, which contains exactly V n fvg. We already know that any

box containing all the vertices in B contains all vertices in V and therefore the box

assigned to e covers v, which is not allowed.
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Theorem 16. For every d > 2 there is a hypergraph H with 2d+1 vertices which does

not have a box representation.

Comparing this result with the result of the previous section, we can see that d is

a tight bound for the number of dimensions of the space needed to draw a general

hypergraph with 2d vertices.



Chapter 6

Conclusions and future work

Characterizing the class of networks which support MIRS and measuring the quality of

routing in such networks were the two main problems studied in this thesis. We proved

that a network supports a h1; di-MLIRS if and only if it is not a (2d + 1)-windmill

graph. This is a generalization of a result by Fraigniaud and Gavoille in which they

characterize the class of networks supporting 1-LIRS [FG94]. We also considered the

class of networks which support a h1; di-MSLIRS and showed that a network supports

such a routing scheme if and only if its underlying network is not a weak (2d + 1)-

windmill graph. Based on the structure of windmill graphs and weak windmill graphs,

it is intuitively obvious that if a graph is highly connected (has a few bridges) then

we can easily �nd a h1; di-MLIRS or a h1; di-MSLIRS for the graph, for small values

of d, which can be consider a constant. Since the amount of space needed to store

a d-dimensional MLIRS (MSLIRS) is d times the amount of space needed to store a

1-dimensional LIRS (SLIRS) and since the value of d can be considered a constant for

highly connected graphs, this shows multi-dimensional schemes are still better than

explicit routing schemes.

Another characterization problem which we considered in this thesis was the problem

of characterizing the class of networks which support optimum h1; di-MSLIRS with

dynamic cost links. Since in real networks the cost of links may vary over time, this

multi-dimensional scheme might be useful for real applications. We proved that a

network supports such a routing scheme if and only if its underlying graph has at

most 2d non-articulation points. Therefore, a network in which most of the nodes are

articulation points and has just a few non-articulation points may be more suitable
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for this scheme. So far there are no other known characterization results for MIRS

except for speci�c graphs like hypercubes, rings, and grids. This also emphasizes the

importance of these results and is a very interesting area for future research.

The second problem we considered in this thesis is the quality of routing problem. To

quantify the quality of routing we used the length of routing paths as the main measure.

We proved a 3
2
D lower bound for this quantity for any hk; di-MLIRS (where D is the

diameter of the graph). If the number of intervals at each link is one we have a better

bound of 
(D2=d) for h1; di-MSLIRS and h1; di-MLIRS. These lower bounds suggest

that by having more than one interval we might be able to dramatically decrease the

length of routing paths. There is not a known upper bound for these routing schemes

except for speci�c networks like interval graphs. For these graphs we have proved an

upper bound of 2D � 2 on the length of the longest routing path.

When studying IRS, there is a problem which is of a higher importance compared to

the characterization and the quality of routing problems for a speci�c scheme. This is

the problem of designing a scheme. There has been a lot of e�ort in designing variants

which are more compact (need less space) and have good routing qualities (i.e. are

supported by a large class of networks and the routing paths are short). Here is a new

idea which seems to be very useful.

When implementing an IRS, there is usually a table in each node of the network which

has one entry (or k entries for k-IRS) for each incident link. The processor in the node

reads these entries one by one, checks if the destination address belongs to the interval

in that entry and if so routes the message through the link indicated in that entry.

A very interesting idea is to use this intrinsic order of entries in the table. In other

words, we de�ne an ordering for the intervals assigned to links and always check the

intervals in this pre-speci�ed ordering. Here, even if two intervals intersect, since the

order in which the intervals are checked is speci�ed there is no ambiguity in routing

the message. We call this IRS an Ordered Interval Routing Scheme or OIRS for short.

The OIRS seems to be more useful in higher dimensions. In fact, in a d-dimensional

MIRS it is easy to show that if we have two intervals A and B such that A is completely

contained in B then in the original MIRS covering the nodes which are in B but not in

A requires 2d intervals. In an OIRS this can be achieved using one interval, assuming

that in the speci�ed order B is placed after A. This idea can be extended to more than

two intervals. For example in Figure 6.1 covering the vertices in B � A requires four
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A

(a) (b)

C1

B1
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C4B4

B3

C2B2

Figure 6.1: An example of an OIRS. The order in which interval should be processed

is A, B and C.

intervals B1, B2, B3 and B4 in an ordinary 2-dimensional IRS (part (a)) but just one

interval is suÆcient in an OIRS (part (b)). The same statement is true for covering

the vertices in C �B.

Finally, in this thesis we showed a strong relationship between di�erent variants of

MIRS and hypergraph drawing. The idea of hypergraph drawing and the speci�c

variant introduced in Chapter 5 (called the box representation of hypergraphs) seems

to be very natural. We have proved that for any hypergraph with at most 2d vertices

there is a box representation in d-dimensional space. We also have shown that there

is a hypergraph with 2d + 1 vertices which does not have a box representation in d-

dimensional space. There are still interesting open problems in this area such as �nding

the class of graphs or hypergraphs which have box representations in a d-dimensional

space. Finding this class of hypergraphs can help in solving some of the interesting

MIRS characterization problems.
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