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Abstract

Measures of semantic distance have received a great deal of attention recently
in the field of computational lexical semantics. Although techniques for approxi-
mating the semantic distance of two concepts have existed for several decades, the
introduction of the WordNet lexical database and improvements in corpus analysis
have enabled significant improvements in semantic distance measures.

In this study we investigate a special kind of semantic distance, called seman-
tic relatedness. Lexical semantic relatedness measures have proved to be useful
for a number of applications, such as word sense disambiguation and real-word
spelling error correction. Most relatedness measures rely on the observation that
the shortest path between nodes in a semantic network provides a representation
of the relationship between two concepts. The strength of relatedness is computed
in terms of this path.

This dissertation makes several significant contributions to the study of semantic
relatedness. We describe a new measure that calculates semantic relatedness as a
function of the shortest path in a semantic network. The proposed measure achieves
better results than other standard measures and yet is much simpler than previous
models. The proposed measure is shown to achieve a correlation of r = 0.897
with the judgments of human test subjects using a standard benchmark data set,
representing the best performance reported in the literature. We also provide a
general formal description for a class of semantic distance measures — namely,
those measures that compute semantic distance from the shortest path in a semantic
network. Lastly, we suggest a new methodology for developing path-based semantic
distance measures that would limit the possibility of unnecessary complexity in
future measures.
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Chapter 1

Introduction

The associative nature of memory has excited the interest of researchers since at
least the time of Aristotle. In his book, On Memory and Reminiscence [1], Aristotle
describes recollection as a partially involuntary procedure that involves following
the mental connections between memories. When a person recalls a memory, “they
pass swiftly in thought from one point to another, e.g. from milk to white, from
white to mist, and thence to moist, from which one remembers Autumn [the ‘sea-
son of mists’], if this be the season he is trying to remember.” (p. 614) The basic
idea of associative memory has changed surprisingly little since Aristotle’s time,
but the techniques of modern experimental science, and more recently of computa-
tional modelling, have deepened our understanding of this model of memory. For
example, computational linguists have had considerable success with models of lex-
ical memory that represent information about concepts in terms of their semantic
relations to other concepts. These models are instances of semantic networks and
represent an area of very active research [12].

This study explores an application of semantic networks that has remarkable
similarity to Aristotle’s notion of recollection. Semantic relatedness describes the
strength of the cognitive association between two concepts. For example, man
and woman are very strongly related, as are monkey and banana. The concepts
screwdriver and truth, however, seem to be unrelated. Other pairs of concepts
often fall somewhere in between these extremes, such as book and computer or
skyrise and window. A very straightforward technique for determining the strength
of relatedness between two concepts is to find the sequence of links that connects
them in a semantic network. The ‘closer’ the concepts are to one another, i.e., the
shorter the path that connects them, the more strongly they are related.

Early work in semantic networks proposed techniques quite similar to the short-
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est path length approach described above. For example, Collins and Loftus [6] de-
scribed a technique for determining semantic relatedness using the paths between
nodes in a semantic network. However, with the availability of WordNet [12] — a
large-scale semantic network for English — a great variety of techniques for mea-
suring semantic relatedness, and for the associated problem of measuring semantic
similarity, has emerged. These new measures have provided many refinements to
the approach of computing the strength of relatedness from a path in a semantic
network. The goal of this study is to resolve the confusion over exactly which of
the many new techniques are effective, and which are not. Although our principal
interest is in semantic relatedness measures, many of our observations and analyses
apply equally to semantic similarity. The term semantic distance will be used as a
general concept that encompasses both relatedness and similarity.

This dissertation makes several significant contributions to the study of semantic
relatedness. We describe a new measure of semantic relatedness that matches
human relatedness judgments more closely than any previous measure and yet is
much simpler than other models. We provide a general formal description for
a class of semantic distance measures — namely those measures that compute
semantic distance from the shortest path in a semantic network. We also suggest a
new methodology for developing path-based semantic distance measures that would
limit the possibility of unnecessary complexity in future measures.

1.1 Motivation

Measures of semantic relatedness are interesting both in terms of the applications
that they enable, and in terms of their theoretical implications for the study of
lexical memory. The most common application of semantic distance measures is
word sense disambiguation. Algorithms for word sense disambiguation have been
proposed by Lesk [19], Sussna [44], Resnik [35], Patwardhan et al. [30], and Mc-
Carthy et al. [22], among others. We will describe the technique of Patwardhan
et al. [30] in the next chapter in some detail, as a typical example of word sense
disambiguation using semantic distance measures.

We will also describe an ingenious application of semantic relatedness to the
problem of real-word spelling error correction. Hirst and St-Onge [15] proposed
an algorithm that uses semantic relatedness measures to detect and correct mis-
spellings of words that result in the correct spelling of another, though unintended,
word.

There are many other applications of semantic distance measures. To name a
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few recent applications, semantic distance measures have been used by: Kohom-
ban and Lee [17] for learning coarse-grained concepts from a sense-tagged corpus,
Corley and Mihalcea [7] for computing the similarity of texts, and Stevenson and
Greenwood [41] for the acquisition of patterns for information extraction. Although
we will not propose any novel applications in this study, we demonstrate significant
improvements to semantic distance measures and these improvements will benefit
all of the applications listed above.

Along with the practical value of improving semantic relatedness measures, the
research presented in this study has some interesting psycholinguistic implications.
The class of semantic distance measures that we are exploring use the WordNet [12]
semantic network. WordNet was inspired by psycholinguistic theory, and is based
on semantic network models of human lexical memory. In this study we compare the
performance of semantic distance measures to the relatedness judgments of human
subjects. This sort of comparison offers evidence for the model of human lexical
memory that underlies WordNet. That is, if it is possible to closely mimic the
behaviour of humans using the network model then this may be taken as evidence,
albeit indirect, in favour of this model over other models of lexical memory.

Aside from simply validating the network model of lexical memory, successful
semantic distance measures may provide insight into particular details of the model
and how it is used by humans. For example, it will be shown in this study that
variations in the ‘weight’ of links in the semantic network do not affect semantic
distance measurements as strongly as had been believed. This has implications for
the network model, as some have assumed that link weights have an important role
in lexical memory [6].

1.2 Methodology

Perhaps the most significant contribution of this study is a new methodology for
the development and evaluation of semantic distance measures. There are currently
a large number of measures in the literature, many of which represent minor vari-
ations of one another. In particular, many measures compute semantic distance
on the basis of the shortest path connecting concepts in a semantic network. Such
measures often differ in relatively small ways and in some cases simply recombine
the techniques of other measures. However, progress in improving path-based se-
mantic distance measures has been slowed by the difficulty of identifying exactly
which techniques are effective and which are not.

Over the last several years a de facto standard evaluation framework has emerged
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for semantic distance measures. This framework relies on the comparison of the
results of semantic distance measures to the relatedness judgments of humans that
were collected in experiments by Miller and Charles [25], and by Rubenstein and
Goodenough [38]. Studies that have adopted this evaluation framework include
Resnik [34], Yang and Powers [47], Jiang and Conrath [16], and Budanitsky and
Hirst [15].

Given a standard evaluation framework, it is possible to take a systematic ap-
proach to the development of new measures. We propose that authors of new
semantic distance measures engage in regression-testing against simpler baseline
measures. That is, any additions to measures that use the path-based approach
should be compared with previous baseline measures and proven to improve their
performance.

In the current study, we will lay the foundation for this new methodology by
showing how semantic distance measures can be decomposed so that their con-
stituent parts may be tested individually. We then test a number of the most
important semantic distance measures against our simplified baseline measure and
show that many of the features of these measures weaken their performance.

1.3 Overview

This dissertation consists of five chapters. Chapter 1 introduces the motivation
and methodology for our study. Chapter 2 reviews relevant research, including
the state-of-the-art of WordNet-based semantic distance measures as well as other
essential background material. In Chapter 3, we analyze the semantic distance
measures described in Chapter 2 and present the details of a new measure of se-
mantic relatedness. In Chapter 4, we conduct an experimental evaluation of the
new measure, and compare its performance to other measures that are prominent
in the literature. Finally, Chapter 5 summarizes the results of this dissertation and
describes areas for future study. A more detailed outline of each chapter follows
below.

Chapter 2 surveys the current research relating to semantic distance measures.
We begin by making an important distinction between two kinds of semantic dis-
tance: semantic similarity and semantic relatedness. While semantic similarity
may be viewed as the degree to which concepts share common features, semantic
relatedness can be any kind of semantic association. Although some of our findings
pertain to both similarity and relatedness, relatedness is the primary object of our
study. Also, as we are considering primarily WordNet-based techniques, a general
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overview of the WordNet lexical database is provided in this chapter. The most
important relatedness and similarity measures are described, including the related-
ness measures of Sussna [44], Hirst and St-Onge [15], and Banerjee and Pedersen
[2], and the similarity measures of Leacock and Chodorow [18], Resnik [34], Jiang
and Conrath [16], Lin [20], and Yang and Powers [47].

Chapter 3 includes an analysis of the path-based similarity and relatedness
measures that were described in Chapter 2. On the basis of these analyses, we
propose a general description for these measures, and show how each measure is a
special case of the generalization. A new semantic relatedness measure is presented
that follows from some simplifying assumptions.

The simplified measure provides an opportunity to systematically examine two
facets of semantic relatedness. First, we look at the mathematical relationship be-
tween the length of the shortest path between concepts and the strength of their
relatedness. We propose five candidate functions for mapping path length to re-
latedness. These functions are evaluated against empirical evidence of human per-
formance in Chapter 4. Also, we look at the effect of allowing different subsets of
semantic relations in the paths between concepts when determining relatedness.

In Chapter 4 we describe a two-part experiment that compares the new semantic
relatedness measure to previous relatedness and similarity measures. The measures
are evaluated on the basis of correlation with human judgments of relatedness using
two widely used data sets. In the first part of the experiment we examine the effect
of using different sets of allowable semantic relationship types on the correlation
of path length with human judgments. We find that relations other than is-a
have little effect on the results, as is-a relations are by far the most common links
between nouns in WordNet.

In the second part of the experiment we compare the five functions for map-
ping path length to relatedness that were outlined in Chapter 3. The functions
are ‘tuned’ with a subset of the experimental data using statistical curve-fitting
techniques. The remaining data is used to evaluate the functions and to compare
their performance to that of other relatedness and similarity measures. The new
measure reaches a correlation of r = 0.897 with the human ratings collected by
Rubenstein and Goodenough [38]. Only a measure by Yang and Powers [47] has
comparable performance, but their measure is much more complex than ours.

At the end of Chapter 4 some tentative results are described for another type
of semantic distance that we call semantic contrast. Semantic contrast denotes the
type of conceptual distance that separates semantic opposites, such as love and hate.
This sense of semantic distance is not captured by either similarity or relatedness
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and we believe that a computational model of semantic contrast would lead to
some very interesting applications. Finally, Chapter 5 summarizes the results of
our study and describes areas for future research.
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Chapter 2

Survey of Lexical Semantic
Distance Measures

2.1 Semantic Distance

The notion of semantic distance — sometimes called conceptual distance — has
received a great deal of attention in the field of lexical semantics in recent years.
In general, semantic distance denotes the degree of semantic association between
concepts. However, many authors, including Resnik [34] and Budanitsky and Hirst
[4] distinguish two kinds of semantic distance: semantic similarity and semantic
relatedness. Whereas similarity expresses the degree to which two concepts resemble
one another, relatedness encompasses a wide variety of semantic relationships.

Although semantic similarity and semantic relatedness have received the most
study, these senses do not exhaust the range of possible types of semantic distance.
For example, Budanitsky and Hirst [4] argue that distributional similarity describes
a phenomenon that is distinct from both semantic similarity and semantic related-
ness. Later in this study, we will introduce another sense of semantic distance that
we are calling semantic contrast which differs from both similarity and relatedness
in important ways.

Although the current study is concerned primarily with semantic relatedness,
it has been argued that in many cases semantic similarity is an adequate proxy for
relatedness. In fact, in a recent study by Budanitsky and Hirst [4] that evaluated
the performance of a number of similarity and relatedness measures for relatedness
tasks, the authors found that similarity measures achieved better results than the
relatedness measures. In this chapter, we will therefore review both relatedness
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and similarity measures, including all of the measures compared by Budanitsky
and Hirst. Two other promising measures that were not included in Budanitsky
and Hirst’s study will also be described, including one by Yang and Powers [47]
and another by Banerjee and Pedersen [2].

Semantic distance measures have been developed using a variety of lexical re-
sources. However, the scope of this study will be limited to measures that employ
the WordNet lexical database. There are two reasons for restricting the study to
only WordNet-based measures. First, as all of the measures to be compared share
a common primary resource, the validity of comparisons between the measures will
not be compromised by the quality of the lexical resources that they use.

Second, most of the major approaches to measuring either similarity or relat-
edness are represented by WordNet-based measures. The notable exception to this
are measures that employ corpus statistics to determine distributional similarity.
Such measures rely on the observation that words that occur in similar contexts
are likely to be semantically similar. Mohammad and Hirst [26] provide a theo-
retical comparison between corpus-based measures of distributional similarity and
taxonomy-based relatedness and similarity measures, and conclude that an experi-
mental comparison is also required.

However Mohammad and Hirst also conclude that to a certain extent the two
types of measure are incommensurable. While taxonomy-based approaches measure
the similarity of concepts, corpus-based approaches measure the similarity of words.
Mohammad and Hirst suggest that it may be more reasonable to view distributional
similarity as a phenomenon distinct from conceptual similarity. As a result of these
concerns, corpus-based measures of distributional similarity are excluded from the
scope of this study.

The scope of this study is also limited to measures of the semantic distance
between lexicalized concepts, which is to say, concepts that are expressed by in-
dividual words in the English language. Insofar as the primary use of semantic
distance measures lies in natural language processing, lexicalized concepts deserve
the most attention from a practical point of view. For the rest of this study, any
reference to ‘concepts’ may be assumed to refer specifically to ‘lexicalized concepts’.
To avoid redundancy, the terms ‘lexical’ and ‘semantic’ will often be dropped so
that, for example, ‘lexical semantic relatedness’ will be simply ‘relatedness’.

In order to demonstrate the utility of semantic relatedness measures, two ap-
plications will be described in some detail at the end of this chapter. The first is
a technique described by Hirst and St-Onge [15] for the detection and correction
of malapropisms using lexical chains. The second demonstrates the application of
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semantic relatedness and similarity measures to the problem of word sense disam-
biguation.

2.1.1 Similarity and Relatedness

Although the difference between lexical semantic similarity and lexical semantic
relatedness can sometimes be subtle, it is nevertheless significant. Similarity can
be understood to denote a kind of familiar resemblance. It is sometimes described
in terms of featural overlap [45]. Under this view, the similarity of two concepts
is the degree to which they share features in common. Features that are common
to two concepts indicate greater similarity, and features that are peculiar to one
or the other indicate reduced similarity. In this study we are not committed to
a feature-based representation of concepts, but features provide a useful way of
talking about similarity.

In contrast to similarity, relatedness describes the degree to which concepts are
associated via any kind of semantic relationship. These relationships can include
the classical lexical relations such as synonymy, hypernymy (is-a), and meronomy
(has-a), and also what Morris and Hirst [28] have called “non-classical relations”.
In fact, even the relation of similarity is encompassed by relatedness. As a result,
all similar concepts are also related — by virtue of their similarity — such that
similarity may be viewed as a special case of relatedness.

The difference between similarity and relatedness is often illustrated with exam-
ples. Resnik [34] provides the widely used example of car and gasoline. Cars and
gasoline are not very similar; they have very few features in common. Whereas a
car is a solid mechanical device, gasoline is a combustible liquid. An itemization of
the properties of cars and gasoline would have little overlap. In spite of their differ-
ences, however, car and gasoline are very closely related through their functional
association, namely that cars use gasoline. Thus, while in terms of similarity car
and gasoline are semantically distant, in terms of relatedness they are semantically
close.

2.2 Computational Resources

2.2.1 WordNet

All of the computational measures of semantic distance that will be discussed in
this study employ the WordNet [12] lexical database. WordNet is a lexical reference
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system that was created by a team of linguists and psycholinguists at Princeton
University. The purpose of WordNet is to model the English lexicon according to
psycholinguistic theories of human lexical memory. WordNet may be distinguished
from traditional lexicons in that lexical information is organized according to word
meanings, and not according to word forms. As a result of the shift of emphasis
toward word meanings, the core unit in WordNet is something called a synset.
Synsets are sets of words that have the same meaning, that is, synonyms. A synset
represents one concept, to which different word forms refer. For example, the set
{car, auto, automobile, machine, motorcar} is a synset in WordNet and forms
one basic unit of the WordNet lexicon. Although there are subtle differences in the
meanings of synonyms — often differences of connotation rather than of denotation
— these are ignored in WordNet.

WordNet synsets are linked together by semantic relations to form a network.
These relations include hypernymy (is-a) and meronomy (has-a), among others.
Some relations that hold between word forms have also been included in Word-
Net, such as derivational relatedness. WordNet synsets are divided into nouns,
adjectives, verbs, and adverbs. Although there is some interconnectivity between
the different speech categories, it is quite limited. The portions of WordNet for
each part of speech also have different properties, and may therefore require special
treatment. For example, while the hypernymy relation is central to the organization
of the noun portion of WordNet, adjectives are organized primarily in terms of the
antonymy and similarity relations. Table 2.1 provides a complete list of WordNet
2.0 relations and their frequency count by category.

Many of the similarity measures discussed in this study apply to nouns exclu-
sively and rely closely on the special properties of the noun subgraph of WordNet.
The primary organizing relations in the noun part of WordNet are hypernymy and
hyponymy. A concept is a hyponym if it is a specific type of a more general class.
For example, a robin is a kind of bird and is therefore a hyponym of bird. The in-
verse of a hyponym is a hypernym, which denotes a more general class with respect
to a more specific one. Thus bird is a hypernym of robin. Part/whole relations,
including meronomy and holonomy, also play an important role in the noun portion
of WordNet. A concept is a meronym if it is part of a whole, whereas a concept is
a holonym with respect to its constituent parts. However, nearly 80% of semantic
relations between nouns are hypernymy or hyponymy [4]. The hierarchical nature
of the is-a relation results naturally in a tree-like structure. The developers of
WordNet have paid careful attention to the coherence and completeness of the is-a
hierarchy of nouns.

Although earlier versions of WordNet contained several separate is-a hierar-
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Relations Noun Adjective Verb Adverb
Antonym 2074 4118 1079 722
Hypernym (is-a) 81857 12985
Hyponym (subsumes) 81857 12985
Member holonym (part-of) 12205
Substance holonym 787
Part holonym 8636
Member meronym (has-a) 12205
Substance meronym 787
Part meronym 8636
Attribute 648
Derivation 21491 21497 3209
Category domain 3789 1125 1215 37
Category member 6166
Region domain 1200 76 2 2
Region member 1280
Usage domain 654 237 18 74
Usage member 983
Entailment 409
Cause 218
Verb group 1748
Similar to 22196
Participle of verb 124
Pertainym 4711
Attribute 648
Also see 2697 597
Totals 249927 52753 35971 4044

Table 2.1: WordNet 2.0 relations and frequency count by type, reproduced from
[39]
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self−propelled vehicle

wheeled vehicle

bicycle

motor vehicle

fender

mudguard

car motorcycle

instrumentation

entity

Figure 2.1: Fragment of WordNet graph for wheeled vehicles and related concepts.
Solid lines represent is-a/subsumes relations, dashed lines represent has-a/part-
of relations and dotted lines represent a series of omitted is-a/subsumes relations.

chies, the number of separate hierarchies was reduced in successive versions. The
top node of each noun hierarchy is called a unique beginner. As of WordNet 2.1,
the hierarchies have been merged into a single hierarchy headed by the unique be-
ginner {entity}. The noun portion of WordNet may be treated as an ontology of
lexicalized concepts. The similarity measures by Resnik [34], Jiang and Conrath
[16], Leacock and Chodorow [18], and Lin [20] each exploit the ontology formed
by the hierarchy of nouns. To illustrate the WordNet noun hierarchy, a small part
of the network surrounding concepts relating to wheeled vehicles is reproduced in
Figure 2.1. The small network in Figure 2.1 will be used in examples throughout
this chapter.

There are a few notational conventions related to WordNet that will be adopted
in this study. First, the taxonomy of nouns formed by hypernymy in WordNet will
be referred to as a conceptual taxonomy, an is-a hierarchy, or a subsumption hier-
archy. However, when dealing with the entire WordNet network, including all types
of semantic relations, we will instead refer to the WordNet graph, network, or se-
mantic network. Also, whenever referring to WordNet synsets we will use italicized
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text between curly braces, such as {car, auto, automobile, machine, motorcar}.
Individual concepts will be denoted using italicized text, such as automobile, and
word forms will be denoted with single quotations, such as ‘car’. The informal
names of semantic relations will be marked by small capitals, such as is-a.

2.3 Relatedness Measures

There are two general approaches taken by the different relatedness measures that
we will describe. The first approach relies on an examination of the shortest path in
the WordNet graph that connects two synsets. This approach is represented by the
measures of Sussna [44], and Hirst and St-Onge [15]. The second approach exploits
the definitions provided for synsets in WordNet, called glosses, and is represented
by the measure from Banerjee and Pedersen [2].

2.3.1 Sussna

Sussna [44] described one of the first WordNet-based relatedness measures. The
measure was developed for the purpose of word sense disambiguation in an infor-
mation retrieval system. Sussna’s measure determines the strength of relatedness
between two concepts by first finding the shortest path between their corresponding
synsets in the WordNet graph. The edges (the semantic relations) in the path are
assigned weights, with higher weight indicating greater semantic distance, and the
sum of these weights gives the total semantic distance between the concepts.

For example, to compute the relatedness of the concepts bicycle and motorcycle
using Figure 2.1, we would first find the shortest path between these nodes. In this
case the path would be:

bicycle has-a mudguard part-of motorcycle

The semantic distance between bicycle and motorcycle would therefore be the
sum of the distances between bicycle and mudguard, and between mudguard and
motorcycle. The technique of using the sum of distances on the shortest path
between concepts is repeated in many other similarity and relatedness measures,
and we will refer to these types of measures as path-based measures.

A central problem for path-based measures is determining the distances repre-
sented by particular semantic relations in the semantic network. Sussna proposed
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two schemes for estimating the semantic distances (the ‘weights’) of individual edges
in WordNet. He observed that the more concepts a given concept is related to, the
less strongly it is associated with each one. More specifically, the semantic distance
of a relation is proportional to the number of other semantic relations of the same
type emerging from a concept. Sussna calls this the type-specific fanout (TSF) fac-
tor. For example, the concept for computer in WordNet 2.0 has 14 meronym (has-
a) relations, corresponding to 14 different parts of a computer, such as keyboard.
The synset including keyboard, on the other hand, has only two meronym relations,
one of which is key. Since keyboard has fewer parts than computer, keyboard will be
more strongly associated with each of its parts. Sussna’s measure would therefore
assign a greater semantic distance value to the meronym link connecting computer
and keyboard than to that connecting keyboard and key.

The second edge-weighting scheme in Sussna’s measure is called depth-relative
scaling, and is based on the observation that siblings deep in the taxonomy tend
to be more closely related than those closer to the top. General, abstract concepts
are assumed to represent broad distinctions, and therefore the differences between
them cover greater semantic distance than do the finer distinctions found lower in
the taxonomy.

To calculate the strength of relatedness between concepts in Sussna’s measure,
each relationship type is assigned a weight range between minr and maxr, for each
relationship type r. The semantic distance value for a relation of type r from the
source node c1 is:

wt(c1 −→r) = maxr −
maxr −minr

edgesr(c1)
(2.1)

where edgesr(c1) is the number of relations of type r originating from c1. For the
hypernymy, hyponymy, holonymy, and meronomy relationships the values minr and
maxr are one and two, respectively. Antonymy links always have a weight of 2.5.

For the purpose of determining the weight of an edge in the path, each edge is
assumed to consist of two inverse relations. For example, if robin is-a bird, then it
is also the case that bird subsumes robin. However, it is possible for the inverse
relations to be assigned a different weight by Equation 2.1. For example, the weight
for keyboard has-a key is not necessarily the same as for key part-of keyboard as
we cannot assume that the number of meronyms of keyboard and the number of
holonyms of key are the same. Sussna assumed that the semantic distance between
concepts should be a symmetrical relationship and so takes the average of the two
weights.

The semantic distance weight of an edge is also scaled by the depth of the
relation in the taxonomy. The final semantic distance value for the edge between
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two adjacent synsets c1 and c2 is given by:

distS(c1, c2) =
wt(c1 −→r) + wt(c2 −→r′)

2×max(depth(c1), depth(c2))
(2.2)

In the preceding equation, r is the type of relation that holds between c1 and
c2, and r′ is the inverse of r (the type of relation that holds between c2 and c1).
To determine the semantic distance between any pair of synsets, Sussna takes the
sum of the distances between the nodes in the shortest path between the synsets
in WordNet.

2.3.2 Hirst and St-Onge

Hirst and St-Onge [15] proposed a semantic relatedness measure for WordNet that
was an adaptation of an earlier measure by Morris and Hirst [27]. The measure
was previously based on Roget’s thesaurus [37]. Their measure was developed in
the context of a system for the automatic detection and correction of malapropisms
using lexical chains. Hirst and St-Onge define a malapropism as “the confounding
of an intended word with another word of similar sound or spelling that has a quite
different and malapropos meaning.” (p. 305) For example, accidentally substituting
the word ‘prostate’ for ‘prostrate’ would result in a malapropism.

For their measure, Hirst and St-Onge defined three categories of WordNet re-
lationship types: ‘upward’, ‘downward’ and ‘horizontal’. For example, hypernymy
(is-a) is classified as an upward link, as it leads toward the root of the WordNet
taxonomy, whereas hyponymy (subsumes) is a downward link. In general, the
up and down categories are used to separate inverse relations, whereas horizontal
link types correspond to relations that do not have inverses. The complete list of
classifications used by Hirst and St-Onge is given in Table 2.2.

Hirst and St-Onge distinguish two strengths of semantic relations: strong and
medium-strong. Two words, w1 and w2, are strongly related if one of three condi-
tions holds:

1. They are synonyms (there is a synset with both w1 and w2).

2. They are antonyms (w1 and w2 belong to the synsets c1 and c2, and c1 and
c2 are related by antonymy).

3. One is a compound word that includes the other one, and there exists a
semantic relation (of any kind) between synsets containing the words. For
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Relation Direction
Also see Horizontal
Antonymy Horizontal
Attribute Horizontal
Cause Down
Entailment Down
Holonymy Down
Hypernymy Up
Hyponymy Down
Meronomy Up
Pertinence Horizontal
Similarity Horizontal

Table 2.2: Hirst and St-Onge’s classification of WordNet relations into directions

example, school and private school are strongly related, because private school
is-a school, and the compound word private school contains school.

Medium-strong relations hold between words that have corresponding synsets
that are connected in the WordNet graph by an allowable path. A path is allowable
if it conforms to one of eight patterns, which are defined in terms of the three
directions of semantic links. The motivation for these patterns is the observation
that changes in direction often result in reduced overall relatedness. For example,
some semantic relations may be viewed as transitive. If A is-a B is-a C, then A is-
a C. Similarly, if A part-of B part-of C, then A part-of C. However, when a
path includes a change in direction, the transitivity of the relations is compromised.
The eight allowable patterns are shown in Figure 2.2. It should be noted that each
vector in the patterns in Figure 2.2 represents any number of links in the given
direction.

Unlike strong relations, medium-strong relations have a range of relatedness val-
ues. The strength of relatedness for a medium-strong relation between the concepts
c1 and c2 is given by:

relHS(c1, c2) = C − len(c1, c2)− k × turns(c1, c2) (2.3)

where C and k are constants, length(c1, c2) is the length, measured in nodes, of
the shortest allowable path connecting the synsets c1 and c2, and turns(c1, c2) is
the number of changes in direction in the shortest allowable path. Budanitsky and
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Figure 2.2: Patterns of semantic relations allowed in medium-strong relationships
for Hirst and St-Onge relatedness measure. Each arrow represents any number of
relations of the given direction.

Hirst [4] employed the value eight for C and one for k in their evaluation of the
measure.

Finally, while the measure described above applies to word senses, in the form of
synsets, Hirst and St-Onge also required relatedness values for non-disambiguated
word forms. The nodes in WordNet correspond to word senses, but most words
have multiple meanings. If it is not known which particular sense of a word is the
correct one for the context, then the measure cannot be used as described above.
To solve this problem, Hirst and St-Onge assume that the relatedness of word forms
is equal to that of their most related senses. Where S(wi) denotes the set of all
senses of the word wi, the relatedness of the words w1 and w2 is:

rel(w1, w2) = max
c1∈S(w1),c2∈S(w2)

[rel(c1, c2)] (2.4)

2.3.3 Banerjee and Pedersen

Banerjee and Pedersen [2] adopt an alternative approach to that of path-based
measures, based on a technique by Lesk [19]. Rather than examining paths of
semantic relations between word senses, as most other measures do, they compare
the text of the definitions provided in WordNet for each synset. Relatedness is
computed in terms of the overlap of words in these definitions.

The distinguishing feature of WordNet is the organization of concepts into a
semantic network. However, WordNet also supplies short definitions, called glosses,
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for each synset such as might be found in a traditional dictionary. For example,
in WordNet 2.0 the gloss for the synset {apple} is “fruit with red or yellow or
green skin and sweet to tart crisp whitish flesh.” Banerjee and Pedersen calculate
relatedness by counting the number of words that co-occur in the glosses of different
synsets.

Banerjee and Pedersen note that phrasal overlaps — sequences of words that
appear in different glosses — are often indicative of a strong relationship between
concepts. They therefore assign a higher value to a phrasal overlap of n words than
to an overlap of n words that are not in sequence. Specifically, a phrasal overlap of
n words is assigned the value n2, whereas n shared words that do not belong to a
phrasal overlap are assigned the value n. For example, the gloss for drawing paper
is “paper that is specially prepared for use in drafting” and the gloss for decal is
“the art of transfering designs from specially prepared paper to a wood or glass
or metal surface.” As the phrase “specially prepared” appears in both glosses, it
contributes a score of 22 = 4. The word ‘paper’ also appears in both glosses, and
contributes a score of one, for a total score of five.

Gloss overlap is a technique that could be applied to any dictionary or lexicon
with textual definitions. However, Banerjee and Pedersen exploit WordNet by
comparing the glosses of not only the target synsets, but also of their nearest
neighbours in the semantic network. For each relation type r, they define a function
r(s1) that returns the gloss of the synset related by r to s1. For example, the
function hypernym(s1) returns the gloss of the hypernym of the synset s1. If s1 is
connected to more than one synset by the relation type r, then r(s1) returns the
concatenation of the glosses of each related synset. In addition, they also define a
function named gloss(s1) that returns the gloss for the synset s1.

Banerjee and Pedersen observe that not every relation is equally helpful for
determining relatedness, and suggest that different relations may be more or less
useful depending on the particular application. They therefore suggest a general
formula for calculating relatedness that can use any arbitrary subset of semantic
relations. Let RELPAIRS be a set of pairs of gloss functions, as defined above.
The pairs indicate which relations will be compared to one another when comput-
ing relatedness. In order to maintain the symmetry of the measure, for any pair
(r1, r2) ∈ RELPAIRS, the set must also contain (r2, r1). This constraint ensures
that relBP (s1, s2) = relBP (s2, s1). Given the set of pairs RELPAIRS, and two
synsets s1 and s2, relatedness is calculated using the following equation:

relBP (s1, s2) =
∑

score(r1(s1), r2(s2)), ∀(r1, r2) ∈ RELPAIRS (2.5)
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In the equation above, score(t1, t2) is a function that returns the overlap score of
two strings t1 and t2. As an illustration, given the set RELPAIRS = {(gloss,gloss),
(hype,hype), (hypo,hypo), (hype,gloss), (gloss,hype)}, the relatedness function would
be:

relBP (s1, s2) = score(gloss(s1), gloss(s2)) + score(hype(s1), hype(s2)) (2.6)

+ score(hypo(s1), hypo(s2)) + score(hype(s1), gloss(s2))

+ score(gloss(s1), gloss(s2))

2.4 Similarity Measures

Although our principal interest is in semantic relatedness, semantic similarity mea-
sures have been shown to be very effective proxies for relatedness measures. We will
therefore describe several important WordNet-based similarity measures. Jiang and
Conrath [16] distinguish between three approaches in the literature to measuring
similarity. They call these edge-counting, node-counting, and combined, or hybrid,
approaches.

The edge-counting approach relies entirely on the is-a hierarchy. These mea-
sures compute similarity in terms of the shortest path between the target synsets
in the taxonomy. The degree of similarity is determined on the basis of this path,
and generally will correspond inversely with the path length. The first applica-
tion of this technique to WordNet is typically attributed to Rada et al. [33]. The
edge-counting technique offers a very intuitive representation of similarity. The
principal criticism of the edge-counting approach is that it is sensitive to the qual-
ity of the taxonomy that is employed. In particular, many authors have noted the
inconsistent conceptual density of the WordNet graph, and the problems that this
introduces for the reliability of edge-counting measures. The edge-counting method
is equivalent to the path-based approach used in many relatedness measures, ex-
cept that it is applied to the is-a taxonomy exclusively, and ignores other semantic
relationship types.

In order to address the criticisms of the edge-counting measures some authors
have preferred to use taxonomies to determine the relationships between concepts,
but to employ external resources (usually corpus statistics) to calculate the value
of similarity. These sorts of measures are called node-counting, since they discard
information about the edges connecting synsets and focus on a few key nodes, which
typically includes the two target nodes and their most specific common subsumer
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in the taxonomy. Resnik and Lin’s measures will be described as examples of the
node-counting approach.

Finally, while the node-counting approach eliminated certain problems that
arose from inconsistencies in the taxonomy, it also ignored much useful informa-
tion that is contained in the paths between synsets. Jiang and Conrath therefore
proposed a measure that calculates similarity using the edges in the shortest path,
but also uses corpus statistics in a secondary, corrective role.

2.4.1 Leacock and Chodorow

Leacock and Chodorow [18] proposed a semantic similarity measure that typifies
the edge-counting approach. In their measure, the similarity between two concepts
is determined by first finding the length of the shortest path that connects them in
the WordNet taxonomy. The length of the path that is found is scaled to a value
between zero and one and similarity is then calculated as the negative logarithm of
this value. The measure by Leacock and Chodorow may be expressed as follows:

simLC(c1, c2) = − log
length(c1, c2)

2D
(2.7)

where length(c1, c2) denotes the length, counted in nodes, of the shortest path
between the concepts c1 and c2 and D denotes the maximum depth of the WordNet
subsumption hierarchy.

The measure by Leacock and Chodorow can be illustrated with reference to
the WordNet subgraph given in Figure 2.1. The shortest taxonomic path between
motorcycle and bicycle is:

motorcycle is-a motor vehicle is-a self-propelled vehicle is-a wheeled
vehicle subsumes bicycle

It should be noted that the taxonomic path length differs from the network path
length, as only hypernymy and hyponymy relations are considered. Assuming an
arbitrary maximum depth of 10 in the WordNet taxonomy, the value of similarity
between motorcycle and bicycle would be computed as:

simLC(motorcycle, bicycle) = − log
length(motorcycle, bicycle)

2× 10

= − log
5

20
= 0.60
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2.4.2 Resnik

Resnik [34] introduced the first similarity measure to combine corpus statistics with
a conceptual taxonomy. Resnik’s hybrid approach has received considerable atten-
tion, and a number of other measures have incorporated his technique. Resnik
defines similarity in terms of information theory, and derives the necessary prob-
ability information from a corpus of text. The key intuition in Resnik’s measure
is that for any two concepts, the most specific concept that subsumes them both
in the conceptual taxonomy represents the information that the concepts share in
common. For example, in Figure 2.1 the most specific common subsumer of car and
bicycle is wheeled vehicle. The concept wheeled vehicle is assumed to represent the
information that is common to both car and bicycle. Resnik determines similarity
by calculating the information content of the shared subsumers. That is, higher
information content means that the concepts share more in common, and so are
more similar.

First, Resnik defined P (c) as the probability of encountering an instance of a
concept c. In order to determine P (c), Resnik relied on frequency information from
a text corpus. When counting the instances of concepts in the corpus, any instances
of subsumed concepts are also counted as instances of their subsuming concept. For
example, any instances of the words for apple, orange, banana, etc. also count as
instances of fruit. The concept fruit will necessarily have a higher frequency than
any concepts it subsumes, including every concept subsumed by its children, and so
on. Therefore, the probabilities of encountering concepts increases monotonically
for concepts higher in the taxonomy.

In order to compute the probability function P (c), we must first calculate the
number of occurrences of the concept c and the occurrences of all concepts subsumed
by c. Where words(c) denotes the set of words that correspond to all of the concepts
subsumed by c, the total frequency of c is given by:

freq(c) =
∑

n∈words(c)

count(n) (2.8)

The probability of encountering a concept c may be defined as the relative
frequency of c, where N is the total number of words observed in the corpus:

P (c) =
freq(c)

N
(2.9)

For his experiments, Resnik employed the Brown Corpus of American English
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[14]. He counted only the nouns in this corpus, and only those nouns that are
associated with concepts in WordNet.

According to the axioms of information theory, the information content of a
concept c is the negative log of its likelihood: − log P (c). As mentioned above,
Resnik argued that the similarity of two concepts is proportional to the amount of
information that they share, and that the shared information is represented by their
most specific common subsumer. For example, the most specific shared subsumer
of car and motorcycle in Figure 2.1 is motor vehicle. Therefore motor vehicle is
assumed to represent all of the information that is common to the concepts car and
motorcycle. The amount of information conveyed by the concept motor vehicle, as
determined by information theory, corresponds to the degree of similarity between
car and motorcycle.

Formally, where S(c1, c2) denotes the set of concepts that subsume both c1 and
c2, the degree of similarity is:

simR(c1, c2) = max
c∈S(c1,c2)

[− log P (c)] (2.10)

A few features of the preceding formula are worth noting. First, similarity al-
ways decreases lower in the taxonomy, as information content correlates inversely
with P (c). As the root node of the conceptual hierarchy subsumes every concept,
it has a probability of exactly one and therefore has an information content of
zero. In other words, knowing that two concepts share the root node as a subsumer
provides no information, as this is true of any two concepts. If the only common
subsumer of two concepts is the root node, they have the least possible similarity.
Second, Resnik’s equation uses the common subsumer with the maximum informa-
tion content. This will always be the most specific, i.e. the ‘lowest’, concept in any
sequence of superordinates in the taxonomy.1

In order to calculate the similarity of words, as opposed to that of word senses,
Resnik adopts an analogous solution to that of Hirst and St-Onge. The similarity
of words is assumed to be equivalent to the maximum similarity of their possible
senses. Where S(wi) denotes the set of all of the senses of the word wi, the similarity
between words is:

1Budanitsky and Hirst [4] reformulated Resnik’s measure to explicitly refer to the lowest su-
perordinate in the taxonomy. Although Budanitsky and Hirst’s formulation is more intuitive than
Resnik’s, it introduces ambiguity in cases of multiple inheritance. In these cases, it may not be
possible to identify a ‘lower’ subsumer, but the information content gives an indication of the
most specific concept.
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sim(w1, w2) = max
c1∈S(w1),c2∈S(w2)

[sim(c1, c2)] (2.11)

2.4.3 Jiang and Conrath

Jiang and Conrath [16] sought to combine the advantages of the edge-counting and
node-counting approaches. In order to compensate for the unreliability of edge-
distances, Jiang and Conrath weigh each edge by associating probabilities based
on corpus statistics. Their approach is similar to Resnik’s, in that it employs
information from both a conceptual taxonomy and from a text corpus. However,
whereas Resnik bases the value of similarity on the information content of one node
— the most informative common subsumer — Jiang and Conrath use information
theory to determine the weight of each link in a path.

Jiang and Conrath argue that the degree of similarity between a parent and
its child in the noun hierarchy of WordNet is proportional to the probability of
encountering the child, given an instance of the parent: P (c | par(c)). By definition,
the quantity P (c | par(c)) is:

P (c | par(c)) =
P (c ∩ par(c))

P (par(c))
(2.12)

Like Resnik, Jiang and Conrath consider every instance of a child to be an
instance of its parent, and thus P (c ∩ par(c)) = P (c). That is, it is redundant
to require both a child c and its parent par(c), as every instance of c is also an
instance of par(c). The equation for the probability of a child, given an instance of
its parent, can therefore be simplified to:

P (c | par(c)) =
P (c)

P (par(c))
(2.13)

Jiang and Conrath define the semantic distance between a child c and parent
par(c) as the information content of the conditional probability of c given par(c),
and using the basic properties of information theory obtain the following semantic
distance equation:

distJC(c, par(c)) = − log P (c|par(c))

= IC(c ∩ par(c))− IC(par(c))

= IC(c)− IC(par(c)) (2.14)
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The semantic distance between a parent and its child concept is therefore the
difference in their information content. This seems a plausible conclusion, as the
difference in information content should reflect the information required to distin-
guish a concept from all of its sibling concepts. For example, if a parent has only a
single child, then the conditional probability P (c | par(c)) = 1. In this case, taking
the negative logarithm gives distJC = 0. If no additional information is required to
distinguish a child from its parent, then the semantic distance between them ought
to be zero; they are effectively the same concept.

To compute the total semantic distance between any two concepts in the taxon-
omy, Jiang and Conrath’s measure uses the sum of the individual distances between
the nodes in the shortest path. As the shared subsumer (denoted by lso(c1, c2) for
the lowest super-ordinate shared by c1 and c2) does not have a parent in the path,
this node is excluded from the summation. The semantic distance between any two
concepts c1 and c2 in the taxonomy is therefore:

distJC(c1, c2) =
∑

c∈path(c1,c2)\lso(c1,c2)

distJC(c, par(c)) (2.15)

By substituting the expression in Equation 2.14 into Equation 2.15 and expand-
ing the summation, we obtain:

distJC(c1, c2) = IC(c1) + IC(c2)− 2× IC(lso(c1, c2))

= 2 log P (lso(c1, c2))− (log P (c1) + log P (c2)) (2.16)

2.4.4 Lin

Lin [20] attempted to provide a more general and theoretically sound basis for
determining the similarity between concepts than previous work had provided. He
argued that similarity measures should not depend on the domain of application,
nor on the details of the resources that they use. Lin begins by proposing three key
intuitions about similarity:

• Intuition 1: The similarity between A and B is related to their commonality.
The more commonality they share, the more similar they are.

• Intuition 2: The similarity between A and B is related to the differences
between them. The more differences they have, the less similar they are.
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• Intuition 3: The maximum similarity between A and B is reached when A
and B are identical, no matter how much commonality they share.

Lin argued that as there are different ways of capturing the intuitions above,
an additional set of assumptions are required. Lin therefore proposed a set of five
assumptions that capture these intuitions, and from which a measure of similarity
may be derived. The five assumptions are stated in terms of information theory.
In the following assumptions, common(A, B) is a proposition that states the com-
monality of the objects A and B, and description(A, B) is a proposition that states
what A and B are.

• Assumption 1: The commonality between A and B is measured by:
IC(common(A, B))

• Assumption 2: The difference between A and B is measured by:
IC(description(A, B))− IC(common(A, B))

• Assumption 3: The similarity between A and B is a function of the common-
alities and differences of A and B. Formally:
sim(A, B) = f(IC(common(A, B), IC(description(A, B))

• Assumption 4: The similarity between a pair of identical objects is always
one. Thus: sim(A, A) = 1

• Assumption 5: The similarity between a pair of objects with no commonality
is always zero. Thus: ∀y > 0, f(0, y) = 0

• Assumption 6: If the similarity between A and B can be computed using two
independent sets of criteria, then the overall similarity is the weighted average
of the two similarity values:
∀x1 ≤ y1, x2 ≤ y2 : f(x1 + x2, y1 + y2) = y1

y1+y2
f(x1, y1) + y2

y1+y2
f(x2, y2)

Using the six assumptions listed above, Lin proves the following similarity the-
orem:

simL(A, B) =
log P (common(A, B))

log P (description(A, B))
(2.17)

In order to apply the similarity theorem above to a conceptual taxonomy, Lin
follows similar reasoning to that of Resnik. The concept in a taxonomy that corre-
sponds to the statement of the commonalities between the concepts c1 and c2 is the
lowest super-ordinate, denoted lso(c1, c2). Similarly, the statement that describes
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the concepts c1 and c2 is the union of the two concepts. The information content
of the statement “c1 and c2” is the sum of the information content of c1 and c2.
According to the basic premise of information theory the information content of a
message is the negative log of its probability, and therefore the sum of the infor-
mation content of c1 and c2 is − log P (c1) + − log P (c2). Substituting into Lin’s
similarity theorem, we obtain:

simL(c1, c2) =
2× log P (lso(c1, c2))

log P (c1) + log P (c2)
(2.18)

Lin’s measure is therefore the ratio of the information shared in common to
the total amount of information possessed by two concepts. It is quite similar to
Resnik’s measure except that Resnik’s measure considers only the information that
is shared by concepts, and does not take into account the total amount of informa-
tion that they represent. Due to this, Resnik’s measure cannot distinguish between
different pairs of concepts that have the same most informative subsumer. For
example, in the small semantic network in Figure 2.1, the concept pair car/bicycle
has exactly the same similarity as the pairs motor vehicle/bicycle and self-propelled
vehicle/bicycle according to Resnik’s measure.

2.4.5 Yang and Powers

Yang and Powers [47] recently published the details of a new similarity measure
that they reported to achieve significantly improved results over previous efforts.
Their measure combines many of the techniques found in other path-based models,
such as assigning weights to edges and restricting the allowable paths based on
patterns of semantic relations.

Unlike other edge-counting measures of similarity, the measure by Yang and
Powers does not rely exclusively on the is-a hierarchy of WordNet, and incorpo-
rates several other relationship types. Specifically, holonymy (part-of), meronymy
(has-a), and antonymy (opposite) are considered, along with hyponymy (subsumes)
and hypernymy (is-a). When determining the shortest path between concepts in
WordNet, edges of each of the preceding types are explored. However, only one
change in relationship type along a path is permitted. For example, a path may
consist of any number of meronym links followed by any number of hypernym links,
but these couldn’t be followed by another relationship type.

In the partial WordNet graph shown in Figure 2.1, the path motorcycle has-
a mudguard part-of bicycle would be permitted, since there is only one change
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of relationship type, from has-a to part-of. However, the path motor vehicle
subsumes motorcycle has-a mudguard part-of bicycle would not be permitted.

In contrast to other path-based measures, Yang and Powers’s measure calculates
similarity as the product of link weights rather than as their sum. As the weights
of links in Yang and Powers’ measure range from zero to one, the value of similarity
decreases as the path between concepts increases, approaching zero for large path
lengths.

The measure by Yang and Powers uses different weight constants for each re-
lationship type, as well as overall weighting factors that are applied to the whole
path, depending on which types of links the path contains. The variety of weight
constants provides a great deal of flexibility for tuning the model. The model by
Yang and Powers computes similarity as follows:

simY P (c1, c2) =

 αt

dist(c1,c2)∏
i=1

βti if dist(c1, c2) < γ

0 if dist(c1, c2) ≥ γ

(2.19)

where 0 < sim(c1, c2) <= 1 and

• t = hh (hyper/hyponym), hm (holo/meronym), sa (syn/antonym), id (iden-
tity)

• αt: a link type factor applied to a sequence of links of type t (0 < αt ≤ 1).

• βt: the depth factor, which also depends on the link type.

• γ: an arbitrary threshold on the distance introduced for efficiency, represent-
ing human cognitive limitations.

• c1, c2: concept node 1 and concept node 2.

• dist(c1, c2): the distance (the shortest path) between c1 and c2.

The particular values for αt and βt are: αid = 1.0, αsa = 0.9, αhh = αhm = 0.85
and βhm = βhh = 0.7. Note that no value for βid or βsa has been provided. This
is because paths with the identity, synonym or antonym relation cannot have any
other relation in them, according to Yang and Powers’ measure. In these cases,
the path always has a length of one, and so the product in Equation 2.19 may be
ignored, leaving simY P (c1, c2) = αt. Yang and Powers determined the values of αt
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and βt by varying each of the values by small increments and then comparing the
correlation of the measure against human judgments of relatedness.

The fragment of WordNet shown in Figure 2.1 may be used to illustrate the
measure. The shortest path between car and mudguard is: car is-a motor vehicle
subsumes motorcycle has-a mudguard. The path has a length of three (counted
in edges) and thus dist(car,mudguard) = 3. As all of the relations in this path
are either hypernym/hyponym or meronym/holonym relations, the value of βti is
βhh = βhm = 0.7 and the value of αti is αhh = αhm = 0.85. The similarity value is
calculated using Equation 2.19:

simY P (car, mudguard) = 0.85
3∏

i=1

0.7

= 0.85× 0.7× 0.7× 0.7

= 0.29155

Like Resnik and Hirst and St-Onge, Yang and Powers are interested in measuring
the semantic distance between polysemous word forms, as well as word senses. Yang
and Powers suggest several possible functions for determining the semantic distance
between words. Specifically, the similarity of a word pair could be the maximum,
the sum, or the mean of the similarities of the possible word senses. Where S(w)
denotes the set of word senses associated with the word w, the relatedness between
the words w1 and w2 are:

simmax(w1, w2) = max
s1∈S(w1),s2∈S(w2)

sim(s1, s2) (2.20)

simsum(w1, w2) =
∑

s1∈S(w1),s2∈S(w2)

sim(s1, s2) (2.21)

simmean(w1, w2) =
simsum(w1, w2)

|S(w1)| × |sense(w2)|
(2.22)

In their evaluation, Yang and Powers found that simmax yielded the best results,
confirming the intuitions of other researchers.

The measure by Yang and Powers raises some interesting questions about the
difference between similarity and relatedness measures. Unlike most other path-
based similarity measures, Yang and Powers do not restrict their measure to is-a
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relations, but include part-of relations as well as antonymy. Sussna’s [44] measure
is similar to theirs in many respects. Sussna used the same set of semantic rela-
tions that Yang and Powers used, but considered his distance measure a measure
of relatedness. The use of semantic relations other than is-a relations might be
justified by the observation that although part-of and opposite relations do not
entail similarity, in most cases concepts connected by these relations are in fact
similar. For example, the parts of a mechanical device are likely to also be me-
chanical devices, and the parts of a biological system are also likely to be biological
systems.2

2.5 Relatedness Applications

2.5.1 Word Sense Disambiguation

Several authors have applied relatedness measures to the problem of word sense
disambiguation, including Sussna [44], Lesk [19], and Banerjee and Pedersen [2].
Recently, Patwardhan et al. [30] described a technique for word sense disambigua-
tion and used it to compare the performance of several different similarity and
relatedness measures, including the measures by Hirst and St-Onge [15], Jiang and
Conrath [16], Leacock and Chodorow [18], Lin [20], and Resnik [34].

The algorithm described by Patwardhan et al. moves a window of context across
a text. This window consists of a target word and some number of words to both
the left and right of the target word. As several of the semantic distance measures
can only be applied to nouns, the window of context includes only nouns, and only
those nouns that are included in WordNet. For each word in the window, candidate
senses are identified. These senses consist of all WordNet synsets associated with
the surface form of the current word, and all WordNet synsets associated with the
base form of the word.

Once all of the candidate senses have been identified, each candidate sense is
assigned a score based on its relatedness to the other nouns in the window. The
total score for each candidate sense is the sum of its relatedness to each of the senses
of the other nouns in the window. The equation score(c) then gives the total score

2Alternatively, Yang and Powers may simply be using the terms ‘similarity’ and ‘relatedness’
differently than other researchers. While they call their measure a similarity measure when
comparing concepts, they call it a relatedness measure for word forms.
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for a candidate sense c:

score(c) =
∑
w∈W

∑
ci∈S(w)

rel(c, ci) (2.23)

where W is the set of words in the window of context excluding the target word,
S(w) denotes the set of synsets associated with the word w, and rel(c1, c2) denotes
a function that gives the strength of relatedness between the synsets c1 and c2. The
candidate sense with the highest score is selected as the correct sense of the target
word:

sense(w) = arg max
c∈S(w)

[score(c)] (2.24)

It should be noted that the technique described above is compatible with any se-
mantic distance measure that gives a numerical estimation of the semantic distance
of two synsets. Patwardhan et al. evaluated the technique using several different
measures, including the measures by Resnik [34], Jiang and Conrath [16], Lin [20],
Hirst and St-Onge [15] and a gloss-based measure. They found that the Jiang-
Conrath measure and the gloss-based measure achieved the best results overall.

2.5.2 Malapropism Detection

Hirst and St-Onge [15] describe an ingenious application of a lexical semantic re-
latedness measure for detecting and correcting malapropisms. A difficult problem
for automatic spell-checking is the case of a spelling error that results in a correctly
spelled, but unintended, word. These sorts of errors can occur either as the result
of a typing error, or can be the result of confounding the spellings of two similar
words. For example, in the phrase “an ingenuous machine for peeling oranges,”
the word ‘ingenuous’ ought to have been spelled ‘ingenious’. The author of this
phrase may have typed a ‘u’ instead of an ‘i’, or may have confused the meanings of
the two words. In either case, traditional spelling checkers would not recognize the
error. Hirst and St-Onge call these sorts of mistakes malapropisms, or real-word
spelling errors, and propose a solution to this problem using lexical chains.

Lexical chains are representations of the cohesive relations between words in a
text. That is, if a text is cohesive, there are likely to be words in successive sentences
that refer to similar or related concepts. By stringing together the words with
these cohesive relationships, we obtain a representation of the threads of meaning
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description: top-level lexical chaining algorithm
input : a text consisting of a sequence of words
output : a set of lexical chains

chains ← ∅1

foreach word ∈ Nouns(text) do2

if InsertStrong(word,chains) then3

continue4

else if InsertMedStrong(word,chains) then5

continue6

else7

/* There were no related chains, so create a new chain

*/

chains ← chains ∪ {{(word,Senses(word))}}8

return chains9

Algorithm 2.1: Hirst and St-Onge lexical chaining algorithm

in the text. Lexical chains are relevant to the problem of malapropisms because
malapropisms, in general, do not cohere with the text surrounding them.

For their lexical chains, Hirst and St-Onge considered only nouns, because of
the lack of interconnectivity between the verb, adverb, and adjective portions of
WordNet. The lexical chaining algorithm processes all of the nouns in a text in
sequence. It maintains a set of current chains, each of which is a set of structures
that contain a word and a subset of that word’s senses (synsets). Each noun in
the text is compared to the previously formed chains. When one of the senses of
the current word is found to be related to a sense in a chain, the word is added to
the chain. The new word is added with only those senses that are related to the
chain. In this way, the words added to a chain are disambiguated by the words
that preceded them.

The lexical chaining algorithm makes two passes of the existing chains for each
new word. To help illustrate Hirst and St-Onge’s algorithm, we have provided a
simplified pseudocode description of their technique based on their explanation in
[15]. The top-level lexical chaining algorithm is provided in Algorithm 2.1.

The relatedness measure used by Hirst and St-Onge distinguishes two degrees
of semantic relatedness: strong and medium-strong. In the first pass of the lexical
chaining algorithm, only strong relations are considered. The new word is inserted
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description: algorithm for inserting a word into lexical chains using
strong relations

input : a set of lexical chains and a single word to be inserted
output : true if the word is successfully inserted, else false

relatedsenses ← ∅1

foreach chain ∈ chains do2

/* Compare the senses of newword to the senses in chain */

foreach newsense ∈ Senses(newword) do3

foreach (word,senses) ∈ chain do4

foreach sense ∈ senses do5

if sense.StrongRelation(newsense) then6

relatedsenses ← relatedsenses ∪ { newsense }7

/* Add newword to the first chain that it is strongly

related to, along with the senses of newword that are

related to the chain */

if relatedsenses 6= ∅ then8

chain.Add(( newword,relatedsenses))9

return true10

return false11

Algorithm 2.2: Hirst and St-Onge lexical chaining algorithm: Insert-
Strong(newword, chains)

into the first chain to which it is strongly related. The word is added in a structure
that contains the word form and the set of senses of that word that have a strong
relationship to other senses in the chain. The algorithm for inserting words into
lexical chains to which they are strongly related is provided in Algorithm 2.2.

In a second pass, the medium-strong relationships between the senses of the new
word and the senses of words in the lexical chains are examined. If any medium-
strong relations are found, the word is added to the chain containing the synset that
it is the most strongly related to. Only the most strongly related sense of the new
word is added to the chain. The algorithm for inserting words with medium-strong
relationships to lexical chains is provided in Algorithm 2.3.

The description of the lexical chaining process given so far is incomplete, but
should suffice for the purpose of understanding the nature of lexical chains. For ex-
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ample, the full algorithm includes steps for removing word senses in chains that are
not connected to other senses in the chain, in order to disambiguate words that were
previously added on the basis of the words that follow them. The comprehensive
description of the lexical chaining procedure is provided by St-Onge [40].

To apply the lexical chains described above to the problem of malapropisms, the
target text is first processed by the lexical chainer. A set of potential malapropisms
is constructed from all of the atomic chains, which represent the words that could
not be added to any chain. For each of the potential errors, a search is performed
for similarly spelled words. If any similarly spelled words are found that would in
fact have been successfully added to a chain, then that word is flagged as a probable
malapropism, and the user is informed of the potential error along with suggestions
for the correct spelling.

2.6 Chapter Summary

Of the three varieties of taxonomy-based measures of semantic similarity — edge-
counting, node-counting, and hybrid — the hybrid approach has met with the
most success. Jiang and Conrath’s measure was found to achieve the best results
in studies by Budanitsky and Hirst [4] and by Patwardhan et al. [30]. Hybrid
approaches exploit the rich semantic information available in semantic networks,
while compensating for the inconsistencies in such resources with corpus statistics.

The node-counting and hybrid approaches turn on the intuition that similarity
can be expressed in terms of quantities of information. That is, one may reasonably
ask how much information concepts have in common, and how much information
is peculiar to one concept with respect to another. The formulation of similarity in
terms of quantity of information enables an information-theoretic treatment of the
problem.

Semantic relatedness, on the other hand, does not lend itself to a formulation in
terms of information quantity. The strength of relatedness between concepts seems
to be a matter of the quality of their relationship, rather than of any quantity of
information. For example, despite the strong relationship between gasoline and car,
the fact that gasoline is used to power cars is a very small amount of information
relative to all there is to know about gasoline. However, this small amount of
information is in some way sufficiently important that it results in a high degree
of relatedness. In this case, a plausible explanation for the importance of the
relationship may be the very frequent occurrence in everyday use of the functional
association between gasoline and car.
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Measures of semantic relatedness have therefore been restricted to the path-
based approach, with a few notable exceptions such as the gloss-based measure
of Banerjee and Pedersen [2]. In the next chapter, we will examine the features of
path-based measures of relatedness and similarity, and will propose a general formal
description for measures of this type. Two simplifying assumptions will then be
made in order to derive a new, simplified, path-based measure.
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description: algorithm for inserting a word into lexical chains using
medium-strong relations

input : a set of lexical chains and a single word to be inserted
output : true if the word is successfully inserted, else false

relatedsenses ← ∅1

max ← 02

foreach chain ∈ chains do3

/* Compare the senses of newword to the senses in chain */

foreach newsense ∈ Senses(newword) do4

foreach (word,senses) ∈ chain do5

foreach sense ∈ senses do6

if sense.MedStrongRelation(newsense) and7

sense.RelationStrength(newsense) > max then
max ← sense.RelationStrength(newsense)8

relatedsenses ← { newsense }9

relatedchain ← chain10

/* Add newword to the most strongly related chain, along with

the most strongly related sense of newword */

if relatedsenses 6= ∅ then11

relatedchain.Add(( newword,relatedsenses))12

return true13

else14

return false15

Algorithm 2.3: Hirst and St-Onge lexical chaining algorithm: InsertMed-
Strong(newword, chains)
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Chapter 3

Semantic Relatedness as a
Function of Network Path Length

The semantic relatedness measures described in the last chapter have met with
some success. For example, Hirst and St-Onge [15] successfully demonstrated an
application of their measure to the problem of real-word spelling errors. Similarly,
Sussna [44], and Banerjee and Pedersen [2] reported positive results when applying
their relatedness measures to the task of word sense disambiguation. Also, the
measures by Hirst and St-Onge, and Banerjee and Pedersen were shown to correlate
with the judgments of human test subjects, achieving correlations of r = 0.79 and
r = 0.67, respectively.

However, there is also much room for improvement. One indication of the
inadequacy of current measures of relatedness is their relatively poor performance
compared to measures of similarity. In a comparison of semantic distance measures
by Budanitsky and Hirst [4], the authors found that similarity measures performed
better than relatedness measures, even though they were examining tasks believed
to rely on measuring relatedness. Budanitsky and Hirst compared five similarity
and relatedness measures in two different tasks. In the first, they compared the
results of each measure against the relatedness judgments of human subjects, which
had been collected in previous experiments. While similarity measures achieved
correlations as high as r = 0.85, the relatedness measures did not surpass r = 0.79.
In a second experiment, Budanitsky and Hirst compared the performance of the five
measures for the task of real-word spelling error correction using lexical chains, as
described by Hirst and St-Onge [15]. Once again, similarity measures outperformed
relatedness measures, even though the application is believed to rely on measuring
relatedness.
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There are several possible interpretations of Budanitsky and Hirst’s results. On
the one hand, it could be that the distinction between similarity and relatedness
is, in practice, unimportant. That is, given that similarity constitutes a particular
type of relatedness, it may be the case that other kinds of relatedness occur very
infrequently and for the purposes of most applications may be safely ignored.

On the other hand, it is possible that relatedness is significantly different from
similarity, but that current relatedness measures are fundamentally flawed. In this
case it would be appropriate to reject previous approaches to measuring relatedness
and to seek new directions for future work. For example, as similarity measures have
proved to be rather good proxies for relatedness measures, it may be reasonable to
take these measures as starting points and then to modify them to accommodate
the unique properties of relatedness.

Finally, it is also possible that previous relatedness measures have taken the
correct general approach, but have failed in their details. It is this interpretation
that will be adopted in this study. In particular, a number of researchers have
developed measures that compute relatedness from the shortest path between con-
cepts in a semantic network, including Sussna [44], and Hirst and St-Onge [15].
We will attempt to show that the path-based approach is viable, in spite of the
mediocre results of previous measures of this type.

3.1 New Methodology for Path-Based Related-

ness Measures

In order to improve the quality of path-based measures, we propose a more sys-
tematic way of constructing and evaluating path-based models. Previously, the
authors of relatedness and similarity measures put forward complex and sophisti-
cated models, and compared them to the equally complex and sophisticated models
of other researchers. However, these complex models often consisted of numerous
independent elements.

For example, many authors have proposed different weighting factors for the
edges in the semantic network. In some cases, several different factors have been
combined in a single measure. In Sussna’s [44] measure, the weight of edges is
scaled by both the type-specific fanout factor, and also by a depth factor. It may
be the case that one of these techniques improves the accuracy of the measure, and
the other one reduces its accuracy. In order to determine whether this is the case,
the two techniques must be evaluated separately.
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Our conjecture is that while some of the features of previous path-based relat-
edness measures are beneficial, others are not. In order to evaluate this conjecture,
we will first enumerate the various features of path-based relatedness measures
that have appeared in the literature. It will be shown that these features are both
independent and compatible with one another, so that any combination of these
features in a measure is possible.

Once the set of possible features has been identified, a general description of
path-based semantic distance measures will be provided. This description will
demonstrate how the different possible features may be combined, and will also
identify the core elements shared by all path-based measures. A general description
along these lines provides a modular view of relatedness measures. Given such a
description, it will be possible to produce new measures with different subsets
of features. These permutations can be evaluated in order to identify the best
measure possible using available features. Essentially, we are proposing that current
measures be reduced to their constituent parts so that these may be recombined to
construct more successful measures.

After we establish a general description of relatedness measures, we will describe
a baseline path-based relatedness measure derived from the general formula. This
new measure is based on two simplifying assumptions. Namely, that:

1. The edges in a semantic network represent uniform semantic distance.

2. The sum of edge weights in a path maps directly to relatedness, i.e., no other
properties of the path need be considered.

All of the path-based measures that have been described in this study reduce to
the same simplified measure when these two assumptions are adopted. In Chapter 4,
the simplified measure will be used as a baseline for examining previous relatedness
and similarity measures. It will be shown that current measures do not outperform
the baseline version when compared to human judgment, calling into question some
of the basic assumptions of these models.

3.2 Features of Path-Based Measures

There are several categories of techniques used by semantic distance measures to
improve upon the basic shortest path length approach. First, many authors have
proposed means of determining the semantic distance that is represented by indi-
vidual edges in the WordNet graph. A second category of techniques modifies the
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weight of a whole path, rather than that of individual links. Some measures also
employ mapping functions that transform the sum of edge weights of the short-
est path between concepts into a value of similarity or relatedness. Finally, some
measures restrict the types of semantic relations, or the combinations of types of
relations, that may appear in paths between concepts when calculating semantic
distance.

The purpose of weighting techniques is worth considering at this point. On the
one hand, techniques for weighting either edges or paths in a semantic network may
reflect fundamental properties of relatedness. It could be that a weighting technique
captures something about the way in which humans determine relatedness, for
example. On the other hand, it may be that weighting techniques are necessary
only to compensate for deficiencies in the lexical resource that is being used.

Semantic networks can vary in quality in several ways. Not every network is
equally comprehensive either in terms of its coverage of possible concepts, or in
terms of the richness of its connectivity. For example, Roget’s thesaurus includes
a much wider range of semantic relationship types than WordNet does [5]. Also,
even the same semantic network can be internally inconsistent in its quality. For
example, the part of the WordNet noun taxonomy pertaining to biological organ-
isms is quite rich [34], owing to the extensive taxonomy that has already been
developed in biological science. Other parts of the WordNet taxonomy may be less
well-developed, leading to variations in the length of paths between concepts of
seemingly equal semantic distance. For example, the shortest path connecting the
concepts for horsefly and insect in WordNet 2.0 has a length of four. This is an
unusually long path given the apparently close relationship between these concepts.
By way of contrast, the concepts philosopher’s stone and entity are connected by
a path of only three relations.

The distinction between techniques that compensate for a deficient resource
and those that capture essential properties of relatedness is important because it
suggests that not every technique will continue to be effective when moved between
resources. A measure that is successful when using a particular semantic network
may be less successful using a different one. This suggests that it may be necessary
to revise and re-evaluate semantic distance measures as the lexical resources that
they use change.

3.2.1 Edge-Weighting Techniques

A key assumption made by the authors of path length–based similarity and relat-
edness measures is that the edges in semantic networks do not represent uniform
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semantic distances. Therefore many authors have proposed schemes for more ac-
curately determining the weight — in terms of similarity or relatedness — of edges
in the graph. These techniques include depth-relative scaling, type-specific fanout
factor, weighting by relationship type, and information content scaling.

Depth-Relative Scaling

Several authors [44, 34, 47] have noted that concepts that are higher in a conceptual
taxonomy are separated by greater conceptual distance. They argue that general
concepts near the top of the hierarchy represent very broad distinctions, whereas
concepts lower in a taxonomy represent much finer distinctions. For example, the
concepts for physical entity and abstract entity seem to be further apart from one
another in meaning than redheaded woodpecker and downy woodpecker. However, in
the WordNet taxonomy both of these pairs are sibling concepts that are separated
by the same number of edges.

At first glance, depth-relative scaling seems to apply more naturally to the
problem of measuring similarity than it does to measuring relatedness. Relatedness
does not depend on the is-a taxonomy in the same way that similarity does. For
relations that do not constitute a taxonomy there is no evident way of computing
the depth of nodes in the semantic network.

Nevertheless, some authors have attempted to generalize the notion of depth-
scaling to encompass other semantic relations. For example, for the purpose of
adjusting the weights of links based on taxonomic depth, Sussna computes depth
based on hypernym, hyponym, meronym, holonym, and antonym relations.

The evidence offered for depth-relative scaling consists primarily of motivating
examples. Patwardhan et al. [30] provide a fairly typical argument, when they
point to the distance between the concepts fire iron and implement and compare it
to the distance between mouse and rodent. Both of these pairs are related directly
in the WordNet is-a hierarchy, but the difference between fire iron and implement
seems to be much greater than that between mouse and rodent. The former pair is
also higher in the taxonomy, with a depth of seven compared to a depth of eleven
for the latter.

While it is easy to provide examples that support depth-relative scaling, it is
also easy to provide examples that undermine it. The relation written material
is-a written communication, at a depth of five, is near the top of the hierarchy and
represents a narrow semantic distance. Similarly, the relation product is-a creation
has a depth of only five, and the relation creation is-a artifact has a depth of four.
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These relations represent subtle distinctions even though they are quite high in the
taxonomy.

In spite of any apparent counterexamples, it may be that relations between
general concepts tend to be semantically distant compared to relations between
more specific concepts. The usefulness of depth-relative scaling depends only on a
significant correlation between depth and semantic distance, and does not require
perfect correspondence. Whether a significant correlation exists is a matter for
empirical study.

Type-Specific Fanout

Sussna [44] proposed a means of weighting edges based on the number of edges of
the same type that originate from a node. In short, the more relations a concept
has of the same type, the less each of these relations contributes to relatedness.

Sussna’s type-specific fanout (TSF) factor has some interesting similarities to
the information content approach of Resnik [34], Lin [20], and Jiang and Conrath
[16]. In information content models, the greater the likelihood of encountering a
concept given a second concept, the less distance there is between the two concepts.
For example, if it were the case that most instances of bird are robins, then these
concepts would be considered semantically close. For information content models
the likelihood of concepts is determined by counting the number of instances in a
corpus. In TSF, the likelihood of concepts is determined by counting the sibling
concepts, i.e., concepts that are connected by the same relations to another con-
cept. For example, in the case of the keyboard has-a key relation, the chance of
encountering key given keyboard and the has-a relation is very high, as keyboard
has very few other meronyms.

A disadvantage of TSF with respect to the information-content model is that
it cannot make the fine-grained distinctions that are possible with the use of a
large text corpus. This is a disadvantage because TSF cannot distinguish between
relationships of the same type. For example, if the relation keyboard has-a cord
existed, it would have the same weight as keyboard has-a key. In this case, TSF
would not offer a very good approximation of the semantic distance. That is, the
proximity of keyboard and key does not depend on how many other keyboard parts
have been encoded in the semantic network. The number of relations for each node
can be arbitrarily large in a semantic network — it is limited primarily by the time
and patience of the lexicographers that encode the relations — and the inclusion
of less salient relations should not diminish the importance of more salient ones.
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Weight by Relationship Type

Perhaps the most straightforward means of weighing relations is to assign semantic
distance weights on the basis of relation types. Given that the different edges in
the WordNet graph represent a diverse set of semantic relations, this may seem
a plausible technique. For example, antonyms have consistently been found to
register very highly on word association tests [9]. This may indicate that antonymy
represents a stronger degree of relatedness than other semantic relations.

Sussna’s [44] measure incorporates a kind of relationship-type weighting scheme.
In his measure, each relationship type is constrained to a different range of possible
values. For example, hypernymy or hyponymy relations can have values between
one and two, whereas antonymy relations have a value of 2.5. Yang and Powers
[47] take a more direct route and assign a constant weight to each type of semantic
relation in WordNet. Also, Jiang and Conrath [16] provided for a relation-type
factor in their measure, although they did not implement or evaluate this feature.

Unfortunately, relationship type represents a very coarse filter. In the noun
portion of WordNet, for example, the vast majority of relations are either hyper-
nym/hyponym or meronym/holonym. Assigning weights on the basis of only two
types of relation is not likely to offer a significant improvement in the success of a
measure.

Information Content

Jiang and Conrath’s major contribution was showing how information content can
be used to weigh the semantic distance of edges in WordNet’s conceptual taxonomy.
Their technique does not generalize to semantic relations other than hypernymy and
hyponymy, and so may not be a useful technique for relatedness measures. How-
ever, it is possible to weigh only the is-a links in a path of mixed relationship
types. As Jiang and Conrath’s measure has been found to be very effective, adopt-
ing information content scaling for semantic relatedness measures may be worth
investigating.

3.2.2 Path-Weighting Techniques

Although edge weighting is one of the most common approaches to enhancing path-
based measures, some authors have also introduced methods that scale the value
of relatedness using properties of whole paths instead of individual relations. The

43



path-weighting techniques of the measures that we are considering include depth-
relative scaling, weighting by relationship types, and functions that map semantic
distance to similarity or relatedness.

Depth-Relative Scaling

Leacock and Chodorow [18] suggested a kind of depth scaling for paths on the
basis of the maximum depth of the semantic network. Their technique is of limited
usefulness, as it is meaningful only when comparing measurements that use different
semantic networks. For example, when comparing only WordNet-based measures,
this technique has no effect. The purpose of scaling by the maximum depth of
the taxonomy in Leacock and Chodorow seems to be primarily to obtain values
between zero and one, in order to apply a logarithmic transformation.

Weight by Relationship Type

In the measure by Yang and Powers [47], a weight is applied not only to the indi-
vidual edges in the shortest path connecting concepts, but also to the entire path,
depending on the types of relations that it contains. For their tests, they scaled
any paths consisting of only synonyms or antonyms by a factor of 0.9. Paths that
consist of a mixture of hypernyms, hyponyms, meronyms and holonyms are scaled
by a factor of 0.85. In Yang and Powers’ model these are the only possible types of
path. The close coupling of allowable paths and path-weighting make the technique
difficult to generalize. In particular, if fewer constraints are placed on the types of
paths that are allowed, it would be necessary to supply scaling factors for a very
large number of potential path types.

However, the path-weighting technique by Yang and Powers plays an extremely
minor role in their model, and it is possible to eliminate it entirely with a small
change to their measure. As described in the last chapter, Yang and Powers’ formula
for similarity is:

simY P (c1, c2) =

 αt

dist(c1,c2)∏
i=1

βti if dist(c1, c2) < γ

0 if dist(c1, c2) ≥ γ

(3.1)

where αt is the path weight factor for the path type t, and βti is the edge weight
factor for the ith edge in the shortest path between c1 and c2 with edge type t.
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To eliminate αt with minimal impact on the measure, we first add an additional
term to the product, by starting with i at zero instead of one. Paths with a length
of one are thus equal to the link weight factor of the first, and only, edge in the
path. Removing the path-weighting factor αt, their measure becomes:

sim′
Y P (c1, c2) =

 1

dist(c1,c2)∏
i=0

βti if dist(c1, c2) < γ

0 if dist(c1, c2) ≥ γ

(3.2)

Paths that contain a synonym or antonym cannot contain any other relations,
and therefore always have a length of one. If we set βsa = αsa, then antonym and
synonym paths will have the same value as in the original measure. That is, using
the original similarity equation (Equation 3.1) for a path between a1 and a2 where
a1 is an antonym of a2, gives:

simY P (a1, a2) = αsa

1∏
i=1

βsa

= αsa

With the new Equation 3.2, and using βsa = αsa, we have:

sim′
Y P (a1, a2) = 1

1∏
i=0

βsa

= βsa

= αsa

As for paths of hypernym, hyponym, meronym, and holonym relations, the
new formula in Equation 3.2 results in a product of the same number of terms as
previously, but the first would be βhm instead of αhm. For example, a path of three
nodes and two edges would have previously been αhm×βhm×βhm = 0.85×0.7×0.7,
but now will be βhm×βhm×βhm = 0.7×0.7×0.7. The value of αhm can be adjusted
to reduce the difference even further.

Hirst and St-Onge [15] also include a sort of relationship type path-weighting
scheme. They subtract the number of changes in ‘direction’ from the related-
ness value. The premise behind this technique is that hypernym/hyponym and
meronym/holonym relations are transitive when they are not mixed. That is, a
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part of a part is still a part. Similarly, a subtype of a subtype is also a subtype.
However, when other relationship types are introduced, the transitivity no longer
holds. In this case, the strength of relatedness diminishes, as there is no longer a
meaningful relationship between the first and last concepts in the path.

The limitation of having only three categories of semantic relation leads to some
strange results, however. For example, paths of similarly directed, but different,
relations will be treated no differently than paths composed of only one relationship
type. A path that consists of a mixture of meronyms and hypernyms will not receive
any penalty for changes in direction because these are both ‘upward’ relations.
However, it would seem that transitivity is not preserved in this situation.

3.2.3 Mapping Functions

Several measures employ functions to transform the sum of edge weights in the
shortest path to a final similarity or relatedness value. The purpose of this step
may simply be to scale the results of measures to a reasonable and convenient range
of values. On the other hand, these mapping functions vary considerably between
measures, and likely do have some impact on the success of the measures.

The measures by Hirst and St-Onge [15], and Leacock and Chodorow [18] offer
examples of these types of mapping functions. Hirst and St-Onge’s measure derives
relatedness from path length through a simple linear transformation. They subtract
the length of the shortest path between concepts from a constant value, which
is sufficiently large to ensure a positive result. Leacock and Chodorow elect a
logarithmic function to map the taxonomic path length to similarity.

3.2.4 Pruning Techniques

The final category of techniques found in path-based relatedness measures does not
directly adjust the value of relatedness, but instead manipulates the types of path
that are considered.

Allowable Patterns

Hirst and St-Onge [15] permit eight patterns of semantic relations in a path, which
are defined in terms of their three ‘directions’ of semantic relations. Yang and
Powers [47] offer a similar technique, allowing only a single change of relationship
type in any path.
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Both of these techniques are motivated by the observation that some semantic
relations are transitive. Sequences of transitive relations are assumed to correspond
to stronger relatedess or similarity than sequences of different relations. For exam-
ple, given that robin is-a bird is-a animal it follows that a robin is-a animal. The
semantic distance between robin and animal is small, owing to the fact that these
concepts have a clear semantic relationship to one another.

Edge-Type Restrictions

A more straightforward method for restricting the types of allowable paths is to
exclude certain types of semantic relations entirely. For example, most path-based
similarity measures allow only is-a links. Relatedness measures, by contrast, typ-
ically also allow meronym, holonym, and antonym relations and some relatedness
measures allow additional relationship types.

3.3 Generalized Path-Based Measure of Related-

ness

The features of path-based measures described above, including edge-weighting
techniques, path-weighting techniques, mapping functions and pruning techniques,
represent the elements of path-based measures that vary from measure to measure.
These features are largely compatible with one another, and most could in principle
be combined in a single relatedness measure. While it is doubtful that such a
measure would be effective, a general template that describes how the features
could be combined in a single measure would be helpful. This template could be
used to generate measures with different subsets of the available features. A general
description of semantic distance measures would also make it easier to identify a
baseline measure, which would consist of only those elements that are shared by all
other path-based measures.

In order to define such a generalized measure, we must first define some notation:

• p is an ordered list of concepts, representing a path between nodes in a se-
mantic network.

• pi is the ith element of the path p.

• path(c1, c2) denotes the set of all paths connecting the concepts c1 and c2 in
a semantic network.
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• wtedge(c1, c2) denotes the semantic distance between the adjacent nodes c1

and c2.

For most of the measures under consideration, the total semantic distance of
a path is calculated in terms of the sum of the semantic distances between each
node in the path. These edges are first given weights using whatever edge-weighting
schemes are provided for in the measure. In some measures the sum of edge weights
is transformed into a similarity or relatedness value by some function. A simple
formulation therefore captures the majority of features of existing models. Formally,
the total semantic distance of a given path p is given by the following formula:

dist(p) = distmap

|p|−1∑
i=0

wtedge(pi, pi+1)

 (3.3)

In the equation above, distmap(x) is a function that maps the sum of edge
weights to similarity or relatedness, and wtedge(c1, c2) is a function that determines
the semantic distance represented by the edge connecting the concepts c1 and c2.
The preceding equation calculates the semantic distance of a given path, but it is
necessary to select which path in particular should be used, as concepts may be
connected by many paths. One option is to choose the path that minimizes the
weighted semantic distance:

rel(c1, c2) = min
p∈{path(c1,c2)}

[dist(p)] (3.4)

Although this may be the most principled approach for determining the total
semantic distance, it is computationally intractable. To determine the path with
the least semantic distance, it is necessary to find every possible path between the
nodes.

If the measure does not include any path-weighting schemes, and semantic dis-
tance is calculated as the sum of edge distances, then Dijkstra’s [11] algorithm may
be used to find the minimum weighted path. However, for a graph as large as
WordNet, Dijkstra’s algorithm is still quite inefficient. The worst-case complexity
of Dijkstra’s algorithm is O(n2), where n is the total number of nodes in the graph.
WordNet 2.0 has more than 100000 nodes, which results in a very long running
time for Dijkstra’s algorithm. As the WordNet graph is fairly sparse — nodes are
connected to only a limited number of other nodes — more efficient variations of Di-
jkstra’s algorithm may be used. However, even optimized versions of the algorithm
have a worst-case running time that grows with the size of the network.
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As a result of the computational complexity of finding the path that minimizes
the weighted graph distance, it is conventional to choose the path with the fewest
edges and to compute semantic distance using this path. Identifying the path
with the fewest edges is much easier than identifying the path with the minimum
total weight. It can be accomplished using a simple breadth-first search. Using
the shortest path, instead of the minimum weighted path, the equation for the
relatedness between the concepts c1 and c2 is:

rel(c1, c2) = dist

(
arg min

p∈{path(c1,c2)}
|p|

)
(3.5)

where dist(p) is Equation 3.3 for calculating the semantic distance of a path p,
and path(c1, c2) denotes the set of paths connecting the concepts c1 and c2 using a
subset of the WordNet semantic relationship types, Rel ⊂ RelWordNet.

The many possible edge-weighting techniques must be combined in some way
in the general measure. In all of the measures that have employed multiple edge-
weighting techniques, including Sussna [44] and Jiang and Conrath [16], the edge-
weighting factors are combined as a simple product. Thus, where Wtedge is a set
of weighting functions for two adjacent concepts c1 and c2, the total edge weight
factor is:

wtedge(c1, c2) =
∏

wtedgei
∈Wtedge

wtedgei
(c1, c2) (3.6)

Combining Equations 3.3, 3.5 and 3.6 gives the full general semantic distance
measure. The measure has three parameters, including the mapping function
distmap in Equation 3.3, the set of allowable WordNet relations Rel ⊂ RelWordNet

in Equation 3.5, and the set of edge weight factors Wtedge in Equation 3.6.

3.3.1 Fitting Measures to Generalization

The generalization described above in Equations 3.3, 3.5 and 3.6 accommodates the
measures by Leacock and Chodorow [18], Jiang and Conrath [16] and Sussna [44].
For example, Sussna’s relatedness measure is equivalent to the general measure
with the following parameters:

• distmap(x) = x
• Wtedge = {wttsf , wtdepth}
• Rel ={hypernym,hyponym,meronym,holonym,antonym}
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For Leacock and Chodorow’s measure of similarity the parameters are:

• distmap(x) = −log(x/2D)
• Wtedge = {}
• Rel ={hypernym,hyponym}

Finally, for Jiang and Conrath’s hybrid measure of similarity, we have:

• distmap(x) = x
• Wtedge = {wtic}
• Rel ={hypernym,hyponym}

The final two path-based measures that are being investigated do not fit as
cleanly into our generalization. The measures by Hirst and St-Onge [15], and by
Yang and Powers [47], are the only measures to use properties of whole paths, as
opposed to individual links, to determine semantic distance. Hirst and St-Onge’s
technique of discounting the degree of relatedness for each change of ‘direction’
cannot be expressed in terms of edge-weighting. Similarly, the link type factor by
Yang and Powers is applied only once to a whole path, and so cannot be formulated
as an edge-weighting technique.

In the case of Yang and Powers, we showed that the link type factor plays a
minor role in their measure, and can be eliminated with only a small change. Aside
from the link type factor, the measure by Yang and Powers also differs from others
in that similarity is calculated as the product of edge weights, rather than as their
sum. However, with the link type factor removed this issue is also easily resolved.
The Yang and Powers measure is equivalent to the general description with the
following parameters:

• distmap(x) = 0.7x

• Wtedge = {wtyp}
• Rel ={hypernym,hyponym,meronym,holonym,antonym}

The edge weight function wtyp(c1, c2) for the concepts c1 and c2 is:

wtyp(c1, c2) =

{
1 if c1 and c2 are related by antonymy or synonymy
0.295 otherwise

(3.7)
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The formulation above is possible because paths in Yang and Powers’ measure
cannot contain mixed edge weights. There are only two types of allowable path
in Yang and Powers’ measure: paths consisting of a single synonym or antonym
relation, and paths consisting of a combination of hypernym, hyponym, meronym,
and holonym relations. In both cases, the edge weights are constant for all of
the edges in the path. The edge weights for hypernym, hyponym, meronym, and
holonym relations are the same, and the weights of synonyms and antonyms are also
the same. In Yang and Powers’ notation, the weight of a hypernym or hyponym is
denoted βhh and the weight of a meronym or holonym is βhm. The value for both
βhh and βhm is 0.7. The weight for a synonym or antonym relation, denoted by βsa,
is 0.9.

Because the weights of edges in paths are always constant, it is possible to
reformulate the product of edge weights as a power of edge weight. In order to do
this and maintain identical output to the original measure, the values of the link
weighting factors will be changed. The new values of the link weight factors βt, for
each relationship type t, will be denoted by β′

t. As mentioned above, every path
with a length greater than one consists of hypernyms, hyponyms, meronyms, and
holonyms. All of these relations have the same weight of βhm = βhh, and therefore
the product of the weights is (βhm)n, for a path of n edges. This quantity can be
expressed in terms of the sum of edge weights if we set β′

hm = β′
hh = 1. With this

change, the sum of edge weights is equal to the length of the path. The total path
weight can now be expressed as (βhm)n, where n is the sum of edge weights of the
path. Substituting the value of 0.7 for βhm, the semantic similarity of the Yang and
Powers measure is 0.7n.

It is also possible to express the total weight of synonym and antonym paths
in terms of the sum of edge weights. Synonym and antonym paths always have a
length of one, and so the sum of the edge weights is equal to the weight of a single
synonym or antonym edge, which is β′

sa. The new formula for similarity is (βhm)n,
where n is the sum of edge weights. The sum of edge weights for a synonym or
antonym path is β′

sa and therefore using the new formula, the total similarity for
such a path is (βhm)β′

sa . The value of (βhm)β′
sa must equal βsa to be consistent with

the original version of the measure. We must therefore determine β′
sa by solving
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the equation:

(βhm)β′
sa = βsa

β′
sa = logβhm

βsa

=
log βsa

log βhm

=
log 0.9

log 0.7

= 0.295

There are only two types of path in Yang and Powers’ measure, and we have
shown that a formulation of their measure in terms of our general description of
path-based semantic distance measures is equivalent to the original formulation for
both types of path.

The Hirst and St-Onge discount factor for changes in ‘direction’ cannot be
accommodated by the generalization in its current form. It is possible to introduce
another term to Equation 3.3 that would provide for Hirst and St-Onge’s technique.
However, as the principal purpose of the generalization is to show the common
elements of the measures, we prefer to exclude the unique feature of Hirst and
St-Onge’s measure. Excluding the direction change discount factor, Hirst and St-
Onge’s measure corresponds to the following parameters of the general measure:

• distmap(x) = 8− x
• Wtedge = {}
• Rel = RelWordNet

3.4 Simplified Path-Based Measure of Related-

ness

We wish to establish a baseline relatedness measure, which represents a simplifi-
cation of the path-based measures that are being investigated in this study. This
baseline measure will be used to test some of the core assumptions shared by many
relatedness measures. We will demonstrate that existing path-based measures are
overly complex, and that they include elements that impede their performance.

Ultimately, all of the features found in semantic distance measures should be
evaluated individually. However, in this study, only two types of feature will be
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examined: the mapping function from sum of edge weights to relatedness, and the
allowable edge types for paths. These two factors have been chosen in part because
it is not possible to eliminate them through any simplifying assumptions. One of the
goals of this study is to determine a baseline measure of relatedness by simplifying
previous path-based measures. For most features that we have considered, what
constitutes a simplification is more or less evident. For example, a measure that
does not use any edge weighting schemes is simpler than a measure that does.
However, it is not clear that a measure that uses any particular set of edge types
is simpler than a measure that uses any other set of edge types.

The baseline measure will be derived from two simplifying assumptions. The
assumptions that we are adopting are that:

1. The edges in a semantic network represent uniform semantic distance.

2. The sum of edge weights in a path maps directly to relatedness, i.e., no other
properties of the path need be considered.

The first assumption means that no edge-weighting techniques will be used in
the simplified measure. The weights of edges will be assumed to be constant, and
will be assigned a value of one. Thus the sum of edge weights will be equivalent to
the length of the shortest path between concepts for our simplified measure. The
second assumption is targeted at the path-weighting schemes of Hirst and St-Onge,
and of Yang and Powers. These schemes assume that certain combinations, or
patterns, of relationship types affect the semantic distance represented by a path.
We will adopt the alternative assumption that semantic distance is not affected by
any combinations of relation types in the shortest path.

Of course, it is likely that semantic distance does in fact depend on the types of
relations, and their combinations, in a path. The purpose of assuming that these
factors are not significant is to demonstrate that previous attempts to estimate
these factors have not been successful. If our simplified measure achieves results
that are as good as the more complex measures, then the additional features of
these measures should be rejected until new evidence is offered in their support.

In terms of the generalized relatedness measure, the simplified measure has
Wtedge = {}. However, the other parameters are not constrained by our two sim-
plifying assumptions. That is, we must decide what set of relationship types should
be allowed in paths connecting concepts, and which function ought to be used to
map the path length to relatedness. To allow a valid comparison to other measures,
these parameters will be varied to match each of the other measures that we are
examining.
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The possible values for the set of allowable relationship types will include
Rel ={hypernym, hyponym}, Rel ={hypernym, hyponym, meronym, holonym,
antonym}, and Rel = RelWordNet. The performance of the measure for each of
these possibilities will be evaluated in the next chapter. When comparing our base-
line measure to other measures, we will use the same set of relationships for both
measures. The optimal set of allowable edge types will be determined separately
from any comparisons between the proposed measure and previous measures.

The other parameter of the generalization that will vary in the simplified mea-
sure is the function that is used to relate the sum of path weights to a relatedness
value. Again, we will evaluate all of the functions used by other measures, including
the linear model of Hirst and St-Onge [15] and the logarithmic model of Leacock
and Chodorow [18]. In addition to these, several other mapping functions will be
considered. Each of these functions will be evaluated in the next chapter.

To summarize, we are proposing a simplified relatedness measure that computes
relatedness as a function of the shortest path connecting two concepts in a semantic
network. This measure is a simplification of previous work, and will serve as a
baseline for evaluating other measures. The simplified measure will also serve as a
starting point for the systematic development of new measures. In the next chapter,
different subsets of semantic relations to be used when searching for paths will be
compared. Several different functions for mapping path length to relatedness will
also be evaluated.

The equation for the simplified relatedness measure for two concepts c1 and c2

can be given as follows:

rel(c1, c2) = relmap

(
min

p∈path(c1,c2)
|p|
)

(3.8)

where relmap denotes a function that maps path lengths to relatedness values, and
path(c1, c2) denotes the set of all paths connecting the concepts c1 and c2 using the
set of relationship types Rel ⊂ RelWordNet.

3.5 Relatedness Functions

In the simplified relatedness measure described above, the function relmap(x) trans-
forms the length, denoted by x, of the shortest path between two concepts in a
semantic network into a relatedness value. There are infinitely many functions that
could accomplish this, but we will try to select a few plausible candidates. Five
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functions will be described, three of which have been used in other relatedness
measures. The functions will be described in general terms at this stage, with un-
specified constant values. In the next chapter, further details of these functions will
be provided for the purposes of evaluation.

3.5.1 Linearly Decreasing

The first class of functions for mapping path length to relatedness value that we will
consider are linear functions. Adopting a linear function implies that the strength
of relatedness decreases from some initial value (the maximum possible relatedness
value) at a regular interval for each link in the path. The size of the interval will
be represented by the constant k, and the initial value as m:

relLinear(x) =

{
m− kx if m− kx >= 0
0 if m− kx < 0

(3.9)

Hirst and St-Onge use a linear function to map the length of the shortest allow-
able path to relatedness. Specifically, excluding the discount factor for the number
of changes in direction, they use the above function with m = 8 and k = 1.

3.5.2 Exponentially Decreasing

A second possible relationship between path length and relatedness is that related-
ness decreases as a power of path length. If the power is positive and greater than
one, then in this model the relatedness decreases at an exponentially increasing
interval for each link in the path. Let a represent the maximum relatedness value,
k is a constant value greater than 1, and a and b are constants. The relatedness
function is then given in Equation 3.10, and the plot of a sample exponentially
decreasing function may be found in Figure 3.1(c).

relExp(x) =

{
a− bxk if a− bxk >= 0
0 if a− bxk < 0

(3.10)

A model in which relatedness decreases at a growing rate may be plausible from
a psycholinguistic point of view. When searching for the shortest path length be-
tween senses, each increase in path length corresponds to an exponential increase
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in the number of concepts that must be considered. If humans must undertake a
graph search similar to that used in our path search algorithm, then the related-
ness of a pair of concepts may correlate with the effort required in finding their
relationship. Although the assumption of a graph-like cognitive arrangement of
lexical information in humans is contentious, this possibility lends some additional
incentive for investigating the exponentially decreasing function.

3.5.3 Exponential Decay

A third function for relatedness is that of exponential decay. In this model, the
relatedness value decreases at increasingly small intervals as path length increases,
approaching but never reaching zero. The function for exponential decay is given
in Equation 3.11, and a sample plot is given in Figure 3.1(b).

relDecay(x) = ae−kx (3.11)

Exponential decay is somewhat difficult to reconcile with psycholinguistic the-
ory, since it is unlikely that a human could detect arbitrarily weak relationships
between word senses. On the other hand, exponential decay possesses some desir-
able mathematical properties. Exponential decay handles cases of very long path
lengths more elegantly than the other measures, and can distinguish between cases
of very low relatedness and cases of no relatedness whatsoever. Even for very large
path length values, the function continues to decrease without ever reaching zero.

The Yang and Powers measure employs a mapping function that is mathemat-
ically equivalent to exponential decay. The similarity function of the simplified
version of their measure is relY P (x) = bx. The constant b can be any arbitrary
value, so we let b = e−k. In this case bx = (e−k)x = e−kx. Then we let a = 1 so that
e−kx = ae−kx. Thus the simplified Yang and Powers measure uses an exponential
decay model that is a special case of Equation 3.11.

3.5.4 Logarithmic

Leacock and Chodorow [18] employed a logarithmic function to map taxonomic
path length to similarity. Resnik [34] pointed out that this approach makes their
measure “information like,” insofar as similarity is calculated using the negative log
of a quantity, and thus resembles the formula for information content. However,

56



 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8

R
el

at
ed

ne
ss

Path length

4-0.5*x

(a) Linear

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8

R
el

at
ed

ne
ss

Path length

4*exp(-0.5*x)

(b) Exponential decay

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8

R
el

at
ed

ne
ss

Path length

4-0.015*x**3

(c) Exponentially decreasing (k > 1)
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(d) Exponentially decreasing (k < 1)
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Figure 3.1: Examples of functions for mapping shortest path length to relatedness
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as they are not applying the formula to a probability, the resemblance is likely not
significant. Nevertheless, a log-based function can provide a reasonable curve for
mapping path-length to relatedness. A sample logarithmic function is shown in
Figure 3.1(e). The equation for the logarithmic mapping function is:

relLog(x) = − log

(
x + a

b

)
(3.12)

3.5.5 Sigmoid

The sigmoid function has been adopted because it combines some of the potentially
desirable properties of different mapping functions. This function has an asymptote
at the x-axis, ensuring that negative values are impossible, and also allowing for
distinctions between very long paths. For short path lengths, however, the sigmoid
function behaves like the exponentially decreasing function, with an accelerating
rate of decrease as the path length grows longer. A sample sigmoid function is
displayed in Figure 3.1(e), and the equation for the sigmoid function is:

relSigmoid(x) = a +
b

c + e−dx+f
(3.13)

3.6 Chapter Summary

In this chapter, a general description of path-based similarity and relatedness mea-
sures was proposed. The general description offers a view of the similarities and
differences between path-based measures that have been proposed in the literature.
The generalization views each of these measures as consisting of a common model
that is augmented with some subset of additional features. Given this modular
view of relatedness measures, we have argued that the various features that have
been proposed in the literature should be evaluated independently of one another
to determine their effectiveness. We conjecture that since some of these features
have never been isolated and tested, it is possible that some will be found to be
ineffective. Furthermore, as it has not been the custom to evaluate new relatedness
measures against any sort of baseline it may be the case that some measures are
unnecessarily complex, and do not improve on the success of a simpler measure. In
the next chapter it will be shown that, surprisingly, none of the measures evaluated
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achieve better results than corresponding baseline measures when compared with
human judgments. The next chapter will also examine the effect of different sets of
allowable semantic relations in paths between concepts, and the effect of different
functions for mapping path length to relatedness.
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Chapter 4

Evaluation of Lexical Semantic
Relatedness Measures

4.1 Methodology

4.1.1 Evaluation Approaches

As a result of the intense research activity surrounding semantic distance, a fairly
consistent evaluation methodology has emerged. Beginning with Resnik [34], the
primary basis for the comparison of different measures has been correlation with
human judgment. Two experiments, one by Rubenstein and Goodenough [38] and
a second by Miller and Charles [25], have provided human semantic distance rat-
ings that have been used in many evaluations. For example, Resnik [34], Yang
and Powers [47], Jiang and Conrath [16] and Budanitsky and Hirst [4] all employ
comparisons to human ratings for evaluating semantic distance measures. Budan-
itsky and Hirst’s study is particularly useful, as it compares most of the important
WordNet-based measures using a common evaluation framework.

Although comparison to human judgments seems to be the most popular ap-
proach to evaluating semantic distance measures, Budanitsky and Hirst [4] have
noted two other approaches that appear in the literature. Some authors, such as
Lin [20] and Rada et al. [33], have attempted to determine the desirable math-
ematical properties of distance measures in order to provide a purely theoretical
evaluation. For example, measures may be analyzed to determine whether they
satisfy the properties of metrics, whether they may be projected as smooth func-
tions, and so on. Another evaluation technique identified by Budanitsky and Hirst
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is to evaluate performance with respect to a particular application. For example, a
study by Patwardhan et al. [30] examined the success of a word sense disambigua-
tion algorithm that relies on relatedness measurements using different relatedness
and similarity measures. The measures were rated based on the success of the
word sense disambiguation task. The application-based method has the benefit of
demonstrating the usefulness of a measure at the same time as offering evidence for
its accuracy.

Of the three evaluation approaches, the first is the most meaningful, given that
human judgments of semantic distance are presumed correct by definition [4]. In
our view, examining the mathematical properties of measures is primarily useful
in guiding the development of new measures. For example, theoretical analysis
might reveal serious flaws in a measure that would lead to nonsensical output,
such as negative semantic distance values. However, when it comes to assessment,
mathematical properties are trumped by human judgment. The presence or absence
of any theoretical properties are insignificant if they do not impact the performance
of the measure compared with the behaviour of human subjects.

Application-based evaluations are valuable in assessing semantic distance mea-
sures in cases where direct comparison to human subjects is impossible. However,
the indirect nature of application-based evaluation makes it a less reliable approach
than direct comparison to human judgments. For example, it is difficult to demon-
strate that an application relies exclusively on semantic distance. Given the success
or failure of an application in which a semantic distance measure is incorporated,
an additional assumption is necessary — namely, that the degree of success of the
application correlates with the accuracy of the distance measure. The requirement
for this additional assumption weakens the application-based approach compared
to that of direct comparison to human judgment.

Due to the weaknesses of the application-based and theoretical approaches, and
because an evaluation framework already exists for direct comparison to human
judgments, we will use direct comparison to human judgments in this study.

4.1.2 Experimental Data

Rubenstein-Goodenough Data Set

Two data sets in the literature are commonly used for the validation of relatedness
measures. The first is a list of 65 word pairs, each rated by 51 human test subjects
in an experiment conducted by Rubenstein and Goodenough [38]. The subjects
were asked to rate each word pair according to their similarity of meaning, on a
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scale from 0.0 (“semantically unrelated”) to 4.0 (“highly synonymous”). Only the
mean values of human ratings are available, and we will follow Resnik [34] and
others in using the mean values for all our comparisons.

Although the instructions given by Rubenstein and Goodenough do not make
it clear whether the subjects were meant to rate the semantic relatedness or the
semantic similarity of the word pairs, the results indicate that the test subjects rated
the word pairs for their relatedness. For example, the word pair bird/woodland was
given a higher average rating than word pairs that are clearly more similar, such
as lad/wizard and monk/slave. While birds are often associated with woodlands,
birds and woodlands are very different things, with little overlap in their properties.

Miller-Charles Data Set

A second data set was collected by Miller and Charles [25], and contains 30 word
pairs chosen from the Rubenstein-Goodenough set. Each word pair was rated by
38 subjects, who were given instructions identical to those used in the Rubenstein-
Goodenough experiment. The smaller Miller-Charles set will be used to tune the
new measure prior to evaluation, and the larger Rubenstein-Goodenough set will be
reserved for validation. The complete set of word pairs with mean human ratings for
the Miller-Charles and Rubenstein-Goodenough data sets may be found in section
A.1 of the Appendix.

Resnik Data Set

Resnik [34] replicated the Miller-Charles experiment with 10 human subjects, in
order to determine a theoretical limit to the performance of semantic distance
measures. He found that the average correlation of the human subjects with the
results previously obtained by Miller and Charles was 0.8848, with a standard
deviation of 0.08. Resnik therefore determined that a correlation coefficient of 0.9
represents an upper bound on the performance of any computational measure, as
this would match the performance of a typical human judge.

However, Resnik also found that the correlation of the mean ratings of his test
subjects with the Miller-Charles ratings was 0.96. As others have pointed out [47], it
is at least theoretically possible for a measure to approach not only the performance
of an individual human, but the combined effort of several humans. Given that the
results that are presented below approach the 0.9 upper bound very closely, and in
a few cases even exceed it, it may be more reasonable to view the value of 0.96 as
the theoretical limit to performance.

63



4.1.3 Experiment Description

There are several distinct goals for this evaluation. First, we wish to evaluate
which subset of relations is the most effective for determining relatedness using
network path length. Second, we wish to determine the mathematical relationship
between network path length and relatedness. Finally, we wish to compare previ-
ous measures of relatedness against corresponding simplified measures, in order to
determine whether the techniques used in these measures are effective. These three
goals can be achieved through two experiments.

Experiment 1: Evaluating Subsets of Semantic Relations for Path De-
termination

In the first experiment, we will determine which subset of allowable semantic
relations in the paths between synsets results in the best correlation to human
judgments. As discussed in the previous chapter, three subsets will be consid-
ered: {hypernymy, hyponymy}, {hypernymy, hyponymy, meronymy, holonomy,
antonymy} and the set of all WordNet relations. These sets were selected because
they are those that have been used in previous semantic distance measures.

In order to evaluate the three sets of relations, we will examine the correlation
of the length of the shortest path between concepts with human judgments of
relatedness. That is, for the Rubenstein-Goodenough (RG) and Miller-Charles
(MC) data sets, the shortest path between each pair of words will be computed
using each of the three sets of relations that we are evaluating. The correlation of
the calculated path lengths to human judgments will be determined, and the three
sets of relations will be compared on the basis of the strength of correlation.

Experiment 2: Evaluating Relatedness Functions

In the previous chapter we suggested five models that can be used to determine
relatedness, given path length. These included linear, exponentially decreasing, ex-
ponential decay, logarithmic, and sigmoid functions. In our second experiment, we
will evaluate these functions with respect to human relatedness judgments. How-
ever, these functions include variables representing unspecified constant values. In
order to evaluate these models, these constants must be determined in a systematic
way that does not privilege one model over any other.

For many previous measures, it is impossible to know to what degree the mea-
sures have been ‘tuned’ by their authors. For example, Yang and Powers derived
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the values of constants in their measure very systematically, and they explain the
procedure that they used in detail. Hirst and St-Onge’s measure also includes con-
stant values, but the authors do not appear to have determined these values in a
systematic way. Without a standard tuning framework, it is likely that the per-
formance of measures will be partly attributable to the quality of tuning, and not
wholly to the merits of the models themselves.

In our experiment, all of the models will be tuned using the techniques of statis-
tical data analysis. Specifically, we will use regression to fit the models to a subset
of our data. Even if a model is capable of a close fit to available data, it is essential
to revalidate the models on data that was not used for tuning. The problem of
over-fitting can arise because a model becomes tuned to satisfy incidental proper-
ties of a particular data set that do not generalize to other data. This problem is
particularly dangerous with highly complex models (such as high-order polynomial
functions) applied to small data sets, since the model is sufficiently flexible to fit
itself to minor features of the data.

In order to avoid the problem of over-fitting, we will reserve part of the data for
evaluation. For the regression calculations, the Miller-Charles data set will be used,
and the Rubenstein-Goodenough data set will be reserved for evaluation. However,
the Rubenstein-Goodenough word pairs are a superset of the Miller-Charles word
pairs. Therefore, we will also examine the subset of Rubenstein-Goodenough word
pairs that are not in Miller-Charles (i.e. the set-theoretic difference between the
Rubenstein-Goodenough and Miller-Charles sets). This set contains word pairs
that were not involved in tuning, and the results for this set will be considered to
be the most significant.

The most widely used curve-fitting techniques are linear and nonlinear regres-
sion. These are both iterative techniques that seek to minimize the sum of squared
errors for a function (the curve) over a set of data points. In the case of the proposed
relatedness measures, the curves are functions that map path length to relatedness
value, specifically relLinear, relDecay, relExp, relLog and relSigmoid. By determining
the shortest path length between each word pair in the data set, regression may be
used to fit the relatedness functions to the experimentally determined values. To
illustrate, Figure 4.1 plots the calculated shortest path lengths against the average
relatedness values collected in the Rubenstein-Goodenough and the Miller-Charles
experiments. Word pairs for which no path could be found have been assigned the
maximum search depth plus one, which in this case is eight. The goal of regression is
to tune the relatedness functions so as to achieve the best possible fit to the Miller-
Charles data points shown in Figure 4.1(a). Once the measures have been tuned to
the Miller-Charles data, they will be evaluated using the Rubenstein-Goodenough
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(b) Rubenstein-Goodenough data

Figure 4.1: Shortest calculated path lengths against average human ratings for the
Rubenstein-Goodenough and the Miller-Charles experiments

data shown in Figure 4.1(b).

Basis for Comparison

In order to determine the strength of correlation between computational mea-
sures and human judgments, most authors have followed Resnik [34] in employing
Pearson’s coefficient of correlation. As the coefficient of correlation measures the
strength of the linear association between two variables, it is a convenient way to
summarize the accuracy of measures.

However, some authors have argued that the problem of relatedness is essentially
a ranking problem. That is, the important question that must be answered by
relatedness measures is whether a given pair of concepts is more or less semantically
related than another pair. If this is the case, then the value of relatedness is only
useful insofar as it distinguishes a more related concept pair from a less related
pair. A better metric for the performance of a measure would then be Spearman’s
rank correlation coefficient. The rank correlation is, essentially, the correlation of
the ranks of the data points. That is, the most related word pair is assigned the
value one, the second is assigned the value two, and so on. These rank values are
then compared to the rank values of the validation data using Pearson’s coefficient
of correlation. We will provide both the correlation and the rank correlation for
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our experiments.

Each measure will be evaluated against three data sets: the Rubenstein and
Goodenough (RG) set, the Miller and Charles (MC) set, and the set theoretic
difference of the RG and MC data sets (RG \MC). The third of these has been
selected to provide a validation set that does not use any word pairs that were
involved in tuning the models. Although the RG data set was not used for tuning,
the MC word pairs are a subset of the RG word pairs. This means that some of the
word pairs in RG were involved in tuning, albeit with independent human ratings.
The RG \MC data set will use the RG human ratings, and contains only word
pairs that were not used for tuning.

The results for the RG \MC data will be considered the most meaningful basis
for comparison. However, as the RG data set has the most data points, and as the
RG ratings have not been used for tuning, the results for the RG set will also be
taken into consideration.

4.2 Implementation

The relatedness measures were implemented in Perl, using the WordNet::QueryData
package for access to the WordNet 2.0 lexical database. Perl was chosen prin-
cipally because of the existence of Pedersen’s popular WordNet::Similarity [31]
package, which contains up-to-date Perl implementations of the most important
WordNet-based similarity and relatedness measures. The proposed measures were
implemented as additional modules for the WordNet::Similarity package, allowing
convenient, uniform access to all of the measures. An additional advantage of im-
plementing the new measures as modules of Pedersen’s software is that they could
be easily distributed in this form to interested researchers.

4.2.1 Search Algorithms

The proposed relatedness measures rely on a search for the shortest path connecting
two WordNet synsets. The search has been implemented both as a unidirectional
breadth-first search, and as a bidirectional asymmetric breadth-first search. The
computational complexity of the two algorithms is equivalent — the worst-case
complexity in each case is O(Bn), where B is the maximum number of relations of
any node in the graph, and n is the depth of the search.

The unidirectional breadth-first search finds a path from a source node to a
target node by examining the neighbours of the source node, and then examining
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the neighbours of the neighbours, and so on until the target node is reached. At
most, each node in the search ‘fringe’ — the nodes that we are currently examining
— will have B neighbours, as this is the maximum number of neighbours of any
node in the graph. Starting from the source node, the number of nodes visited will
increase by a factor of at most B for each expansion. To reach a target node that
is separated from the source node by n edges, the algorithm requires n iterations,
resulting in Bn + Bn−1 + · · ·+ 1 visited nodes. That is, in the worst case, we first
visit the B neighbours of the source node, then for every one of the B neighbours
we visit B more nodes (B × B = B2), and then for each of the B2 nodes we visit
B more, and so on n times.

A bidirectional search employs the same procedure, but concurrently expands
the neighbours of both the source and target nodes. If the two fringes are expanded
at the same rate, then each side will require n/2 expansions to find a path with a
length of n. The total size of the fringe in this search is thus Bn/2 + Bn/2 = 2Bn/2,
which is considerably smaller than Bn. However, in the bidirectional search it is
much harder to recognize when the search has completed successfully. Instead of
testing newly expanded nodes against the target node, we need to test against every
node in the opposite fringe. At a given depth n, each node in one fringe must be
compared against each node in the other fringe, resulting in Bn/2 × Bn/2 = Bn

comparisons. Given the requirement for these comparisons, the order of the worst-
case running time is O(Bn), which is the same as that of the unidirectional search.
Although the space requirements are less for the bidirectional search, as fewer nodes
are visited, there are more operations in total.

However, as a result of the wide range in the degree of connectivity of WordNet
synsets, the bidirectional search can be made much more efficient for the average
case. Devitt and Vogel [10] have determined that the branching factor in the
WordNet noun hierarchy varies between one and 573. The average branching factor,
excluding leaf nodes, is 5.793. These metrics include only is-a relations, and it is
therefore possible to encounter even higher branching factors in our search when
other relationship types are admitted.

Our bidirectional search takes advantage of the properties of WordNet’s topol-
ogy by selectively expanding the smallest of the two fringes. The algorithm searches
from both endpoints, but always elects to expand the side that has visited the
fewest nodes so far. The variable number of relations of WordNet nodes results in
one fringe growing more rapidly than the other, making the bidirectional algorithm
much more efficient than the unidirectional one on average.

Processing the Rubenstein-Goodenough set of word pairs using the unidirec-
tional search took an average of 39.8 minutes of CPU time for each word pair. The
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bidirectional version of the search took an average of 3.7 seconds of CPU time for
each word pair. The unidirectional search visited an average of 94481 nodes per
word pair, and the bidirectional search visited an average of 5535 nodes per word
pair. These tests were executed on an AMD Athlon XP 2500+ processor with 768
MB ram. The search was limited to a maximum depth of seven.

The extreme variance in average performance is the result, in part, of a few
very long searches dominating the average runtime for the unidirectional search
algorithm. The maximum number of nodes visited in the unidirectional search
was 1390147, for the word pair crane/implement. This word pair alone therefore
accounted for nearly a fifth of the total nodes visited in all 65 unidirectional searches.
The maximum number of nodes visited for one word pair by the bidirectional search
algorithm was only 43894, by comparison.

Neither of the two algorithms that we have described is strictly complete for
the task of finding the shortest path between nodes in a directed graph. While
most relations in the WordNet graph are reciprocated — meronyms by holonyms,
hypernyms by hyponyms, etc. — not all of them are. For example, the cause-
to relation has no corresponding caused-by relation in WordNet. In practice,
non-reciprocated relations do not seem to pose a major problem. This is not en-
tirely surprising, as the vast majority of relations between nouns in WordNet are
either undirected, such as antonymy, or reciprocal, such as hypernymy/hyponymy
and meronymy/holonymy. The WordNet graph for nouns is therefore effectively
an undirected graph for our purposes. Of the 65 word pairs in the Rubenstein-
Goodenough data set, the unidirectional and bidirectional searches differed in their
results in only three cases. In each case the length of the shortest path found dif-
fered by only one. The results of the bidirectional search have been used for the
analyses that follow in this chapter.

The success of the bidirectional asymmetric search is may be the result of Word-
Net satisfying the properties of a small-world graph. Small-world graphs were orig-
inally identified by Milgram [24] in experiments on social networks. Milgram found
that although most of the people (nodes) in social networks are only connected to
a few others, it is possible to find surprisingly short paths between any two ran-
dom people. This phenomenon is now commonly referred to as the “six degrees
of separation.” More recently, Watts and Strogatz [46] and Strogatz [43] identified
many other naturally occurring networks that are instances of small-world graphs.
A few examples include the World Wide Web, the power grid of the western United
States, and the collaboration graph of film actors. Steyvers [42] demonstrated that
many semantic networks are also small-world graphs, including word association
networks, Roget’s thesaurus, and WordNet.
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Small-world graphs have unusually short paths between nodes in spite of being
very sparse. This is because small-world graphs are generally scale-free graphs,
meaning that they have a few very highly connected ‘hubs’ that serve to connect
many different parts of an otherwise sparse graph. The implication for a breadth-
first search of such a graph is that once the search reaches a hub, the size of the
fringe grows dramatically. An asymmetric bidirectional search is able to circumvent
the problem of hubs, to a certain degree. In the case of a path that passes through
a highly connected node, the bidirectional search will avoid growing the fringe that
has reached the hub. Instead, the second fringe will grow until it intersects the first
one, meeting it quite close to the hub. Thus the very expensive expansions that
occur after a hub has been reached are minimized.

Figure 4.2 illustrates the advantage of an asymmetric expansion in a scale-free
network. In Figure 4.2(a), the nodes expanded in a bidirectional symmetric search
for a path between two nodes (c1 and c2) is shown for a hypothetical semantic
network. Figure 4.2(b) shows the network for the same search using an asymmetric
expansion of nodes. Fewer nodes in total are expanded in the asymmetric version.

To make any strong claims about the suitability of our algorithm to small-world
graphs in general will require an average-case complexity analysis. Although such
an analysis should be possible using the formal properties of scale-free networks, it
is left to future work.

4.2.2 Previous Measures

Implementations of the measures by Hirst and St-Onge [15], Resnik [34], Lin [20],
Leacock and Chodorow [18], and Jiang and Conrath [16] are available in Pedersen’s
[31] WordNet::Similarity Perl module. This package has been widely used and
tested. There is no advantage to reimplementing these measures for the purposes
of this evaluation. Also, the study by Budanitsky and Hirst [4] provided detailed
results from their own tests. As it has been found that the results from Budanitsky
and Hirst’s implementations are slightly better that those from WordNet::Similarity,
we will use Budanitksy and Hirst’s results. These differences are likely the result
of the particular version of WordNet that was used, as Budanitksy and Hirst used
the older WordNet 1.5.

Sussna’s [44] measure has not been implemented recently, however. This mea-
sure is widely cited, and offers some innovative features not found in other mea-
sures. However, Budanitsky [3] encountered two problems when implementing
Sussna’s technique, and subsequent researchers have not attempted an implemen-
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(a) Node expansions in symmetric bidirectional search

c1 c2

(b) Node expansions in asymmetric bidirectional search

Figure 4.2: Example of asymmetric bidirectional search procedure
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tation. Both of the problems pertained to Sussna’s method of calculating the depth
of nodes in WordNet, which uses is-a and part-of relations, as well as antonymy.

The first problem encountered by Budanitksy was the possibility of synsets with
multiple antonyms. Although Sussna’s measure explicitly assumes no more than one
antonym, cases of multiple antonyms exist in WordNet. For example, Budanitsky
points out that the concept introversion is an antonym of both extroversion and
ambiversion in WordNet. However, Budanitksy suggested a plausible revision to
Sussna’s method that allows for concepts with multiple antonyms. In Sussna’s
original formula for the depth of nodes that do not have antonyms, the depth of a
node is the average depth of the node’s parents, plus one. Formally, where pari(c)
is the ith parent (holonym or hypernym) of the concept c, the depth of c is:

d(c) =
1

m

m∑
i=1

d(pari(c)) + 1 (4.1)

For nodes that have antonyms, Sussna calculates the depth of both the node and
the node’s antonym, as in Equation 4.1. The depth of the antonym is incremented
to account for the edge connecting it to the target node, and the total depth is the
average of the two values:

d(c) =
1

2

[(
1

m

m∑
i=1

d(pari(c)) + 1

)
+

(
1

n

n∑
j=1

d(parj(ant(c))) + 2

)]
(4.2)

In order to account for nodes with multiple antonyms, Budanitksy replaced the
depth of the antonym in Equation 4.2 with the average depth of all antonyms.
Where antj(c) is the jth antonym of the concept c, Budanitksy’s new equation for
depth is:

d(c) =
1

2

[(
1

m

m∑
i=1

d(pari(c)) + 1

)
+

(
1

s

s∑
k=1

1

nk

nk∑
j=1

d(parj(antk(c))) + 2

)]
(4.3)

Although Budanitksy was satisfied with the solution above for the problem of
multiple antonyms, he encountered a second problem in Sussna’s use of both is-
a and part-of relations when searching for the top node of the taxonomy. In
recent versions of WordNet, it is possible to encounter cycles in paths to the root
node when searching with these relations. Budanitsky abandoned Sussna’s measure
because of this problem. However, it is not difficult to exclude cycles. We have
implemented the depth formula in Equation 4.3, with the change that nodes can be
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Model Function Function with derived constants

relLinear 4− ax 4− 0.5868x

relDecay 4ekx 4e−0.2537x

relExp 4− axk 4− 0.7573x0.8415

relLog − log(a + x/b) − log(0.0188 + x/21.4130)

relSigmoid a− b
c+exp(dx+e)

3.5474− 3.6806
1.2604+exp(−1.7198x+5.5905)

Table 4.1: Relatedness functions with constant values derived using regression

included only once in paths to the top node. This is ensured by maintaining a list of
previously visited nodes that is passed to successive calls to the recursive function
given in Equation 4.3. No node may be visited that has already been visited in the
current search for the top node.

4.3 Tuning the Models Using Regression

The constant values in the five relatedness functions described in the last chapter
were derived using Marquardt-Levenburg [21] nonlinear regression with the Miller-
Charles data set. Word pairs for which no path could be found have been excluded
from the regression calculations. Although we know that these word pairs corre-
spond to path lengths of eight and above, it is impossible to accurately quantify
their length. Assigning an arbitrary path length introduces unnecessary error. The
final relatedness functions with derived constants are given in Table 4.1. Also,
the relatedness functions and the Miller-Charles average human ratings are plotted
against path length in Figure 4.3. This figure provides a graphical representation
of how relatedness varies as path length increases. The purpose of regression is to
minimize the difference between the curves (the relatedness functions) and the data
points that are shown in Figure 4.3.

A standard measure of the “goodness of fit” when fitting models using regression
is the coefficient of determination, denoted by r2. This value can be interpreted as
the percentage of the data that is accounted for by the model. The values of r2 for
each measure are provided in Table 4.2.
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(a) Linear
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(b) Exponential decay
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(c) Exponentially decreasing
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(d) Logarithmic
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(e) Sigmoid

Figure 4.3: Relatedness functions and average human ratings for Miller-Charles
data set 74



Measure r2

relLinear 0.7939
relDecay 0.7959
relExp 0.8050
relLog 0.6898
relSigmoid 0.8573

Table 4.2: Coefficients of determination (r2) for relatedness functions

The results for r2 given in Table 4.2 indicate that relSigmoid was capable of
the best fit to the MC data set. The relLog function had the worst fit. The
other three functions, namely relLinear, relDecay, and relExp, had nearly identical
r2 values, indicating that there was no significant difference in the quality of their
fit to the data. However, these results only give an indication of how well these
models explain the values in the MC data set. The evaluation of each of the models
against the larger RG data set will be a more important test of their success.

4.4 Results

In this section we describe the results of our evaluation of the proposed simplified
measure against previous similarity and relatedness measures. First we will give
an overview of the results for each of the two experiments that we conducted,
drawing attention to any interesting or unexpected features of the data. Following
the overview of the results we will discuss the significance of our findings, including
the implications for each of the previous similarity and relatedness measures that
are being considered.

4.4.1 Experiment 1: Relationship Types

For the first experiment, the shortest path between each word pair in the RG data
set was calculated using each of three subsets of lexical relations. The shortest path
length connecting two concepts calculated using Rel ={hypernymy, hyponymy} will
be denoted distTax, path lengths calculated using Rel ={hypernymy, hyponymy,
meronymy, holonomy, antonymy} will be denoted distPart and path lengths cal-
culated using all WordNet relations will be denoted distLength. For the RG and
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Correlation Rank correlation
RG MC RG MC

distPart -0.8888 -0.8978 -0.8604 -0.8594
distLength -0.8877 -0.8978 -0.8566 -0.8594
distTax -0.8665 -0.8381 -0.8116 -0.7998
relY P 0.897 0.921 — —
distS -0.8185 -0.8356 -0.8629 -0.8526
simLC 0.8382 0.8157 0.7911 0.7622
simL 0.8193 0.8292 0.7936 0.7904
simR 0.7787 0.7736 0.7573 0.7357
relHS 0.7861 0.7444 0.7917 0.7614
distJC -0.7813 -0.8500 -0.7038 -0.8128

Table 4.3: Correlation coefficients for shortest path lengths using different sub-
sets of semantic relations (distPart,distLength,distTax) and previous relatedness and
similarity measures

MC data sets, the correlation between path length and human ratings are given
in Table 4.3. For the purposes of comparison, the correlations of previous similar-
ity and relatedness measusures are provided in the bottom part of the table. It
should be noted that negative values indicate an inverse correlation. Strong inverse
correlations are just as desirable as strong correlations, as a positive correlation
can be achieved by inverting the values of the data. Therefore the absolute values
of the correlation coefficients should be considered when comparing the success of
measures.

The results in Table 4.3 show that the difference in the correlations of path
length with human ratings does not vary a great deal depending on the set of
allowable semantic relations. In fact, the difference between distPart and distLength

is negligible. The path lengths calculated using these two sets of relations differed
for only one of the 65 word pairs that were tested.

Although no significant difference was found between the results of distPart and
distLength, distTax had a somewhat lower correlation with human ratings. These
results can be partly explained by the distribution of semantic relationship types
in the paths that are found when all types are allowed. For the 65 word pair RG
data set, the frequencies of the relationship types that were found in the shortest
paths are given in Table 4.4. Over 90% of the relations in the shortest paths were
is-a relations, and 6% were part-of relations. Only 1.5% of the relations in the
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Relation Count %
hypernymy 729 79
hyponymy 125 13.5
holonymy 28 3
meronymy 25 3
antonymy 10 1
cause 2 0.2
see also 2 0.2
entailment 1 0.1

Table 4.4: Frequency of relationship types in search for shortest paths using all
semantic relations

shortest paths were of other types. Thus while the addition of part-of relations
contributed somewhat to the success of the measure, the other relations were too
infrequent to affect performance.

4.4.2 Experiment 2: Relatedness Functions

For the second experiment that we conducted, the results of each of the five re-
latedness mapping functions were compared to human ratings of relatedness. The
functions used the path lengths obtained when all WordNet semantic relations are
allowed. Evaluating the relatedness functions using different sets of allowable rela-
tionship types was unnecessary, as the previous experiment showed that the set of
allowed semantic relation types does not significantly affect the results.

A summary of the coefficients of correlation for all of the proposed measures
against each test set is provided in Table 4.5. For the purpose of comparison, the
coefficients of correlation of other semantic distance measures are also included in
Table 4.5, including all of the measures evaluated in Budanitsky and Hirst’s [4]
study, as well as the results reported by Yang and Powers [47] for their measure
(relY P ), and the results of our implementation of Sussna’s [44] measure (distS).
The measures that are included in Budanitsky and Hirst’s study include Hirst-
St-Onge (relHS), Jiang-Conrath (distJC), Leacock-Chodorow (simLC), Lin (simL)
and Resnik (simR).

The raw results that were used to calculate the coefficients of correlation re-
ported in Table 4.5 may be found in the appendices. Yang and Powers did not
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Correlation Rank correlation
RG MC RG \MC RG MC RG \MC

relLinear 0.8967 0.9129 0.8780 0.8694 0.8658 0.8118
relDecay 0.8896 0.9098 0.8688 0.8694 0.8652 0.8072
relExp 0.8956 0.9109 0.8757 0.8694 0.8652 0.8072
relLog 0.8568 0.8676 0.8383 0.8694 0.8652 0.8072
relSigmoid 0.8880 0.9329 0.8682 0.8694 0.8652 0.8072
distLength -0.8877 -0.8978 -0.8679 -0.8566 -0.8594 -0.7937
relY P 0.897 0.921 0.877 — — —
distS -0.8185 -0.8356 -0.7898 -0.8629 -0.8526 -0.7973
simLC 0.8382 0.8157 0.8371 0.7911 0.7622 0.7324
simL 0.8193 0.8292 0.8164 0.7936 0.7904 0.7452
simR 0.7787 0.7736 0.8106 0.7573 0.7357 0.7414
relHS 0.7861 0.7444 0.7887 0.7917 0.7614 0.7590
distJC -0.7813 -0.8500 -0.7216 -0.7038 -0.8128 -0.5398

Table 4.5: Correlation coefficients for proposed semantic relatedness measures and
previous similarity and relatedness measures

provide their raw results, so only the reported correlation coefficients for their mea-
sure are given.

The values in Table 4.5 should be interpreted as the degree of linear correlation
between the results of each measure and the human ratings collected by Miller and
Charles (for the MC data set), or by Rubenstein and Goodenough (for the RG
and the RG \MC data set). The highest possible correlation is one, which would
indicate that the two sets of values being compared are identical.

The simplified measure with a linear relatedness function (relLinear) had the
highest overall correlation for the two most significant data sets: RG and RG\MC.
The measure by Yang and Powers had the second highest correlation, trailing
relLinear by only a small margin. Other previous measures had significantly lower
correlations with this data. For the MC data set, relSigmoid had the highest cor-
relation, and simY P had the second highest. Once again, other previous measures
had significantly lower correlation coefficients.

The rank correlations for each measure are also provided in Table 4.5. For the
most part, the rank correlations corresponded closely to the correlations, although
the rank correlations were in general slightly lower. The only significant exception
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is Sussna’s measure, which had a higher rank correlation than correlation for all
three data sets.

The rank correlations of the new measure with different relatedness functions
are nearly identical. This is to be expected, as all of the functions that we are
testing are monotonically decreasing as path length increases. The ranks of the
results for these measures should not vary and so the rank correlation should not
vary either. The small difference in the rank correlation of relLinear results from
the fact that this function does not decrease for path lengths of seven and eight,
which are both assigned the value zero.

4.5 Discussion of Results

4.5.1 Comparison with Previous Measures

The simplified relatedness measure proposed in this study outperforms all of the
semantic distance measures surveyed by Budanitsky and Hirst by a wide margin.
Only Yang and Powers’ measure matches its performance. However, we are partic-
ularly interested in how previous measures compare to the version of the simplified
measure that most resembles them. By comparing previous measures to similar
but simpler measures it will be possible to make specific conclusions about where
the previous measures fail.

Jiang and Conrath Similarity Measure

The Jiang and Conrath measure [16] computes semantic distance as the sum of
weighted edges on the shortest path connecting concepts in the noun taxonomy.
The most interesting comparison in our experiment is with the distTax measure,
which calculates semantic distance as taxonomic path length. When the edge-
weighting scheme is removed from Jiang and Conrath, and all edge weights are
given a value of one, then their measure is equivalent to distTax.

The distTax measure performed significantly better than simJC for the larger
RG data set, with correlations of r = −0.8665 for distTax and r = −0.7813 for
simJC , as shown in Table 4.3. For the smaller MC data set, simJC correlated
more highly than distTax, though by a smaller margin. For the MC data set, the
distTax measure had a correlation of r = −0.8381 and simJC had a correlation
of r = −0.8500. As distTax achieved better results on the larger data set, and
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as the difference in performance was much greater for this set than for MC, we
might be justified in calling distTax the more successful measure. At the least, we
can conclude that simJC does not consistently improve on the results of distTax.
Overall, these results suggest that Jiang and Conrath’s edge-weighting technique is
not in fact effective.

An interesting result for simJC is the large difference between the correlation and
the rank correlation. Although most of the measures receive a lower rank correlation
than correlation, Jiang and Conrath’s measure showed the greatest variation. For
example, for the RG\MC data set the measure drops from a correlation of −0.7216
to the surprisingly low rank correlation of −0.5398. The reason for this appears to
be that the distJC measure does a good job at clustering word pairs that belong
near one another, but does a poor job in identifying the relative positions of the
word pairs within a cluster. When calculating the rank correlation, the word pairs
are effectively de-clustered, and the exact ordering of the word pairs contributes
more heavily to the correlation value.

Leacock and Chodorow Similarity Measure

The measure by Leacock and Chodorow [18] is a simple similarity measure that
takes the taxonomic path length between concepts and maps the path length to a
similarity value using a logarithmic function. Leacock and Chodorow’s measure is
interesting to us because it is the nearest thing to a baseline measure that has been
included in previous evaluations, such as the one by Budanitksy and Hirst [4].

The simplified measure that provides the most appropriate comparison for
simLC is the distTax measure. As the measure by Leacock and Chodorow trans-
forms taxonomic path length to similarity, their measure should achieve better
results than taxonomic path length on its own. However, for both the RG and MC
data sets, distTax correlates more strongly with human ratings than their mea-
sure. This suggests that Leacock and Chodorow chose either the wrong function
for transforming path length, or chose inappropriate constants for their function.

The results in Table 4.5 confirm that the logarithmic function, represented by
relLog, is not a good choice for transforming path length to similarity or relatedness.
It has the lowest correlation of any of the functions that were tested, and has a
lower correlation than simple path length.
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Hirst and St-Onge Relatedness Measure

The relatedness measure by Hirst and St-Onge [15] had the poorest performance
of any measure. It had the lowest correlation of all the measures tested, and had
a lower correlation than simple path length. As Hirst and St-Onge used a linear
relationship between path length and relatedness, it is somewhat surprising that
their results are so poor. The simplified linear measure (relLinear) had the best
results overall of any measure.

The measure by Hirst and St-Onge differs from the simplified measures in several
ways. First, their measure restricts the allowable paths, based on their categoriza-
tion of semantic relations into three possible ‘directions’ as described in earlier
chapters. Second, they discount the value of relatedness for each change in direc-
tion, once again relying on the directions of semantic relations that they defined.
Third, they use a maximum search depth of five, whereas we used a maximum
depth of seven.

An informal test showed that even at a maximum depth of five, simple path
length correlates much better with human judgments than Hirst and St-Onge’s
measure. It is therefore likely that either the path restrictions or the discount
factor for changes in direction, or both of these, reduce the effectiveness of their
measure.

Sussna Relatedness Measure

Sussna’s [44] measure has not been implemented previously for a major comparative
evaluation, such as that by Budanitsky and Hirst [4]. This is unfortunate because,
as the results in Table 4.5 show, Sussna’s measure is the most successful of the
measures evaluated in Budanitsky and Hirst’s study. Among the previous measures
that we are comparing, Sussna’s is the second most successful measure, after the
measure by Yang and Powers.

The most appropriate measure with which to compare Sussna’s measure is
distPart. Sussna’s measure uses the same semantic relation types as distPart, but
differs from distPart in that it uses two edge-weighting techniques. The simplified
measure had higher correlations than Sussna’s measure, as shown in Table 4.3.
However, Sussna’s measure achieved very good rank correlations and had a slightly
higher rank correlation than distPart for the RG data set.

Given that Sussna’s measure attained results that were fairly good, it is quite
possible that one of the two edge-weighting techniques that it includes is a useful
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technique for measuring relatedness. Future research that investigates the contri-
butions of individual edge-weighting techniques should look closely at these two
factors.

Yang and Powers Similarity Measure

Yang and Powers [47] described the best results in the literature, using an evaluation
methodology that is nearly identical to our own. However, their measure is also
the most complex one that we have tested, and has been systematically tuned to
achieve the best correlation possible. In the last chapter, we argued that Yang and
Powers’s measure assumes an exponential decay model of the relationship between
path length and similarity. We will therefore first compare their model to relDecay.

The measure by Yang and Powers attained a higher correlation than relDecay

for all three data sets, although the difference in correlation is not large — ap-
proximately 0.01 in all cases. The Yang and Powers measure is therefore the only
measure tested that consistently outperforms a corresponding simplified measure.
This means that the techniques introduced by Yang and Powers were, taken to-
gether, beneficial and should be considered in the development of future measures.

However, the simplified linear measure, relLinear had identical correlation co-
efficients to the Yang and Powers measure for the RG data, and slightly higher
correlation for the RG \MC data. This suggests that the Yang and Powers mea-
sure might have achieved even better results had it adopted a linear relationship
between path length and similarity.

There are several advantages to the simpler model over the model proposed by
Yang and Powers. For one, it is generally preferable to adopt a simpler model over
a more complex one, when the models are equal in other respects. Unnecessary
complexity should be avoided whenever possible, and the relLinear measure is sim-
pler than the measure by Yang and Powers in many respects. For example, their
model has many more parameters than the simplified model, including constants
for every relationship type.

Also, as the simplified measure is not closely bound to semantic relation types
it is more general than the Yang and Powers measure. For example, our measure
can be applied without modification to the WordNet subgraphs for other parts of
speech, such as verbs and adjectives. Although there is no empirical data against
which to test the performance of the measure for other parts of speech, a casual
analysis of a few examples is promising. Consider the following examples:
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friendly/affable
[affable#a#1<sim>friendly#a#1]

friendly/kind
[friendly#a#1<also>congenial#a#1<also>sympathetic#a#2<sim>kind#a#4]

friendly/loving
[loving#a#1<also>lovable#a#1<also>amicable#a#1<sim>friendly#a#2]

friendly/casual
[friendly#a#1<also>amicable#a#1<also>peaceful#a#1<also>quiet#a#1

<also>untroubled#a#1<also>unconcerned#a#1<sim>casual#a#1]

friendly/hungry
no path found

In the preceding examples, path length appears to correspond, more or less,
with the strength of relatedness. The word pair friendly/hungry does not have
any clear semantic relationship, and no path shorter than eight could be found in
WordNet. For the other word pairs there is an intuitive association, and paths were
found that connect these concepts.

4.5.2 Methodological Suggestions

We have shown that many path-based measures are unnecessarily complex. For
example, when edge-weighting techniques are eliminated, most measures actually
improve in performance. We believe that many of the flaws of semantic distance
measures are the result of flaws in their development and evaluation methodologies.

To prevent unnecessary complexity in semantic distance measures, particularly
path-based measures, they should be compared against baseline measures at every
opportunity. To prove the merits of modifications to a simpler measure, the new
measure should be evaluated with and without the modifications. What we are
proposing is therefore a methodology akin to regression testing, as used in software
engineering. Although it may not always be possible to decompose measures so as
to test their components in this way, we showed in the previous chapter that many
of the path-based measures that exist in the literature are in fact modular.

It is not clear why researchers have not used baseline measures to verify the suc-
cess of their techniques. It could be that researchers have indeed adopted baseline
measures, but that they chose poor measures to serve in this role. For example, the
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Leacock and Chodorow measure is often included in semantic distance measure eval-
uations, and their measure takes a very straightforward approach. Unfortunately,
their measure is also not very effective owing to the logarithmic transformation that
they use.

Alternatively, it could be the case that researchers used a sound methodology
when first developing their measure, but failed to retest against the baseline mea-
sures when external factors changed. For example, Hirst and St-Onge’s measure is
an adaptation of Morris and Hirst’s [27] relatedness measure for Roget’s thesaurus
[37]. It could be that the elements of Hirst and St-Onge’s measure that are not
effective were helpful when using Roget’s thesaurus. The same phenomenon could
occur between different versions of WordNet.

As the evaluation framework for semantic distance measures is now fairly well
established, at least by convention, the regression-testing approach that we are
proposing should not be a serious burden to researchers. In the case of path-based
relatedness measures, at the very least no measure should be outperformed by the
simple measures that we have proposed in this study, such as relLinear.

4.5.3 Limitations of Evaluation

There are several limitations to the evaluation that we have described that should
be noted. The Rubenstein-Goodenough set contains just 65 word pairs and the
Miller-Charles set contains a subset of 30 of these. Although these sets have served
as the primary means of evaluating relatedness and similarity measures for a number
of years, a larger study is needed.

Also, the data appears to be fairly uniform in several respects. First, the level
of abstractness of the words does not appear to vary significantly. There are no
abstract concepts such as justice or general categories such as thing. Second, there
is limited variety in the semantic domains of the concepts. For example, the data
includes a large number of concepts that are types of people, such as monk, lad,
boy and wizard. Finally, certain sorts of semantic relationships are not represented
in the data. For example, while there are many pairs that are synonyms or near-
synonyms, the data contains no antonyms or near-antonyms.

The uniformity of the data likely favours particular measures over others. As
there were no abstract terms in the data, techniques that employ depth-scaling to
account for the greater semantic distance of concepts high in the WordNet taxonomy
would be less effective. Similarly, as cases of antonymy and near-antonymy were
not present in the data, the accuracy of the models for these sorts of relations was
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not tested. For example, the Yang and Powers measure discards paths that include
antonymy links. While they do account for direct antonyms, near-antonyms would
not be properly rated by their measure.

The terms light and shade are not direct antonyms, but they are nevertheless
closely related via antonymy. The shortest path in WordNet between the word pair
light/shade is:

[shade#n#1<hype>semidarkness#n#1<hype>dark#n#1<ants>light#n#10]

While the proposed simplified measure would find this path, the Yang and
Powers measure would not and would therefore not capture the intuitively close
relationship between these concepts. However, since the data does not contain
cases of semantic opposition, the evaluation does not expose this shortcoming.

Another limitation of our experiment is that we have used only one means of
evaluation. Some previous evaluations, including Budanitsky and Hirst’s study,
supplemented comparison with human judgments with an application-based eval-
uation. In the case of Budanitsky and Hirst, similarity and relatedness measures
were integrated into an application for correcting real-word spelling errors, and the
measures were rated in terms of the success of this task.

Budanitksy and Hirst themselves argue that comparison to human judgments
is the most appropriate means of evaluating semantic distance measures, and we
have offered similar arguments to theirs above. Also, in Budanitsky and Hirst’s
[4] study, it was found that the application-based evaluation only confirmed the
results of the comparison to human judgments. The results for the task of real-
word spelling correction found “Jiang and Conrath leading, followed by Lin and
Leacock-Chodorow together, Resnik, and then Hirst-St-Onge.” (p. 27) This ranking
is identical to that for the results of the MC data set, as shown in Table 4.5. It is
only slightly different for the RG data set, where the only significant change is a
poorer performance for the Jiang and Conrath measure.

Another possible objection to our evaluation methodology is in the tuning that
we have performed. Other measures, with the exception of Yang and Powers, do
not describe any systematic tuning of their models. It might be argued that this
gives the simplified models an unfair advantage over the others. However, path
length on its own (distLength) correlated more highly with human judgments than
any of the previous measures except for simY P . Therefore an untuned version of
the simplified model achieved better results than these measures. As for Yang
and Powers, as they employed systematic tuning for their model, comparing their
measure to our tuned measures is justified.
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4.6 Semantic Contrast

The work in the current study arose out of our interest in another form of semantic
distance, that we call semantic contrast. Before concluding this chapter, we will
offer some motivation for the study of semantic contrast in future work, and will
present some preliminary findings. Semantic contrast has not received any serious
academic attention, but it is a phenomenon that is often referred to in work on
antonymy and semantic opposition [29]. It is also a phenomenon that we believe
could offer some very interesting applications, if it could be modeled computation-
ally.

In general, semantic distance can be viewed as the degree to which two concepts
differ along some scale. The scales that we have discussed so far include similarity
and relatedness. Two concepts can be more or less semantically distant depending
on their similarity or dissimilarity, or they can be more or less semantically distant
depending on their relatedness or lack thereof.

However, semantic opposition illustrates another way in which concepts can dif-
fer from one another. Budanisky and Hirst [4] point out that “antonymous concepts
are dissimilar, and hence distant in one sense, and yet are strongly related seman-
tically and hence close in the other.” (p. 2) Budanitksy and Hirst are not correct
in asserting the dissimilarity of antonyms, however. Muehleisen [29] observes that
“opposites seem as different as they can possibly be, yet they still have something in
common.” (p. 3) In fact, semantic opposites often have very much in common. For
example, the antonyms man and woman have a great deal of conceptual overlap.
Men and women are both human beings, living creatures, have two legs, two arms,
etc. In a word, they are very similar. They are also closely related. However, man
and woman are in a sense very semantically distant, maybe even maximally so. As
Cruse [8] writes:

The meanings of a pair of opposites are felt to be maximally separated
... the closeness of opposites, on the other hand, manifests itself, for
instance, in the fact that members of a pair have almost identical distri-
butions, that is to say, very similar possibilities of normal and abnormal
occurrence ... (p. 197)

The measures of either semantic similarity or semantic relatedness that we have
examined in this study would find man and woman to be very close. In order
to capture the sense of semantic distance that separates antonyms, we propose a
new type of semantic distance called semantic contrast. Antonyms have very high
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Figure 4.4: A scale for semantic contrast

semantic contrast, but there are cases of weaker contrast. The concepts love and
cruelty are not opposites, but they are distant in the same sense that opposites are
distant, though to a lesser degree.

4.6.1 Contrast Scale

As we are proposing that contrast is a matter of degree, it will be helpful to examine
the features of the scale of contrast. For example, semantic opposites lie at one end
of the scale, as they represent the most possible contrast. It is not clear, however,
what sorts of relations lie at the other end of the scale. For example, the opposite
of contrast could be unrelatedness, similarity, or something else.

We will not offer a detailed argument here, but will tentatively propose a scale
that is an extension of the scale for semantic similarity. The original scale used by
Rubenstein and Goodenough [38] ranges from “highly synonymous” to “unrelated.”
By extending this scale from “unrelated” to “highly antonymous,” we create a scale
that is symmetrical with the similarity scale and captures the full range of degrees
of contrast. A visual representation of the scale may be helpful, and is provided
in Figure 4.4. This scale assumes that related, but non-contrasting, word pairs
have less contrast than unrelated ones. For example, the pair car/gasoline has less
contrast than bicycle/gasoline, according to the scale.

By extending the scale in this way, we solve the problem that would have been
encountered by Rubenstein and Goodenough’s test subjects had antonyms been
included in the test set for their experiment. Antonyms are neither “highly syn-
onymous,” nor “unrelated.” Neither is it fair to call antonyms “somewhat related”
and “somewhat synonymous” — they are in fact both highly related and minimally
synonymous. It is impossible to express the semantic distance between opposites
on the scale used in Rubenstein and Goodenough’s experiment.
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4.6.2 Preliminary Contrast Measure

We have experimented with a preliminary computational measure of contrast, that
combines the techniques of path-based semantic distance measures with some ob-
servations by Fong [13]. In an interesting solution to a special form of semantic
opposition described by Pustejovsky [32], Fong demonstrated that semantic oppo-
sition is to some extent transitive along paths of relations in a semantic network.
He found that if the shortest path between concepts includes an antonym relation,
then the endpoint concepts are likely to also be opposed. The task that was ad-
dressed by Fong required only a binary determination of opposition. However, his
technique also lends itself to a gradable model of contrast.

The following chains of lexical relationships, taken from WordNet 2.1, illustrate
the transitivity of contrast:

1. hate <antonym> love

2. hate <antonym> love <sister term> joy

3. hate <antonym> love <sister term> joy <hypernym> elation

The antonyms hate and love are highly contrasting, but as the distance from
the antonym pair grows, contrast diminishes. The pairs of concepts hate/joy and
hate/elation are not opposites. However, as a result of their proximity to the
antonym relation hate/love, they are in contrast. In the computational measures
of contrast that will be presented below, the quality of contrast will be determined
by the presence of indirect antonymy. The strength, or quantity, of contrast will
be determined using a relatedness measure.

Equation 4.4 expresses contrast as a function of the shortest path, p:

con(p) =

{
−rel(p) if p contains one antonym link
rel(p) otherwise

(4.4)

In the preceding formula, p is the shortest path between concepts in a semantic
network, and rel(p) is the relatedness of the endpoints of p. Unfortunately, the
formula above met with mixed results when applied to a test set of contrasting
word pairs collected by Mettinger [23]. This set includes pairs of words selected
from 20 English novels using syntactic frames that indicate contrast, such as “X
rather than Y.” Although the technique had no false positives when applied to non-
contrasting words, it was only able to properly identify about 50% of the contrasting
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word pairs in Mettinger’s list. There was no data available to evaluate how well this
measure was able to determine the strength of contrast. From the results that were
obtained, it appears that this technique works well for certain types of contrasting
word pairs, but not for others.

Future work in this area will likely require a typology of contrast and special
consideration for the different kinds of contrast that exist. For example, the pre-
liminary measure above works well for associative contrast such as that between
cat and bark. In such cases the contrast appears to derive from the proximity of
the concepts to an antonym pair. Specifically, the concept bark is strongly related
to dog, and dog is the opposite of cat. However, other relationships that are intu-
itively contrasting are not captured by this measure. Words that imply positive
and negative value judgments also seem to be contrasting, for example. The words
honesty and hate seem to be in contrast, but they are not closely related to a pair
of antonyms by classical semantic relations.

4.7 Chapter Summary

In this chapter we have described a two-part experiment that compared the sim-
plified semantic relatedness measure proposed in the last chapter to previous re-
latedness and similarity measures. The measures were evaluated on the basis of
correlation with human ratings of relatedness, using two widely used data sets. In
the first part of the experiment, we examined the effect of using different sets of
allowable semantic relationship types on the correlation of path length with human
judgments. We found that relations other than is-a have little effect on the results,
as is-a relations are by far the most common links between nouns in WordNet.

The second part of the experiment compared five functions for mapping path
length to relatedness. We found that a linear relatedness function was the most
effective, and that it obtained better results overall than any previous measure.

Also, for each previous measure that we were examining, we identified a corre-
sponding simplified measure to serve as a baseline test. The surprising conclusion
was that every measure other than the one by Yang and Powers had worse results
than the corresponding simplified measure. On the basis of these results, we have
concluded that many of the features of previous measures are detrimental to their
performance.

In order to prevent the introduction of unnecessary features, we proposed a new
methodology for the development and evaluation of future semantic distance mea-
sures. Any new techniques designed to improve upon the path-based approach to
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measuring semantic relatedness or similarity should be compared to a baseline mea-
sure. Measures that cannot be demonstrated to improve upon a baseline measure
should be rejected.
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Chapter 5

Conclusion

5.1 Review

In this study, we have made several significant contributions to the study of seman-
tic relatedness. We have demonstrated that previous measures of relatedness and
similarity are overly complex. Many of them include elements that are unnecessary
and reduce their correlation to human performance. For example, we have shown
that the techniques used by previous measures to estimate the semantic distances
of edges in the WordNet graph are ineffective.

We have described and evaluated a new measure of semantic relatedness which
may be viewed as a simplification of current path-based measures. Despite its
simplicity, the new measure achieved higher correlation with human ratings of re-
latedness than any of the previous measures that we compared. Compared with
the five measures evaluated by Budanitksy and Hirst [4] in their recent study, our
measure showed very significant improvement. Although Yang and Powers [47]
demonstrated results comparable to those of our new measure, they did so with a
much more complex model.

In the course of developing our new model, we were able to systematically exam-
ine two aspects of path-based semantic relatedness measures. First, we determined
that due to the high percentage of is-a relations in the noun portion of Word-
Net, the effect of including other types of semantic relations is negligible. This
result may partly explain why similarity measures, which typically examine only
is-a relations, have served as successful proxies for semantic relatedness measures.
Secondly, we examined the mathematical relationship between path length and the
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strength of relatedness. We used statistical regression to test five different functions
and found that a simple linear function had the best overall results.

We have also provided a general formal description of path-based similarity
and relatedness measures. This general description showed that it is possible to
decompose current measures into their constituent elements, and suggests how these
could be recombined in future measures. We have proposed a methodology for the
future development of path-based semantic distance measures that could help to
avoid the introduction of the types of errors that we found in previous measures.
Specifically, we recommend that any new measures be evaluated against simpler
baseline measures whenever possible.

5.2 Future Work

5.2.1 Relatedness Measures

In this study we have proposed a new methodology for improving path-based re-
latedness measures. Although we have taken the first steps towards improving
path-based measures, there remains much work to be done. For example, our
methodology suggests that the elements of current relatedness and similarity mea-
sures should be examined individually in order to determine their merit. Although
we demonstrated in Chapter 4 that most measures of similarity and relatedness per-
form more poorly than baseline measures, it may be that useful features in these
measures were obscured by other detrimental features. For example, our experi-
ments left some question as to the value of the edge-weighting techniques of Sussna
[44] and Yang and Powers [47], and these should be examined in the future.

5.2.2 Experimental Data

Another important area for future work is in improving the evaluation framework.
Although the field has settled on a fairly well-defined framework, it can be improved
in several ways. First, the human ratings of semantic relatedness collected by
Rubenstein and Goodenough [38] and by Miller and Charles [25] represent a rather
small body of data. Additional experiments would be worthwhile to increase the
amount of available data, and to thus increase the significance of experiments such
as our own.

Also, the methodology that was used for collecting human semantic relatedness
judgments should be improved for future experiments. The instructions used in the
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previous experiments were ambiguous, given the distinction between relatedness
and similarity. While the subjects were asked to rate word pairs according to their
“similarity of meaning,” they appear to have provided ratings of relatedness, and
not similarity. This inconsistency may be the result of the scale that was used, with
“unrelated” being the least possible value. Alternatively, it may be that judging
relatedness is a more natural task for humans than judging similarity, and that the
test subjects inadvertently defied the instructions that they were given. In either
case, it is hard to guess what effect the discrepancy between the instructions and
the behaviour of the subjects might have had on the results.

Finally, not only the number but also the variety of the word pairs in the current
data could be improved. In Chapter 4 we pointed out some aspects of the data that
appear to be quite uniform across the 65 word pairs of the Rubenstein-Goodenough
[38] and Miller-Charles [25] data sets. For example, there were few general concepts
represented in the data.

5.2.3 Contrast Applications

In Chapter 4, we described a new type of semantic distance called semantic con-
trast. We believe that semantic contrast has a number of valuable applications.
In natural language generation contrast could be used, for example, in properly
framing contrasting adjectives. That is, it is customary to provide special syntactic
frames when asserting contrasting properties of an object. Consider the following
sentences:

? Frances is friendly and abrupt.
Frances is friendly, but abrupt.

The first sentence above is unusual, but the second is much less jarring. Text
generation systems could use a measure of semantic contrast to select appropriate
syntax for such cases of contrasting adjectives.

Another potential application of a computational measure of contrast is for
computational humour. Ritchie [36] provides a formal model of a certain class
of jokes, that he calls forced reinterpretation jokes. An important part of this
model is what Ritchie calls contrast. Although he is deliberately vague about the
nature of contrast in his model, our notion of semantic contrast fits well with the
limited description that Ritchie gives. We believe that a model of semantic contrast
could be very helpful for simple jokes, such as puns, that turn on the semantic
relationships between words.
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5.3 Final Words

Semantic relatedness, and more generally semantic distance, is likely to remain an
important area of interest for computational linguists. The many new applications
that were described in papers at just one recent conference [17, 7, 41] indicate that
the potential uses of semantic distance measures are far from being exhausted. We
believe that this study helps to clear the way for both future improvements of path-
based semantic distance measures and provides a simple and effective measure to
be used in semantic distance applications.
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Appendix A

Appendix

A.1 Experimental Results

The following tables of results are the raw ratings of semantic relatedness and
semantic similarity for new and previous measures for the experiments described
in Chapter 4.
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Table A.1: Results of previous similarity and relatedness measures
for the RG data set

Word #1 Word #2 Humans relHS distJC simLC simL simR distS

cord smile 0.02 0 19.6711 1.387 0.09 1.1762 3
noon string 0.04 0 22.6451 1.5025 0 0 3
rooster voyage 0.04 0 26.908 0.9175 0 0 3
fruit furnace 0.05 0 18.5264 2.2801 0.1482 1.8563 1.5691
autograph shore 0.06 0 22.724 1.387 0 0 3
automobile wizard 0.11 0 17.8624 1.5025 0.0986 0.9764 3
mound stove 0.14 0 17.2144 2.2801 0.2204 2.9062 0.9963
grin implement 0.18 0 16.6232 1.2801 0 0 3
asylum fruit 0.19 0 19.5264 2.2801 0.1425 1.8563 1.571
asylum monk 0.39 0 25.6762 1.628 0.0707 0.9764 3
graveyard madhouse 0.42 0 29.7349 1.1806 0 0 3
boy rooster 0.44 0 17.8185 1.5025 0.2112 2.3852 3
glass magician 0.44 0 22.829 1.9175 0.0788 0.9764 2.143
cushion jewel 0.45 0 22.9386 2.2801 0.1393 1.8563 1.5307
monk slave 0.57 94 18.9192 2.7655 0.2113 2.535 1.0864
asylum cemetery 0.79 0 28.1499 1.5025 0 0 3
coast forest 0.85 0 20.2206 2.2801 0.1299 1.5095 1.6047
grin lad 0.88 0 20.8152 1.2801 0 0 3
shore woodland 0.9 93 19.3361 2.5025 0.1351 1.5095 1.5559
monk oracle 0.91 0 22.7657 2.0875 0.1821 2.535 1.7251
boy sage 0.96 93 19.934 2.5025 0.2028 2.535 1.2026
automobile cushion 0.97 98 15.0786 2.0875 0.2782 2.9062 0.4315
mound shore 0.97 91 12.492 2.7655 0.498 6.1974 0.8089
lad wizard 0.99 94 16.5177 2.7655 0.2349 2.535 1.0557
forest graveyard 1 0 24.573 1.7655 0 0 1.3458
food rooster 1.09 0 17.4637 1.387 0.1006 0.9764 1.0435
cemetery woodland 1.18 0 25.0016 1.7655 0 0 1.3458
shore voyage 1.22 0 23.738 1.387 0 0 3
bird woodland 1.24 0 18.1692 2.0875 0.1382 1.5095 2.0093
coast hill 1.26 94 10.8777 2.7655 0.5326 6.1974 0.5442
furnace implement 1.37 93 15.8742 2.5025 0.1895 1.8563 1.3538
crane rooster 1.41 0 12.806 2.0875 0.5812 8.8872 1.0914
hill woodland 1.48 93 18.2676 2.5025 0.1418 1.5095 1.0123
car journey 1.55 0 16.3425 1.2801 0 0 3
cemetery mound 1.69 0 23.8184 1.9175 0 0 0.7791
glass jewel 1.78 0 22.0185 2.0875 0.1443 1.8563 1.1184
magician oracle 1.82 98 1 3.5025 0.9645 13.5898 1.4945
crane implement 2.37 94 15.6813 2.7655 0.2704 2.9062 0.9074
brother lad 2.41 94 16.3583 2.7655 0.2366 2.535 1.0718
sage wizard 2.46 93 22.8275 2.5025 0.1817 2.535 1.2552
oracle sage 2.61 0 26.2251 2.0875 0.162 2.535 1.0381
bird cock 2.63 150 5.403 4.0875 0.7669 8.8872 0.179
Continued on Next Page. . .
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Table A.1 – Continued
Word #1 Word #2 Humans relHS distJC simLC simL simR distS

bird crane 2.63 97 7.403 3.0875 0.706 8.8872 0.484
food fruit 2.69 0 10.2695 2.2801 0.2272 1.5095 0.698
brother monk 2.74 93 19.2087 2.5025 0.2088 2.535 0.1809
asylum madhouse 3.04 150 0.263 4.0875 0.9917 15.7052 0.1026
furnace stove 3.11 0 20.5459 2.0875 0.1342 1.8563 0.2814
magician wizard 3.21 200 0 5.0875 1 13.5898 0
hill mound 3.29 200 0 5.0875 1 12.0807 0
cord string 3.41 150 2.2707 4.0875 0.8907 9.2513 0.1911
glass tumbler 3.45 150 5.9425 4.0875 0.7925 11.3477 0.1889
grin smile 3.46 200 0 5.0875 1 10.4198 0
serf slave 3.46 0 19.8021 2.2801 0.348 5.2844 0.5692
journey voyage 3.58 150 5.2133 4.0875 0.7476 7.7194 0.2092
autograph signature 3.59 150 2.415 4.0875 0.9221 14.2902 0.1514
coast shore 3.6 150 0.8845 4.0875 0.9618 11.1203 0.1975
forest woodland 3.65 200 0 5.0875 1 11.2349 0
implement tool 3.66 150 1.1777 4.0875 0.9133 6.2034 0.2197
cock rooster 3.68 200 0 5.0875 1 14.2902 0
boy lad 3.82 150 5.3942 4.0875 0.7285 8.2987 0.1851
cushion pillow 3.84 150 0.7004 4.0875 0.9749 13.5898 0.213
cemetery graveyard 3.88 200 0 5.0875 1 13.7666 0
automobile car 3.92 200 0 5.0875 1 8.6231 0
gem jewel 3.94 200 0 5.0875 1 14.3833 0
midday noon 3.94 200 0 5.0875 1 15.9683 0
correlation: 1 0.7861 -0.7813 0.8382 0.8193 0.7787 -0.8185
rank correlation: 1 0.7917 -0.7038 0.7911 0.7936 0.7573 -0.8526
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Table A.2: Results of proposed relatedness measures for the RG
data set

Word #1 Word #2 Humans distLen relLinear relDecay relExp relLog relSig

cord smile 0.02 8 0 0.5255 0 0.9355 0.6279
noon string 0.04 8 0 0.5255 0 0.9355 0.6279
rooster voyage 0.04 8 0 0.5255 0 0.9355 0.6279
fruit furnace 0.05 6 0.48 0.8728 0.5794 1.2074 0.6476
autograph shore 0.06 8 0 0.5255 0 0.9355 0.6279
automobile wizard 0.11 8 0 0.5255 0 0.9355 0.6279
mound stove 0.14 5 1.07 1.1249 1.0659 1.3772 0.7374
grin implement 0.18 7 0 0.6772 0.1056 1.0623 0.6309
asylum fruit 0.19 6 0.48 0.8728 0.5794 1.2074 0.6476
asylum monk 0.39 8 0 0.5255 0 0.9355 0.6279
graveyard madhouse 0.42 8 0 0.5255 0 0.9355 0.6279
boy rooster 0.44 7 0 0.6772 0.1056 1.0623 0.6309
glass magician 0.44 8 0 0.5255 0 0.9355 0.6279
cushion jewel 0.45 6 0.48 0.8728 0.5794 1.2074 0.6476
monk slave 0.57 4 1.65 1.4498 1.5683 1.582 1.1513
asylum cemetery 0.79 8 0 0.5255 0 0.9355 0.6279
coast forest 0.85 6 0.48 0.8728 0.5794 1.2074 0.6476
grin lad 0.88 8 0 0.5255 0 0.9355 0.6279
shore woodland 0.9 5 1.07 1.1249 1.0659 1.3772 0.7374
monk oracle 0.91 7 0 0.6772 0.1056 1.0623 0.6309
boy sage 0.96 5 1.07 1.1249 1.0659 1.3772 0.7374
automobile cushion 0.97 3 2.24 1.8685 2.0911 1.8396 2.2327
mound shore 0.97 4 1.65 1.4498 1.5683 1.582 1.1513
lad wizard 0.99 4 1.65 1.4498 1.5683 1.582 1.1513
forest graveyard 1 5 1.07 1.1249 1.0659 1.3772 0.7374
food rooster 1.09 6 0.48 0.8728 0.5794 1.2074 0.6476
cemetery woodland 1.18 5 1.07 1.1249 1.0659 1.3772 0.7374
shore voyage 1.22 8 0 0.5255 0 0.9355 0.6279
bird woodland 1.24 7 0 0.6772 0.1056 1.0623 0.6309
coast hill 1.26 3 2.24 1.8685 2.0911 1.8396 2.2327
furnace implement 1.37 5 1.07 1.1249 1.0659 1.3772 0.7374
crane rooster 1.41 7 0 0.6772 0.1056 1.0623 0.6309
hill woodland 1.48 4 1.65 1.4498 1.5683 1.582 1.1513
car journey 1.55 8 0 0.5255 0 0.9355 0.6279
cemetery mound 1.69 4 1.65 1.4498 1.5683 1.582 1.1513
glass jewel 1.78 5 1.07 1.1249 1.0659 1.3772 0.7374
magician oracle 1.82 6 0.48 0.8728 0.5794 1.2074 0.6476
crane implement 2.37 4 1.65 1.4498 1.5683 1.582 1.1513
brother lad 2.41 4 1.65 1.4498 1.5683 1.582 1.1513
sage wizard 2.46 5 1.07 1.1249 1.0659 1.3772 0.7374
oracle sage 2.61 5 1.07 1.1249 1.0659 1.3772 0.7374
bird cock 2.63 1 3.41 3.1036 3.2427 2.7261 3.4726
Continued on Next Page. . .
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Table A.2 – Continued
Word #1 Word #2 Humans distLen relLinear relDecay relExp relLog relSig

bird crane 2.63 3 2.24 1.8685 2.0911 1.8396 2.2327
food fruit 2.69 3 2.24 1.8685 2.0911 1.8396 2.2327
brother monk 2.74 1 3.41 3.1036 3.2427 2.7261 3.4726
asylum madhouse 3.04 1 3.41 3.1036 3.2427 2.7261 3.4726
furnace stove 3.11 2 2.83 2.4081 2.6429 2.1877 3.1739
magician wizard 3.21 0 4 4 4 3.9754 3.5337
hill mound 3.29 0 4 4 4 3.9754 3.5337
cord string 3.41 1 3.41 3.1036 3.2427 2.7261 3.4726
glass tumbler 3.45 1 3.41 3.1036 3.2427 2.7261 3.4726
grin smile 3.46 0 4 4 4 3.9754 3.5337
serf slave 3.46 3 2.24 1.8685 2.0911 1.8396 2.2327
journey voyage 3.58 1 3.41 3.1036 3.2427 2.7261 3.4726
autograph signature 3.59 1 3.41 3.1036 3.2427 2.7261 3.4726
coast shore 3.6 1 3.41 3.1036 3.2427 2.7261 3.4726
forest woodland 3.65 0 4 4 4 3.9754 3.5337
implement tool 3.66 1 3.41 3.1036 3.2427 2.7261 3.4726
cock rooster 3.68 0 4 4 4 3.9754 3.5337
boy lad 3.82 1 3.41 3.1036 3.2427 2.7261 3.4726
cushion pillow 3.84 1 3.41 3.1036 3.2427 2.7261 3.4726
cemetery graveyard 3.88 0 4 4 4 3.9754 3.5337
automobile car 3.92 0 4 4 4 3.9754 3.5337
gem jewel 3.94 0 4 4 4 3.9754 3.5337
midday noon 3.94 0 4 4 4 3.9754 3.5337
correlation: 1 -0.8877 0.8967 0.8896 0.8956 0.8568 0.8880
rank correlation: 1 -0.8566 0.8694 0.8694 0.8694 0.8694 0.8694
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Word #1 Word #2 Humans relHS distJC simLC simL simR distS
noon string 0.08 0 22.6451 1.5025 0 0 3
rooster voyage 0.08 0 26.908 0.9175 0 0 3
glass magician 0.11 0 22.829 1.9175 0.0788 0.9764 2.143
chord smile 0.13 0 20.2418 1.628 0.1808 2.2341 3
coast forest 0.42 0 20.2206 2.2801 0.1299 1.5095 1.6047
lad wizard 0.42 94 16.5177 2.7655 0.2349 2.535 1.0557
monk slave 0.55 94 18.9192 2.7655 0.2113 2.535 1.0864
shore woodland 0.63 93 19.3361 2.5025 0.1351 1.5095 1.5559
forest graveyard 0.84 0 24.573 1.7655 0 0 1.3458
coast hill 0.87 94 10.8777 2.7655 0.5326 6.1974 0.5442
food rooster 0.89 0 17.4637 1.387 0.1006 0.9764 1.0435
cemetery woodland 0.95 0 25.0016 1.7655 0 0 1.3458
monk oracle 1.1 0 22.7657 2.0875 0.1821 2.535 1.7251
journey car 1.16 0 16.3425 1.2801 0 0 3
lad brother 1.66 94 16.3583 2.7655 0.2366 2.535 1.0718
crane implement 1.68 94 15.6813 2.7655 0.2704 2.9062 0.9074
brother monk 2.82 93 19.2087 2.5025 0.2088 2.535 0.1809
tool implement 2.95 150 1.1777 4.0875 0.9133 6.2034 0.2197
bird crane 2.97 97 7.403 3.0875 0.706 8.8872 0.484
bird cock 3.05 150 5.403 4.0875 0.7669 8.8872 0.179
food fruit 3.08 0 10.2695 2.2801 0.2272 1.5095 0.698
furnace stove 3.11 0 20.5459 2.0875 0.1342 1.8563 0.2814
midday noon 3.42 200 0 5.0875 1 15.9683 0
magician wizard 3.5 200 0 5.0875 1 13.5898 0
asylum madhouse 3.61 150 0.263 4.0875 0.9917 15.7052 0.1026
coast shore 3.7 150 0.8845 4.0875 0.9618 11.1203 0.1975
boy lad 3.76 150 5.3942 4.0875 0.7285 8.2987 0.1851
gem jewel 3.84 200 0 5.0875 1 14.3833 0
journey voyage 3.84 150 5.2133 4.0875 0.7476 7.7194 0.2092
car automobile 3.92 200 0 5.0875 1 8.6231 0
correlation: 1 0.7444 -0.85 0.8157 0.8292 0.7736 -0.8356
rank correlation: 1 0.7614 -0.8128 0.7622 0.7904 0.7357 -0.8629

Table A.3: Results of previous similarity and relatedness measures
for the MC data set
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Word #1 Word #2 Humans distLen relLinear relDecay relExp relLog relSig
noon string 0.08 8 0 0.5255 0 0.9355 0.6279
rooster voyage 0.08 8 0 0.5255 0 0.9355 0.6279
glass magician 0.11 7 0 0.6772 0.1056 1.0623 0.6309
chord smile 0.13 8 0 0.5255 0 0.9355 0.6279
coast forest 0.42 6 0.48 0.8728 0.5794 1.2074 0.6476
lad wizard 0.42 4 1.65 1.4498 1.5683 1.582 1.1513
monk slave 0.55 4 1.65 1.4498 1.5683 1.582 1.1513
shore woodland 0.63 5 1.07 1.1249 1.0659 1.3772 0.7374
forest graveyard 0.84 5 1.07 1.1249 1.0659 1.3772 0.7374
coast hill 0.87 3 2.24 1.8685 2.0911 1.8396 2.2327
food rooster 0.89 6 0.48 0.8728 0.5794 1.2074 0.6476
cemetery woodland 0.95 5 1.07 1.1249 1.0659 1.3772 0.7374
monk oracle 1.1 7 0 0.6772 0.1056 1.0623 0.6309
journey car 1.16 8 0 0.5255 0 0.9355 0.6279
lad brother 1.66 4 1.65 1.4498 1.5683 1.582 1.1513
crane implement 1.68 4 1.65 1.4498 1.5683 1.582 1.1513
brother monk 2.82 1 3.41 3.1036 3.2427 2.7261 3.4726
tool implement 2.95 1 3.41 3.1036 3.2427 2.7261 3.4726
bird crane 2.97 3 2.24 1.8685 2.0911 1.8396 2.2327
bird cock 3.05 1 3.41 3.1036 3.2427 2.7261 3.4726
food fruit 3.08 3 2.24 1.8685 2.0911 1.8396 2.2327
furnace stove 3.11 2 2.83 2.4081 2.6429 2.1877 3.1739
midday noon 3.42 0 4 4 4 3.9754 3.5337
magician wizard 3.5 0 4 4 4 3.9754 3.5337
asylum madhouse 3.61 1 3.41 3.1036 3.2427 2.7261 3.4726
coast shore 3.7 1 3.41 3.1036 3.2427 2.7261 3.4726
boy lad 3.76 1 3.41 3.1036 3.2427 2.7261 3.4726
gem jewel 3.84 0 4 4 4 3.9754 3.5337
journey voyage 3.84 1 3.41 3.1036 3.2427 2.7261 3.4726
car automobile 3.92 0 4 4 4 3.9754 3.5337
correlation: 1 -0.8978 0.9129 0.9098 0.9109 0.8676 0.9329
rank correlation: 1 -0.8594 0.8658 0.8652 0.8652 0.8652 0.8652

Table A.4: Results of proposed relatedness measures for the MC
data set
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Word #1 Word #2 Humans relHS distJC simLC simL simR distS
fruit furnace 0.05 0 18.5264 2.2801 0.1482 1.8563 1.5691
autograph shore 0.06 0 22.724 1.387 0 0 3
automobile wizard 0.11 0 17.8624 1.5025 0.0986 0.9764 3
mound stove 0.14 0 17.2144 2.2801 0.2204 2.9062 0.9963
grin implement 0.18 0 16.6232 1.2801 0 0 3
asylum fruit 0.19 0 19.5264 2.2801 0.1425 1.8563 1.571
asylum monk 0.39 0 25.6762 1.628 0.0707 0.9764 3
graveyard madhouse 0.42 0 29.7349 1.1806 0 0 3
boy rooster 0.44 0 17.8185 1.5025 0.2112 2.3852 3
cushion jewel 0.45 0 22.9386 2.2801 0.1393 1.8563 1.5307
asylum cemetery 0.79 0 28.1499 1.5025 0 0 3
grin lad 0.88 0 20.8152 1.2801 0 0 3
boy sage 0.96 93 19.934 2.5025 0.2028 2.535 1.2026
automobile cushion 0.97 98 15.0786 2.0875 0.2782 2.9062 0.4315
mound shore 0.97 91 12.492 2.7655 0.498 6.1974 0.8089
shore voyage 1.22 0 23.738 1.387 0 0 3
bird woodland 1.24 0 18.1692 2.0875 0.1382 1.5095 2.0093
furnace implement 1.37 93 15.8742 2.5025 0.1895 1.8563 1.3538
crane rooster 1.41 0 12.806 2.0875 0.5812 8.8872 1.0914
hill woodland 1.48 93 18.2676 2.5025 0.1418 1.5095 1.0123
cemetery mound 1.69 0 23.8184 1.9175 0 0 0.7791
glass jewel 1.78 0 22.0185 2.0875 0.1443 1.8563 1.1184
magician oracle 1.82 98 1 3.5025 0.9645 13.5898 1.4945
sage wizard 2.46 93 22.8275 2.5025 0.1817 2.535 1.2552
oracle sage 2.61 0 26.2251 2.0875 0.162 2.535 1.0381
hill mound 3.29 200 0 5.0875 1 12.0807 0
cord string 3.41 150 2.2707 4.0875 0.8907 9.2513 0.1911
glass tumbler 3.45 150 5.9425 4.0875 0.7925 11.3477 0.1889
grin smile 3.46 200 0 5.0875 1 10.4198 0
serf slave 3.46 0 19.8021 2.2801 0.348 5.2844 0.5692
autograph signature 3.59 150 2.415 4.0875 0.9221 14.2902 0.1514
forest woodland 3.65 200 0 5.0875 1 11.2349 0
cock rooster 3.68 200 0 5.0875 1 14.2902 0
cushion pillow 3.84 150 0.7004 4.0875 0.9749 13.5898 0.213
cemetery graveyard 3.88 200 0 5.0875 1 13.7666 0
correlation: 1 0.7887 -0.7216 0.8371 0.8164 0.8106 -0.7898
rank correlation: 1 0.759 -0.5398 0.7324 0.7452 0.7414 -0.7973

Table A.5: Results of previous similarity and relatedness measures
for the RG \MC data set
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Word #1 Word #2 Humans distLen relLinear relDecay relExp relLog relSig
fruit furnace 0.05 6 0.48 0.8728 0.5794 1.2074 0.6476
autograph shore 0.06 8 0 0.5255 0 0.9355 0.6279
automobile wizard 0.11 8 0 0.5255 0 0.9355 0.6279
mound stove 0.14 5 1.07 1.1249 1.0659 1.3772 0.7374
grin implement 0.18 7 0 0.6772 0.1056 1.0623 0.6309
asylum fruit 0.19 6 0.48 0.8728 0.5794 1.2074 0.6476
asylum monk 0.39 8 0 0.5255 0 0.9355 0.6279
graveyard madhouse 0.42 8 0 0.5255 0 0.9355 0.6279
boy rooster 0.44 7 0 0.6772 0.1056 1.0623 0.6309
cushion jewel 0.45 6 0.48 0.8728 0.5794 1.2074 0.6476
asylum cemetery 0.79 8 0 0.5255 0 0.9355 0.6279
grin lad 0.88 8 0 0.5255 0 0.9355 0.6279
boy sage 0.96 5 1.07 1.1249 1.0659 1.3772 0.7374
automobile cushion 0.97 3 2.24 1.8685 2.0911 1.8396 2.2327
mound shore 0.97 4 1.65 1.4498 1.5683 1.582 1.1513
shore voyage 1.22 8 0 0.5255 0 0.9355 0.6279
bird woodland 1.24 7 0 0.6772 0.1056 1.0623 0.6309
furnace implement 1.37 5 1.07 1.1249 1.0659 1.3772 0.7374
crane rooster 1.41 7 0 0.6772 0.1056 1.0623 0.6309
hill woodland 1.48 4 1.65 1.4498 1.5683 1.582 1.1513
cemetery mound 1.69 4 1.65 1.4498 1.5683 1.582 1.1513
glass jewel 1.78 5 1.07 1.1249 1.0659 1.3772 0.7374
magician oracle 1.82 6 0.48 0.8728 0.5794 1.2074 0.6476
sage wizard 2.46 5 1.07 1.1249 1.0659 1.3772 0.7374
oracle sage 2.61 5 1.07 1.1249 1.0659 1.3772 0.7374
hill mound 3.29 0 4 4 4 3.9754 3.5337
cord string 3.41 1 3.41 3.1036 3.2427 2.7261 3.4726
glass tumbler 3.45 1 3.41 3.1036 3.2427 2.7261 3.4726
grin smile 3.46 0 4 4 4 3.9754 3.5337
serf slave 3.46 3 2.24 1.8685 2.0911 1.8396 2.2327
autograph signature 3.59 1 3.41 3.1036 3.2427 2.7261 3.4726
forest woodland 3.65 0 4 4 4 3.9754 3.5337
cock rooster 3.68 0 4 4 4 3.9754 3.5337
cushion pillow 3.84 1 3.41 3.1036 3.2427 2.7261 3.4726
cemetery graveyard 3.88 0 4 4 4 3.9754 3.5337
correlation: 1 -0.8679 0.878 0.8688 0.8757 0.8383 0.8682
rank correlation: 1 -0.7937 0.8118 0.8072 0.8072 0.8072 0.8072

Table A.6: Results of proposed relatedness measures for the RG \
MC data set
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A.2 Algorithms

The following algorithms are described in Chapter 3, with informal complexity
analyses.

description: unidirectional breadth-first search for shortest path in a graph

input : a source node and a target node
output : the shortest path between the input nodes

queue ← {(start node )}1

while queue 6= ∅ do2

path ← pop(queue)3

node ← last(path)4

neighbours ← expand(node)5

forall node ∈ neighbours do6

if node ∈ path then7

/* avoid cycles */

else if node = end node then8

/* found a solution */

return push(path,node)9

else10

path ← push(path,node)11

queue ← push(queue,path)12

return null13

Algorithm A.1: Unidirectional breadth-first search for shortest path in a
graph
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description: bidirectional asymmetric breadth-first search for shortest path
in a graph

input : a source node and a target node
output : the shortest path between the input nodes

sourceQ ← {(startNode )}1

targetQ ← {(endNode )}2

while sourceQ 6= ∅ and targetQ 6= ∅ do3

/* Use bigQ and smallQ as aliases */

if sourceQ > targetQ then4

bigQ ← sourceQ5

smallQ ← targetQ6

else7

bigQ ← targetQ8

smallQ ← sourceQ9

path ← pop(smallQ)10

node ← last(path)11

neighbours ← expand(node)12

foreach node ∈ neighbours do13

if node /∈ path then14

/* Check for a solution */

foreach targetPath ∈ targetQ do15

targetNode ← last(targetPath)16

if targetNode = node then17

solution ← join(path,reverse(targetPath))18

return solution19

path ← push(path,node)20

smallQ ← push(smallQ,path)21

return null22

Algorithm A.2: Bidirectional asymmetric breadth-first search for shortest
path in a graph
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