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Abstract

When intellectual properties are distributed over a broadcast network, the content

is usually encrypted in a way such that only authorized users who have a certain set

of keys, can decrypt the content. Some authorized users may be willing to disclose

their keys in constructing a pirate decoder which allows illegitimate users to access

the content. It is desirable to determine the source of the keys in a pirate decoder,

once one is captured. Traitor tracing schemes were introduced to help solve this

problem. A traitor tracing scheme usually consists of: a scheme to generate and

distribute each user's personal key, a cryptosystem used to protect session keys

that are used to encrypt/decrypt the actual content, and a tracing algorithm to

determine one source of the keys in a pirate decoder. In this thesis, we survey

the traitor tracing schemes that have been suggested. We group the schemes into

two groups: symmetric in which the session key is encrypted and decrypted using

the same key and asymmetric schemes in which the session key is encrypted and

decrypted using di�erent keys. We also explore the possibility of a truly public

scheme in which the data supplier knows the encryption keys only. A uniform

analysis is presented on the eÆciency of these schemes using a set of performance

parameters.
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Chapter 1

Introduction

Consider an application which provides data that should be available to authorized

users only. The number of authorized users is big enough so that broadcasting the

data is much more eÆcient than establishing a secure channel between the data

provider and each authorized user. The data could obviously be protected from

unauthorized access by encryption. And the data supplier could provide the de-

cryption keys to the authorized users only, and broadcast the encrypted ciphertext.

However this does not prevent one or more authorized users from retransmitting the

plaintext they have obtained by decrypting the received ciphertext, or simply dis-

closing their personal keys to some unauthorized users. In this event, unauthorized

users have access to data that they are not entitled to.

We call this unauthorized access piracy. The traitors are the groups of autho-

rized users who allow unauthorized users to obtain the data, either by retransmit-

ting the plaintext, or disclosing their personal decryption keys. The unauthorized

users who obtained the data are called pirate users.

Traitor tracing schemes or traceability schemes are cryptographic techniques
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CHAPTER 1. INTRODUCTION 2

preventing traitors from distributing their personal keys to enable pirates decrypt-

ing the data. In such a scheme, each authorized user is given a decoder which

contains the user's personal decryption key. A symmetric encryption algorithm

(such as DES, AES) is used to encrypt the data using a randomly generated ses-

sion key. The data distributer encrypts the session key in a way such that only an

authorized user's decoder is able to decrypt the session key and hence recover the

data. Suppose a group of traitors contribute their personal keys to build a pirate

decoder which can also decrypt the ciphertext. The scheme should discover the

keys in the pirate decoder and determine one or more traitors who have helped

build the pirate decoder by contributing their personal keys. The following is a

scheme which can trace the traitor if there is only one traitor.

Example 1.0.1 There are n users:fu1; u2; � � � ; ung, and 2 log n keys:

� = fk1;0; k1;1; k2;0; k2;1; � � � ; klogn;0; klogn;1g:

We assume n is a power of 2. The personal key for user ui is the set of m = log n

keys:

fk1;bi;1; k2;bi;2 ; � � � ; klogn;bi;log ng;

where bi;j is the j-th bit in the binary representation of i. Suppose we use DES

to encrypt the content M using session key s. Let Bm = DESs(M) denote the

ciphertext. We choose s1; s2; � � � ; slogn, such that
Llogn

i=1 si = s. Then si is encrypted

using keys ki;0; ki;1. Let

Be = klogn
i=1

�
DESki;0 (si)kDESki;1 (si)

�
;

where k denotes concatenation. Both of Bm and Be are broadcasted. Notice that

each user ui has keys kj;bi;j , 1 � j � log n. ui can decrypt all sj's and hence obtain
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s. Suppose a user uc reveals his personal key:

fk1;bc;1 ; k2;bc;2; � � � ; klogn;bc;log ng:

Since each user's personal key is unique, we can easily �nd the identity of the user

from the disclosed key.

Traitor tracing schemes do not address treachery where the traitors retransmit

the plaintext they obtained. This is in contrast to normal �ngerprinting schemes,

which address the situation where traitors redistribute the pictures, text, or pro-

grams they obtain. This is achieved by embedding an unique �ngerprint to each

copy of data distributed, so that the data distributor can identify the original re-

ceiver of a redistributed copy. In principle in traitor tracing schemes, the keys used

to decrypt the encrypted the session key are �ngerprinted instead of the data itself.

Fingerprinting schemes are not suitable to broadcasting, since the copy received by

each user must di�er from the copies received by others. In traitor tracing schemes,

only one copy of the content is broadcasted.

In some applications, it might be valid to assume that redistributing the plain-

text is too costly. A typical application would be pay-TV, where it is obviously too

expensive and too risky to operate a pirate broadcast system. We are also going

to assume that the session key is changed frequently such that broadcasting the

session key is also infeasible and risky.

One trivial solution is to encrypt the data separately under di�erent personal

keys and broadcast all ciphertexts encrypted under every key. This means that the

amount of the data broadcasted is at least n times the amount of the original data,

where n is number of authorized users. Such a solution is clearly not very eÆcient.

The intent of this thesis is to survey the traitor tracing schemes have been

suggested and perform a uniform analysis of the eÆciency of these schemes. We are
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going to measure the eÆciency of each scheme in terms of the following performance

parameters:

1. storage and computational requirements at the data distributor/broadcastor

side,

2. storage and computational requirements at the user side,

3. bandwidth requirement,

4. computational requirements by the tracing algorithm, i.e., given a pirate de-

coder, the computational cost to determine one or more traitors.

We begin in Chapter 2 with a list of de�nitions. In Chapter 3 we describe

symmetric schemes in which the session key is encrypted using a symmetric key

system. We present asymmetric schemes in which the session key is encrypted and

decrypted using di�erent keys but the data supplier knows both keys in Chapter 4;

and investigate the possibility of constructing truely public key schemes in which the

data supplier knows only the encrytion key but not the decryption key in Chapter

5. A couple of other schemes are discussed in Chapter 6. And �nally Chaper 7

gives a conclusion.



Chapter 2

De�nitions

Traitor tracing scheme was �rst introduced by Chor, Fiat and Naor [6] in 1994.

Since then, other traitor tracing schemes were suggested by B. P�tzmann in [13],

Stinson and Wei in [15], Dwork, Lotspiech, and Naor in [7], Anderson and Mani-

favas in [2], Kurosawa and Desmedt in [10], Boneh and Franklin in [3], Fiat and

Tassa in [8]. A typical traitor tracing scheme consists of three components:

1. key generation/distribution scheme: used by the data supplier to generate

and distribute users' personal keys. The data supplier has a master-key �

that de�nes a mapping P� : U 7! K, where U is the set of possible users and

K is the set of all possible personal keys. In Example 1.0.1,

P�(ui) = fk1;bi;1 ; k2;bi;2 ; � � � ; klogn;bi;log ng;

where bi;j is the j-th bit in the binary representation of i.

2. encryption/decryption scheme: an encryption scheme E� is used by the data

supplier to encrypt the session key before broadcasting, and a decryption

5
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scheme D� is used by each authorized user (i.e. its decoder) to decrypt

the session key, where � = P�(ui). Obviously, for any session key s, s =

D�(E�(s)). And the session key is used to encrypt data content using a

o�-the-shelf symmetric encryption scheme such as DES.

3. tracing algorithm: used upon con�scation of a pirate decoder, to determine

the identity of one or more traitors. We are not going to assume the content

of a pirate decoder can always be viewed by the tracing algorithm. We prefer

that the tracing algorithm is only able to access any pirate decoder as a black

box and perform the tracing based on the decoder's respond on di�erent input

ciphertexts.

We usually require the o�-the-shelf encryption scheme E to be a block cipher.

The data supplier divides the content into sessions whose size is a multiple of a

block size accepted by E. For each content session M , a typical traitor tracing

scheme will output two blocks. A ciphertext block Bc is the result of encrypting

M by the encryption scheme E using some key s randomly chosen from the key

space of E: Bc = Es(M). We call s the session key. A second block is called an

enabling block, because it contains data that enables each authorized user to obtain

the session key s, and hence decrypt the corresponding ciphertext block (see Figure

2.1. In Example 1.0.1, the enabling block is

Be = klogn
i=1

�
DESki;0 (si)kDESki;1 (si)

�
:

An obvious and preliminary requirement from traitor tracing schemes is that the

underlying encryption scheme used to encrypt session keys must be computationally

secure. That is, an adversary which has no information on any personal keys should

not be able to decrypt the session key. (It is assumed that the o�-the-shelf is
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Cleartext Block

s

User’s Personal Key

Ciphertext BlockEnabling Block

Decrypt

Decrypt Session Key s

Decrypt Ciphertext Block

Figure 2.1: The Decryption of a Ciphertext Block

computationally secure.) Therefore, if there is a pirate decoder which decrypts the

ciphertext with non-negligible probability, it must contain certain information on

some personal keys. It is assumed that these personal keys belong to the traitors

who helped construct the pirate decoder. The tracing algorithm should be able to

determine at least one of the traitors.

Suppose that a coalition of k users collude to create a pirate decoder. We would

like to determine at least one member of the coalition. Intuitively, a traitor tracing

scheme is fully resilient if it can identify (with high certainty) at least one member

of the coalition, given that the underlying encryption scheme is not broken.

De�nition 2.0.1 Suppose the underlying encryption scheme is computationally se-

cure. A scheme is fully (p; k)-resilient if for every pirate decoder constructed by a

coalition of at most k traitors and decrypts ciphertext correctly with a probability

greater than the probability of breaking the underlying encryption scheme, the trac-
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ing algorithm can trace at least one traitor of the coalition with probability at least

1 � p. If the scheme further achieves p = 0, it is called a fully k-resilient.

Example 1.0.1 is a fully 1-resilient traitor tracing scheme.

There are many applications for which the pirate decoder must decrypt with

probability close to 1. For example, if a TV broadcast is partitioned intom segments

and these m segments are encrypted independently, then a decoder which decrypts

only 90 percent of the segments is probably not very useful or attractive. In this

circumstance, we can concentrate on tracing the pirate decoders that can decrypt

with probability greater than a certain threshold.

De�nition 2.0.2 Suppose the underlying encryption scheme is computationally se-

cure. A scheme is called q-threshold (p,k)-resilient scheme if for every pirate decoder

constructed by a coalition of at most k traitors and decrypts ciphertext correctly with

a probability greater than q, the tracing algorithm can trace at least one member of

the coalition with probability at least 1� p.

We can further distinguish between two types of schemes:

De�nition 2.0.3 A scheme is called an open scheme if it treats circumstances

where the key generation/distribution scheme and decryption schemes used by all

users are in the public domain, whereas the master key is the only information that

is kept secret.

De�nition 2.0.4 A scheme is called a secret scheme if the actual key genera-

tion/distribution scheme as well as the keys are kept secret.
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Clearly, the adversary's task is harder with a secret scheme compared to an

open scheme. In general, secret schemes are more eÆcient than open schemes that

achieve the same level of security and traceability. However, we do not encourage

to base the security and traceability of a scheme on the premise that the adversary

does not know the key generation/distribution scheme. We would prefer a scheme

which achieves the desired security and traceability under Kerckho�'s principle,

that is the adversary knows the complete scheme except for the key.



Chapter 3

Symmetric Schemes

Chor, Fiat and Naor �rst introduced traitor tracing schemes in [6]. With Pinkas

in 1998, they further suggested threshold traitor tracing schemes [5]. Six di�erent

types of traitor tracing schemes were mentioned: one level open scheme, two level

open scheme, one level secret scheme, two level secret scheme, one level threshold

scheme, and two level threshold scheme. We call these schemes Chor-Fiat-Naor-

Pinkas (CFNP) schemes. Example 1.0.1 is a one level open CFNP scheme. The

existence of CFNP schemes were proved using probabilistic method. But the proofs

are not constructive. Stinson and Wei provided several constructions for a variant

of the one level open scheme in [14].

In this chapter we are going to present the six CFNP schemes, as well as the

SW schemes suggested by Stinson and Wei. All the schemes in this chapter are

symmetric in the sense that the session keys are encrypted and decrypted using

same set of keys.

10
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3.1 Overview

Throughout the rest of this thesis we are going to use the following notations. U

is the set of authorized users, and n =j U j. k is the upper bound on the number

of traitors. T is a set of traitors such that j T j� k.

The master key � is actually a set of keys randomly chosen from the key space

of the o�-the-shelf symmetric encryption scheme E. We call this set of keys base

keys. In Example 1.0.1,

� = fk1;0; k1;1; k2;0; k2;1; � � � ; klogn;0; klogn;1g:

A session key s is divided into several shares using secret sharing schemes, so that

to contruct s, a certain subset of shares must be obtained. The shares are encrypted

using E.

CFNP schemes employ a set of hash functions to assign each user u a subset

of the base keys �. We call this subset of keys personal key of u, and denote it

P (u). The assignment must satisfy two properties. First, it must ensure each user

is able to decrypt enough shares to construct the session key s. In Example 1.0.1,

the key distribution must ensure a user has at least one key in Kj = fkj;0; kj;1g,
1 � j � log n, so that the user can decrypt sj. Furthermore, the assignment

must guarantee that any set F of keys, taken from a set of users T , j T j� k,

(F � P (T ) = [v2TP (v)), has the following property: if F enables the decryption

of session key s, then there does not exist an innocent user u 2 U n T , such
that j F \ P (u) j�j F \ P (v) j, for all v 2 T . This property will enable us to

identify at least one member of T , as there exists at least one v 2 T , such that

j F \ P (v) j�j F \ P (u) j, for all u 2 U . Then v is called an exposed user.

Assume E is compuationally secure. To decrypt the cipher block, an adversary
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must know the session key s. In order to construct s, an adversary has to obtain a

subset of secret shares that satisfes a certain property. Since each share is encrypted

by E and E is computationally secure, we can assume that the adversary must

possess a subset of base keys with a certain property. This property plays an

important role in tracing the identity of the owners of the keys the adversary has.

In Example 1.0.1, the adversary has to obtain all the shares s1; s2; � � � ; slogn. He

must have at least one key from each of Ki; 1 � i � log n, since each share si is

encrypted by E using keys in Ki.

In the rest of this section, we are going to prove an important result which is

used frequently in the following sections where we present the six CFNP schemes.

First we state a standard theorem from [1] (Theorem A.12, page 237).

Theorem 3.1.1 (Cherno� Bound:) Assume:

p1; p2; � � � ; pn 2 [0; 1];

p =
p1 + p2 + � � �+ pn

n
;

X1;X2; � � � ;Xn independent random variables with

Pr[Xi = 1� pi] = pi

Pr[Xi = �pi] = 1 � pi

X = X1 +X2 + � � �+Xn

Then, for all � � 1, we have

Pr[X � (� � 1)pn] < (
e
��1

��
)pn:

2
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We are going to prove the following corollary of the Cherno� Bound.

Corollary 3.1.2 With the same assumptions as in the above theorem except,

Pr[Xi = 1] = pi

Pr[Xi = 0] = 1� pi

Then, for all � � 1, we have

Pr[X � �pn] < (
e
��1

��
)pn:

Proof: De�ne random variables, Y1; Y2; � � � ; Yn,

Yi = Xi � pi; 1 � i � n;

Then,

Pr[Yi = 1 � pi] = Pr[Xi = 1] = pi

Pr[Yi = �pi] = Pr[Xi = 0] = 1� pi

So, by Cherno� Bound we have,

Pr[Y � (� � 1)pn] < (
e
��1

��
)pn:

But, X = Y +
P

n

i=1 pi = Y + pn. Therefore,

Pr[X � �pn] = Pr[Y + pn � �pn]

= Pr[Y � (� � 1)pn]

< (
e
��1

��
)pn:

2
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3.2 One Level Open Scheme

Key distribution: The master key � in the one level open scheme introduced

here contains 2k2l base keys randomly chosen from the key space of the under-

lying encryption scheme E, where l is a parameter we will explain later. The

keys are partitioned into l buckets, such that each bucket contains 2k2 keys. Let

B1; B2; � � � ; Bl denote the buckets and let ki;j; 1 � i � l; 1 � j � 2k2 denote the jth

key in Bi. In Example 1.0.1, there are log n buckets and each bucket has two keys:

Bi = fki;0; ki;1g.

The scheme employs l hash functions h1; h2; � � � ; hl. Each hash function

hi : U = f1; 2; � � � ; ng ! f1; 2; � � � ; 2k2g; 1 � i � l

assigns one key from bucket Bi to each user. Thus, a user u 2 U gets personal key:

P (u) = fk1;h1(u); k2;h2(u); � � � ; kl;hl(u)g:

Encryption: For each plaintext session M , a key s is randomly chosen in the

key space of E. s is divided into l shares, s1; s2; � � � ; sl, such that s =L
l

i=1 sl. Then

si is encrypted using E with all keys in bucket i, 1 � i � l. The concatenation

of all these encrypted shares form the enabling block. So, Be = kl
i=1(k2k

2

j=1Eki;j
(si)).

The cipher block is simply Bc = Es(M).

Since any authorized user u 2 U has one key in each bucket, u can decrypt all

of s1; s2; : : : ; sl, and hence reconstruct s and decrypt the plaintext M . And if an

adversary wants to obtain s, he must know the values of all secret shares. Thus we

can assume that if a decoder D can decrypt M with a non-negligible probability,

then D must possess at least one key from each bucket.

Tracing: We assume the pirate decoder has at least one key from each bucket.

Upon con�scation of a pirate decoder, we would like to expose at least one key from
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l,hl(u)

...

C l

Decrypt S
l

2,h2(u)
K

C
1

S
l

...

...
1

...

Encrypt S

Bucket 2

S
2

2

Data Supplier Encrypts s

User Decrypts s

Personal
Keys

XOR

1,h1(u)1,h1(u)

S

Decrypt S
1

Keys

Shares S
1

Bucket 1

Encrypt S

K

Bucket l

Encrypt S
l

Enabling Block

C 2

Decrypt S
2

Ci = Eki;hi(u)

Figure 3.1: The Encryption and Decryption of a Session Key in a One Level CFNP

Open Scheme
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each bucket by experimenting with the decoder without taking the decoder apart,

i.e., treating the decoder as a blackbox.

Figure 3.2 gives the tracing algorithm presented in [5] which identi�es one of

the traitors who helped build the pirate decoder by contributing their personal key.

The algorithm takes a pirate decoder D as input and outputs one of the traitors.

Lines 1 to 7 determine a subset F 0 of the keys in D, such that F 0 has exactly one

key in each bucket. Lines 8 to 11 identify one user u who has the maximumnumber

of personal keys in common with F 0, i.e., j F 0 \P (u) j�j F 0 \ P (v) j, for all v 2 U .

Notice that experimentEi;j has the same e�ect as removing keys ki;1; ki;2; � � � ; ki;j
from Ki, where Ki is the set of keys used to encrypt si. Suppose D uses key ki;ci in

bucket i to recover the share si. Then D would fail Ei;ci
since key ki;ci is no longer

valid in Ei;ci
. But D would successfully decode Ei;ci�1

.

Now what if D has more than one key in a bucket? Let Fi denote the keys

D has in bucket i, j Fi j� 2. For each session, D randomly chooses one key from

Fi to recover share si. The algorithm would fail if we performed each experiment

Ei;j once. For example, suppose Fi = fki;1; ki;3g. D uses ki;3 in Ei;1, so it decrypts

successfully. But, D also uses ki;1 in Ei;2. Since key ki;1 is not longer valid in Ei;2,

D will fail, and the algorithm would mistakenly conclude D has key ki;2. What

[5] suggested is to repeat Ei;j a suÆcient number of times and take the fraction

of times D decrypts successfully. Suppose Fi = fki;a1 ; ki;a2; � � � ; ki;ak0g ,where 1 �
a1 < a2 < � � � < ak0 � 2k2; k0 � k. Suppose the probability that key ki;aj is chosen

by D to recover si is Pr(j). Then the probability that D decrypts experiment

Ei;j successfully is
P

1�l�k0;al>j
Pr(j). Let fi;j be the fraction of times D decrypts

correctly on experiment Ei;j. Then fi;j = fi;j�1 if ki;j 62 Fi and fi;j < fi;j�1 if

ki;j 2 Fi.
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Input: pirate decoder D
Output: one traitor

1. Let Ei;j be the experiment: prepare a normal encryption session, but choose

j random keys to replace ki;1; ki;2; � � � ; ki;j.

2. for 1 � i � l do

3. for 0 � j � 2k2 do

4. repeat experiment Ei;j r times,

5. let fi;j be the fraction of times D decrypts correctly on experiment

Ei;j .

6. if fi;j � fi;ci�1
> fi;0=2k

2

7. ci = j, i++, goto 3

8. for each u 2 U do

9. for 1 � i � l do

10. crtu ++ if hi(u) = ci

11. return u such that crtu = MAXu2Ucrtu

Figure 3.2: Tracing Algorithm for One Level Open Scheme
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However, if D has more than one key in a bucket, it can detect if it is being

inquired by a tracing algorithm, by using all keys in Fi to decrypt share si. In

an ordinary decoding operation, all values obtained should be the same. But in

the tracing algorithm, if some of Fi are removed with respect to experiment Ei;j,

the values of si obtained by using di�erent keys would di�er. If this happens, D
knows it is being inquired by the tracing algorithm, and can intentionally decrypt

incorrectly to fool the algorithm. Thus the suggested algorithm does not work well

if D has more than one key in a bucket.

Here, we assume D has exactly one key in each bucket and the tracing algorithm

detects the set of keys F 0 = fk1;c1 ; k2;c2; � � � ; kl;clg in D. We are going to mark a

user u 2 U once for each of his personal keys in F
0 (line 10). Let crtu denote the

number of times u gets marked. Then crtu =j F 0 \ P (u) j. We claim that the user

u with the largest value crtu is a traitor. Notice that there are at most k traitors,

and there are l keys in F
0. Thus there is one traitor t 2 T such that crtt � l=k.

Clearly a user u will not be declared as a traitor unless crtu � l=k.

Notice the algorithm always declares one user to be a traitor. We are going

to show that there exists a choice of h1; h2; � � � ; hl such that the tracing algorithm

won't mistakenly identify an innocent user as a traitor. We say a coalition T can

frame an innocent user u (i.e., u 62 T ) if T can build a pirate decoder D such that

the tracing algorithm with D as the input will claim u as a traitor.

Lemma 3.2.1 There exists a choice of h1; h2; � � � ; hl, such that no coalition of k

traitors can frame an innocent user not in the coalition.

Proof: Let h1; h2; � � � ; hl be randomly chosen. We show that the probability that

there exists a coalition of k traitors, and a user u 2 U n T , such that T can frame
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u is less than 1. And hence, there must exist a choice of h1; h2; � � � ; hl such that no

coalition of k traitors can frame any innocent user.

Consider a speci�c user u, and a speci�c coalition T � U of k traitors, u 62 T .

Suppose T builds a pirate decoder D such that D can decrypt with a non-negligible

probability. D is inputted to the tracing algorithm. Let Au;T denote the event

that the tracing algorithm will identify u as a traitor, i.e., T can frame u. Let

A
0

u;T
denote the event that at the termination of the tracing algorithm, we have

crtu � l=k. Clearly, Pr(Au;T ) � Pr(A0

u;T
), since there exists a traitor t with

crtt � l=k.

As the hash functions are chosen at random, the values hi(u) are uniformly

distributed in f1; 2; � � � ; 2k2g, and so the key ki;hi(u) is uniformly distributed in

bucket Bi. Let F = [t2TP (t), i.e., F is the set of personal keys belonging to the

traitors in T. Let Fi = F\Bi, i.e., Fi is the set of personal keys in bucket i belong to

the traitors in T. Then j Fi j� k, and the probability that ki;hi(u) is in Fi is at most

k

2k2
= 1

2k
, since there are 2k2 keys in Bi. Note that, since this is a open scheme,

the traitors might know which key in Bi is assigned to u. Also they can build a

decoder that the key ki;hi(u) is exposed by the tracing algorithm, if ki;hi(u) 2 Fi, so

that u would get more marks.

Let Xi be a zero-one random variable, where

Xi =

8><
>:

1 if there exists t 2 T such that hi(t) = hi(u)

0 otherwise:

(3.1)

The expected value of Xi, E(Xi) � 1
2k
, and the expected value of

P
l

i=1Xi,

E(
P

l

i=1Xi) � l

2k
. Notice that

P
l

i=1Xi is not smaller than the number of marks

user u gets, since F 0 � F .
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Now, apply Corollary 3.1.2, substituting p = 1
2k
, r = l, and � = 2. We have,

Pr[
1

l

lX
j=1

Xj � 2
1

2k
] < (

e
2�1

22
)

l
2k

) Pr[
1

l

lX
j=1

Xj � 1

k
] < (

e

4
)

l
2k

= (
1

4=e
)

1
2k

< (
1p
2
)

1
2k

= (2�
l
4k )

The probability that T is able to frame u is Pr(Au;T ) � Pr(A0

u;T
) < 2�

l
4k . There

are at most n �
0
B@ n

k

1
CA possible choise of a coalition of size k and an innocent user.

Let A denote the event that there exists a coalition of size k which can frame an

innocent user. Then

Pr(A) =
X
u2U

0
@ X
T�U;jT j=k;u62T

Pr(Au;T )

1
A

< n �
0
B@ n

k

1
CA � 2� l

4k :

We would like to choose a value for l, so that the above probability is less than 1.

Suppose we take l � 4k(k + 1) log n. Then we have

Pr(A) = n �
0
B@ n

k

1
CA � 2� l

4k

< n �
0
B@ n

k

1
CA � 2�(k+1) logn
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� n � nk � (2logn)�(k+1)

= n
k+1 � n�(k+1)

= 1:

Therefore there exists a choice of l hash functions h1; h2; � � � ; hl, such that for

any pirate decoder built by any coalition T of size k, no innocent user will be

incriminated by the tracing algorithm. 2

By using the hash functions h1; h2; � � � ; hl with the above property, we have a

fully k-resilient traitor tracing scheme.

Theorem 3.2.2 There is an open fully k-resilient scheme, where the data supplier's

master key consists of 8k3(k+1) log n base keys, and a user's personal key consists

of 4k(k + 1) log n keys. 2

Notice that the proof of Lemma 3.2.1 is not constructive. Thus Theorem 3.2.2

shows only the existence of a open fully k-resilient traceability schemes. Although it

does provide us with a randomized method for constructing the scheme that works

with high probability, it does not suggest an explicit construction for a deterministic

scheme. However, the desired property of a given construction can be veri�ed

eÆciently. The idea is to examine all pairs of distinct users u,v, and check the

number of hash functions hi; 1 � i � l in the given construction such that hi(u) =

hi(v).

Theorem 3.2.3 Given hash functions hi : f1; 2; � � � ; ng 7! f1; 2; � � � ; dg; 1 � i � l,

if for every pair of distinct users u, v, the number of hi's such that hi(u) = hi(v) is

less than l=k
2
, i.e., j hi; 1 � i � l : hi(u) = hi(v) j< l=k

2
, then we have a k-resilient

traceability scheme, with n users, ld base keys, where each user has l keys.
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Proof: Let T be a coalition of at most k traitors. Recall that there exists a traitor

t 2 T such that t gets marked at least dl=ke times by the tracing algorithm. We

only have to show that there is no innocent user u 2 U nT such that u gets marked

at least dl=ke times.

Notice, for any t 2 T , j hi; 1 � i � l : hi(u) = hi(t) j< l=k
2 Then the number

of hi's such that there exists a t 2 T such that hi(u) = hi(t) is less than l=k
2 � k =

l=k � dl=ke. Thus, no innocent user will ever be marked at least dl=ke times by

the tracing algorithm. So, we have a k resilient traceability scheme. 2

If we represent a user u's personal key as a codeword of length l, over an alphabet

of size d, where d is the size of each bucket, i.e., P (u) = (h1(u); h2(u); � � � ; hl(u)),
we can rephase the requirement as follows.

Corollary 3.2.4 If there is a code C with n codewords, with length l, over an

alphabet of size d, such that the Hamming distance of C is more than l� l=k
2
, then

there is a k-resilient traceability scheme with n users, ld base keys, and each user

has l keys.

Proof: Since C has distance more than l � l=k
2, every two codewords must have

less than l=k
2 entries in common. So, for every pair of distinct users u; v, we have

j hi; 1 � i � l : hi(u) = hi(v) j< l=k
2. 2

The property stated in the above theorem is stronger than the property required

by the one level scheme. The following example illustrates why.

Example 3.2.5 Consider a scheme with 12 base keys, and 9 users, in which each

user gets 4 keys. There are 4 buckets, each bucket has key 0, 1, and 2. The columns

of the following matrix A = [aij] represent the hash functions, h1; h2; h3; h4, each
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row represents the keys assigned to a user, aij = hj(i), i.e., the key in bucket j

assigned to user i.

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0

2 1 1 0

2 2 0 1

1 0 1 1

1 1 0 2

1 2 2 0

2 0 2 2

0 2 1 2

0 1 2 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

We claim this is a fully 2-traceability scheme.

Let a, b be two codewords of length n over an alphabet Q. De�ne the set of

descendants D(a; b) by

D(a; b) := fx 2 Q
njxi 2 fai; big; 1 � i � ng

Let ri; 1 � i � 9, denote the ith row of A. Suppose a, b are two traitors. Then

D(ra; rb) is set of all possible key assignments a and b can construct in order to

decrypt contents. Let r
0
denote the four keys found in a pirate decoder constructed

by a, b. Then r
0 2 D(ra; rb). And notice d(r0; ra)+d(r0; rb) = d(ra; rb), where d(x,y)

denotes the hamming distance between x; y 2 Q
n
.

Now, notice that any two rows in A have hamming distance 3. So there exists

i 2 fa; bg, such that d(r0; ri) � 1. WLOG, say d(r0; ra) � 1, i.e., a will be marked at

least 3 times by the tracing algorithm. Now consider d(r0; rj); 1 � j � 9; j 62 fa; bg.
Suppose exists a j such that d(r0; rj) � 1, then d(ra; rj) � d(r0; rj) + d(r0; ra) �



CHAPTER 3. SYMMETRIC SCHEMES 24

1 + 1 = 2. This contradicts the fact that any two rows in A have distance 3.

Thus we conclude d(r0; rj) � 2; 1 � j � 9; j 62 fa; bg, i.e., no innocent user will

be marked more than twice by the tracing algorithm. Thus we have a 2-resilient

tracing scheme.

In this scheme, we have l = 4, k = 2, and l=k
2 = 1. But any 2 rows have 1

entry in common. So j fhi; 1 � i � 4 : hi(1) = hi(2)g j= 1 6< 1. 2

In the above example, rows of A form a ternary hamming code of length 4.

Using the similar argument, we can prove the following theorem.

Theorem 3.2.6 If there exists a equidistant code C of length l, over an alphabet

Q, j Q j= q, with an odd distance, then there is a 2-traceability scheme, with j C j
users, lq base keys, each user has l keys. 2

We can also provide explicit constructions from transversal designs.

De�nition 3.2.7 A t-transversal design t-TD(l,m) consists a collection B of m-

subsets (blocks) of a set X of lm elements (points), and a collection of l disjoint

m-subsets (groups) which partition X such that,

1. each block contains exactly one element from each group,

2. any t elements from di�erent groups occur in exactly one block. 2

Then the following corollary of Theorem 3.2.3 is straight forward.

Corollary 3.2.8 If there is a t-TD(l,m) with n = m
t
blocks, then we have a k-

traceability scheme with n users, lm base keys, and each user has l keys, where

k = b
q
(l� 1)=(t � 1)c.
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Proof: Let X be the set of lm base keys, partition the lm keys into l groups of m

keys each as in the t-TD(l,m) transversal design. Each user is assigned the keys in

a unique block. Thus there can be n users and each user gets l keys. And any two

users would have at most t� 1 keys in common. But

l

k2
� l

(l � 1)=(t � 1)
=
l(t� 1)

l � 1
> t� 1:

Thus any two users have less than l

k2
keys in common. By Theorem 3.2.3, we have

a k-traceability scheme. 2

t� TD(l;m) designs can be constructed from designs known as orthogonal ar-

rays.

De�nition 3.2.9 An orthogonal array OA(t; l; s) is a l � s
t
array, with entries

from a set of s � 2 symbols, such that in any t rows, every t � 1 column vector

appears exactly once. 2

Theorem 3.2.10 If there is a OA(t; l;m), then there exists a t-TD(l,m) with m
t

blocks.

Proof: Suppose there is an OA(t; l;m) on elements 0; 1; � � � ;m� 1. Add (i� 1)m

to each element in the ith row of the OA, so the elements in the ith row are in

f(i � 1)m; (i � 1)m + 1; (i � 1)m + 2; � � � ; im � 1g. Let X= f0; 1; 2; � � � ; lm � 1g.
Let Gi = f(i � 1)m; (i � 1)m + 1; (i � 1)m + 2; � � � :im � 1g; 1 � u � l. Clearly

Gi; 1 � u � l partition X into l groups of size m. Let each column of the OA be

a block. Then each block has exactly one element from each Gi; 1 � u � l. Any

t elements from di�erent groups Gi1
; Gi2

; � � � ; Git occur in one block, since in the

rows i1; i2; � � � ; it, any t-tuple occurs in exactly one column in the OA. Therefore,

we have a t-TD(l,m) with m
t blocks. 2

The following corollary follows directly from Theorem 3.2.8 and Corollary 3.2.7.
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Corollary 3.2.11 Suppose there is an OA(t; l;m), then there exists a k-traceability

scheme, with m
t
users, lm base keys, and each user gets l keys, where

k = b
q
(l � 1)=(t� 1)c:

2

It is known that there exists an OA(t; q + 1; q) (Reed-Solomon Code), for all

prime power q and t < q. Thus by the above corollary, there is a b
q
q=(t� 1)c

-traceability scheme with q
t users, each user has q + 1 keys, and a total of q2 + q

base keys. And we have k = b
q
q=(t� 1)c, n = q

t, l = q + 1, v = q
2 + q. Notice

l � tk
2, where t = log

q
n. So we have l �

�
log

q
n

�
k
2, and v �

�
log2

q
n

�
k
4. Thus this

scheme is almost as eÆcient as the scheme whose existence was shown in Theorem

3.2.2, as long as, given k and n we can �nd a prime power q and t < q such that

k � b
q
q=(t� 1)c, and n � q

t.

The following example is an OA(2,5,4) and hence a key distribution scheme for

a 2-traceability scheme with 16 users, in which each user has 5 keys and there are

a total of 20 base keys.

Example 3.2.12

OA =

0
BBBBBBBBBBBB@

0 3 2 1 3 0 1 2 2 1 0 3 1 2 3 0

3 0 1 2 2 1 0 3 0 3 2 1 1 2 3 0

2 1 0 3 0 3 2 1 3 0 1 2 1 2 3 0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1
CCCCCCCCCCCCA

There are 5 buckets, and each bucket has 4 keys: f0; 1; 2; 3g. User 1 (column 1)

gets key 0 in bucket 1, key 3 in bucket 2, and so on � � �. 2
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The following two lemmas provide some existence result for OAs. Their explicit

constructions are also known.

Lemma 3.2.13 If q is a prime power and t < q, then there exists an OA(t; q+1; q).

2

Lemma 3.2.14 If q is a prime power and t < q, l � q, then there exists an

OA(t; l; q). 2

Example 3.2.15 Let us consider a key assignment scheme such that we can trace

any coalition of 4 traitors. By Lemma 3.2.11, there exists an OA(2; 17; 16), (q =

24), and by Lemma 3.2.12, there exists an OA(2; 17; 17), (q = 17). Using the �rst

OA as our key assignment scheme allows us to construct a 4-traitor tracing scheme,

with 16� 17 = 272 base keys, 162 = 256 users, and each user has 17 personal keys.

Using the second OA, we obtain another 4-traitor tracing scheme, with 172 = 289

bases keys, 172 = 289 users, and each user has 17 personal keys. The second scheme

allows 33 more users at the cost of 17 more base keys. 2

Now, let us turn our attention to the eÆciency parameters. The data provider

has 8k3(k + 1) log n base keys. He has to perform the same number of encrypt

operations of E to encrypt secret shares s1; s2; � � � ; sl, and an additional encryption

using E to encrypt the message session M using session key s =
L

l

i=1 si.

A user has 4k(k+1) log n encryption keys and has to perform the same number of

decryption operations of E to obtain shares s1; s2; � � � ; sl, and a decryption operation
of E. Each enabling block contains the result of encrypting the secret shares using

8k3(k + 1) log n keys.
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Now, consider the tracing algorithm. The �rst nested for loops (lines 2 to 7)

perform the decoding at most 2k2l = 8k3(k + 1) log n times. Assume the decoder

performs the same amount of work as a normal user. The �rst nested for loops

performs 32k4(k + 1)2 log2 n + 8k3(k + 1) log n decryption operation of E. The

second nested for loops (lines 8 -11) has complexity O(nl) = O(nk2 log n). Then

the tracing algorithm has time complexity O((k6 log2 n)C + nk
2 log n), where C is

the complexity of the decryption operation of the underlying scheme E.

3.3 Two Level Open Scheme

The two level traceability scheme presented here can be thought of as iterating the

one level scheme from the previous section.

Key Distribution: There are l buckets. In each of these buckets, instead of

base keys, there are b = deke one level key distribution schemes. We call these sub-

schemes, and denote the jth scheme in the ith bucket as Si;j. Each sub-scheme has

d baskets, each basket has 4 log2 k keys. We denote the yth key in the xth basket

in sub-scheme Si;j by ki;j;x;y. Each user gets one sub-scheme from each bucket, and

as in the one level tracing scheme, each user gets one key from each basket in each

of sub-scheme he is assigned to; Thus each user gets ld base keys. l and d are to

be determined later. Notice that there are 2 levels here: each upper level bucket

contains a set of sub-schemes in which there are a set of baskets that contain a set

of base keys.

We are going to choose two sets of hash functions. The �rst set of l �rst level

functions, h1; h2; � � � ; hl, each maps f1; 2; � � � ; ng to f1; 2; :::; dekeg. They are used to
assign one sub-scheme in each bucket to each user. A user u 2 U , gets sub-schemes:

fS1;h1(u); S2;h2(u); � � � ; Sl;hl(u)g.
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Keys in Basket x

k (i,j,x,1) k ...
(i,j,x,2) k (i,j,x,y) k (i,j,x,r)

...
i,x

Basket d

S (i,j)

Basket 1 Basket 2 ...... Basket x

Baskets in 

g   (u)=y

Bucket 1 Bucket lBucket 2 ... ...Bucket i

... S (i,j) (i,b)
... S(i,1)S S

Sub-schems in Bucket i

(i,2)

h  (u)=j
 i

one sub-scheme in each bucket
each user gets exactly

one key in each basket
each user gets exactly

Figure 3.3: Base Keys in Two Level Open CFNP Scheme
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For each bucket i, and each j 2 f1; 2; � � � ; dg, there is a second level hash function
gi;j , which maps f1; 2; � � � ; ng to f1; 2; � � � ; 4 log2 kg. The function gi;j is used to map

each user u to a key in the jth basket of sub-scheme Si;hi(u).

Therefore the data supplier key has l � d � deke � 4 log2 k base keys. And each

user's personal key is a set of l � d base keys:

P (u) = fk1;h1(u);1;g1;1(u); k1;h1(u);2;g1;2(u); � � � ; k1;h1(u);d;g1;d(u);
k2;h2(u);1;g2;1(u); k2;h2(u);2;g2;2(u); � � � ; k2;h2(u);d;g2;d(u);
...;

kl;hl(u);1;gl;1(u); kl;hl(u);2;gl;2(u); � � � ; kl;hl(u);d;gl;d(u)g:

Encryption: The data supplier chooses a key s in the key space of E. s gets

divided into l shares, s1; s2; � � � ; sl, such that
L

l

i=1 si = s. Sub-schemes in bucket i

are used to encrypt and decrypt share si. si is further divided into d � deke shares,
si;j;c; 1 � j � deke; 1 � c � d, such that

si =
M

(si;1;1; si;1;2; � � � ; si;1;d)M
(si;2;1; si;2;2; � � � ; si;2;d)

...M
(si;deke;1; si;deke;2; � � � ; si;deke;d):

si;j;c; 1 � j � deke; 1 � c � d, is encrypted with all keys in the cth basket of

sub-scheme Si;j. The concatenation of all these encrypted shares form the enabling

block, so

Be = kl
i=1(kdekej=1 (kdx=1(k4 log

2
k

y=1 Eki;j;x;y
(si;j;x)))):



CHAPTER 3. SYMMETRIC SCHEMES 31

The cipher block is simply Bc = Es(M).

Notice, for each i, 1 � i � l, a user u 2 U has d keys:

ki;hi(u);1;gi;1(u); ki;hi(u);2;gi;2(u); � � � ; ki;hi(u);d;gi;d(u):

These keys allow u to decrypt the shares:

si;hi(u);1; si;hi(u);2; � � � ; si;hi(u);2:

And hence to construct:

si =
M

(si;hi(u);1; si;hi(u);2; � � � ; si;hi(u);2)

Therefore, each authorized user can reconstruct s and decrypt the cipher block

to obtain the plaintext M .

Tracing: Suppose there is a pirate decoder D. To �nd the key s, one needs to

�nd all the shares among, s1; s2; � � � ; sl. Therefore, for every bucket i there should

be at least one sub-scheme Si;j that allows D to construct si. Suppose Si;ci is such

a sub-scheme. But to construct si in sub-scheme Si;ci, one needs to �nd all values

of si;ci;1; si;ci;2; � � � ; si;ci;d. Thus D needs at least one key in each of d baskets in

sub-scheme Si;ci. Therefore, it is valid to assume that for any i, 1 � i � l, there

exists at least one sub-scheme Si;ci, such that D has at least one key in each of d

baskets of Si;ci .

Let M i;j

0;0 be an enabling block in which the encryption with the keys of all

the sub-scheme of bucket i, except Si;j are replaced with random data. So, Si;j

becomes the only sub-scheme used to encrypt si. Let M i;j

x;y
be an enabling block

built from M
i;j

0;0 by replacing with random data the encryption with all the �rst y

keys in the xth basket in subscheme Si;j. This has the same e�ect as removing
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Figure 3.4: The Encryption and Decryption of a Session Key in a Two Level CFNP

Open Scheme
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Input: pirate decoder D
Output: one traitor

1. for 1 � i � l, 1 � j � deke do

2. if D decrypts experiment E
i;j

0;0 with non-negligible probability then

3. ci = j

4. for 1 � x � d do

5. for 0 � y � 4 log2 k do

6. repeat experiment Ei;j

x;y
r times,

7. let f i;j
x;y

be the fraction of times D decrypts Ei;j

x;y
correctly

8. �nd t
i;j

x
such that f i;ci

x;y
� f

i;j�1
x;y

> f
i;c0
x;y

=4 log2 k

9. t
i;j

x
= y; x++, goto 6

10. for each u 2 U , 1 � i � l do

11. for 1 � j � d do

12. if hi(u) = ci and gi;ci(u) = t
i;ci

j

13. crtu;i ++

14. scrtu ++, if crtu;i � d

log k

15. return u such that scrtu = MAXu2Uscrtu

Figure 3.5: Tracing Algorithm for Two Level Open Scheme
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keys ki;j;x;1; ki;j;x;y; � � � ; ki;j;x;y from the set of keys used to encrypt si;j;x. Let E
i;j

x;y
be

the following experiment: prepare an encryption session, with enabling block M i;j

x;y
.

The tracing algorithm is presented in Figure 3.5. Lines 1 to 10 determine a subset

F
0 of the keys in D, and lines 11 to 17 identify one traitor who has contributed

his personal keys in building D. This algorithm su�ers the same problem as the

tracing algorithm for one level open schemes. When the pirate decoder D has more

than one key in one basket, it could detect the operation of the tracing algorithm,

by discovering any inconsistency in the enabling block.

Notice that for each i, there is a subscheme Si;ci that enables D to obtain share

si, i.e., D has at least one key from each basket of sub-scheme Si;ci. Then D must

be able to decrypt Ei;ci

0;0 , since all the keys in subscheme Si;ci are still valid in M i;ci

0;0 .

Conversely, if D can decrypt Ei;ci

0;0 successfully, D must have at least one key from

each basket of sub-scheme Si;ci, since the keys in the rest of sub-schemes in bucket

i are all invalid. Thus, D has at least one key in each baskets in subscheme Si;ci

if and only if D can decrypt experiment Ei;ci

0;0 successfully. Here we assume D has

only one sub-scheme Si;ci which allows it to recover share si. Otherwise D can do

a comparison of the values of si obtained from di�erent sub-schemes and detect

whether a tracing algorithm is running.

Lines 4 to 10 are essentially the same as the tracing algorithm in the one level

scheme. They are to �nd one key in each basket which is in D. Let Fi denote the

keys belongs to sub-scheme Si;ci found by the algorithm in D, i.e.,

Fi = fk
i;ci;1;t

i;ci
1

; k
i;ci;2;t

i;ci
2

; � � � ; k
i;ci;d;t

i;ci
d

g:

And let F 0 be the set of all keys inD detected by the tracing algorithm, F 0 = [l

i=1Fi.

So j Fi j= d, and j F 0 j= l � d.

We call a user a suspect for si if crtu;i � d

logk
. So a user is a suspect for si if u's
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personal key in bucket i has at least d

logk
base keys in common with Fi. We declare

the user who is a suspect for the largest number of si's as a traitor.

We would like to show that there exists a choice of hash functions, hi; gi;j; 1 �
i � l; 1 � j � d, such that no coalition of at most k traitors can frame an innocent

user.

Consider a speci�c user u 2 U , and speci�c coalition T of size k which does

not include u. We are going to bound the probability that user u will be a suspect

for si. We �rst �nd a bound on the probability that user u will be hashed to a

sub-scheme with more than blog kc traitors in a given bucket.

Lemma 3.3.1 The probability that more than blog kc traitors are hashed by a ran-

domly chosen hash function hi; 1 � i � l to a speci�c sub-scheme is at most�
1

blogkc

�
blogkc

Proof: There are a total of dekek ways to hash the k traitors into deke sub-schemes.

The number of ways that there are at least b traitors hashed to a speci�c sub-scheme

Si;c is at most:

0
B@ k

b

1
CA dekek�b;

where

0
B@ k

b

1
CA is the number of ways to choose b traitors out of a possible k traitors,

and dekek�b is the number of ways to hash the remaining k � b traitors into deke
sub-schemes.

Therefore the probability of more than blog kc traitors are hashed to a speci�c
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sub-scheme is

p1 �

0
B@ k

blog kc

1
CA dekek�blog kc
dekek

=

0
B@ k

blog kc

1
CA deke�blogkc

�
 

ek

blog kc

!
blogkc

(ek)b� log kc

=

 
1

blog kc

!
blogkc

:

2

The �rst level hash function hi partitions the users into deke subsets:

h
�1
i
(j) = fu 2 U jhi(u) = jg; 1 � j � deke:

Let hi(u) = ci. Consider the conditional probability space where there are at most

blog kc traitors in h
�1
i
(ci). We are going to show that the probability that u is a

suspect of sub-scheme Si;ci is at most 1
16k

.

Lemma 3.3.2 Suppose there are at most blog kc traitors in h�1i (ci). The probability

that u being marked at least
d

logk
times is at most

1
16k

, where d =
�
8
3

�
log2 k, when

k � 16.

Proof: Let Pi(u) denote u's keys in sub-scheme Si;ci,

Pi(u) = fki;ci;1;gi;1(u); ki;ci;2;gi;2(u); � � � ; ki;ci;d;gi;d(u)g

Let Fi denote the keys detected by the tracing algorithm in the sub-scheme,

Fi = fk
i;c;1;t

i;c
1
; k

i;c;2;t
i;c
2
; � � � ; k

i;c;d;t
i;c
d
g:
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u will not get marked for the jth basket unless there exists a t 2 T \ h
�1
i
(c) such

that gi;j(u) = gi;j(t) = t
i;c

j
.

There are 4 log2 k keys in a basket. At most log k of them are assigned to some

member in T \ h
�1
i
(c) which has cardinality at most blog kc. So the probability

that u is marked with respect to basket j is at most blogkc

4 log2 k
� 1

4 log k
. With respect

to d baskets in sub-scheme Si;ci , user u is expected to be marked d

4 log k
times.

Let Xi; 1 � i � d be a zero-one random variable, where

Xi =

8><
>:

1 if u is marked with respect to basket j

0 otherwise:

(3.2)

P
d

j=1Xj is the number of marks u gets. Now, apply Corollary 3.1.2, substituting

p = 1
4 log k

, r = d, and � = 4, we have,

Pr[
1

d

dX
j=1

Xj � 4
1

4 log k
] � Pr[

1

d

dX
j=1

Xj � 4p]

< (
e
4�1

44
)

d
4 log k

) Pr[
dX

j=1

Xj � d

log k
] < (

e
3

44
)

d
4 log k

= (
e
3

28
)

d
4 log k

< (
1

23
)

d
4 log k e

3
< 25

= 2
�3d
4 log k

= 2
�8 log2 k

4 log k let d =
�
8
3

�
log2 k

= 2�2 logk

=
1

k2

� 1

16k
if k � 16
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Therefore the probability that u gets more than d

log k
is at most 1

16k
, when k � 16.

2

Recall that a user u is a suspect with respect to si, if u gets marked more than

d

log k
in the subscheme Si;hi(u). So, the probability that u being marked at least d

logk

times is at most 1
16k

, when k � 16, if there are at most blog kc traitors in h
�1
i
(ci).

Now, we are ready to bound the probability that u is suspect to any si; 1 � i � l.

Lemma 3.3.3 The probability that u is suspect to any si; 1 � i � l, is at most
1
8k
,

if k � 16.

Proof: Let As denote the event that u is a suspect with respect to si. Let Am

denote the event that u is mapped by hi to a same sub-scheme with no more than

blog kc traitors.

Suppose hi(u) = c, then Pr(Am) is same as the probability of more than blog kc
traitors gets mapped to sub-scheme Si;c. By Lemma 3.3.1, we see that

Pr(Am) �
 

1

blog kc

!
blogkc

�
�
1

4

�blogkc

since k � 16

=
1

2(blogkc)(2)

� 1

k2

� 1

16k
since k2 � 16k when k � 16

By Lemma 3.3.2, Pr(AsjAm) � 1
16k

. The probability that u is a suspect with

respect to si is:

Pr(As) = Pr(As; Am) + Pr(As; Am)
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= Pr(AsjAm)Pr(Am) + Pr(AsjAm)Pr(Am)

� 1

16k
Pr(Am) + Pr(AsjAm)

1

16k

� 1

16k
+

1

16k

=
1

8k

2

Let us consider the probability that u is a suspect for at least 3l
4k

of the buckets.

Lemma 3.3.4 The probability that u is a suspect for at least
3l
4k

of the buckets is

at most 1 � 2
�l
k .

Proof: Let Yi; 1 � i � l be a zero-one random variable, where

Yi =

8><
>:

1 if u is a suspect for si

0 otherwise:

(3.3)

Now, apply Corollary 3.1.2 again, substituting p = 1
8k
, r = l, and � = 6, we

have,

Pr[
1

l

lX
j=1

Yj � 6
1

8k
] < (

e
6�1

66
)

l
8k

) Pr[
dX

j=1

Yj � 3l

4k
] < (

e
5

66
)

d
8k

< (
1

28
)

d
8k

66

e5
= 314 > 28

= 2
�l
k
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So, the probability that u is a suspect for at least 3l
4k

of the buckets is at most 2
�l
k .

2

Call a bucket bad if it contains a sub-scheme into which more than blog kc
traitors are mapped, and good otherwise. Notice that in a good bucket, there are

at most blog kc traitors mapped to any sub-scheme in the bucket. Let Si;ci denote

the sub-scheme in bucket i, such that F 0 has exactly one key from each basket of

Si;ci . Then at least one traitor is marked with respect to at least d

blogkc
� d

logk

baskets in Si;ci, and therefore a suspect of si. So, there is at least one traitor is

declared as a suspect in a good bucket. Let l0 denote the number of good buckets.

Next we want to show that the probability that l0 < 3l
4
is small.

Lemma 3.3.5 The probability that there are at least
l

4
bad buckets is at most 2

�l
5 ,

when k � 48.

Proof: By Lemma 3.3.1, the probability that more than blog kc traitors are hashed
to a speci�c sub-scheme is at most

�
1

blogkc

�
blogkc

. Thus the probability that there

exists a sub-scheme into which more than blog kc traitors are hashed is at most

 
1

blog kc

!
blogkc

deke � 1

k2
deke see proof of Lemma 3.3.3

� 1

48k
deek since k2 � 48k when k � 48

=
1

16

Therefore, the probability that a bucket is bad is at most 1
16

when k � 48 .

Let Zi; 1 � i � l be a zero-one random variable, where

Zi =

8><
>:

1 if bucket i is bad

0 otherwise:

(3.4)
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Now, apply Corollary 3.1.2 again, substituting p = 1
16
, r = l, and � = 4, we

have,

Pr[
1

l

lX
j=1

Zj � 4
1

16
] < (

e
4�1

44
)

l
16

) Pr[
dX

j=1

Zj � l

4
] < (

e
3

44
)
d
16

< (
1

23
)

l
16 e

3
< 25

= 2
�3:67l

16

< 2
�l
5

Thus the probability that there are at least l

4
bad buckets is at most 2

�l
5 . 2

We are ready to prove the main theorem in this section.

Theorem 3.3.6 There exists a choice of hash functions hi; gi;j; 1 � i � l; 1 � j �
d, such that no coalition T of size at most k can frame any innocent user u 62 T ,

with d =
�
8
3

�
log2 k, l > k

2 log
�
en

k

�
+ k log(n+ 1), when k � 48.

Proof: Suppose there are less than l

4
bad buckets, so at least 3l

4
good buckets. By

Lemma 3.3.5 this happens with probability of at least 1� 2
�l
5 . Recall that at least

one traitor who is declared a suspect in a good bucket. Since there are at least 3l
4

good buckets, and there are k traitors, there exists at least one traitor is suspect

for at least 3l
4k

si's. Therefore the probability that u is mistakenly identi�ed as a

traitor is less than the probability that u is a suspect for at least 3l
4k

of the si's,

which is 2
�l
k by Lemma 2.4.

Therefore the probability that for one of

0
B@ n

k

1
CA possible coalition of size k, and

given that there are at least 3l
4
good buckets, some innocent user is mistakenly
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identi�ed as a traitor is at most n �
0
B@ n

k

1
CA � 2�l

k . And, the probability that for some

coalition there are less than 3l
4
good buckets, is at most

0
B@ n

k

1
CA � 2�l

5 .

Thus the probability of any innocent user is mistakenly identi�ed as a traitor is

at most,

pe = n �
0
B@ n

k

1
CA � 2�l

k +

0
B@ n

k

1
CA � 2�l

5 � (n+ 1) �
0
B@ n

k

1
CA � 2�l

k

with k � 5.

Choose l > k
2 log

�
en

k

�
+ k log(n+ 1), then

pe < (n + 1) �
0
B@ n

k

1
CA � 2�(k log( enk )+log(n+1))

� (n + 1) �
�
en

k

�
k

�
�
en

k

�
�k

� (n+ 1)�1

= 1

Therefore, there exists a choice of hash functions hi; gi;j ; 1 � i � l; 1 � j � d,

such that an innocent user is never mistakenly identi�ed as a traitor. 2

Now, let us consider the IeÆciency parameters. In the above scheme, there are

l = k
2 log

�
en

k

�
+ k log(n + 1) buckets, each bucket contains b = deke sub-schemes.

And, there are d = 3
8
log2 k baskets in each sub-scheme, each basket contains 4 log2 k

keys. Each enabling block consists of the result of encrypting the secret shares using

the same number of keys.

The data provider has

l � d � deke � 4 log2 k =
42

3
deke log4 k

�
k
2 log

�
en

k

�
+ k log(n+ 1)

�

= O

�
k
3 log4 k log

�
n

k

��
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keys. The same number of encryptions are needed to encrypt secret shares: si;j;c,

1 � i � l, 1 � j � b, 1 � c � d. And, an additional encrypting operation of E is

required to encrypt the message M .

A user has

l � d =
8

3
log2 k

�
k
2 log

�
en

k

�
+ k log(n+ 1)

�

= O

�
k
2 log2 k log

�
n

k

��

encryption keys and has to perform the same number of decryption operations of

E to obtain suÆcient shares in order to obtain the session key s. One additional

decryption operation of E is required to obtain the content.

Now, consider the tracing algorithm. The �rst part (lines 1 to 10) of the algo-

rithm consists of four nested loops and performs up to

ldeked(4 log2 k) =
42

3
deke log4 k

�
k
2 log

�
en

k

�
+ k log(n+ 1)

�

= O

�
k
3 log4 k log

�
n

k

��

decryptions using decoder D. Assume the decoder performs the same amount of

work as a normal user. Then there are up to

O

�
k
5 log6 k log2

�
n

k

�
+ k

3 log4 k log

�
n

k

��

decryption operations of E. The second part (lines 11 to 17) has complexity

O(nld) = O

�
nk

2 log2 k log

�
n

k

��
:

Then the tracing algorithm has time complexity

O

��
k
5 log6 k log2

�
n

k

��
C + nk

2 log2 k log

�
n

k

��

where C is the complexity of the decryption operation of the underlying scheme E.
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3.4 One Level Secret Scheme

Secret schemes can be made more eÆcient than open schemes since the traitors do

not have the knowledge of which keys other user received. In a secret scheme, even

if the set of keys of the coalition of traitors includes a large number of the personal

keys of an innocent user, the traitors do not know which keys the user has and

hence cannot put together a pirate decoder that frames a speci�c user.

The one level secret scheme is very similar to the one level open scheme, except

that there are 4k keys in each bucket instead of 2k2 in the open scheme. The l hash

functions, hi; 1 � i � l, map f1; 2; � � � ; ng to f1; 2; � � � ; 4kg. The encryption scheme

and tracing scheme is same as in the one level open scheme.

Lemma 3.4.1 There exists a choice of hi; 1 � i � l, such that the probability that

there exists a coalition T of size k traitors that can frame an innocent user u 2 U nT
is at most p, for any p 2 [0; 1].

Proof: Let hi; 1 � i � l be a set of l randomly chosen hash functions that each

maps f1; 2; � � � ; ng to f1; 2; � � � ; 4kg. Let u be any user. Let Au denote the event

that u can be framed by a coalition T, u 62 T; j T j= k.

Recall that the tracing algorithm is going to identify l keys, one from each

bucket, in a pirate decoder D. Let F 0 denote the set of keys detected by the tracing

algorithm. Then F
0 = fk1;c1; k2;c2; � � � ; kl;clg. And, there is at least one traitor t

with crtt � l=k. Let A0

u
denote the event that u gets marked at least l

k
times.

Clearly Pr(Au) � Pr(A0

u
).

As the hash functions are randomly chosen, the value hi(u) is uniformly dis-

tributed in f1; 2; � � � ; 4kg. Let T be any coalition of size k. Since T has no knowl-

edge on hi(u), it has to randomly choose a key ki;ci 2 F to be exposed by the
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tracing algorithm. The probability of hi(u) = ci is
1
4k
. Notice this probability does

not depend on which coalition builts D. So, the probability of u being marked with

respect to bucket i is 1
4k
.

Let Xi be a zero-one random variable, where

Xi =

8><
>:

1 if u is marked with respect to bucket i

0 otherwise:

(3.5)

Then
P

l

j=1Xj is number of marks u will get.

Apply Corollary 3.1.2, substituting p = 1
4k
, r = l, � = 4,

Pr[
1

l

lX
j=1

Xj � 4
1

4k
] < (

e
4�1

44
)

l
4k

) Pr[
lX

j=1

Xj � l

k
] < (

e
3

44
)

l
4k

< (
1

23
)

l
4k e

3
< 25

= 2
�3l
4k

So, the probability that u getting marked at least k

l
times is Pr(A0

u
) < 2

�3l
4k .

So Pr(Au) < 2
�3l
4k . Then the probability that there exists an innocent user being

framed by any coalition is Pr(A) =
P

u2U Pr(Au) = n � Pr(Au) < n � 2�3l
4k . If we

choose l � 4
3
k log(n=p), then

Pr(A) < n � 2� log(n=p)

= n � p
n

= p

2

Theorem 3.4.2 There exists a secret (k; p)-resilient scheme, for any p 2 [0; 1].
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Proof: By Lemma(3.4.1), the probability of a innocent user being framed is at

most p, when l � 4
3
k log(n=p). Therefore, if we choose hash functions hi, 1 � i � l

randomly, the probability of an innocent user is mistakenly identi�ed as traitor is

less than p. Hence we have a fully (p; k)-resilient secret traitor tracing scheme, with

l � 4
3
k log(n=p).

If we choose l � 4
3
k log(n), then Pr(A) < 1. This tells us that there exists a

choice of hi; 1 � i � l such that no user will be framed by any coalition. That is,

there exists a fully k-resilient scheme with l >
4
3
k log(n). 2

In the above one level fully (p; k)-resilient secret scheme, the data supplier has

4
3
k log(n=p) �4k = 16

3
k
2 log(n=p) = O(k2 log(n=p)) base keys. He has to perform the

same number of encrypting operations to encrypt secret shares s1; s2; � � � ; sl, and
an additional encrypting operation of E to encrypt the message session M using

session key s =
L

l

i=1 si.

A user has 4
3
k log(n=p) = O(k log(n=p)) encryption keys and has to perform the

same number of decryption operations to obtain shares s1; s2; � � � ; sl.

Now, consider the tracing algorithm in Figure 3.2. The �rst nested for loop

performs the decryption at most 4kl = 16
3
k
3 log(n=p) times. Assume the decoder

performs the same amount of decryptions as a normal user. The �rst nested for loop

performs 16
3
k
3 log(n=p) �

�
4
3
k log(n=p) + 1

�
= 64

9
k
4 log(n=p) + 16

3
k
3 log(n=p) decryp-

tion operation of E. The second nested for loops has complexitynl = 4
3
nk log(n=p)).

Then the tracing algorithm has time complexity O(k4(log2(n=p))C + nk log(n=p)),

where C is the complexity of the decryption operation of the underlying encryption

scheme E.
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3.5 Two Level Secret Scheme

Here, we are going to present a two-level (p; k)-resilient secret scheme which im-

proves the performance of the one level (p; k)-resilient secret scheme. The di�erence

between this scheme and the open two level scheme is that here it is enough to use

only one mapping at the �rst level.

The scheme uses one random hash function h : f1; 2; � � � ; ng 7! f1; 2; � � � ; 2ek
b0
g,

where b0 = b� b

b�1
ln
�
ek

b

�
.

Lemma 3.5.1 For any �xed coalition of k traitors, the probability that b or more

traitors are mapped to the same element in f1; 2; � � � ; 2ek
b0
g by h is at most p=2, if

b = log(4=p).

Proof: By Lemma 3.3.1, the probability that b or more traitors are mapped to a

speci�c element is

0
B@ k

b

1
CA�2ek

b0

�
�b

. Then the probability that there exists an element

that b or more traitors are mapped to is0
B@ k

b

1
CA
 
2ek

b0

!
�b

2ek

b0
=

0
B@ k

b

1
CA
 

b
0

2ek

!
b�1

�
 
ek

b

!b
0
@b� b

b�1
ln
�
ek

b

�
2ek

1
A
b�1

=
ek

b2b�1

0
@1� ln

�
ek

b

�
b� 1

1
A
b�1

� ek

b2b�1
e
� ln(ekb )

=
1

2(b�1)

=
2

2log(4=p)

= p=2
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Input: pirate decoder D
Output: one traitor

1. for 1 � i � r do

2. randomly choose a permutation � on f1; 2; � � � ; 2ek
b0
g.

3. for 1 � l � 2ek
b0

do

4. use D on experiment E�(j)

5. let Ec be an experiment which D decrypts with nonnegligible probability.

6. perform one level tracing algorithm on scheme Sc

Figure 3.6: Tracing Algorithm for Two Level Secret Scheme

2

We are going to construct a secret one level (p=2; b)-resilient scheme for each set

h
�1(i) = fu 2 U jh(u) = ig; 1 � i � 2ek

b0
. Let S1; S2; � � � ; S 2ek

b0
denote these schemes.

Each user u receives his personal key in subscheme Sh(u).

Given a message session M , a session key s is randomly chosen. Let Bi

e
; 1 � i �

2ek
b0

denote the enabling block in sub-scheme i with respect to session key s. The

concatenation of enabling blocks of all sub-schemes form the enabling block of the

two level scheme, Be = k
2ek

b0

i=1Bi

e
. The cipher block is Bc = Es(M).

Any user u has keys from sub-scheme Sh(u) and thus can reconstruct s from

Bh(u)
e

. For a decoder D to decrypt M successfully, D must have a valid personal

key from a sub-scheme, i.e., there must be a sub-scheme Sc such that D contains

at least one key from each bucket in Sc.
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Let Mi be an enabling block in which the encryption with the keys of all the

sub-schemes except Si are replaced with random data. Let Ei be the experiment:

prepare an encryption session, with enabling block Mi. Figure 3.6 presents the

tracing algorithm. It is assumed that there exists a subscheme Sc such that D
contains at least one key from each bucket in Sc. Then D should encrypt Ec

successfully. Clearly, the algorithm will work if D always use one subscheme in

decoding. Since each user is assigned to one subscheme, D could have access to

as many as k subschemes. And D could choose one subscheme out of a set of S0

of k0 � k available subschemes to use for a session. Note, D can also detect if a

tracing algorithm is running by using several subschemes to decode the content and

checking if the result is the same. But this involves more work than decrypting two

shares.

Let S0 = fS1; S2; � � � ; Sk0g, and let Pri denote the probability that Si is chosen

by D. Clearly, Pk
0

i=1 Pri = 1. For a particular subscheme Si 2 S
0, the probability

that it is not chosen in experiment Ei is 1� Pri. Then the probability that there

does not exist one scheme Si 2 S
0 that is chosen for experiment Ei, 1 � i � k

0 is

k
0Y

i=1

(1� Pri) � (1� 1

k0
)k

0

=

�
(1 � 1

k0
)�k

0

��1

� e
�1

If we repeat each experiment r times, the probability is at most e�r. Table 3.1

gives the values of e�r for some r between 1 and 20. If r = 5, the probability is

at most 0.00674; if r = 10, probability is at most 0.0000454. We can choose r so

that the algorithm can identify a subscheme used by D with a high probability.

Once such an Sc is found, the one level tracing algorithm can be used to identify a

traitor.

Theorem 3.5.2 The scheme described above is a (p; k)-resilient secret scheme, for

any p 2 [0; 1].
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r e
�r

1 :3678794412

5 :006737947002

8 :0003354626281

10 :00004539992980

12 :6144212359 � 105

15 :3059023209 � 106

17 :4139937724 � 107

20 :2061153626 � 108

Table 3.1: Values of e�r

Proof: We would like to show that the probability of an innocent user being

identi�ed as a traitor is less than p. Let Am denote the event that there is no

subscheme into which at least b traitors are mapped together, where b = log(4=p).

By Lemma 3.4.1 Pr(Am) � (p=2). Let Af denote the event that an innocent user

is mistakenly identi�ed as a traitor. Since each subscheme is (p=2; k)-resilient, the

probability of event Af is at most p=2, if event Am occurs. So, Pr(Af jAm) � p=2.

Now we have

Pr(Af ) = Pr(Af ; Am) + Pr(Af ; Am)

= Pr(Af jAm)Pr(Am) + Pr(Af jAm)Pr(Am)

� p

2
Pr(Am) + Pr(Af jAm)

p

2

� p

2
+
p

2

= p

Therefore we have a (p; k)-resilient scheme. 2
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In the two level (p; k)-resilient secret scheme, the data supplier has all the keys

in the 2ek
b0

one level (p=2; b)-resilient schemes. Each of the one level schemes has

16
3
b
2 log 2n

p
keys. Thus, the total number of base keys in the two level scheme is

16

3
b
2

 
log

2n

p

!
2ek

b0
=

16

3
b
2

 
log

2n

p

!
2ek

b� b

b�1
ln
�
ek

b

�

=
32e

3
kb

 
log

2n

p

!
1

1� 1
b�1

ln
�
ek

b

�

=
32e

3
kb

 
log

2n

p

!
b� 1

b� 1 � ln
�
ek

b

�

=
32e

3
kb

 
log

2n

p

!0
@1 + ln

�
ek

b

�
b� 1 � ln

�
ek

b

�
1
A

The same number of encryption operations are needed to encrypt secret shares,

plus one additional encryption operation has to be performed to encrypt the actual

content.

Each user u gets the personal key in the one level schemeSh(u). So each user gets

4
3
b log(2n=p)) = O(log(n=p) log(1=p)) base keys, and performs the same amount of

decryption operations to decrypt enough secret shares, plus one more to decrypt

the content.

The size of the enabling block is the sum of the sizes of the enabling blocks

in each of the one level scheme. Each one level scheme has enabling block size

16
3
b
2 log(2n=p)). So the size of the enabling block in the two level scheme is

16
3
(b2 log(n=p) � 2ek

b0
) = 32e

3
kb

�
log 2n

p

��
1 +

ln( ekb )
b�1�ln( ekb )

�
which is same as the num-

ber of encryption operations the data supplier has to perform to encrypt secret

shares of the session key.

The �rst part (lines 1 to 5) of the tracing algorithm performs r 2ek
b0

decodings

using the decoder D, where r � 20. Assume D performs the same amount of work
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as a normal user. Then there are

4

3
rb
2ek

b0
log(2n=p)) =

4ekr

3

 
log

2n

p

!0
@1 + ln

�
ek

b

�
b� 1 � ln

�
ek

b

�
1
A+ r

2ek

b0

decryption operation of E. The one level tracing algorithm has complexity

O(k4(log2(n=p))C + nk log(n=p))

.

The following theorem states that if k is smaller than b

2p
, then the total number

of keys is less than 32e
3
kb(b+ 1)

�
log 2n

p

�
.

Theorem 3.5.3 If k � 1
2p
log 4

p
, then

ln( ekb )
b�1�ln( ekb )

� b.

Proof: Notice that

2b�3 = 2log(4=p)�3 =
4=p

8
=

1

2p
:

So, we have

k � 1

2p
log

4

p

= 2b�3 � b
� e

b�3 � b:

Then,

k � e
b�3

b ) k

b
� e

b�3

)
 
k

b

!
b+1

� e
b
2
�2b�3
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)
 
ek

b

!
b+1

� e
b
2
�b�2

)
 
ek

b

!
b+1

� e
b
2
�b

) (b+ 1) ln
ek

b
� b

2 � b

) ln
ek

b
� b(b� 1) � b ln

ek

b

)
ln
�
ek

b

�
b� 1 � ln

�
ek

b

� � b:

2

Thus, if k � 1
2p
log 4

p
, the total number of keys is less than

32e

3
kb(b+ 1)

 
log

2n

p

!
= O

 
k log2

1

p
log

n

p

!
:

And the tracing algorithm has complexity of O((k log n

p
log 1

p
)C) plus the complexity

of the one level tracing algorithm.

3.6 One Level Threshold Scheme

In fully resilient tracing schemes, a decoder D either can decrypt all the sessions, or

cannot decrypt any session at all. For example, in one level schemes, if D has one

key from each bucket, D can decrypt all sessions successfully; Otherwise D cannot

decrypt any session. And the tracing algorithm can trace one source of the keys in

D if and only if D can decrypt all the sessions.

In the threshold schemes introduced in this and the next section, we are going

to allow D to decrypt certain subset of but not necessarily all sessions. And the

tracing algorithm can trace a source of the keys in D, only if D can decrypt at least
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certain percentage of the sessions. These schemes are useful in those applications

where a decoder which does not decode close to 100 percent of message successfully

is not very useful. For example, no one will probably buy a pirate TV decoder

which can decode only 90 percent of the pictures. For these applications, the fully

resilient schemes might be an overkill if we can construct threshold schemes that

are more eÆcient. We are going to consider schemes that trace the source of the

keys in a decoder only if the decoder can decrypt with a high success rate, but does

not necessarily perform well if the decoder has a low success rate.

In this section we are going to present a one level q-threshold tracing scheme:

a scheme traces the source of keys in any decoder which decrypts correctly with a

probability at least q. The bene�t of using such a threshold scheme is a reduction

in the size of enabling blocks, and hence a reduction in redundancy overhead. And

user will perform less decryption operations. In fact, the number of share needs to

be decrypted could be as few as 1.

The one level threshold scheme has the same key distribution scheme as a one

level fully resilient secret scheme. However in the encryption of the message, the

session key s is divided into t � l shares, s1, s2, � � �, st, such that s =
L

t

i=1 si,

instead of l shares in one level secret scheme. t buckets B0 = fBa1
; Ba2

; � � � ; Batg
are chosen uniformly at random from the l available buckets. si is encrypted with

all the keys in Bai
using E. And the enabling block also includes the indices of

the t chosen buckets. Be = (kt
i=1ai) k

�
kt
i=1

�
k4k
j=1Ekai;j

(si)
��

: Any authorized user

has one key from each bucket and can always decrypt all si; 1 � i � t, and hence

reconstruct s. And any decoder that can reconstruct s must have a key in all of

the buckets in B 0.

The threshold scheme has another parameter w, 0 < w < 1, such that the

tracing algorithm is able to trace the source of the keys in a pirate decoder D if D
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has at least one key from at least wl buckets. t is chosen such that if D decrypts

with probability at least q, then D must have one key from at least wl buckets.

Let B denote the set of buckets in which D has at least one key. j B j= d.

Then the probability that a randomly chosen bucket is in B is d

l
. The probability

that all t randomly chosen buckets are in B is at most
�
d

l

�
t

. Given any message

session, D is able to decrypt it if and only if B0 � B. Since B
0 are randomly

chosen, the probability that D is able to decrypt the message is at most
�
d

l

�
t

. If D
decrypts with success rate at least q, then

�
d

l

�
t � q. We can set t = log

w
q. Then

q = w
t �

�
d

l

�t
, which implies w � d

l
, d � wl, i.e., D has one key in at least wl

buckets. To have t = 1, we can set w = q.

The tracing algorithm is presented in Figure 3.6. Let � = fk1; k2; � � � ; k4klg
denote the set of all base keys. Lines 1 to 9 identify at least lw keys in D where all

of these lw keys belong to distinct buckets. Let Ei denote the experiment of using

Mi as enabling block in a message block. Since M0 is a valid enabling block, D
should decrypt E0 with probability at least q. We built Mi fromMi�1 by replacing

the data encrypted with key k�(i) by random data. So, the knowledge of k�(i) will

not help in decrypting Ei. It has the same a�ect as removing the key k�(i) from its

bucket. Now if D uses this key in decoding, D will in fact have only lw � 1 keys

and hence decrypt with a probability less than q. Here again, we have to assume

D has at most one key from each bucket. Otherwise the algorithm will not work

and D can easily detect whether it is being inquired by a tracing algorithm.

So in E4kl, we have removed all the keys. D would decrypt it with a negligible

probability much less than q. Thus there exists a c such that D decrypts Ec�1 with

probability at least q but decrypts Ec with probability less than q. Thus k�(c) must

be in D, since removing k�(c) results in D having keys from less than lw buckets.

And suppose k�(c) is from bucket Bd, then k�(c) must be the last key D has in Bd.
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Input: pirate decoder D
Output: one traitor

1. set F 0 = ; and build a valid enabling block M0

2. randomly choose a permutation � of f1; 2; � � � ; 4klg

3. for 1 � i � 4kl do

4. build Mi from Mi�1 by replacing the data encrypted with key k�(i) by

random data.

5. if D decrypts message block with enabling block Mi with probability less

than q

6. F
0 = F

0 [ f�(i)g

7. if no key in F
0 is from the same bucket as �(i)

8. q =

0
B@ l

lw� 1

1
CA
,0
B@ l

t

1
CA , w = q

1=t

9. Choose F 0 � F
0, such that F' has exactly one key from wl buckets.

10. for each u 2 U do

11. for each c 2 F
0 do

12. crtu ++ if hi(u) = c

13. return u such that crtu = MAXu2Ucrtu

Figure 3.7: Tracing Algorithm for One Level Threshold Scheme
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After removing k�(c), D still has a key in at least lw � 1 buckets, and so it can

still decrypt with the probability of

0
B@ l

lw � 1

1
CA
,0
B@ l

t

1
CA . So, we modify q and w

accordingly and keep on. There should exist another c0 such that D decrypts Ec0

with probability less than q (modi�ed), but decrypts Ec0�1 with probability at least

q. So k�(c0) must also be in D. And we update q and w accordingly and go on

until the end of loop. At the end of the loop, F 0 should have at least wl keys from

distinct buckets. Then each user is marked once for each of his personal key in F 0,

and the user with the most number of marks is claimed as a traitor.

Figure 3.8 gives a simpler randomized algorithm. This algorithm also assumes

D has at most one key from each bucket. In each iteration of the repeat loop (lines

2 - 8), one key is exposed. The repeat loop terminates when wl distinct keys are

exposed. Suppose D has q keys. Assume one key is randomly exposed at each

iteration. So, each of the q keys has a probability of 1
q
of being exposed at an

iteration. Then, after r iterations, the probability of one speci�c key is not exposed

is (1 � 1
q
)r. So the probability of there exists a key not exposed is p � q(1 � 1

q
)r.

Choose r = 20q, we have p � q(1� 1
q
)20q � qe

�20 which is negligibly small. Thus

the randomized algorithm is expected to terminate within 20lw iterations.

Notice there are at most k traitors, and there are wl keys in F 0. So there exists

a traitor t with crtt � wl

k
. We are going to show that there exists a choice of

hi; 1 � i � l, such that the probability of an innocent user u gets at least wl

k
marks

is small.

Lemma 3.6.1 There exists a choice of hi; 1 � i � l, such that the probability that

there exists a coalition T of size k can frame an innocent user less than p, for any

p 2 [0; 1].
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Input: pirate decoder D
Output: one traitor

1. F 0 = ;

2. repeat

3. build a valid enabling block M0

4. randomly choose a permutation � of f1; 2; � � � ; 4klg

5. for 1 � i � 4kl do

6. buildMi fromMi�1 by replacing the data encrypted with key k�(i) by

random data.

7. if D decrypts message block with enabling block Mi with probability

less than q

8. F
0 = F

0 [ f�(i)g

9. until j F 0 j = wl

10. for each u 2 U do

11. for each c 2 F
0 do

12. crtu ++ if hi(u) = c

13. return u such that crtu = MAXu2Ucrtu

Figure 3.8: Randomized Tracing Algorithm for One Level Threshold Scheme
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Proof: Let u be any user. Let Au denote the event that there is a coalition T can

frame u, j T j= k; u 2 U n T . Let A0

u
denote the event that crtu � wl

k
. Clearly,

Pr(Au) � Pr(Au), since there exists a traitor t with crtt � wl

k
. Let D denote a

decoder built by T that decrypts with success rate at least q.

As the hash functions are randomly chosen, the value hi(u) is uniformly dis-

tributed in f1; 2; � � � ; 4kg. We want to determine the probability that D exposing

ki;hi(u) as its key. Notice the algorithm exposes wl keys in D. The probability that

one of the keys is from bucket i is w. Suppose D chooses to expose a key from

bucket i. Since T has no knowledge on hi(u), it has to randomly choose a key

ki;ci 2 F to be exposed by the tracing algorithm. The probability that hi(u) = ci is

1
4k
. The probability that T exposes the key ki;hi(u) is

w

4k
. Notice that this probability

does not depend on which coalition builts D. So, the probability of u being marked

with respect to bucket i is w

4k
.

Let Xi be a zero-one random variable, where

Xi =

8><
>:

1 if u is marked with respect to bucket i

0 otherwise:

(3.6)

Then
P

l

j=1Xj is number of marks u will get.

Apply Corollary 3.1.2, substituting p = w

4k
, r = l, � = 4. Then we have

Pr[
1

l

lX
j=1

Xj � 4
w

4k
] <

 
e
4�1

44

!wl
4k

) Pr[
lX

j=1

Xj � wl

k
] <

 
e
3

44

! w
4k

<

�
1

23

�wl
4k

e
3
< 25

= 2
�3wl
4k
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So, the probability that crtu � wl

k
is P (A0

u
) < 2

�3wl
4k , and P (Au) < 2

�3wl
4k . Then

the probability that there exists an innocent user who can be framed by a coalition

of size k is

P (A) =
X
u2U

P (Au)

= n � P (Au

< n � 2�3wl
4k :

If we choose l � 4k
3w

log(n=p), then

P (A) < n � 2� log(n=p)

= n � p
n

= p:

2

Theorem 3.6.2 There exists a q-threshold (k; p)-resilient scheme, for any p; q 2
[0; 1], with l � 4k

3w
log(n=p).

Proof: By the above Lemma, there exists a choice of hi; 1 � i � l such that the

probability that an innocent user can be framed is at most p for any p 2 [0; 1]

Therefore, if we choose hash functions hi; 1 � i � l randomly, the probability of

an innocent user is mistakenly identi�ed as a traitor is less than p. Hence we have

a fully (p; k)-resilient secret traitor tracing scheme, with l � 4k
3w

log(n=p).

If we choose l � 4k
3w

log(n), then P (A) < 1. This tells us that there exists a

choice of hi, 1 � i � l, such that no user will be framed by any coalition. That is,

there exists a fully k-resilient scheme with l >
4k
3w

log(n). 2
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In the above q-threshold (k; p)-resilient scheme, the data supplier has

16k2

3w
log(n=p) = O

 
k
2

w
log(n=p)

!

keys. But he has to perform only 4kt encryption operations to encrypt the secret

shares, where t is a parameter that can be picked by the data supplier such that

t = log
w
q. One additional encryption operation is required to encrypt the content.

Each user gets
4k

3w
log(n=p) = O

 
k

w
log(n=p)

!

keys, but has to perform only t+1 decryption operations. Each enabling block has

a size of 4kt. We can set t = 1 by setting w = q.

The tracing algorithm performs 4kl decryptions using D. Assume D performs

a same number of work as an average user in decoding, the algorithm performs a

total of

4klt =
16tk2

3w
log(n=p) +

16k2

3w
log n

decryption operations of E. The rest of the algorithm (lines 10 to 13) has time

complexity O(nlw) = O(kn log n). Thus the algorithm's time complexity is

O

  
tk

2

w
log(n=p)

!
C + kn log(n=p)

!

where C denotes the time complexity of performing a decryption using the under-

lying symmetric encryption scheme.

3.7 Two Level Threshold Scheme

The two level q-threshold (p; k)-resilient scheme presented in this section is con-

structed in the same way as the two level secret scheme. The scheme consists
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of 2ek
b

one level threshold schemes. A random hash function h : f1; 2; � � � ; ng 7!
f1; 2; � � � ; 2ek

b
g is needed to map a user to one of the 2ek

b
subschemes.

Lemma 3.7.1 If b = log
�

4ek
p log(1=p)

�
, the probability p

0
that b or more traitors are

mapped to the same subscheme by h is less than p=2, where p 2 [1
2
; 1].

Proof:

p
0 =

0
B@ k

b

1
CA
 

b

2ek

!
b�1

(see the proof of lemma 3.5.1)

�
 
ek

b

!
b
 

b

2ek

!
b�1

=
ek

b

1

2b�1

=
ek

b

2
4ek

p log(1=p)

=
p log(1=p)

2b

=
p

2

log(1=p)

b

=
p

2

log(1=p)

log
�

4ek
p log(1=p)

�

=
p

2

log(1=p)

log(1=p) + 2 + log
�

ek

log(1=p)

� :

Since p 2 [1
2
; 1], we have 0 < log(1=p) � 1, which implies log

�
ek

log(1=p)

�
�

log(ek) � 0. Thus,

p
0 =

p

2

log(1=p)

log(1=p) + 2 + log
�

ek

log(1=p)

�

� p

2

log(1=p)

log(1=p) + 2

� p

2
:
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2

Theorem 3.7.2 There exists a two level q-threshold (k,p)-resilient scheme for p 2
[1
2
; 1].

Proof: Let q0 = qb

2ek
. We require each subscheme to be a q

0-threshold (p=2; b)-

resilient scheme. That is, each subscheme can trace the source of the keys in a

decoder with a success rate of at least 1� p=2, if the decoder can decrypt correctly

with probability at least qb

2ek
. Notice that if a decoder D can decrypt none of the

subschemes with probability at least qb

2ek
, then the probability that D can decrypt

the two level scheme is at less than
�

qb

2ek

�
�
�
2ek
b

�
= q. Thus if a decoderD can decrypt

the two level scheme with probability at least q, there must exist a subscheme Sc,

such that D can decrypt with probability at least q0 = qb

2ek
. Since Sc is a q

0-threshold

(p=2; b)-resilient scheme, it can trace a traitor, with the probability of mistakenly

identify an innocent user as a traitor being at most p=2, if there are less than b

traitors mapped to Si by h.

Let Am denote the event that there is no sub-scheme to which b or more traitors

are mapped simultaneously. Let Af denote the event that the scheme fails to

identify a traitor, i.e., it claims an innocent user is a traitor.

By Lemma 3.7.1, P (Am) � p

2
. Then the probability that the two level scheme

mistakenly claims an innocent user to be a traitor is

P (Af ) = P (Af ; Am) + P (Af ; Am)

= P (Af jAm)P (Am) + P (Af jAm)P (Am)

� p

2
P (Am) + P (Af jAm)

p

2

� p

2
+
p

2

= p
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Input: pirate decoder D
Output: one traitor

1. for 1 � i � r do

2. randomly choose a permutation � of f1; 2; � � � ; 2ek
b
g.

3. for 1 � l � 2ek
b

do

4. use D on experiment E�(j)

5. let Ec be an experiment in which the probability that D decrypts correctly is

the lowest.

6. perform the one level tracing algorithm on scheme Sc

Figure 3.9: Tracing Algorithm for Two Level Threshold Scheme

Thus the two level scheme is a q-threshold (p; k)-resilient scheme. What remains

to be shown is a tracing algorithm to �nd a subscheme which the pirate decoder

can decrypt with probability at least q0 = qb

2ek
.

Let Mi be an enabling block in which the encryption with the keys of all the

sub-schemes except Si are replaced with random data. Let Ei be the following

experiment: prepare an encryption session, with enabling block Mi. Figure 3.9

presents the tracing algorithm.

The tracing algorithm is very similar to the two-level secret scheme. We �rst

need to �nd the subscheme Sc that D can decrypt with probability at least q0 = qb

2ek
.

If D decrypts Ec with lowest success rate among all Ei, 1 � i � 2ek
b
, then D must

decrypt Sc with the highest success rate among all subschemes, since Ei disables

Si. And D must decrypt Sc with a success probability at least q0 = qb

2ek
. Then we
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can use the one level tracing algorithm on Sc to �nd a traitor. 2

The data supplier has all the keys from the 2ek
b

q
0-threshold (p=2; b)-scheme,

where q0 = qb

2ek
. Each sub-scheme has 16b2

3w
log

�
2n
p

�
base keys. So the data supplier

has
2ek

b

16b2

3w
log

 
2n

p

!
=

32ekb

w
log

 
2n

p

!
= O

 
kb

w
log

 
n

p

!!

base keys in total. The data supplier performs 4bt + 1 encryption operations in

each subscheme, where t = log
q0
w, and hence (4bt+1) � 2ek

b
= 8ekt+ 2ek

b
encryption

operations.

Each user gets assigned to a sub-scheme and possesses the personal key in that

sub-scheme. So, each user has 4b
3w

log
�
2n
p

�
= O

�
b

w

�
n

p

��
keys. A user has to perform

only t+ 1 decryption operations of E.

The tracing algorithm needs to perform r
2ek
b

decryption using D in order to

determine the sub-scheme which D is able to decrypt. Assume D performs the

same amount of work as an average user in decryption. Then 2ertk
b

+r 2ek
b
decryption

operation of E are needed. The complexity of the algorithm is O( tk
b
)C plus the

complexity of the �rst level tracing algorithm.
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3.8 A Variant of CFNP One Level Open Scheme

In this section, we are going to present a variant of CFNP one level schemes. These

schemes are suggested by Stinson and Wei in [14] and [15]. Let us call this scheme

an SW scheme. Explicit constructions are provided for these schemes.

Key distribution: As in CFNP schemes, the data supplier has a set � of base

keys chosen from the key space of a underlying symmetric encryption scheme E.

Let j � j= v, � = fk1; k2; � � � ; kvg. Each user will be assigned l keys. Let P (u)

denote the set of keys a user u receives. Note, the scheme does not require the

partition of � into buckets. The l keys can be any keys from �, subject to that

P (u) will enable u to decrypt the content, and a traitor to be exposed. We will

discuss how the assignment is done later in this section.

Encryption: Similar to the CFNP schemes, the contents are divided into ses-

sions which has size as an integral multiple of the block size accepted by E. A

session key s is randomly chosen from the key space of E to encrypt one content

session. Then a (l; v) threshold secret sharing scheme is employed to produce v

shares, such that knowledge of any l of these shares would allow an user to obtain

s. Here we use Shamir's (l; v) threshold secret share scheme as an example.

Suppose s is in a �eld F q. At �rst v distinct non-zero values x1; x1; � � � ; xv 2F q

are chosen. These values are public and can be distributed before the broadcast.

The data provider chooses a1, a2, � � �, al�1 2F q independently at random. And let

a(x) = x(� � � (x(x+ al�1) + al�2) � � �+ a1) + s:

So a(x) is a polynomial of degree l�1 in F q. The data supplier computes si = a(xi),

1 � i � v. Each si is then encrypted with key ki using the underlying encryption

scheme E. The enabling block consists all encrypted shares, Be = kv
i=1(Eki

(si)).



CHAPTER 3. SYMMETRIC SCHEMES 67

If a user u has l keys, ki1 , ki2 , � � �, kil, he can decrypt shares si1 , si2, � � �,
sil . With these l shares he can determine the polynomial a(x) by using Lagrange

interpolation. In fact u can compute

s = a(0) =
lX

j=1

sijbj; where bj =
Y

1�k�l;k 6=j

xij

xik � xij

:

Since xi; 1 � i � v are public values available before broadcasting, each user can

compute them in advance.

Now, suppose a pirate decoder D can also decrypts the content. Assume the

underlying encryption schemeE is computationally secure. Since an (l; v)-threshold

scheme is used, D must be able to obtain at least l shares of si, 1 � i � v from the

enabling block. In order to decrypt l shares, D must obtain l keys. Thus we can

assume that D must know at least l keys if it can decrypt content successfully.

Tracing algorithm: Let us �rst assume that a pirate decoder D has a set of

l
0 � l keys, ki1 ; ki2 ; � � � ; kil0 , and always uses them in the construction of s, i.e. D
always computes

s = a(0) =
l0X
j=1

sijbj; where bj =
Y

1�k�l0;k 6=j

xij

xik � xij

:

Then if we replace any one share of si1; si2 ; � � � ; sil0 with random data. D will

compute an incorrect s and fail to decrypt the content.

The tracing algorithm is presented in Figure 3.10. In each iteration of the �rst

for loop, we remove a share s�(i). If D decrypts successfully using enabling block

Mi, then D does not use s�(i) in decoding. If D fails, we know D has key k�(i), and

uses it in decryption. But, then we restore that share so that D can still decrypt.

Unfortunately, the algorithm will work only when D always use a certain set

of l0 � l keys in decryption. If D has more than l keys and randomly chooses l of
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Input: pirate decoder D
Output: one traitor

1. randomly pick a permutation � on f1; 2; � � � vg

2. let M0 be a legitimate enabling block

3. for 1 � i � v do

4. constructMi fromMi�1 by replacing the encrypted share s�(i) by random

data. (this has the a�ect of removing share s�(i))

5. try D on Mi

6. if D fails

7. Mi = Mi�1 (restoring share s�(i))

8. F = F [ f�(i)g

9. for each u 2 U do

10. compute j F \ P (u) j

11. return u with the highest value of j F \ P (u) j among U.

Figure 3.10: Tracing Algorithm for One Level Non-Transversal Tracing Scheme
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them in each session, we have to modify the algorithm, since if even D decrypts

correctly on enabling block Mi, it does not necessary mean D does not possess key

k�(i), since it could be that k�(i) was not chosen for this session. We need to perform

more decryption attempts on each enabling block Mi to make sure that D does not

possess k�(i).

How many times do we have to perform the decryption on a particular enabling

block Mi? There are k traitors, D could have a set F of as many as kl distinct

keys, it can randomly choose l keys among F in each session. So for a particular

key in the probability it is chosen to decrypt is k�1
k

= 1 � 1
k
. If k attempts are

performed, the probability that a particular key is not chosen is
�
1� 1

k

�k � e
�1.

So if rk decryption attempts are performed, the probability is at most e�r. We can

see from Table 3.1 that if we choose r � 10, the probability that a speci�c key will

be chosen at least once after rk decryption attempts is very close to 1. Suppose

we perform 10k decryption attempts on enabling blocks Mi, and assume D does

not intentionally decrypt incorrectly. If D does not have key k�(i), then decryption

will always succeed. Otherwise there is at least one failure with probability at least

0.9999546. Thus the algorithm will make rkv decryption attempts using D.

However this tracing algorithm su�ers a similar drawback as those in CFNP

schemes. If D has more than l keys, it can detect the operation of the tracing

algorithm. Suppose D has l + 1 keys and hence l + 1 shares. D can compute s

twice using di�erent l shares chosen from the l+ 1 shares it has. If one of the l+1

keys is invalidated, then the two s computed would di�er. This involves only a bit

more work than detecting the tracing algorithm in CFNP schemes.

Now, back to the key assignment. Suppose a coalition T of at most k traitors

builds a pirate decoder D. Let F be a set of l keys in D. F � [t2TP (t). We call

a user u exposed, if j F \ P (u) j�j F \ P (v) j, for all v 2 U . We require that the
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exposed user is a traitor for any coalition of size at most k.

A set system is a pair (X ;B), where X is a set of elements called points and

B is set of subsets of X , the members of which are called blocks. A set system

can be described by an incidence matrix. Let (X ;B) be a set system, where X=

fx1; x2; � � � ; xvg and B= fB1; B2; � � � ; Bbg. The incidence matrix of (X ;B) is the
b� v matrix A = (aij) where

aij =

8><
>:

1 if xj 2 Bi

0 if xj 62 Bi

:

We can think the key assignment scheme as a set system, where X is the set of

base keys and B is the set of personal keys for each user. To satisfy the requirement

that every exposed user must be a traitor, let's consider the concept of a traceable

set system.

De�nition 3.8.1 A traceable set system is a set system (X ;B), where jX j= v,

jBj= b, and every block has size l for some integer l, with the property that for

every choice of k
0 � k blocks, B1; B2; � � � ; Bk0 2B, and any l-subset F � [k

0

i=1Bi,

there does not exist a block B 2BnfB1; B2; � � � ; Bk0g such that j F \Bi j�j F \B j,
for 1 � i � k

0
. We denote such a system by k-(l; b; v)-TSS. 2

Theorem 3.8.2 If there exits a k-(l; b; v)-TSS, there exists a k-resilient traitor

tracing scheme for n users with v base keys, and each user has l keys.

Proof: Suppose (X ;B) is a k-(l; b; v)-TSS, B= fB1; B2; � � � ; Bbg. We only need to

show that if we use (X ;B) as our key assignment scheme, i.e. P (u) = Bu, then any

exposed user is a traitor.
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Let T be a coalition of size at most k, T = fi1; i2; � � � ; ik0g; k0 � k. Consider

any F that F � [t2TBt; j F j= l. Since (X ;B) is a k-(l; b; v)-TSS, there is no

B 2BnfBi1
; Bi2

; � � � ; Bik0
g, such that

j F \Bij
j�j F \B j; 1 � j � k

0
:

Then, there is no u 2 U n T such that

j F \ P (t) j�j F \ P (u) j; for all t 2 T:

So, there must exist a t0 2 T such that

j F \ P (t0) j>j F \ P (u) j; for all u 2 U n T:

Now suppose t is an exposed user. Then

j F \ P (t) j�j F \ P (t0) j>j F \ P (u) j; for all u 2 U n T:

So t 62 U n T , and t must be a traitor. 2.

In the rest of this section we are going to give some constructions of traceable

set systems.

De�nition 3.8.3 A t-(v; l; �) design is a set system (X ;B), where jX j= v, j B j= l

for every B 2B, and every t subset of X occurs in exactly � blocks in B. The number

of blocks in B is

0
B@ v

t

1
CA
,0
B@ l

t

1
CA . 2

Theorem 3.8.4 If there exists a t-(v; l; 1) design, then there exists a

k-

0
B@l;

0
B@ v

t

1
CA
,0
B@ l

t

1
CA ; v

1
CA -TSS;

where k = b
q
(l � 1)=(t� 1)c.
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Proof: Let (X ;B) be a t-(v; l; 1) design. Let B1; B2; � � � ; Bk0 ; k � k be k0 distinct

blocks. Let B 2BnfBi1
; Bi2

; � � � ; Bik0
g. Let F � [k

0

i=1Bi; j F j= l. Notice there

exists a Bi; 1 � i � k
0 such that

j F \Bi j � d l
k
e

� l

b
q
(l� 1)=(t � 1)c

�
s
(t� 1)l2

l � 1

>

q
(t� 1)(l � 1)

Since every t-tuple occurs in exactly one block, any 2 blocks have at most t� 1

points in common. So j B \Bj j� t� 1; 1 � j � k
0. Then

j B \ F j � (t� 1)k

= (t� 1)b
q
(l � 1)=(t� 1)c

�
q
(t� 1)2(l � 1)=(t � 1)

=
q
(t� 1)(l � 1)

< j F \Bi j

Therefore (X ;B) is a k-
0
B@l;

0
B@ v

t

1
CA =

0
B@ l

t

1
CA ; v

1
CA-TSS, 2

When t = 2, a t-(v; l; �) design is called a Balanced Incomplete Block Design

(BIBD). A (q2+q+1; q+1; 1)-BIBD is known to exits for every prime power q, and

is called a projective plane of order q. There are (q2+q+1)(q2+q)

(q+1)q
= q

2 + q + 1 blocks

in a projective plane of order q. Thus we have a
p
q� (q+1; q2+ q+1; q2+ q+1)-

TSS for any prime power q. And hence we have a
p
q-traitor tracing scheme with

q
2 + q + 1 base keys, q2 + q + 1 users and each user has q + 1 personal keys, for

every prime power q.
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Example 3.8.5 Here we present a 3-(10; 91; 91)-TSS. The set of points are in Z91.

Block Bi; 0 � i � 90 contains points,

Bi = f0 + i; 1 + i; 6 + i; 10 + i; 23 + i; 26 + i; 34 + i; 41 + i; 53 + i; 55 + ig;

where all arithmetic is done in Z91. This set system is a projective plane of order

9.

In fact D
0 = f0; 1; 6; 10; 23; 26; 34; 41; 53; 55g is a (91; 10; 1) cyclic di�erence set.

A (v; l; �) cyclic di�erence set is a set D = fd1; d2; � � � ; dlg such that each non-zero

element d 2Zv can be expressed in the form d = di� dj, in precisely � ways. It can

be easily veri�ed that each nonzero element in Z91 can be expressed as a di�erence

of two elements in D
0
in precisely one way.

It is known that if D = fd1; d2; � � � ; dlg is a cyclic (v; l; �) di�erence set, then

D;D+1; � � � ;D+(v�1) are the blocks of symmetric (v; l; �)-BIBD, where D+a =

fd1 + a; d2 + a; � � � ; dl + ag.

Thus

Bi = f0 + i; 1 + i; 6 + i; 10 + i; 23 + i; 26 + i; 34 + i; 41 + i; 53 + i; 55 + ig;

0 � i � 90, form a (91; 10; 1)-BIBD. 2

Example 3.8.6

D
0 = f0; 1; 20; 30; 35; 107; 125; 131; 153; 157; 174; 210; 219; 222; 233; 235; 266g

is a cyclic (273, 17,1) di�erence set. Then D
0
;D

0+1; � � � ;D0+272 is a (273; 17; 1)-

BIBD, i.e. a projective plane of order 16. Thus we have a 4-(17; 273; 273)-TSS.

2
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And, a (q2; q; 1)-BIBD is called an aÆne plane or order q, and also exists for

every prime power q. There are
q
2(q2�1)

q(q�1)
= q

2 + q blocks in an aÆne plane of order

q. So, an aÆne plane of order q is also a
p
q � 1 � (q; q2; q2 + q)-TSS.

An aÆne plane of order q can be obtained from a projective plane of order q

by removing the elements in a block B
0 from all other blocks. A block has q + 1

points, so there are q2 points left. Since no other block contains all q + 1 points

being removed, there are q2 + q blocks left. There are (q + 1)(q2) pairs with one

point in B
0 and the other not in B

0. There are q2 + q blocks, each block can only

have at most one point in common with B0, so has at most q pairs with one point in

B
0 nd the other not in B0. But q(q2+ q) = (q+1)(q2) which is the total number of

such pairs. So each block must have exactly q pairs and hence exactly one point in

B
0. Thus after removing the points in B

0, each remaining block has q points each.

And every pair of remaining points occur in exactly one block, since it does occur

in B
0. So, we have a (q2; q; 1)-BIBD, an aÆne plane of order q.

Example 3.8.7

D
0 = f0; 1; 3; 30; 37; 50; 55; 76; 98; 117; 129; 133; 157; 189; 199; 222; 293; 299g

is a cyclic (307; 18; 1) di�erence set. Then D
0
;D

0+1; � � � ;D0+306 is a (307; 17; 1)-

BIBD, i.e. a projective plane of order 17. So, if we remove all elements in any

one block we get a (289; 17; 1)-BIBD, an aÆne plane of order 17. Thus we have

a 4-(17; 289; 306)-TSS. Compared to the previous example, there are 16 more base

keys, and 33 more users, with same number of personal keys per user. 2

De�nition 3.8.8 A t�(v; l; �) packing design is a set system (X ;B), where jX j= v,

j B j= l for every B 2B, and every t subset of X occurs in at most � blocks in B.
2
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Theorem 3.8.9 If there exists a t-(v; l; 1) packing design with b blocks, then there

exists a k-(l; bv)-TSS, where k = b
q
(l � 1)=(t� 1)c.

Proof:Same as the proof for Theorem 3.8.2. 2

It is not known if t-(v; l; 1) design exist if v > l > t � 6. However there are

in�nite classes of packing designs with number of blocks close to

0
B@ v

t

1
CA =

0
B@ l

t

1
CA.

They can be obtained from orthogonal arrays.

Theorem 3.8.10 If there exists an OA(t; l;m), then there exists a t-(lm; l; 1) pack-

ing design which has s
t
blocks.

Proof: If there is an OA(t; l;m) with entries from the set f0; 1; � � � ; s� 1g. De�ne
(X= f(x; y) : 0 � x � l � 1; 0 � y � s � 1g. For every column (y0; y1; � � � ; yl�1) in
the OA, de�ne a block B = f(0; y0); (1; y1); � � � ; (l� 1; yl�1)g. Let B be the set of st

blocks constructed.

Suppose Bi; Bj 2B have a t-tuple in common. WLOG say (0; y0), (1; y1), � � �,
(t; yt). Consider column i and j of the OA. The �rst t entries of these 2 columns are

the same. This contradicts the fact that any t� 1 column vector appears exactly

once in the �rst t rows.

Therefore, any t-tuple occurs in at most one block in B, and (X ;B) is a t-

(lm; l; 1) packing design. 2

Recall that we also used an orthogonal array to construct a CNFP open one level

scheme in section 3.2. In fact the same orthogonal array can also used to construct

a traceability scheme introduced in this section. We know that an OA(t; q + 1; q)

exists for all prime powers q and t < q. Thus by the above theorem, there is a
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b
q
q=(t� 1)c -traceability scheme with n = q

t users, where each user has l = q + 1

base keys, and there are total of v = q
2 + q base keys. In fact, using OAs, the SW

schemes also has transversal property.

Using OAs as the key assignment scheme in the scheme presented here is not

as eÆcient as in the CNFP one level scheme, since the data provider and each user

has to perform extra computation due to the threshold secret sharing scheme.

Assume Shamir's (l; v) threshold secret sharing scheme is used. The data

provider has q
2 + q keys which is same as in CNFP scheme. But he also has

to perform v polynomial evaluations to compute si = a(xi); 1 � i � v. Each

evaluation can be done using l multiplications and l + 1 additions in F q. With

v = q
2+ q, l = q+1, the data supplier has to perform q

3+2q2+ q multiplications,

and q
3 + 3q2 + 2q additions in F q.

As in a CNFP scheme, each user needs at least l decryption to obtain l shares.

But each user has to perform l multiplications and l additions to obtain s using

Lagrange interpolation, while in a CNFP scheme, only l � 1 XORs are needed to

obtain s from l shares.

Recall that the tracing algorithm makes rkv decryption attempts using D. As-
sume D does the same amount of work as an user. The tracing algorithm would

perform rkv(l+ 1) decryption operations, rkvl additions and multiplications. The

complexity is O(kvlC + n), where C is the complexity of the decrypting operation

of E. If an OA(t; q + 1; q) is used, v = q
2 + q, n = q

t, l = q + 1, k = b
q
q=(t� 1)c.

The running time is O(q3
1
2C + q

t). The one level open CNFP scheme has a trac-

ing algorithm with complexity O(vlC + n). Using an OA(t; q + 1; q) as the key

distribution scheme, the tracing algorithm has complexity of O(q3C + q
t).

The data redundancy is the same in both schemes. The tracing algorithm
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Schemes personal keys base keys data redundancy tracing algorithm

One Level O(k2 logn) O(k4 logn) O(k4 logn) O(k6(log2 n)C

Open Scheme +k6 log2 n)

Two Level O(k2 log2 k log n
k
) O(k3 log4 k log n

k
) O(k3 log4 k log n

k
) O(k5 log6 k(log2 n

k
)C

Open Scheme +nk2 log2 k log n

k

One Level O(k log n
k
) O(k2 log n

k
) O(k2 log n

k
) O(k4(log2 n

k
)C

Secret Scheme +nk2 log n

k

Two Level O(b log n
p
) O(kb2 log n

p
) O(kb2 log n

p
) O(kb(log n

p
)C)

Secret Scheme b = log 4
p

if k �
1
2p

log 4
p

if k �
1
2p

log 4
p

+ one level

secret tracing

One Level O( k
w
log n

p
) O( k

2

w
log n

p
) 4kt O( tk

2

w
(log n

p
)C

Threshold t = log
w
q +kn log n

p

Two Level O( b
w
log n

p
) O( kb

w
log n

p
) 8ekt O( tk

b
C)

Threshold b = log

�
4ek

p log 1

p

�
+ one level

threshold tracing

Table 3.2: EÆciency Measures for CFNP Schemes

presented in this section needs v decryption attempts using a pirate decoder, which

is same as in CNFP scheme.

3.9 Summary

Table 3.2 gives a summary of the eÆciency measures of the six presented CFNP

schemes. In the �rst four schemes the number of decryption operations each user

(i.e. his decoder) has to perform in each session is same as the number of personal

keys, since all personal keys are used in every session. In the two threshold schemes,
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each user performs only t = log
w
q decrypting operations. For the last four schemes,

the measures are for p-resilient schemes that can be obtained by choosing hash

functions randomly. Setting p = 1 we have the measures for fully resilient schemes

whose existence have been proved.

Not surprising, we can see that the secret schemes are more eÆcient than open

schemes in every aspect. While threshold schemes are less eÆcient than the secret

schemes in terms of personal keys and total base keys by a factor of 1
w
; q � w � 1,

they reduce the amount of work each user and the data supplier have to perform,

as well as the data redundancy.

The one level open scheme has explicit constructions that are almost as eÆcient

as the existence result. No explicit construction are known for the two level open

scheme. The fully resilient version of the last four schemes do not have explicit

construction either, while it is possible to construct p-resilient version of the schemes

by choose hash functions randomly. But having a scheme which might identify an

innocent user as a traitor with probability p is generally not acceptable unless p is

really small, which leads to a substantial increase in almost every eÆcient measure.

Although the tracing algorithm in each scheme is able to identify at least one

traitor, it works only if the pirate decoder does not have redundant keys. For

example, in a one level open scheme, the tracing algorithm works only when the

pirate decoder has exactly one key for each bucket. The algorithm can be easily

defeated if the decoder has 2 keys in any bucket, by comparing the shares decrypted

using the 2 keys. Once the decoder detects that it is being inquired by a tracing

algorithm, it can fail the decoding intentionally. The assumption that no pirate

decoder has any redundant key does not seem to be a very valid one. SW schemes

su�er from a similar problem.
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Schemes personal each user's base keys users tracing

keys work

CFNP using q + 1 q + 1 decrypt q
2 + q q

t
O(q3C + q

t)

OA(t; q + 1; q) q XOR

SW using q + 1 (q + 1) �, q
2 + q + 1 q

2 + q + 1 O(q3
1
2C)

BIBD (q + 1) +,

(q2 + q + 1; q + 1 decrypt

q + 1; q)

Table 3.3: Comparison Between One Level Open CFNP and SW Schemes

Table 3.3 gives a comparison between one construction for CFNP and SW one

level schemes. The CFNP scheme uses an OA(t; q+1; q) as key distribution scheme

while the SW scheme uses a BIBD(q2 + q + 1; q + 1; q). Generally the CFNP

scheme allows more users when t > 2. Even when t = 2 although the SW scheme

accommodates more users, each user and the tracing algorithm has to do more work

because SW uses a (l; v) secret sharing scheme.

All of the above schemes are symmetric, since the data supplier knows every

user's personal key. If the data supplier is dishonest, he can easily frame any user

as a traitor. This leads to asymmetric traceability schemes that will be presented

in the next chapter.



Chapter 4

Asymmetric Tracing Scheme

All the schemes presented in the previous chapter are symmetric in the sense that

all the secret shares are encrypted and decrypted using the same keys. Each user

shares his personal key with the data supplier. One concern is that the data supplier

might be dishonest and frame any user as a traitor. This motivates research on a

tracing scheme that works like a public key cryptosystem, in which the encryption

key is public while the decryption key is kept secret. The two schemes introduced in

this chapter are asymmetric in the sense that the encryption key and the decryption

key are di�erent. However they do not fully qualify as a truly public-key system, as

the decryption keys are assigned by the data supplier. Thus DS can still frame any

user at his will. These schemes do not provide non-repudiation. We will discuss a

truly public-key traceability system in the next chapter.

Both schemes presented here use an \asymmetric" encryption scheme to en-

crypt/decrypt session keys for each session. An o�-the-shelf symmetric key encryp-

tion system is then used to encrypt/decrypt the actual contents using the session

key. Thus, in the following we are only concerned with how a session key is en-

80
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crypted by the data supplier and how it is decrypted by each user.

The �rst such scheme was due to Kurosawa and Desmedt in 1998 [10]. The

encryption scheme is as secure as the ElGamal cryptosystem. However the tracing

algorithm was broken shortly after it was published. We present the scheme here to

illustrate a pitfall in designing an asymmetric key traceability scheme. The second

scheme was proposed by Boneh and Franklin in 1999 [3]. The encryption scheme

is based on the discrete log representation problem with respect to a �xed base

of group elements. This scheme is secure if the decision DiÆe-Hellman problem is

hard in the underlying group. The tracing algorithm is equivalent to decoding a

received word to a codeword of an error correcting linear code of distance 2k + 1.

Given that a key is captured from a pirate decoder, the algorithm is able to trace

all of the traitors who have contributed to the decoder.

4.1 Kurosawa-Desmedt Scheme

Key generation and distribution: Let p be a prime power, and q be a prime

such that q j p � 1, and q � n + 1. Let g be a qth root of unity over GF (p).

p, q, g are public information. Session keys are randomly chosen from the cyclic

multiplicative subgroup generated by g: S =< g >= fs j s = g
i
; 0 � i � q � 1g.

The data supplier chooses a random polynomial:

f(x) = a0 + a1x+ � � � + akx
k

where a0; a1; � � � ; ak 2Zq. Then he gives (i; f(i)) to user i as i's personal key. The

data supplier also computes:

y0 = g
a0 ; y1 = g

a1; � � � ; yk = g
ak
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in GF (p). The encryption key is (y0; y1; � � � ; yk).

Encryption/Decryption: To encrypt a session key s, the data supplier ran-

domly chooses an integer r and construct an enabling block:

(gr; syr0; y
r

1; � � � ; yrk):

From the enabling block each user i computes:

sy
r

0 � (yr1)
i � (yr2)

i
2 � � � � � (yr

k
)i
k

(gr)f(i)

=
sg

ra0 � g
ra1i � g

ra2i
2 � � � � � g

raki
k

(gr)f(i)

=
sg

r(a0+a1i+a2i
2+���+aki

k)

(gr)f(i)

=
sg

rf(i)

(gr)f(i)

= s:

Thus each user can obtain s and decrypt the content.

Let us call the above encryption scheme the KD encryption scheme. It can be

shown that this encryption scheme is as secure as ElGamal encryption scheme.

Lemma 4.1.1 The KD encryption scheme is as secure as the ElGamal encryption

scheme in GF (p) if k = O(log p).

Proof: Let M1 denote the problem of �nding s given (g; y); (gr; syr) in Zp where

y = g
a, and a,r are secret. So M1 is the problem of breaking ElGamal encryption

scheme. Let M2 denote the problem of breaking the KD encryption scheme, i.e.,

�nd s given (gr; syr0; y
r

1; � � � ; yrk) in GF (p) where y0 = g
a0; y1 = g

a1; � � � ; yk = g
ak , for

random secret values a0; a1; � � � ; ak; r. We would like to show there is an algorithm

solving M1 if and only if there is algorithm solving M2.
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First suppose there is an algorithm A1 that solves M1. Inputting (gr; syr0) to

A1 will give s and hence solveM2.

Next suppose there is an algorithm A2 that solves M2. We choose a1, a2, � � �,
ak 2Zq at random and compute

y
r

1 = (gr)
a1
; y

r

2 = (gr)
a2
; � � � ; yr

k
= (gr)

ak
:

Inputting (gr; syr; yr1; � � � ; yrk) to A2 will reveal s. The reduction is in polynomial

time if k = O(log p). 2

Tracing: The tracing algorithm is rather simple and does not support blackbox

tracing. It assumes the decryption keys in the decoder can be revealed and the key

has the form (i; f(i)). User i is declared as a traitor.

Let T be a coalition of at most k traitors. It can be showed that if T can

construct a pirate decoder with decryption key (u; f(u)) where u 62 T , then the

discrete logarithm problem can be solved.

Theorem 4.1.2 Let T be a coalition of at most k traitors, where k = O(log p).

If there is a polynomial time algorithm that allows the traitors in T to construct a

pirate decoder with decryption key (u; f(u)) where u 62 T , then there is a polynomial

time algorithm for the discrete log problem in GF (p).

Proof: Let T = fi1; i2; � � � ; ik0g. Let A1 be a polynomial time algorithm which

takes the encryption key of the tracing scheme and traitor's personal keys as input

and outputs a pirate decoder with decryption key (u; f(u)) where u 62 T . We

are going to present a polynomial time algorithm A2 which solves the discrete log

problem using A1 as a subroutine.

Suppose we are given an instance of the discrete log problem: g; y = g
a. A2 �rst

chooses d1; d2; � � � ; dk0 2 GF (p) at random. Then there exists unique polynomial
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f(x) = a + a1x + � � � + akx
k
0

such that f(ij) = dj, 1 � j � k
0. All the following

arithmetic is done in GF (p).

De�ne the matrix B as follows:

B =

0
BBBBBBBB@

i1 i
2
1 � � � i

k
0

1

i2 i
2
2 � � � i

k
0

2

...
...

...
...

ik0 i
2
k0

� � � i
k
0

k0

1
CCCCCCCCA
:

Then,

(d1; d2; � � � ; dk0)T = (f(i1); f(i2); � � � ; f(ik0))T

= (a; a; � � � ; a)T +B � (a1; a2; � � � ; ak0)T :

Notice that B is a Vandermonde matrix, and hence it is nonsingular. So, we have

(a1; a2; � � � ; ak0)T = B
�1 � (d1 � a; d2 � a; � � � ; dk0 � a)T :

Let (bj1; bj2; � � � ; bjk0) be the jth row of B�1. Then

aj = bj1(d1 � a) + bj2(d2 � a) + � � �+ bjk0(dk0 � a)

= bj1d1 + bj2d2 + � � �+ bjk0dk0 � (bj1 + bj2 + � � �+ bjk0)a:

Hence,

g
aj =

g
bj1d1+bj2d2+���+bjk0dk0

g
(bj1+bj2+���+bjk0 )a

=
g
bj1d1+bj2d2+���+bjk0dk0

y
(bj1+bj2+���+bjk0 )

:

Notice that g; y; bj1; � � � ; bjk0; d1; � � � ; dk0 are all known. Thus gaj , 1 � j � k
0, can be

computed. Then (y; ga1; ga2; � � � ; gak0 ) is a valid encryption key for a KD scheme.

Further (ij; dj = f(ij)), 1 � j � k
0, are k0 valid decryption keys for the scheme.
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ApplyingA1, we obtain (u; f(u)), where u 62 T . Then A2 can interpolate f(x), using

(i1; d1), (i2; d2), � � �, (ik0; dk0) and (u; f(u)). Then a = f(0) which is the discrete log

of y.

A2 runs in polynomial time as long as A1 is a polynomial time algorithm, and

k = O(log p). 2

Everything seems sound. But, notice the tracing algorithm assumes that the

key in any pirate decoder has the form (u; f(u)). However, a pirate decoder does

not have to restrict itself to use a key in such a form, even though a legitimate

decoder uses (i; f(i)) as its decryption key. A pirate decoder can use a key in any

form as long as it allows the decryption of the content. We are going to present a

key in a di�erent form which still allows the decryption of session keys, but which

prevents any traitors from being traced. This attack was adviced in [3] and [15].

Consider a coalition T of t � 2 users. Let T = fi1; i2; � � � itg. Let vj =

(f(ij); 1; ij; i
2
j
; � � � ; ik

j
); 1 � j � t. Consider a convex combination of vj's:

w = �1v1 + �2v2 + � � �+ �tvt;

tX
j=1

�j = 1:

Let w = (u;w0; w1; � � � ; wk).

A pirate decoder can use w to decrypt a session key s from ciphertext

(gr; syr0; y
r

1; � � � ; yrk)

as follows: compute

(syr0)
w0 � ((y1)

r)w1 � ((y2)
r)w2 � � � � � ((yk)

r)wk

= (syr0)
Pt

j=1
�j � ((y1)

r)
Pt

j=1
�jij � ((y2)

r)
Pt

j=1
�ji

2
j � � � � � ((yk)

r)
Pt

j=1
�ji

k
j

= s

Pt

j=1
�j � g

ra0

Pt

j=1
�j � g

ra1

Pt

j=1
�jij � g

ra2

Pt

j=1
�ji

2
j � � � � � g

rak

Pt

j=1
�ji

k
j



CHAPTER 4. ASYMMETRIC TRACING SCHEME 86

= s� g
r

Pt

j=1
�j

Pk

l=0
ali

l
j

= s� g
r

Pt

j=1
�jf(ij)

:

Now, multiplying it by the inverse of (gr)
u
= g

r

Pt

j=1
�jf(ij), we obtain s. Thus a

pirate decoder does not have to use a key having the form (u; f(u)) to decrypt s.

Hence the tracing algorithm devised above is useless in this situation.

Thus in designing a traceability scheme, one should not assume that all pirate

decoders work in the same way as a legitimate decoder. It is important for the

tracing algorithm to work regardless how a pirate decoder is implemented. Notice

that there is no such problem in the symmetric traceability schemes in the previous

chapter. If a secret share is encrypted using a key, then this key is usually the only

key that can be used to recover the secret share.

One way to thwart the above attack is to choose f(x) to be a polynomial of

degree 2k. Notice that any 2k+1 of vj = (1; j; j2; � � � ; j2k) are linearly independent.
Suppose w is a linear combination of t � k vectors in V = fvj : 1 � j � ng:
w =

P
t

i=1 �ivji, �i 6= 0; 1 � i � t. Then w cannot be expressed as a linear

combination (with non-zero coeÆcients) of a di�erent set of less than k+1 vectors

in V . Otherwise we have a set of less than 2k + 1 linearly dependent vectors.

If the above attack is used, then we are given w which is a convex combination

of less than k + 1 vj's. We know the set of vjs can produce such w is unique (with

non-zero coeÆcients). And the set of vj's can be identi�ed by using coding theory

techniques. The Boneh-Franklin scheme introduced in the next session employs

such techniques.
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4.2 Boneh-Franklin Scheme

The Boneh-Franklin (BF) Scheme relies on the discrete log representation problem.

De�nition 4.2.1 When y =
Q

t

i=1 h
Æi
i
, we say (Æ1; Æ2; � � � ; Æt) is a representation of

y with respect to the basis (h1; h2; � � � ; ht). 2

Notice that if d1; d2; � � � ; dm are representations of y with respect to the same

basis H, then any convex combination: b =
P

m

i=1 �idi, where
P

m

i=1 �i = 1, is also a

representation of y with respect to H.

Key generation and distribution: LetGq be a group of order q, g a generator

of Gq. Gq, g, q are public information. It is required that computing discrete logs

in Gq is diÆcult.

For i = 1; 2; � � � ; 2k, the data supplier randomly chooses ri 2Zq, and computes

hi = g
ri in Gq. The ri's are kept in secret. Furthermore, the data supplier randomly

chooses �1; �2; � � � ; �2k 2Zq and computes y =
Q2k

i=1 h
�i

i
= g

P2k

j=1
rj�j . The �i's are

also kept secret by the data supplier. The encryption key is (y; h1; h2; � � � ; h2k).

A collection � of n codewords of length 2k is made public. In order for tracing

to work, � has to satisfy certain properties that will be discussed later. Let � =

f
(1); 
(2); � � � ; 
(n)g. A private key is an element �i 2Zq such that �i � 
(i) is a

representation of y with respect to the basis H = (h1; h2; � � � ; h2k). User i's personal
key, �i, is derived from the 
(i) = (
1; 
2; � � � ; 
2k) 2 � by computing

�i =

P2k
j=i rj�jP2k
j=i rj
j

mod q

Sometimes, we also refer to the personal key as the representation d = �i �
(i), since
a decoder requires a representation of y in order to decrypt.
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Encryption and decryption To encrypt a session key s 2 Gq, the data sup-

plier picks a random element a 2Zq, and sets the enabling block to

(sya; ha1; h
a

2; � � � ; ha2k):

To obtain the session key, user i uses his secret key �i to compute

sy
a�Q2k

j=1 (h
a

i
)


(i)

j

��i

=
sy

a

Q2k
j=1 (g

rj )a�i

(i)

j

=
sy

a

g

P2k

j=1
arj�i


(i)

j

=
sy

a�
g
�i

P2k

j=1
rj


(i)

j

�a

=
sy

a�
g

P2k

j=1
rj�j

�a

=
sy

a

ya

= s

In fact any representation (Æ1; Æ2; � � � ; Æ2k) of y with respect to H will allow the

decryption of s; since
2kY
j=1

�
h
a

j

�
Æi

=

0
@ 2kY
j=1

h
Æi

j

1
A
a

= y
a
:

Let us call the above encryption scheme the BF encryption scheme. It can be

shown that this scheme is as secure as the ElGamal encryption scheme in Gq if k

is in the order of O(log q).
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Lemma 4.2.2 Breaking the ElGamal encryption scheme reduces to breaking the

BF encryption scheme in polynomial time in Gq, if k = O(log q).

Proof: First let us state the problem of breaking the BF encryption scheme M1:

given (g; q; y; h1; h2; � � � ; h2k), (sya; ha1; � � � ; ha2k), where hi = g
ri, y =

Q2k
i=1 h

�i

i
for

random secrets ri; �i 2Zq; i = 1; 2; � � � ; 2k, �nd the value of s.

The problem of breaking ElGamal encryption scheme can be stated as M2: �nd

s, given (g; y); (sya; ga), where y = g
�, a and � are random secret elements in Zq.

Suppose we have an algorithm A1 to solve M1, and want to solve an instance

of M2. We randomly genearate r2; r3; : : : r2k and let hi = g
ri, 2 � i � 2k. Further

let h1 = g. (Obviously there is a representation of y with respect to the basis

(h1; h2; � � � ; h2k). But A1 does not require the knowledge of any representation.)

Then we compute h
a

i
= (ga)ri, 2 � i � 2k. Now we have an instance of M1:

(g; q; y; h1; h2; � � � ; h2k), (sya; ha1; � � � ; ha2k), where h1 = g; hi = g
ri for random ri; 2 �

i � 2k. Applying A1 will reveal the value of s.

k = O(log q) ensures that the reduction is taking polynomial time. 2

More strongly, BF encryption is semantically secure against a passive adversary

if the Decision DiÆe-Hellman problem (DDH) is hard in Gq.

De�nition 4.2.3 The Decision DiÆe-Hellman problem (DDH) is the task of de-

ciding whether y = g
ab
, given y; g

a
; g

b
, and g in a group Gq of order q, where g is

a generator of Gq.

A Decision DiÆe-Hellman algorithm A for a group Gq of order q is an algorithm

satisfying for some �xed � > 0 and suÆciently large n,

j Pr[A(g; ga; gb; gab) = "true"]� Pr[A(g; ga; gb; gc) = "true"] j> 1

n�
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where c 6= ab mod p.

We say that a group Gp satis�es the DDH assumption if no polynomial time

DDH algorithm exists for Gp. 2

Informally speaking, a DDH algorithm is an algorithm which solves the DDH

problem with a probability better than 1
2
. If there is no eÆcient DDH algorithm in

Gq,, then the BF encryption scheme is semantically secure (i.e. an adversary can

learn nothing about the plaintext, except for its length, from ciphertext.).

Lemma 4.2.4 The BF encryption scheme is semantically secure against a passive

adversary in Gq, assuming that Gq satis�es the DDH assumption and k = O(log p).

Proof: Suppose the BF encryption scheme is not semantically secure. Then given

the public key (y; h1; h2; � � � ; h2k), there exist two plaintexts m1;m2 2 Gp such that

given (mby
a
; h

a

1; h
a

2; � � � ; ha2k); b 2 f0; 1g, an adversary can decide whether b = 0 or

1 with success rate p1 >
1
2
. We are going to provide a DDH algorithm A.

Suppose we are given g; ga; gb; y and have to decide whether y = g
ab. Algorithm

A �rst chooses random values r2; r3; � � � ; r2k from Zq and computes hi = (ga)ri,

2 � i � 2k. Then it sets h1 = g
a. Let the public key by (y; h1; h2; � � � ; h2k).

Now A picks b randomly from f0; 1g and constructs C = (mbg
b
; y; y

r2; � � � ; yr2k).
C is given to the adversary. The adversary outputs b0 2 f0; 1g. If b = b

0, then A

output "true"; otherwise A outputs "false".

If y = g
ab, then y = (ga)b = h

b

1, and y
ri = ((ga)ri)

b
= h

b

i
, 2 � i � 2k. Thus C is

a valid encryption of mb. Then b = b
0 with probability p1. If y 6= g

ab, then C is a

encryption of a random message, and hence b = b
0 with probability 1

2
.
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Therefore, the probability that A(g; ga; gb; gab) = "true" is p1, and the proba-

bility that A(g; ga; gb; gc) = "true" is 1
2
, where c 6= ab mod p. Since p1 >

1
2
, we have

a DDH algorithm. Clearly this algorithm is polynomial if k = O(log p). 2

However, note that the DDH assumption is a very strong assumption. There are

groups where the computational DiÆe-Hellman problem (given g; g
a
; g

b, compute

g
ab) is believed to be hard, but the DDH assumption does not hold.

An example where this might be true is Z�

p
for a prime p and generator g, The

computational DiÆe-Hellman problem is believed to be intractable in Z�

p
. But,

given g
a, gb, one can easily compute the Legendre symbol of gab. This gives an

immediate method to decide whether y = g
ab given y; g

a
; g

b with a success rate

much better than 1
2
.

The following are some groups in which the DDH assumption holds:

1. Let p = 2p0+1 where p and p0 are primes. Let Qp be the subgroup of quadratic

residues in Zp. It is a cyclic group of prime order.

2. Let p = aq + 1 where both p and q are prime and q > p
1
10 . Let Qp;q be the

subgroup of Zp of order q.

3. Let N = pq where p, q, p�1

2
, q�1

2
are primes. Let T be the cyclic subgroup of

order (p� 1)(q � 1).

4. Let p be a prime and Ea;b=Fp be an elliptic curve where kEa;bk is a prime.

5. Let p be a prime and J be a Jacobian of a hyper elliptic curve over Fp with

a prime number of reduced divisors.

Tracing algorithm: The above two lemmas show that the BF encryption

scheme is "secure" if the adversary is given the encryption key and the ciphertext
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only. What if the adversary has a set of decryption keys in his hand? Can he

produce a di�erent key which enbles the decryption without being traced? In order

to recover the session key s, one has to obtain the value of ya. An adversary can

either compute a or �nd a representation of y with respect to basis H. It can be

easily shown that if one can obtain a from a set of representations of y with respect

to H then he can compute any discrete log problem in the group. So it is safe to

assume that the adversary cannot compute a.

Can an adversary compute a presentation of y with respect to H? Let D =

fd1; d2; � � � ; dmg be a set of known encryption keys. Here we think encryption keys

as representations of y with respect to basis H. Recall that any convex combination

of vectors in D is also a representation of y with respect to H. FromD, an adversary

can easily construct a convex combination of vectors in D. Boneh and Franklin

suggested that these convex combinations are the only new representations of y

with respect to H that can be eÆciently constructed from D. In [3], Boneh and

Franklin attempted to show that, if one can construct a new representation from D

which is not a convex combination of vectors in D, then he can compute discrete

log in the group. Although the proof was incorrect, it seems valid to assume the

following:

Conjecture 4.2.5 Given y;H = fh1; h2; � � � ; h2kg, and D a set of representations

of y with respect to H in Gq, the only new representation that can be constructed

eÆciently (i.e., in polynomial time) are the set of convex combinations of vectors

in D.

The tracing algorithm relies on the assumption that Conjecture 4.2.5 is true.

Suppose a decryption key d (a representation of y with respect to H) is captured

from a pirate decoder built by at most k traitors. If the conjecture is true, then d
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must be a convex combination of a set of at most k encryption keys. But notice

that a user's decryption key is a scalar multiple of a codeword in �. Then d is a

linear combination of at most k codewords in �. Let D � �, j D j� k. We say d

can be created by D if d can be written as a linear combination of codewords in

D. We require that the intersection of all such D's not empty for any private key

d. All members of the intersections are traced.

Let C be a linear code over Gq of length n, with dimension l�2k, and Hamming

distance 2k+1. Let B be a parity check matrix of C. Then B has dimension 2k�n,
and any 2k columns of B are linearly independent. Let � be the set of columns

of B. Now suppose the key d captured is a linear combination of k0 � k vectors

in �. Then we can write d = Bw, where w 2 G
n

q
with hamming weight at most

k. Notice that such w is unique, otherwise we have a set of at most 2k linear

dependent columns of B. Thus, d can be expressed as a linear combination of at

most k codewords in � uniquely, given that all coeÆcients are non-zero. Let D

denote the set of such codewords.

Now consider a vector v 2 G
n

q
such that Bv = d. Notice that v can be found

easily. Then B(v � w) = 0. So r = v � w is a codeword in C and w is an error

vector of weight at most k. Since C has dimension 2k+1, it can correct any error of

weight at most k. Therefore w can be found by decoding v to the nearest codeword

in C. Hence, we can �nd D and trace back to the users to whom the codewords in

D are assigned. Notice that in all previous tracing schemes, only one of the traitors

are identi�ed. In the BF scheme all traitors whose key was used to construct the

pirate key can be identi�ed.

In [3], BCH codes are used, and O(n log n log log n) group operations are re-

quired in the decoding. In practice, any linear code over Gq of length n, dimension

l�2k, and Hamming distance 2k+1 can be used, as long as the decoding algorithm
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of the code is eÆcient.

Above, we assumed a key has been captured from a pirate decoder. But is it

possible to recover the key based on how the decoder performs on di�erent input

ciphertexts?

Single-key Pirates: First, we consider the case in which the pirate decoder has

only one representation d of y and always uses d in decoding. This is called single-

key pirate since only a single decryption key is embedded in the pirate decoder.

We would like to extract this key from the decoder while treating the decoder as a

black box.

Let us consider C = (S; hz11 ; � � � ; hz2k2k ), where not all of z1; z2; � � � ; z2k have the

same value. Then C is not a valid ciphertext in the encryption scheme, as the

hi's are raised to di�erent powers. The basic idea of tracing is to observe the

decoder's behavior on invalid ciphertexts. The following lemma shows that the

decoder cannot distinguish invalid ciphertexts from valid ciphertexts assuming the

diÆculty of DDH in Gq. Hence, the decoder will always output

A =
SQ2k

i=1 (h
z1
1 )

Æi

where d = (Æ1; Æ2; � � � ; Æ2k) is the single key possessed by the decoder, just as it does

on an input of valid ciphertexts.

Lemma 4.2.6 Suppose there is an adversary that can distinguish invalid cipher-

texts in which basis elements are raised to di�erent powers, from valid ciphertexts

of the BF encryption scheme in group Gq with a non-negligible probability. Then

the adversary can also solve the DDH problem in Gq, with the same probability.

The reduction is in polynomial time, if k = O(log q).
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Proof: Recall that solving the DDH problem involves: given input (g; ga; gb; x),

decide whether x = g
ab, where g is a generator of Gq.

Suppose there is an adversary that can distinguish invalid ciphertexts from valid

ciphertexts with a non-negligible probability. First, we construct the public key of

a BF encryption scheme as follows: pick random ri; si 2Zq and set hi = g
rig

asi ; 1 �
i � 2k; pick random �1; �2; � � � ; �2k 2Zq and set y =

Q2k
i=1 h

�i

i
. The public key is

(y; h1; � � � ; h2k).

Given an instance of DDH problem (g; ga; gb; x), we construct

C = (S;
�
g
b

�
r1

x
s1;

�
g
b

�
r2

x
s2 ; � � � ;

�
g
b

�
r2k

x
s2k )

where S is a random element in Gq, and give C to the adversary.

Notice that, if x = g
ab, then

C = (S; gbr1gabs1 ; gbr2xabs2 ; � � � ; gbr2kxabs2k)
= (S; (gr1gas1)b ; (gr2gas2)b ; � � � ; (gr2kgas2k )b)
= (S; hb1; h

b

2; � � � ; hb2k):

So, C is a valid ciphertext for plaintext S

yb
. And if x 6= g

ab, C is an invalid ciphertext.

Thus, if the adversary can decide correctly whether C is a valid ciphertext with

a non-negligible probability, then he can certainly decide if x = g
ab successfully with

the same probability. The reduction is in polynomial time given that k = O(log q).

2

Therefore feeding a pirate decoder an invalid ciphertext,

C = (S; hz11 ; � � � ; hz2k2k );

we can assume that the decoder always outputs

A =
SQ2k

i=i (h
zi
i
)Æi
;
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where (Æ1; Æ2; � � � ; Æ2k) is the representation of y the pirate decoder has. ThenQ2k
i=i (h

z2k
i
)
Æi = S

A
can be easily computed. The tracer's task is to determine

(Æ1; Æ2; � � � ; Æ2k). Let z1; z2; � � � ; z2k be 2k linearly independent vectors in Z2k
q
, and let

zi = (zi;1; zi;2; � � � ; zi;2k). Then after feeding Ci = (Si; h
zi;1

1 ; � � � ; hzi;2k2k ); 1 � i � 2k,

to the decoder, we are able to obtain 2k equations,
Q2k

i=1

�
h
zj;i

i

�
Æi

=
Sj

Aj
; 1 � j � k,

where Aj is the decoder's output for ciphertext Cj. Then h
Æi
i
; 1 � i � 2k can be

determined from the set of 2k equations. Recall that the data supplier knows the

values of ri such that hi = g
ri; 1 � i � 2k. Thus the tracer can compute gÆi

i
, for

1 � i � 2k. Boneh and Franklin suggested to recover Æi from g
Æi

i by using trapdoors

of the discrete log introduced in [11] and [12].

Here we are going to brie
y describe how Paillier's algorithm in [12] works.

What Paillier presented is a public key cryptosystem that relies on the one-way

function f(x; y) = g
x
y
N
modN

2, where x 2ZN , and y 2Z�

N
. Let N = p � q, where

p, q are two large primes. Let g 2ZN2 be an element of order N. The public

key consists of (g), and the private key consists of (g; p; q). To encrypt a message

m < N , Alice chooses a random r < N , and computes c = g
m
r
N , where g is the

public key of Bob. Upon receiving the message c, Bob can retrievem by computing

L(c� mod N
2)

L(g� mod N2)
mod n, where L(u) = u�1

N
, and � is Carmichael's function on N , i,e.

� = lcm(p� 1; q � 1). The proof of soundness of the encryption scheme is beyond

the scope of this thesis. Here we only describe how the system can be used to

compute discrete logs in BF scheme.

Suppose the BF encryptions are done in Z�

N2, where N is a product of two

large primes p,q, and g has order N . Then given g
Æi, the tracer can compute

Æi =
L((gÆi)

� mod N2)

L(g� mod N2)
, since here r = 1, given that the tracer knows the factorization

of N . Thus by employing the trapdoor discrete log scheme in [12], a tracer can

obtain the key in a pirate decoder. Then by using the tracing algorithm in the
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previous section, we can identify all the traitors.

Arbitrary Pirates: Of course, pirates do not have to restrict the decoder to

contain only one single representation of y. Instead, the decoder can contain up

to k representations belonging to the traitors, and then arbitrarily choose a convex

combination of these representations in each decoding session. Boneh and Franklin

did not provide an eÆcient (polynomial time) tracing algorithm for this scenario.

However they did suggest an algorithm called black box con�rmation.

The idea is to enumerate all

0
B@ n

k

1
CA subsets of users of size k, and test whether

the subset is a superset of the set of traitors. Let d1; d2; � � � ; dk be the set of keys

belonging to a subset T of size k. To test whether the set of traitors is a subset of

T , the tracer queries the decoder with an invalid ciphertext, C = (S; gz1 ; � � � ; gz2k ),
such that di � z = w; 1 � i � k, where z = (z1; � � � ; z2k), and w is a random

element in Zq. The pirate decoder would output, A = SQ2k

i=i
(gzi)Æi

. If T is indeed a

superset of traitors, Æ = (Æ1; Æ2; � � � ; Æ2k) would be a convex combination of a subset

of d1; d2; � � � ; dk, and Æ � z = w, which implies A = S

gw
. Con�dence in this test can

be increased by making multiple queries, where each query is made independently

using di�erent S, z, and w. If for a coalition T , the pirate always outputs A = S

gw
,

then the pirate must possess a subset of keys belonging to T . The intersection of

all such T 's is the set of traitors.

Note this algorithm does not require trapdoors of discrete log. It does not even

require the decoding operation of the linear code mentioned above. But, the black

box con�rmation algorithm must test all

0
B@ n

k

1
CA subsets of users of size k, and

clearly it is not a polynomial time algorithm.
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EÆciency Measurement: The data supplier has to store � which is an n�2k

matrix of elements in Zq. In addition, he also stores y; r1; r2; � � � ; r2k; h1; h2; � � � ; h2k.
Note, the data supplier does not need to store �1; �2; � � � ; �2k once all the personal

keys are generated. So, the data supplier stores roughly O(nk) elements of Zq.

For encryption, the data supplier computes ya; ha1; h
a

2; � � � ; ha2k. So there are 2k+1
exponentiations, each requiring O(log q) group multiplications. Thus encryption

requires O(k log q) group multiplications, about O(k log3 q) bit operations. The

size of the enbling block is (2k + 1) log q.

Each user (i.e., his decoder) stores a representation d = (Æ1; Æ2; � � � ; Æ2k) of y.
d consists 2k elements of Zq To decrypt a session key, a decoder has to compute

ui = (ha
i
)Æi, 1 � i � 2k, U =

Q2k
i=1 ui; U

�1, and �nally sy
a
U

�1. Each exponentia-

tion requires O(log q) group multiplications. So computing ui; 1 � i � 2k requires

O(k log q) multiplications. Computing U needs another 2k � 1 multiplications. In-

verting U can be done in O(log q) multiplications. Lastly, one more multiplications

is needed to compute s. So the decryption requires O(k log q) group multiplications.

Given a key captured from a pirate decoder, the tracing algorithm can identify

all owners of the representations that are used to construct the pirate key, using

O(n log n log log n) group multiplications. To perform black box tracing on a single

key pirate, the tracer has to make 2k queries to the pirate decoder. This requires

O(k2 log q) multiplications, as each query is equivalent to performing a decryption.

Solving 2k equations to obtain h
Æi

i
; 1 � i � 2k, requires 2k additions in Zq which

is relatively cheap, and up to k exponentiations and k inversions in Gq. So this

step requries O(k log q) multiplications. To obtain g
Æi, 1 � i � 2k, another 2k

exponentiations (O(k log q) multiplications) are needed. Finally to compute Æi,

1 � i � 2k, using Paillier's algorithm requires 2 exponentiations in Gq and a

constant number of inversions and multiplications in Zq for each Æi. So the �nal
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step needs roughly O(k log q) multiplications in Gq. In total, to perform a black

box tracing on a single key pirate decoder, O(k2 log q) multiplications in Gq which

is equivalent to O(k2 log3 q) bit operations are required.



Chapter 5

Attempts of Public Key

Traceability Schemes

The schemes presented in the previous chapter are asymmetric in the sense that

the encryption key and decryption key are di�erent. But since the data supplier

knows each user's decryption key, he can still frame any user at his will. There

have been attempts to construct a truly asymmetric key traceability scheme in

which a user's decryption key is kept secret. We will call these schemes public

key traceability schemes. In this chapter we present the attempts by P�tzmann

[13], and Kurosawa and Desmedt [10]. Then we derive a public scheme from the

Boneh-Franklin traceability scheme discussed in Section 4.2.

5.1 P�tzmann's Schemes

In [13], P�tzmann proposed three asymmetric schemes in which the data supplier

and users do not share any secrets. In this model there is an entity called judge to

100
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whom evidence should be submitted in order to prove the accused user is indeed

a traitor. The �rst scheme employs a public key cryptosystem to encrypt/decrypt

session keys. The scheme itself is very simple. However, the enabling block size of

the scheme is linear in terms of the number of users, which is very ineÆcient. The

remaining two schemes require an underlying symmetric traitor tracing scheme.

The basic idea is to have a trusted third party (TTP) to assign the personal keys so

that the data supplier does not know who gets which personal key. Unfortunately

all these schemes are 
awed.

Scheme A: with linear-sized enabling blocks. In this scheme, each user has

two pairs of keys from a public key cryptosystem: ei, di for encryption/decryption,

and e
0

i
, d0

i
, for signature generation/veri�cation. Let E, D be the encryption and

decryption function of the system respectively. So to encrypt a message m for user

i, one computes c = Eei
(m), and user i computes Ddi

(c) to retrieve m. Suppose E

and D are also used for signature veri�cation and generation as well, eg. as with

RSA. Thus, to sign a message m, user i computes sigi = Dd
0

i
(H(m)), to verify the

signature, one computes Ee
0

i
(sigi) and compare it with H(m), where H is a suitable

cryptographic has function such as SHA-1.

Each user gives the data supplier his two public keys ei, e
0

i
and his signature

sigi = Dd
0

i
(H(di)) on his decryption key di, using signing key d

0

i
. The data supplier

encrypts a session key s using keys ei, 1 � i � n. This leads to an enabling block

Be = kn
i=1Eei

(s) of size O(n). Each user can decrypt s by using his private key di,

s = Ddi
(Eei

(s)).

Suppose a pirate decoder is captured. P�tzmann assumed that the decoder's

decryption key can be obtained, and no black box tracing was provided. The data

supplier �nds u such that sigu is a valid signature of d, by comparing H(d) with

Ee
0

i
(sigi), 1 � i � n. He can then submit d, e0

u
, sigu to a judge as the proof that u is
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a traitor. Since the data supplier does not know the private encryption key of any

user, it is unlikely that he can �nd a key d which has the same signature as a user's

private key signed by the user's signing key. However a user can easily submit a false

signature of his private encryption key, so that the data supplier would not �nd a

match between d and the message produced by verifying the signature submitted by

the user. The data supplier has no way to verify the signature without knowledge

of the user's private encryption key.

However, the data supplier can perform the tracing in a similar way as in the

CFNP schemes. For each i, 1 � i � n, replace Eej
(s), j 6= i in the enabling block

by some random data. If the decoder can still decode then it must have key di, and

user i is a traitor. With this modi�cation we don't even require each user to have

a pair of keys for signature generation/veri�cation. But, notice that if the decoder

has more than one key, it can detect tracing by decrypting s using two or more keys.

So strictly speaking, the scheme can trace a traitor coalition only of size 1. But if

we assume the detection is infeasible, maybe due to the limitation of a decoder's

computing power, the scheme can trace a coaltion of any size. Nevertheless the

enabling block size makes the scheme very ineÆcient. And there is no elegant proof

that can be submitted to the judge, expect for performing the tracing in front of

him.

Scheme B: Transform a symmetric scheme to a public-key scheme:

This scheme is obtained from a symmetric scheme by using a cryptographic primi-

tive called a secure 2-party protocol. Such a protocol achieves the following goals:

two parties have secret input x1, x2 respectively. Both of them want to know g(x1,

x2), where g is a function known to both of them. However, party one should not

gain any information on x2, nor party 2 on x1, except for what is revealed by the

value of g(x1; x2).
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Suppose we have a symmetric tracing scheme. Let P = fP1; P2; � � � ; Png denote
the set of personal keys. Instead of assigning Pi to user i, we want to assign the

keys in a way such that the data supplier does not know the identity of the owner

of any speci�c personal key.

User i is going to secretly select an id, idi (all users should have distinct ids).

Then user i inputs his secret idi to the 2-party protocol we call PP. The data

supplier inputs the set of personal keys to PP. The protocol returns a personal key

Pidi to user i and uses a known one way hash function f to compute hi = f(idi)

which is returned to the data supplier who will keep a list of hi's.

To trace a traitor, the tracing algorithm of the symmetric scheme was �rst run.

The algorithm does not trace an actual traitor, but identi�es a personal key, say Pt

which belongs to a traitor. The data supplier then compares f(t) with hi, 1 � i � n.

If f(t) = hc, c is a traitor.

We notice that this scheme can be broken by the data supplier who can easily

compute f(i), 1 � i � n. Then he does a simple comparison between f(i)'s and

hi's to �nd out who is the actual owner of each personal key. Thus this scheme does

not provide any more protection on users from being framed by the data supplier

than the underlying symmetric tracing scheme. The third scheme is very similar

to this scheme, and hence su�ers the same problem.

5.2 Kurosawa and Desmedt's Scheme

Kurosawa and Desmedt suggested a public key tracing scheme in [10]. This scheme

was derived from the asymmetric scheme discussed in section 4.1. Although the

asymmetric scheme has been broken, here we are more interested in the way the
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authors transform a non-public scheme to a public scheme.

In the new scheme, there are c entities called agents: A1, A2, � � �, Ac. Each

agent Aj generates a random polynomial

fj(x) = aj;0 + aj;1x+ aj;2x
2 + � � � + aj;kx

k

aj;0, aj;1, � � �, aj;k 2Zq. Let f(x) =
P

c

j=1 fj(x). Each agent Aj also computes

fj(i), 1 � i � n, and distributes fj(i)'s to user i through a secure channel. User

i computes f(i) =
P

c

j=1 fj(i) and uses it as his private key. The data supplier

receives yj;i = g
aj;i, 0 � i � k from Aj through a secure channel. He then computes

yi =
Q

c

j=1 yj;i. The public key is (y0; y1; � � � ; yk). Encryption and decryption works

in the same way as in the non-public scheme discussed in section 4.1.

Notice that in the non-public scheme, the data supplier is the one who generates

f(x) and computes each user's private key. But, here the c agents act together as

the key generator/distributor of the scheme.

We know that a coalition of more than one traitor can build a decoder without

being traced. But, here we are only concerned with whether the data supplier can

obtain any user's private key from the values yj;i, 1 � i � c, 1 � j � k. It can be

easily shown that if the data supplier can obtain f(i) for any i 2 f1; 2; � � � ; ng, then
he can compute discrete logs in the group S =< g >. Thus the data supplier can

not frame any user, if the discrete log problem is hard in S. Furthermore, unless

all c agents collude, or at least k + 1 users collaborate, f(x) cannot be computed.

Thus the transformation works in the sense that it does prevent the data supplier

from framing users.
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5.3 Boneh-Franklin public scheme

Let us consider what features the schemes in the previous two sections have in

common. Notice that in both cases, there is a TTP which does key distribution

or/and generation, which was done by the data supplier in the non-public schemes.

In P�tzmann's scheme, the 2-party protocol serves as the TTP, and in Kurosawa-

Desmedt's public scheme, the c agents act together as a TTP. In all the non-public

schemes presented, the data supplier does both key generation and distribution. In

order to convert a non-public scheme to a public scheme, we need to relieve the data

supplier from both duties. In P�tzmann's scheme, although the 2-party protocol

performs the key distribution, the data supplier still generates all personal keys,

which leads to an easy attack on the scheme.

Here we present a method to derive a public scheme from Boneh-Franklin's

scheme which was discussed in Section 4.2. We assume the scheme does not have

the trapdoor which makes it easy to compute discrete logs in the underlying group

Gq.

Recall that in the BF scheme, the data supplier randomly chooses �1, �2, � � �,
�2k 2Zq and computes y =

Q2k
i=1 h

�i
i . In the new scheme this step is performed by

a TTP. The TTP also has the generator of Gq: g, and the values of ri, 1 � i � 2k,

such that hi = g
ri. These values enable the TTP to compute each user's private

key as the data supplier does in the original BF scheme.

In the new scheme, the data supplier does not know any representation of y.

In order to frame a user, the data supplier �rst has to construct a decoder which

has a representation of y as its decryption key. It is easy to show that if the data

supplier can construct a representation of y with respect to h1, h2, � � �, h2k from y

and h1, h2, � � �, h2k alone, then he can solve discrete logs in Gq. We require a BF
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scheme without the trapdoor so the data supplier can not frame any user.

As in Kurosawa-Desmedt's public scheme, we can have several agents to act

together as a TTP, so that a user can be framed only if all agents collaborate. Each

agent Aj randomly generates �j;1, �j;2, � � �, �j;2k 2Zq and computes yj =
Q2k

i=i h
�j;i

i

and

�i;j =

P2k
l=1 rl�j;kP2k
l=1 rlÆ

(i)

l

:

yj is made public and �i;j is given to user i through a secure channel.

The data supplier and each user computes

y =
cY

j=1

yj

=
cY

j=1

2kY
i=1

h
�j;i

i

=
cY

j=1

g

P2k

i=1
ri�j;i

= g

Pc

j=1

P2k

i=1
ri�j;i

:

Each user i computes his personal key

�i =
cX

j=1

�i;j

=

P
c

j=1

P2k
l=1 rl�j;kP2k

l=1 rlÆ
(i)

l

:

Then

2kY
l=l

(h
Æ
(i)

l

l
)�i = g

�i

P2k

l=l
r
Æ
(i)

l
l

= g

Pc

j=1

P2k

l=1
rl�j;l

= y:
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Therefore �i = (Æ
(i)
1 ; Æ

(i)
2 ; � � � ; Æ(i)2k ) is a presentation of y with respect to basis:

(h1; h2; � � � ; h2k). Encryption and decryption works in the same way as in the orig-

inal BF scheme.

All c agents have to collaborate in order to obtain any representation of y. So,

we have derived a public scheme from a non-public BF scheme. Since we assume the

BF scheme has no trapdoors to help computing discrete log in Gq, the new scheme

does not support black box tracing. But given a key found in a pirate decoder, the

same tracing algorithm in original BF scheme can be used to trace all the traitors

whose private key is used in constructing the key captured in the pirate decoder.



Chapter 6

Other Traceability Schemes

In this chapter, we present a couple of other traceability schemes that have been

suggested. Chameleon is a stream cipher designed by Anderson and Manifavas [2]

to allow traitor tracing. Digital signet was proposed by Dwork, Lotspiech and Noar

[7], whose goal was to motivate users to be self-policing.

6.1 Chameleon

In 1996, Ross Anderson and Charalamps Manifavas introduced a stream cipher

called Chameleon which allows traitor tracing. The main idea is to give each user

a slightly di�erent decryption key that had the e�ect of producing slightly di�erent

plaintexts.

The scheme is built upon a pseudorandom number generator (PRNG), or any

block cipher in output feedback mode. A �ngerprinting scheme is required. Finger-

printing involves uniquely marking and registering each copy of a piece of data so

that, given a copy of the data, the distributor is able to trace it back to its owner.
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A mark is a position which can be in one of q states in the data. A �ngerprint

is a collection of marks, and can be thought as a codeword of length L over an

alphabet of size q, L is the number of marks in the data. An (N;L) �ngerprinting

scheme is a set of N �ngerprints of length L. However a coalition of users may

detect some of the marks, namely the ones in which their copies di�er. They can

then change these marks arbitrarily hoping to mask their identities. We call an

(N;L) �ngerprinting scheme is totally k-secure if there exists a tracing algorithm A

satisfying the following condition: if a coalition T of size at most k generates a copy

x by changing the marks where their copies di�er then A(x) 2 T . If we want to

make Chameleon a (k; n) traitor tracing scheme, we would require a totally k-secure

�ngerprinting scheme which can produce n copies of data. For a detailed discussion

of �ngerprinting schemes, see [4]. In [2], the authors randomly generated 4000

marks in a piece of data of size 512KB, to achieve a (4; n) traitor tracing scheme.

In Chameleon, instead of planting �ngerprints into the content, each user's per-

sonal key is embedded with a unique �ngerprint so that when a decoder decrypts the

ciphertext, the �ngerprint would be generated in the output. Notice that here only

one copy of the ciphertext is broadcasted, while an ordinary �ngerprinting scheme

would require several slightly di�erent ciphertexts and each of them is distributed

to an unique user.

Key Generation/Distribution: Each user should have two keys: The �rst

key, which we call A, is the same for all users. A is used as a seed for the PRNG,

and can be broadcasted publicly. Each user i also gets Bi which is a table of l

r-bit words - a total of lr bits of data. In the example in [2] Bi is a table of 216

64-bit words - i.e., 512 KB of data. Each Bi is obtained by introducing a unique

�ngerprint to the master key B of the same size owned by the data supplier. Bi is

never changed after it is assigned.
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Encryption/Decryption: To encrypt a r-bit content, the data supplier takes

the next log l (assume l is a power of 2) bits of output of the PRNG and uses it to

select one word of B. How the word is selected is public information. The selected

word is then XORed with the content to produce a ciphertext. In the same way,

the ciphertext can be decrypted. But each user uses his personal Bi instead of B

in decryption. Notice that any marking in the chosen word of Bi is inherited by

the output.

Tracing: The tracing relies on the tracing algorithm of the underlying �n-

gerprinting scheme. Suppose a coalition T of at most k traitors collaborated and

built a pirate decoder. The B key in the pirate decoder is generated by changing

the marks at which the coalition members' B keys di�er. Since the B keys are

produced by a totally k-secure �ngerprinting scheme, the tracing algorithm of the

scheme is able to trace one member of the T given the marks in the B key of the

pirate decoder. Suppose a pirate decoder was captured. The data supplier can use

the decoder to produce a content embedded with the �ngerprint in the decoder's

B key. The tracing algorithm of the �ngerprinting scheme should be able to trace

one member of the coalition.

In the example used in [2], 4000 marks are generated at random in each user's

B key. It is expected that the example scheme can trace a traitor if there are at

most four traitors.

In general, the security level of the tracing scheme relies on the underlying

�ngerprinting scheme. Besides the �ngerprinting scheme, the rest of Chameleon is

very simple, as only a PRNG is needed. It does not even require an encryption

scheme to encrypt the content, as content is XORed with the words chosen from

the B key. The scheme also supports a straightforward black box tracing algorithm

as long as the tracing algorithm of the �ngerprinting scheme is available.
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Unfortunately, in [4], it was shown that, for c � 2 and n � 3, there are no

totally c-secure (n; l) �ngerprinting schemes. This forces us to settle for schemes

which trace a traitor with a small error probability �. Such schemes are called

k-secure schemes with �-error. The following two theorems were proved in [4].

Theorem 6.1.1 For n � 3 and � > 0, there exists an (n; 2n2 log(2n=�) �ngerprint-

ing scheme which is n-secure with �-error.

Theorem 6.1.2 For n � 3 and � > 0, there exists an (n; k4 log(n=�) log(1=�))

�ngerprinting scheme which is k-secure with �-error.

Notice that the length of the �ngerprinting scheme in Theorem 6.2 is roughly

the same as the size of the base keys in the one level open CFNP traceability

schemes. Thus Chameleon schemes require very large personal keys. On the other

hand, Chameleon does not require an enabling block as long as the data supplier

and users agree on the A key which can be broadcasted to each user. As well, the

speed of Chameleon is very fast.

6.2 Digital Signet

In 1996, digital signet was proposed by Dwork, Lotspiech and Naor [7]. In this

scheme, each session key is encrypted using each user's personal key, which includes

some sensitive private information (such as credit card number) related to the

owner. The scheme tried to force the owner either to reveal the sensitive information

or to redistribute the session key which is as long as the content, i.e., redistributing

it would require the same bandwidth as the content distribution channel.



CHAPTER 6. OTHER TRACEABILITY SCHEMES 112

Each user i must submit sensitive information ui to the data supplier so that

the DS can compute a signet �i for user i using a authentication funtion. Using ui

and �i user i is able to obtain session key s using a public extrication function h,

s = h(ui; �i). s is required to be much longer in length than ui and �i.

The authors require f to be incompressible. A function h(t) is incompressible

if kh(x)k >> kxk for all x and in order for A to communicate h(x) to B in o(kxk)
bits, A must reveal x. In order words, there is no feasible computable short message

that allows B to learn h(x) while simultaneously protecting x.

The incompressible function chosen by the authors is very similar to the en-

cryption/ decryption function used in Kurosawa and Desmedt's (KD) traceability

scheme in Section 4.1. Let G be a group of order p, let q be a prime such that

q j p � 1. Let g be an element of order q in G.

As in KD scheme, the data supplier chooses a random function:

h(x) = a� (b1x+ b2x
2 + � � �+ bkx

k):

and Z = (g; y1 = g
b1; y2 = g

b2 ; � � � ; yk = g
bk) is made public. ga comprises one block

of session key. The authentication function takes ui and computes �i = f(ui),

where ui is the personal information submitted by user i. Then �i is returned to

user i as his signet.

Using ui and �i, user i is able to compute ga:

g
�i

kY
j=1

y
u
j
i

i = g
a�

Pk

j=1
bju

j
i
+
Pk

j=1
bju

j
i = g

a

The full session key is obtained by choosing g1, g2, � � �, and concatenating g
a

1 ,

g
a

2 , � � �. So

Zj = (gj; y1;j = g
b1
j ; y2;j = g

b2
j ; � � � ; yk;j = g

bk
j
); j = 1; 2; � � �
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are also required to be made public. This scheme seems highly ineÆcient: to

encrypt one block of session key ga
i
, the amount of data needed to be made public

has size (k+1)kga
i
k. However in this scheme, the authors attempted to prevent the

traitors from redistributing the session keys, while this problem was not addressed

in any previously discussed schemes.

Clearly, the attack on SD scheme can be also employed to attack the signet

scheme. A coalition T of traitors can publish a convex combination of f(ui), ui,

u
2
i
, � � �, uk

i
, i 2 T . The published information would allow the decoding of the

session keys, but protect the ui's from being exposed. In an attempt to reduce the

computation cost and thwart the attack, the authors proposed a modi�cation of

the above scheme.

Let m = 2k, choose random B = fb1; b2; � � � ; bmg, and make

Z = (g; y1 = g
b1 ; y2 = g

b2; � � � ; ym = g
bm)

public. Let P : U ! f1; 2; � � � ;mgs, be a random function. Suppose P (i) =

(c1; c2; � � � ; cs), then user i's signet �i = a� (
P

s

j=1 bcju
j

i ), i.e. �i = fi(ui), where

fi(x) = a� (
sX

j=1

bcjx
j)

= a� (
mX
j=1

X
r:P (i)r=r

bjx
r);

where P (i)r denotes the rth entry of P (i). �i together with P (i) are distributed

to user i. User i can compute ga = g
�i
Q

s

j=1 y
u
j
i

cj . A full session key is obtained by

concatenating g
a

1 ; g
a

2 ; � � � as in the original scheme. This modi�ed scheme reduces

the amount of computation during the generation of the signets and session keys,

but increases the amount of public information required.
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The above modi�cation does not prevent the attack outlined in Section 4.1.

WLOG, let f1; 2; � � � tg be a coalition of traitors. The coalition computes a convex

combination of fi(ui), 1 � i � t: v0 =
P

t

i
cifi(ui), where

P
t

i
ci = 1. And for each

j, 1 � j � m, the coalition also computes vj =
P

t

i=1

P
r:P (i)r=j

ciu
r

i
. To obtain g

a,

one can compute

g
v0

mY
j=1

y
vj

j

= g

Pt

i
cifi(ui)g

Pm

j=1
bj

Pt

i=1

P
r:P (i)r=j

ciu
r
i

= g

Pt

i
ciag

�

Pt

i=1
ci

Pm

j=1

P
r:P (i)r=j

bju
r
i g

Pm

j=1
bj

Pt

i=1

P
r:P (i)r=j

ciu
r
i

= g
a
g
�

Pt

i=1

Pm

j=1

P
r:P (i)r=j

bjciu
r
i g

Pt

i=1

Pm

j=1

P
r:P (i)r=j

bjciu
r
i

= g
a

The authors claimed that there is a high probability that for a random set of

k traitors, there exist a bj such that bj is only assigned to exactly one traitor say

t. So ut can be found easily giving vj. Let us consider this probability. There

are k traitors, each assigned s elements from the set B = fb1; b2; � � � ; bmg with

replacement. So there are a total of msk ways to do the assignment. WLOG,

say the �rst number assigned to traitor t is bj which is not assigned to any other

traitor. There are m ways to choose bj, and there are m(s�1) ways to assign s � 1

more numbers to t, as bj can be assigned to t more than once. For the rest of the

k � 1 users there are m � 1 elements available, and hence there are (m � 1)s(k�1)

possible assignments. Thus the probability that one traitor is assigned a bj which

is not assigned to any other traitor is:

pr =
mm

s�1(m� 1)s(k�1)

ms

=
(m� 1)s(k�1)

ms(k�1)
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=

�
1� 1

m

�s(k�1)

=

��
1 � 1

m

�m�s k�1
m

�
�
e
�1
�
s
k�1
m

pr is less than 1
4
if we take s = 3 and m = 2(k � 1). And it is less than 3

4
if we

take s = 3 and m = 10(k � 1). Furthermore this is the probability for a randomly

chosen coalition. The probability that there is a coalition of size k which does not

have such property would be extremely high.

Even if there is a bj such that bj is assigned to traitor t only. Then vj =

at
P

r:P (t)r=j u
r

t
. But without the knowledge of at, it is impossible to �nd ut. And

vj could even be a linear combination of the powers of some other ui's. Thus we

believe the attack still works against this modi�ed version of the signet scheme.

Signet is quite similar to the Kurosawa-Desmedt scheme, except that signet

attempted to address the problem of a pirate redistributing session keys. Conse-

quently, the public information required is O(k) times the actual content to be

broadcasted. This seems very impractical.



Chapter 7

Conclusion

We have surveyed several traceability schemes in the previous chapters. We at-

tempted to categorize them into three types: symmetric, asymmetric and public,

based on how the session keys are encrypted and decrypted.

CFNP and SW schemes are symmetric schemes in the sense that the session

keys are encrypted using symmetric encryption schemes: the keys used to encrypt

and decrypt each share are the same. The existence of six types of CFNP were

proven, while actual constructions for the open one level scheme were also given.

The constructions arose from combinatorial objects such as transversal designs and

orthogonal arrays.

Stinson-Wei's scheme is similar to the one level open CFNP scheme. The au-

thors provided constructions that are as eÆcient as the constructions for the CFNP

scheme. Stinson-Wei's constructions are based on combinatorial objects such as

balanced incomplete block designs.

Given the set of keys in a pirate decoder, a straightforward algorithm is available

to identify at least one traitor. Although black box tracing algorithms were also
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provided, they were much more complicated, and even worse, they can be detected

by a private decoder having extra keys. The importance of the requirement of a

black box tracing algorithm might be overstated. If the traitors can access their

decoders to �nd out their personal keys, it seems reasonable to assume that the

data supplier would be also able to access the pirate decoder to determine the key

without a black box algorithm. It does not make sense if the pirate decoder would

provide more tamper resistance than a legitimate decoder, and hence cost more

money to make.

The amount of base keys the data supplier has to store is in the order of

O(k4 log n) (using a one level open scheme). The same amount of decryptions

have to be performed to decrypt a session key. Each user has to store O(k2 log n)

keys and perform the same amount of decryptions to obtain a session key.

The Kurosawa-Desmedt and Boneh-Franklin schemes are asymmetric schemes.

The keys used to encrypt and decrypt a session key are di�erent. In fact, the

encryption scheme alone is a valid public key encryption scheme. But, due to the

requirement of tracing, each user's private key is known to the data supplier. Thus

the DS can impersonate any user at his will.

The security of encryption schemes in the both of these schemes rely on the dis-

crete logarithm problem. The tracing algorithm in the Kurosawa-Desmedt scheme

was broken. The authors made an unrealistic assumption that all pirate decoder's

decryption keys must be of the same form as the legitimate decoders.

The Boneh-Franklin scheme also requires an assumption on the structure of

the key in all pirate decoders. The soundness of the tracing algorithm relies on

Conjecture 4.2.5. If the conjecture holds, then given a key captured from a pirate

decoder, the Boneh-Franklin scheme employs coding theory techniques to trace all
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traitors who helped in constructing the key. A black box tracing algorithm was

provided to trace the traitors in a single key pirate only if trapdoors can be planted

to help the data supplier computing discrete logarithms in the underlying group.

No eÆcient black box tracing algorithm is available for arbitrary pirates.

The biggest advantage of Boneh-Franklin scheme is that it can trace all traitors

who contributed in building the key in a pirate decoder. In the CFNP scheme,

only one of the traitors is identi�ed. In the Boneh-Franklin scheme, each user's

personal key has size O(k log q) bits, and the same amount of group multiplications

are required in decryption. q is usually very large: e.g., in the order of 280, which

is much larger than n. The amount of information each user has to store in the

one level open CFNP scheme is slightly more then what a user has to store the

Boneh-Franklin scheme. The data supplier has to store O(nk log q) bits of data in

the Boneh-Franklin scheme while in the CFNP scheme O(k4 log n) keys are stored.

Assuming each key is roughly log q bits in size, and k is much smaller than n, CFNP

scheme has an advantage in the amount of information has to be stored by the data

supplier.

There are a couple of attempts to construct public traceability schemes which

require the data supplier and users share no secrets at all. One successful attempt is

to build upon an asymmetric scheme (such as Boneh-Franklin scheme) and having

a trusted third party to handle the key generation and distribution, so that the

data supplier has no knowledge on the user's personal keys. One open problem is

to construct a public traceability scheme without the requirement of a trusted third

party.

Chameleon is a stream cipher designed to support traitor tracing. It is a very

attractive scheme since its encryption/decryption is extremely fast. The encryp-

tion/ decryption process involves a PRNG and XOR operations only. However
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Chameleon uses �ngerprinting schemes which require each user's personal key to

be extremely large: as large as the size of all base keys in a one level open CFNP

scheme.

Digital signet employed the same encryption function as the Kurosawa-Desmedt

scheme. Hence it is vulnerable to the same attack which broke the Kurosawa-

Desmedt scheme. The digital signet scheme attempted to address the problem of

session key redistribution by a pirate. But, in doing so, the amount of information

that has to be made public is O(k) times as long as the actual content to be

broadcasted. This makes digital signet highly impractical.
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