
Open Source Software Evolution and Its Dynamics

by

Jingwei Wu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©Jingwei Wu 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. The is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis undertakes an empirical study of software evolution by analyzing open source

software (OSS) systems. The main purpose is to aid in understanding OSS evolution. The

work centers on collecting large quantities of structural data cost-effectively and analyzing

such data to understand software evolution dynamics (the mechanisms and causes of change

and growth).

We propose a multipurpose systematic approach to extracting program facts (e.g., func-

tion calls). This approach is supported by a suite of C and C++ program extractors, which

cover different steps in the program build process and handle both source and binary code.

We present several heuristics to link facts extracted from individual files into a combined

system model of reasonable accuracy. We extract historical sequences of system models to

aid software evolution analysis.

We propose that software evolution can be viewed as Punctuated Equilibrium (i.e., long

periods of small changes interrupted occasionally by large avalanche changes). We develop

two approaches to study such dynamical behavior. One approach uses the evolution spec-

trograph to visualize file level changes to the implemented system structure. The other ap-

proach relies on automated software clustering techniques to recover system design changes.

We discuss lessons learned from using these approaches.

We present a new perspective on software evolution dynamics. From this perspective,

an evolving software system responds to external events (e.g., new functional requirements)

according to Self-Organized Criticality (SOC). The SOC dynamics is characterized by the

following: (1) the probability distribution of change sizes is a power law; and (2) the time

series of change exhibits long range correlations with power law behavior. We present em-

pirical evidence that SOC occurs in open source software systems.

iii

Acknowledgements

First and foremost, I thank my advisor Prof. Richard C. Holt for his support, patience

and encouragement throughout my doctoral studies. It is Richard who guided me through

the maze of academic research and made the work in this thesis happen. His technical and

editorial advice was essential to the completion of this thesis. Thanks Ric!

I thank my other dissertation committee members, Prof. Charlie Clarke, Prof. Michael

Godfrey, Prof. Kostas Kontogiannis, and Prof. Gail Murphy, for their invaluable time and

effort put into reading my thesis. In particular, I want to thank Michael for encouraging me

to purse research in the field of software evolution and for providing constructive comments

on many aspects of this thesis.

I thank Prof. Margaret-Anne Storey and Prof. Hausi Müller for showing me the door to

exciting research in software engineering in my early graduate school life at the University

of Victoria. My sincere gratitude goes to Margaret for her early supervision of my masters

thesis. She taught me many valuable lessons on the workings of academic research.

I also thank many current and previous members of SWAG, in particular, Cory Kapser,

Davor Svetinovic, Lijie Zou, Xinyi Dong, Yuan Lin and Ahmed E. Hassan (with whom I

have collaborated on many research papers). I appreciate their great friendship as well as

their insightful comments on many ideas in this thesis. They have made my life at SWAG

a very enjoyable experience.

I feel honored to have been awarded by IBM the Center for Advanced Studies Fellowship

for four years. I thank IBM for offering me opportunities to work on many exciting research

projects at the IBM Toronto Lab during summers. In particular, I thank my mentors, Dr.

Marin Litoiu and Dr. Kelly Lyons, for their inspiring guidance.

I am grateful to my fiancee, Hong, for sharing her experience of writing dissertation

with me, for listening to my frustrations and for believing in me. I am greatly indebted to

v

my three elder sisters for looking after my mother wholeheartedly when I am thousands of

miles away from home. Without their understanding and support, I would not have been

able to come this far.

This thesis would not have been possible if it were not for a truly great person, my

dear mom. Her love, encouragement and understanding are my greatest source of strength

throughout this long journey.

I dedicate this thesis to my dear mom.

Jingwei Wu

in January 2006

vi

Contents

1 Introduction 1

1.1 Prior Research . 1

1.1.1 Open Source Software Evolution . 3

1.2 Problem Definition . 5

1.3 Thesis Organization . 6

1.4 Thesis Overview . 8

1.5 Contributions . 11

2 An Extractor Suite for C and C++ 15

2.1 Introduction . 15

2.2 The CX Suite . 17

2.2.1 CPPX . 18

2.2.2 BFX . 19

2.2.3 LDX . 21

2.2.4 CTSX . 23

2.3 Applications . 27

2.3.1 Creating Comprehension Pipelines 28

2.3.2 Building Software Evolution Database (EvolDB) 32

vii

2.4 Discussion . 37

2.4.1 Performance . 37

2.4.2 Accuracy and Robustness . 38

2.4.3 Systematic Support for C/C++ Extraction 40

2.5 Related Work . 41

2.6 Conclusion . 42

3 Improving Linkage Resolution in System Model Extraction 43

3.1 Introduction . 44

3.2 Program Model Linking . 46

3.2.1 Sample Schema of LPM . 46

3.2.2 LPM Linking . 48

3.2.3 Linkage Anomalies . 48

3.3 Linking Rules and Heuristics . 50

3.3.1 Linking Rules . 50

3.3.2 Linking Heuristics . 51

3.4 Linking Methods . 54

3.4.1 Raw Linking . 55

3.4.2 Heuristics-Based Linking . 55

3.4.3 Simulation-Based Linking . 57

3.4.4 Simulation plus Heuristics . 61

3.4.5 Summary . 62

3.5 Experimental Setup . 63

3.5.1 Experimental Conditions . 63

3.5.2 Baseline for Comparison . 66

3.6 Experimental Results . 67

viii

3.6.1 Result Analysis Under Condition C1 67

3.6.2 Result Discussions Under All Conditions 71

3.7 Conclusion . 73

4 An Empirical Study of Punctuated Software Evolution 75

4.1 Introduction . 76

4.2 Punctuated Software Evolution . 77

4.2.1 Software Architecture . 78

4.2.2 Periods of Punctuation . 78

4.2.3 Periods of Equilibrium . 79

4.3 Methodology . 79

4.3.1 Analysis Overview . 80

4.3.2 Evolution Spectrograph . 82

4.4 Case Studies . 87

4.4.1 OpenSSH . 88

4.4.2 PostgreSQL . 91

4.4.3 Linux Kernel . 94

4.5 Discussions . 96

4.5.1 Threats to Validity . 97

4.6 Related Work . 98

4.6.1 Evolution Understanding . 98

4.6.2 Evolution Visualization . 99

4.7 Conclusion . 101

5 Clustering Comparison in the Context of Software Evolution 103

5.1 Introduction . 104

ix

5.2 Target Systems . 106

5.3 Experimental Design . 107

5.4 A Simple Ordinal Measure . 111

5.5 Empirical Results and Interpretation . 112

5.5.1 Stability Comparison . 112

5.5.2 Authoritativeness Comparison . 117

5.5.3 Extremity Comparison . 121

5.6 Discussion . 125

5.7 Related Work . 128

5.8 Conclusions . 129

6 Fractal Nature of Software Evolution and SOC Dynamics 131

6.1 Introduction . 132

6.2 Background . 134

6.2.1 Fractal . 134

6.2.2 Power Law . 135

6.2.3 Time Series Analysis . 136

6.2.4 Self-Organized Criticality . 139

6.3 Data Collection . 139

6.3.1 Software Change . 139

6.3.2 Time Series of Change . 142

6.4 Examining Fractals in Software Evolution 142

6.4.1 Power Law Distribution of Software Changes 142

6.4.2 Long Range Correlations in Time Series 148

6.4.3 Summary . 151

6.5 Discussions . 151

x

6.6 Validity Threats and Limitations . 157

6.7 Related Work . 158

6.8 Conclusion . 160

7 Conclusions and Future Work 161

7.1 Thesis Contributions . 163

7.2 Future Work . 165

7.2.1 Preprocessor-Based Program Extraction 165

7.2.2 Evolution Visualization on a Large Scale 165

7.2.3 Evolution Analysis of Software Architecture 166

7.2.4 Evolution Simulation Based on Known SOC Models 167

A A List of Open Source Projects 169

B Distributions of Software Changes 175

xi

List of Tables

1.1 Laws of software evolution as summarized by Lehman [LRW+97] 2

2.1 Uses of comprehension pipelines on software systems 30

2.2 Open source systems extracted using the CX extractors 34

3.1 Experimental conditions for linkage resolution 64

3.2 Linkage resolution under condition C1 (PostgreSQL) 68

3.3 Individual linking steps of LDH and HEU (PostgreSQL) 69

3.4 Anomaly ratios at varying levels of granularity (PostgreSQL) 70

4.1 Setting for studying punctuated software evolution 87

4.2 Ratio of changed files in PostgreSQL . 91

5.1 Software systems chosen for the clustering experimentation 106

5.2 Relative stability scores obtained using MoJo 116

5.3 HML-based stability scores obtained using MoJo 116

5.4 Relative authoritativeness scores obtained using MoJo 120

5.5 A summary of ordinal evaluation of clustering algorithms 125

6.1 Scaling exponents for distributions of software changes 146

6.2 Hurst exponents from R/S analysis of daily time series 150

xii

6.3 Analogy between the sandpile model and software system 153

xiii

List of Figures

1.1 Thesis Overview . 7

2.1 BFX fact schema . 20

2.2 LDX as a substitute for LD . 22

2.3 CTSX built on Ctags and Cscope . 23

2.4 Program comprehension pipelines built on the CX extractors 27

2.5 Performance comparison of the CX extractors 37

3.1 A sample schema of LPM . 47

3.2 Linking heuristic: File-File . 52

3.3 Linking heuristic: File-File Closure . 53

3.4 Linking heuristic: Same Subsystem . 53

3.5 Linking heuristic: Nearest Super Subsystem 54

3.6 A partial build dependency graph of PostgreSQL 60

3.7 Quantitative comparison of cross-references in PostgreSQL 72

4.1 Spectrograph model based on matrix . 85

4.2 Evolution spectrographs of OpenSSH . 89

4.3 Evolution spectrographs of PostgreSQL . 92

4.4 Evolution spectrographs of Linux . 95

xiv

5.1 Comparison of clustering algorithms in the context of software evolution . 107

5.2 Intra-sequence clustering comparison . 113

5.3 Stability comparison wrt PostgreSQL . 115

5.4 Inter-sequence clustering comparison . 118

5.5 Authoritativeness comparison wrt PostgreSQL 119

5.6 Distribution comparison of clustering algorithms wrt PostgreSQL 122

5.7 NED-based distribution comparison wrt PostgreSQL 124

6.1 A delta graph between two adjacent versions 141

6.2 Tail cumulative distribution of change sizes for GCC 144

6.3 R/S analysis of daily time series for GCC 149

B.1 Tail CDF of changes recovered from the CVS repository 176

B.2 Tail CDF of daily system structural changes 177

xv

Publications

The work presented in this thesis has appeared peer-reviewed articles listed below:

1. Fractal Nature of Software Evolution and SOC Dynamics. Jingwei Wu, Richard C.

Holt and Ahmed E. Hassan. Draft.

2. An Extractor Suite for C and C++: Choosing the Right Tool for the Job. Jingwei

Wu and Richard C. Holt. Draft.

3. Comparison of Clustering Algorithms in the Context of Software Evolution. Jingwei

Wu, Ahmed E. Hassan and Richard C. Holt. Proceedings of International Conference

on Software Maintenance (ICSM). Budapest, Hungary, September 2005.

4. Visualizing Historical Data Using Spectrographs. Ahmed E. Hassan, Jingwei Wu

and Richard C. Holt. Proceedings of International Symposium on Software Metrics

(METRICS). Como, Italy, September 2005.

5. Exploring Software Evolution Using Spectrographs. Jingwei Wu, Richard C. Holt and

Ahmed E. Hassan. Proceedings of IEEE Working Conference on Reverse Engineering

(WCRE). Delft, Netherlands, November 2004.

6. Evolution Spectrographs: Visualizing Punctuated Change in Software Evolution. Jing-

wei Wu, Claus W. Spitzer, Ahmed E. Hassan and Richard C. Holt. Proceedings of

International Workshop on Principles of Software Evolution (IWPSE). Kyoto, Japan,

September 2004.

7. Resolving Linkage Anomalies in Extracted Software System Models. Jingwei Wu and

Richard C. Holt. Proceedings of International Workshop on Program Comprehension

(IWPC). Bari, Italy, June 2004.

8. Linker-Based Program Extraction and Its Uses in Studying Software Evolution. Jing-

wei Wu and Richard C. Holt. Proceedings of International Workshop on Unantici-

pated Software Evolution (FUSE). Barcelona, Spain, March 2004.

xvi

Chapter 1

Introduction

As open source software gains popularity, researchers have great opportunities to study and

explore large numbers of open source projects to gain an enhanced understanding of soft-

ware evolution. In this research, we develop techniques and approaches to support software

evolutionary data collection and investigation on a large scale. We present several new ways

for understanding the evolution of open source software systems by making use of collected

evolutionary data.

1.1 Prior Research

Lehman et al. formulated and refined eight laws of software evolution to model the dynam-

ical behavior (change or growth) of software systems as these systems are maintained and

enhanced over time [LB85, Leh97]. As summarized in Table 1.1, the eight laws are Con-

tinuing Change, Increasing Complexity, Self Regulation, Conservation of Organizational

Stability, Conservation of Familiarity, Continuing Growth, Declining Quality, and Feedback

System [Leh97]. Lehman’s laws represent the best known body of work on understanding

1

2 Open Source Software Evolution and Its Dynamics

No. Brief Name Law Description

I Continuing Change
An E-type system must be continually adapted else it becomes
progressively less satisfactory.

II Increasing Complexity
As an E-type system evolves its complexity increases unless
work is done to maintain or reduce it.

III Self Regulation Global E-type system evolution processes are self-regulating.

IV
Conservation of
Organizational Stability

The average effective global activity rate in an evolving E-type
system is invariant over system lifetime.

V
Conservation of
Familiarity

During the active life of an E-type system, the content of suc-
cessive releases is statistically invariant.

VI Continuing Growth
The functional content of E-type systems must be continually
increased to maintain user satisfaction over their lifetime.

VII Declining Quality
The quality of E-type systems will appear to be declining un-
less they are rigorously maintained and adapted to operational
environmental changes.

VIII Feedback System
E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
be successfully modified or improved.

Table 1.1: Laws of software evolution as summarized by Lehman [LRW+97]

(An E-type system solves a problem or addresses an application in the real world.)

the evolution of large, long-lived software systems.

The laws of software evolution were initially grounded on observing how large software

systems were developed and maintained in corporate environments using conventional man-

agement techniques and processes [LB85]. Attention was mainly directed to phenomena

related to growth, continual adaptation, user satisfaction, global activity rate and feedback.

The advent of open source software projects provides new opportunities for studying soft-

ware evolution over large numbers of systems. A large amount of effort have been devoted

to studying open source software evolution, and a variety of interesting and sometimes even

conflicting findings have been reported, which we review briefly in the following section.

Introduction 3

1.1.1 Open Source Software Evolution

Open source software projects rely on a development approach different from the way most

closed source industrial software systems are created [Ray99]. This approach promotes free

access to the source code and collaborative development which is commonly supported by

a decentralized Internet-based developer and user community. Recent empirical studies of

open source software evolution have reported on evidence for either validation or disproof of

Lehman’s laws. Many interesting evolutionary phenomena not characterized by Lehman’s

laws are also discovered.

Godfrey and Tu observed the super-linear growth of the Linux kernel from 1994 to 1999

[GT00]. The growth of Linux is unusual because it is different from the most commonly

observed linear and inverse-square growth models [Tur02]. Three factors have been found to

contribute to such a growth: (a) much of the code is device drivers; (b) much of the code is

orthogonal and intended for different platforms; and (c) the code base is open to interested

developers who can make their own contributions. Their findings are further confirmed in

a recent study conducted by Robles et al. [RAGBH05]. Linux grew at a super-linear rate

from 100,000 to 4,500,000 lines of code during the period between 1994 and 2004. Similar

findings are reported by O’Mahony on the Debian GNU/Linux distribution from release

0.01 in 1993 to 3.0 in late 2002. This study shows that the Debian GNU/Linux distribution

size has grown at a super-linear rate [O’M06]. These findings cause speculation that open

source systems may evolve in a way different from closed source industrial systems.

Not all open source projects can grow at a super linear rate. Open source projects from

different domains are found to grow at different rates -- some super-linear, some linear and

some sub-linear, but the linear growth appears to be the dominating trend [RAGBH05].

Schach and Offutt examined the Linux kernel in depth. They found that the number of

4 Open Source Software Evolution and Its Dynamics

common couplings1 in Linux exhibited an exponential growth, thus suggesting an increased

complexity [SO02]. They suggested that Linux developers should be aware of this alarming

growth trend and design solutions to reduce the number of common couplings. Otherwise,

the Linux kernel may become too expensive to maintain in the future.

Bauer and Pizka summarized a number of principles and practices which contribute to

the success of open source projects [BP03]. They have hands-on experience with some high

profile products such as GCC and Linux and many small systems. According to them, the

process and organization scale as the project increases in size; and the system architecture

is hardly pre-planned but evolves with the development process and requirements. For ex-

ample, the Mozilla application was split into isolated parts which are either independently

maintainable modules or completely new products. Nakakoji et al. found that open source

projects followed different patterns of split and merge across releases, and they proposed to

classify open source projects into three types: Exploration-Oriented, Utility-Oriented and

Service-Oriented [NYN+02]. Based on such a classification, the authors provided guidance

on the creation and maintenance of sustainable OSS development and communities.

Mockus, Fielding and Herbsleb reported that a core team of 10 to 15 developers could

enable a high rate of growth [MFH02]. Such core teams are important to anchor a broader

community of users and developers and to ensure the long term evolution of an open source

project. Madey et al. studied how developers participated in multiple open source projects

[MFT02]. They observed that developers collaborated through social networks interlinking

different projects. Such networks allow the interlinked projects to share source code.

These early studies of open source systems have enhanced the understanding of software

evolution by taking into consideration many different types of entities including the system,

architecture, development process, and developer organization. Although many interesting

1Common coupling refer to the shared use of a global variable between two different source files.

Introduction 5

evolutionary phenomena or patterns are observed, the mechanism underlying them, i.e., the

evolution dynamics, is still not well understood. A simple, unified explanation for diverse

evolutionary phenomena observed in open source software systems is needed.

1.2 Problem Definition

We now describe two main research problems under our investigation. Their solutions form

the main body of the thesis.

Change is the essential nature of software evolution. In response to the changing envi-

ronment and requirements, a software system has to be changed to add new functionality,

to reduce growing complexity, and to maintain the quality of service. Throughout the life-

time of a software system, changes can be made for different purposes, which are related to

features, refactorings, defects, cleanup and etc. From an external perspective, changes are

planned by an organizational and management structure to accommodate large unexpected

requirements. From an internal perspective, developers collaborate with one another to

perform assigned or self-selected tasks in various parts of the system. What evolutionary

patterns can one observe from either an external or internal perspective? What underlying

mechanism constrains evolutionary changes and how? These questions have been only par-

tially answered by prior work. Lehman’s seminal work provides most insights into software

evolution through observing how large, long-lived software systems grow over time. In this

thesis we describe and explain the evolution of open source systems from both the external

and internal perspectives.

Prior studies of software evolution are commonly limited to about 10-20 versions (data

points) [Leh97, GJKT97, Per02] or measure basic attributes such as the release date and

the system size [GT00, RAGBH05]. Complex data such as structural dependency graphs

6 Open Source Software Evolution and Its Dynamics

has not been adequately used in studying software evolution. Recovering historical changes

to the system structure or architecture over an extended period of time can provide valuable

information for understanding how a software system is maintained [CKN+03, ZG03]. To

substantiate a large scale investigation of software structural evolution over many systems

and over many versions, we need automated, efficient and scalable techniques.

The problems addressed in this thesis can be summarized as follows:

1. Develop a cost-effective solution to collect structural information over system lifetime.

2. Develop an understanding of open source software evolution dynamics from both the

external and internal perspectives.

A solution to the first problem helps us obtain large quantities of historical data, upon

which we can conduct large scale empirical analyses of the evolution of many open source

systems and seek ways for approaching the seconde problem.

1.3 Thesis Organization

Throughout this thesis we build an understanding of software evolution by analyzing large

quantities of historical information collected from open source software systems. This thesis

has three main parts as shown in Figure 1.1. The chapters contained by each part are also

included in Figure 1.1.

• Part I -- Collect Data

We present approaches and techniques for extracting software system models over a

software system’s lifetime in a timely and cost-effective manner. We focus on program

extraction (Chapter 2) and program model linking (Chapter 3) respectively.

Introduction 7

Collect

s
equences of software system models

Observe

software evolution as punctuated equilibrium

Explain

open source systems follow the SOC dynamics

Software

Repositories

(e.g., CVS and

online archive)

P
ro

gr
am

 m
od

ifi
ca

tio
n

re
co

rd
s

Chapter 4
 Chapter 5

Chapter 6

An Empirical Study of

Punctuated Software Evolution

Comparison of Clustering

Algorithms in the Context of

Software Evolution

Fractal Nature of Software

Evolution and SOC Dynamics

Chapter 2
 Chapter 3

An Extractor Suite for C and

C++

Improving Linkage Resolution

in System Model Extraction

SOC: Self-Organized Criticality

Figure 1.1: Thesis Overview

• Part II -- Observe Phenomena

We present approaches and techniques for examining how the structure of a software

system is changed at two levels of abstraction: the implementation level (Chapter 4)

and the design level (Chapter 5). Our objective is to build an empirical understanding

of software evolution as punctuated equilibrium. We present evidence that a software

system evolves through long periods of small changes interrupted occasionally by large

avalanche changes. This part helps us to gain an understanding of software evolution

from an external perspective.

• Part III -- Explain Evolution Dynamics

8 Open Source Software Evolution and Its Dynamics

We present a new perspective on evolution dynamics, which is based on Self-Organized

Criticality (SOC) [BTW87]. From this perspective, a system follows an intrinsic com-

plex process to respond to external events or forces (Chapter 6). The SOC process

has special statistical features which are related to power laws. This part offers a

view of software evolution from an internal perspective.

Each of these three parts of this thesis is covered by one or two chapters. Related work

for each part will be examined in the corresponding chapters.

1.4 Thesis Overview

We now provide an overview of the remaining chapters.

Chapter 2: An Extractor Suite for C and C++

In Chapter 2 we describe a suite of program extractors for C and C++ which are developed

by means of adopting and extending current extractors and/or tools. Each extractor from

this suite is targeted at an individual step in the build process of C and C++ programs

such as compilation and linking.

We assess the benefits of this suite by applying it to support two major applications:

(1) creating program comprehension pipelines to support various understanding tasks, and

(2) building an open source software evolution database to support empirical research on

software evolution. We discuss the lessons learned in detail.

Chapter 3: Improving Linkage Resolution in System Model Extraction

Separating compilation and linking is critical to the development of modern C/C++ soft-

ware systems up to millions of lines of code. Similarly, program extraction is also separated

Introduction 9

from program model linking to deal with large programs. An extractor is first applied to

extract program models from individual files and then a linker is used to create a software

system model by combining separate program models. This separation has diverted a sig-

nificant amount of effort to developing new extraction techniques but left program model

linking unattended in reverse engineering.

Linking errors (unexpected or missing dependencies) can be introduced to the resulting

system model even if individual files can be extracted correctly. Even worse, linking errors

can propagate to high level models and yield an increasingly larger impact on downstream

software analyses such as software clustering and reflexion modeling.

In Chapter 3, we describe four different methods for linking individual program models

and discuss their benefits and limitations. We conduct a comparison of these methods on

an open source system, PostgreSQL [Pos03]. The obtained results show that inappropriate

linking can lead to a relatively large percentage of dependency anomalies at higher levels

of granularity. While, a small set of linking heuristics independent of system configuration

are found effective for reducing the occurrences of dependency anomaly. These heuristics

combined with lexical program extractors are particularly useful for creating large software

system models over hundreds of versions.

Chapter 4: An Empirical Study of Punctuated Software Evolution

Theories of biological evolution provide rich sources of ideas from which software evolution

research can benefit. Motivated by the theory of Punctuated Equilibrium [EG72] as well as

previous research on discontinuous software evolution [Leh97, Law82, AP01], we propose

to view software evolution as punctuated equilibrium. A software system evolves through

an alternation between long periods of small incremental changes and short periods of large

avalanche changes.

10 Open Source Software Evolution and Its Dynamics

We provide an interpretation of punctuated equilibrium in the context of software evolu-

tion. We conduct an empirical study on three open source systems (OpenSSH, PostgreSQL,

and Linux) to examine structural changes over system lifetime. A visualization technique

called the Evolution Spectrograph is used to highlight major change events. The observed

events are then correlated manually with design changes documented in various sources

(e.g., release notes). The results we obtained show that the three examined systems exhibit

strong characteristics of punctuation during their evolution.

Chapter 5: Comparison of Clustering Algorithms in the Context of Software

Evolution

To support software understanding and maintenance tasks, various automated clustering

algorithms have been developed to partition a software system into meaningful subsystems

(or clusters). However, it is unknown whether these algorithms produce similar meaningful

clusterings for similar versions of a software system under continual change and growth. If

we find an algorithm with such capability, we can apply it to automate design recovery over

system lifetime. The recovered design data (clusterings) can provide new opportunities for

examining software evolution at the system design level. To pursue such research, we need

to compare automated clustering algorithms in the context of software evolution.

In Chapter 5 we evaluate six automated software clustering algorithms. Each of these

algorithms is applied to subsequent versions from five open source systems. The obtained

clusterings are compared based on three criteria respectively: stability (Does the clustering

change only modestly as the system undergoes modest updating?), authoritativeness (Does

the clustering reasonably approximate the structure an authority provides?), and cluster

distribution extremity (Does the clustering avoid huge clusters and many small clusters?).

The six studied algorithms exhibit distinct characteristics. For example, the clustering

Introduction 11

from the most stable algorithm bears little similarity to the as-implemented structure of the

system; and the clustering from the least stable algorithm has the best cluster distribution.

The obtained results indicate that current automated clustering algorithms need significant

improvement to provide continual support for maintaining large software projects. They

are also not suitable for automating a large scale empirical analysis of software evolution

at the design level.

Chapter 6: Fractal Nature of Software Evolution and SOC Dynamics

We study software evolution dynamics by adopting the theory of Self-Organized Criticality

(SOC) [BTW88]. The SOC dynamics is characterized by spatial and temporal fluctuations

which exhibit fractal properties measured as power laws. Our previous empirical obser-

vation of punctuated evolution in software systems leads us to question whether software

systems follow the SOC dynamics during their evolution.

In Chapter 6 we examine the change history of eleven open source software systems and

show empirical evidence for the presence of fractal structures in the dynamical behavior of

software systems. Specifically, we report two power law related findings throughout system

lifetime: (1) the probability density of change occurrences decreases as a power function of

the change size; and (2) the time series of change exhibits long range correlations with power

law behavior. The existence of such spatial and temporal power laws strongly suggests that

the SOC dynamics may provide a useful conceptual framework for understanding software

evolution.

1.5 Contributions

The contributions of this thesis are summarized as follows.

12 Open Source Software Evolution and Its Dynamics

• The proposal and development of a suite of program extractors for C and C++. By

covering individual steps in the program build process, such a suite supports program

extraction in a systematic manner and allows for tradeoff between accuracy, efficiency

and robustness to varying degrees.

– A number of program comprehension pipelines are built on this suite to support

various downstream software analysis.

– An open source software evolution database called EvolDB is created using this

suite to support empirical research on software evolution. EvolDB contains tens

of thousands of system models.

• The development of program model linking methods to aid the extraction of software

system models. A small set of heuristics are proposed to link separate program models

into a combined system model when system configuration information is difficult to

obtain. They provide convenient support for the mass-production of system models.

• The proposal of viewing software evolution as punctuated equilibrium. In this view, a

software system undergoes long periods of small changes separated by large avalanche

changes. The evolution spectrograph is used to visualize structural changes through

system lifetime, providing a visual display of punctuated change.

• A theoretical explanation of open source software evolution dynamics based on Self-

Organized Criticality (SOC). Such an explanation is supported by our observation of

two fractal related phenomena in the change history of open source software systems.

The observed phenomena are (1) the power law distribution of changes and (2) long

range correlations in the time series of change.

Introduction 13

• The proposed framework for evaluating software clustering algorithms based on three

criteria: stability, authoritativeness and extremity. Within this framework, a number

of representative automated software clustering algorithms are compared using data

stored in EvolDB. Such a comparison demonstrates the usefulness of large quantities

of historical data in advancing software clustering research.

Chapter 2

An Extractor Suite for C and C++

This chapter describes a suite of program extractors which are developed by adopting and

extending current techniques and tools. This suite is called CX since it is mainly targeted

at extracting facts from C and C++ programs. It is currently composed of four extractors:

CPPX, BFX, LDX and CTSX. The main goal of creating CX is to form a convenient set

of program extractors which complement each other and work in a systematic manner.

The benefits of this extractor suite will be discussed in terms of two practical applications:

(1) creating program comprehension pipelines to support various understanding tasks, and

(2) building an open source software evolution database to support empirical research on

software evolution.

2.1 Introduction

Program extraction is important to program comprehension and maintenance tasks [FSG04,

MN96]. For example, an architect may need to monitor changes made to a software system

to identify changes violating the design constraints of the system. In this case, a program

15

16 Open Source Software Evolution and Its Dynamics

extractor is needed to collect structural information to support continual maintenance. In

empirical research on software evolution, a robust and efficient extractor is often required to

collect structural artifacts from a large number of versions, sometime up to several hundred

versions. A researcher may also be interested in deriving a domain reference architecture

by studying several systems from the same domain (e.g., the compiler domain and the web

browser domain). In these various examples, an extractor needs to be chosen by making

an appropriate tradeoff among requirements on accuracy, efficiency and robustness. In an

empirical study of software evolution, a researcher is not likely to use an accurate extractor

which spends months in extracting structural artifacts from many historical versions of a

long-lived system (e.g., Linux [Lin04]). A robust and efficient extractor, though it may be

less accurate, is more likely to prevail.

No single extraction technique can meet the highest standards on accuracy, efficiency

and robustness and in the meanwhile support as many tasks as possible [SHE02]. Instead,

a very small set of complementary extractors should be developed to support a wide range

of tasks and meet extraction requirements to varying degrees. In this chapter, we describe

our effort in developing a suite of program extractors for the C and C++ programming lan-

guage. The main design goals of this suite are as follows.

• It should be simple and convenient to use.

• It should scale up to handle large programs.

• It should support diverse program analysis tasks.

• It should cover the entire build process of software.

• It should efficiently handle large numbers of versions.

CPPX [CPP02] is the first extractor we added to the CX suite. CPPX is a C/C++

source code extractor based on the front end of GCC [GCC02]. It was developed by the

An Extractor Suite for C and C++ 17

SWAG group at the University of Waterloo. CPPX outputs detailed information of a

program at the abstract syntax graph level. However, CPPX is neither efficient nor robust

in handling very large programs over many versions. This motivated us to develop several

lightweight extractors to complement it. These new extractors and CPPX form a suite

that provides a simple and cost-effective solution for a wide variety of program analysis

tasks (see Section 2.3).

This chapter is organized as follows. Section 2.2 describes each extractor from the CX

suite and their pros and cons. Section 2.3 describes two major applications of the CX suite.

Lessons learned from each application are also summarized. Section 2.4 further compares

four CX extractors and discusses their role in supporting systematic extraction of C/C++

programs. Section 2.5 considers related work. Section 2.6 draws the conclusion.

2.2 The CX Suite

The CX suite consists of four program extractors which are created by means of adapting

free open source tools, including GNU Compiler Collection (GCC) [GCC02], GNU Binu-

tils (binary utilities) [BUM02], Ctags [Cta04] and Cscope [Csc04]. These extractors are

briefly summarized below.

• CPPX is a C/C++ source code extractor based on the GCC frontend. It relies on the

preprocessing, parsing, and semantic analysis of GNU g++ and can produce program

facts as detailed as abstract syntax graph (ASG).

• BFX is a binary code extractor built on the Binary File Descriptor (BFD) library. It

parses binary code to locate definitions of functions and variables and outputs symbol

references to these definitions.

18 Open Source Software Evolution and Its Dynamics

• LDX is a binary code extractor based on the GNU code linker LD. It reuses BFX to

process individual binary files and then resorts to the real code linker in the resolution

of cross-references among different binary files under a specific system configuration.

• CTSX is an efficient and robust source code extractor built upon Ctags and Cscope.

The Ctags is invoked to locate source program entities and Cscope is used to extract

references to source program entities.

We now describe each extractor in the CX suite and their pros and cons in detail.

2.2.1 CPPX

CPPX is a general-purpose parser and fact extractor for C and C++ programs. It relies on

the preprocessing, parsing, and semantic analysis of GNU g++, and produces an abstract

syntax graph in accordance with the Datrix model [Bel01]. The produced fact base is in

TA [Hol02], GXL [GXL02], or VCG [San95] format.

Abstractly speaking, CPPX output is an E/R graph, which is essentially the abstract

syntax graph of the source program being extracted. The vertices represent the program’s

templates, classes, methods, compound statements, and expressions down to the lowest

level of constants and variable references. The graph edges represent syntactic relationships

as well as semantic facts linking identifiers to their declarations, function calls to their

targets, objects to their types, and most things to their enclosing scopes. From the CPPX

output graph it is (almost) possible to reconstruct the original program [LHM03].

CPPX is suitable for use in architectural recovery, data flow analysis, pointer analysis,

program slicing, query techniques, source code visualization, object recovery, refactoring,

restructuring, re-modularization, and the like. It has been used in both industrial software

development environments and academic software engineering research. However, CPPX

An Extractor Suite for C and C++ 19

has several problems. For example, CPPX may take an unusually long time (up to months)

to extract facts from large software systems (up to several million lines of code); and the

abstract syntax graph, which is overly detailed for many downstream analysis, often needs

lengthy transformations to filter out large quantities of unwanted data such as compound

expressions and statements. These problems make it necessary to develop more efficient and

simplified program extractors. As a result, we have developed three lightweight program

extractors, each of which is detailed in the following.

2.2.2 BFX

BFX (Binary File Extractor) is built on the Binary File Description (BFD) library which

is shipped with the GNU Binutils toolkit [BUM02]. Unlike CPPX which deals with source

code, BFX extracts facts from binary code (machine code). It can process object modules

(.o), archives (.a), dynamic libraries (.so) and executables (.exe). The output is in TA

or GXL format and conforms to the fact schema shown in Figure 2.1.

The schema in Figure 2.1 shows that the BFX output has three levels of granularity: the

level of object modules, the level of functions and variables and the level of name references.

The cObjectFile class represents files ending with .o, .so and .exe. The cArchiveFile

represents archive files (.a). The cFunction and cObject represent functions and variables

respectively. The cExternSymbol represents unique string names. There are four relations:

a structural relation contain and three reference relations cRefersTo, cRefersToExtern

and cResolvedByExtern. The contain relation for any binary module always forms a

tree with a universal root of type cScopeGlb. The cRefersTo relation refers to resolved

references to symbols defined within the same binary module. The cResolvedByExtern

relation denotes references to externally defined symbols and cRefersToExtern means that

20 Open Source Software Evolution and Its Dynamics

cScopeGlb

cExternSymbol

cFunction

cNameRef

cObject

cObjectFile

ResolvedByExtern

RefersToExtern

RefersTo

RefersToExtern

RefersTo

cArchiveFile

contain

Figure 2.1: BFX fact schema

a definition can be looked up globally by searching for its name1, i.e., cExternSymbol.

In the above schema, cNameRef has an attribute called kind, which can be assigned a

value of F or V. The F value means a function call and the V value means a variable use.

Pros

BFX is built on the BFD library. Technically speaking, BFX is equivalent to the binary

code dump tool objdump [BUM02]. BFX is independent of source code compilation. There-

fore, it is able to extract programs written in programming languages other than C and

C++, which include, for example, Fortran and Pascal. The BFX output is more than an

order of magnitude smaller than the CPPX output since it extracts only function calls and

variable uses. In terms of speed, BFX normally operates in a matter of seconds or at most

minutes to extract large systems with thousands of object units. BFX’s performance will

1For C++ programs, an external definition has a mangled name.

An Extractor Suite for C and C++ 21

be further discussed in Section 2.4.

Cons

BFX is used only after source files are compiled into object units. This results in the loss of

a significant amount of structural information related to various programming constructs

such as abstract data types (e.g., union data types) and macros. The extracted function

calls and variable uses reflect only what object units contain and what external symbols

are referenced. There exists a gap between this kind of structural information and what

the programmer sees in the source code. For example, a function-like macro, which is often

treated and used like a real function by the programmer, can not be extracted using BFX

since it is expanded in the step of preprocessing.

2.2.3 LDX

LDX (Linker Based Extractor) is built on the GNU code linker LD [BUM02]. LDX per-

forms both code linking (including symbol name resolution across the boundary of object

modules) and fact extraction. Its output includes everything produced by BFX as well as

build dependencies between object modules, archive files, dynamic libraries and executa-

bles. The output is in TA or GXL format. As shown in Figure 2.2, LDX operates as a full

substitute for LD during the extraction of a program.

Compared to BFX, LDX has two distinct features. First, it relies on the actual configu-

ration of the program and the internal linking logic of GNU LD to resolve cross-references

among separately extracted object units. Therefore, the extraction and linking of program

facts are correctly and simultaneously carried out as the target system is being built. Sec-

ond, LDX captures build dependencies among object units as perceived by the code linker

during link time. For example, a simple hello world program (e.g., Hello.exe) compiled on

22 Open Source Software Evolution and Its Dynamics

LDX

LD

LDX data flow

LD data flow

.ta
.ta/
.gxl

.a
 .exe
.so
.o

Figure 2.2: LDX as a substitute for LD

a Linux machine normally depends on an object module (e.g., Hello.o) and a particular

version of the C dynamic library (e.g., /lib/libc.so.6).

Pros

Like BFX, LDX is multi-lingual and operates at a very fast speed. It adds only negligible

overhead to the build process of a target system. Being a link time extractor, LDX utilizes

the system configuration information (i.e., build dependencies among object modules) and

LD’s symbol resolution functionality to derive cross-reference facts correctly. LDX does not

introduce any erroneous cross-references.

Cons

LDX has similar cons BFX has. In addition, LDX causes slightly more interference to the

build process of a software system than BFX since it needs to be substituted for LD.

An Extractor Suite for C and C++ 23

Cscopepost

Ctags

Ctagspost

Cscope

Source files

CTSX

Cscope

DB

Cross-ref.

Symbol

definition

1

2

3
 4

Figure 2.3: CTSX built on Ctags and Cscope

2.2.4 CTSX

The three extractors described above require a successful build of the target system. The

extraction can run into serious trouble when large numbers of versions need to be extracted.

For a long lived system, it is common that many versions can not be compiled successfully

on a specific platform. A robust extractor is required to tolerate erroneous and incomplete

source code as well as system configuration problems. In addition, the extractor needs to

be efficient in handling large numbers of versions. For example, the Linux kernel has more

than 550 versions publicly posted on its official archive Web site [Lin04] until July 2005. It

is a daunting task to use CPPX, BFX or LDX to extract Linux versions since considerable

manual effort is needed to deal with various configuration and compilation difficulties over

the lifetime of Linux (about 12 years).

24 Open Source Software Evolution and Its Dynamics

We developed a lightweight C and C++ source code extractor to support the extraction

of a large long-lived software system over hundreds of versions. This extractor is based on

Ctags [Cta04] and Cscope [Csc04]. For this reason it is called CTSX in which T stands for

Ctags and S for Cscope.

Ctags is a tagging tool used by source code editors to parse the source code being edited.

Using Ctags, editors can provide rudimentary support for code highlighting and searching.

Cscope is a cross-referencing tool for browsing the source code. It allows the user to search

for source code entities (definitions and regular expression patterns) as well as references to

these entities in an interactive mode. Ctags and Cscope are both efficient and robust. They

scale up to deal with more than 20 million of lines of code [Csc04].

The implementation of CTSX is illustrated in Figure 2.3. CTSX has four components:

Ctags, Ctagspost, Cscope and Cscopepost. We instrumented Ctags and Cscope to parse

new command line options and to read/write facts in a proper format such as TA and CSV

(Comma Separated Values). Ctagspost and Cscopepost were written in Perl and they are

aimed at reducing errors and adding extra attributes. The execution order of these tools is

indicated by numbers. CTSX takes in a list of source files and produces two main text files,

which contain symbol definitions and cross-references respectively. The main functionality

of each component is detailed as follows.

• Ctags extracts various program entities including functions, global variables, local

variables, macros, abstract data types (class, struct, union, enum and typedef),

enumerators (values inside an enumeration), function prototypes, namespaces, and

external variable declarations. Ctags has command line options for specifying which

kinds of program entity to extract. By default, CTSX instructs Ctags to extract all

entities listed above.

• Ctagspost post-processes Ctags output to add extra information in three ways: (1)

An Extractor Suite for C and C++ 25

extract function parameters ignored by Ctags; (2) determine modifiers (e.g., inline

and static) for functions or variables; and (3) calculate the effective scope of local

variables and function parameters. To be simple, the effective scope of a local variable

is treated to be equal to the scope of the function enclosing the variable.

Ctagspost needs to parse the source code briefly to collect extra information because

additional texts associated with each program entity located by Ctags are insufficient

for collecting the extra information mentioned above.

• Cscope parses the entire source code to build an initial cross-reference database. It

then reads program entities from Ctagspost output and retrieves static references to

those entities. Depending on the command line options the user specifies for CTSX,

Cscope can retrieve different kinds of cross-reference. By default, it outputs references

to functions, global variables, macros, and data types (including typedefs).

Every name reference produced by Cscope is assigned a kind attribute to indicate its

type. Cscope itself can determine which reference is a function call. However, the type

of other references is determined by using regular expressions to match relevant code

syntax. For example, a type reference can be determined if the type name appears as

part of a declaration or a type cast. The references to variables and macros are not

distinguished in the current implementation.

• Cscopepost filters out references to static functions, static variables, local variables

and function parameters through the use of the scoping and accessibility information

produced by Ctagspost. For example, a reference to a static function within the same

file is filtered out as a non cross-reference. A reference to a global variable is filtered

out as an erroneous reference if it falls in the scope of a local variable which has the

same name as the global variable. The Cscopepost output contains only references

26 Open Source Software Evolution and Its Dynamics

that cross the actual boundary of source files.

Pros

Compared to writing an extractor from scratch, the reuse of Ctags and Cscope significantly

speeds up the development of CTSX. Only a few days were spent in instrumenting Ctags

and Cscope and writing the postprocessing utilities in Perl scripts.

CTSX is a useful program extractor when (1) the target system is extremely large and

time consuming to build, (2) the system cannot be built due to configuration or compilation

errors, and (3) the correctness of extracted facts is not of critical concern to downstream

software analysis. These characteristics make CTSX suitable for extracting program facts

of reasonable quality from the evolution history of a long-lived software system in a timely

and cost-effective manner. The benefits of CTSX will be demonstrated in section 2.3.2.

Cons

As a lightweight program extractor, CTSX is more error prone than CPPX, BFX and LDX.

This is mainly caused by three factors. First, Ctags is reliant on fault tolerant parsing and

it thus may result in the missing of program entities or the recognition of wrong entities.

Second, Cscope has no knowledge of the typing of symbol references except function calls.

The lexical analysis based on regular expressions can only alleviate this typing problem.

Third, Cscope does not differentiate references to local and global program entities. To

reduce the undesirable impacts of these factors, Ctagspost and Cscopepost are added to

search for more semantic clues. However, without complete semantic analysis, it should not

be expected that CTSX or any lightweight parsing techniques (commonly based on regular

expressions [MN96] and island grammars [Moo01]) can produce results as accurate as those

produced by the extractors based on full parsing and semantic analysis (e.g., CPPX).

An Extractor Suite for C and C++ 27

lsedit

CTSX

ld
gcc

LDX
BFX
CPPX

transformer(s)
 linker(s)
 lifter
 addcontain

Build

Source code

Preprocessed

code

Object code
 Executable

User-defined

decomposition

Extract

Abstract

Present

addschema

Predefined

landscape schema

Configuration

cpp

Program fact bases

Legend

Tool

script

Data flow

Tool substitution

Human interaction

JGrok

Figure 2.4: Program comprehension pipelines built on the CX extractors

2.3 Applications

This section describes two main applications of the CX suite to demonstrate its benefits in

practice: (1) creating various program comprehension pipelines to aid software developers

and researchers; and (2) building an open source software database to support empirical

research on software evolution. These applications involve a number of open source software

systems. Each involved system is briefly described in Appendix A.

28 Open Source Software Evolution and Its Dynamics

2.3.1 Creating Comprehension Pipelines

A program comprehension pipeline commonly consists of three main steps: extract, abstract

and present. The SwagKit uses such a pipeline to manipulate CPPX facts [Swa02]. As

new extractors (BFX, LDX and CTSX) are developed, we have extended the old SwagKit

by implementing new comprehension pipelines to support more diverse software analysis

tasks cost-effectively, for example, the recovery of reference architecture for an application

domain [GG05].

Figure 2.4 illustrates the main components shared by various comprehension pipelines

currently supported by the extended SwagKit. Each extractor from the CX suite serves as

the starting point of a specific comprehension pipeline. The four main steps are as follows:

• Build is an extra yet important step in a program comprehension pipeline. The build

process of a C/C++ software system normally consists of configuration, compilation

and linking. For extractors which are created by adapting build related tools such as

the compiler and linker, the build process provides a simple vehicle for carrying out

program extraction. However, build is not needed for extractors which ignore system

configuration information and perform their own parsing and semantic analysis from

scratch.

• Extract refers to the extraction of program related facts by using appropriate tools.

Broadly speaking, the extracted facts can be as abstract as software architecture or

as concrete as cross-references among various program entities (e.g., functions). The

latter is what a program extractor normally produces.

The CTSX extractor can be used independent of system configuration. By contrast,

the other three extractors must be applied after the system is configured. CPPX and

LDX need to be embedded into the build process through tool substitution. Program

An Extractor Suite for C and C++ 29

facts are extracted as the system is being built. BFX can be embedded into the build

process or applied directly on all object modules after a successful compilation.

• Abstract is the step of manipulating program facts through transformation, linking

and lifting. Facts produced by different extractors are transformed into an appropri-

ate form with unwanted program entities and relationships removed and new program

entities and relationships created. A sequence of transformers is applied until a de-

sired form is achieved. The transformed program facts for individual files or units are

linked to form a graph model representing a part of the system or the whole system.

The linker resolves references across the boundary of files. The lifter abstracts lower

level cross-references into higher level dependencies. The addcontain script imposes

a subsystem decomposition hierarchy on the flat system model. The resulting model

can be further lifted if it is too large to handle in a subsequent step.

• Present is the last step. The addschema adds a standard schema to the abstracted

system model to produce a software landscape view which a user can explore by using

the visualization tool lsedit developed by the SWAG group[Swa02]. The user can ex-

amine relationships among various program entities at different levels of granularity.

After program facts are transformed, all the pipelines share the remaining tools: linkers,

lifter, addcontain, addschema and lsedit. These tools are implemented in JGrok, a scripting

language designed for manipulating sets and relations [JGr04]. Several different linkers can

be used to combine individual small program models into a large system model. Depending

on the linker, the resulting system model can contain erroneous dependencies to varying

degrees. How to link program models will be further discussed in Chapter 3.

30 Open Source Software Evolution and Its Dynamics

Pipeline
Example for Example for Domain Example for

Architecture Recovery Reference Architecture Recovery Software Evolution Analysis

CPPX Pipeline

Emacs (2003)

PostgreSQL (2003) [ZG03]
InnoDB (2002)

MySQL (2002)

PostgreSQL (2002)

BFX Pipeline

DB2 UDB (2003)

KSpread (2004)

Mozilla (2004)

Web Browser (2004) [GG05]:

Dillo

Epiphany

Flower

Konqueror

Lynx

Mozilla

Safari

Instant Messenger (2004):

CenterICQ

EG-lite

Gaim

Kopete

Miranda

KSpread (2004)

OpenSSH (2004)

PostgreSQL (2004)

Linux kernel (2004)

LDX Pipeline

First Person Shooter (2003): Gnumeric (2004)

DB2 UDB (2003) Cube OpenSSH (2004)

Gnumeric (2004) Quake PostgreSQL (2004) [WH04a]

Quake II Linux kernel (2004) [WH04a]

CTSX Pipeline OpenOffice (2005)

Table 2.1: Uses of comprehension pipelines on software systems

Common Uses

The comprehension pipelines starting with each CX extractor have been successfully used

in a variety of circumstances which include industrial and academic environments as well as

An Extractor Suite for C and C++ 31

graduate course teaching. They are mainly used to support three kinds of software analysis:

software architecture recovery, software evolution study, and domain reference architecture

recovery. Table 2.1 lists systems on which four pipelines have been applied in each kind of

analysis. A brief introduction to the performed analysis is given below.

• Software architecture recovery aims at reconstructing views on the system architec-

ture as-built. A recovered architecture is commonly represented using a hierarchical

organization with components and their relationships at varying levels of granularity.

• The empirical study of software evolution is commonly conducted as a longitudinal

analysis of one or more software system properties such as the system size and system

structural complexity.

• Domain reference architecture recovery aims at generalizing more than one recovered

system architectures from the same application domain into a standardized architec-

ture which can be referenced for developing and understanding similar applications.

Lessons Learned

A number of lessons have been learned from observing how these comprehension pipelines

were used in practice. The users mainly include graduate students from the SWAG group

and students who enrolled in graduate level software engineering courses at the University

of Waterloo as well as myself. During the period from 2002 to 2005, I worked as a teaching

assistant to aid students in applying these pipelines on a number of open source software

systems. Here are some of the lessons learned.

• Perform system extraction after a successful build. This requirement characterizes a

common way of using program extractors which need to be embedded into the build

32 Open Source Software Evolution and Its Dynamics

process. This has two important implications when a pipeline requires a successful

build. First, build success increases the user’s confidence of performing an extraction.

Second, by building a system, the user can determine proper components (or features)

that need to be included as the system is being configured by the user.

• The pipelines based on BFX/LDX are more convenient to use than the one based on

CPPX. Two factors contribute to this observation: (1) CPPX has noticeable defects

in extracting source code and often causes compilation errors; and (2) BFX/LDX is

faster and produces less detailed information than CPPX. This perhaps explains why

students tend to use BFX/LDX to deal with multiple versions which either belong to

the same system or are from the same domain.

• CTSX is not satisfactory in conducting an accurate extraction of large C++ systems.

The sheer volume of overloaded methods, local variables and type casts causes CTSX

to produce a fairly large amount of inaccurate facts. In 2005, a student group enrolled

in the graduate course on software architecture recovery felt uncomfortable with the

accuracy of facts extracted from OpenOffice using CTSX. The group switched to the

BFX-based pipeline.

In brief, the four program comprehension pipelines built on the CX suite provide useful

support for analyzing large software systems in a variety of ways. Depending on the nature

of software analysis, the user can choose an appropriate extractor or use different extractors

in combination.

2.3.2 Building Software Evolution Database (EvolDB)

One of the main factors that impede empirical research on software evolution is the lack

of appropriate tool support for collecting historical information from a long lived software

An Extractor Suite for C and C++ 33

system [KS96]. Software structural artifacts such as call graph are important for software

understanding and maintenance tasks [MNS95]. A sequence of structural artifacts collected

from the historical versions of a system can be valuable for understanding how the system

has evolved [CKN+03, ZG03].

This section describes the application of the CX suite on a number of large open source

systems to build a large evolution database of software structural artifacts. This database

is referred to as EvolDB. We have extracted ten open source systems over large numbers of

versions (official releases or daily snapshots). These systems include GCC, KSDK, KOffice,

Linux, Mozilla, OpenSSH, OpenSSL, PHP, PostgreSQL and Ruby. The benefits of building

EvolDB include the following:

• The extraction of diverse software systems over a large number of versions can subject

the CX suite to substantial software development in real life. The CX extractors can

thus be contrasted in terms of quality attributes such as robustness and efficiency.

• The resulting evolution database is free for public use. The researchers interested in

software evolution can take advantage of this database to advance empirical research

on open source software evolution. Possible directions may include validating software

evolution laws or explaining open source software evolution from new perspectives.

• Most important of all, EvolDB provides a large amount of historical data on which

our work (described in the remaining chapters of this thesis) will depend.

Table 2.2 summarizes how many versions were extracted and how much time was spent

for each target software system. The extraction was conducted on either official releases or

snapshot versions checked out from the CVS source control repository. Two computers were

used. CPPX, BFX and LDX were used on a Linux machine with one Intel(R) Pentium(R)

IV 1.6GHz CPU and 1GB memory. CTSX was used on a Linux server with two Intel(R)

34 Open Source Software Evolution and Its Dynamics

System
Period Size (KLOC)

Versions
Extraction time (hours)

From To From To CPPX BFX+LDX CTSX

OpenSSH† 1.2pre6 (1999) 3.8p1 (2004) 20 70 60 15.1 2.2 0.11

PostgreSQL† 6.0 (1997) 7.3.4 (2004) 182 519 28 16.5 2.6 0.32

Linux kernel†
2.0 (1996) 2.5.75 (2003) 674 5140 368 - 87.2 -

1.0 (1994) 2.6.12.3 (2005) 165 5954 581 - - 36.32

Mozilla† 1.0 (1999) 1.7.3 (2004) 3700 4500 19 - 14.3 4.13

PostgreSQL¦ 1997-01-01 2005-01-01 182 519 97 - 13.7 -

PostgreSQL∗ 1997-01-01 2005-09-09 182 556 3175 - - 29.70

GCC∗ 1997-08-12 2005-09-09 582 1559 2951 - - 122.89

KSDK∗ 1999-01-01 2004-12-31 3 263 2192 - - 7.09

KOffice∗ 1999-01-01 2004-12-31 272 962 2192 - - 53.81

OpenSSL∗ 1999-01-01 2005-09-09 164 291 2444 - - 18.22

PHP∗ 1999-04-08 2005-09-09 16 645 2347 - - 23.58

Ruby∗ 1999-01-01 2005-09-09 74 198 2444 - - 9.01

†: official release ∗: daily snapshot version ¦: monthly snapshot version (the first day of every month)

Table 2.2: Open source systems extracted using the CX extractors

Xeon(R) 2.2GHz CPUs and 4GB memory. Although the server has more computing power,

it is approximately 40% faster than the first computer due to the running of many backend

services and user tasks. A detailed performance comparison of these CX extractors will be

described in section 2.4.1.

Using CPPX

We substituted CPPX for gcc to extract abstract syntax graphs from 28 official releases of

PostgreSQL, which range from 6.0 to 7.3.4. The extraction ran into two major difficulties:

(1) every version before 6.5 had configuration problems such as missing header files and

An Extractor Suite for C and C++ 35

could not be built successfully, and (2) CPPX has some defects in handling very large arrays

of strings and it ran out of memory for almost each of the 28 versions of PostgreSQL. We

modified configuration scripts and source files to achieve a successful compilation on the

Linux platform. We also used CPPX to extract a total of 60 official releases of OpenSSH

ranging from 1.2pre6 to 3.8p1. Similar problems were encountered and fixed manually.

The measured extraction time given in Table 2.2 does not include the time we spent

on solving problems. After a system could be built and extracted successfully, we cleaned

all the generated object code and re-compiled the system from scratch in order to measure

the time spent on extraction.

Using BFX and LDX

LDX and BFX were successfully used to extract four large systems (OpenSSH, PostgreSQL,

Linux and Mozilla) over a large number of versions. These two extractors are able to handle

very large systems at a reasonable speed. The time spent by both BFX and LDX accounts

for approximately 5∼10% of the total build time of a system (see section 2.4.1).

When using BFX and LDX on Mozilla, we did not encounter any configuration problems

and compilation errors. For the other three systems, the older the version, the more likely

we ran into problems. All encountered problems were fixed manually.

Using CTSX

CTSX was applied to extract all the ten open source software systems. For systems which

have a CVS repository, we conducted daily snapshot extraction. For OpenSSH, Linux and

Mozilla, only public official releases were extracted. The extraction of 2951 daily snapshots

of GCC took the longest time (122.89 hours) to finish. In general, the total time spent by

CTSX on each target system is satisfactory. CTSX did not break for any version we have

36 Open Source Software Evolution and Its Dynamics

extracted.

Lessons Learned

We now discuss several lessons learned from building large software evolution databases.

• For a large software system, many of its official releases may not be readily configured

and compiled because the underlying platform (both hardware and software) changes

drastically. This kind of build break often needs to be solved by manually modifying

the configuration scripts or even the source code in order to get the system compiled.

Installing outdated libraries is also required sometimes. Our experience with Linux

and PostgreSQL shows that it is a daunting task to obtain a successful build for every

available release. A program extractor depending on build success is not suitable for

extracting a large number of versions over a long period of time.

• It is not guaranteed that CPPX can perform a successful extraction even if a software

system can be compiled successfully. This is mainly caused by the internal defects of

CPPX. For example, a very large array of constants can cause CPPX to break. By

contrast, BFX and LDX are relatively more robust than CPPX. They can be applied

to extract a version as long as the version can be compiled. CPPX transforms abstract

syntax graphs which are more complicated than the format of binary code handled

by BFX and LDX. This is the main reason why CPPX is less robust.

• CTSX is more satisfactory than CPPX, BFX and LDX in extracting a large software

system in a robust but less accurate manner. In particular, it is capable of performing

daily snapshot extraction on a long lived system within just a few hours or at most

several days. CTSX is well positioned for supporting software evolution analysis on

a large scale.

An Extractor Suite for C and C++ 37

2.4 Discussion

2.4.1 Performance

Performance measures the speed of an extractor in extracting program facts. Performance

is an important consideration when extraction is conducted on very large programs, which

may have several million lines of code. In particular, if hundreds of versions of such a large

system (e.g., Linux) need to be extracted for the purpose of examining various evolution

phenomena (e.g., growing complexity), speed becomes a critical concern in the design of a

program extractor.

5.25

36.28

5.38
 5.65

0.95

0

5

10

15

20

25

30

35

40

Build
 CPPX
 Build+BFX
 Build+LDX
 CTSX

M
in

ut
es

Figure 2.5: Performance comparison of the CX extractors

We applied the CX extractors on PostgreSQL 7.4 (an open source database management

system) to conduct a performance comparison. Each CX extractor was used repeatedly to

extract the system three times. The average extraction time was calculated. The average

time required to build the system was also collected in order to provide a standard base

for showing speed differences. Figure 2.5 displays the performance results obtained on a

38 Open Source Software Evolution and Its Dynamics

Linux machine with an Intel Pentium IV 1.6GHz CPU and 1GB memory.

It took 5.25 minutes on average to build PostgreSQL by using the standard tool chain

which includes configure, make, gcc and ld. We reused this build process to conduct program

extraction by substituting CPPX for gcc. The total expended time was 36.28 minutes which

is about 7 times large as the build time. BFX was used after build success and cost only

a small fraction of the build time, roughly 2.5%. LDX spent slightly more time than BFX

since it resolves cross-references between object modules. CTSX spent the least amount of

time, which approximately accounts for 18% of the build time. Overall, CTSX, BFX/LDX

and CPPX can have speed differences up to an order of magnitude.

A detailed examination of the four components of CTSX shows that Ctags, Ctagspost,

Cscope and Cscopepost roughly account for 10%, 20%, 35% and 35% of the total extraction

time respectively. Reusing Ctags and Cscope reduces the development time but also yields a

negative impact on the speed of the extractor. However, building a more efficient extractor

from scratch is achievable but would require a longer development time. In our work, we

have focused on the rapid development of an extractor by means of adopting and enhancing

existing tools.

2.4.2 Accuracy and Robustness

In CppETS (C++ Extractor Test Suite), Sim suggests that accuracy and robustness are two

important dimensions for evaluating an extractor [SHE02]. Accuracy measures the cor-

rectness of facts extracted by a program extractor, and robustness measures how well the

extractor deals with irregularities present in the source code.

A software system, which has been maintained over a long period of time, often contains

code written in different programming languages or different dialects of the same language.

Languages like SQL and Assembly may also be embedded in the code. It is not uncommon

An Extractor Suite for C and C++ 39

that the system might be targeted at an outdated computing platform or built on obsolete

libraries, which are not available nowadays. The missing source files (including header files)

and unrelated entities with similar names make matters even worse when extraction needs

to be conducted over a long history of releases. All such irregularities complicate building

the program extractor. The extractor robustness and the accuracy of the extractor output

must be treated properly.

The three extractors CPPX, BFX and LDX are of high accuracy and low robustness

while CTSX is the opposite. A detailed explanation is given below:

• Based on the well-engineered compiler frontend of GCC, CPPX theoretically outputs

data as accurate as the abstract syntax graph constructed by the compiler. However,

the evaluation of CPPX against CppETS yielded a low score of accuracy due to the

premature implementation of the extractor itself [SHE02].

• BFX and LDX are very close to a compiler-based extractor in terms of accuracy and

robustness. Several factors contribute to this claim. First, BFX and LDX are built

on mature software tools (GNU LD) and libraries (BFD) which are of product quality

and have been exhaustively tested. Thus the accuracy of their output is equivalent

to what a code linker or a binary utility tool (objdump) can see from the binary code.

Second, BFX and LDX operate only after source code are compiled into object code.

If the compiler failed to produce object code, it is not possible for BFX and LDX to

finish the extraction. So, both extractors are only as robust as a compiler.

• Given that Ctags and Cscope are mainly based on lexical analysis and robust parsing

techniques, CTSX is able to recover gracefully from unexpected syntax and continue

parsing without a failure. The direct consequence is that CTSX produces more errors

than CPPX, BFX and LDX. In particular, CTSX is not satisfactory in extracting

40 Open Source Software Evolution and Its Dynamics

facts from large C++ systems. The use of CTSX in building an open source software

evolution database without failure shows its high robustness in reality.

2.4.3 Systematic Support for C/C++ Extraction

The CX extractor suite supports a systematic extraction of C/C++ programs. By system-

atic, we mean the following:

• The CX extractors cover different steps in the build process of C/C++ a program.

CTSX deals with un-preprocessed source code; CPPX works on preprocessed source

code in the step of compilation; BFX is used after source compilation; and LDX is

used in the step of code linking.

In fact, the current CX suite lacks a fact extractor targeted at the preprocessing step.

As a result, dependencies between macros and other source code entities cannot be

extracted. A viable solution will be to instrument the GNU C preprocessor to develop

a new fact extractor, thus extending the current suite to cover the entire build process.

This remains our future work.

• The CX extractors can be conveniently embedded into the build process to automate

program extraction without causing much interference. Especially, CPPX and LDX

work as substitutes for GCC and GNU LD.

• The suite is applicable to two most important types of software artifact: source code

and binary code. CPPX and CTSX extract program facts from source code but BFX

and LDX extract from binary code.

An Extractor Suite for C and C++ 41

2.5 Related Work

The C/C++ source code is commonly extracted using parser-based extractors, which can

be handwritten from scratch or built on existing parsers or compilers (e.g., GCC). Several

extractors such as rigiparse [MOTU93], CPPX [CPP02], CAN [FBMG01] and TkSee/SN

[TkS03] belong to this category. These extractors can produce detailed structural informa-

tion. However, the full parser based approach does not solve the robustness issue (dealing

with missing code or syntactical errors).

There are a number of parsing techniques based on the idea of partial extraction and reg-

ular expression matching [CC03, Moo01, MN96]. Murphy and Notkin present a lightweight

lexical technique for extracting information from source code, structured data files, and

documentation [MN96]. Their approach allows the user to specify language features using

hierarchical patterns and regular expressions. Moonen proposes a formalism called Island

Grammars for partially specifying languages that contain irregularities and generating a

parser based on the specification [Moo01]. Islands are specified using production rules and

regular expressions. Islands are captured by the generated parser. The rest of the source

program is treated as water and ignored. An island grammar based parser generator called

MANGROVE has been developed. These extraction techniques are generally more flexi-

ble, lightweight and fault tolerant. But the extractors built on them normally produce less

accurate results than a full parser based extractor.

By contrast, our work is not intended to develop more complicated and advanced ex-

traction techniques but to reuse existing tools to form a small suite of program extractors to

support a wide variety of C/C++ extraction needs. We have adopted the CPPX extractor

and developed instrumented versions of GNU compiler tools (e.g., LD). These extractors

can be conveniently embedded into the build process of a software system to extract struc-

tural information. In case that the system cannot be built successfully, CTSX can be used

42 Open Source Software Evolution and Its Dynamics

to carry out the extraction. CTSX is satisfactory in terms of performance and robustness

though its output is less accurate than what the other three CX extractors produce.

2.6 Conclusion

CPPX, BFX, LDX and CTSX are complementary C/C++ extractors, which cover different

steps in the build process of a C/C++ software system. These extractors provide a range of

tradeoffs among accuracy, robustness and efficiency. They provide systematic tool support

for a wide variety of program extraction tasks. In particular, CTSX is efficient and robust

for extracting a software system over hundreds of versions. The benefits of these extractors

are discussed with regard to two major applications: (1) creating program comprehension

pipelines and (2) building an open source software evolution database.

Chapter 3

Improving Linkage Resolution in

System Model Extraction

Separate compilation and linking is critical to the development of modern C/C++ software

systems up to millions of lines of code. As a consequence, it is essential to separate program

extraction and program model linking in the field of reverse engineering. In other words,

a fact extractor is first applied to extract program models from individual files and then a

linker is used to create a software system model by combining separate program models.

This separation has diverted a significant amount of effort to developing new extraction

techniques or tools but left program model linking unattended in reverse engineering. This

can result in problematic extraction of software system models. Linking errors (unexpected

or missing dependencies) can be introduced to the resulting system model even if individual

files can be extracted correctly. Even worse, these linking errors can propagate to models at

higher levels of granularity and yield an increasingly larger impact on various downstream

software analysis such as reflexion modeling and software clustering.

In this chapter we describe four different methods for linking individual program models

and discuss their benefits and limitations. A comparison of these methods is conducted on

43

44 Open Source Software Evolution and Its Dynamics

an open source system, PostgreSQL. Empirical results show that inappropriate linking can

lead to a relatively large number of dependency anomalies at higher levels of granularity but

a small set of linking heuristics can be effective for reducing the occurrences of dependency

anomaly. Independent of system configuration, these linking heuristics can be particularly

useful for creating large software system models from hundreds of versions.

3.1 Introduction

Modern software systems can be extraordinarily large. For example, a large database sys-

tem can have several million lines of source code. In order to analyze such large systems, it

is often necessary to extract system models which have dependencies among program units

at varying levels of granularity, such as the function level, the file level, and the subsystem

level. Here, a dependency commonly refers to a function call, a variable access, or a macro

reference between two program units such as files. This kind of system model represents a

static software structure and is used in various downstream software analysis, for example,

reflexion modeling [MNS95], software clustering [MMCG99, TH00a], software architecture

recovery [KC98] and architecture repair [TGLH00].

A significant amount of effort has been devoted to developing novel program extraction

techniques [Moo01, MN96] and tools [Aca96, CPP02, FBMG01, TkS03]. By contrast,

linking separately extracted program models into a large software system model has been

somewhat overlooked. There perhaps are two main reasons. First, the acquisition of

system configuration information to control the linking process can be difficult for a large

software project [Cal88, FSG04]. Second, people may not be aware of the extent to which

linking errors can be introduced by an inappropriate model linker. As a result, the system

configuration information is often ignored, and consequently model linking is simplified as

Improving Linkage Resolution in System Model Extraction 45

matching symbol names (strings) globally without taking into consideration the concrete

system configuration.

If not controlled properly, the process of linking separate program models can produce

erroneous (unexpected) or missing dependencies, which we call linkage anomalies in this

chapter. In an extracted system model, linkage anomalies may account for a small per-

centage of all the resolved linkage dependencies at the lowest level of granularity. However,

abstracting them into higher level dependencies can yield a much larger impact on various

downstream software analysis. An illustrative example is given below.

In a case study of PostgreSQL 7.4 [Pos03], we found that linkage anomalies account for a

small percentage of cross-references below the function level but they can result in relatively

more higher level dependency anomalies in a progressive manner [WH04b]. The following

figures are obtained used the RAW linking method, which will be further explained in

Section 3.2.2. In PostgreSQL, about 1.7% of all the resolved cross-references (function

calls and variable uses) below the function level are anomalies. The high-level dependency

anomalies caused by these anomaly cross-references account for 3.4% of dependencies at the

module level and 6.9% at the subsystem level1. If more types of lower level cross-references

(e.g., references to macros and types) are considered, about 29% of dependencies at the

subsystem level are anomalies. If one performs reflexion modeling analysis on the extracted

system model, (s)he will inevitably end up with many architectural divergences, which are

not caused by the system implementation but by inappropriate linkage resolution.

We discuss what can cause linkage anomalies and how to reduce them in the extraction

of software system models. The main idea will be centered on collecting necessary system

configuration information or applying a small set of linking rules and heuristics. This work

1A module refers to an object module that is directly compiled from a source program file. A subsystem

refers to a source code directory that directly contains at least one of the compiled modules.

46 Open Source Software Evolution and Its Dynamics

complements our previous work on developing a suite of C/C++ program extractors with

a focus on improving the accuracy of system models. When approaching the end of this

chapter, one shall see that combining the robust CTSX extractor and a small set of linking

heuristics provides an efficient means for extracting software system models of reasonable

quality from hundreds of versions.

The remainder of this chapter is organized as follows. Section 3.2 explains the concept of

program model linking and linkage anomaly. Section 3.3 describes a number of linking rules

and heuristics which can be applied to resolve linkage anomalies. Section 3.4 describes four

different methods for linking separate program models. Section 3.5 describes how to setup

an experiment to compare linking methods under different conditions. Section 3.6 presents

empirical results we obtained through conducting an experiment on PostgreSQL. Section

3.7 draws the conclusion.

3.2 Program Model Linking

Program model linking refers to the process of combining multiple linkable program models

(LPM) into one model and resolving symbol references to appropriate definitions. One can

think of a LPM as a semantic representation of an object module. A program model linker

works like a code linker. However, it does not deal with addresses. Its primary functionality

is to resolve cross-references from one LPM to another.

3.2.1 Sample Schema of LPM

A number of program extractors have been developed [Aca96, CPP02, FBMG01, TkS03].

Each of them outputs program data in accordance with a different schema. We adopt the

sample schema shown in Figure 3.1 to facilitate LPM-related discussions. This schema

Improving Linkage Resolution in System Model Extraction 47

GlobalScope

ExternSymbol

Function

SymbolRef

Variable

File

contain

ResolvedByExtern

RefersToExtern

RefersTo

RefersToExtern

RefersTo

LPM

Figure 3.1: A sample schema of LPM

is a significantly reduced version of the CPPX/Datrix schema [CPP02, HHL+00]. Many

abstract syntax graph (ASG) nodes such as Type and Statement have been removed for

simplicity.

The GlobalScope represents the universal root of all LPMs. A File entity is a source

file or an object module. Every ExternSymbol entity has a unique string-based identifier in

the global naming space, namely GlobalScope. Every SymbolRef entity has an attribute

called kind. In this sample schema, the kind attribute can take a value of F or V. The F

value means a function call and the V value means a variable use.

This schema has five relations. The contain is a structural relation and it forms a tree

for any LPM. The ResolvedByExtern relation represents symbol references, which need to

be resolved by looking for external symbol definitions. The RefersToExtern means that a

global definition is exported via its symbolic name. The RefersTo relation represents the

references resolvable within a LPM. The last relation is $INSTANCE which stores the typing

information about each entity in the LPM.

48 Open Source Software Evolution and Its Dynamics

3.2.2 LPM Linking

The resolution of cross-references among a collection of LPMs can be concisely expressed as

a relational composition of two binary relations: ResolvedByExtern o RefersToExtern

where o stands for the operator of relational composition. This expression calculates cross-

references from SymbolRef entities to Function and Variable entities. For example, if a

SymbolRef entity x is resolved by an ExternSymbol y and y refers to a Function z, then

x links to z. The link between x and z needs to be further checked by examining whether

the kind attribute of x is F (function call). In addition, this link needs to be checked with

regard to the configuration of the system from which the LPMs have been extracted.

Program model linking is a fundamental mechanism for deriving a model representing a

software system by means of combining program models that are separately generated (or

extracted) as the system is being compiled (or parsed). The obtained system model must

not have any dangling symbol references among individual program models. This prohibi-

tion mandates that any symbol references resolvable within the system must be resolved.

However, it is optional to resolve those symbol references pointing to the environment, in

which the software system is embedded.

3.2.3 Linkage Anomalies

A linkage anomaly is an erroneous (unexpected) or a missing (unresolved) linkage depen-

dency in a software system model. Because it is the program extractor that resolves symbol

references to definitions within the same program unit such as a source file and an object

module, we only discuss what can cause linkage anomalies among different program units.

Improving Linkage Resolution in System Model Extraction 49

Multi-Resolution

A symbol having more than one definition can cause multiple resolutions of a symbol refer-

ence to that symbol. This can occur when a software system is composed of a collection of

executables and dynamic libraries. For a large system, it is highly possible that clones are

used to minimize inter-dependencies among different source files. Consequently, a symbol

can have more than one definition in various parts of the system. If the process of linking

separately extracted program models is not properly controlled, the resolution of a symbol

reference may produce multiple direct references with only one of them representing the

true cross-reference dependency.

For example, PostgreSQL 7.4 has 18 executable programs and 31 dynamic libraries

targeted at the Linux platform. There are 75 symbols with multiple global definitions. One

of them is a function called EncodeDateTime, which is defined in two different source files,

datetime.c and dt common.c. The first file is used to generate the executable postgres,

which is the backend database server. The second file is used to build the dynamic library

libecpg.so, which provides support for embedding SQL in C. If a program model linker

ignores the fact that EncodeDateTime has multi-definitions, every symbol reference to the

name EncodeDateTime will be resolved to generate two direct references.

Incomplete Resolution

A possible solution to the multi-resolution problem is to leverage the software build process

to constrain program model linking. The idea is to collect system configuration information

to determine inter-dependencies among program files. These inter-dependencies can then

be used to control a program model linker. Unfortunately, this solution does not guarantee

a complete linkage resolution. A software system build often consists of dynamic libraries.

When generating a dynamic library, a code linker such as the GNU linker LD leaves some

50 Open Source Software Evolution and Its Dynamics

dangling symbol references which need to be resolved by the runtime linker as the dynamic

library is loaded into memory.

The following describes a case from PostgreSQL. The function tuplestore begin heap

defined in file tuplestore.c is called by function exec init tuple store defined in file

pl exec.c. The file tuplestore.c is part of the backend server postgres, and pl exec.c

is compiled and then linked into a shared library called libplpgsql.so, which provides a

loadable procedural language. If all the steps of building PostgreSQL are exactly followed

to carry out program model linking, any symbol references to tuplestore begin heap in

the file pl exec.c will not be resolved. This shows that incomplete resolution can lead to

linkage anomalies.

3.3 Linking Rules and Heuristics

This section describes a number of rules and heuristics useful for governing the behavior of

a program model linker. They serve as a remedy means for reducing the number of linkage

anomalies in an extracted software system model.

3.3.1 Linking Rules

There are two linking rules that produce no ambiguities even if only incomplete information

can be obtained about the system configuration.

R1 Scope of File

Files are fundamental units for organizing modern software systems. Within the scope of

a source program file (e.g., .c and .h files), symbol references can be resolved accurately

using current compiler techniques. For example, the CPPX source extractor based on the

Improving Linkage Resolution in System Model Extraction 51

GCC front end can produce abstract syntax graphs with all symbol references within the

scope of a compilation unit correctly resolved. There are no linkage anomalies introduced

by CPPX. For this reason, the resolution of symbol references within a file’s scope is not

a priority issue to be considered. One can assume that a program model extracted from a

source file or a compilation unit is correct due to the proper use of parsing techniques and

scoping rules.

Any symbol references that cannot be resolved within the scope of a source file (or a

compilation unit) are considered to be references to external symbol definitions. Namely,

their resolution will result in cross-references among source files (or compilation units).

From this point forward, the discussion will only focus on the resolution of external symbol

references.

R2 Unique Definition

If a symbol has a unique definition throughout the entire software system, the references

to the symbol can be resolved without ambiguity. This rule is the most useful since it can

resolve the majority of external symbol references.

3.3.2 Linking Heuristics

After the use of rules R1 and R2, symbol resolution can become ambiguous if no or little

information is gained about the configuration of a software system. In this case, a number

of linking heuristics need to be applied to improve the accuracy of a program model linker.

We now describe four useful linking heuristics.

52 Open Source Software Evolution and Its Dynamics

H1 File-File

If a cross-reference is present from file F1 to file F2, F2 is given higher priority when being

searched for the definition of an external symbol referenced in F1. This heuristic is called

the File-File linking heuristic. Figure 3.2 provides an illustration.

F1

F2

F3

u

v

r

n

Figure 3.2: Linking heuristic: File-File

A symbol reference in file F1 to name n need to be resolved unambiguously. There

are two cross-reference candidates, v and u. Since there exists a resolved cross-reference r

between F1 and F2, F2 is given higher priority to be searched for the definition of symbol

n. Therefore, v is determined to be a correct cross-reference in this case.

H2 File-File Closure

This heuristic can be seen as an extension of H1. The previously obtained cross-references

are abstracted into file-level dependencies. The transitive closure of these dependencies is

then calculated. This closure can be used to guide H1 in symbol resolution.

Figure 3.3 shows a simple case. There is no direct cross-references between F1 and F2,

but an indirect dependency between these two files is formed by r1 and r2 through file Fx.

Therefore, F2 is given higher priority over F3 to be searched for the definition of symbol n

and u is determined to be an anomaly to eliminate.

Improving Linkage Resolution in System Model Extraction 53

F1

F2

F3

u

v

r1

n

r2

Fx

Figure 3.3: Linking heuristic: File-File Closure

H3 Same Subsystem

In the C programming language, a static definition in a compilation unit has higher priority

of being linked to when a symbol reference is to be resolved in that unit, even if an external

definition with the same name exists in other files. This scoping rule can be extended to

be a heuristic in the resolution of symbol references within the scope of a subsystem. We

refer to this heuristic as the Same Subsystem. Due to the nature of software organization,

files from the same subsystem are generally more closely related to one another than files

from different subsystems.

SS1
 SS2

F1

F2

F3
u

v
n

Figure 3.4: Linking heuristic: Same Subsystem

Figure 3.4 illustrates heuristic H3. The symbol n referenced inside F1 is ambiguously

54 Open Source Software Evolution and Its Dynamics

linked to symbol definitions in F2 and F3 respectively. Since files F1 and F2 are in subsystem

SS1, it is highly possible that v is a correct cross-reference while u is an anomaly.

H4 Nearest Super Subsystem

Within a nesting subsystem hierarchy, a super (or ancestor) subsystem of a file is a subsys-

tem which indirectly contains the file. According to H4, a nearer super subsystem of a file

has higher priority to be searched than a farther super subsystem when a symbol reference

in that file needs to be resolved without ambiguity.

SS1

SS2

F1

F2

F3
u

v
n

SS
B
SS
A

Figure 3.5: Linking heuristic: Nearest Super Subsystem

In Figure 3.5, the nearest super subsystem of F1 that contains the definition of symbol

n is SSA. So, u is determined to be an anomaly.

3.4 Linking Methods

This section describes four methods for linking program models extracted separately by a

program extractor. Each method uses a different strategy for applying constraints and thus

produces linked system models with varying degrees of confidence. The more constraints

are applied, the more accurate the resulting system model is.

Improving Linkage Resolution in System Model Extraction 55

3.4.1 Raw Linking

The RAW linking method is the simplest. It knows nothing about the configuration of a

target software system and does not differentiate multiple external definitions of a symbol.

Consequently, it does not solve the multi-resolution problem at all. This linking method

calculates cross-references among a number of linkable program models using the following

expressions:

XRef = ResolvedByExtern o RefersToExtern

XRef = Typecheck(XRef)

where function Typecheck ensures correct type match. The XRef is a binary relation which

represents all the resolved cross-references. Besides this equation, no constraints governing

the linking process will be applied. Clearly, this linking method will introduce unexpected

dependencies among program units (e.g., source files) if external symbols are multi-defined

in the system. This method is referred to as RAW because it does nothing else but simple

string match and type match.

3.4.2 Heuristics-Based Linking

The linking rules and heuristics as described in Section 3.3 can be used as a remedy means

to reduce the number of linkage anomalies caused by the raw linking method. In addition,

the resulting linker has no need for understanding how a software system is configured.

The following describes the implementation of a model linking algorithm based on both

linking rules and heuristics. The XRef is initially an empty relation, and SRef stores the

unresolved ResolvedByExtern symbol references. The algorithm first applies every linking

rule in Rules to resolve symbol references and then it loops through all Heuristics until

56 Open Source Software Evolution and Its Dynamics

no heuristic can resolve any symbol references in SRef. For simplicity, this implementation

is referred to as HEU from now on.

XRef = EmptyRel; // Cross-references

SRef = ResolvedByExtern; // External symbol references

// Apply linking rules

for r in Rules {

xref = r(SRef);

XRef = XRef + xref;

SRef = SRef - dom(xref) o SRef; // Delete resolved symbol references

}

// Apply linking heuristics

loop = TRUE;

while(loop) {

loop = FALSE;

for h in Heuristics {

xref = h(SRef);

if(#r > 0) {

loop = TRUE;

XRef = XRef + xref;

SRef = SRef - dom(xref) o SRef;

}

}

}

Improving Linkage Resolution in System Model Extraction 57

In the above implementation, the expression r(SRef) represents that rule r is applied

to SRef to resolute symbol references to external definitions. A similar explanation can be

given to the expression h(SRef) where heuristic h instead of rule r is used. The expression

dom(xref) returns the domain of relation xref. The xref stores temporarily calculated

cross-references. The expression dom(xref) o SRef returns the symbol references in SRef

which have been resolved. In this implementation, the executing order of linking heuristics

is from H1 to H4.

When HEU is applied to link separately extracted program units of a software system,

heuristics H3 and H4 require a hierarchical decomposition of that system. By default, such

a decomposition can be the source folder structure in most circumstances. There are other

options, such as a hierarchical clustering manually created by an expert.

3.4.3 Simulation-Based Linking

In contrast to RAW and HEU, the linking method described in this section requires some

understanding of the system configuration. The more a program model linker knows about

the system configuration, the fewer linkage anomalies will be introduced by the linker into

the resulting system model. However, acquiring system configuration information is no less

difficult than extracting facts from the source code [FSG04]. This section describes only

several options for collecting configuration-related information for the purpose of improving

linkage resolution.

The main idea is to tap into the build process of a software system to collect necessary

information as the system is being built. The collected information is then used to control

the process of program model linking. Two techniques can be used: tool instrumentation

and tool wrapping. We now illustrate these techniques via some concrete examples.

58 Open Source Software Evolution and Its Dynamics

Instrumenting the Code Linker

The tools for building programs such as make, the compiler gcc and the code linker ld can

be instrumented to dump their internal data representations. We have instrumented ld to

dump build dependencies among object modules. For example, as the heap subsystem of

PostgreSQL 7.4, namely the postgresql-7.4/src/backend/access/heap source folder,

is being compiled, the instrumented code linker will dump the following fact:

postgresql-7.4/src/backend/access/heap/SUBSYS.o:

postgresql-7.4/src/backend/access/heap/hio.o

postgresql-7.4/src/backend/access/heap/heapam.o

postgresql-7.4/src/backend/access/heap/tuptoaster.o

This fact means that three object modules are linked into a relocatable module called

SUBSYS.o. A program model linker can be instructed to link separately extracted program

units which are related to the three object modules. If the program extractor BFX is used, a

.ta file will be created for each .o file. The model linker can link hio.o.ta, heapam.o.ta

and tuptoaster.o.ta into a partial linkable model SUBSYS.o.ta which corresponds to

the intermediate module SUBSYS.o. This is just one linking step. The linking process will

continue until the entire build process successfully finishes. A complete build of PostgreSQL

7.4 on a Linux platform (Linux Kernel 2.6.8 installed on a Pentium IV 1.6GHz PC) involves

99 linking steps in total. The facts dumped by the linker in all the linking steps form an

acyclic dependency graph. The root nodes2 of such a graph represent the final executables

or dynamic libraries. Their associated program models need to be combined to represent

the entire software build.

2A root of the acyclic graph is a node on which no other nodes in the graph depend.

Improving Linkage Resolution in System Model Extraction 59

The above example shows how separately extracted object modules can be progressively

linked as a software system is being built. If separately extracted program units are source

files (e.g., .c or .cpp), an implicit naming convention between source files (e.g., hio.c)

and object modules e.g., hio.o can be used to guide the program model linker. In a more

complicated situation where header files (.h) are involved, more build dependencies among

source files are needed. However, those dependencies can not be collected at the stage of

code linking.

Wrapping the GCC Compiler

The compiler gcc has rich options for controlling the C preprocessor. One of these options

is –M, which instructs the preprocessor to output the dependencies of the main source

file which are readable to make. This feature is useful for collecting dependencies between

source files and header files. A simple wrapper for gcc can be created to add –M related

options (e.g., –MD or –MMD) if option –c is found in the arguments passed to gcc.

For example, the –M enabled compilation of file hio.c from the postgresql-7.4/src/

backend/access/heap directory dumps the following information.

hio.o: hio.c ../../../../src/include/postgres.h \

../../../../src/include/c.h ../../../../src/include/pg_config.h \

......

This fact is converted into the following form through file path canonicalization.

postgresql-7.4/src/backend/access/heap/hio.o:

postgresql-7.4/src/backend/access/heap/hio.c

postgresql-7.4/src/include/postgres.h

postgresql-7.4/src/include/c.h

60 Open Source Software Evolution and Its Dynamics

...
 ../../../src/include/postgres.h ../../../src/include/c.h
...

SUBSYS.o

hio.o
 heapam.o
 tuptoaster.o

hio.c
 heapam.c
 tuptoaster.c

Subystem
heap
: postgresql-7.4/src/backend/access/heap

.c
 .h
.o
Legend:
 depends on

Figure 3.6: A partial build dependency graph of PostgreSQL

postgresql-7.4/src/include/pg_config.h

......

For brevity, the majority of preprocessed header files seen by hio.c are not listed here.

This piece of information tells that file hio.c references symbols defined in these header

files, which may include, for example, macros, data types and inline functions. A program

model linker can utilize this information to resolve cross-references among the main source

file and the related header files. As each individual source file is being compiled, the model

linker performs a separate linking task.

Improving Linkage Resolution in System Model Extraction 61

Extracting the Build Dependency Graph

The collection of build dependencies among various program units such as object modules

and source program files is critical to the success of a program model linker. A closer look

at the dependencies collected from the build of PostgreSQL-7.4 reveals that a hierarchical

dependency structure exists for C and C++ programs, in which header files (e.g., .h and

.hpp) are at the bottom; main source files (e.g., .c and .cpp) are in the lower middle;

object modules (.o) and archives (.a) are in the upper middle; and executables (.exe)

and dynamic libraries (.so) are at the top. A sample dependency graph based on the facts

collected for the heap subsystem of PostgreSQL 7.4 on a Linux PC is shown in Figure 3.6.

This kind of dependency graph provides a road map for off-line linking. The model linker

can perform separate linking tasks by moving progressively from bottom to top.

Summary

Through appropriate tool instrumentation and tool wrapping, the build process of software

can be utilized to carry out program model linking tasks. The program model linker mimics

the behavior of both the compiler and the linker throughout the entire build process. For

this reason, alike methods are referred to as simulation-based linking. For brevity, they are

given the name of LDM, in which “LD” stands for the linker and “M” stands for program

models.

3.4.4 Simulation plus Heuristics

As discussed in Section 3.2.3, dangling symbol references may exist if dynamic (or shared)

libraries are part of a system build. A LDM linker is not be able to resolve dangling symbol

references by executing linking orders derived from the build dependency graph. Linking

62 Open Source Software Evolution and Its Dynamics

rules and heuristics shall be used for postprocessing unresolved symbol references after the

LDM linker finishes. This is a two phase linking method, i.e., a sequential combination of

LDM and HEU. For this reason, it is referred to as LDH.

3.4.5 Summary

Each of the four linking methods has unique characteristics as summarized below:

• RAW resolves symbol references without distinguishing multi-definitions of external

symbols. It understands neither the configuration of a software system nor any kind of

hierarchical organization of the system. Consequently, it does not solve the problem

of multi-resolution. However, its benefits include simplicity and easy implementation.

• HEU resolves symbol references based on a set of linking rules and heuristics. This

method requires a hierarchial organization of the software system, but the informa-

tion related to configuration is not needed. HEU takes advantage of two important

observations: (1) a software system especially a very large one commonly has a hier-

archical organization based on directories, and (2) source files in the same directory

are often closely related to one another. The main goal of this method is to support

the mass production of software system models of reasonable quality over hundreds

of versions inexpensively. By inexpensive, we mean that the system does not need to

be built successfully and the configuration related data dose not need to be collected.

• LDM resolves symbol references by hitchhiking the build process of software through

proper tool instrumentation and wrapping techniques. It mimics the behavior of the

compiler and the code linker throughout the entire build process. The build relevant

dependencies among program units such as object modules and source files can be

dumped by various tools. These dependencies are then used to derive linking orders

Improving Linkage Resolution in System Model Extraction 63

to guide a linker to combine separate program models in a progressive manner. If

program units can be extracted correctly, this method does not introduce any unex-

pected cross-references but may leave some dangling symbol references unresolved.

Other drawbacks of LDM include: (1) it requires that the target system be buildable;

and (2) it deals with only one configuration but not the entire system.

• LDH resolves symbol references by means of combining LDM and HEU. It is targeted

at improving the results produced by LDM using various linking rules and heuristics.

In comparison to the other three methods, LDH can produce fewer linkage anomalies

but is more expensive to conduct.

An experiment has been conducted to study how different these four linking methods are

from one another. The following section describes the experimental setup in detail.

3.5 Experimental Setup

The experiment is designed with two objectives in mind: (1) compare the quality of software

system models derived using different linking methods, and (2) analyze the applicability of

linking rules and heuristics in deriving either partial or complete software system models of

reasonable quality over hundreds of versions inexpensively.

3.5.1 Experimental Conditions

The experiment is conducted on a target system under four linking conditions. Table 3.1

provides a brief summary. Each condition is described with regard to four attributes: scope,

program unit, program extractor, and reference type. The scope attribute specifies whether

the system model represents a particular configuration or the entire system. Two types of

64 Open Source Software Evolution and Its Dynamics

Condition Scope Program Unit Extractor Reference Type

C1 configuration .o file BFX
variable use

function call

C2 configuration .c and .h file CTSX
variable use

function call

C3 configuration .c and .h file CTSX

variable use

function call

type reference

macro reference

C4 entire system .c and .h file CTSX

variable use

function call

type reference

macro reference

Table 3.1: Experimental conditions for linkage resolution

program unit are extracted, which are object modules (.o) and source files (e.g., .c and .h).

The used program extractors are BFX and CTSX. Four types of reference are considered,

which are variable use, function all, type reference and macro reference. The type references

also include references to typedefs.

C1 The C1 condition deals with only object modules, which can be extracted using BFX

correctly. The build dependencies among object modules are collected through code

linker instrumentation as described in Section 3.4. The symbol references considered

are limited to function calls and variable uses.

C2 The C2 condition uses CTSX to extract source files instead of object modules. CTSX

is a robust source extractor based on lexical analysis and produces facts of reasonable

Improving Linkage Resolution in System Model Extraction 65

quality. The source files to extract include every file needed for generating a successful

build under condition C1. The build dependency graph involving object modules and

source files is extracted to guide LDM and LDH. This extraction is supported by code

linker instrumentation and compiler wrapping.

Besides function calls and variable uses, references to aggregate types such as struct

and union are added.

C3 The C3 condition further relaxes C2 by allowing additional types of symbol reference.

The references to macros and aggregate types such as struct and union are added.

The extracted build dependency graph is the same as the one used under condition

C2. However, condition C3 deals with part of the system which is slightly larger than

the configuration seen under condition C2. This is because CTSX is used independent

of the configuration of the system and it is not aware of conditional compilation.

C4 The C4 condition is the least restrictive. It changes the scope from one configuration

to the entire system. Unfortunately, determining all potential software configurations

is a NP-complete problem [Cal88]. It can become problematic to apply LDM or LDH

on all configurations. To solve this problem, an approximate solution is approached

by means of expanding the build dependency graph for one configuration in two steps.

First, an automated inclusion analysis tool is applied to expand the bottom part of

the graph. Dependencies among implementation files and header files are produced.

Second, manual work is conducted to specify which source files are built into which

modules. These two steps are relatively easy to perform because only a small portion

of the entire target system need to be examined after the initial build dependency

graph is extracted from one particular configuration.

66 Open Source Software Evolution and Its Dynamics

As conditions change from C1 to C4, one can expect that the quality of system models

produced by each linking method might decrease because the scope is expanded from one

configuration to the entire system and more types of symbol reference are involved. This is

indeed the case as can be seen from the experimental results described in Section 3.6.

3.5.2 Baseline for Comparison

A baseline needs to be established in order to compare system models derived using different

linking methods under each condition. The system model produced by LDH appear to be

the closest to a correct model with no linkage anomalies because of the following reasons:

• LDH follows stepwise linking orders derived from the build dependency graph which

is constructed as the target system is being compiled;

• The linking rules and heuristics are further applied to postprocess unresolved symbol

references (e.g., dangling references);

• Manual work for verifying symbol references resolved by linking heuristics is expected

to be in a relatively small amount.

These points help increase our confidence that a reasonable baseline model can be derived

using LDH. Given a baseline, XRefBase, the comparison is done by means of calculating

the set intersection, XRefBase ∩ XRefMethod, and set differences, XRefBase − XRefMethod and

XRefMethod− XRefBase, where Method refers to one of the four linking methods. The former

set difference denotes the cross-references which are neglected by Method, and the latter

represents those which are produced by Method but are not expected.

Improving Linkage Resolution in System Model Extraction 67

For a linking method, the anomaly ratio (AR) with regard to a baseline model is defined

as:

AR(Method) =
|(XRefBase − XRefMethod) ∪ (XRefMethod − XRefBase)|

|XRefMethod|
The anomaly ratio can also be calculated for dependencies at higher levels of granularity

such as the source file level and the subsystem level. High-level dependencies are commonly

created by means of abstracting cross-references at the lowest level of granularity.

3.6 Experimental Results

This section describes the experimental results obtained from a target system, PostgreSQL.

For clarity, the obtained results will be presented in two steps. The first step is solely for the

purpose of demonstration and only condition C1 is involved. The second step summarizes

and discusses the experimental results under all conditions.

PostgreSQL is a large open source database management system (DBMS) implemented

in C. The release 7.4 has 569 .c files and 424 .h files, which approximately amount to 520

thousand of lines of code (KLOC) in total. A typical build of PostgreSQL 7.4 on the Linux

platform generates 465 object modules, and each .o module can be mapped to a source file

ending in .c. These object modules are used to create 18 executable programs, 31 dynamic

libraries, and 50 intermediate relocatable object modules.

3.6.1 Result Analysis Under Condition C1

Table 3.2 summarizes the obtained results by using four linking methods under condition

C1. The system model of PostgreSQL has 40002 symbol references to external definitions

(functions and variables) in total and the same number of cross-references if all are resolved

correctly. Each of the four methods produces different results. The RAW linking method

68 Open Source Software Evolution and Its Dynamics

Method Resolved Cross-Ref. Unresolved Unexpected

RAW 40002 40679 0 677

HEU 39967 39967 35 2

LDM 37518 37518 2484 0

LDH 40002 40002 0 0

Table 3.2: Linkage resolution under condition C1 (PostgreSQL)

resolves all but produces 677 anomalies; HEU resolves 39967 and yields 2 anomalies, but

43 symbol references are left unresolved; LDM produces the least accurate model, in which

2484 symbol references are not resolved; and LDH produces 40002 cross-references which

have been manually verified to be correct.

Table 3.3 shows the results obtained from individual steps of LDH and HEU. The first

step of LDH is LDM which cannot resolve all symbol references by itself. The rule R1 and

the heuristic H2 are used to achieve a complete resolution. This is caused by the creation

of dynamic libraries (see Section 3.2.3). The runtime linker will resolve the 2484 dangling

symbol references by means of loading the relevant dynamic libraries into memory. Using

R1 and H2, these dangling references can be resolved easily. A manual examination reveals

that the 6 cross-references produced by H2 are correct. Due to the nature of LDM and R1,

LDH therefore correctly produces all the 40002 cross-references among 465 object modules

of PostgreSQL 7.4.

Table 3.3 also shows seven individual steps in HEU. Heuristics from H1 to H4 all produce

cross-references as they are applied in the first round. However, only H2 is effective in the

second round. In the end, 35 symbol references are unresolved. A comparison of the cross-

references produced respectively by HEU and LDH reveals that H4 introduces 2 anomaly

references. This example shows that linking heuristics neither guarantee a complete linkage

Improving Linkage Resolution in System Model Extraction 69

LDH Resolved Cross-Ref. Unresolved Unexpected

LDM 37518 37518 2484 0

R1 2478 2478 6 0

H1 0 0 6 0

H2 6 6 0 0

HEU Resolved Cross-Ref. Unresolved Unexpected

R1 39365 39365 637 0

H1 150 150 487 0

H2 45 45 442 0

H3 301 301 141 0

H4 77 77 64 2

H1 0 0 64 0

H2 29 29 35 0

Table 3.3: Individual linking steps of LDH and HEU (PostgreSQL)

resolution nor prevent linkage anomalies.

Impact of Anomalies

We now discuss what impacts linkage anomalies have on deriving system models at higher

levels of granularity. The 40002 cross-references produced by LDH are abstracted into 3772

dependencies among 465 object modules and 649 dependencies among 87 subsystems. Here,

a subsystem in PostgreSQL refers to a source folder that must contain directly at least one

of the 465 object modules. These high level dependencies provide a baseline for comparison

because the results of LDH are correct. Table 3.4 lists the anomaly ratios obtained for each

linking method at three levels of granularity.

70 Open Source Software Evolution and Its Dynamics

Condition Method SymbolRef level AR File level AR Subsystem level AR

C1

RAW 1.66% 3.43% 6.89%

HEU 0.09% 0.51% 1.88%

LDM 6.62% 3.91% 7.81%

LDH 0.00% 0.00% 0.00%

C2

RAW 2.13% 4.45% 6.39%

HEU 0.28% 1.53% 2.58%

LDM 5.62% 8.74% 18.76%

LDH 0.00% 0.00% 0.00%

C3

RAW 21.62% 29.15% 29.03%

HEU 1.84% 2.71% 5.09%

LDM 8.65% 11.25% 17.65%

LDH 0.07% 0.11% 0.15%

C4

RAW 22.42% 30.37% 28.33%

HEU 7.22% 9.13% 15.13%

LDM 8.35% 12.40% 25.37%

LDH 0.27% 0.61% 1.37%

Table 3.4: Anomaly ratios at varying levels of granularity (PostgreSQL)

The 677 anomalies that are introduced by the RAW linking method result in 134 depen-

dency anomalies at the object module level and 48 at the subsystem level. Correspondingly,

the anomaly ratios are 3.43% and 6.89% respectively. In the case of LDM, the 2484 unre-

solved symbol references result in 142 missing dependencies at the module level and 47 at

the subsystem level. These missing dependencies result in inaccuracies of 3.91% and 7.81%

respectively. The 35 unresolved symbol references plus 2 erroneous references caused by

Improving Linkage Resolution in System Model Extraction 71

HEU lead to 18 missing and 1 erroneous dependencies at the module level and 11 missing

and 1 erroneous at the subsystem level. The anomaly ratios are approximately 0.51% and

1.88% respectively.

For PostgreSQL 7.4, LDH achieves a complete and accurate linkage resolution and HEU

produces a system model with much higher quality as opposed to those produced by RAW

and LDM. It is interesting that LDM actually produces the models of the worst quality at

all three levels of granularity. This seems rather counterintuitive at first glance. However,

recalling the build of PostgreSQL has 18 executables and 31 dynamic libraries, one can see

that such a highly fragmented organization of executable code is the main reason for why

LDM produces more linkage anomalies than expected in PostgreSQL.

3.6.2 Result Discussions Under All Conditions

Figure 3.7 provides quantitative comparison of cross-references at three levels of granularity

(the SymbolRef level, the file level and the subsystem level) in PostgreSQL under the four

experimental conditions (C1 to C4). The corresponding anomaly ratios are summarized in

Table 3.4. The following lists several interesting observations.

• As the most complicated linking method among the four, LDH consistently produces

better results than the other three methods under all conditions. Its worst anomaly

ratio is 1.37%, which is obtained at the subsystem level under condition C4.

• Due to incomplete resolution, LDM produces more dependency anomalies than RAW

under conditions C1 and C2. While, RAW surpasses LDM to produce more anomalies

under conditions C3 and C4. Recalling that C1 and C2 involve only function calls

and variable uses but C3 and C4 handle two more types of reference (to macros and

data types), we can conclude that multi-resolution outperforms incomplete resolution

72 Open Source Software Evolution and Its Dynamics

(a) SymbolRef level
 (b) File level
 (c) Subsystem level

XRef
Method
 XRef
Base
XRef
Base
 XRef
Method
XRef
Base
 XRef
Method

Condition C1

0
 10000
 20000
 30000
 40000
 50000

BASE

RAW

HEU

LDM

LDH

Condition C2

0
 10000
 20000
 30000
 40000
 50000
 60000

BASE

RAW

HEU

LDM

LDH

Condition C1

0
 1000
 2000
 3000
 4000
 5000

BASE

RAW

HEU

LDM

LDH

Condition C2

0
 1000
 2000
 3000
 4000
 5000

BASE

RAW

HEU

LDM

LDH

Condition C2

0
 200
 400
 600
 800
 1000

BASE

RAW

HEU

LDM

LDH

Condition C3

0
 50000
 100000
 150000
 200000
 250000

BASE

RAW

HEU

LDM

LDH

Condition C3

0
 5000
 10000
 15000
 20000

BASE

RAW

HEU

LDM

LDH

Condition C3

0
 500
 1000
 1500
 2000

BASE

RAW

HEU

LDM

LDH

Condition C4

0
 100000
 200000
 300000

BASE

RAW

HEU

LDM

LDH

Condition C4

0
 5000
 10000
 15000
 20000

BASE

RAW

HEU

LDM

LDH

Condition C4

0
 500
 1000
 1500
 2000
 2500

BASE

RAW

HEU

LDM

LDH

Condition C1

0
 150
 300
 450
 600
 750

BASE

RAW

HEU

LDM

LDH

Figure 3.7: Quantitative comparison of cross-references in PostgreSQL

Improving Linkage Resolution in System Model Extraction 73

in producing anomalies as more types of reference are considered.

• HEU is the second best among the four linking methods. A closer look at Figure 3.7

reveals that missing dependencies rather than unexpected (erroneous) dependencies

account for the majority of anomalies produced by HEU. This indicates that linking

heuristics described in Section 3.3 treat multi-resolution negatively. As a result, they

tend to pick one or fewer references from a set of suspicious references and filter out

the rest as erroneous references. Remedial heuristics need to be designed to counter

this undesirable tendency. Enhancing HEU remains future work.

• In general, anomaly ratio tends to increase as the level of granularity increases. This

can have an undesirable impact on various software analyses. For example, software

clustering algorithms, which commonly operate on dependencies at the file level, may

be sensitive to linkage anomalies and thus produce inaccurate clusterings. A user who

relies on Reflexion Model to investigate structural change at the subsystem level may

encounter a fairly large number of unexpected dependencies, which are not caused by

the actual system implementation but by inappropriate linking.

3.7 Conclusion

Program model linking is an important step in the extraction of software system models.

However, its role for improving the accuracy of a system model is somewhat neglected. As

a result, a significant number of linkage anomalies (erroneous or missing dependencies) can

be introduced into the resulting system model.

In this chapter, we described four methods for linking separate program models into a

software system model. We compared these methods by applying them to PostgreSQL 7.4

under four conditions. Each condition has a different coverage of the system and takes into

74 Open Source Software Evolution and Its Dynamics

consideration different types of reference. Empirical results have shown that heuristics can

be effectively used to reduce linkage anomalies. The heuristic linking method called HEU

can produce significantly better results than RAW (using neither heuristics nor system

configuration) and LDM (depending only on system configuration). Even in comparison

to LDH (LDM further enhanced by heuristics), HEU produces reasonably accurate models.

HEU is significantly more efficient than LDH since no system configuration information is

collected.

In the field of software evolution, collecting system configuration information is no less

difficult than extracting program facts from the source code over hundreds of versions. In

order to derive system models of reasonable quality (i.e., with fewer dependency anomalies),

approximation has to be used. We recommend the combination of a robust efficient source

code extractor and a small set of linking heuristics as a practical means for mass production

of system models over an extended period of time. In fact, we have relied on this approach

to generate the system models stored in EvolDB, which we have described in Chapter 2.

Chapter 4

An Empirical Study of Punctuated

Software Evolution

Theories of biological evolution provide rich sources of ideas from which software evolution

research can benefit. Inspired by the theory of Punctuated Equilibrium [EG72] and some

previous observations on discontinuous phenomena in software evolution such as ripple

effect [LB85], we propose that software evolution can be viewed as punctuated equilibrium.

Software systems evolve through an alternation between long periods of small changes (with

little impact on the system architecture) and short periods of large avalanche changes (of

architectural importance).

This chapter provides an interpretation of punctuated equilibrium with regard to soft-

ware system evolution. Based on this interpretation, we conduct empirical studies on three

open source systems (OpenSSH, PostgreSQL and Linux Kernel) to observe punctuated evo-

lution from a structural perspective. The obtained results show that the three systems we

examined all exhibit strong characteristics of punctuation during their evolution.

75

76 Open Source Software Evolution and Its Dynamics

4.1 Introduction

In the field of biological evolution, the work of Darwin on the origins of species and natural

selection is the most widely known [Dar59]. According to Darwin, species develop through

a sequence of small variations (or mutations) and are gradually shaped by natural selection

into novel species. His theory of evolution is often referred to as gradualism. In early 1970s,

Eldredge and Gould proposed to view biological evolution as punctuated equilibrium [EG72].

From their point of view, species stay relatively stable over long periods of time, and sudden

rapid change called punctuation causes new species to come into existence, whose fate is

determined by natural selection. The controversy over punctuated equilibrium (whether it

contradicts gradualism1?) has greatly stimulated fruitful empirical research in the field of

paleontology and evolutionary biology over the past years.

Previous software evolution research has resulted in observations of discontinuous change

in various forms. For example, the work of Antón and Potts on the functional paleontology

of a large telephone system revealed that a burst of telephone features occurred every 8 to

12 years [AP01]. Aoyama observed significant architectural changes across generations of

mobile phone systems, which he called discontinuous evolution [Aoy01]. Parnas suggested

major system restructuring as one of several effective means for preventing software aging

(or decay) [Par94]. Although different, these observations are relevant to the occurrences

of punctuation (sudden and discontinuous change) in the evolution of software systems.

This chapter describes our effort in borrowing useful ideas and concepts from the theory

of punctuated equilibrium to explain software evolution. We investigate whether software

1There are two common uses of gradualism: Darwinian gradualism and phyletic gradualism. Darwinian

gradualism states that evolution proceeds in small variations, albeit sometimes more slowly and sometimes

more rapidly. It is a mode of change and has little to do with the rate or tempo of evolution. By contrast,

phyletic gradualism emphasizes that evolutionary rates are geologically slow and constant.

An Empirical Study of Punctuated Software Evolution 77

evolution is punctuated equilibrium by means of examining structural dependency changes

over system lifetime. Our hope is that such a view and its supporting evidence can spur

on further efforts (or even debates) toward developing a theoretical explanation of software

evolution in a way similar to what punctuated equilibrium has done to paleontology and

evolutionary biology.

The remainder of this chapter is organized as follows. Section 4.2 presents our view of

software evolution modeled on the punctuated equilibrium theory. Section 4.3 provides an

overview of main analysis steps we have followed to investigate software system evolution. A

color coded visualization technique called Evolution Spectrograph is used in our analysis to

help examine how a software system changes over time. Section 4.4 describes punctuation

phenomena observed in three large open source software systems. Section 4.5 discusses the

meanings of punctuated evolution and several threats to the validity of this work. Section

4.6 considers related work and Section 4.7 concludes this chapter.

4.2 Punctuated Software Evolution

According to the theory of punctuated equilibrium, systems evolve through the alternation

of periods of equilibrium, in which persistent underlying structures (i.e., deep structure)

permit only small incremental change, and periods of punctuation, in which the underlying

structures are fundamentally altered [Ger91]. This theory has three main components

namely deep structure, equilibrium and punctuation. We now provide an interpretation of

these components with regard to software evolution in the following.

78 Open Source Software Evolution and Its Dynamics

4.2.1 Software Architecture

Deep structure is described by Gersick as a network of fundamental interdependent choices

of the basic configuration into which a system’s units are organized [Ger91]. This definition

shares many similarities with that of software architecture. For example, software architec-

ture is defined by IEEE as the fundamental organization of a software system, embodied in

its components, their relationships to each other and the environment, and the principles

governing its design and evolution [IEE00]. Garlan and Perry define that the architecture

of a program comprises the components of that program, their interrelationships, and prin-

ciples and guidelines governing their design and evolution over time [GP95]. Therefore,

software architecture can be viewed as deep structure, which controls transitions between

equilibrium and punctuation throughout the entire lifecycle of a software system.

4.2.2 Periods of Punctuation

Software architecture is the primary focus of change during periods of punctuation. Qual-

itative change is made to alter the architecture within a relatively compact period in order

to achieve stability in the long run. Changes are often intense and occur in a short time.

For an evolving software system, its architecture must be regularly adapted to changing

requirements and environment else it becomes progressively less satisfactory [LR01]. At one

extreme, the architecture may be altered fundamentally. For example, an application may

be transformed from a centralized architecture to a distributed architecture. At the other

extreme, the architecture may be partially modified to support new uses. For example, a

single platform system can be restructured to support multiple platforms by introducing

a virtual operating system service layer. In each case, significant changes to the system

architecture are expected to occur in a relatively short period of time.

An Empirical Study of Punctuated Software Evolution 79

4.2.3 Periods of Equilibrium

Within periods of equilibrium, the system architecture stays relatively stable and remains

capable of accommodating forecasted changes in requirements. Changes to the system are

usually small and incremental. They rarely violate the principles governing the design and

evolution of the system. However, it is possible that the architecture may exhibit symptoms

of gradual decay, which is caused by the accumulating effect of maintenance activities such

as bug fixes and feature modifications [EGK+01].

Perry and Wolf described two architectural decay phenomena: erosion and drift [PW92].

Architectural erosion is due to violations of the architecture during incremental change.

These violations tend to cause increasing brittleness of a system. By contrast, architectural

drift is a slow obscure process in which the architecture floats away from its original form,

thus resulting in the lack of coherence and clarity of form. The architecture needs to be

evolved to counter erosion and drift. Two common strategies are used: (1) perform gradual

change such as corrections and cleanups, and (2) resort to sudden massive restructuring to

alter the architecture. The second strategy inevitably leads to transitions from periods of

equilibrium to periods of punctuation.

4.3 Methodology

In our analysis we have conjectured that punctuated evolution can be observed by examin-

ing changes to structural dependencies at the file level and functional growth measured in

number of files. There are three main reasons for having such a conjecture.

• The number of files (or modules) is one of the most widely used measures for study-

ing software evolution [LRW+97]. New functionality is commonly indicated by the

growth of the number of files and it is a major driving force for architectural change.

80 Open Source Software Evolution and Its Dynamics

Working at the file level makes it relatively easy to examine the relationship between

new functionality and architectural change.

• Being the highest-level abstraction of a software system, software architecture can be

difficult to recover due to the lack of appropriate documentation and expertise. It is

a daunting task to recover architectures manually from a large number of versions for

a long lived software system. In addition, architecture recovery from scratch would

be biased toward one’s own understanding of what the architecture ought to be.

• Adopting the source folder structure as the subsystem hierarchy is only appropriate

when a system is well organized. However, it is not unusual that many open source

systems (e.g., OpenSSH [Ope04a]) have a large number of files contained in only one

or two directories. In such a situation, the directory structure is not suitable for

creating a meaningful subsystem hierarchy.

This conjecture has a side effect. In order to determine whether an identified punctuated

change is of architectural importance, we have to examine software documentation from a

variety of sources including release notes, technical papers and online documentation. This

may require a significant amount of manual work (mainly reading).

We now explain the main steps required for analyzing the structural evolution of soft-

ware systems. In addition, a simple general-purpose technique for visualizing software

evolution, which is analogous to sound spectrogram, is described in detail.

4.3.1 Analysis Overview

The analysis consists of three main steps: (1) software extraction, (2) metric collection and

(3) evolution visualization.

An Empirical Study of Punctuated Software Evolution 81

Step 1: Software Extraction

The first step extracts program models from a historical sequence of snapshots (e.g., builds

or releases) of a software system. A number of source code extractors are available to use,

such as CCia [Aca96], CAN [FBMG01], CPPX [CPP02] and TkSeeSN [TkS03]. Each of

these extractors produces lower level references such as function calls and variable uses,

which need to be abstracted into dependencies at the file level. This kind of abstraction

is important for scaling up the analysis of a large system over hundreds of versions. To be

simple, the file level dependency is not weighted. In other words, a dependency between

files F1 and F2 is determined only by the existence of lower level dependencies but not by

their count.

The program extractor we used is LDX, which is an instrumented version of the GNU

code linker LD. LDX outputs only function calls and variable uses as the program is being

compiled. LDX is reasonably robust and efficient for automating program extraction over

hundreds of versions. Chapter 2 provides detailed information about LDX.

Step 2: Metric Collection

This step measures change on a per-unit basis by means of comparing program models ex-

tracted from subsequent versions. Note the data to be measured is not the extracted model

but the differences between two consecutive models. Depending on the extractors used in

the previous step, the extracted model can be at different levels of granularity and different

measures such as Number of Functions (NOF), Cyclomatic Complexity, Fan In, and Fan

Out can be computed. For example, abstract syntax graphs (ASG) produced by CPPX can

be used to compute Cyclomatic Complexity on a per-function basis, and cross-references

produced by LDX can be used to compute Fan In and Fan Out on a per-file basis.

We chose to measure file level dependency change using Fan In and Fan Out. For exam-

82 Open Source Software Evolution and Its Dynamics

ple, if a file has an old incoming dependency removed and two new incoming dependencies

added as the system evolves from release i to release i+1, it will be assigned a value of 3 to

denote its incoming dependency change. This can be seen as Fan In measured on the delta

graph obtained by contrasting two releases. Fan Out with respect to outgoing dependency

change is computed in the same way. For a pair of consecutive releases, a vector of values

can be obtained. A sequence of vectors can be obtained over time to characterize the entire

change history of the system. These vectors are further combined into a 2D matrix to serve

as the underlying data model of evolution spectrograph (see section 4.3.2).

Step 3: Evolution Visualization

This step applies appropriate visualization techniques to highlight major events and trends

during the evolution of a software system. For example, one of the most important evo-

lution analysis is to examine the system growth curve using 2D data plots [GT00, LR01].

More advanced evolution visualization techniques such as Polymetric View can also be used

[LD03]. We studied the evolution history of software systems using evolution spectrograph,

which is detailed in the following section.

4.3.2 Evolution Spectrograph

A spectrogram-based evolution visualization technique is used to display changes to a target

software system throughout its lifetime. The technique is referred to as Evolution Spectro-

graph. Analogous to a sound spectrogram, an evolution spectrograph visually characterizes

how a spectrum of software related components change over time.

An Empirical Study of Punctuated Software Evolution 83

Spectrograph Dimensions

A sound spectrograph (or spectrogram) provides a visual representation of the frequency

content of sound and its variation in time. It is normally presented in the form of an XY

graph, in which the horizontal axis X denotes the time dimension, and the vertical axis Y

denotes the frequency range. The brightness of a position in the XY graph indicates the

relative amplitude of the energy present for a given frequency and time. Similarly, software

evolution can be characterized in terms of time, spectrum, and measurement, and visualized

using spectrographs. Each of the three dimensions is explained below.

Time

The time dimension denotes the entire or partial lifetime of a software system. Time

can be measured in two ways. First, time can be measured in units of discrete evolution

events, such as software releases and source repository commits [WHH04]. Second, time

can be measured in terms of fixed-length periods such as days, months and years. The

unit of time needs to be chosen properly to meet the purpose of a study. For example, if

one wants to analyze how the structure of a system changes over time, it is appropriate

to adopt releases as time units because the system structure likely undergoes noticeable

change between releases. If one is interested in studying developer activities, the unit of

time based on a fixed-length period (e.g., month) can be more appropriate.

Spectrum

Analogous to sound decomposition into frequency components, software system decompo-

sition into smaller software units provides a base of measurement along the Y axis. In the

spectrum of sound, frequency components are arranged into an ascending order according

to their values. Similarly, software units need to be ordered based on a particular property.

For example, software units (e.g., files) can be ordered according to the time of creation or

84 Open Source Software Evolution and Its Dynamics

modification. This ordering permits one to visualize the growth curve of a target software

system, which is displayed as the upper envelope of the spectrograph (see Figure 4.2).

A target software system can be decomposed into units at varying levels of granularity,

such as the subsystem level and the file level. Such a hierarchical decomposition is not the

only spectrum one can use to analyze software evolution. Depending on the historical data

to analyze, a spectrum can consist of components in different forms. If one is interested in

analyzing developer activities in a large project, the spectrum can be an ordered arrange-

ment of developers according to their skill levels or based on the dates they join the project.

If one wants to assess the language diversity of a large application, the spectrum can be a

range of implementation languages, such as Assembly, C, C++, Java, and various scripting

languages, which can be ordered by their time of being added into the application. Several

concrete examples of spectrum are presented in [HWH05, WHH04].

Measurement

Each component in the spectrum needs to measured over the lifetime of a software system.

A variety of software metrics, such as Lines of Code (LOC), Fan In/Out of dependencies,

defect density and code churn can be computed on a per-component basis. For example, the

empirical studies described in Section 4.4 use Fan In and Fan Out to measure dependency

change on a per-file basis.

Spectrograph Model

A spectrograph uses a matrix M as its underlying data model (see Figure 4.1). For a given

spectrum, each of its components will be measured according to a particular property p.

A row in the matrix stores a vector of values that characterizes the evolution history of a

spectrum component. A column stores a snapshot of evolution states for all components

in the spectrum at a particular time point or during a particular period. If the spectrum

An Empirical Study of Punctuated Software Evolution 85

contains m components (c0, c1, ..., cm) and time is measured using n discrete points (t0,

t1, ..., tn), the matrix will have the dimension of m× n. This metrics-based representation

mathematically characterizes the evolution history of a software system.

t
0
 t
1
 t
n
t
2

snapshot of

system at time

history of

property (p) for

component

.
.
.

c
2

t
2

c
0

p
00
 p
01
 p
02
 p
0n
….

c
1

p
10
 p
11
 p
12
 p
1n
….

c
2

p

20

p

21

p

22

p

2n

….

…
.

…
.

…
.

…
.
….

.

.
.

c
m

p
m0
 p
m1
 p
m2
 p
mn
….

Figure 4.1: Spectrograph model based on matrix

Spectrograph Coloring

The values in matrix M are commonly coded in colors in order to produce a visual display.

An appropriate coloring needs to be chosen to help the viewer easily discover evolutionary

patterns embedded in the historical data characterized by M . The discovered patterns are

then closely examined to gain a better understanding of the evolution of a software system.

Several useful methods for coloring a spectrograph are described below.

Quartile Coloring

The quartile coloring is based on the notion of box plots. The range of values in matrix M

is divided into quarters by calculating the median and the quartiles (the lower quartile is

the 25th percentile and the upper quartile is the 75th percentile). Each quarter is assigned

86 Open Source Software Evolution and Its Dynamics

a unique color. The quartile coloring can be extended by dividing the value range into more

sub-ranges and choosing more unique colors. It has been used to study publication records

from conference proceedings in the field of software engineering and change activities in

large software projects [HWH05].

Gradient Coloring

A gradient coloring uses a function to map a value range to a color range. A linear gradient

requires two base colors Cmin and Cmax, and maps the smallest value in matrix M to Cmin

and the largest value to Cmax. Any other value in M is associated with a color determined

by a linear function that maps the value range to the color range bounded by the two base

colors. Other useful mapping functions such as exponential decay can also be used to color

evolution spectrographs [WSHH04].

A Coloring Customized for Our Analysis

In our studies, we used a customized coloring which requires two colors Cpaint (paint) and

Cbg (background). A cell in the matrix is colored in Cbg if it does not have a value. It is

colored in Cpaint if it has a value greater than 0. Otherwise, the cell is painted in a lighter

color than its previous cell in the same row. If the value at row i and column j in matrix

M is denoted as M [i][j] and its associated cell color denoted as C[i][j]. The spectrograph

is rendered according to the following equation.

C[i][j] =





Cbg if M [i][j] is not a value

Cpaint else if M [i][j] > 0

Cpaint else if j = 0

lighter(C[i][j-1]) else

Where function lighter(c) converts color c into a lighter color of the same hue by decreasing

saturation and increasing brightness. We chose the color dark-green for Cpaint in the study.

The generated spectrographs will be shown in Section 4.4.

An Empirical Study of Punctuated Software Evolution 87

Target System
Domain Period of Dev. Size(KLOC) #Releases

OpenSSH Protocol 10/1999–03/2004 22–70 60

PostgreSQL DBMS 01/1997–12/2003 185–525 85

Linux Kernel OS 06/1996–07/2003 674–5141 76

System Model Scope

The system model represents only part of the system, which con-

sists of files needed for a successful build on the Linux platform.

Dependency graph

File-level dependencies are created by means of abstracting lower

level cross-references extracted by LDX.

Spectrograph Time

Time is measured using historical releases or monthly builds.

Spectrum

Spectrum consists of object files (.o) ordered by the creation time

of corresponding source files (.c).

Measurement

Fan In and Fan Out on a per-file basis. Both measures are applied

to delta graphs between paired consecutive versions.

Table 4.1: Setting for studying punctuated software evolution

4.4 Case Studies

We have examined three open source software systems (OpenSSH, PostgreSQL and Linux

Kernel) in an attempt to search for empirical evidence of punctuated evolution. Table 4.1

summarizes the empirical study setting. All three target systems are open source with each

of them from a different application domain. OpenSSH is the smallest system, which has

grown from 22 KLOC to 70 KLOC. Linux is the largest system, which has more than five

88 Open Source Software Evolution and Its Dynamics

million lines of code up to July 2003. PostgreSQL is approximately an order of magnitude

larger than OpenSSH and smaller than Linux respectively.

Changes to incoming and outgoing dependencies are measured for each object file over

time. Two evolution matrices based on Fan In and Fan Out are created respectively for

each target system. The matrices are converted into spectrographs to highlight conspicuous

system-wide change events throughout the lifetime of each target system.

4.4.1 OpenSSH

OpenSSH is a well-known open source implementation of the Secure Shell (SSH) protocol

suite of network connectivity tools [Ope04a]. OpenSSH encrypts communication traffic

in order to effectively eliminate eavesdropping, connection hijacking, and other malicious

network attacks.

Figure 4.2 presents two spectrographs of OpenSSH, in which changes to dependencies

at the object file level are plotted against release numbers. The major release numbers are

displayed so that the reader can correlate them with conspicuous change events in the form

of vertical bands (dark colored). Changes to OpenSSH were not evenly distributed during

its lifetime. For example, release 2.0 and release 2.5.0 involved system-wide changes while

the ten releases between them were relatively stable. This indicates that changes made to

OpenSSH were not incremental. They occurred in system-wide bursts instead.

The figure suggests there are three periods of punctuation in the evolution of OpenSSH,

which are highlighted as dark vertical bands close to releases 2.0, 2.5.0 and 3.1 respectively.

The online documentation relevant to OpenSSH was examined to verify this observation.

In May 2000, the developers of OpenSSH implemented support for the SSH2 protocol and

release 2.0 was delivered. This major change maps to the first period of punctuation. Given

that OpenSSH is a protocol-centered application, it is not surprising that this update (SSH1

An Empirical Study of Punctuated Software Evolution 89

(a) Incoming dependency change

(b) Outgoing dependency change

Figure 4.2: Evolution spectrographs of OpenSSH

90 Open Source Software Evolution and Its Dynamics

to SSH2) resulted in system-wide changes. In November 2000, the developers implemented

the Secure File Transfer Protocol (SFTP) client and server support which was shipped with

release 2.5.0 in February 2001. This functionality enhancement can be associated with the

second period of punctuation. The third period of punctuation near release 3.1 seems not

related to functional improvement for the number of files does not show noticeable growth.

The requirements for new functionality serve as the main driving force of change during

the first two periods of punctuation near releases 2.0 and 2.5.0 respectively. During each of

these two periods, the size of OpenSSH, which is measured using the number of files, shows

substantial growth. By contrast, the system does not grow significantly during the third

period of punctuation, but its internal system structure undergoes substantial change. As

the milestone transition occurs from release 2 to release 3, the architecture of OpenSSH is

changed to support its future evolution.

One can gain insight into the causes of conspicuous change events by means of contrast-

ing the spectrographs for both incoming and outgoing dependency changes. For example, if

one only looks at Figure 4.2(b), it seems that release 1.2pre10 is aggressively restructured.

However, Figure 4.2(a) shows this restructuring is actually caused by adding or eliminating

dependencies to seven files, which are indicated by seven thin horizontal lines in a relatively

dark color. A further examination of the source code reveals that two logging utility files

log-client.c and log-server.c are merged into a single file called log.c. This merge

results in widespread changes in the extracted dependency graph but not in the real source

code. This phenomenon can be explained as change to one “aspect” of the system, namely,

logging.

An Empirical Study of Punctuated Software Evolution 91

4.4.2 PostgreSQL

PostgreSQL is a large Object-Relational Database Management System (DBMS) [Pos03].

The development of PostgreSQL first started at the University of California at Berkeley

in 1996. It soon became an open source project with a globally distributed development

team. The 85 releases studied are monthly builds checked out from the CVS repository

but not publicly announced official releases.

Figure 4.3 shows two spectrographs of PostgreSQL. The growth of PostgreSQL is ap-

proximately linear in terms of the number of files. One can notice that conspicuous vertical

bands appear in Figure 4.3(b) but not in Figure 4.3(a). In addition, all vertical bands are

close to major releases, such as 6.0, 6.3, 6.5, 7.0, 7.2 and 7.3. This suggests that each

system-wide perturbation, highlighted by a vertical band in Figure 4.3(b), was actually re-

lated to a small number of files that had their incoming dependencies substantially changed.

This is an interesting phenomenon that needs further investigation.

Month #Files Case A Case B

Apr 1997 300 50.6% 13.0%

Feb 1998 311 52.1% 11.3%

Apr 1998 322 59.9% 15.5%

Feb 1999 336 61.6% 16.4%

Jul 2000 376 50.5% 32.7%

Apr 2002 384 39.8% 29.8%

Apr 2003 451 45.9% 5.3%

Table 4.2: Ratio of changed files in PostgreSQL

The ratio of changed files for each of the seven months that correspond to vertical bands

in Figure 4.3(b) is calculated. Two kinds of change are considered: (A) files are considered

92 Open Source Software Evolution and Its Dynamics

(a) Incoming dependency change

(b) Outgoing dependency change

Figure 4.3: Evolution spectrographs of PostgreSQL

An Empirical Study of Punctuated Software Evolution 93

to be changed only if their outgoing dependencies are changed; (B) files are considered to

be changed if their dependencies to non-utils2 subsystems are changed. Table 4.2 provides

a summary of the results obtained. Both July 2000 and April 2002 have very high change

ratios in both cases. By contrast, the other five months have much lower change ratios in

case B as opposed to case A. A further examination shows that changes of dependencies to

several services provided by the utils subsystem accounted for the majority of dependency

changes. These services include error reporting and logging (error), memory management

(mmgr), and cache utility (cache). This indicates that the developers of PostgreSQL have

continually devoted efforts to several quality attributes such as reliability and performance.

These quality improvements are critical to the success of a database application in a highly

competitive market.

PostgreSQL’s evolution exhibits characteristics of punctuation. In addition, seven peri-

ods of punctuation are approximately evenly distributed throughout the system’s lifetime.

Recalling that the system has grown approximately at a linear rate, one can conclude that

PostgreSQL’s evolution is well controlled and coordinated. Nakakoji et al. have described

PostgreSQL as service-oriented software with six Core Members forming a council-like de-

velopment control team [NYN+02]. Any new features or improvements first exist only as

patches for a relatively long period of time, and are incorporated into the core version only

after they are approved by these core members.

2We refer to the src/backend/utils directory as the utils subsystem, which provides basic services

such as data types, error handling, memory management, data caching, and etc. Any directories that are

contained by the utils directly or indirectly belong to the utils subsystem. All other directories belong

to the non-utils subsystems.

94 Open Source Software Evolution and Its Dynamics

4.4.3 Linux Kernel

Linux is a clone of the UNIX operating system, originally written from scratch by Linus

Torvalds and subsequently worked on by hundreds of other developers [Lin04]. The first

official release, version 1.0, came out in March 1994. Linux has been evolving along two

parallel paths: the stable kernel for production use and the development kernel for experi-

mentation. By convention, the middle number in a kernel version indicates to which path

it belongs: an even number indicates a stable version (e.g., 2.0.7), and an odd number

indicates a development version (e.g., 2.1.15).

This case study of Linux involves 76 releases, from 2.0 to 2.5.75, which cover 7 years

of development in total. These releases are distributed approximately on a monthly basis

and ordered according to the release dates. Two spectrographs are created to characterize

how the kernel evolved. The dark-colored vertical bands shown in Figure 4.4 suggest that

the evolution of Linux shows characteristics of punctuation.

The vertical band associated with releases 2.4.0 and 2.4.1 indicates a punctuation caused

by substantial change to the internal structure. As there are no official kernel releases from

June 2000 to December 2000, this punctuation is apparently caused by the accumulating

effects of six months of development. In addition, there is no considerable system growth in

release 2.4.0. This is not normal given that Linux has been growing exponentially [GT00].

Linux experienced critical structural change as the milestone release 2.4.0 was delivered.

The other vertical bands are related to new functionality added to the kernel, indicat-

ing three periods of functional punctuation respectively. The first functional punctuation

spans about three months, covering 17 development versions, 2.1.24 – 2.1.40. These ver-

sions were enhanced for multi-processor support and tuned for faster speed [Goo00]. The

second functional punctuation involves development versions 2.3.20 – 2.3.35. Three ma-

jor subsystems fs, net and kernel experienced substantial change. For example, several

An Empirical Study of Punctuated Software Evolution 95

(a) Incoming dependency change

(b) Outgoing dependency change

Figure 4.4: Evolution spectrographs of Linux

96 Open Source Software Evolution and Its Dynamics

Journaling File Systems such as XFS from SGI and JFS from IBM were introduced; the

network subsystem (net) was split into two main layers: network address translation and

packet filtering; the use of the global Big Kernel Lock (BKL) was minimized by replacing

it with local subsystem spin locks; and Symmetric Multiprocessor Processing (SMP) was

enhanced to support up to 32 CPUs. The third functional punctuation occurs with ver-

sions 2.5.15 – 2.5.40. It was aimed at supporting high end enterprise servers and embedded

devices [Lin04, San03]. For example, the threading model was improved; a new scheduler

algorithm was introduced to support high loads and a large number of processors; and a

unified device model was created to manage various device drivers. All these changes are

critical to the Linux kernel.

4.5 Discussions

The investigation of three open source software systems shows empirical evidence for punc-

tuated software evolution. In other words, software systems evolve through an alternation

between long periods of small incremental change having little impact on the architecture

and short periods of sudden discontinuous change of architectural importance.

As observed in the evolution of three target systems, periods of punctuation are mainly

associated with notable system growth (new functionality) and massive system restructur-

ing accompanying major or milestone releases. This suggests that new functional require-

ments and internal system structure decay are two main driving forces behind punctuation.

This observation strongly confirms Lehman’s first law of software evolution termed as con-

tinuing change [Leh97]. This law states that software systems in real worlds must be

continually adapted to meet the changing environment and requirements else they become

progressively less satisfactory. However, our view of software evolution puts more emphasis

An Empirical Study of Punctuated Software Evolution 97

on system wide restructuring as sudden intermittent occurrences with long periods of small

change to the system structure in between.

4.5.1 Threats to Validity

There are several threats to the validity of this work which are described below.

• Punctuation is perceived by means of observing dependency changes among (object)

files. No higher-level software organization units (e.g., subsystems and components)

are involved. This may over-emphasize the architectural importance of dependency

changes to files within the same subsystem or component. As a result, some observed

periods of punctuation may not be of great importance in the sense that the system

architecture is not significantly altered at higher levels of granularity, i.e., levels above

object files.

• The dependency graphs extracted from each target software system have only object

files, which were generated by the default build procedure comprising build tools such

as configure, make and gcc on the Linux platform. Therefore only part of the system

is examined. The ratio of .o files to .c files is approximately 97% for OpenSSH, 80%

for PostgreSQL and 20–50% for Linux. There may exist some periods of punctuation

which are not observed during the lifetime of these systems (particularly Linux).

• The dependencies among object files are created by means of abstracting lower-level

function calls and variable uses. The resulting graph may possibly leave out some im-

portant aspects of C programs since cross-references to other important programming

constructs of C such as data types and macros are simply neglected. However, using

other types of cross-reference may potentially lead to more or even fewer observations

of punctuation.

98 Open Source Software Evolution and Its Dynamics

4.6 Related Work

Our work is mainly related to two kinds of research in the field of software evolution: (1)

understanding software evolution dynamics and (2) designing novel visualization techniques

to assist researchers in evolution exploration.

4.6.1 Evolution Understanding

Lehman’s seminal work on OS/360 revealed that the growing entropy of local changes was

counteracted by periodic global effort [LB85]. The cost and unreliability of software changes

in OS/360 rose sharply during a series of minor releases and then re-stabilized through the

adaptation of the architecture every few major releases. His studies were mainly based on

observing system growth. By contrast, we examined punctuated evolution in open source

software by tracing and visualizing structural change. All the three systems we examined

exhibit characteristics of periodic global structural adaptation.

Antón and Potts studied the evolution of telephone systems [AP01]. Their study was

based on longitudinal analysis of feature growth. They observed that a burst of telephone

features occur every 8 to 12 years. By contrast, our work relies on evolution spectrograph

to locate punctuated structural change rather than feature growth. We have observed more

frequent occurrences of punctuated change, roughly every 1 or 2 years. This is perhaps

because our analysis is at a lower level of abstraction as opposed to their feature analysis.

Furthermore, the three open source systems in our analysis are much younger than the

telephone system they investigated.

Aoyama have observed that discontinuous evolution occur in mobile phone software

systems across multiple product lines [Aoy01]. During the first three generations, the

architecture of mobile phone systems changed from a closed and vertically integrated

An Empirical Study of Punctuated Software Evolution 99

communication-centric style to an open and horizontally integrated computation-centric

style. The author studied system growth and system level architectural style change. The

architecture of a commercial system is commonly documented in corporate environments

though it may not be up to date. Thus, documented architectures can be contrasted to

identify major change in the evolution of the system. However, such architectural doc-

umentation is generally not available for open source systems. Our work thus examined

structural change recovered from the system implementation. Another notable difference

is that the three systems we studied are all open source.

Barry et al. have shown that different software systems may exhibit a similar lifetime

evolution pattern which is determined using an ordinal measurement of software volatility

with three dimensions: amplitude, periodicity and dispersion [BKS03]. Their approach

computes an ordinal value for every snapshot of a software system during its entire lifetime,

while our approach computes an evolution matrix to characterize how a spectrum of entities

change over time. Their study were performed on program modification records recovered

from source control repositories. We have focused on structural information extracted from

a historical sequence of versions or snapshots.

4.6.2 Evolution Visualization

The evolution spectrograph is a technique modeled on sound spectrogram, and it is designed

to visualize a sheer volume of evolutionary data. There is a considerable amount of related

work in the field of software evolution visualization.

Gall and Jazayeri have used percentage bars to show three kinds of evolutionary entities

(structure, attribute and time) simultaneously in one view [GJR99]. Their objective is

to find conspicuous change events from the software release history to assist in future

restructuring. The evolution spectrograph combines system growth, system change and

100 Open Source Software Evolution and Its Dynamics

release history simultaneously. Our intention is to gain a better understanding of the

paradigm of software evolution by looking for evidence of punctuated change.

Lanza proposed Evolution Matrix as a means to recover the evolution of object oriented

software systems [Lan01]. In an evolution matrix view, a class is represented using a box

with the width determined by the number of instance variables (NIV) and the height de-

termined by the number of methods (NOM). The layout and shape are used to highlight

interesting change patterns over time. The evolution spectrograph can be seen as a sim-

plified version of his approach. The visual elements considered include only color but not

shape in order to handle the sheer volume of data. For thousands of files which change

over hundreds of versions, shape is only of limited use. In addition, files in the spectrum

are sorted according to their creation time so that the upper envelope of the spectrograph

can reflect the system growth curve. The viewer can thus correlate functional growth with

punctuated change in relative ease.

Eick et al. have developed a set of tools for visualizing several data classes, such as

code version history and release differences [BE96]. In their approach, lines of code are

displayed as lines of color-coded pixels on screen in order to achieve a higher information

density. The time dimension (e.g., the history of releases) is also encoded into color pixels.

This kind of view helps the viewer examine the recent change history of an individual file

(or a limited number of files). The distortion of the time dimension into color pixels makes

the view not appropriate for studying punctuated change over a large number of files.

Taylor and Munro proposed to use revision towers to visualize the change history stored

in source control repository [TM02]. A tower-like view is created for an individual source

file to show all the revisions of the file and the relationships between revisions and source

releases. All towers are then displayed in a grid formation to fill the available display area,

ordered according to the time of file creation. A revision tower provides very detailed

An Empirical Study of Punctuated Software Evolution 101

information about changes to a single file. However, such detail about individuals makes it

difficult to correlate changes among different files far away from one another. For example,

a temporal change spread into a large number of files cannot be easily recognized using

revision towers. On the contrary, an evolution spectrograph sacrifices local individual detail

for easy global perception.

Collberg et al. have developed a graph-based system for visualizing software evolution,

called GEVOL [CKN+03]. The evolution history of a software system is characterized as

a sequence of graphs and each graph reflects the system state at a given point in time.

These graphs are overlayed one above another and animated over time. The differences

between graphs are coded in colors to indicate how the system changes over time. GEVOL

uses advanced layout algorithms in order to preserve the viewer’s mental map. GEVOL is

useful for visualizing how software structures evolve, such as call graphs, control graphs,

and inheritance graphs. The evolution spectrograph does not deal with software structures

directly but uses metrics instead. It can be customized to show how measured properties

change over time.

4.7 Conclusion

This chapter described an empirical study of software evolution from a perspective based on

punctuated equilibrium. Sudden and discontinuous structural changes are observed during

the evolution of three open source systems. A simple scalable visualization technique called

Evolution Spectrograph is used to aid in exploring punctuated changes throughout system

lifetime.

The following chapter continues on studying software system evolution from a structural

perspective. We will resort to automated software clustering techniques to help recover

102 Open Source Software Evolution and Its Dynamics

changes to the system design so that we can perform a large scale automated analysis of

punctuated evolution at the system design level.

Chapter 5

Clustering Comparison in the

Context of Software Evolution

To aid software understanding and maintenance tasks, a number of software clustering al-

gorithms have been proposed to automatically partition a software system into meaningful

subsystems or clusters. However, it is unknown whether these algorithms produce similar

meaningful clusterings for similar versions of a real-life system under continual change and

growth. An automated algorithm of such capability can be used to support the analysis of

the evolution of system design. Comparing clustering algorithms in the context of software

evolution is thus needed in order to choose an appropriate algorithm.

This chapter describes a comparative study of six software clustering algorithms. We

applied each of the algorithms to subsequent versions from five large open source systems.

We conducted comparisons based on three criteria respectively: stability (Does the cluster-

ing change only modestly as the system undergoes modest updating?), authoritativeness

(Does the clustering reasonably approximate the structure an authority provides?), and

extremity of cluster distribution (Does the clustering avoid huge clusters and many very

103

104 Open Source Software Evolution and Its Dynamics

small clusters?).

The six studied algorithms exhibit distinct characteristics. For example, the clustering

from the most stable algorithm bears little similarity to the as-implemented structure of the

system; and the clustering from the least stable algorithm has the best cluster distribution.

The obtained results indicate that current automated clustering algorithms need significant

improvement to provide continual support for maintaining large software projects and that

they are not suitable for empirical software evolution analysis.

5.1 Introduction

A well documented architecture can improve the quality and maintainability of a software

system. However, many existing systems often do not have their architecture documented.

Moreover, the documented architecture becomes outdated and the system structure decays

as rapid changes are made to the system to meet market pressure [EGK+01, Par94]. A high

rate of turnover among developers can make the situation even worse. The maintenance of

architectural documentation is one of many problems that confront today’s large software

projects. Software clustering holds out a promise of helping in this task [MMCG99, TH00a].

Software clustering refers to the decomposition of a software system into meaningful

subsystems or clusters. It plays an important role in understanding legacy software sys-

tems [MOTU93], assisting in their architectural documentation [BHB99, MMCG99], and

supporting their re-modularization [Sch91, Wig97]. For example, a misplaced procedure

or file can be automatically identified by an intelligent clustering tool and relocated to an

appropriate subsystem to reduce unexpected dependencies and to prevent the decay of the

system architecture [LS91].

Ideally a software clustering algorithm should be automated to provide continual sup-

Clustering Comparison in the Context of Software Evolution 105

port throughout the lifetime of a large software system. In such a context, the algorithm

must produce meaningful clusterings in a stable manner. To be meaningful, the algorithm

should produce clusterings that can help developers understand the system. An algorithm

which places all source files from a system into two large clusters will not be helpful to

developers analyzing the code. To be stable, the algorithm must produce clusterings which

do not change abruptly from one version to the next. An algorithm which produces clus-

terings of significant difference even though no major code restructuring occurred between

versions is likely not to be used by developers.

This chapter describes a comparative analysis of six automated clustering algorithms,

which are used to cluster subsequent versions of five large open source systems. The main

goal is to clarify to what extent software clustering algorithms can be used to support re-

modularization and architectural documentation during the life cycle of a software system.

Three criteria are used to evaluate the usefulness of these algorithms: C1. When a system

changes modestly, the clustering produced by an algorithm should also change modestly;

C2. An automatically produced clustering should approximate the clustering produced by

an authority such as an architect; and C3. Automatically produced clusters should generally

not be either huge (i.e., containing hundreds of source files) or tiny (i.e., containing very

few source files). An automated clustering algorithm meeting the three criteria can be used

to recover design changes from the lifetime history of a system. The recovered changes can

be useful for analyzing the design evolution of the system.

The remainder of this chapter is organized as follows. Section 5.2 provides an overview

of five systems which are chosen for the experimentations. Section 5.3 explains the exper-

imental setup in the context of software evolution. Section 5.4 describes a simple ordinal

measure for comparing a collection of data series. Section 5.5 describes the experimental re-

sults obtained using ordinal evaluation techniques. Section 5.6 discusses several interesting

106 Open Source Software Evolution and Its Dynamics

System Language #Versions #Source Files Size (KLOC) Graph Data

Ruby C 73 90 – 261 74 – 187 6.5MB

KSDK C/C++ 70 21 – 1156 3 – 263 82.5MB

OpenSSL C 73 593 – 845 164 – 278 74.4MB

PostgreSQL C 73 771 – 947 182 – 519 99.1MB

KOffice C/C++ 70 1358 – 3266 272 – 962 1235.5MB

Table 5.1: Software systems chosen for the clustering experimentation

observations. Section 5.7 considers related work and Section 5.8 concludes this chapter.

5.2 Target Systems

In the evaluation of clustering algorithms, we choose to apply them to a number of real-life

systems which are all open source software and hence available for study. Table 5.1 provides

a summary of key properties of five software systems. They represent distinct application

domains and have gone through a number of years of development. The experimentation

covers a five year period (1999 to 2004) and versions are collected for each target system on

a monthly basis. Due to a CVS update problem the last three monthly versions of KSDK

and KOffice are not available at the time of data collection. Each target system is briefly

described below.

1. KSDK is a software development kit for the K Desktop Environment (KDE) [KDE04].

It offers powerful framework support for various kinds of KDE applications.

2. KOffice is an integrated office suite for KDE. This suite consists of 12 major appli-

cations which are KWord, KChart, KSpread, KPresenter, Kivio, Karbon14, Krita,

Kugar, KPlato, Kexi, KFormular and Filters [KOf04].

Clustering Comparison in the Context of Software Evolution 107

Step 1:

Program

Extraction

Step 2:

Software

Clustering

Step 3:

Comparative

Analysis

V
1

V
2

V
n

.
.
.
 .
.
.

G
1

G
2

G
n

Source

Repository

(e.g., CVS)

Software Versions
 Software Graphs
 Software Clusterings

C
2A
C
1A
 C
nA
.
.
.

C
2B
C
1B
 C
nB
.
.
.
Algorithm
B

Algorithm
A

Scores

Data Plots

Results

Figure 5.1: Comparison of clustering algorithms in the context of software evolution

3. OpenSSL is a cryptography toolkit implementing Secure Socket Layer (SSL) and

Transport Layer Security (TLS) network protocols as well as several related cryptog-

raphy standards [Ope04b].

4. PostgreSQL is a large SQL-compliant object Relational Database Management Sys-

tem (DBMS) which originated at the University of California at Berkeley in 1996

[Pos03].

5. Ruby is an interpreted scripting language designed for quick and easy object oriented

programming [Rub04]. It has many convenient features for text file processing and

system management.

5.3 Experimental Design

Figure 5.1 illustrates the experimental design. The source control repository (such as CVS)

of a target system (such as PostgreSQL) is the starting point. Monthly versions called V1,

V2 and so on are retrieved from the repository. In step 1 (Program Extraction), we extract

a directed graph Gi from each version Vi. In the graph each node represents a source file

in the target system. Each edge represents a static dependency (such as a reference to a

108 Open Source Software Evolution and Its Dynamics

variable or a data type, a call to a function, or a call to a macro) from one file to another.

In step 2 (Software Clustering), we run a number of clustering algorithms called A, B, and

etc. on each graph Gi, producing clusterings CiA, CiB, etc. Finally, in step 3 (Comparative

Analysis), we rely on a set of criteria to evaluate the algorithms. The three steps are now

detailed below.

Program Extraction

In the first step cross-reference graphs are extracted from 70 to 73 monthly versions of each

target system. The source extractor we chose is CTSX which is built on Ctags [Cta04] and

Cscope [Csc04]. CTSX uses Ctags to extract program entities (e.g., functions, variables,

macros and data types) and Cscope to retrieve references (e.g., function calls) to entities

found by Ctags. These static cross-references are then lifted to the level of files to produce

directed edges between nodes (files) in the extracted graph. This lifting to the level of files

greatly decreases the size of the graph. It is an important consideration when dealing with

many versions of a large software system.

Software Clustering

In the second step a collection of clustering algorithms is run over graphs extracted from

each monthly version of each target system. A sequence of clusterings is produced for each

target system by each algorithm.

We chose a set of six clustering algorithms based on their availability and their discus-

sion in the literature. We limited our choice to available implementations that run in batch

mode since we needed to run each of these algorithms many times as they were applied to

different target systems over a large number of versions. We chose software clustering tools

created by researchers Anquetil, Mancoridis and Tzerpos. Anquetil designed a hierarchical

Clustering Comparison in the Context of Software Evolution 109

clustering algorithm suite which offers a selection of association and distance coefficients

as well as update rules [AL99]. Four algorithms from this suite were chosen and given

names of the form of CL** and SL** where ** encodes the parametrization, as described

below. Mancoridis and Mitchell provided us with their Bunch suite [MMCG99]. Tzerpos

provided us with his algorithm for comprehension driven clustering (ACDC) [TH00a]. We

now give a brief description of these clustering algorithms.

1. CL75 is an agglomerative clustering algorithm based on the Jaccard coefficient and

the complete linkage update rule [AL99]. The cut-point height for the dendrogram

is set to 0.75. A higher cut-point will result in a smaller number of clusters in the

resulting dendrogram.

2. CL90 has the same configuration as CL75 except that its cut-point height is set to

0.90 [AL99].

3. SL75 is an agglomerative clustering algorithm based on the Jaccard coefficient and

the single linkage update rule [AL99]. The cut-point height is set to 0.75.

4. SL90 has the same configuration as SL75 except that its cut-point height is set to

0.90 [AL99].

5. ACDC is an algorithm based on program comprehension patterns and it attempts

to recover subsystems that are commonly found in manually-created decompositions

of large software systems [TH00a]. The patterns used in ACDC include source file,

directory structure, body-header, leaf collection, support library, central dispatcher

and subgraph dominator.

6. Bunch provides a suite of algorithms that include Hill Climbing, Exhaustive, and

Genetic Algorithms [DMM98, MMCG99]. We tried three different hill climbing con-

110 Open Source Software Evolution and Its Dynamics

figurations: NAHC (nearest ascend hill climbing), SAHC (shortest ascend hill climb-

ing), and a customized configuration with the minimum search space greater than

55% and the randomized proportion of the search space equal to 20%. We only dis-

cuss the third configuration because it produces similar results as NAHC and SAHC.

For brevity, the third configuration is referred to as Bunch from this point forward.

Comparative Analysis

In the third step the chosen clustering algorithms are compared based on three criteria, C1,

C2 and C3, which are briefly mentioned in Section 5.1. We now detail the three criteria:

C1 Stability

Similar clusterings should be produced for similar versions of a software system. This

criterion emphasizes the persistence of the clustering structure of successive versions

of an evolving software system. Under conditions of small and incremental change

between consecutive versions, an algorithm should be stable, i.e., it should produce

similar clusterings for successive months.

C2 Authoritativeness

Clusterings produced by an algorithm should resemble clustering from some author-

ity. An authoritative clustering may be manually created by a human architect. It

may also be automatically derived from the directory structure of the target system.

In the latter case, authoritativeness is tantamount to adherence to the source folder

structure.

C3 Extremity of Cluster Distribution

The size distribution of clusters within a clustering should not exhibit extremity. In

particular, a clustering algorithm must avoid two extreme situations: (1) the majority

Clustering Comparison in the Context of Software Evolution 111

of files are grouped into one or few huge clusters (sometimes called black holes); and

(2) the majority of clusters are singletons or tiny clusters of 2 or 3 files (forming what

are sometimes called dust clouds). In either situation the clustering algorithm cannot

be useful in practice.

The detailed information about comparisons based on each criterion will be presented

in Section 5.5.

5.4 A Simple Ordinal Measure

To support the comparative analysis of clustering algorithms over consecutive versions of

a target system, a simple ordinal measure for ranking a number of data series needs to be

defined. A data series DS is a sequence of quantitative values such as <1.2, 2.32, 1.78>.

For series DSi and DSj, functions Above(DSi, DSj) and Below(DSi, DSj) are defined as:

Above(DSi, DSj) =
|{n | DSi[n] > DSj[n], 16n6|DSi|}|

|DSi|

Below(DSi, DSj) =
|{n | DSi[n] < DSj[n], 16n6|DSi|}|

|DSi|

Series DSi and DSj can be seen as lines of points. Function Above(DSi, DSj) denotes the

proportion of the line formed using DSi above the other line formed using DSj. A similar

explanation can be given to Below. We say that DSi is above DSj if Above(DSi, DSj) >

Above(DSj, DSi).

Given K data series, DS1, DS2, ..., DSK , we have the following equations for measuring

112 Open Source Software Evolution and Its Dynamics

the relative position of DSi with regard to all the K data series.

Above(DSi) =
K∑

j=1

Above(DSi, DSj) (5.1)

Below(DSi) =
K∑

j=1

Below(DSi, DSj) (5.2)

In the next section these two equations will be adapted accordingly to obtain an ordering

of clustering algorithms with regard to the three criteria (stability, authoritativeness and

extremity) respectively.

5.5 Empirical Results and Interpretation

5.5.1 Stability Comparison

Tzerpos defined a stability measure based on the ratio of the number of “good” clusterings

to the total number of clusterings produced by a clustering algorithm for a system [TH00b].

A clustering obtained from a perturbed version of the system is considered to be good if the

MoJo dissimilarity between that clustering and the one obtained from the original version

of the system is not greater than 1% of the total number of resources (source files). It can

be difficult to determine a proper threshold in the context of real-life software evolution

and 1% seems too optimistic in reality.

In this comparison we instead derived a relative ordering of different algorithms. Also,

we evaluated an algorithms’ stability using three ordinal values: High, Medium and Low.

The latter method is referred to as the HML ordinal evaluation.

Figure 5.2 explains how to create a similarity sequence through intra-sequence compar-

isons. Given a sequence of n clusterings, a sequence of n−1 similarity values denoted as

Clustering Comparison in the Context of Software Evolution 113

C
1
 C
2
 C
3
 C
n

Sequence of clusterings

Clustering comparison

Sim
1
 Sim
2
 Sim
3
 Sim
n-1

Figure 5.2: Intra-sequence clustering comparison

<Sim1, Sim2, ..., Simn−1> can be obtained. A similarity or dissimilarity value is calculated

by comparing two consecutive clusterings using a similarity measure. For example, MoJo

produces dissimilarity values [TH99] while EdgeSim produces similarity values [MM01].

For non-reflexive similarity measures such as MoJo, comparisons needs to be performed in

the direction a target system evolves. MoJo is chosen for this comparison for its simplicity.

Correspondingly, Simi is defined to be MoJo(Ci, Ci+1) where 16i6(n− 1).

A measure for relative stability

Given a target system S and K clustering algorithms, A1, A2, ..., and AK , MJS(Ai, S) is

used to denote the sequence of MoJo values calculated based on intra-sequence comparison

over the sequence of clusterings obtained by Ai from S. A relative score of Ai over Aj is

defined as:

Score
MJ

(Ai, Aj, S) = Below(MJS(Ai, S),MJS(Aj, S))

The relative score of Ai over all the K clustering algorithms is define as:

Score
MJ

(Ai, S) = Below(MJS(Ai, S)) (5.3)

where Below is defined as Equation 5.2 and MJ stands for MoJo. Algorithm Ai is more

stable than Aj with regard to system S if Score
MJ

(Ai, Aj, S) > Score
MJ

(Aj, Ai, S). When

comparing K algorithms, Equation 5.3 is used to calculate a stability score for each algo-

114 Open Source Software Evolution and Its Dynamics

rithm. The K obtained scores are then sorted to determine a relative stability ordering of

K algorithms. The greater the score, the more relatively stable an algorithm.

A HML-based ordinal measure

The system growth curve is denoted as SG. Two separate data series SG10 and SG30 can

be obtained from SG. SG10 is proportional to SG and it accounts for 10% of the number

of source files for each data point in SG, and correspondingly SG30 accounts for 30%. The

series SG10, SG30, and SG divide the area below SG into three smaller regions. If the

MoJo series MJS(Ai, S) has at least 80% of its data points below SG10, the stability of Ai

is H (High). If MJS(Ai, S) has at least 80% below SG30, Ai has a score of M (Medium).

Otherwise, Ai has a score of L (Low).

HML
MJ

(Ai, S) =





H if Score(MJS(Ai, S), SG10)>0.8

M elsif Score(MJS(Ai, S), SG30)>0.8

L otherwise

(5.4)

This equation measures how stable an algorithm is with regard to a target system rather

than simply states which one is more stable than another. If a clustering algorithm has

a score of H, it means that the number of MoJo operations (i.e., moves and joins) is less

than 10% of the total number of source files in the target system for at least 80 out of 100

transformations of consecutive clusterings.

Plots of MoJo series

Figure 5.3 shows a plot of MoJo series which were obtained from PostgreSQL for each of

the six chosen clustering algorithms. In the figure, the MoJo values associated with Bunch

are greater than the corresponding MoJo values associated with other algorithms. Because

MoJo is a dissimilarity measure, Bunch is less stable than the other five algorithms. The

Clustering Comparison in the Context of Software Evolution 115

Software System: PostgreSQL

0

100

200

300

400

500

600

700

800

900

1000

1
 6
 11
 16
 21
 26
 31
 36
 41
 46
 51
 56
 61
 66
 71

Versions

M
oJ

o

CL75
 CL90

SL75
 SL90

ACDC
 Bunch

SG30

SG10

System Growth Curve
SG

Figure 5.3: Stability comparison wrt PostgreSQL

MoJo series for NAHC and SAHC were also examined. They exhibit a similar behavior as

the series for Bunch. They are omitted from Figure 5.3 for brevity.

The MoJo series associated with CL90, CL75 and ACDC reside in the middle of Figure

5.3. They appear intertwined at some locations. It can be roughly seen that ACDC appears

more stable than CL75 and CL90. SL90 and SL75 are at the bottom of the figure. They

are the most stable algorithms.

Ordinal evaluation

When data series are highly intertwined it can be difficult to obtain an ordering of several

clustering algorithms based on visual inspection. A quantitative method is needed. Using

Equation 5.3, relative stability scores can be calculated for each studied algorithm with

116 Open Source Software Evolution and Its Dynamics

KSDK KOffice OpenSSL PostgreSQL Ruby ALL

Bunch 0.07 0.00 0.00 0.00 0.01 0.02

CL90 1.00 1.06 1.40 1.08 1.35 1.18

CL75 2.01 1.97 2.46 2.29 1.93 2.14

ACDC 2.49 3.35 2.08 2.63 2.56 2.62

SL75 3.30 3.62 3.82 4.00 3.35 3.62

SL90 4.26 5.00 4.51 5.00 3.96 4.55

Table 5.2: Relative stability scores obtained using MoJo

KSDK KOffice OpenSSL PostgreSQL Ruby ALL

Bunch L L L L L L

CL90 M M M M M M

CL75 M M M M M M

ACDC M H M M H H

SL75 H H H H H H

SL90 H H H H H H

Table 5.3: HML-based stability scores obtained using MoJo

regard to each target system as well as the concatenation of all five target systems. When

comparing algorithms with regard to a concatenation of different systems, the similarity

series from all those systems are concatenated for each clustering algorithm and then Equa-

tion 5.3 is applied. The obtained scores are given in Table 5.2. Those obtained using the

concatenation are listed in the ALL column which shows the overall stability ordering.

All the scores in Table 5.2 tell the same story. The chosen algorithms are ordered in the

direction of increasing stability as follows: Bunch, CL90, CL75, ACDC, SL75 and SL90.

There is an exception with regard to OpenSSL where CL75 appears to be more stable than

Clustering Comparison in the Context of Software Evolution 117

ACDC since the former scored 2.46 but the latter scored only 2.08 (see Table 5.2). The

cells shaded in light gray indicates this disagreement.

We also conducted the HML ordinal evaluation. The obtained HML scores are given in

Table 5.3. These scores indicate that SL90, SL75 and ACDC are highly stable algorithms

but Bunch is not.

To rule out the possibility that the obtained stability ordering may be biased due to the

use of MoJo, we measured the ordering of these algorithms using other similarity measures,

which include EdgeMoJo [WT04], EdgeSim and MeCl [MM01]. We found that EdgeSim

strongly agrees with MoJo but the other two measures slightly disagree with MoJo on the

ordering of CL75 and ACDC and they rank CL75 as relatively more stable than ACDC.

Given that these results were obtained using evolution data from several hundred versions of

real-life systems and further verified by multiple similarity measures, the following stability

ordering reflects the reality in general.

Low Medium High

Bunch CL90 CL75 ACDC SL75 SL90

5.5.2 Authoritativeness Comparison

Unfortunately, a stable algorithm may not produce meaningful clusterings at all. At one

extreme, an algorithm producing only singleton clusters is stable over time but not useful.

At the other extreme, an algorithm grouping all the files into one cluster is obviously stable

but not meaningful at all. A clustering algorithm of practical use should produce cluster-

ings similar to authoritative decompositions of a software system by experienced software

engineers [BHB99]. However, an agreed upon architecture or authoritative decomposition

often does not exist. This makes it difficult to do authoritativeness comparison.

118 Open Source Software Evolution and Its Dynamics

We used a simple technique to create authoritative clusterings. Our technique comprises

four steps: (1) create the subsystem hierarchy based on the directory structure; (2) relocate

every header file (.h) to the subsystem that directly contains the related implementation

file (.c); (3) merge a subsystem with its parent if it contains less than five files; (4)

create a flat clustering with each subsystem in the remaining hierarchy as a cluster. For

well structured software systems like KOffice and PostgreSQL, this technique is likely to

produce a clustering which conforms to the mental model of the developers of the system.

It can be easily automated to cluster a large number of versions.

We performed inter-sequence comparisons of clusterings from two parallel sequences.

One sequence comprises clusterings produced by the algorithm in analysis and the other

contains authoritative clusterings obtained using the technique described above. Figure 5.4

shows how inter-sequence comparisons are done over time. The similarity Simi is calcu-

lated as MoJo(Ci, CiA). Based on the obtained similarity series <Sim1, Sim2, ..., Simn>,

we carried out authoritativeness comparison using the scoring methods for stability com-

parison (see Equations 5.3 and 5.4).

C
1
 C
2
 C
3
 C
n

C
1A
 C
2A
 C
3A
 C
nA

Sequence of authoritative clusterings

Sequence of clusterings

Clustering comparison

Sim
1
 Sim
2
 Sim
3
 Sim
n

Figure 5.4: Inter-sequence clustering comparison

Clustering Comparison in the Context of Software Evolution 119

Software System: PostgreSQL

0

100

200

300

400

500

600

700

800

900

1000

1
 6
 11
 16
 21
 26
 31
 36
 41
 46
 51
 56
 61
 66
 71

Versions

M
oJ

o

CL75
 CL90

SL75
 SL90

ACDC
 Bunch

System Growth Curve

SG

SG50

SG20

Figure 5.5: Authoritativeness comparison wrt PostgreSQL

Plots of MoJo series

Figure 5.5 shows the MoJo series obtained from PostgreSQL. At the top of the figure are

two MoJo series associated with SL75 and SL90. Their values are approximately equal to

the number of source files. This indicates that nearly every source file in PostgreSQL needs

to be moved or joined in order to transform the clusterings produced by SL75 and SL90

to the corresponding authoritative clustering. SL75 and SL90 produce clusterings bearing

little similarity to the implemented structure of PostgreSQL.

The MoJo series for ACDC and Bunch reside in the middle of Figure 5.5, with the former

staying mostly above the latter. It indicates that ACDC is slightly less authoritative than

Bunch. However, none of them produces clusterings resembling the implemented structure

120 Open Source Software Evolution and Its Dynamics

KSDK KOffice OpenSSL PostgreSQL Ruby ALL

SL90 0.07 0.00 0.00 0.00 1.85 0.39

SL75 1.06 1.00 1.00 1.00 1.29 1.07

ACDC 2.79 2.06 2.11 2.12 1.55 2.12

Bunch 3.86 4.03 3.66 2.92 3.26 3.54

CL75 2.61 4.03 4.62 4.16 2.19 3.56

CL90 4.43 3.84 3.56 4.77 4.27 4.18

Table 5.4: Relative authoritativeness scores obtained using MoJo

of PostgreSQL. Roughly speaking, 60-70% of all the source files in PostgreSQL need to be

moved or joined in order to transform the clusterings produced by Bunch or ACDC to their

authoritative counterparts. This may be due to the fact that clusterings produced by Bunch

or ACDC are too coarse (containing few clusters) than their corresponding authoritative

clusterings. The most authoritative algorithms are CL75 and CL90 located at the bottom

of Figure 5.5, which are slightly better than Bunch and ACDC. We manually examined

the plots obtained from other target systems and confirmed the above observations.

Ordinal evaluation

The obtained relative authoritativeness scores are provided in Table 5.4. The greater the

score, the more the clusterings produced by an algorithm resemble the implemented system

structure, and consequently the more authoritative the algorithm turns out to be. The

scores from the ALL column determine the overall ordering. The cells colored in light gray

indicate the disagreement between the overall ordering and the one obtained from a target

system. In the HML evaluation, SG20 and SG50 instead of SG10 and SG30 are chosen in

order to relax the requirements on how closer a clustering should resemble the implemented

Clustering Comparison in the Context of Software Evolution 121

structure. All the six algorithms are ranked Low. For this reason the obtained HML scores

are omitted. The final ordering is shown below. None of these algorithms is satisfactory in

producing clusterings that approximate the implemented structure of a target system. This

ordering is further verified using similarity measures EdgeMoJo, EdgeSim and MeCl. These

measures only disagree with MoJo on the ordering of CL75 and CL90.

Low

SL90 SL75 ACDC Bunch CL75 CL90

5.5.3 Extremity Comparison

We studied the size distribution of clusters over time in an attempt to examine whether a

particular clustering algorithm avoids generating huge clusters (black holes) or many very

small clusters (dust clouds).

Figure 5.6 displays six bubble charts. In each chart the X axis represents versions, the

Y axis represents the size of the cluster, and the size of the bubble denotes the number

of clusters of the same size. For example, the clustering obtained using SL90 from version

72 of PostgreSQL has 14 clusters, in which 13 clusters are singletons and one huge cluster

comprises 934 source files. This clustering is represented using two bubbles in Fig. 5.6(b),

located at the coordinates (72, 1) and (72, 934) respectively. The larger bubble is 13 times

big as the smaller one though the latter is a black hole representing a cluster of 934 files.

Although the axes X and Y may have different scales, all the bubbles share the same scale

of measurement.

Figure 5.6 shows distributions for every sixth version in order to avoid the overlapping of

bubbles in the X direction. Each algorithm exhibits a distinct cluster distribution pattern.

Figures 5.6(a), 5.6(b) and 5.6(f) show that SL90, SL75 and ACDC tend to produce extreme

122 Open Source Software Evolution and Its Dynamics

Software System: PostgreSQL

-200

0

200

400

600

800

1000

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(a) Distributions obtained using SL75

Software System: PostgreSQL

-200

0

200

400

600

800

1000

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(b) Distributions obtained using SL90

Software System: PostgreSQL

-5

0

5

10

15

20

25

30

35

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(c) Distributions obtained using CL75

Software System: PostgreSQL

-20

0

20

40

60

80

100

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(d) Distributions obtained using CL90

Software System: PostgreSQL

0

20

40

60

80

100

120

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(e) Distributions obtained using Bunch

Software System: PostgreSQL

-100

0

100

200

300

400

500

600

0
 6
 12
 18
 24
 30
 36
 42
 48
 54
 60
 66
 72
 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(f) Distributions obtained using ACDC

Figure 5.6: Distribution comparison of clustering algorithms wrt PostgreSQL

Clustering Comparison in the Context of Software Evolution 123

clusters which are either huge or very small. By contrast, Bunch, CL75 and CL90 produce

more evenly distributed clusters. However, CL75 has a tendency of generating a relatively

large number of singleton clusters as shown in Fig. 5.6(c).

A measure for non-extreme cluster distribution

In order to quantitatively evaluate the extremity of cluster distribution, we define a simple

measure called NED (non-extreme distribution). Any clusters of size less than 5 or greater

than 100 are considered to be extreme clusters. This is a reasonable assumption since very

few clusters in the obtained authoritative clusterings contain less than five or more than a

hundred source files.

NED is defined as the ratio of the number of files in non-extreme clusters to the total

number of files in the target system. A larger NED value indicates a better distribution.

Figure 5.7 shows several NED series obtained from PostgreSQL. The NED series obtained

from KSDK, KOffice, OpenSSL and Ruby have similar patterns. So they are omitted for

brevity. Bunch has the best distribution of clusters. SL75 and SL90 always group the

majority of source files into extreme clusters. The NED series obtained for the other three

algorithms remain in the middle of the figure.

To perform NED-based ordinal evaluation, two scoring methods are defined as:

Score
NED

(Ai, S) = Above(NS(Ai, S)) (5.5)

HML
NED

(Ai, S) =





H if Score
NED

(NS(Ai, S), P75, S)>0.8

M elsif Score
NED

(NS(Ai, S), P50, S)>0.8

L otherwise

(5.6)

124 Open Source Software Evolution and Its Dynamics

Software System: PostgreSQL

0

20

40

60

80

100

120

1
 6
 11
 16
 21
 26
 31
 36
 41
 46
 51
 56
 61
 66
 71

Versions

N
E

D
 (

P
er

ce
nt

ag
e)

CL75

CL90

SL75

SL90

ACDC

Bunch

P75

P50

Figure 5.7: NED-based distribution comparison wrt PostgreSQL

where Ai (16i6K) denotes K algorithms and NS(Ai, S) denotes the NED series obtained

from the clusterings produced by Ai with regard to system S. The P75 and P50 are series

comprising values 0.75 and 0.50 respectively. The Score
NED

tells whether a NS is above

another NS. If so, it means that the algorithm producing the former NS has a better

cluster distribution than the algorithm producing the latter NS. The HML
NED

evaluates

whether an algorithm really has a good cluster distribution or not. If Ai has a score of H,

it means that 80% of the clusterings produced by Ai have a NED value greater than 0.75.

Clustering Comparison in the Context of Software Evolution 125

Ordinal evaluation

We conducted a similar ordinal evaluation as we did to stability and authoritativeness. For

brevity, we only give the final NED-based ordering as follows, omitting the relative scores

and HML scores.

Low Medium High

SL90 SL75 ACDC CL75 CL90 Bunch

5.6 Discussion

Table 5.5 provides a summary of ordinal evaluation on which our discussion is based.

Algorithm Stability Authoritativeness Non-Extremity

CL75 Medium Low Low

CL90 Medium Low Medium

SL75 High Low Low

SL90 High Low Low

ACDC High Low Low

Bunch Low Low High

Table 5.5: A summary of ordinal evaluation of clustering algorithms

SL75 and SL90 are the most stable but the least useful

Figures 5.6(a) and 5.6(b) show that SL75 and SL90 have a tendency of merging smaller

clusters (including singletons) one by one into one super large cluster. As the cut point is

increased from 0.75 to 0.90, the number of clusters in the clustering decreases and the super

126 Open Source Software Evolution and Its Dynamics

large cluster grows. The super large cluster functions like a black hole which eventually

attracts every surrounding smaller cluster. The files in the black hole account for roughly

84.8-86.3% of all the files in the system in the case of SL75 and 79.8-98.7% in the case of

SL90. This explains why SL75 and SL90 appear more stable than the other four algorithms.

Once the majority of the files are put into one super large cluster, the clustering bears little

similarity to the directory-based authoritative clustering. In terms of MoJo, the number

of moves and joins is almost equal to the number of files because nearly every file in the

super large cluster needs to be moved to a directory-based authoritative cluster and every

singleton cluster needs to be joined. This explains why SL75 and SL90 are the least useful.

A clustering of the majority of files into one black hole is equivalent to no clustering.

Algorithms in CL are less stable than those in SL

Because of the complete linkage update rule [AL99], the algorithms from the CL class are

known to produce more compact clusters than those from the SL class. Raghavan and Yu

have shown that graph theoretic clustering methods that produce more compact clusters

are less stable [RY81]. The obtained stability ordering agrees with the theoretic results

(see Section 5.5.1).

Bunch is the least stable with the best distribution

In our configuration of Bunch, every time a better neighbor is being sought after, 20% of

the entire search space is randomized and at least 55% is examined in order to find a better

MQ (Model Quality) [MMCG99]. As a consequence, the hill climbing algorithm in Bunch

does not perform in a deterministic way and it even produces different decompositions for

the same input graph. By contrast, the other algorithms use less randomization.

Bunch (including NAHC and SAHC) produces the best cluster distribution. It favors

Clustering Comparison in the Context of Software Evolution 127

neither a group of very small clusters nor an overwhelmingly large cluster. This can be

seen from Figure 5.6(e).

ACDC does not gain from overusing program patterns

Since ACDC is a program pattern based algorithm, we had expected that it would produce

clusterings more similar to the authoritative clusterings we obtained. However, it did not

meet our expectations.

ACDC internally has an upper limit for the cluster size which is set to 20 by default.

However, Figure 5.6(f) shows that ACDC produces both very large and very small clusters.

To investigate what went wrong in ACDC, we manually examined the clusterings obtained

from versions 12, 24, 36, 48, 60, and 72 of PostgreSQL. We found two problems related to

the use of program patterns in ACDC.

• The body-header pattern [TH00a] results in the grouping of the interface file (.h) and

its implementation file (.c). However, clustering of the obtained body-header pairs

is not done sufficiently. This results in a relatively large number of small clusters of

size 2.

• The subgraph dominator [TH00a] is overused. For example, the file utility.c lo-

cated in the directory tcop was recognized by ACDC as a dominator. After we

removed utility.c from the input graph, ACDC cut the size of the largest cluster

approximately by 50%. After we further removed 2 or 3 dominators from the input

graph, no cluster in the obtained clustering contains more than 100 source files. We

suspect that ACDC has internal defects in processing subgraph dominators.

128 Open Source Software Evolution and Its Dynamics

5.7 Related Work

Current research is mainly focused on designing advanced algorithms which partition large

software systems into meaningful subsystems. For example, early work by Belady et al.

identified automatic clustering as a means to produce high-level views of large software sys-

tems [BE81]. Bunch has evolved to become a suite of algorithms to fit into various contexts

in reverse engineering [DMM98, MMCG99]. In addition, a variety of evaluation frameworks

have been proposed to evaluate the quality of clustering techniques [KE00, LG97]. How-

ever, current clustering techniques have not been sufficiently tested and evaluated against

lifetime versions of systems from diverse domains. In particular, the stability of clustering

algorithms has not attracted much attention.

Tzerpos and Holt examined the stability of a number of clustering algorithms by means

of generating randomly perturbed versions of an example system and measuring differences

between the obtained clusters and the one obtained from the original version of the sys-

tem [TH00b]. We argue that random perturbation of a fixed size system is insufficient in

simulating how changes occur in a real world software system, since changes to software

systems rarely occur in a random fashion and most software systems are continuously grow-

ing in size. To be faithful to the reality, we conducted stability comparison on evolutionary

data extracted from several target systems. This work shows that stability comparison

of clustering algorithms should be augmented with the analysis of meaningfulness (adher-

ence to authority and non-extreme distribution). Otherwise, stability comparison could be

misleading (i.e., seeing only one side of a coin).

Clustering Comparison in the Context of Software Evolution 129

5.8 Conclusions

We have asked the question of how useful clustering algorithms might be in large software

projects undergoing continual change and growth. We investigated six automated cluster-

ing algorithms which represent a range of clustering techniques and which are supported by

available batch implementations. We selected five open source software systems, each hav-

ing approximately 70 monthly versions. These systems represent a range of applications.

So they can be expected to be a reasonable testing base for clustering algorithms.

We proposed three criteria to evaluate the usefulness of software clustering algorithms

and ran experiments to measure how well each clustering algorithm satisfies these criteria.

Table 5.5 provides a brief view of the overall results indicating that:

• On the stability criteria (Do successive versions of a system have similar clusterings?),

three algorithms (SL75, SL90 and ACDC) are ranked as having high quality, two

(CL75 and CL90) as medium and the remaining Bunch as low.

• On the authoritativeness criteria (Do the clusterings reasonably resemble the imple-

mented system structure?), all the six algorithms are ranked as having low quality.

• On the extremity criteria (Are non-extreme cluster distributions normally produced?),

Bunch is ranked as high, CL90 as medium, then CL75, ACDC, CL75 and SL90 as

low.

Although SL75 and SL90 score high on stability, it is largely due to the fact that they

repeatedly produce overly large or many too small clusters, as indicated by their low NED

ranking. It suggests that these two algorithms may not be that helpful in practice. The fact

that all the six algorithms are ranked low on authoritativeness suggests that they may not

be mature enough for use in production on large systems undergoing evolutionary change.

130 Open Source Software Evolution and Its Dynamics

However, it is also possible that our technique for generating authoritative clusterings is

biased toward the as-implemented structure of the target system.

These results are discouraging, suggesting that, for large systems such as we used as

a basis for our testing and for the criteria we chosen, more work needs to be done before

these clustering algorithms are ready to be widely adopted. However, it may be that such

algorithms are useful in less stringent environments. For example, these algorithms may

be useful in a reverse engineering exercise by producing a basic partitioning of a system to

eliminate a significant amount of manual effort.

Our hope is that our results spur on further efforts both to create/improve automated

clustering algorithms and to subject these algorithms to empirical evaluations such as we

have reported in this chapter. As a consequence, new clustering techniques may eventually

emerge to satisfy the three criteria and can be used to study the evolution of design through

system lifetime.

Chapter 6

Fractal Nature of Software Evolution

and SOC Dynamics

This chapter examines eleven open source software systems and shows empirical evidence

that fractal structures are present in the change history of all these systems. In our analysis,

fractal structures are identified and measured as power laws throughout the lifetime of a

system. More specifically, (1) the probability distribution of software change sizes follows

a power law; and (2) the time series of change exhibits long range correlations with power

law behavior. The existence of such spatial (across the system) and temporal (over the

system lifetime) power law behavior strongly suggests that Self-Organized Criticality (SOC)

[BTW87] occurs in the evolution of open source systems. As a consequence, SOC may

be established as a useful conceptual framework for understanding open source software

evolution dynamics (i.e., the mechanism and cause of change and growth). We provide a

qualitative explanation of software evolution based on SOC. We also discuss some potential

implications of SOC to software practices and evolution.

131

132 Open Source Software Evolution and Its Dynamics

6.1 Introduction

The laws of software evolution formulated by Lehman [Leh97] represent a major intellectual

contribution to understanding software evolution dynamics (an underlying cause of change

or growth). Lehman’s eight laws are empirically grounded on observing how closed source

industrial software systems such as IBM OS/360 were developed and maintained within a

single company using conventional management techniques [LRW+97]. As summarized in

Table 1.1, the laws suggest that software systems must be continually changed in response

to external forces such as new functional requirements and hardware upgrade.

Outside the field of software evolution, a wealth of knowledge has been gained in under-

standing the change behavior of complex systems as diverse as sandpiles [BTW87], power

blackouts [CNDP04], earthquakes [Sch90] and even biological evolution [SMBB97]. These

systems are complex in the sense that no single characteristic size can control their changes

(responses) over time. In other words, changes of any size can occur. For example, a power

blackout may strike a street, a city, a state and all the way up to a country. The simplifying

aspect of these systems is that their statistical properties can be measured as power laws in

space and in time. In 1987, Bak, Tang and Wiesenfeld proposed Self-Organized Criticality

(SOC) to explain such typical power law behavior [BTW87]. SOC was set out as an am-

bitious effort for explaining the existence of ubiquitous fractal structures in nature. It has

two important signatures: (1) power law distribution of dynamical responses, and (2) long

range correlations with power law behavior in time series of response [CNDP04, SMBB97].

In Section 6.2, we will provide a brief introduction to fractals, power laws and long range

correlations and explain how these concepts are related to SOC.

Do software systems follow the SOC dynamics during their evolution? If so, the knowl-

edge gained from studying complex systems can be used to enhance our understanding of

software evolution. The above question arises from several previous studies which include:

Fractal Nature of Software Evolution and SOC Dynamics 133

• Software evolution as punctuated equilibrium

In Chapter 4 we examined the structural evolution of software systems at the imple-

mentation level. We observed that three open source systems (OpenSSH, PostgreSQL

and Linux) evolved through an alternation between long periods of small changes and

short periods of large avalanche changes [WSHH04].

• Biological evolution as a self-organized critical phenomenon

Recent studies have shown that fluctuations in fossil record time series are self-similar,

exhibiting long range correlations with power law behavior [SMBB97]. The existence

of such fractal structures means that, when examining a given time frame, some basic

properties (e.g., mean and standard variance) remain the same as those obtained from

the entire time series if a change of scale is performed. SOC was suggested as a useful

way of understanding how long periods of small extinctions are interrupted by mass

extinctions [BS93, SMBB97]. The structural evolution of a software system exhibits

similar characteristics of punctuation as fossil record, suggesting that SOC may also

be useful for explaining software evolution.

• Open source movement as a self-organized collaborative network

In comparison to traditional industrial systems, open source systems are largely devel-

oped based on a less strict control and management model [Ope05a, Ray99]. Sponta-

neous collaboration is promoted and backed by decentralized developer communities

across the Internet [Ray99]. Researchers such as Madey and Koch suggest that open

source projects can be seen as a self-organizing phenomenon featuring self-selection of

tasks, leadership and spontaneous collaboration among developers [MFT02, Koc04].

The main empirical evidence they present is the power law distribution of open source

project sizes (the numbers of developers) and the power law distribution of developer

134 Open Source Software Evolution and Its Dynamics

contributions (the number of commits to the source control repository).

Based on the promising results from prior research, we feel that SOC may be established

as a useful conceptual framework for describing and explaining software evolution. In this

chapter we describe our effort in seeking evidence for SOC in open source software systems

and discuss the implications of SOC to software practices.

The remainder of this chapter is organized as follows. Section 6.2 introduces basic terms

and concepts used in this chapter. Section 6.3 explains empirical data collection with regard

to software changes and time series of change. Section 6.4 analyzes the existence of power

laws in the evolution of open source systems. Section 6.5 provides a qualitative explanation

of software evolution based on SOC. We also discuss the potential implications of SOC to

software practices. Section 6.6 discusses some threats to the validity of our work. Section

6.7 considers related work and Section 6.8 concludes this chapter.

6.2 Background

This section provides a brief introduction to fractal, power law, R/S time series analysis and

SOC. Readers who are familiar with these concepts can skip to the next section.

6.2.1 Fractal

Fractals are mathematical or natural objects that are made of parts similar to the whole in

some way. A fractal object is scale invariant since it has a self-similar structure that occurs

at different scales. Many natural phenomena are self-similar such as trees and shorelines. A

small branch of a tree looks like the whole tree due to the existence of branching structures.

When the length of a shoreline is measured using the box counting method, the length of

any segment can cover the same number of mesh boxes as the whole shoreline if a change

Fractal Nature of Software Evolution and SOC Dynamics 135

of scale is performed. Mandelbrot provides a detailed explanation of fractals in his famous

book The Fractal Geometry of Nature [Man82].

6.2.2 Power Law

A power law relationship between two scalars x and y can be written as follows:

y = C·xk

where C is the constant of proportionality and k is the exponent of the power law. Such a

power law relationship shows as a straight line on a log-log plot since, taking logs of both

sides, the above equation is equal to

log(y) = k·log(x) + log(C)

which has the same form as the equation for a straight line

Y = k·X + c

The power law f(x) = C·xk has a property that relative change f(sx)/f(x) = sk is inde-

pendent of x. In this sense, f(x) lacks a characteristic scale or is scale invariant. Conse-

quently f(x) can be related to fractals (sometime even called fractals) because of its scale

invariance.

Power Law Distribution

Our study is concerned with a special kind of distribution called power law distribution in

which the Probability Density Function (PDF) of size s is specified as P (s)∼s−α and the

tail Cumulative Distribution Function (CDF) of sizes greater than or equal to s is specified

as D(s)∼s−β. The relationship between α and β is β = α − 1 [New05]. Since β can be

136 Open Source Software Evolution and Its Dynamics

conveniently estimated using simple linear regression on log-log plots without binning data

points, we choose to estimate β rather than α in this study.

Power laws are observed in many fields including physics, biology, geography, sociology

and economics [New05]. For example, the distribution of earthquakes is found to follow a

power law behavior P (E)∼E−α where E is the amount of energy. The exponent α exhibits

some geographical dependence and is found to be in the interval from approximately 1.8

to 2.2 [Jen98]. The distributions of firm sizes [Axt01, GGP03] and of open source project

sizes [HJ02, Koc04] are also found to follow power laws.

6.2.3 Time Series Analysis

Time series data is commonly used to characterize the evolution of software systems. For

example, Lehman et al. studied the evolution of IBM’s operating system OS/360 by means

of observing system growth measured in terms of the number of source modules and number

of modules changed for each release [BL76, LB85]. Turski performed a regression analysis

of results from these case studies and proposed the inverse-square model. It suggests that

system growth is inversely proportional to system complexity and that system complexity

is proportional to the square of system size [Tur02]. Such regression analysis of time series

is useful for understanding the nature of software evolution. In this study, we are however

interested in studying the fractal properties of time series recovered from the change history

of a software system.

A widely used statistical analysis technique for time series is Rescaled Range Analysis

which is also referred to as the R/S statistic. It was formulated by Hurst in 1951 [Hur51].

Hurst is an English hydrologist who worked on the Nile River Dam project in the early 20th

century. He observed that floods of the Nile River could be characterized as a persistent

phenomenon, i.e., heavier floods were accompanied by above average flood occurrences

Fractal Nature of Software Evolution and SOC Dynamics 137

and minor floods were followed by below average occurrences. Based on this observation,

Hurst invented the R/S statistic which calculates the power law relationship between the

rescaled adjusted range R/S(τ) and the time lag τ :

R/S(τ) ∼ τH

where H is known as the Hurst exponent. The rescaled adjusted range R/S(τ) is defined

as the mean of R(τ)/S(τ) over m blocks of τ successive data points and measures how fast

the range of the blocks grows as τ increases. The definition is as follows:

R/S(τ) =
1

m

m∑
i=1

Ri(τ)

Si(τ)

where Ri(τ) and Si(τ) are the self-adjusted range and the standard deviation obtained for

the ith block of τ data points. If the τ data points in the ith block is re-numbered as

{x1, x2, ..., xτ}, the calculation of Ri(τ) and Si(τ) is as follows:

Standard deviation: S(τ) =

√√√√1

τ

τ∑
t=1

(xt − x̄τ)2

Self-adjusted range: R(τ) =
τ

max
t=1

X(t, τ)−
τ

min
t=1

X(t, τ)

Cumulative deviation: X(t, τ) =
t∑

u=1

(xt − x̄τ)

Mean: x̄τ =
1

τ

τ∑
t=1

xt

The Hurst exponent H reflects the persistence of data in a time series. According to

the value of H, natural or man-made temporal processes can be classified as follows:

• Uncorrelated if H = 0.5. A random walk is uncorrelated. Informally, one can think of

that future events are not influenced by previous ones and also do not carry memory

from the past.

138 Open Source Software Evolution and Its Dynamics

• Long term correlated if H > 0.5. Processes from this category often have long runs of

consecutive values above or below the mean. The Nile River has a value of H = 0.91

as calculated by Hurst [Hur51]. This value implies that flood occurrences of the Nile

River are not purely random but somehow temporally dependent. This sometimes is

referred to as long range correlations, long range dependence or long memory effects.

• Long term anti-correlated if H < 0.5. A process from this category produces anti-

persistent time series in which a value above the mean is more likely to be followed by

a value below the mean and vice versa. Such behavior is observed in mean-reverting

processes such as interest rate change.

The Hurst exponent is directly related to the fractal dimension of a time series by the

relation D = 2−H [Spr03]. The fractal dimension D measures the smoothness of fractal

time series. A larger Hurst exponent leads to a smaller fractal dimension and a smoother

surface. Different time series can be quantified by using the R/S analysis to estimate their

associated Hurst exponents. Such quantification allows us to recognize similarities between

different temporal processes (including software evolution), thereby eventually leading to

recognizing underlying unifications that might otherwise have gone unnoticed.

Long range correlations in a time series can also be analyzed using the popular power

spectral analysis based on Fourier transformation. If fractal structures are present, a power

spectral density function in the form of S(f) ∼ f−α with α > 0 can be obtained in low

frequencies where S(f) falls as a power law1 [Ber94]. The Hurst exponent is closely related

to the power spectral exponent α by the relation α = 2H + 1 [Spr03]. For simplicity, we

restrict our analysis to the R/S statistic.

1The α exponent of S(f)∼f−α is not the same as the α exponent of power law distribution P (s)∼s−α.

Fractal Nature of Software Evolution and SOC Dynamics 139

6.2.4 Self-Organized Criticality

In 1987 Bak, Tang and Wiesenfeld proposed Self-Organized Criticality (SOC) in order to

explain the widespread occurrences of spatial fractals and fractal time series (also known as

1/f noise or flicker noise) in nature [BTW87]. According to this theory, complex systems

which consist of interacting components can exhibit some general characteristic behavior

in time (1/f noise) as well as in space (self-similar fractals) spontaneously.

The 1/f noise is a ubiquitous phenomenon [Mil02]. For a system, a time series (signal)

is obtained by measuring some of its time-dependent quantities. If the power spectrum of

the obtained signal behaves like f−α with α ≈ 1, the system is said to exhibit 1/f noise.

Self-similar fractals are another widely observed natural phenomenon including snowflakes,

mountain landscapes and shorelines [Man82]. The 1/f noise and self-similar fractals are the

most important diagnostics of SOC and are commonly measured as power laws [BTW88].

If a system exhibits power laws without apparent tuning then it is said to follow the SOC

dynamics.

6.3 Data Collection

6.3.1 Software Change

In this study, we define a software change as a set of source files which are modified together

for some reason. For example, a change can contain a number of source files modified by a

developer to remove a defect. We consider two kinds of change: (1) changes recovered from

source control repositories (e.g., CVS) and (2) structural changes obtained by contrasting

subsequent snapshots (e.g., daily builds). For C and C++ programs, we consider files with

the following extensions: .c, .C, .cc, .cpp, cxx, .c++, .h, .H, .hh, .hpp, .hxx and .h++.

140 Open Source Software Evolution and Its Dynamics

The size of a change is measured as the number of files contained in that change.

CVS Change

A CVS change, which is recovered from the CVS repository, contains files committed by the

same developer with the same log message and at the same time. The term “same time”

in this context means that the files are committed in a short period. Zimmermann et al.

describe a number of methods for recovering changes from CVS repositories [ZW04]. One

of these methods is called the sliding time window protocol, which relies on a maximal time

gap to determine whether two subsequent checkins belong to one change. The change log

tool cvs2cl uses such a protocol to recover changes from the CVS repository automatically

[FOP02]. We use cvs2cl in this study.

The changes recovered from a source code control repository may be related to different

types of task such as bug fix, feature modification, functional improvement and refactoring.

However, we do not differentiate these tasks in our change recovery.

Structural Change

A structural change contains files which satisfy the following requirements: (1) they have

outgoing dependencies added or deleted; and (2) they are connected in an isolated subgraph

within a delta graph obtained by contrasting two subsequent snapshot versions. The delta

graph shown in Figure 6.1 contains five files B, C, D, F, G and H as well as six added and

deleted dependencies among these files. The files B, C, F and H form an isolated subgraph

in which B, C and H have changed their outgoing dependencies but F does not. According

to the definition, B, C and H form a structural change with F excluded. Similarly, D forms

a structural change by itself.

A structural change can be a subset of a CVS change or may span multiple CVS changes

Fractal Nature of Software Evolution and SOC Dynamics 141

Graph
i

A

B
 C
 D

E
 F
 G

A

B
 C
 D

E
 F

H

B
 C
 D

F

H

G

Graph
i+1

deleted

dependency

added

deleted

added

dependency

Legend:

Delta graph

Figure 6.1: A delta graph between two adjacent versions

depending on the snapshot extraction frequency. Comparing two snapshots separated only

by a single CVS change may produce structural changes smaller than that CVS change.

For a long lived software system with tens of thousands of CVS changes, it can be difficult

to obtain structural changes through system lifetime. If we conduct a comparison of two

snapshot versions over an extended period of time (e.g., one day), obtaining all structural

changes will be relatively easy to do. In such a case, a structural change may span multiple

CVS changes.

Our open source evolution database (as described in Chapter 2) provides a large number

of software system models. Such a database allows us to compare subsequent snapshots or

releases throughout a system’s lifetime. In this study, we collect structural changes either

on a daily basis or on the basis of releases if daily snapshots are not available.

142 Open Source Software Evolution and Its Dynamics

6.3.2 Time Series of Change

A time series can be used to record change fluctuations throughout the lifetime of a software

system. In this study, we measure the amount of change on a per-period basis by summing

up the sizes of changes in each period. The time series of a software system can be obtained

on a daily basis or via comparing consecutive releases if daily snapshots are not available.

We are interested in studying the existence of long range correlations in time series because

it represents the temporal signature of SOC. The R/S analysis is a powerful mathematical

tool we can use to compute such a signature.

6.4 Examining Fractals in Software Evolution

This section examines empirical evidence for fractal properties found in the change history

of open source software systems. The following phenomena are our main concern.

• Power law distribution of software changes

• Long range correlations in time series of change

For brevity, we describe the results obtained from GCC (GNU Compiler Collection) [GCC02]

in detail and then summarize the results obtained from ten more software systems, which

include FreeBSD, OpenBSD, NetBSD, PostgreSQL, PHP, KSDK, KOffice, OpenSSL, Ruby

and Linux. A brief introduction to these systems is given in Appendix A.

6.4.1 Power Law Distribution of Software Changes

In our analysis of distributions of changes in GCC, the quantity being plotted is D(s). We

define D(s) as the tail Cumulative Distribution Function of change sizes.

Fractal Nature of Software Evolution and SOC Dynamics 143

Power Law Distribution of CVS Changes in GCC

Fig. 6.2(a) displays a log-log plot, which was obtained from a total of 40,034 CVS changes

recovered from the CVS repository of GCC. The recovered changes cover more than 8 years

(1997/08/11–2005/09/09). This plot follows an approximately straight line. An ordinary

least squares (OLS) linear estimation on the logarithmic scale of base 10 gives the following:

D(s) ∼ s−β, β = 1.3237

The function D(s) has a property that relative change D(ks)/D(s) = k−β is independent

of size s. D(s) is scale invariant and hence can be seen as a statistically self-similar object.

In GCC, large changes occur less frequently than small ones. But how much rarer are large

changes? We can estimate the answer using the obtained D(s) equation. The probability

of making a change that involves more than 100 source files is extremely low, roughly less

than 0.16%.

We have also found that similar power law distributions hold for individual years from

1998 to 2005 in GCC. The obtained scaling exponents vary from 1.29 to 1.34. This suggests

that yearly distributions share a similar scaling behavior with each other and also with the

lifetime distribution.

Power Law Distribution of Structural Changes in GCC

After observing that the size distribution of CVS changes followed a power law relationship,

we were curious to know whether other kinds of software change have a similar distribution.

We examined the size distribution of daily structural changes over the same development

period of GCC. A power law was observed with all changes consisting of more than 100 files

neglected. It is shown as a log-log plot in Fig. 6.2(b). An OLS linear fit on the logarithmic

144 Open Source Software Evolution and Its Dynamics

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(a) Size distribution of CVS changes (β = 1.3237)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(b) Size distribution of structural changes (β = 0.7482)

Figure 6.2: Tail cumulative distribution of change sizes for GCC

Fractal Nature of Software Evolution and SOC Dynamics 145

scale gives the following:

D(s) ∼ s−β, β = 0.7482

The exponent β is estimated with 16s6100. It is interesting that this distribution begins

to deviate from the power law roughly for s > 100. This suggests that a massive structural

change involving more than 100 source files is extremely rare and not governed by the power

law. A large change may structurally depend on hundreds of other files in the system. This

makes it difficult to change a substantial number of structural dependencies among several

hundred files.

The long tail deviation from power law may be caused by the finite-size effect [BTW88].

We suspect that the deviation would appear at larger change sizes if the number of files in

GCC grows significantly. We have empirically observed similar deviations around s = 100

in several other open source software systems including KSDK, KOffice, OpenSSL, PHP,

PostgreSQL and Ruby. Compared to GCC, these systems have a smaller or roughly similar

size. For Linux which is many times larger than GCC, the deviation appears at sizes around

350. These differences can be seen in data plots shown in Appendix B.

Power Distributions Observed in More Systems

We examined ten more open source systems and found they followed power laws to varying

degrees. The obtained scaling exponents are summarized in Table 6.1. For brevity, the

log-log plots of these systems are omitted from this chapter but provided in Appendix B.

We did not analyze the distributions of structural changes for three BSD variants since

each of them is actually composed of a large number of smaller applications and libraries. It

is beyond the scope of this thesis to study the evolution of structural dependencies among

collaborative applications. Unlike structural changes, CVS changes are mostly within the

boundary of each smaller application or library.

146 Open Source Software Evolution and Its Dynamics

System Period
CVS Change (CC) Structural change (SC)

#CC β R2 #SC β R2

NetBSD 1993/03/20–2005/08/17 86,280 1.3072 0.9952 – – –

FreeBSD 1993/06/06–2005/08/17 72,021 1.3435 0.9916 – – –

OpenBSD 1995/10/18–2005/08/17 47,969 1.1796 0.9963 – – –

Linux∗ 1994/03/13–2005/07/15 – – – 5,042 0.3420 0.9902

PostgreSQL 1996/07/09–2005/09/09 10,797 1.2866 0.9907 3,140 0.8573 0.9929

GCC 1997/08/11–2005/09/09 40,034 1.3237 0.9853 10,835 0.7482 0.9915

KSDK 1999/01/01–2004/09/15 4,012 1.4305 0.9851 1,112 0.7096 0.9655

KOffice 1999/01/01–2004/09/15 2,2948 1.4326 0.9899 19,913 0.5634 0.9624

OpenSSL 1999/01/01–2005/07/16 3,934 1.2989 0.9912 872 0.8208 0.9815

PHP 1999/04/07–2005/09/09 15,558 1.2749 0.9882 2,198 0.7701 0.9822

Ruby 1999/08/13–2005/09/09 3,655 1.5022 0.9935 443 0.9101 0.9227

∗: The structural changes of Linux are obtained by means of comparing consecutive releases over time.

Table 6.1: Scaling exponents for distributions of software changes

For Linux, which does not have a source control repository (e.g., CVS) for public access,

we were not able to analyze change log information or perform daily structural comparisons.

We instead studied the structural evolution of Linux through comparing 524 public releases

from 1.0 to 2.6.12.3. These releases are ordered strictly according to release dates in order

to form a historical sequence. Both development and stable releases of Linux were included

in the sequence.

Here are some observations.

• All the studied software systems have a power law distribution with regard to either

CVS or structural changes. The quality of fit (R2) values shown in Table 6.1 indicate

Fractal Nature of Software Evolution and SOC Dynamics 147

a strong linear relationship between function D(s) and the number of source files on

a logarithmic scale.

• The distribution of CVS changes has a larger scaling exponent than the distribution

of structural changes. This observation is limited to a certain threshold value, beyond

which a large structural change can have a much lower probability when compared to

a CVS change of the same size. This can be seen from Figure 6.2. The distribution

in Fig. 6.2(b) deviates from the power law at larger sizes (s > 100) and drops toward

zero probability. No structural change is found to involve more than 800 source files

in GCC on a daily basis. This kind of deviation is apparently more common in the

distribution of structural changes than in the distribution of CVS changes.

• The scaling exponent for OpenBSD is different from the scaling exponents for FreeBSD

and NetBSD. This suggests that products from a product family may exhibit slightly

different behaviors. This perhaps is because both FreeBSD and NetBSD have a longer

development history and consequently have more CVS changes than OpenBSD. How-

ever, further examination is needed to understand what causes such differences in β

from system to system.

• The distribution of structural changes for Linux was obtained by means of comparing

subsequent releases rather than daily snapshots. The time interval between any two

adjacent releases varies between 5 days and 37 days except that release 2.3.99-pre9

is approximately 6 months away from release 2.4.0. Such a sampling frequency tends

to favor large structural changes rather than small ones. As a result, Linux has the

smallest scaling exponent.

• The distribution of structural changes for KOffice (see Fig. B.2(f)), when examined

over the entire range of change sizes (roughly from 1 to 400), does not follow a power

148 Open Source Software Evolution and Its Dynamics

law. This perhaps is because that KOffice is largely implemented in C++ and that

CTSX we used to extract program structural dependencies is still limited in handling

C++ source programs (see Chapter 2). Therefore, structural changes in KOffice may

not be identified appropriately.

6.4.2 Long Range Correlations in Time Series

The essential nature of software evolution is change occurring spatially (across the system)

and temporally (over time). Our observation of scale invariance in the size distribution of

software changes leads to another interesting question. Does the change history of a soft-

ware system exhibit self-similarity in the time dimension, i.e., long range correlations with

power law behavior? A positive answer to this question will suggest that SOC may be used

to explain software evolution.

As pointed out in section 6.2.3, the R/S analysis can be used to analyze the presence of

long range correlations in time series. Therefore, one way for answering the above question

is to determine whether a time series of software change has a Hurst exponent greater than

0.5 (a characteristic value of random noise).

R/S Analysis of GCC

The R/S statistics plotted in Figure 6.3 have Hurst exponents with H= 0.7711 for time

series of CVS change and H= 0.6841 for time series of structural change. These exponents

are significantly above 0.5, thus indicating strong long range correlations. The results can

be verified by means of randomly shuffling the original time series to eliminate correlations

and re-applying R/S analysis. For GCC, a random shuffling always results in the reduction

of H toward 0.5.

Fractal Nature of Software Evolution and SOC Dynamics 149

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Time lag (days)

R
/S

(a) R/S for time series of CVS change (H= 0.7711)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Time lag (days)

R
/S

(b) R/S for time series of structural change (H= 0.6841)

Figure 6.3: R/S analysis of daily time series for GCC

150 Open Source Software Evolution and Its Dynamics

System
CVS change Structural change

TSC H R2 TSC H R2

NetBSD 98.6% 0.7340 0.9984 – – –

FreeBSD 96.4% 0.7586 0.9952 – – –

OpenBSD 96.5% 0.7181 0.9962 – – –

Linux∗ – – – 96.2% 0.7491 0.9893

PostgreSQL 80.5% 0.7637 0.9969 52.1% 0.7029 0.9972

GCC 98.9% 0.7711 0.9973 84.8% 0.6841 0.9964

KSDK 53.5% 0.8096 0.9811 33.0% 0.7909 0.9872

KOffice 96.6% 0.8092 0.9921 90.3% 0.6967 0.9967

OpenSSL 56.6% 0.7354 0.9941 26.5% 0.7163 0.9894

PHP 94.7% 0.7545 0.9968 59.2% 0.6186 0.9948

Ruby 61.2% 0.6980 0.9936 14.7% 0.5129 0.9864

∗: The time series of Linux is obtained by means of comparing consecutive releases over time.

Table 6.2: Hurst exponents from R/S analysis of daily time series

R/S Analysis of More Systems

The rescaled range analysis is applied to the same collection of software systems as analyzed

in section 6.4.1. The obtained Hurst exponents are summarized in Table 6.2. Each Hurst

exponent is estimated by considering time lags equal to 365 (days). But the largest time lag

considered for Linux is 174 (releases) because its time series were obtained by comparing

subsequent releases rather than daily snapshots. The time lag 174 accounts approximately

for one third of 524 Linux releases we analyzed.

We define Time Series Coverage (TSC) as the ratio of the number of non-zero values to

the total number of values in a time series. TSC measures how often changes occur over a

Fractal Nature of Software Evolution and SOC Dynamics 151

system’s lifetime. In Table 6.2, Ruby has the lowest TSC (14.7%) with regard to structural

change activities. This indicates that Ruby’s structure was changed approximately once

every seven days on average. Smaller systems such as KSDK, PHP and Ruby are less prone

to change with regard either CVS or structural change activities. Larger systems such as

GCC, Linux, KOffice and three BSD variants have a tendency of being changed every day.

This is not surprising. For a larger software system, more developers are usually involved

and changes occur more frequently.

The values of H obtained for all the time series of CVS change vary between 0.7 and 0.8.

This suggests that these time series appear approximately equally correlated over the long

term. In contrast, the values of H obtained from structural change have a wider span from

0.6 to 0.8 with Ruby excluded. The Hurst exponent of Ruby is 0.5129, a close indicator of

random noise. This perhaps is because the time series of Ruby is too sparse (TSC = 14.7%)

to yield any notable correlations.

6.4.3 Summary

We have presented evidence for the existence of fractal structures in the evolution of eleven

open source systems. The observed fractal structures are measured as power laws in space

(across the system) and in time (over system lifetime). Both CVS and structural changes

follow power laws. However, CVS changes yield much stronger indications than structural

changes.

6.5 Discussions

All the eleven systems we examined have evolved over many years in the real world. How-

ever, their change dynamics share a typical power law behavior which appears independent

152 Open Source Software Evolution and Its Dynamics

of the details of every individual system. Where do these scale free dynamics come from?

In this section we provide a qualitative explanation of software evolution dynamics from a

perspective based on SOC.

Bak, Tang and Wiesenfeld used the sandpile model to illustrate the dynamics of a SOC

system [BTW88]. Suppose a person starts to build a sandpile on a flat board by means of

dropping grains of sand randomly, one grain at a time. The sandpile grows as many smaller

piles are formed and their slopes increase continuously. The slopes at different locations

will eventually reach a critical value; if more sand is added, sand slides will occur. As the

sandpile is built up, the characteristic size of the largest sand slides (avalanches) grows

until the state of criticality is reached, in which the size of the largest avalanche is equal

to the size of the entire board. The dynamical behavior of the sandpile in criticality shows

characteristics of 1/f noise and fractal structures. The quantity exhibiting 1/f noise is the

sliding rate of sand measured over time and fractal structures appear in the form of power

law distribution of sand slide sizes. Local random perturbations (sand drop) in criticality

can result in responses (sand slide) of any size up to the entire system. The temporal and

spatial power law behaviors are a direct consequence and extend over several decades on a

macroscopic level.

The spatial and temporal power laws we have observed from the evolution of open source

systems (see Section 6.4) suggest that software systems may follow the SOC dynamics. An

analogy to the sandpile model can be drawn to explain the evolution dynamics of software

systems in a qualitative way. Table 6.3 shows the proposed analogy which has four elements:

driving force, response, system state and relaxing force. We now interpret the meanings of

these elements.

Like a running sandpile, an evolving software system is continuously changed under the

influence of various driving forces as diverse as customer requirements, hardware upgrade,

Fractal Nature of Software Evolution and SOC Dynamics 153

Sandpile model Software system

Driving force sand drop change request

Response sand slide change propagation

System state gradient profile release/iteration plan

Relaxing force gravity stakeholder demands

Table 6.3: Analogy between the sandpile model and software system

developer turnover, and development process and methodology. More specifically, changes

are commonly made in response to concrete requests related to bugs, refactorings, features

and etc. Such requests cause changes to propagate to different locations within the system.

In this view, a change request is analogous to a sand drop and a change (CVS change or

structural change) is mapped to a sand slide.

The system state and relaxing force are two complicated elements which need a careful

explanation. For the sandpile, the system state is a matrix of maximum gradients covering

all the locations, and the relaxing force is gravity which controls sand slides by reducing

maximum gradients at appropriate locations if more sand is added. From our point of view,

stakeholder demands can be mapped to gravity and the release/iteration plan to the sand

gradient profile. The demands of stakeholders (e.g., developers, architects and customers)

must be satisfied. This is consistent with the law of Continuing Change [Leh97] stating that

changes must be continuously made to satisfy user requirements. Changes are estimated,

planned and performed at varying levels of priority. The relaxing force can be either release

plans in the long term or iteration plans in the short term, controlling how and when to

deliver the next release or prepare a workable product for the next cycle of development.

For example, if a refactoring is needed, a maintainer (stakeholder) performs the refactoring

task in several steps. After the refactoring is done, the maintainer re-gains satisfaction with

154 Open Source Software Evolution and Its Dynamics

the system.

Criticality and Self-Organization

Given the above informal explanation of software evolution dynamics, one may ask when an

evolving software system enters criticality and what self-organization means in the context

of software evolution.

We studied eleven open source systems by analyzing the change history of each system

after the first release was out or a reasonable amount of source code (normally tens of files)

was developed. Since then power laws can be observed in the distribution of change sizes

and in the time series of change. A software system may enter criticality no later than its

first release.

As for the second question, an understanding of self-organization cannot be achieved by

examining software systems without taking into consideration development methodologies

and developers. In open source software projects, developers collaborate with one another

spontaneously for some common purpose and they have freedom to modify and redistribute

the source code and to work on the source code of their interest. A central organization in

the name of core group or steering committee [BP03] may exist and provide some guidelines

or advice but they do not control or command what individual developers should modify.

Such an organization plays an important role in anchoring a broader community of users

and developers and nurturing leadership and collaboration across the community [Hig99].

Spontaneous collaboration activities among developers eventually result in the first delivery

of the system and then sustain the future evolution of the system.

Self-organization should not be confused with Lehman’s third law of software evolution,

Self Regulation [Leh97]. Self regulation is a control notion suggesting that positive and neg-

ative feedback controls are constantly and pervasively exercised during system evolution.

Fractal Nature of Software Evolution and SOC Dynamics 155

By contrast, self-organization is a configurational notion indicating spontaneous developer

collaboration which is neither entirely directed by a central organization nor prescribed by

a published process guideline [JS03].

Change Propagation

If a software system follows the SOC dynamics, what predictive power can one get? Can one

foresee the extent to which changes propagate through the system? According to SOC, a

complex system evolves at the edge between chaos and order where no single characteristic

event size can control the system evolution [Jen98]. For example, the electricity power grid

is postulated to operate in such a narrow region where power blackouts can not be limited

to a certain small size such as a street block or a city [CNDP04]. It is difficult to predict

where a blackout can occur and how far the blackout can propagate.

As an evolving software system responds to the changing environment and requirements,

changes of varying sizes occur at different locations within the system. As indicated by the

power law distributions we observed in the evolution of open source systems, a modification

may be up to any sizes. The occurrences of change covering a significant part of a system

or even the entire system, though rare, appear unavoidable in open source systems. This

suggests that it can be difficult to predict the propagation of change. Necessary measures

should be adopted to facilitate communication and/or collaboration between developers to

prepare the developer, team, and organization for unexpected large changes. For example,

Collective code ownership [Nor03] offers an effective strategy for encouraging collaboration

between developers.

156 Open Source Software Evolution and Its Dynamics

Agile Software Development

Agile Software Development is a conceptual framework for undertaking software engineer-

ing projects with the help of lightweight methodologies such as Adaptive Software Develop-

ment [Hig99] and Extreme Programming [Ext04]. Generally speaking, agile methodologies

value

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation, and

– Responding to change over following a plan

The above core values are regarded as the canonical definition of agile software development

and commonly referred to as the Agile Manifesto [Man01].

Highsmith has advocated adaptive software development as an alternate approach be-

tween Monumental and Accidental software development in today’s turbulent e-commerce

world [Hig99]. His idea is drawn from complex adaptive systems theories including SOC. He

emphasizes adaptability, speed and collaboration as the key elements to the success of soft-

ware project teams who develop and manage high-speed, high-change and high-uncertainty

projects. Other agile methodologies share similar ideas.

Agile software development has grown in recognition of complex systems theories (e.g.,

SOC) which value adaptation over prediction or optimization [Man01]. The agile manifesto

was summarized by many agile software practitioners through their hands-on experience in

developing and managing software projects over years. The fractal phenomena we observed

in open source software evolution provide empirical evidence for the existence of SOC. This

can lend a hand to agile software practitioners in justifying their methodologies.

Fractal Nature of Software Evolution and SOC Dynamics 157

6.6 Validity Threats and Limitations

There are several threats to the validity of our work.

• The systems we studied are successful, large open source systems. There exist large

numbers of small open source projects which neither attract many developers nor are

maintained actively over a long period of time. Therefore, the eleven systems in our

study are not representative of small or failed open source projects.

• Whether closed source industrial systems exhibit similar power laws in space as well

as in time is unknown and needs to be empirically checked through future work.

• The definition and identification of a software structural change is not as accurate as

those of a CVS change. This is further complicated by the inaccuracy of the source

code extractor (CTSX) we used to prepare the structural data. When being applied

to extract C++ programs, CTSX often produces many false cross-references which

can make the identification of structural change more difficult. This perhaps explains

why KOffice (largely implemented in C++) appear not to follow power laws during

its structural evolution (see Fig. B.2(f)).

• Though we presented empirical evidence for power laws, we need adapt some known

SOC theoretical models [BS93, SMBB97] to simulate software evolution and to verify

our empirical findings. Only when theoretical results are consistent with our empirical

findings, we can assert that open source software systems follow the SOC dynamics

during their evolution.

158 Open Source Software Evolution and Its Dynamics

6.7 Related Work

Recent studies of software evolution have been directed to examine power law distributions

related to open source projects hosted on the web site of SourceForge [Sou05]. The mission

of SourceForge is to enrich the open source community by providing a centralized place for

open source developers to control and manage open source software development.

Hunt and Johnson studied downloads of software projects at SourceForge and found

that projects sizes (number of software downloads) follow a Pareto distribution [HJ02]. A

Pareto distribution is in fact a rank-based power law distribution [New05]. Their findings

show there are a small number of exceptionally popular software projects such as Linux,

Apache and Mozilla while most SourceForge projects are less popular. They suggest that

studying median projects instead of exceptionally popular projects may be useful for iden-

tifying “best practice” for open source software development.

Similar power law distributions about open source projects were reported by Madey et

al. [MFT02]. In their study project sizes are measured as the number of developers. Their

results indicate that most open source projects at SourceForge have only one developer and

only a small percentage have a larger ongoing team. In addition, they modeled open source

projects as a collaborative social network with developers as nodes and joint membership in

projects as links between nodes. The clusters (development teams) in the social network are

connected by linchpin nodes which are developers playing an important role in transferring

ideas and technology between separate development teams. The presence of power laws in

such open source networks are suggestive evidence that open source software development

can be modeled as self-organizing collaboration social networks.

Koch studied individual programmers’ contribution to open source projects at Source-

Forge and found power laws [Koc04]. The contribution of a programmer is measured using

the number of commits made by the programmer or the number of projects the programmer

Fractal Nature of Software Evolution and SOC Dynamics 159

worked on. The observed power laws indicate that only a small minority of programmers

are responsible for the major growth of open source projects and that the collocation of

projects in a virtual hosting community such as SourceForge does not significantly increase

co-participation.

These studies have treated the open source software community as an ecology in which

individual programmers collaborate with one another and ideas are nurtured and projects

are delivered. Both Madey and Koch have suggested that the overall open source software

development is a self-organizing cooperative system in which spontaneous collaboration as

well as leadership (e.g., chief programmers) contribute to the success of many open source

projects. In contrast, we examine power laws during the evolution of individual open source

systems and suggest that individual systems follow the SOC dynamics.

The work of Gorshenev and Pis’mak on explaining software evolution dynamics using

SOC perhaps is the most relevant to our work [GY03]. They observed that the distribution

of added lines (or deleted lines) follows power laws in three open source systems which are

Mozilla, FreeBSD and Emacs. In our work power laws are studied with regard to file level

changes and observed not only in distribution of changes but also in time series. We also

suggested a qualitative explanation of software evolution dynamics based on Bak’s sandpile

model.

It is interesting to note that power laws have been observed at three levels of abstraction

in open source software development, the project level [HJ02, MFT02, Koc04], the file level

(our work) and the level of lines of code [GY03]. These observed power laws in the open

source ecology make it promising to explain the evolution of the community as well as the

evolution of individual projects using SOC. A unified framework based on SOC may be

constructed in the future, within which software evolution can be explained and successful

practices may be identified.

160 Open Source Software Evolution and Its Dynamics

6.8 Conclusion

In this chapter we studied the existence of fractal structures in the evolution of open source

software systems. Changes and time series of change are recovered from the change history

throughout system lifetime and analyzed using probability distribution and R/S analysis.

Fractal structures are identified and measured as power laws spatially (across the system)

and temporally (over the system lifetime). The findings are presented in the form of power

law distribution of change sizes and long range correlations in time series of change. Such

spatial and temporal fractal structures strongly indicate that open source software systems

may follow the SOC dynamics during their evolution. Our empirical findings support the

view that the open source community can be seen as a self-organizing collaborative network

[Hig99, Koc04, MFT02].

Chapter 7

Conclusions and Future Work

It is anticipated that a theoretical advance in understanding software evolutionary processes

would lead to significant improvement to the current practices in developing and managing

software products. As open source software (OSS) gains popularity, researchers have begun

to take advantage of large numbers of OSS projects to substantiate their understanding of

software evolution. Following this trend, we undertook an empirical study of OSS evolution

with an objective of understanding the mechanisms and causes of change in OSS systems.

The work presented in this thesis has two main focuses. First, we presented techniques

and approaches to extract evolutionary structural information from software systems in a

timely and cost-effective manner. Our attention was directed to a multipurpose systematic

approach to extracting C/C++ programs. Second, we proposed new ways of understanding

software evolution based on Punctuated Equilibrium and Self-Organized Criticality (SOC)

respectively and conducted empirical validation on several OSS systems.

We designed and developed a suite of program extractors for the C and C++ program-

ming language. This extractor suite is called CX, a shortened name for C/C++ eXtraction.

It covers several individual steps in the build pipeline of C/C++ programs and handles

161

162 Open Source Software Evolution and Its Dynamics

both source code and binary code, thus providing systematic support for program extrac-

tion. This suite currently has four extractors, CTSX, CPPX, LDX and BFX, which allow

for tradeoff between accuracy, efficiency and robustness to varying degrees. To complement

these extractors, we further proposed a set of heuristics to aid the linking of program mod-

els extracted from individual files into a combined system model of reasonable accuracy.

Combining the proposed heuristics with a fast and robust program extractor (e.g., CTSX)

provides a cost-effective means to extract software system models from historical sequences

of releases and snapshot versions.

We proposed to view software evolution as Punctuated Equilibrium. In response to the

changing environment and requirements, a software system undergoes many small changes

and occasionally large avalanche changes over its lifetime. When observed from an external

perspective, large avalanche changes can be correlated with major disruptive events, which

are often related to architectural adaptation and major functionality update.

To observe punctuated evolution, we applied the evolution spectrograph and automated

clustering techniques to capture conspicuous structural changes at the implementation level

and the design level respectively. Aided by the evolution spectrograph, we observed that a

number of OSS systems exhibited the characteristics of punctuation during the evolution of

the implemented system structure. Unfortunately, current automated clustering techniques

were found to be incapable of recovering system designs consistently, thus leaving our goal

of carrying out an automated examination of punctuated evolution in OSS on a large scale

unfulfilled for the time being.

Instead of viewing that software evolution is driven mainly by external forces (e.g., new

functional requirements), we presented a new perspective on software evolution dynamics.

From this perspective, a software system responds to external forces by following an in-

herent dynamic mechanism called SOC. The SOC dynamics can be characterized by two

Conclusions and Future Work 163

statistical signatures: (1) the probability distribution of change sizes is a power law; and

(2) the time series of change exhibits long range correlations with power law behavior.

We analyzed the change history of several open source systems to verify the existence of

power laws and we found evidence for power laws in change distributions and time series.

We further provided a qualitative explanation of software evolution by drawing an analogy

to the Sandpile SOC model and discussed several potential meanings of SOC to software

practices and evolution. Our observation of power laws in OSS evolution provides empirical

grounds for establishing SOC as a conceptual framework for seeking a simple and unified

explanation of diverse evolutionary phenomena.

In conclusion, we developed techniques and approaches to support software evolutionary

data collection and investigation on a large scale, and we proposed and empirically validated

new ways for understanding OSS evolution (as punctuated equilibrium) and its underlying

dynamics (based on SOC).

7.1 Thesis Contributions

This section highlights the main contributions of this thesis.

1. An Extractor Suite for C/C++

The suite supports systematic program extraction by covering individual steps in the

build process of C/C++ programs and handling source code and binary code. It also

allows for tradeoff between task-specific extraction needs.

2. Program Linking Heuristics

The proposed heuristics are aimed at extracting software system models of reasonable

accuracy when system configuration information is difficult or too costly to obtain.

164 Open Source Software Evolution and Its Dynamics

3. EvolDB - A Software Evolution Database

EvolDB contains tens of thousands of software system models extracted from eleven

OSS systems. EvolDB can provide an empirical basis for analyzing software evolution

in many interesting ways.

4. Software Evolution Spectrograph

The evolution spectrograph provides a simple and scalable means to graphically dis-

play how a group of entities change over an extended period of time. This technique

is useful for distinguishing patterns from a sheer volume of historical data.

5. Punctuated Software Evolution

Viewing software evolution as punctuated equilibrium offers a simple way of describ-

ing many evolutionary phenomena such as ripple effect and discontinuous evolution.

In this view, a software system undergoes long periods of small changes interrupted

occasionally by large avalanche changes. We have observed that several open source

systems exhibited characteristics of punctuation during the evolution of their imple-

mented system structure.

6. Evidence for SOC in Software Evolution

We observed power laws in the probability distribution of software change sizes and

in the time series of software change. This provides empirical evidence for SOC in

the evolution of OSS systems. Within the conceptual framework of SOC, punctuated

software evolution can be explained.

7. A Framework for Software Clustering Evaluation

This framework is based on three criteria: stability, authoritativeness and extremity.

Using this framework, we compared several automated clustering tools by applying

Conclusions and Future Work 165

them on large evolutionary data sets. The obtained results have shown that current

automated clustering can not be used to support the analysis of software evolution.

7.2 Future Work

Possible future work that stems from this thesis is considered below.

7.2.1 Preprocessor-Based Program Extraction

The build pipeline for C and C++ programs typically has three steps: preprocess, compile,

and link. The CX suite we developed for the C and C++ programming language does not

support fact extraction in the preprocessing step. No extractor in the suite can accurately

extract dependencies between macros and other types of program entity such as functions.

We plan to extend the current extractor suite by adapting the C preprocessor, cpp [GCC02],

to output program preprocessing information.

7.2.2 Evolution Visualization on a Large Scale

In the analysis of software evolution, visualization techniques can be effective for providing

a global picture and revealing interesting evolutionary patterns. For example, the evolution

spectrograph [WHH04, HWH05] can cope with large quantities of historical data recovered

from a software system in a simple and scalable way. Similar techniques such as Evolution

Matrix [Lan01] and Percentage Bars [GJR99] have been shown useful for exploring software

system evolution in different ways. These techniques, though preliminary, have highlighted

the potential benefits of visualization in handling the sheer volume of historical information

recovered from various repositories such as source control repositories and bug databases.

166 Open Source Software Evolution and Its Dynamics

Many questions remain to be answered about how to scale up evolution visualization. In

particular, we feel that supporting evolution visualization with flexible browsing, querying

and scripting capabilities would help researchers explore the evolution of a software system

more effectively. For example, the evolution spectrograph can be combined with hierarchy

structure visualization techniques (e.g., SHriMP Views [SBM+02]) to provide an interactive

exploration environment. In this environment, the evolution spectrograph is used to reveal

global trends and the structural visualizer is used to examine the detailed system structure.

Querying and scripting capabilities can be added to support environment customization for

specific user needs.

7.2.3 Evolution Analysis of Software Architecture

There has been a tacit assumption that studying the evolution of a software system at the

architectural level can help locate architectural problems hindering the long term evolution

of the system. It is not uncommon that many large systems do not have a well-documented

architecture. This makes architecture recovery as well as architecture comparison a daunt-

ing task to do over a long sequence of historical releases. Finding an cost-effective approach

to recovering system architectures automatically or semi-automatically would produce new

opportunities for analyzing software evolution.

One of our previous studies (see Chapter 5) has shown that current automated clustering

techniques are not capable of recovering system architectures consistently. But there may

be a workaround solution if we apply semi-automated clustering and perform a reasonable

amount of manual work. For a software system evolving in punctuated equilibrium, releases

in periods of punctuation can be automatically clustered and manually refined, and releases

in periods of equilibrium can be clustered using Orphan Adoption [?]. Orphans refer to

source files that do not belong to any cluster in an existing clustering. Throughout periods

Conclusions and Future Work 167

of equilibrium, the number of orphans to be adopted into available clusterings is expected

to be small. The empirical evaluation of this proposed approach is needed.

7.2.4 Evolution Simulation Based on Known SOC Models

Power laws are a fingerprint of the dynamics of Self-Organized Criticality (SOC) [BTW87].

Several theoretical models have been proposed to simulate self-organized critical systems.

These models include the Sandpile model [BTW88], the Bak-Snappen model on an evolving

ecosystem [BS93], and Solé’s network model of macroevolution [SMBB97]. They have been

used to account for empirically observed power laws in time as well as in space. For example,

Solé et. al used their network model to verify statistics observed in the fossil record, thus

providing theoretical evidence for SOC in macroevolution.

It would be interesting to adapt one of the above models to simulate software evolution

and verify power laws we observed in OSS systems. By doing so, we will be able to obtain

theoretical evidence that SOC does occur in OSS evolution.

Appendix A

A List of Open Source Projects

The following is a list of open source software projects, which we have either mentioned or

studied in the previous chapters. These projects are listed in ascending alphabetical order.

1. Emacs [Ema04] is an extensible, customizable, self-documenting real-time display

editor. At its core is an interpreter for Emacs Lisp, a dialect of the Lisp programming

language with extensions to support text editing. Emacs is popular with computer

programmers and other technically-proficient computer users.

2. Fist Person Shooter (FPS) Computer Games

• Cube [Cub03] is an open source multiplayer and singleplayer FPS game built

on an entirely new landscape-style engine. The engine combines high precision

dynamic occlusion culling with a flexible form of map/geometry editing in-game.

• Quake [id 03] is a multiplayer and singleplayer FPS game, which was developed

by id-Software in 1996. Quake was the first FPS game whose multiplayer could

be played against many people on the Internet rather than with only three other

169

170 Open Source Software Evolution and Its Dynamics

people on a local network. Quake was also revolutionary due to its utilization

of three dimensional polygons for both scenes and players.

3. GCC [GCC02] stands for the GNU Compiler Collection. GCC includes a number of

programming language compilers for C, C++, Objective C, Fortran, Java, and Ada,

as well as libraries for these languages. GCC is the key component of the GNU tool

chain and provides standard compiler support for free Unix-like operating systems.

4. Gnumeric [Gnu03] is a spreadsheet program which is part of the Gnome Office.

5. InnoDB [Inn04] is a transaction-safe storage engine which has commit, rollback, and

crash recovery capabilities. InnoDB is included as standard in all current binaries

distributed by MySQL.

6. Instant Messaging (IM) Clients support instant person to person communication

over a network such as the Internet.

• CenterICQ [Cen04] is a text mode menu- and window-driven IM client.

• Gaim [Gai04] is a multi-platform instant messaging application that supports

many commonly used instant messaging protocols including AIM, ICQ, Yahoo,

MSN, IRC, and Napster.

• Kopete [Kop04] is an instant messenger for the KDE environment. Like Gaim,

Kopete is designed to be a flexible and extensible multi-protocol system suitable

for personal and enterprise use.

• Miranda IM [Mir04] is is a multi-protocol instant messenger client. Miranda is

designed to be resource efficient and easy to use. It is built on a basic framework

with functionality implemented entirely through plugins.

A List of Open Source Projects 171

7. KOffice [KOf04] is an integrated office suite for the K Desktop Environment (KDE).

KOffice is developed as part of the KDE Project and consists of 12 major applications:

KWord, KChart, KSpread, KPresenter, Kivio, Karbon14, Krita, Kugar, KPlato,

Kexi, KFormular and Filters that permit KOffice to interoperate with other popular

office suites such as OpenOffice and Microsoft Office.

8. KSDK [KDE04] is a software development toolkit designed for developers who work

on the KDE project. KSDK offers a collection of tools for developing and debugging

various kinds of KDE applications.

9. KSpread [KOf04] is a scriptable spreadsheet application which provides both table-

oriented sheets and support for complex mathematical formulas and statistics. KSpread

is part of the KOffice project.

10. Linux [Lin04] is a clone of the operating system Unix, written from scratch by Linus

Torvalds and subsequently worked on by hundreds of developers who are loosely con-

nected through the Internet. It aims towards POSIX and Single UNIX Specification

compliance. The first official version of Linux, 1.0, was released in March 1994.

11. Mozilla [Moz04] is a free cross-platform internet application suite whose components

include a web browser, an e-mail and newsgroup client, an HTML editor, and an IRC

client. Mozilla also stands for an application framework, which comprises a collection

of cross-platform software components such as layout engine, user interface toolkit,

and support for web services. The Mozilla application suite and framework was based

on the source code of Netscape Communicator released by Netscape Communications

Corporation under an open source license in March 1998.

172 Open Source Software Evolution and Its Dynamics

12. MySQL [MyS04] is a popular SQL-compliant relational database management sys-

tem (DBMS). MySQL is available as free software under the GNU General Public

License (GPL) and also under traditional proprietary licensing arrangements for cases

where the intended use of MySQL is incompatible with GPL.

13. OpenSSH [Ope04a] is an open source implementation of Secure Shell (SSH) proto-

col suite of network connectivity tools. OpenSSH encrypts network communication

traffic (including passwords) to effectively eliminate eavesdropping, connection hi-

jacking, and other network-level attacks. Additionally, OpenSSH provides a myriad

of secure tunneling capabilities, as well as a variety of authentication methods.

14. OpenSSL [Ope04b] is a cryptography toolkit implementing the Secure Sockets Layer

(SSL v2.0/v3.0) and Transport Layer Security (TLS v1.0) protocols as well as a full-

strength general purpose cryptography library. The OpenSSL project is managed by

a worldwide community of volunteers that use the Internet to communicate, plan,

and develop the OpenSSL toolkit and its related documentation.

15. PostgreSQL [Pos03] is a large, SQL-compliant object-relational database manage-

ment system (DBMS). It first originated at the University of California at Berkeley

and now has more than 15 years of active development with a globally distributed de-

velopment team. PostgreSQL runs on all major operating systems, including Linux,

UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows.

16. PHP [PHP04], short for “Hypertext Preprocessor”, is a reflective programming lan-

guage used mainly for developing server-side applications and dynamic web content.

PHP allows interaction with a large number of relational database management sys-

tems such as MySQL, PostgreSQL, Oracle, IBM DB2, and Microsoft SQL Server.

A List of Open Source Projects 173

17. OpenOffice [Ope05b] is an office suite intended to be compatible with and compete

with Microsoft Office. OpenOffice includes a word processor, spreadsheet, presenta-

tion, vector drawing, and database components.

18. Ruby [Rub04] is an interpreted scripting language for quick and easy object-oriented

programming. It has many convenient features for text file processing and system

management.

19. Web Browsers

• Dillo [Dil04] is a web browser targeted at embedded platforms with a focus on

fast page rendering and low memory usage.

• Epiphany [Epi04] is the official browser for the Gnome Desktop. Epiphany is

built on the Mozilla application framework.

• Konqueror [Kon04] is the official web browser for the K Desktop Environment.

It also supports general-purpose file browsing and management.

• Lynx [Lyn04] is a text-only web browser for use on cursor-addressable, character

cell terminals.

• Safari [Saf04] is a web browser developed by Apple Computer for its Mac OS X

operating system. Safari is built on the KHTML rendering engine from KDE.

Appendix B

Distributions of Software Changes

This appendix displays a number of plots we obtained from open source software systems.

In each plot, the tail Cumulative Distribution Function (CDF) is plotted against the size of

changes on the logarithmic scale of base 10. Two types of software change are considered.

Figure B.1 shows distributions of changes recovered from the CVS source control repository.

Figure B.2 shows distributions of changes obtained via daily system structural comparison.

System structural changes were only obtained for the Linux kernel by comparing subsequent

official releases since we could not get access to the source control repository of Linux.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(a) FreeBSD

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(b) OpenBSD

175

176 Open Source Software Evolution and Its Dynamics

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(c) NetBSD

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(d) GCC

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(e) PostgreSQL

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(f) PHP

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(g) KSDK

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(h) KOffice

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(i) OpenSSL

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(j) Ruby

Figure B.1: Tail CDF of changes recovered from the CVS repository

Distribution of Software Changes 177

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(a) Linux Kernel

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(b) GCC

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(c) PostgreSQL

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(d) PHP

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(e) KSDK

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(f) KOffice

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(g) OpenSSL

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Change size (number of files)

P
ro

ba
bi

lit
y

(T
ai

l C
D

F
)

(h) Ruby

Figure B.2: Tail CDF of daily system structural changes

Bibliography

[Aca96] Acacia. The C++ Information Abstraction System. Website: http://www.

research.att.com/sw/tools/Acacia, 1996.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments with clustering as a

software remodularization method. In Proceedings of the 6th Working Confer-

ence on Reverse Engineering, pages 235–255, Atlanta, Georgia, USA, October

1999.

[Aoy01] Mikio Aoyama. Continuous and discontinuous software evolution: Aspects

of software evolution across multiple product lines. In Proceedings of the

International Workshop on Principles of Software Evolution, pages 87–90,

Vienna, Austria, September 2001.

[AP01] Annie I. Antón and Colin Potts. Functional paleontology: System evolution

as the user sees it. In Proceedings of the 23rd International Conference on

Software Engineering, pages 421–430, Toronto, Canada, May 2001.

[Axt01] Robert L. Axtell. Zipf distribution of U.S. firm sizes. Science, 293:1818–1820,

September 2001.

179

180 Open Source Software Evolution and Its Dynamics

[BE81] L. A. Belay and C. J. Evangelisti. System partitioning and its measure. The

Journal of Systems and Software, 2:23–29, 1981.

[BE96] Thomas Ball and Stephen G. Eick. Software visualization in the large. Com-

puter, 29(4):33–43, April 1996.

[Bel01] Bell Canada. DATRIX Abstract Semantic Graph Reference Manual, Version

1.4. Website: http://www.casi.polymtl.ca/casibell, 2001.

[Ber94] Jan Beran. Statistics for Long-Memory Processes. Chapman and Hall, 1994.

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case

study: Its extracted software architecture. In Proceedings of the 21st Inter-

national Conference on Software Engineering, pages 555–563, Los Angeles,

California, May 1999.

[BKS03] Evelyn J. Barry, Chris F. Kemerer, and Sandra A. Slaughter. On the unifor-

mity of software evolution patterns. In Proceedings of the 25th International

Conference on Software Engineering, pages 106–113, Portland, Oregon, May

2003.

[BL76] L. A. Belady and M. M. Lehman. A model of large program development.

IBM Systems Journal, 15(3):225–252, 1976.

[BP03] Andreas Bauer and Markus Pizka. The contribution of free software to soft-

ware evolution. In Proceedings of the International Workshop on Principles

of Software Evolution, pages 170–179, Helsinki, Finland, September 2003.

Bibliography 181

[BS93] Per Bak and Kim Sneppen. Punctuated equilibrium and criticality in a simple

model of evolution. Physical Review Letters, 71(24):4083–4086, December

1993.

[BTW87] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An

explanation of 1/f noise. Pysical Review Letters, 59(4):381–384, July 1987.

[BTW88] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality. Pysical

Review A, 38(1):364–374, July 1988.

[BUM02] Binutils User Manual. Website: http://www.gnu.org/software/binutils, 2002.

[Cal88] Jerry Calabaugh. Software configuration – an NP-complete problem. SIGMIS

Database, 19(2):29–34, 1988.

[CC03] Anthony Cox and Charles Clarke. Syntactic approximation using iterative

lexical analysis. In Proceedings of the 11th International Workshop on Pro-

gram Comprehension, pages 154–163, Portland, Oregon, May 2003.

[Cen04] CenterICQ. Website: http://konst.org.ua/en/centericq/, 2004.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin

Wampler. A system for graph-based visualization of the evolution of software.

In Proceedings of ACM Symposium on Software Visualization, pages 77–86,

San Diego, California, June 2003.

[CNDP04] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole. Evidence for

self-organized criticality in a time series of electric power system blackouts.

IEEE Transactions on Circuits and Systems I, 51(9):1733–1740, September

2004.

182 Open Source Software Evolution and Its Dynamics

[CPP02] CPPX. C++ Source Code Extractor. Website: http://swag.uwaterloo.ca/

∼cppx, 2002.

[Csc04] Cscope. Website: http://cscope.sourceforge.net, 2004.

[Cta04] Ctags. Website: http://ctags.sourceforge.net, 2004.

[Cub03] Cube. An Open Source First Person Shooter (FPS) Game Engine. Website:

http://www.cubeengine.com/, 2003.

[Dar59] Charles Darwin. The Origin of Species by Means of Natural Selection. 1859.

[Dil04] Dillo. Website: http://www.openoffice.org/, 2004.

[DMM98] D. Doval, Spiros Mancoridis, and Brian Mitchell. Automatic clustering of

software systems using a genetic algorithm. In Proceedings of the International

Conference on Software Technology and Engineering Practice, pages 73–91,

Pittsburgh, PA, September 1998.

[EG72] N. Eldredge and S. Gould. Punctuated equilibria: an alternative to phyletic

gradualism in models in paleobiology. Models of Paleobiology, 1972.

[EGK+01] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and Audris

Mockus. Does code decay? assessing the evidence from change management

data. IEEE Transactions on Software Engineering, 27(1):1–12, January 2001.

[Ema04] Emacs. Website: http://en.wikipedia.org/wiki/Emacs, 2004.

[Epi04] Epiphany. Website: http://www.gnome.org/projects/epiphany/, 2004.

[Ext04] Extreme Programming: A Gentle Introduction. Website: http://www.

extremeprogramming.org/, 2004.

Bibliography 183

[FBMG01] Rudolf Ferenc, Arpad Beszedes, Ferenc Magyar, and Tibor Gyimothy. A

short introduction to Columbus/CAN. Technical Report, 2001.

[FOP02] K. Fogel, M. O’neill, and M. J. Pearce. CVS log message to change log message

conversion script. Website: http://www.red-bean.com/cvs2cl/, 2002.

[FSG04] Rudolf Ferenc, István Siket, and Tibor Gyimóthy. Extracting facts from

open source software. In Proceedings of the 20th International Conference on

Software Maintenance, pages 60–69, Chicago, Illinois, September 2004.

[Gai04] Gaim. Website: http://sourceforge.net/projects/gaim/, 2004.

[GCC02] GCC. GNU Compiler Collection. Website: http://gcc.gnu.org, 2002.

[Ger91] Connie J. Gersick. Revolutionary change theories: A mutilevel exploration of

the punctuated equilibrium paradigm. Academy of Management, 16(1):10–36,

January 1991.

[GG05] Alan Grosskurth and Michael W. Godfrey. A reference architecture for web

browsers. In Proceedings of the 21th International Conference on Software

Maintenance, Budpest, Hungary, September 2005.

[GGP03] Edoardo Gaffeo, Mauro Gallegati, and Antonio Palestrini. On the size distri-

bution of firms: Additional evidence from G7 countries. Physica A, 324:117–

123, 2003.

[GJKT97] Harald Gall, Mehdi Jazayeri, René Klöesch, and Georg Trausmuth. Software

evolution observations based on product release history. In Proceedings of

the 13th International Conference on Software Maintenance, pages 160–166,

Bari, Italy, October 1997.

184 Open Source Software Evolution and Its Dynamics

[GJR99] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software release

histories: The use of color and third dimension. In Proceedings of the 15th

International Conference on Software Maintenance, pages 99–108, Oxford,

England, September 1999.

[Gnu03] Gnumeric. Website: http://www.gnome.org/projects/gnumeric/, 2003.

[Goo00] Richard Gooch. Linux Kernel API Changes from 2.0 to 2.2. Website: http://

www.atnf.csiro.au/people/rgooch/linux/docs/porting-to-2.2.html, 2000.

[GP95] David Garlan and Dewayne Perry. Introduction to the special issue on soft-

ware architecture. IEEE Transactions on Software Engineering, 21(4):269–

274, April 1995.

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A

case study. In Proceedings of the 16th International Conference on Software

Maintenance, pages 131–142, San Jose, California, October 2000.

[GXL02] GXL. The Graph eXchange Language. Website: http://www.gupro.de/GXL,

2002.

[GY03] A. A. Gorshenev and Yu. M. Pis’mak. Punctuated equilibrium in software

evolution. DOI: cond-mat/0307201, July 2003.

[HHL+00] Ahmed E. Hassan, Richard C. Holt, Bruno Lague, Sebastien Lapierre, and

Charles Leduc. E/R schema for the DATRIX C/C++/Java exchange format.

In Proceedings of the 7th Working Conference on Reverse Engineering, pages

284–286, Brisbane, Australia, November 2000.

Bibliography 185

[Hig99] J. A. Highsmith. Adaptive Software Development – A Collaborative Approach

to Managing Complex Systems. Dorset House, New York, NY, USA, 1999.

[HJ02] Francis Hunt and Paul Johnson. On the Pareto distribution of Sourceforge

projects. In Proceedings of Open Source Software Dvelopment Workshop,

pages 122–129, Newcastle, UK, February 2002.

[Hol02] Richard C. Holt. An Introduction to TA: the Tuple-Attribute Language. Web-

site: http://plg.uwaterloo.ca/∼holt/cv/papers.html, 2002.

[Hur51] H. E. Hurst. Long-term storage capacity of reservoirs. Transactions of Amer-

ican Society of Civil Engineers, 116:770–799, 1951.

[HWH05] Ahmed E. Hassan, Jingwei Wu, and Richard C. Holt. Visualizing historical

data using spectrographs. In Proceedings of the 11th International Software

Metrics Symposium, Como, Italy, September 2005.

[id 03] id Software. Quake – A First Person Shooter Computer Game. Website:

http://www.idsoftware.com/, 2003.

[IEE00] IEEE. Recommended practice for architectural description of software-

intensive systems. IEEE Std 1471, 2000.

[Inn04] InnoDB. Website: http://www.innodb.com, 2004.

[Jen98] H. J. Jensen. Self-Organized Criticality - Emergent Complex Behavior in

Physical and Biological Systems. Cambridge University Press, 1998.

[JGr04] JGrok. A Query Language for Reverse Engineering. Website: http://swag.

uwaterloo.ca/tools.html, 2004.

186 Open Source Software Evolution and Its Dynamics

[JS03] C. Jensen and W. Scacchi. Simulating an automated approach to discovery

and modeling of open source software development. In Proceedings of Software

Process Simulation and Modeling Workshop, Portland, OR, USA, May 2003.

[KC98] Rick Kazman and S. Jeromy Carrière. View extraction and view fusion in ar-

chitectural understanding. In Proceedings of the 5th International Conference

on Software Reuse, pages 290–299, Victoria, BC, Canada, June 1998.

[KDE04] KDE. The K Desktop Environment. Website: http://www.kde.org, 2004.

[KE00] Rainer Koschke and Thomas Eisenbarth. A framework for experimental evalu-

ation of clustering techniques. In Proceedings of the 8th International Work-

shop on Program Comprehension, pages 201–210, Limerick, Ireland, June

2000.

[Koc04] Stefan Koch. Profiling an open source project ecology and its programmers.

Electronic Markets, 14(2):77–88, July 2004.

[KOf04] KOffice. Website: http://www.koffice.org, 2004.

[Kon04] Konqueror. A File Manager and Web Browser for KDE. Website: http://

www.konqueror.org/, 2004.

[Kop04] Kopete. Website: http://kopete.kde.org/, 2004.

[KS96] Chris F. Kemerer and Sandra Slaughter. Need for more longitudinal studies

of software maintenance. In Proceedings of the International Workshop on

Empirical Studies of Software Maintenance, Monterey, California, USA, 1996.

Bibliography 187

[Lan01] Michele Lanza. The evolution matix: Recovering software evolution using

software visualization techniques. In Proceedings of the International Work-

shop on Principles of Software Evolution, pages 37–42, Vienna, Austria,

September 2001.

[Law82] M. J. Lawrence. An examination of evolution dynamics. In Proceedings of the

6th International Conference on Software Engineering, pages 188–196, Tokyo,

Japan, September 1982.

[LB85] M. M. Lehman and L. A. Belady. Program Evolution – Processes of Software

Change. Academic Press, London UK, 1985.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual

approach to reverse engineering. IEEE Transactions on Software Engineering,

29(9):782–795, September 2003.

[Leh97] M. M. Lehman. Laws of software evolution revisited. Lecture Notes in Com-

puter Science, 1149:108–124, 1997.

[LG97] Arun Lakhotia and John M. Gravley. A unified framework for expressing

software subsystem classification techniques. The Journal of Systems and

Software, 36(3):211–231, March 1997.

[LHM03] Yuan Lin, Richard C. Holt, and Andrew Malton. Completeness of a fact

extractor. In Proceedings of the 10th Working Conference on Reverse Engi-

neering, pages 196–205, Victoria, British Columbia, Canada, November 2003.

[Lin04] Linux Kernel. Website: http://www.kernel.org, 2004.

188 Open Source Software Evolution and Its Dynamics

[LR01] M. M. Lehman and J. F. Ramil. Rules and tools for software evolution

planning and management. Annals of Software Engineering, 11(1):15–44,

November 2001.

[LRW+97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski.

Metrics and laws of software evolution - the nineties view. In Proceedings of the

4th International Software Metrics Symposium, pages 20–32, Albuquerque,

NM, November 1997.

[LS91] Ronald Lange and Robert W. Schwanke. Software architecture analysis: A

case study. In Proceedings of the 3rd international workshop on Software

configuration management, pages 19–28, Trondheim, Norway, June 1991.

[Lyn04] Lynx. A Text Browser for World Wide Web. Website: http://www.

openoffice.org/, 2004.

[Man82] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman &

Company, 1982.

[Man01] Manifesto for Agile Software Development. Website: http://agilemanifesto.

org/, 2001.

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of

open source software development: Apache and mozilla. ACM Transactions

on Software Engineering and Methodology, 11(3):309–346, July 2002.

[MFT02] Greg Madey, Vincent Freeh, and Renee Tynan. The open source software

development phenomenon: An analysis based on social network theory. In

Proceedings of Americas Conference on Information Systems, pages 1806–

1813, Dallas, TX, USA, 2002.

Bibliography 189

[Mil02] E. Milotti. 1/f Noise: a Pedagogical Review. ArXiv Physics e-prints, April

2002.

[Mir04] Miranda. Website: http://www.miranda-im.org/, 2004.

[MM01] Brian Mitchell and Spiros Mancoridis. Comparing the decompositions pro-

duced by software clustering algorithms using similarity measurements. In

Proceedings of the 17th International Conference on Software Maintenance,

pages 744–753, Florence, Italy, November 2001.

[MMCG99] Spiros Mancoridis, Brian Mitchell, Yihfarn Chen, and Emden Gansner.

Bunch: A clustering tool for the recovery and maintenance of software system

structures. In Proceedings of the 15th International Conference on Software

Maintenance, pages 50–59, Oxford, England, September 1999.

[MN96] Gail C. Murphy and David Notkin. Lightweight lexical source model exrac-

tion. IEEE Transactions on Software Engineering, 5(3):262–292, July 1996.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mod-

els: Bridging the gap between source and high-level models. In Proceedings

of ACM SIGSOFT Symposium on the Foundations of Software Engineering,

pages 18–28, New York, NY, USA, October 1995.

[Moo01] Leon Moonen. Generating robust parsers using island grammars. In Proceed-

ings of the 8th Working Conference on Reverse Engineering, pages 13–22,

Suttgart, Germany, October 2001.

[MOTU93] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A

reverse engineering approach to system structure identification. Journal of

Software Maintenance: Research and Practice, 5(4):181–204, December 1993.

190 Open Source Software Evolution and Its Dynamics

[Moz04] Mozilla Application Suite. Website: http://www.mozilla.org, 2004.

[MyS04] MySQL. Website: http://www.mysql.com, 2004.

[New05] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contem-

porary Physics, 46(5):323–351, September 2005.

[Nor03] Martin E. Nordberg. Managing code ownership. IEEE Software, 20(2):26–33,

January 2003.

[NYN+02] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi

Kishida, and Yunwe Ye. Evolution patterns of open-source software systems

and communities. In Proceedings of the International Workshop on Principles

of Software Evolution, pages 76–85, Orlando, Florida, May 2002.

[O’M06] S. O’Mahony. Managing community software in a commodity world. In Chap-

ter 8 of Frontiers of Capital: Ethnographic Reflections on the New Economy.

Duke University Press, forthcoming 2006.

[Ope04a] OpenSSH. Website: http://www.openssh.org, 2004.

[Ope04b] OpenSSL. Website: http://www.openssl.org, 2004.

[Ope05a] Open Source Definition. Website: http://www.opensource.org/docs/

definition.php, 2005.

[Ope05b] OpenOffice. Website: http://www.openoffice.org/, 2005.

[Par94] David Lodge Parnas. Software aging. In Proceedings of the 16th International

Conference on Software Engineering, pages 279–287, Sorrento, Italy, May

1994.

Bibliography 191

[Per02] Dewayne E. Perry. Law and principles of evolution. In Proceedings of the

18th International Conference on Software Maintenance, page 70, Montreal,

Canada, October 2002.

[PHP04] PHP. Hypertext preprocessor. Website: http://www.php.net, 2004.

[Pos03] PostgreSQL. Website: http://www.postgresql.org, 2003.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of

software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–

52, October 1992.

[RAGBH05] Gregorio Robles, Juan José Amor, Jesús M. Gonzléz-Barahona, and Israel

Herraiz. Evolution and growth in large libre software projects. In Proceedings

of the International Workshop on Principles of Software Evolution, Lisbon,

Portugal, September 2005.

[Ray99] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. O’Reilly and Associates, 1999.

[Rub04] Ruby. Website: http://www.ruby-lang.org, 2004.

[RY81] Vijay V. Raghavan and C. Yu. A comparison of the stability characteristics

of some graph theoretic clustering methods. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 3(4):393–402, August 1981.

[Saf04] Safari. Website: http://www.apple.com/macosx/features/safari/, 2004.

[San95] Georg Sander. VCG – visualization of compiler graphs. Technical Report

A01-95, February 1995.

192 Open Source Software Evolution and Its Dynamics

[San03] Anand K. Santhanam. Towards Linux 2.6: A Look into the Next Kernel.

Website: http://www.ibm.com/developerworks/linux/library, 2003.

[SBM+02] Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside, Marin

Litoiu, and Mark Musen. Shrimp views: An interactive environment for

information visualization and navigation. In Proceedings of Conference on

Human Factors in Computing Systems, pages 520–521, Minneapolis, Min-

nesota, USA, April 2002.

[Sch90] C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge Uni-

versity Press, 1990.

[Sch91] Robert W. Schwanke. An intelligent tool for re-engineering software modu-

larity. In Proceedings of the 13th International Conference on Software Engi-

neering, pages 83–92, Austin, Texas, United States, May 1991.

[SHE02] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On using a bench-

mark to evaluate c++ extractors. In Proceedings of the 10th International

Workshop on Program Comprehension, pages 114–123, Paris, France, June

2002.

[SMBB97] R. V. Solé, S. C. Manrubia, M. Benton, and P. Bak. Self-similarity of extinc-

tion statistics in the fossil record. Nature, 388(21):764–767, August 1997.

[SO02] Stephen R. Schach and A. Jefferson Offutt. On the nonmaintainability of

open source software. In Proceedings of the 2nd Workshop on Open Source

Software Engineering, Orlando, Florida, May 2002.

[Sou05] SourceForge. Website: http://sourceforge.net/, 2005.

Bibliography 193

[Spr03] J. C. Sprott. Chaos and Time-Series Analysis. Oxford University Press, 2003.

[Swa02] SwagKit. The Software Architecture Group (SWAG) Analysis Toolkit. Web-

site: http://swag.uwaterloo.ca/swagkit, 2002.

[TGLH00] John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and Richard C. Holt.

Architecture repair of open source software. In Proceedings of the 8th In-

ternational Workshop on Program Comprehension, pages 48–59, Limerick,

Ireland, June 2000.

[TH99] Vassilios Tzerpos and Richard C. Holt. MoJo: A distance metric for soft-

ware clusterings. In Proceedings of the 6th Working Conference on Reverse

Engineering, pages 187–193, Atlanta, Georgia, USA, October 1999.

[TH00a] Vassilios Tzerpos and Richard C. Holt. ACDC: An algorithm for compre-

hension driven clustering. In Proceedings of the 7th Working Conference on

Reverse Engineering, pages 258–267, Brisbane, Australia, November 2000.

[TH00b] Vassilios Tzerpos and Richard C. Holt. On the stability of software clustering

algorithms. In Proceedings of the 8th International Workshop on Program

Comprehension, pages 211–218, Limerick, Ireland, June 2000.

[TkS03] TkSee/SN. A C++ Source Code Extractor Based on Cygnus Source Naviga-

tor. Website: http://www.site.uottawa.ca/∼tcl/kbre, 2003.

[TM02] Christopher M. B. Taylor and Malcolm Munro. Revision towers. In Proceed-

ings of the 1st International Workshop on Visualizing Software for Under-

standing and Analysis, pages 43–50, Paris, France, June 2002.

194 Open Source Software Evolution and Its Dynamics

[Tur02] Wladyslaw M. Turski. The reference model for smooth growth of software

systems revisited. IEEE Transactions on Software Engineering, 228(8):814–

815, August 2002.

[WH04a] Jingwei Wu and Richard C. Holt. Linker-based program extraction and

its uses in studying software evolution. In Proceedings of the International

Workshop on Foundations of Unanticipated Software Evolution, pages 1–15,

Barcelona, Spain, March 2004.

[WH04b] Jingwei Wu and Richard C. Holt. Resolving linkage anomalies in extracted

system models. In Proceedings of the 12th International Workshop on Program

Comprehension, pages 241–245, Bari, Italy, June 2004.

[WHH04] Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Exploring software

evolution using spectrographs. In Proceedings of the 11th Working Conference

on Reverse Engineering, pages 80–89, Delft, Netherlands, November 2004.

[Wig97] T. A. Wiggerts. Using clustering algorithms in legacy systems remodulariza-

tion. In Proceedings of the 4th Working Conference on Reverse Engineering,

pages 33–43, Amsterdam, The Netherlands, October 1997.

[WSHH04] Jingwei Wu, Claus W. Spitzer, Ahmed E. Hassan, and Richard C. Holt. Evo-

lution spectrographs: Visualizing punctuated change in software evolution.

In Proceedings of the International Workshop on Principles of Software Evo-

lution, pages 57–66, Kyoto, Japan, September 2004.

[WT04] Zhihua Wen and Vassilios Tzerpos. Evaluating similarity measures for soft-

ware decompositions. In Proceedings of the 20th International Conference on

Software Maintenance, pages 368–377, Chicago, IL, USA, September 2004.

Bibliography 195

[ZG03] Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using

origin analysis. In Proceedings of the 10th Working Conference on Reverse

Engineering, pages 146–154, Victoria, BC, Canada, November 2003.

[ZW04] Thomas Zimmermann and Peter Weißgerber. Preprocessing CVS data for

fine-grained analysis. In Proceedings of the 1st International Workshop on

Mining Software Repositories (MSR), pages 2–6, Edinburgh, UK, May 2004.

