
Composer-Centered Computer-Aided Soundtrack
Composition

by

R. Edwin Vane

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2006

©R. Edwin Vane 2006

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

For as long as computers have been around, people have looked for ways to involve
them in music. Research in computer music progresses in many varied areas: algorith-
mic composition, music representation, music synthesis, and performance analysis to
name a few. However, computer music research, especially relating to music compo-
sition, does very little toward making the computer useful for artists in practical situ-
ations. This lack of consideration for the user has led to the containment of computer
music, with a few exceptions, to academia.

In this thesis, I propose a system that enables a computer to aide users composing
music in a specific setting: soundtracks. In the process of composing a soundtrack, a
composer is faced with solving non-musical problems that are beyond the experience of
composers of standalone music. The system I propose utilizes the processing power of
computers to address the non-musical problems thus preventing users from having to
deal with them. Therefore, users can focus on the creative aspect of composing sound-
track music.

The guiding principal of the system is to help the composer while not assuming any
creative power and while leaving the user in full control of the music. This principal
is a major step toward helping users solve problems while not introducing new ones.
I present some carefully chosen tasks that a computer can perform with guidance from
the user that follow this principal. For example, the system performs calculations to help
users compose music that matches the visual presentation and allows users to specify
music, using the idea of timed regular expressions, so that a computer can fill arbitrary
amounts of time with music in a controlled manner.

A prototype application, called EMuse, was designed and implemented to illustrate
the use and benefits of the proposed system. To demonstrate that the system is capa-
ble of serving as a tool to create music, two soundtracks were created for two sample
animations. It is beyond the scope of the work presented here to evaluate if the sys-
tem achieves the goal of being a practical tool for composers. However, the innovations
herein discussed are analyzed and found to be useful for soundtrack composition and
for future user-centered computer-music research.

iii

Acknowledgements

I would first like to thank my supervisor, Bill Cowan for his knowledge and guid-
ance. His seemingly inexhaustible knowledge of many diverse things continues to be an
inspiration. Thank you for all the little nudges in the right direction when I started to go
astray.

I also want to thank my thesis readers: Michael Terry and Anna Lubiw for their com-
ments and advice. Many thanks to Gladimir Baranoski and David Matthews without
whom I probably would not be here. Financial support was provided by the National
Science and Engineering Research Council of Canada, the Computer Graphics Labora-
tory, and the University of Waterloo.

I must thank my family and especially my girlfriend Jessica Socha for helping me
through the rough and dark times. Their unwavering moral support provided the light
I needed to continue.

My apologies to Jesus whose 2005th birthday (approximately) I missed this year
while preparing this thesis.

The printed music found throughout this thesis is typeset with Lilypond. Thanks to
the makers of BibDesk for such great BibTEXmanagement software.

iv

Dedication

For my family, for Jessica, and for all those who suffered a lack of attention on my part while I
was writing this thesis.

v

Trademarks

• Mac OS X is a trademark of Apple Computer, Inc.

• Logic is a trademark of Apple Computer, Inc.

• Cocoa is a trademark of Apple Computer, Inc.

• The Auricle: The Film Composer’s Time Processor is a trademark of Auricle Con-
trol Systems

• Design Gallery is a trademark of Mitsubishi Electric Information Technology Cen-
ter America, Inc.

• Windows is a trademark of Microsoft Corporation

• DOS is a trademark of Microsoft Corporation

• Sibelius is a trademark of Sibelius Software Limited

• ACID is a trademark of Sony Media Software

All other products mentioned in this thesis are trademarks of their respective com-
panies. The use of general descriptive names, trade names, trademarks, and registered
trademarks, in this publication, even if the former are not identified, is not to be taken to
mean that such names may be used freely by anyone. Nor should unintentional omis-
sions or inaccuracies in this section be taken to mean that certain names are not trade
names, trademarks or registered trademarks.

vi

Contents

1 Introduction 1

1.1 The Difficulties of Film Composition . 2

1.2 Computer as a Tool . 4

1.3 Narrowing of Focus . 5

1.4 Overview . 6

2 Background 8

2.1 Musical Background . 8

2.2 Soundtrack Composition . 10

2.3 MIDI . 12

2.4 Commercial Software . 14

2.5 Previous Work . 15

2.5.1 Composition of Standalone Music 15

2.5.2 Soundtrack Composition . 17

2.5.3 Computer Music and User Interfaces 17

2.5.4 Critique . 18

3 Music Specification 20

3.1 Minimalism . 21

3.2 Regular Expressions . 22

vii

3.2.1 Definition and Interpretation . 22

3.2.2 Adjustments for Music . 24

3.2.3 Regular Expressions and Soundtracks 25

3.3 Timed Regular Expressions . 25

3.3.1 Definition . 26

3.3.2 The Closure Operator . 27

3.3.3 Analysis . 28

3.4 Calculating Repetition Solutions . 29

3.4.1 Time Frame to use for Timed Regular Expressions 30

3.5 Future Work . 31

4 Choosing a Repetition Solution 33

4.1 Repetition Solution Space Structure . 34

4.2 {n}-Dimensional Space Visualization . 35

4.2.1 Background . 36

4.2.2 Considerations for Choosing Repetition Solutions 41

4.3 RepChooser . 43

4.3.1 Visual Representation of Repetition Solutions 43

4.3.2 Plane Orientations . 44

4.3.3 Navigation Controls . 45

4.4 An Example . 46

4.5 Future Work . 50

5 Tempo 51

5.1 Traditional Methods . 51

5.2 How Computers Can Help . 54

5.3 Tempo Representation . 55

viii

5.4 Tempo Calculations . 57

5.4.1 Calculation of Music-Time Durations 59

5.4.2 Calculating Clock-Time Duration . 60

5.4.3 Solving for Tempo . 62

5.4.4 Implementation Considerations . 65

5.5 Future Work . 65

6 Synchronization 66

6.1 Synchronization Basics . 67

6.1.1 External Synchronization and Human Performers 68

6.1.2 External Synchronization and Electronic Performers 69

6.1.3 Internal Synchronization . 71

6.2 Synchronizing MIDI to Video . 73

6.2.1 Hardware versus Software Implementations 74

6.2.2 Choosing a Synchronization Framework 75

6.2.3 QuickTime Details . 76

6.3 Future Work . 78

7 The System 79

7.1 Defining Motifs . 79

7.2 Compositional Interface . 80

7.2.1 Defining Music Regions . 81

7.2.2 Defining Motifs . 84

7.2.3 Defining Timed Regular Expression 87

7.2.4 Choosing Repetition Solutions . 88

7.2.5 Interacting with the Tempo Function 92

7.2.6 Getting Feedback . 98

ix

7.3 A Concrete Example . 100

7.4 Future Work . 101

8 Conclusions 102

8.1 Results . 102

8.2 Analysis . 104

8.3 Future Work . 108

Bibliography 110

A QuickTime Synchronization Details 116

A.1 Problems with QTMA . 117

A.2 Latency Experiment . 118

A.3 Creating a Derived Media Handler . 119

A.3.1 Implementation Details . 120

A.3.2 EMT DMH Details . 121

A.4 EMuse Media Type Analysis . 123

B EMuse Implementation Details 124

B.1 Manual . 124

B.2 Implementation Overview . 127

B.2.1 Model-Level Components . 128

B.2.2 Controller-Level Components . 130

B.2.3 View-Level Components . 131

B.2.4 Music Generation . 132

x

List of Tables

2.1 A selection of common tempo-related musical terms 9

7.1 Musical duration abbreviations that EMuse recognizes 86

8.1 Motifs used the Metamorphosis of the Cube animation 104

A.1 A list of common QuickTime component request constants 122

xi

List of Figures

1.1 An example of common practice notation 6

2.1 Examples of specifying tempo . 9

2.2 Relationships between the various MIDI entities 13

3.1 An example of sketched music . 20

3.2 A regular expression and the music it represents 24

3.3 Illustration of how tempo affects the clock-time durations of sequential
repetitions of a motif . 31

4.1 Illustration of the bounding hyperplanes of a 2D repetition solution space 34

4.2 Another 2D example of bounding hyperplanes using different parameters
to illustrate how the repetition solution space changes 35

4.3 An example of parallel histograms applied to choosing a repetition solution 39

4.4 Illustration of operations on a 2D plane for navigating an {n}-dimensional
space . 42

4.5 2D visual representations of four repetition solutions 44

4.6 Steps to represent a musical idea as a timed regular expression 47

4.7 Illustration of placing the timed regular expression in time 47

4.8 Example decision tree choosing repetition solutions 49

5.1 Two examples of choosing tempi to allow the music to make a hit 52

xii

5.2 Three representations for modelling timing and tempo 56

5.3 A continuous, piecewise linear tempo function 58

5.4 Illustration of how the choice of which tempo marker is involved in calcu-
lating a new tempo determines which segments are affected by calculation 63

5.5 Illustration of all the parameters involved for calculating a tempo 63

6.1 Master and slave clock relationship . 68

6.2 Illustration of streamers and punches . 70

6.3 The parts of QuickTime involved with synchronization 77

7.1 Labelled screenshot of the EMuse timeline display 82

7.2 Screenshot showing two music region states 83

7.3 A simple grammar for textually defining motifs 85

7.4 Screenshot of EMuse’s interface for editing music regions 86

7.5 Screenshot of EMuse’s interface for defining and editing a motif 87

7.6 Screenshot of RepChooser . 91

7.7 Comparison between the two RepChooser representations 92

7.8 Screenshot of RepChooser in action . 93

7.9 Reorienting the orthogonal plane in RepChooser 94

7.10 Example of RepChooser handling a 1D solution lattice 95

7.11 Timeline and tempo displays in EMuse . 96

7.12 Illustration of the feedback when adjusting the tempo function 97

7.13 Screenshot of the EMuse movie viewer . 99

8.1 Example of a single musical idea passing between multiple instruments . 106

A.1 Three frames from a simulation of a bouncing ball 117

B.1 Relationships between the various atom classes in the EMuse implemen-
tation . 129

xiii

B.2 Relationships between the the various atom storage classes in EMuse . . . 129

B.3 Illustration of the problems that occur when merging EMus samples into
a single MIDI channel . 133

xiv

Chapter 1

Introduction

All modern motion pictures are accompanied by sound, which is usually made up of
three components: speech, sound effects, and music. Each of these three must be syn-
chronized with the action portrayed in the motion picture before being mixed together
into a single audio track or soundtrack. The problems of composition and synchroniza-
tion of music to a motion picture are the subject of this thesis. In particular, I describe a
system by which a computer can help a composer overcome the problems of creating a
music track: the music component of a soundtrack.

A motion picture is a sequence of still images that is displayed rapidly in succes-
sion to provide the illusion of continuous motion. The images portray objects in motion
where each image shows objects in a slightly different position than in the preceding
image. Motion pictures exist in several formats including film, television, digital, etc.
Since motion pictures and soundtracks are both time-based media, they can be synchro-
nized implying any motion picture can have a soundtrack. I refer to a movie as a motion
picture with accompanying soundtrack. A movie is therefore made up of two compo-
nents: a visual component and a soundtrack. The definition of movie is independent
of the format in which the visual component and the soundtrack are presented. Please
notice that the colloquial meaning of movie, a “silver screen” film production with a
soundtrack, is a specialization of the definition I use.

I focus on the situation where composers are writing music for a movie’s visual com-
ponent and the final fixed form of what the visual component will present is known.
Although the details of the visual component may change during the course of a com-

1

CHAPTER 1. INTRODUCTION 2

poser’s work, I assume the composer knows very well the final general form the visual
component will take. This situation applies to most movie production and even to dig-
ital movies embedded in interactive media such as video games. However, I do not
consider the problems of composing music to synchronize with a visual component that
is determined “on the fly”1.

1.1 The Difficulties of Film Composition

Standalone music, music that is composed without the intention of accompanying the
visual component of a movie2, and movie music share many similarities. Standalone
music may be structured to follow a particular programme or story (e.g. Romantic Era
music), just as movie music is written to follow the visual aspect of a movie. Both stan-
dalone and movie music are written to portray information to or invoke emotion in the
listener. Both are usually written for more than one instrument, requiring internal syn-
chronization of the ensemble performing the music. One final similarity is that creating
both forms of music is difficult; as with any artistic endeavour.

Standalone music and movie music also differ in several important ways, compli-
cating the task of music track composition. First, standalone music is composed with
enough structure and complexity to fully stimulate listeners who attempt to interpret
and understand the structure. Therefore, the listener’s attention is meant to be focused
on the music. Movie music, by contrast, is often not heard by the audience. The contents
of the visual component takes precedence, containing most of the structure. If the music
exhibits too much structure or complexity, it competes with the visual presentation for
observers’ attention.

Second, although movie music should not be heard consciously, the music is pro-
cessed sub-consciously to produce an effect on the observer. If music plays continuously,
the observer eventually tunes it out completely, producing the same effect as having no
music at all. Therefore, the music for a movie does not play at all times. Wall-to-wall
music may also be inappropriate if it means that music occurs at points when it should
not, such as underlying speech. Therefore, unlike through-composed opera where the
music is played and sung at all times, movie music is discontinuous. Each fragment

1Video games are a prime example since user interactions determine the contents of the visual compo-
nent in real-time.

2For example, concert music of any kind.

CHAPTER 1. INTRODUCTION 3

of continuous music, called a cue, cannot be independent of the contents of the visual
component or other cues.

Third, timing is a difficult issue for movie composers, especially for those with a
background in standalone music. Movie music must be composed to match the contents
of the visual component of a movie. Cues must begin and end at specific times and the
music must be synchronized with the visual action of the movie. A composer may even
wish the music to hit additional specific times so that the music track mimics actions in
the visual component. Therefore, hit points impose additional timing constraints further
complicating composition of movie music.

In addition to these constraints, there is the problem of time calibration. The visual
component occurs in clock time: measured in minutes and seconds. Composers and
musicians work in music time: measured in beats. The rate at which beats occurs is
called tempo and is measured in beats per minute. Since tempo is defined relative to clock
time, tempo synchronizes the two time frames. However, properly manipulating tempo
to achieve synchronization creates technical complications that composers find troubling
since their work is the art of composition, not the solution of technical problems, such
as mathematically calculating tempi3, learning unfriendly user interfaces of computer-
based tools, or other non-artistic problems.

Last, the visual component of a movie changes during editing. A movie composer
writes music to fit another medium: a visual one. Timings of the visual component
must be respected by the music. Editing changes the duration of cues and timing of
events, forcing the composer to change the music to fit. Modern digital editing extends
the process: from the moment of its creation, to the point of adding the soundtrack, the
visual component is continually edited. Changing music implies lost time and work and
large edits to the visual component may require a completely new approach for writing
a cue.

To summarize, in addition to the difficulties of writing music, music track composi-
tion poses the following unique problems:

• The music for all cues must be musically related. Movie music may appear as a
collection of individual sections of music but the sections must be related. Addi-
tionally, the music must also make sense in the context of the visual component of

3Tempi is the plural form of Tempo.

CHAPTER 1. INTRODUCTION 4

the movie.

• The composer must make the music fit a pre-determined sequence of events which
are defined in a different time frame than the music.

• The composed music undergoes constant changes due to timing changes resulting
from editing.

Tools that lessen the impact of these problems would benefit composers by allowing
them to focus on the more creative aspect of music composition.

1.2 Computer as a Tool

Computers excel at precise and automatic computation. These strengths suggest that
computers can help with the last two problems in the above summary. That is, a com-
puter can perform conversions between clock time and music time and can adjust music
when timings change. To automatically adjust music, an algorithm requires, as input,
a composer’s specification of music and produces, as output, music that fills a particular
clock-time duration. Possible specifications range from collections of specific notes to
musical shorthand that a computer interprets and completes. The composer must have
full control over any such algorithm in theory and in practice.

Much of the research for computer-aided composition ignores composers’ needs in
practical situations. Music programming languages, for example, require too much
knowledge of computer science. A composer can acquire the necessary knowledge but
only at the cost of learning many new technical skills. However, music programming
languages make it possible to create music that is not physically possible. Algorithmic
composition allows the computer to take over many aspects of composition. But few
composers are willing to give up any artistic control making algorithmic composition
rarely useful in practical situations. Algorithmic composition can empower users with-
out musical training to express themselves musically however. Algorithmic composition
also provides insights into the human creative process. In contrast to these algorithms,
there is a growing body of work that focuses on composers’ creative needs with respect
to computer-aided composition. More information can be found in chapter 2.

An algorithm that adjusts music to match new timings must be under the complete
control of the composer and be easy to use. In general, for the computer to be a useful

CHAPTER 1. INTRODUCTION 5

and practical tool, composers must not feel their creativity to be impeded. Therefore, one
must carefully design algorithms and interfaces to algorithms to satisfy this goal.

The control composers have over composition algorithms depends on the music
specification. For example, if a composer specifies music by providing every note, the
algorithm provides very little automation; the composer does all the work. At another
extreme, if the composer specifies music at too high a level, such as sad, happy, ener-
getic, or flowing, the algorithm provides a great a deal of automation but the composer
has too little control over the algorithm. The rest of this thesis describes a system that
operates at an appropriate level.

1.3 Narrowing of Focus

To make a reasonable prototype of a system satisfying the above requirements, I further
narrow the focus of the system and its implementation. First, the system assumes that
all movies are in digital format. Since modern computers easily play back digital video
and modern movie composers usually work from digital copies, this is a valid simplifi-
cation. Working with other formats would needlessly complicate an implementation by
requiring an interface to complex analogue devices.

Second, the system does not produce printed music. Movie composers for commer-
cial film productions write music for musicians to perform for the purposes of recording.
Musicians require music to be written in common practice notation (see figure 1.1 for
an example) which requires music typesetting. Music typesetting is its own topic of re-
search ([8, 10]), which remains outside the focus of the system I present. For this reason,
the system ignores common features of written music that pertain to typesetting, such
as the subdivision of music into bars. The prototype implementation of the system, dis-
cussed in detail in chapter 7, relies on the computer as the performer to provide musical
feedback to a user. However, the system does not discount typesetting completely and
could be expanded to incorporate it.

Last, I focus on one particular style of music: minimalism. This makes studying
methods to specify music manageable. Composition algorithms must provide a balance
between automation and controllability which is directly affected by the nature of the
music specification. By focusing on a particular style of music, the number of musi-

CHAPTER 1. INTRODUCTION 6

	
ff

� �� �� �� �
�

�
�� � �� ��� � �� � �� � �� �� � �� �

fff

��
 � � � � �� Q� � � �� 	� � 86

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Figure 1.1: An example of common practice notation demonstrating basic musical entities: notes,
rests, dynamics, articulation, accidentals, key signature, time signature, barlines, etc.

cal transformations4 a method of music specification should accommodate is reduced.
Therefore, the study of music specification is made simpler by studying a small subset
of musical transformations.

1.4 Overview

The remainder of this thesis describes the individual components of a system that aims
to help composers compose music tracks. The system is designed with the composer in
mind and even makes it possible for musically knowledgeable users without knowledge
of the difficulties of movie music composition to create music tracks.

Chapter 2 introduces the basic concepts and relevant background information upon
which the following chapters build. A brief overview of the previous work in pertinent
areas of computer music provides context and motivation for my work.

Chapter 3 describes the music specification method that the composer uses to direct
the system for filling time with music. The specification method of timed regular ex-
pressions capitalizes on the nature of minimalist music to provide a balance between
automation and controllability as outlined above.

The music specification method from chapter 3 introduces a need for composers to
choose from a list of musical options that the computer calculates. Chapter 4 describes
the nature of the list (a high-dimensional lattice) and things to consider when the list
is presented to the composer. A concrete method for navigating the high-dimensional
lattice — one that facilitates ease of use for non-technical users by hiding the high-
dimensional navigation aspect — is also presented.

Chapter 5 describes the influence of tempo in the system by linking music time and

4The particular operations and traits that define a musical style.

CHAPTER 1. INTRODUCTION 7

clock time. The chapter describes how the system represents tempo as a piecewise linear
function. Using this definition of tempo, mathematical calculations are defined which
the computer can use to perform conversions between clock time and music time.

Synchronization issues are discussed in chapter 6. Traditional techniques are dis-
cussed first to provide background. Although the system is not concerned with the
synchronization of live performance with video, the computer’s performance must be
synchronized with the playback of digital video. An overview of how to accomplish this
type of synchronization is provided. Details specific to the implementation can be found
in appendix A.

With all major components of the system described individually in previous chap-
ters, chapter 7 explains how all components form a system. Details from the prototype
implementation of the system are used as examples in the explanation. Specific imple-
mentation details can be found in appendix B.

Chapter 8 contains an analysis of the presented system including the advantages it
provides and areas for future work. Two animations that have had a music track created
for them using an implementation of the system are also presented here.

Chapter 2

Background

Before continuing to a description of the major components of the music track com-
position system I am proposing, it is necessary to consider the context in which these
techniques are to be used. An overview of the process of music track composition is de-
scribed in §2.2. The MIDI (Musical Instrument Digital Interface) protocol, which is used
by the system’s prototype application for music playback, is described in §2.3. Commer-
cial software and previous work in computer music relating to composition are covered
in §2.4 and §2.5 respectively.

2.1 Musical Background

The rest of this thesis discusses a system for composing music. Therefore, some ba-
sic knowledge of music, particularly music theory, is required. The rest of this section
briefly explains a few musical concepts that will be referenced. Please note that basic
concepts such as the musical entities found in figure 1.1, notes, rests, bar lines, clef, time
signatures, and dynamics, should be familiar. Figure 1.1 is an example of music written
using common practice notation, a standard notation system for visually communicat-
ing instructions for performing music1. The terms common practice notation or common
music notation are often used in computer music literature [36, 48] to refer to the notation
system used in figure 1.1.

1In particular, Western music.

8

CHAPTER 2. BACKGROUND 9

� = 100

� � �
3

� � � � �
3

�
3

� � �
3

� � � �
3

� �
3

� � �
3

� � �
3

� � �
3

� � �
3

� � �
3

� � �
3

� � � �
3

� �� ���
4
3

Music engraving by LilyPond 2.6.3 — www.lilypond.org

(a)

� �
Allegro

�
3

� � � �
3

� �
3

� � �
3

� � �
3

�
rit

� �
3

� � �
3

� � � �
3

� �
3

� � �
3

� � � �
3

� �
3

� � �
3

� � �� ���
4
3

Music engraving by LilyPond 2.6.3 — www.lilypond.org

(b)

Figure 2.1: Examples of specifying tempo. Figure (a) shows an exact tempo being specified: 100
beats per minute. The tempo is specified using musical terms in figure (b). rit is an abbreviation
for ritardando which can be found in table 2.1.

Largo Slow and broad
Presto Fast
Allegro moderato Moderately fast
Stringendo Getting faster
Ritardando Gradually becoming slower

Table 2.1: A selection of common tempo-related musical terms and their meanings.

A feature of music that is important for the discussion is tempo. Some compositions
are given explicit tempi in beats per minute. The markings are placed above the staff as
in figure 2.1. Since exact tempi are rarely required in standalone music, a much more
common approach is to use musical terminology. A selection of musical terms relating
to tempo can be found in table 2.1. Musical terms provide general direction and give the
performer more artistic freedom.

Another key aspect of music is polyphony. Polyphony literally means “many voices”
and in music, refers to multiple musical ideas, phrases, or lines of harmony happening
simultaneously. By contrast, monophonic music is simple music exhibiting only one
“voice”. An orchestral performance is considered polyphonic whereas a single singer
without accompaniment is considered monophonic. The system I propose handles com-
position of monophonic music, which allows me to focus on more complex issues. Ex-
tensions for polyphonic music are left as future work.

Since the system I describe is for music composition, it must accept specifications

CHAPTER 2. BACKGROUND 10

of music. At the very least, the specification of notes must be possible. However, for
reasons of scope I ignore much basic music notation, for example, dynamics, the volume
of the music, and articulation, how the onset, delay, and connection of notes is treated.

A score is a document that combines the parts for all instruments of a complete piece
of music. When composers write music for an ensemble, they are writing scores. It
is the job of others to extract parts from the score to produce sheet music for individ-
ual instruments. For music tracks, the score is often heavily notated with timings for
synchronization during recording.

2.2 Soundtrack Composition

Karlin and Wright provide an excellent description of composition for film-format movies
both in the past and in modern times [28]. The following overview of soundtrack com-
position borrows from their explanation and from others [12].

During the production of a film-format movie, a great deal of work happens before
the composer is involved. It is a matter of taste for the composer and the director at
what point the composer becomes involved with the film making process. Some com-
posers prefer to be involved earlier in the process to help inspire musical ideas. Other
composers prefer seeing a nearly completed film before starting work.

In the past, a composer saw the film in the form of rough cuts and fine cuts. Rough
cuts are roughly edited pieces of film with a poor quality soundtrack and perhaps no
music at all. Rough cuts are works in progress and serve as a sketch for the final film.
These sketches cannot provide accurate timings as the film may change considerably
through the process of editing. Editing and other work result in progressively better
rough cuts, ending in a fine cut which is a nearly complete version of the film. At this
point, the film is not expected to change further. The composer and sound-effects people
use this version as its timings are accurate. In modern times, digital editing makes it
possible to modify the film more easily. Karlin mentions that by 2002, fine cuts were no
longer common and editing now happens continuously, possibly as late in the process
as dubbing.

At some point, the composer and director attend a spotting session. Spotting allows
the composer and director to determine where music is placed in the film. The places

CHAPTER 2. BACKGROUND 11

where music is placed become the cues. The locations where music is to go are noted
by the composer and turned into a list of exact timings called the cue sheet. The cue
sheet can be created either with the help of the music editor or by the composer noting
exact times from a digital version of the film. The composer is also likely to be shown
the temp track during the spotting session. The temp track is added to the film by the
music editor with the director’s guidance.

The temp track consists of pre-existing music used to indicate generally what the
director would like the final score to communicate. The temp track is considered tempo-
rary since it will be replaced with music recorded from a performance of the composer’s
music. The temp track helps the director to express musical ideas to the composer, es-
pecially when the director has no musical background. Although the temp track is a
general guide, it often ends up influencing the final score more than it should. A direc-
tor may be unwilling to accept a composer’s score if it is too different from the temp
track the director has grown used to hearing. Less talented composers may also find
themselves using temp tracks too much as a guide for their writing.

Once the composer has timings from the spotting session, their job is to compose
music for each cue. In addition to cue durations and endpoint timings, the composer
may add timings representing hit points. The type of movie and musical style the com-
poser has in mind dictate what sort of events to reflect and how, such as hard hits for
explosions and soft hits for scene changes. The composer uses timings from the spotting
session and timings of hit points as a framework for the music.

The composer produces a sketch or condensed score describing the music. The level
of this description depends on the composer. Some prefer writing every note for every
instrument. Others prefer a higher level description, in which case the orchestrator fills
out the sketch to produce a full score. The score is then separated into parts for musicians
to play.

Next in the sequence of events is recording. Musicians are hired to perform the music
written by the composer. The music is performed in close synchronization with the
video. Chapter 6 discusses synchronization in more detail. The performance is recorded
and dubbed into the soundtrack by the music editor.

The above process of creating a music track for a film-format movie is very similar
for other formats of movies. The people and roles involved may be slightly different but
the composer still faces the same task of writing music to fit with a visual component.

CHAPTER 2. BACKGROUND 12

Therefore, all the same basic difficulties remain.

2.3 MIDI

As mentioned previously, the prototype application which implements the system I de-
scribe in the following chapters uses MIDI for music playback. MIDI is a standard
protocol for communication between electronic devices. It is designed for connecting
electronic instruments, such as keyboards, so that they can play together. For example,
a musician playing at one keyboard can cause music to be played at other connected
keyboards.

MIDI data are sequences of musical events. Events include note on and note off mes-
sages that cause a musical device to play a given pitch at a given volume using the
currently selected instrument. There are many other types of messages that control how
a device reacts to data, such as events that change the currently selected instrument.
MIDI data can even be used to control devices that are not musical instruments, such as
lights, as long as the devices recognize the MIDI protocol.

MIDI events can be stored for later playback as well. Events can be recorded from
a performance or assembled using computer software. Each event is given a times-
tamp which indicates when the event should happen during playback. A specific MIDI-
capable device known as a sequencer is responsible for playback and recording of MIDI
data. When playing back MIDI data, the sequencer’s task is to send MIDI events to
sound-producing devices at times specified by the timestamps. When recording, the se-
quencer listens for incoming MIDI data and stores every event it receives with a times-
tamp.

A synthesizer is the MIDI-capable device responsible for producing sound. As the
name indicates, a synthesizer is responsible for synthesizing the sounds of musical instru-
ments. Synthesizers are usually capable of simulating the sound of many instruments.
For example, synthesizers that are compliant with the General MIDI 1 standard [42] are
capable of synthesizing a minimum of 128 standard instruments. Synthesizers receive
MIDI data from sequencers or musical instruments and synthesize sound based on the
data.

In MIDI terminology, an instrument is an example of a controller, a device that sim-

CHAPTER 2. BACKGROUND 13

Stored MIDI
Data Sequencer

Synthesizer
MIDI

Controller

Figure 2.2: Relationships between the various MIDI entities in the context of playback. A se-
quencer schedules MIDI events found in a pre-recorded list of MIDI events. The sequencer
causes events to be sent to a synthesizer at the correct times to reproduce the musical perfor-
mance. The synthesizer uses events to sonify the music. Alternatively, a controller can send live
events from a human performer directly to the synthesizer.

ply produces MIDI events. Although controllers, synthesizers, and sequencers can be
separate hardware devices, they are often packaged together into one device, a stan-
dard electric keyboard, for example. Computers are usually capable of sequencing and
synthesizing MIDI data as well. Microsoft Windows [41] and Apple Mac OS X [3] have
MIDI capabilities implemented in software. The relationships between the various MIDI
entities is illustrated in figure 2.2.

As mentioned above, MIDI data can be assembled by programs. The idea is very
similar to writing music. A composer uses a program to create music and the program
outputs this music in the form of stored MIDI events. MIDI events are usually stored in
standard MIDI files (SMF) which other sequencers can then use for play back. Most of
these programs can also play back music themselves simply by sequencing the stored
MIDI events. Working with MIDI data is very convenient as the composer can change
the music easily and the sequence of MIDI events changes accordingly. The composer
can also hear the computer’s performance of their music at any time. MIDI data can
be performed in real-time allowing the sound of the music to guide the composition
process.

MIDI is a widely supported format for synthesizing music. Many existing software
programs can create and use MIDI data, and there are many independently manufac-
tured devices that support MIDI. The event-based nature of MIDI data makes editing
musical data simpler than working with sampled audio. MIDI is a convenient format,
especially if typeset music is required, since common practice notation is also event
based. For example, commercial programs such as Sibelius [57], can read SMF files and
produce typeset music. Although the system I present does not perform music typeset-
ting, the use of MIDI keeps that option open.

CHAPTER 2. BACKGROUND 14

2.4 Commercial Software

Several commercial software programs exist that allow a composer to write music. Most
of the research in computer music for music track composition contributes to commercial
applications. We cannot know the nature of the research that goes into these commer-
cial products or how they work internally but they are worth examining for their user
interfaces.

Sibelius [57], is an example of a score writing program. Such programs have digi-
tized the music writing process. Instead of defining notes on paper, notes are defined
with a mouse and keyboard, or with a MIDI controller. The main task of score writers is
music typesetting for the purposes of digitally displaying music on a monitor for a user
to edit and for print. They allow the user to write music using most of common practice
notation2. Some of these programs additionally support MIDI playback to give the user
immediate feedback. More recent versions of Sibelius even offer a few capabilities for
composing music tracks.

Although score writers provide many tools for the composer, they help little with
the difficulties of music track composition. The Auricle [7] is a program written and
maintained by film composers and is very specialized as a tool for film or television
composition. It is in wide use throughout the motion picture industry. The user in-
terface is rather dated, using DOS-style graphics and communicating with the user via
the keyboard3. The user issues commands to the program in a “natural language” style
reminiscent of text-based adventure games. The Auricle is not a music writing tool nor
does it work with digital video. It allows a composer to compose using any method they
choose and provides supplementary help for making music fit video. Furthermore, the
help it provides is in the style of automating technical tasks composers used to perform
manually. The Auricle is also used in the recording phase to interface with special hard-
ware that aids in synchronizing musical performance to film. More details regarding the
functionality of The Auricle are found in chapters 5 and 6.

Between these two extremes are computer programs that allow a user to attach pre-
recorded music to a video track. These programs work with digital video and audio and

2Common practice notation grows to include new symbols over time to accommodate new styles of
music. Additionally, some of the newer notation does not mean the same thing to all people. Therefore it is
hard to completely support all notations that fall under common practice notation.

3The Auricle’s interface is the subject of the first human computer interface software patent in the USA.

CHAPTER 2. BACKGROUND 15

are not interested in live performance. Two examples of this kind of software are Apple’s
Logic [6] and Soundtrack [2]. Logic is a complex program focused on the composition
of standalone music. It is compatible with MIDI and even provides music typesetting
abilities for working with musical MIDI data. Logic provides a few tools for composing
music tracks including helping to choose tempi and digitally synchronizing synthesized
music to video. Soundtrack is for creating soundtracks. Particularly, it focuses on mix-
ing pre-recorded audio, speech, and sound effects, and synchronizing these with digital
video to produce a digital-format movie. It does not support synthesized music very
well, however.

2.5 Previous Work

Research in computer music has dealt with several aspects of composition. This in-
cludes music representation, music programming languages, and algorithmic compo-
sition. There has also been limited research into the unique problems of music track
composition. Computer-aided composition research focusing on the creative needs of
composers is also becoming more important. The remainder of this section provides an
overview of computer music literature as it relates to composition.

2.5.1 Composition of Standalone Music

Algorithmic composition focuses on algorithms for the computer to create music. Algo-
rithms may accept high-level information from a user but often the computer is almost
completely responsible for the music. Many different algorithms have been proposed
which generally fall into one of the following categories:

1. Rule-based. An algorithm is provided a database of rules that the music should
satisfy. The algorithm attempts to derive new music by following the rules of the
database. A clear application of rule-based music generation is the composition
of counterpoint [52], a form of music governed by sets of rules that even human
composers follow.

2. Stochastic. These algorithms center on using randomness, chaos, and probabilistic
distributions to produce music. Many types of music have aspects that can be well

CHAPTER 2. BACKGROUND 16

simulated by mathematical models and stochastic algorithms have been used with
good results [18].

3. Grammar-based. Grammars in this context arise from the study of formal lan-
guages. Grammars describe how pieces of music can be assembled, as the gram-
mar in a spoken language dictates how words fit together. Grammars are made
up of rules called productions making grammar-based algorithms similar to rule-
based ones. However, the rules of grammar-based algorithms are more formal in
structure and tend to describe music over time. Rule-based algorithms are often
inspired by musical rules: two musical lines an octave apart should not move in
parallel motion. McCormack, for example, uses a type of grammar known as an
L-system to produce music [39].

4. Genetic. Genetic algorithms treat music as an entity to be evolved. Music is gen-
erated from chromosomes and is evaluated against a fitness function. The most fit
music is chosen as a parent for the next generation which is created by combining
the chromosomes of parents with possible added mutation. Jacob applied genetic
algorithms to components of a music generating system as well as to the music
itself [24] using human judgement as the fitness function.

In their comprehensive survey, Loy and Abbot [36] discuss how music programming
languages have most commonly been used for sound synthesis, e.g. cSound [11] and
musical performance, e.g. GROOVE [38]. A few compositional languages do exist. A
compositional language differs from a sound synthesis one in the level at which they op-
erate. A sound synthesis language allows a programmer-composer to construct sound
from a very low level: in terms of waveforms. A composer can create musical composi-
tions this way but the method is quite alien to most music composers who write music
at a much higher level, notes and collections of notes instead of waveforms. A composer
working at the level of sound synthesis is equivalent to a painter creating a piece of art
by arranging colour molecules on the canvas one at a time.

A compositional language attempts to model the structures and operations that a
composer might use to compose. Structures can include notes, dynamics, and other
musical entities. A compositional language such as Pla [51] attempts to allow for the
many different ways in which composers write music. For instance, Pla supports com-
mon practice notation as well as more abstract music representations. Pla allows the

CHAPTER 2. BACKGROUND 17

programmer-composer to operate at a level convenient for music composition; an im-
provement on other computer music user interfaces.

Music programming languages are a specific kind of notation or method of music
specification. The converse, however, is not true: common practice notation is a type of
notation that is not a programming language [35]. Music programming languages are
formal languages to be interpreted by the computer to produce music. Standard music
notation is an informal system to direct a human performer who uses many learned
rules to turn notation into a musical performance. For example, the music specification
I propose in chapter 3 is a simple formal language. The operations it provides support
a single musical style with other musical styles requiring extension of the language.
Chapter 3 describes the method of music specification in detail.

2.5.2 Soundtrack Composition

More recently, with the increased prevalence of multimedia applications of computers,
there has been research into composition of music where the music is tied to other time-
based media (video for instance). Mishra introduced the mkmusic system [43] which is
an animator’s tool for creating a music track for animations. The tool uses rule-based
algorithmic composition with high-level input from the animator to produce music that
is appropriate for the animation. The goal is to allow the animator to control both video
and audio, taking into account the average animator’s lack of musical knowledge.

Jewell introduced another algorithmic music track composition system based on ge-
netic and stochastic algorithms [27]. The Concept Based Sequencer a “concept” layer,
which is the glue between the music and video media. A composer edits the concept
layer to describe the video. The stochastic and genetic algorithms then use the concept
layer to produce music.

2.5.3 Computer Music and User Interfaces

Research focusing on users can be found in many areas of computer music. Music input
devices such as electronic keyboards and electric conductor’s batons [29] allow musi-
cians to provide musical information in an electronic format. Accompaniment systems
attempt to follow a human performer while playing a programmed accompaniment [14].
Computer-aided composition techniques tend to ignore the practical creative needs of

CHAPTER 2. BACKGROUND 18

composers focusing instead on other aspects such as:

• Investigating the human creative process,

• Providing the possibility to make music that isn’t physically possible, or

• Empowering those without musical training to create music.

However, research that focus on composers’ practical needs exists [46] and is becom-
ing more important as user interfaces research focuses on how computers can aide in
creative endeavours. More recently, Abrams et al. [1] introduced QSketcher, a system
for soundtrack composition. QSketcher focuses on helping composers capture, arrange,
and edit ideas. The authors express concern that switching between these three tasks
poses a disruption to creativity and so QSketcher tries to make each of these three tasks
as easy as possible and provides state-saving context switching to help composers when
switching between tasks. QSketcher is designed with trained soundtrack composers in
mind and focuses less on solving the unique problems of soundtrack composition and
more on supporting general creative processes.

2.5.4 Critique

Unfortunately, while much computer music research has academic value, the benefits
are limited in practice. Some reasons include:

• Loss of creative control,

• Poor user interfaces, and

• The tendency for computer-aided composition systems to be paired with a steep
learning curve.

Some uses of computers are now widespread in music: digital editing, electronic
synthesis, MIDI, and so on. However, aspects such as algorithmic composition have yet
to gain a foothold in the everyday music world. The problem is likely that algorithmic
composition is a field only computer scientists understand. To most composers, algo-
rithmic composition is unapproachable because of the loss in creative control. Thus, the
amount of algorithmically generated music remains small.

CHAPTER 2. BACKGROUND 19

With respect to music programming languages, Schottstaedt asks: ”Why are we so
often told that it is necessary to protect composers from the terrifying arcana of com-
puter languages? Why do composers assume that computer languages are beyond their
grasp?” [53]. Since this statement in 1989, composers have been no more willing to
embrace music programming languages, as can be seen from the progressive disappear-
ance of music programming languages that appear over time [35]. Computer languages
may not be beyond the grasp of composers but they still present an unnecessary and
unacceptable cognitive load. It is the goal of the system I describe in this thesis to be a
computer-aided music composition system with careful consideration given to usability.

The increasing focus of research supporting the practical creative needs of composers
is beneficial. QSketcher outlines general principals for supporting artists in creative sit-
uations similar to those of soundtrack composition. By addressing the hurdles of cre-
ativity, computers can succeed in making an artist’s work easier. My system helps with
the particular creative hurdles posed by soundtrack composition so that users capable
of writing standalone music can more easily compose music tracks.

Chapter 3

Music Specification

The most important part of the interface for a system involved with composing mu-
sic is one that provides the user some mechanism for specifying music. Computer-aided
composition systems such as Logic [6] or Sibelius [57] allow the user to enter notes using
various input devices: MIDI instruments, a computer keyboard, or a mouse. Some pro-
grams also provide a slightly higher-level interaction where the user can specify loops
of event-based or recorded music to be repeated for a period of time, e.g. ACID [56] or
programs that support Apple Loops.

As first mentioned in §2.2, movie composers, as a matter of style or working habit,
often compose music in the form of sketches [12]. There are two important points re-
garding the nature of sketches as a form of music specification. First, the level at which
the sketch describes music depends on the composer. Second, higher-level sketches,
such as the simple one shown in figure 3.1, must be interpreted by an orchestrator to fill
in enough details to produce a score.

Specifying music to the system in the form of sketches appears to be beneficial for
allowing the system to adjust music as discussed in §1.2. If sketches can be provided to

� ��
Figure 3.1: A possible sketch for a musical scale.

20

CHAPTER 3. MUSIC SPECIFICATION 21

the system in a way that computers understand, the sketches could provide the required
guidance the system requires to fill arbitrary durations of time with music. This ability
allows the system to adjust music to account for timing changes. However, as Burt
points out, converting sketches into scores is often a creative process itself. Therefore
the computer cannot simply fill the role of an orchestrator.

If one places some restrictions on the nature of sketches, then computers can be al-
lowed to play the role of orchestrator while still leaving full creative control with the
user. The first restriction is one of musical style. The style known as minimalism is
an attractive option. Minimal music is often described as repetitive: something com-
puters excel at. A second restriction is on user expectations. Composers working with
human orchestrators may expect a great deal from the work of an orchestrator. These
expectations are valid because orchestrators rely on experience, creativity, and musical
knowledge to interpret sketches. By contrast, a computer has none of these things1 and,
in the spirit of leaving full creative control with the user, the user should not have as
high expectations. Even if computers can be creative, the goal is to amplify the user’s
creativity, not replace it with a computer’s.

With these restrictions in place, it is possible to specify music to a computer so that it
can help the user with filling clock time with music. The way in which music is specified
to the computer is by using timed regular expressions.

3.1 Minimalism

Minimal music is a style of music using either a small amount of musical material or a
restricted set of musical transformations to create the score [40]. For example, the mu-
sical material for a minimalist piece might consist only of a handful of different pitches
or motifs. They are transformed and combined to create the score. Owing to the lim-
ited amount of material, repetition tends to be very important. This broad definition has
minor exceptions but suffices for this argument.

Minimalism generally lacks large-scale structure (as a symphony might exhibit) and
can be considered music of the moment as the listener is not required to remember what
has come before [40]. This trait fits well with the requirement that movie music should
not have large-scale structure as discussed in §1.1.

1Although the application of artificial intelligence research may make this possible eventually.

CHAPTER 3. MUSIC SPECIFICATION 22

As previously mentioned, the focus on repetition in minimalism makes it possible for
a computer to better handle minimalist-style sketches. Additionally, the use of minimal
music reduces the number of musical transformations that a sketch must represent and
that a computer must understand. By simplifying the sketches, the restriction on user
expectations is accommodated. A simple, restricted set of musical transformations also
facilitates the study of how a movie composer’s task can be made easier.

The use of minimalism by human composers for music tracks is not new. The Qatsi
trilogy [47] is an excellent example of minimal music used for a music track. The music
tracks for the Qatsi trilogy were composed by minimalist composer Philip Glass. Philip
Glass also provided a minimalist music track for the film The Hours [13].

3.2 Regular Expressions

Small-scale repetition is important to minimalism, yet tedious for users to specify. This
makes minimalism a good candidate for modelling sketches that can be interpreted by
the system to create music. A formal shorthand that is easy to specify and that allows
users to communicate repetition is required. Fortunately, an intuitive option exists. Mo-
tifs, sequences of one or more notes and rests, can be characters in an alphabet. Then
regular expressions provide a way to specify repetition in an easily understood way.

3.2.1 Definition and Interpretation

Regular expressions are an example of a formal language. Regular expressions describe
sets of strings, where each set is a regular language. A standard textbook defines a
regular expression and the corresponding regular language R as follows.

• Constants:

1. R = ∅ is the empty language and the corresponding regular expression is ∅.

2. R = {ε} is the language consisting of the empty string. The corresponding
regular expression is ε.

3. For each a ∈ Σ (where Σ is a finite alphabet), R = {a} is a language consisting
of one string of one letter. The corresponding regular expression is a.

CHAPTER 3. MUSIC SPECIFICATION 23

• Operations: If R1 and R2 are regular languages and r1 and r2 are their respective
regular expressions then the following operations are defined.

1. R1 ∪R2 is a regular language represented by the expression r1|r2. Intuitively,
R1 ∪ R2 is the set of strings that come from R1 or R2 and is known as the
alternation operator.

2. R1R2 = {αβ |α ∈ R1 and β ∈ R2} is a regular language represented by the
expression r1r2. This operator is known as the concatenation operator.

3. R∗1 is a regular language represented by the expression r∗1. Mathematically,
R∗1 =

⋃∞
i=0 Ri

1 where Ri
1 = R1R1R1 . . . R1: strings consisting of R1 concate-

nated i times. Intuitively, the set R∗1 contains strings from R1 concatenated 0
or more times. This operator is known as the closure operator.

Regular expressions have properties which make them attractive for describing rep-
etition in music.

1. Regular expressions are hierarchical because they are constructed by combining
smaller regular expressions.

2. If R contains a single string s, then R∗ contains all strings consisting of zero or
more copies of s concatenated together. Therefore, R∗ describes an infinite number
of strings.

If musical motifs are elements in the finite alphabet Σ which is defined when the user
creates motifs, then the following two examples of regular expressions have musical
meaning:

1. aba yields music where motifs are played in the order a-b-a and

2. a(ba)∗ represents motif a followed by the pair b then a repeated together an un-
known number of times.

Note that a and b are names of motifs, each of which has one or more notes or rests.
Figure 3.2 provides a concrete example of a regular expression and the music that the
expression represents.

Since regular expressions are hierarchical, they can describe the repetition of motifs
at several levels. This feature can be useful to represent the small-scale repetition of
notes or larger-scale repetition of sections of music.

CHAPTER 3. MUSIC SPECIFICATION 24

Expression: (ab)*c
Music:

! ! ! ! !" ! !! ! ! !" ! ! ! ! ! !" ! ! ! ! ! !" ! #! #$% " 86

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Figure 3.2: An example of a regular expression and the music that the expression could represent.
The colours of notes and rests match the colour of the motif name in the regular expression.

3.2.2 Adjustments for Music

A few problems must be addressed when using regular expressions as musical sketches.
When a regular expression containing the alternation operator, e.g. a|b, is provided to
the system, it must choose whether to play a or b. Users who desire full artistic con-
trol should choose exactly which option they want instead of letting the system decide.
Therefore, the alternation operator is excluded from musical sketches.

Second, the closure operator describes an unlimited number of musical passages, a
term I will take to mean an amount of music of undetermined length. As with the al-
ternation operator, the computer decides which of these unlimited number of passages
to play, limiting the user’s control. If the user supplies supplementary information, the
system can choose a passage without a reduction in the user’s control. In particular, the
system can generate a collection of musical passages from which the user chooses. How-
ever, having the user choose a passage from a set of infinite size is a problem. Fortunately
most of the passages in this set will be too short or too long to be worth considering since
the passage needs to occupy some specific duration of time. Therefore, the set should be
limited to passages that last a user-defined duration of time.

While evaluating a now limited set of passages, the user may choose a passage they
think is best or decide to change the underlying expression first. This process is pre-
sented in much more detail in §4.4. The simple nature of choosing an exact musical
passage from a calculated shortlist completes a very flexible interface for specifying rep-
etition.

Last, although the inclusion of ∅ in regular expressions is important for mathematical
reasons, I will assume that a sketch is non-empty and preclude ∅ as an expression.

CHAPTER 3. MUSIC SPECIFICATION 25

3.2.3 Regular Expressions and Soundtracks

Composing music for soundtracks is complicated for the composer who must work in
two time frames: music time and clock time. To lessen the difficulty, the sketch should
provide notation that specifies the clock-time duration of a cue and how music synchro-
nizes to clock time. This extra information enables the system to perform the necessary
calculations to guide the expansion of sketches2, thus freeing the user from having to
compose music in clock time.

“Anchoring” a regular expression to occur at a particular clock time provides part of
the information. Providing a target duration for the expression to fill provides the rest of
the information. The system uses this information to produce a shortlist of musical pas-
sages to the user. Since regular expressions describe entities with durations expressed in
music time, the resulting clock-time durations will lie at discrete points. Chapter 5 dis-
cusses how tempo is used to finely adjust the clock-time duration of music thus making
discrete durations exactly match target durations. The remainder of this chapter ex-
plains how regular expressions offer the user flexibility in controlling the coarser detail
and musical makeup of passages.

There is one problem to address first; regular expressions do not permit auxiliary
properties, like time: characters in Σ and regular expressions themselves are duration-
less by definition. Therefore, a duration attribute must be added to them. The result is
the timed regular expression.

3.3 Timed Regular Expressions

Each motif in the finite alphabet Σ is a sequence of one or more notes or rests. Notes and
rests have clock-time durations that are a function of:

1. their musical duration, e.g. quarter note, half note, eighth rest,

2. the denominator of the time signature, e.g. a four indicates quarter notes are as-
signed one beat and an eight indicates eighth notes are assigned one beat, and

3. the tempo, measured in beats per minute.

2For example, determining how many times a passage may be repeated in a given clock-time duration.

CHAPTER 3. MUSIC SPECIFICATION 26

The duration of a monophonic motif is the sum of the durations of the notes and re-
sets in the motif. The duration of a polyphonic motif is determined by note and rest
durations and by their relative onset times. The duration of ε, the empty motif is 0. A
regular expression representing a single motif describes a set of one string having a du-
ration attribute that is the duration of the motif. A regular expression representing the
concatenation of motifs describes a set of strings with durations that are the sum of the
durations of the concatenated sub-strings. A regular expression representing the closure
of motifs describes a set of strings with durations that are non-negative integer multi-
ples of the duration of the motifs to which the closure is applied. Thus, duration is an
attribute of any string described by a regular expression.

The formal definition of regular expressions allows the nesting of closure operators:
(a∗b)∗ for example. While repetition of music at multiple levels is a strength of regu-
lar expressions it is unclear if the indeterminate amount of repetition at higher levels
to fill clock time would be useful. High repetition of large sections of music is prone
to introducing enough structure to start competing with the visual component for the
observer’s attention. Additionally, an interface to visualize the possible passages would
need to be more complex than the one presented in chapter 4. To simplify music speci-
fication and choosing musical passages, timed regular expressions do not allow nesting
of closure operators.

3.3.1 Definition

A timed regular expression is a pair (e, te) where e is a regular expression and te is the
duration of the music represented by e. The constants and operations of timed regular
expressions and the sets of strings T they represent are the following.

• Constants

1. T = {ε} is the set consisting of the empty string. The corresponding timed
regular expression is (ε, 0).

2. For each a ∈ Σ, where Σ is a finite alphabet of motifs, T = {a}. The corre-
sponding timed regular expression for each language T is (a, ta) where ta is
the duration of motif a.

• Operations: Given two timed regular expressions, t1 = (e1, te1) and t2 = (e2, te2),

CHAPTER 3. MUSIC SPECIFICATION 27

and the sets of strings they describe, T1 and T2 respectively, then:

1. T1T2 = {αβ |α ∈ T1 and β ∈ T2} is a set of strings represented by the timed
regular expression (e1e2, te1 + te2).

2. T ∗1 is a set of strings represented by the timed regular expression (e∗1, nte1)
where n ∈ Z+.

This definition is similar to the definition of regular expressions. Notice that the
timed equivalent of the alternation operator and the constant ∅ do not appear in timed
regular expressions. Also remember that timed regular expressions do not allow nested
closure operators which simplifies the duration expression resulting from the applica-
tion of that operator. These differences imply that although timed regular expressions
are valid regular expressions, the class of timed regular expressions as defined above is
a subclass of regular expressions.

To facilitate the following discussion, consider the following terminology. The regu-
lar expression component of a timed regular expression is called a repetition expression.
For brevity, repetition expressions will be used on their own to represent timed regular
expressions with the duration being implicit. The non-negative integer variable associ-
ated with each closure operator is called a repetition unknown. The name is inspired by
the fact that the variable’s value is not fixed unless a specific string in the set described
by the timed regular expression is considered. A closure expression is a timed regular
expression to which the closure operator has been applied. For example, given the rep-
etition expression a(bc)∗d, (bc) is a closure expression. Finally, the duration component
of a timed regular expression, the duration expression, describes the duration of strings
in the set described by the timed regular expression. A duration expression may include
repetition unknowns if the repetition expression contains the closure operator.

3.3.2 The Closure Operator

Timed regular expressions allow the system to fill clock-time with music under the di-
rection of the user. The closure operator for timed regular expressions is the key. Given a
timed regular expression (e∗, nte) and a clock-time duration d into which the expression
should expand, the computer can calculate the repetition unknown n using n = b d

te
c,

assuming te is expressed in clock time. At best, d = nte exactly, but the most common
case is d > nte since n is an integer: playing fractions of a motif is not allowed.

CHAPTER 3. MUSIC SPECIFICATION 28

A more attractive alternative allows the user to request a range of possible values for
the repetition unknown with a query like: “Find values of n that satisfy t0 ≤ nte ≤ t1”.
Here, t0 and t1 represent an error tolerance the user can specify. The solutions for n fall in
the range,

⌈
d

t0

⌉
. . .

⌊
d

t1

⌋
The calculated possible values for the repetition unknown, or simply repetition counts,

are used to create the shortlist of musical passages from which the user chooses one that
is artistically appropriate. Possibly, no solution for n exactly satisfies d = ntA. If so, the
user can adjust the tempo to satisfy d = nte for any n since tempo affects the value of te.

3.3.3 Analysis

The duration component of timed regular expressions allows the system to calculate a
shortlist of musical passages that fill a clock-time duration with music. The calculation
of the shortlist is automatic since the system takes care of conversions from music time
to clock time. By choosing a passage from the shortlist, a user effectively chooses a par-
ticular string from the set described by the timed regular expression. A string in the
set, called a timed regular expression instance or simply instance, has fixed repetition
counts for each repetition unknown in the timed regular expression’s duration expres-
sion. Being a string in a set described by a timed regular expression, an instance has a
fixed music-time duration attribute. Therefore each instance represents a passage.

When a chosen passage does not exactly fit a target clock-time duration, the com-
puter can help. The system can calculate a tempo that makes a given music-time dura-
tion, associated with the chosen passage, fit a specific clock-time duration as discussed
in §5.4.3. In this way, the user can specify music to synchronize with a clock-time frame
while not being exposed to any mathematics.

The times of events in clock time form a framework for a user to write music so that
it synchronizes with the video. These event points may represent cue start points, cue
end points, or hit points. Working without computers, when an event point moves in
time, e.g. due to last-minute decisions on the part of the director or editor, the composer
has to readjust the music to fit the new event times. Timed regular expressions handle

CHAPTER 3. MUSIC SPECIFICATION 29

moved event points easily. New repetition counts are calculated automatically for all
affected expressions. The user can then choose a new passage and then readjust the
tempo if necessary. This simple sequence for adjusting music to fill a new duration is
much easier than manually rewriting music.

Users may wish more drastic rearrangements than choosing a new passage. For ex-
ample, consider a situation where a timed regular expression is originally used to fill ten
seconds of clock time with three repetitions. Then, the duration expands to five min-
utes. Ninety repetitions will now fill the space if the same timed regular expression is
used. The user decides that the timed regular expression is no longer appropriate and
changes the timed regular expression instead of simply choosing another passage. The
automation for choosing passages does not prevent the user from changing the under-
lying timed regular expression manually if they wish to do so.

Timed regular expressions can accommodate varying levels of control. For example,
users can specify an exact number of repetitions instead of using the closure operator:
aaa instead of a∗. Although they forego the benefits of the closure operator, they acquire
fine control over their music while retaining the benefits of working with motifs and
regular expressions and the benefits of automatic time frame conversions. This option
accommodates differing tastes among composers with respect to the amount of infor-
mation in a sketch.

3.4 Calculating Repetition Solutions

To present the user with a shortlist of musical passages, the system must calculate a set
of possible repetition counts fulfilling a user’s request. The method by which the system
calculates repetition counts is the focus of this section.

Consider a more complex repetition expression example than the one presented in
§3.3.2: a∗bc∗. The expanded duration expression is t = nta + tb + mtc. The repetition
unknowns are n and m. The user may ask: “Find all solutions for integers n ≥ 0 and
m ≥ 0 that satisfy:

d−∆0 ≤ nta + tb + mtc ≤ d + ∆1 .” (3.1)

∆0 and ∆1, chosen by the user, define the error tolerance of the target clock-time

CHAPTER 3. MUSIC SPECIFICATION 30

duration d. Equation 3.1 is a system of linear Diophantine equations with one equation
and two unknowns. The system is underdetermined which implies there will be more than
one possible solution. One solution is called a repetition solution, a tuple of repetition
counts, and has a one-to-one relationship with instances and therefore passages. Because
n and m are integers, there is a finite-sized set of repetition solutions. By choosing a
repetition solution from this set of solutions, the user effectively chooses a passage.

The example above requires solving a linear diophantine equation with two un-
knowns. In general, solving such a system for n unknowns is NP-complete. Solving
a linear diophantine equation with n unknowns where coefficients are positive and the
unknowns are non-negative is a form of the integer knapsack problem [19], a known
NP-complete problem.

As the number of repetition unknowns increases, the number of possible solutions
will increase dramatically. The task of providing the user an interface for choosing a
repetition solution from a large list is the topic of chapter 4.

3.4.1 Time Frame to use for Timed Regular Expressions

The duration expression of timed regular expressions has heretofore been assumed to
be measured in clock time, which makes equation 3.1 soluble: d and all t values are
expressed in the same frame. Using clock time for the durations of motifs is, however,
problematic.

The clock-time duration of a motif depends on music-time duration, time signature,
and tempo (§3.3). However, tempo varies with respect to clock time. Thus the same mo-
tif may have different clock-time durations at different points in clock time as illustrated
in figure 3.3. In the figure, the area under the tempo curve is musical duration. The area
is divided into segments where each segment has an area equal to dm. Each segment is a
repetition of the same motif and yet notice that each repetition has a different clock-time
duration3.

The serious side-effect is that the t values from equation 3.1 are not constant. The t

values become functions of tempo and the point in clock time at which the motif will
be placed which, in turn, requires knowing the clock-time duration of previous motifs.
This problem greatly complicates the calculation of solutions for repetition unknowns.

3Illustrated by differing distances along the clock-time axis between motif endpoints.

CHAPTER 3. MUSIC SPECIFICATION 31

dm
dm

dm
dm

dm dm

Clock Time
Te

m
po

c0 c2c1 c3 c4 c5

Figure 3.3: An example of a changing tempo, the curve in the image, affecting the clock time
duration of several repetitions of the same motif. The music-time durations dm are all the same
but the clock-time durations ci are not. The thin black lines are evenly spaced for reference.

The simple solution is for duration expressions to be relative to music time. The mu-
sic duration of a motif is constant regardless of tempo. None of the discussion of timed
regular expressions will be affected by this change. However, in order to find solutions
to equation 3.1, d must be expressed in music time instead of clock time. This involves
a conversion that the system can hide from the user as it knows all the parameters nec-
essary for performing the conversion: the clock-time starting point of the timed regular
expression (mentioned previously as the “anchoring” point), d, and the tempo function.
The conversion is discussed in more detail in §5.4.1.

It is worth noting that the ability to express quantities in duration expressions in
the music-time frame is based on a more fundamental concept. Working in music time
only makes sense if equation 3.1 still holds. That is, the inequalities must still hold after
d−∆0, d + ∆1, and each t value are converted to music time. As intuition suggests, the
inequalities are, in fact, still valid due to the monotonicity of the mapping between clock
time and music time. The key to the monotonic mapping between clock time and music
time is that tempo is always greater than zero.

3.5 Future Work

Equation 3.1 is a linear equation with n unknowns where n is the number of closure
expressions in the repetition expression. Adding equations to the system reduces the
number of possible solutions. The extra equations might, for example, be further con-
straints on the repetition unknowns. For example, a user may want one closure ex-
pression repeated twice as often as another. The extra constraints are also useful for

CHAPTER 3. MUSIC SPECIFICATION 32

situations where the user wishes to remove unwanted repetition solutions. The problem
that needs to be solved is to find an interface for specifying the constraints.

Nested closure expressions were removed from use in timed regular expressions for
reasons of simplicity. However, it is worthwhile discovering if nested closure expres-
sions really are useful for users in practical situations. If so, the interface for choosing
repetition solutions, described in chapter 4, needs to be modified.

It is possible for timed regular expressions to provide even more flexibility to the
user. Instead of using closure operators to define unnamed repetition unknowns, the
user can be provided a set of named variables to use instead of closure operators. The
variables could then be potentially re-used in the same expression allowing expressions
like akbmck where k and m are repetition unknowns. The formal definition of regular
languages disallows this type of expression although they appear to be just as easy to
understand due to their simplicity. Note that the current definition of timed regular
expressions can be used to achieve the same effect as this example. However it is left to
the user to make the repetition counts for a and c the same in that case. A new interface
for letting users create and use named variables would be necessary to support these
more general expressions.

Chapter 4

Choosing a Repetition Solution

Finding all possible repetition solutions for a particular timed regular expression amounts
to solving a special case of the following equation:

d−∆0 ≤ k +
n∑
i

miti ≤ d + ∆1 (4.1)

This equation is the general form of equation 3.1. mi ∈ Z≥0 are the repetition unknowns,
ti represent the durations of closure expressions, and k represents the music-time dura-
tion exterior to closure expressions. Remember that d is the target music-time duration
for a timed regular expression to fill and ∆0 and ∆1 represent a user-defined error toler-
ance (also defined in music time).

Formally, a repetition solution is an ordered n-tuple of integers satisfying equation
4.1. The ith element of the repetition solution is the value of mi from equation 4.1. Rep-
etition solutions lie in an {n}-dimensional space where a standard basis vector of the
form (00, 01, . . . , 1i, . . . , 0n) is used in linear combinations to represent repetition solu-
tions with mi 6= 0. Intuitively, each repetition unknown is represented by a unique
standard basis vector. This standard basis is a natural one to choose for the solution
space since it is a subset of an infinite integer lattice Zn.

The case when n = 0 is special and signifies that there are no closure expressions in
the timed regular expression. The implication is that there are no repetition unknowns
to solve for and no repetition solutions to choose from. For the rest of this discussion let
us assume that n ≥ 1.

33

CHAPTER 4. CHOOSING A REPETITION SOLUTION 34

m1

m2

m1t1+m2t2 = d+Δ1

m1t1+m2t2 = d−Δ0

Figure 4.1: Example of 1D hyperplanes (i.e. lines) in a 2D space. The bounding hyperplanes
due to the inequalities in equation 4.1 are shown. Repetition solutions are found within the gray
region and on the bounding hyperplanes. Integer solutions are marked by circles.

For n ≥ 1, there may1 be more than one possible repetition solution from which a
user must choose. Therefore, the user requires a presentation of the possible repetition
solutions from which one can be chosen. A naı̈ve solution simply presents a linear list
of all solutions. A user then scans every item in the list until an appropriate solution
is found. This option produces a poor user interface. Within the solution set, there are
patterns and structure that a linear list obscures. If the number of solutions is large, then
structure is necessary if the user is to find a solution efficiently.

4.1 Repetition Solution Space Structure

Equation 4.1 is an {n}-dimensional linear equation. If mi are real valued and positive
then this equation represents an {n− 1}-dimensional hyperplane. The inequalities in
the equation give the hyperplane a “thickness”. That is, equation 4.1 defines a solu-
tion set consisting of two hyperplanes and the entire region between them. Figure 4.1
illustrates the solution space for real-valued mi in the two-dimensional (2D) case.

1It is still possible for equation 4.1 to have no solutions even when n ≥ 1. For example the error tolerance
|∆1 −∆0| may be too small or one of ti may be too large to accommodate any repetition solutions.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 35

m1

m2

Figure 4.2: Another example of integer-valued repetition solutions. The difference between this
figure and figure 4.1 is that t2 has increased, reducing the possible values of m2 displayed on the
y axis.

Notice that although figure 4.1 demonstrates a solution space with regular structure,
this is not always the case. Consider figure 4.2 where the “slope” of the hyperplane has
changed as a result of an increase in the value of t2

2. The changing nature of the structure
of the solution space complicates navigation.

4.2 {n}-Dimensional Space Visualization

Armed with the knowledge of the structure of the repetition solution space, let us con-
sider methods for navigating the space. Figures 4.1 and 4.2 are visualizations of a 2D
solution space. 3D computer graphics can provide a visualization of a 3D solution space
so that the space can be navigated and solutions can be selected. For higher dimensions,
the limitations of visualizing high dimensional solution spaces on 2D graphical display
surfaces become apparent. Because it is very difficult to portray high dimensional data
in a useful way using only two dimensions, the user will find it very difficult to form a
mental model of high dimensional spaces.

The goal is therefore to find a navigation or visualization method that is flexible
enough to handle dimensionality n ≥ 1, takes advantage of the patterns in the solution
space and, most importantly, is easy enough for the user to understand and use.

2Assuming values of m2 are represented by the y axis.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 36

4.2.1 Background

There are two important themes that apply to the {n}-dimensional techniques that are
presented in this section. The first is the differences in capabilities between human vi-
sion and audition. The human visual system is similar to a random-access device in that
it can instantly extract data from anywhere within our field of vision. This ability al-
lows humans to visually evaluate many things simultaneously. By contrast, the human
auditory system is similar to a sequential-access device. It cannot clearly separate mul-
tiple sounds happening simultaneously and must process sound as it arrives in time. To
clearly process two passages of music, the passages must be played sequentially.

The algorithms below visually present data items from an {n}-dimensional data set.
To be useful for repetition choosing, the algorithms must either visually display repeti-
tion solutions or present them aurally. In the former case, a repetition solution’s visual
representation should be chosen so a user can evaluate the solution as if listening to it.
In the latter case, a user is forced to evaluate repetition solutions sequentially.

The second theme relates to the way in which a user finds a goal data item in a set.
If a user is expected to have a well-formed idea of the goal data item before searching
for it, then the user is searching by relying on recall. On the other hand, if users do not
know the goal data item they are looking for, but can recognize a data item as a goal
upon finding it, users are searching by relying on recognition.

Searching by recognition is desirable: it is very common that users are unaware of
the contents of a data set until they explore it. Algorithms rely on the ability of the
human visual system to evaluate many things at once to allow users to efficiently search
by recognition. Algorithms take advantage of this ability by providing overviews of the
data. An overview may take the form of a summary of the range of values in the data
set, a visualization of every data point in the set, or a visualization of data points in the
“neighbourhood” of a particular data point, for some definition of neighbourhood.

Searching with Overviews

Design Galleries [37] are well suited for situations where there are many input parame-
ters that determine to an output. Design galleries are effective in helping a user find an
“optimal” output even when optimality is not quantifiable. For repetition solutions, the
qualities on the basis of which a user evaluates an instance are neither enumerable nor

CHAPTER 4. CHOOSING A REPETITION SOLUTION 37

measurable.

Design galleries visually present a collection of output samples that summarize the
range of possibilities afforded by the input parameters. The output samples are arranged
however best communicates structure in the output sample differences. If the number
of output samples is large, the gallery may be arranged hierarchically. The first level of
the hierarchy contains a small set of samples that differ greatly from each other. A user
selects a sample from this first level and is then presented with samples from the second
level that are similar to the chosen sample and are more similar to one another. Thus, a
user iteratively narrows the scope of the gallery toward a goal.

The authors use multidimensional scaling [58] as a method for arranging output
samples in two dimensions. Multidimensional scaling is a method of projecting high
dimensional data into lower dimensions, two or three for visualization, using a distance
metric to measure similarity between data points.

Design galleries afford searching by recognition. The gallery itself is an overview
that users can use to guide their search. Hierarchically-arranged design galleries also
provide an overview that increases in resolution and decreases in scope as the user nav-
igates down the hierarchy.

For the application of choosing repetition solutions, design galleries suffer a few
faults. First, a design gallery displays only a subset of all possible instances, preventing
some from being selectable. Users will have a good understanding of the nature of the
missing repetition solutions based on neighbours. However, exact missing repetition
solutions are not selectable. Second, a method for projecting high dimensional data into
two dimensions is still required. If multidimensional scaling is used, a distance metric
is needed. However, the measure of musical difference between two instances is highly
subjective. Where one measure of distance between instances is useful for one user, the
same measure may make navigating the design gallery more difficult for another user.

Interactive evolution [54] is a closely related alternative. This algorithm, which mod-
els the concept of evolution, focuses on searching a space of input parameters to find a
set of parameters that produce an output whose optimality cannot be quantified. Each
generation in the evolutionary process is made up of a collection of output samples. The
user acts as the fitness function, determining which members of the current generation
are best. The computer produces the next generation by “breeding” the best samples.

In comparison to design galleries, the overview provided by interactive evolution is

CHAPTER 4. CHOOSING A REPETITION SOLUTION 38

smaller. The output samples making up a generation are considered the overview. Since
overviews are smaller, presenting repetition solutions aurally becomes a possibility. No-
tice that this method also affords searching by recognition. For each generation, a user
must choose samples from the overview that appear most like a goal solution. The algo-
rithm then directs users to parts of the search space that contain samples that are more
like the user’s choice.

Applied to choosing repetition solutions, interactive evolution has a few undesirable
traits. First, each generation is created by randomly varying input parameters which
removes any noticeable relationships between instances and may make reaching every
repetition solution difficult. Second, overviews are small and the algorithm is meant to
be continually improving toward a goal instance which makes interactive evolution ill-
suited for simple exploration. For this reason, interactive evolution is more of a search-
by-recall method than design galleries since users are expected to know the general con-
tents of the repetition solution space.

Data Mining Methods

Data mining and data visualization offer many techniques for analyzing an entire multi-
dimensional set of data at once [21]. The most important difference between data mining
algorithms and the algorithms of the preceding section is that data mining algorithms
are meant for pattern analysis, not selecting individual data items. Therefore data min-
ing algorithms are not useful for choosing repetition solutions. However, data mining
algorithms are worth mentioning for the type of overview they provide and the interface
problems that exist.

Overviews for data mining algorithms are made up of the complete set of data. The
goal of data mining algorithms is to adjust the visualization so that patterns are revealed.
Some techniques show data several dimensions at a time (e.g. scatter plots and heat
maps) while others attempt to provide a summary of all dimensions at once (e.g. mul-
tidimensional scaling, parallel coordinates, or radial focus+context [26]). The scope and
completeness of the overviews are weak points of design galleries and interactive evo-
lution.

However, these visualization techniques are not easy to use and require a certain
level of expertise on the part of the user. They often require that the user is aware that

CHAPTER 4. CHOOSING A REPETITION SOLUTION 39

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

m1

m2

m3

Figure 4.3: An example of parallel histograms applied to choosing a repetition solution. The
repetition solutions belong to a solution space where t1 = t2 = t3. The diagram shows that the
user has highlighted the histogram bar for m1 = 2. There are six items with m1 = 2 and those
same six items are highlighted in their positions on the other parallel axes.

the data set is multidimensional. For the purposes of choosing repetition solutions, a
user should not not need to be aware of the multidimensional nature of the solution
space to choose a repetition solution.

Parallel Histogram Methods

A collection of methods involving parallel histograms provide an overview of an entire
space and allow selection of individual points in the space. Sliding Rods [33], Bargrams
[61], Attribute Explorer [60], and Influence Explorer [59] are all designed with consumer
product selection in mind. The techniques allow a user to navigate a large selection
of products based on attributes such as cost, colour, brand, etc., discover relationships
between items, e.g. a relationship between cost and brand, and select individual items.
Attributes can be considered dimensions of a multidimensional space in which all items
exist.

The parallel histogram methods are characterized by laying out all items along par-
allel axes; each axis represents an attribute (e.g. colour, price, or brand name). Items on
an axis are grouped and sorted by the attribute that the axis represents. This grouping
produces colinear bars similar in effect to constructing a histogram and then lying the
histogram bars end to end as shown in figure 4.3. Since every item exists on every axis,
selecting a histogram bar representing a particular value on one axis will show those
items on other axes. In a musical setting, the attributes are repetition unknowns and the
items displayed along each attribute line are instances.

A drawback of the techniques is that they are limited by physical display size. All

CHAPTER 4. CHOOSING A REPETITION SOLUTION 40

items need to be selectable and must take at least one pixel of space along each axis.
Therefore, the total number of items that can be displayed without horizontal scrolling
is directly limited by the display size. Another drawback is that parallel histograms are
most useful for items with attributes that are non-similar: e.g. cost and brand name.
Repetition unknowns are all of the same type of data: integers. Presented with parallel
histograms as in figure 4.3, the differences between the groupings of instances between
parallel attribute lines will not be easily distinguishable. A third drawback is that pre-
senting all instances along an attribute line is equivalent to the linear list presentation
mentioned previously. Therefore, the relationships between instances on a single line is
mostly3 lost.

OSA PlaneSight

The problems accompanying visualization of an entire data set at once indicate that it is
better to visualize smaller sets (neighbourhoods of data items) at a time instead. In addi-
tion to visualizing neighbourhoods, the user requires some method for moving from one
neighbourhood to another. Lai proposes an interesting solution, called OSA PlaneSight
for navigating a three dimensional colour space [31]. The Optical Society of America
(OSA) Uniform Colour Space defines colours at points in a rhombohedral lattice. To aid
artists in navigating through the space to find a colour, Lai defines neighbourhoods of
colours to be those colours that are co-planar with a 2D slice of the colour space. Based
on the structure of the lattice, Lai determines a simple set of controls to move the 2D
slice so that the entire colour space can be explored.

OSA PlaneSight allows the user to navigate a space of possibilities with the use of
simple controls. Displaying possibilities that lie on a plane avoids the problem of pro-
jecting high dimensional data into two dimensions; the points on the 2D plane can be
simply mapped to a 2D graphical display. Such a mapping will accurately preserve re-
lationships between colours allowing users to see patterns that will help with guiding
their search. If users are unsure of the exact colour they are looking for, the displaying
neighbourhoods of colours at a time allows users to see related colours at a glance.

OSA PlaneSight for visualization and navigation is a perfect fit for the goals of choos-
ing a repetition solution: all repetition solutions are selectable, patterns between repeti-
tion solutions are preserved in the visualization, neighbourhood-level overviews allow

3Some of the relationship information is maintained through sorting.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 41

users to search by recognition, and navigation controls are simple to use. However, some
extra work must be done to adapt OSA PlaneSight for repetition solution choosing (such
as generalizing the method to work in more than three dimensions).

4.2.2 Considerations for Choosing Repetition Solutions

To provide guidance regarding how to modify OSA PlaneSight for choosing repetition
solutions, there are three areas for consideration. The first set of considerations involve
plane orientations. It is always possible to show a two dimensional slice of a higher
dimensional space. However, because the repetition solution space is an integer lattice,
many 2D slices contain very few solutions. Therefore the interface should be restricted
to useful orientations of the 2D plane. Lai makes use of the static rhombohedral lattice
structure to determine plane orientations that provide useful information. However, a
repetition solution lattice is dynamic in structure and depends on motif durations as
figures 4.1 and 4.2 demonstrate.

To accommodate the dynamic structure of the solution lattice, it makes sense to cal-
culate plane orientations based on the shape of the lattice which is directly influenced
by motif durations. An example orientation is one that is parallel to the bounding hy-
perplanes. For this particular example, there are n − 2 orientations where a 2D plane is
parallel to an {n}-dimensional hyperplane. Additionally, the plane orientations should
contain repetition solutions that share a musical relationship that the user can easily
understand. For example, planes parallel to the bounding hyperplanes will contain rep-
etition solutions that produce passages of the same duration.

The second set of considerations involve the operations on the 2D plane. OSA Plane-
Sight provides a few simple operations for navigating the 3D OSA colour space: two
operations for translating the plane in a direction orthogonal to its orientation, three op-
erations to rotate the plane to an orientation orthogonal to the current one, and a “tilt”
operation that changes the angle at which the colour space is viewed. In general, the fol-
lowing operations allow a 2D plane to be moved through an {n}-dimensional solution
lattice (see figure 4.2.2 for visual examples).

1. In-plane translation involves choosing a new center of rotation for the plane. A
center of rotation is required for reorientation operations discussed below in item
3 below.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 42

(a) (b) (c)
Figure 4.4: Illustrations of the three types of plane operations: a) In-plane motion, b) out-of-plane
motion, c) reorientation.

2. Out-of-plane translation involves maintaining the current orientation of the plane
but moving it in a direction orthogonal to the current orientation. In n dimensions,
a plane can move in n− 2 directions; all mutually orthogonal with each other and
the current plane orientation. The plane may move in only one of these orthog-
onal directions at a time. However, some of these directions may not be useful,
e.g. directions that move the plane outside of the solution lattice. The distance to
move depends on the shape of the solution lattice and the current orientation of
the plane. To make sure the user does not miss repetition solutions by moving the
plane too far, the plane should only move as far as the minimum of all positive dis-
tances between points in the lattice and their orthogonal projection on the plane.
Positive distance is measured in the direction of movement.

3. Reorientation rotates the plane about a center of rotation. Reorientation allows the
solution lattice to be viewed from a different angle and allows the user to investi-
gate new patterns that result from the new orientation. Lai’s rotation and tilting
operations are examples of reorientations.

The discussion so far has assumed that n ≥ 3. This is because the cases of n = 1
and n = 2 are simple base cases. For 1 ≤ n ≤ 2, there is no need for in-plane motion,
out-of-plane motion, or reorientation since the entire solution lattice is visible on one
orientation of the plane. For a 2D lattice, the points are simply mapped to a 2D display
plane. For interface consistency, it is desirable to present even 1D solution lattices on a
2D display plane. A 1D lattice can be displayed as points on a line mapped to a 2D dis-
play plane. The system prototype’s implementation of RepChooser, discussed in §7.2.4
with example screenshots, handles 1D and 2D solution lattices as just described.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 43

The last set of considerations involve the visual representation of repetition solu-
tions. OSA PlaneSight displays inherently visual information: colours. To make use of
OSA PlaneSight’s visualisation and navigation methods, repetition solutions must be
displayed visually. As mentioned earlier, care must be taken to choose a visualization
that will allow the user to see relationships between solutions at a glance and without
the need to listen to the instance for every solution on the plane. The guiding principal
is to avoid hindering the user’s ability to evaluate repetition solutions.

4.3 RepChooser

I now turn to addressing the considerations outlined in §4.2.2. RepChooser is the imple-
mentation of a visualization and navigation system that is based on OSA PlaneSight and
that incorporates solutions to the considerations outlined above. The rest of this section
describes RepChooser and the underlying ideas that make it possible. Details regarding
how to interact with the specific RepChooser implementation are found in §7.2.4 along
with visual examples.

4.3.1 Visual Representation of Repetition Solutions

The visual representation of repetition solutions is based on the instances they represent.
Please refer to figure 4.5 for a visual example during the following description. Each
repetition solution is shown as a multicoloured segmented rectangle located at the point
on the plane where the repetition solution lies. The rectangle contains as many coloured
segments as closure expressions in the timed regular expression at most. If the repetition
count for a closure expression is zero, no coloured segment is displayed. The coloured
segments are stacked atop one another to represent how the closure expressions occur
one after the other in time. The taller the segment, the longer the music-time duration
of the repeated closure expression. Notice that the patterns between repetition solutions
are clearly visible. The relationship between the duration of repeated closure expression
e1 and the duration of other repeated closure expressions for a single instance is also
clear.

The music-time duration of any repeated closure expression depends on the repeti-
tion count and the duration of the base closure expression: the collection of motifs in

CHAPTER 4. CHOOSING A REPETITION SOLUTION 44

M
us

ica
l D

ur
at

io
n

e1

e2

e3

Figure 4.5: Visual representations of four repetition solutions. Each repetition solution has three
closure expressions represented by e1, e2, and e3. The coloured bars representing these three
closure expressions indicate the music-time duration that each repeated closure expression takes
up in the instance. Please note that for simplicity, the figure shows a 1D slice in two dimensions
as opposed to a 2D slice in three dimensions as RepChooser does (see figure 7.6).

one repetition. By showing the total music-time duration instead of the repetition count,
the visualization provides a better sense of the musical contents of an instance. If the
repetition counts are shown, the user needs to mentally combine the displayed repeti-
tion counts with remembered closure expression durations. This alternative introduces
an unnecessary and undesirable cognitive load on the user.

Figure 4.5 shows an example of the visual representation of repetition solutions in
two dimensions. Since RepChooser displays representations over a plane, the visual
representations extend into three dimensions. Each multicoloured rectangle is extruded
into a rectangular prism and is placed on the plane where the repetition solution it rep-
resents is mapped. Figure 7.6 provides a visual example of the visualization in three
dimensions.

4.3.2 Plane Orientations

LeBlanc describes various controls that can be applied to the dimensional stacking visu-
alization technique [34]. N-Land is a collection of orthogonal views, arranged into two
dimensions, that portray an {n}-dimensional space. Using simple orthogonal views and
special controls, data can be explored in many useful ways. Orthogonal planes are 2D
planes that are defined by two basis vectors of the {n}-dimensional space and orthogo-
nal to all others. As an example, in three dimensions the xy plane is an orthogonal plane
since it is orthogonal to the z axis. An orthogonal view is the data that is coplanar with
an orthogonal plane.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 45

How do orthogonal planes map to repetition solutions? Since an orthogonal plane
is parallel to two standard basis vectors of the lattice, repetition solutions on the plane
will vary with respect to two repetition unknowns. The repetition unknowns repre-
sented by the remaining orthogonal standard basis vectors will be constant over the
plane. Furthermore, the values of those constant repetition unknowns are determined
by the plane’s location along the orthogonal standard basis vectors. For example, in the
3D case, for a plane parallel to the x and y axes and positioned at z = 3, the repetition
count for the repetition unknown represented by the z axis will be three over the entire
plane.

This representation has a few benefits. First, since only two repetition unknowns
vary over the plane, the number of changing variables the user must analyze at once is
small, making patterns easier to see. Second, moving the plane along orthogonal stan-
dard basis vectors allows a user to investigate how changing a single repetition count
globally over the plane affects the repetition solutions displayed on the plane. Third, re-
orienting the plane to be parallel with two different standard basis vectors has the effect
of changing which two repetition counts vary over the plane. Fourth, since the repeti-
tion solution at the center of rotation exists on the plane before and after reorientation,
the user can compare that particular repetition solution to other solutions that exist on
the new orientation. Reorientation thus provides a simple mechanism for the user to
explore the {n}-dimensional neighbourhood of a repetition solution. Last, the amount
that the plane should translate along orthogonal standard basis vectors to encompass
the nearest repetition solution is always one.

A technical benefit of orthogonal planes is that their orientation does not rely on
the structure of the solution lattice. The result is that the navigation controls affect the
display in the same way regardless of motif durations which is beneficial from a user’s
point of view. The next section discusses in more detail how orthogonal planes provide
simple connotations for navigation controls. The connotations, in turn, hide the high
dimensionality of the solution lattice from the user completely.

4.3.3 Navigation Controls

In summary from the previous section, orthogonal planes afford the following simple
navigation controls.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 46

1. In-plane translation on orthogonal planes occurs when the user selects a repetition
solution as the center of rotation for plane reorientations.

2. Out-of-plane translation moves the orthogonal plane along standard basis vectors
orthogonal to the plane. There are n − 2 such orthogonal standard basis vectors
as previously mentioned. The user simply chooses one basis vector and translates
the plane along it.

3. Reorientation rotates the plane from one orthogonal orientation to another. The
user chooses two new standard basis vectors for the plane to orient to be parallel
with and the plane rotates around the currently selected center of rotation to the
new orientation.

The navigation controls above can be mapped to the following useful meanings.

• Performing in-plane translation is an action that allows for more detailed evalu-
ation. By selecting a repetition solution, the interface may allow the user to play
the resulting instance and examine more detailed information regarding the selec-
tion. Selection also enables the user to compare the selected repetition solution
with others not currently on the plane.

• Performing out-of-plane translation has the effect of choosing a repetition count
that is currently constant over the plane and increasing or decreasing its value.

• Performing reorientation allows a user to compare a selected repetition solution,
which lies on a plane where two repetition counts vary, to another set of repetition
solutions lying on a plane where two different counts vary. This implies that the
values for the repetition counts that are constant in the new orientation are the
same as those values in the selected repetition solution.

4.4 An Example

With the fundamental properties of RepChooser now presented, I now turn to an exam-
ple to illustrate how a user can use RepChooser in tandem with timed regular expres-
sions to create music.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 47

! ! ! ! ! ! ! ! ! ! ! ! ! ! !" ! ! !# !! !$ 8
6

Music engraving by LilyPond 2.6.3 — www.lilypond.org

...

!! !"

Music engraving by LilyPond 2.6.3 — www.lilypond.org

!! !"

Music engraving by LilyPond 2.6.3 — www.lilypond.org

!! !"#

Music engraving by LilyPond 2.6.3 — www.lilypond.org

a=

b=

c=
a∗b∗c∗

Step 1 Step 2 Step 3

Figure 4.6: Illustration of representing a musical idea as a timed regular expression. The user
starts with a rough musical idea in step 1. The musical idea is broken down into motifs in step 2.
The user combines the motifs using a timed regular expression in step 3.

Clock Time

a∗b∗c∗
d

Δ0 Δ1

a bh c

Figure 4.7: Illustration of placing the timed regular expression in time. Users define the target
duration d by specifying music starting and ending points, a and b respectively. The error tol-
erances ∆0 and ∆1 are determined from the user-specified lower and upper bounds, h and c
respectively. In this case ∆1 > ∆0 as the user is more willing to make the tempo faster to make
an instance duration match d.

Given a particular cue to fill with music, a user decides the structure of the music
and which notes to use. A user transforms this knowledge into a collection of concrete
motifs. A timed regular expression is then created that uses the motifs to recreate the
structure the user envisioned. This process is illustrated in figure 4.6. The timed regular
expression in the figure makes use of closure expressions to enable the timed regular
expression to adjust to varying durations. In addition to a timed regular expression, the
user provides a clock-time duration, d, into which the timed regular expression should
expand. The users also specifies acceptable error tolerances, ∆0 and ∆1, with respect
to the clock-time durations of possible instances relative to d. How d, ∆0, and ∆1 are
determined from user input is shown in figure 4.7. Users can set the error tolerance
according to how much they are willing to adjust the tempo function to make an instance
fit an exact clock-time duration. For example, if users are willing to let the tempo be
slightly faster than it currently is, they can increase ∆1, as seen in figure 4.7, to allow the
system to calculate possible instances that are longer than the target clock-time duration.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 48

The system uses the current tempo function along with the other information the
user has defined to produce a list of repetition solutions. The solutions are presented
through RepChooser for the user to choose from. RepChooser begins by displaying rep-
etition solutions that lie on an initial plane configuration as seen in figure 4.8.a. The user
then uses the navigation controls explained above to move the plane and explore the
solution lattice. If a user sees a repetition solution that they prefer, they can select the
repetition solution for more information. In figure 4.8.b, the user has selected a repeti-
tion solution from those shown in figure 4.8.a. With the repetition solution selected, the
user can reorient the plane to examine the neighbours of the selected solution, as shown
in figures 4.8.c and 4.8.d. Figure 4.8.e results from increasing the repetition count repre-
sented by cyan over the entire plane (orthogonal motion). After examining the selected
solution’s neighbours, the user may conclude that the selected solution is the goal and
the interaction ends.

Another alternative is that by exploring the neighbourhood of an instance, the user
finds a better repetition solution. The user may then repeat the evaluation steps by
first selecting the new solution and then comparing the selection to its neighbours. Fig-
ure 4.8.f shows that from the orientation shown in figure 4.8.d, the user has decided to
choose a new solution. By iteratively carrying out these steps the user can “wander”
through the repetition solution lattice following a trail of progressively better solutions.
There is a concern that the user might follow a trail to a local minimum and that a better
solution lies elsewhere in the lattice. However, since each 2D slice of the lattice contains
every point in the lattice that is coplanar with the orthogonal plane, the user is always
able to see distantly related solutions to the currently selected solution and to follow
other leads if they appear more promising.

A third alternative is that by exploring the space, the user finds that none of the
repetition solutions are appropriate. In this case, the user can adjust motifs, error toler-
ances, the target duration, or define a new timed regular expression completely. For any
change, the user makes the adjustment and then explores the resulting solution space as
described above.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 49

a

b

c d e

f

Figure 4.8: A possible decision tree for choosing a repetition solution from the three dimensional
space of solutions generated from the motifs and timed regular expression of figure 4.6. The
images are screenshots of the prototype application’s implementation of RepChooser which is
discussed in detail in §7.2.4. Figure a shows the initial orientation. Figure b shows the user’s
selection. Figures c, d, and e are possible slices of the solution space after using reorientation or
orthogonal motion. The repetition unknowns that vary over the plane in figure a are the first and
second repetition unknowns, the unknowns for the closure expressions represented by blue and
yellow. The repetition unknowns that vary over the plane in figure d are the second and third
repetition unknowns where cyan represents the third closure expression. Figure e is the result
of increasing the repetition count for the third closure expression over the entire plane, an effect
accomplished by orthogonal motion. Figure f shows the user’s new selection from among the
solutions shown in figure d.

CHAPTER 4. CHOOSING A REPETITION SOLUTION 50

4.5 Future Work

Currently, RepChooser only supports orthogonal planes for navigation. Although or-
thogonal planes provide a simple interface for users choosing a repetition solution, they
are limited in the patterns they show. It may be worthwhile to support planes parallel
to the bounding hyperplanes so that the user can investigate repetition solutions of the
same duration which is particularly important when music-time duration is important.

The design of RepChooser is influenced by the need to navigate an {n}-dimensional
lattice. Alternative visualizations are possible. For example, when using axis aligned
planes, only two repetition unknowns vary over the plane. It is then possible to dis-
play all instances in two dimensions instead of three if the total duration of instances,
which also varies over the plane but depends on the two repetition unknowns, is han-
dled properly. Such alternative visualizations are worth exploring.

Chapter 5

Tempo

Tempo is an important feature of music. Tempo, or the speed at which music is played,
is used by composers to achieve artistic effects. Fast music imparts, for example, a sense
of urgency, excitement, or playfulness to the music, depending on the musical context.
Comparable artistic results can be achieved with other tempi and with changes of tempo.
Important as tempo is, the composer requires precise control of it in computer-aided
composition.

However, there is a more important reason for controlling tempo when composing
soundtracks. Tempo affects, not the beat value of a note, but the length of the note in
clock time. For example, a note one beat in musical duration will sound for .5 seconds
when played at a tempo of 120 beats per minute (bpm). Therefore, tempo converts units
of music time, beats, to units of clock time, seconds. The conversion is very important
because the visual component of movies is measured in clock time and the composer
composes a music track in music time which is synchronized to the visual component in
clock time. Fitting music to exact clock times requires precise control over tempo.

5.1 Traditional Methods

The choice of tempo to use for a cue is a compromise between what a composer would
like from a musical point of view and the necessity of incorporating event points into
the cue. Film composers write music that is eventually performed by human musicians.
Technically, a musician can play a sound at any point in time. However, to communicate

51

CHAPTER 5. TEMPO 52

�
�

:05.25

�
4
4

:06.0� = 120 :02.0

�
:04.0

� 	

(a)

3

���
�
:04.9167� �

4
4

:06.0� = 120 :02.0 :04.0� 	

(b)
Figure 5.1: In figure (a), a composer would like the music to make a hit at 5.25 seconds. The
figure shows where a note should be placed to make the hit. In figure (b), a poorly chosen tempo
causes a hit to land at an awkward place in the music.

that time efficiently to musicians, it must be expressed in common practice notation. The
sounds that musicians play are thus somewhat restricted to happen at discrete points in
time: on beats or fractions of beats. A movie composer should choose a tempo that
allows event points to land on or very near these discrete points. Accommodating mul-
tiple event points in a cue is difficult because it requires multiple tempi or choosing a
single tempo that accommodates all event points. Figure 5.1 illustrates the task of plac-
ing a note at a particular point in time using tempo and common practice notation.

Karlin and Wright [28] offer excellent information on traditional timing methods
which is useful in understanding the problems composers face. Before computers were
used in soundtrack composition, the choice of tempo required calculations by hand.
How tempi were chosen depended on the synchronization method being used for record-
ing. The two categories of synchronization methods are:

1. click tracks, and

2. free timing.

The synchronization aspect of these two methods is described in more detail in chapter
6. The ways in which each method affects choosing tempi are the subject of the rest of
this section.

A click track is similar in function to a metronome, a device musicians use to main-
tain a steady tempo. A click track is created to “click” at rates that match the precise

CHAPTER 5. TEMPO 53

tempi the composer chose during composition. The rate of clicks can change over the
course of the click track making the click track equivalent to a programmable metronome.
In the past, click tracks were created by cutting holes into the audio track on the film.
Then, as the film is played, the sound equipment reading the audio track produces clicks.
Spacing the holes on film to reproduce the correct tempi requires calculating distances
based on the speed of the film. In more modern times, the click track is produced by pro-
grammable electronic equipment. The Auricle [7], for instance, is capable of interfacing
with special hardware to generate click tracks.

When music is synchronized using click tracks, tempos are chosen before the music is
written. Thus, the composer starts with a general idea of tempo. The composer considers
tempi that are close to it and for each calculates when beats occur in clock time. The
objective is a tempo in which event points coincide with beats or large fractions of beats
that are musically convenient to play, unlike the example shown in part (b) of figure
5.1. Once a tempo is chosen, notes landing on event points are noted in the composer’s
sketch or score and music is composed based on these notes.

While recording the music, the tempi are followed exactly: the conductor listens to
the click track which is created from the composer’s choices for tempi and conducts the
performance to follow it exactly. This method provides close synchronization with the
visual component and allows the music to incorporate multiple event points in a cue.
However, due to the calculations involved, creating click tracks with varying tempi is
very difficult and so composers tend not to vary the tempo. Therefore, the tempo of
the performance does not vary much and music so performed sounds mechanical and
unmusical.

With free timing the tempo is flexible. The composer composes for cues guided by
provisional timing information, from spotting sessions for example. Exact tempi are not
determined at this point in the process. The composer mentally performs the music at
the desired tempo and uses a stopwatch to make note of the timings. The composer
subsequently adjusts the tempo or the music to fit timings for event points. After the
music for a cue is complete, the composer communicates tempi to the conductor and
performers by recording timing information at regular points in the score.

Because the tempo is free to change, sometimes subtly, sometimes substantially, free
timing works well for non-rhythmic or flexible-tempo music. It is, however, poorly
suited to close synchronization, or for music that must make multiple hits in a cue. In

CHAPTER 5. TEMPO 54

return, the composer gains the increased musicality of flexible tempo.

Both methods require much calculation, which obstructs the composer’s creativity.
The quality of the music track and its ability to synchronize with the video depends too
much on the composer’s skill with this technical side of music track composition.

5.2 How Computers Can Help

Computers are good at the aspect of music track composition that composers dislike:
doing calculations. Computer programs can calculate the tempi that synchronize music
within a cue. Therefore, computer programs make it possible to easily make click tracks
with varying tempi. The computational strength of computers thus allows composers to
write music with a flexible tempo while achieving precise synchronization.

Commercial tools for controlling tempo are available. One approach simply auto-
mates the click track method by proving tempo suggestions based on event point tim-
ings. Another relies on creative input from the composer for determining tempi. Typical
examples of available tools include two commercial software products: Logic [6] and
The Auricle [7]. In addition to other features, each is able to help the composer with
choosing tempi that synchronize music with video.

Logic is a music creation program which includes some capabilities for creating mu-
sic tracks. It is entirely digital and thus lacks the ability to synchronize a live perfor-
mance with film. It provides digital synchronization of video and synthesized music in
MIDI format. Tempo controls can adjust the tempo of synthesized music for any type of
composition. Because Logic is designed for many kinds of composition, tempo control is
divided into many small tasks, which creates a new problem for the composer: learning
which tasks are available and how to combine them. A user interacts with Logic using a
mouse and keyboard in a conventional graphical user interface.

Auricle is widely used in the movie industry to help composers create click tracks
for their music. It also plays a major role in synchronizing a performance to video, as
described in chapter 6. One of The Auricle’s many features helps the composer find
tempi that accommodate event points. It also allows the composer to vary the tempo
while maintaining perfect synchronization with the visual component. Event points
and composer interaction provide input to the program. The composer communicates

CHAPTER 5. TEMPO 55

with The Auricle via “natural language” commands from the keyboard.

The two approaches to controlling tempo are quite different. The Auricle automates
the click track method which film composers know well and supplements the com-
poser’s method of composition with information necessary to compose music tracks.
Logic provides a new method for digitally composing music that allows low-level con-
trol over how music sounds and great flexibility of musical style. The Auricle works
with a single cue containing possibly many event points. Logic is ignorant of cues and
the composer handles event points individually. Despite these differences, the represen-
tation of tempo is the same: beats per minute.

5.3 Tempo Representation

The visual component is measured in clock time and tempo is the link between clock
time and music time. Controlling tempo is very important because the composer uses
tempo to synchronize music with video. A computer program’s representation of tempo
affects the control available to the composer.

Tempo can be considered a function of score location. Composers of standalone mu-
sic treat tempo thus. That is, different parts of a score are played at different speeds with
changes in tempo between the parts. Tempo can also be considered a function of clock
time. Listeners interpret tempo like this because it is how they experience the music. For
example, a listener can say: “the music is faster now than a minute ago” but is unlikely
to say “the music is faster now than a page ago”.

The computer music literature uses a variety of tempo representations. Tempo func-
tions or tempo curves were introduced by Rogers, Rockstroh, and Batstone [49]. In the
context of standalone music, they consider tempo to be a function of score location.
Time-shift functions have also been used [9]. They describe the time difference between
notes in a performance and the same notes as they would be played by exactly follow-
ing a given tempo. Time maps were introduced by Jaffe [25] and are commonly used
in computer music [23]. Time maps simply define one time frame in terms of the other,
and encompass both tempo functions and time-shift functions. For example, a time map
can map score location to performance time. Examples of these three representations
can be found in figure 5.2. Finally, a fourth representation, that of timing functions pro-
posed by Honing [23], combines tempo functions and time-shift functions to address

CHAPTER 5. TEMPO 56

x

y

1

x

0

d t ′

x
(a) (b) (c)

Figure 5.2: Examples of a tempo function (a), time-shift function (b), and time map (c) all show-
ing an equivalent tempo change: a linear slowing down from one constant tempo to another. x
is score location. y is the tempo value, d is a time difference between the music-as-played and
music-as-written, and t′ is clock time.

some weaknesses of time maps.

Unfortunately, tempo functions alone do not handle all musical timing needs. Tempo
specifies the musical pulse or the duration of beats. Tempo cannot account for the
spreading of notes of a chord over time or the duration and placement of grace notes.
Tempo functions, as well as many other timing representations, also lose the original
score location which is important for inverting or combining tempo and timing func-
tions.

Despite these weaknesses, tempo functions are very useful. Musicians think in terms
of tempo functions, not time maps [25]. If the music track is recorded from a musical
performance the timing representation is less important. Musicians, on the direction of
the conductor, apply timing deviations easily. However, timing features not represented
by tempo functions are a problem when a computer performs the music.

In music track composition, tempo as a function of clock time is more useful than
as a function of score location because the composer works from times expressed in
clock time and uses tempo to make the music fit those times. Consequently, a tempo
function defined on clock time is the representation of the prototype implementation. A
description of the tempo function interface is in chapter 7.

CHAPTER 5. TEMPO 57

5.4 Tempo Calculations

To help a composer synchronize music to video, a composition system should be able to
answer the following questions.

• How many beats occur between two points in clock time?

• What is the clock-time duration of a sequence of beats?

• What tempo causes a sequence of beats beginning at one point in clock time to end
at another point in clock time?

The calculations that answer these questions underpin interaction with timed regular
expressions, allowing the composer to adjust tempi to make instances fit target dura-
tions. Contrast this method of choosing tempi for music that already exists with the
methods of choosing tempi for click tracks. When using click tracks, a composer must
carefully plan tempi before music is written.

The prototype implementation uses a continuous piecewise linear tempo function
defined on the clock-time duration of the movie. The range of the function is 30 to
300bpm, a reasonable range of standard performance tempi. Tempi are specified at dis-
crete points, which the user specifies, called tempo markers. Tempo markers mark the
endpoints of segments of the tempo function. The rest of this chapter describes how the
questions listed above are answered by calculations operating on a tempo function like
the one used in the implementation.

Linear functions are easy for the user to control. The function is continuous only
as a simplification. Tempo in standalone music is often discontinuous and can usually
be better modelled by a step function1. Using a continuous tempo function simplifies
the user interface. For a continuous function, there is only one tempo value to adjust
at each tempo marker. For discontinuous tempo functions, two tempo values would be
needed: limt→t+i

f(t) and limt→t−i
f(t) where ti is the time of a tempo marker and f(t) is

the tempo function.

Tempo is a velocity function which measures a change in position, where beats are
considered a position in the score, over time. By integrating a velocity function, one can

1In standalone music, tempo does not always jump from one value to another as gradual changes do
exist. Therefore, step functions are not always applicable.

CHAPTER 5. TEMPO 58

yi

Clock Time
Te

m
po

α β

dm

yi+1

yi−1

ti+1ti−1 ti

Figure 5.3: An example of a continuous, piecewise linear tempo function. Each segment is rep-
resented by a separate linear function. The yi values are the tempo values at each tempo marker.
dm represents the area under the curve from α to β.

find the change in position between two points in time. Integrating the tempo function
thus provides a change in score location between two points in time. Intuitively, the
area under the tempo function between two points in time is the number of beats that
occur between those two points. In this way, tempo links clock time and music time.
The following calculations all make use of this fact.

The following calculations use the following definition of a line:

y − y1 = s
(
t− t1

)
(5.1)

where
s =

y2 − y1

t2 − t1

is the slope of the line. The calculations covered in the following sections solve for
different variables in the following integral:

dm =
∫ β

α
y1 + s

(
t− t1

)
dt

=
(
y1 − st1

)
β +

s

2
β2 −

(
y1 − st1

)
α− s

2
α2 (5.2)

Equation 5.2 is the integral of equation 5.1 where dm is the area under the tempo function
between clock times α and β. ti and yi are the clock time and tempo value respectively
of the ith tempo marker. As demonstrated in figure 5.3, α and β may be any point in the
domain of the tempo function. Keep in mind that this integral must be calculated for
each segment i of the piecewise tempo function between α and β.

CHAPTER 5. TEMPO 59

5.4.1 Calculation of Music-Time Durations

The prototype application calculates music-time durations to convert the target dura-
tions of timed regular expressions, provided by the user as clock-time durations, into
music-time durations, for reasons outlined in §3.4.1. Calculating music-time durations
are also necessary if a user asks how many beats occur during a given duration of clock
time. Converting clock-time durations into music-time ones means solving for dm in
equation 5.2.

Equation 5.2 can be simplified further since the time and tempo values of tempo
markers are fixed. For a single linear function, e.g., one segment of the tempo function,
equation 5.2 can be expressed as:∫ ti+1

ti

y1 + s
(
t− t1

)
dt =

1
2
(
ti+1 − ti

)(
yi+1 + yi

)
(5.3)

where ti and ti+1 are the clock-time endpoints of the linear function and yi and yi+1 are
the tempo values at those endpoints. To calculate dm over multiple segments, equation
5.3 is evaluated for each segment i between α and β and the results summed as in the
following equation.

dm =
1
2

∑
i

(ti+1 − ti)(yi+1 + yi) (5.4)

Figure 5.3 shows an example of calculating dm over three segments. Algorithm 1 de-
scribes the calculation in more detail.

When α and β are between tempo markers, to evaluate equation 5.4, the tempi at α

and β, yα and yβ respectively, are required. These values can be calculated using linear
interpolation from the time and tempo of the tempo markers that mark the endpoints of
the segment in which α or β are found:

yα =
α− ti

ti+1 − ti
(yi+1 − yi) + yi

yβ =
β − ti

ti+1 − ti
(yi+1 − yi) + yi.

(5.5)

CHAPTER 5. TEMPO 60

Algorithm 1 Calculate dm over multiple piecewise linear segments
Calculate yα and yβ using equation 5.5.
if α and β are in the same segment then

dm ⇐ value of equation 5.3 using α and β as times and yα and yβ as tempi.
else

dα ⇐ area under the tempo function between α and the next tempo marker accord-
ing to equation 5.3.
dβ ⇐ area under the tempo function between β and the previous tempo marker
according to equation 5.3.

end if
dm ⇐ dα + dβ+ the value of equation 5.4 over all segments i such that ti ≥ α and
ti+i ≤ β.

5.4.2 Calculating Clock-Time Duration

Converting durations from music time to clock time, i.e. the inverse of the calculations of
the previous section, is also important in the implementation. As mentioned previously,
when a user first chooses a repetition solution, the clock-time duration of the resulting
instance is not likely to match the target duration of a timed regular expression. By
converting the music-time duration of the instance to clock time, the implementation
provides feedback to the user to indicate the length of the instance. The user can use
this information to guide adjustments to the tempo function. Music time to clock time
conversions are also used to convert the musical definition of motifs into a sequence of
timestamped events for playback.

The formula for converting from music time to clock time is also based on equation
5.2. Instead of solving for dm as in the preceding section, dm is provided and β is the
unknown quantity. Equation 5.2 can be rearranged into the following form to facilitate
the solution for β.

0 = aβ2 + bβ + c

where

a =
s

2
b = y1 −mt1

c = (mt1 − y1)α− s

2
α2 − dm

CHAPTER 5. TEMPO 61

a,b, and c are functions of known quantities. Therefore, the value of β is found by apply-
ing the quadratic formula:

β =
−b±

√
b2 − 4ac

2a
. (5.6)

Equation 5.6 provides two solutions, β1 and β2, of which only one is musically valid.
The correct solution is the first of β1 or β2 to occur after α.

Equation 5.6 calculates β for a single linear function. Therefore, for the equation to
be useful in the situation of piecewise linear functions, the segment in which β will lie
must be determined. Using the tempi and times of the endpoints of that segment, β can
be calculated using equation 5.6. Algorithm 2 describes describes this process in detail.

Algorithm 2 Calculate β over multiple piecewise linear segments

Find i′ such that ti′ ≤ α < ti′+1

d ⇐ value of equation 5.4 between α and ti′+1.
i ⇐ i′

loop
d ⇐ d+ value of equation 5.4 between ti and ti+1.
if d ≥ dm then

if i = i′ then
β ⇐ solution of equation 5.6 based on ti, ti+1, yi, yi+1, and α.

else
β ⇐ solution of equation 5.6 based on ti, ti+1, yi, and yi+1. In this case α = ti
when calculating equation 5.6.

end if
break

end if
i ⇐ i + 1

end loop

A special case exists when s = 0. This situation indicates the tempo is constant
during the segment in which β lies. Equation 5.6 cannot be used since the denominator
will be zero. However, assuming s = 0, equation 5.2 can be simplified into the following
solution for β:

β =
dm + y1α

y1
(5.7)

Instead of using equation 5.6 in algorithm 2 for situations where s = 0, equation 5.7 is
used instead.

CHAPTER 5. TEMPO 62

5.4.3 Solving for Tempo

Solving for tempo is the third important calculation that the system makes use of. In
the implementation, the tempo value at tempo markers is adjusted by using sliders as
described in §7.2.5. The system expects the clock-time duration of an instance to match
the target duration of a timed regular expression with much more accuracy than a simple
slider affords. Therefore the slider is made to “snap” to tempo values that make instance
durations and target durations match exactly. The system calculates the necessary tempi
in advance using calculations described in this section.

Once again, equation 5.2 forms the starting point for deriving the formula calculating
the tempo at a given tempo marker. In this case, all values are known except one of y1 or
y2. Intuitively, the system is provided two points in clock time, α and β, and a number
of beats that occur between those two points. The times and tempo values of tempo
markers are all known except for at one tempo marker where the tempo is unknown.

The following equation is another rearrangement of equation 5.2 which makes the
solution of yi easier.

Byi + C = dm (5.8)

If yi, the unknown tempo, represents the tempo at the start of a segment then B and
C take the form:

B =
β2 − α2

2(ti − ti−1)
− ti−1(β − α)

ti − ti−1

C = yi−1(β − α)− yi−1(β2 − α2)
2(ti − ti−1)

+
yi−1ti−1(β − α)

ti − ti−1

(5.9)

If yi represents the tempo at the end of the segment, then B and C have slightly
different forms:

B = β − α− β2 − α2

2(ti+1 − ti)
+

ti(β − α)
ti+1 − ti

C =
yi+1(β2 − α2)
2(ti+1 − ti)

− yi+1ti(β − α)
ti+1 − ti

(5.10)

As with the previous calculations, the calculation of tempo must be split along seg-

CHAPTER 5. TEMPO 63

y1 =?

t1 t2

y2

ti ti+1

yi+1
yi =?yi−1

ti−1

yn =?

tntn−1

yn−1

(a) (b) (c)

Figure 5.4: Illustration of how the choice of which tempo marker is having a new tempo calcu-
lated for it determines which segments of a continuous piecewise tempo function are affected by
tempo calculations. Figure (a) shows the case when the unknown tempo is for the first tempo
marker. The shaded region indicates that only the first segment is affected. Figures (b) and
(c) indicate which segments are affected in other cases. Figure (c) assumes there are n tempo
markers.

dt dβdα

βα

yi+1

yi−1

yi?

tα tβ

ti+1ti−1 ti

Figure 5.5: Illustration of the various values affecting the calculation of tempo yi. dα and dβ

represent the areas under the curve not affected by changing yi.

ment boundaries. The first step is to determine which segments of the tempo function
will be effected. If yi is the unknown tempo, then the segments from ti−1 to ti and from ti

to ti+1 will be affected due to continuity. If y1 or yn is the unknown tempo then only one
segment is affected in each case: from t1 to t2 and from tn−1 to tn respectively, assuming
there are n tempo markers. Figure 5.4 illustrates how the location of the unknown tempo
determines which segments will be affected by a tempo change. Define the affected do-
main of the tempo function to be [tα, tβ]. I assume [α, β] ∩ [tα, tβ] 6= ∅.

The provided music-time duration dm is the area under the tempo function over
the interval [α, β] regardless of the calculated value of yi. Any area under the tempo
function during the times [α, β] \ [tα, tβ] is constant with respect to changes in yi. I
define the constant music-time duration occurring before tα and after tβ to be dα and dβ

CHAPTER 5. TEMPO 64

respectively. The value of yi can be calculated from a new musical duration dt where
dt + dα + dβ = dm. The relationships between these entities is shown in figure 5.5.

The next step is to solve for yi over the interval [tα, tβ]. Consider the case when two
segments are affected by a tempo change as in part (b) of figure 5.4. With two segments,
there are two linear functions to consider and therefore yi should be calculated in two
steps. However, the music-time duration to use for each step, d1 and d2, are unknown.
All that is known is that d1 + d2 = dt. To solve this problem, the two steps can be
expressed as a system of simultaneous equations as follows.

B1yi− d1+ = −C1

B2yi+ − d2 = −C2

+ d1+ d2 = dt

(5.11)

where B1 and C1 are for one segment and B2 and C2 are for the other. The forms of B

and C come from equations 5.9 and 5.10 and depend on which end of each segment yi

is located at. In this system, yi, d1, and d2 are unknown. Applying Kramer’s Rule to this
system, the solution for yi is:

yi =
−C1 − C2 + bt

B1 + B2
.

If only one segment is affected the system of equations 5.11 becomes a system of two
equations with two unknowns:

B1yi−d1 = −C1

0yi+d1 = dt

(5.12)

which simplifies into a single equation that can be solved directly.

A benefit for solving yi using the method above is that it can be generalized to incor-
porate N segments that make up the range [tα, tβ]. However, with N > 2 segments, the
system of simultaneous equations requires more equations to be solvable. A source for
extra equations are constraints such as those that maintain relative tempo value differ-
ences between tempo markers. These particular constraints would be useful for main-
taining the shape of the tempo function while making the tempo generally faster or
slower.

CHAPTER 5. TEMPO 65

5.4.4 Implementation Considerations

An implementation of the tempo function and the calculations discussed in previous
sections should address a few practical details. First, α or β may be outside the domain
of the tempo function. To handle this, the system prototype implementation treats the
tempo function as a function over all time. Two special segments are added before and
after the first and last tempo markers for the benefit of the calculations. The segments
extend to positive and negative infinity and the tempo defined within each is constant
at the value of the last and first tempo markers respectively.

Second, any provided music-time durations should be positive. Negative music-
time durations don’t make sense and the results of calculations using negative musical
durations are unlikely to make sense to users.

Finally, the user should be able to adjust, insert, and delete tempo markers other than
the first and last marker. The tempo value at each marker should be adjustable as well.
Chapter 7 provides more details on the prototype implementation’s interface with the
tempo function.

5.5 Future Work

As mentioned earlier, discontinuous tempi appear in standalone music. Although a
composer should not add too many discontinuities to music tracks, it is the composer’s
decision and the computer should not interfere. It is therefore worthwhile to investigate
how the composer can specify discontinuous tempi and the how tempo calculations are
affected. Note that the calculations outlined above are not affected by discontinuity.
However, the user interface for controlling the tempo function must be generalized.

Computer music literature suggests that linear tempo functions may not be the best
musical choice [15, 23, 49]. Non-linear tempo functions require more user input to spec-
ify and are more difficult to control than linear functions. However, their use may result
in an increase in musicality for both computer performance and live performance.

Alternative tempo and timing representations may also help musicality. Honing’s
timing functions [23] represent both tempo and timing and are worth investigating for
their use in soundtrack composition. A challenging problem for timing functions is
providing an effective interface for users to control them.

Chapter 6

Synchronization

After a film composer has composed the music for the soundtrack, the music needs to
be performed and recorded. The composer’s music, perhaps in the form of a sketch, is
converted into a full score by copyists or orchestrators. Sheet music for individual in-
struments is extracted from the score and given to musicians to perform. The musicians
must perform exactly synchronized with timings from the visual component so that the
recorded performance, after being added to the soundtrack, will synchronize with the
visual component.

The term musicians, as used above, refers to human or electronic performers of music.
Human musicians in a large ensemble are synchronized by a conductor. The conduc-
tor’s job is to reproduce and broadcast to an ensemble the exact tempi a composer has
chosen so that performed music matches timings written in the score. In comparison,
electronic musicians, in the form of computers or music synthesizers, are programmed
to perform music for recording. In some respects, synchronizing a computer perfor-
mance to video is easier as computers can synchronize with other devices by listening
to accurate electronic timing signals. Computers can also maintain tempi much more
accurately than human performers.

The system I present focuses on helping users compose music and not on performing
music for purposes of recording. However, to provide feedback to a user, the system
should be able to “perform” the digital version of a movie with a music track sonified
using synthesized music. Multiple electronic musicians synchronize with each other by
means of external timing signals transmitted between them. For a system running on a

66

CHAPTER 6. SYNCHRONIZATION 67

single computer to synchronize the playback of digital video and synthesized music the
system requires a means to accomplish internal synchronization.

Beyond the requirement of providing feedback to the user, synchronizing video and
music is useful for validation. Composing using timed regular expressions and manip-
ulating the tempo function allows a user to write music that synchronizes with video.
To validate the techniques and the implementation of the system, the computer must
accurately synchronize music and video.

6.1 Synchronization Basics

Synchronization forces multiple separate entities to perform according to a common
time frame so that their actions are coordinated. For example, when human musicians
play in an orchestra, they perform at the tempo of the music. The conductor of an or-
chestra transmits the same tempo to each performer to accomplish synchronization.

A common time frame is more difficult to conceive when synchronizing video and
music. Clock time and music time are measured using different clocks, each with its own
basic period. To synchronize video and music, the two slave clocks of clock time and
music time must be synchronized with a master clock that measures time in a common
time frame. Although this scenario implies three different clocks, sometimes one of the
local clocks serves as master while the other is the slave. Slave clocks adjust their current
time, as measured in their respective local time frames, by converting timings from the
master clock into their local time frame. This ensures that all slave clocks measure time
consistently. Figure 6.1 shows an overview of the master-slave relationship. For music
track composition, the clock-time frame of video serves as the master clock.

Synchronization is made difficult by the required accuracy. Experiments have shown
that when an observer is presented a video track portraying speech and an audio track
with the voice, the observer can detect desynchronization if sound precedes visual action
by more than 130ms or if the sound occurs after visual action by more than 250ms [17].
For sound effects, if a sound precedes a sudden visual action, e.g. a hammer hitting
a peg, by more than 70ms or if the sound occurs after the action by more than 180ms,
an observer detects the desynchronization. Karlin notes that for music, the audio may
be removed from the video by at most 80ms, the threshold at which trained experts can
detect a synchronization error [28]. Furthermore, this error is only perceived if the music

CHAPTER 6. SYNCHRONIZATION 68

12

3

6

9

12

3

6

9

12

3

6

9

Master

Slave

Slave

Audio: 44.1kHz

Video: 30fps

Figure 6.1: An overview of the relationship between a master clock and slave clocks. Each slave
clock runs at a different rate: 44.1kHz for the audio clock and 30fps for the video clock. Synchro-
nizing to a master clock ensures that the playback location in both the audio and video streams
is at the same point in time with respect to the master clock.

and video both change sharply at the same time. Karlin also notes that it is better for
the music to be slightly late than early; a statement supported by the results mentioned
above.

6.1.1 External Synchronization and Human Performers

The synchronization methods of click tracks and free timing were discussed with respect
to tempo in chapter 5. The details of how each method accomplishes synchronization is
now discussed here from information provided by Karlin [28] and Burt [12].

Click track methods require that the composer choose very precise tempi during
composition. When performing the music, the conductor and musicians must recreate
the tempi to synchronize with the video. However, human performers are unable to
perform at and maintain the required precision. Therefore, click tracks, first described
in §5.1, are used to guide the tempo.

When performing music during the recording of a soundtrack, the conductor and
musicians listen to the click track. The click track guides the tempo of the performance,

CHAPTER 6. SYNCHRONIZATION 69

ensuring that the composer’s careful choices of tempo are reproduced faithfully. The
recorded performance is then mixed into the audio track so it starts at the intended cue
start time. The recording then automatically matches the event points the composer
accommodated in the music because it follows an exact tempo.

Since prolonged use of the click track tends to enforce an unmusical and mechanical
feeling to the music, some composers will prefer to use free timing. This category of
synchronization techniques includes all those not involving click tracks. A composer
writes music with timings written in the score in important places such as the downbeats
of musical bars and event points. During recording, a conductor follows an accurate
timekeeping device and leads the musicians so that the music they play matches the
timings written in the music. This yields more musical results since the musicians are
free of the click track and can vary tempo as desired. However, it is more difficult for the
music to match event points exactly.

The music editor may instrument a copy of the visual component, at the conductor’s
request, to provide synchronization aides for free timing. The conductor watches the
instrumented video while conducting the performance and the added visual aides help
the conductor make the music hit event points. Visual aids include a timer superim-
posed on the video (to act as the timekeeping device), punches, and streamers.

Punches are visual indications of event points and are inserted at the conductor’s
request. Streamers are warnings of approaching punches and take the form of a gradu-
ally changing visual artifact in the video that terminates with a punch. Often, streamers
take the form of a vertical line moving across the picture. See figure 6.2 for an example.
The amount of time a streamer appears can be adjusted to give more or less warning
as the conductor requests. Traditionally, these effects were created by cutting the film.
Today, computer programs such as The Auricle can interface with special hardware that
overlays the effects on the video during playback.

6.1.2 External Synchronization and Electronic Performers

It is also possible to synchronize electronic performers to video. A computer can be
programmed to play music either in the form of sampled audio or synthesized music.
Music in the form of sampled audio is recorded music that has been digitized by sam-
pling waveforms at a high rate, e.g. 44.1kHz. Sampled music can be reproduced by

CHAPTER 6. SYNCHRONIZATION 70

a b c d

Figure 6.2: An illustration of streamers and punches. At time a, a streamer appears in the image.
As time progresses through time b to time c, the streamer appears to move across the image. The
streamer terminates at time d with a punch.

converting the samples back into analog signals at the same sample rate. In the case of
synthesized music, a device synthesizes waveforms based on musical instructions such
as the MIDI protocol. An important difference is that while the tempo of synthesized
music can vary depending on the time between events, sampled music cannot1.

Just as click tracks synchronize human performers with a special signal, a computer
needs an external synchronization signal to perform synthesized music with other de-
vices. The signal is necessary to start, stop, and play music in synchronization with other
music synthesis devices, video playback devices, or recording devices. I describe two ex-
ternal synchronization methods: SMPTE time code and MIDI clock. Both are common
protocols and are well explained by Roads [48] and Rothstein [50].

The Society of Motion Picture and Television Engineers (SMPTE) [55] developed
SMPTE time code for synchronizing multiple electronic devices. One device is the mas-
ter and generates time code for other devices to receive. Other slave devices receive the
time code and use it to adjust their own internal clocks. The actions of each slave device
are timed with respect to a local clock which is synchronized via SMPTE time code to
the master. In this way, a collection of electronic devices can be synchronized to work
together.

SMPTE time code is most often used to mark times on frames of video. Time is mea-
sured by hour/reel, minute, second, and frame number. The smallest unit is therefore a
frame which measures a duration of 40ms when the framerate is 25fps, one of the SMPTE

1Techniques do exist that can alter the tempo of sampled music without affecting pitch. This process is
called time stretching but is more complicated than changing the tempo of synthesized music.

CHAPTER 6. SYNCHRONIZATION 71

standards2. SMPTE time code measures clock time from an arbitrary point, usually the
start of a movie. Since SMPTE time code measures time in clock time it is not always
useful in a music-only setting. Therefore, MIDI provides a synchronization scheme that
measures time in music time: MIDI Clock.

MIDI clock is a synchronization method included in the MIDI protocol for synchro-
nizing multiple MIDI-capable devices. A master device “ticks” at a rate of 24 ticks per
quarter note. The ticks are transmitted to slave devices which count the ticks and use
the count to schedule MIDI events. Since the rate of ticks depends on the tempo, the
amount of clock time between ticks is variable. MIDI clock is most useful for musical
performances but less so for synchronizing with video.

MIDI also includes a protocol for synchronizing using SMPTE called MIDI time
code (MTC). Due to the restrictions of the MIDI protocol, SMPTE time stamps are split
into four messages, MTC Quarter Frame Messages and sent in sequence to the slave de-
vices. The messages are sent at a rate of four per frame so that each frame, a slave device
can construct a full SMPTE timestamp.

6.1.3 Internal Synchronization

External synchronization is necessary for the recording phase when multiple perform-
ers need to synchronize with video. However, during composition a computer system
should play back a digital movie with a synthesized music track to provide feedback for
the composer. Such a system can play back both visual and aural data itself or enlist the
help of external devices. For example, an external device may synthesize music while
the system itself plays back the video. If using external devices, visual and aural data
need to be communicated to them and external synchronization is required. For reasons
of simplicity, the system prototype uses internal synchronization to synchronize video
and music data. The rest of this chapter focuses on internal synchronization except to
compare with external synchronization.

Internal synchronization also requires coordinating local clocks. Music track com-
position involves two local clocks: one for video and one for synthesized music. The
video clock operates at a rate that is convenient for video: an integral number of ticks
per frame. A clock for music might operate at a rate measured in “ticks per beat” like

2The other standard framerates are 24fps, 30fps and 30fps “drop frame” (29.97fps).

CHAPTER 6. SYNCHRONIZATION 72

MIDI Clock. However, for this type of clock, the amount of clock time between ticks
varies depending on tempo. Synchronizing a clock with a variable rate to other clocks
is difficult. Therefore, I chose to define a clock that runs at a fixed rate but with a suffi-
ciently small period to accommodate accurate musical rhythms at any tempo and so that
musical events can be scheduled with adequate accuracy. The prototype uses a music
clock rate of 1000Hz: millisecond precision.

When software is responsible for internally synchronizing two clocks, there are new
problems compared to external synchronization. Electronic devices become desynchro-
nized when synchronization signals are delayed as they travel from device to device.
The delay can be shortened by reducing the number of devices the signal must pass
through. Internally, there is no propagation delay and yet desynchronization is a major
issue. The reason is processor scheduling by the operating system.

Modern multiprocessing operating systems are capable of performing many tasks at
the same time. The tasks are composed of processes each of which requires a share of
processing time and other computer resources. The operating system schedules tasks
to execute for small periods of time one after the other so that all tasks can access the
resources they require and provide the illusion to a user that all tasks are operating si-
multaneously. In addition to the goal of making tasks appear as if they are continuously
executing, tasks may have time constraints, e.g., tasks must complete or must perform
a certain amount of work in a given duration. If there are too many tasks for computer
resources to handle or if a task requires too large a portion of available resources, then
the operating system cannot satisfy time constraints.

When tasks present a media stream to the user, as audio or video, the time con-
straints are more strict. If inadequate time is allocated to media stream tasks, which are
presenting a continuous flow of visual or audio data to the user, then they may become
desynchronized or the user may perceive a disruption in the flow of data. The operating
system must allocate enough time to media stream tasks that they stay synchronized
within the constraints mentioned in §6.1.

LiquiMedia [30] is an operating system architecture specializing in multimedia. The
design of the architecture focuses on the scheduling needs of presenting many media
streams and maintaining inter-stream synchronization. Kroeger describes a simple ex-
ample of a computer with the desktop operating system Windows NT suffering from
scheduling problems even when ample resources are available, thus demonstrating the

CHAPTER 6. SYNCHRONIZATION 73

need for a specialized architecture to deal with multimedia.

While I have talked about internal synchronization as synchronization within a sin-
gle program, it is worth mentioning that multiple programs can have their performance
synchronized as well. I still classify this situation as internal synchronization since the
problems of processing load and scheduling still exist. Multiple computer programs are
often synchronized using the synchronization protocols described in §6.1.2. Synchro-
nization signals are passed between programs as a form of inter-process communication.
section

The remainder of this chapter deals with the issues of synchronizing synthesized
music, in the form of MIDI events, to video as required for the prototype implementation
of the system.

6.2 Synchronizing MIDI to Video

To synchronize music generated from MIDI events with video, two things must happen.
First, the sequencer must send events to the synthesizer at the correct times. This con-
straint can be satisfied by synchronizing the sequencer with video playback. Second,
the synthesizer must generate sound with low latency. That is, the time between when a
MIDI event is received and when the effect of that event on the audio stream takes place
must be very small. If a sequencer is perfectly synchronized with the video playback
but the synthesizer has high latency, then the music will appear desynchronized from
the video.

An alternative to synchronizing MIDI-generated music with video is to render the
music into sampled audio form first which can then be synchronized with video. This
process has several benefits:

• The local clock for synchronizing sampled audio runs at a fixed rate,

• The latency of the sequencer and synthesizer are no longer an issue, and

• More synchronization frameworks support synchronizing sampled audio and video
than synchronizing MIDI and video (see §6.2.2).

However, there are drawbacks. First, rendering MIDI events into waveforms requires
extra time before playback. Methods for reducing the rendering time, such as render-

CHAPTER 6. SYNCHRONIZATION 74

ing only part of the entire music track, rendering in advance during playback, and so
on, would complicate the implementation of the prototype application. Second, once
the sampled audio is rendered it is fixed. MIDI events, by contrast, can be sent to other
MIDI devices for better synthesis or dynamic modification. Third, for validation of the
prototype application, a non-commercial renderer would be required. During the com-
position process, it is best to synchronize MIDI events to video and leave the rendering
of MIDI events to sampled audio for creating a final music track once composition is
over.

6.2.1 Hardware versus Software Implementations

Sequencers and synthesizers exist in both hardware and software forms. Each form has
benefits and drawbacks in the context of internally synchronizing synthesized music
and video. These benefits and drawbacks are the subject of this section.

Hardware sequencers and synthesizers have the advantage of being very fast. Each
device is dedicated a single task: to schedule MIDI events or to synthesize them. They
do not introduce any additional processing load on the computer except for requiring
timing signals and data to play. They can produce high quality music that their software
counterparts cannot achieve with the same efficiency. However, hardware synthesizers
and sequencers are very expensive and require complex hardware and software config-
urations to enable communication.

Software sequencers and synthesizers are processes that are scheduled by the op-
erating system. They must share processing time with all other tasks. Therefore the
latency of software sequencers and synthesizers depends on the processing load of the
computer. If the processing load of the computer is too high, the processes responsible
for video playback and music synthesis will be adversely affected, interfering with syn-
chronization. Implementations of sequencers and synthesizers come with most modern
operating systems making them very accessible. However, they are generally not as high
quality as their hardware counterparts. Software sequencers and synthesizers make it
possible to play MIDI data without requiring expensive equipment or having to coordi-
nate the actions of external devices with video playback.

As mentioned in §6.1.3, the prototype of the system I present relies on internal syn-
chronization. Therefore, it uses software sequencers and synthesizers for music play-

CHAPTER 6. SYNCHRONIZATION 75

back. The prototype thus avoids the complications of external synchronization: gener-
ating timing signals, communicating data to external devices, and configuring multiple
devices to work together. For the purposes of providing feedback, the quality of stan-
dard software sequencers and synthesizers is adequate and expensive hardware devices
are not required.

Commercial hardware devices and software programs are black boxes whose inter-
nals are hidden. For the purposes of validating the prototype implementation, using
black boxes is a poor choice. If synchronization malfunctions, one cannot determine
whether it is the prototype or the commercial product that has failed. If the commercial
product fails, there is often no way to fix it3.

Above, I raised a concern that the performance of software synthesizers and se-
quencers are affected by system load. Due to the scope of the system, I will assume
that such load issues will not be a concern.

6.2.2 Choosing a Synchronization Framework

Synchronization is only a tool, not the subject of my research. Since the system requires
only basic synchronization it is best to make use of previous work and build a prototype
upon an existing framework. The framework should provide a means for synchronizing
video and synthesized music. Many multimedia frameworks exist which attempt to
synchronize video and audio. However, only a few provide support for synthesized
music.

The Motion Picture Experts Group (MPEG) developed the MPEG-4 standard [44] to
define a media format that not only encompasses audio and video but also many other
media types including synthesized music. The standard defines the Structured Audio
Orchestra Language (SAOL) as a description of music. SAOL and MIDI are similar in
that they define how to produce music using event-based musical instructions. SAOL
is distinctive in that it is more general and can describe more aspects of a musical per-
formance than MIDI. MPEG-4 also supports stream synchronization. As a framework
to build an implementation on, MPEG-4 would have been ideal except that it is a fairly
new standard and not well supported. In particular, there are not many tools for creating
and playing MPEG-4 files that use SAOL.

3An example of such a situation is described in appendix A.

CHAPTER 6. SYNCHRONIZATION 76

The Java Media Framework (JMF) supports playback of various media formats.
It supports the playback of MIDI from Standard Midi Files (SMF) as well as various
other video formats. Unlike MPEG-4, this framework cannot synchronize video with
MIDI. However, it does provide synchronization between other types of media streams.
Kroeger [30] notes that the synchronization in JMF can be troublesome due to extra lay-
ers of software between the playback mechanisms and computer hardware. A lack of
inter-stream synchronization control has been reported in previous versions of JMF as
well [45].

GStreamer is an open source library that serves as a foundation for media playback
and editing applications [22]. That is, GStreamer can be used to create programs for
playing back video and creating media files. GStreamer also provides inter-stream syn-
chronization mechanisms. However, at this time, GStreamer has no support for MIDI or
any other kind of synthesized audio.

QuickTime is the basis of the MPEG-4 format and supports many kinds of time-
based media [4]. QuickTime represents a file format (called movies in QuickTime ter-
minology), a framework to build applications that play back QuickTime movies, and a
framework for creating movies. QuickTime supports the synchronization of any time-
based media provided extensions exist to handle the media. QuickTime is extended
by the use of components which encapsulate many tasks such as playback, file reading
and writing, and media format conversion. Synthesized music is supported by standard
built-in components and so QuickTime has built-in support for synchronizing synthe-
sized music and video.

6.2.3 QuickTime Details

I chose QuickTime as the basis of my implementation. It provides everything required
for synchronizing video and music and the ways in which QuickTime interacts with
other technologies included in Mac OS X provide an ideal environment for creating a
prototype system. Implementation-specific details can be found in appendix A.

QuickTime is an Apple product although it exists for Windows [41] as well. Since
most developer documentation for QuickTime is for the Macintosh and QuickTime’s in-
teraction with other Apple technologies and products is beneficial, I chose to implement
the program on Mac OS X [3]. In particular, the technologies of CoreMIDI and Core-

CHAPTER 6. SYNCHRONIZATION 77

Master Clock

Playback
Components

Video
Audio

Music

QuickTime Movie

Video (Video Frames)

Audio (Audio Samples)

Music (MIDI data)

Tracks:

CoreGraphics
CoreAudio

CoreMIDI
CoreAudio

QuickTime
Synchronization Rendering

Data

Hardware
MIDI endpoints

Output

Hardware
Hardware

Figure 6.3: An overview of QuickTime as it relates to the playback and synchronization of media
streams. The master clock provides playback locations converted into the local time scale of each
playback component. The components request data for these locations from the movie and then
cause other software layers to render the data.

Audio are very useful. They provide very low latency audio processing, are integrated
directly with the operating system, and provide low-level access to sound hardware.
Therefore, music synthesis ought to be low latency4.

QuickTime itself acts as the sequencer of MIDI events. Events are stored in tracks in
QuickTime movies. Tracks are media streams that occur simultaneously. For example,
simple audio/video movies are made up of two tracks. Just as QuickTime is responsible
for scheduling video and audio samples to keep tracks synchronized, QuickTime also
schedules MIDI events, acting as the sequencer. CoreAudio performs the task of the
synthesizer. MIDI events can also be passed to CoreMIDI, which forwards events to
MIDI endpoints: MIDI devices connected to the computer or other programs expecting
MIDI input. Figure 6.3 provides an illustration of the relationships involved.

Specific details regarding synchronization in the prototype implementation and how
it uses QuickTime can be found in appendix A.

4Refer to appendix A for an exploration and solution of problems with synchronization using Quick-
Time’s built-in music synthesis component.

CHAPTER 6. SYNCHRONIZATION 78

6.3 Future Work

The quality of the music synthesis depends on the implementation of the MIDI synthe-
sizer components of CoreAudio. The composer might prefer better feedback by using
hardware synthesizers. Another case for external synthesizers is to avoid any latency
that QuickTime or CoreAudio may suffer from when the processing load of the com-
puter is increased. The use of hardware devices to address these issues is worth explor-
ing.

Chapter 7

The System

The previous chapters describe the major concepts and components of a system for
computer-aided soundtrack composition. A small example relating to repetition solu-
tion choosing is presented in §4.4, but there are no examples illustrating how the com-
ponents work together. This chapter provides those examples that illustrate how the
concepts of previous chapters work together as a system. Although the concepts are
general enough to allow many different implementations, most of the examples below
rely on one specific implementation: the system prototype that I refer to as EMuse.

7.1 Defining Motifs

Before continuing to general examples of the system, there is one final interaction to
address. In defining timed regular expressions, motifs are denoted by name. The name
is a placeholder for a concrete musical definition. To define timed regular expressions,
the user must to musically define motifs and link them to names.

A motif store contains a collection of motifs defined by the user. EMuse stores four
attributes for each motif:

1. a name,

2. an instrument that plays the motif,

3. a musical definition, which is a sequence of notes and rests defined in terms of

79

CHAPTER 7. THE SYSTEM 80

musical durations, and

4. a time signature so that musical durations can be assigned beat durations, e.g.
time signatures of the form x

4 assign a music-time duration of one beat to quarter
notes and rests.

Time signatures allow a user to define motifs with musical durations as in common prac-
tice notation. Notice the difference between music-time duration and musical duration.
Music-time durations are numerical values expressed in beats whereas musical dura-
tions are durations from common practice notation: quarter note, eighth rest, etc. The
music-time duration of a musical duration depends on the denominator of the time sig-
nature. Without a time signature, the user would need to specify note and rest durations
as music-time durations which is foreign to those trained in common practice notation.

Forcing each motif to have one time signature is a specific design aspect of EMuse,
and not of a general system. For instance, time signatures may be expressed as a function
of music time just as tempo is a function of clock time. The music-time duration of notes
within motifs is then determined by the time signature in effect where each note is placed
in music time. Because a single time signature for each motif is chosen the music-time
duration of a motif is constant and is independent of the placement of the motif in time,
which allows the tempo calculations from §5.4 to be used as presented.

The choice of assigning one instrument for each motif is also a specific EMuse design
decision. Allowing instruments to change in the middle of a motif is unnecessary and
makes the musical definition of motifs more complex. The user can simulate instrument
changes in the middle of a motif simply by creating smaller single-instrument motifs
and combining them in a timed regular expression.

Alternate implementations may vary from EMuse with respect to the how motifs are
treated. It is important to note that although implementation details may change, motifs
need at least a name and a musical definition to work in cooperation with timed regular
expressions.

7.2 Compositional Interface

Creating music with EMuse (and the system in general) follows this sequence of events:

CHAPTER 7. THE SYSTEM 81

1. define and edit music regions, periods of clock time to which timed regular ex-
pressions can be attached,

2. define and edit motifs,

3. define the timed regular expression for each music region,

4. choose a repetition solution, thus defining an instance, for each music region,

5. adjust the tempo function so that an instance’s clock-time duration fits the clock-
time duration of the music region to which it belongs, and

6. observe feedback and repeat previous steps to adjust the music as necessary.

The exact sequence of events is not fixed since the user can, at any time, go back to
previous steps and make adjustments. However, the steps above illustrate dependencies
which force certain actions to come before others. For example, motifs must be defined
before a timed regular expression is defined. However, once a timed regular expression
is defined, a user can change the motifs if desired.

The rest of this section inspects each of the steps in the above sequence in more detail.

7.2.1 Defining Music Regions

The first step for adding music to a music track in EMuse is to define music regions.
The entire clock-time duration of a movie is represented by a timeline. The timeline is a
visual representation of the clock-time duration of a movie. Along this timeline, music
regions are defined. Music regions have a start time, a duration, and error tolerances,
all defined in clock time. Thus, defining a music region indirectly defines d, ∆0, and ∆1

for equation 4.1. The definition is indirect because d, ∆0, and ∆1 are measured in music
time but a music region defines values measured in clock time. The tempo function is
required to convert the clock time values into music time as illustrated in §5.4.1. The start
time and duration of a music region define α and β which are used for the conversion.
Figure 7.1 provides a view of the EMuse timeline with two music regions.

Music regions are defined using a simple click-and-drag interface. Having been cre-
ated they can be moved in time, have their clock-time duration or error tolerances ad-
justed, or be removed. Changing the clock-time duration of a music region changes the

CHAPTER 7. THE SYSTEM 82

Music Regions Playback
Location

Selection KnobsEvent PointTime Line

Instance
Endpoint

Zoom
Slider

Time
Zero

Last
Time

Figure 7.1: Illustration of the EMuse timeline. The colours of the two music regions indicate
their state. The first music region has an instance attached but the duration of the instance does
not match the duration of the region. The second music region has a timed regular expression
defined but no instance has been chosen.

music-time duration of the region, as implied by §5.4.1. Moving a music region also
affects the region’s music-time duration if the tempo function is different over the time
interval to which the music region is moved. The tempo during the music region can-
not also be moved since it is not clear how this source tempo would need to integrate
with the tempo function at the destination. If the music-time duration changes and the
region has a timed regular expression attached, the repetition solution space changes,
since changes in music-time duration are changes in d from equation 4.1.

The following list enumerates the states of a music region.

1. No timed regular expression is attached, shown in figure 7.2 as the second trans-
parent music region.

2. A timed regular expression is attached but no instance has been chosen, i.e. by
choosing a repetition solution, shown in figure 7.1 as the second music region.

3. An instance has been chosen but its clock-time duration does not match the music
region’s clock-time duration, shown in figure 7.1 as the first music region.

4. An instance has been chosen and matches the music region duration, shown in
figure 7.2 as the first music region.

As the figures show, the state of a music region is represented visually via colour cod-
ing. Music regions move between states as the user interacts with the system. A user’s

CHAPTER 7. THE SYSTEM 83

Figure 7.2: Example of two music region states. The first music region has an assigned instance
whose duration exactly matches the music region. The second music region has no timed regular
expression defined.

goal is to keep music regions in state 4 listed above meaning that the music represented
by a music region will fit the given clock-time duration.

A chosen repetition solution becomes invalid if it no longer satisfies equation 4.1 as a
result of the user changing d, ∆0, or ∆1. However, not every change to these parameters
invalidates a solution. A solution is invalidated only if it does not exist in the repetition
solution space that results from the new values for d, ∆0, and ∆1.

The clock-time duration of the instance for a music region, assuming one has been
chosen, is shown visually, as in figure 7.1. The clock-time duration of the instance is
shown as a guide for adjusting the tempo function. Instance duration markers indicate
how much and in what direction tempo values need to be adjusted. EMuse shows the
instance duration markers as differences from the the music region duration as shown
in figures 7.1 and 7.12.

Also displayed on the timeline are event points. Two examples of event points are
shown in figure 7.1. In the EMuse implementation, event points serve as “snap” points
for music regions. The endpoints of music regions may lie at any point on the timeline.
When the endpoint of a music region is moving, it snaps to nearby event points. Snap-
ping serves two purposes. First, it is a convenience for users to align music regions with
specific points in clock time so that music starts or ends at that time. Second, the vi-
sual resolution of the timeline is too coarse for exact manual matching of music to event
points in all situations. Snapping improves precision. Event points in EMuse are fixed
once inserted. Deleting event points is accomplished by selecting an event point, via its
selection knob, then using a menu command. Event points are inserted at the current
movie playback location, also with a menu command.

The rest of the steps for creating music with EMuse operate on individual music re-

CHAPTER 7. THE SYSTEM 84

gions. Users indicate to EMuse which music region they want to work on by selecting it
with the mouse. The state of selection for a music region is shown visually by highlight-
ing it with a red border as shown in figure 7.1.

7.2.2 Defining Motifs

EMuse stores motifs in motif stores: every music region has its own motif store. An
alternative, where a single motif store is shared between all timed regular expressions,
can pose interface problems. First, a user must name every motif uniquely over the
entire music track. Second, if the user changes a motif that is shared among several
expressions, that motif changes in every expression which is rarely the user’s intention.
An example of a music region motif store is shown in figure 7.4.

Although EMuse does not use one, a global motif store can still be useful. The global
store can store common motifs which are then copied, instead of linked, to the local motif
stores of individual music regions when needed. The motif’s name must be qualified on
copying to a local store because its name may already be in use. In this way, a global
store is much like a painter’s palette.

EMuse represents time signatures by their denominator. The numerator of a time
signature, also called the music’s meter, specifies how many beats there are in a bar.
The numerator is necessary when determining where barlines are placed in typeset mu-
sic. For example, a time signature of 3

4 states that there are three beats to a bar. Music
typesetting is beyond the scope of EMuse, so the numerator is unnecessary. Users are
responsible for imposing a meter by the way they write music.

EMuse requires all motifs in a single music region to have the same time signature.
This design decision is made mostly to simplify the implementation but there are also
musical reasons. When composers change time signatures in standalone music, it is
usually to change the meter of the music: the number of beats in a bar. For example, the
time signature may change from 4

4 to 2
4 . Since EMuse only considers the denominator of

time signatures, changing meters frequently is not necessary.

Since motifs are defined using musical durations, such as those found in table 7.1,
when the user changes the time signature of a motif, a choice must be made:

1. does the music-time duration stay constant between time signature changes? or

CHAPTER 7. THE SYSTEM 85

〈note list〉 ::= 〈note〉〈whitespace〉〈note list〉 | 〈note〉 | ε

〈note〉 ::= 〈pitch〉‘, ’〈duration〉

〈pitch〉 ::= 〈name〉〈accidental〉〈octave〉 | ‘R’

〈name〉 ::= ‘A’-‘G’

〈accidental〉 ::= ‘b’ | ‘#’ | ε

〈octave〉 ::= ‘0’-‘9’

〈duration〉 ::= ‘W’ | ‘H’ | ‘Q’ | ‘E’ | ‘S’ | ‘Th’ | ‘Sf ’

〈whitespace〉 ::= one or more spaces

Figure 7.3: A simple grammar for textually defining notes (pitches are defined by a note name
A-G, a possible accidental, and an octave specification), rests (represented by R), and durations.
Duration abbreviations are explained in table 7.1.

2. do musical durations stay constant?

If musical durations stay constant, then the music-time duration of the motif changes: it
becomes shorter as the time signature denominator decreases. Similarly, if music-time
durations stay constant, musical durations change. The system alone cannot choose
between these two options. Therefore, the user is presented with the choice.

Motifs are musically defined by using textual abbreviations. The definition follows
the simple grammar shown in figure 7.3. EMuse recognizes only the subset of musical
durations listed in table 7.1. Other durations, e.g. tuplets, could be recognized but the
grammar for specifying durations would become more complex. A complete grammar
for specifying notes and durations lies outside the focus of EMuse and the system it
implements.

Textual definitions are an implementation simplification, and may be a poor choice
for typical users, who would probably prefer to define motifs using common practice
notation. However, such input requires music typesetting which is beyond the scope of
the system. Examples of textual motif definitions are presented in figures 7.4 and 7.5.

CHAPTER 7. THE SYSTEM 86

‘W’ Whole Note/Rest
‘H’ Half Note/Rest
‘Q’ Quarter Note/Rest
‘E’ Eighth Note/Rest
‘S’ Sixteenth Note/Rest
‘Th’ 32nd Note/Rest
‘Sf ’ 64th Note/Rest

Table 7.1: Musical duration abbreviations that EMuse recognizes for use in defining motifs.

Figure 7.4: EMuse’s interface for editing music regions which includes defining timed regular
expressions, viewing the motif store, determining the current chosen repetition solution, and
changing the time signature of a music region.

CHAPTER 7. THE SYSTEM 87

Figure 7.5: EMuse’s interface for defining and editing a motif. The time signature for the motif
is fixed to match the time signature of the music region.

7.2.3 Defining Timed Regular Expression

After motifs have been defined for a music region a timed regular expression can be
defined. Timed regular expressions are defined textually as described in chapter 3. Dur-
ing the definition of timed regular expressions, a few extra guidelines are enforced by
EMuse for practical reasons.

• Parentheses can be used to enclose a complete timed regular expression. A closure
operator may be applied after the closing parenthesis to cause the whole enclosed
expression to be repeated. Consider the following repetition expression:

(c d d) *

which could expand into:

cddcddcddcdd

• Repetition counts and * symbols must follow directly after the expression they af-
fect.

• To accommodate motif names with multiple characters, motif names not already
separated by a repetition count, the closure operator, or a parenthesis must be
separated by whitespace. For instance, the repetition expression a b* c refers to
three separate motifs, while ab* c refers to only two: ab and c .

CHAPTER 7. THE SYSTEM 88

Defining a timed regular expression for a music region then causes EMuse to calcu-
late new solutions. The RepChooser interface, which allows the user to choose a solu-
tion, is described in the following section.

7.2.4 Choosing Repetition Solutions

The visual representation of instances and methods for navigating solution spaces are
discussed in chapter 4. Using orthogonal planes to navigate the solution space allows
users to interpret choosing repetition solutions as varying repetition counts in a struc-
tured way, hiding the complexities of navigating high-dimensional spaces. This section
describes the EMuse implementation of RepChooser, using it to describe the details of
the RepChooser interface.

Figure 7.6 shows the EMuse implementation of the RepChooser. The upper display
holds the repetition expression belonging to the currently selected music region. The
lower display shows the 2D display plane upon which visual representations of repeti-
tion solutions are arranged. The display plane is a concrete visualization of an orthogo-
nal plane, a 2D slice of the solution lattice.

Each closure expression in the upper display is colour coded to match the coloured
prisms in the lower display. Parts of the repetition expression that are not part of a
closure expression, the expressions with constant music-time durations, are coloured
gray and are omitted from the the lower display unless the user chooses to display them.
The toggle button at the top-right corner of the lower display controls which of these
two representations is in effect: one that shows constant-duration expressions and one
that does not. The first representation has the added benefit of allowing RepChooser
to visualize timed regular expressions without closure expressions. Although there are
no solutions to choose from in this case, for interface consistency it is best to show the
constant-duration expression and how it relates to the target duration. Since the first
representation provides more information, it is the default one.

Figure 7.6 shows the repetition counts of a* and b* varying across the display plane
which is indicated by the controls surrounding them. By moving these controls to other
closure expressions, the user can change the display plane to show solutions that vary
in the repetition counts of other closure expressions. The two controls define the orien-
tation of the orthogonal plane and are therefore called orientation controls. Although

CHAPTER 7. THE SYSTEM 89

the display plane in the lower display doesn’t appear to rotate, moving the orientation
controls accomplishes rotation of the orthogonal plane described in §4.3.3. As discussed
in chapter 4, rotations cannot occur unless the user has selected a solution to serve as the
center of rotation. A user selects a repetition solution by clicking on a prism in the lower
display.

Figure 7.8 shows a selected repetition solution. The method of indicating selection
makes use of colour constancy, humans perceiving the colour of an object to be inde-
pendent of illumination conditions [32]. With increased illumination on the selected
instance, the user will easily associate the colours of the selected and unselected prisms
with the colours of the upper display.

The lower display shows repetition solutions found on the current orientation of the
orthogonal plane. As described in §4.3.1, the coloured segments of prisms represent time
taken by the correspondingly coloured closure expressions in the upper display. The
prisms demonstrate music-time durations since comparing specific segments displayed
using clock-time durations may be misleading. If the tempo changes within the music
region, the relative differences of durations of repeated closure expressions are distorted
if they are shown using clock-time durations.

The red and green transparent planes near the top of each prism, which I call marker
planes, are respectively the target duration and the bounds of the error tolerance. Al-
though the target duration and error tolerances are defined in clock time, EMuse con-
verts those times into music time using calculations from §5.4.1 so they can be compared
against the prisms. EMuse provides feedback by moving these marker planes dynam-
ically as the user adjusts either tempo values or the timed regular expression of the
selected music region.

EMuse allows a user to zoom in on and manipulate the display plane to see the
solutions better and to select them. Manipulating the display allows the user to view
the display plane from different angles so solutions can be compared with each other
and against the marker planes. The view is rendered using orthographic projection to
prevent the effects of perspective from interfering with solution comparisons. The lower
displays in figures 7.6 and 7.8 demonstrate different orientations and zoom levels.

The buttons labelled more and less are used to modify the repetition counts that are
constant on the plane. For example, the repetition count for c* is constant, with value
zero, in figure 7.6. Because there may be several constant repetition counts, the user

CHAPTER 7. THE SYSTEM 90

must choose which repetition count to adjust. Figure 7.8 shows a new control in the
upper display, selecting the third closure expression. This control, the orthogonal mo-
tion control, allows a user to choose which repetition count to adjust. It can be moved
to any closure expression that is not selected by other controls. This new control, along
with the more and less buttons, is the interface for out-of-plane movement, as discussed
in §4.3.3. EMuse dynamically disables the more and less buttons if the result of clicking
them would result in a plane with no solutions. The automatic disabling of the buttons
prevents the user from leaving the solution lattice.

Two repetition unknowns define an orientation for the orthogonal plane and orthog-
onal motion of the plane is along basis vectors representing the remaining repetition
unknowns, as explained in §4.3. EMuse enforces these requirements in the interface, ini-
tializing the display by choosing two closure expressions to define the initial orientation.
After this point, the user is not permitted to select a single closure expression with both
orientation controls. The user is also prevented from selecting a closure expression with
the orthogonal motion control if the expression is already selected with an orientation
control.

Figure 7.9 demonstrates the effects of reorientation. The selected solution in figure
7.8 is the center of rotation. After rotation, the same solution is selected, only shown at a
different location on the display plane. The reason for the shift is that the display plane
is just big enough to accommodate all solutions on the orthogonal plane. The resulting
display plane is then centered in the lower display1. In the new orientation, shown in
figure 7.9, the repetition count for b* is constant.

EMuse displays 1D solution lattices on the 2D display plane for interface consistency
as mentioned in §4.2.2. Figure 7.10 shows an example. The upper display in the figure
shows only one orientation control since there is only one closure expression to select.
Similarly, for 2D solution lattices, two orientation controls are displayed around the two
closure expressions. The reorientation controls are displayed for consistency and are not
strictly necessary since there is no need for reorientation when displaying 1D and 2D
solution lattices.

1The location of the selected instance on the orthogonal plane, being the center of rotation, is unaffected
by reorientations

CHAPTER 7. THE SYSTEM 91

Figure 7.6: A view of RepChooser and all navigation controls.

CHAPTER 7. THE SYSTEM 92

(a) (b)
Figure 7.7: Example of the differences between the two representations that the RepChooser’s
toggle button switches between. Figure (a) demonstrates the representation that visualizes
constant-duration expressions. Figure (b) demonstrates the simplified representation that does
not display constant-duration expressions. In both figures, b and d are the constant-duration
expressions.

7.2.5 Interacting with the Tempo Function

Adjusting the tempo is necessary for making instances exactly fit the clock-time dura-
tions of their music regions. EMuse gives one interface to the tempo function as a dis-
play parallel to the timeline as shown in figure 7.11. This figure shows a few important
features of the interface for manipulating the tempo function.

• The solid green line is the tempo function itself. The higher the line, the faster the
tempo.

• The tempo function is segmented by tempo markers: points at which the user can
adjust the tempo.

• Tempo markers can be selected by clicking with the mouse on the yellow and white
knobs at the top of each tempo marker. Selecting a tempo marker allows the user
to adjust the tempo, to move the tempo marker to a different point in clock time,
or to delete the tempo marker.

CHAPTER 7. THE SYSTEM 93

Figure 7.8: The same timed regular expression as shown in figure 7.6 except the user has zoomed
in and manipulated the display plane for easier access to an instance in order to select it. The
selected solution is highlighted. The repetition count for the closure expression c* has also been
increased by one from the state shown in figure 7.6.

CHAPTER 7. THE SYSTEM 94

Figure 7.9: Starting with figure 7.8, the user has chosen to vary two new repetition counts over
the plane. The value of the repetition count for b* becomes constant over the plane after reori-
entation.

• The slider at the right of the tempo display allows the user to adjust the tempo
for the selected tempo marker. This interface was chosen over the alternative of
making each tempo marker a slider where the user manipulates the tempo at each
tempo marker directly. Implementation simplicity was the main deciding factor.

EMuse defines two tempo markers that cannot be moved or deleted: the first and
last tempo markers. These markers exist by default when the user first begins work on
a movie. They are, however, selectable so that the user can adjust the tempo values at
those points. The user can add additional tempo markers and move them into position
to model the desired tempo function. The defined tempo function is used internally by
EMuse to perform the tempo calculations from §5.4.

By design, EMuse hides numeric tempo values in the interface. A composer of stan-
dalone music rarely specifies exact tempi. More general musical terms, such as those
found in table 2.1, are more commonly used. A performer interprets them to realize
the tempo function. Although music track composition requires choosing precise tempi,
EMuse allows users to specify tempi without them knowing exactly what those tempi
are. The goal is to make choosing a tempo for music track composition as similar as

CHAPTER 7. THE SYSTEM 95

Figure 7.10: A demonstration of EMuse presenting one dimensional data.

CHAPTER 7. THE SYSTEM 96

Fi
gu

re
7.

11
:E

M
us

e’
pa

ra
lle

lt
im

el
in

e
an

d
te

m
po

fu
nc

ti
on

di
sp

la
y.

Th
e

te
m

po
fu

nc
ti

on
,s

eg
m

en
te

d
by

te
m

po
m

ar
ke

rs
,i

s
sh

ow
n

in
th

e
up

pe
r

di
sp

la
y.

O
ne

te
m

po
m

ar
ke

r
is

se
le

ct
ed

,i
nd

ic
at

in
g

th
at

by
m

ov
in

g
th

e
sl

id
er

at
th

e
ri

gh
t

of
th

e
di

sp
la

y,
th

e
va

lu
e

of
th

e
te

m
po

fu
nc

ti
on

at
th

at
m

ar
ke

r
ca

n
be

ch
an

ge
d.

Th
e

ti
m

el
in

e
in

th
e

bo
tt

om
di

sp
la

y
sh

ow
s

tw
o

ev
en

t
po

in
ts

an
d

a
m

us
ic

re
gi

on
w

it
ho

ut
an

at
ta

ch
ed

ti
m

ed
re

gu
la

r
ex

pr
es

si
on

.

CHAPTER 7. THE SYSTEM 97

(a
)

(b
)

Fi
gu

re
7.

12
:

A
n

ex
am

pl
e

of
ad

ju
st

in
g

th
e

te
m

po
fu

nc
ti

on
to

m
ak

e
th

e
in

st
an

ce
of

a
m

us
ic

re
gi

on
m

at
ch

it
s

re
gi

on
’s

du
ra

ti
on

.
Fi

gu
re

(a
)s

ho
w

s
an

in
st

an
ce

th
at

is
sh

or
te

r
th

an
th

e
m

us
ic

re
gi

on
.F

ig
ur

e
(b

)s
ho

w
s

th
at

th
e

in
st

an
ce

du
ra

ti
on

no
w

m
at

ch
es

th
e

m
us

ic
re

gi
on

du
ra

ti
on

by
m

ak
in

g
th

e
te

m
po

sl
ow

er
.T

he
ar

ro
w

ha
s

be
en

ad
de

d
to

in
di

ca
te

m
ot

io
n

of
th

e
te

m
po

fu
nc

ti
on

.

CHAPTER 7. THE SYSTEM 98

possible to choosing tempi for standalone music.

Adjusting the tempo function without feedback is inadequate for knowing when the
tempo makes the music fit the target durations of music regions. To solve this problem,
EMuse provides feedback on the timeline as the user adjusts the tempo. As the user ad-
justs the tempo value at a tempo marker, the clock-time instance duration markers in all
effected music regions are updated dynamically. When the instance duration markers
coincide with the music region end point, the user knows the tempo is correct. Figure
7.12 shows an example of an instance duration markers. In addition to updating in-
stance duration markers, the colour of the music region changes to reflect a change in
state. Since tempo affects the repetition solution space, the RepChooser interface is also
updated dynamically as the tempo function changes, as long as the currently selected
music region has a timed regular expression attached.

To help the user quickly choose tempi, the tempo value slider “snaps” to tempo
values that cause instance and music region durations to match. EMuse dynamically
updates the snap points of the slider when a new tempo marker is selected or when
a new instance is chosen for a music region. The snap points are calculated by first
analyzing which music regions will be affected by a change and then performing the
calculations from §5.4.3 for each region. Since the physical size of the tempo slider is
small, the resolution it provides is quite coarse. Snapping allows the slider to provide
precise tempi despite the coarse resolution.

7.2.6 Getting Feedback

The final component of the system is the movie viewer. It provides feedback to the
user in the form of a digital movie played with the composed music track. Users use
the movie controls to scan through the movie and insert event points at locations in the
movie. Figure 7.13 illustrates the EMuse interface for movie playback.

The current playback location of the movie is shown in the timeline and tempo dis-
plays as a vertical red line. The line moves as the movie plays or when the user uses the
movie controls to scan the movie. EMuse uses menu commands to insert event points
at the current playback location. In the current implementation of EMuse, menu com-
mands are the only way to create event points.

Movie playback with synthesized music is accomplished using QuickTime as dis-

CHAPTER 7. THE SYSTEM 99

Figure 7.13: Example of EMuse’ movie viewer.

CHAPTER 7. THE SYSTEM 100

cussed in §6.2.3. The details of the QuickTime implementation are in appendix A.

7.3 A Concrete Example

Having described the interface details for each step of the process for making music with
EMuse have been described, let us consider an example of music creation.

First, the user inserts event points for every point of interest in the movie: cue starts,
cue ends, and hit points. Event points are inserted by scanning the movie using the
movie viewer interface, with menu commands inserting event points.

Next, the user defines a music region which stretches between two event points.
Snapping when moving music region endpoints makes it easy for the music region to
match the event points exactly.

Selecting the music region, the user edits the details of the region. Motifs are defined
as described in §7.1 and §7.2.2. They are stored in the selected music region’s motif store.

The motifs having been defined, the user creates a timed regular expression, after
which the RepChooser display shows possible repetition solutions for the expression.
Also, the colour of the music region on the timeline changes to indicate that a timed
regular expression has been attached.

Before selecting an instance, the user decides that the tempo should increase from the
default value at the start of the music region to a faster tempo at the end, and inserts two
tempo markers, one coinciding with the event point at the start of the music region and
the other coinciding with the event point at the end. At this point, the tempo function
has not changed. The user then selects the tempo marker at the end of the music region
and, using the tempo value slider beside the tempo display, increases the tempo. The
RepChooser display is updated automatically to reflect the changes.

The user now focuses on choosing a repetition solution. A solution is chosen fol-
lowing a sequence of events covered in §4.4. Whenever a repetition solution is selected,
the selected solution creates an instance which is attached to the selected music region.
Again, the music region changes colour to reflect the change in state. The instance hav-
ing been selected, an instance duration marker appears on the timeline.

Having found a repetition solution, the user makes fine adjustments to the tempo
function so that the attached instance fits its music region. While adjusting the tempo

CHAPTER 7. THE SYSTEM 101

function, both the instance duration marker and the RepChooser display are updated to
reflect the changes. The snap points on the tempo value slider allow the user to set the
tempo precisely so that the instance fits its music region.

To see if the selected instance works well with the video, the user uses the movie
viewer to play back the movie with the existing music track. Depending on what the
user hears, the user may decide to move on to creating other music regions or to change
any of the previous steps to alter the music for the existing music region.

7.4 Future Work

As mentioned in §7.2.2, the textual interface for defining motifs may not be optimal.
Although it is simple to use, it is foreign method to define motifs to users habituated
to common practice notation. Therefore, an avenue of future research is to implement
graphical motif definition as score writing programs do.

Event points currently are guides for the user when placing music regions. It is
possible to anchor music region endpoints to event points so that if event points move,
attached region endpoints move with them. In this way, the user need only move an
event point and the system adjusts the music regions automatically.

Karlin [28] notes that always aligning beats with hit points causes the music to sound
contrived. EMuse allows users to place music wherever they desire but since only the
endpoints of music regions snap to event points, EMuse does not provide any help for
aligning hit points to points within a music region. The addition of this capability to
EMuse may make it easier for users to write better soundtrack music.

Currently, the user alters the tempo function by adjusting the tempo at one tempo
marker at a time. However, it would be useful for the system to maintain the shape of the
tempo function while the user increases or decreases the general tempo. For example,
the user has defined a constant tempo over a duration and now wishes to increase the
tempo but while maintaining the unchanging nature of the tempo. The current interface
would need modifications to support this behaviour automatically. The tempo calcula-
tions discussed in §5.4.3 can be extended to maintain the shape of the tempo function.

Chapter 8

Conclusions

The preceding chapters describe components that combine to create a system that helps
a user create a music track. The computer helps by:

• performing conversions between clock time and music time,

• filling clock-time durations with music following the user’s high-level directions,

• leaving the user in complete control over the music, and

• synchronizing digital video with synthesized music to provide feedback.

I will now turn to an analysis of the system and examples that show music tracks with
created by the system.

8.1 Results

EMuse, as an implementation of the proposed system, serves two purposes: validating
that the proposed system is complete and correct enough to allow a concrete implemen-
tation, and showing that it is possible to produce music using an implementation of the
system. The existence of EMuse supports the first point. As support for the second
point, EMuse was used to create music tracks for two animations.

The first animation is Metamorphosis of the Cube by Demaine et al. [16]. The animation

102

CHAPTER 8. CONCLUSIONS 103

originally featured Philip Glass’ work Opening1 [20] for the music track: a piece in the
minimalist style. The name of the animation refers to the unfolding and refolding of a
cube in several different ways. The animation is made up three simple types of motion:
rotation, unfolding, and folding. Occasionally, the motion pauses as one set of fold lines
disappears to be replaced by a different set. The transition between each type of motion
is well defined by points in clock time. The exact transition points and simple nature of
the visual component make the animation ideal for demonstrating the ability of EMuse
to create music tracks. In the following discussion, examples from the music track will
be referred to using durations since the beginning of the animation in the following
format: minutes:seconds.fraction of a second.

The music track composed with EMuse is unlike normal movie music in that the
entire animation is one cue with music starting and ending with the movie. The music
track represents a style of music track composition called mickey mousing [12] since
the music mimics the action very closely; something often seen in cartoons. That is,
the music mimics each of unfolding, folding, and rotation and the music changes when
the motion changes. Although the tempo is fairly constant throughout, examples of
tempo changes can be found at 0:39.33 for about one second and at 1:29.27 until the
end. Due to the small amount of time between changes in motion, most of the timed
regular expressions for the music track use only one closure expression. An example of
an expression with two closure expressions can be found at 1:05.81. The first two music
regions, from 0:0.0 to 0:15.3 and from 0:15.3 to 0:19.27, illustrate how the user can impose
a sense of meter on the music without relying on EMuse to divide music into measures.
Examples of the motifs used in the music track can be found in table 8.1.

The second animation, for which EMuse was used to create a music track, differs
from the first in several ways. First, the animation has slightly more emotional content
than the first animation to guide the music. Second, the music track is split into multiple
cues of different lengths. Third, three different instruments are used over the course of
the music track whereas the first animation uses only one: a piano. Fourth, the music
track does not make hits as often as the first animation. A reduction in the number of
hits makes the music more flexible and therefore single timed regular expressions can
cover longer durations of time. Music regions for the first animation are approximately
4 seconds in duration on average. Music regions in the second animation are as long
as 22 seconds. Finally, due to increased music region durations, the dimensionality of

1The title of the video would seem to hint at Philip Glass’ Metamorphosis instead.

CHAPTER 8. CONCLUSIONS 104

Expression Motifs

(a b) *

a

! ! ! !"

b

! !" ! !#

c

! !" ! !#

a* b b c *

a

! !"

b

! !"

c

! !"

Table 8.1: Examples of motifs used in the Metamorphosis of the Cube animation.

repetition solution spaces is higher on average. Timed regular expressions for the first
animation generally have one closure expression; two at most. By contrast, the first mu-
sic region of the second animation contains a timed regular expression with five closure
expressions.

I composed both music tracks using previous knowledge of music theory. Any
knowledge regarding the technical details of soundtrack composition I gained from my
research remained unused since EMuse reveals no specific tempo values nor provides
any way to input them. It is clear that not only is it possible to create music tracks with
EMuse, it is also possible to do so without being aware of the mathematical details that
EMuse handles.

8.2 Analysis

An important goal of the system is to find the right level of separation of work between
composer and computer, as described in §1.2. There are many examples of systems that

CHAPTER 8. CONCLUSIONS 105

operate at an inappropriate level: algorithmic composition operates at too high of level
since the computer assumes too much control; music programming languages operate at
too low a level since the composer must do more work than working without a computer
(§2.5). Timed regular expressions provide an ideal level of separation between composer
and computer. They allow a user to specify how a system can automatically fill time with
music. Users need only specify the motifs of a timed regular expression once and let the
system handle the repetition of those motifs. Even though the system is performing
work on behalf of the user, the user still has complete control over the results through
the definition of timed regular expressions and through choosing repetition solutions.

Timed regular expressions can operate at different levels to accommodate user pref-
erences as discussed in §3.3.3. Closure expressions allow the system to perform work
on behalf of the user by calculating possible repetition counts. However, the user can
choose not to use closure expressions and define timed regular expressions as constant-
duration expressions for more control. The ability of timed regular expressions to be
useful at multiple levels means they can be interpreted as a language for sketching mu-
sic where the amount of information or freedom of interpretation in a sketch depends on
the composer. Additionally, timed regular expressions are a form of sketch suitable for
computer interpretation where the computer has no creative input. Timed regular ex-
pressions provide the composer with complete control over the music while being well
suited for specifying repetitive music.

Since movie music should not feature complex large-scale structure, it tends to focus
on small scale structure. The small-scale repetition found in minimal music makes it
well suited for music track composition. The system EMuse implements is designed
with this idea in mind, making it easier to create music tracks based on minimalism
than on other styles of music. Since the system is also designed to provide a user with
complete creative control, it does not actively prevent the user from composing music
tracks in other styles. However, many of the aides that the system provides, e.g. filling
time with music and performing tempo calculations, will not be useful for other styles
of music. An important direction for future work is to investigate ways in which the
system can help write music tracks in other styles as it does for minimalism.

The presented system offers music representation advantages over other notations
such as common practice notation. Common practice notation serves as a model for
many existing computer applications for representing music. That is, music is repre-

CHAPTER 8. CONCLUSIONS 106

! "

#$

#
##
#
#% 4

4Violin 1

% 4
4Violin 2

&
4
4Cello

#

#

'
3

#

#

3

#

#
3

#
#
#

(

)

#

#
3

#
#
#

*

#
3#

#
#

3

#
#
+

#* # #
#
,"

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Figure 8.1: Demonstration of a single musical idea, a descending motif highlighted by gray
boxes, passing between multiple instruments. Using timed regular expressions, the contents of
the gray boxes could be placed on a single timeline or in a timed regular expression for a more
natural grouping.

sented by parallel timelines2 where each line describes musical events temporally for
one instrument. Timed regular expressions also define a sequence of musical events
over time but are not limited to a single instrument. Consider an extension to EMuse
where music regions can be defined on multiple parallel timelines. Unlike common
practice notation where each line is restricted to a single instrument, each timeline in the
extended version of EMuse may contain events for many instruments.

Users are therefore free to interpret timelines as they wish. They may enforce the
common practice notation standard of one instrument per line by declaring all timed
regular expressions on a line to be played by a single instrument. However, it may be
more useful to use timelines for grouping musical ideas instead of instruments. Of-
ten, a musical statement or idea is passed between several instruments as in figure 8.1.
In common practice notation, these ideas are hard to recognize because they move be-
tween timelines. Users may prefer a representation that groups musical ideas on a single
timeline which is possible with timed regular expressions.

When using repetition expressions with closure expressions, there are usually many
possible repetition solutions, as described in chapter 4. For users to maintain complete
control over music generated by the system, they need to be able to choose a solution.
Choosing a solution reduces to navigating and visualizing a high-dimensional space,
posing a serious usability challenge. RepChooser provides an interface that wraps the
complexities with a small set of navigation controls and a visualization method that are
more understandable. The navigation controls have interpretations that can be under-

2A musical staff in common practice notation is a representation of a timeline.

CHAPTER 8. CONCLUSIONS 107

stood in terms of varying repetition counts instead of moving and reorienting a slice of
a solution lattice. The visualization of repetition solutions is simplified since only so-
lutions that lie in two dimensions need to be visualized at a time. The visualization of
repetition solutions as coloured prisms makes patterns between solutions easy to recog-
nize by relying on the human visual system’s ability to interpret data from many parts
of the field of vision simultaneously.

EMuse hides all technical details from the user. The system I describe makes com-
posing music tracks as similar as possible to composing standalone music. This does
not imply that composers of standalone music can now write good music tracks. The
art of music track composition involves an understanding of how music and video fit
together which is a specialization of which composers of standalone music are not gen-
erally aware. However, the system allows composers to focus on the creative and artistic
aspects of creating a music track without being bothered by the technical details. Ap-
plications such as The Auricle cannot provide this abstraction since they are designed
as “calculators” that help a composer with the technical aspects of soundtrack composi-
tion. As with basic arithmetic calculators, the user must still be aware of the underlying
problems to provide useful input to and be able to use output from the calculator.

The careful assignment of work to the computer results in a system that amplifies
users’ creativity by helping with the creative hurdles faced during music track com-
position. In particular, choosing tempi to make music exactly fit timings based on the
visual component involves mathematical calculations that music track composers need
not face. Instead of automating the task of choosing tempi, as The Auricle does, the
system I present is closer to the composition of standalone music where the user may
choose tempi and music freely. The system allows a user to first specify music, an ap-
proximate tempo, and a duration in which the music should fit. Through mathematical
calculations, the system provides feedback to the user for making fine adjustments to
the tempo function that make the music fit exactly. This approach allows users to focus
on creative aspects of music track composition.

Another problem movie composers face, that the system helps with, is changed tim-
ings. If timings change, the music must be adjusted to match which is a labourious and
difficult task. The system I present allows users to specify music from a higher level,
one that empowers the computer to make readjusting music a simpler task for the user.
When a changed event point affects music durations, the user can rely on the system’s

CHAPTER 8. CONCLUSIONS 108

ability to calculate possible repetition solutions for timed regular expressions and choose
a new solution that better fits the new duration. The sketch-like flexibility of timed regu-
lar expressions allows the system to rewrite music, with the user’s guidance, in an easier
way.

8.3 Future Work

Avenues for future work have been presented in each chapter of the thesis. That fu-
ture work focuses individual components of the system. However, there are other more
general areas for future work.

Polyphonic music has been mentioned several times and its inclusion in the system
hinted at. It is the most common type of music and is an obvious next step. Poly-
phonic music can be supported in two ways. First, motifs themselves can be made poly-
phonic and then placed one after the other on a single timeline. Second, monophonic or
polyphonic motifs can be arranged on multiple parallel timelines. The use of multiple
timelines allows timed regular expressions to overlap in time and occur simultaneously.
Multiple timelines also allow composers to group music thematically where “themes”
may occur at the same time. More controls are needed to link events common to multiple
simultaneous music regions. For example, if multiple timelines were added to EMuse
without the necessary controls, making timed regular expressions on different timelines
play together as one would be difficult. The resultant music is likely to be similar to
music by Charles Ives where two different musical ideas are juxtaposed like two per-
forming marching bands passing each other in a parade. Therefore, controls that link
two timed regular expressions so they align around common events are necessary. For
example, changes made by the user to one timed regular expression should affect other
linked expressions in some way.

In general it is worthwhile to make music specification more complete. The music
specification of the presented system is limited, making it difficult to create interesting
music. However, music specification is limited only so that the system can address more
fundamental problems. With a more complete system for music specification, users are
free to create more interesting music. However, some aspects of music specification pose
non-trivial problems, such as the challenges of polyphony described above.

Another challenge is extending the ideas presented, which are based around one par-

CHAPTER 8. CONCLUSIONS 109

ticular style of music, to handle other styles of music. Minimalism may be well suited
for music tracks but not all movies are well suited to minimalism. Therefore, it is impor-
tant to accommodate other styles of music. Required are new techniques for sketching
music of other styles in a way a computer can interpret, without being creative.

The system is designed to hide nearly all numerical information from the user. That
is, the user is never explicitly provided with repetition counts, tempo values, timings,
etc. The goal is to prevent users from having to face numbers that they do not need to be
aware of to write music. The goal is inspired by the lament of composers who feel their
creativity to be hampered by the technical side of music track composition. However,
actively hiding these details may hinder other users that want specific numeric infor-
mation to guide their work. For example, a user may want to know how many beats
fit between two points of clock time or what fraction of a beat an event point occurs at
which can be useful for defining music. An interface that caters to both kinds of users,
users who want access to numerical information and those that do not, would be an
interesting extension to the system.

This thesis presents an idea for a system for music track composition. A realization
of this system, EMuse, is also described to demonstrate that the ideas are sound. EMuse
represents a kind of existential proof that the system can be useful for some users. An
important next step is to conduct user trials regarding the usefulness of the system.
In addition to quantifying the usability of various aspects of the system, the trials can
extend the existential proof into a more universal one.

Bibliography

[1] Steven Abrams, Ralph Bellofatto, Robert Fuhrer, Daniel Oppenheim, James Wright,
Richard Boulanger, Neil Leonard, David Mash, Michael Rendish, and Joe Smith.
Qsketcher: an environment for composing music for film. In C&C ’02: Proceedings
of the 4th Conference on Creativity & cognition, pages 157–164, New York, NY, USA,
2002. ACM Press.

[2] Apple Computer, Inc. Apple – Final Cut Studio – Soundtrack Pro [on-
line, cited November 24, 2005]. Available from: http://www.apple.com/

finalcutstudio/soundtrackpro/ .

[3] Apple Computer, Inc. Apple – Mac OS X [online, cited November 15, 2005]. Avail-
able from: http://www.apple.com/macosx/ .

[4] Apple Computer, Inc. Quicktime [online, cited November 14, 2005]. Available from:
http://developer.apple.com/quicktime/ .

[5] Apple Computer, Inc. Quicktime Sample Code [online, cited December 4, 2005].
Available from: http://developer.apple.com/samplecode/QuickTime/

index.html .

[6] Apple Computer, Inc. Apple – Logic [online]. 2005 [cited November 1, 2005]. Avail-
able from: http://www.apple.com/logicpro/ .

[7] Auricle Control Systems. Welcome To The Auricle [online]. 2005 [cited November
1, 2005]. Available from: http://www.auricle.com .

[8] P. Bellini and P. Nesi. Automatic justification and line-breaking of music sheets.
International Journal of Human-Computer Studies, 61(1):104–137, 2004.

110

BIBLIOGRAPHY 111

[9] J Bilmes. A model for musical rhythm. In International Computer Music Conference,
pages 207–210, San Francisco, 1993.

[10] Dorothea Blostein and Lippold Haken. Justification of printed music. Communica-
tions ACM, 34(3):88–99, 1991.

[11] Richard Boulanger. The Csound Book: Perspectives in Software Synthesis, Sound Design,
Signal Processing, and Programming. MIT Press, 2000.

[12] George Burt. The Art of Film Music. Northeastern University Press, 1994.

[13] Stephen Daldry. The Hours. Film, 2002. ©Paramount Pictures and Miramax Film
Corp.

[14] R. B. Dannenberg. An on-line algorithm for real-time accompaniment. In D. Wessel,
editor, Proceedings of the 1984 International Computer Music Conference, pages 193–
198, San Francisco, 1984. International Computer Music Association.

[15] R. B. Dannenberg. Music Representation: Issues, Techniques, and Systems. Com-
puter Music Journal, 17(3):20–30, 1993.

[16] Erik Demaine, Martin Demaine, Anna Lubiw, Joseph O’Rourke, and Irena
Pashchenko. Metamorphosis of the cube. In SoCG ’99: Proceedings of the 15th Annual
Symposium on Computational Geometry, pages 409–410. ACM Press, 1999.

[17] Norman Dixon and Lydia Spitz. The detection of auditory visual desynchrony.
Perception, 9(6):719–721, 1980.

[18] Mary Farbood and Bernd Schoner. Analysis and synthesis of palestrina-style coun-
terpoint using Markov chains. In International Computer Music Conference, 2001.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, NY, USA, 1979.

[20] Philip Glass. Opening. Printed Music, 1982. ©Dunvagen Music.

[21] Georges Grinstein, Marjan Trutschl, and Urřka Cvek. High-dimensional visualiza-
tions. In Proceedings of Workshop on Visual Data Mining, ACM Conference on Knowledge
Discovery and Data Mining, pages 1–14, 2001.

BIBLIOGRAPHY 112

[22] GStreamer Project Authors. GStreamer [online, cited November 14, 2005]. Available
from: http://gstreamer.freedesktop.org/ .

[23] Henkjan Honing. From time to time: the representation of timing and tempo. Com-
puter Music Journal, 35(3):50–61, 2001.

[24] Bruce L. Jacob. Composing with genetic algorithms. In International Computer Music
Conference, 1995.

[25] David Jaffe. Ensemble timing in computer music. Computer Music Journal, 9(4):38–
48, 1985.

[26] Sanjini Jayaraman and Chris North. A radial focus+context visualization for multi-
dimensional functions. In VIS ’02: Proceedings of the Conference on Visualization ’02,
Washington, DC, USA, 2002. IEEE Computer Society.

[27] Michael O Jewell, Mark S. Nixon, and Adam Prügel-Bennet. Cbs: a concept-based
sequencer for soundtrack composition. In Proceedings of 3rd International Conference
on Web Delivering of Music, pages 105–108, 2003.

[28] Fred Karlin and Rayburn Wright. On the Track: A Guide to Contemporary Film Scoring.
Routledge, New York, 2nd edition, 2004.

[29] D. Keane, G. Smecca, and K. Wood. The MIDI Baton II. In S. Arnold and G. Hair, ed-
itors, Proceedings of the 1990 International Computer Music Conference, San Francisco,
1990. International Computer Music Association.

[30] Robert Kroeger. Admission Control for Independently-Authored Realtime Applications.
PhD thesis, University of Waterloo, Waterloo, Ontario, Canada, 2004.

[31] Jim W. Lai. Implementation of colour design tools using the OSA uniform colour
system. Master’s thesis, University of Waterloo, 1991.

[32] Edwin H. Land and John J. McCann. Lightness and retinex theory. Optical Society
of America, 61(1):1–11, 1971.

[33] Tom Lanning, Kent Wittenburg, Michael Heinrichs, Christina Fyock, and Glenn
Li. Multidimensional information visualization through sliding rods. In AVI ’00:
Proceedings of the Working Conference on Advanced Visual Interfaces, pages 173–180,
New York, NY, USA, 2000. ACM Press.

BIBLIOGRAPHY 113

[34] Jeffrey T. LeBlanc, Matthew O. Ward, and Rajeev Tipnis. N-land: a graphical tool
for exploring n-dimensional data. In Proceedings of Computer Graphics International
Conference, 1994.

[35] Gareth Loy. Composing with computers – a survey of some compositional for-
malisms and music programming languages. In Max Mathews and John Pierce,
editors, Current Directions in Computer Music Research. MIT Press, Cambridge, Mas-
sachusetts, 1989.

[36] Gareth Loy and Curtis Abbott. Programming languages for computer music syn-
thesis, performance, and composition. ACM Computing Surveys, 17(2):235–265,
1985.

[37] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang,
B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design gal-
leries: a general approach to setting parameters for computer graphics and ani-
mation. In SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, pages 389–400, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[38] M. Matthews and F.R. Moore. Groove – a program to compose, store, and edit
functions of time. Communications of the ACM, 13(12):715–721, December 1970.

[39] Jon McCormack. Grammar based music composition. In Complex Systems: From
Local Interactions to Global Phenomena. ISO Press, 1996.

[40] Wim Mertens. American Minimal Music. Alexander Broude Inc., New York, 1983.

[41] Microsoft Corporation. Microsoft Windows Family Homepage [online, cited
November 15, 2005]. Available from: http://www.microsoft.com/windows/

default.mspx .

[42] MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Specification, ver-
sion 96.1 edition, March 1996.

[43] Suneil Mishra. The “mkmusic” system - automated soundtrack generation for com-
puter animations and virtual environments. Master’s thesis, University of Glasgow,
Glasgow, Scotland, May 1999.

BIBLIOGRAPHY 114

[44] Motion Picture Experts Group. MPEG-4 description [online]. 2002 [cited
November 14, 2005]. Available from: http://www.chiariglione.org/mpeg/

standards/mpeg-4/mpeg-4.htm .

[45] Sebastian Nykopp. A java-based presentation system for synchronized multimedia.
Master’s thesis, Helsinki University of Technology, 1999.

[46] D. Oppenheim. The need for essential improvements in the machine composer
interface used for the composition of electroacoustic computer music. In Proceedings
of the 1986 International Computer Music Conference, 1986.

[47] Godfrey Reggio. The Qatsi Trilogy [online]. 1983-2002 [cited December 19, 2005].
Available from: http://www.koyaanisqatsi.org/ .

[48] Curtis Roads. The Computer Music Tutorial. The MIT Press, 1996.

[49] John Rogers, John Rockstroh, and Philip Batstone. Music-time and clock-time simi-
larities under tempo change. In International Computer Music Conference, pages 404–
442, 1980.

[50] Joseph Rothstein. MIDI: A comprehensive Introduction, volume 7 of The Computer
Music and Digital Audio Series. A-R Editions, Inc., Madison, Wisconsin, 1992.

[51] William Schottstaedt. Pla: A composer’s idea of a language. In Curtis Roads, editor,
The Music Machine. MIT Press, 1989.

[52] William Shottstaedt. Automatic counterpoint. In Current directions in computer music
research, pages 199–214. MIT Press, Cambridge, MA, USA, 1989.

[53] William Shottstaedt. A computer music language. In Max Mathews and John
Pierce, editors, Current Directions in Computer Music Research. MIT Press, 1989.

[54] Karl Sims. Artificial evolution for computer graphics. In SIGGRAPH ’91: Proceed-
ings of the 18th Annual Conference on Computer Graphics and Interactive Techniques,
pages 319–328, New York, NY, USA, 1991. ACM Press.

[55] Society of Motion Picture and Television Engineers. SMPTE.org [online, cited
November 15, 2005]. Available from: http://www.smpte.org/ .

BIBLIOGRAPHY 115

[56] Sony. Sony Media Software – ACID Pro 5, ACID Music Studio, and ACID
XMC [online, cited February 16, 2006]. Available from: http://www.

sonymediasoftware.com/products/acidfamily.asp .

[57] The Sibelius Group. Sibelius [online]. 2005 [cited November 1, 2005]. Available
from: http://www.sibelius.com/ .

[58] W.S. Torgerson. Theory and Methods of Scaling. Wiley, New York, 1958.

[59] Lisa Tweedie, Bob Spence, Huw Dawkes, and Hua Su. The influence explorer. In
CHI ’95: Conference companion on Human factors in computing systems, pages 129–130,
New York, NY, USA, 1995. ACM Press.

[60] Lisa Tweedie, Bob Spence, David Williams, and Ravinder Bhogal. The attribute
explorer. In CHI ’94: Conference companion on Human factors in computing systems,
pages 435–436, New York, NY, USA, 1994. ACM Press.

[61] Kent Wittenburg, Tom Lanning, Michael Heinrichs, and Michael Stanton. Parallel
bargrams for consumer-based information exploration and choice. In Proceedings
of the 14th Annual ACM Symposium on User Interface Software and Technology, pages
51–60, 2001.

Appendix A

QuickTime Synchronization Details

QuickTime is a media framework that supports many different kinds of time-based me-
dia. The capabilities of QuickTime are divided into components: self-contained units
that implement a particular task. Some example components are components for read-
ing and writing movies from different storage media, playing back media, and convert-
ing data from one form to another. The standard QuickTime components implement
these tasks for basic media: video, audio, and synthesized music. QuickTime’s ability to
synchronize video and synthesized music was one of the major reasons it was chosen as
the synchronization framework for EMuse.

The QuickTime Music Architecture (QTMA) is an architecture made up of multiple
components that provide music synthesis within QuickTime. The QTMA defines a pro-
tocol, encompassing MIDI, for defining musical events. One of the QTMA components
is the QuickTime software synthesizer. QTMA events drive the QuickTime synthesizer
just as MIDI events drive MIDI synthesizers.

QuickTime movies are made up of a collection of tracks, as discussed in §6.2.3, which
contain the data of the various media to be synchronized. For example, a movie that
synchronizes synthesized music and video contains two tracks: one with QTMA data
and another with video frames. The playback of each type of track is handled by media
handler components.

116

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 117

(a) (b) (c)

Figure A.1: Three frames from the bouncing ball animation. Movement indicators have been
added to these figures to indicate movement. Figure (b) shows the point at which the ball collides
with the plane. This is the point at which a percussive sound should occur in the music track.

A.1 Problems with QTMA

To test the synchronization of QTMA data and video, I created an animation of a bounc-
ing ball, shown in figure A.1. The time between each collision with the plane is constant.
A ten second animation was calculated and rendered to create the video track of a Quick-
Time movie. Each frame of the animation was created by using OpenGL to render to an
offscreen render target. The video frame is then extracted from its place in memory and
inserted into the video track. The video track was left uncompressed.

Using timing information from the bouncing ball simulation a QTMA music track
was created and added to the movie. For increased accuracy, millisecond precision was
used for the QTMA track. The QTMA track was made up of events that trigger percus-
sive notes to sound at times when the ball hits the plane. Percussive sounds were used
for their short note onsets.

The completed two-track movie was played back using the Mac OS X version of
QuickTime Player version 7. It was immediately clear that QTMA suffers from latency
problems. The percussive sound that signals the ball’s collision with the plane consis-
tently occurs after than the visual event. If the movie is paused and restarted, the QTMA
track becomes completely desynchronized with the video track. The difference in syn-
chronization between the two tracks is apparently random. The same effect is observed
if the playback is suspended and allowed to resume at some other point.

As a first step to solving these problems, I set out to measure the latency in hopes
it could simply be adjusted for. The complete desynchronization issues would be ad-
dressed later.

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 118

A.2 Latency Experiment

To measure latency, I carried out a simple perception experiment1. The experiment con-
sists of five trials where each trial consists of watching a QuickTime movie. Each movie
is made up of twenty consecutive ten-second segments with two-second spaces before
segments. Each segment displays the bouncing ball animation. Each two-second space
displays a number on a black background with no sound. The numbers serve to label
the segment that follows. All sound generating events for a segment are offset from
actual calculated times by a constant. Offsets, different for each segment, range from -
300ms, which move events earlier in time, to 100ms, which move events later in time, in
20ms increments. The range favours moving events earlier in time since it was already
observed that sounds placed at calculated times occur late.

A computer program creates a trial by randomly assigning each of the twenty con-
stant offsets to the twenty segments, one offset per segment. The output of the program
is a single QuickTime movie containing twenty segments and a text file listing how the
offsets were assigned. The computer program is run five times to generate data for five
trials. Due to random assignment, the order in which offsets are assigned to the seg-
ments is different for each trial.

An experimental subject observes all segments of each trial. For each segment, the
subject is asked to determine if the sound of the collision comes before or after the event
in the video. The subject is asked to force a decision between “before” and “after” if the
video and audio appear to synchronize.

After running the trial on myself, as I was unaware of offset assignments, the exper-
imental results indicated the QTMA track lagged the video track by 100ms. The experi-
ment also indicated that the latency did not change over the course of a trial. Therefore,
it is possible to account for the latency in sound generated by QTMA events by simply
making events happen 100ms earlier than they should.

However, the random desynchronization problems could not be solved without ac-
cess to the internals of the QTMA media handler. It was also discovered that QTMA had
been deprecated and would not likely be fixed. I therefore set out to replace it.

1I am only interested in perceived latency since a human is viewing the movie.

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 119

A.3 Creating a Derived Media Handler

A derived media handler (DMH) is a sub-type of media handler components. DMHs
implement a subset of a full media handler’s capabilities: those capabilities that are
publically known. Base media handlers, another sub-type of media handlers, provide
capabilities common to all media handlers. Any requests that a DMH does not recognize
are passed to the base media handler to handle. Since the requests a base media handler
handles are unknown and derived media handlers are all that are required to enable
QuickTime to work with new types of media, a derived media handler was implemented
to replace QTMA for playback of synthesized music.

I designed a new media type, called the EMuse media type (EMT), that stores MIDI
events directly in the track instead of using QTMA events. For music synthesis, I use
CoreAudio instead of the QuickTime software synthesizer. CoreAudio is built into the
Mac OS X operating system and exhibits very low latency as it can interface directly
with audio hardware. Precision is a focus of CoreAudio’s design and therefore CoreAu-
dio allows useful high-precision performance measurements such as measurements for
latency. The programming interface of CoreAudio is arranged into audio units each of
which perform some basic function: mixing, rendering, effects, etc. One of these units is
the music device audio unit, or simply music device, which performs music synthesis
using MIDI events.

There are several interfaces that are provided with CoreAudio to provide additional
functionality. For example, AUGraphs provide a simple mechanism for connecting the
inputs and outputs of audio units together to form a multi-step audio processing net-
work. Another example is Music Player. Music Player provides high-precision MIDI
event sequencing. It sequences events and sends them through a simple AUGraph con-
taining a music device for synthesis. The EMT DMH utilizes Music Player for accurate
sequencing.

During playback, QuickTime provides a steady stream of time data to the DMH
indicating the current playback location of the movie. The time data is already expressed
in the track’s local time frame. A DMH uses provided time data and the QuickTime API
to query data from an EMT track. The retrieved data is then sent to Music Player where
the data is queued up for sequencing. Therefore, QuickTime plays the part of feeding
the Music Player buffers while Music Player is continuously extracting events from the

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 120

buffer as it comes time for the events to be synthesized.

A.3.1 Implementation Details

Little documentation exists for creating DMHs although there are several code samples
of components, not always DMHs, found in Apple’s online QuickTime documentation
[5]. By using documentation, code samples, and experimentation I was able to create a
working DMH. The details provided below provide a brief description of how to create
a working DMH as well as details on the EMT DMH.

A component is similar to the concept of a class from object-oriented programming.
A component has a collection of operations that a user may request just as classes have
member functions. A component also has internal state in the form of a data structure
that the component declares. A component’s state is similar to a collection of the member
variables of a class. The state is inaccessible outside of a component instance but every
component operation has access to an instance of the state associated with a component
instance.

A component instance has a life cycle similar to an object as well. A component in-
stance is created by a call to OpenComponent() . Calls to open a component are directed
at the operating system which creates the component instance. Once the component is
opened, the component instance is automatically initialized by calling the component’s
initialization function which acts like a class constructor. A call to CloseComponent()

causes the component to be deallocated as with class destructors. Open, initialize, and
close requests are all received by component instances so they can adjust their internal
state accordingly. Therefore, these are all functions that a component must handle. Table
A.1 describes the open, close, and initialize requests.

All requests to a component arrive at the component via its entry point or dispatch
function. As the name implies, the dispatch function analyzes the type of the received
request and calls the appropriate internal function to handle that request. If the dispatch
method does not recognize the request type, it should send the request to a delegate
component: the base media handler in the case of DMHs. The dispatch function is one
of the functions a component must implement. Table A.1 describes basic requests that a
component should implement.

All standard requests are represented by constants defined in the QuickTime API.

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 121

The functions for standard requests also have pre-defined function signatures. Standard
requests are those that are required for basic functionality of a component and which
QuickTime will use for creating and playing back media. It is possible to define custom
requests if required. All DMH-related constants and function signatures are defined in
the files MediaHandlers.h and MediaHandlers.k.h found in the QuickTime API.

Before a component can be used, it must be registered with the operating system.
The simplest method is to locally register the component for one application only. This
is achieved by using the RegisterComponent() function. This function accepts, as
one of its parameters, an address of the component’s dispatch function to identify the
component’s entry point. The componentName and componentInfo parameters of
this function must not be NIL 2. To globally register a component, it needs to be prepared
in the form of a bundle and placed in a special location in the file system where the
operating system looks for components.

A.3.2 EMT DMH Details

Data in any QuickTime track is stored in the form of samples. A sample is data that is
played for a usually short period of time. For video and audio, samples are well defined
as video frames and audio samples respectively. However, the events of synthesized
music do not occupy time themselves but mark the endpoints of periods of time. Since
MIDI events must be stored in samples regardless, EMT samples are actually collections
of events that may span long and variable lengths of time. The EMT definition of a
sample is that a sample should hold events that represent self-contained music. That
is, no event should start sound that is still sounding after the first event of the sample.
Likewise, no event in the sample should start sound that is still sounding after the end
of the sample.

QuickTime provides playback location times whenever it calls the EMT idle function.
These times are used in calls to GetMediaSample() to extract the correct sample from
the EMT track. Since samples may last long periods of time, subsequent calls to the
idle function may refer to the same sample. Therefore, the EMT DMH remembers the
samples that it has loaded already. When a sample is first loaded, the event data is added
to the Music Player buffers. Then the component’s internal state is updated to remember

2The online documentation, at the time of writing claims that these parameters can be NIL .

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 122

kComponentOpenSelect A request to open the component. This
request is sent after the operating system
has created the instance. The compo-
nent instance should allocate memory
for internal state and open a connec-
tion to the base media handler, e.g.
using OpenDefaultComponent() .
The operating system needs to know
that the memory allocated for inter-
nal state is actually internal state using
SetComponentInstanceStorage() .

kComponentCloseSelect A request to close the component. The con-
nection to the base media handler should be
closed and memory for internal state deallo-
cated.

kMediaInitializeSelect A request to initialize internal state.
kComponentCanDoSelect A request to ask if a component can handle a

particular type of request.
kComponentVersionSelect A request for the version of the component.
kComponentTargetSelect A request to change the request passing chain

so that other components can delegate to this
one.

kMediaIdleSelect A request generated by QuickTime during
playback to indicate the current playback lo-
cation and that data should be rendered.

kMediaPrerollSelect Before playback begins, this request is sent so
the component can do playback preparation
work.

Table A.1: A list of common component request constants and meanings.

APPENDIX A. QUICKTIME SYNCHRONIZATION DETAILS 123

the sample has already been given to Music Player. If further calls to the idle function
happen during the time that already loaded samples cover, no action is taken.

Music Player follows its own internal high-precision clock for sequencing events.
The QuickTime clocks, which provide time values to the idle function, are not synchro-
nized with Music Player by default. Therefore, the EMT DMH performs the synchro-
nization. If the QuickTime clock falls behind or pulls ahead ofthe current time of the
Music Player, the Music Player’s playback rate is adjusted slightly so that over time,
Music Player’s clock and QuickTime’s clock co-incide. The gradual change ensures that
the effect on the music is not perceived.

A.4 EMuse Media Type Analysis

The EMT DMH is used as a locally registered component for simplicity. Therefore, each
program that creates and plays back QuickTime movies with EMT tracks must include
the EMT DMH and register it explicitly. This makes the component less portable since
already existing QuickTime applications, such as QuickTime Player, cannot be expanded
to use EMT data. To create a player of movies containing EMT data, I extended sample
code provided by Apple that implements a simple QuickTime player3.

Using the new EMT DMH and a player that can play movies with EMT tracks, I re-
peated the experiment described in §A.2 with some changes. First, the QTMA track was
replaced with an EMT track. Second, offsets ranged from -200ms to 200ms in this exper-
iment since informal observations showed that music synthesized with the EMT DMH
synchronized properly with video. Third, two subjects ran the experiment. All other
details regarding the two experiments were the same. The results of this experiment
indicate that the video and EMT tracks synchronize correctly. The random desynchro-
nization problems observed with QTMA are not observed when using EMT tracks.

Therefore, the EMuse media type does not suffer from the problems that QTMA
does and also provides additional benefits. First, access to the internals of the compo-
nent allows one to fix any component errors that might be found. Second, the use of
CoreAudio provides detailed control over sound generation including live latency mea-
surement. The EMT is deemed a successful replacement for QTMA and therefore is used
by EMuse to synchronize video and synthesized music.

3The sample application is QuickTimeMovieControl written using the Carbon API.

Appendix B

EMuse Implementation Details

EMuse is implemented as a Mac OS X application. Most of the program is written in
objective-C, an object-oriented language that extends C. Most of EMuse, and all of its
user interface, is built using Cocoa, Apple’s object-oriented application programming
interface (API)1. Objective-C was chosen to implement EMuse so that Cocoa could be
used to create the interface; Cocoa is written in objective-C.

However, since work on parts of EMuse began before the interface was created,
some parts of EMuse exist as C++ classes, e.g. classes involved with timed regular
expressions, repetition expressions, RepChooser implementation, motif stores, atoms,
and drawing primitives. C++ and objective-C are made compatible through the use of
objective-C++. EMuse attempts to keep the C++ and objective-C components insulated
from each other by using objective-C++.

The rest of this appendix is divided into two parts: a simple manual for using EMuse
and an overview of the implementation itself.

B.1 Manual

Although EMuse is built around a multiple-document application model, use of this
functionality is not suggested since it has not been tested. QuickTime movies with

1A non-object-oriented version of the API exists called Carbon. Carbon is Cocoa’s predecessor and more
complete in functionality. However, Cocoa is slowly catching up.

124

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 125

soundtracks can be exported but these movies do not contain higher-level information
such as motifs or timed regular expressions. However, projects in progress can be saved
and loaded. Upon starting the application, choose New Project from the File menu.
This will create an empty project. The first step is to attach a movie to the project by us-
ing Set Project Movie... from the File menu. In addition to displaying a movie
in the movie view window, it defines the time domain for the timeline and tempo func-
tion. The movie currently attached to the project can be changed although the domain
for the timelines will be the larger of the previous movie’s duration and the new movie’s
duration for the sake of implementation simplicity.

There are four main windows in the EMuse application.

• Timeline & Tempo window. This is where music regions and tempo function are
shown and manipulated. Figure 7.11 shows an example of the window.

• Music Region Editor window. This window allows many aspects of music re-
gions to be adjusted: chosen repetition solution, motif definitions, timed regular
expression, etc. An example of this window is shown in figure 7.4.

• Movie Viewer window. This window shows the movie attached to the project
and provides a simple interface for controlling playback of the movie. The movie
viewer is shown in figure 7.13

• RepChooser window. The user interacts with this window to choose repetition
solutions for the currently selected music region. Figure 7.6 shows RepChooser in
action.

Timelines are defined by a solid white line enclosed by a faint rectangle. The rectan-
gle defines the area in which mouse motions affect the enclosed timeline. Music regions
are defined on a timeline by holding down the alt key and using the left mouse button
to click and drag to define the endpoints of a music region. Releasing the left mouse
button defines the music region provided the mouse is still inside the timeline rectangle.

Once a music region is defined, it can be selected by clicking inside the music re-
gion with the left mouse button. The border of the region will change to indicate the
music region is selected. Once a region is selected, it can be moved in time, by pushing
down on the left mouse button inside the region and then dragging, or have its end-
points adjusted, by pushing down on the left mouse button “near” an endpoint and

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 126

then dragging. Motion outside the timeline rectangle in which the music region is de-
fined will cancel any adjustment. Selected music regions can be removed from a timeline
by choosing Delete TRE from the Timeline menu.

By selecting a music region, the Music Region Editor window becomes active. Motifs
must be defined as described in §7.2.2 first. Once motifs are defined, a timed regular
expression can be defined as described in §7.2.3 and chapter 3. Once a timed regular
expression is defined and repetition solutions exist, the RepChooser window becomes
active.

The RepChooser window has two main components: the repetition expression display
at the top and the solution space display at the bottom. The indicators around closure
expressions in the top display can be moved simply by dragging them to other closure
expressions using the left mouse button. The reorientation indicators can be moved to
a closure expression currently selected with the orthogonal movement indicator, replac-
ing it. However as mentioned in §7.2.4, the converse is not allowed since two closure
expressions always need to be selected with reorientation indicators except when the
dimensionality of the solution space is less than two.

Dragging with the right mouse button in the lower display controls a trackball ro-
tation interface for rotating the plane of solutions. The slider to the right of the lower
display controls the zoom level. Repetition solutions are selected by left-clicking on their
representations in the lower display. The small button to the left of the More and Less

buttons causes the lower display to be reset to a default orientation and zoom. The small
button to the right of those buttons toggles the mode of displaying the repetition solu-
tions. One mode shows only the durations of closure expressions while the other shows
closure expression durations and constant expression durations.

Selecting a repetition solution causes the solution to be attached to the currently se-
lected music region, thus defining a timed regular expression instance. The user inter-
acts with the tempo function to adjust the clock-time duration of instances. The tempo
function is shown in the upper display of the Timeline & Tempo window. Tempo markers
can be adjusted by first selecting them by left-clicking on the yellow and white controls
at the top of each marker. When a tempo marker is selected, the slider to the right of
the tempo display becomes active. Moving the slider adjusts the tempo value of the
currently selected marker.

Tempo markers can be inserted by holding down alt and pressing down the left

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 127

mouse button in an empty part of the tempo display. Dragging the mouse allows the
user to move the tempo marker before it is inserted. To move a tempo marker that
already exists, the user must hold down alt and push down on the left mouse button
while the cursor is over the control for a tempo marker. Dragging moves the tempo
marker. For both inserting and moving, only when the left mouse button is released is
the tempo marker position made permanent. Between the mouse down and mouse up
events, only an indication of where a marker would go is shown. Selected tempo markers
can be deleted by choosing Delete Tempo Marker from the Timeline menu.

For long movie durations, the entire timeline will not fit all at once in available screen
space. Horizontal and vertical scrollbars appear when required. Additionally, the slider
to the right of the timeline display controls the zoom level for both the timeline and
tempo displays. By zooming out, more of the movie’s duration can be seen, although
with less detail.

Event points can be inserted at the current movie playback location by choosing
Insert Event Point from the Timeline menu. The movie playback location can
be changed by using the controls provided by the Movie Viewer window. Event points
are very similar to tempo markers in that they have yellow-white controls for selection.
However, event points cannot be moved once inserted. Event points can be selected only
so that they may be deleted by choosing Delete Event Point from the Timeline

menu.

Once instances have been created, the Movie Viewer window can be used to play back
the movie with music. However, the user must first choose Samplify from the Test

menu. This action turns the abstract representation of music defined by instances into
musical events attached to the movie. This step is required since EMuse does not track
which user actions affect the music track. Otherwise, EMuse can automatically perform
the samplify command when user actions have modified the music track and the user
plays the movie.

B.2 Implementation Overview

EMuse follows the model-controller-view Cocoa design pattern. A “model” represents
the unique data that makes up an application’s document. In the case of EMuse, the
model includes music regions, timed regular expressions, motifs, etc. “Views” present

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 128

the data in the model to the user and allow the user to operate upon it. “Controllers”
make up most of an application’s logic. It provides data to the views and interprets
commands from the view to make changes to the model.

B.2.1 Model-Level Components

The classes in this category represent the basic data structures of EMuse.

• TimedRE. This class represents a timed regular expression. The class relies con-
tains instances of several other classes that store data regarding a single timed
regular expression. For example, TimedRE contains an instance of Durations ,
for storing music-time durations; MotifStore , which contains the motifs used
by this timed regular expression; RepEx, which defines a repetition expression;
TREInst , which represents an instance of this timed regular expression; and Solutions ,
which caches a list of repetition solutions.

• RepEx. This class serves as the interface for a cluster of classes that represent a
repetition expression. An instance of RepEx encloses a tree structure made up of
instances of RepExSub and RepExTerm that form the parse tree of a repetition
expression. RepExSub represents sub-expressions and therefore internal nodes of
the parse tree. RepExTerm represents a single motif and therefore makes up the
leaves of the tree. Motifs are referenced abstractly with a motif store and an id that
is unique to that store.

• Atoms and AtomStores. There are several classes related by inheritance for stor-
ing and representing motifs. The relationships are shown in figures B.1 and B.2.
Each abstract class adds slightly more complexity to its parent class. The con-
crete classes implement abstract ones and provide storage for data. The OCMotif

and OCMotifStore are special as they are objective-C classes that serve as data
storage for MotifAtom and MotifStore . The objective-C classes allow other
objective-C parts of EMuse to work with atoms that is implemented with C++.
Motifs are represented by a specific type of atom: MotifAtom .

• TimeLineMan , TempoManand EventPointMan , These classes store data related
to timelines, the tempo function, and event points respectively. Each class stores

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 129

Atom NamedAtom DurAtom

BasicAtom StringAtom MotifAtom

OCMotif

Abstract Classes

Concrete Classes

Figure B.1: The relationships between the various atom classes. The hierarchy is a by-product of
the gradual development of EMuse as atoms slowly came to represent more and more data until
the advent of the motif atom. OCMotif serves as a storage container for MotifAtom and is not
related by inheritance.

AtomStore NamedStore

StringAtomStoreSimpleStore MotifStore

Abstract Classes

Concrete Classes
OCMotifStore

Figure B.2: The relationships between the atom storage classes. The difference between
the two abstract classes is the methods in which motifs can be queried from storage. The
basic SimpleStore can only be queried using unique atom ids. StringAtomStore and
MotifStore can index atoms by both a unique id and name.

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 130

data in lists. The timeline manager represents each timeline as a list of music re-
gions, represented by the TREContainer class. The tempo manager represents
tempo markers as a list of TempoEntry instances. Finally, the event point man-
ager represents event points as a list of EventPoint instances.

B.2.2 Controller-Level Components

The timeline and tempo managers are also major controller classes. They provide central
locations where music regions and tempo markers can be changed. Changes to music
regions and tempo markers affect one another as well as many other parts of EMuse.
Thus, the tempo and timeline managers are responsible for propagating notifications
of changes in the data to each other and any other parts of the application listening
for changes. This is accomplished through Cocoa’s NSNotificationCenter mecha-
nisms.

A major component of EMuse is the TREContainer class which represents a mu-
sic region. The class contains and manages a TimedRE instance, a TREInst instance,
clock-time durations, and the time signature denominator for the whole music region.
A TREContainer is responsible for making consistent the components of a music re-
gion when the user or other parts of the controller layer make changes that affect the
music region. For example, when a tempo marker is adjusted the clock-time duration of
an instance needs updating and the since the music-time duration of the music region
also changes new solutions need to be calculated.

There are a group of controller classes that are more view-oriented in their respon-
sibilities. While the tempo and timeline managers may be considered model controllers,
the following window controllers are considered view controllers. Among their specific
tasks, described below, window controllers must implement logic triggered by buttons
and other interface controls.

• MotifEditorWC is a window controller in charge of the Motif Editor window. Mo-
tif Editor is a modal window and so MotifEditorWC is in charge of filling controls
in the window with data provided by other window controllers that have invoked
the motif editor. MotifEditorWC is responsible for basic input validation before
handing data back to the invoking window controller.

• TREEditorWC is responsible for data flowing to and from the Music Region Editor

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 131

window. Therefore, this window controller works closely with the timeline man-
ager to make changes to the currently selected music region on behalf of the user.
TREEditorWC also listens for changes to the currently selected music region to
reflect those changes in the Music Region Editor window. This window controller
is one of those that invokes the Motif Editor window.

• QTViewWCis responsible for the Movie Viewer window. One of its main tasks is
to broadcast the current movie playback location to the timeline and tempo man-
agers. QTViewWCis responsible for working with QuickTime so that user actions
affect the movie.

• TimeLineWC is responsible for the Timeline & Tempo window. The window con-
troller has many duties due to the interactions between the tempo and timeline dis-
plays. The window controller must act as intermediary between model classes and
the view classes that make up the window. The TempoTimeModel class represents
common state between the timeline and tempo displays to help TimeLineWC . This
window controller works very closely with the timeline and tempo managers to ac-
complish a two-way flow of data between user interaction and the model classes.

• TREViewController : This misnamed class is responsible for managing the mul-
tiple view classes of the RepChooser window. The main tasks of this class are to pass
data to the RepExView and TREView classes, receive user interaction information
from TREView, and relay selection information to the timeline manager.

B.2.3 View-Level Components

There are specialized view classes in two main locations of EMuse: the Timeline & Tempo
window and the RepChooser window. The main reason is that sub-views in both win-
dows use OpenGL to draw themselves. The repetition chooser view classes also include
helper classes for drawing. The OrthState class, for instance, provides an abstrac-
tion for the orthogonal viewing plane and for performing the required calculations for
extracting a 2D slice of data from the solution space.

The Timeline & Tempo window is made up mainly of the TimeLineView and TempoView

classes which handle the drawing of data and handling user input. They both inter-
act with TempoTimeModel to synchronize their displays. TimeScrollView handles
scrolling of the timeline and tempo views.

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 132

The RepChooser window uses the RepExView and TREView classes. The former is re-
sponsible for drawing and user interaction with the display of the repetition expression.
The latter handles drawing and interaction for choosing a repetition solution. Unlike the
Timeline & Tempo window, the view classes don’t listen directly for changes in the model
and rely on TREViewController for data.

B.2.4 Music Generation

The final part of EMuse to consider is the classes responsible for representing musical
events, combining events, and creating EMT tracks. At the lowest level OCMotif con-
tains both a list of notes, objects of type Note , and the event form of those notes. The
events at this level are stored in an intermediate format as objects of type InterEvent .
The array of notes is produced by MotifEditorWC and given to each OCMotif when it
is created. The OCMotif instances are responsible for converting note lists into an array
of events. InterEvents represent only note on and off events; each event has a record
of which instrument the event should affect. Each event has a timestamp that indicates
how many beats after the previous event the next event should occur.

Whenever an instance is created, TimeLineMan collects copies of event lists from
all motifs in the instance and combines them, by concatenation, to create a larger event
list that represents the instance. TimeLineMan updates instance-level event lists when-
ever user actions affect an instance. Another duty of TimeLineMan is to convert the
timestamps of motif-level events, measured in music time to clock time with the help of
TempoMan. TREContainer contains instance-level event lists after they are created by
the timeline manager.

When a user chooses to “samplify” music regions to attach music to a movie, the
sample manager, implemented by the SampleMan class, collects instance-level event
lists and converts each list into an object of type Sample which encapsulates an array of
structures of type EMusEvent . Instrument change events, required by the EMT DMH,
are derived from intermediate events. Additionally, the timestamps of each EMT event
are now relative to the start of the sample instead of the previous event.

It is possible that instances overlap so the sample manager is in charge of merging
the samples that represent overlapping instances. Instrument change events must be
recalculated for the merged sample. The Sample class is responsible for performing

APPENDIX B. EMUSE IMPLEMENTATION DETAILS 133

3

! ! !

3

! ! ! !

3

!
!

3

! ! !
Violin

Music engraving by LilyPond 2.6.3 — www.lilypond.org

3

! ! !

3

! ! ! !

3

!
!

3

! ! !

Flute

Music engraving by LilyPond 2.6.3 — www.lilypond.org

Time

Figure B.3: A contrived example of the number of instrument change events required if two
overlapping samples played with different instruments are assigned to the same channel. Each
diamond indicates an instrument change event. Instrument change events are required so the
correct instrument plays the next note.

merges.

For the purposes of reducing the number of instrument change events, especially
when samples overlap, the sample manager uses a greedy algorithm for assigning sam-
ples to MIDI channels. The MIDI protocol defines 16 channels2 where events that are
issued on a channel are not affected by events issued on other channels. Therefore, a
sample played with a violin can be assigned to one channel while an overlapping sample
played with a flute is assigned to another channel. One instrument change event need
only be issued to each channel before each sample begins to perform the music properly.
If events for both samples occupied a single channel, instrument change events would
be needed to switch the current instrument back and forth as each note from the two
samples is played. Figure B.3 illustrates the problem.

Assigning samples to channels is not satisfactory for polyphonic music as there could
be more than 16 overlapping samples at any point in time. An alternative is to add more
than one parallel EMus track to the movie. Each EMuse track is conceptually rendered
using a different software synthesizer instance so events sent to the same channel from
different tracks have no effect on each other. EMuse does not implement this solution at
this time.

2Only 15 of these channels are usable for general instruments. Channel 10 is reserved for percussion
events.

