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Abstract

Modern medicine has become reliant on medical imaging. Multiple modal-
ities, e.g. magnetic resonance imaging (MRI), computed tomography (CT),
etc., are used to provide as much information about the patient as possi-
ble. The problem of geometrically aligning the resulting images is called
image registration. Mutual information, an information theoretic similarity
measure, allows for automated intermodal image registration algorithms.

In applications such as cancer therapy, diagnosticians are more concerned
with the alignment of images over a region of interest such as a cancerous
lesion, than over an entire image set. Attempts to register only the regions
of interest, defined manually by diagnosticians, fail due to inaccurate mutual
information estimation over the region of overlap of these small regions.

This thesis examines the region of union as an alternative to the region
of overlap. We demonstrate that the region of union improves the accuracy
and reliability of mutual information estimation over small regions.

We also present two new mutual information based similarity measures
which allow for localized image registration by combining local and global
image information. The new similarity measures are based on convex com-
binations of the information contained in the regions of interest and the
information contained in the global images.

Preliminary results indicate that the proposed similarity measures are
capable of localizing image registration. Experiments using medical images
from computer tomography and positron emission tomography demonstrate
the initial success of these measures.

Finally, in other applications, auto-detection of regions of interest may
prove useful and would allow for fully automated localized image registration.
We examine methods to automatically detect potential regions of interest
based on local activity level and present some encouraging results.
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Chapter 1

Introduction

In modern medicine, medical imaging information is vital for quick and ac-

curate diagnoses and treatments. Often, different imaging information is

obtained from multiple modalities to improve the accuracy of diagnosis. To

easily relate the information displayed by each imaging modality, the image

spaces of the resulting images are geometrically aligned. The process of align-

ing images to share a common coordinate system is called image registration.

Many techniques for image registration have been proposed. Some tech-

niques choose key points of interest, or landmarks, between the two images

and attempt to align the images by minimizing the distance between these

points. Other techniques apply the same idea to curves or surfaces. Most

of these techniques involve manual detection or refinement of the landmark,

curve, or surface definitions. A different approach to image registration is to

use the values of the pixels contained in the images. For images of the same

modality, direct comparison of the pixel intensity values has proved success-

ful by searching for linear or constant relationships between corresponding

intensity values [15]. Unfortunately, for images from different modalities, or

intermodal images, the assumption of a linear or constant relation fails. The

search for a technique to register intermodal images without user interaction
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led to the use of information theory. Information theoretic quantities are

used to measure the similarity of images in a statistical framework. Mutual

information, and other information theoretic similarity measures, allow for

fully automated registration algorithms for intermodal images [37].

The geometric alignment of images involves a spatial transformation that

may be rigid-body, affine, or nonlinear. For simple registration problems,

rigid-body or affine transformations are sufficient. Nonlinear transformations

are often required to account for deformations caused by, for example, in-

consistent patient positioning during image acquisition, growth, and internal

organ movement.

Mutual information is estimated from image statistics (probability dis-

tributions) computed over the region of overlap, i.e., the intersection of the

image spaces. In general, the region of overlap grows as the images become

aligned and shrinks as the images become misaligned. The region of overlap

determines the overlap statistics, or which image pixels contribute to the

computation of the statistics. Limited overlap statistics can cause mutual

information to artificially increase as images misalign, which falsely indicates

correct alignment. Normalized mutual information [31] is a similarity mea-

sure that is less affected by overlap statistics.

In radiation treatment for cancer therapy, computer tomography (CT)

and positron emission tomography (PET) are commonly used modalities to

define cancerous lesions and plan treatment strategies. CT is an anatomical

modality that displays geometric features of the object. (CT numbers are

proportional to the physical and electron density of the object.) PET is

a functional modality that displays a metabolic map of the object. The

two modalities display different, but complementary information and involve

different acquisition processes: These differences make registering CT and

PET data one of the most challenging medical image registration problems.

It is common for medical diagnosticians to be more concerned with a
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specific region of an image, for example, the fracture in a broken bone or a

cancerous lesion in an organ. For a diagnostician, when dealing with multiple

imaging information, it is important that the images be more accurately

aligned over the common regions of interest (ROIs) than over the global image

spaces. Often, diagnosticians perturb registration results to align regions of

interest to their satisfaction.

Registering intermodal regions of interest on their own is neither desirable

nor reliable. Regions of interest are typically small, with respect to the global

image size, and thus suffer from insufficient samples to accurately estimate

mutual information. The presence of noise and the limiting effects of the

region of overlap only compound this problem. Also, as will be shown in this

thesis, the limited statistics of small internal regions inhibit the effectiveness

of normalized mutual information in combating the effects of limited overlap

statistics.

In this thesis, we are concerned with the local registration of images from

multiple modalities over defined regions of interest. We use mutual informa-

tion to define two new similarity measures that allow for the localization of

registration results. The new similarity measures combine local and global

image information using convex combinations. The limits of these combina-

tions correspond to registering the global images in one limit and registering

the local regions of interest in the other.

Also presented in this thesis is an alternative to the region of overlap.

Instead of restricting the computation area by taking the intersection of the

image spaces, or the region of overlap, we propose the use of the union of

the image spaces, or the region of union. In general, the region of union

grows as the images become misaligned and shrinks (to the image space) as

the images become aligned. Thus, the region of union avoids the problem of

limited overlap statistics. As will be demonstrated later, the region of union

improves the ability to register small regions by mutual information.
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The new localizing similarity measures presented here, with the use of

the region of union to compute local statistics, seem to improve registration

results over regions of interest when compared to global image registration

by mutual information.

In applications where the regions of interest do not require manual defini-

tion, automatic detection of regions of interest could prove useful to improve

registration results. This thesis presents methods to automatically detect

regions of interest based on local activity level. Activity in a region is deter-

mined by intensity variance, edge variance, or entropy.

The remainder of this thesis is structured in the following manner. Chap-

ter 2 starts with a discussion of medical imaging in order to motivate image

registration. The problem of image registration is then formally defined with

a brief mention of problem classification and algorithm validation. Simple

landmark- and surface-based registration algorithms are presented for back-

ground purposes. Intramodal and intermodal similarity measures are also

presented with specific attention to information theoretic similarity measures.

The chapter concludes with a brief discussion of image fusion techniques.

Chapter 3 presents the information theoretic quantities useful to image

registration. In order to apply information theory to imaging problems, a

brief discussion of random variables is required. Next, the information quan-

tities entropy, joint entropy, relative entropy, and mutual information are

defined. Examples and theorems are given to develop a thorough under-

standing of the behaviour of these quantities.

Chapter 4 first discusses the process of estimating image probability dis-

tributions and some of the factors that affect the accuracy of the estimates.

Such factors include the number of intensity bins used in the image histogram,

the presence of degradations, the resolution of the image, and the interpo-

lation methods used to transform the images. The importance of the joint

histogram is then discussed, which leads to the discussion of joint entropy as
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a similarity measure. The effects of the region of overlap are examined and

the region of union is presented as an alternative computation region. Mu-

tual information and normalized mutual information are then presented with

a discussion of the effects of overlap statistics. Registration experiments are

included to highlight the advantages and disadvantages of these information

theoretic similarity measures.

Chapter 5 starts with a brief discussion of the problems associated with

registering small regions of interest. Two new localizing similarity measures

are then introduced: weighted mutual information and mutual information of

weighted distributions. Weighted mutual information is a convex combination

of the mutual information of the regions of interest and the mutual informa-

tion of the global images. Mutual information of weighted distributions first

forms weighted distributions via convex combinations of the probability dis-

tributions of the regions of interest and the global images, and then takes

the mutual information of these new distributions. Normalized versions of

these measures are also presented to incorporate the invariance to overlap

statistics. The general algorithm for localizing registration is then presented.

The chapter concludes with a discussion on automatically detecting regions

of interest based on local activity level in the image.

Chapter 6 presents a two stage registration process for registering inter-

modal images locally. The first stage requires a nonlinear transformation to

account for the deformations that may exist between the images. This stage

is not discussed in detail. The second stage refines the registration using a

localizing similarity measure and a rigid-body transformation. Several test

experiments are presented to demonstrate the behaviour of the localizing sim-

ilarity measures. Results are also presented for a CT and PET registration

problem which demonstrate the effectiveness of the measures in achieving

local registration.

The thesis concludes with a brief discussion of the work and ideas pre-

sented as well as some suggestions of possible directions for the future.
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Chapter 2

Medical Imaging and Image

Registration

Imaging has become a fundamental tool in modern medicine. The use of

imaging technology helps physicians in many ways, such as the diagnosis of

broken bones, the detection of cancerous lesions, and image guided surgeries.

Numerous modalities are used in medical imaging, and each modality creates

a different picture of the object being imaged. Although different modalities

generally provide different information, there are similarities. For instance,

medical images are generally noisy intensity images with the background

or air surrounding the patient black, they also generally display the same

external contour.

In mathematics, an intensity (or greyscale) image can be interpreted as

a function f(x, y), where x and y are the spatial coordinates of a plane, and

the amplitude of f at the point (x, y) is the intensity or greyscale value of the

image at that point [10]. For digital images, x, y, and f are discrete quanti-

ties. Since we are only concerned with digital images, we drop the descriptor

‘digital’ for convenience. Two-dimensional (2D) images are composed of a

finite number of picture elements, or pixels, located at points (x, y) in the
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image array, usually an M × N matrix. Three-dimensional (3D) images, or

volumes, are functions f(x, y, z), and are composed of a finite number of vol-

ume elements, or voxels, located at points (x, y, z) in the image array, usually

an M × N × S matrix. The range of f is the range of allowable intensity

values in the image. For example, a typical image is encoded at 8 bits/pixel

which allows intensity values ranging from 0 (black) to 28− 1 (white). Med-

ical images are commonly encoded at 8 or 16 bits/pixel, and possibly other

rates as well.

2.1 Medical Imaging

Images arise from image sensors which detect properties of the patient being

imaged. To create an image, the values of the detected properties are mapped

into intensity, or possibly colour, scales. The focus here is medical imaging,

which employs many different modalities that are displayed as either intensity

or colour images.

Medical imaging modalities can be divided into two categories: anatom-

ical and functional. Anatomical modalities image anatomical information

such as the geometric extent and location of organs and tissues. Examples of

anatomical modalities include magnetic resonance imaging (MRI), computed

tomography (CT), x-rays, and ultrasound. Functional modalities image func-

tional information such as brain activity during a specific task. Examples of

functional modalities include functional magnetic resonance imaging (fMRI),

positron emission tomography (PET), and single photon emission computed

tomography (SPECT). See Figure 2.1 for an example of an anatomical image

and a functional image.

Multiple medical imaging modalities are useful because each modality

measures and displays different properties of the patient, in this case, the

body. MRI is a special modality since different pulse sequences used in

8



CT Transaxial Chest Image PET Transaxial Chest Image

Figure 2.1: Transaxial chest images from an anatomical modality (CT) (left), and a func-
tional modality (PET) (right). Images courtesy of Dr. Rob Barnett, Medical Physics
Department, Grand River Regional Cancer Center.

the imaging process will produce different images. For example, consider

two contrasts: proton density weighted MRI (PD-MRI) and T2 relaxation

time weighted MRI (T2-MRI). A proton density sequence used in MR imag-

ing detects the proton density of the object to create a PD-MR image. In

comparison, a T2 relaxation time sequence used in MR imaging detects the

transverse relaxation time of a proton in its environment to create a T2-MR

image [13]. As can be seen in Figure 2.2, the PD-MR image displays dense

tissues quite well, but shows little detail in the brain tissue. The T2-MR

image, on the other hand, displays brain tissue details quite well.

Imaging an object with multiple modalities provides different yet com-

plementary information about the object. Therefore, combining imaging

information from several modalities creates a collection of information from

which, for example, improved diagnoses and treatments may hopefully be

determined. Alternatively, time series information can be collected by using

the same imaging modality at multiple times, with time scales ranging from

minutes to years. Combining time series imaging information from the same

modality creates a collection of information from which, for example, growth
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PD−weighted MR image T2−weighted MR image

Figure 2.2: Transaxial brain images from proton density weighted MRI (PD-MRI) (left),
and T2 relaxation time weighted MRI (T2-MRI) (right). The images are from the National
Library of Medicine’s Visible Human Project via Dr. Jeff Orchard, School of Computer
Science, University of Waterloo.

rates may be determined. When either multiple modality (multimodal) or

single modality (monomodal) imaging is performed, the result is a collec-

tion of images (or data volumes) that contain corresponding complementary

information.

For example, in cancer treatment strategies, it is common to use multiple

modalities to determine diagnoses and treatment plans. This is because

different modalities detect and display the extent and position of cancerous

lesions differently. For radiation therapy, CT and MR or CT and PET image

data are often obtained of the cancerous region. CT data is used to initially

locate the target region and to plan the radiation treatment dosages. MR

or PET data is used to improve the target region definition. Combining

multimodal image information allows diagnosticians to better determine the

affected areas, and thus the best treatment plans.

It is not guaranteed that the images to be combined have the same reso-

lution or contain the same field of view of the object. Also, the object may

appear to be deformed, for example, twisted or enlarged, from one image
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to the other. Therefore, in order to easily interpret the corresponding in-

formation contained in two images, the image space of one image must be

aligned to the image space of the other. This process is called registration.

Image registration involves finding a transformation of one image space onto

the other which best aligns the common features contained in both images.

Once the images are registered, the corresponding features of the images

are more easily related [15]. Registration of images from the same modal-

ity is called intramodal registration and registration of images from different

modalities is called intermodal registration.

2.2 Image Registration

We now formally pose the image registration problem. Suppose there are two

images, A and B, to be registered. The aim of image registration is to find

the transformation, T, which best aligns the position of features in image B,

the study image, to the position of the corresponding features in image A,

the target image.

An image may be considered a mapping of points in the field of view, or

domain, Ω, to intensity values [15], that is,

A : xA ∈ ΩA → A(xA)

B : xB ∈ ΩB → B(xB).
(2.1)

Since medical images typically have different fields of view, ΩA and ΩB are

different. For an object O, imaged by both A and B, a position x ∈ O is

mapped to xA by image A and to xB by image B. Registration finds the

spatial transformation, T, which maps xB to xA over the region of overlap, or

the intersection of the target image space with the transformed study image

space. More specifically, T maps from ΩB to ΩA within the region of overlap
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ΩT
A,B [15], defined as:

ΩT
A,B = {xA ∈ ΩA : T−1(xA) ∈ ΩB}. (2.2)

This notation emphasizes the dependence of the region of overlap on the

original images A and B, as well as the transformation T.

2.2.1 Classification and Validation

Each image registration problem is different and can be characterized by a

long list of classifications. The main classifications include: the dimensional-

ity - the inputs may be two- or three-dimensional images; the transformation

type, T, which may be specified as a rigid-body, affine, or nonlinear transfor-

mation; and the optimization procedure - most methods involve iteratively

determining T while optimizing a cost function.

Image registration may be performed on 2D to 2D images, 3D to 3D

volumes, and 2D images to 3D volumes. 2D to 3D registration is necessary

when the 2D image is projective. For example, x-rays are projective since

3D information is projected onto a 2D film.

Rigid-body transformations involve the translation and rotation of one

image with respect to the other. Affine transformations add scalings and

skews to rigid-body transformations. Nonlinear transformations typically

follow laws of dynamics described by thin-plate, elastic, or fluid motions, for

example. Generally, nonlinear transformations must be regularized to ensure

object geometry is not destroyed.

For most registration methods, a cost function is optimized using an op-

timization strategy, such as gradient descent, and iteratively determining the

transformation. To evaluate the cost function at each step, the current trans-

formation, T, is applied to image B to adjust the alignment and resample

the image into the image space of image A. Transforming the image involves
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interpolating between data points of image B to determine the transformed

image, BT, which lies in ΩT
A,B. The interpolation method used to transform

the image will affect the registration result since interpolation introduces er-

rors and tends to blur data [15]. The cost function, in general, is a function

of A and BT over ΩT
A,B.

A major problem with some optimization strategies is that the trans-

formation may converge to an incorrect solution, or local optimum of the

cost function, instead of the desired solution [15]. As we show in Chap-

ter 4, however, there is no guarantee that the desired solution lies at the

global optimum. Image registration problems tend to have many degrees

of freedom, thus the parameter space of the optimization method is quite

large. As a result, the time required for convergence may also be quite large.

Multiresolution approaches [32] have been successfully used to speed up the

optimization process and avoid unwanted local optima. Two stage registra-

tion methods have also been used to this effect [29]. The best way to ensure

correct and quick convergence, however, is to start the optimization strategy

with a good initial guess for the transformation.

In clinical settings, image registration should ideally be performed in

real-time. This demand requires registration algorithms to be computation-

ally efficient, stable, and robust. A major concern with new registration

algorithms is validation, i.e., how fast and stable is the algorithm and how

accurate is the resulting registration. Existing validation techniques include

visual inspection of the registration result, comparison with a gold standard,

and evaluation of quantitative measures [15].

Visual inspection evaluation studies involve surveying multiple diagnos-

ticians to rate registration results. The most straight forward validation

technique is comparison to a gold standard. A gold standard is a registra-

tion technique with proven stability and accuracy. The performance of a

new registration algorithm is measured against the existing standard in cat-

egories such as the number of successful alignments and the quality of each
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alignment. Quantitative measures often use statistical analyses of anatomical

landmark differences to determine registration accuracy [35]. In [9], the dis-

crete wavelet transform is applied to the problem of quantitatively comparing

various registration algorithms.

In this thesis, we use visual inspection, the L2 norm, and mutual informa-

tion to measure the accuracy of registration results. The L2 norm assumes

a constant relationship exists between corresponding image intensity values,

therefore, registered images with differing intensity maps may not necessarily

result in good accuracy ratings, see Section 2.3.1 for more details. The use

of mutual information to measure accuracy avoids the issue of dependence

on intensity maps, however, mutual information is affected by limited sam-

ples contained in the region of overlap. This problem will be discussed more

thoroughly in Chapter 4 and Chapter 5.

2.2.2 Landmark- and Surface-Based Registration

For landmark-based registration, a diagnostician is required to manually de-

fine landmarks, or points of reference, in one image, and the corresponding

points in the other image. Landmark points may be internal, such as bifur-

cation points of vessels [21] or bones, or external, such as fiducial markers

placed on the skin or immobilization frame used in the imaging process.

Fiducial markers are small, inert bead-like objects placed in bone, on skin,

or on the frame, which have special properties to make them visible in the

resulting image.

The registration transformation is formed by extrapolating the trans-

formation that aligns the sets of corresponding points. Landmark-based

registration has evolved from simple, non-iterative, rigid-body transforma-

tion methods to complex, iterative, nonlinear transformation methods. Most

nonlinear registrations use landmarks to define the initial and final positions

of the transformation and modelled dynamics to govern the deformations.
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Large deformations typically require the use of fluid dynamics [3], [4], while

small deformations can use linear elasticity [5], thin-plate splines [2], etc..

A simple non-iterative, rigid-body transformation, landmark-based regis-

tration algorithm involves computing the average or centroid of each set of

points (each set containing at least three points) [15]. The distance between

the centroids gives the translation required for the registration transforma-

tion. The point set is then rotated about the translated centroid until the cost

function is minimized. A common cost function for landmark registration is

the discrete L2 norm, see Formula A.2 in Appendix A, or sum of squared

distances (SSD), Equation (2.5) below, between corresponding point pairs.

The root mean square error (RMSE), Formula A.3 in Appendix A, of

corresponding points provides a quantitative measure of the registration re-

sult and is a common feature in many commercial registration packages [15].

RMSE does not, however, give any indication of the accuracy of alignment

between corresponding features. In fact, it may be misleading since a change

in landmark location which reduces RMSE may actually increase alignment

errors between corresponding features. Including more points in the land-

mark sets is one way of reducing landmark location identification errors [15].

Landmark-based registration algorithms, by design, use a limited amount

of information from the images in order to determine the transformation.

Because fiducial markers are reliable and easy to identify, fiducial landmark-

based image registration has long been considered the gold standard of image

registration [17].

Similar to landmark-based registration, curve- or surface-based registra-

tion determines the transformation which minimizes a cost function that

is typically a measure of distance between two corresponding curves or sur-

faces [15]. In medical images, boundaries are usually more distinct than indi-

vidual points, and segmentation tools can be used to automatically detect and

extract significant curves or surfaces from the images. Auto-segmentation
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mostly eliminates the necessity of user interaction, although manual editing

or adjusting may be required. Most surface-based registration techniques are

based on the iterative closest point algorithm [15].

In medical image registration, the iterative closest point algorithm typi-

cally represents one surface as a set of points and the corresponding surface

as a set of triangular patches. The algorithm has two steps and then iter-

ates until a threshold is reached. The first step identifies the closest point

in the set of triangular patches to each of the points on the surface. The

closest point is found by linearly interpolating across the facets of each tri-

angle. The second step is to find the least square rigid-body transformation

for these point sets (a landmark-based registration). The algorithm then re-

determines the closest point set and continues until the minimum distance

threshold is achieved.

Nonlinear transformations have been implemented into surface-based reg-

istration algorithms but generally require good initial conditions in order to

converge properly [23]. Surface-based registration uses more image infor-

mation than landmark-based registration. Unfortunately, it is highly de-

pendent on the segmentation process and user interaction may be required

to manually adjust segmentation results. One problem with surface-based

registration is that surfaces that have natural symmetries with respect to

certain rotations can result in multiple solutions. One possible way to re-

solve this problem is to perform the surface-based registration several times

with various initial rotation estimates. The best alignment of the resulting

transformations is then chosen as the final solution.

2.3 Similarity Measures

A different approach to image registration is that of pixel (or voxel) similarity

measures. These methods are not based on segmented or delineated features
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contained in the images, but rather on the intensities of the pixels or voxels

contained in the region of overlap of the images. Thus, no user interaction is

required and image information is not reduced to a sparse set for registration.

The registration transformation is found by optimizing a similarity mea-

sure computed from the pixel intensity values of both images over the region

of overlap. Therefore, a large portion of the information in each image is

used in the alignment process. This tends to average out noise and other

errors that may be present in images [15].

Pixel- and voxel-based methods are slowly replacing frame and invasive

fiducial landmark-based methods as the gold standard for registration accu-

racy [23]. Sub-pixel and sub-voxel accuracy is often attainable by similarity

measure optimizing registration algorithms [24]. Such algorithms are typ-

ically robust, meaning small variations in initial conditions result in small

variations in resulting registration transformations. The main disadvantages

to registration using similarity measures are the high computational cost

associated with optimization algorithms and the inherent limitations associ-

ated with subject general similarity [1]. The demand for accuracy and the

increasing power of computers, however, makes similarity measure optimizing

registration algorithms clinically feasible.

2.3.1 Intramodal Similarity Measures

The similarity measure chosen for a particular registration problem will de-

pend on the type of images involved. If the images are of the same modality,

then measures that look for linear or constant relationships between inten-

sity values of corresponding pixel pairs are typically used. Such measures

tend to be the simplest measures used for registration. Examples include the

correlation coefficient (2.3) and the sum of squared differences (2.5).

The correlation coefficient (CC), a normalized version of the cross cor-

relation measure (Formula A.4 in Appendix A), involves the product of the
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difference from the image mean of corresponding intensity values [22]:

CC =

∑
xA

(A(xA)− A)(BT(xA)−BT)(∑
xA

(A(xA)− A)2
∑

xA
(BT(xA)−BT)2

) 1
2

, (2.3)

where the summations occur over xA ∈ ΩT
A,B, A is the mean of image A

over ΩT
A,B, and BT is the mean of the transformed image BT over ΩT

A,B.

To register images, the correlation coefficient is maximized. The maximum

value corresponds to the strongest linear relationship between corresponding

pairs of intensity values [15]. We can consider the correlation coefficient

to be the cosine of the angle between the zero-mean vectors (A − A) and

(BT −BT). The maximum value of the cosine of the angle occurs when the

angle is minimized, thus implying that the two vectors are as close to being

linearly related as possible.

Intramodal registration is most commonly used for time series analysis

in order to detect subtle changes or contrast enhancements. For images

of the same modality, a subtraction image can be formed after registration

by subtracting the registered study image from the target image. If the

subtraction image shows only noise with no structure, then no changes have

occurred. If the subtraction image shows structure, then either small changes

have occurred in the object over the imaging period, or, the images were

misregistered. Subtraction images can only be used when the images are of

the same modality; this ensures that the intensity maps of the images are

consistent. If the intensity maps are different, the subtraction image would

show structure everywhere, even if no changes in the object had occurred.

To register images for subtraction purposes, it is common to use measures

based on the discrete L1 and L2 norms, Formula A.1 and Formula A.2

respectively, in Appendix A. In the image registration literature, measures

based on these norms are the sum of absolute differences (SAD) and the sum

of squared differences (SSD), respectively. Let N be the number of pixels in
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ΩT
A,B, then,

SAD =
1

N

∑
xA∈ΩT

A,B

|A(xA)−BT(xA)|, (2.4)

and

SSD =
1

N

∑
xA∈ΩT

A,B

(
A(xA)−BT(xA)

)2
. (2.5)

These measures are normalized to be invariant of the number of pixels in the

overlap region ΩT
A,B. The registration transformation is found by minimizing

the measure, i.e., minimizing the structures visible in the subtraction image.

It was shown in [36] that the L2 norm is the optimal similarity mea-

sure for registering images that differ by Gaussian noise, see Formula A.5

in Appendix A. Since the noise present in medical images is not, in general,

Gaussian, the L2 norm is not guaranteed to be the optimal measure for reg-

istration. The L2 norm is a satisfactory similarity measure for images with

the same intensity maps (i.e., images from the same modality and contrast),

and it is commonly used because of its relatively easy implementation. Since

the L2 norm is highly sensitive to outliers, the L1 norm is often used to

reduce the effect of these large intensity differences [15].

In summary, the correlation coefficient assumes that a linear relationship

exists between corresponding pixel intensity values in the images, while the

L2 norm assumes the images differ only by Gaussian noise [26]. These as-

sumptions are not always valid: In particular, for intermodal registration

these assumptions fail. Intermodal registration demands more complex simi-

larity measures to account for the vastly different intensity maps the imaging

modalities create.
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2.3.2 Intermodal Similarity Measures

Intermodal images display complementary and shared information about the

object in images with different intensity maps. For example, what appears

as white in one image may appear as dark grey in the other image, or not

appear at all. Therefore, similarity measures used for intermodal registration

must be insensitive to differing intensity maps.

A simple idea for registering CT and MR images, as suggested by Van den

Elsen [34], is to transform the CT intensity map into a map that resembles

the MR intensity map. For example, soft tissue which appears dark in CT

may be remapped to bright intensity values, and bone which appears bright

in CT may be remapped to dark intensity values. Once the two image in-

tensity maps are similar, intramodal similarity measures, such as correlation

coefficient, can be used to perform the registration.

Partitioned intensity uniformity (PIU), proposed by Woods [40] for MR

and PET image registration, was the first similarity measure for intermodal

registration that achieved mainstream use [15]. It is based on the idea that

all pixels in image A with a particular intensity value represent the same

tissue type, thus, the corresponding pixels in image B should also share

a particular intensity value [15]. This assumption holds fairly well for the

registration of MR and PET images, but requires the scalp to be removed

from the MR images. The assumption does not hold for other intermodal

registrations, however, the success of PIU as a similarity measure for MR

and PET images created great interest and research in intermodal similarity

measures [15].

In 1994, a breakthrough in intermodal similarity measures occurred when

Hill et al. [16] proposed the use of the 2D frequency of occurrence histogram

to measure image alignment. The 2D histogram, when normalized, is an

estimate of the joint probability distribution of intensity values between two

images over the region of overlap. The joint probability distribution, r(i, j),
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of a pair of intensity values, (i, j), gives the probability that intensity value

j will occur at a point in image B, when intensity value i occurs at the

corresponding point in image A. As the alignment of the images changes,

the joint probability distribution changes, becoming more disordered as the

images move out of alignment.

One way of measuring the disorder of the joint probability distribution is

to use information theoretic quantities, specifically, Shannon’s entropy func-

tion [28]. A simple information theoretic similarity measure, proposed by

Studholme et al. [30] and Collignon et al. [6], is the joint entropy function.

Registration is performed by minimizing the joint entropy between the im-

ages. If we think of entropy as a measure of information, then the registration

problem becomes a minimization problem, that is, we attempt to minimize

the information present in the overlayed images, see Figure 2.3. Unfortu-

nately, joint entropy is not robust, since often misalignments result in lower

joint entropy values than the desired alignment.

+ =

Figure 2.3: Two images to be registered displaying complementary and shared informa-
tion. At registration, the overlayed images contains less information (two eyes) than the
unregistered images (four eyes).

Mutual information, also borrowed from information theory, was pro-

posed as a similarity measure independently by Collignon et al. [6] in 1995

and Wells et al. [39] in 1996. Mutual information is the difference between

the information contained in each image over the region of overlap (the en-

tropies) and the information contained in the overlayed images over the region

of overlap (the joint entropy). Image registration is performed by maximiz-

ing mutual information. This involves maximizing the information contained

in each image while minimizing the information contained in the overlayed
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images. Normalized mutual information, proposed by Studholme et al. [31],

is a robust similarity measure that allows for fully automated intermodal

image registration algorithms.

Similarity measures borrowed from information theory are applicable to

both intramodal and intermodal registration problems. The algorithms are

usually fully automated and make no assumptions about the relationship

between image intensity maps. Registration problems using joint entropy or

mutual information become optimization problems, and are computationally

expensive since there are no analytic optimizers for these measures [26]. The

next chapter provides a more detailed discussion of information theory and

some of these similarity measures.

Many similarity measures have been proposed for image registration. A

good list can be found in [23]. Some methods of interest not discussed above

employ tools such as the Fourier transform, optical flow theory, and Taylor

expansions. In general, normalized mutual information is used with rigid-

body and affine transformation registration problems, whereas landmarks or

surfaces are used with nonlinear transformation registration problems.

2.4 Image Fusion

Once image registration has been performed, the problem of how to mean-

ingfully display the registered images remains. This problem is called im-

age fusion. Simple visualization techniques generally used in commercial

software packages include: cutaways, checkerboards, outline overlays, and

colour overlays [15]. These methods do not combine image information, but

rather display information from either one image or the other. Cutaways

display half the image information from one image, and the other half of

the information from the other image. The dividing line can generally be

interactively adjusted to alter the ratio of the displayed image information.
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Checkerboards use a similar technique but alternate the image information

in a checkerboard pattern. Outline overlays display the outline of a structure

from one image over top of the other image, while colour overlays display

one image in one colour, say red, with the other image placed over top in a

different colour, say blue.

Other visualization techniques attempt to use mathematical tools to con-

struct one combined, or fused, image. Such techniques may involve operators

such as add, subtract, average, or maximum of corresponding intensity val-

ues [7], or transformations such as the wavelet transform [38]. The main

problem with attempting to combine medical images in these ways is that

the image information used by diagnosticians to determine diagnoses and

treatments may be lost in the fusion process. For instance, a CT image rep-

resents attenuation coefficients of radiation while a PD-MR image represents

proton density. If these two images are combined, for example, by choosing

the maximum intensity value for each corresponding pixel pair, the meaning

of the pixel intensity value in the fused image is lost, i.e., the fused image no

longer represents attenuation coefficients or proton density.

Nevertheless, image fusion is a useful tool for medical image analysis.

Unfortunately, it is highly dependent on registration since misaligned im-

ages create poor fused images. To simplify registration problems, modalities

such as CT and PET are being combined into one imaging device to reduce

the occurrence of deformations, and thus facilitate image registration and

fusion [33].
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Chapter 3

Basics of Information Theory

Information theory attempts to characterize the information of random vari-

ables. It was developed out of Shannon’s pioneering work in the 1940’s at

Bell Laboratories [28]. His work focused on characterizing information for

communication systems by finding ways of measuring data based on the un-

certainty or randomness present in the given system. Shannon proved that

for probabilities pi,

−
∑

i

pi log pi

is the only functional form that satisfies all the conditions that a measure

of uncertainty should satisfy. For a discussion of these conditions see [15,

page 57]. Shannon named this quantity entropy because it shares the same

mathematical form as the entropy of statistical mechanics.

Entropy is one of the main building blocks of information theory. From it,

are obtained two other major building blocks, relative entropy and mutual

information (MI). These quantities are functionals of probability distribu-

tion functions for random variables. Entropy is a measure of uncertainty (or

information) in a random variable; relative entropy is a distance measure

between one probability distribution and another; and mutual information
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is the amount of information that one random variable contains about an-

other [8]. We present these information theoretic quantities in relation to

mathematical imaging and discuss some of their useful properties. Examples

are also presented to demonstrate the behaviour of these quantities.

3.1 Entropy and Information

In mathematical imaging, an intensity image X is represented as a matrix

of intensity values. For an n bits/pixel image, the intensity values are the

discrete greyscale values X = {x1, x2, . . . , xN}, where N = 2n and xk = k−1.

A histogram can be constructed from an image by looking at each pixel

intensity value and counting the number of times a pixel intensity value

occurs, or the number of times a pixel intensity value lies in a range, or

bin, of intensity values. Dividing the histogram of occurrences by the total

number of pixels in the image gives the frequency of occurrence of each

intensity value, or each intensity value bin. Normalizing the histogram in

this way gives an estimate of the probability distribution function of pixel

intensity values for the image.

Given an image X, we use p to denote the corresponding estimated inten-

sity value probability distribution function, where p(x) = Pr(Xi,j = x), for

x ∈ X and Xi,j a pixel in image X. A result of the histogram normalization

is that
∑

x p(x) = 1. In statistical literature, this function p is commonly

referred to as the probability density function, or the probability mass func-

tion. Here we follow the notation used in [8], [15], and [27] and refer to p as

the probability distribution function, or simply, the distribution.

In order to apply information theory to imaging applications, we must

consider an image as a collection of independent observations of a random

variable. A random variable is a mapping that assigns a number to each

element of a sample space [27].
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Definition 3.1.1. Let S be a sample space with elements {ωi}. Then the

random variable X is a mapping

X : S → R

where R is the real number line, i.e., for ωi ∈ S and r ∈ R

X(ωi) = r.

Note that X represents both the image and the random variable that

determines the image. For images, the random variable X is simply the

identity mapping, that is, X(xi) = xi for xi ∈ X . Furthermore, since

the sample space X contains only discrete quantities, the random variable

X is discrete. An image is therefore an array of the elements x ∈ X as

determined by independent observations of the discrete random variable X.

For example, an 8 bits/pixel image has 28 = 256 elements in the sample

space of the random variable X, i.e., X = {0, 1, . . . , 255}. The value of X at

each of these elements is equal to the value of the element, so that X(0) = 0,

X(1) = 1, . . . , and X(255) = 255. An M × M pixel image is thus M2

independent observations of the discrete random variable X organized into

a square matrix. From this matrix, the frequency of occurrence method can

be used to estimate the probability distribution of the random variable.

Example 3.1.2. Consider the 8 bits/pixel image shown on the left of Fig-

ure 3.1. Starting from the upper left hand corner, the associated histogram is

constructed by traversing through each row and column counting the number

of times a pixel intensity value occurs. The associated histogram is shown

in the middle of Figure 3.1. Dividing each count by the total number of pix-

els contained in the image creates an estimate of the probability distribution

of the image. The estimated probability distribution is shown on the right

of Figure 3.1.
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Figure 3.1: An image of the author (left) and the associated histogram (middle) and
probability distribution estimate (right).

Entropy uses probability distribution functions to measure the random-

ness or uncertainty of a random variable. Under the assumption that each

observation in the image matrix is independent and occurs with the proba-

bility determined by the frequency of occurrence, the entropy of the random

variable X, or the entropy of the image, can be computed [27].

Definition 3.1.3. The entropy, H(X), for the discrete random variable X,

with probability distribution function p, is defined as

H(X) = H(p) = −
∑
x∈X

p(x) log p(x),

where, for reasons of continuity, we define 0 log 0 = 0.

Note the entropy of X, H(X), may also be denoted H(p). The notation

H(p) emphasizes the dependence of entropy on the probability distribution

of X, as opposed to the actual intensity values of X. For example, an image

that is half black and half white has the same entropy as an image that

is half black and half grey. The notation H(X) is ambiguous so that X

can be interpreted as either the image or the discrete random variable that

determines the image.
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In Definition 3.1.3, log is taken to mean log2 so that entropy is measured

in bits (binary digits). Changing the base of the logarithm will rescale the

entropy and change the measurement units. A logarithm with base e is

measured in nats, while a logarithm with base 10 is measured in hartleys. In

this work, we assume the base to be 2 so that entropy represents the amount

of binary information required on average to describe the random variable [8].

Example 3.1.4. Returning to Example 3.1.2, the entropy of the probability

distribution estimate shown on the right of Figure 3.1, computed using Defi-

nition 3.1.3, is 6.71 bits.

3.2 Joint Entropy and Mutual Information

We now move on to consider information measures for multiple images. Fol-

lowing the ideas outlined above, we consider two images (over their region of

overlap) to be observations of two discrete random variables, X and Y , with

probability distributions p and q respectively. In general, random variable

X will have sample space X and random variable Y will have sample space

Y . For imaging purposes, the modality-specific intensity maps determine

X and Y .

The 2D joint histogram can be constructed from images X and Y over

their region of overlap by counting the number of times the intensity pair

(x, y) occurs in corresponding pixel pairs (Xi,j, Yi,j). Normalizing the joint

histogram gives an estimate of the joint probability distribution r, where

r(x, y) = Pr(Xi,j = x, Yi,j = y), for x ∈ X , y ∈ Y and (Xi,j, Yi,j) cor-

responding pixels contained in the region of overlap. A result of the joint

histogram normalization is that
∑

x

∑
y r(x, y) = 1. The image distributions

are related to the joint distribution by (3.1), and in this respect are termed
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the marginals of the joint distribution:∑
x∈X

r(x, y) = q(y) and
∑
y∈Y

r(x, y) = p(x). (3.1)

Joint entropy, H(X, Y ), is a functional of the joint probability distribution

r, and is a measure of the combined randomness of the discrete random

variables X and Y . It is a simple extension of entropy since the pair of

random variables (X, Y ) may be considered a single vector-valued random

variable [8].

Definition 3.2.1. The joint entropy, H(X, Y ), for the discrete random vari-

ables X and Y , with joint probability distribution r, is defined as

H(X, Y ) = H(r) = −
∑
x∈X

∑
y∈Y

r(x, y) log r(x, y).

If two random variables are independent, then the joint probability dis-

tribution becomes the product distribution d, that is, r(x, y) = d(x, y) =

p(x)q(y). In this situation, joint entropy simplifies to:

H(X, Y ) = −
∑
x,y

r(x, y) log r(x, y)

= −
∑
x,y

p(x)q(y) log p(x)−
∑
x,y

p(x)q(y) log q(y)

= H(X) + H(Y ).

In general H(X, Y ) ≤ H(X) + H(Y ), with equality if and only if X and Y

are independent. This result follows from Corollary 3.3.4, to be presented

below.

Relative entropy, or Kullback-Leibler distance, is a measure of the dis-

tance between one probability distribution and another. It measures the

error of using an estimated distribution q over the true distribution p [8].
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Definition 3.2.2. The relative entropy, D(p ‖ q), of two probability distri-

butions p and q over X , is defined as

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)
,

where, for reasons of continuity, we define 0 log 0
q

= 0 and p log p
0

= ∞.

A special case of relative entropy is mutual information. Mutual infor-

mation measures the amount of information shared between two random

variables, or the decrease in randomness of one random variable due to the

knowledge of another [8].

Definition 3.2.3. Let X and Y be two random variables with probability dis-

tributions p and q, respectively, and joint probability distribution r. Mutual

information, I(X; Y ), is the relative entropy between the joint probability dis-

tribution, r, and the product distribution, d, where d(x, y) = p(x)q(y). That

is,

I(X; Y ) = D(r ‖ d)

=
∑
x∈X

∑
y∈Y

r(x, y) log
r(x, y)

p(x)q(y)
.

Recall that if the random variables X and Y are independent, then the

joint probability distribution is equal to the product distribution, i.e., r = d.

Thus, mutual information measures the correlation between X and Y , with

respect to X and Y being independent.

Using (3.1) in Definition 3.2.3 allows mutual information to be expressed

in terms of entropy:

I(X; Y ) = H(X) + H(Y )−H(X, Y ). (3.2)

This relationship is expressed by the Venn diagram [8] shown in Figure 3.2.
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Figure 3.2: The relationship between entropy, joint entropy, and mutual information.

3.3 Properties of Information

In order to gain a better understanding of entropy, relative entropy, and

mutual information, some properties and simple examples are presented be-

low. Non-negativity is an important property of information measures since

negative information is not physically meaningful.

Lemma 3.3.1. Entropy is a non-negative quantity, i.e., H(p) ≥ 0.

Proof. Since p is a normalized probability distribution, 0 ≤ p(x) ≤ 1 for all

x ∈ X . Thus, −p(x) log p(x) ≥ 0 so that H(p) ≥ 0.

It can also be shown that relative entropy is non-negative. This theorem

is the basis of many fundamental results in information theory [11].

Theorem 3.3.2. Let p and q be two probability distributions over X , then

D(p ‖ q) ≥ 0

and equality holds if and only if p(x) = q(x) for all x ∈ X .
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Proof. Let A = {x ∈ X : p(x) > 0} be the support of p. Then

−D(p ‖ q) = −
∑
x∈X

p(x) log
p(x)

q(x)

=
∑
x∈A

p(x) log
q(x)

p(x)

≤
∑
x∈A

p(x)

(
q(x)

p(x)
− 1

)
=
∑
x∈A

q(x)−
∑
x∈A

p(x)

≤
∑
x∈X

q(x)−
∑
x∈A

p(x)

= 1− 1 = 0,

where we have used the fact that log t ≤ t− 1 and equality holds if and only

if t = 1, i.e., q(x)
p(x)

= 1 for all x ∈ A, or p = q.

Since relative entropy is a measure of distance, it would be convenient

if it was a distance metric. Unfortunately, relative entropy is not a metric

since it satisfies neither the symmetry property nor the triangle inequality.

We demonstrate the failure of symmetry with the following example.

Example 3.3.3. Consider two binary random variables X and Y , with sam-

ple spaces X = Y = {0, 1} and probability distributions p = (s, 1 − s) and

q = (t, 1 − t), respectively, (0 ≤ s, t ≤ 1). The relative entropy between p

and q is

D(p ‖ q) = s log
s

t
+ (1− s) log

1− s

1− t
,

while the relative entropy between q and p is

D(q ‖ p) = t log
t

s
+ (1− t) log

1− t

1− s
.

It is easy to see that if s = t then D(p ‖ q) = D(q ‖ p) = 0. If s = 0 and

33



t = 1
2
, however, then D(p ‖ q) = 1 while D(q ‖ p) = ∞.

The following corollary is a direct result of Theorem 3.3.2 and states that

mutual information is non-negative.

Corollary 3.3.4. The mutual information for any two random variables X

and Y is non-negative, i.e.,

I(X; Y ) ≥ 0,

with equality if and only if X and Y are independent.

Proof. Using Theorem 3.3.2, I(X; Y ) = D(r(x, y) ‖ p(x)q(y)) ≥ 0 with

equality if and only if r(x, y) = p(x)q(y), or the random variables are inde-

pendent.

Combining (3.2) and Corollary 3.3.4, we can now relate the entropy of

two random variables to their joint entropy. That is, from

0 ≤ I(X; Y )

= H(X) + H(Y )−H(X, Y ),

we get

H(X, Y ) ≤ H(X) + H(Y ),

with equality if and only if X and Y are independent. Thus, the combined

information of two dependent random variables must be less than the sum

of the information of each variable on its own.

Definition 3.3.5. A concave function f : R → R is a function that satisfies:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

for 0 ≤ λ ≤ 1 and for all x1, x2 in the domain of f .
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Concavity is also known as concave down or convex down. Examples

of concave functions include ln x,
√

x, and −x log x, for x ≥ 0. Theo-

rem 3.3.6 states that entropy is a concave function and provides upper and

lower bounds on the entropy of a linear combination of probability distribu-

tions.

Theorem 3.3.6. For two random variables X and Y with sample space X ,

respective probability distributions p and q, and some parameter c, 0 ≤ c ≤ 1,

entropy satisfies

cH(p) + (1− c)H(q) ≤ H(cp + (1− c)q) ≤ cH(p) + (1− c)H(q) + h(c),

where h(c) is the entropy of a binary random variable with probability distri-

bution (c, 1−c). The first inequality shows that entropy is a concave function

of p [11].

Proof. This proof follows similar reasoning to the proof presented in [11].

First note that cp(x) + (1− c)q(x) ≥ cp(x), and similarly for q(x). Thus,

− log (cp(x) + (1− c)q(x)) ≤ − log (cp(x))

and

− log (cp(x) + (1− c)q(x)) ≤ − log ((1− c)q(x)) .

35



To prove the right hand inequality we have,

H(cp + (1− c)q) = −
∑
x∈X

(cp(x) + (1− c)q(x)) log (cp(x) + (1− c)q(x))

= − c
∑
x∈X

p(x) log (cp(x) + (1− c)q(x))

− (1− c)
∑
x∈X

q(x) log (cp(x) + (1− c)q(x))

≤ − c
∑
x∈X

p(x) log (cp(x))

− (1− c)
∑
x∈X

q(x) log ((1− c)q(x))

= cH(p) + (1− c)H(q) + h(c),

where h(c) = − c log(c)− (1− c) log(1− c).

To prove the left hand inequality let A = {x ∈ X : p(x) > 0} be the

support of p and let B = {x ∈ X : q(x) > 0} be the support of q. Starting
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from the second line above, we have that,

H(cp + (1− c)q) = − c
∑
x∈X

p(x) log (cp(x) + (1− c)q(x))

− (1− c)
∑
x∈X

q(x) log (cp(x) + (1− c)q(x))

= − c
∑
x∈A

p(x) log

(
p(x)

(
c + (1− c)

q(x)

p(x)

))
− (1− c)

∑
x∈B

q(x) log

(
q(x)

(
c
p(x)

q(x)
+ (1− c)

))
= cH(p) + (1− c)H(q)

− c
∑
x∈A

p(x) log

(
c + (1− c)

q(x)

p(x)

)
− (1− c)

∑
x∈B

q(x) log

(
c
p(x)

q(x)
+ (1− c)

)
.

Using log t ≤ t− 1 for t ≥ 0, we can simplify the last two terms as follows:

− c
∑
x∈A

p(x) log

(
c + (1− c)

q(x)

p(x)

)
≥ − c

∑
x∈A

p(x)

(
c + (1− c)

q(x)

p(x)
− 1

)
= − c

∑
x∈A

(cp(x) + (1− c)q(x)− p(x))

≥ − c (c + 1− c− 1)

= 0,

where we have used the fact that
∑

x∈A q(x) ≤ 1. Similarly,

− (1− c)
∑
x∈B

q(x) log

(
c
p(x)

q(x)
+ (1− c)

)
≥ 0.
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We will return to the above result later in this thesis. The next theorem

provides an upper bound on the entropy of a probability distribution, and

gives insight into the nature of this information measure. The theorem shows

that the maximal value of entropy occurs when the probability distribution

is the uniform distribution. That is, the random variable X is most random,

i.e., entropy or information is maximized, when each element of X is equally

likely.

Theorem 3.3.7. The maximal value of entropy is log N , where N is the

number of elements in X . This maximal value occurs when p is the uniform

distribution over X , i.e., p = u, where u(x) = 1
N

for all x ∈ X .

Proof. Let p be a probability distribution over X , and let u be the uniform

distribution over X , i.e., u(x) = 1
N

for all x ∈ X , where N is the number

of elements in X . From Theorem 3.3.2 we have,

0 ≤ D(p ‖ u)

=
∑
x∈X

p(x) log
p(x)

u(x)

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log
1

N

= −H(p) + log N.

Thus, H(p) ≤ log N with equality if and only if p = u.

We conclude this discussion with the following example which demon-

strates a few of the properties of entropy using a simple binary random

variable.
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Example 3.3.8. Consider the binary random variable X, such that

X =

{
0 with probability p,

1 with probability 1− p.

Here p = (p, 1− p), so the entropy of X is

H(p) = −p log p− (1− p) log(1− p).

Differentiating with respect to p and simplifying we get

dH(p)

dp
= log

1− p

p
.

Solving dH(p)
dp

= 0 gives p = 1
2
, with H(p) = log 2 = 1. The second derivative

with respect to p is

d2H(p)

dp2
=

− 1

p(1− p)
< 0 ∀p.

Thus, by the second derivative test, the entropy of a binary random variable

is concave, with a maximum value of 1 at p = 1
2
. A plot of H(p) as a function

of p is shown in Figure 3.3.

To relate this example to Theorem 3.3.7, p = (p, 1 − p), X = {0, 1},
and N = 2. As expected, the maximum value of H(p) is log N = log 2 = 1,

which occurs when the distribution is uniform, i.e., p = (1
2
, 1

2
). Notice that

when p = (0, 1) or p = (1, 0), the entropy is zero. Since these two limiting

cases correspond to fixed variables, X = 0 or X = 1 always, there is no

uncertainty in the random variable, and hence information (entropy) is zero.

The above example demonstrates that the entropy of a random variable

is maximum when the random variable is most unpredictable, or most un-

certain. Thus, the entropy of an image will be maximal when the probability

distribution is uniform. In this case, each intensity value will be equally likely
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Figure 3.3: The entropy of a binary random variable as a function of p.

to occur in a given pixel of the image. We now move on to apply information

theory to the problem of image registration.
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Chapter 4

Image Registration Using

Information Theory

This chapter discusses the information theoretic similarity measures, joint

entropy and mutual information. We begin with a discussion of probability

distribution estimation with specific attention to the region of overlap and

then move on to discuss joint entropy and mutual information as similarity

measures with examples to highlight their advantages and disadvantages in

image registration.

4.1 Distribution Estimation

In this work, image distributions are estimated by normalizing the frequency

of occurrence histogram. This simple technique must be computed for ev-

ery iteration of the registration process and is affected by factors such as,

the number of intensity bins used in the histogram, degradations present

in the images, and the interpolation method used to transform the images.

Therefore, consistency is important among these, and other, factors during
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distribution estimation. For large scale medical imaging problems, estimat-

ing distributions in this fashion is computationally expensive. Thus, it is

common to use image distribution estimates based on a sample drawn from

the image. Such distribution estimates are usually a mixture of Gaussians,

see Formula A.5 in Appendix A, and are found by Parzen window density

estimation with Gaussian window functions [36].

4.1.1 Image Distributions

As discussed in the previous chapter, information theoretic similarity mea-

sures are functions of probability distributions of images. An important con-

sequence of using similarity measures based on image statistics, instead of

image intensity values, is that images that do not look similar may have sim-

ilar distributions. Fortunately, since joint distributions incorporate spatial

dependence, such images are recognized as being dissimilar.

Image X Image Y

Figure 4.1: The half black, half white binary image X (left), and the checkerboard binary
image Y (right).

Example 4.1.1. Consider the binary images X and Y shown in Figure 4.1.

Both images have the same distribution, that is, p = q = (1
2
, 1

2
). The joint
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distribution, however, which takes into account spatial dependence between

images, is:

r =

(
1
4

1
4

1
4

1
4

)
. (4.1)

Note the image distributions and their joint distribution are uniform, so all

entropies are maximized. The entropy of each image is 1 bit, the joint entropy

is 2 bits, and the mutual information is 0 bits, indicating that the images are

independent.

Intensity Binning

In the above example, two intensity bins were used in the histograms of

the binary images. For intensity images, the number of intensity bins used

can affect the distribution estimates, and hence the entropy estimates. To

demonstrate the effects of intensity binning on entropy estimation, we use

images of a lime obtained by micro-MRI at two different resolutions: a 256×
256 pixel image (lime 256 ) and a 64 × 64 pixel image (lime 64 ). The lime

images are 16 bits/pixel and are shown in Figure 4.2.

256 X 256 Pixel Lime Image 64 X 64 Pixel Lime Image

Figure 4.2: 256× 256 pixel lime image, lime 256, (left) and 64× 64 pixel lime image, lime
64, (right). Images courtesy of Dr. Claude Lemaire, Physics Department, University of
Waterloo.
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The maximum number of intensity bins used in a histogram is equal to

the total number of intensity levels in the image. For a 16 bits/pixel image,

the maximum number of intensity bins is 216. For image lime 256, which

contains 256×256 = 216 pixels, using the maximum number of intensity bins

results in a sparse distribution estimate, and thus an inaccurate estimate of

the distribution and entropy, see Figure 4.3. To avoid sparse distributions,

it is common to use 32 to 256 intensity bins [15].

0 2 4 6

x 10
4

0

0.5

1

1.5

2

x 10
−3 Distribution with 216 Bins

Entropy = 9.38

Figure 4.3: Image lime 256 distribution and entropy estimate using 216 intensity bins.

The effects of reducing the number of intensity bins on distribution esti-

mation are shown in Figure 4.4. As the number of histogram intensity bins

decreases, the entropy of the distribution estimate also decreases. In the

limit, when there is only one histogram intensity bin, the entropy is zero.

As the number of intensity bins decreases, the histogram count in each bin

increases or stays constant, since the range of intensities associated with each

bin widens. This causes the distribution to become less sparse and to appear

smoother with larger maxima: entropy is lower since the distribution is less

uniform.
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Figure 4.4: Image lime 256 distribution and entropy estimates using 256 (left), 128 (mid-
dle), and 64 (right) intensity bins.

To achieve accurate distribution, and hence entropy, estimates, the num-

ber of intensity bins should be chosen to avoid sparseness. In this work,

256 intensity bins are used unless otherwise stated. For image lime 256, 256

intensity bins allots 256 intensity levels to each bin with 216 pixel intensity

values to distribute among the bins. This is sufficient to create a non sparse

distribution estimate.

Degraded Images

Clinical images are degraded by the presence of noise and blur. For exam-

ple, images are blurred by patient movement during the imaging process: In

PET imaging, the acquisition time is typically about 30 minutes, so the entire

breathing cycle occurs many times during acquisition which results in aver-

aging of the collected data. Noise, prevalent in all medical images, is largely

introduced by the sensors during acquisition. In MRI, the noise present in the

foreground image can be modelled as Rician distributed noise [25], see For-

mula A.6 in Appendix A. If the signal mean is much greater than the noise

variance, then Rician distributed noise can be approximately modelled as

Gaussian distributed noise [25]. The inherent degradations of clinical images

inhibit accurate estimation of distributions, and hence entropies [14].
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To demonstrate the effects of noise and blur on image distribution es-

timation, we use the horse images shown in Figure 4.5. Zero-mean white

Gaussian noise of variance 25.5 has been added to the horse image to create

the noisy image, and a Gaussian low-pass filter of standard deviation 10 has

been applied to the horse image to create the blurred image.

The distributions of the three horse images are shown in Figure 4.6. The

presence of noise in the horse image causes the distribution to spread, be-

coming more uniform over the centre intensity bins and piling up slightly

(probability about 0.01) in the limiting intensity bins (bins 0 and 255). As

a result of the distribution becoming more uniform, the entropy estimate in-

creases. The presence of blur in the horse image, on the other hand, sharpens

the peaks and fills in intermediate intensity bins in the distribution, making

the peaks more pronounced and the distribution less uniform which results

in an entropy estimate decrease.

Resolution and Interpolation

Image resolution also affects distribution estimation. Intuitively, since higher

resolution images more accurately represent the imaged object than lower

resolution images, the entropy estimates based on higher resolution images

should more accurately estimate the true entropy. During image registration,

it may be necessary to increase (or decrease) the resolution of the study image

to match the resolution of the target image. Interpolation, used to transform

and resample the study image, introduces artifacts and hence perturbs the

image and joint distribution estimates.

To examine the effects of increasing resolution, we use image lime 64 and

three interpolation methods: nearest neighbour, bilinear, and bicubic. In

nearest neighbour interpolation, the intensity value of an interpolated pixel

is equal to the intensity value of the closest original pixel. The special case of

increasing resolution an integer number of times reduces nearest neighbour
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Horse Image

Noisy Horse Image

Blurred Horse Image

Figure 4.5: The horse image (left), the noisy horse image (middle), and the blurred horse
image (right).
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Figure 4.6: Distribution estimates for the horse image (left), the noisy horse image (mid-
dle), and the blurred horse image (right).

interpolation to pixel replication. For example, to double the resolution

of an image, each row and then each column is duplicated [10]. In bilinear

interpolation, the intensity value of an interpolated pixel is equal to the value

at that point of a bilinear surface (or hyperboloid) fit through the intensity

values of the four closest original pixels. Finally, in bicubic interpolation, the

intensity value of an interpolated pixel is equal to the value at that point

of a bicubic surface fit through the intensity values of the sixteen closest

original pixels [19]. The use of more pixel neighbours and the fitting of more

complex surfaces gives smoother interpolation results but results in higher

computational costs [10].

In Figure 4.7, the resolution of image lime 64 was increased by a factor of

4 to 256×256 pixels using the interpolation methods described above. Near-

est neighbour interpolation creates pixel block artifacts in the enhanced im-

age, whereas bilinear and bicubic interpolation create enhanced but blurred

images.

Image lime 64 was increased in resolution to a 128 × 128 pixel image,

a 256 × 256 pixel image, and a 512 × 512 pixel image using each of the

interpolation methods discussed above. The distributions of these images are

shown in Figure 4.8 with the entropy of each distribution estimate included

below the plot. Notice that for nearest neighbour interpolation, neither the
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Nearest Neighbour Interpolation

Bilinear Interpolation

Bicubic Interpolation

Figure 4.7: Image lime 64 enhanced to 256×256 resolution using nearest neighbour (left),
bilinear (middle), and bicubic (right) interpolation.
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Figure 4.8: Distribution estimates of image lime 64 (column 1 ) and image lime 64 en-
hanced to 128× 128 pixels (column 2 ), 256× 256 pixels (column 3 ), and 512× 512 pixels
(column 4 ), using nearest neighbour (row 1 ), bilinear (row 2 ), and bicubic (row 3 ) inter-
polation.
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distribution nor the entropy changes as the resolution is increased. This is

because each pixel is duplicated, triplicated, or quadrupled, depending on

the level of resolution enhancement, so the frequencies of occurrence remain

constant. For bilinear and bicubic interpolation, as resolution is increased,

the images are enhanced, but blurred. As a result, the distributions become

smeared due to the re-binning of interpolated intensity values, and slightly

sharper due to the presence of blur. For image lime 64, the entropy of the

bilinear and bicubic interpolated images varies, with entropy being higher

for bicubic interpolation.
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Figure 4.9: Distribution estimates using 256 intensity bins (top row) and 64 intensity bins
(bottom row) of the image lime 256 (column 1 ), and image lime 256 decreased to 128×128
pixels (column 2 ), 64× 64 pixels (column 3 ), and 32× 32 pixels (column 4 ) using nearest
neighbour interpolation.

The top row of Figure 4.9 shows the distribution estimates using 256

intensity bins for image lime 256 decreased in resolution to 128×128, 64×64,

and 32 × 32 pixels by nearest neighbour interpolation. The distribution
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estimates become increasingly sparse as resolution is decreased. For the

32 × 32 pixel image (and possibly the 64 × 64 pixel image), there are too

many intensity bins. As a result, the distribution estimates are jagged and

unreliable. The bottom row of Figure 4.9 shows the distribution estimates

computed using 64 intensity bins. Even with the reduced number of intensity

bins, the 32× 32 pixel image still creates a jagged distribution estimate.

Decreasing image resolution causes distribution estimates to become in-

creasingly jagged due to the diminishing number of pixels, and hence pixel

intensity values, to count in the histograms. In general, the entropies of the

decreased resolution images are lower than the entropy of the original image

because the distributions have become jagged and less uniform. This effect

is accentuated by the fact that half of the intensity value range is unused by

the lime images.

Selective Intensity Binning

A better way to estimate the distributions of the lime images from Figure 4.2

is to use selectively spaced intensity bins instead of equally spaced intensity

bins, as done above. Since the lime images are encoded at 16 bits/pixel, but

only use 215 intensity values, half of the intensity bins in the distribution

estimates are empty. Note in Figure 4.9 that the distributions extend over

the first half of the intensity bins (x-axis), but are zero for the remaining

half.

Selective intensity bin spacing can stretch distributions to use all available

bins and can group related intensity values into custom bins. Figure 4.10

shows the distributions for image lime 256 decreased in resolution to 128×
128, 64 × 64, and 32 × 32 pixels using 256 selectively spaced intensity bins.

Starting from intensity level 0, each bin contains 128 intensity values while

the last bin contains the remaining 32896 intensity values. The effect of these

selectively spaced intensity bins is that the distributions are spread across the
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Figure 4.10: Distribution estimates using 256 selectively spaced intensity bins of image
lime 256 (column 1 ) and image lime 256 decreased to 128×128 pixels (column 2 ), 64×64
pixels (column 3 ), and 32× 32 pixels (column 4 ) using nearest neighbour interpolation.

entire bin range. The increasing jaggedness of the distributions as resolution

decreases is now more pronounced. Note that the entropies of the decreased

resolution images are now slightly higher than the original lime 256 image in

contrast to the results shown in Figure 4.9. This is because the distributions

are more uniform since they extend over the entire bin range.

In medical imaging, it might be advantageous to use selective intensity

binning when computing distributions. For instance, intensity bin spacing

can be customized to group ranges of intensity values that correspond to

certain tissue types. The range and spacing of intensity bins can be differ-

ent for the target and study images to account for the different intensity

maps of multimodal images. Selective intensity binning may facilitate image

registration by enhancing the correlation of aligned tissues.

An alternate way to deal with differing intensity bin ranges is to normal-

ize the images prior to registration. Normalizing an image involves trans-

forming the intensity map to use the standard range of intensity values,

i.e., {0, 1, . . . , 255}. Normalizing any image that is encoded higher than 8

bits/pixel into this standard range, however, will result in the loss of infor-

mation. In applications where image information is vital, such as medical

imaging, normalization should be avoided.
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In medical imaging, any image processing done prior to registration that

unnecessarily modifies the image distributions should be avoided. For exam-

ple, histogram equalization attempts to make image histograms more uniform

by remapping intensity values from frequently used intensity bins into less

frequently used intensity bins. If successful, histogram equalization causes

image entropy to increase, but at the same time, destroys the image informa-

tion diagnosticians rely on. An imaging modality relates specific anatomical

or function details to specific intensity values: By altering the intensity map

via histogram equalization, the image will be rendered meaningless.

4.1.2 Joint Distributions

Joint distributions are a way of measuring the spatial correlation between

images. In image registration, the region of overlap, or intersection, of the

images determines which pixel pairs are used in the joint distribution estimate

and hence the marginal distribution estimates. In this section, we assume

our images to be registered so that the region of overlap is the entire image

space.

We return to the PD-MR and T2-MR images shown in Figure 2.2. The

images are 8 bits/pixel and have been padded with zeros on the left and right

sides to make them 256×256 pixel arrays. Recall that these images are from

the same modality (MRI), but, because they were obtained using different

pulse sequences, their intensity maps are different. In PD-MRI all hydrogen

atoms in the object contribute to the image; in T2-MRI only a select set of

the hydrogen atoms contribute to the image [1]. Thus information contained

in PD-MR and T2-MR images is highly correlated.

The distributions of the MR images and of the MR images with most of

the background and zero padding cropped out are shown in Figure 4.11. The

top row shows the distributions for the uncropped images: Note the large

spike around zero caused by the image padding. The bottom row shows
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the distributions for the cropped images. Cropping images by removing un-

necessary background increases the nonzero probability values of the distri-

bution estimates to focus the distribution on the foreground object. This

ensures registration of the foreground object instead of registration of the

background. Cropping images results in increased entropy estimates because

the removal of the large spike at zero causes distributions to become more

uniform. The following work uses the cropped MR images (235× 180 pixels)

unless otherwise stated.
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Figure 4.11: Image distribution and entropy estimates for the uncropped PD-MR (top
left) and T2-MR (top right) images and for the cropped PD-MR (bottom left) and T2-MR
(bottom right) images.

In the PD-MR image distribution, the leftmost hill, comprised of inten-

sity values 0 to 35, represents the noisy background surrounding the head;

the plateau, intensity values 35 to 150, represents the skull and tissues sur-

rounding the brain and eyes; and the rightmost hill, intensity values 150 to
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255, represents the brain tissue and eyes. In the T2-MR image distribution,

the leftmost hill, intensity values 0 to 40, represents the noisy background

and the tissues surrounding the brain, eyes and sinus cavity; the plateau,

intensity values 40 to 80, represents tissue details in the regions surrounding

the brain and eyes; the middle hill, intensity values 80 to 175, represents the

brain tissue; and the rightmost hill, intensity values 175 to 255, represents

the eyes.

Recall that for two images X and Y , each pixel pair (Xi,j, Yi,j) has an as-

sociated intensity pair (x, y), where x ∈ X is the intensity value at pixel Xi,j

in X, y ∈ Y is the intensity value at the corresponding pixel Yi,j in Y , and

(i, j) are the indices for the image matrices over the region of overlap. The

joint distribution represents the probability of intensity pair (x, y) occurring

at corresponding pixels in X and Y . To enhance the printable display of

joint distributions, zero probability is coloured black (0), probability values

greater than the threshold T = 4.0 × 10−5 are coloured white (255), and

probability values in between these limits are linearly interpolated shades of

grey.
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Figure 4.12: Joint distribution (left) and product distribution (right) estimates for the
PD-MR image with itself at registration.

The joint distribution of an image with itself at registration demonstrates
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perfect correlation. In Figure 4.12, the joint distribution of the PD-MR image

with itself at registration is shown on the left and the product distribution

is shown on the right. The joint distribution is only nonzero along the line

y = x, indicating that if intensity value x occurs in pixel Xi,j, then it must

also occur in pixel Yi,j. Recall that product distributions occur when two

images are independent. Mutual information is a measure of the distance

from the joint distribution to the product distribution. For this example,

mutual information is maximized since the images are correctly aligned.

Joint Distribution for Cropped MR images
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Figure 4.13: Joint distribution (left) and product distribution (right) estimates for the
PD-MR and T2-MR images at registration.

Figure 4.13 shows the joint and product distributions for the PD-MR

and T2-MR images at registration. The PD-MR image intensities lie along

the y-axis and the T2-MR image intensities lie along the x-axis. Bright

areas in the joint distribution indicate a high probability of occurrence of

the intensity pair in corresponding pixel pairs. For instance, the bright area

around (x, y) = (125, 200) corresponds to alignment of the brain tissue, the

bright area around (x, y) = (190, 170) corresponds to alignment of the eyes,

and the large bright area near the origin corresponds to alignment of the

background, skull, sinuses, etc..
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4.2 Joint Entropy

Comparing the joint distribution in Figure 4.12 to the joint distribution

in Figure 4.13 leads to the assumption that for intensity images, the more

the joint distribution approaches the line y = x, the more similar are the

images. Joint entropy (Definition 3.2.1) measures the dispersion of the joint

distribution. Therefore, following the above assumption, image registration

can be performed by minimizing the joint entropy, or dispersion of the joint

distribution. The minimum value of joint entropy, zero, occurs when one

pair of intensity values has probability 1 and all other pairs have probabil-

ity 0. This case will only occur when two solid shaded images are aligned,

for example, the alignment of a black image with a grey image will have

zero joint entropy for any alignment configuration. In general, in order to

minimize joint entropy, the joint distribution should be mostly black (zero

probabilities) with a few concentrated bright areas (high probabilities).

4.2.1 Regions of Overlap

Recall that the region of overlap is the intersection of the image spaces.

Figure 4.14 shows the joint distributions of the MR images in and out of

registration. Starting from registration, horizontal shifts of n = 0, 4 and 8

pixels are applied to the T2-MR image with respect to the PD-MR image

and the joint distributions are computed over the resulting region of overlap,

the 235× (180−n) pixel region for the cropped MR images. As images move

out of alignment, the joint distribution disperses, moving away from the

correlated state towards a more uniform distribution. Joint entropy reflects

this dispersion by increasing in value.

By recording the value of the similarity measure, here joint entropy, for

incremental transformations, a registration curve is obtained. Figure 4.16

shows two registration curves for n-pixel horizontal shifts, −180 ≤ n ≤ 180,
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Figure 4.14: Joint distribution and joint entropy estimates over the region of overlap for
the PD-MR and T2-MR images with horizontal shifts of 0 (left), 4 (middle), and 8 (right)
pixels applied to the T2-MR image.

of the T2-MR image with respect to the PD-MR image. In the left plot,

Case 1, the T2-MR image is considered periodic so that the region of overlap,

remaining constant for all shifts, is the PD-MR image space. This case is

not realistic but is used for comparison purposes to demonstrate the affect

the overlap region has on distribution estimates when finite images are used.

In the right plot, Case 2, the T2-MR image is considered finite so that the

region of overlap decreases as the images move out of alignment. Figure 4.15

shows diagrams of the region of overlap for these two cases.

Comparing the registration curves in Figure 4.16 demonstrates the effect

the overlap region has on image statistics during registration. Note that the

desired alignment is not located at the global minimum when using finite

images. Also plotted in Figure 4.16 are the entropies of each image over

the region of overlap. Notice in the left plot, which uses periodic images,

that image entropies remain constant because both images are always en-

tirely contained in the overlap region. The minima for this joint entropy

curve correspond to alignment. For example, from registration, 0 shifts, the

periodic T2-MR image moves to the right (positive shifts) across the PD-MR

image, with a T2-MR copy moving in on the left. The minimum at 180 pixel

shifts corresponds to the T2-MR copy aligning with the PD-MR image. In
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Horizontal Shifts

Region of Overlap

Case 1:  Periodic Images Case 2:  Finite Images

Horizontal Shifts

Region of Overlap

Figure 4.15: Computation diagrams for Case 1: the region of overlap for periodic images
(left) and Case 2: the region of overlap for finite images (right), for horizontal shifts of
the uncropped T2-MR image with respect to the uncropped PD-MR image.
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Figure 4.16: Entropy and joint entropy (solid) estimates for horizontal shifts of the T2-MR
image (dash-dot) with respect to the PD-MR image (dotted) over the region of overlap
using periodic images (left) and finite images (right).
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contrast, all entropy estimates in the right plot, which uses finite images, are

affected by the decreasing overlap region. As the images move out of align-

ment, the overlap region decreases. The reduced computation region can

cause the distribution estimates to become peaked, thus decreasing entropy

estimates. The local minimum in the joint entropy curve at 0 pixel shifts

corresponds to alignment, but the global minima located at ±179 pixel shifts

correspond to an almost empty region of overlap.

4.2.2 Region of Union

An alternative to the region of overlap is the region of union. The union

of two image spaces can be used as the computation region by padding the

images, i.e., by filling in the undefined space with zeros. Figure 4.17 shows

a diagram of Case 3: the region of union with zero padded images. The

registration curve for horizontal pixel shifts using the region of union with

zero padding is shown in Figure 4.18. From the discussion on the affects

of image cropping, Section 4.1.2, we expect zero padding images to cause

entropy to decrease (due to large spikes at 0). Thus, the sides of the joint

entropy curve using Case 3, Figure 4.18, should be, and are, lower than the

sides of the joint entropy curve using Case 2, Figure 4.16, near the registration

point. At registration the region of union is equal to the region of overlap.

Therefore, joint entropy estimates are equal for both the region of overlap

and the region of union at registration.

As images move out of alignment horizontally in the region of union, they

approach the limit where each image is aligned with a zero image. Consider

the zero padded PD-MR image, A, where A = [X; O], X is the PD-MR

image with distribution pX = (pX
0 , pX

1 , . . . pX
N), N = 255 for the 8 bits/pixel

images, and O is a zero image the size of the T2-MR image with distribution

pO = (1, 0, . . . , 0). Assuming the size of the PD-MR and T2-MR images are

equal, the distribution of A is pA = (1
2
(1 + pX

0 ), 1
2
pX

1 , . . . , 1
2
pX

N). Let H(pX)
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Case 3:  Padded Images

Horizontal Shifts

Region of Union

Figure 4.17: Computation diagram for Case 3: the region of union with zero padded
images, for horizontal shifts of the T2-MR image with respect to the PD-MR image.
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Figure 4.18: Entropy and joint entropy (solid) estimates for horizontal shifts of the T2-
MR image (dash-dot) with respect to the PD-MR image (dotted) over the region of union
using zero padded image.
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be the entropy of X, then the entropy of A is:

H(pA) = −
N∑

i=0

pA
i log pA

i

= −
N∑

i=1

1

2
pX

i log

(
1

2
pX

i

)
− 1

2

(
1 + pX

0

)
log

(
1

2

(
1 + pX

0

))

= −1

2

N∑
i=1

pX
i

(
log pX

i − log 2
)
− 1

2

(
1 + pX

0

) (
log(1 + pX

0 )− log 2)
)

=
1

2
H(pX) + 1 +

1

2

(
pX

0 log
pX

0

1 + pX
0

− log(1 + pX
0 )

)
.

Notice that if pX
0 � 1 then H(pA) ≈ 1

2
H(pX) + 1 and if pX

0 = 1 then

H(pA) = 0. From Figure 4.11, the entropy of the cropped PD-MR image is

about 7.4 bits. Thus, with the valid assumption pX
0 � 1, the entropy of the

limit, image A, should be about 4.7 bits, which agrees with Figure 4.18.

Let Y be the T2-MR image with distribution pY . Then, the joint distri-

bution for the limit, where the zero padded image A, A = [X, 0], aligns with

the zero padded image B, B = [0, Y ], is:

rAB =


1
2
pX

N 0 · · · 0
...

...
...

1
2
pX

1 0 · · · 0
1
2
pX

0 + 1
2
pY

0
1
2
pY

1 . . . 1
2
pY

N

 .
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The joint entropy of this joint distribution is:

H(rAB) = −
N∑

i,j=0

rAB
i,j

= −rAB
0,0 log rAB

0,0 −
N∑

i=1

rAB
i,0 log rAB

i,0 −
N∑

j=1

rAB
0,j log rAB

0,j

= −1

2
(pX

0 + pY
0 ) log

(
1

2
(pX

0 + pY
0 )

)
− 1

2

N∑
i=1

pX
i log

(
1

2
pX

i

)
−

− 1

2

N∑
j=1

pY
j log

(
1

2
pY

j

)
= −1

2
(pX

0 + pY
0 )
(
log(pX

0 + pY
0 )− 1

)
+

1

2
(H(pX) + pX

0 log pX
0 ) +

+
1

2
(1− pX

0 ) +
1

2
(H(pY ) + pY

0 log pY
0 ) +

1

2
(1− pY

0 )

=
1

2
(H(pX) + H(pY )) + 1 +

+
1

2

(
pX

0 log
pX

0

pX
0 + pY

0

+ pY
0 log

pY
0

pX
0 + pY

0

)
.

If pX
0 ≈ pY

0 then the above simplifies to H(rAB) ≈ 1
2
(H(pX)+H(pY ))+1−pX

0

and if pX
0 , pY

0 � 1 then H(rAB) ≈ 1
2
(H(pX)+H(pY ))+1. From Figure 4.11,

H(pX) ≈ 7.4 bits and H(pY ) ≈ 7.1 bits so H(rAB) should be approximately

8.25 bits, which agrees with Figure 4.18.

The advantage to using the union region over the overlap region is that

both images are always entirely contained in the computation region, and

thus all image information is used at all times in the registration process.

Zero padding, however, causes distributions to be heavily weighted near zero

as misalignments increase. This causes region of union entropy estimates

to be lower than region of overlap entropy estimates for the same misalign-

ment. Lower joint entropy estimates cause registration curves, such as the
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one in Figure 4.18, to have a small capture region for the local minimum at

alignment. Small capture regions for registration curves can lead optimiza-

tion strategies such as gradient descent to incorrect solutions.

4.2.3 Advantages and Disadvantages

The main advantage to using joint entropy for multimodal image registration

is that it is sensitive to the probabilities of the intensity values contained in

the region of overlap, instead of to the intensity values themselves. The fol-

lowing simple example demonstrates the main disadvantage of joint entropy

computed over regions of overlap.

Region of Overlap

Alignment position (a)

Region of
Overlap

Alignment position (b)Image X

Image Y

Figure 4.19: Binary images X and Y (left) and the region of overlap for alignment positions
(a) (middle) and (b) (right).

Example 4.2.1. Consider the binary images X and Y from Figure 4.19.

The distributions for X and Y over the region of overlap for alignment po-

sition (a) are pa = qa = (1
2
, 1

2
). The distributions for X and Y over the

region of overlap for alignment position (b) are pb = qb = (1, 0). The joint

65



distributions for alignment positions (a) and (b) are:

ra(X, Y ) =

(
0 1

2
1
2

0

)
and rb(X, Y ) =

(
1 0

0 0

)
.

For alignment position (a), the entropies of X and Y are Ha(X) = Ha(Y ) =

1 bit and the joint entropy is Ha(X, Y ) = 1 bit. For alignment position

(b), the entropies of X and Y are Hb(X) = Hb(Y ) = 0 bits and the joint

entropy is Hb(X, Y ) = 0 bits. Thus, registration by minimizing joint entropy

will choose alignment position (b) over alignment position (a). Alignment

position (b) is inferior to alignment position (a) since it omits half the image

information of images X and Y .

In medical image registration problems, joint entropy tends to maximize

the amount of background, i.e., air, contained in the overlap region, and

thus often results in incorrect alignments. Hence, minimizing joint entropy,

or joint information, over the region of overlap is clearly not sufficient to

register images correctly. The information contained in each image over the

region of overlap should also be considered.

4.3 Mutual Information

Recall that mutual information, Equation (3.2), is the difference between the

information contained in each image over the region of overlap and the joint

information contained in the images over the region of overlap, that is,

I(X; Y ) = H(X) + H(Y )−H(X, Y ). (4.2)

Thus, maximizing mutual information involves maximizing the image infor-

mation (entropies) while minimizing the joint information (joint entropy).
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Example 4.3.1. Returning to Example 4.2.1, the mutual information for

alignment position (a) is Ia(X; Y ) = 1 bit and the mutual information for

alignment position (b) is Ib(X; Y ) = 0 bits. Thus, mutual information suc-

ceeds in choosing the preferred alignment. Since Ia(X; X) = Ha(X) = 1 bit,

the mutual information for alignment position (a) is the same as the mutual

information for alignment position (a) with image Y replaced by image X.

This emphasizes that mutual information is insensitive to intensity maps.

Since mutual information takes into account image information and joint

information, it is superior to joint entropy as a similarity measure. The

next example demonstrates how a value of zero in mutual information can

not only indicate independence, but also null information. Fortunately, null

information images do not occur in medical image registration problems.

Example 4.3.2. Let X be any image and let Y be any solid image of intensity

value y. For any nonempty region of overlap, the entropy of image X is H(X)

and the entropy of image Y is H(Y ) = 0 bits. The joint distribution will pair

all intensity values in X to the intensity value y in Y . Thus, joint entropy is

H(X, Y ) = H(X) and mutual information is I(X; Y ) = 0 bits, i.e., the two

images are independent.

Now, let X be any solid image of intensity value x. For any nonempty

region of overlap, the entropy of X is H(X) = 0 bits, the joint entropy

of X and Y is H(X, Y ) = 0 bits, and the mutual information of X and

Y is I(X; Y ) = 0 bits. Zero mutual information implies the images are

independent, but they are identical if x = y. Since each image consists of

only one intensity value, however, they contain no ”self” information, or

entropy, and hence contain no shared information, or mutual information.
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4.3.1 Normalized Mutual Information

Joint entropy and mutual information are sensitive to the changes that occur

in the overlap statistics, i.e., the changes that occur in the distributions as a

result of changes in the region of overlap. To demonstrate this, consider the

following example.

Alignment position (a)

Region of Overlap

Alignment position (b)

Region of
Overlap

Figure 4.20: Alignment position (a) (left) shows image X aligned with itself and alignment
position (b) (right) shows image X aligned with itself rotated 90◦.

Example 4.3.3. Consider the region of overlap diagrams in Figure 4.20. In

alignment position (a), the binary image X is aligned with itself, image Y .

Over the region of overlap, the image distributions are pa = qa = (0.83, 0.17)

and the joint distribution is:

ra =

(
0.83 0

0 0.17

)
.

Thus, the image entropies and the joint entropy are Ha(X) = Ha(Y ) =

Ha(X, Y ) = 0.66 bits and the mutual information is Ia(X; Y ) = 0.66 bits. In

alignment position (b), the binary image X is aligned with itself rotated 90◦,

image Y . Over the region of overlap, the image distributions are pb = qb =
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(0.5, 0.5) and the joint distribution is:

rb =

(
0.5 0

0 0.5

)
.

In this alignment, the white area is equal to the black area, so the image dis-

tributions are uniform. The image entropies and joint entropy are Hb(X) =

Hb(Y ) = Hb(X, Y ) = 1 bit and the mutual information is Ib(X; Y ) = 1 bit.

Thus, registration by minimizing joint entropy will chose alignment po-

sition (a), a position that maximizes background contained in the region

of overlap, and registration by maximizing mutual information will choose

alignment position (b), a position that maximizes image entropy computed

over the region of overlap. Both alignments are equally correct: Since the

circle is invariant to rotation, only the amount of background contained in

the region of overlap changes between the two alignment positions. The

foreground object, or circle, is correctly aligned in both positions.

Studholme et al. [31] proposed normalized mutual information as a sim-

ilarity measure that is invariant to overlap statistics. Specifically, it is in-

variant to changes in the very low intensity regions, i.e., background regions.

Normalized mutual information (NMI) is defined by:

Î(X; Y ) =
H(X) + H(Y )

H(X, Y )
. (4.3)

It is the ratio of the information contained in each image over the region of

overlap to the joint information contained in the region of overlap. Recall

that

H(X, Y ) ≤ H(X) + H(Y ),

with equality if and only if X and Y are independent. Thus, normalized
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mutual information satisfies

Î(X; Y ) ≥ 1, (4.4)

with equality if and only if X and Y are independent.

Returning to Example 4.3.3, the normalized mutual information values

for alignment positions (a) and (b) are Îa(X; Y ) = Îb(X; Y ) = 2. Thus, nor-

malized mutual information does not distinguish between the two alignment

positions. Overall, normalized mutual information is more robust compared

to joint entropy and mutual information [31].

Unfortunately, Example 4.3.3 is idealized. The problem of overlapping

background is complex and plagues all information theoretic similarity mea-

sures. Since the registration transformation determines the region of overlap,

the transformation can introduce more background into the computation re-

gion. Increasing the presence of background increases the low intensity prob-

abilities in all distribution estimates. This in turn causes a decrease in the

image entropies and joint entropy since the distributions have become less

uniform. Let ∆H(X) denote change in H(X), ∆H(Y ) denote change in

H(Y ), and ∆H(X, Y ) denote change in H(X, Y ) due to change in the region

of overlap. Then, change in mutual information due to change in the region

of overlap is given by:

∆I(X; Y ) = ∆H(X) + ∆H(Y )−∆H(X, Y ).

If ∆H(X) + ∆H(Y ) > ∆H(X, Y ), mutual information will increase, if

∆H(X) + ∆H(Y ) < ∆H(X, Y ), mutual information will decrease, and if

equality holds, mutual information will be unchanged. Unfortunately, since

normalized mutual information involves division, it does not produce a sim-

ilar argument.

Example 4.3.4 demonstrates the effect image background included in the
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region of overlap can have on registration results. Cropping unnecessary

background from images or constraining the registration transformation pa-

rameters can help avoid this situation.

Image X

Image Y

Region of Overlap

Alignment position (a)

Region of Overlap

Alignment position (b)

Figure 4.21: Images X and Y (left) in alignment position (a) (middle), the correct align-
ment, and in alignment position (b) (right), the incorrect alignment with maximal back-
ground overlap.

Example 4.3.4. Consider the images shown in Figure 4.21. Clearly align-

ment position (a) is preferred over alignment position (b). The values of

entropy, MI, and NMI for both alignment positions are shown in Table 4.1.

Registration by minimization of joint entropy, maximization of mutual infor-

mation, or maximization of normalized mutual information will all choose

alignment position (b) over alignment position (a), and thus all fail to cor-

rectly register the images.

An open research problem would be to determine new similarity measures

which are not as sensitive to the presence of background. Consider, for

example, a function such as:

Ĩ =
H(X)H(Y )

H(X, Y )
. (4.5)
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While this function has no physical interpretation, it would succeed in regis-

tering the images from Example 4.3.4. For alignment position (a), Ĩa = 1.60

bits and for alignment position (b), Ĩb = 1.44 bits. Thus, maximizing this

new similarity measure would result in the correct alignment. Unfortunately,

for Example 4.3.3, the value for alignment position (a) is Ĩa = 0.66 bits and

the value for alignment position (b) is Ĩb = 1 bit. Hence this function is not

invariant to overlap statistics.

4.3.2 Registration Experiments

We return to the MR images from Figure 2.2 to create registration curves for

horizontal shifts over the region of overlap and region of union. Figure 4.22

shows three registration curves for each of MI and NMI. Notice that for finite

images over the region of overlap, mutual information has two false maxima

around ±100 pixel shifts and two spikes around ±180 pixel shifts. These

phenomena are a result of the nature of the images and the limited statistics

caused by the decreasing region of overlap. Normalized mutual information

for this case exhibits the same phenomena but on a reduced scale. Using

the region of union with zero padding, however, creates very well behaved

mutual information and normalized mutual information curves: They are

smooth and the registration peaks have large capture regions.

Since noise and blur affect entropy estimation, they distort the shape of

Table 4.1: Values of entropy, mutual information, and normalized mutual information for
alignment positions (a) and (b) from Example 4.3.4.

(a) (b)
H(X) 2.40 2.09
H(Y ) 2.63 2.20

H(X, Y ) 3.95 3.19
I(X; Y ) 1.08 1.11

Î(X; Y ) 1.27 1.35
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Figure 4.22: Mutual information (solid) and normalized mutual information (dotted) esti-
mates for horizontal shifts of the T2-MR image with respect to the PD-MR image over the
region of overlap for periodic images (left), the region of overlap for finite images (middle),
and the region of union for zero padded images (right).

registration curves. Starting with the horse image in Figure 4.5, independent

zero-mean Gaussian noise of variance 25.5 was added to create two indepen-

dently noisy images. The presence of independent noise in these two images

causes the joint distribution to be less correlated, and thus increases the joint

entropy estimate. In Figure 4.23, the peak at registration is degraded by the

presence of noise in the images.
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Figure 4.23: Mutual information (solid) and normalized mutual information (dotted) es-
timates for horizontal shifts of two clean horse images (left), two noisy horse images
(middle), and two blurred horse images (right) over the region of overlap.

Two independently blurred images were also created from the original

horse image by applying two different Gaussian low-pass filters (standard

73



deviations of 10 and 11). Blurring images sharpens the image distribution

estimates which slightly decreases the image entropy estimates. The presence

of blur in the images causes the mutual information registration peak to

decrease in amplitude (since they are no longer identical) and to broaden

(since the distributions have sharpened).

As discussed in Section 4.1.1, interpolation affects entropy estimation.

Hence, the interpolation method used to increase the resolution and trans-

form an image affects the shape of the registration curve. Using the same

interpolation methods as in Section 4.1.1, the image lime 64, from Figure 4.2,

was increased in resolution to 256 × 256 pixels (Figure 4.7) and registered

to image lime 256. Figure 4.24 shows the mutual information registration

surfaces, for horizontal and vertical sub-pixel shifts, of the enhanced lime 64

image with respect to the lime 256 image using nearest neighbour, bilinear,

and bicubic interpolation.

Figure 4.24: Mutual information registration contour plots, for horizontal and vertical sub-
pixel shifts, of image lime 64 increased to a 256×256 pixel image using nearest neighbour
(left), bilinear (middle), and bicubic (right) interpolation, with respect to image lime 256.

For nearest neighbour interpolation, pixel replication creates step-like ar-

tifacts in the mutual information surface. The maximum value of mutual

information occurs at (x, y) = (2.3,−1.5) nearest neighbour interpolated

pixel shifts. The value of mutual information for the unregistered pair of
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images, the lime 256 image and the enhanced lime 64 image, is 0.80 bits:

The value after registration is 0.85 bits.

Bilinear and bicubic interpolation create smooth registration surfaces

which are important for optimization algorithms. The results for bilinear

and bicubic interpolation are very similar: The maximal value of mutual

information for bilinear interpolation is 0.89 bits, increased from 0.82 bits

for the enhanced but unregistered images, and occurs at (x, y) = (1.3,−0.9)

bilinear interpolated pixel shifts. The maximal value of mutual information

for bicubic interpolation is 0.90 bits, increased from 0.83 bits for the en-

hanced but unregistered images, and occurs at (x, y) = (1.3,−0.9) bicubic

interpolated pixel shifts.

Figure 4.25: Mutual information registration contour plots, for horizontal and vertical sub-
pixel shifts, of image lime 256 decreased to a 64× 64 pixel image using nearest neighbour
(left), bilinear (middle), and bicubic (right) interpolation, with respect to image lime 64.

The registration surface is also affected by interpolation when decreas-

ing the resolution of an image. Figure 4.25 shows the mutual information

registration surfaces, for horizontal and vertical sub-pixel shifts, of the lime

256 image, decreased in resolution to 64 × 64 pixels, with respect to the

lime 64 image. The maximal value of mutual information is: 1.42 bits at

(x, y) = (−0.5, 1.5) pixel shifts for nearest neighbour interpolation, 1.53 bits

at (x, y) = (−0.5, 0.4) pixel shifts for bilinear interpolation, and 1.53 bits at
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(x, y) = (−0.4, 0.4) pixel shifts for bicubic interpolation. Again, bilinear and

bicubic interpolation result in similar registration transformations.

Rigid-body transformation registration experiments are presented in Ap-

pendix B. The experiments are intramodal and registration is performed by

both mutual information and the L2 norm.

4.3.3 Challenges of Mutual Information Registration

Mutual information and normalized mutual information are the most com-

monly used information theoretic similarity measures for automated multi-

modal image registration. They consider both the image information and the

joint information which makes them more appropriate than joint entropy for

image registration. Mutual information and normalized mutual information

allow for sub-pixel accuracy in registration results [24].

The problem with all information theoretic similarity measures is that

optimization, a slow and computer intensive procedure, is required. Mu-

tual information optimization can take several minutes to compute [24], but

modern clinical settings demand real time multimodal image registration.

Several methods have been proposed to speed up the optimization pro-

cess. Multiresolution approaches [32] start at a low resolution and slowly

increase the image resolution until the original images are correctly aligned.

This process of slowly increasing the problem resolution helps avoid local

maxima (misalignments) and helps speed up the optimization process.

In multimodal image registration, nonlinear transformations are usually

required to account for image deformations. For example, the positioning of

the patient may be different between modalities. In CT imaging, the patient

usually lies on their back with their arms above their head and in PET

imaging, they may have their arms at their sides. Also, the type of couch

the patient lies on may be curved or flat. Deformations also arise from the

76



days, months, or years that exist between image acquisition times. Regular

internal organ movement, breathing, full bladder, etc. can also deform image

content in nonlinear ways.

Unfortunately, most registration algorithms involving nonlinear transfor-

mations are driven by landmarks. Landmark pairs are used to define the start

and end positions of the transformation, and dynamical models, such as elas-

ticity or fluid dynamics, are used to determine the transformation path. To

account for nonlinear deformations and automate the registration process,

two stage registration procedures [29] have been used. For the procedure

proposed in [29], the first stage maximizes mutual information to obtain a

rough image alignment. Segmentation is then used to determine landmark

points (i.e., points surrounding the contour of the lungs) which define a non-

linear transformation in the second stage registration. The advantage of this

procedure is that it is automated and can compensate for nonlinear defor-

mations.

77





Chapter 5

Localized Image Registration

Often, diagnosticians are more concerned about certain regions of interest

(ROIs) than the global image space. For example, in radiation therapy for

cancer treatment, diagnosticians are very interested in the region surround-

ing the cancerous lesion and less interested in the rest of the imaged body.

CT and PET images are commonly registered for radiation therapy plan-

ning. The CT data provides linear attenuation coefficients which are used to

plan the radiation therapy; the PET data improves the identification of the

cancerous region. It is common for diagnosticians to manually refine image

registration results to obtain improved alignment over regions of interest.

5.1 Methods to Localize Registration

Attempting to register regions of interest on their own is unreliable. For

prostate cancer radiation therapy planning, the typical size of the prostate

in a 256 × 256 pixel image is a circle of radius 23 pixel-widths, or an area

of 1661 pixels. Mutual information estimates computed with the limited

statistics (i.e., distributions) of small regions over the region of overlap are

unreliable due to a lack of sampling. To demonstrate this, regions of interest
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were defined of size 20 × 20, 40 × 40, and 80 × 80 pixels in the MR images

from Figure 2.2. Figure 5.1 shows the mutual information and the normalized

mutual information for these regions computed over the region of overlap and

over the region of union. The MI and NMI of the global images computed

over the region of overlap is included as a reference.
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Figure 5.1: Registration curves for horizontal pixel shifts of three regions of interest using
MI (column 1 ) and NMI (column 2 ) computed over the region of overlap, and MI (column
3 ) and NMI (column 4 ) computed over the region of union, for the PD-MR and T2-MR
images.

The registration curves for MI and NMI computed over the overlap regions

of the regions of interest provide no indication of registration, i.e., there are

no peaks at registration (0 shifts). The registration curves for MI and NMI

computed over the union regions of the regions of interest, however, contain

peaks at registration to indicate correct alignment. Since ROIs typically

lie inside the foreground object and well within the field of view, using the

region of union no longer requires filling the undefined image space with

zeros. Instead, the global image is used to fill in the region of union. Thus,

while the region of overlap decreases in size as images move out of alignment,

the region of union increases in size to incorporate more image information

into the statistics.

Even with the union region of the regions of interest, however, the samples

used to estimate mutual information are limited and thus unreliable. Also,
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when registering regions of interest, global image information should not be

entirely discarded: Since medical images have certain orientations that must

be preserved, global image alignment is still required. Hence, it is desirable

to register images with good global alignment and excellent local alignment

over the regions of interest. To achieve this type of image alignment, two

new similarity measures based on mutual information are presented below.

The methods use convex combinations of local image information and global

image information with a weighting parameter to control the amount of lo-

calization.

5.1.1 Weighted Mutual Information

The first method involves a convex combination of the mutual information

of the global images and the mutual information of the regions of interest.

We shall call this new similarity measure the weighted mutual information

(WMI) and define it as:

J(X; Y ; c) = (1− c)I(XROI ; YROI) + cI(X; Y ). (5.1)

Here c, 0 ≤ c ≤ 1, is the weighting parameter to control the amount of

localization in the similarity measure, and XROI and YROI are the regions of

interest of images X and Y respectively.

Weighted mutual information is not a mutual information function. In-

stead, it is a function which takes a weighted average of the mutual infor-

mation of the regions of interest and the mutual information of the global

images. When c = 0, WMI is the mutual information function of the regions

of interest, and when c = 1, WMI is the mutual information function of the

global images.

By replacing the mutual information function with the normalized mutual

information function in (5.1), we can define the weighted normalized mutual
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information (WNMI), that is,

Ĵ(X; Y ; c) = (1− c)Î(XROI ; YROI) + cÎ(X; Y ). (5.2)

Since WMI is a convex combination of mutual information functions it

satisfies the following relation:

min(I(XROI ; YROI), I(X; Y )) ≤ J(X; Y ; c)

≤ max(I(XROI ; YROI), I(X; Y )). (5.3)

A similar relation exists for WNMI.

5.1.2 Mutual Information of Weighted Distributions

The second method involves convex combinations of the intensity probability

distributions of the global images and the intensity probability distributions

of the regions of interest. Let pROI and qROI be the distributions of the

regions of interest XROI and YROI respectively. We then define the associated

weighted distributions as:

pc = (1− c)pROI + cp (5.4)

qc = (1− c)qROI + cq. (5.5)

The weighted joint distribution is defined in a similar manner:

rc = (1− c)rROI + cr. (5.6)

Again, c, satisfying 0 ≤ c ≤ 1, is the weighting parameter which controls

the amount of localization in the weighted distributions. When c = 0, the

weighted distributions are the distributions of the regions of interest, and

when c = 1, the weighted distributions are the distributions of the global
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images. The weighted distributions are still probability distributions, that

is, they satisfy: ∑
i

pc
i = 1

∑
j

qc
j = 1

∑
i,j

rc
i,j = 1. (5.7)

Moreover, pc and qc are the marginals of rc. These weighted distributions

no longer represent physical images. Instead, they represent the weighted

average of two classes of an ensemble of images. Consider an ensemble of N

images containing n global images and N − n regions of interest. Then, the

average distributions of the ensemble of images can be found by combining
n
N

of the image distributions with N−n
N

of the region of interest distributions.

Letting c = n
N

results in (5.4), (5.5), and (5.6).

We can now use these weighted distributions to define a new similarity

measure, the mutual information of weighted distributions (MIWD), defined

by:

K(X; Y ; c) = H(pc) + H(qc)−H(rc). (5.8)

When c = 0, MIWD is the mutual information function of the regions of in-

terest, that is K(X; Y ; 0) = I(XROI ; YROI). Similarly, when c = 1, MIWD is

the mutual information function of the global images, K(X; Y ; 1) = I(X; Y ).

The mutual information of weighted distributions function is a mutual infor-

mation function (Definition 3.2.3) and therefore satisfies properties associated

with mutual information (i.e., Corollary 3.3.4).

The weighted distributions can also be used in the definition of normalized

mutual information (4.3). We define the normalized mutual information of

weighted distributions (NMIWD) as follows:

K̂(X; Y ; c) =
H(pc) + H(qc)

H(rc)
. (5.9)

The normalized mutual information of weighted distributions function satis-
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fies properties associated with normalized mutual information, i.e., (4.4).

Weighted mutual information and mutual information of weighted distri-

butions are related by the following theorem.

Theorem 5.1.1. Weighted mutual information, J(X; Y ; c), and mutual in-

formation of weighted distributions, K(X; Y ; c), satisfy:

K(X; Y ; c) ≥ J(X; Y ; c)− h(c), (5.10)

where h(c) = −(1− c) log(1− c)− c log c is the entropy of a binary random

variable with distribution p0,1 = (1− c, c).

Proof. Using Theorem 3.3.6, the entropy of the weighted distributions pc

and qc satisfy:

H(pc) ≥ (1− c)H(pROI) + cH(p) (5.11)

H(qc) ≥ (1− c)H(qROI) + cH(q), (5.12)

and the joint entropy of the weighted joint distribution rc satisfies:

−H(rc) ≥ − (1− c)H(rROI)− cH(r)− h(c). (5.13)

Summing (5.11), (5.12), and (5.13), gives the desired result.

5.2 Registration Algorithm

The registration experiments conducted in this work compute all allowable

transformations to find the registration result as determined by, for example,

maximization of mutual information. This was done to avoid the complexities

of optimization. To compute the similarity measures that require weighting,

the following rules were followed:
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• If the regions of interest do not overlap in the computation region, set

c = 1 to use only global image statistics. For example, set the values

of WMI and MIWD equal to the value of the global MI.

• If the regions of interest do overlap in the computation region, then

the values of the localizing similarity measures are computed using the

appropriate value of c and either the overlap region or the union region

of the regions of interest.

Thus, when the regions of interest are not close to being registered, the local-

izing similarity measures use global image information to improve alignment.

But, when the regions of interest are close to being registered, the localiz-

ing similarity measures incorporate local image statistics in order to improve

alignment on a local scale.

It is difficult to determine the appropriate amount of weighting to use

when computing the localizing similarity measures: In this work, the thresh-

old value of cT = 1
2

is used to achieve equal weighting of the local regions of

interest and the global images. During the registration process, as the regions

of interest align, the value of c continuously decreases, from c = 1 to c = cT ,

based on the amount of region of interest overlap. This ensures the similar-

ity measure is continuous which is a necessity for optimization. An outline

of the general registration procedure is included below. Exhaustive search

of the transformation parameter space is used to avoid the complexities of

optimization.

1. For images X and Y , define, independently, the regions of interest,

XROI and YROI , to contain corresponding information.

2. Set the transformation constraints and initialize all variables.

3. Iterate through the allowable transformations as determined by the

defined parameter space:
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(a) If the region of overlap of the global images is empty, all similarity

measures are zero. Go to step 3.

(b) Otherwise, compute the joint and image distributions and the

global similarity measures of the global images (over the overlap

region of the global images).

(c) If the overlap region of the regions of interest is empty, set all lo-

calizing similarity measures equal to their respective global coun-

terpart, i.e., set WMI = MI. No localization is required. Go to

step 3.

(d) Otherwise, compute the joint and image distributions of the re-

gions of interest (over the overlap or union region of the regions

of interest).

(e) Determine the weighting parameter c, form the weighted distribu-

tions, and compute the localizing similarity measures.

4. Find the optimal value of the registration similarity measure and de-

termine the parameters of the registration transformation.

An extension of this algorithm, that has yet to be investigated, is to

use spatially-dependent weightings when computing the region of interest

distributions. This extension is similar to local entropy estimation presented

in [12], where the weight of each pixel is 1
r2 , with r being the distance from the

centre pixel. We propose that two-dimensional Gaussian windows be centred

over the regions of interest to determine the weight of each pixel intensity

value in the computation of the frequency of occurrence histogram. This may

allow for more accurate localized entropy estimation without the problem

of limited sampling and may create a more focused region distribution to

improve localized registration results.
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5.3 Defining Regions of Interest

Since the mutual information of weighted distributions function involves a

weighted average of the image distributions and the regions of interest dis-

tributions, its behaviour is dependent on image content. Recall that from

the concavity property of entropy, Theorem 3.3.6, the entropy of a weighted

distribution satisfies (5.11). By choosing c = c∗, such that the distance

D(c) = H(pc) − (1 − c)H(pROI) − cH(p) is maximized, it may be possible

to increase the magnitude of the mutual information registration peak. In-

creasing the magnitude of a registration peak would facilitate optimization:

Unfortunately, the entropy of a weighted distribution depends on the content

of the image and of the region of interest, making it impossible to know the

value of c∗ a priori.

In medical imaging applications, regions of interest are defined by diag-

nosticians. For radiation treatment planning in cancer therapy, a radiologist

uses knowledge and experience to define the region of interest in each image.

Unfortunately, this process is subjective and region of interest definitions

vary from radiologist to radiologist [1].

In other applications, automatic detection of regions of interest may be

beneficial. Regions can be chosen based on local properties such as the

”activity level” of the image region. High activity regions are defined as

regions that contain edges and textures which create image details. They

tend to have intensity distributions that spread across the intensity range,

giving them high intensity variances and high entropies [20]. The presence of

edges and textures also gives them high edge variances. Low activity regions

are defined as regions that contain mostly flat or gradient shading which do

not contribute to image details. These regions tend to have distributions

contained in a small region of the intensity range giving them low intensity

variances and low entropies. The lack of edge details in low activity regions

gives them low edge variances.
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Figure 5.2: High (right column) and low (left column) activity regions, 40×40 pixel blocks,
of the PD-MR (top row) and T2-MR (bottom row) images.
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Figure 5.2 shows examples of high and low activity regions defined as

40 × 40 pixel blocks in the MR images. The low activity regions contain

brain tissue and the high activity regions contain part of the eye socket and

sinus cavity. The distributions of these regions are shown in Figure 5.3.

Notice that the low activity region distributions are contained in one hill and

that the high activity region distributions spread across the intensity value

range.

0 100 200
0

0.02

0.04

0.06

0.08

0.1
Low Activity Region Distributions

PD ROI
T2 ROI

0 100 200
0

0.02

0.04

0.06

0.08

0.1
High Activity Region Distributions

PD ROI
T2 ROI

Figure 5.3: High (right) and low (left) activity region distribution estimates for the PD-
MR (solid) and T2-MR (dotted) regions of interest from Figure 5.2.

Local intensity variance and local intensity standard deviation are pos-

sible ways of measuring the activity of an image in a region. For a block

region centred around pixel Xi,j of width 2m+1 and height 2n+1, the local

intensity variance is defined as:

vari,j =
1

(2m + 1)(2n + 1)

p=i+m∑
p=i−m

q=i+n∑
q=i−n

(xp,q − x̄)2, (5.14)

where xp,q is the intensity value at pixel Xp,q and x̄ is the average inten-

sity value of the block region. Local intensity standard deviation is defined

as σi,j =
√

vari,j. Since local intensity variance, and hence local intensity
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standard deviation, consider the difference of intensity values from the mean

intensity value, they are dependent on the contrast of the image. A high

contrast region will produce a higher variance than a low contrast region,

even if the details of the two regions are identical.

To avoid dependence on intensity maps, local entropy or edge variance

can be used to measure the activity of a potential region of interest. Lo-

cal entropy, the entropy of the distribution estimate of the region, measures

the spread of the distribution. Unfortunately, entropy estimation is affected

by the limited samples associated with small regions. Edge variance is the

variance of the edge detected version of the region. Edges can be detected

in images using various techniques such as the Sobel edge detection tech-

nique: For each pixel, the Sobel estimate of the gradient (see Formula A.7

in Appendix A) is found and if it is greater than a predefined threshold, a

value of 255 (white) is stored in the new edge detected image, otherwise a

value of 0 (black) is stored. The result of edge detection is a black image

with white edge details. The edge detected versions of the regions of interest

from Figure 5.2 are shown in Figure 5.4.

Table 5.1: Local intensity variances, entropies, and edge variances of the high and low
activity regions of the MR images from Figure 5.2.

intensity variance entropy edge variance
PD-MR low activity region 1.9× 102 5.7 4.03× 103

PD-MR high activity region 6.87× 103 7.4 1.110× 104

T2-MR low activity region 2.3× 102 5.8 8.32× 103

T2-MR high activity region 3.35× 103 7.1 9.71× 103

The intensity variances, entropies, and edge variances of the regions of

interest from Figure 5.2 are given in Table 5.1. With the above definitions of

high and low activity regions, local intensity variance and local entropy will

both generally identify the same regions as being high or low activity. By

comparison, local edge variance will identify low contrast textured regions,

such as the low activity T2-MR region from Figure 5.2, as high activity
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Figure 5.4: Sobel edge detected versions of the high (right column) and low (left column)
activity regions of the PD-MR (top row) and T2-MR (bottom row) images from Figure 5.2,
using a threshold of 0.04.
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regions. Local intensity variance and local entropy will identify such regions

as low activity. Therefore, the choice of activity measure will depend on the

application.

In applications, high activity regions generally have more uniform dis-

tributions than low activity regions, which gives them high local entropy

values. Thus, if the joint entropy values of the high and low activity regions

are the same, which we show later is a valid assumption, then high activ-

ity regions have high mutual information values, and low activity regions

have low mutual information values. For example, the value of MI for the

low activity regions from Figure 5.2 is 1.54 bits (1.15 for NMI) and for the

high activity regions the value is 4.10 bits (1.40 for NMI). Thus, weighting

the localizing similarity measures with high activity regions should result in

higher values than weighting with low activity regions. The nature of their

distributions makes weighting with high activity regions more robust in the

presence of noise. Since noise tends to spread distributions, the mostly spread

distributions of high activity regions are less affected than the compact, hill

distributions of low activity regions.

Figure 5.5 shows the resulting localizing similarity measures using the

high and low activity regions from Figure 5.2: Recall that c = 0 corresponds

to region of interest information and c = 1 corresponds to global image

information. Using the low activity region of interest causes little change in

the value of the similarity measure, whereas using the high activity regions

of interest causes significant change in the value of the similarity measure.

WMI and WNMI convexly combine the case where c = 0 and the case where

c = 1. The behaviour of MIWD and NMIWD, however, depend on the

content of the regions of interest. In general, MIWD and NMIWD are not

strictly convex or concave functions.
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Figure 5.5: Dependence on weighting parameter c of WMI and MIWD (top row) and
WNMI and NMIWD (bottom row) using the low activity regions (left column) and the
high activity regions (right column) from Figure 5.2.
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5.3.1 Automated Region of Interest Detection

A simple method to automatically determine high activity regions of interest

is to divide the image into block regions by application of a regular grid.

Then, for example, the local intensity variance of each block is computed

and the top variance values are used to determine the high activity regions.

This method tends to pick out high contrast edges in the image as potential

regions of interest. The size of the grid is determined by the size of the object

of interest. For example, to detect a prostate tumor in a typical 256 × 256

pixel CT image, block sizes of 40× 40 pixels are used.

This method will determine the regions of interest in one image, the

image over which the local intensity variances were computed. To determine

the corresponding regions of interest in the second image, the global images

must first be roughly registered to ensure the spatial locations of the regions

of interest roughly match. Otherwise, there is no guarantee that the regions

of interest determined independently in both images contain corresponding

information. Using the union of the regions of interest avoids this problem

by including the corresponding spatial locations of all regions of interest

during registration. For this variation to be successful in registering the

regions of interest, a change is required in the computation of the weighting

parameter c. The value of c can no longer be based on the overlap region of

the regions of interest since the overlap region may be empty. An alternative

is to incrementally decrease the value of c, from c = 1 which uses only global

information, to the desired threshold cT , after a tolerance has been reached

in the change of the global similarity measure during optimization.

Since intensity variance is dependent on the image intensity map, the

regions chosen in this manner will be different for the PD-MR and T2-MR

images. Since the PD-MR image is higher contrast, it contains more high

local intensity variances than the T2-MR image. Thus if the regions were

determined by having variance values above a given threshold, the PD-MR

94



0 2000 4000 6000 8000
0

5

10

15

20

25

30
Variances of 32 X 32 regular blocks in T2−MR image

Local Intensity Variance

C
ou

nt
s

0 2000 4000 6000 8000
0

5

10

15

20

25

30
Variances of 32 X 32 regular blocks in PD−MR image

Local Intensity Variance

C
ou

nt
s

Figure 5.6: Histograms of local intensity variances for 32× 32 pixel blocks of the PD-MR
(left) and T2-MR (right) images.

image would result in more regions of interest than the T2-MR image. His-

tograms of local intensity variances for the MR images are shown in Fig-

ure 5.6. The uncropped MR images were used with a fixed grid of 32 × 32

pixel blocks. Taking the top five local intensity variance blocks from each

MR image results in the regions of interest shown in Figure 5.7. Notice the

different regions of interest chosen by the two images. The top five variance

blocks from the PD-MR image result in regions of interest containing the

sinus cavity and the edge of the skull while the top five variance blocks from

the T2-MR image result in regions of interest containing the eyes and the

back of the sinus cavity.

PD−MR Image Top 5 Variance Blocks T2−MR Image Top 5 Variance Blocks

Figure 5.7: Regions of interest as determined by the top five local intensity variances of
32× 32 pixel block regions on the PD-MR (left) and T2-MR (right) images.
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For a more thorough search of the image for potential regions of interest, a

sliding fixed grid can be used. For example, the block computation region can

be raster scanned through the image to compute all possible block regions

contained in the image. Figure 5.8 shows the variance histograms for the

cropped MR images using a raster scanned 32×32 pixel block. The different

intensity maps of the images create different variance distributions.
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Figure 5.8: Histograms of local intensity variances for all possible 32× 32 pixel blocks in
the PD-MR (left) and T2-MR (right) images.

Figure 5.9 shows the local entropy histograms for the raster scanned 32×
32 pixel block. Notice that the distribution of entropies is similar for both

MR images. The majority of local entropy values for the MR images lie

between 5 and 8 bits. The histogram of local joint entropy values is also

shown in Figure 5.9. The majority of joint entropy values lie between 9

and 10 bits, illustrating that the joint entropies of all possible corresponding

blocks in the MR images are approximately equal.

Using 32× 32 pixel blocks will detect fairly large regions of interest in a

typical 256× 256 pixel image. To detect smaller regions of interest, smaller

block sizes can be used. Quadtree partitioning of the computation grid can

also be used to detect regions of interest of various scales.
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Figure 5.9: Histograms of local entropies and joint entropies (right) for all possible 32×32
pixel blocks in the PD-MR (left) and T2-MR (middle) images.
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Chapter 6

Localized Registration Results

The registration process used below is similar to the two stage process de-

scribed in [29], but with the two stages reversed. Recall that in [29], the first

stage uses a rigid-body transformation with mutual information to roughly

align the images, and the second stage uses a nonlinear transformation with

landmarks to account for nonlinear deformations. In our proposed localized

registration process, the first stage roughly aligns the images using a nonlin-

ear registration algorithm. This stage is assumed to be completed prior to

the investigations carried out below and the details are not specified. The

second stage refines the alignment both globally and locally using a rigid-

body transformation determined by a localizing similarity measure, and is

the focus of this chapter.

The nonlinear transformation attempts to correct the deformations that

may have occurred due to differences in the patient position during imaging,

internal organ movement, etc.; the rigid-body transformation refines the im-

age alignment and reduces uncertainty that may exist due to, for example,

landmark location identification. Also, since the images are preregistered

before maximization of mutual information, the rigid-body parameters can

be constrained to a smaller parameter space to speed up the optimization
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process. For simplicity, the rigid-body transformations used below are re-

stricted to one-dimensional or two-dimensional transformations. This allows

for shorter computation times while still testing the ability of the localizing

similarity measures to localize registration results.

6.1 One-Dimensional Transformations

As mentioned before, the maxima of similarity measures are found through

exhaustive searches of the transformation parameter space to avoid the com-

plexities of optimization algorithms. The simplest registration experiments

to perform thus involve one-dimensional transformations. Restricting the

transformation to horizontal translations, for example, allows for short com-

putation times and easy inspection of the resulting registration curves.

6.1.1 Localized Registration and Degraded Images

We first examine the effects of image degradations, i.e., noise and blur, on the

localizing similarity measure registration curves. Here we perform localized

image registration on two identical clean horse images, two independently

noisy horse images (zero-mean Gaussian noise of variance 25.5), and two in-

dependently blurry horse images (low-pass Gaussian filtered with standard

deviations of 10 and 11), see Figure 4.5. In all cases, the transformations

are restricted to horizontal translations. Since the two images used are iden-

tical, except for the presence of noise or blur, registration is unnecessary.

The second stage registration is performed to analyze the behaviour of the

localizing similarity measures in the presence of noise and blur. The regions

of interest are defined as 40 × 40 pixel blocks centred over the nose, a high

activity region with the same spatial location in each image. Local statistics,

i.e., the local image and joint distributions, are computed using the union
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region of the regions of interest, or simply the ROI union, and the weighting

parameter is thresholded at cT = 1
2
.
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Figure 6.1: Registration curves for horizontal translations of two clean horse images (left),
two independently noisy horse images (middle), and two independently blurry horse images
(right), using the following similarity measures: MI of the images (dashed), MI of the ROIs
(dotted), MIWD (solid), and WMI (dash-dotted).

The resulting registration curves, Figure 6.1, demonstrate the effect noise

and blur have on the localizing similarity measures. Similar results exist for

the normalized versions of these functions. Since the images are identical

except for the presence of noise or blur, the global and local alignments are

identical. Thus, the registration transformation, determined by all similar-

ity measures, is a zero pixel-width horizontal translation. The value of each

similarity measure at registration is listed in Table 6.1. Notice that for two

clean horse images with the defined regions of interest and cT = 1
2
, MIWD

increases the registration peak, while WMI decreases the registration peak,

over the registration peak for the global MI. In general, the presence of noise

increases the already high entropy estimates of high activity regions of in-

terest, which causes localizing similarity measures to have higher magnitude

peaks than the registration peak for global MI. Since the mutual information

peak magnitude for both the blurred images and the blurred regions of in-

terest is approximately 4.0 bits, there is no increase in the registration peak

for MIWD or WMI.
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Table 6.1: Peak magnitude for the registration curves from Figure 6.1 measured in bits.
MI of Images MI of ROIs MIWD WMI

clean images 7.32 7.11 7.37 7.22
noisy images 1.52 4.43 2.40 2.98
blurry images 4.02 4.00 3.95 4.01

For other choices of regions of interest, these results may vary. Specifi-

cally, for low activity regions, the MI of the regions of interest may be lower

than the MI of the images, and thus using localizing similarity measures may

result in decreased registration peaks, as opposed to increased registration

peaks, in the presence of noise. Thus, if possible, high activity regions of

interest should be used to weight similarity measures since they are more

robust than low activity regions (see Section 5.3) and may result in a more

pronounced registration peak. The behaviour of the localizing similarity

measures depends on the nature of the regions of interest and of the global

images. Similar to mutual information, they suffer from the presence of image

degradations.

6.1.2 Registering Auto-Detected ROIs

Once again we return to the MR images from Figure 2.2. Five automati-

cally detected ROIs are determined by choosing the top five local intensity

variances or the top five local edge variances over a fixed grid. The two MR

images are assumed to be roughly aligned, having completed stage one, so

that corresponding spatial locations contain mostly corresponding informa-

tion. The threshold value for the weighting parameter is set at cT = 1
2

to

achieve equal weighting of the image and region of interest statistics. The

ROI union is used to compute the local statistics. The PD-MR and T2-MR

images were both used to compute the local intensity or edge variances over

a fixed grid of 32× 32 pixel blocks or 16× 16 pixel blocks. The registration

peak magnitudes of MIWD for these variations are given in Table 6.2.
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Table 6.2: Registration peak magnitudes of MIWD for horizontal translations of the PD-
MR and T2-MR images using automatically determined ROIs from either image based on
local intensity and local edge variance values over 32× 32 and 16× 16 pixel blocks.

ROI Detection max(MIWD32×32) max(MIWD16×16)
PD-MR Intensity Variances 1.70 bits 1.84 bits
T2-MR Intensity Variances 1.78 bits 2.08 bits

PD-MR Edge Variances 1.70 bits 2.19 bits
T2-MR Edge Variances 1.58 bits 2.07 bits

The resulting registration transformation, a zero pixel-width horizontal

translation, is the same for all variations from Table 6.2. This is because

the MR images were already aligned from stage one and there is no hori-

zontal discrepancy greater than a pixel-width between the local and global

alignments. The maximum value of MIWD increases for smaller block sizes

since local statistics are affected by the limited number of pixels contained

in each block, i.e., the limited samples. Limited local statistics can overes-

timate local entropies which may cause the value of MIWD to increase for

a fixed (less than unity) value of the weighting parameter. The maximum

value of MI for the global MR images is 1.34 bits. Therefore, using MIWD

with the five highest activity regions of interest, chosen by either intensity or

edge variance, increases the magnitude of the registration peak for cT = 1
2
.

6.1.3 Testing the Localizing Similarity Measures

To create a discrepancy between the global and local alignment of the MR

images, the PD-MR image is rotated 10◦ clockwise about its centre using bi-

linear interpolation. The regions of interest, 50× 50 pixel blocks, are defined

manually for each image to contain corresponding information. The images

and regions of interest are shown in Figure 6.2. The registration transfor-

mation, restricted to horizontal pixel-width translations, cannot compensate

for the initial rotation to correctly register the images, therefore, registration

should result in different transformations for local and global alignments.
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T2−MR Image Rotated PD−MR Image T2−MR ROI PD−MR ROI

Figure 6.2: T2-MR (column 1 ) and rotated PD-MR (column 2 ) images and manually
defined regions of interest for the T2-MR (column 3 ) and rotated PD-MR (column 4 )
images.

The registration curves using MI, MIWD, and WMI are shown on the

left, and the registration curves using NMI, NMIWD, and WNMI are shown

on the right of Figure 6.3. The horizontal pixel-width translations required

to register the images, determined by the maximum of each curve, are given

in Table 6.3. Positive translations correspond to rightward translations. No-

tice that using ROI union statistics produces much larger translations than

using ROI overlap statistics. The consequence of larger translations when

the transformation is restricted to only translations is that the global image

alignment deteriorates while the local image alignment improves.

In the registration algorithm, the weighting parameter was thresholded

at cT = 1
2
. It is important to threshold the value of the weighting parame-

ter to ensure the accuracy of the registration result. Local regions tend to

produce higher MI values than global regions and the value of the weighting

parameter increases the importance of local regions as the region of interest

overlap increases. Therefore, it is possible to end up with a transformation

that maximizes the amount of region of interest overlap, instead of a trans-

formation that best aligns the corresponding information contained in the

regions of interest, i.e., a transformation that best aligns the shapes of the

regions of interest instead of the information contained in the regions of inter-

est. Using WNMI and NMIWD reduces this risk since normalizing reduces

the magnitude of similarity measures to around unity.
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Figure 6.3: Registration curves for horizontal translations of the rotated PD-MR image
with respect to the T2-MR image, using MI (left column) and NMI (right column) based
similarity measures. Localizing similarity measures use either the ROI overlap (ROIO)
(top row) or the ROI union (ROIU) (bottom row).
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Table 6.3: Horizontal pixel-width translations required to register the T2-MR and rotated
PD-MR images.

Similarity Measure Translation
MI 1

NMI 1
MIWD using ROI overlap 5
WMI using ROI overlap 5

NMIWD using ROI overlap 3
WNMI using ROI overlap 3
MIWD using ROI union 17
WMI using ROI union 17

NMIWD using ROI union 16
WNMI using ROI union 17

The resulting registrations determined by MI, MIWD using ROI overlap

statistics, and MIWD using ROI union statistics are shown in Figure 6.4. To

quantitatively measure the alignments, both the L2 norm and the mutual

information of the regions of interest are used. The L2 norm is a satisfactory

similarity measure for the MR images because the information provided by

PD-MRI and T2-MRI is highly correlated. It is not, however, the optimal

similarity measure since the intensity maps of the two MR images differ by

more than Gaussian noise. The region of interest defined in the target T2-

MR image determines the local computation region after registration since

the registered PD-MR image now lies in the T2-MR image space. The L2

distance, i.e., the L2 norm of the subtraction image, for registration by

MI is 3.82 × 103, for registration by MIWD using ROI overlap statistics

is 3.80 × 103, and for registration by MIWD using ROI union statistics is

3.57× 103. The mutual information for these registrations is 3.10 bits, 3.15

bits, and 3.26 bits, respectively. Thus, the L2 distance is least, and the

mutual information is greatest, for registration by MIWD using ROI union

statistics. Visual inspection, in agreement with these quantitative measures,

indicates that the best local alignment is also achieved by maximization of

MIWD using ROI union statistics.
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It should be noted that registration by MIWD using ROI union statistics

results in the worst global alignment: Because the registration transforma-

tion was restricted, for simplicity, to horizontal translations, it cannot com-

pensate for the initial rotation used to create this test data. The weight of

importance for the global and local alignments are determined by the appli-

cation. In medical image registration problems, more complex second stage

transformations will allow for improved local alignment without detracting

from the global alignment.

Region of Interest Result by MI Result by MIWD

ROI Overlap Statistics

Result by MIWD

ROI Union Statistics

Figure 6.4: Region of interest for the T2-MR image (column 1 ) and resulting registra-
tions determined by maximization of MI (column 2 ), MIWD using ROI overlap statistics
(column 3 ), and MIWD using ROI union statistics (column 4 ).

6.2 Two-Dimensional Transformations

Here we perform more complex registration experiments by involving two-

dimensional transformations, where horizontal and vertical translations cre-

ate registration surfaces.

6.2.1 Registration of PET and CT Images

A common and difficult medical image registration problem involves aligning

anatomical data from CT with functional data from PET. Difficulties arise
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from, for example, the image acquisition times and the patient positions

during acquisition. The acquisition time for CT data takes seconds and

patients are usually asked to hold their breath at either full inspiration or full

expiration during the imaging process. The acquisition time for PET data,

however, is approximately 30 minutes, so several full breathing cycles occur

during the imaging process. As a result, PET data represents the average

of the breathing cycle, while CT data represents a limit of the breathing

cycle. Patient position generally differs for CT and PET image acquisition.

For the images shown in Figure 6.5, the patient had their arms at their

sides during the PET imaging process, and above their head during the CT

imaging process. For both imaging processes, the patient couch was flat, but

this, in general, may not be the case. Acquisition time, arm position, and

many other factors, cause nonlinear deformations in the body and internal

organ shapes and locations between the two data sets. These deformations,

together with the different intensity maps of these two modalities, make CT

and PET image registration a difficult problem.

CT Transaxial Image PET Transaxial Image CT Zoom of ROI PET Zoom of ROI

Figure 6.5: CT (column 1 ) and PET (column 2 ) transaxial images, and zoomed windows
of the regions of interest for the CT (column 3 ) and PET (column 4 ) images.

CT data displays linear attenuation coefficients required for dose calcula-

tions for radiation treatment planning in cancer therapy. PET data has two

components, emission data and transmission data. PET transmission data is

used for attenuation correction of the data to ensure the accuracy of localized

activity, and PET emission data (PET data), as shown in Figure 6.5, is used

to determine glucose uptake, which corresponds to metabolic activity in the

108



muscles and organs [1]. Therefore, registration of CT and PET data is very

desirable in cancer treatment planning. For the images in Figure 6.5, the

PET (emission) image shows considerable activity in the lung on the right,

represented by the bright white region, and the CT image shows a tumor in

the lung on the right.

Both CT and PET data were obtained in three-dimensions and was reg-

istered using a rigid-body transformation in three dimensions, using manu-

ally identified landmarks. This completed the first stage of this two-stage

registration process. After this initial registration it is possible to select cor-

responding slices, or images, Figure 6.5, to use in the following second stage

two-dimensional registration experiments. The CT image is a 512×512 pixel

array. The PET image is enlarged using bilinear interpolation to match the

resolution of the CT image: Originally, the PET image was 128 × 128 pix-

els. Bilinear interpolation is consistently used to enlarge the study image

here, which keeps the effects of the interpolation method constant. For both

images, 256 intensity bins were used in the distribution estimates.

The regions of interest, defined independently and manually for each im-

age as polygons, closely approximate the suspected regions, i.e., the bright

spot in the study PET image and the tumor contour in the target CT im-

age. Zoom windows, defined in the CT image space, of the suspected regions

are shown in the two rightmost images of Figure 6.5. Local statistics are

computed using the ROI union and the value of the weighting parameter is

thresholded at cT = 1
2
. The resulting registration surfaces for all MI-based

similarity measures are shown in Figure 6.6. Note that the colour scales dif-

fer among the graphs to emphasize surface details. The registration surfaces

for MI and NMI of the regions of interest are rough and irregular due to the

inaccurate entropy estimates caused by limited samples in the small regions.

The resulting registrations, horizontal and vertical pixel-width translations,

are listed in Table 6.4. Positive horizontal translations correspond to right-

ward translations and positive vertical translations correspond to downward
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Figure 6.6: Registration surfaces for horizontal and vertical translations of the CT and
PET images using the following similarity measures: (Top row): MI of the global images
(column 1 ), MI of the ROIs (column 2 ), MIWD (column 3 ), and WMI (column 4 ).
(Bottom row): NMI of the global images (column 1 ), NMI of the ROIs (column 2 ),
NMIWD (column 3 ), and WNMI (column 4 ).
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translations of the enlarged PET image with respect to the CT image.

Table 6.4: Registration pixel-width translations determined by each similarity measure to
align the CT and enlarged PET images.

Similarity Measure vertical horizontal
MI of Images 3 −2
MI of ROIs −19 −8

MIWD −18 −6
WMI −18 −6

NMI of Images 1 −2
NMI of ROIs −19 −8

NMIWD −18 −6
WNMI −18 −6

For this example, local alignment requires a vertical upward translation of

18 to 19 pixel-widths of the PET image with respect to the CT image. The

resolution of the CT, and thus enlarged PET, image is 0.88 mm/pixel, so

a translation of 18 pixel-widths represents a translation of approximately

15.8 mm. This vertical translation may be compensating for stretching

caused by, for example, the difference in arm position during the imaging

processes. Since the first stage involved a rigid-body transformation, instead

of a nonlinear transformation, such internal stretching may not have been

corrected prior to the second stage registration.

Figure 6.7 shows zoomed windows of the resulting registrations as deter-

mined by the similarity measures: MI of the global images, MI of the ROIs,

MIWD, WMI, and the corresponding normalized versions of these functions.

Once again, mutual information is used to quantitatively measure the align-

ment results. The L2 norm cannot be used to quantitatively measure the

alignment of CT and PET data because the intensity maps differ by more

than Gaussian noise. (Recall that the L2 norm assumes the intensity maps

of the images differ by at most Gaussian noise.) The mutual information

values of the CT and PET zoom windows for each registration result are

given in Table 6.5.
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CT ROI MI of Images MI of ROIs MIWD WMI

CT ROI NMI of Images NMI of ROIs NMIWD WNMI

Figure 6.7: Zoom window of the CT image region of interest (top and bottom rows, column
1 ). Zoom windows of the registered PET image using the following similarity measures:
(Top row): MI of the global images (column 2 ), MI of the ROIs (column 3 ), MIWD
(column 4 ), and WMI (column 5 ). (Bottom row): NMI of the global images (column 2 ),
NMI of the ROIs (column 3 ), NMIWD (column 4 ), and WNMI (column 5 ).

Table 6.5: Mutual information values computed over the zoom windows for the CT and
PET image registration results.

Similarity Measure MI of zoom window
MI of Images 1.52 bits
MI of ROIs 1.64 bits

MIWD 1.64 bits
WMI 1.64 bits

NMI of Images 1.52 bits
NMI of ROIs 1.64 bits

NMIWD 1.64 bits
WNMI 1.64 bits

Variations on the above registration process were performed using the

same CT and PET images. Many different polygonal definitions of the re-

gions of interest were used for local registration with little change occurring in

the registration results. The MI of the zoom windows, whose spatial location

is defined by the target CT image and is thus constant, stayed around 1.64
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bits for registration by maximization of MIWD and WMI. Generally, all local-

izing similarity measures returned similar transformations. The registration

results were consistent, even when mistakes were deliberately made in the

region of interest definitions, i.e., when the manually defined ROI polygons

did not fully enclose the target regions. This demonstrates that the localiz-

ing similarity measures can result in significant local alignment improvement

over global image registration with little dependence on perturbations to the

region of interest definitions.

With the weighting parameter thresholded at cT = 3
4
, the localizing simi-

larity measures produce satisfactory results for the CT and PET image pair.

The MI of the zoom windows for registration by maximization of MIWD

is 1.60 bits and for registration by maximization of WMI is 1.58 bits. Lo-

cal alignment was improved, but since global alignment was weighted more

heavily, the global alignment was less compromised by the registration trans-

formation. If the transformation used in the first stage registration was non-

linear, it is probable that a smaller vertical translation would be required in

the second stage registration. Thus, the second stage registration would have

the effect of refining the registration to allow for improved local alignment

without compromising global alignment.

Thresholding the weighting parameter to cT = 0, to use only local in-

formation once the regions are sufficiently aligned, results in satisfactory

registrations. The MI of the zoom windows for registration by maximization

of either MIWD, WMI, or MI of the ROIs, is 1.59 bits. Using only local

statistics to guide the local registration, however, is unreliable due to the

limited samples in the small regions. The rough, irregular registration sur-

faces created by the regions’ limited statistics are not suitable for use in most

optimization algorithms since the many local maxima may result in subop-

timal registrations. Furthermore, disregarding global image statistics during

the registration process is unsatisfactory since global alignment is important

for proper image registration.
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Chapter 7

Discussion and Conclusions

This thesis presented a simple, but novel, contribution to the area of im-

age registration. Two new similarity measures based on mutual information

were presented for the purpose of localizing image registration. Localization

is achieved by blending the information contained in the regions of interest

with the information contained in the global images. The similarity mea-

sures presented are based on mutual information functions so that they are

independent of image intensity maps. This allows the similarity measure to

be applied to both intramodal and intermodal registration problems.

The first localizing similarity measure presented, weighted mutual in-

formation (WMI), involves a convex combination of the mutual informa-

tion of the regions of interest and the mutual information of the global im-

ages. Weighted normalized mutual information (WNMI), defined analogous

to WMI, was also discussed as a possible similarity measure for localizing im-

age registration. The advantage of WNMI is that it incorporates the overlap

invariant property of normalized mutual information.

The second localizing similarity measure presented, mutual information

of weighted distributions (MIWD), computes the mutual information using

convex combinations of the distributions from the regions of interest and
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the global images. MIWD is a mutual information function, however, the

objects that the mutual information represents are not physical: Weighted

probability distributions, both marginal and joint, are constructed via con-

vex combinations of the probability distributions of the regions of interest

and the probability distributions of the global images. Normalized mutual

information of weighted distributions (NMIWD) was also discussed as a pos-

sible similarity measure that is invariant to overlap statistics and capable of

localizing registration.

For these localizing similarity measures, the weighting parameter is vari-

able: This allows the focus of the registration to continuously vary from

global to local registration. The registration algorithm presented in Chap-

ter 5 takes advantage of this fact by first registering the images based on

global information and then, once satisfactory local registration is achieved,

shifting the focus of the registration to weight local image information more

heavily to refine the registration locally. Generally, good localized registra-

tion results were achieved by thresholding the weighting parameter at a value

representing the equal weighting of global and local image information.

Problems associated with registering small regions were discussed, and

the use of the region of union was proposed as an alternative to the region

of overlap. During registration, the region of union incorporates more image

information into the computation region than the region of overlap. This al-

lows the region of union to yield more accurate and reliable entropy estimates

for small regions than the region of overlap. The region of union of global

images was shown to reduce the effect of overlap statistics, but may result in

registration of the background instead of registration of the foreground. This

problem is avoided for registration of regions of interest in medical images,

since the regions of interest typically lie inside the foreground object.

Experiments presented in Chapter 6 suggest that the best localized regis-

tration results are attained by maximizing WMI, WNMI, MIWD, or NMIWD

using region of interest union statistics. All four localizing similarity mea-
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sures result in similar registration transformations. The two stage algorithm

discussed in Chapter 6, first uses a nonlinear transformation to roughly align

the images and then refines the registration using a rigid-body transforma-

tion and a localizing similarity measure. Results show that the algorithm is

robust to perturbations of the region of interest definitions. This is important

since definitions of regions of interest vary from diagnostician to diagnostician

in medical imaging applications.

Also presented in this thesis was an algorithm to automatically detect

regions of interest. Regions were chosen based on activity level determined

by local intensity variance, local edge variance, or local entropy. Automat-

ically detected regions of interest cannot replace regions of interest defined

by diagnosticians but may prove useful for practical image assessment and

more objective registration evaluations. Automatically detected regions of

interest may also be applicable to other areas of image processing such as

remote sensing, where high activity regions can be chosen to help focus the

registration.

7.1 Future Possibilities

Much work can still be done in the area of localizing image registration.

Determining the minimal allowable size of regions of interest would be an

invaluable contribution for implementation purposes. The robustness of the

localizing similarity measures with respect to the weighting parameter, as

well as the nature of the images and regions of interest has yet to be de-

termined. It would also prove useful to complete a thorough validation of

the localizing similarity measures, for this, multiple corresponding image

datasets would be required. The algorithms and ideas presented in this the-

sis may be easily extended to three dimensions to allow for registration of

image volumes. Localized volume registration by optimization of the simi-

larity measure with more complex transformations would take this work in
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the direction of clinical applications. Also of interest is the problem of de-

veloping new algorithms to allow for nonlinear transformations in mutual

information based image registrations. Nonlinear transformations would al-

low for complete localization without detracting from the global registration.

Finally, the use of other mathematical methods to achieve localized image

registration is an area of continuing interest.

118



Appendix A

Useful Formulas

Formula A.1 (Discrete L1 norm). The discrete L1 norm of the vector x is

defined as:

‖ x ‖L1=
N∑

i=1

|xi|,

where N is the number of elements in x.

Formula A.2 (Discrete L2 norm). The discrete L2 norm of the vector x is

defined as:

‖ x ‖L2=

√√√√ N∑
i=1

|xi|2,

where N is the number of elements in x.

Formula A.3 (Root Mean Square Error). The root mean square error,

RMSE, of two equal length real-valued vectors x and y is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2,

where N is the number of elements in x and y.
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Formula A.4 (Cross Correlation Measure). The cross correlation measure,

C, of the target image, A, and the transformed study image, BT, is defined

as:

C =
1

N

∑
xA∈ΩT

A,B

A(xA)BT(xA),

where N is the number of pixels contained in ΩT
A,B.

Formula A.5 (Gaussian Distribution). A Gaussian distribution of mean µ

and variance σ2 has the equational form:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Formula A.6 (Rician Distribution). Let X1 and X2 be independent Gaussian

distributed random variables with distributions X1 ∼ N(µ1, σ
2) and X2 ∼

N(0, σ2). Then, Z is a Rician distributed random variable, Z =
√

X2
1 + X2

2 ,

with probability distribution of the form:

p(z) =
z

2πσ2
e−

z2+µ2
1

2σ2

∫ 2π

0

ezµ1 cos( θ
σ2 )dθ.

Formula A.7 (Sobel Gradient Estimate [10]). The Sobel gradient estimate

of image f at pixel (x, y) using a 3× 3 filter mask is:

∇f(x, y) ≈ | (f(x + 1, y − 1) + 2f(x + 1, y) + f(x + 1, y + 1))

− (f(x− 1, y − 1) + 2f(x− 1, y) + f(x− 1, y + 1)) |

+ | (f(x− 1, y + 1) + 2f(x, y + 1) + f(x + 1, y + 1))

− (f(x− 1, y − 1), +2f(x, y − 1) + f(x + 1, y − 1)) |.
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Appendix B

Rigid-Body Registration of

Wood Images

Here we report the results of some registration experiments using high reso-

lution images of a wood sample. The rigid-body transformations employed

involve horizontal and vertical translations and planar rotations. Bilinear in-

terpolation is used to produce sub-pixel transformations. The wood sample

is visible in the micro-MRI images in Figure B.1. An environmental scan-

ning electron microscope (ESEM) was also used to image the wood sample:

These images, shown in Figure B.4, are a high resolution zoom of the centre

core of the wood sample. Intermodal registration is not feasible for these

micro-MRI and ESEM images since the difference in resolution is too great.

The registrations carried out below are, therefore, intramodal.

B.1 Micro-MRI Wood Images

Two different resolution micro-MRI wood images are shown in Figure B.1.

The resolution of the high resolution image is 54.5 µm/pixel and the resolu-

tion of the low resolution image is 109 µm/pixel. The low resolution image
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is registered to the target high resolution image using bilinear interpolation

to enhance the resolution and to perform the sub-pixel transformations.

High Resolution Wood Image Low Resolution Wood Image

Figure B.1: High resolution (left) and low resolution (right) micro-MRI wood images
courtesy of Dr. Rick Holly, Physics Department, University of Waterloo.

Since the images are intramodal, both maximization of mutual informa-

tion and minimization of the L2 distance, i.e., the L2 norm of the difference

image, are used to register the images. The L2 distance should register the

images satisfactorily since the images share a common intensity map and un-

der certain assumptions the noise present in MRI is Gaussian [25]. The range

of each transformation parameter is: 225◦ to 227◦ counterclockwise for pla-

nar rotations, −34 to −31 pixel-widths for horizontal translations, and −26

to −23 pixel-widths for vertical translations. The step size of each trans-

formation parameter is 0.1. To determine these ranges, the transformation

was first approximated using larger parameter ranges and a larger step size.

The parameter ranges, and step size, were slowly narrowed to determine the

refined ranges used above with the sub-pixel step size. The registration trans-

formations determined by each similarity measure are described in Table B.1.

The units for translations are pixel-widths, with positive corresponding to

rightward horizontal and upward vertical translations.

The registration surfaces of mutual information and negative L2 distance,

for horizontal and vertical translations at the registration rotation, 225.9◦
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−34 −33 −32 −31
−26

−25

−24

−23
MI for XY Translations

0.92 0.93 0.94 0.95

−34 −33 −32 −31
−26

−25

−24

−23

Negative L
2
 Distance for XY Translations

−1.33 −1.32 −1.31 −1.3 −1.29 −1.28

x 10
4

Figure B.2: Registration surfaces for MI (left) and negative L2 distance (right) over
horizontal and vertical sub-pixel translations at the registration rotation, 225.9◦ for MI
and 225.8◦ for L2 distance, using bilinear interpolation for the micro-MRI wood images.

Registration by MI Registration by L
2
 Distance

Figure B.3: Colour overlay registration results for the micro-MRI wood images using
maximization of MI (left) and minimization of L2 distance (right).
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Table B.1: Registration transformations determined by MI and the L2 distance for the
micro-MRI wood images. The rigid-body transformations are specified by horizontal and
vertical translations and a planar rotation and are determined by the location of the
optimal value of the similarity measures.

Similarity Measure Horizontal Vertical Rotation
MI −32.5 −24.6 225.9◦

L2 distance −32.5 −24.4 225.8◦

for MI and 225.8◦ for L2 distance, are shown in Figure B.2. Negative L2

distance is displayed to keep the colour shading consistent. The results of the

registrations are shown in Figure B.3. The registered low resolution image is

coloured blue while the target high resolution image is coloured red.

To quantitatively measure alignment, mutual information and L2 dis-

tance are compared. For the images registered by maximization of mutual

information, the mutual information is 0.957 bits and the L2 distance is

1.2752× 104. For the images registered by minimization of L2 distance, the

mutual information is 0.956 bits and the L2 distance is 1.2748 × 104. The

differences between these estimated values are not significant. Visually, the

registration results are satisfactory for both similarity measures.

B.2 ESEM Wood Images

Two images from an environmental scanning electron microscope (ESEM)

are shown in Figure B.4. The image on the left is a back scattered electron

(BSE) image which means it represents the wood just below the surface.

The image on the right is a secondary electron (SE) image which means it

represents the surface of the wood. In general, back scattered electron images

are higher contrast than secondary electron images [18].

The images are registered by maximization of mutual information and

minimization of L2 distance. L2 distance should register the ESEM images

satisfactorily since they are from the same modality and have similar intensity
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BSE Wood Image SE Wood Image

Figure B.4: Back scattered electron (BSE) image (left) and secondary electron (SE) image
(right) from an environmental scanning electron microscope courtesy of Dr. Rick Holly,
Physics Department, University of Waterloo.

maps. The registration transformation parameters range from −1◦ to 1◦ for

rotations, −19 to −17 pixel-widths for horizontal translations, and 32 to 34

pixel-widths for vertical translations: The step size for all parameters is 0.1.

The registration surfaces for mutual information and L2 distance, with

a 0◦ rotation, are shown in Figure B.5. The artifacts present in the surfaces

are a result of the nature of the ESEM wood images and the bilinear interpo-

lation used to achieve the sub-pixel transformations. The registration trans-

formations determined by the two similarity measures are described in Ta-

ble B.2. The units for horizontal and vertical translations are pixel-widths

with positive horizontal translations corresponding to rightward translations

and positive vertical translations corresponding to upward translations.

Table B.2: Registration transformations determined by MI and L2 distance for the ESEM
wood images. The rigid-body transformations are specified by horizontal and vertical
translations and a planar rotation.

Similarity Measure Horizontal Vertical Rotation
MI −17.7 32.5 0◦

L2 distance −18 33.1 0◦

The mutual information for the images registered using maximization of

mutual information is 0.53 bits and using minimization of L2 distance is
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−19 −18 −17
32

32.5

33

33.5

34

Negative L
2
 Distance for XY Translations

−1.2 −1.15 −1.1

x 10
4

Figure B.5: Registration surfaces for MI (left) and negative L2 distance (right) over
horizontal and vertical sub-pixel translations at the registration rotation (0◦) using bilinear
interpolation for the ESEM wood images.

0.50 bits. The L2 distance for the images registered using maximization of

mutual information is 1.13 × 104 and using minimization of L2 distance is

1.08 × 104. The resulting registered images are shown using colour overlay

in Figure B.6. The target back scattered electron images are in red, while

the transformed secondary electron images are in blue. Visually, both regis-

trations are satisfactory.

Registration by MI Registration by L
2
 Distance

Figure B.6: Colour overlay registration results for the ESEM wood images using maxi-
mization of MI (left) and minimization of L2 distance (right).
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