
INTEGRATION IN COMPUTER EXPERIMENTS AND

BAYESIAN ANALYSIS

By

Stella Wanjugu Karuri

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2005

c© Stella Wanjugu Karuri, 2005

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by

my examiners.

I understand that my thesis may be made electronically available to the

public.

ii

Abstract

Mathematical models are commonly used in science and industry to simulate

complex physical processes. These models are implemented by computer

codes which are often complex. For this reason, the codes are also expensive

in terms of computation time, and this limits the number of simulations

in an experiment. The codes are also deterministic, which means that

output from a code has no measurement error.

One modelling approach in dealing with deterministic output from

computer experiments is to assume that the output is composed of a

drift component and systematic errors, which are stationary Gaussian

stochastic processes. A Bayesian approach is desirable as it takes into

account all sources of model uncertainty. Apart from prior specification,

one of the main challenges in a complete Bayesian model is integration. We

take a Bayesian approach with a Jeffreys prior on the model parameters.

To integrate over the posterior, we use two approximation techniques on

the log scaled posterior of the correlation parameters. First we approximate

the Jeffreys on the untransformed parameters, this enables us to specify a

uniform prior on the transformed parameters. This makes Markov Chain

Monte Carlo (MCMC) simulations run faster. For the second approach,

we approximate the posterior with a Normal density.

A large part of the thesis is focused on the problem of integration.

Integration is often a goal in computer experiments and as previously

mentioned, necessary for inference in Bayesian analysis. Sampling strategies

iii

are more challenging in computer experiments particularly when dealing

with computationally expensive functions. We focus on the problem of

integration by using a sampling approach which we refer to as “GaSP

integration”. This approach assumes that the integrand over some domain

is a Gaussian random variable. It follows that the integral itself is a

Gaussian random variable and the Best Linear Unbiased Predictor (BLUP)

can be used as an estimator of the integral. We show that the integration

estimates from GaSP integration have lower absolute errors. We also

develop the Adaptive Sub-region Sampling Integration Algorithm (ASSIA)

to improve GaSP integration estimates. The algorithm recursively partitions

the integration domain into sub-regions in which GaSP integration can

be applied more effectively. As a result of the adaptive partitioning of

the integration domain, the adaptive algorithm varies sampling to suit

the variation of the integrand. This “strategic sampling” can be used to

explore the structure of functions in computer experiments.

iv

Acknowledgements

I thank Prof. Will Welch and Prof. Don McLeish for their supervision.

I also thank my thesis committee, Prof. Hugh Chipman and Prof. Ken

Sen Tan for their reading and comments on the thesis.

I am grateful to Dr. Shoo Lee of the Centre for Healthcare Innovation

and Improvement, Women and Children’s Hospital, Vancouver BC, for

allowing me to use the centre’s resources while completing this thesis.

Finally I would like to acknowledge the support received from my

family; this thesis would not have been completed without them.

v

To Meshack Mahungu Kariuki

vi

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Tables x

List of Figures xii

1 Introduction and Review 1
1.1 Developing a Computer Experiment 2
1.2 Goals in Computer Experiments . 3
1.3 Methodology . 5

1.3.1 The Kriging Approach to the Gaussian Stochastic Process Model 7
1.3.2 The Bayesian Approach to the Gaussian Stochastic Process Model 9

1.4 A Review of Bayesian Analysis in Computer Experiments 10
1.5 Thesis Outline . 13
1.6 Examples . 17

1.6.1 Single Input Simulations . 17
1.6.2 Two Input Simulations . 20

2 Approximation to the Posterior 25
2.1 Introduction . 25
2.2 Developing the Jeffreys Prior and the Posterior Density 26
2.3 Approximating the Jeffreys Prior . 29

2.3.1 Single Input Function . 29
2.3.2 Analysis of Posterior approximation for Simulated Data, d = 1 32
2.3.3 Two Input Function . 32
2.3.4 Metropolis Hasting Algorithm 36

vii

2.3.5 Analysis of Posterior Approximation for Simulated Data, d = 2 38
2.4 Normal Approximation of the Posterior 40
2.5 Posterior Inference for the Output Variable 40
2.6 Discussion . 46

3 GaSP Integration 51
3.1 Introduction . 51
3.2 GaSP Integration Outline . 53
3.3 One Dimension Illustration . 56

3.3.1 GaSP Integration and Designs 61
3.3.2 GaSP Integration and Design Size 62

3.4 Multidimension Examples . 65
3.4.1 Integration Strategies . 65
3.4.2 Sampling and Integration Strategies 67

3.5 Discussion . 71

4 Adaptive Sub-region Sampling Integration Algorithm 77
4.1 Introduction . 77
4.2 Methodology . 78
4.3 The Adaptive Sub region Sampling Integration Algorithm 79
4.4 Applications . 83

4.4.1 One Variable Function . 83
4.4.2 Two Variable Functions . 85
4.4.3 Posterior Inference in Computer Experiments 93

4.5 Discussion . 96

5 Further Applications with ASSIA-GaSP Integration 98
5.1 Modification to ASSIA-GaSP Integration 98
5.2 Example 1: Five Dimension Integration 102
5.3 Example 2: Ten Dimension Integration 104
5.4 Strategic Sampling . 106

5.4.1 Two Dimension Strategic Sampling 107
5.4.2 Three Dimension Strategic Sampling 109

5.5 Discussion . 115

6 Conclusion and Recommendations 116

A Chapter 2 Proofs 119
A.1 Jeffreys Prior . 119
A.2 Proof of Lemma 2.3.1 . 121
A.3 Verification of the Jeffreys Prior Approximation for n = 1, . . . , 12 . . . 122

viii

A.4 Proof of Lemma 2.3.2 . 125

B Chapter 5 Results 127
B.1 Example 1 Results . 127
B.2 Example 2 Results . 127

C R Programs 131
C.1 Metropolis Hasting Algorithm . 131
C.2 ASSIA-GaSP . 131

Bibliography 135

ix

List of Tables

1.1 One dimension Simulation Data . 20

1.2 Two dimension Simulation Data . 24

2.1 MHA Rejection Rates for 2D1, 2D2, 2D3 39

2.2 Posterior expectations of simulated data, the standard errors are given

in brackets . 39

3.1 GaSP estimates from the integration of sin(1/(0.1 + x)). 62

3.2 Estimated values, Standard Errors (SE) and Absolute Errors (AE) of

f̄3. 68

3.3 Estimated values, Standard Errors (SE) and Absolute Errors (AE) of

f̄5. 69

3.4 Estimated values, Standard Errors (SE) and Absolute Errors (AE) of

f̄10. 70

3.5 Integration Results for Student-t density 73

4.1 ASSIA-GaSP results for the integration of sin(1/(0.1 + x)) 85

4.2 Estimates using a single run of ASSIA. 92

4.3 ASSIA results based on four runs. 93

4.4 Parameter space truncation. 94

4.5 Estimated moments of simulated data sets 95

4.6 Posterior variances and marginal confidence intervals calculated using

ASSIA-GaSP integration . 96

x

B.1 Example 1 – ASSIA-GaSP equal splits results 128

B.2 Example 1 – ASSIA-GaSP VS splits results 128

B.3 Example 2 ASSIA-GaSP equal splits results 129

B.4 Example 2 ASSIA-GaSP VS splits results 130

xi

List of Figures

1.1 Plot of f(x1, x2) = 1/(1 − x1x2), ‘◦’ for design on [0, 0.5] × [0, 1], ‘4’

for design on [0.5, 1]× [0, 1]. 18

1.2 Plots of simulated data for d = 1 . 19

1.3 Plot of realizations versus input value for 2D1 (θ∗1, θ
∗
2) = (−1,−1) . . 21

1.4 Plot of realizations versus input value for 2D2 (θ∗1, θ
∗
2) = (0, 0) 22

1.5 Plot of realizations versus input value for 2D3 (θ∗1, θ
∗
2) = (3, 2) 23

2.1 Plot of prJ(θ) versus exact θ and 1/θ for n = 3. 33

2.2 Plots of PTJP and PTUP versus θ∗ for d = 1 34

2.3 Posterior density plots for simulated data sets. 37

2.4 Marginal plots for PTJP and PTUP for simulated data 41

2.5 Contour plot of the test function and sampled sites 42

2.6 Plot of BLUP predictions and CVE quantiles for test function data . 44

2.7 Integrated likelihood contour plot for test function data – untrans-

formed parameters. 45

2.8 Integrated likelihood contour plot for test function data – log-transformed

parameters. 45

2.9 Comparative Density Plots for θ∗1 – test function data 47

2.10 Comparative Density Plots for θ∗2 – test function data. 47

2.11 prediction plots for test function data 48

2.12 Quantile-quantile Plot of Standardized Errors from Prediction Estimates 49

3.1 Plot of sin(πx) and GaSP integration sample points 59

xii

3.2 Plot of ˆ̄g versus θ for integration of sin(πx) 60

3.3 Plot of
√

var(ˆ̄g) versus θ . 60

3.4 Designs used for integrating sin(1/(0.1 + x)) 63

3.5 Normal QQ-Plot for standardized GaSP estimates using random se-

quences and LHS, and MC estimates, the solid line has intercept equal

to zero and slope equal to one . 64

3.6 Plot of GaSP (◦) and MC (+) estimates and errors by n, the line in

the top plot represents the true value of the integral 66

3.7 Plot of logit transformed student-t variable 72

3.8 Plot of projections of r̄ on the Halton design. 74

4.1 ASSIA-GaSP splitting of sin(1/(0.1 + x)), main title gives number of

sub-regions, vertical lines indicate splits. 82

4.2 Demonstration of ASSIA-GaSP . 84

4.3 ASSIA integration results for f1 . 87

4.4 ASSIA integration results for f2 . 88

4.5 ASSIA integration results for f3 . 89

4.6 ASSIA integration results for f4 . 90

5.1 Example of VS Splits in one dimension 100

5.2 Plot of fi(pi) i = 1, 3, 5, 10. 105

5.3 ASSIA-GaSP visualization of sin(2πx1) + sin(2πx1 + πx2). 108

5.4 ASSIA-GaSP visualization of
√
|x1 − x2|. 108

5.5 Projection of g(p1, p2, p3) on p3. 110

5.6 Projection of g(p1, p2, p3) on p2. 111

5.7 Projection of g(p1, p2, p3) on p1. 112

5.8 Cross-sectional contour plots for smoothed points using equal splits on

ASSIA-GaSP. 113

5.9 Cross-sectional contour plots for smoothed points using VS splits on

ASSIA-GaSP. 114

xiii

Chapter 1

Introduction and Review

The work in this thesis covers the topic of computer experiments, a statistical applica-

tion widely used in science and engineering. Computer experiments can be considered

as equivalent to physical experiments, but performed on the computer implementa-

tions of mathematical functions which represent physical processes. For example,

pharmokinetic models are mathematical functions which enable the prediction, dis-

tribution, metabolism and excretion of chemicals in the body. These mathematical

functions are in turn implemented by computer codes. Inference of the physical

process is made by running the codes at specified levels of input, this constitutes a

computer experiment. The results from such an experiment would help in optimizing

the required drug dosage for treating a patient [20]. Another example is in finite ele-

ment analysis in which structural properties of a material are broken down into many

small blocks then described with sets of mathematical equations. These equations

collectively represent the structure of the material and are solved by computer codes

[4]. Such functions or simulations have the advantage of being cheaper to implement

and control than the physical processes they represent, for instance in finite element

analysis, information from running the computer experiment can be used to reduce

1

2

the number of prototypes needed in subsequent physical experiments. Ethical issues

might also be another motivation for computer experiments, for example pharmoki-

netic models reduce the risk of exposing patients to potentially harmful dosages in

clinical trials.

1.1 Developing a Computer Experiment

There are roughly five stages that go into developing a computer experiment [30].

These are as follows:

1. Formulation of the problem and identification of inputs to a simulation

2. Function implementation with computer codes

3. Derivation of inputs levels or the design and its application to the codes to

obtain output

4. Validation of the model with physical data

5. Application of the results from the code to meet engineering goals

The above steps might make up a cyclic process, depending on initial experiment

goals. For example, to implement a pharmokinetic model one might go through stages

(1) to (4), then narrow down the number of inputs after identifying the important

effects to the experiment, obtain a cheaper approximation to the function and repeat

the process to optimize for a smaller range of inputs values in step (2).

3

1.2 Goals in Computer Experiments

Computer experiments often involve finding numerical solutions to large systems of

differential equations. For instance operations with pharmokinetic models often in-

volve optimizing over large sets of differential equations with numerous known and

unknown time dependent variables which are related to different physiological mea-

surements. Physical processes are complex and as a result the codes that represent

them are also complex. The complexity of computer codes makes them costly in terms

of run times and this results in small output data sets. Unlike physical experiments

where physical processes are random, computer codes are deterministic – the same

input to a code results in the same output. This presents a challenge in statistical

modelling as randomness is a requirement for probability and inference. In some cases

computer codes are black-boxes, the codes can be used by passing set input values to

obtain outputs, but their internal structure or means of operation is unknown.

Suppose we have evaluated a function or code of d variables at n input points

obtained from the design space. The design space X is bounded by the upper and

lower limits of each of the input variables. Let input point i with i = 1, . . . , n be

denoted as x(i) = (x
(i)
1 , . . . , x

(i)
d), the set of points x(1), . . . ,x(n), are referred to as the

design. The design can be chosen to be optimal such that it satisfies certain criteria,

for some commonly used criteria and designs refer to Koehler and Owen [21]. Each

input has associated function value yi = y(x(i)) which may be multivariate. Some

common goals in a computer experiments are:

• Prediction – Efficient prediction is central to achieving any goal in computer

experiments. This involves estimating ŷ(x∗) at an untried input combination

x∗. Often a surrogate for the codes is constructed to enable prediction, for

4

example a linear, polynomial or kriging model [35]. An example application in

the literature is by Sacks, Welch, Mitchell and Wynn [31] who use a kriging

model on output from an electric simulator to obtain predictions at a set of 100

points.

• Optimization – Optimization involves searching all allowable input values for a

combination that results in a maximum or minimum y; for example, finding the

minimum temperature which melts an alloy for a range of electric voltages. An

example application is by Jones, Schonlau and Welch [18] who use stochastic

processes in response surface modelling.

• Visualization – Computer codes are sometimes black-boxes, visualization helps

in understanding the underlying function by helping find discontinuities, singu-

lar values or turning points. Visualization of the function is often a preliminary

step to achieving other goals in computer experiments.

• Calibration – In some cases inputs to a code might not be known. Calibration

involves matching up or tuning the computer code to fit observed data from the

physical process. This enables the experimenter to relate the unknown inputs

to the physical process.

• Integration – The average of the output for a particular input variable might

be of interest, particularly if the input is assumed to be random with some

distribution [23]. Schonlau and Welch [34] show that when integrating out

effects, the integral itself is a Gaussian process and the Kriging model can be

used to estimate the integral. We use this technique to as a tool for integration;

more information will be given in the review section and subsequent chapters.

5

There are two main approaches to statistical analysis of deterministic output from

computer experiments. The first approach assumes that the input points x are ran-

dom variables with some distribution which is propagated to the output values. This

approach was used by McKay, Conover and Beckman [23] in what is regarded as the

first application of experimental design in computer simulations.

The second approach assumes that the output points are realizations of a Gaussian

stochastic process. Some of the earliest work on the Gaussian stochastic process

approach are by Sacks, Schiller and Welch [29] who first applied the kriging approach

to output from computer experiments in order to address the issue of computation of

efficient designs. They used the best linear predictor to formulate the integrated mean

square error of prediction (IMSE) as a criterion to obtaining efficient designs. They

applied this criterion to chemical kinetics problems and showed that the stochastic

process approach compared to least squares estimation and factorial design reduced

the actual square error of prediction. Sacks, Welch, Mitchell and Wynn [31] provided

a review of computer experiments and also examined the issue of design by evaluating

different criteria for choosing optimal designs. To best describe the kriging approach,

we outline some notation and theory based on the paper by Jones et al [18].

1.3 Methodology

Suppose we have evaluated a deterministic function of d variables at n sample points.

Let sample point i with i = 1, . . . , n be denoted as x(i) = (x
(i)
1 , . . . , x

(i)
d) with associated

function value yi = y(x(i)). The observations are assumed to be realizations of

Y (x(i)) =
d∑

h=1

βhfh(x
(i)) + ε(x(i)); (i = 1, . . . , n). (1.1)

6

The error terms are assumed to have a Normal distribution,

ε(x(i)) ∼ N(0, σ2).

The model in (1.1) has two components, the first component consists of a re-

sponse surface which models the drift in the response. The second component models

the systematic lack of fit, and is treated as the realization of a stationary Gaussian

stochastic process. The assumption of stationarity implies that

E(ε(x(i))) = 0.

The covariance between two input points is given as

cov(ε(x(i)), ε(x(j))) = σ2corr(ε(x(i)), ε(x(j))),

where the correlation can be specified by various positive definite functions, a discus-

sion of this is presented by Koehler and Owen [21].

A commonly used correlation function is the Gaussian correlation function where

corr(ε(x(i)), ε(x(j))) = exp
[−d(x(i),x(j))

]
. (1.2)

The function d(x(i),x(j)) is the distance function, specified as

d(x(i),x(j)) =
k∑

h=1

θh|x(i)
h − x

(j)
h |2 (θh ≥ 0).

The above representation ensures that the errors are stationary, as the correlation

depends on the magnitude of the distance between any pair of sites. The parameter

θh measures the activity or ‘importance’ of the variable xh. A variable h is active if

for small values of |x(i)
h − x

(j)
h |, yi and yj are not necessarily similar and they have a

low correlation; consequently large values of θh will magnify small values of |x(i)
h −x

(j)
h |

7

resulting in such low correlations. The properties of the correlation parameters in the

Gaussian correlation function are well illustrated by Jones et al. [18]. The use of the

Gaussian correlation function assumes that the code has a high degree of smoothness.

We can thus modify (1.1) and assume that the variation in the realizations is

taken up entirely by the systematic error,

Y (x(i)) = µ + ε(x(i)). (1.3)

The assumption of a constant trend is convenient as it reduces the number of param-

eters in the model that need to be estimated. Furthermore, an example by Sacks,

Schiller and Welch [29] compared the constants, linear first order and quadratic trend

and found that the three models gave similar results in prediction. Chen [3] also

arrived at the same conclusion, he studied different linear specifications against a

constant trend using simulations.

The expression in (1.3) implies that

Y = (Y (x(1)), . . . , Y (x(n))) ∼ N(1µ, σ2R),

where 1 = (1, . . . , 1)T is a vector of length n, and R denotes the n × n design

correlation matrix whose (i, j)th entry is corr(ε(x(i)), ε(x(j))). This model has k + 2

parameters which are often unknown and need to be estimated: µ, σ2 and the vector

of correlation parameters Θ = (θ1, . . . , θk)
T .

1.3.1 The Kriging Approach to the Gaussian Stochastic Pro-
cess Model

Suppose we wish to obtain a prediction ŷ at input x∗. We let the correlation between

ε(x∗) and the n design points be denoted as

r =
(
corr(ε(x∗), ε(x(1))), . . . , corr(ε(x∗), ε(x(n)))

)T
. (1.4)

8

One approach to prediction is to use linear prediction based on (1.3), which is also

known as Kriging in geostatistics. The Best Linear Unbiased Prediction (BLUP) at

a new site (x∗) is chosen to be linear in y,

ŷ(x∗) = cT (x∗)y,

with the vector c chosen to minimize the mean square error (MSE) of Ŷ where

MSE(Y (x∗)) = E(cTY − Y (x∗))2,

subject to the unbiasedness condition

E(cTY) = E(Y (x∗)).

It can be shown [29] that the BLUP – assuming the correlation structure is known, is

ŷ = µ̂ + rTR−1(y − 1µ̂), (1.5)

with variance equal to

var(ŷ) = σ̂2

[
1− rTR−1r +

(1− 1TR−1r)2

1TR−11

]
, (1.6)

where

µ̂ =
1TR−1y

1TR−11
, (1.7)

σ̂2 =
(y − 1µ̂)TR−1(y − 1µ̂)

n
. (1.8)

From the representation in (1.5), the BLUP is unbiased and linear in the observed

output. The BLUP thus gives the prediction at a site x∗ as the generalized least

square mean µ̂, adjusted by the correlation of the error of the new site to the errors of

the sampled sites. Its variance is the generalized residual sum of squares adjusted by

9

two terms: the first, the correlation between the new site and the sampled sites, and

the second, the fact that µ is estimated by the generalized least squares mean. The

estimated response from the BLUP interpolates the observations. This can be seen

by obtaining the prediction at points in the design; the predictions are the observed

values and their corresponding variance or mean square error equals to zero.

1.3.2 The Bayesian Approach to the Gaussian Stochastic Pro-
cess Model

The BLUP method assumes the correlation parameters are known. In reality these

have to be estimated, often by point estimation methods such as maximum likelihood

estimation. Point estimation often results in under estimation of prediction errors

and under coverage of the true value in interval estimations. A Bayesian approach

on the other hand, can incorporate some model uncertainty in estimation.

The likelihood from the model in (1.3) is

L(y|µ, σ2,Θ) ∝ 1

(σ2)
n
2

√
|R| exp(

−1

2σ2
(y − 1µ)TR−1(y − 1µ)). (1.9)

From Bayesian methodology inference is based on the posterior density of the model

parameters which is derived from

pr(µ, σ2,Θ|y) ∝ L(y|µ, σ2,Θ)pr(µ, σ2,Θ), (1.10)

where pr(µ, σ2,Θ) is the prior density on the model parameters. As a notational

convention we use pr(·) to denote the probability density with respect to variables

(·). To demonstrate the difference a Bayesian approach makes, we examine the ‘best’

predictor which minimizes the quadratic loss function

E(y(x∗)|y) =

∫

Θ

E(y(x∗)|µ, σ2,Θ,y)pr(Θ |µ, σ2,y) dµdσ2dΘ. (1.11)

10

The variance of this estimate is given as

var(y(x∗)|y) = Eµ,σ2,Θ|yvar(y(x∗)|µ, σ2,Θ,y) + varµ,σ2,Θ|yE(y(x∗)|µ, σ2,Θ,y)

(1.12)

The notation Eµ,σ2,Θ|y(.) and varµ,σ2,Θ|y(.) stand for the expectation and variance with

respect to the posterior density. From (1.12) the variance of the Bayesian predictor

is the sum of the posterior mean of the BLUP variance and the posterior variance of

the BLUP. This illustrates the advantage of a Bayesian approach, since the model pa-

rameters have some assumed distribution, then depending on prior chosen, parameter

uncertainty is accounted for and error estimates can be more conservative.

1.4 A Review of Bayesian Analysis in Computer

Experiments

Currin et al [5] used the following Bayesian formulation in (1.13) in prediction and

design selection. Assuming the model parameters are known, and that Y (x∗) ∼
N(µ, σ2) then it follows that

Y (x∗|y, µ, σ2) ∼ N(µy, σ2
y), (1.13)

where µy = µ + rTR−1(y − 1µ),

σ2
y = σ2(1− rTR−1r). (1.14)

They assumed that the mean, variance and correlation parameters are known, but

these were estimated by maximum likelihood estimation. The maximum likelihood

estimates of the mean and variance parameter are equal to the generalized least square

mean and generalized residual sum of squares given by (1.7) and (1.8) respectively.

Their approach basically breaks down to analyzing the BLUP, the only difference is

11

that their BLUP variance in (1.14) does not take into account the estimation of µ.

Handcock and Stein [15] presented a framework for full Bayesian analysis of the

Gaussian stochastic process model. They recommended that inference be based on

the Bayesian predictive distribution as this incorporates model uncertainty, especially

in cases where there is little information about the model in the available data. They

formulated the true predictive density by assuming a non-informative prior of the

form

pr(µ, σ2,Θ) ∝ 1/σ2.

On the other hand, assuming the correlation and variance parameters are known

and using a diffuse prior on µ, the resulting predictive density is Normal with mean

parameter equal to the BLUP and variance parameter equal to the BLUP variance.

Handcock and Stein [15] refer to this density as the plug-in predictive distribution.

They show that the plug-in predictive distribution is significantly different from the

true predictive density and that the difference is dependent on the specified correlation

structure. However, it is unclear what method they use for numerical integration to

obtain the predictive density.

In most Bayesian approaches in literature, the correlation parameters in the

stochastic process model are often estimated by maximum likelihood estimation.

Kennedy and O’Hagan’s [20] approach to the Gaussian stochastic process model as-

sumed that the process realization was the sum of the scaled computer output; which

is dependent on both control and calibrated input, and an independent systematic

error. Both of these components were assumed to be Gaussian processes, whose mean

and variance functions were modelled hierarchically. Their aim was to base inference

12

of the model calibration parameters on the posterior density of the calibration param-

eters, physical data and output from the code. They stopped short of a full Bayesian

implementation due to computation limitations and estimated the correlation and

scale parameters with the posterior mode of the density based on output from the

code. They applied their calibration method to model the deposition of radionuclides

with calibration inputs as the source term and deposition velocity.

Reese, Hamada and Ryan [27], outline a Bayesian approach without the assump-

tion of a Gaussian Stochastic process model. Their incorporation of expert opinion,

physical outcome and computer code output results in the Recursive Bayesian Hi-

erarchical Model. They assumed a multivariate Normal density on the output from

three stages, in the first stage a linear model was assumed on the expert opinion

data to formulate priors for coefficients and the variance parameters for the computer

experiment data. Assuming a linear model on output from the computer experiment,

the priors from the first stage were then used to formulate a posterior density on

the computer output. Correlation in the computer output is induced through this

hierarchical structure of the prior. In the final stage the posterior densities from the

second stage were then used as priors to update the posterior density of the physical

data. The method used by Reese et al [27] has the advantages of being computa-

tionally tractable and easily interpretable, though it would require large sample sizes

due to the number of parameters in the model. The other disadvantage is that the

linear form in the computer model is not always practical as one might not know

what functional form to specify for the regression terms. Furthermore, their model is

sensitive to prior specification and not as flexible as the Gaussian stochastic process

model in terms of interpolation in prediction.

13

In summary, two obstacles to overcome when using a Bayesian approach are

• Specification of Priors – As correlation parameters are difficult to interpret

independently, priors are often non-informative. Berger, Oliviera and Sanso

[2] give comprehensive guidelines for choosing non-informative priors. They

show that the likelihood is bounded away from zero, therefore it is important

to have priors that ensure propriety of the posterior. They also show that the

uniform prior used by Handcock and Stein [15], with some prior specification

of the variance parameter will result in improper posteriors. The Jeffreys prior

[17] however, results in a proper posterior. Berger, De Oliveira and Sanso

also show that the Jeffreys prior for the correlation parameter is approximately

proportional to the inverse function for small values of the parameters.

• Integration – Evaluating the integrals in (1.11) and (1.12) often requires nu-

merical methods. The posterior density pr(Θ|y) doesn’t have a standard form

and cannot be sampled directly, therefore some approaches to evaluation in-

volve techniques such as Markov Chain Monte Carlo. A comprehensive survey

of methods available for numerical integration of posterior densities was done

by Evans and Swartz [8].

1.5 Thesis Outline

The work in this thesis is focused on implementing a full Bayesian approach to the

Gaussian stochastic process model. For consistency in our analysis, we assume the

Gaussian correlation function. We also assume that output at an input is univariate

though the theory can be extended to multivariate output.

14

In Chapter 2 we specify prior information on the parameters using the Jeffreys

prior. We then use two approximation methods on the posterior. Following from

results by Berger, De Oliveira and Sanso [2], we obtain an approximation to the Jef-

freys prior for the Gaussian correlation function which we verify for a single variable

function, with an equispaced design using Chen’s [3] representation for R−1. We then

formulate a similar approximation for d = 2. We adopt this approximation and use

a log transformation on the correlation parameters in the posterior, which in effect

specifies a uniform prior on the reparametrized likelihood. MCMC simulations are

needed for integration, the advantage of this approximation is that the resulting pos-

terior is less complex and MCMC simulations take a shorter time to obtain. In the

second method we approximate the reparametrized posterior with a Normal density.

The motivation for this method is the more ellipsoidal form of the log-transformed

posterior. This second approach is a far cheaper Bayesian implementation as it is pos-

sible to use plain Monte Carlo by drawing samples from the Normal density without

resorting to MCMC simulations.

Integration is also a daunting exercise in computer experiments, for example when

the input is assumed to be random as previously mentioned in Section 1.2; it is made

more complicated when dealing with expensive black-box functions. In Chapter 3 we

examine the general integration problem,

ḡ =

∫

X
g(x)dx,

where x ∈ X . Straightforward Monte Carlo (MC) integration can easily be imple-

mented in low and high dimensions provided that the distribution of x or its approxi-

mation can be sampled. Alternatively one can forgo the idea of random sequences and

employ sequences of points that emulate randomness which are specifically tailored for

15

integration. Quasi Monte Carlo methods have widely been used in number theory and

numerical analysis; Fang, Wang and Bentler [9] give a comprehensive review of their

use in statistical applications in particular in the areas of generation of sequences for

multivariate distributions and the evaluation of expectations of functions. Sequences

such as the Halton [14] and Sobol [36] sequences, result in comparatively smaller

bounds for the integration error [10] hence have faster convergence rates compared to

the MC method. Robinson and Atcitty [28] compared four modifications of Halton

sequences and Latin Hypercube Sampling [23] as designs in computer experiments,

and found that quasi-random sequences provided estimates with lower integration

errors compared to Latin Hypercube sampling in low dimension parameter space.

In Chapter 3 we examine a second approach to integration in which the inte-

grand on a rectangular domain, is assumed to be a Gaussian process of the form

(1.3). We call this approach to integration GaSP integration. The assumption of

randomness follows from the fact that the numerical value of the integrand at a point

x, is unknown until g(x) is actually calculated. This method was first applied by

O’Hagan [25] who used Bayesian analysis of the quadrature problem. An earlier de-

scription and review of Bayesian analysis in numerical analysis is given by Diaconis

[7]. Using a non-informative prior on the model parameters, O’Hagan formulated

the posterior distribution of ḡ based on the evaluation of the integrand at a set of

points. The general technique of Bayesian quadrature is to make the fullest possible

use of function evaluations, hence it is an ideal method for the numerical integration

of costly functions. O’Hagan [25] also showed that the product correlation structure

reduced multidimensional integrals into one dimension integrals which are easily ap-

proximated. The theory set out by Schonlau and Welch [34] is slightly different; if

16

the integrand is assumed to be a realization of a Gaussian stochastic process, it then

follows that ḡ is also a realization of a Gaussian stochastic process and the BLUP can

be used to estimate the integral. The BLUP estimate that they formulate is essen-

tially the posterior mean of ḡ as derived by O’Hagan. More theory on this technique

is illustrated in Chapter 3. Schonlau and Welch [34] used this approach to estimate

effects in computer experiments. We present example multidimensional integration

using GaSP integration in Chapter 3.

Due to the assumption of stationarity used in (1.2), GaSP integration will not per-

form well when this assumption is violated for example when dealing with a function

with asymptotes. Consider the function

f(x1, x2) = 1/(1− x1x2),

on the unit square X = [0, 1] × [0, 1]. A contour plot of the function is given in

Figure 1.1. The function has a vertical asymptote at (1,1). Its structure changes

with location, consequently its behavior on [0.5, 1]× [0, 1] is quite different compared

to its behavior on [0.5, 1] × [0, 1]. In this case, the assumption of stationarity does

not hold. To gain more information on the function, we would like to sample more

from regions where the function changes rapidly, however the size of n is limited due

to the computation power needed to invert the correlation matrix. In Chapter 4 we

introduce the Adaptive Subregion Sampling Integration Algorithm (ASSIA) which

partitions the integration region into more homogenous subregions and concentrates

sampling where the integration region is most varied. Adaptive integration methods

are common in numeric integration [6], they work by dynamically partitioning the

integration region so that the integrand is more or less homogenous in respective

sub-regions. A local integration rule such as a polynomial integration rule, is applied

17

to the subregions to obtain an estimate of the integral. Genz [12] employs adaptive

integration to deal with functions having dominant peaks after employing split-t

transformations [13], which transform the integration region by redistributing the

mass about the peak so that it occupies a larger fraction of the integration space. In

Chapter 4, we present the workings of ASSIA with both Monte Carlo integration and

GaSP integration for two dimensional integration problem.

In Chapter 5 we apply the algorithm to higher dimension problems and make some

changes to make computation easier when working in higher dimension, as well as to

reduce the number of iterations. We use ASSIA in a five and ten dimension integration

problem. ASSIA can also be used as a sampling or design tool, and we present

applications in which ASSIA is used to obtain “strategic samples”. These samples

can be used to further other goals in computer experiments such as visualization and

optimization. In the last chapter we present recommendations on improvements to

ASSIA and some directions for future work.

1.6 Examples

The main examples deal with both aspects of Bayesian analysis in computer experi-

ments and integration. Computer experiment data was created through simulations

using the Gaussian Stochastic Process model in (1.3).

1.6.1 Single Input Simulations

For one sample obtained by Latin Hypercube sampling [23] with n = 5 we ob-

tain simulated data sets using µ = 0, σ2 = 1 and a range of values for θ = θ1,

(θ = 0.05, 0.1, 0.5, 1, 5, 10). For each θ, we obtain R and use a N(0, σ2R) density to

18

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1: Plot of f(x1, x2) = 1/(1− x1x2), ‘◦’ for design on [0, 0.5]× [0, 1], ‘4’ for
design on [0.5, 1]× [0, 1].

19

0.0 0.2 0.4 0.6 0.8

−
1.

65
−

1.
50

True theta*=log(0.05)

x

y

0.0 0.2 0.4 0.6 0.8

−
0.

90
−

0.
75

True theta*=log(0.10)

x

y

0.0 0.2 0.4 0.6 0.8

−
1.

00
−

0.
90

True theta*=log(0.5)

x

y

0.0 0.2 0.4 0.6 0.8

−
0.

8
−

0.
2

True theta*=log(1)

x

y

0.0 0.2 0.4 0.6 0.8

−
1.

0
0.

5
2.

0

True theta*=log(5)

x

y

0.0 0.2 0.4 0.6 0.8

−
0.

4
0.

2
0.

8

True theta*=log(10)

x

y

Figure 1.2: Plots of simulated data for d = 1

20

generate realizations. This results in 6 data sets: 1D1, 1D2, 1D3, 1D4, 1D5 and

1D6. Plots of the simulated data are given in Figure 1.2. The plots indicate a linear

trend for strong correlation in the errors.

x y(x)
θ = 0.05 θ = 0.1 θ = 0.5 θ = 1 θ = 5 θ = 10

1D1 1D2 1D3 1D4 1D5 1D6
0.00572842 -1.682227 -0.8969145 -0.9619334 -0.84085548 2.2872472 -0.08458607

0.34118175 -1.618032 -0.8593026 -1.0047370 -0.12989661 0.3194758 0.76745245

0.58125444 -1.561303 -0.7903443 -0.9441377 0.10856554 -0.9106261 0.10904981

0.72673939 -1.523015 -0.7343532 -0.8925794 0.12005513 -1.1324536 -0.46569314

0.84790232 -1.489051 -0.6810062 -0.8498170 0.08790122 -1.2034158 -0.37025205

Table 1.1: One dimension Simulation Data

1.6.2 Two Input Simulations

In a similar manner as the one input simulation approach, we simulate data sets for the

two input problem with (µ = 0, σ2 = 1), and (θ1, θ2) = (exp(−1,−1), exp(0, 0), exp(3, 2)).

The sites are an unmodified Halton Sequence of 21 points. This resulted in three data

sets: 2D1, 2D2 and 2D3. Plots of the sites versus the realizations are given by the

contour plots in Figures 1.3 – 1.5. The plot indicates that the values of θ1, θ2) used

in the simulations affect the characteristics of the resulting function or output.

21

Figure 1.3: Plot of realizations versus input value for 2D1 (θ∗1, θ
∗
2) = (−1,−1)

22

Figure 1.4: Plot of realizations versus input value for 2D2 (θ∗1, θ
∗
2) = (0, 0)

23

Figure 1.5: Plot of realizations versus input value for 2D3 (θ∗1, θ
∗
2) = (3, 2)

24

x y(x)
(θ1, θ2) = exp(−1,−1) (θ1, θ2) = exp(0, 0) (θ1, θ2) = exp(3, 2)

2D1 2D2 2D3
0.5000 0.3333 -0.1444 0.0717 0.9679

0.2500 0.6667 0.1146 -0.0034 -0.9590

0.7500 0.1111 -0.2696 -0.2592 0.3385

0.1250 0.4444 -0.0252 -0.3087 0.0130

0.6250 0.7778 -0.0358 0.8791 -1.3150

0.3750 0.2222 -0.2075 -0.1820 -0.3119

0.8750 0.5556 -0.2497 0.8835 1.0333

0.0625 0.8889 0.1759 -0.3740 -1.8113

0.5625 0.0370 -0.3199 -0.4027 0.9032

0.3125 0.3704 -0.0865 -0.0779 -0.7602

0.8125 0.7037 -0.1927 1.0896 -0.4006

0.1875 0.1481 -0.2846 -0.3938 -0.6445

0.6875 0.4815 -0.1467 0.5223 0.6326

0.4375 0.8148 0.0892 0.5140 -1.0974

0.9375 0.2593 -0.2761 0.1585 0.9029

0.0313 0.5926 0.0689 -0.4652 -0.2172

0.5313 0.9259 0.0340 0.8038 -1.5988

0.2813 0.0741 -0.3369 -0.4015 -0.7439

0.7813 0.4074 -0.2121 0.4548 0.9720

0.1563 0.7407 0.1541 -0.1924 -1.4574

0.6563 0.1852 -0.2455 -0.1177 1.1014

Table 1.2: Two dimension Simulation Data

Chapter 2

Approximation to the Posterior

2.1 Introduction

In this chapter we present a full Bayesian approach to the Gaussian stochastic Pro-

cess model. The novelty of our approach is that we incorporate two approximation

techniques; the first based on approximating the Jeffreys prior, the second based on

approximating the posterior with a Normal density.

Prior information on model parameters in the stochastic process model is often

unavailable thus it is specified by non-informative priors. Berger, De Oliveira and

Sanso [2] presented a study of non-informative priors that result in proper posterior

densities, among these were the Reference and the Jeffreys prior. In this chapter

we specify prior information on the parameters using the Jeffreys prior. Apart from

producing a proper posterior density, the Jeffreys prior appeal is that it is easy to

formulate, and as was shown by Berger, De Oliveira and Sanso, can be approximated

by a simpler function. As an exercise, we verify this approximation for a single vari-

able function with an equispaced design using Chen’s [3] representation for R−1. This

representation for R−1 enables the simplification of the prior using Maple software for

25

26

n = 1, . . . , 12. Using the product correlation rule, we formulate a similar approxima-

tion for d = 2 in the equispaced design. We adopt this approximation and use a log

transformation on the correlation parameters in the posterior, which in effect specifies

a uniform prior on the reparametrized parameters. The resulting posterior is then the

integrated likelihood. This leads to the first approximation method of the posterior.

MCMC simulation is needed to obtain samples and for integration. The advantage

of this approximation is that the resulting posterior is less complex, hence MCMC

simulation take a shorter time. We use simulated data sets to compare moments of

the approximation to the true posterior. In the second method we approximate the

reparametrized posterior with a Normal density. The motivation of this method is

the more ellipsoidal form of the log-transformed posterior. This second approach is

a far cheaper Bayesian implementation as it is possible to use plain Monte Carlo by

drawing samples from the Normal density without resorting to MCMC simulations.

The two approximation techniques are used to obtain predictions of a two dimensional

function, and their performance is compared to that of the BLUP.

2.2 Developing the Jeffreys Prior and the Poste-

rior Density

The Jeffreys prior [17] for the stochastic process model in (1.3) is derived as (see

Appendix A.1):

pr(µ, σ2,Θ) ∝
√

I(µ, σ2,Θ),

∝ pr(Θ)pr(µ, σ2), (2.1)

27

where

pr(µ, σ2) ∝ 1/(σ2)3/2,

pr(Θ) ∝
√

(1TR−11|Bd|).

The matrix Bd is the (d × d) information matrix of the correlation parameters, for-

mulated in Appendix A.1. The results from (2.1) specify a diffuse prior on µ and

sets out the independence of the mean, variance and correlation parameters. Another

suggested prior [15] takes the form in (2.1) with

pr(µ, σ2) = 1/σ2a, (2.2)

pr(Θ) ∝ 1, (2.3)

where a is an arbitrary positive number.

The likelihood from (1.9) is

L(y|µ, σ2,Θ) ∝ 1

(σ2)
n
2

√
|R| exp(

−1

2σ2
(y − 1µ)TR−1(y − 1µ)).

In general, the posterior from using a prior of the form pr(µ, σ2,Θ) ∝ pr(Θ)/σ2a is

pr(µ, σ2,Θ|y) ∝ pr(Θ)

(σ2)
n+a

2

√
|R|

exp(
−1

2σ2
(y − 1µ)TR−1(y − 1µ)). (2.4)

Using the fact that a random variable X with an inverse gamma distribution has a

density function of the form

f(x) =
βα

Γ(α)
x−(α+1) exp(−β/x)

with

α, β > 0 and x > 0,

28

and that ∫ ∞

0

f(x)dx = 1,

we integrate out over σ2 in (2.4) by multiplying appropriate normalizing constants.

Matching up parameters we have

α = (n + a− 3),

and β = (y − 1µ)TR−1(y − 1µ)/2, then

pr(µ,Θ|y) ∝ pr(Θ)[t(µ,Θ)]
−(n+a−2)

2 , (2.5)

where

t(µ,Θ) = σ̂2

(
1 +

1TR−11(µ− µ̂)2

σ̂2

)
,

µ̂ =
1TR−1y

1TR−11
,

σ̂2 = (y − 1µ̂)TR−1(y − 1µ̂).

If a random variable X has a Student’s t distribution, with α degrees of freedom,

location parameter λ and scale parameter Σ2, then its density function has the form:

f(x) =
Γ[(α + 1)/2]

Σ(απ)1/2Γ(α/2)

(
1 +

(x− λ)2

αΣ2

)−(α+1)/2

with

α, Σ2 > 0 and −∞ < λ < ∞.

If Θ were known in (2.5), µ would have a Student’s t density with α = (n + a − 3),

location parameter

λ = µ̂,

29

and

αΣ2 = σ̂2/(1TR−11).

To integrate over µ, we use the same technique as that used to integrate out over σ2.

The results are as follows:

pr(Θ|y) ∝ pr(Θ)LI(y|Θ), (2.6)

LI(y|Θ) = |R|−1/2(1TR−11)−1/2(σ̂2)−
(n−3)

2
+a. (2.7)

Berger, De Oliveira and Sanso [2] refer to LI(y|Θ) as the integrated likelihood. As

the integrated likelihood is positive and bounded, they showed that the prior given

by (2.2) and (2.3), results in an improper posterior for certain values of a, the Jeffreys

prior however results in a proper posterior. They also formulate an approximation for

the Jeffreys prior for the case d = 1, we verify this approximation in the next section.

2.3 Approximating the Jeffreys Prior

2.3.1 Single Input Function

The Jeffreys prior for a one input design is given by (A.4) in Appendix A.1 and can

be written as

pr(µ, σ2, θ) ∝ prJ(θ)prJ(µ, σ2), (2.8)

where

prJ(µ, σ2) ∝ 1/(σ2)3/2

and

prJ(θ) ∝
√

(1TR−11)|B1|.

The notation above is in line with earlier notation, the subscript J denotes the Jeffreys

prior on the correlation parameters.

30

Berger, De Oliveira and Sanso [2] obtained the following approximation with re-

spect to the Jeffreys prior for the correlation parameter,

prJ(θ) = O(1/θ) as θ → 0.

Their approximation is dependent on several assumptions; the two main assumptions

are based on the approximation of R and the derivative matrix Rθ. These approxi-

mations are:

R = 11T + θ(D + o(1)) as θ → 0,

Rθ = D + o(1) as θ → 0.

The matrix D is dependent on the distance between pairs of sites and is also assumed

to be non-singular. Non-singularity of D is required in the approximation of R−1.

We verify the approximation of Berger, De Oliveira and Sanso with the results of

Chen [3]. With one input (d = 1) and an equispaced design (x(1), x(2), . . . , x(n)) =

(1/n, 2/n . . . , 1), the correlation between two sites or input points (x(i), x(j)), is given

as Ri,j = ρ(i−j)2 with ρ = exp(−θ/n2). The resulting correlation matrix is Toeplitz.

This special structure enabled Chen to formulate an expresssion for R−1 in terms of

ρ.

Lemma 2.3.1. The Jeffreys Prior for a one input equispaced design is:

prJ(µ, σ2) ∝ 1/(σ2)3/2, (2.9)

prJ(θ) ∝
(

n∑

k=1

(1T w̄k)2

1−Qk−1

)1/2 (
n∑

k=1

n∑
j=1

nC2
jk − CjjCkk

(1−Qk−1)(1−Qj−1)

)1/2

, (2.10)

where
Cjk = (w̄j)TRθw̄

k,

and w̄k = (wk
1 , . . . , w

k
n) with

wk
i =





u
(k−1)
i i < k,

−1 i = k,

0 i > k,

(2.11)

31

u
(k)
i = −(−ρ)i

i∏
j=1

(∑k−j
r=0 ρ2r

∑j−1
r=0 ρ2r

)
, (2.12)

and

1−Qk = (1− ρ2)k

k∏
j=1

(
j−1∑
r=0

ρ2r

)
. (2.13)

A proof of this lemma is given in Appendix A.2.

Lemma 2.3.1 shows that the Jeffreys prior exists for all values of θ 6= 0. We

are then able to verify the approximation by Berger, De Oliveira and Sanso, for

n = 1, . . . , 12 using Maple software. The results are presented in Appendix A.3. For

an illustration, when n = 3, we formulate the integrated likelihood from (2.7) as

LI(y|θ) ∝
√

(1− ρ4)(ρ2 + 2ρ + 3)

(ρ3 + ρ2 + ρ)(y2 − y1)(y3 − y2) + 3/2
∑3

i=1(yi − ȳ)2
.

As ρ → 0+ or as θ →∞, the integrated likelihood is unaffected by θ and is dependent

on the variation of the data. As ρ → 1 or as θ → 0, the integrated likelihood grows

dependent on θ. Using Maple software, the Jeffreys prior on θ in (2.1) is

prJ(θ) ∝ ρ(1− ρ)

(1− ρ4)(1− ρ2)

√
(8ρ6 + 11ρ4 + 14ρ2 + 3)(ρ2 + 2ρ + 3).

As θ → 0+, ρ = 1− κθ + o(1),

√
(8ρ6 + 11ρ4 + 14ρ2 + 3)(ρ2 + 2ρ + 3) = O(1),

and

ρ(1− ρ)

(1− ρ4)(1− ρ2)
=

(1− κθ + o(θ))(κθ + o(θ))

(4κθ + o(θ))(2κθ + o(θ))

=
θ(1− κθ + o(θ))(κ + o(1))

θ2(4κ + o(1))(2κ + o(1))

= O

(
1

θ

)
.

32

Hence

prJ(θ) = O

(
1

θ

)
.

The plots in Figure 2.1 verify this limiting behavior. Assuming prJ(θ) ≈ 1/θ, a

transformation θ∗ such that this prior is locally uniform, is

θ∗(θ) ∝
∫ θ 1

t
dt = log(θ). (2.14)

2.3.2 Analysis of Posterior approximation for Simulated Data,
d = 1

For the simulated data sets in 1D1 – 1D6 we use plots to study the approximation

of the Jeffreys prior. As mentioned in Chapter 1, Latin Hypercube Sampling was

used to obtain sample sites with the aim of introducing variation in the equispaced

design, thereby assessing the approximation in a non-equispaced design. We compare

the Posterior for the log Transformed parameters using Jeffreys Prior (PTJP) to

the Posterior for the log Transformed parameters using a Uniform Prior (PTUP)

based on (2.14). The constants of proportionality are estimated using importance

sampling with the importance function equal to N(θ∗, Î−1), the normal density with

mean equal to the log of the true value and variance equal to the inverse observed

Fisher information. Figure 2.2 shows that PTUP approximates PTJP well for smaller

values of θ, but performs poorly when the distribution of θ is centered at large values.

2.3.3 Two Input Function

In a two input problem, the correlation between the errors at a pair of sites (ε(x(i)), ε(x(j)))

from (1.2) is

R(i,j) = exp
[
−θ1(x

(i)
1 − x

(j)
1)2 − θ2(x

(i)
2 − x

(j)
2)2

]
.

33

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

theta

pr

0 20 40 60 80 100

0
50

0
10

00
15

00

1/theta

pr

Figure 2.1: Plot of prJ(θ) versus exact θ and 1/θ for n = 3.

34

−5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True theta*=log(0.05)

theta*

pr
ob

−
de

ns
ity

+++++++++
+++

++
++
++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++

−4 −3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

True theta*=log(0.10)

theta*

pr
ob

−
de

ns
ity

+++++++++++++++++++++++++++++
+++

++
+
+
+
+

+

+

+

+

+

+

+
+
+
++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True theta*=log(0.5)

theta*

pr
ob

−
de

ns
ity

+++++++++++++++++++
++++

++
++
+
+
+
+
+
+
+

+

+

+

+
+
+
++
+++

+
+
+
+
+
+
+
+
+
+
+
+
+
++

−2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True theta*=log(1)

theta*

pr
ob

−
de

ns
ity

+++++++++++++++++++++++++
++
+
+
+
+

+

+

+

+

+

+

+
+
+++

+
+
+

+

+
+
+
+
+
+
+
+
+
+
++

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True theta*=log(5.0)

theta*

pr
ob

−
de

ns
ity

++++++++++++++++++++++
++
++
+
+
+
+

+

+

+

+

+

+

+
+
++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+++

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

True theta*=log(10.0)

theta*

pr
ob

−
de

ns
ity

++++++++++++++++++++
+++

++
+
+
+
+
+
+

+

+

+

+

+
+
+
+
++++++

+
+
+
+
+
+
+
+
+
+
+++

Figure 2.2: Plots of PTJP and PTUP versus θ∗ = log(θ), for the same LHS design,
solid lines for PTJP, ‘+’ for PTUP.

35

The Jeffreys Prior derived in Appendix A.1 is

prJ(µ, σ2) ∝ 1/(σ2)3/2,

prJ(θ1, θ2) ∝
√

(1R−11)|B2|, (2.15)

where

|B2| ∝

∣∣∣∣∣∣∣∣




tr((R−1Rθ1)
2) tr((R−1Rθ2)(R

−1Rθ1)) tr(R−1Rθ1)

tr((R−1Rθ2)(R
−1Rθ1)) tr((R−1Rθ2)

2) tr(R−1Rθ2)

tr(R−1Rθ1) tr(R−1Rθ2) n




∣∣∣∣∣∣∣∣
.

Here Rθ1 and Rθ2 denote the matrices derived from differentiating elements of R with

respect to θ1 and θ2 respectively.

Lemma 2.3.2. For an equispaced design on an n×n grid, prJ(θ1, θ2) = prJ(θ1)prJ(θ2)
where prJ(θ1) and prJ(θ2) are specified in Lemma 2.3.1.

Proof of Lemma 2.3.2 is given in Appendix A.4. Lemma 2.3.2 can be extended

to d dimension equispaced grid designs, that is prJ(Θ) ∝ ∏d
i=1 prJ(θi). Proof of this

can be obtained by induction for nd points.

Corollary 2.3.3. For a two-dimension equispaced grid design,

prJ(θ1, θ2) = O

(
1

θ1θ2

)
as θ1, θ2 → 0+.

Corollary 2.3.3 follows from the approximation results of the one input case.

Proposition 2.3.4. Corollary 2.3.3 holds for non-equispaced, non-grid designs in d
dimensions.

The above corollary was studied graphically using Halton designs and equispaced

designs in two and one dimension, and held for the examples studied.

36

2.3.4 Metropolis Hasting Algorithm

For inference in Bayesian analysis, the following integration expression often needs to

evaluated,

E(h(Θ)|y) =

∫

Θ

h(Θ)pr(Θ |y) dΘ. (2.16)

For example to obtain the posterior expectation of θ in the one dimension case (2.16)

needs to be evaluated with h(Θ) = θ.

Monte Carlo Integration can be used to obtain an estimate of (2.16) with

Ĥ =
1

m

m∑
i=1

h(Θi),

and Θi are random samples drawn from the posterior density. If the posterior is not

a standard density, Markov Chain Monte Carlo (MCMC) methods may be used to

obtain samples.

The Metropolis Hasting Algorithm (MHA), with a normal proposal density was

used to obtain samples of Θ from PTJP and PTUP. A description of the MHA is as

follows:

1. At iteration m−1 let the transition distribution be N(0,Σ). We choose Σ = Î−1,

the inverse observed information matrix evaluated at the mode of the integrated

likelihood,

2. Propose Θm = Θm−1 + δ, where δ is drawn from N(0,Σ),

3. Let p(Θm,Θm−1) =
{

min
pr(Θm |y)

pr(Θm−1 |y)
, 1

}
,

4. Accept the new value Θm with probability p(Θm,Θm−1), otherwise set Θm =

Θm−1.

37

Data set 2D1

PTJP

theta1*

th
et

a2
*

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

−
1.

2
−

1.
0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

PTUP

theta1*

th
et

a2
*

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

−
1.

2
−

1.
0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

Data set 2D2

PTJP

theta1*

th
et

a2
*

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

PTUP

theta1*

th
et

a2
*

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Data set 2D3

PTJP

theta1*

th
et

a2
*

2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

PTUP

theta1*

th
et

a2
*

2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

Figure 2.3: Posterior density plots for simulated data sets.

38

2.3.5 Analysis of Posterior Approximation for Simulated Data,
d = 2

We use the simulated data sets 2D1, 2D2 and 2D3 to compare the densities from

samples of PTJP and PTUP. Figures 2.3 is composed of the density plots for the

data sets. We observe ellipsoidal symmetry with a slight skewness in all the densities.

There is not much difference in the shape of PTUP contours as compared to PTJP

contours across the three simulations.

The Metropolis Hasting algorithm is used to obtain a sample of size 4000 from

50000 iterations from both PTJP and PTUP. We allow for 10000 iteration burn-ins

then pick every 10th iteration to obtain samples with low correlation [26]. Based on

1000 iterations, MHA on PTUP takes an average of 32 seconds of CPU time (on a

900MHz AMD Athlon 4 Processor), whereas PTJP takes 241 seconds. The rejection

rate for both densities are shown in Table 2.1. The rejection rates vary across the

data sets but are approximately equal in the simulation of the two densities. The

difference in MHA simulation time in the two densities is brought about by the extra

operations required to compute the Jeffreys prior in PTJP. Not taking into account

the operations needed to invert R; the information matrix B2 has 5 elements which

require operations of magnitude 213. The determinant of B2 is obtained by LU

decomposition in R which requires operations of magnitude 33.

The marginal densities pr(θ∗i |y) are presented in the Figure 2.4. Table 2.2 presents

the posterior expectations of the parameters. The plots in Figure 2.4 indicate that the

marginal densities in the two dimension case are similar to the one dimension densities

shown in Figure 2.2. From Figure 2.4 and Table 2.2, PTUP approximates PTJP well

for smaller values of the correlation parameters and have lower rejection rates. By

39

Data Set True Value PTUP PTJP
%rejected %rejected

2D1 (-1,-1) 41.38 41.59

2D2 (0, 0) 49.97 49.71

2D3 (3,2) 52.04 53.19

Table 2.1: MHA Rejection Rates for 2D1, 2D2, 2D3

2D1 - True value =(-1,-1)
PTJP PTUP

θ1∗ -0.63025 (0.00331) -0.63723 (0.00330)

θ2∗ -0.74424 (0.00330) -0.74806 (0.00326)
2D2 - True value =(0,0)

PTJP PTUP

θ1∗ 0.04382 (0.00283) 0.04744 (0.00287)

θ2∗ 0.36081 (0.00262) 0.36948 (0.00261)
2D3 - True value =(3,2)

PTJP PTUP

θ1∗ 2.75133 (0.00460) 2.78920 (0.00476)

θ2∗ 1.81022 (0.00480) 1.86219 (0.00533)

Table 2.2: Posterior expectations of simulated data, the standard errors are given in
brackets

40

running MHA with different realizations, we found that for realizations simulated

with values of (θ∗1, θ
∗
2) > (3, 3), PTUP was improper hence MCMC simulations did

not converge, however MCMC simulations converged for PTJP.

2.4 Normal Approximation of the Posterior

An alternative to MCMC is to approximate the posterior density with a standard

density that is easy to sample. A simplified approach to the Normal approximation

is as follows. Let Θ̂ be the mode of pr(Θ |y). A Taylor series expansion of the t log

posterior around Θ̂ can be written as:

log(pr(Θ |y)) = log(pr(Θ̂ |y))− 1

2
(Θ− Θ̂)T Î(Θ− Θ̂) + R(Θ) (2.17)

The matrix Î has (i, j)th element
−∂2 log(pr(Θ |y))

∂θi∂θj
evaluated at the posterior mode.

The last term in Equation (2.17) is a remainder term which is assumed to be small.

By taking the exponent of Equation (2.17), Θ ∼ N(Θ̂, Î−1), the posterior density is

approximately d-variate Normal with mean equal to the posterior mode and variance

equal to the posterior modal dispersion matrix. Approximations can be improved by

reparametrization. The log transformation reduces skewness by mapping the param-

eter space from (0,∞) to (−∞,∞). This approximation technique is applied in the

next section.

2.5 Posterior Inference for the Output Variable

We evaluate the function used by Currin et al. [5]:

f(x1, x2) = [1− exp(−1/(2x2))]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
, (2.18)

41

(θ∗1, θ
∗
2) = (−1,−1)

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

density of theta1*

N = 4000 Bandwidth = 0.04166

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

2.
0

density of theta2*

N = 4000 Bandwidth = 0.04215

(θ∗1, θ
∗
2) = (0, 0)

−0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

density of theta1*

N = 4000 Bandwidth = 0.03489

0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

density of theta2*

N = 4000 Bandwidth = 0.03246

(θ∗1, θ
∗
2) = (3, 2)

2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

density of theta1*

N = 4000 Bandwidth = 0.05775

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

density of theta2*

N = 4000 Bandwidth = 0.0584

Figure 2.4: Marginal plots for PTJP (Solid line) and PTUP (dashed lined).

42

at 21 sites, sites chosen using a Halton sequence with the aim of obtaining predictions

for a grid of 100 points.

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.5: Contour plot of the test function, £ shows the sampled sites.

The plot of the function and sampled sites are shown by the contour plot in Figure

2.5. The test function presented an interesting case study as the function changes

relatively fast close to the point x2 = 0. The BLUP being an interpolator, might not

capture these changes well unless a large number of points were sampled close to this

point. The design is not a very efficient one, the main purpose of the exercise is to

compare prediction results. Owing to the degree of smoothness of the function, the

use of the Gaussian correlation function is justified. To validate the GaSP model [18],

we obtained the BLUP using MLE estimates for (θ1, θ2) for y1, . . . , y21 and plotted

the cross validated errors (CVE):

εi =
ŷi − yi√
var(ŷi)

, i = 1, . . . , 21.

If the model were correct and ignoring uncertainty in estimating (θ1, θ2), the CVE

43

would have standard normal density. Figure 2.6 gives a plots of the predicted versus

true values and CVE quantiles versus standard normal quantiles. The quantile plot

does not give any indication of a departure from normality of the CVE. It is evi-

dent from the plots that the BLUP performed well, the BLUP resulted in accurate

predictions except for small values of the response.

The contour plots for the Integrated Likelihood using the untransformed and log-

transformed parameters are shown in Figure 2.7 and Figure 2.8. The positive skew-

ness of the likelihood is apparent in the plots, this is reduced by reparametrization.

The integrated likelihood takes on a maximum value when the estimates of the log

transformed parameters are Θ̂∗ = (1.8969, 0.6993). The inverse observed information

matrix

Î−1 =

(
0.14192362 0.09043233

0.09043233 0.09300352

).

We aim to compare the performance of the Bayesian posterior expectation for

y(x∗) to the BLUP. To do this, we obtain predictions over an equally spaced grid of

10× 10 points using the following techniques,

1. BLUP predictions using Θ̂∗ as true values.

2. Predictions using MHA on PTJP. We obtain a sample of size 2000 from 40000

iterations by selecting every 20th iteration after allowing 10000 burn-ins. We

then use Monte Carlo Integration on Equation (1.11) and Equation (1.12) to

obtain estimates of predictions and variances.

3. Predictions using MHA on PTUP. We use a similar technique as outlined above

for PTJP to obtain predictions.

44

4 6 8 10 14

4
6

8
10

14

(1)

y

P
re

di
ct

ed

−3 −1 1 2 3

−
3

−
1

1
2

3

(2)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.6: (1) Prediction versus true value, (2) CVE quantiles versus standard Nor-
mal quantiles, the lines in the plots have slope equal to one.

45

theta1

th
et

a2

5 10 15 20

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Figure 2.7: Integrated likelihood contour plot for test function data – untransformed
parameters.

theta1*

th
et

a2
*

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Figure 2.8: Integrated likelihood contour plot for test function data – log-transformed
parameters.

46

4. Predictions by approximating PTJP with N(Θ̂∗, Î−1). Monte Carlo integra-

tion is employed on Equation (1.11) and Equation (1.12) on samples from this

density.

Figures 2.9 and 2.10 show the marginal density plots for θ∗1 and θ∗2 using the last

three strategies above. There is close agreement between the approximating densities

and PTJP.

The contours of the true and predicted functions are plotted in Figure 2.11. The

plot shows that the prediction surfaces are quite similar across the four methods. Fig-

ure 2.12 is a quantile-quantile (QQ) plot of the standardized prediction errors from

the other three prediction techniques versus the standardized errors using PTJP. The

QQ-plots helps in comparing the distributions of the predictive errors. The extreme

low and high values of the BLUP quantiles indicate left and right skewness (or heavy

tails) in the sample distribution of the standardized errors. This phenomena is at-

tributed to smaller BLUP prediction errors, compared to PTJP prediction errors.

The QQ-plot also shows that the Normal approximation results in a predictive distri-

bution which is closer to the predictive distribution from PTJP compared to PTUP.

2.6 Discussion

The Jeffreys Prior appeal is that it results in a proper posterior, it can also be ap-

proximated by a simple function which enables the use of a uniform prior on the

transformed scale. This approximation works well when for small values of the corre-

lation parameters. We found by working on various examples that the approximation

works well if the maximum likelihood estimate of θ ≤ 5. We recommend that the

47

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

(1)

N = 4000 Bandwidth = 0.06153

D
en

si
ty

PTJP
PTUP
Normal Approx

Figure 2.9: Comparative Density Plots for θ∗1 – test function data

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

(2)

N = 4000 Bandwidth = 0.04619

D
en

si
ty

PTJP
PTUP
Normal Approx

Figure 2.10: Comparative Density Plots for θ∗2 – test function data.

48

(0)

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(1)

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(2)

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(3)

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(4)

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.11: True functions and predictions: (0) – True value, (1) – BLUP, (2) –
MCMC on PTJP, (3) – MCMC on PTUP, (4) – Monte Carlo on Normal approxima-
tion to PTJP.

49

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

PTJP Standardrized Error Quantiles

S
am

pl
e

Q
ua

nt
ile

s

BLUP
Normal Approx
PTUP

Figure 2.12: Quantile-quantile Plot of Standardized Errors from Prediction Estimates

50

mode and the observed information matrix be used to make inference about the dis-

persion of θ∗, this would give an indication on the effectiveness of this approximation

technique. Though we only looked at the one and two input cases, we can extend

the theory to approximate the Jeffreys prior in d > 2 dimensions. An educated guess

would be prJ(Θ) ∝ ∏d
i=1 θ−1

i .

In the example in Section 2.5, a Normal approximation of PTJP works just as well

as PTUP. This is a promising result as it makes MCMC simulations unnecessary. In

other applications it might be necessary to obtain other reparametrizations in order to

obtain a more ellipsoidal form for the posterior, and enable the Normal approximation.

Chapter 3

GaSP Integration

3.1 Introduction

A common problem in Bayesian analysis and computer experiments is that of inte-

gration. We often need to evaluate

ḡ =

∫

X
g(x)dx. (3.1)

For example in the previous chapter, we obtained predictions by evaluating

ḡ =

∫ ∞

0

E(y(x∗)|Θ,y)pr(Θ|y)dΘ.,

here

g(x) = E(y(x∗)|Θ,y),

dx = pr(Θ|y)dΘ.

In a computer experiment setting, suppose that x∗ is the target value of the input

vector, but the input vector is assumed to be random with some distribution dx; then

we need to find the average value of y over this distribution [21],

ḡ =

∫

x

y(x)dx. (3.2)

51

52

One standard approach to numerical integration is MCMC as used in the previous

chapter. In this chapter we examine another approach which we call GaSP integration.

This method was first applied by O’Hagan [25] and more recently by Schonlau and

Welch [34] in screening input variables in computer experiments. In the next section

we outline GaSP integration based on Schonlau and Welch’s technique and also point

out the differences and similarity to O’Hagan’s Bayesian quadrature. We give detailed

one dimension illustrations in Section 3.3. The novelty of the work in this chapter is

based on application. Unlike Schonlau and Welch’s screening approach where they

integrate out over partial sets of input variables, we integrate out over the whole

set of variables. O’Hagan’s application was geared to finding optimal designs in low

dimensions, we use random and Halton sequences with fairly good results in low

dimensions in section 3.4. GaSP integration is enabled by William J. Welch’s GaSP

program. This program iteratively obtains the maximum likelihood estimates of the

correlation parameters and works out GaSP integration estimates. This program is

also widely used in computer experiments applications and optimization [32].

We use the assumption that the domain of integration is rectangular and finite

and of the form

X = [a1, b1]× [a2, b2]× . . .× [aD, bD]

where a1, . . . , aD, b1, . . . , bD are constants. For cases where the domain is infinite, a

truncation or transformation can be used to map to a finite domain. A change of

notation for dimension is used in this chapter and subsequent chapters, we use D to

avoid confusion with the differential d.

53

3.2 GaSP Integration Outline

Suppose the integrand in Equation (3.1) has D variables, starting with a sampling

design of n points on the integration domain we denote this as x1, . . . ,xn where

xi = (x
(1)
i , . . . , x

(D)
i),

we evaluate

yT = (y1 = g(x1), . . . , yn = g(xn))T .

We use subscripts for the sampling design as opposed to the superscript notation from

Chapter 1 and Chapter 2 so as to make the integration problem distinct from the

computer experiment problem. If we assume that g(x) is a realization of the process

G(x) = µG + ε(x) (3.3)

where

ε(x) ∼ N(0, σ2
G),

and the errors are correlated, their correlation can be specified by the Gaussian cor-

relation function,

corr(ε(xi), ε(xj)) = R(xi,xj) =
D∏

k=1

exp(−θk(x
(k)
i − x

(k)
j)2).

From previous notation, the correlation matrix R has (i, j)th element equal to R(xi,xj).

It follows that ḡ is also a realization of the Gaussian stochastic variable [25],

Ḡ(x) = µḠ + ε̄(x), (3.4)

54

where

µ̂Ḡ = ūµG,

ū =
D∏

i=1

(bi − ai) ,

and

ε̄(x) =

∫

X
ε(x)dx ∼ N(0, σ2

Ḡ),

with

σ2
Ḡ = σ2

G

∫

X

∫

X
R(x,x′)dxdx′,

= σ2
G

D∏
i=1

∫

X

∫

X
exp(−θk(x− x′)2)dxdx′. (3.5)

An estimate of ḡ can be obtained using the BLUP from (3.4). The steps to deriving

the BLUP of ḡ are similar to those outlined in the introduction and are shown by

Schonlau and Welch [34]. The BLUP of ḡ is

ˆ̄g = ūµ̂G + r̄TR−1(y − 1µ̂G) (3.6)

and its estimated variance is given as

var(ˆ̄g) = σ̂2
Ḡ − σ̂2

Gr̄TR−1r̄ + σ̂2
G

(ū− 1TR−1r̄)2

1TR−11
. (3.7)

From previous notation, 1 is a vector of ones of length n and

µ̂G =
1TR−1y

1TR−11
,

σ̂2
G = (y − 1µ̂G)TR−1(y − 1µ̂G)/n.

55

The vector r̄ has ith element

r̄i =

∫
R(x,xi)dx,

=
D∏

k=1

∫

Xk

exp(−θk(x− x
(k)
i)2)dx.

O’Hagan’s [25] Bayesian approach uses the fact that

(G(x1), . . . , G(xn))T |µG, σ2
G ∼ N(µG, σ2

GR),

to specify a prior of the form

pr(µG, σ2
G) ∝ 1/σ2. (3.8)

It then follows that the posterior distribution ḡ given y is a shifted t-density with

mean equal to ˆ̄g and whose variance equals var(ˆ̄g)/(n−3). These results are consistent

with the general Bayesian approach to the Gaussian stochastic process model, if the

correlation parameters are assumed to be known, then the prior in (3.8) results in

a student-t density with mean equal to the BLUP and variance equal to the scaled

BLUP variance [15].

The correlation parameters θ1, . . . , θD are estimated by maximum likelihood esti-

mation. We refer to this approach as “GaSP integration” due to the fact that it is

based on the assumption that the integrand is a realization of the Gaussian stochastic

process. The BLUP of ḡ has the same form as (1.5) but with r replaced by r̄, and its

variance involves the extra terms σ̂2
Ḡ

and ū. The estimate of ḡ is a linear combination

of elements contained in r̄, which depend on the sampling design on the domain of

integration.

Apart from the advantage of variance reduction, the immediate appeal of this

method is that it breaks down multidimensional integration problems into one and

56

two dimensional problems, the resulting integrals from (3.6) and (3.7) are easy to

approximate. The choice of the Gaussian correlation function, as will be shown in

the next section, greatly simplifies computations.

3.3 One Dimension Illustration

Consider the simple integration problem

ḡ =

∫ 1

0

sin(πx)dx (3.9)

=
2

π
,

= 0.6366198.

(3.10)

We choose the points

(x1, x2, x3, x4) = (1/4, 2/4, 3/4, 1),

then

y = (1/
√

2, 1, 1/
√

2, 0).

First we estimate the correlation parameter θ1 = θ, using maximum likelihood es-

timation. For this we use the ms function in Splus on the likelihood in (1.9) to

get

θ̂ = 3.30778.

The next step to deriving the BLUP is to evaluate elements of r̄ using the estimated

57

value of θ. Note that

r̄i =

∫ 1

0

exp(−θ(x− xi)
2)dx

=

√
π

θ

∫ 1

0

(√
π

θ

)−1

exp(−θ(x− xi)
2)dx

=

√
π

θ

(
Φ(
√

2θ(1− xi))− Φ(−
√

2θxi)
)

, (3.11)

where Φ(·) is the cumulative standard Normal function. From (3.11)

r̄i =

√
π

θ
P (0 ≤ X ≤ 1) (3.12)

where

X ∼ N(xi,
1

2θ
).

This shows that the r̄i are the weighted normal probabilities of the sampled points

being within the domain of integration. Points close to the middle will have a higher

value of r̄i than points close to the end points.

Using the MLE estimate of θ we estimate

µ̂G = 0.2519199,

σ̂2
G = 0.3444129,

and using (3.6) we estimate

ˆ̄g = 0.6651143.

For the BLUP variance,

σ̂2
Ḡ = σ̂2

G

∫ 1

0

∫ 1

0

exp(−θ(x− x′)2)dxdx′,

= σ̂2
G

√
π

θ

∫ 1

0

Φ(
√

2θ(1− x′))− Φ(−
√

2θx′)dx′. (3.13)

58

The expression in (3.13) can be evaluated using numerical methods such as Simpson’s

rule or the rectangular rule. Using rectangular rule on (3.13) we get

σ̂2
Ḡ = 0.2319448.

Calculations using (3.7) yield

var(ˆ̄g) = 0.0003679454.

The standard error of 0.0191 is less than the absolute error of 0.0285. Figure 3.1 is a

graphical summary of this example, r̄i are parabolic and symmetric about x = 0.5.

From the expression of r̄i and σ̂2
Ḡ
, it is evident that the GaSP integration estimates

are dependent on the value of θ. Note that when θ → ∞ then r̄i → 0 and the

correlation matrix is the identity matrix. It follows that

ˆ̄g ≈ 1Ty

1T1
,

=
4∑

i=1

yi/4,

= ȳ.

Similarly, when θ → ∞, the first two components in Equation (3.7) go to zero and

var(ˆ̄g) → ∑
(yi − ȳ)2/n2. The above observation is reinforced by Figure 3.2 which is

a plot of ˆ̄g as a function of θ; when there is no correlation between the points, GaSP

integration is Monte Carlo integration. Figure 3.2 shows that ˆ̄g attains a maximum

value of 0.68 when θ = 23 and as θ → 0+ the rate of change of ˆ̄g increases. Figure 3.3

plots the standard error of ˆ̄g for different values of θ. The plot suggests that estimates

with low absolute errors don’t imply lower GaSP errors. The plot also indicates that

smaller values of θ yield smaller errors. This is consistent with the findings of Yong et

al. [38]. They showed that for values of θ → 0 the BLUP from (3.3) is a polynomial

59

0.0 0.2 0.4 0.6 0.8 1.0

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

Figure 3.1: Plot of sin(πx), the dotted line represents ˆ̄g, ‘4’ represent r̄, ‘◦’ represent
y.

60

0 500 1000 1500

0.
61

0.
62

0.
63

0.
64

0.
65

0.
66

0.
67

0.
68

theta

g.
ba

r

Figure 3.2: Plot of different estimates of ˆ̄g versus θ, the dashed line represents the
true value ḡ.

0 500 1000 1500

0.
00

0.
05

0.
10

0.
15

theta

g.
ba

r.
se

Figure 3.3: Plot of
√

var(ˆ̄g) versus θ.

61

and if g(x) is a polynomial, it can be approximated without error – in which case the

BLUP for the integral of g(x) approximates it with no error.

3.3.1 GaSP Integration and Designs

To further analyze the effect of the design on GaSP estimates, consider the following

more complex integration problem

ḡ =

∫ 1

0

sin

(
1

0.1 + x

)
dx, (3.14)

= 0.5945062784.

We use the following methods to obtain four designs:

1. Maxima and minimum points and 4 points in between which are selected ran-

domly between the turning points and the endpoints,

2. Six points selected randomly,

3. Six equi-spaced points,

4. Six points selected by Latin Hypercube Sampling (LHS).

Integration results are presented in Table 3.1. The function and resulting design

points are given in Figure 3.4. Random sampling in this case, (design (2)) concentrates

sampling in the middle. Design (1) on the other hand concentrates sampling about

the turning points. Smaller estimates for θ in Table 3.1 suggests smaller absolute

errors. GaSP errors are smaller than absolute errors, with the exception of design

(1).

We repeat the exercise 90 times for random designs and LHS designs, each time ob-

taining a different design of size six. For random designs we also obtain MC estimates

62

and standard errors. The average estimate for the integral using GaSP integration

on LHS is 0.5557 with a standard error of 0.0151. The average estimate for the in-

tegral using GaSP integration on random samples is 0.5473 with a standard error of

0.0208. Normal quantile-quantile plots of the standardized errors of prediction are

given in Figure 3.5. GaSP error quantiles have much heavier tails than MC estimates,

indicating smaller errors. It is also clear that GaSP integration with LHS provides

estimates with smaller errors compared to GaSP integration with random samples.

Design θ̂ ˆ̄g
√

var(ˆ̄g) |ˆ̄g − ḡ|
(1) 635.2 0.3542 0.2681 0.2403

(2) 24.6 0.3650 0.1982 0.2295

(3) 22.3 0.5257 0.0392 0.0688

(4) 16.2 0.5461 0.0250 0.0484

Table 3.1: GaSP estimates from the integration of sin(1/(0.1 + x)).

3.3.2 GaSP Integration and Design Size

The purpose of this exercise is to compare GaSP and MC estimates and their rela-

tionship to sample size. We obtain different random samples of size n = 2, .., 90 and

to each sample, estimate the integral in (3.9) using both GaSP and MC integration.

The results are summarized by the plots in Figure 3.6. The plot of estimates of ḡ

versus n indicate more variation in MC estimates than GaSP estimates. The GaSP

estimate with the least absolute error had n = 34 and ˆ̄g = 0.5855 with an estimated

standard error of 3.3049×10−3. For n > 40, sample size does not seem to have as much

an effect on GaSP estimates, the estimates seem to take on a value of approximately

63

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

(1)

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

(2)

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

(3)

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

(4)

x

y

Figure 3.4: Designs used for integrating sin(1/(0.1 + x))

64

−2 −1 0 1 2

−
40

−
20

0
20

40

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

MC
GaSP random designs
GaSP LHS

Figure 3.5: Normal QQ-Plot for standardized GaSP estimates using random se-
quences and LHS, and MC estimates, the solid line has intercept equal to zero and
slope equal to one

65

0.5. This phenomena can be explained by the structure of the integrand. The change

in value of g(x) between any pair of sample points varies greatly by location, this

possibly violates the assumption of stationarity in the model specified in (3.4).

The plot of standard errors in Figure 3.6 indicates that the estimated GaSP errors

are smaller than MC errors. The variation in GaSP errors is higher than MC errors.

GaSP integration errors seem to have smaller error bounds than MC errors. A least

square fit of the log errors versus n supports this, the fit yields a slope of -1.5 with

standard error of 0.18 for GaSP, and -0.5 with standard error of 0.03 for MC.

3.4 Multidimension Examples

3.4.1 Integration Strategies

The purpose of this exercise is to compare integration strategies, these are

1. Monte Carlo integration,

2. GaSP integration using random samples for the design.

The same random samples are used for both integration strategies. We obtain esti-

mates of

f̄D =

∫ 1

0

. . .

∫ 1

0

d∏
i=1

(π

2
sin(πxi)

)
dx1, . . . , dxD (3.15)

= 1,

for D = 3, 5, 10. The integrand is a smooth continuous symmetric function, and takes

on a maximum value of 1 at xi = 0.5, ∀ i. We obtain three estimates of the integrand

in each dimension for particular n using different random samples.

The results are presented in Tables 3.2 – 3.4. From Table 3.2, GaSP integration

provides estimates with lower absolute errors, the absolute errors and GaSP errors

66

0 20 40 60 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

n

g.
ba

r

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n

se

1 2 3 4

−
8

−
6

−
4

−
2

log(n)

lo
g(

se
)

Figure 3.6: Plot of GaSP (◦) and MC (+) estimates and errors by n, the line in the
top plot represents the true value of the integral

67

decreasing with increasing n. GaSP standard errors are substantially smaller than MC

errors. It is worth noting that GaSP standard errors are almost proportional to the

squared MC errors. This relationship in standard errors is not evident in estimates

for f̄5 and f̄10. In Table 3.3, GaSP estimates have lower absolute errors. Due to

computation limitations when estimating the correlation parameters for estimates of

f̄10, we were only able to sample up to n = 300 points. In Table 3.4 the difference in

the two methods is less discernable, increasing n seems to have no effect on the GaSP

estimates and errors. The explanation for the poor performance of GaSP integration

for f̄10 can be obtained from Figure 3.7. Calculations show that the area of the

integral between 0.4 ≤ p ≤ 6 which is where the integrand changes the most, is

approximately equal to 0.3. In ten dimensions this translates to a volume of (0.3)10

which is a very small proportion of the integration domain. It gets harder to find

a design that explores the integration domain without using an unrealistically large

number of points in higher dimensions. In the ten dimensional case, random designs

are a “hit or miss” affair, the standard errors estimates for different n show this –

despite the fact that we use three times more points (n = 300), the estimates and the

standard errors do not improve.

3.4.2 Sampling and Integration Strategies

In addition to the previous integration strategies, we compare sampling designs:

1. Random sampling

2. Halton Sequences.

Halton sequences were chosen because of their equidistributed property as well as

their ease in construction, we do not need to recompute the series when the number

68

n MC Estimate (SE) AE GaSP Estimate (SE) AE

30 1.0695 (0.1593) 0.0695 1.0445 (0.0523) 0.0445

1.2901 (0.1766) 0.2901 1.0411 (0.0743) 0.0411

0.8940 (0.1564) 0.1060 0.9940 (0.0336) 0.0060

60 0.9099 (0.1076) 0.0901 0.9992 (0.0129) 0.0008

1.1460 (0.1298) 0.1460 0.9945 (0.0082) 0.0055

1.0460 (0.1316) 0.0460 1.0062 (0.0113) 0.0062

90 1.0921 (0.1101) 0.0921 0.9981 (0.0032) 0.0019

1.0374 (0.1045) 0.0374 0.9997 (0.0021) 0.0003

1.0260 (0.1040) 0.0260 0.9997 (0.0025) 0.0003

120 1.1334 (0.0902) 0.1334 1.0007 (0.0009) 0.0007

0.9673 (0.0866) 0.0327 1.0020 (0.0025) 0.0020

1.0742 (0.0899) 0.0742 1.0016 (0.0017) 0.0016

Table 3.2: Estimated values, Standard Errors (SE) and Absolute Errors (AE) of f̄3.

69

n MC Estimate (SE) AE GaSP Estimate (SE) AE

50 0.8833 (0.1739) 0.1167 0.9201 (0.1518) 0.0799

0.8568 (0.1633) 0.1432 1.1076 (0.1210) 0.1076

0.8191 (0.1959) 0.1809 0.6580 (0.1516) 0.3420

100 1.0668 (0.1318) 0.0668 0.9683 (0.0619) 0.0317

1.2452 (0.1570) 0.2452 0.9734 (0.0768) 0.0266

1.0312 (0.1756) 0.0312 1.0713 (0.0624) 0.0713

150 0.8769 (0.1024) 0.1231 1.0332 (0.0405) 0.0332

0.7628 (0.0945) 0.2372 1.0517 (0.0420) 0.0517

0.8105 (0.0924) 0.1895 0.9491 (0.0425) 0.0309

200 0.8830 (0.0847) 0.1170 1.0242 (0.0243) 0.0242

0.9501 (0.0911) 0.0499 1.0036 (0.0278) 0.0036

0.9254 (0.1011) 0.0746 0.9857 (0.0265) 0.0143

Table 3.3: Estimated values, Standard Errors (SE) and Absolute Errors (AE) of f̄5.

70

n MC Estimate (SE) AE GaSP Integration (SE) AE

100 0.8417 (0.1757) 0.1583 0.9849 (0.1671) 0.0151

1.0167 (0.2797) 0.0167 0.9990 (0.2262) 0.0010

0.9165 (0.2335) 0.0835 0.9424 (0.4928) 0.0576

200 1.1683 (0.1995) 0.1683 1.4885 (0.2597) 0.4885

1.0084 (0.1617) 0.0084 0.9845 (0.1255) 0.0155

0.8448 (0.1346) 0.1552 1.1675 (0.0942) 0.1675

300 0.8376 (0.1150) 0.1624 0.9626 (0.0879) 0.0374

1.3644 (0.2178) 0.3644 1.3930 (0.1543) 0.3930

1.0162 (0.1351) 0.0162 1.0602 (0.1105) 0.0602

Table 3.4: Estimated values, Standard Errors (SE) and Absolute Errors (AE) of f̄10.

71

of points or dimensions increases. The integral f̄ ∗d is

∫ 1

0

. . .

∫ 1

0

d∏
i=1

Γ(3.5)√
6πΓ(3)

(pi(1− pi))
−1

(
1 +

1

6

[
log

(
pi

1− pi

)])−3.5

dp1 . . . dpd (3.16)

This is a d-variate density for independent Student-t variables with 6 degrees of

freedom, mapped on to the unit cube [0, 1]d using the logistic transformation pi =

1/(1 + e−ti). The resulting transformed function which is shown in Figure 3.7 for

d = 1, is smooth and symmetric about pi = 0.5, and evaluates to one for all d.

Table 3.5 gives the estimation results for d = 2, 5, 10 as well as the respective

absolute errors. We note that overall, GaSP integration produces estimates with

smaller absolute error. For d = 2, 5, the Halton sequences tend to provide more

accurate estimates. In the case where d = 10, however, any advantage of the Halton

sequences over random sampling is less clear. This phenomena can be explained

by the correlation of the radix inverse function, which causes clustering in higher

dimensions [10]. To illustrate this, we obtained plots of points in of the projections r̄

on each axis in ten dimensions using a Halton design of 100 points. For this exercise

we arbitrarily let θ = 0.5. The plot in Figure 3.8 shows some clustering effects in

the higher dimensions; consequently Halton sequences in higher dimensions do not

explore the domain of integration as well as random sampling.

3.5 Discussion

In this chapter, we outlined GaSP integration. From the representation given in

Equation (3.6), GaSP integration can be viewed as the averaged BLUP interpolators.

This is one reason why GaSP performs well. We also showed that the performance

of GaSP estimates depends on:

72

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

p

Figure 3.7: Density plot of logit transformed student-t variable with 6 degrees of
freedom.

73

d = 2 HALTON SEQUENCES RANDOM SAMPLING

Estimate Absolute Error Estimate Absolute Error
N GaSP MC GaSP MC GaSP MC GaSP MC

20 0.9989 1.0160 0.0011 0.0160 1.0022 0.7645 0.0022 0.2355

30 1.0000 1.0127 0.0005 0.0127 0.9989 1.0701 0.0011 0.0701

60 0.9999 1.0068 0.0002 0.0068 1.0001 1.0476 0.0002 0.0476

80 0.9999 1.0121 0.0001 0.0121 1.0003 0.9664 0.0003 0.0336

100 0.9999 1.0058 0.0003 0.0058 0.9993 0.9324 0.0006 0.0676
d = 5

N GaSP MC GaSP MC GaSP MC GaSP MC

50 1.0013 0.9309 0.0013 0.0691 0.9790 1.1088 0.0210 0.1088

100 0.9978 0.9681 0.0022 0.0319 1.0136 1.0042 0.0136 0.0042

150 0.9864 0.9674 0.0136 0.0326 0.9849 0.9771 0.0151 0.0229

200 0.9904 0.9674 0.0096 0.0329 1.0040 0.9771 0.0040 0.0804

250 0.9910 0.9768 0.0091 0.0232 1.0212 1.0804 0.0212 0.0478
d = 10

N GaSP MC GaSP MC GaSP MC GaSP MC

100 0.6886 0.6817 0.3114 0.3183 1.1077 1.3455 0.1077 0.3455

200 0.8102 0.7875 0.1898 0.2125 1.2449 1.1046 0.2449 0.1046

300 0.8817 0.8500 0.1183 0.1500 1.0589 1.0280 0.0589 0.0280

400 0.9444 0.9141 0.0556 0.0859 1.0083 1.0196 0.0083 0.0196

500 0.9433 0.9231 0.0566 0.0768 1.0175 0.9612 0.0175 0.0388

Table 3.5: Integration Results for f̄ ∗d .

74

0.
0

0.
4

0.
8

0.300.45

x[
1]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
2]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
3]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
4]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
5]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
6]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
7]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
8]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
9]

rbar

0.
0

0.
4

0.
8

0.300.45

x[
10

]

rbar

F
ig

u
re

3.
8:

P
lo

t
of

p
ro

je
ct

io
n
s

of
r̄

on
th

e
H

al
to

n
d
es

ig
n
.

75

• The nature of the integrand – GaSP estimates have lower absolute errors than

MC estimates in lower dimensions, provided that the changes in the integrand

are gradual over the integration domain.

• Design – GaSP estimates with low absolute errors were obtained when the design

was well spaced out over the integration domain. This is why LHS showed an

improvement over random sampling in Section 3.3.1.

• Size of the design – When the above two items are taken into consideration,

the GaSP estimates improve with n. However the size of the design imposes

limitations in higher dimension when computing GaSP estimates. This is due

to the computation power needed to invert the correlation matrix R.

One point of concern is the small values of the estimated error in GaSP integration

in some applications. This is possibly due to two reasons:

• The violation of the model assumptions by the function. This would affect the

estimation of the correlation parameters and therefore the errors.

• The use of point estimates for θ which excludes the uncertainty in the estimation

of θ. The results in Section 3.3 show that different designs will result in different

estimates of θ.

Due to time constraints, we do not investigate this phenomena further. One way of

overcoming this is by running GaSP integration several times with different designs

so as get an idea of the uncertainty of the estimates.

We solve GaSP integration’s shortcomings in the next chapter by defining an

integration algorithm which allows for adaptive sampling. The algorithm also sub-

divides the integration domain into regions where the integrand is more or less uniform

76

which enable better performance of GaSP integration within the sub-regions.

Chapter 4

Adaptive Sub-region Sampling
Integration Algorithm

4.1 Introduction

In this chapter, we introduce the Adaptive Sub-region Sampling Integration algorithm

(ASSIA). The algorithm is outlined in Section 4.3. The motivation of ASSIA was to

develop a numeric method which requires few evaluations of expensive integrands and

enables GaSP integration on sections of the domain where the changes to the inte-

grand are more uniform. The algorithm works by dynamically dividing the region of

integration into more homogenous sub-regions until a maximum number of iterations

or work level is achieved. Instead of GaSP integration, Monte Carlo integration can

be used for estimation within the sub-region. We compare GaSP and MC integra-

tion in two dimension integration examples in Section 4.4 and illustrate the use of

GaSP integration in Bayesian integration in computer experiments in Section 4.4.3.

Recommendations and concluding remarks are presented in Section 4.5.

77

78

4.2 Methodology

Revisiting the integration problem,

ḡ =

∫

X
g(x)d(x), (4.1)

we aim to obtain finer subdivisions of the original integration region X , with smaller

sub-regions where the integrand varies most, once this is done, it can be assumed that

the integration domain has been divided into sub-regions where the integrand satisfies

the model assumptions in each sub-region. GaSP integration is then employed within

the sub-regions. The estimate of the integral is a weighted sum of all the GaSP

estimates of the sub-regions.

Suppose the integration domain has been sub-divided into m independent rectan-

gular sub-regions. We use the notation Xi to denote a sub-region in X , the random

sample xi1, . . . ,xini
is used to obtain the GaSP estimates for the integral in this

sub-region, which is denoted as

ḡi =

∫

Xi

g(x)d(x). (4.2)

Recall from (3.6) and (3.7) the estimate of (4.2) is

ˆ̄gi = ūiµ̂Gi
+ r̄T

i R−1
i (yi − 1µ̂Gi

) (4.3)

with variance

Vi = var(ˆ̄gi)

= σ̂2
Ḡi
− σ̂2

Gi
r̄T

i R−1
i r̄i + σ̂2

Gi

(ūi − 1TR−1
i r̄i)

2

1TR−1
i 1

, (4.4)

The subscript in (4.3) and (4.4) indicate that computations are done within the sub-

region using the sampled sites. Assuming the ˆ̄gi are independent, the estimate of the

79

integral in (4.1) is given as,

¯̄̂g =
m∑

k=1

wk ˆ̄gk (4.5)

with variance

V =
m∑

k=1

w2
kVk, (4.6)

where wk are weights corresponding to the volume of Xk, that is if

Xk = [ak1, bk1]× [ak2, bk2]× [akD, bkD]

wk =
D∏

l=1

(bkl − akl)

To obtain sub-regions and sample points, we do this adaptively using the Adaptive

Sub-region and Sampling Integration Algorithm (ASSIA). More details are given in

the next section.

4.3 The Adaptive Sub region Sampling Integra-

tion Algorithm

Suppose that at some stage in the algorithm the region of integration X has been

subdivided into m subregions, the relevant pieces of information are kept in a list

S = {(X1, ˆ̄g1, w
2
1V1, n1), (X2, ˆ̄g2, w

2
2V2, n2), . . . , (Xm, ˆ̄gm, w2

mVm, nm)}.

The sampled points and computed values of the function are stored in matrices Xdata

and Ydata, these matrices have a key which associates points with elements in S. A

description of the algorithm is as follows:

For a given integrand g(x), region of integration X , and maximum work, W :

80

1. Compute a global estimate for the integrand ˆ̄g, and its variance estimate using

an initial sample size n0. Typically we use the rule of thumb, n0 = 10 × D,

where D is the dimension of the integration space. Initialize

S = {(X1 = X , ˆ̄g1 = ˆ̄g, w2
1V1 =

D∏
i=1

(bi − ai)
2var(ˆ̄g), n1 = n0)},

2. while (work < W)

(a) Pick a sub-region to sub-divide and its associated points and remove its

information from the list S. This is the region with the largest variance,

X ∗ = Xl where max(w2
1V1, . . . , w

2
mVm) = w2

l Vl with 1 ≤ l ≤ m. If m = 1,

then X ∗ = X .

(b) Verify that the number of points in X ∗ is at least ntop. If not increase the

points to ntop by random sampling.

(c) Determine the axis to sub-divide. To divide X ∗ we sequentially sub-divide

each co-ordinate axis into half. For each split across a co-ordinate axis

j, j = 1, . . . , D, the estimated variance using the sampled points in both

halves, V ∗j
1 and V ∗j

2 are used to estimate the sub-region variance,

V ∗j = V ∗j
1 + V ∗j

2 .

The co-ordinate axis to be subdivided j̄, is such that min(V ∗1, . . . , V ∗D) =

V ∗j̄. Divide across this axis to get X ∗
1 and X ∗

2

(d) Obtain estimates ˆ̄g∗1 and ˆ̄g∗2 by applying GaSP integration to points already

in X ∗
1 and X ∗

2 .

(e) Update S, Xdata, Ydata by inserting the integration information of the

new sub-regions X ∗
1 and X ∗

2 .

81

3. end(while)

The sequence of steps in (2) consists of one iteration and is continuously repeated

with S being updated until a maximum work level W is achieved. The work level W
can be quantified in various ways, for example it could be the number of iterations,

or the maximum number of computations of the integrand. After m sub-regions have

been obtained, the total number of sampled points is

ntotal =
m∑

i=1

ni.

We denote ¯̄̂g{m} and V{m} as the integral estimate and its variance after m iterations.

A demonstration of how splitting is carried out is given by Figure 4.1 for the first

15 iterations of the integration problem given in the previous chapter,

∫ 1

0

sin(1/(0.1 + x))dx,

with

n0 = 10,

ntop = 10,

W = max 150 points.

The figure shows that as the algorithm progresses, smaller sub-regions are allocated

to areas where the function is rapidly changing.

A demonstration of how points are allocated by the algorithm is better shown in

Figure 4.2 with

ḡ =

∫ 1

0

∫ 1

0

1/(1− x1x2)dx1dx2,

82

2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

4

5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

7

8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

9

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

10

11

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

13

14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

16

Figure 4.1: ASSIA-GaSP splitting of sin(1/(0.1 + x)), main title gives number of
sub-regions, vertical lines indicate splits.

83

and

n0 = 20,

ntop = 20,

W = 12 iterations.

The plot shows that the algorithm locates the rapid changes close to (1,1) and

samples close to this point. Though the algorithm is primarily meant to improve

GaSP integration, MC integration can be applied within sub-regions. Instead of

GaSP estimates in sub-region i, with MC integration we have

ˆ̄gi =
1

ni

ni∑

k=1

g(xik) (4.7)

Vi =
1

ni

1

ni − 1

ni∑

k=1

(
g(xik)− ˆ̄gi

)2
(4.8)

We denote GaSP integration within ASSIA as ASSIA-GaSP and MC integration

within ASSIA as ASSIA-MC.

Since the algorithm serves to minimize the estimated standard error, the combined

error estimate at the end of a run is small and does not reflect the error of the estimate

of the integral, to overcome this we repeat the algorithm a number of times to obtain

some measure of uncertainty.

4.4 Applications

4.4.1 One Variable Function

Five runs of ASSIA-GaSP on the problem

∫ 1

0

sin(1/(0.1 + x))dx

84

Iteration 1

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 6

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x1

x2

Iteration 7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Iteration 12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Figure 4.2: Demonstration of ASSIA-GaSP point allocation with integrand 1/(1 −
x1x2).

85

were obtained with

n0 = 10,

ntop = 10,

W = 4 iterations

The choice of four iterations was based on results from GaSP integration in the

previous chapter. The results from four runs are presented in Table 4.1. The true

value of the integral, correct to four decimal places is 0.5945. The ASSIA-GaSP

results are promising, with roughly 50 points we are able to obtain 3 decimal place

accuracy for the integral.

¯̄̂g |ḡ − ¯̄̂g| ntotal

0.5943 0.0002 54

0.5936 0.0009 53

0.5942 0.0003 51

0.5944 0.0001 50

0.5942 0.0003 50

Table 4.1: ASSIA-GaSP results for the integration of sin(1/(0.1 + x))

4.4.2 Two Variable Functions

We applied ASSIA to estimate

∫ 1

0

∫ 1

0

g(x1, x2)dx1dx2

86

where

g(x1, x2) = f1 = sin(2πx1) + sin(2πx1 + πx2) (4.9)

g(x1, x2) = f2 = exp(−(x2
1 + x2

2)) (4.10)

g(x1, x2) = f3 = 1/(1− x1x2) (4.11)

g(x1, x2) = f4 =
√
|x1 − x2|. (4.12)

The true values are

ḡ = 0 for f1,

ḡ = 0.557746 for f2,

ḡ = 1.644931 for f3,

ḡ = 0.533333 for f4.

We chose the above functions because of their varied characteristics, f1 is an oscilla-

tory function, f2 is a smooth well behaved function whose higher derivatives are also

well behaved, f3 blows up at (1, 1) and the derivative for f4 does not exist along the

line x1 = x2 = 1.

We applied GaSP and MC integration within ASSIA. The parameters to ASSIA

using both these techniques were:

n0 = 10,

ntop = 20,

W = 30 iterations.

GaSP integration provides very good results for the better behaved functions with

n0 = 20, which is why we start with a smaller value of n0 = 10; this makes it easier

87

MC Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GaSp Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 150 250

−
0.

10
0.

00
0.

10

n

I

50 150 250

−
0.

10
0.

00
0.

10

n

I

3.0 4.0 5.0

−
4.

0
−

3.
0

−
2.

0

log(n)

lo
g(

se
(I

))

3.0 4.0 5.0

−
9

−
7

−
5

−
3

log(n)

lo
g(

se
(I

))

Figure 4.3: ASSIA integration results for f1, ‘◦’ represents estimates at an iteration
in the run.

88

MC Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GaSp Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 150 250

0.
54

0.
56

0.
58

n

I

50 150 250

0.
54

0.
56

0.
58

n

I

3.0 4.0 5.0

−
6.

0
−

5.
0

−
4.

0

log(n)

lo
g(

se
(I

))

3.0 4.0 5.0

−
13

−
11

−
9

−
7

log(n)

lo
g(

se
(I

))

Figure 4.4: ASSIA integration results for f2, ‘◦’ represents estimates at an iteration
in the run.

89

MC Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GaSp Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 150 250

1.
5

1.
7

1.
9

2.
1

n

I

50 150 250

1.
5

1.
7

1.
9

2.
1

n

I

3.0 4.0 5.0

−
4.

5
−

3.
5

−
2.

5

log(n)

lo
g(

se
(I

))

3.0 4.0 5.0

−
8

−
6

−
4

−
2

log(n)

lo
g(

se
(I

))

Figure 4.5: ASSIA integration results for f3, ‘◦’ represents estimates at an iteration
in the run.

90

MC Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GaSp Integration

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 150 250

0.
46

0.
50

0.
54

0.
58

n

I

50 150 250

0.
46

0.
50

0.
54

0.
58

n

I

3.0 4.0 5.0

−
5.

5
−

4.
5

−
3.

5

log(n)

lo
g(

se
(I

))

3.0 4.0 5.0

−
7

−
6

−
5

−
4

log(n)

lo
g(

se
(I

))

Figure 4.6: ASSIA integration results for f4, ‘◦’ represents estimates at an iteration
in the run.

91

to trace and compare ASSIA-GaSP with ASSIA-MC. Results for a single run of the

algorithm are given in Table 4.2 and presented graphically in Figures 4.3 – 4.6. For

each figure, the first column gives ASSIA-MC results, the second column gives ASSIA-

GaSP results, the first row shows contours of function and points allocated by the

algorithm, the second row consists of plots of ¯̄̂g{m} against ntotal per iteration with

the solid line at the true value, the third row consists of plots of log(
√

V{m}) versus

log(ntotal) per iteration.

From plots in Figures 4.3 – 4.6, ASSIA works as it is supposed to, it locates and

concentrates sampling in ‘trouble regions’ when they exist. ASSIA-GaSP estimates

have lower absolute errors compared to ASSIA-MC estimates. It seems that the

performance of ASSIA-GaSP depends on the behavior of the integrand, the two well

behaved functions f1 and f2 have very accurate ASSIA-GaSP estimates, this level of

accuracy is not evident in f3 and f4. From the third rows of Figures 4.3 – 4.6, the

error reduction is more consistent with ASSIA-MC, there are observable ‘jumps’ in

the errors with ASSIA-GaSP. The reason for this is that GaSP variances are more

sensitive to sample sizes, regions with small ni tend to have large GaSP variances

and consequently tend to be chosen for sub-division. This is why ASSIA-GaSP ends

up with larger ntotal. This variance sensitivity in GaSP is a good feature in a way,

as sample sizes are more uniform in the sub-regions and there is a potential for the

algorithm to revisit sub-regions which might have previously been overlooked.

Summary results for four runs of the algorithm are given in Table 4.3, which

helps determine how ASSIA results vary with different runs. Table 4.3 indicates that

ASSIA-GaSP estimates for the integral of f2 have much lower variation with different

runs than the ASSIA-MC estimates. Results in the table also reinforce the sensitivity

92

Function ASSIA-MC Estimates ASSIA-GaSP Estimates

ntotal
¯̄̂g |ḡ − ¯̄̂g| ntotal

¯̄̂g |ḡ − ¯̄̂g|

f1 316 -0.018413 0.018413 317 -0.000013 0.000013

f2 309 0.560270 0.002524 336 0.557726 0.000020

f3 316 1.623920 0.021011 321 1.634126 0.010805

f4 309 0.536499 0.003166 309 0.532772 0.000561

Table 4.2: Estimates using a single run of ASSIA.

93

Function ASSIA-MC ASSIA-GaSP

ntotal
¯̄̂g |ḡ − ¯̄̂g| ntotal

¯̄̂g |ḡ − ¯̄̂g|
f1 314 0.006848 0.006848 332 0.000167 0.000167

306 -0.012812 0.012812 333 -0.000006 0.000006
320 -0.008385 0.008385 328 -0.000137 0.000137
328 -0.002443 0.002443 346 -0.000258 0.000258

f2 309 0.559477 0.001731 334 0.557717 0.000029
310 0.5590853 0.001339 348 0.557747 0.000001
314 0.5592934 0.001547 338 0.557746 0.000000
307 0.555751 0.001995 339 0.557746 0.000000

f3 306 1.600367 0.044564 333 1.641825 0.003106
325 1.632575 0.012356 330 1.638313 0.006618
313 1.626849 0.018082 326 1.6427300 0.002201
315 1.621515 0.023416 311 1.641690 0.003241

f4 317 0.536168 0.002835 315 0.534863 0.001530
312 0.533312 0.000021 314 0.533837 0.000504
315 0.545870 0.012537 315 0.531419 0.001914
302 0.540607 0.007274 318 0.533854 0.000251

Table 4.3: ASSIA results based on four runs.

of GaSP variances, ASSIA-GaSP apportions more points that ASSIA-MC for the

same number of iterations.

4.4.3 Posterior Inference in Computer Experiments

To illustrate the use of ASSIA-GaSP integration in Bayesian analysis in computer

experiments, we applied plain GaSP integration and ASSIA-GaSP to obtain the first

posterior moments of the log transformed correlation parameters (PTJP), using the

simulated data sets analyzed in Chapter 2 and presented in Chapter 1.

Recall that in PTJP, we adopt the parametrization θ∗k = log(θk), and the integral

94

to be evaluated is

ḡ =

∫ ∞

−∞

∫ ∞

−∞
cM(θ∗1, θ

∗
2)

√
|B∗

2||R|−1/2(σ̂2)−
21
2 ∂θ∗1∂θ∗2. (4.13)

The functions

M(θ∗1, θ
∗
2) =





θ∗1 to find E(θ∗1),

θ∗2 to find E(θ∗2).

The matrix B∗
2 is the information matrix with respect to the log-transformed parame-

ters and c is the constant of proportionality. Plots of the posterior density were given

in Figure 2.3.

Based on preliminary graphical analysis, we truncated the integration space to

the values given in Table 4.4.

Truncation interval
θ∗1 θ∗2

2D1 (-1.5, 0.25) (-1.5, 0.25)

2D2 (-0.6, 0.75) (-0.25, 1.25)

2D3 (1.75, 4.5) (0.75, 3.25)

Table 4.4: Parameter space truncation.

We set the parameters in ASSIA to

n0 = 20,

ntop = 20,

W = 80 iterations and
√

V{m} > 0.0001 for 1st moments.

For plain GaSP integration, we obtained the design using uniform random samples

with n = 60. The size was chosen based on the reasonably good estimates on a similar

problem in Section 3.4.2.

95

To obtain the constant of proportionality c in ASSIA-GaSP integration, we let

M(θ∗1, θ
∗
2) = 1, and ran the algorithm for 100 iterations. To avoid dealing with ra-

tio estimates, we assumed the resulting value to be the true value for c. To obtain

the constant of proportionality in GaSP integration, we used plain Monte Carlo in-

tegration with 10000 evaluations and also assumed that this estimate had no error

associated with it.

Data Set Moment MCMC (MHA) GaSP ASSIA-GaSP

Estimate Estimate Estimate
ntotal

2D1 E(θ∗1) -0.6302 -0.6009 -0.6349
812

E(θ∗2) -0.7442 -0.7474 -0.7454
835

2D2 E(θ∗1) 0.0438 0.0450 0.0476
584

E(θ∗2) 0.3608 0.3557 0.3622
701

2D3 E(θ∗1) 2.7513 2.9499 2.7742
847

E(θ∗2) 1.8102 1.8807 1.8092
843

Table 4.5: Estimated moments of simulated data sets

The results are presented in Table 4.5 for a single run of GaSP and ASSIA-

GaSP integration. There is no way of finding out the true posterior moments of the

correlation parameters, we can gain a fair assessment of ASSIA-GaSP estimates by

comparing them to the MCMC estimates obtained in Chapter 2. Table 4.5 shows

that ASSIA-GaSP estimates are almost equivalent to MCMC estimates. Considering

the number of rejections in the Metropolis Hasting algorithm as well as the number

of burn ins allowed, ASSIA-GaSP estimates involve fewer evaluations of the posterior

96

Data Set Parameter Variance CI

2D1 θ∗1 0.04359 (-1.0441, -0.2257)

θ∗2 0.04382 (-1.1557, -0.3351)

2D2 θ∗1 0.03186 (-0.3022 , 0.3975)

θ∗2 0.02767 (0.0362 , 0.6882)

2D3 θ∗1 0.08089 (2.2167 , 3.3316)

θ∗2 0.09217 (1.2141 , 2.4042)

Table 4.6: Posterior variances and marginal confidence intervals calculated using
ASSIA-GaSP integration

density. Consequently, ASSIA-GaSP runs much faster than the Metropolis Hasting

Algorithm; for instance, the ASSIA-GaSP estimate of E(θ∗1) took approximately 230

seconds of CPU time (on a 900MHz AMD Athlon 4 Processor) while the MCMC

estimate took 9.64×103 seconds. We also used ASSIA-GaSP to compute the posterior

variances for the correlation parameters. Table 4.6 shows the estimated variances and

frequentist 95% confidence intervals for (θ∗1, θ
∗
2).

4.5 Discussion

In this Chapter we introduced ASSIA to enable GaSP integration in functions with

varied characteristics. There are a few areas that can be improved for higher dimen-

sional problems. A lot of overhead goes into estimating the correlation parameters

when using GaSP integration within sub-regions, particularly when deciding which

direction to split. For example for one iteration with D = 2 we need to estimate

the correlation parameters 4 times, for n∗ iterations with D = D∗ we need to this

97

2×D∗×n∗ times. Estimating correlation parameters will be a computational burden

if we run ASSIA for many iterations. The algorithm also splits sub-regions in half,

we can make the splits more flexible to increase sub-regions for a set work level. The

next chapter has more details on modifications made to ASSIA as well as example

problems in higher dimensions.

Chapter 5

Further Applications with
ASSIA-GaSP Integration

In this chapter, we demonstrate the use of ASSIA-GaSP for higher dimension inte-

gration and “strategic sampling”. Samples are strategic in that they conform to the

function as ASSIA-GaSP sampling is more intense where the changes in a function

are rapid. Sampling or design is important in computer experiments in building infor-

mative prediction models. In Section 5.4, we will show by example how ASSIA-GaSP

sampling can be used as a preliminary tool in exploring a function’s structure. We

first introduce modifications to ASSIA-GaSP with a view to decreasing computation

costs. These changes are outlined in Section 5.1.

5.1 Modification to ASSIA-GaSP Integration

1. We use sample variances as given in (4.8) in Step (2) part (c), instead of GaSP

variances. This eliminates the computation time needed in estimating maximum

likelihood estimates of the correlation parameters in the decision stage, which

means GaSP variances are only computed at the end of an iteration when S is

updated. By looking at various trace plots of the parameter estimates we found

98

99

that this modification had no effect on the ASSIA-GaSP estimates.

2. Using the above modification, we improvised on sub-divisions of the integration

domain. Instead of splitting the axis into halves, we obtain ‘variance stabilizing’

(VS) splits . Initially we divide a particular axis in half, then move the mid-

point in steps of ∆ until either the variance in the two subdivided regions is

roughly equivalent or the number of points in a sub-region is at least two.

Typically we choose ∆ = 0.01 × |X ∗|i, where |X ∗|i is the length in direction i

of sub-region X ∗. An illustration in one dimension is shown in Figure 5.1 for

the integration sin(1/(0.1 + x)), with the same parameters that were used in

Chapter 4 to generate Figure 4.1. The effect of VS splits is visible by comparing

the 10 sub-region plot to that in Figure 4.1; the sizes of the sub-regions close to

the minimum are less uniform using VS splits. As will be shown by examples

later on, this improvisation does not necessarily improve the estimates, however

it has the effect of isolating areas where the function is most varied using fewer

points, which increases the overall number of splits for a set maximum number

of points in the work level. The example in Section 5.3 is a good illustration of

this feature.

The modified algorithm is as follows:

Modified ASSIA-GaSP Algorithm

For a given integrand g(x), region of integration X , and maximum work, W :

(a) Compute a global estimate for the integrand ˆ̄g, and its variance estimate

using an initial sample size n0. Typically we use the rule of thumb, n0 =

100

2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

4

5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

7

8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

9

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

10

11

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

13

14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

16

Figure 5.1: ASSIA-GaSP VS splits for sin(1/(0.1+x)). The headings give the number
of sub-regions.

101

10×D, where D is the dimension of the integration space. Initialize

S = {(X1 = X , ˆ̄g1 = ˆ̄g, w2
1V1 =

D∏
i=1

(bi − ai)
2var(ˆ̄g), n1 = n0)},

(b) while (work < W)

i. Pick a sub-region to sub-divide and its associated points and remove

its information from the list S. This is the region with the largest

variance, X ∗ = Xl where max(w2
1V1, . . . , w

2
mVm) = w2

l Vl with 1 ≤ l ≤
m. If m = 1, then X ∗ = X .

ii. Verify that the number of points in X ∗ is at least ntop. If not increase

the points to ntop by random sampling.

iii. Determine the axis to sub-divide. To divide X ∗ we sequentially sub-

divide each co-ordinate axis into half. For each split across a co-

ordinate axis j, j = 1, . . . , D, move the mid-point in steps of ∆ until

either the variance in the two subdivided regions is roughly equivalent

or the number of points in a sub-region is at least two. The weighted

estimated sample variance obtained, V ∗j
1 and V ∗j

2 are used to estimate

the sub-region variance,

V ∗j = V ∗j
1 + V ∗j

2 .

The co-ordinate axis to be subdivided j̄, is such that min(V ∗1, . . . , V ∗D) =

V ∗j̄. Divide across this axis to get X ∗
1 and X ∗

2

iv. Obtain estimates ˆ̄g∗1 and ˆ̄g∗2 by applying GaSP integration to points

already in X ∗
1 and X ∗

2 .

102

v. Update S, Xdata, Ydata by inserting the integration information of

the new sub-regions X ∗
1 and X ∗

2 .

(c) end(while)

5.2 Example 1: Five Dimension Integration

This example is taken from Evans and Swartz [8] where they compute the orthant

probability,

ḡ =

∫ ∞

0

. . .

∫ ∞

0

1√
2π|Σ| exp(−0.5xT Σ−1x)dx1, . . . , dx6, (5.1)

where Σ−1/2 = diag(0, 1, 2, 3, 4, 5) + J , and J is a 6 × 6 matrix of ones. This is a

computation of the multivariate normal probability X ≥ 0, where X ∼ N6(0, Σ). The

exact value as given by Evans and Swartz correct to 10 decimal places is 0.166625×
10−4.

We make use of a sequence of parametrizations which exploit the features of

the integrand to transform the domain of integration onto the hypercube. These

were first presented by Genz [11]. We define a new variable u = C−1x where C is

the lower triangular Cholesky factor of Σ. This alters the integration problem to

one of obtaining probabilities of independent Normal random variables u1, . . . , u6.

The second transformation is vi = Φ(ui), where Φ is the N(0, 1) distribution. The

interval of integration for vi is (ai, 1), where a1 = 0.5, ai = −∑i−1
j=1(CijΦ

−1(vj))/Cii

for i > 1 and Cij is the (i, j)th element of C. The final transformation is given by

wi = (vi− ai)/(1− ai) for all i, which maps the integral’s domain onto the hypercube

[0, 1]6. The final integral has the form,

ḡ =

∫ 1

0

. . .

∫ 1

0

6∏
i=1

(1− bi)dw6dw5dw4dw3dw2dw1, (5.2)

103

where

b1 = 0.5,

bi = Φ

(
i−1∑
j=1

(
CijΦ

−1 ((1− bj)wj + bj)
)
/Cii

)
.

Though the integral seems more complicated after the transformation, the dimen-

sion of the domain is reduced to five due to the constant term in the inner most

integral. We than thus rewrite (5.2) as,

ḡ = 0.5

∫ 1

0

. . .

∫ 1

0

5∏
i=1

(1− bi)dw5dw4dw3dw2dw1. (5.3)

We applied ASSIA-GaSP integration using both equal and VS splits with the

following parameters:

n0 = 50,

ntop = 50,

W = 5000 points.

We chose the work level as 5000 points after an initial run of ASSIA-GaSP with work

level set to 10000 points; the estimates achieved some stability between 4000 and

5000 points.

The average value for 10 runs using equal splits was ¯̄̂g = 1.60848 × 10−5 with

a standard error of 2.31908 × 10−7. The average for 10 runs using VS splits was

¯̄̂g = 1.44872× 10−5 with a standard error of 4.53106× 10−7. Full results are given in

Tables B.1 and B.2 in the appendix. On average, a single run took approximately 6

minutes with VS splits and 5 minutes for equal splits.

Using 106 evaluations and N6(0, Σ) as the importance function, Evans and Swartz

estimated ḡ as 1.90000× 10−5 with an absolute coefficient of variation equal to 0.229,

104

with 108 computations they obtained a more precise estimate of 1.63000×10−5 which

took about 100 minutes of CPU time. Running ASSIA-GaSP with equal splits with

fewer evaluations results in better estimates – 9982 evaluations yielded a value of

1.65668 × 10−5, 50000 evaluations yielded a value of 1.66363 × 10−5. The computa-

tion time needed to obtain these results is considerably longer which highlights an

important point in choice of methods, the importance sampling method is faster than

ASSIA-GaSP though needs considerably more evaluations. Ultimately, the choice of

integration method would depend on other factors such as the computation cost of

the integrand, or computing power available.

5.3 Example 2: Ten Dimension Integration

The integral to be evaluated is:

ḡ =

∫ 1

0

. . .

∫ 1

0

10∏
i=1

fi(pi)dp1 . . . dpd, (5.4)

= 1,

where

fi(pi) =
Γ((i + 1)/2)

Γ(i/2)
√

πi
pi(1− pi)

(
1 +

1

i

[
log

(
pi

1− pi

)])−(i+1)/2

(5.5)

The functions fi is a transformed Student’s-t density with i degrees of freedom which

has been mapped to [0,1] using the logit transformation,

p = 1/(1 + exp(−t)).

The integrand presents an interesting problem as the characteristics of fi change

with different values of i as shown in Figure 5.2. When i = 1 the function has

105

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

p

f(
p)

f1(p)
f3(p)
f5(p)
f10(p)

Figure 5.2: Plot of fi(pi) i = 1, 3, 5, 10.

106

asymptotes at both end points and a global maximum at 0.5, as i increases the

maximum is less pronounced (or less sharper) and fi has a more parabolic shape. We

ran ASSIA-GaSP 20 times using the equal and VS split methods, each time starting

with a different random design with the following parameters:

n0 = 100,

ntop = 100,

W = 1000 points.

The complete set of results are given in Appendix B. The average ¯̄̂g value without

‘VS splits’ was 0.967452 with a standard error equal to 0.0706515. The average ¯̄̂g

value was 1.008044 with a standard error equal to 0.1045328. Within the work level

specified, on average, equal splits in the algorithm used 18 sub-divisions while VS

splits used 19 sub-divisions.

5.4 Strategic Sampling

The approach exploits ASSIA-GaSP’s varied sampling to get a more representative

sample of a function. We can learn about the function by observing the pattern of

sampling. This can be done for example by using a kernel density estimator on the

sampled points. The following two sub-sections give applications of this technique.

107

5.4.1 Two Dimension Strategic Sampling

We chose two functions with different behavior on [0, 1]× [0, 1]. These were given by

equations in (4.9) and (4.12), namely,

f1 = sin(2πx1) + sin(2πx1 + πx2),

f4 =
√
|x1 − x2|.

Adopting the two modifications in Section 5.1, we used the following parameters in

ASSIA-GaSP:

n0 = 20,

ntop = 20,

W = 500 points.

We then used a two-dimensional kernel density estimator on the resulting points

from Xdata. Kernel density estimation was enabled by the function ’kde2d’ from

the library MASS in the R software, which uses an axis-aligned bivariate normal

kernel, evaluated on a square grid.

Figures 5.4 and 5.3 are contour plots of the estimated densities. Figure 5.3 shows

that sampling is slightly concentrated away from the edges of the domain. Figure 5.4

shows that sampling is concentrated on the line x1 = x2. The sampling obtained by

ASSIA-GaSP indicate that changes in f1 are everywhere quite gradual compared to

f4.

108

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.3: ASSIA-GaSP visualization of sin(2πx1) + sin(2πx1 + πx2).

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.4: ASSIA-GaSP visualization of
√
|x1 − x2|.

109

5.4.2 Three Dimension Strategic Sampling

The function of interest is a three dimension version of (5.4),

g(p1, p2, p3) =
3∏

i=1

fi(pi) where 0 < pi < 1, (5.6)

and fi are given by (5.5). Cross sectional plots of the function are given by Figures

5.5, 5.6 and 5.7. The cross sectional topography of the function is the same, the

difference in the plots is brought about by the range of the plotted values. In Figure

5.5 the minimum and maximum values for p1 and p2 are 0.01 and 0.99 respectively;

in Figures 5.6 and 5.7 these are 0.0001 and 0.9999. In all plots we used a grid of

100× 100 points. The difficulty in visualizing the function is due to the asymptotes

at the end points.

Assuming no prior knowledge of the function, we ran ASSIA-GaSP using both

equal and VS splits separately. The parameters to both methods were:

n0 = 30,

ntop = 30,

W = 5000 points.

We then used the kde2d function for two dimension Kernel density smoothing on

sample points from pairs of axis. Contour plots on the smoothed data are presented

in Figures 5.8 and 5.9. Sampling using both methods is concentrated in the center

and the edges of the domain. The most amount of splitting occurs on the p3 axis,

this is evident from the well defined contours in the plot on the top left hand side

of Figures 5.8 and 5.9. This is consistent with the function, Figure 5.2 demonstrates

that g(p1, p2, p3) has the most pronounced or sharper peak when it is projected on

110

p3=0.01

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p3=0.33

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p3=0.67

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p3=0.99

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.5: Projection of g(p1, p2, p3) on p3.

111

p2=0.01

p1

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p2=0.33

p1

p3

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p2=0.67

p1

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p2=0.99

p1

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.6: Projection of g(p1, p2, p3) on p2.

112

p1=0.01

p2

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p1=0.33

p2

p3

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p1=0.67

p2

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p1=0.99

p2

p3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.7: Projection of g(p1, p2, p3) on p1.

113

p1

p2

0.0 0.4 0.8

0.
0

0.
4

0.
8

p1

p3
0.0 0.4 0.8

0.
0

0.
4

0.
8

p2

p3

0.0 0.4 0.8

0.
0

0.
4

0.
8

Figure 5.8: Cross-sectional contour plots for smoothed points using equal splits on
ASSIA-GaSP.

114

p1

p2

0.0 0.4 0.8

0.
0

0.
4

0.
8

p1

p3
0.0 0.4 0.8

0.
0

0.
4

0.
8

p2

p3

0.0 0.4 0.8

0.
0

0.
4

0.
8

Figure 5.9: Cross-sectional contour plots for smoothed points using VS splits on
ASSIA-GaSP.

115

p3. Equal splits provide a better sample than VS splits, this is due to the symmetry

of the function.

5.5 Discussion

The modifications made to ASSIA-GaSP in this chapter enabled high dimension in-

tegration with less computation costs. The windows used in the VS splits might be

considered too small – with n points in a sub-region, we need at most n − 1 com-

parisons. However, considering that we are comparing sample variances, which are

cheap computation wise; extra comparisons are a minor inconvenience.

ASSIA-GaSP samples could be a basis for kriging models within sub-sections.

These models would be better at approximating the true function, particular non-

smooth functions. The samples can also help achieve other goals in computer experi-

ments. For example, ‘crude’ optimization can be carried out by comparing the value

of the integral in sub-section and matching it up with points in Xdata and Ydata, as

well as observing the pattern of clustering in the samples as carried out in Section

5.4.

Chapter 6

Conclusion and Recommendations

This thesis presented a Bayesian implementation in computer experiments. In Chap-

ter 2 we looked at prior formulation and proposed two approximation techniques

based on the log scaled posterior of the correlation parameters. The first technique

involved approximating the Jeffreys prior with a diffuse prior, which enabled MCMC

simulations to run faster. The second technique approximated the posterior with the

Normal density, which avoids the use of MCMC simulations altogether. It should

be mentioned that the approximation of the Jeffreys prior is limited to the range

of correlation parameters. While the approximation techniques we formulated are

based on the Gaussian correlation function, work by Berger, De Oliveira and Sanso

[2], suggests that these same techniques with some limitations, may be applicable to

the Matern, Spherical and Rational Quadratic correlation function. The application

of the approximation approach demonstrated in Chapter 2 involved two input vari-

ables, however this approach can be extended to more than two input variables. For

cases where skewness persists, an alternative suggestion is to use mixed distribution

for example Geweke split-t densities [13]. The work in Chapter 2 did not cover a key

element of computer experiments - finding an optimal design. An optimal design is

116

117

important in building an informative predictive model. Nonetheless, we do address

the issue of design by using the ASSIA method.

In Chapters 3, 4, and 5, we dwelt on the general subject of integration. We

analyzed GaSP integration in Chapter 3 and found that GaSP integration in low di-

mensions provided estimates with lower absolute errors compared to MC integration.

GaSP errors were considerably lower than MC errors, there was evidence of GaSP

integration having faster convergence rates (in terms of error bounds) compared to

MC integration. Though this phenomena was not studied rigorously, it presents an

interesting area for future work. Limitations to GaSP integration were solved by the

adaptive algorithm presented in Chapter 4. While ASSIA was used with the aim of

integration, we demonstrated that it can also be used as a tool for sampling, the re-

sulting samples can be used to gain information about a function’s structure. Further

recommendations and directions for future work are:

1. Investigation into the relationship between GaSP integration errors and MC

errors – The results in Chapter 3 indicate a relationship between GaSP integra-

tion errors and MC errors, primarily when uniform random samples are used in

the design.

2. Investigation into the sensitivity of GaSP integration estimates to the corre-

lation parameters – The effect of correlation functions as well as the effect of

the estimates of the correlation parameters on GaSP integration estimates is a

possible area for investigation. The simple example in Section 3.3 presented the

possibility of fixed designs having GaSP estimates with minimal variation for

certain ranges of correlation parameters.

118

3. Investigation into the uniformity or variability of functions – It is important

before application that one gain some idea of the uniformity or variability of

the function. Maximum likelihood estimates of the correlation parameters from

an initial set of sub-regions can be used. This can be done by running ASSIA-

GaSP for a small number of iterations.

4. Simplifications in higher dimension integrations – In higher dimensions inte-

gration, some dimension reduction can also be achieved by transformation or

finding dependencies between variables.

5. Improvement to sub-region sampling – Sampling may be improved by using

more equi-spaced designs in the sub-regions. Derek Bingham, in a conversation,

suggested that the initial design be space filling and adaptive Latin Hypercube

Sampling be used to top-up sub-regions.

6. Effective increase of points in sub-regions – The number of points increased to a

sub-region could be done more adaptively, for example one could use an adaptive

Neymann allocation taking into account the complexity of the integrand.

7. Investigation into a Bayesian approach on GaSP integration – This would in-

volve specifying priors on the correlation parameters, the guidelines set by

Berger, De Oliveira and Sanso [2] can be used. A Bayesian approach would

incorporate parameter uncertainty in the estimate of the integral, thereby ad-

dressing the issue of parameter sensitivity.

Appendix A

Chapter 2 Proofs

A.1 Jeffreys Prior

For any correlation function the likelihood and log likelihood equations are:

L ∝ 1

(σ2)
n
2

√
|R| exp(

−1

2σ2
(y − 1µ)TR−1(y − 1µ)), (A.1)

l = constant− n

2
log(σ2)− 1

2
log |R| − 1

2σ2
(y − 1µ)TR−1(y − 1µ).

For a one dimension or one input problem, the information matrix is

I(µ, σ2, θ) =




1
σ21

TR−11 0 0

0 1
2
logθ2 |R|+ 1

2
tr(R−1

θ2 R) − 1
2σ2 tr(R

−1
θ R)

0 − 1
2σ2 tr(R

−1
θ R) n

2(σ2)2


 . (A.2)

The notation for the partial derivatives above is as follows:

Rθs =
∂s

∂θs
R,

R−1
θs =

∂s

∂θs
R−1,

logθs |R| =
∂s

∂θs
log |R| for s = 1, 2.

119

120

Expanding the (2,2) entry in the above matrix and using the fact that

logθ |R| = tr(R−1Rθ),

and

R−1
θ = −R−1RθR

−1,

then

logθ2 |R| = −tr(R−1RθR
−1Rθ) + tr(R−1Rθ2).

Similarly

tr(R−1
θ2 R) = 2tr(R−1RθR

−1Rθ)− tr(R−1Rθ2).

Adding the above two equations gives a simplification for the (2,2) entry in the in-

formation matrix. The rest of the entries in the matrix can be simplified in a similar

manner. The result is

I(µ, σ2, θ) =




1
σ21

TR−11 0 0

0 tr((R−1Rθ)
2) − 1

2σ2 tr(R
−1Rθ)

0 − 1
2σ2 tr(R

−1Rθ)
n

2(σ2)2


 . (A.3)

The matrix in (A.3) reflects the independence between the mean and correlation and

variance parameters. The Jeffreys prior is proportional to the square root of the

determinant of the information matrix,

pr(µ, σ2, θ) ∝
√

(1TR−11)|B1|
(σ2)3/2

, (A.4)

with

|B1| ∝
∣∣∣∣∣

(
tr((R−1Rθ)

2) tr(R−1Rθ)

tr(R−1Rθ) n

)∣∣∣∣∣ . (A.5)

In the notation given in (A.4), we can view the Jeffreys prior as as specifying a uniform

prior on the mean parameter µ. Using the same working as the the one input case,

121

the Jeffreys prior for the two dimension case is given as:

pr(µ, σ2, θ1, θ2) ∝
√

(1TR−11)|B2|
(σ2)3/2

,

where

|B2| ∝

∣∣∣∣∣∣∣∣




tr((R−1Rθ1)
2) tr((R−1Rθ2)(R

−1Rθ1)) tr(R−1Rθ1)

tr((R−1Rθ2)(R
−1Rθ1)) tr((R−1Rθ2)

2) tr(R−1Rθ2)

tr(R−1Rθ1) tr(R−1Rθ2) n




∣∣∣∣∣∣∣∣
. (A.6)

The notation for the partial derivatives follows from that in (A.3) with

Rθi
=

∂

∂θi

R for i = 1, 2.

A.2 Proof of Lemma 2.3.1

In the one input, and using Chen’s results [3] for the equispaced design:

R−1 =
n∑

k=1

w̄k(w̄k)T

1−Qk−1

(A.7)

where w̄k is given by (2.11). The first term in (A.4)

1TR−11 =
n∑

k=1

(1T w̄k)2

1−Qk−1

.

By using the commutative property of the trace of a matrix, we formulate an expres-

sion for |B1| as follows;

|B1| = ntr((R−1Rθ)
2)− (tr(R−1Rθ))

2. (A.8)

Considering terms in (A.8)

tr(R−1Rθ) =
n∑

k=1

(w̄k)TRθw̄
k

1−Qk−1

=
n∑

k=1

Ckk

1−Qk−1

, (A.9)

122

where

Cjk = (w̄j)TRθw̄
k.

tr((R−1Rθ)
2) = tr

[(
n∑

k=1

w̄k(w̄k)TRθ

1−Qk−1

)(
n∑

j=1

w̄j(w̄j)TRθ

1−Qj−1

)]

=
n∑

k=1

n∑
j=1

tr
(
w̄k(w̄k)TRθw̄

j(w̄j)TRθ

)

(1−Qj−1)(1−Qk−1)

=
n∑

k=1

n∑
j=1

tr((w̄j)TRθw̄
k(w̄k)TRθw̄

j)

(1−Qj−1)(1−Qk−1)

=
n∑

k=1

n∑
j=1

((w̄j)TRθw̄
k)((w̄k)TRθw̄

j)

(1−Qj−1)(1−Qk−1)

=
C2

jk

(1−Qj−1)(1−Qk−1)
. (A.10)

Substituting (A.10) and the square of (A.9) into (A.8) yields the results of Lemma

2.3.1.

A.3 Verification of the Jeffreys Prior Approxima-

tion for n = 1, . . . , 12

The Jeffreys prior for d = 1 is

pr(θ) ∝
√

(1TR−11)|B1|

Using Chen’s results

1TR−11 =
n∑

k=1

(1T w̄k)2

(1−Qk−1)

=
n∑

k=1

k−1∏
i=1

(
1− ρ2i

(1− (−ρ)i)2

)
,

123

where

k−1∏
i=1

(1− ρ2i)

(1− (−ρ)i)2
=





∏m
i=1

(1+ρ2i)(1−ρ2i−1)
(1−ρ2i)(1+ρ2i−1)

k = 2m (k even),

1−ρk

1+ρk

∏m
i=1

(1+ρ2i)(1−ρ2i−1)
(1−ρ2i)(1+ρ2i−1)

k = 2m + 1 (k odd).
(A.11)

Assuming ρθ→0+ = 1− κθ + o(1), where κ is some constant, the term

m∏
i=1

(1 + ρ2i)(1− ρ2i−1)

(1− ρ2i)(1 + ρ2i−1)
=

m∏
i=1

(1− ρ4i)(1− ρ2i−1)2

(1− ρ2i)2(1− ρ4i−2)

=
m∏

i=1

(4iκθ + o(θ))((2i− 1)κθ + o(θ))2

(2iκθ + o(θ))2((4i− 2)κθ + o(θ))

=
m∏

i=1

θ3(4iκ + o(1))((2i− 1)κ + o(1))2

θ3(2iκ + o(1))2((4i− 2)κ + o(1))

= O(1). (A.12)

As θ → 0+, in the odd terms in (A.11),

1− ρk

1 + ρk
=

(1− ρk)2

1− ρ2k

=
θ2(kκ + o(1))

θ(2kκ + o(1))

= o(1). (A.13)

Using results from (A.12) and (A.13), terms with k even in (A.11) tend to constant

values and terms with k odd vanish hence(
n∑

k=1

(1T w̄k)2

1−Qk−1

)
= O(1) as θ → 0+. (A.14)

For the second term in the square root sign in Lemma 2.3.1, the numerator has

a quadratic form and is bounded, the denominator shows that J(µ, σ2, θ) → ∞ as

θ → 0+. For cases n = 2, . . . , 12 we work out the expression in Lemma 2.3.1 using

Maple software.

When n = 2: (
2∑

k=1

2∑
j=1

nC2
jk − CjjCkk

(1−Qk−1)(1−Qj−1)

)
=

ρ2

(1−Q1)2
. (A.15)

124

Assuming ρθ→0+ = 1− κθ + o(1) and using (2.13), then

ρ2

(1−Q1)2
=

1− 2κθ + o(θ)

(2κθ2 + o(θ))2(2− 2κθ + o(θ))2

=
1− 2κθ + o(θ)

θ2(2κ + o(1))2(2− 2κθ + o(θ))2

= O

(
1

θ2

)
. (A.16)

When n = 3, ..,12:

For n = 3,

(
3∑

k=1

3∑
j=1

nC2
jk − CjjCkk

(1−Qk−1)(1−Qj−1)

)
= ρ2(

S3∑

l=0

α3,lρ
2l)

[
(1−Q1)

(1−Q2)

]2

. (A.17)

For n = 2m, m = 2, . . . , 5,

(
n∑

k=1

n∑
j=1

nC2
jk − CjjCkk

(1−Qk−1)(1−Qj−1)

)
= ρ2(

Sn∑

l=0

αn,lρ
2l)

[
(1−Q1)(1−Qm−2)

(1−Qm−1)

(1−Q2m−1)

]2

.

(A.18)

For n = 2m− 1,m = 3, . . . , 6; the left hand side of (A.18) is

=





ρ2(
∑Sn

l=0 αn,lρ
2l)

[
(1−Q1)(1−Qm−3)

(1−Qm−1)
(1−Q2(m−1))

]2

if m− 1 even,

ρ2(
∑Sn

l=0 αn,lρ
2l)

[
(1−Q2)
(1−Q1)

(1−Qm−3)
(1−Qm−1)

(1−Q2(m−1))

]2

if m− 1 odd.
(A.19)

The αn,l are positive integers and the terms

(S3, . . . , S11) = (6, 14, 22, 38, 46, 70, 86, 110, 126).

Using (2.13)
t∏

i=1

(1−Qβi
) = (1− ρ2)

β1+...+βt

t∏
i=1

fβi
(ρ) (A.20)

where

fr(ρ) =
r−1∏
p=0

p−1∑
r=0

ρ2r,

125

and as θ → 0+, fr(ρ) = O(1). Using these results in (A.17), (A.18) and (A.19), and

the fact that the term before the square brackets tend to a constant as θ → 0+; as

θ → 0+

(
n∑

k=1

n∑
j=1

nC2
jk − CjjCkk

(1−Qk−1)(1−Qj−1)

)
=

O(1)

(2κθ + o(θ))2

=
O(1)

θ2(2κ + o(1))2

= O

(
1

θ2

)
(A.21)

Multiplying the square root of (A.14) to the square roots of (A.16) and (A.21) yields

pr(θ) = O

(
1

θ

)
. (A.22)

A.4 Proof of Lemma 2.3.2

Assuming that the sampled points are obtained from the grid formed by x1 =

(1/n, 2/n, . . . , 1) and x2 = (1/n, 2/n, . . . , 1). The sample is therefore of size n2. Due

to the product correlation rule, we can express the correlation matrix

R = R1 ⊗R2,

and

R−1 = R−1
1 ⊗R−1

2 ,

whose elements are,

R1i,j
= exp(−θ1(i− j)2/n),

R2i,j
= exp(−θ2(i− j)2/n).

The term (the subscript on the 1 vectors give the size),

1T
n2R−11n2 = (1T

nR−1
1 1n)(1T

nR−1
2 1n).

126

The determinant of the matrix given in (A.6) can be simplified by the fact that

Rθ1 = R′
1 ⊗R2,

Rθ2 = R1 ⊗R′
2.

For example

tr(R−1Rθ1) = tr((R−1
1 ⊗R−1

2)(R′
1 ⊗R2)),

= tr(R−1
1 R′

1 ⊗ I) I is the identity matrix of size n× n,

= ntr(R−1
1 R′

1);

tr((R−1Rθ1)
2) = tr((R−1

1 R′
1 ⊗ I)(R−1

1 R′
1 ⊗ I)),

= tr((R−1
1 R′

1)
2 ⊗ I),

= ntr((R−1
1 R′

1)
2);

tr((R−1Rθ2)(R
−1Rθ1)) = tr((R−1

1 R′
1 ⊗ I)(I ⊗R−1

2 R′
2)),

= tr(R−1
1 R′

1 ⊗R−1
2 R′

2),

= tr(R−1
1 R′

1)tr(R
−1
2 R′

2).

If we let K = R−1
1 R′

1 and L = R−1
2 R′

2, then using the above results in (A.6),

B2 =




ntr(K2) tr(K)tr(L) ntr(K)

tr(K)tr(L) ntr(L2) ntr(L)

ntr(K) ntr(L) n2


 , (A.23)

and

det(B2) = n2[ntr(L2)− (tr(L))2][ntr(K2)− (tr(K))2].

Matching this up, with (A.8) results in the Lemma.

Appendix B

Chapter 5 Results

B.1 Example 1 Results

Table B.1 and B.2 give the integration results for the Evans and Swartz integration

problem given in 5.1 in Chapter 5. ASSIA-GaSP was run ten times with the following

parameters:

n0 = 60,

ntop = 60,

W = 5000 points.

B.2 Example 2 Results

Table B.3 and B.4 give the integration results for the ten dimension function given in

5.4 in Chapter 5. ASSIA-GaSP was run twenty times with the following parameters:

n0 = 100,

ntop = 100,

W = 1000 points.

127

128

¯̄̂g ntotal

1.59881E-05 4998
1.61114E-05 4990
1.65398E-05 4979
1.40115E-05 4992
1.65299E-05 4991
1.58063E-05 4985
1.63954E-05 4983
1.64788E-05 4981
1.64676E-05 4979
1.65189E-05 4989

Table B.1: Example 1 – ASSIA-GaSP equal splits results

¯̄̂g ntotal

1.54858E-05 4956
1.57354E-05 4960
1.47144E-05 4993
1.34215E-05 4985
1.63039E-05 4996
1.53213E-05 4995
1.45729E-05 4988
1.12807E-05 4965
1.39465E-05 4958
1.40901E-05 4983

Table B.2: Example 1 – ASSIA-GaSP VS splits results

129

¯̄̂g ntotal Splits
0.987592 957 18
0.962551 965 18
0.931489 955 18
1.104676 951 18
0.955446 964 18
0.998076 996 19
0.874613 963 18
1.054870 967 18
0.925419 968 18
0.836372 978 18
0.922752 961 18
0.896432 963 18
0.951598 975 18
1.006268 954 18
1.014820 970 18
0.891344 947 17
0.922136 979 18
0.983736 981 18
1.060298 986 18
1.068549 964 18

Table B.3: Example 2 ASSIA-GaSP equal splits results

130

¯̄̂g ntotal Splits
0.928862 974 19
0.972346 954 18
0.906371 952 17
0.967908 953 18
0.814890 937 17
0.875118 983 18
1.107279 968 19
0.990829 967 19
1.086943 996 19
0.964148 951 18
0.941743 969 18
1.033072 966 19
1.258541 986 20
1.034896 981 19
1.137172 955 19
1.107009 979 19
0.993488 960 18
0.982118 988 19
0.933884 963 18
1.124254 966 19

Table B.4: Example 2 ASSIA-GaSP VS splits results

Appendix C

R Programs

C.1 Metropolis Hasting Algorithm

met.has<-function(start=theta.mode,iter,I.inv=I.inv,index,transf=c(2,2)){

p<-c(2,2); n<-nrow(X1);
if(index==1)
func<-function(x) lhood(theta=x,p=p,n=n,transf=transf) else {func<-function(x)
post(th=x,p=p,transf=transf,n2=n)}

theta.mat<-matrix(nrow=iter,ncol=2)
theta.mat[1,]<-start

for (i in 2:iter){
Propose new state
theta.prop<-theta.mat[i-1,]+rmultnorm(1,c(0,0),I.inv)
u.star<-min(func(theta.prop)/func(theta.mat[i-1,]),1)
u<-runif(1,0,1)
if(u <= u.star) {theta.mat[i,]<-theta.prop} else {theta.mat[i,]<-theta.mat[i-1,]}
}
theta.mat
}

C.2 ASSIA-GaSP

ASSIA.GS<-function(d,lc,uc,n0,n.top,max.pts,err.lim=0.001){
n0, initial no of points
d, dimension, func defined globally
lc, lower co-ords; uc, upper co-ords;

131

132

n.top points to top box with
max.pts limit of points
err.lim minimum error

xval<-genU.matrix(lc,uc,n0,d)
yval<-apply(xval,1,func)
counter<-1

res.int<-0
res.sigma<-0
number<-0
results<-decide1.func(lc,uc,xval,yval)
no.points<-n0

Iterative step --
while((no.points<max.pts)){
if (counter==1){
xout<-matrix(c(results$out1$mat0,counter),nrow=1)
xdata<-cr.xdata(counter,results$out1$xmat)
ydata<-cr.xdata(counter,as.matrix(results$out1$ymat))
counter<-2
xout<-rbind(xout,c(results$out2$mat0,counter))
xdata<-rbind(xdata,cr.xdata(counter, results$out2$xmat))
ydata<-rbind(ydata,cr.xdata(counter,as.matrix(results$out2$ymat)))
}
max.se<-max(xout[,(2*d+2)])

err.prev<-sum(xout[,2*d+1])/sqrt(sum((xout[,2*d+2])^2))

locator<-xout[xout[,(2*d+2)]==max.se,(2*d+3)]

#pick out box’s points
xmat<-xdata[xdata[,1]==locator, 2:(d+1)]
if(is.vector(xmat)) xmat<-t(as.matrix(xmat))
ymat<-ydata[ydata[,1]==locator,2]

#Specify position of box
lc<-xout[locator==xout[,(2*d+3)],1:d]
uc<-xout[locator==xout[,(2*d+3)],(d+1):(2*d)]

#Check if to topup xmat

133

if (is.vector(xmat)) xmat<-t(as.matrix(xmat))
inc.pts<-0
if (nrow(xmat) < n.top) {

inc.pts<-n.top-nrow(xmat)
xmat.top<-topupU.func(xmat,lc,uc,n.top)

if(is.vector(xmat.top)) xmat.top<-t(as.matrix(xmat.top))
ymat.top<-apply(xmat.top,1,func)
xmat<-rbind(xmat,xmat.top)
ymat<-c(ymat,ymat.top)
}

#remove points from list
xdata<-xdata[!(xdata[,1]==locator),]
ydata<-ydata[!(ydata[,1]==locator),]

#remove location from list
xout<-xout[!(xout[,(2*d+3)]==locator),]

#integrate
results<-decide1.func(lc,uc,xmat,ymat)

#store integration results
xout<-rbind(xout,c(results$out1$mat0,locator),c(results$out2$mat0,counter+1))
xdata<-rbind(xdata,cr.xdata(locator, results$out1$xmat),
cr.xdata(counter+1, results$out2$xmat))
ydata<-rbind(ydata,cr.xdata(locator,as.matrix(results$out1$ymat)),
cr.xdata(counter+1,as.matrix(results$out2$ymat)))

#increase counter
counter<-nrow(xout)

res.int<-c(res.int,sum(xout[,2*d+1]))
err.cur<-sum(xout[,2*d+1])/sqrt(sum((xout[,2*d+2])^2))
err.diff<-abs(err.cur-err.prev)
res.sigma<-c(res.sigma,sqrt(sum((xout[,2*d+2])^2)))
number<-c(number,nrow(xdata))
no.points<-nrow(xdata)
}

val1<-cbind(res.int,res.sigma,number)[-1,]
list(val1=val1,xdata=xdata,xout=xout,ydata=ydata)
}

134

decide1.func<-function(lc,uc,xval,yval){
d<-length(lc)
splits<-opt.split(lc,uc,xval,yval)
val1<-(xval[,splits[6]]>=splits[1]) & (xval[,splits[6]]<=splits[2])

xval1<-xval[val1,]
if(is.vector(xval1)) xval1<-t(as.matrix(xval1))
yval1<-yval[val1]
xval2<-xval[!val1,]
if(is.vector(xval2)) xval2<-t(as.matrix(xval2))
yval2<-yval[!val1]
if (d==1) {xval1<-matrix(xval1,ncol=1); xval2<-matrix(xval2,ncol=1)}

lc1<-lc
tmp<-uc
tmp[splits[6]]<-splits[2]
uc1<-tmp
tmp<-lc
tmp[splits[6]]<-splits[2]
lc2<-tmp
uc2<-uc
###GASP integration
write.mx(xval1,’x.mat’)
write.mx(yval1,’y.mat’)
writedesc.mx(lc1,uc1)
system(’C:/Gasp/gasp.exe C:/Gasp/fit.gsp’)
av1<-prod(uc1-lc1)*read.mx(’summary.mat’)$Average
se1<-prod(uc1-lc1)*read.mx(’summary.mat’)$SE.Average

write.mx(xval2,’x.mat’)
write.mx(yval2,’y.mat’)
writedesc.mx(lc2,uc2)
system(’C:/Gasp/gasp.exe C:/Gasp/fit.gsp’)
av2<-prod(uc2-lc2)*read.mx(’summary.mat’)$Average
se2<-prod(uc2-lc2)*read.mx(’summary.mat’)$SE.Average

out1<-list(mat0=c(lc1,uc1,av1,se1),xmat=xval1,ymat=yval1)
out2<-list(mat0=c(lc2,uc2,av2,se2),xmat=xval2,ymat=yval2)
list(out1=out1,out2=out2)
}

Bibliography

[1] Abt, M., Welch, W. J., (1998), Fisher Information and Maximum-likelihood

estimation of Covariance Parameters in Gaussian Stochastic Processes, Cana-

dian Journal of Statistics, 26:127-137

[2] Berger, J. O., De Oliveira, V., and Sanso, B., (2001), Objective Bayesian

Analysis of Spatially Correlated Data, Journal of the American Statistical

Association, 96, 1361-1374.

[3] Chen, X., (1996) Properties of Models for Computer Experiments, Ph.D.

Thesis, University of Waterloo, Waterloo, Ontario,Canada.

[4] Bayarri, M. J., Berger, J. O., Higdon, A., Kennedy, M. C., Kottas A., Paulo,

R., Sacks, J., Cafeo J. A., Cavendish, J. C., Lin, C. H., Tui, J., (2002),

A Framework for Validation of Computer Models, NISS Technical Report

Number 128

[5] Currin, C., Mitchell, T., Morris, M. and Ylvisaker, D., (1991), Bayesian

Prediction of Deterministic Functions, with Applications to the Design and

Analysis of Computer Experiments, Journal of the American Statistical As-

sociation, 86: 953-963.

[6] Davis, P. J., Rabinowitz, P., (1975), Methods of Numerical Integration, Aca-

demic Press

135

136

[7] Diaconis, P., (1988), Bayesian Numerical Analysis, Statistical Decision The-

ory and Related Topics IV (S.S. Gupta and J. Berger, Eds.), Springer-Verlag,

New York, 1:163-175

[8] Evans, M., Swartz, T., (1996) Methods for Approximating Integrals in Statis-

tics with Special Emphasis on Bayesian Integration Problems, Statistical Sci-

ence 10:254-272

[9] Fang, K., Wang Y., Bentler P. M., (1994) Some Applications of Number-

Theoretic Methods in Statistics, Statistical Science

[10] Fox, B. L., (1986), Algorithm 647: Implementation and Relative Efficiency

of Quasirandom Sequence Generators, ACM Transactions on Mathematical

Software 12:362-376

[11] Genz, A., (1992), Numerical Computation of Multivariate Normal Probabil-

ities, Journal of Computational and Graphical Statistics, 1:141-150.

[12] Genz, A. and Kass, R. E., (1997), Subregion-Adaptive Integration of Func-

tions Having a Dominant Peak, Journal of Computational and Graphical

Statistics, 6, 92-111.

[13] Geweke, J., (1989) Bayesian Inference in Econometric Models Using Monte

Carlo Integration, Econometrica, 57: 1317-1339

[14] Halton, J. H., (1960) On the efficiency of certain quasi-random sequences

of points in evaluating multi-dimensional integrals, Numerical Mathematics

2:84-90

[15] Hancock, M. S. and Stein M. L., (1993), A Bayesian Analysis of Kriging,

Technometrics, 35: 403-410.

[16] Hoel, P. G., Port, S. C., Stone, J. C., (1972), Introduction to Stochastic

Processes, Wavelnad Press, Inc., Illinois

137

[17] Jeffreys, H., (1961) Theory of Probability, London: Oxford University Press.

[18] Jones, D. R., Schonlau, M. and Welch, W. J., (1998) Efficient Global Opti-

mization of Expensive Black-Box Functions, Journal of Global Optimization,

13: 455-492.

[19] Kennedy, M. C. and O’Hagan, A., (1998), Predicting the Output from a Com-

plex Computer Code when Fast Approximations are Available, Department

of Mathematics, University of Nottingham, Technical Report 98-09

[20] Kennedy, M. C., O’Hagan A., (2001), Bayesian calibration of computer mod-

els (with discussion), Journal of the Royal Statistical Society, Series B. 63,

425-464

[21] Koehler, J. R., Owen, A., B., (1996), Computer Experiments, Handbook of

Statistics, 13: 261-308.

[22] Le, N. D. and Zidek, J. V., (1992), Interpolation with Uncertain Spatial Co-

variance: A Bayesian Alternative to Kriging, Journal of Multivariate Analy-

sis, 43: 351-374.

[23] McKay, M. D., Conover, W. J., Beckman, R. J., (1979), A comparison of

Three Methods for Selecting Values of Input Variables in the Analysis of

Output from a Computer Code, Technometrics 21:239-145

[24] Neal, R. M., (2003) Slice sampling, Annals of Statistics, 31:705-767

[25] O’Hagan, A., Bayes-Hermite Quadrature, (1991), Journal of Statistical Plan-

ning and Inference, 29:245-260

[26] O’Hagan, A., Bayesian Inference, (1994), Kendall’s Advanced Theory of

Statistics, Volume 2B.

[27] Reese, C. S., Wilson, A. G., Hamada, M., Martz, H. F., Integrated Analysis

of Computer and Physical Experiments, (2004) Technometrics, 46:153-154

138

[28] Robinson, D., Atcitty, C., Comparison of Quasi and Pseudo-monte Carlo

Sampling for Reliability and Uncertainity Analysis, American Institure of

Aeronautics and Astronautics, Technical Report 99-1589

[29] Sacks, J., Schiller, S., B., Welch, W., J., (1989) Designs for Computer Ex-

periments, Technometrics, 31:41-47

[30] Sacks, J., Welch, W., J., Workshop on Design and Analysis of Computer

Experiments for Engineering, (2002) SSC Annual Metting, Business and In-

dustrial Statistics Section, Hamilton

[31] Sacks, J., Welch, W., J., Mitchell, T., J., Wynn, P., (1989) Design and

Analysis of Computer Experiments, Statistical Science, 4:409-423

[32] Schonlau, M., (1997), Computer Experiments and Global Optimization,

Ph.D. Thesis, University of Waterloo, Waterloo, Ontario,Canada.

[33] Schonlau, M., Welch, W., Jones, D., (1998), Global Versus Local Search

in Constrained Optimization of Computer Models, New Developments and

Applications in Experimental Design 34:11-25

[34] Schonlau, M., Welch, W., J., Screening the Input Variables to a Computer

Model Via Analysis of Variance and Visualization, Unpublished Manuscript

version April 9, 2004

[35] Simpson, T. W., Lin, D. K. J., Chen W., (2001) Sampling Strategies for Co-

muter Experiments: Design and Analysis, International Journal of Reliability

and Application

[36] Sobol, L. M., (1976) Uniformly Distributed Sequences with an Additional

Uniform Property, Comput. Math. Math. Phys 16:236-242

[37] Sobol, L. M., (1979) On the Systematic Search in a Hypercube, SIAM Journal

of Numerical Analysis 16:790-793

139

[38] Yong, B. L., Sacks, J., Studden, W. J., Welch W. J., (2001) Design and

Analysis of Computer Experiments when the Output is Highly Correlated

Over the Input Space, The Canadian Journal of Statistics 29

