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Abstract

This thesis explores new approaches to the analysis of functions by combining tools from

the fields of complex bases, number systems, iterated function systems (IFS) and wavelet

multiresolution analyses (MRA).

The foundation of this work is grounded in the identification of a link between two-

dimensional non-separable Haar wavelets and complex bases. The theory of complex bases

and this link are generalized to higher dimensional number systems. Tilings generated by

number systems are typically fractal in nature. This often yields asymmetry in the wavelet

trees of functions during wavelet decomposition. To acknowledge this situation, a class of

extensions of functions is developed. These are shown to be consistent with the Mallat

algorithm. A formal definition of local IFS on wavelet trees (LIFSW) is constructed for

MRA associated with number systems, along with an application to the inverse problem.

From these investigations, a series of algorithms emerge, namely the Mallat algorithm

using addressing in number systems, an algorithm for extending functions and a method

for constructing LIFSW operators in higher dimensions. Applications to image coding are

given and ideas for further study are also proposed.

Background material is included to assist readers less familiar with the varied topics

considered. In addition, an appendix provides a more detailed exposition of the fundamen-

tals of IFS theory.
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Juričevič, the many organizers of the Canadian Undergraduate Mathematics Conference

and my friend Benoit Charbonneau for helping me stay involved in the mathematical

community and getting all my many other projects accomplished. Thanks also to Corina

Drapaca for helping me during the transition to Winnipeg in early 2000, by taking over

my TA duties that winter.

There are many others who have been supportive of my efforts. I extend my deepest

thanks to them all.

vi
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Introduction

The idea of finding connections between different, seemingly unrelated things, is fascinat-

ing. Connections impact every aspect of the world in which we live. The works of Burke,

for instance, explore the connections of many aspects of humanity’s evolution [12, 13, 14].

This thesis is a result of exploring connections.

Inspiration for this work was found in the following areas of mathematics: fractals, iter-

ated function systems (IFS), complex bases, number systems, and wavelet multiresolution

analyses (MRA).

Although mathematicians have studied these areas for many years, and in some cases

centuries, it is only in the past few decades, since the development and wide-scale availabil-

ity of computers, that they have flourished. Indeed, computers have demonstrated many

real-world applications for these complex areas in such diverse fields as finance, physics,

biology, chemistry, cryptography, medicine and image coding, to name but a few.

The main text is comprised of this introduction, three chapters, a summary and an

appendix. The first chapter presents mathematical background of the various topics ex-

plored in this thesis. The second chapter contains the results of the research. Readers

familiar with the background material may begin with Chapter 2, referring to Chapter 1

as needed for occasional clarification. The third chapter presents sample applications of
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2

the results to the field of image compression. This choice of application allows a visual

illustration of the key ideas discussed. The summary contains a brief discussion of the

findings and a sequence of possible questions for further study. The appendix presents

additional background to the theory of IFS.

In more detail, Chapter 1 contains four sections. The first brief section lists a few

definitions and results of functional analysis. This is principally for notational purposes

since an understanding of functional analysis is required to comprehend the majority of

this work. Section 1.2 describes the basic theory of IFS, starting with the fundamental

concepts of contractivity of functions and attractors. Major concepts and results such as the

Banach Contraction Mapping Principle, continuity of fixed points, and the inverse problem

are given. Subsequently, the concepts of IFS, first developed by Barnsley and Demko, and

IFS on grey-level maps (IFSM), introduced by Forte and Vrscay, are presented. The section

continues with a discussion of the inverse problem for IFSM and its formal solution. It

concludes with the theory of local IFSM (LIFSM) and its associated inverse problem. For

the curious reader, Appendix A contains additional background discussions on the theory

of IFS.

Section 1.3 presents an introduction to complex bases. First, the concepts of Gaussian

integer, valid base, positional notation and the fundamental tile of a valid base are intro-

duced. Certain key results regarding the existence of valid bases are presented, including

an equivalence result of Gilbert. This is followed by a discussion of various algorithms to

construct representations of Gaussian integers in valid bases.

The final section in Chapter 1 covers basic results of wavelet analysis. The discus-

sion is restricted to the area of multiresolution analyses (MRA) over self-similar lattice
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tilings. This includes the definitions of acceptable dilation, complete residue system and

self-similarity. Then the Mallat reconstruction and decomposition algorithms are pre-

sented, followed by a discussion of local IFS on wavelet trees (LIFSW).

Chapter 2 contains the discoveries made during this exploration. The foundation of this

work is grounded in the identification of a link between two-dimensional non-separable Haar

wavelets and complex bases. This link is presented in Section 2.1. It is shown there that

the link indeed generates an MRA. In Section 2.2, a notation is developed for the scaling

and wavelet coefficients of an MRA associated with a complex base. Subsequently, it is

demonstrated that this translation is consistent with the Mallat algorithm. A corollary of

this result is that the decomposition algorithm of a function in an MRA associated with

a complex base must terminate. Some preliminary work from this section was originally

published in [66, 76].

In Section 2.3, the theory of complex bases and their link to wavelets are generalized to

higher dimensional number systems. A definition of a number system is made and a number

of the properties of complex bases are shown to hold for number systems, including an

extension of the equivalence result of Gilbert. An investigation of diagonalizable operators

is conducted in an attempt to generalize this result further, leading to a conjecture.

Tilings generated by number systems are typically fractal in nature. This often yields

asymmetry in the wavelet trees of functions during wavelet decomposition. A notation

is developed to discuss this situation. Subsequently, a class of extensions of functions

is developed in Section 2.4. An algorithm for generating the extensions is given. This

algorithm is shown to be well defined and the resulting extensions are shown to be consistent

with the Mallat algorithm.
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Section 2.5 presents a rigorous generalization of LIFSW to number systems. This

section begins by discussing the issues caused by the fractal nature of the tilings. Notation

is introduced to help in the discussion. As a result, an LIFSW associated with a number

system is defined. Detailed explanations of the various aspects of the LIFSW operator

are given. In Section 2.6, the inverse problem is studied for these operators, along with a

method for constructing LIFSW approximations in higher dimensions.

The third chapter contains a few applications of the results to image compression. The

definition of a discrete image is presented in the first section along with a short discussion

on the comparison of images. The second section describes a general approach to image

compression, including sample specific methods that are used (pruning, thresholding and

LIFSW). The third section contains numerous examples of applying these methods to grey-

scale images. These examples provide an interesting illustration of the behaviour of the

fundamental tiles of complex bases.

Throughout the text, examples are provided to assist the reader in understanding key

ideas and results. Typically, proofs are omitted for background results, although if the

proofs are short or have not been found in the literature, they are sometimes included.

Choice references for the various topics covered include the following:

Topology [49, 90] Real Analysis [77, 89]

Functional Analysis [1, 2, 11, 18, 71, 72] Matrix Analysis [8, 42]

Fractals and Self-Similarity [23, 43, 58, 63] IFS [4, 5, 17]

IFSM, IFSW [27, 28, 29, 85, 86] Image Coding [44, 73]

Complex Bases [30, 31, 32, 33, 34, 35] Number Systems [50, 51, 55]

Wavelets [9, 15, 20, 62, 64, 68, 69, 87] MRA [36, 37, 61]

Operator Theory and Wavelets [10, 19, 22, 48] Tilings [3, 38, 52, 53, 56, 81]
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An index is included at the end of the thesis to make it easier to find key definitions

and concepts. Given the large number of definitions, notations and abbreviations used, a

glossary and abbreviations list precede the index. Page numbers in boldface indicate the

definition of the item or a significant reference to it. These three indexes will also facilitate

the use of this work as a reference manual.

To assist the reader further in navigating the text, a diagram illustrating the depen-

dencies of the various parts of the thesis is included after this introduction. A solid line

pointing from a section indicates that reading this section is important for understanding

the section to which the line points. A dashed line indicates that reading the section may

be helpful for understanding the other section, but is not required.

After reading this thesis, one should discover that there are more questions left to

answer than there are answers given. It is hoped that the ultimate contribution of this

work will be the many seeds of future exploration that it can sow.

Daniel G. Piché

dgpiche@links.uwaterloo.ca
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Chapter 1

Mathematical Background

This first chapter lays the foundation of background material to assist the reader through

the results presented in the subsequent chapters.

1.1 Functional Analysis

This brief section presents a few definitions and results of functional analysis, principally

for notational purposes. For general background in this topic, see [18, 77].

Definition 1.1.1 Let L2(Rn) be the space of all square integrable functions from Rn to

R, that is, the space of all Lebesgue integrable functions f : Rn → R, such that

∫

Rn

|f |2 <∞.

Definition 1.1.2 The inner product of two functions f, g ∈ L2(Rn) is defined by 〈f, g〉 ≡
∫

Rn fg. The norm of f is ||f || ≡
√

〈f, f〉. Two functions f and g are orthogonal if their

inner product is zero. This is denoted by f ⊥ g. A subset of L2(Rn) is called orthonormal

if its elements are pairwise orthogonal, and each has norm one.

Definition 1.1.3 A basis of L2(Rn) is a maximal orthonormal set in L2(Rn).

7



8 CHAPTER 1. MATHEMATICAL BACKGROUND

Theorem 1.1.4 If {fn : n ∈ Z} ⊂ L2(Rn) is a basis of L2(Rn), then each f ∈ L2(Rn) can

be written uniquely as f =
∑

n∈Z
cnfn, where cn = 〈f, fn〉.

Our study will involve specifically wavelet bases, which are described in Section 1.4.

Further results of functional analysis will be presented there as needed.

1.2 Iterated Function Systems

An important concept in our study is that of iterated function systems (IFS). In this section,

we present an overview of the major concepts and results of IFS and their application to

the study of functions. A more detailed review of the topics in this section was given

in [75]. That work contains detailed proofs of the material contained here.

1.2.1 Topological Background

We begin with some basic notation and definitions from metric spaces. Other topics not

covered here may be found in [49, 90].

Notation 1.2.1 We will use the following notation to denote certain classical sets:

N = {0, 1, 2, . . .};
N+ = {1, 2, . . .};
Z = the integers;

R = the set of real numbers; and

C = the set of complex numbers.

Notation 1.2.2 Throughout this section, (X, d) will denote a metric space where X is

the set and d is the metric. Special properties, such as completeness, will be specified as

needed. We will denote a sequence in X by (xn)n∈A, where A ⊂ N. A sequence will be

written as (xn) if the range of the subscripts is clear from the context.
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Definition 1.2.3 A metric space (X, d) is complete if and only if every Cauchy sequence

converges in X with respect to the metric d.

Definition 1.2.4 A function f : X → X is said to be Lipschitz if and only if there exists

an s ∈ [0,∞) such that ∀x, y ∈ X we have

d(f(x), f(y)) ≤ sd(x, y).

We call s a Lipschitz constant of f . If there exists such an s < 1, we say f is contractive

or is a contraction and call s a contractivity factor of f . In this case we say that f has

contractivity at least s. We write Con(X, d) for the set of all contractive maps f : X → X.

If X = Rn, write simply Lip(Rn) and Con(Rn).

Proposition 1.2.5 Let f ∈ Con(X, d). Define cf by

cf = inf{s : s is a contractivity factor of f}.

Then cf is a contractivity factor of f and is called the contractivity of f .

Contractive maps are the building blocks of IFS.

Example 1.2.6 Consider the function f : R → R by f(x) = 1
2
x + 1

2
∀x ∈ R. Then for

x, y ∈ R,

|f(x)− f(y)| =
∣

∣

∣

∣

(

1

2
x +

1

2

)

−
(

1

2
y +

1

2

)∣

∣

∣

∣

=
1

2
|x− y|.

Therefore, f is contractive with contractivity 1
2
.

Notation 1.2.7 For x ∈ X, we define the n-fold composition of a function f at x recur-

sively by
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f ◦1(x) = f(x);

f ◦n+1(x) = f(f ◦n(x)).

We call f ◦n(x) the n-th iterate of f at x .1 The symbol ◦ will also be used to denote the

composition of two functions as follows: v ◦ w.

Definition 1.2.8 We say that y ∈ X is the attractor of f : X → X if and only if

lim
n→∞

f ◦n(x) = y ∀x ∈ X.

Example 1.2.9 Consider the function f from Example 1.2.6. Then for any x ∈ R, we

have

f(x) =
1

2
x +

1

2
;

f ◦2(x) =
1

2

(

1

2
x+

1

2

)

+
1

2

=
x

22
+

1

2
+

1

4

and for a general n > 1,

f ◦n(x) =
x

2n
+

n
∑

i=1

1

2i
.

Hence, lim
n→∞

f ◦n(x) = 1 ∀x ∈ R and x = 1 is the attractor of f .

Definition 1.2.10 Let f : X → X. If for some x ∈ X, f(x) = x, we call x a fixed point

of f .

1We have chosen here to use the notation f ◦n, instead of fn, to remain consistent with the IFS
literature. However, in the sections on complex bases and number systems, the ◦ will be omitted since
function composition will be understood. There, we will use instead the notation Φn (for example, see
Theorem 1.3.15).
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Example 1.2.11 Consider the function f from Example 1.2.6. Then

f(x) = x =⇒ 1

2
x+

1

2
= x

=⇒ x = 1.

Hence x = 1 is a fixed point of f .

This is not a coincidence, as the next proposition shows.

Proposition 1.2.12 If a continuous function f : X → X has an attractor x ∈ X, then x

is a fixed point of f .

Proof Suppose x ∈ X is the attractor of f . Then, since f is continuous,

x = lim
n→∞

f ◦n(x) = f
(

lim
n→∞

f ◦n−1(x)
)

= f(x). �

The fundamental result upon which the entire theory of iterated function systems is

founded is the Banach Contraction Mapping Principle, or BCMP for short [90].

Theorem 1.2.13 (Banach Contraction Mapping Principle) Suppose (X, d) is a

complete metric space and let f ∈ Con(X, d) with contractivity factor s. Then f has

a unique fixed point x̄f ∈ X. Furthermore, x̄f is the attractor of f .

If f is contractive, we write x̄f to denote its fixed point.

Intuitively one would hope that if the given maps f and g are close to each other, then

their respective fixed points x̄f and x̄g should also be close. This is indeed the case and is

important for fractal-based methods of approximation. When one wants to describe a point

by a function, for which the point is the attractor, it is often too difficult to describe the

function completely. One must therefore choose a function close to the exact function that

in turn will have its attractor being close to the original point of interest. The following

result demonstrates this fact and is found in [17].
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Theorem 1.2.14 (Continuity of Fixed Points) Define F : Con(X, d) → X by F (f) =

x̄f for each f ∈ Con(X, d). Define also for f, g ∈ Con(X, d) the functions

d̄(f, g) = sup
x∈X

d(f(x), g(x))

and

dm(f, g) = min{d̄(f, g), 1}.

Then F is continuous with respect to dm and dm(f, g) is a metric on Con(X, d). Further-

more, if (X, d) is compact, then F is continuous with respect to d̄ and d̄ is a metric on

Con(X, d).

Corollary 1.2.15 If (X, d) is a compact metric space and f, g ∈ Con(X, d), then

d(x̄f , x̄g) <
1

1− c
d̄(f, g),

where c = min(cf , cg).

Now, suppose that we are given x ∈ X. A natural question that was first asked in

IFS theory is whether or not it is always possible to find a contractive operator f ∈

Con(X, d) whose fixed point x̄f is x. In simple cases one can guess at such a function (as

in Example 1.2.6). One can also take the constant function f(y) = x for all y ∈ X. As

mentioned above, the goal is to approximate x using a function which is easy to describe,

and a constant function would often require the complete description of x. However, this

defeats the purpose of trying to express x – in possibly a more concise manner – as the

fixed point of a contractive operator f . We also expect that, in general, this is not possible

and that one must be satisfied in finding fixed points x̄i of contractive operations fi that

are approximations to x. Even in this case, however, we are faced with the problem of
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finding such fixed points x̄i.

This problem is called the Inverse Problem of Approximation by Fixed Points of Con-

traction Maps, or the Inverse Problem for short. It is generally stated as follows:

Question 1.2.16 Given (Y, dY ) a metric space, y ∈ Y and ε > 0, can we find a non

constant f ∈ Con(Y, dY ) such that dY (y, ȳf) < ε?

Detailed discussions can be found in [29] and [84]. Indeed, whether such an f can be

constructed, or whether it even exists is uncertain at this stage. In other words, the

question is “Is {x̄f : f ∈ Con(Y, dY )} dense in Y ”? In practice, Y could be any one of a

large number of relevant spaces: compact subsets of [0, 1]n; probability measures on [0, 1];

Lp(R); fuzzy set functions. These questions do not have easy answers.

Before commenting on this question, an additional question that arises is: “Given

y ∈ Y , f ∈ Con(Y, dY ), how close is y to ȳf”? The following proposition lends an answer:

Proposition 1.2.17 Let y, Y and f be as above. Then

dY (y, ȳf) ≤
1

1− cf
dY (y, f(y)).

This is often called the Collage Theorem. It is important in helping identify the functions

to use in an IFS in order to approximate the attractor.

The Collage Theorem is fundamental to the theory of IFS because it states that if f(y)

is close to y, then ȳf is also close to y. Of course, if cf ≈ 1, the right hand side of the

inequality might not be very small. Thus, this gives some insight into finding our desired

function. We should find an f ∈ Con(Y, dY ) which takes y close to itself. We remember

from the BCMP that ȳf is the attractor of f if Y is complete. Hence we can iterate f to

retrieve ȳf and get the desired approximation to y. Therefore, the Inverse Problem is often
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formulated as follows:

Question 1.2.18 (Inverse Problem) Let (Y, dY ) be a complete metric space, and let

y ∈ Y . Given ε > 0, can we find a non constant f ∈ Con(Y, dY ) such that dY (y, f(y)) < ε?

A formal solution to this problem was given in [28] in the case of IFS on grey-level

maps. This will be important in our study of approximations of images and is discussed

in Section 1.2.4.

1.2.2 Iterated Function Systems

The concept we wish to present in this section is that of iterated function systems (IFS).

These were first developed by Hutchinson [43]. They were independently discovered by

Barnsley and Demko [5] who gave them their name. We give a brief introduction here and

again refer the reader to [75] for a more comprehensive discussion.

The following definition of an iterated function system, or IFS is found in [4]. A

motivation for this definition is given in Appendix A.

Definition 1.2.19 An iterated function system, or IFS , consists of a complete metric

space (X, d) together with a finite set of contraction mappings wn: X → X with respective

contractivity factors cn, n = 1, 2, . . . , N .2 Such an IFS, denoted by w, where w= {wn : n =

1, 2, . . . , N}, is called an N-map IFS . The IFS is said to have contractivity c = max{cn :

n = 1, 2, . . . , N}.

The contractivity of an IFS is meaningful in a certain space associated with (X, d). A

brief discussion is presented in Appendix A.

Barnsley and Demko [5] first noticed that a natural object such as a leaf could be

approximated as the attractor of a rather simple IFS. Indeed, the appendix of [5] contains

2This definition can be extended to an infinite number of maps [58].
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the first seeds of the inverse problem for IFS. The next significant demonstration appeared

in [7], where Barnsley and co-workers presented a striking computer-generated picture of

a spleenwort fern. As well, they presented the “collage theorem” as a method of solving

the inverse problem.

The next major advance was the paper of Jacquin in which a fractal block coding

method for images was proposed. These papers spawned a great deal of research on the

possible use of IFS methods for image coding and compression – so-called “fractal image

compression”. Accounts of this research can be found in the books by Barnsley [4], Barnsley

and Hurd [6], Fisher [26, 25] and Lu [59].

Before continuing, we note the following classes of functions from which useful IFS

maps are often chosen:

Notation 1.2.20 Define the following three sets:

Con1(X, d)={w ∈ Con(X, d) : w is 1-1};
Sim(X, d) ={w : d(w(x), w(y)) = cd(x, y) for some c ∈ [0, 1], ∀x, y ∈ X}; and

Sim1(X, d)=Sim(X, d) ∩ Con1(X, d).

The mathematical theory behind the application of IFS methods to grey-level (grey-

scale) images was developed by Forte and Vrscay [27, 28, 29]. They formulated an IFS-type

method which allows the construction of grey-scale images. A good deal of work, however,

was necessary to arrive at this result. For example, they began by extending the concept of

IFS on sets (defined earlier in [5, 43]) to IFS on characteristic functions of sets – the image

functions used here were simple black-and-white (bitmap) images. The range of these

image functions were then extended from [0,1] to R. As well, the probabilities associated

with the IFS maps were replaced by grey-level maps that operated on the image function
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values. However, the metric first used on the image functions was the very restrictive

metric of fuzzy sets (Hausdorff metric between level sets of two image functions). This

metric was then weakened by looking at the measure of symmetric differences of the level

sets. Forte and Vrscay then showed that in the special case that the measure was the

Lebesgue measure, the L1 metric was obtained. The next natural step was to extend the

IFS method to Lp. The reader is referred to [27, 28, 29] for detailed discussions.

Consider the class of grey-level images supported on a metric space X. We write

F(X) for the set of grey-level images on X. In practical applications, images are usually

considered to be nonnegative functions so that their range will be defined as R+ = [0,∞)

or some appropriate subset. However, in more general mathematical treatments (e.g. [28]),

the range of F(X) can be extended to R. The set X is thought of as the “pixel space”,

usually I or I2 with the usual Euclidean metric.

Definition 1.2.21 Let (X, d) be a metric space. Let w = {wk}N
k=1 where wk ∈ Con1(X, d)

for k = 1, 2, . . . , N . Then, let Φ= {φk}N
k=1 where φk : R→ R for k = 1, 2, . . . , N . The pair

(w,Φ) is called an iterated function system with grey-level maps, or IFSM for short.

Define the IFSM operator T(w,Φ): F(X) → F(X), on u ∈ F(X), by

T(w,Φ)u(x) =

N
∑

k=1

′φk(u(w
−1
k (x))) ∀x ∈ X, (1.1)

where
∑′ indicates that the sum runs over the indices k with x ∈ wk(X). We use the

convention that an empty sum has a value of 0.

Notice that when u is displaced in space, its grey-level values are also modified. In

other words, the action of the operator T on an image function u is to produce a set of N

copies of u over smaller regions wi(X). Furthermore, the grey level values of each of these

copies are modified by the grey-level maps φi. An example of this procedure is presented
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in Example 1.2.22. For simplicity, the wi and φi are usually taken to be affine maps. That

is, wi(x) = six+ ai and φi(t) = αit + βi, x ∈ X, t ∈ R.

With appropriate conditions on the IFSM (w, φ), the operator T , often called a fractal

transform operator , is contractive on F(X). For example, if F(X) = Lp(X), then a suffi-

cient condition for contractivity is that
∑

i |siα
p
i | < 1. Hence, by the Banach Contraction

Mapping Principle, T has a unique fixed point function ū = T ū.

Example 1.2.22 To demonstrate the action of an IFSM operator T , consider the following

function:

u(x) = e(−
1
2
x) cos(sin(5x))

on the unit interval [0, 1]. It is illustrated in Figure 1.1 on page 19. Now, consider an IFSM

with two IFS component maps

w1(x) = 0.6x, w2(x) = 0.6x + 0.4

with grey-scale maps

φ1(x) = 0.75x, φ2(x) = 0.5x+ 0.5.

Let us decompose the action of T on u. First, the two “component” curves for the IFSM

are given by u(w−1
1 (x)) and u(w−1

2 (x)). In each case, the domain of u ◦ w−1
i is wi([0, 1]).

Here, w1([0, 1]) = [0, 0.6] and w2([0, 1]) = [0.4, 1]. The component functions are therefore

u(w−1
1 (x)) = e(−

5
6
x) cos

(

sin

(

25

3
x

))

, x ∈ [0, 0.6]

and

u(w−1
2 (x)) = e(−

5
6
x+ 1

3) cos

(

sin

(

25

3
x− 10

3

))

, x ∈ [0.4, 1].

These component functions are shown in the top right corner of Figure 1.1. The compo-

nent functions are copies of u, scaled and translated along the horizontal axis. Next, the
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component functions are modified by the grey-level maps as follows:

φ1(u(w
−1
1 (x))) =

3

4
e(−

5
6
x) cos

(

sin

(

25

3
x

))

, x ∈ [0, 0.6]

and

φ2(u(w
−1
2 (x))) =

1

2
e(−

5
6
x+ 1

3) cos

(

sin

(

25

3
x− 10

3

))

+
1

2
, x ∈ [0.4, 1].

These modified component functions, which are the component functions scaled along the

vertical axis, are shown in the bottom left corner of Figure 1.1. Finally, the modified

component functions are added together to give the action of T on u, as illustrated in the

fourth image in Figure 1.1.

1.2.3 IFSM on Lp(X,µ)

Let (w,Φ) be an IFSM on a complete metric space (X, d) where w = {w1, w2, . . . , wN},

wk ∈ Con1(X) and Φ = {φ1, φ2, . . . , φN}, φk : R → R. When it is understood that

a specific IFSM is being considered, write T for T(w,Φ), to denote the associated IFSM

operator.

The theory of IFSM was developed for Lp(X, µ) by Forte and Vrscay in [28]. 3 We

present a few of their results here.

Proposition 1.2.23 Let (w,Φ) be an N -map IFSM and let T be the associated IFSM

operator. Suppose:

i) ∀u ∈ Lp(X, µ), u ◦ w−1
k ∈ Lp(X, µ), 1 ≤ k ≤ N ; and

ii) φk ∈ Lip(R), 1 ≤ k ≤ N .

3The space Lp(X, µ) is the Banach space of all p-integrable functions on the measure space X with
measure µ and norm ||f ||Lp = (

∫

|f |p)1/p.
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Figure 1.1: Illustration of the action of an IFSM operator T on a function u. The original
function is shown in the top left corner. To its right are the component functions. The
image on the bottom left shows the component functions modified by the grey-level maps.
The last image shows the action of T on u.
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Then for 1 ≤ p ≤ ∞, T : Lp(X, µ) → Lp(X, µ).

The following shows that under certain conditions T(w,Φ) is contractive. Let M(X)

denote the set of finite measures on B(X), the Borel sets of X.

Proposition 1.2.24 Let (w,Φ) be an N -map IFSM such that φk(t) = ak ∈ R for all

t ∈ R and 1 ≤ k ≤ N . Then ∀p ∈ [1,∞) and µ ∈M(X), the associated IFSM operator T

is contractive on Lp(X, µ), with contractivity factor cT = 0. Furthermore, its fixed point

ūT is

ūT =

N
∑

k=1

ak
χ

ŵk(X).

Proposition 1.2.25 Let X ⊂ RD, D ∈ N+, and let µ = m(D) be the Lebesgue measure

on RD and let d be the usual Euclidean metric. Let (w,Φ) be an N -map IFSM such that,

for 1 ≤ k ≤ N :

i) wk ∈ Sim1(X, d) is a similarity with contractivity factor ck; and

ii) φk ∈ Lip(R), with Lipschitz constant Kk.

Then for p ∈ [1,∞) and u, v ∈ Lp(X, µ), we have

||Tu− Tv||p ≤ C(D, p)||u− v||p,

where

C(D, p) =
N
∑

k=1

c
D/p
k Kk.

Hence, if C(D, p)< 1, T is contractive on Lp(X, µ) and has a unique, attracting fixed

point. It is not necessary that all of the IFS maps be contractive (in the base space X) for

T to be contractive. The contractivity of the φk (in the grey-level range) can contribute in

this aspect [28].

Example 1.2.26 Let X = [0, 1] and µ be the Lebesgue measure on X. Let wi(x) =
1
3
(x+ i− 1), i = 1, 2, 3. Let φ1(t) = 1

2
t, φ2(t) = 1

2
, φ3(t) = 1

2
t+ 1

2
, for t ∈ R. The fixed point
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Figure 1.2: The Devil’s staircase. This is also the distribution function F (x) =
∫ x

0
dµ of

the Cantor-Lebesgue measure µ.

of this IFSM is the Devil’s staircase. It is constant almost everywhere on X, increasing on

C, yet its image is all of X. The attractor ū is shown in Figure 1.2.

Given two N -map IFSM (w,Φi), i = 1, 2, . . . , N , where Φi = {φi1, φi2, . . . , φiN}, define

the distance between the grey-level components by

dN
Φ

(Φ1,Φ2) = sup
1≤k≤N

sup
t∈R

|φ1k(t)− φ2k(t)|.

This function will be a metric when X is compact. The following result from [28] establishes

the continuity of fixed points for IFSM (c.f. Theorem 1.2.14).

Proposition 1.2.27 Let (w,Φ1) be an N -map IFSM with fixed point ū1 ∈ Lp(X, µ).

Then given ε > 0, ∃δ > 0 such that for all N -map IFSM (w,Φ2) with dN
Φ

(Φ1,Φ2) < δ,

then ||ū1 − ū2||p < ε, where ū2 is the fixed point of (w,Φ2).
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1.2.4 Inverse Problem Using IFSM

In this section we present the formal solution to the Inverse Problem for IFSM. Consider

the following formulation for IFSM:

Question 1.2.28 For v ∈ Lp(X, µ) and ε > 0, can we find an IFSM (w,Φ) with associated

operator T such that ||v − Tv||p < ε?

A formal solution was obtained in [28] by constructing sequences of N -map IFSM

(wN ,ΦN), N = 1, 2, 3, . . ., where wN is chosen from a fixed, infinite set W of contraction

maps.

Definition 1.2.29 Let W = {w1, w2, . . .} be an infinite set of contraction maps on X.

Then W generates a µ-dense and non-overlapping , or µ-d-n, family of subsets of X if

∀ε > 0 and ∀B ⊂ X, there exists a finite set of integers ik ≥ 1, 1 ≤ k ≤ N such that:

i) A = ∪N
k=1wik(X) ⊂ B;

ii) µ(B\A) < ε; and

iii) µ(wik(X) ∩ wil(X)) = 0, whenever k 6= l.

Example 1.2.30 Let X = [0, 1] with Lebesgue measure. Let wij(x) = 2−i(x + j − 1),

i = 1, 2, . . ., 1 ≤ j ≤ 2i. For each i ≥ 1, the set of maps {wij, 1 ≤ j ≤ 2i} is a set of 2i

contractions of [0, 1] which tile [0, 1]. Then W = {wij} is µ-d-n. Figure 1.3 illustrates the

idea.

Now, suppose W = {wi}, with wi ∈ Con1(X, d), generates a µ-d-n family of subsets of

X. Let

wN = {w1, w2, . . . , wN}, N = 1, 2, . . . ,

denote the N -map truncations of W. Assume that for each k ∈ N+, φk ∈ Lip(R) is the

associated grey-level map of wk, and let
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Figure 1.3: Illustration of the sets A and B of the formal solution to the inverse problem.
The set B is the union of the solid lines on the vertical axis. The set A is the union of the
lines (projected onto the vertical axis).

ΦN = {φ1, φ2, . . . , φN}.

Let TN : Lp(X, µ) → Lp(X, µ) be the associated IFSM operator of (wN ,ΦN). Then the

following result holds:

Theorem 1.2.31 Let v ∈ Lp(X, µ), 1 ≤ p <∞ and W as above. Then

lim
N→∞

inf ||v − TNv||p = 0. (1.2)

Proof A proof can be found in [28]. �

This result and Example 1.2.30 can be used to build an algorithm for the construction

of IFSM approximations of target functions v ∈ Lp(X, µ). Then, given an N -map IFSM

(w,Φ) on (X, d) with associated operator T , we have the squared L2 collage distance

∆2 = ||v − Tv||22



24 CHAPTER 1. MATHEMATICAL BACKGROUND

=

∫

X

(

N
∑

k=1

′φk(v(w
−1
k (x)))− v(x)

)2

dµ(x). (1.3)

With the formal solution (1.2) in mind, we assume the IFS maps wk are fixed and

search for grey-level maps φk which minimize ∆2 for the given target v. This is the key

idea for IFSM [28].

For computational simplicity, assume the maps wk and φk are affine. The pair (w,Φ)

will be called an affine IFSM . Assuming that φk(t) = αkt + βk ∀t ∈ R, k = 1, 2, . . . , N ,

then

Tu(x) =
N
∑

k=1

′
[

αku(w
−1
k (x)) + βk

χ
wk(X)(x)

]

. (1.4)

If X ⊂ RD, then by Proposition 1.2.25 on page 20, ∀u, v ∈ Lp(X, µ),

||Tu− Tv||p ≤ C(D, p)||u− v||p

with C(D, p) =
N
∑

k=1

c
D/p
k αk, and ck is the contractivity of wk. Hence, if C(D, p) < 1, T is

contractive on Lp(X, µ) and has a unique fixed point ūT .

Example 1.2.32 If βk = 0 for 1 ≤ k ≤ N , then ūT ≡ 0.

Example 1.2.33 If X = [0, 1], wk(x) = akx+ bk, ak 6= 0, 1 ≤ k ≤ N , and T is contractive

with fixed point ūT , then by Equation (1.4),

ūT (x) =
N
∑

k=1

′αkūT

(

x− bk
ak

)

+ βk
χ

wk(X)(x)

=

N
∑

k=1

′αkψk(x) + βkφk(x).

Therefore, ūT is a linear combination of piecewise constant functions φk, and functions
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ψk, which are dilations and translations of ūT . In general, if f : R→ R, then given a ∈ R,

f(a·) is called the dilation of f by a, and f(· − a) is called the translation of f by a. This

idea is reminiscent of the wavelets relations (see Section 1.4).

By the following theorem, it is sufficient in practical situations to study the subclass of

affine IFSM [28]. This makes the generation of IFSM much simpler in practice.

Theorem 1.2.34 Let X = RD and let µ ∈M(X). Given p ≥ 1, let Lp
A(X, µ) ⊂ Lp(X, µ)

be the set of fixed points of contractive N -map affine IFSM on X. Then Lp
A(X, µ) is dense

in Lp(X, µ).

Now, suppose (w,Φ) is an N -map affine IFSM with:

i) wk ∈ Con1(X, d) with contractivity factors ck > 0 for 1 ≤ k ≤ N ;

ii) ∪N
k=1wk(X) = X; and

iii) φk : R→ R, where φk(t) = αkt + βk, t ∈ R, 1 ≤ k ≤ N .

The squared L2 collage distance of Equation (1.3) becomes

∆2 =< v − Tv, v − Tv >

=

N
∑

k=1

N
∑

l=1

(< ψk, ψl > αkαl + 2 < ψk, χl > αkβl+ < χ
k, χl > βkβl)

− 2
N
∑

k=1

(< v, ψk > αk+ < v, χk > βk)+ < v, v >,

where ψk = v ◦ w−1
k and χ

k = χ
wk(X). Then ∆2 can be written as a quadratic form in the

parameters αk and βk as

∆2 = xTAx + bTx + c,
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where xT = (α1, . . . , αN , β1, . . . , βN) ∈ R2N . Minimizing ∆2 is a quadratic programming

(QP) problem in the αk and βk. A detailed discussion is given in [28, 84].

We end this section with a few examples of approximations which demonstrate the

application of IFSM. The second example reveals a shortcoming of this method.

Example 1.2.35 Let u(x) = sin(x) and X = [0, 1]. The approximations of u are given

in Figure 1.4 on the next page, with the ratio 1 : N indicating the number of maps wk

used. The maps wk map X to evenly divided subintervals. For example, consider 2 maps,

w1(x) = x/2 and w2(x) = x/2 + 1/2. Table 1.1 gives the L2 distance between u and the

approximations. In this case, the results are quite nice. This happens since the parts of

the function on the subintervals are similar to the function on the entire interval.

Number of maps Distance File size (bytes) Computation time (sec.)
u 0.0 30878 n/a
2 0.0199362 42 0.120
4 0.0191687 82 0.130
16 0.0188445 320 0.140

Table 1.1: IFSM compression of sin(x).

Example 1.2.36 Let u(x) = sin(πx) and X = [0, 1]. Consider the approximations in

Figure 1.5 on page 28. Table 1.2 on page 29 gives the L2 distance between u and the

approximations. Here, it is difficult to get a good approximation since the function lacks

self-similarity on the subintervals. The problem described arises in most situations since

one cannot hope to have global self-similarity, that is subsets of an image are not similar

to the entire image but may be to other subsets. This situation can be remedied by

considering local IFSM, which are discussed next.

In both of the above examples, and Example 1.2.39 on page 32, computations were

performed using unoptimized C code compiled and run on a Mac G3 500MHz with 384MB

RAM. Computation times were quite small and varied between 0.100 and 0.200 seconds
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Figure 1.4: IFSM approximations of u(x) = sin(x).



28 CHAPTER 1. MATHEMATICAL BACKGROUND

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u(x)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1:2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1:4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1:16

Figure 1.5: IFSM approximation of u(x) = sin(πx) with 2, 4 and 16 range blocks.
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Number of maps Distance File size (bytes) Computation time (sec)
u 0.0 30768 n/a
2 0.307759 39 0.130
4 0.158104 82 0.140
16 0.0400456 339 0.160

Table 1.2: IFSM compression of sin(πx).

depending on processor availability at the time, the same computation ranging across the

entire interval on sequential executions. It is interesting to note that this represents a ten-

fold improvement over computations done with these same examples in 1997 on a DEC

Alpha.

1.2.5 LIFSM

A method that, in general, yields better approximations than the IFSM is the method of

local IFSM (LIFSM) [28]. In this method, the fractal transform operator T constructs

altered copies of subsets of the image function u, in contrast to the IFSM method where

altered copies of the entire image function u are produced.

Definition 1.2.37 Let X ⊂ RD and µ = m(D). Let Jk ⊂ X, k = 1, 2, . . . , N , such that

i) ∪N
k=1Jk = X (covering condition); and

ii) µ(Jj ∩ Jk) = 0 when j 6= k (µ-non-overlapping condition).

Suppose also that ∀Jk, ∃Ij(k) ⊂ X with an associated map wj(k),k ∈ Con(X, d) with

contractivity factor cj(k),k such that

wj(k),k(Ij(k)) = Jk.

The set Jk is called the range block of the domain block Ij(k).
4 For each wj(k),k, let φk :

4Often, one calls the domain blocks “parent” blocks and the range blocks “child” blocks.
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R→ R be an associated grey-level map. Then define

wloc = {wi(1),1, . . . , wi(N),N} and Φ = {φ1, . . . , φN}.

The pair (wloc,Φ) is called an N -map local IFSM, or LIFSM . The associated operator

T loc
(w,Φ): F(X) → F(X) is defined by

T loc
(w,Φ)u(x) =







φk(u(w
−1
i(k),k)) x ∈ Jk\ ∪N

l 6=k Jl(X),

0 otherwise.

A result similar to Proposition 1.2.25 can then be obtained:

Proposition 1.2.38 Let X ⊂ RD and µ = m(D). Let (wloc,Φ) be an LIFSM as above

with φk ∈ Lip(R) for 1 ≤ k ≤ N and let T loc be the associated LIFSM operator. Then,

for u, v ∈ Lp(X, µ),

||T locu− T loc||p ≤ Cloc(D, p)||u− v||p,

with Cloc(D, p) =

(

N
∑

k=1

cj(k),kK
p
k

)1/p

, where cj(k),k is the contractivity of wj(k),k. Thus, if

Cloc(D, p) < 1, T loc is contractive on Lp(X, µ) and has a unique fixed point.

Now, suppose X ⊂ RD, µ = m(D) and v ∈ L2(X, µ). Then, given an N -map LIFSM as

above, the squared collage distance is given by

∆2 = ||T locv − v||22

=

N
∑

k=1

∫

Jk

[φk(v(w
−1
j(k),k(x)))− v(x)]2dx

=
N
∑

k=1

∆2
j(k),k.
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It is therefore sufficient to minimize the ∆2
j(k),k individually for each range block Jk. In

the case where the maps φk are affine, this becomes a QP problem [28].

To apply this idea to the Inverse Problem, consider the following:

i) X ⊂ RD, µ = m(D), d usual Euclidean metric;

ii) wk ∈ Sim1(X, d), with X = ∪N
k=1Xk, where Xk = wk(X) (covering condition);

iii) µ(Xi ∩Xj) = 0 when i 6= j (µ-non-overlapping condition); and

iv) φk : R→ R are affine with φk(t) = αkt + βk, t ∈ R.

Then, given v as above,

∆2
k ≡

∫

Xk

[αkv(w
−1
k (x)) + βk − v(x)]2dµ

= cDk

∫

X

[αkv(x) + βk − v(wk(x))]
2dµ.

As before, with the formal solution of the Inverse Problem in mind, assume that the wk

are fixed, and hence for each k, ∆k can be viewed as a quadratic form in the parameters

αk and βk:

c−D
k ∆2

k = ||v||22α2
k + 2αkβk||v||1 + β2

k − 2 < v, v ◦ wk > αk

− 2||v ◦ wk||1βk + ||v ◦ wk||22.

The problem can be viewed as a least squares minimization of ∆k with respect to αk

and βk. Set

∂∆2
k

∂αk
=
∂∆2

k

∂βk
= 0, k = 1, 2, . . . , N.



32 CHAPTER 1. MATHEMATICAL BACKGROUND

Then

||v||22αk + ||v||1βk =< v ◦ wk, v >,

||v||1αk + βk = ||v ◦ wk||1,

for k = 1, 2, . . . , N .

Then, if Dv ≡ ||v||21 − ||v||22 6= 0, the solutions are given by

αk = D−1
v (< v ◦ wk, v > −||v ◦ wk||1 ||v||1)

βk = D−1
v (||v||22 ||v ◦ wk||1 − ||v||1 < v ◦ wk, v >),

for 1 ≤ k ≤ N .

When considering images, the condition that φk : R+ → R+ is needed. This forces

αk, βk ≥ 0. It is not guaranteed that the αk and βk given by the above method will be

nonnegative. However, if we consider an image to be a function defined on a compact

subset A of R, the condition on the αk and βk could be relaxed, with φk(v(x)) still being

nonnegative on A.

Hence, given v ∈ L2(X, µ), fix NJ range blocks Jk, 1 ≤ k ≤ NJ , and NI domain blocks

Ij, 1 ≤ j ≤ NI . For each range block Jk, minimize the distance ∆2
j,k, for each domain

block Ij, 1 ≤ j ≤ NI . Then, let Ij(k) be the domain block for which ∆j(k),k is minimized

over the domains. The values of Ij(k), and the associated parameters αk and βk, are then

stored, for 1 ≤ k ≤ NJ . These values are called an LIFSM approximation of v.

Example 1.2.39 Consider the function u(x) = sin(πx) for x ∈ X = [0, 1]. Some approxi-

mations to u using the LIFSM method are shown in Figure 1.6 on page 34. Table 1.3 on the

next page gives the L2 distance between u and the approximations. Comparing these re-
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sults with the IFSM case shown in Example 1.2.36 on page 26, one can see the enhancement

brought by the LIFSM method.

Domains Ranges Distance File size (bytes) Computation time (sec)
u n/a 0.0 30768 n/a
2 4 0.0266135 82 0.160
2 8 0.0144324 162 0.160
2 16 0.00762873 322 0.170
4 16 0.00131272 324 0.170

Table 1.3: LIFSM compression of sin(πx).
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Figure 1.6: LIFSM approximation of sin(πx) with block ratio (D : R) from left to right,
top to bottom, 2:4, 2:8, 2:16 and 4:16.
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1.3 Complex Bases

In this section, we discuss another kind of base. Here, we use a base and digits from an

integer set to represent the numbers in a given system. For more on the theory of complex

bases, we refer the reader to some papers by Gilbert [31, 32, 33]. Most of the details for

the results that follow can be found there.

1.3.1 Fundamentals of Complex Bases

The concept of representing numbers in a base is a very simple and familiar one. In real

numbers, the most common examples are the decimal and binary systems.

Example 1.3.1 Representing positive real numbers with N as the integers.

Base 10, digits {0, 1, 2, . . . , 9}

19310 = 1 · 102 + 9 · 101 + 3 · 100.

Base 2, digits {0, 1}

110102 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 2610.

The same idea carries over to complex numbers, as was demonstrated by Penny in [74].

In this case, the integers are the Gaussian integers:

Definition 1.3.2 The set of Gaussian integers, denoted by Z[i], is the set of complex

numbers of the form a + bi, where a, b ∈ Z. The norm of a Gaussian integer z = a + bi is

defined as

norm(z) ≡ a2 + b2 = |z|2.

Definition 1.3.3 A valid base is a pair (b,D) where b is a Gaussian integer and D ⊂ Z[i],

such that 0 ∈ D and every Gaussian integer z can be represented uniquely as a sum of
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powers of b, with coefficients in D. More precisely, each z ∈ Z[i] can be written uniquely

as

z =

tz−1
∑

j=0

ajb
j, where aj ∈ D and tz ∈ N+.

If z has this form, write z = (atz−1 · · ·a1a0)b. This is called base b positional notation. The

integer b is often referred to as the base, and the set D is called the digit set . When the

base is understood, the subscript b in the positional notation is often omitted.

Example 1.3.4 It can be shown that (−1 + i, {0, 1}) is a valid base. We can expand the

number 3 in (−1 + i, {0, 1}):

3 = (−1 + i)3 + (−1 + i)2 + (−1 + i)0 = (1101)−1+i.

Definition 1.3.5 Let (b,D) be a valid base. If z ∈ C has the form

z =
tz−1
∑

j=−∞
ajb

j, where aj ∈ D and tz ∈ N+,

then the radix expansion of z in base (b,D) is defined as

z = (atz−1 · · ·a1a0 . a−1a−2 · · · )b.

The point between the digits a0 and a−1 is called the radix point . The string of digits to

the left of the radix point is called the integer part of z, while the string to the right is

called the radix part . Another name for the radix expansion of a complex number is the

address of the number.

Example 1.3.6 The complex number (−1−8i)/5 can be expressed in base (−1+i, {0, 1})
as

(−1− 8i)/5 = (111.10)−1+i,

where 10 indicates that the string 10 is repeated indefinitely. This can be seen by consid-

ering a series in (−1 + i)−1:
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∞
∑

k=0

(−1 + i)−2k−1 =
1

−1 + i

∞
∑

k=0

(

1

−2i

)k

=
1

(−1 + i)

1

1− 1
−2i

=
1

(−1 + i)

−2i

−2i− 1

=
−2i

3 + i

=
−1− 3i

5
.

Hence

(111.10)−1+i = (−1 + i)2 + (−1 + i) + 1 +
−1− 3i

5

= −2i− 1 + i + 1 +
−1− 3i

5

=
−5i

5
+
−1− 3i

5

=
−1− 8i

5
.

An important concept in the theory of complex numbers is that of a complete residue

system:

Definition 1.3.7 A subset of Z[i] consisting of one element from each coset of the quotient

ring Z[i]/bZ[i] is called a complete residue system for Z[i] modulo b.

The cosets of Z[i]/bZ[i] are precisely the sets Sk, k ∈ Z[i], where z ∈ Sk if and only if there

is some m ∈ Z[i] such that z = bm + k. One can show that a complete residue system for

Z[i]/bZ[i] contains norm(b) elements.

Example 1.3.8 Letting b = −1 + i, then one complete residue system for Z[i]/bZ[i] is

{0, 1}. This can be seen easily as follows: Let z = x + iy ∈ Z[i]. If x + y is even, then
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z = bm with

m =
−x + y

2
+ i

−x− y

2
∈ Z[i].

If x+ y is odd, then z = bm+ 1 with

m =
−x + y + 1

2
+ i

−x− y + 1

2
∈ Z[i].

Proposition 1.3.9 (Gilbert [32]) If (b,D) is a valid base, then D is a complete residue

system for Z[i] modulo b and hence contains norm(b) elements.

Proof Suppose z =
∑t

j=0 ajb
j, aj ∈ D. Then z ≡ a0 mod b. Hence D contains a

complete residue system for Z[i] modulo b. Now, suppose c, d ∈ D are distinct and c ≡ d

mod b. Then let e =
∑t

j=0 ajb
j, aj ∈ D such that c− d = eb. Hence, (c)b and (at . . . a0d)b

are two distinct addresses of c, which implies that (b,D) is not a valid base. �

Theorem 1.3.10 (Gilbert [34]) Each z ∈ C has an infinite radix expansion in a valid

base. However, this expansion may not necessarily be unique.

Proof The proof involves showing that if (b,D) is a valid base for Z[b], then every element

of Q(b)⊗R has an infinite radix expansion in (b,D). This uses a special norm on Q(b)⊗R.

The fact that Q(b)⊗ R is isomorphic to C yields the result. �

It therefore makes sense to define the fundamental or principal tile of a valid base.

Definition 1.3.11 Given a valid base (b,D), define the fundamental tile T (b,D) as the

set of complex numbers with zero integer part in the base.

By Theorem 1.3.10, C = ∪z∈Z[i](T (b,D) + z). Gilbert realized that the fundamental

tiles of complex bases can be generated using IFS. Indeed, the fundamental tile of the

complex base (b,D), is the attractor of the IFS w = {wk} given by

wk(z) =
z + dk

b
, dk ∈ D.
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Figure 1.7 on the next page presents the fundamental tiles of a number of different

bases, though the fact that they are valid bases is not proved (see Theorem 1.3.13 below).

Although the scales are different, each tile has two-dimensional Lebesgue measure 1. Notice

also that the origin is contained within the interior of these tiles. This is a key property of

complex bases.

The following result shows that there are many valid bases:

Theorem 1.3.12 (Davio, Deschamps and Gossart [21]) Given any b ∈ Z[i] with modulus

larger than one, except 2 and 1 ± i, there exists a complete residue system D such that

(b,D) is a valid base for C.

The following result gives an entire class of complex bases:

Theorem 1.3.13 (Kátai and Szabó [51]) If b ∈ Z[i], with norm N and D = {0, 1, 2, . . . ,
N − 1}, then (b,D) is a valid base for C iff b = −n± i, for some positive integer n.

Further generalizations can be found in [30, 50].

Corollary 1.3.14 The pair (−1 + i, {0, 1}) is a valid base.

It is possible to generalize the notion of a valid base to any number system. Thus, an

integer β will be called a valid base for a number system, using the set of integer digits D,

if 0 ∈ D and if every integer z in the number system can be represented uniquely in the

form

z =
tz−1
∑

j=0

djβ
j, where dj ∈ D and tz ∈ N+.

The notation for the expansion is the same as that given in Definition 1.3.5. The following

unpublished result of Gilbert characterizes valid bases where β is an algebraic integer. In

Section 2.3, we will demonstrate the validity of this result for number systems in Zn.
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Figure 1.7: Fundamental tiles of the complex bases (from left to right, top to bot-
tom) (−1 + i, {0, 1}), (−2 + i, {0, . . . , 4}), (−3 + i, {0, . . . , 9}), (−4 + i, {0, . . . , 16}),
(2 + i, {0, 1, i,−i,−2− 3i}), (2 + i, {0, 1,−1, i,−i}) and (2i, {0, 1, i, 1 + i}). Each of these
tiles has Lebesgue measure 1.
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Theorem 1.3.15 (Gilbert [34]) If β is an algebraic integer and D is a complete residue

system for Z[β] modulo β, that contains 0, then the following are equivalent:

i) The integer β is a valid base using the digit set D;

ii) For every z ∈ Z[β] there exists a positive integer r such that Φr(z) = 0, where the

function Φ : Z[β] → Z[β] is defined by Φ(z) = (z − d)/β, d ∈ D and d ≡ z mod β;5

iii) The integer β and all its conjugates have moduli greater than one and there is no

positive integer t for which

dt−1β
t−1 + . . .+ d1β + d0 ≡ 0 mod (βt − 1) with dt−1, . . . , d0 ∈ D

and not all di are equal to zero.

1.3.2 Representation in a Complex Base

There are various algorithms for determining the representation of Gaussian integers in a

valid base. These are due to Gilbert [30, 33, 34, 35].

Algorithm 1.3.16 (Base Conversion Algorithm) (Gilbert [34]) Let (b,D) be a valid

base. Since D is a complete residue system for Z[i] modulo b then, given z ∈ Z[i], there

exist unique integers qj ∈ Z[i] and aj ∈ D, j = 1 . . . t, t ∈ N+ such that

z = q1b+ a0

q1 = q2b+ a1

...

qt = 0b+ at.

Hence, z = (at . . . a1a0)b.

5Here Φr(z) denotes the r-fold composition of Φ at z.
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Example 1.3.17 Let z = 5 + 12i. Find the address of z in (−2 + i, {0, 1, 2, 3, 4}). Using

the Base Conversion Algorithm

5 + 12i = (2− 5i)(−2 + i)+4

2− 5i =(−1 + 2i)(−2 + i)+2

−1 + 2i = (2)(−2 + i)+3

2 = (0)(−2 + i)+2

Hence the address of 5 + 12i is (2324).

Given a rational number, there is the Long Division Algorithm for finding the repre-

sentation [35].

Algorithm 1.3.18 (Long Division Algorithm) Let (b,D) be a valid base for C. Given

Gaussian integers v and w 6= 0, there exists A ∈ Z[i], and digits aj ∈ D, such that

v = Aw + r0

br0 = a1w + r1

br1 = a2w + r2
...

where the remainders rj ∈ RemSet(b,D, w) = wT (b,D) ∩ Z[i].

There may be choices in the algorithm, but for each choice,

v

w
= A+ (0.a1a2 . . .).

Since the integer part A can be represented in base (b,D), we obtain a representation of

v/w in this base. In addition, any expansion can be obtained in this way.

Proof The proof uses IFS. It also uses the Escape Time Algorithm to show that, with

the given remainder set, the sequence of remainders stays bounded. �
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There is also an algorithm for finding the remainder set [35]. This set can be found by

considering a directed graph over Z[i]. However, this involves determining which integers

inside the ball of radius M |w|/(|b| − 1), where M is the largest modulus of the elements of

D, are remainders. Since b is fixed, this ball grows rapidly with |w|. For example, given

the base (−1 + i, {0, 1}) and w = 1000, the ball contains approximately 2× 106 integers.

An enormous amount of calculation is required to build this graph. Indeed, our first

attempt to link wavelets and complex bases utilized this approach. For 512 × 512 images,

w = 512. Using a DEC Alpha, estimates indicated unmanageable calculation times would

be required to perform the remainder set algorithm, let alone to perform long division.

A fast algorithm, called the Clearing Algorithm, also exists for finding the expansion

of integers in bases of the form (b,D) where D ⊂ Z. For simplicity, we consider only bases

(−n + i, {0, 1, . . . , n2}), n ∈ N+. The reader is referred to [30] for the general result.

Algorithm 1.3.19 (Clearing Algorithm) (Gilbert [30]) Consider the valid base (−n+

i, {0, 1, . . . , n2}) and let p(x) be the minimal polynomial of b = −n + i. Thus

p(x) = x2 + 2nx+ n2 + 1.

Then the representation of any integer z ∈ Z[i] in the base can be obtained as follows:

Begin with z = m(b) = akb
k + · · · + a1b + a0, an expansion of z in powers of b with

integer coefficients. For instance, any Gaussian integer c + id can be expanded in powers

of b = −n+ i as c+ id = db+ (c+ nd). Consider this expansion as an element m(b) of the

polynomial ring Z[b]. Let r be the least integer such that ar /∈ D. If no such r exists, then

m(b) is the unique expansion of z in the base. We call such a polynomial clear.

If r exists, then let s be the integer such that 0 ≤ ar + s(n2 + 1) ≤ n2. Add sbr times

p(b) to m(b). Remember that we perform this operation in the polynomial ring Z[b]. Call

this new polynomial m1(b).

However, p(−n + i) = 0, thus m(b) and m1(b) are equal in C. Hence, m1(b) is an
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expansion of z in Z[b]. In addition, the coefficient of the r-th power of b in m1(b) is a digit.

We say that ar has been cleared.

Repeat the process of clearing coefficients, by induction on r, until a clear polynomial

is obtained. The resulting polynomial provides the expansion of z in (b,D). This process

must terminate after a finite number of steps.

Example 1.3.20 Determine the expansion of 5 + 12i in base (−2 + i, {0, 1, 2, 3, 4}).
The minimal polynomial of b = −2 + i is x2 + 4x + 5. Hence, b2 + 4b + 5 = 0 and, by

abuse of notation, we can write this as (1 4 5)b = 0. (Note that 5 is not in the digit set.)

Begin with the expansion 5 + 12i = 12b+ 29 = (12 29)b. Then, we clear the polynomial in

Z[b] as follows:

12 29

-5 -20 -25

-5 -8 4

2 8 10

2 3 2 4

Hence, the expansion of 5+12i in base (−2+ i, {0, 1, 2, 3, 4}) is (2324). A quick calculation

verifies that this is indeed correct.

Given its generality, we have used the Base Conversion Algorithm to calculate the

addresses in our applications, which will be discussed in Chapter 3.

1.4 Wavelet Analysis

In this section, we summarize certain fundamental results of wavelet analysis with Haar

wavelets. The reader is referred to the paper of Gröchenig and Madych [37] for a more

in-depth discussion. At the end of the section, we present the results of IFS on wavelet

coefficient trees.
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1.4.1 Fundamentals of Wavelet Analysis

For simplicity, the discussion is restricted to Zn, although general lattices can be considered.

Definition 1.4.1 (Acceptable Dilation) A matrix A on Rn is an acceptable dilation for

Zn if AZn ⊂ Zn and if |λ| > 1 for each eigenvalue λ of A.

Example 1.4.2 The matrix

A =

(

1 −1

1 1

)

is an acceptable dilation since A has integer entries, and λ = 1± i, thus |λ| =
√

2 > 1. In

this case, | detA| = 2.

Throughout this section we will let q = | detA|.

Proposition 1.4.3 The properties of an acceptable dilation imply that q is an integer

greater than or equal to two.

Proof For j ∈ {1, 2, . . . , n}, let ej ∈ Zn be the vector with the entry 1 in the j-th

component and 0 elsewhere. By definition of A, Aej ∈ Zn. For i ∈ {1, 2, . . . , n}, the i-th

component of Aej is the (i, j)-th component of A, which must therefore be an integer.

Hence, A is an integer matrix. Thus, the determinant of A is an integer. By a result of

linear algebra, detA is the product of the eigenvalues of A. However, for each eigenvalue

λ, |λ| > 1. Hence, q = | detA| is an integer greater than 1 and therefore q ≥ 2. �

Let A be an acceptable dilation on L2(Rn), f ∈ L2(Rn) and x, y ∈ Rn. Define the

unitary dilation operator UA by

UAf(x) = | detA|−1/2f(A−1x)

and the translation operator τy by

τyf(x) = f(x− y).
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Then for each i ∈ Z and j ∈ Zn let fi,j ≡ U−i
A τjf . Hence,

fi,j(x) = qi/2f(Aix− j).

Using this notation, f0,0 = f . For simplicity also, we will write fi to mean f0,i.

We are interested in wavelet bases given by translation by integers.

Definition 1.4.4 A wavelet basis B, associated with an acceptable dilation A, is a basis

of L2(Rn) whose members are A dilates and Zn translates of a finite orthonormal set

S = {ψ1, . . . , ψm} ⊂ L2(Rn), where m ∈ N+. More precisely,

B = {ψl
i,j : l = 1, . . . , m; i ∈ Z; j ∈ Zn},

where ψl
i,j = qi/2ψl(Aix− j). The elements of S are called the basic (mother) wavelets.

Example 1.4.5 (Haar Wavelets) Let n = 1 and Ax = 2x, x ∈ R. Then, the Haar basis

satisfies Definition 1.4.4, with m = 1 and

ψ(x) =



















1 0 ≤ x < 1/2,

−1 1/2 ≤ x < 1,

0 otherwise.

The Haar mother wavelet is sketched in Figure 1.8 on page 49.

A direct proof of this fact can be found in [87, p. 9]. However, a general proof that

this function generates a wavelet basis follows from the theory of multiresolution analysis.

This is one of the fundamental concepts of wavelet theory. For more details on MRA,

see [20, 61, 69, 70].
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Consider the definition of a multiresolution analysis as given in [37] where the lattice

Γ = Zn.6

Definition 1.4.6 Let A be an acceptable dilation for Zn. A multiresolution analysis

(MRA) associated with A is a sequence of closed subspaces (Vi)i∈Z of L2(Rn), satisfying:

i) Vi ⊂ Vi+1, ∀i ∈ Z;

ii) ∪i∈ZVi = L2(Rn);

iii) Vi = U−i
A V0, ∀i ∈ Z;

iv) τjV0 = V0, ∀j ∈ Zn; and

v) there is a function φ ∈ V0, called the scaling function,

such that {τjφ : j ∈ Zn} is a basis for V0.

Properties iii) and iv) imply that {φi,j : j ∈ Zn} is a basis for Vi for each i ∈ Z. Since

φ ∈ V0 ⊂ V1, we obtain the dilation equation:

φ(x) =
∑

j∈Zn

hjφ1,j(x)

=
∑

j∈Zn

hjU
−1
A τjφ(x)

=
∑

j∈Zn

hj| detA|1/2φ(Ax− j), ∀x ∈ Rn,

where hj = 〈φ, φ1,j〉, ∀j ∈ Zn.

Given a multiresolution analysis we define, for each i ∈ Z, the space Wi as the orthog-

onal complement of Vi in Vi+1: Wi = Vi+1	Vi. Thus, it follows that Wi = U−i
A W0 and that

6In [37], a lattice means an image of Zn under some nonsingular linear transformation.
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L2(Rn) =
⊕

i∈Z
Wi.

7

Recalling the result of Meyer [68] that there exist q−1 functions ψ1, . . . , ψq−1 such that

{τjψl : j ∈ Zn; l = 1, . . . , q − 1} is a basis for W0, then the set

{ψl
i,j : l = 1, . . . , q − 1 ; i ∈ Z ; j ∈ Zn}

is a wavelet basis for L2(Rn). Since W0 ⊂ V1, we get a dilation equation for each of the ψl,

l = 1, . . . , q − 1:

ψl =
∑

j∈Zn

gl
jφ1,j ,

where gl
j = 〈ψl, φ1,j〉, ∀j ∈ Zn. The coefficients hj and gl

j are called the filter coefficients

of the scaling function and wavelet functions respectively.

Example 1.4.7 With the theory of MRA, it follows that the function ψ in Example 1.4.5

generates a wavelet basis, by considering the function φ = χ
[0,1] in L2(R), with A = 2.

This is the most basic scaling function, and is called the Haar scaling function. Its dilation

equation is

φ(t) = φ(2t) + φ(2t− 1).

The mother wavelet already presented is given by

ψ(t) = φ(2t)− φ(2t− 1).

Therefore, the filter coefficients are given by

h0 = g0 =
1√
2

(1.5)

h1 = −g1 =
1√
2
. (1.6)

The two functions are sketched in Figure 1.8.

7The symbol
⊕

denotes the orthogonal direct sum.
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-

6φ(t)

t

1

1

-1

-

6ψ(t)

t

1

-1

1

Figure 1.8: The Haar scaling function φ (left) and a mother wavelet ψ (right).

Example 1.4.8 The Shannon scaling function is shown in Figure 1.9 on page 51. It is

given by the equation

φ(t) =
sin(πt)

πt
.

Thus, by the Shannon sampling theorem,8 it satisfies the scaling relation

φ(t) =
∑

n∈Z

sin(πn/2)

πn/2
φ(2t− n).

In this example, there are infinitely many filter coefficients. In general, there are many

choices of the mother wavelet function ψ. For the Shannon system, two such functions are

ψ(t) = 2φ(2t)− φ(t)

=
sin(2πt)− sin(πt)

πt

8This theorem is fundamental in engineering. It is also referred to as the Nyquist theorem, but is
originally a result of Whittaker. For further details, see [15, p. 44].
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and

ψ(t) =
sin π(t− 1

2
)− sin 2π(t− 1

2
)

π(t− 1
2
)

.

For more details, see [15].

Finding the scaling function φ and the functions ψl may be extremely difficult in general.

However, in the case where the scaling functions are characteristic functions on self-similar

lattice tilings, such basic wavelets can always be found.

1.4.2 Self-Similar Lattice Tilings

We assume that the reader is familiar with the notions of measurability. A good reference

is [77]. Let Q,R ⊂ Rn be Lebesgue measurable.

Denote by χQ the characteristic function of Q. That is

χ
Q(x) =















1 x ∈ Q,

0 x /∈ Q.

Example 1.4.9 The Haar function χ
[0,1] is a characteristic function on R.

Let |Q| denote the Lebesgue measure of Q. Write Q ' R if |Q\R| = |R\Q| = 0.

Example 1.4.10 We have that [0, 1] ' (0, 1) since points have Lebesgue measure zero.

We also state the following definitions.

Definition 1.4.11 A set Q is said to tile Rn by integer translates if:

i)
⋃

k∈Zn(Q + k) ' Rn; and

ii) Q ∩ (Q+ k) ' ∅, ∀k ∈ Zn\{0}.
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φ(x) = sin(πx)
(πx)

-2

-1.5

-1

-0.5

0

0.5

1

-4 -2 0 2 4

ψ(x) = 2φ(2x)− φ(x)

Figure 1.9: The Shannon scaling function φ and a mother wavelet ψ.
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Example 1.4.12 The set Q = [0, 1] tiles R by integer translates since R = ∪n∈Z[n, n+ 1].

Proposition 1.4.13 Let Q be a measurable subset of Rn satisfying
⋃

k∈Zn(Q + k) ' Rn.

Then the following are equivalent:

i) Q ∩ (Q+ k) ' ∅, ∀k ∈ Zn\{0};

ii) |Q| = 1.

Proof Let f(x) =
∑

k∈Zn
χ

Q(x− k).

i) =⇒ ii) Since Q tiles Rn by integer translates, then f ≥ 1 almost everywhere (a.e.).

However, i) implies that f ≤ 1 a.e. Thus f ≡ 1 a.e., and hence

|Q| =
∫

χ
Q =

∫

In

f = |In| = 1,

where I = [0, 1].

ii) =⇒ i) Again, f ≥ 1 a.e. However, by ii),
∫

In f = |Q| = 1. Therefore f ≡ 1 a.e.,

which implies i). �

Definition 1.4.14 We say that a scaling function φ for an MRA of L2(Rn) is a Haar

scaling function if φ = χ
Q for some measurable subset Q of Rn.

In [37], Gröchenig and Madych completely characterized these scaling functions and their

supports. Before presenting their results, we first give a short definition, which is analogous

to Definition 1.3.7.

Definition 1.4.15 A subset of Zn consisting of one element from each coset of the quotient

ring Zn/AZn is called a complete residue system for Zn modulo A.

The cosets of Zn/AZn are precisely the sets Sk, k ∈ Zn, where z ∈ Sk if and only if there

is some m ∈ Zn such that z = Am + k. One can show that a complete residue system for

Zn/AZn contains q = | detA| elements.
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Example 1.4.16 Let A be the matrix

A =

(

0 2

−1 0

)

.

Then {(0,−1), (1,−1)} is a complete residue system for Z2/AZ2. This follows since if

z = (x, y) ∈ Z2 with x even, then z = Am+ k1, with m = (−y − 1, x/2) and k1 = (0,−1).

If x is odd, then z = Am + k2, with m = (−y − 1, (x − 1)/2) and k2 = (1,−1). In both

cases, m ∈ Z2.

Theorem 1.4.17 Suppose A is an acceptable dilation for Zn and let Q be a measurable

subset of Rn. The function φ = |Q|−1/2χ
Q is the scaling function for a multiresolution

analysis associated with A if and only if the following conditions are satisfied:

i) Q tiles Rn by integer translates;

ii) AQ ' ⋃k∈K(Q+ k) for some complete residue system K of Zn/AZn; and

iii) Q ' C for some compact subset C of Rn.

A set satisfying Property ii) is called self-similar in the affine sense. By Proposition 1.4.13,

we must have |Q| = 1. Hence,

φ(x) =
∑

k∈K

φ(Ax− k), ∀x ∈ Rn.

Therefore, the filter coefficients hj of φ are identically q−1/2 for j ∈ K and zero otherwise.

Theorem 1.4.18 Let K be a complete residue system of Zn/AZn. Then there exists

a unique solution of φ =
∑

k∈K q−1/2φ1,k in L1(Rn), up to multiplication by a constant.

Furthermore, this solution has support in the compact set

Q =

{ ∞
∑

i=1

A−iki : ki ∈ K
}

.
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Theorem 1.4.19 Let A be an acceptable dilation for Zn and let Q ⊂ Rn. Then the

function φ = χ
Q is the scaling function of an MRA associated with A if and only if |Q| = 1

and Q is of the form given in Theorem 1.4.18 for some complete residue system K of

Zn/AZn.

Now, let (Vi)i∈Z be a multiresolution analysis associated with A, with φ = χ
Q. By

Theorem 1.4.19, let K be the complete residue system generating Q. We write (A,K) to

denote an MRA.

Lemma 1.4.20 The space W0 consists of the functions f ∈ L2(Rn) such that

f(x) =
∑

k∈Zn

skq
1/2χ

Q(Ax− k),

where (sk) ∈ `2(Zn), satisfying
∑

k∈K sk+Am = 0, ∀m ∈ Zn.9

Proof If f ∈ W0, then f =
∑

k∈Zn skφ1,k, for some (sk) ∈ `2(Zn). Given m ∈ Zn,

τ−mf ∈ W0 and

τ−mf =
∑

k∈Zn

skφ1,k−Am

=
∑

l∈Zn

sl+Amφ1,l.

Thus

0 =<τ−mf, φ>

=
∑

l∈Zn

sl+Am <φ1,l, φ>

= q−1/2
∑

l∈K

sl+Am,

by Theorem 1.4.17.

9The symbol `2(Zn) denotes the space of all square summable sequences over Zn.
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Conversely, if f is of the prescribed form, then f ∈ V1. Given m ∈ Zn,

<f, φ0,m> =
∑

k∈Zn

sk <φ1,k, φ0,m>

=
∑

k∈Zn

sk <φ1,k−Am, φ>

=
∑

l∈Zn

sl+Am <φ1,l, φ>

= q−1/2
∑

l∈K

sl+Am

= 0.

Hence f ∈ W0. �

Using this result, Gröchenig and Madych characterized all the wavelets for such MRA.

Lemma 1.4.21 Let φ = χ
Q be the scaling function for an MRA of L2(Rn) associated with

A and let K = {k1, . . . , kq} be the complete residue system generating Q. Let U = (uij)

be a unitary q × q matrix, with u1j = q−1/2, j = 1, . . . , q. For i = 1, . . . , q − 1, define

ψi =

q
∑

j=1

ui+1jφ1,kj
.

Then {τjψi : i = 1, . . . , q − 1 ; j ∈ Zn} is a basis for W0. Conversely, any set of basic

wavelets for an MRA associated with φ = χ
Q must arise in such a way.

The last fact is due to φ being a characteristic function, and since {τkφ : k ∈ Zn} is an

orthonormal set. We therefore obtain the following important result:

Theorem 1.4.22 Let {ψ1, . . . , ψq−1} be as given in Equation (1.4.21). Then {ψl
i,j : l =

1, . . . , q − 1 ; i ∈ Z; j ∈ Zn} is a basis for L2(Rn).
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Example 1.4.23 For q = 2, there are only two possible matrices U :

U =

(

1/
√

2 1/
√

2

±1/
√

2 ∓1/
√

2

)

.

Another example, slightly different than the one in [37] is the following.10

Example 1.4.24 For q ≥ 3, define the unitary matrix U = (uij), by letting u1j = q−1/2

and

uij =

√

2

q
cos

(i− 1)(2j − 1)π

2q
,

for i = 2, . . . , q and j = 1, . . . , q.

We now show two examples of wavelets constructed using this method.

Example 1.4.25 Let

A =

(

2 0

0 2

)

.

The matrix has determinant 4. A complete residue system is K = {(0, 0), (1, 0), (0, 1),

(1, 1)}. Hence, its basic tile is simply I2.

This is the standard matrix for the separable wavelet transform. By separable, we mean

that the scaling function associated with this matrix is simply the tensor product of two

copies of the one-dimensional Haar scaling function given in Example 1.4.7. However, other

complete residue systems can be used and they generate fractal tilings [37].

Separable wavelets are well studied and are behind most of the wavelet compression

applications used to date. A discussion of separable wavelets can be found in [20, p. 313].

Our interest resides mainly with non-separable wavelets.

Example 1.4.26 Let

A =

(

1 −1

1 1

)

.

10The example given in [37] is not a unitary matrix.
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Here, q = | detA| = 2. Therefore, any complete residue system K contains 2 elements.

Since we can assume k1 = (0, 0) ∈ K, we must find some k2 = (k, l) ∈ Z2, such that there

does not exist an m ∈ Z2 satisfying

k2 = k1 + Am.

That is, there must not exist a solution (m1, m2) ∈ Z2 to the system

k = m1 −m2

l = m1 +m2.

We try k2 = (1, 0), and attempt to solve

1 = m1 −m2 (1.7)

0 = m1 +m2. (1.8)

Given such a solution, Equation (1.8) implies that m1 = −m2. Thus, by Equation (1.7),

−2m2 = 1. Since no integer m2 satisfies this condition, we see that K = {(0, 0), (1, 0)} is

a complete residue system for Z2/AZ2. Let Q be the tile generated by A and K. This tile,

known as the twin dragon, is shown in Figure 1.10 on the following page.

Recalling Example 1.4.23, we now choose

ψ(x) = χ
Q(Ax)− χ

Q(Ax− (1, 0)).

This function is identically 1 on A−1Q, −1 on A−1(Q+(1, 0)), and 0 elsewhere. This basic

wavelet is shown in Figure 1.10 on the next page. For clarity, the positive and negative

parts are shown in black, and the zero values are not shown.

1.4.3 Mallat Algorithm

The strength of the multiresolution analysis method lies in the reconstruction and decom-

position algorithms, discovered initially by Mallat [61]. These algorithms are a fundamen-
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Figure 1.10: The support of the scaling function of Example 1.4.26 (left) and its basic
wavelet (right).

tal component of wavelet analysis applied to signal and image processing. They will be

reviewed here.

Suppose (Vi)i∈Z ⊂ L2(Rn) is an MRA and that f ∈ Vi+1 = Vi⊕Wi. We have two bases:

one for Vi+1 and one for Vi ⊕Wi. Therefore,

f =
∑

z∈Zn

si+1,zφi+1,z

=
∑

j∈Zn

si,jφi,j +

q−1
∑

l=1

∑

j∈Zn

wl
i,jψ

l
i,j,

where the scaling coefficients sm,n = 〈f, φm,n〉 and the wavelet coefficients wl
m,n = 〈f, ψl

m,n〉.

By rewriting the dilation equations for φ and for the functions ψl, one can arrive at dilation

equations for φi,j and the ψl
i,j. Since φ =

∑

z∈Zn hzφ1,z, then
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φi,j = U−i
A τjφ

=
∑

z∈Zn

hzU
−i
A τjφ1,z

=
∑

z∈Zn

hzU
−i
A φ1,z+Aj

=
∑

z∈Zn

hzφi+1,z+Aj

=
∑

z∈Zn

hz−Ajφi+1,z.

Similarly,

ψl
i,j =

∑

z∈Zn

gl
z−Ajφi+1,z.

Thus we find that

si,j = 〈f, φi,j〉

=

〈

f,
∑

z∈Zn

hz−Ajφi+1,z

〉

=
∑

z∈Zn

hz−Ajsi+1,z, (1.9)

and similarly

wl
i,j =

∑

z∈Zn

gl
z−Ajsi+1,z. (1.10)
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w0,0

w1,0

w2,0

w3,0 w3,1

w2,1
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w1,1

w2,2

w3,4 w3,5

w2,3

w3,6 w3,7

Figure 1.11: Base of the wavelet tree for an L2(R) function, with A = 2.

This is the decomposition of higher resolution scaling coefficients into lower resolution

scaling coefficients and wavelet coefficients.

By comparing the two series for f , and since the expansion in each basis is unique, we

have

si+1,z =
∑

j∈Zn

hz−Ajsi,j +

q−1
∑

l=1

∑

j∈Zn

gl
z−Ajw

l
i,j. (1.11)

This is the reconstruction of the higher resolution scaling coefficients from the lower reso-

lution scaling coefficients and wavelet coefficients.

A multiresolution analysis therefore lets you study a function at various scales, or

resolutions. It also gives a well-defined tree structure for the coefficients. An example is

shown in Figure 1.11.

Example 1.4.27 Let φ be the one-dimensional Haar scaling function, with filter coeffi-

cients h0 = h1 = g0 = −g1 = 1√
2
. Perform the wavelet decomposition of the function

f = 5φ2,0 + 3φ2,1 − 2φ2,2 + φ2,3.

Given the filter coefficients, we can rewrite the decomposition equations as

si,j =
1√
2
(si+1,2j + si+1,2j+1)

wi,j =
1√
2
(si+1,2j − si+1,2j+1).
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Hence we obtain the decomposition given in Table 1.4.

s2,0 = 5 s2,1 = 3 s2,2 = −2 s2,3 = 1

s1,0 = 8/
√

2 s1,1 = −1/
√

2 w1,0 =
√

2 w1,1 = −3/
√

2
s0,0 = 7/2 w0,0 = 9/2.

Table 1.4: Mallat decomposition of a simple function.

The wavelet decomposition is therefore the tree of wavelet coefficients and the remaining

scaling coefficient s0,0. These can be written in tree form as shown in Figure 1.12.

7/2

9/2

√
2 −3/

√
2

Figure 1.12: Decomposition tree of a simple function.

Example 2.1.7 will demonstrate that this is not always possible for an MRA.

In addition to the decomposition, MRA have a second important property. The scaling

functions act like Dirac delta functions, as the following result of Daubechies shows [20].

Theorem 1.4.28 Given a continuous function f ∈ L2(Rn),

lim
i→∞

qi

∫

Rn

f(x+ y)φ(Aiy)dy = f(x).

Therefore, if we let si,j = 〈f, φi,j〉, then

si,j ≈ q−i/2f(A−ij),

for large enough values of i.
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In practice, Theorem 1.4.28 is used to sample a function to be studied. Then, the

decomposition algorithm is performed on the resulting scaling coefficients. Subsequently,

the wavelet coefficients are studied, or acted upon. Then, the reconstruction algorithm is

performed on the modified wavelet coefficients to build a new function.

One problem in performing the decomposition algorithm is that at each level it is

necessary to compute for each si,z and each k ∈ K, all the values of j such that j =

A−1(z− k). If we start with wavelet coefficients and perform the reconstruction algorithm

to reconstruct the original function, it is necessary to find for each j the value of k and

z such that j = A−1(z − k). In Chapter 2 we present a case where these relationships

between the j and z can be calculated beforehand and stored, hence reducing computation

time of the algorithm.

For further theory on the algorithm, and wavelets in general, see Daubechies’ book

Ten Lectures on Wavelets [20, p. 202]. Note that one never needs to compute actual

Fourier-type integrals to determine the wavelet expansion coefficients, unlike the situation

for non-wavelet bases.

1.4.4 Fundamentals of IFS on Wavelet Trees

The final components of the background material are the topics of IFS on wavelet trees and

the associated inverse problem. This theory has been developed in major part by Forte,

Mendivil, van de Walle and Vrscay, among others. Some references include [27, 65, 66, 67,

86].

Given the natural relation between L2(X) and `2(Z), an IFSM operator T can be

associated with an operator M on `2(Z). Let (qi) be an orthonormal basis of L2(X). Then
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a function u ∈ L2(R) can be written as

u =
∑

i

uiqi, (1.12)

where ui =< u, qi > . The association between T and M is illustrated by the following

commutative diagram:

L2(X) `2(Z)

L2(X) `2(Z)

-F -
∼=

?

T

?

M

-F -
∼=

where F is the isomorphism between L2(X) and `2(Z) given by F (
∑

n cnqn) = (cn).

The function F is an isomorphism of Hilbert spaces. Hence, if T is affine and linear,

then so will M be. Also, if T is contractive, then M is contractive. We will consider this

relation in the case when (qi) is a wavelet basis.

Theorem 1.4.29 Let (qn) be an orthonormal basis of L2(R) and F be its associated

transform as given above. Then T is a contractive operator on L2(R) with fixed point ūT

if and only if the operator M = F ◦ T ◦ F−1 is contractive on `2(Z) with fixed point ūM ,

where ūM = F ūT .

Consider the case when T is the associated IFSM operator of an N -map affine IFSM

on X = L2(R). Then given u ∈ L2(R), if v = Tu,

v =
∑

m

vmqm,
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where

vm =< v, qm >

=< Tu, qm >

=

N
∑

k=1

αk < u ◦ w−1
k , qm > +

N
∑

k=1

βk < χ
wk(X), qm > .

Therefore, by Equation (1.12) on page 63,

vm =
N
∑

k=1

αk

∑

n

un < qn ◦ w−1
k , qm > +

N
∑

k=1

βk < χ
wk(X), qm >

=
∑

n

amnun + em, (1.13)

where amn =
N
∑

k=1

αk < qn ◦ w−1
k , qm > and em =

N
∑

k=1

βk < χ
wk(X), qm >.

By Equation (1.13), we get the following result [27]:

Proposition 1.4.30 Let (qn) be an orthonormal basis of L2(R) with associated transform

F . If T is an affine IFSM on L2(R), then M = F ◦ T ◦ F−1 is an affine IFS on coefficients

(IFSC ) on `2(Z) and has the form Mu = Au+e, where A = (amn) and e = (em), m,n ∈ Z
are given above.11

In general, the matrix A is not sparse, for example with the Discrete Cosine Transform [67].

However, due to the localization properties of wavelets, many of the entries of A will vanish.

Example 1.4.31 Let X = [0, 1] and T be the operator defined by

Tu(x) =
1

2
u(2x) +

1

2
u(2x− 1) x ∈ [0, 1].

This is the IFSM operator of the affine IFSM given by w1(x) = 1
2
x, w2(x) = 1

2
(x+ 1) and

11By an IFSC, we mean an operator which acts on sequences in some “IFS”-type manner.
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φ1(t) = φ2(t) = 1
2
t. The fixed point of T is ūT ≡ 0. Consider the operator M given when

(qn) is chosen to be the Haar basis on L2[0, 1]. We assign the following ordering to the

basis elements:

q−1 = φ;

q2i+j−1 = ψi,j, i ∈ N, 0 ≤ j ≤ 2i − 1.

Then the operator A is

A =
1

2
√

2



















































































√
2 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 0 0 . . .

0 0 1 0 0 0 0 0 0 . . .

0 0 0 1 0 0 0 0 0 . . .

0 0 1 0 0 0 0 0 0 . . .

0 0 0 1 0 0 0 0 0 . . .

0 0 0 0 1 0 0 0 0 . . .

0 0 0 0 0 1 0 0 0 . . .

0 0 0 0 0 0 1 0 0 . . .

0 0 0 0 0 0 0 1 0 . . .

0 0 0 0 1 0 0 0 0 . . .

0 0 0 0 0 1 0 0 0 . . .

0 0 0 0 0 0 1 0 0 . . .

0 0 0 0 0 0 0 1 0 . . .

0 0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
... 0 0

. . .



















































































The above proposition only works one way. A general question to resolve is, “Given an

affine IFSC M on `2(Z), is the operator T an affine IFSM?” The question is therefore:

Question 1.4.32 Given an affine IFSC M on `2(Z), defined by Mu = Au + e with

A = (amn) and e = (ek), does there exist an N -map IFSM (w,Φ), for some orthonormal
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basis (qn) of L2(R), such that

amn =

N
∑

k=1

αk < qn ◦ w−1
k , qm >

and

em =

N
∑

k=1

βk < χ
wk(X), qm >

for m,n ∈ Z?

A case where this question has been solved is for LIFSW.

1.4.5 Local IFS on Wavelet Coefficients

In this subsection we present briefly the ideas of local IFS on wavelet coefficients (LIFSW)

in the 1-dimensional case as presented in [67]. The 2-dimensional extension can be found

in [86]. In Section 2.5, we define a generalized LIFSW in higher dimensions.

Let φ be a scaling function with MRA (Vm) and ψ be the associated mother wavelet.

For simplicity, we focus our attention on functions f ∈ L2(R) that have expansions

f = a00φ+

∞
∑

i=0

2i−1
∑

j=0

bi,jψi,j

where a00 =< f, φ > and bi,j =< f, ψi,j >. Assume ψ has compact support on R. The

expansion coefficients can be written in a meaningful way as shown in Figure 1.13 on the

facing page, where Bi,j represents the subtree of coefficients with node bi,j, and is called

the block Bi,j. We say that the coefficients bi,j are on level i, and a0,0 is at level -1. The

above diagram is called the wavelet (coefficient) tree of f and is denoted by Bf .
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a0,0

b0,0

b1,0 b1,1

...
Bk,0 Bk,1 . . . Bk,2k−1

Figure 1.13: Block representation of a wavelet tree.

With the idea of IFSM in mind, one considers an operator on this wavelet tree.

Definition 1.4.33 Given an MRA with scaling function φ, mother wavelet ψ and dilation

factor 2, define an operatorW as follows: Let k, k∗ ∈ Z, with k ≥ 0, k∗ > k, and αj ∈ R, 0 ≤
j ≤ 2k∗− 1. Define the action of the operator W on a wavelet tree B0,0 as W (B0,0) = B∗

0,0,

where the nodes of B∗
0,0 are given by

a∗0,0 = a0,0,

b∗i,j = bi,j 0 ≤ i ≤ k∗ − 1, 0 ≤ j ≤ 2i − 1,

b∗k∗+m,2mj+n = αjbk+m,2ml(j)+n m ≥ 0, 0 ≤ n ≤ 2m − 1,

0 ≤ j ≤ 2k∗ − 1, l(j) ∈ {0, 1, . . . , 2k − 1}.

In other words, W leaves the nodes of B0,0 untouched at levels less than k∗, and replaces

the subtree Bk∗,j by αjBk,l(j). The operator W is called a local IFS on wavelet coefficients,

or LIFSW . The blocks Bk,l, 0 ≤ l ≤ 2k− 1 are called the parent blocks (or domain blocks),

and the blocks B∗
k∗,j, 0 ≤ j ≤ 2k∗ − 1 are called the child blocks (or range blocks), since

W maps the parent blocks to the child blocks. The parameters αj are called the scaling

factors of W .

Since W is an IFSC, it can be associated with an IFSM operator TW .
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a0,0

b0,0

b1,0 b1,1

...

bk−1,0
...

Bk,0 Bk,1 . . . Bk,2k−1

W7−→

a0,0

b0,0

b1,0 b1,1

...

bk∗−1,0
...

B∗
k∗,0 B∗

k∗,1 . . . B∗
k∗,2k∗−1

Figure 1.14: Action of W on a wavelet tree.

Definition 1.4.34 Given f ∈ L2(R), with wavelet expansion

f = a0,0φ0,0 +

∞
∑

m=0

2m−1
∑

n=0

bm,nψm,n,

define the function fk,p, for p ≥ 0, by

fk,p =
∞
∑

m=0

2m−1
∑

n=0

bk+m,2mp+nψk+m,2mp+n.

The action of W on the tree Bf is given in Figure 1.14. Now, consider the functions

v∗j = (TWf)k∗,j. All its wavelet coefficients are equal to 0 except that B
v∗j
k∗,j = αjB

f
k,l(j).

Therefore,

v∗j =
∞
∑

m=0

2m−1
∑

n=0

b∗k∗+m,2mj+nψk∗+m,2mj+n.

However, notice that

fk,l(j) =

∞
∑

m=0

2m−1
∑

n=0

bk+m,2ml(j)+nψk+m,2ml(j)+n,
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and that

b∗k∗+m,2mj+n = αjbk+m,2ml(j)+n, m ≥ 0, 0 ≤ n ≤ 2m − 1. (1.14)

One can thus use the scaling and dilation relations between the ψm,n to write v∗j as a

multiple of fk,l(j)◦w−1
j for some appropriate function wj. The function wj can be calculated

as follows:

ψk,l(j)(x) = 2k/2ψ(2kx− l(j)),

ψk∗,j(x) = 2k∗/2ψ(2k∗x− j)

= 2(k∗−k)/22k/2ψ(2kw−1
j (x)− l(j)).

Equating the arguments of ψ yields

w−1
j (x) = 2k∗−kx+

l(j)− j

2k
, (1.15)

and hence by Equations (1.14) and (1.15),

v∗j (x) = 2(k∗−k)/2αjfk,l(j)

(

2k∗−kx +
l(j)− j

2k

)

.

The function

wj(x) = 2k−k∗x +
j − l(j)

2k∗

has contractivity factor 2k−k∗. The resulting operator TW is called a recurrent (vector)

IFSM with condensation (c.f. [16, 67]). By this is meant that TW acts between orthogonal

components of the wavelet tree and has condensation function



70 CHAPTER 1. MATHEMATICAL BACKGROUND

k∗−1
∑

m=0

2m−1
∑

n=0

bm,nψm,n.

A useful space, over which TW is contractive, was constructed in [27]. Let u ∈ L2(R)

and let W be as above. Let

Cw(u, k∗) = {a0,0, bm,n, m ≥ 0, 0 ≤ n ≤ 2m − 1 :
∑

|bm,n|2 <∞

with bm,n =< u, ψm,n >, 0 ≤ m ≤ k∗ − 1, 0 ≤ n ≤ 2m − 1}.

Consider the metric dw on Cw by

dw(c,d) = max
0≤j≤2k∗−1

∆2
j ,

where

∆2
j =

∞
∑

m=0

2m−1
∑

n=0

(bck∗+m,2mj+n − bdk∗+m,2mj+n)
2,

where bc and bd refer to the wavelet coefficients of c and d respectively. By the completeness

of `2(Z) it follows that

Proposition 1.4.35 The metric space (Cw(u, k∗), dw) is complete.

In addition, the following result holds:

Proposition 1.4.36 For c,d ∈ Cw(u, k∗),

dw(Wc,Wd) ≤ cwdw(c,d), cw = max
0≤j≤2k∗−1

|αj|.

Therefore, the BCMP yields the following result:
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Corollary 1.4.37 If cw < 1, there exists a unique ū ∈ Cw(u, k∗) such that W ū = ū.

Corollary 1.4.38 Let ε > 0 and c ∈ Cw(u, k∗). Suppose that W is an LIFSW such that

dw(c,Wc) < ε. Then

dw(c, ū) <
ε

1− cw
,

where W ū = ū.

Proof The result follows directly from Proposition 1.2.17 on page 13. �

The following results also hold. They are stated here since they have not been found

in the literature.

Theorem 1.4.39 Let W be as above. Letting W t(B0,0) = Bt
0,0, t ≥ 0 then

at+1
0,0 = a0,0,

bt+1
i,j = bi,j 0 ≤ i ≤ k∗ − 1, 0 ≤ j ≤ 2i − 1,

bt+1
i,j = bti,j 0 ≤ i ≤ (t+ 1)k∗ − tk − 1, 0 ≤ j ≤ 2i − 1.

That is, the nodes of Bt
0,0 at level i < (t + 1)k∗ − tk are invariant under W .

This shows that given a function with finitely many coefficients, the fixed point of the

IFSW is constructed after finitely many iterations. Also, in practice, the attractor can

therefore be constructed one level at a time.

Theorem 1.4.40 Letting k = 0 above (i.e. W is a strict IFSW), then the squared norm

of the nodes of Bt
0,0 from levels tk∗ to (t+ 1)k∗ − 1 is

k∗−1
∑

m=0

2m−1
∑

n=0

|bm,n|2




2k∗−1
∑

j=0

|αj|2




t

.
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Theorem 1.4.41 Let k = 0 above (i.e. W is a strict IFSW). Then the attractor B∞
0,0 =

limt→∞W t(B0,0) of W exists if and only if

2k∗−1
∑

j=0

|αj|2 < 1.

In that case, the norm of the attractor is

k∗−1
∑

m=0

2m−1
∑

n=0

|bm,n|2
∞
∑

t=0





2k∗−1
∑

j=0

|αj|2




t

.

Example 1.4.42 Consider the following operator

W : B00 7→
b00

α0B00 α1B00

.

We have k = 0, k∗ = 1, l(0) = l(1) = 0. Therefore

w−1
0 (x) = 2x+

0− 0

20
= 2x

w−1
1 (x) = 2x+

0− 1

20
= 2x− 1.

Also, f = f0,0, hence

TWf(x) = b0,0ψ0,0(x) + v∗0(x) + v∗1(x)

= b0,0ψ0,0(x) +
√

2α0f0,l(0) ◦ w−1
0 (x) +

√
2α1f0,l(1) ◦ w−1

1 (x)

= b0,0ψ0,0(x) +
√

2α0f0,0 ◦ w−1
0 (x) +

√
2α1f0,0 ◦ w−1

1 (x)

= b0,0ψ0,0(x) +
√

2α0f(2x) +
√

2α1f(2x− 1).

It is important to note that the IFSM operator TW , associated with an LIFSW operator W ,

depends upon the particular wavelet basis chosen. We illustrate this with some pictures.

The attractors of TW , using the Coifman-6, Daubechies-2 and Haar wavelets, are shown

in Figure 1.15 on the next page, where a0,0 = 0, b0,0 = 1, α1 = 0.2 and α2 = 0.3. Note
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Figure 1.15: The attractors of TW in Example 1.4.42 using Coifman-6, Daubechies-2 and
Haar wavelets.

the dependence of the attractor on the basis chosen. However, the attractor of W is basis

independent.

Given a target function f ∈ L2(R), we can use Corollary 1.4.38 to construct an LIFSW

on its coefficient tree [27]. The squared L2 distance associated with each range block B∗
k∗,j

and domain block Bk,l is given by

∆2
j,l =

∞
∑

m=0

2m−1
∑

n=0

(ck∗+m,2mj+n − αjck+m,2ml+n)2.

The optimal scaling factor ᾱj,l given by the least squares minimization is 12

ᾱj,l =
Sk∗,j,k,l

Sk,l,k,l

where

Sa,b,c,d =
∞
∑

m=0

2m−1
∑

n=0

ca+m,2mb+ncc+m,2md+n.

12Given that each node has the same number of children, this summation can be thought of naturally
as an inner product of coefficient trees at different levels (see [86]).
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The minimized collage distance is then

∆min
j,l = [Sk∗,j,k∗,j − ᾱj,lSk∗,j,k,l]

1/2.

Thus, as with LIFSM, for each range block B∗
k∗,j, choose the domain block Bk,l(j) for which

∆min
j,l(j) is minimized. Then, iterate the associated operator W on any initial c ∈ Cw(f, k∗).

For simplicity, one can let c be the sequence with cm,n = 0 for all m ≥ k∗. The function ū

associated with the fixed point ū of W is then given by

ū = ā0,0φ+

∞
∑

m=0

2m−1
∑

n=0

b̄m,nψm,n.

Section 2.6 generalizes this result to the case of LIFSW associated with number sys-

tems.



Chapter 2

Linking Complex Bases, Number

Systems, Wavelets and

Fractal-Wavelet Transforms

2.1 Linking Complex Bases to Wavelets

In the following sections, it is assumed that the scaling and wavelet functions arise from

multidimensional Haar bases and filters. It is possible that certain results can be generalized

to other wavelet bases.

The results in this chapter stem from the realization that the theory of MRA and

complex bases are related through a natural association. In order to be able to use this

terminology later, we define it here:

Definition 2.1.1 The natural association between C and R2 is given by s + it↔ (s, t)T .

Through the natural association, multiplication by the base b = c+id in C is equivalent

75
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to multiplication in R2 by the matrix

A =







c −d

d c






,

that is (c+id)(s+it) ↔ A(s, t)T . For simplicity of reading, we will generally write k = (s, t)

when referring to elements of R2, choosing to omit the transposition symbol. Thus it shall

be understood that Ak will mean AkT .

Lemma 2.1.2 Let b = c+ id ∈ Z[i] and D = {d1, d2, . . . , d|b|2} ⊂ Z[i] such that (b,D) is a

valid base. Then the matrix A, arising from the natural association of multiplication by b,

is an acceptable dilation for Z2, and the set K = {k1, k2, . . . , kq}, derived from D through

the natural association with dl ↔ kl, is a complete residue system of Z2/AZ2, with q = |b|2.

Proof Since the entries of A are integers, then AZ2 ⊂ Z2. Since (b,D) is a valid base,

detA = c2 + d2 = |b|2 ≥ 2. This follows from the fact that D is a complete residue system

of Z[i]/bZ[i]. The eigenvalues of A are given by λ as follows:

0 = det(A− λI) = (c− λ)2 + d2

= λ2 + c2 − 2cλ+ d2

= (λ− (c+ id))(λ− (c− id))

and hence λ = c ± id. Since c2 + d2 ≥ 2, then |λ| = |c ± id| > 1. Therefore, A is an

acceptable dilation for Z2.

To show that K is a complete residue system of Z2/AZ2, let v = (x, y)T ∈ Z2. Then

let z = x + iy ∈ Z[i]. Since (b,D) is a valid base, D is a complete residue system of

Z[i]/bZ[i] by Proposition 1.3.9, hence there is a unique dl ∈ D such that z = mb + dl for

some m = s+ it ∈ Z[i]. Therefore, through the natural association, v = A(s, t)T + kl and

kl is the unique element of K satisfying such a relation for an (s, t) ∈ Z2. If not, then

reversing the previous argument, there would be some dp 6= dl in D satisfying z = nb+ dp

for some n ∈ Z[i], which is a contradiction to the uniqueness of dl. �
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Notation 2.1.3 The terminology (A,K) is associated with a valid base (b,D) will mean

associated in the sense of Lemma 2.1.2.

Lemma 2.1.4 Let b,D,A,K be as defined in Lemma 2.1.2. Then the set

Q =

{ ∞
∑

i=1

A−iki : ki ∈ K
}

.

has two-dimensional Lebesgue measure 1.

Proof Since (b,D) is a valid base, the set T = T (b,D) =
{

∑−1
j=−∞ ajb

j : aj ∈ D
}

tiles

the plane by integer translates by Theorem 1.3.10. Therefore, |T | ≥ 1. To show |T | ≤ 1

consider its associated IFS w = {wl : l = 1, . . . , |b|2}, with

wl(z) =
(z + dl)

b
.

For each wl ∈ w and any set S in R2, |wl(S)| = |S|/|b|, hence |w(S)| ≤ |S|. Therefore,

starting the IFS on the unit square with vertices {0, 1, i, 1 + i}, we have |T | ≤ 1. Hence,

|T | = 1. Through the natural association

T (b,D) =

{ −1
∑

j=−∞
ajb

j : aj ∈ D
}

≡
{ ∞
∑

i=1

A−iki : ki ∈ K
}

= Q.

Hence, Q has measure 1. �

Therefore, the following result holds:

Theorem 2.1.5 Let b,D,A,K,Q be as defined in Lemma 2.1.4. Then φ = χ
Q is a scaling

function for an MRA associated with (Z2, A).

Proof By Lemma 2.1.2, A is an acceptable dilation and K is a complete residue system

of Z2/AZ2. By Lemma 2.1.4, Q has measure 1 and satisfies the form of Theorem 1.4.19.

Therefore, by Theorem 1.4.19, the result holds. �

Notation 2.1.6 An MRA associated with or arising from a valid base will mean an MRA

of the form of Theorem 2.1.5.
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To see why these types of MRA are of interest, consider the following example of the

decomposition algorithm.

Example 2.1.7 Recall Example 1.4.26:

A =

(

1 −1

1 1

)

.

with K = {(0, 0), (1, 0)}. Note that this is not associated with a valid base, a point which

will become clear shortly (see Theorem 1.3.12).

Consider the simple function f = φ(0,0) +φ(1,0) +φ(0,1) +φ(1,1). Recall from page 46 the

notation gj = g0,j. Its scaling coefficients are s0,(0,0) = s0,(1,0) = s0,(0,1) = s0,(1,1) = 1. We

will now perform the decomposition algorithm on these scaling coefficients.

To perform the decomposition algorithm from level i + 1 to level i, recall the decom-

position equation (Equation (1.9) on page 59):

si,j =
∑

z∈Zn

hz−Ajsi+1,z, j ∈ Z2.

In this example, the scaling filters are

hz−Aj =







1/
√

2 for z − Aj ∈ K,
0 otherwise.

Therefore, to find the non-zero si,j, we need to solve the equations z − Aj = (0, 0) = k0

and z − Aj = (1, 0) = k1 for z, j ∈ Z2, or

j = A−1z and j = A−1

(

z −
(

1

0

))

.

The inverse of A is

A−1 =

(

1
2

1
2

−1
2

1
2

)

.
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Now, define the following sets:

G0,0 =

{(

0

0

)

,

(

1

0

)

,

(

0

1

)

,

(

1

1

)}

,

G0,1 = G0,0 − k1

and for all negative i ∈ Z, define

Fi = (A−1Gi+1,0 ∪ A−1Gi+1,1) ∩ Z2,

Gi,0 = Fi

and

Gi,1 = Fi − k1.

By the definition of the decomposition algorithm, these sets Fi precisely give the non-zero

scaling coefficients at level i < 0. Then, the sets are as follows:

G0,0 =

{(

0

0

)

,

(

1

0

)

,

(

0

1

)

,

(

1

1

)}

, G0,1 =

{(−1

0

)

,

(

0

0

)

,

(−1

1

)

,

(

0

1

)}

,

F−1 =

({(

0

0

)

,

(

1/2

−1/2

)

,

(

1/2

1/2

)

,

(

1

0

)}

⋃

{(−1/2

1/2

)

,

(

0

0

)

,

(

0

1

)

,

(

1/2

1/2

)})

⋂

Z2

=

{(

0

0

)

,

(

0

1

)

,

(

1

0

)}

,

G−1,0 =

{(

0

0

)

,

(

0

1

)

,

(

1

0

)}

, G−1,1 =

{(−1

0

)

,

(−1

1

)

,

(

0

0

)}

,

F−2 =

({(

0

0

)

,

(

1/2

1/2

)

,

(

1/2

−1/2

)}

⋃

{(−1/2

1/2

)

,

(

0

1

)

,

(

0

0

)})

⋂

Z2

=

{(

0

0

)

,

(

0

1

)}

,

G−2,0 =

{(

0

0

)

,

(

0

1

)}

, G−2,1 =

{(−1

0

)

,

(−1

1

)}

,

F−3 =

({(

0

0

)

,

(

1/2

1/2

)}

⋃

{(−1/2

1/2

)

,

(

0

1

)})

⋂

Z2
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=

{(

0

0

)

,

(

0

1

)}

=⇒ Fi = Fi+1, Gi,0 = Gi+1,0, Gi,1 = Gi+1,1, ∀i < −2.

Therefore, we have the tree of scaling coefficients created from the coefficients on level

0, as illustrated in Figure 2.1. Since this MRA has two digits, each si,j is technically

constructed from two coefficients below it. However, some coefficients are originally zero

and hence many coefficients are essentially not used. These coefficients are designated by

the branches with no nodes at their end. This situation arises from the fact that the support

of the function is contained in, but does not cover an expanded copy of the principal tile.

This point is of particular interest and is discussed in Section 2.4.

s−3,(0,0)

s−2,(0,0)

s−1,(0,0)

s0,(0,0) s0,(1,0)

s−1,(1,0)

s0,(1,1)

s−3,(0,1)

s−2,(0,1)

s−1,(0,1)

s0,(0,1)

Figure 2.1: Mallat decomposition with non-intersecting branches.

We see from Figure 2.1 that using this MRA, the decomposition creates two non-

intersecting trees in the sense that as of level i = −2, there are always exactly two non-zero

scaling coefficients: si,(0,0) and si,(0,1).

The above situation cannot happen with an MRA associated with a valid base. However,

before investigating this further, it will be useful to first translate the Mallat algorithm for

MRA associated with valid bases.
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2.2 Mallat Algorithm Revisited

Consider the reconstruction and decomposition algorithms for an MRA associated with an

acceptable dilation A for Z2, with complete residue system K. Assume (A,K) is associated

with a complex base (b,D). Rewriting Equation (1.9) for the Mallat decomposition, we

have

si,j =
∑

z∈Z2

hz−Ajsi+1,z (2.1)

=
∑

l∈Z2

hlsi+1,l+Aj,

=
∑

k∈K

hksi+1,Aj+k, (2.2)

since hk = 0 when k /∈ K. We can translate this identity to the language of complex bases

as

si,j =
∑

d∈D

hdsi+1,bj+d, (2.3)

where the scaling filters and coefficients are re-indexed via the natural association. The re-

construction algorithm can be converted in a similar fashion. Following the same reasoning

as above, we rewrite Equation (1.11) for the Mallat reconstruction:
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si+1,z =
∑

j∈Z2

hz−Ajsi,j +

q−1
∑

l=1

∑

j∈Z2

gl
z−Ajw

l
i,j

=
∑

p∈z−AZ2

hpsi,A−1(z−p) +

q−1
∑

l=1

∑

p∈z−AZ2

gl
pw

l
i,A−1(z−p)

=
∑

k∈K

hksi,A−1(z−k) +

q−1
∑

l=1

∑

k∈K

gl
kw

l
i,A−1(z−k) (2.4)

since hk = 0 when k /∈ K. We can translate this identity to the language of complex bases

as

si+1,z =
∑

d∈D

hdsi,b−1(z−d) +

q−1
∑

l=1

∑

d∈D

gl
dw

l
i,b−1(z−d), (2.5)

where b−1(z−d) must be a Gaussian integer, by definition of si,b−1(z−d) and each wl
i,b−1(z−d).

For the moment, let us examine the decomposition algorithm in the language of complex

bases. Here, we can consider bj + d as the address of j shifted to the left by one place,

with d added as the zero-th order digit. We can then think of the index i as the length

of the address of j. The scaling coefficient associated with the point j is thus a linear

combination of the coefficients of the points whose addresses are one digit longer than that

of j, and start with the address of j. In other words, letting j have address (at . . . a1) in

base b, one could write the following equation:

s−t,(at...a1) =
∑

d∈D

hds−t+1,(at...a1d).

However, this simplistic conversion to address notation may lead to confusion. For example,

in base (−1 + i, {0, 1}), how does one denote the scaling coefficient derived from s0,(0) and
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s0,(1)? Also, one needs to put these coefficients in a tree, and a priori it is not clear

where to put s0,j if each j has a different address length. One of the nice properties of the

addressing in practice is the ability to read in a point from a file and directly place it in

the appropriate location in the scaling tree. Therefore, this question must be addressed –

literally.

In practice, one considers a set of scaling coefficients. These are often samples of a given

function on a set of lattice points using Theorem 1.4.28 of Daubechies. For simplicity, we

can relabel the scale so that i = 0. Therefore, the goal is to decompose the set {s0,z} for

some finite set X of integer indices z ∈ Z[i] into scaling and wavelet coefficients at levels

i < 0.

In order to simplify our discussion, it will be helpful to think of the addresses in the

subscripts as codes. We think of Dt as the code space of words with t letters taken from the

alphabet D (see Notation 2.2.6). We generally write these words as concatenations of the

digits rather than comma-separated sequences. However, when giving specific examples,

we will place a “·” between the digits to improve legibility. In this way, for example, we

will be able to use concatenation of sequences as we perform the Mallat algorithm. To do

this, we will introduce the following notation.

Notation 2.2.1 Let (b,D) be a valid base. If z =
u−1
∑

k=0

dkb
k, dk ∈ D then define, for each

t ∈ N, the address at
z,(b,D) in Dt as

at
z,(b,D) = (dt−1 . . . d1d0)(b,D),

where dk = 0 for k ≥ u, and with a0
z,(b,D) defined as the empty sequence. When the base is
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understood, we will simply write at
z. Then, define the minimal length of z ∈ Z[i] as

tz = min

{

t ∈ N : z =

t−1
∑

k=0

dkb
k, dk ∈ D

}

and define

az = atz
z,(b,D).

The address az is called the minimal address of z in (b,D).

The number t is the length of the address at
z. Also, since (b,D) is a valid base, tz >

0 is well defined and hence az is unique and is simply the positional notation given in

Definition 1.3.3. Also, tz is the largest value of t such that dt−1 6= 0.

Example 2.2.2 In the base (−1 + i, {0, 1}), the point −1 + 2i = b4 + b3 + 1, hence the

addresses at
−1+2i,(b,D) are as follows:

at
−1+2i,(b,D) =



































































∅ t = 0,

(1) t = 1,

(01) t = 2,

(001) t = 3,

(1001) t = 4,

(11001) t = 5,

(0 . . . 011001) t > 5.

Therefore, t−1+2i = 5 and a−1+2i = (11001). We define ∅ as the address of length zero. As

will be shown later, this is an acceptable minimal address for z = 0.

Notation 2.2.3 Let X ⊂ Z[i] be a finite set of integers and (b,D) be a valid base. Then

the length of X in (b,D) is defined as

LX,(b,D) = max{tz : z ∈ X}.
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Again for simplicity of notation, if the base is understood we simply write L. Finally, let

A = AX = {aL
z : z ∈ X}.

Example 2.2.4 Consider the set X = {−3,−2, . . . , 3} × {−2i,−i, . . . , 3i}. To determine

the length of X in base (−1 + i, {0, 1}), we need to generate the minimal address of each

point of X in this base. Figure 2.2 presents them.

3i 11010 11011 1110110 1110111 1010 1011 1100110

2i 1110100101 11000 11001 1110100 1110101 1000 1001

i 11110 11111 10 11 1110 1111 111010010

0 10001 11100 11101 0 1 1100 1101

−i 11101010 11101011 110 111 111010 111011 111010110

−2i 10101 11101000 11101001 100 101 111000 111001

−3 −2 −1 0 1 2 3

Figure 2.2: Minimal addresses of points in a set.

Therefore, L = 10 since this is the minimal length of −3 + 2i.

We can now properly define scaling and wavelet coefficients associated with a valid

base:

Definition 2.2.5 Let X ⊂ Z[i] be a finite set of indices. Let φ be a scaling function of

an MRA with filter coefficients {hd} and {gk
d}, d ∈ D, k = 1, . . . , q − 1 associated with a

valid base (b,D), with |b|2 = q. Suppose L = LX,(b,D). Then if f =
∑

z∈X

s0,zφ0,z, define, for

z ∈ X,

s0,(dL−1...d0) = s0,z.

For l ∈ N, 0 < l < L, define

s−l,(dL−1...dl) =
∑

d∈D

hds−l+1,(dL−1...dld),

wk
−l,(dL−1...dl)

=
∑

d∈D

gk
ds−l+1,(dL−1...dld), k = 1, . . . , q − 1.
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Finally, define

s−L,∅ =
∑

d∈D

hds−L+1,(d),

wk
−L,∅ =

∑

d∈D

gk
ds−L+1,(d), k = 1, . . . , q − 1.

Since it is cumbersome to write the sequences in full, it is practical to define a more compact

notation for the subscripts of these coefficients. We introduce it here for convenience:

Notation 2.2.6 Let Dt = {(dt−1 . . . d0) : dl ∈ D} with the convention that D0 = {∅}.
Then, given σ = (dt−1 . . . d0) ∈ Dt, define the l-th prefix of σ as

lσ = (dt−1 . . . dl),

where we define tσ = ∅.

We can simplify the notation as follows: Let

s0,aL
z

= s0,z

and for l ∈ N, 0 < l ≤ L, define

s−l,laL
z

=
∑

d∈D

hds−l+1,laL
z d,

wk
−l,laL

z
=
∑

d∈D

gk
ds−l+1,laL

z d, k = 1, . . . , q − 1,

where σρ = (s0 . . . smt0 . . . tn) denotes the concatenation of the two sequences σ = (s0 . . . sm)

and ρ = (t0 . . . tn).1

1We write aL
z d instead of aL

z (d) as a simplification.
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Theorem 2.2.7 The definition of s−l,laL
z

and wk
−l,laL

z
is consistent with the Mallat algo-

rithm.

Proof Let X, φ, {hd}, {gk
d}, b, D, L and f be as in the statement of Definition 2.2.5.

For z =
∑L−1

k=0 dkb
k, dk ∈ D, 0 < l < L let lz =

∑L−1
k=l dkb

k−l and let Lz = 0.2 For l = 0,

s0,aL
z

= s0,z. Now, let 0 < l ≤ L. By the decomposition equation, we have

s−l,laL
z

= s−l,lz

=
∑

d∈D

hds−l+1,lzb+d

=
∑

d∈D

hds−l+1,(dL−1...dld)

=
∑

d∈D

hds−l+1,laL
z d.

Replacing s−l,lz by wk
−l,zz and hd by gk

d in the above equations yields the consistency for

the wavelet coefficients.

Now, consider the reconstruction algorithm from level 0 < l ≤ L. First, notice the

following relation:

l−1z =

t−l
∑

k=l−1

dkb
k−(l−1) =

t−1
∑

k=l−1

dkb
k−lb

=

(

t−l
∑

k=l

dkb
k−l

)

b + dl−1

= lzb + dl−1. (2.6)

By Equation (2.5) on page 82, the reconstruction algorithm is given as

s−l+1,l−1z =
∑

d∈D

hds−l,b−1(l−1z−d) +

q−1
∑

k=1

∑

d∈D

gk
dw

k
−l,b−1(l−1z−d),

where each b−1(l−1z − d) must be a Gaussian integer, by definition of s−l,b−1(l−1z−d) and

2The reason that Lz is well defined, will be pointed out in the corollary below.
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wk
−l,b−1(l−1z−d). Given z ∈ Z[i], this will only occur if l−1z = d+ bm for some m ∈ Z[i]. To

find such a d, it is necessary to determine which coset of d+ bZ[i] that l−1z is in. However,

(b,D) is a valid base, hence there is a unique such d when z is expressed in base b, that is

d = dl−1.
3 Therefore, by Equation (2.6) we have

s−l+1,l−1z = hdl−1
s−l,lz +

q−1
∑

k=1

gk
dl−1

wk
−l,lz

,

or

s−l+1,l−1aL
z

= hdl−1
s−l,laL

z
+

q−1
∑

k=1

gk
dl−1

wk
−l,laL

z
. �

We now arrive at the following result that shows that the situation of Example 2.1.7

cannot occur for MRA associated with a valid base.

Corollary 2.2.8 Consider an MRA associated with a valid base (b,D). Suppose {s0,z :

z ∈ Z[i]} is a set of scaling coefficients such that s0,z = 0 for all z ∈ Z[i]\J , for some finite

set J ⊂ Z[i]. Then, there exists a number t ∈ N such that s−t,j = 0 ∀j ∈ Z[i]\{0}.

Proof Let j ∈ J . Since (b,D) is a valid base, let a = a
tj
j be the unique finite expansion

of j in (b,D). By Theorem 2.2.7, the only scaling coefficients arising from j are

s0,a, s−1,1a, s−2,2a, . . . s−tj+1,tj−1a and s−tj ,∅.

This also clarifies that Lz = 0, La
L
z = ∅ and ∅ as an address of zero, are well-defined nota-

tions. Since J is finite, let t = max{tj : j ∈ J}. Therefore, s−t,j = 0 ∀j ∈ Z[i]\{0}. �

This result is reminiscent of Theorem 1.3.15. In the next section, we will characterize the

MRA in Zn such that this also happens. Before moving on, we demonstrate the use of

complex bases in the Mallat algorithm.

3One could replace b−1(l−1z − d) by Φ(l−1z) (see Theorem 1.3.15).
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Example 2.2.9 Consider the function f given in the MRA associated with the base

(−1 + i, {0, 1}) by f = 0φ0 + φ1 + φi + 2φ1+i. We are interested in performing the decom-

position of the function f in this MRA.

The set X = {0, 1, i, 1 + i} and the addresses associated with the scaling coefficients of

f are

Integer Address Value

0 0 0

1 1 1

i 11 1

1+i 1110 2

Therefore, L = 4 and hence AX = {(0000), (0001), (0011), (1110)}.
We choose the standard Haar wavelet basis as given in Example 1.4.23. We then obtain

the scaling and wavelet trees using the decomposition algorithm. The lowest level on the

scaling tree represents the initial values of the function. Going down the left branch in a

tree represents the digit 0. The right represents the digit 1. For example, the value of the

function on the tile at i, which is at address 0011, is placed in the node down the scaling

tree left, left, right, right. The entire tree is given in Figure 2.3. In this example, empty

nodes are treated as coefficients with value zero. We will discuss extensions in Section 2.4,

where the tree is filled in using the Extension Algorithm.

Scaling Tree Wavelet Tree

1

1√
2

1

1√
2

0 1

1√
2

1

1√
2

1

√
2

2

0

1√
2

0

−1√
2

−1√
2

−1√
2

-1

√
2

Figure 2.3: Scaling and wavelet trees for a small set of points.
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Notice the number of empty nodes in the trees. This demonstrates the asymmetrical

nature of the trees generated by this process. This occurs since the support of the original

function sits inside the principal tile, but is not the entire tile.

In practice, only a finite number of scaling and wavelet coefficients are ever computed at

a given instance. Therefore, given these coefficient indices of the original function, one can

calculate in advance, the base expansions of the relevant integers in the subscripts. Hence,

the Mallat algorithm can be performed quickly, without the need to calculate the expan-

sions while performing the algorithm. This generates a precise and easily implementable

tree structure for the coefficients.

2.3 Number Systems

As was shown in the previous section, MRA related to valid bases in C are well behaved

when it comes to performing the decomposition algorithm. We find that this theory applies

in higher dimensions as well. We first extend the definition of a valid base to Rn.

Definition 2.3.1 A valid base for Zn is a pair (B,D) where B ∈ Mn(Z) and D ⊂ Zn,

such that 0 ∈ D and every element z ∈ Zn can be represented uniquely as a sum of powers

of B, with coefficients in D.4 The set D is called the digit set . More precisely, each z ∈ Zn

can be written uniquely as

z =

tz−1
∑

j=0

Bjdj, where dj ∈ D and tz ∈ N+.

If z has this form, write z = (dtz−1 · · ·d1d0)B.

4The set Mn(Z) denotes the set of all n× n matrices over Z.
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The analogous terminology to complex bases will be used. Therefore, the radix expansion

of a z ∈ Rn is an expression of the form

z =

tz−1
∑

j=−∞
Bjdj, where dj ∈ D and tz ∈ N+.

The results of complex bases translate to higher dimensions.

Proposition 2.3.2 If (B,D) is a valid base, then D is a complete residue system for

Zn/BZn and hence contains | det(B)| elements.

Proof Suppose z =
∑t

j=0B
jdj, dj ∈ D. Then z ≡ d0 mod B. Hence D contains a

complete residue system for Zn/BZn. Now, suppose c, d ∈ D are distinct and c ≡ d

mod B. Then let e =
∑t

j=0B
jdj, dj ∈ D such that c − d = Be for some e ∈ Zn.

Hence, (c)B and (dt . . . d0d)B are two distinct addresses of c, which is a contradiction to

the assumption that (B,D) is a valid base. �

Proposition 2.3.3 If B ∈ Mn(Z) and D is a complete residue system for Zn/BZn, that

contains 0, then the following are equivalent:

i) The matrix B is a valid base using the digit set D;

ii) The matrix B is invertible and for every z ∈ Zn there exists a positive integer t such

that Φt(z) = 0, where the function Φ : Zn → Zn is defined by Φ(z) = B−1(z − d),

d ∈ D and d ≡ z mod B.

Proof i) =⇒ ii) Suppose B is not invertible. Then, choose z ∈ Zn\{0} such that

Bz = 0. Since B is a valid base, let z =
∑t

k=0B
kdk, dk ∈ D, dt 6= 0. Then 0 has two

representations in base (B,D), that is (0) and (dt . . . d00), a contradiction. Hence B is

invertible.

For the second part of the implication, let z ∈ Zn and write z in its expansion in base
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(B,D). Generalizing the base conversion algorithm to Zn, we have

z = Bz1 + d0

z1 = Bz2 + d1

...

zt = B0 + dt.

Since we assume that (B,D) is a valid base, then

Φ(z) = z1

Φ2(z) = z2

...

Φt(z) = 0.

ii) =⇒ i) Let z ∈ Zn and consider the sequence of integers z0 = z and zk+1 = Φk+1(z) =

B−1(zk − dk) for k = 0, . . . , t with Φt(z) = 0 such that zt−1 6= 0. Then z =
∑t

k=0B
kdk.

Now, suppose that z =
∑s

k=0B
kek, ek ∈ D. Then, dk ≡ ek mod B for each k. Since D

is a complete residue system of Zn/BZn, we must have dk = ek for each k. Hence the

representation of z is unique. �

Definition 2.3.4 Let w = {wk} be an IFS. We say that z is a cyclic point of the IFS if

there exists a finite sequence of indices k1, k2, . . . , kn ∈ Z such that z = wk1◦wk2◦· · ·◦wkn
(z).

Consider now the generalization of Theorem 1.3.15 when B is an acceptable dilation:

Theorem 2.3.5 If B ∈ Mn(Z) is an acceptable dilation and D is a complete residue

system for Zn/BZn, that contains 0, then the following are equivalent:

i) The matrix B is a valid base using the digit set D;

ii) For every z ∈ Zn there exists a positive integer t such that Φt(z) = 0, where the

function Φ : Zn → Zn is defined by Φ(z) = B−1(z − d), d ∈ D and d ≡ z mod B;
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iii) There is no positive integer t for which

Bt−1dt−1 + . . .+Bd1 + d0 ≡ 0 mod (Bt − I) with dt−1, . . . , d0 ∈ D

and not all di are equal to zero;

iv) The IFS w has no nonzero cyclic points in Zn, where w = {wk} with wk(z) =

B−1(z − dk) and D = {dk : k = 1, . . . , | det(B)|}.

Proof i) ⇐⇒ ii) Proved by Proposition 2.3.3 since an acceptable dilation is invertible.

iii) =⇒ iv) Suppose z ∈ Zn\{0} is a cyclic point of the IFS w. Then, let σ = (σ0 . . . σt−1),

t > 0 such that z = wσt−1 ◦ . . . ◦wσ0(z). Define the sequence zk = B−1(zk−1−dσk−1
), where

z0 = z. Then

z = z0 = Bz1 + dσ0

= B(Bz2 + dσ1) + dσ0 = B2z2 +Bdσ1 + dσ0

...

= Btzt +
t−1
∑

k=0

Bkdσk

= Btz +
t−1
∑

k=0

Bkdσk
.

Therefore,
∑t−1

k=0B
kdσk

≡ 0 mod (Bt − I), a contradiction to the hypothesis. Hence, no

nonzero integer cyclic point of the IFS w exists.

iv) =⇒ iii) Suppose
∑t−1

k=0B
kdσk

≡ 0 mod (Bt− I) for some positive integer t. Then,

let z ∈ Zn such that
t−1
∑

k=0

Bkdσk
= Btz − z.
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Define the sequence (zk) as above. Then

z1 = B−1(z0 − dσ0) = wσ0(z)

z2 = B−1(z1 − dσ1) = wσ1(z1) = wσ1 ◦ wσ0(z)

...

z = zt = B−1(zt−1 − dσt−1) = wσt−1 ◦ . . . ◦ wσ0(z).

Therefore, z is a non-zero cyclic integer point of the IFS w = {wk}, a contradiction to the

hypothesis. Hence, no such t exists, and thus iii) is proved.

iv) =⇒ ii) Let z ∈ Zn\{0}. Consider the sequence zk = Φk(z) = B−1(zk−1 − dσk−1
),

dσk−1
∈ D, where z0 = z. Then,

z1 = B−1z − B−1dσ0

z2 = B−2z − B−2dσ0 − B−1dσ1

...

zt = B−tz −
t
∑

k=1

B−kdσt−k
,

hence

||zt|| ≤
∣

∣

∣

∣B−tz
∣

∣

∣

∣ +
t
∑

k=1

∣

∣

∣

∣B−kdσt−k

∣

∣

∣

∣ ,

where ||·|| is the Euclidean norm. Since B is an acceptable dilation, using the Jordan

normal form, let C, s, λ be positive real constants, λ < 1 and s ∈ N, such that

∣

∣

∣

∣B−jx
∣

∣

∣

∣ ≤ Cλjjs ||x|| ∀x ∈ Rn.
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Then

||zt|| ≤ C ||z||λtts + Ca
t
∑

k=1

λkks, where a = max{||d|| : d ∈ D}.

≤ C ||z||λtts + Ca

∞
∑

k=1

λkks, since λ > 0.

Consider the limit of the positive sequence (λkks). Using l’Hôpital’s rule we get the fol-

lowing result:

lim
k→∞

λkks = lim
k→∞

ks

λ−k

=
−s
lnλ

lim
k→∞

λkks−1

...

=

∏s−1
n=0(s− n)

(lnλ)s−1
lim
k→∞

λk

= 0.

Hence, let N ∈ R+ such that Cλkks ||z|| ≤ N for all k ∈ N. Furthermore,

lim
k→∞

λk+1(k + 1)s

λkks
= λ lim

k→∞

(

1 +
1

k

)s

= λ < 1.

Hence, by the ratio test,
∑∞

k=1 λ
kks = M for some M ∈ R+. Therefore

||zt|| ≤ N + CaM ∀t ∈ N+.

This means the set of iterates of {Φt(z)}∞t=1 is bounded and so takes on only finitely

many values. Therefore, if there is no positive integer r such that Φr(z) = 0, then let

0 ≤ s < t ∈ N+ such that 0 6= Φs(z) = Φt(z). Hence Φt−s(z) = z, which means that z is a

nonzero cyclic point of the IFS w, which is a contradiction to the hypothesis. Therefore,

there is a positive integer r such that Φr(z) = 0.

ii) =⇒ iv) Suppose z is a nonzero cyclic point of the IFS w. Then let σ = (σ0 . . . σt−1),
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t > 0 such that z = wσt−1 ◦ . . . ◦wσ0(z). Then, none of the points zn = wσn−1 ◦ . . . ◦wσ0(z)

can be zero. For, if a given zn = 0, then dσn
= 0, since D is a complete residue system

of Zn/BZn. This implies that zk = 0 ∀k ≥ n, thereby contradicting the hypothesis that

z 6= 0. Therefore, Φt(z) ≡ zt = z and there is no positive r such that Φr(z) = 0, which is

a contradiction to the hypothesis of ii). Hence, there is no nonzero integer cyclic point of

the IFS. �

Corollary 2.3.6 Theorem 2.3.5 holds for complex bases.

Proof A complex base is equivalent to an acceptable dilation matrix over Z2. �

Corollary 2.3.7 ±1,±i, 1± i and 2 are never valid bases for Z[i].

Proof By Theorem 2.3.5, a base must have norm greater than 1, thus ±1 and ±i cannot

be valid bases. For b = 2 or b = 1± i, let 0 6= k ∈ D, where D is a complete residue system

of Z[i] modulo b, which contains zero. Then, let w(z) = b−1(z − k). If b = 2, then z = −k
is a fixed point of w and if b = 1± i, then z = ±ik is a fixed point of w. �

The concept of MRA associated to complex bases is easily generalized to obtain MRA

associated to number systems. Consequently, the results demonstrated in the previous two

sections can be generalized to Zn. This fact will be used in subsequent discussions and we

therefore obtain the following result:

Corollary 2.3.8 If (B,D) is a valid base of Zn, and if {s0,j : j ∈ J}, J ⊂ Zn is a finite

set of scaling coefficients, then there is a positive integer r such that s−r,z = 0 for all

z ∈ Zn\{0}.

And from iv) =⇒ ii) of the proof of the above theorem, we see that

Corollary 2.3.9 Let (A,D) be an MRA in Zn and suppose that {s0,z : z ∈ Zn} is a set

of scaling coefficients such that all but finitely many are zero. Then, there is a positive

integer r such that s−r,z = 0 for all z ∈ Zn with z not a cyclic point of the IFS w.
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Therefore, the situation of Example 2.1.7 cannot occur for a valid base. It is potentially

feasible to still perform the Mallat algorithm in the case where cyclic points are generated

(i.e. where the indices of the coefficients are cyclic). In these instances, one could maintain

a list of the cyclic points. If a cyclic point is generated, the decomposition of that branch

would stop. This could give an algorithm in practice for doing a terminating Mallat for all

MRA. This has not been investigated and there may be additional issues to resolve.

The following example was contributed by William Gilbert.

Example 2.3.10 For an example of a representation in Z3, consider the matrix of deter-

minant −2:

B =







0 0 −2

1 0 −1

0 1 −1







which is the companion matrix of the polynomial m(x) = x3 + x2 + x+ 2. If s is a root of

m(x), so that m(x) is the minimal polynomial of s, then Q(s) is a cubic number field and

all elements can be represented as a0 + a1s+ a2s
2 with ai in Q. We can also represent this

element as (a0, a1, a2) in Q3 and multiplication by s corresponds to matrix multiplication

by B. Now s is a valid base for the integers Z[s] using the binary digit set {0, 1}. This

is pictured in Figure 5 of [32]. This base extends to a representation of all of Q(s) using

digits to the right of the radix point.

Since Z[s] is in 1-1 correspondence with Z3, the matrix base B will give a unique

representation of the elements of Z3 using the binary digit set {(0, 0, 0), (1, 0, 0)}.

It would be desirable to remove the assumption that B is an acceptable dilation from

the statement of Theorem 2.3.5. Indeed, the equivalence of i) and ii) does not depend on

this assumption at all, but simply the need for B to be invertible. It is a sufficient condition

in iii) and iv) that B be an acceptable dilation to demonstrate iii) or iv) =⇒ ii). However,

it is not clear that this is a necessary condition. We will motivate the possibility that this
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is the case ending this section with a conjecture.

The following is a result of functional analysis, which holds also for infinite dimensional

spaces:

Theorem 2.3.11 If L is a diagonalizable linear operator on a finite dimensional vector

space V , then there exists a norm ||·||L on V such that the operator norm of L with respect

to this norm is equal to its spectral radius, ρ(L).

With this result, one can demonstrate the following proposition, which is essentially

a result of Gilbert [30]. Indeed, the key requirement of the matrix A is that there is a

consistent matrix norm ||·|| such that ||A|| = ρ(A) ≥ 1. The proof is omitted here.

Proposition 2.3.12 Let xk = Axk−1 + f(xk−1) be a real non-linear difference equation

with xk−1, xk ∈ Rn. If the matrix A is diagonalizable and has an eigenvalue of modulus

greater than or equal to one, and f(x) is bounded for each vector x ∈ Zn, then there is

some initial vector x0 ∈ Zn for which the solution of the difference equation is bounded

away from zero.

In the immediate circumstances, the difference equation is translated to the division

algorithm equation:

zt+1 = B−1(zt − dt) = B−1zt − B−1dt.

If B is diagonalizable, then so is B−1. Hence, if such a B has an eigenvalue of modulus

less than or equal to one in modulus, it can never be a valid base for any digit set. In

other words, any diagonalizable matrix, that is a valid basis for some digit set, must be an

acceptable dilation.

This result may lead one to conjecture that the assumptions of Theorem 2.3.5 might

be weakened as follows:
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Conjecture 2.3.13 If B ∈ Mn(Z) and D is a complete residue system for Zn/BZn, that

contains 0, then the following are equivalent:

i) The matrix B is a valid base using the digit set D;

ii) The matrix B is invertible and for every z ∈ Zn there exists a positive integer t such

that Φt(z) = 0, where the function Φ : Zn → Zn is defined by Φ(z) = B−1(z − d),

d ∈ D and d ≡ z mod B;

iii) The matrix B is an acceptable dilation and there is no positive integer t for which

Bt−1dt−1 + . . .+Bd1 + d0 ≡ 0 mod (Bt − I) with dt−1, . . . , d0 ∈ D

and not all di are equal to zero;

iv) The matrix B is an acceptable dilation and the IFS w has no nonzero cyclic points in

Zn, where w = {wk} with wk(z) = B−1(z − dk) and D = {dk : k = 1, . . . , | det(B)|}.

The obstacle is proving that i) or ii) =⇒ iii) or iv). The difficulty is showing that if

B is not diagonalizable, and is a valid base for some digit set D, then it must be an

acceptable dilation. There are results of operator theory which provide the existence of

a norm arbitrarily close to the spectral radius of such a matrix: ||B|| ≤ ρ(B) + ε. The

problem in proving an equivalent result of Proposition 2.3.12 is the need to carry the ε in

the equations, which prevents the same inequalities from being constructed. Indeed, this

ε might be used to construct a counter example.

One final note on number systems is that it may be possible to extend the above results

to cases where one has a unique integer fixed point. In such a case, one could write each

integer as z = z̄+
∑t

k=0B
kak. In this case, as may be possible for MRA with cyclic integer

points, the decomposition algorithm could be halted at z̄. This has not been investigated.
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2.4 Extensions

We now return to address the situation that arose when decomposing a function whose

support was not an expanded copy of the principal (fundamental) tile of the MRA (see Ex-

ample 2.2.9). In this case (which is essentially every case other than the separable wavelet

case), the trees have many “missing” nodes. When using these MRA in applications, one

generally obtains artefacts in the image.5 For example, in the case of pruning or thresh-

olding, the edges of the compressed image are often black. In the case of LIFSW, one may

find such artefacts in the interior of the image.

The reason these artefacts are generated is because we assume that outside the bound-

aries of the image, the function is identically zero. That is, the square image is the support

of the function. However, the image actually sits inside an expanded copy of the principal

tile of the MRA. It is from the points outside the image, those that reside in this expanded

tile, that we have holes in the trees.

Given these unnatural-seeming artefacts, we are motivated to extend the function to an

expanded copy of the principal tile in a way that is consistent with the Mallat algorithm.

To begin, we will need to define some notation.

Let (B,D) be a number system for Zn. Consider the MRA associated with (B,D) with

scaling function φ = χ
Q where Q = T(B,D) is the principal tile of (B,D). Let X ⊂ Zn be

finite. The MRA and X will be fixed for the remainder of this discussion.

Definition 2.4.1 Let t ∈ N. Define At to be the set of all addresses of length t. That is

At = {(dt−1 . . . d0) : dk ∈ D}, and define A0 to be the set containing the address of length

zero. Then, let Xt be the set of all points in Zn with addresses of length t. Formally,

Xt = {z ∈ Zn : at
z ∈ At}.

5Chapter 3 discusses applications to image analysis.
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Definition 2.4.2 Let L = LX,(B,D). Define Ã = AL and X̃ = XL.

For the remainder of this section, let L = LX,(B,D) and A = AX .

Definition 2.4.3 Given z ∈ Zn, define the z-translate of Q as Qz = Q+ z = {q + z : q ∈
Q}. Then define the tile of X as QX = ∪x∈XQx. Finally, define the supertile of X (or QX)

as Q̃ = QX̃ .

Let us summarize the notation given above. First, L is the smallest natural number

such that every x ∈ X can be represented as
∑L−1

k=0 B
kdk. The set A is the set of all

addresses of length L of the points in X expressed in base (B,D). The set Ã is the set

of all addresses of length L in base (B,D). The set X̃ is all the points of Zn that can be

written as
∑L−1

k=0 B
kdk and therefore... QX̃ is the smallest expanded copy of the principal

tile that completely contains the points of X!

Example 2.4.4 Let X = {0, 1, i, 1 + i} with base (−1 + i, {0, 1}). From Example 2.2.9,

we have L = 4 and hence the set AL is the set of all sequences of length four with digits 0

and 1. The set X̃ = XL is the set of integers represented by the addresses of AL. These

two sets are illustrated in Figure 2.4.

The set QX̃ is simply the union of the translates over X̃ of the twin dragon tile con-

taining zero. Envisioning QX̃ is simple if one imagines replacing each square by the twin

dragon tile Q0.

We now move to the discussion of the situation in question, that is the extension of

functions. Let f =
∑

x∈X s0,xφ0,x, where QX 6= QX̃ . For instance, consider Example 2.2.9.

In this case then, the support of f , which is by definition QX , is contained in, but not equal

to QX̃ . Step 1 in Example 2.4.13 illustrates this situation (see Figure 2.5 on page 110).

This is represented in the drawing of the scaling and wavelet trees as empty nodes, the

nodes coming from points outside the support of f . In this sense, we can think of the tree
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0100 0101

0110 0111

0000 0001 1100 1101

0010 0011 1110 1111

1000 1001

1010 1011

−1 0 1 2 3

−2i

−i

0

i

2i

3i

Figure 2.4: Addresses and points of a set for the twin dragon.

as not being full. As we move up the tree, these external scaling coefficients interact with

the ones from within QX and influence the corresponding scaling and wavelet coefficients

at lower levels in the tree. This generally causes points on the boundary of the support

to become edges. When performing an IFSW, if a domain is taken such that a part of

it is outside QX , this will introduce uniform black artefacts into the image, which will be

propagated by the IFSW into the lower detail levels.

It should be noted that in the case where digits are elements in Zn, trees are generated

by simply indexing the digits in some (arbitrary) way and then creating the branches based

on the chosen order. The only important thing is maintaining consistency of the chosen
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ordering between levels.

If X = X̃, then the tree will be full. What we mean by full here is that every scaling

coefficient on level zero is derived from a point x in the support of f . Therefore, every

scaling coefficient above level zero has all of its children. Thus, when performing wavelet

or IFSW compression, or any other manipulation on the trees, no external (non-image re-

lated) information is introduced, the trees are self-contained and exactly define the original

function.

To resolve the problem when QX 6= QX̃ then, we would need to extend the image in a

“natural way”, that is one that utilizes the tiling itself to extend the image and preserves

the properties of f without introducing edges or other anomalies into the wavelet trees.

We will propose such an algorithm after a bit more notation.

We will consider some definitions of addresses and trees:

Definition 2.4.5 If ρ = (dt−1 · · ·d0) ∈ Dt and σ = (dt−1 · · ·d0d) ∈ Dt+1 we say that σ is

a child of ρ and that ρ is the parent of σ. If λ = (dt−1 · · ·d0d
′) ∈ Dt+1, d′ 6= d, we say that

λ is a sibling of σ.

Example 2.4.6 In base (2+ i, {0, 1, i,−i,−2−3i}), the address (−2−3i ·0 · i) is the child

of (−2− 3i · 0) and its siblings are (−2 − 3i · 0 · 0), (−2− 3i · 0 · 1), (−2− 3i · 0 · −i) and

(−2− 3i · 0 · −2− 3i).

It is clear from the definition that an address can have at most one parent and has as

many children as the number of elements of D. In the case of a valid base, |D| = | detB|

and all nodes have a parent except the address of length zero. This definition allows us to

clearly define the meanings of parent, child and sibling for the scaling and wavelet trees:

Definition 2.4.7 Let 0 < l ≤ L. The coefficient s−l,(dL−1···dl) is the parent of

s−l+1,(dL−1···dld) ∀d ∈ D and these scaling coefficients are its children. For d ∈ D, the
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siblings of s−l+1,(dL−1···dld) are s−l+1,(dL−1···dld′), d 6= d′ ∈ D. Analogous terminology is as-

signed to the wavelet coefficients.

Using this definition, we define the scaling tree Sf of f formally as the graph with nodes

{s−l,σ : l ∈ {0, . . . , L}, σ ∈ DL−l} and edges joining parents and their children. Define the

wavelet trees W k
f , k = 1, . . . , q − 1, with q = | detB|, in an equivalent manner.

Notation 2.4.8 Let T be a tree, t a node of T and T ′ be a set of nodes of T . Then define

sib(t, T ′) to be the set of all siblings of t in T ′ and define child(t, T ′) to be the set of all

children of t in T ′.

In our algorithm, we will want to extend f from X to a function f̃ on X̃ such that if

f =
∑

x∈X sxφx, and f̃ =
∑

z∈X̃ s̃zφz, then s̃z = sz for all z ∈ X.

We are going to use the Mallat algorithm as a foundation for the extension. What

this means is that we will want to construct a scaling tree and wavelet trees S̃ and W̃ k,

k = 1, . . . , q− 1 for f̃ using the scaling and wavelet trees S and W k, k = 1, . . . , q− 1 of f .

The only difference between them at first is that the scaling coefficients of f are sx, for

x ∈ X and sz = 0, for z ∈ X̃\X. We will denote the scaling and wavelet coefficients of

f̃ by s̃−l,σ and w̃k
−l,σ. As we build the trees for f̃ , at each level we will have “assigned”

and “unassigned” coefficients. By this we mean that the assigned coefficients are those to

which the algorithm has explicitly given a value. The unassigned ones are the ones which

have not been given a value at a given step in the algorithm. We will therefore define sets

of coefficients that will keep track of these distinguished coefficients for us through the

algorithm.

Algorithm 2.4.9 (Extension Algorithm) i) Assumptions: Let X ⊂ Zn be finite,

L = LX,(B,D) and X  X̃. Suppose f =
∑

x∈X s0,aL
x
φ0,x. Formally, define f̃ =

∑

z∈X̃ s̃0,aL
z
φ0,z. Define for each 0 ≤ l ≤ L, S̃−l = {s̃−l,σ : σ ∈ DL−l};
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ii) Setup: Set for each x ∈ X, s̃0,aL
x

= s0,aL
x
. Then set S̃A

0 = {s̃0,aL
x

: x ∈ X} and

S̃U
0 = S̃0\S̃A

0 ;

iii) Iteration: For each l = 0, . . . , DL−1:

(a) For each σ ∈ DL−l, if s̃−l,σ ∈ S̃U
−l and if sib(s̃−l,σ, S̃

A
−l) = {s̃−l,σ1 , . . . , s̃−l,σk

} 6= ∅,
then for each n = 0, . . . , l and for each λ ∈ Dn, set s̃−l+n,σλ = 1

k

∑k
m=1 s−l+n,σmλ;

(b) Set S̃A
−l−1 = ∅ and S̃U

−l−1 = S̃−l−1;

(c) For each σ ∈ DL−l−1, if child(s̃−l−1,σ, S̃
A
−l) 6= ∅, set s̃−l−1,σ =

∑

d∈D hds̃−l,σd. Set

S̃A
−l−1 = S̃A

−l−1 ∪ {s̃−l−1,σ} and S̃U
−l−1 = S̃U

−l−1\{s̃−l−1,σ}.

Note that the algorithm neglects the construction of the wavelet coefficients. One can

restate the algorithm to construct the wavelet coefficients as the algorithm progresses, using

the equivalent assignment formulae as for the scaling coefficients. One might worry however

that such an approach would cause an inconsistency with the Mallat algorithm’s definition

of the wavelet coefficients. However, this is not the case and will be noted following the

next results.

Proposition 2.4.10 Algorithm 2.4.9 is well-defined.

Proof Showing the algorithm is well-defined means ensuring that no already assigned

coefficient is reassigned. This is clear in the definition of the algorithm since the only time

a parent is assigned is through the Mallat algorithm (Step iii(c)), which is well-defined

and the only time a child is assigned is when it is a grandchild of an originally unassigned

coefficient (Step iii(a)), and hence was undefined beforehand. If this last statement is not

intuitively clear for the reader, it can be shown through an induction on n by assuming

that if some grandchild is already assigned that the original coefficient must have already

been as well. �

Theorem 2.4.11 Algorithm 2.4.9 is consistent with the Mallat algorithm.
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Proof To prove this, we must show that at each level 1 ≤ l ≤ L, if s̃−l,γ ∈ S̃−l then

s̃−l,γ =
∑

d∈D hds̃−l+1,γd. Note that if a coefficient was assigned in Step iii(c), that is if

s̃−l,γ ∈ S̃A
−l, then there is nothing to show since it was assigned using precisely the Mallat

algorithm. Also, s̃−L,∅ is constructed in Step iii(c). Therefore, we only need to prove the

case where coefficients are assigned in Step iii(a), that is for coefficients in S̃U
−l. We will

prove the result by induction on l + n.

Before we begin, notice the following. Suppose that s̃−l,σ ∈ S̃U
−l. Then it must hold

that for each 1 ≤ n ≤ l and each λ ∈ Dn that s̃−l+n,σλ ∈ S̃U
−l+n. If not, then for

some n and λ, s̃−l+n,σλ ∈ S̃A
−l+n. Thus, one can construct its siblings, and hence its

parent is in S̃A
−l+n−1, that is its parent can be assigned in Step iii(c). By induction then,

s̃−l,σ = s̃−l+(n−n),σ∅ ∈ S̃A
−l. This is a contradiction to the hypothesis on s̃−l,σ. So, let

1 ≤ l < L, σ ∈ DL−l, such that s̃−l,σ ∈ S̃U
−l, with sib(s̃−l,σ, S̃

A
−l) = {s̃−l,σm

}k
m=1 6= ∅:

i) If l = 1 and n = 0, then by definition, each s̃−l,σm
is in S̃A

−l. Hence

s̃−l,σ =
1

k

k
∑

m=1

s̃−l,σm

=
1

k

k
∑

m=1

∑

d∈D

hds̃−l+1,σmd (since s̃−l,σm
∈ S̃A

−l)

=
∑

d∈D

hd
1

k

k
∑

m=1

s̃−l+1,σmd

=
∑

d∈D

hds̃−l+1,σd (since s̃−l,σ ∈ S̃U
−l);

ii) Now, suppose that for 1 ≤ l < q < L and 0 ≤ n < p ≤ l − 1 that s̃−l+n,σλ =
∑

d∈D hds̃−l+n+1,σλd, for all λ ∈ Dn. Let l = q, n = p and λ ∈ Dn. Consider a given

s̃−l+n,σmλ. Since s̃−l,σm
∈ S̃A

−l, two situations can occur. Either s̃−l+n,σmλ ∈ S̃A
−l+n or

s̃−l+n,σmλ ∈ S̃U
−l+n. In the second instance, there must exist some integer 1 ≤ r ≤ n

such that s̃−l+r,σmρ ∈ S̃U
−l+r and s̃−l+r−1,σmθ ∈ S̃A

−l+r−1 with ρ ∈ Dr, θ ∈ Dr−1, ρ = θd

for some d ∈ D and λ = ρω for some ω ∈ Dn−r.

Suppose not. Then each s̃−l+r,σmρ ∈ S̃A
−l+r for each 1 ≤ r ≤ n. By the note made
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above, this contradicts the assumption that s̃−l+n,σmλ ∈ S̃U
−l+n. Therefore, let −t =

−l + r and k = n− r. Then

t+ k = (l − r) + (n− r)

< q + p.

Thus, by the induction hypothesis,

s̃−t+k,(σmρ)ω =
∑

d∈D

hds̃−t+k+1,(σmρ)ωd,

that is,

s̃−l+n,σmλ =
∑

d∈D

hds̃−l+n+1,σmλd.

Therefore,

s̃−l+n,σλ =
1

k

k
∑

m=1

s̃−l+n,σmλ (since s̃−l,σ ∈ S̃U
−l)

=
1

k

k
∑

m=1

∑

d∈D

hds̃−l+n+1,σmλd (by the above)

=
∑

d∈D

hd
1

k

k
∑

m=1

s̃−l+n+1,σmλd

=
∑

d∈D

hds̃−l+n+1,σλd (since s̃−l,σ ∈ S̃U
−l). �

Given the above result, we can demonstrate the consistency of defining of the wavelet

coefficients directly within the algorithm. The following result shows that using the al-

gorithm as it is currently stated and then constructing the wavelet coefficients of f̃ using

the decomposition algorithm yields the same coefficients as using the modified algorithm

where the wavelet coefficients would be assigned directly in the same way as the scaling
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coefficients:

Corollary 2.4.12 For each σ ∈ DL−l, if s̃−l,σ ∈ S̃U
−l and if sib(s̃−l,σ, S̃

A
−l) = {s̃−l,σ1, . . . ,

s̃−l,σk
} 6= ∅, then for each n = 0, . . . , l − 1, λ ∈ Dn, and p = 1, . . . , | detB| − 1, we have

w̃p
−l+n,σλ = 1

k

∑k
m=1 w̃

p
−l+n,σmλ.

Proof Let 0 < l < L. Choose σ ∈ DL−l, such that s̃−l,σ ∈ S̃U
−l and sib(s̃−l,σ, S̃

A
−l) =

{s̃−l,σ1, . . . , s̃−l,σk
} 6= ∅. Let 0 ≤ n < l − 1, λ ∈ Dn, and 0 ≤ p < | detB|. Then, we have

w̃p
−l+n,σλ =

∑

d∈D

gp
d s̃−l+n+1,σλd (by the decomposition algorithm)

=
∑

d∈D

gp
d

1

k

k
∑

m=1

s̃−l+n+1,σmλd (by Theorem 2.4.11)

=
1

k

k
∑

m=1

∑

d∈D

gp
d s̃−l+n+1,σmλd

=
1

k

k
∑

m=1

w̃p
−l+n,σmλ (by the decomposition algorithm). �

By reversing the argument and considering the reconstruction rather than the decom-

position algorithm, one can show that by defining the algorithm with the direct assignment

of “missing” wavelet coefficients, the function f̃ is the same as that of the algorithm as

originally stated. The proof is omitted for the sake of brevity; it is again a consequence of

the orthogonality of the wavelet and scaling functions and spaces. This result gives flexi-

bility to the implementor of the algorithm and removes the need of performing the wavelet

decomposition only at the end of the construction of f̃ . One can simply pass through the

extension of the function f and at the same time create the wavelet tree.

One other interesting note is that the use of averaging in the algorithm is a somewhat

arbitrary choice. Indeed, when reviewing the proof of the consistency of the algorithm(s)

with the Mallat algorithm, one sees that any function M satisfying the following property
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will allow a consistent extension:

M

(

∑

d

αdsd,1, . . . ,
∑

d

αdsd,k

)

=
∑

d

αdM(sd,1, . . . , sd,k). (2.7)

Furthermore, given the orthogonality of the wavelets and scaling functions at a given

resolution, one is free to modify this map at each Step iii(a). It is possible that adapting

the algorithm to fit the given function may be of interest.

Example 2.4.13 Consider the extension algorithm applied to the function f in Exam-

ple 2.2.9 where M is the averaging operator used in the definition of the algorithm.

We will demonstrate the extension of f to f̃ by looking at the sets Qσ as an equivalent

representation of the levels of the scaling tree. At each step in Figure 2.5 on the following

page, the numbers in the boxes represent the values of the scaling coefficients at the given

address corresponding to the respective set Qσ. In this representation, we normalize the

filter coefficients to better illustrate how the coefficients are combining. Figure 2.6 on

page 111 presents the complete scaling tree with the actual scaling coefficient values.

2.5 LIFSW and Number Systems

In this section we present the generalization of LIFSW to number systems on Rn. As was

discussed in Section 2.4, if X 6= X̃, we are in a sense “missing” coefficients in the scaling,

and hence wavelet, tree of any function f with support in X. Given the discussion at the

beginning of Section 2.4, it may be of interest to consider a definition of an LIFSW that

acts solely on X and ignores coefficients in X̃\X. In this way, we can always define a

standard LIFSW acting on f̃ generated by the extension function M = 0.

In order to generalize LIFSW, we will want to consider it to act solely on full subtrees

of X. Intuitively, a full subtree is one arising from coefficients on level zero that are all in

X, i.e. no grandchild came from a point outside of X. We now discuss this formally.
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Figure 2.5: Illustration of extending a function.
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Figure 2.6: Scaling tree of an extended function.

Notation 2.5.1 Define the following sets:

Qσ =







Qz σ = aL
z for some z ∈ X̃,

⋃

d∈D Qσd σ ∈ DL−t, t = 1, . . . , L.

If σ ∈ DL−t, we call Qσ a tile of size t.6 Now, define the following collections of sets:

Ut is the collection of the sets Qσ where σ ∈ DL−t, t = 0, . . . , L;

Vt is the collection of the sets Q where Q ∈ Ut and Q ∩ (X̃\X) = ∅, t = 0, . . . , L; and

Wt is the collection of the sets Qσd ∈ Vt, d ∈ D such that Qσ 6∈ Vt+1, t = 0, . . . , L− 1.

Let us discuss the meaning of these sets and collections. The sets QaL
z

are simply the

Zn translates of Q over the set QX̃ . A set Qσ for σ ∈ DL−t, t = L− 1, . . . , 0 is simply the

union of its |D| = q = | detB| subtiles, and so Q∅ = QX̃ .

For each t = 0, . . . , L, Ut is simply the collection of all tiles of size t, and since such

tiles are disjoint, its elements form a partition of X̃. The collection Vt is the collection of

all tiles of size t that are completely contained inside QX and the collection Wt (t < L)

is the collection of all tiles of size t that expand to a tile of size t + 1 which intersects the

6A slightly better terminology might be height t, since Qσ has n-dimensional Lebesgue measure qt.
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exterior of QX . It is in this sense that we define the meaning of a maximal tile and a full

subtree in X:

Definition 2.5.2 A maximal tile with respect to X is an element of some Wt, t = 0, . . . , L−
1. If f =

∑

x∈X sxφx, then a full subtree T of the scaling tree of f with respect to X is a

subtree of the scaling tree with root s−l,σ such that Qσ ∈ Vl. The subtree T is called a

maximal full subtree if Qσ ∈ Wl.

The collections defined build a hierarchy of subtiles of QX and in the above sense, the

collections Wt provide a partitioning of QX in a maximal way:

QX =

L−1
⋃

t=0

⋃

Qσ∈Wt

Qσ

Since we are assuming that X 6= X̃, then V0 6= ∅ and VL = ∅.7 Therefore, there is a

greatest integer 0 ≤ tX < L such that VtX 6= ∅ and Vt = ∅, for all t > tX . This also means

that WtX 6= ∅ and Wt = ∅ for all t > tX . Hence, we have

QX =
⋃

0≤t≤tX

⋃

Qσ∈Wt

Qσ.

To facilitate the understanding of the sets Qσ, and to illustrate the construction of the

above partitioning, we construct a fairly large manual example.

Example 2.5.3 Consider the set X = {−3,−2, . . . , 3} × {−2,−1, . . . , 3}. We wish to

determine the Qσ decomposition of X in (−1 + i, {0, 1}). Example 2.2.4 on page 85

presents the minimal addresses of the points of X in this base. They are reproduced in

Figure 2.7 on the facing page. The addresses allow us to easily see what the Qσ sets will

be. However, let us go through their construction rigorously by growing the tiles around

each point to their maximal size in X.

7By ∅ we mean here the empty collection.



2.5. LIFSW AND NUMBER SYSTEMS 113

Since the longest address in X is at point −3+2i, having length ten, then L = 10. Let

W =
⋃L−1

t=0 Wt. As an algorithm, to generate each Qσ in W, start with each point x in X in

its own tile. These are the sets QaL
x
. We reconstruct the table of addresses here. However,

we leave them unpadded since this makes it easier to see how to combine the sets Qσ.

3 11010 11011 1110110 1110111 1010 1011 1100110
2 1110100101 11000 11001 1110100 1110101 1000 1001
1 11110 11111 10 11 1110 1111 111010010
0 10001 11100 11101 0 1 1100 1101
-1 11101010 11101011 110 111 111010 111011 111010110
-2 10101 11101000 11101001 100 101 111000 111001

-3 -2 -1 0 1 2 3

Figure 2.7: Addresses of a set in base (−1 + i, {0, 1}).

Next, we combine the sets QaL
x

to generate the sets of the next level. Looking at the

addresses, this means combining all points having addresses with the same prefix of length

L − 1, padding short addresses to length L to start. If the parent tile does not intersect

the complement of X in Z[i], then it is in VL−1. We keep growing tiles in this fashion,

combining the sets Qσd into Qσ at each level. When a tile cannot grow and still be in

some Vt, that is, be completely contained in QX , then it is a maximal tile and hence in

W. Figure 2.8 on the next page demonstrates the growth of these tiles at each step. To

see what these Qσ sets are, prepad the lengths of all the addresses to length 10. This is

demonstrated in Figure 2.9 on page 115.

Next, for each partitioned set, we need to determine the value of σ. This value is given

by the common prefix of all the addresses in the boxes. For example, looking at the set

containing the point (−2, 2), all of the addresses are the same up to the seventh digit

from the left. After that, the addresses differ. Therefore, this set is Q(0000011) . The entire

collection W is:

W = {Q(000000), Q(0000011), Q(00001110), Q(00011101), Q(00111010), Q(0000010101) ,

Q(0000010001) , Q(0001100110), Q(0111010010) , Q(0111010110) , Q(1110100101)}. �

Now, suppose f =
∑

x∈X sxφx. For t = 0, . . . , tX , Qσ ∈ Wt, define Xσ = X ∩ Qσ and
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3 11010 11011 1110110 1110111 1010 1011 1100110
2 1110100101 11000 11001 1110100 1110101 1000 1001
1 11110 11111 10 11 1110 1111 111010010
0 10001 11100 11101 0 1 1100 1101
-1 11101010 11101011 110 111 111010 111011 111010110
-2 10101 11101000 11101001 100 101 111000 111001

-3 -2 -1 0 1 2 3

3 11010 11011 1110110 1110111 1010 1011 1100110
2 1110100101 11000 11001 1110100 1110101 1000 1001
1 11110 11111 10 11 1110 1111 111010010
0 10001 11100 11101 0 1 1100 1101
-1 11101010 11101011 110 111 111010 111011 111010110
-2 10101 11101000 11101001 100 101 111000 111001

-3 -2 -1 0 1 2 3

3 11010 11011 1110110 1110111 1010 1011 1100110
2 1110100101 11000 11001 1110100 1110101 1000 1001
1 11110 11111 10 11 1110 1111 111010010
0 10001 11100 11101 0 1 1100 1101
-1 11101010 11101011 110 111 111010 111011 111010110
-2 10101 11101000 11101001 100 101 111000 111001

-3 -2 -1 0 1 2 3

3 11010 11011 1110110 1110111 1010 1011 1100110
2 1110100101 11000 11001 1110100 1110101 1000 1001
1 11110 11111 10 11 1110 1111 111010010
0 10001 11100 11101 0 1 1100 1101
-1 11101010 11101011 110 111 111010 111011 111010110
-2 10101 11101000 11101001 100 101 111000 111001

-3 -2 -1 0 1 2 3

Figure 2.8: Partitioning of a set with maximal subtiles.
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3 0000011010 0000011011 0001110110 0001110111 0000001010 0000001011 0001100110
2 1110100101 0000011000 0000011001 0001110100 0001110101 0000001000 0000001001
1 0000011110 0000011111 0000000010 0000000011 0000001110 0000001111 0111010010
0 0000010001 0000011100 0000011101 0000000000 0000000001 0000001100 0000001101
-1 0011101010 0011101011 0000000110 0000000111 0000111010 0000111011 0111010110
-2 0000010101 0011101000 0011101001 0000000100 0000000101 0000111000 0000111001

-3 -2 -1 0 1 2 3

Figure 2.9: Prepadded addresses of a partitioned set.

fσ = f �Qσ
, the restriction of f to Qσ. Then

fσ =
∑

x∈Xσ

sxφx

and hence we have an orthogonal decomposition of f as follows:

f =

tX
∑

t=0

∑

Qσ∈Wt

fσ

=

tX
∑

t=0

∑

Qσ∈Wt

∑

x∈Xσ

sxφx

=

tX
∑

t=0

∑

Qσ∈Wt

[

s−t,σφ−t,σ +

q−1
∑

p=1

t−1
∑

n=0

∑

λ∈Dn

wp
−t+n,σλψ

p
−t+n,σλ

]

where q = | detB| and by using the convention that any sum of the form
∑m2

n=m1
with

m2 < m1 is taken to be the empty sum, with value zero.

We can now define an LIFSW associated with a number system in Rn.

Definition 2.5.4 A local IFS on wavelets or LIFSW associated with X is an operator

W =
∑tX

t=0

∑

Qσ∈Wt
Wσ where if g =

∑

x∈X
gsxφx then8

8The notation gsx is used simply to denote the scaling coefficients of g. Analogous notation is used for
its wavelet coefficients.
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Wσ(g) = s−t,σφ−t,σ +

q−1
∑

l=1

t−rl
σ−1
∑

n=0

∑

λ∈Dn

wl
−t+n,σλψ

l
−t+n,σλ

+

q−1
∑

l=1

∑

θ∈Dt−rl
σ

αl
σθ

min(−rl
σ+dl

σ−1,rl
σ−1)

∑

n=0

∑

ρ∈Dn

wl
−dl

σ+n,σωl
σθ

ρψ
l
−rl

σ+n,σθρ

+

q−1
∑

l=1

∑

θ∈Dt−rl
σ

αl
σθ

rl
σ−1
∑

n=dl
σ−rl

σ

∑

ρ∈Dn

gwl
−dl

σ+n,σωl
σθ

ρψ
l
−rl

σ+n,σθρ

where 0 ≤ rl
σ < dl

σ ≤ t are integers, αl
σθ ∈ R, ωl

σθ ∈ Dt−dl
σ and the scaling and wavelet

coefficients are real numbers.9

We can simplify this notation by considering the following:

Cσ = s−t,σφ−t,σ +

q−1
∑

l=1

t−rl
σ−1
∑

n=0

∑

λ∈Dn

wl
−t+n,σλψ

l
−t+n,σλ

Dl
σθ =

min(−rl
σ+dl

σ−1,rl
σ−1)

∑

n=0

∑

ρ∈Dn

wl
−dl

σ+n,σωl
σθ

ρψ
l
−rl

σ+n,σθρ

El
σθ(g) =

rl
σ−1
∑

n=dl
σ−rl

σ

∑

ρ∈Dn

gwl
−dl

σ+n,σωl
σθ

ρψ
l
−rl

σ+n,σθρ.

Then, we can write Wσ(g) more compactly as

Wσ(g) = Cσ +

q−1
∑

l=1

∑

θ∈Dt−rl
σ

αl
σθ

[

Dl
σθ + El

σθ(g)
]

9Given the Fourier relationship between L2 and `2, we will often talk about the action of W on the
functions and the wavelet coefficient trees as best suits the discussion. Technically, the action on the
functions should be written as T and the action on the coefficient trees written as M . Furthermore,
in [27], instead of α the value used is 2(r−d)/2α. This simply moves the power of 2 from one side of the
Fourier relationship to the other. For simplicity, we have chosen to use α here.
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and so

W (g) =

tX
∑

n=0

∑

Qσ∈Wt



Cσ +

q−1
∑

l=1

∑

θ∈Dt−rl
σ

αl
σθ

[

Dl
σθ + El

σθ(g)
]



 .

By letting

Dl
σ =

∑

θ∈Dt−rl
σ

αl
σθD

l
σθ

and

El
σ(g) =

∑

θ∈Dt−rl
σ

αl
σθE

l
σθ(g),

then

W (g) =

tX
∑

n=0

∑

Qσ∈Wt

[

Cσ +

q−1
∑

l=1

[

Dl
σ + El

σ(g)
]

]

.

Note that W is generally a non-linear operator.

Maintaining our convention regarding empty sums and sums from a larger to a smaller

summand, we make a few notes about Wσ:

i) We call the level dl
σ the domain or parent level and the level rl

σ the range or child

level. We often refer to the trees having their roots at these levels as domain blocks

and range blocks respectively;

ii) When rl
σ − 1 ≤ −rl

σ + dl
σ − 1, then rl

σ − 1 < −rl
σ + dl

σ. Hence, the third line of the

definition of Wσ is well defined;
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iii) When t = 0, then the three groups of summations disappear and Wσ(g) = s−t,σφ−t,σ.

This is reasonable since in this case there is no wavelet decomposition to perform,

wavelet coefficients being defined only for levels less than zero;

iv) When rl
σ = 0, then the last two summations disappear andWσ reduces to the constant

operator

Wσ(g) = s−t,σφ−t,σ +

q−1
∑

l=1

t−1
∑

n=0

∑

λ∈Dn

wl
−t+n,σλψ

l
−t+n,σλ;

v) When dl
σ = t, there is only one domain to choose for any range and Wσ is a basic

IFSW. This is demonstrated since ωl
σθ ∈ Dt−dl

σ , hence we have each ωl
σθ being the

empty string and so they can be removed from the equations defining Wσ;

vi) For the third summation to be nonzero, we must have dl
σ ≤ 2rl

σ−1. Since 0 ≤ rl
σ < dl

σ,

then the third summation can be nonzero only if rl
σ > 2. That is, Wσ must act on a

tree of at least 3 levels, i.e. t ≥ 3.

To understand the action of Wσ, let us discuss the meaning of each of Cσ, Dl
σθ and

El
σθ(g) in turn.

The piece Cσ is the condensation piece. Essentially, from levels −t to −t+ rl
σ − 1, Wσ

wipes out all of the information of g (or more precisely gσ) and replaces it with a constant

set of values.

The piece Dl
σθ involves a shifting of coefficients. Here, Wσ is replacing the coefficients

of gσ from levels −rl
σ to −2rl

σ + dl
σ − 1 (or −1 as appropriate) by scaled versions of the

coefficients on levels −dl
σ to (or up to) −rl

σ − 1. For each root node of the l − th wavelet

tree on level −rl
σ (at address σθ), this is the action of multiplying the tree on level −dl

σ

(with root at address σωl
σθ and ending at level −rl

σ − 1) by αl
σθ and copying it over that
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tree at level −rl
σ.

The piece E l
σθ(g) is the same action as Dl

σθ except that it copies trees with roots at

level −rl
σ to trees with roots at level −2rl

σ + dl
σ. Following the convention, E l

σθ(g) = 0 if

dl
σ > 2rl

σ. Notice that this is the only part of W that depends on g.

One could define an LIFSW on infinite trees with a given initial root by considering

radix representations. In this case, it would not be necessary to define the Dl
σ and El

σ

separately since one would not have to worry about passing the bottom level of the tree.

Instead, one could define the action of each Dl
σθ as simply copying the entire, infinite,

domain block to the entire, infinite, range block.

Figure 2.10 on the next page illustrates the action space of each component of W .

Example 2.5.5 We will complete the example we have been developing by constructing

an LIFSW on the set X = {−3,−2, . . . , 3} × {−2,−1, . . . , 3}. The Qσ partition of X was

shown in Figure 2.9 on page 115.

In any MRA associated with the base (−1 + i, {0, 1}), a function which is a linear

combination of scaling functions on QX has the scaling tree shown in Figure 2.11 on

page 121.

We can see clearly the Qσ decomposition of X in this tree since the sets Qσ have

addresses which are the roots of the full subtrees of the scaling tree. For example, Q(0000011)

is the fourth maximal full subtree from the left, with root at (0000011).

Since X has 11 maximal full subtrees (given by the sets in W), to construct an LIFSW

W , we have 11 Wσ’s to construct. Let us look at them individually by value of t = L−
length(σ) in the definition of W .

Case t = 0: The sets Qσ are {Q0000010101, Q0000010001, Q0001100110, Q0111010010, Q0111010110,

Q1110100101}. As we noted earlier, in this case for any simple function g on QX ,

Wσ(g) = s0,σφ0,σ.

Case t = 2: The sets Qσ are {Q(00001110), Q(00011101) , Q(00111010)}. In this case, we can have

0 ≤ rσ < dσ ≤ t = 2 (for this MRA, there is only one mother wavelet, so we drop
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−t
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−d
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−d+ r − 1
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−r − 1
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r − 1 ≤ −r + d− 1

−t
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−d

...

−r − 1

−r

...

−2r + d− 1

−2r + d

...

−d+ r − 1

...

−1

D

C
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r − 1 > −r + d− 1

Figure 2.10: Action space of each component of an LIFSW.
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Figure 2.11: Scaling tree of a 42-point set.

the l). So, we can have r = 0, d = 1, r = 0, d = 2, and r = 1, d = 2. Since there

are three trees, let us assign these three choices to each of the three sets in the order

listed. Therefore,

W(00001110)(g) = s−2,(00001110)φ−2,(00001110) +
1
∑

n=0

∑

λ∈Dn

w−2+n,(00001110)λψ−2+n,(00001110)λ .

W(00011101)(g) = s−2,(00011101)φ−2,(00011101) +
1
∑

n=0

∑

λ∈Dn

w−2+n,(00011101)λψ−2+n,(00011101)λ

W(00111010)(g) = s−2,(00111010)φ−2,(00111010) + w−2,(00111010)ψ−2,(00111010)

+ α(001110100)w−2,(00111010)ψ−1,(001110100)

+ α(001110101)w−2,(00111010)ψ−1,(001110101) .

Case t = 3: Here there is only Q(0000011) and we can choose 0 ≤ rσ < dσ ≤ 3. Let us take

dσ = 2 and rσ = 1. Therefore,

Cσ = s−3,σφ−3,σ + w−3,σψ−3,σ + w−2,σ0ψ−2,σ0 + w−2,σ1ψ−2,σ1.

To determine Dσ, we need to make our choice of domain for each range, that is,

assign a value to each ωσθ. Table 2.1 on the next page shows the choice.
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θ ωσθ

00 0
01 1
10 0
11 1

Table 2.1: Mappings of Dσ for an LIFSW.

Therefore,

Dσ = ασ00w−2,σ0ψ−1,σ00 + ασ01w−2,σ1ψ−1,σ01

+ ασ10w−2,σ0ψ−1,σ10 + ασ11w−2,σ1ψ−1,σ11.

Finally, this choice implies Eσ = 0.

Case t = 4: Again, there is only one set: Qσ = Q(000000) and we can choose any 0 ≤ rσ <

dσ ≤ 4. So far, we have had Eσ=0. So, we will choose dσ = 4 and rσ = 3. In this

case, Cσ = s−4,σφ−4,σ + w−4,σψ−4,σ. For Dσ, we have min(−rσ + dσ − 1, rσ − 1) = 0.

Therefore,

Dσ =
∑

d∈D

ασdw−4,σψ−3,σd.

Now, rσ − 1 = 2 and dσ − rσ = 1, hence Eσ is given by

Eσ =
∑

d∈D

ασd

2
∑

n=1

∑

ρ∈Dn

gw−4+n,σρψ−3+n,σdρ.

Since there is only one domain block, there is no choice in defining Eσ. Table 2.2 on

the facing page lists the mappings of Eσ.

The action of some of the Wσ operators are illustrated in Figures 2.12, 2.13 and 2.14

on page 124.
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d n ρ σρ σdρ
0 1 0 σ0 σ00

1 σ1 σ01
2 00 σ00 σ000

01 σ01 σ001
10 σ10 σ010
11 σ11 σ011

1 1 0 σ0 σ10
1 σ1 σ11

2 00 σ00 σ100
01 σ01 σ101
10 σ10 σ110
11 σ11 σ111

Table 2.2: Mappings of Eσ for an LIFSW.
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2.6 Inverse Problem Revisited

We now revisit the inverse problem in the light of the generalized LIFSW. It is first impor-

tant to determine the contractivity of the LIFSW in some complete metric space. When

it is contractive, the iterates of an LIFSW applied to any initial function will converge to

its unique fixed point, meaning that the LIFSW provides all the information necessary to

reconstruct that fixed point.

When iterating the LIFSW as defined in the previous section, notice that after the first

iteration, the operators Cσ and Dl
σ no longer contribute any new information. Thus, if all

the El
σθ are the zero operator, one only needs perform a single iteration to construct the

attractor of W . Otherwise, on subsequent iterations, each E l
σθ component adds dσ − rσ

successive new levels towards the fixed point. This is the situation described in Theo-

rem 1.4.39. Thus, one can compute successive levels at each iteration, without computing

previous levels that are already fixed by W .

Consider the L2-norm of the difference of W applied to two functions g and h. Since

the C and D components are the same for each function, and using the orthonormality of

the wavelets we have

||W (g)−W (h)||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tX
∑

t=0

∑

Qσ∈Wt

q−1
∑

l=1

∑

θ∈Dt−rl
σ

αl
σθ[E

l
σθ(g)− E l

σθ(h)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

tX
∑

t=0

∑

Qσ∈Wt

q−1
∑

l=1

∑

θ∈Dt−rl
σ

|αl
σθ|2

∣

∣

∣

∣El
σθ(g)− E l

σθ(h)
∣

∣

∣

∣

2
.
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Now consider the difference of the E operators:

∣

∣

∣

∣El
σθ(g)− E l

σθ(h)
∣

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

rl
σ−1
∑

n=dl
σ−rl

σ

∑

ρ∈Dn

(

gwl
−dl

σ+n,σωl
σθ

ρ − hwl
−dl

σ+n,σωl
σθ

ρ

)

ψl
−rl

σ+n,σθρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

rl
σ−1
∑

n=dl
σ−rl

σ

∑

ρ∈Dn

∣

∣

∣

gwl
−dl

σ+n,σωl
σθ

ρ − hwl
−dl

σ+n,σωl
σθ

ρ

∣

∣

∣

2

.

Let M = max{|αl
σθ|}. Then

||W (g)−W (h)||2 ≤M2

tX
∑

t=0

∑

Qσ∈Wt

q−1
∑

l=1

∑

θ∈Dt−rl
σ

rl
σ−1
∑

n=dl
σ−rl

σ

∑

ρ∈Dn

∣

∣

∣

gwl
−dl

σ+n,σωl
σθ

ρ − hwl
−dl

σ+n,σωl
σθ

ρ

∣

∣

∣

2

≤M2 ||g − h||2 ,

by letting the summations run over all wavelet coefficients of g and h. Therefore, W is

uniformly continuous for any choice of αl
σθ. If M < 1, then W is contractive in the L2-norm.

We could also consider the metric presented in [27].

Now, given an LIFSW operator, consider the collage distance between f and W (f),

where the wavelet coefficients defining W are precisely the coefficients of f . For simplicity,

we can omit the superscript f for the wavelet coefficients. We then have

∆2 = ||f −W (f)||2

=

∣
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=

tX
∑

t=0

∑

Qσ∈Wt

q−1
∑

l=1

∑

θ∈Dt−rl
σ

∆2
σ,θ,ωl

σθ

by the orthonormality conditions on the wavelets. Therefore, minimizing the collage

distance is equivalent to minimizing each ∆2
σ,θ,ωl

σθ

. As before, this can be done using least

squares minimization to find the optimal scaling factors ᾱl
σθ:

0 =
∂∆2

σ,θ,ωl
σθ

∂ᾱl
σθ

= −2

rl
σ−1
∑

n=0

∑

ρ∈Dn

(wl
−rl

σ+n,σθρ − ᾱl
σθw

l
−dl

σ+n,σωl
σθ

ρ)w
l
−dl

σ+n,σωl
σθ

ρ

⇐⇒ 0 = ᾱl
σθ

rl
σ−1
∑

n=0

∑

ρ∈Dn

(wl
−dl

σ+n,σωl
σθ

ρ)
2 −

rl
σ−1
∑

n=0

∑

ρ∈Dn

wl
−rl

σ+n,σθρw
l
−dl

σ+n,σωl
σθ

ρ

⇐⇒ ᾱl
σθ =

∑rl
σ−1

n=0

∑

ρ∈Dn wl
−rl

σ+n,σθρ
wl
−dl

σ+n,σωl
σθ

ρ
∑rl

σ−1
n=0

∑

ρ∈Dn(wl
−dl

σ+n,σωl
σθ

ρ
)2

.

Formally, define

Sl
σ,a,γ,b,ω =

rl
σ−1
∑

n=0

∑

ρ∈Dn

wl
−a+n,σγρw

l
−b+n,σωρ.

Given that each node has the same number of children, the above summation can be

thought of naturally as an inner product of coefficient trees at different levels (c.f. [86]).

With this notation,

ᾱl
σθ =

Sl
σ,rl

σ ,θ,dl
σ,ωl

σθ

Sl
σ,dl

σ ,ωl
σθ

,dl
σ ,ωl

σθ

and the minimized squared collage distance ∆̄2
σ,θ,ωl

σθ

can be found as follows:

∆̄2
σ,θ,ωl

σθ
=

rl
σ−1
∑

n=0

∑

ρ∈Dn

(

(ᾱl
σθ)

2(wl
−dl

σ+n,σωl
σθ

ρ)
2 − 2ᾱl

σθw
l
−dl

σ+n,σωl
σθ

ρw
l
−rl

σ+n,σθρ + (wl
−rl

σ+n,σθρ)
2
)
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= (ᾱl
σθ)

2

rl
σ−1
∑

n=0

∑

ρ∈Dn

(wl
−dl

σ+n,σωl
σθ

ρ)
2 − 2ᾱl

σθ

rl
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n=0
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ρ∈Dn
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−dl
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ρw
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+

rl
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(wl
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2

=
(Sl
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σ ,θ,dl

σ,ωl
σθ

)2

(Sl
σ,dl

σ ,ωl
σθ

,dl
σ ,ωl

σθ

)2
Sl

σ,dl
σ ,ωl

σθ
,dl

σ ,ωl
σθ
− 2

Sl
σ,rl

σ ,θ,dl
σ,ωl

σθ

Sl
σ,dl

σ ,ωl
σθ

,dl
σ,ωl

σθ

Sl
σ,dl

σ ,ωl
σθ

,rl
σ,θ + Sl

σ,rl
σ ,θ,rl

σ,θ

= Sl
σ,rl

σ ,θ,rl
σ,θ − ᾱl

σθS
l
σ,rl

σ ,θ,dl
σ,ωl

σθ

since Sl
σ,rl

σ ,θ,dl
σ,ωl

σθ

= Sl
σ,dl

σ ,ωl
σθ

,rl
σ,θ

(c.f. [75]).



Chapter 3

Application to Image Coding

3.1 Approximation of Images

In this chapter we discuss the application of number systems to image processing. There

are two basic concepts that first need to be defined: (1) What is a discrete image? and

(2) How do we compare two discrete images?

Definition 3.1.1 A discrete image is defined here as a real-valued function u : Zn → R,

n = 1, 2, 3, . . . with compact support. Elements of this finite subset are called the pixels of

the image.

In practical applications, the range R is, in fact, replaced by a finite set {r1, ..., rm}

of grey-scale values, reflecting the way in which images are stored in computers. A finite

integer number nb of computer bits are allocated to each pixel. The grey-scale value u

associated with each pixel is then an integer between 0 and 2nb − 1. (Typically, images

are stored at nb = 8 bits per pixel, implying that m = 256 above.) The conversion of

a real-valued discrete image function value to an integer value is known as quantization.

Discussing how “real” images, that is, photos defined over continuous spatial domains, are

129
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spatially digitized to produce a lattice of pixels, is beyond the scope of this work.

In the following presentation, we limit the discussion to two-dimensional images, i.e.

n = 2, although the methods developed apply to any dimension.

Once one has a digital image (by which we mean a discrete image stored on digital

media), one often wants to process it in some way (e.g. compress or transmit). Processing

an image creates a modified version of the original. If the processing is supposed to

maintain the overall integrity of the original image, as is the case in both compression

and transmission, it is important to develop a method of comparing images. This helps

determine the effectiveness of the processing. Since images are functions, comparisons can

be done using a metric.

There is an entire field of study dedicated to metrics and other forms of comparison

on images. Indeed, the holy grail of this field is to define a method of comparison that

exactly matches the way human vision distinguishes objects. A discussion of such “visual

quality metrics” is beyond the scope of this thesis. The reader is encouraged to refer to

the human vision and image processing literature for further information. For an excellent

introduction to the area of human vision, see [88].

One metric which is used is simply the normalized L2 distance, often called the root-

mean-squared error (or RMSE ) of the images. For example, if we have two images u and v

defined on i, j = 0, . . . , 511, with pixel values {uij} and {vij} respectively, ranging between

the values 0, . . . , 255, then the RMSE of the two images is defined as

d2(u, v) =
1

512

(

511
∑

i,j=0

|uij − vij|2
)1/2

.
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Although this metric is useful, another measure of distance is more often used in the

field of image processing when one image is an approximation of the other: the peak signal-

to-noise ratio (or PSNR). It is based on the RMSE and defined as follows:

PSNR(u, v) = 20 log10

(

255

d2(u, v)

)

.

This value is measured in decibels (dB). This is not a metric since its value is zero when the

distance between the two images is 255, or the maximal value for the given grey-scale used.

Note also that as the distance d2(u, v) approaches zero, the PSNR approaches infinity.

3.2 Image Compression

We now illustrate applications of the methods presented earlier in this thesis to image com-

pression. We begin by discussing different ways to compress images using these methods

and then provide examples.

In essence, compressing an image means representing the image in a way that requires

less information to store than the original representation. For computer images, this means

storing an image with less computer memory than the original. There are two basic

categories of compression: lossless and lossy. In lossless compression, there is no change in

the quality of the image, whereas in lossy compression, there generally is. This distinction is

important. For example, when storing a text document, one can’t afford to lose a few letters

here and there, so lossless compression would be preferred. For images, lossy compression

is acceptable, provided the compressed image maintains the key visual characteristics of

the original. The methods discussed here are forms of lossy compression.

Almost all methods of wavelet compression involve performing a wavelet decomposition
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on an image and removing wavelet coefficients that, in a sense, provide little information

to the viewer of the image. These are generally coefficients with absolute values smaller

than some threshold value. The general motivation behind this methodology is based

on the principle that the wavelet coefficients can provide information on edges in the

image. As well, the most significant wavelet coefficients (i.e. those of highest magnitude)

correspond to edges in the image. The scaling coefficients provide information on the values

of the image at given points, whereas the wavelet coefficients provide information on the

frequencies, or differences between the values of the subtiles (hence no wavelet coefficients

on level zero).

For example, consider an image tiled with the twin-dragon tiling. Suppose that on

level zero of the scaling coefficient tree, two sibling scaling coefficients have the same value.

Hence, the function takes the same value on both subtiles of these coefficients’ parent.

Since the relation that g0 +g1 = 0 holds for the Haar wavelet filters, the wavelet coefficient

of the parent is zero. This illustrates the fact that there is effectively no “edge” between

the two subtiles, as far as an observer is concerned. Therefore, throwing out that wavelet

coefficient removes no information from the image. Similarly, if the wavelet coefficient is

small in absolute value, this relates to an edge between two shades of grey that are close

together. On the other hand, if the values on the subtiles are substantially different, then

the wavelet coefficient will have a large absolute value.

The discussion above was not intended to be mathematically rigorous but rather to give

the reader an idea of the motivation for these basic wavelet compression techniques. Indeed,

there are a few mathematical results that express the correlation between smooth regions

and edges and wavelet coefficients (for example, the decay of wavelet coefficients according
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to the degree of local regularity and irregularity at a point in an image [46, 47]). Some

of these correlations have been exploited [24]. However, in most practical applications to

date, the more general methods of pruning and thresholding have been used to obtain very

good compression behaviour. For more information on this topic, the reader is referred

to [82].

Before going further, it should be noted that the emphasis of this thesis was the devel-

opment of the mathematics behind the methods as opposed to the construction of feasible

image compression schemes. For this reason, no effort was made to optimize the imple-

mentations of the algorithms, nor has coding been done to store the compressed images. In

a proper analysis of a compression scheme, one compares the amount of computer memory

required to store the compressed image to the amount required by other schemes. Because

the compression aspect of our applications is not optimized (i.e. proper attention to quan-

tization, Huffman coding of quantized coefficients, etc.) no such analyses are performed

here.

The general process for implementing our results on discrete images in the framework

of image compression is as follows:

i) Consider a discrete image with pixels as Gaussian integers in C. The pixels form

the set X. For example, a 512 × 512 pixel image would be sitting in the region

{x + iy : 0 ≤ x, y < 512}. An eight-bit-per-pixel digitized representation implies

that each pixel assumes one of 28 = 256 values, typically 0 to 255. Each of these

values represents a grey-scale associated with a pixel. Typically 0 represents black

and 255 represents white, with 254 intermediate shades of grey lying between these

two extremes;
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ii) Choose a valid base (b,D) in which to expand the image. This defines an MRA and

a scaling function φ, which is the characteristic function of T (b,D);

iii) The image is assumed to be the function f =
∑

x∈X sxφx, where sx is the value of

the pixel at position x ∈ X;

iv) Find the address of each pixel in the image. The longest (minimal) address determines

LX,(b,D). The pixels with shorter addresses are prepadded with zeros, up to the longest

address length. This gives the set AX ;

v) Choose a wavelet basis using Lemma 1.4.21;

vi) Choose a method of extending the image to XL. Choosing to not extend the function

is like choosing to extend it using the function M = 0 for the extension algorithm

(see Equation (2.7) on page 109);

vii) Perform the wavelet decomposition on the image (or its extension). At each level

of the decomposition, the address length decreases by one. The decomposition algo-

rithm ends when the length is zero;

viii) Implement a form of compression on the wavelet tree, such as a zero-tree or LIFSW

method (see below);

ix) Store the compressed image in some way, possibly utilizing other compression schemes

such as Huffman encoding;

x) Perform the wavelet reconstruction algorithm to reconstruct the approximation of

the original image.
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The following are sample methods of wavelet compression:

Pruning: This method consists of simply choosing a threshold level t and zeroing all the

wavelet coefficients below that level. This is the simplest form of wavelet compression

and, consequently, usually yields the least favorable results. Indeed, in this method,

wavelet coefficients of high magnitude may be discarded.

Thresholding: This method is often called the zero-tree method, although the following

description is a simplification of the algorithm. In this method, one determines a

threshold value by which to measure the importance of the wavelet coefficients. One

then navigates each successive level of the tree (or trees), starting at the root (level L)

to determine which nodes to remove. At each level of the tree, starting at the root of

a given subtree, one calculates the squared l2 norm of the subtree. For example, if the

root node is w−t,σ, then the squared l2 norm of the subtree is
∑t−1

n=0

∑

ρ∈Dn |w−t+n,σρ|2.

If this norm is less than the threshold, that subtree is considered of little importance

to the quality of the image. In the terminology of image compression, the subtree

is said to be zeroed-out , denoting that all of its wavelet coefficients are set to zero.

One then moves to the next subtree on that level. Once all the subtrees on that level

have been thresholded, one proceeds to threshold the subtrees of the next level. The

algorithm ignores the subtrees whose parents have already been zeroed-out. Variants

on this method provide some of the best compression results to date, for example,

the method of set partitioning in hierarchical trees, or SPIHT : for short [80].

LIFSW: This method, referred to as fractal-wavelet compression, utilizes the idea of the

Inverse Problem (see Sections 1.2 and 2.6). Recall that in its basic form, fractal-

wavelet compression seeks to replace lower wavelet subtrees by suitably scaled copies
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of higher wavelet subtrees. In particular, the idea is to choose a domain level dl and

a range level rl in each wavelet tree of the image function. For each range block, one

calculates the minimized collage distance of this block with each domain block. The

domain block for which the minimized collage distance is the smallest is retained.

This gives for each range block (with address γ, say) a unique domain block at address

ω−1(γ) and a scaling factor ᾱ. Once these comparisons have been completed, the

compressed image is the LIFSW operator defined by the scaling coefficient at level

L, the wavelet coefficients on levels L up to level −rl − 1 (which defines C) and the

mappings ω and the scaling coefficients ᾱ (which defines the operators D and E).

Iterating this LIFSW generates its fixed point, which by the Collage Theorem is an

approximation to the original image.

In the generalized case, one can choose different levels for the domains and ranges for

each full subtree of the wavelet tree. After this, the process is the same as described

above.

Using the extension algorithm in image compression is somewhat counterproductive.

Technically, no additional information is created when extending the image. However,

there are many more coefficients than in the non-extended function. Table 3.1 on the next

page gives the ratio of the number of points in the extension to the number of points in the

original image. However, schemes could be developed to utilize only certain parts of the

extension to enhance the compression method, for example, simply allowing the removal

of artefacts.



3.3. EXAMPLES 137

N (N × N pixels) 16 32 64 128 256 512 1024
Base Norm # points in image 256 1024 4096 16384 65536 262144 1048576

(−1 + i, {0, 1}) 2 Levels 12 15 17 20 20 23 25
# points in extension 4096 3.3E4 1.3E5 1.0E6 1.0E6 8.4E6 3.4E7
Ratio 16 32 32 64 16 32 32

(−2 + i, {0, . . . , 4}) 5 Levels 7 8 9 9 11 11 13
# points in extension 7.8E4 3.9E5 2.0E6 2.0E6 4.9E7 4.9E7 1.2E9
Ratio 305 381 477 119 745 186 1164

(−3 + i, {0, . . . , 9}) 10 Levels 6 6 7 7 8 9 9
# points in extension 1.0E6 1.0E6 1.0E7 1.0E7 1.0E8 1.0E9 1.0E9
Ratio 3906 977 2441 610 1526 3815 954

(−4 + i, {0, . . . , 16}) 17 Levels 5 5 6 7 7 7 8
# points in extension 1.4E6 1.4E6 2.4E7 4.1E8 4.1E8 4.1E8 7.0E9
Ratio 5546 1387 5893 25045 6261 1565 6653

(2 + i, {0, 1, i,−i,−2− 3i}) 5 Levels 7 9 10 11 12 13 14
# points in extension 7.8E4 2.0E6 9.8E6 4.9E7 2.4E8 1.2E9 6.1E9
Ratio 305 1907 2384 2980 3725 4657 5821

Table 3.1: Tree depths for various complex bases.

3.3 Examples

This section presents examples of the methods discussed in the previous section. This first

example is simply an illustration of converting an image to a function.

Example 3.3.1 (Mallat algorithm) Suppose we have the following discrete image of

2 × 2 = 4 pixels that we wish to decompose in the usual Haar MRA associated with

(−1 + i, {0, 1}):

1 2

0 1

We associate these four grey-scale values with the pixel locations 0, 1, i, 1 + i in C, the

bottom lefthand corner being the integer 0. Therefore, this image is simply the function

f = φ1+φi+2φ1+i, and so the decomposition is the same as the one given in Example 2.2.9.

Example 3.3.2 (Pruning) Consider a 512 × 512 image of Lena as shown in the top

lefthand corner of Figure 3.1 on page 139. Figures 3.1, 3.2 and 3.3 show the result of

performing the pruning algorithm on Lena at various levels and using different bases.

Table 3.2 on page 142 gives the compression ratio and PSNR values of the pruned images.

Here, the compression ratio is defined as the ratio of the number of wavelet coefficients in

the original image to the number of wavelet coefficients remaining after pruning. Notice

that in some cases, the first few levels of pruning yield almost completely black images.
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Upon careful inspection, the tile edges can be seen. This is due to the extension problem

where the majority of the points in the supertile are black.

Example 3.3.3 (Thresholding) Figures 3.4, 3.5 and 3.6 on pages 143 to 145 show the

result of performing the zero-tree algorithm on Lena at various levels and using different

bases. Table 3.3 on page 146 gives the compression ratio and PSNR values of the com-

pressed images. The compression ratio is again defined here as the ratio of the number of

wavelet coefficients in the original image to the number of wavelet coefficients remaining

after thresholding.

Example 3.3.4 (LIFSW) Figures 3.7, 3.8 and 3.9 on pages 147 to 149 show the result of

performing the LIFSW algorithm on Lena with various domain-range level pairs and using

different bases. Table 3.4 on page 150 gives the compression ratio and PSNR values of the

compressed images. In this instance, the compression ratio is defined in a slightly different

fashion: the number of bits needed to store the original image divided by the number of

bits needed to store the fractal-wavelet code. It is important to note that this compression

ratio cannot be compared with the compression ratio of the other two schemes. This ratio

is presented solely to enable a comparison between the different LIFSW images. The reader

is cautioned against using it to draw conclusions regarding the usefulness of the LIFSW

method.

In our examples, we are considering 512 × 512 images with 256 grey-scales. It takes 8

bits to store each grey-scale value. Hence, the image takes 221 bits to store. The fractal-

wavelet code consists of the wavelet coefficients below the range level (level −L to −r l +1),

the map that associates to each range block, the domain block chosen in the algorithm,

and the α coefficients. We assume that the wavelet coefficients and α coefficients are stored

with 8-bit precision and the maps with 2 bit precision.

Notice that if the range level is taken to be too close to −1, one actually gets an

expansion rather than a compression. This is caused by the need to have “more levels than

necessary” in the tree since the image is inside a much larger supertile. One could improve

the results by placing the image in an optimal location in the supertile, that is, one that

minimizes the length of the image in the supertile.
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Figure 3.1: Pruning with base (−1 + i, {0, 1}): The original 512 × 512 image of Lena is in
the top lefthand corner. The other images, from top to bottom, left to right, result from
pruning the wavelet trees at levels −21 to −1 by increments of two.
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Figure 3.2: Pruning with base (−2 + i, {0, 1, 2, 3, 4}): The original 512 × 512 image of
Lena is in the top lefthand corner. The other images, from top to bottom, left to right,
result from pruning the wavelet trees at levels −11 to −1.
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Figure 3.3: Pruning with base (2 + i, {0, 1, i,−i,−2− 3i}): The original 512 × 512 image
of Lena is in the top lefthand corner. The other images, from top to bottom, left to right,
result from pruning the wavelet trees at levels −11 to −1.
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Figure 3.4: Thresholding with base (−1 + i, {0, 1}): The original 512 × 512 image of Lena
is on the top. The other images, from top to bottom, left to right, result from thresholding
the wavelet trees using threshold values 1000, 5000, 10000, 15000, 20000 and 25000.
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Figure 3.5: Thresholding with base (−3 + i, {0, . . . , 9}): The original 512 × 512 image
of Lena is on the top. The other images, from top to bottom, left to right, result from
thresholding the wavelet trees using threshold values 1000, 5000, 10000, 15000, 20000 and
25000.
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Figure 3.6: Thresholding with base (2 + i, {0, 1, i,−i,−2 − 3i}): The original 512 × 512
image of Lena is in the top lefthand corner. The other images, from top to bottom, left to
right, result from thresholding the wavelet trees using threshold values 1000, 5000, 10000,
15000, 20000 and 25000.
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Base Threshold
−1 + i 1000 5000 10000 15000 20000 25000

Compression 9.2 19.2 27.6 34.3 40.8 46.7
PSNR (dB) 32.4 28.7 27.1 26.2 25.7 25.3

Base Threshold
−2 + i 1000 5000 10000 15000 20000 25000

Compression 11.3 24.7 35.4 44.8 52.2 58.4
PSNR (dB) 32.1 27.9 26.3 25.3 24.7 24.3

Base Threshold
−3 + i 1000 5000 10000 15000 20000 25000

Compression 11.7 26.5 39.5 49.8 59.0 67.4
PSNR (dB) 31.8 27.5 25.8 25.0 24.4 23.9

Base Threshold
−4 + i 1000 5000 10000 15000 20000 25000

Compression 11.5 26.6 39.4 50.4 60.1 68.6
PSNR (dB) 31.3 27.1 25.4 24.5 23.9 23.5

Base Threshold
2 + i 1000 5000 10000 15000 20000 25000

Compression 7.0 15.6 23.9 30.6 36.6 42.2
PSNR (dB) 30.0 25.4 23.8 23.0 22.4 22.0

Table 3.3: Thresholding: The above tables give the compression ratio and PSNR of the
images in Figures 3.4, 3.5 and 3.6. Bases (−2 + i, {0, 1, 2, 3, 4}) and (−4 + i, {0, . . . , 16})
are included for comparison.
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Figure 3.7: Fractal-wavelet (LIFSW) coding with base (−1+ i, {0, 1}): The original 512 ×
512 image of Lena is in the top lefthand corner. The other images, from top to bottom, left
to right, result from choosing the domain level to be −13, with ranges −11,−9,−7,−5,−3.
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Figure 3.8: Fractal-wavelet (LIFSW) coding with base (−4 + i, {0, . . . , 9}): The original
512 × 512 image of Lena is at the top. The other images, from top to bottom, left to right,
result from choosing the domain level to be −5, with ranges −4,−3,−2 and −1.
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Figure 3.9: Fractal-wavelet (LIFSW) coding with base (2 + i, {0, 1, i,−i,−2 − 3i}): The
original 512 × 512 image of Lena is in the top lefthand corner. The other images, from
top to bottom, left to right, result from choosing the domain level to be −9, with ranges
taking all values between −8 and −1.
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Base Levels (d, r)
−1 + i (−13,−11) (−13,−9) (−13,−7) (−13,−5) (−13,−3)

Compression 678.7 195.9 52.8 13.7 3.5
PSNR (dB) 19.1 21.8 23.9 27.6 31.5

Base Levels (d, r)
−2 + i (−6,−5) (−6,−4) (−6,−3) (−6,−2) (−6,−1)

Compression 303.4 80.9 18.6 4.0 0.8
PSNR (dB) 18.0 21.3 25.3 30.7 46.1

Base Levels (d, r)
−3 + i (−6,−5) (−6,−4) (−6,−3) (−6,−2) (−6,−1)

Compression 1068.9 301.8 55.9 7.3 0.8
PSNR (dB) 11.1 14.5 17.8 22.3 29.0

Base Levels (d, r)
−4 + i (−5,−4) (−5,−3) (−5,−2) (−5,−1)

Compression 560.1 109.2 11.1 0.8
PSNR (dB) 10.5 14.3 18.8 25.4

Base Levels (d, r)
2 + i (−9,−8) (−9,−7) (−9,−6) (−9,−5) (−9,−4) (−9,−3) (−9,−2) (−9,−1)

Compression 2621.4 1524.1 746.8 269.7 75.5 18.1 3.9 0.8
PSNR (dB) 8.8 11.0 13.3 15.3 17.5 20.0 23.4 27.8

Table 3.4: Fractal-wavelet (LIFSW) coding: The above tables give the compression ratio
and PSNR of the images in Figures 3.7, 3.8 and 3.9 using domain-range level pairs (−d,−r).
Bases (−2 + i, {0, 1, 2, 3, 4}) and (−3 + i, {0, . . . , 9}) are included for comparison.
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Example 3.3.5 Figure 3.10 on page 153 shows the result of performing the LIFSW

algorithm on a few other standard images in image analysis: mandrill, boat, goldhill.

These were compressed using the bases (−2 + i, {0, 1, 2, 3, 4}), (−3 + i, 0, . . . , 9) and (2 +

i, {0, 1, i,−i,−2− 3i}) from levels (d, r) = (−3,−2), with compression ratios 4.0, 7.3 and

3.9 respectively. Table 3.5 gives the PSNR of each image. Visually, it seems like the

fractal nature of the tiles works well for the mandrill image, better than for the other

two images, even though the PSNR is lower. Notice also that as n increases, the bases

(−n + i, {0, . . . , n2}) stretch out, causing difficulty for compression. The shape of the tile

of −3+ i causes the disruption in the lines on the left-hand side of the nose of the mandrill,

but less on the right.

Base Mandrill Boat Goldhill
−2 + i 20.9 24.5 25.6
−3 + i 18.8 19.6 21.0
2 + i 20.7 23.6 25.1

Table 3.5: PSNR values for LIFSW on mandrill, boat and goldhill.

Example 3.3.6 Figure 3.11 on page 154 shows the result of applying the LIFSW algorithm

to various gradients using base (−3+i, {0, . . . , 9}) with different values of (d, r). One notices

again that the rotation of the tiles at each level d and r affects the quality of compression.

Indeed, for the horizontal and vertical gradients, for levels (−2,−1), the choice of domain

block seems quite inappropriate. Further study revealed that even performing the LIFSW

on levels (d,−1), d < −2, showed proper behaviour in the sense that, for example, even the

choice of (−6,−1) gave a smooth looking image for the vertical gradient that looked like

the original. Figure 3.12 on page 155 shows the vertical and horizontal gradients pruned

at level −2. The edge effects from representing the bottom, and top and bottom of the

gradient respectively, seems to explain this interesting behaviour. At level −2, the tiles

are vertical, mono-colour strips of 10 pixels in length. The edge effects are generated by

the need to take pixels from outside the supertile for the wavelet decomposition. This is
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clearly demonstrated by the colour-to-length relationship. The larger the proportion of a

tile is in the image, the lighter it is. The more a tile is outside the image, the darker it is. If

one were to colour the supertile white, then the opposite effect would occur. Furthermore,

the vertical tile would exhibit odd effects on the dark edge instead of the light. This type

of behaviour prompts an interest in the extension algorithm.
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Figure 3.10: Fractal-wavelet (LIFSW) coding with various bases from Example 3.3.5. The
original 512 × 512 images are at the top.
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Figure 3.11: Fractal-wavelet (LIFSW) coding using base (−3 + i, {0, . . . , 9}) from levels
(−4,−3), (−3,−2) and (−2,−1) from Example 3.3.6. The original 512 × 512 gradient
images are at the top.
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Figure 3.12: Vertical and horizontal gradients (top) from Example 3.3.6 pruned at level
−2 in base (−3 + i, {0, . . . , 9}) (middle). The bottom images show closeups of the lower
edge of each image. The edge effects are generated by the supertile.





Conclusion

In summary, a link between two-dimensional non-separable Haar wavelets and complex

bases has been established, allowing the construction of an entire class of MRA in two

dimensions. The translation of scaling and wavelet coefficients through this link has been

shown to be consistent with the Mallat algorithm. Results regarding the termination of the

Mallat algorithm for certain MRA have been proved. These results have been generalized

to higher dimensional number systems, which retain the properties of complex bases. This

includes an important equivalence result to establish whether or not a given matrix and

digit set are indeed a valid base for a number system.

The asymmetry of the wavelet tree for generalized number systems was discussed. A

class of extensions of functions was developed to address this situation. This algorithm was

shown to be well defined and consistent with the Mallat algorithm. The theory of LIFSW

was generalized to number systems and a method of constructing LIFSW approximations

to functions was presented.

There seems to be a general consensus in the IFS research community that IFS,

as presently used, cannot compete with state-of-the-art compression methods involving

wavelets. However, this does not mean that fractal-based methods could not be used to

enhance such methods (e.g. extrapolation of wavelet coefficients) or provide further insight

157
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into the properties of given images. It is hoped that further research into this area will

yield such successful applications.

Given the above results, a number of questions arise. They are listed here as potential

problems for future study:

i) Would it be of interest to use the Long Division Algorithm to perform wavelet de-

compositions, or perhaps for LIFSW “zooming” (p. 42)?

ii) It would be extremely interesting to determine which results of this thesis can be

generalized to non-Haar bases (p. 75). For instance, smooth wavelets yield a very

rapid decay of the wavelet coefficients of a function (see [75] for a summary of such

results). This would significantly improve the applicability of certain methods to

image compression;

iii) Would it be useful to study addressing schemes for MRA where integer cyclic points

exist (p. 80)? Would such schemes be well-defined?

iv) Can statistical analysis of the addresses of a complex base be used directly to place

an image in an optimal location (p. 89)? Would an exhaustive searching scheme be

of interest? Optimal means in the sense of minimizing the ratio between the number

of points in the image and the number of points in the supertile that are outside the

image. This might significantly improve any coding scheme using the methods of this

thesis (p. 137);

v) Can an algorithm be constructed to modify a dilation and digit set associated with an

MRA in such a way that the result is a valid base for a number system and such that
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the resulting tile resembles the tile of the original MRA (p. 90)? Simple translations

are not generally enough (see [37]);

vi) It has been shown that the fundamental tile of a valid base has non-empty interior

(see [56]). Intuitively, this makes sense since if 0 is on the boundary of the funda-

mental tile, it would have multiple radix representations. It should be provable that

the integer 0 is in the interior of every fundamental tile. In that case, an additional

equivalence for a valid base should be that the only integer contained in the interior

of the fundamental tile is 0 (p. 92). Such a result would make it easy to visually

identify valid bases;

vii) In practice, what is the physical interpretation of scaling coefficients associated with

non-zero cyclic points (p. 96)? A single terminating scaling coefficient is typically

associated with the intensity of the signal;

viii) What coding schemes could be developed to enhance the LIFSW method for com-

pression (p. 115)?

ix) Is it possible to solve Conjecture 2.3.13, or can one construct a non-diagonalizable

matrix, which is a valid base for some digit set, where the matrix in not an acceptable

dilation (p. 98)?

x) What could be some practical applications of the extension algorithm (p. 104) and

the restricted LIFSW algorithm (p. 115)? One possibility comes from noticing that

the fractal tiles of valid bases generate a variety of interesting textures in the com-

pressed images. Such features might be of interest to the graphics design industry.

For example, the LIFSW method with certain tiles seems to produce effects similar



160 CONCLUSION

to water colour paintings (Figure 3.10). The thresholding method produces effects

similar to brush strokes on canvas (Figure 3.6). Could alternate extension methods

be developed utilizing a more direct approach (p. 104)?

xi) What other operators M may be of interest for the extension algorithm, if indeed

such operators exist? What other properties might such operators share (p. 109)?

xii) Is it possible to construct a tighter bound on M (p. 126)?



Appendix A

A.1 Motivation of IFS

To motivate the definition of IFS, consider the famous construction of the Cantor “middle-

thirds” set [39, pp. 114-116]. Typically, the Cantor set is constructed by induction. Let

I0 = I = [0, 1] ⊂ R. Let I1 = I0\(1
3
, 2

3
), that is, the interval [0, 1] with the open middle-third

removed.

-
I0 I1

0 1 0 1
3

2
3 1

Construct I2 from I1 by removing the open middle-thirds from the two remaining closed

intervals.

-
I1 I2

0 1
3

2
3 1 0 1

9
2
9

1
3

2
3

7
9

8
9 1

Inductively, construct In+1 by removing the open middle-thirds from the 2n closed intervals

of In. The Cantor set is then defined to be C=
⋂∞

n=0 In.

Suppose that you were asked to describe C. At this point, it might be difficult without

giving the argument for its construction. Returning to the ideas presented at the end of

Section 1.2.1, we would like to find a function f , on some appropriate space, for which C
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is the attractor. This function could then be iterated to find C and would technically be

an exact description of C.

To understand what we wish to do in general, let us look at two characteristics of C.

By construction, C is compact. A second characteristic is the self-similarity we find within

it. This is one of the reasons C is called a fractal. A general definition of self-similarity

has been given in [58], but intuitively, an object is considered self-similar if parts of the

object resemble others. An object is considered a fractal if this self-similarity is infinite.

In essence, if you zoom into the object for a closer look, you cannot tell the difference from

viewing the unzoomed object.

To see the self-similarity in C, let C1 = C ∩ [0, 1
3
] and let C2 = C ∩ [2

3
, 1]. Intuitively, if

we were to “zoom in” on C1 or C2, we could not distinguish either from C. Mathematically,

we see that the maps w1 : C → C1 defined by x 7→ x
3

and w2 : C → C2 defined by x 7→ x
3
+ 2

3

are metric equivalences under the induced topology of R. Indeed, C is the disjoint union

of two metrically equivalent subsets:

C = C1 ∪ C2.

We wish C to be the fixed point of a certain function. We motivate the following

definition by the fact that C is a subset of I.

Definition A.1.1 Let X and Y be sets and f : X → Y . We define the set mapping

f̂ : P (X) → P (Y ) by

f̂(A) = {f(a) : a ∈ A} ∀A ∈ P (X),

where P (X) denotes the power set of X.

We see that C1 = ŵ1(C) and C2 = ŵ2(C). Therefore,
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C = ŵ1(C) ∪ ŵ2(C). (A.1)

Hence, C can be written as a union of contracted copies of itself. This is the central

theme of IFS. Given a set A, try to write A as a union of contracted copies of itself.

Definition A.1.2 Let X and Y be sets and fλ : X → Y , λ ∈ A, where A is some indexing

set. Let f= {fλ}. We define f̂= ∪λ∈Af̂λ, that is for A ⊂ X, we have

f̂(A) =
⋃

λ∈A

f̂λ(A).

If we now set w = {w1, w2}, we see by Equation (A.1), that C is the fixed point of

ŵ. Now, for this w to be useful, we would need C to be its attractor in some appropriate

space. Intuitively, this makes sense since In+1 = ŵ(In), for each n ∈ N. Hence, in a way,

w is an exact description of C. In general, the desired approximations would be obtained

by iterating maps of the form given in Definition A.1.2.

A.2 A Complete Space for IFS

We will use the example of C ⊂ R to motivate the search for a space consisting of subsets

of a complete metric space. Given a complete space (X, d), the goal is to find a complete

space (Y, dY ) with Y ⊂ P (X). We will first construct a distance function dY on P (X) and

use the conditions needed for it to be a metric to help us determine Y . To begin, consider

the three pairs of sets in R2 pictured in Figure A.1 on the next page.

Each case consists of two sets, one bounded by the solid line and one by the dashed

line. In which case do the two sets seem “closest”? Probably not in (a). In (b), the dashed

set certainly seems close to the solid one; it is part of the solid set. However, many points
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(a) (b) (c)

Figure A.1: Closeness of sets.

of the solid set seem distant from the dashed set. Case (c) seems intuitively right. Most

points of the solid set are close to the dashed one, and vice-versa. More precisely, each set

overlaps the other set rather well. We use these ideas to begin to construct our metric.

Unless otherwise specified, (X, d) will denote a metric space with no other properties.

Notation A.2.1 Let x ∈ X,B ⊂ X. Define the distance from x to B by

d(x,B) = inf
b∈B

d(x, b).

Hence, if x ∈ B, d(x,B)= 0.

Notation A.2.2 Let A,B ⊂ X. Define the distance from A to B by

d(A,B) = sup
a∈A

d(a, B).

This seems reasonable since if A ⊂ B, A should be close to B and by this definition

we would have d(A,B)= 0. Unfortunately, this function is not a metric. For example,

d([0, 1
2
], [1

3
, 1]) = 1

3
but d([1

3
, 1], [0, 1

2
]) = 1

2
. Symmetry is lacking, which motivates the

following construction [4, 23, 43]:
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Definition A.2.3 Let A,B ⊂ X. Define the Hausdorff distance between A and B by

h(A,B) = max{d(A,B), d(B,A)}.

This is the function dY we seek. It satisfies the intuitive notion of two sets being close,

which was found in (c) on page 164. The function h is almost a metric. We use the

following table to help rule out certain sets from P (X):

Problem: h(∅, [0, 1]) =? Solution: Only consider non-∅ sets.

Problem: h([0, 1), [0, 1]) = 0 Solution: Only consider closed sets.

Problem: h([0, 1], [0,∞)) = ∞ Solution: The closed sets must be compact.

Notation A.2.4 Define H(X) to be the set of all non-empty, compact subsets of X.

Theorem A.2.5 Let (X, d) be a metric space. Then (H(X), h) is a metric space. Fur-

thermore, if (X, d) is complete then so is (H(X), h).

We now note a few properties about the Hausdorff metric which enable us to justify

the definition of contractivity of an iterated function system as seen in Definition 1.2.19.

Again, let (X, d) be a metric space.

Notation A.2.6 Let Con(X, d, s) denote the set of all contractive maps with contractivity

at least s.

Lemma A.2.7 Let w ∈ Con(X, d, s), then ŵ∈ Con(H(X), h, s).

Proposition A.2.8 Let (X, d) be a metric space and let

w = {wn ∈ Con(X, d, cn) : n = 1, 2, . . . , N}.

Then ŵ ∈ Con(H(X), h, c), where c = max{cn : n = 1, 2, . . . , N}.
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Proposition A.2.8 implies a crucial result for IFS.

Theorem A.2.9 (BCMP for IFS) Let w be an N -map IFS with contractivity c. Then

ŵ ∈ Con(H(X), h, c). Furthermore, ŵ has a unique fixed point Aŵ∈ H(X) which is also

its attractor.

Definition A.2.10 The fixed point of ŵ is called the attractor of ŵ.

This yields the following version of Proposition 1.2.17 for iterated function systems [4]:

Theorem A.2.11 (The Collage Theorem) Let w be an N -map IFS with contractivity

0 ≤ c < 1. Suppose L ∈ H(X) and ε > 0 are such that h(L, ŵ(L)) ≤ ε. Then h(L,Aŵ) ≤
ε

1−c
.

The distance h(L, ŵ(L)) is often called the collage distance. The Collage Theorem is

important for the Inverse Problem of approximating sets seen in Section 1.2.1. By the

Collage Theorem, one could try to construct an IFS w which takes L close to itself. The

attractor of w would then be close to L.

It is possible that c ≈ 1 which, in turn, implies that the constant ε/(1 − c) can be

large. Thus there is no guarantee that the collage distance is small and the approximation

may be quite poor. To make c ≈ 0, one can use maps with small contractivity factors.

However, this might increase the number of maps needed to describe the approximation

(hence reducing the compression). This fact is relevant when compression is a principal

factor.

In order to calculate fractal images using the theoretical machinery that has been

developed, one can use the following algorithm, a consequence of Theorem A.2.9 [4]:

Corollary A.2.12 (The Deterministic Algorithm) Let w be an N -map IFS with

w = {wj : j = 1, 2, . . . , N}. Let A0 ∈ H(X). Compute An = ŵ◦n(A) by An+1 =
n∪

j=1
ŵn(An)
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for n = 1, 2, . . . . Then the sequence (An) ⊂ H(X) converges to the attractor of the IFS in

H(X).

A.3 Examples of IFS Attractors

In practice, affine IFS contraction maps are used to simplify calculations. Let Mn(R)

denote the set of all n× n matrices over R and Rn be the usual Euclidean n-space.

Definition A.3.1 Let X ⊂ Rn, n ∈ N+. A map w : X → Rn is called an affine transfor-

mation if ∃A ∈Mn(R) and b ∈ Rn such that

w(x) = Ax+ b ∀x ∈ X.

In general, given vector spaces X and Y , an affine transformation f : X → Y is a map of

the form

f(x) = Ax + b

where A is a linear transformation from X to Y and b ∈ Y .

Example A.3.2 Let X = [0, 1] and let wi(x) = 1
3
(x + 2i), i = 0, 1. Then Aŵ = C.

Example A.3.3 Let X = [0, 1]2. Define the following maps:

w1(x, y) =
(x

2
,
y

2

)

,

w2(x, y) =

(

x

2
+

1

2
,
y

2

)

,

and

w3(x, y) =

(

x

2
+

1

4
,
y

2
+

√
3

4

)

.

To find the attractor of ŵ, we use the Deterministic Algorithm. We are allowed to make

any choice of A0. Therefore, let A0 be the following triangle:



168 APPENDIX A

(0,0) (1,0)

(1
2
,
√

3
2

)

Then, using the algorithm, we obtain the following sequence of sets:

A1

(0,0) (1,0)

(1
2
,
√

3
2

)

-

A2

(0,0) (1,0)

(1
2
,
√

3
2

)

-

A3

(0,0) (1,0)

(1
2
,
√

3
2

)

- . . .

This sequence converges to the Sierpinski gasket [63].

An affine IFS w = {wi} is an IFS where each wi is affine. Often, affine IFS in R2 will

be written in a table to facilitate their description. Consider an IFS consisting of the maps

wi(x, y) =







ai bi

ci di













x

y






+







ei

fi






, i = 1, 2, . . . , N.

Instead of writing them as above, they are written in a table such as:

a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

...
...

...
...

...
...

aN bN cN dN eN fN

We now recall the definition of a similitude.
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Definition A.3.4 A transformation w : R2 → R2 is called a similitude if it is an affine

transformation of the form

w(x, y) = r

(

cos θ ± sin θ

sin θ ∓ cos θ

)(

x

y

)

+

(

e

f

)

where (e, f) ∈ R2, r 6= 0, θ ∈ [0, 2π). The constant r is called the scaling of w, or its scaling

factor, and θ is called its angle of rotation.

Proposition A.3.5 If w(x) = Ax + b, A ∈ M2, b, x ∈ R2 is a similitude in R2, then its

contractivity factor is | detA|.

Corollary A.3.6 If w : R2 → R2 is a similitude as above and | detA| < 1, then w ∈
Con(X, d).

To apply this theory to images, i.e. computer images, one can think of an image as

being a compact subset of Rn. One can model a computer screen by X = [0, 1]2 and define

an image on the screen to be a set A in X, with points being screen pixels. If x ∈ A, the

associated pixel is plotted white. If x /∈ A, leave the pixel black. Hence a white screen

represents A = [0, 1]2 (see 3.1).

Suppose an IFS acts on the screen. When the IFS is iterated, the points of A move

about the screen. Looking at ŵ(A), we see that x ∈ ŵ(A) if ∃i ∈ 1, 2, . . . , N such that

x = wi(y) for some y ∈ A. Hence, after one iteration of ŵ, a pixel is plotted white if there

is a white pixel mapped to it by the IFS. We can therefore think of IFS as mapping black

and white images to black and white images.

Unfortunately, as they say, the world is not black and white. What is needed is an

IFS-type method which allows the pixels to take on grey-level values. We also need maps

which move pixels around and then scale their grey-levels. This is the theory of IFSM [28]

(see Definition 1.2.21 on page 16).
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F. A. Sherk, editors, The Geometric Vein, The Coxeter Festschrift, pages 129–139.

Springer-Verlag, 1982.

[33] W. Gilbert. Arithmetic in complex bases. Mathematics Magazine, 57(2):77–81, 1984.

[34] W. Gilbert. Complex based number systems. Unpublished, May 1994.

[35] W. Gilbert. The division algorithm in complex bases. Canadian Mathematical Bul-

letin, 39(1):47–54, 1996.
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Banach Contraction Mapping Princi-
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IFS
Iterated function system, 14

IFSC
IFS on coefficients, 64

IFSM
IFS with grey-level maps, 16

LIFSM
Local IFSM, 29

LIFSW
Local IFS on wavelets, 67, 115

MRA
Multiresolution analysis, 47

µ-d-n
µ-dense and non-overlapping, 22

PSNR
Peak-signal-to-noise ratio, 131

QP
Quadratic programming, 26

RMSE
Root-mean-squared error, 130
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acceptable dilation, 45
address, 36, 83

length, 84
of a number, minimal, 84
set of fixed length, 100

affine
IFS, 168
IFSM, 24
transformation, 167

algebraic integer, 39
algorithm

Base Conversion, 41
Clearing, 43
decomposition, 60

for number systems, 81
Deterministic, 166
Escape Time, 42
Extension, 104
Long Division, 42
Mallat, 60

for number systems, 81
reconstruction, 60

for number systems, 81
angle of rotation, 169
approximation, 11
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LIFSM, 32

attractor, 10, 166
Cantor set, 163
fundamental tile, 38
IFS, 166, 167

LIFSW examples, 73
Sierpinski gasket, 168
uniqueness, 11
valid base examples, 40

base, 36
for Zn, 90
positional notation, 36

Base Conversion Algorithm, 41
basic wavelets, 46
basis, 7

Haar, 46, 65
wavelet, 46, 48
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IFS, 166

black and white image, 169
block

child, 67
domain, 29, 67, 73
parent, 67
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Cantor set, 161
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characteristic function, 50
child
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node in a tree, 104
of a scaling coefficient, 103
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coefficient
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scaling, 58
scaling associated with valid base, 85
wavelet, 58
wavelet associated with valid base, 85

collage distance, 30, 166
for generalized LIFSW, 126
minimized for generalized LIFSW, 127
minimized for IFSM, 24
minimized for LIFSM, 31
minimized for LIFSW, 74

Collage Theorem, 13, 166
compact, 12
complete

metric space, 9, 70
residue system, 37, 38, 52

composition, 9
compression, 166

fractal-wavelet, 135
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LIFSW, 138
pruning, 137
thresholding, 138

computer screen, 169
concatenation of sequences, 86
condensation, 69, 118
continuity of fixed points, 12
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infinite set of maps, 22
contractive, 9

maps, 165
contractivity, 9, 14

factor, 9, 20, 169
LIFSW, 126

covering condition, 29, 31
cyclic point of an IFS, 92

decomposition algorithm, 60
for number systems, 81

Deterministic Algorithm, 166
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digit set, 36, 90
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equation, 47, 48, 58
matrix, 45, 92
operator, 45
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Dirac delta function, 61
Discrete Cosine Transform, 64
discrete image, 129
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block, 117
block for LIFSW, 67
level for LIFSW, 117

eigenvalue, 45
Escape Time Algorithm, 42
Extension Algorithm, 104

filter
coefficients, 47, 48, 81

fixed point, 10, 166
unique, 11

fractal, 162, 166
transform operator, 17
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full subtree, 112
function

condensation, 69
distribution, 21
scaling, 47

fundamental tile, 38
IFS, 38, 38
translate, 101

Gaussian integers, 35
grey-level

image, 15, 16
grey-scale, see grey-level
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Haar
basis, 46
mother wavelet, 46
scaling function, 52

Hausdorff metric, 165, 165

IFS, 14
N -map, 14
affine, 168
attractor, 166
Collage Theorem, 166
cyclic point of, 92
fundamental tile, 38
on wavelet coefficients, 67
valid base, 38
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IFSC, 64
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IFSW, 67
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black and white, 169
discrete, 129
grey-level, 15, 16
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Lipschitz, 9
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local IFS on wavelets, 67, 115
Long Division Algorithm, 42
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Mallat algorithm
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for number systems, 81
reconstruction, 60

for number systems, 81
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maximal

subtree, 112
tile, 112

measure
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finite, 20
Lebesgue, 20

metric, 8
Hausdorff, 165, 165
space, 8

minimal
address

of a number, 84
length of an integer, 84
polynomial, 43

MRA, 47
associated with valid base, 77

µ-d-n, 22
µ-non-overlapping condition, 29, 31
multiresolution analysis, 47

n-th iterate, 10
natural association between C and R2, 75
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node
child, 104
siblings, 104

norm, 35

operator
dilation, 45
IFSM, 16, 18, 22, 30
spectral radius, 98
translation, 45

orthogonal, 7
orthonormal, 7

parent
level for LIFSW, 117
of a scaling coefficient, 103
of a sequence, 103

peak-signal-to-noise ratio, 131
pixel, 129, 169
prefix of a sequence, 86
principal tile, see fundamental tile
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Qσ decomposition of a set, 112
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radix
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part, 36
point, 36

range
block, 117
block for LIFSW, 67
level for LIFSW, 117

reconstruction algorithm, 60
for number systems, 81
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root-mean-squared error, 130

scaling, 169

coefficient, 58
associated with valid base, 85
child, 103
parent, 103
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factor, 67, 136, 169
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function, 47
Haar, 52

relation, 69
tree, 104

self-similar, 162
affine, 53

sequence
child, 103
concatenation of, 86
parent, 103
prefix of, 86
sibling, 103

Shannon
sampling theorem, 49
scaling function, 49

sibling
node in a tree, 104
of a scaling coefficient, 104
of a sequence, 103

Sierpinski gasket, 168
similitude, 169
spectral radius, 98
supertile of a set, 101

threshold value, 135
thresholded, 135
tile

by integer translates, 50
examples of, 40
maximal, 112
of a set, 101
size of, 111
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translate
fundamental tile, 101
tile by integer, 50

translation, 25
operator, 45

tree
asymmetrical nature, 90
full subtree, 112
scaling, 104

twin dragon, 57

unitary
dilation, 45

valid base, 35, 39
associated with MRA, 77
for Zn, 90
fundamental tile

IFS, 38

wavelet, 25
basic, 46
basis, 46, 48
coefficient, 58, 70

associated with valid base, 85
mother, 46
tree, 60, 73
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