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Abstract

Current Graphic Processing Units (GPUs) (circa. 2003/2004) have programmable vertex

and fragment units. Often these units are implemented as SIMD processors employing par-

allel pipelines. Data dependent conditional execution on SIMD architectures implemented

using processor idling is inefficient.

I propose a multi-pass approach based on conditional streams which allows dynamic

load balancing of the fragment units of the GPU and better theoretical performance on

programs using data dependent conditionals and loops. The proposed system can be used

to turn the fragment unit of a SIMD GPU into a stream processor with data dependent

control flow.
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Chapter 1

Introduction

Historical data shows that the performance of Graphics Processing Units (GPUs) has been

increasing significantly faster than that of Central Processing Units (CPUs) [11]. Both

types of processing units are subject to the same advances in semi-conductor technol-

ogy, so the growing gap in performance can be attributed to the difference between their

computational models. Some GPUs are Single Instruction Stream Multiple Data Streams

(SIMD) machines, employing a stream computing model that maps well onto hardware,

particularly with respect to coherent memory access. Modern GPUs also have parallel

pipelines that allow them to achieve a high degree of data parallelism on linear control

flow, where linear control flow consists only of data-independent control structures. For

example only for loops with fixed iteration count. However, SIMD machines perform

rather poorly on data-dependent control flow since data-dependent control flow is usually

handled in a SIMD machine by idling processors and other resources.

GPUs have recently incorporated more programmable capabilities. The latest gen-

1



CHAPTER 1. INTRODUCTION 2

eration of GPUs have powerful programmable shading units with floating-point support.

Even though these features are targeted primarily at transformations and surface shading,

they are powerful enough to make the GPU an interesting platform for general purpose

programing [26]. The list of applications that have been “mapped” onto GPUs is large,

and includes linear and non-linear equation solvers [10], sparse matrix solvers [2], ray

tracer implementations [21], and global illumination solvers [4]. In addition to their pro-

grammable capabilities, GPUs have hardware support for various operations such as look-

up tables, texture filtering, etc., that might be useful assets in general purpose programs.

For example, texture look-up provides low cost linear, bi-linear and tri-linear interpolation.

A SIMD GPU is, therefore, powerful parallel processors with great computational

potential, but it suffers from the shortcomings of most data-parallel systems: poor perfor-

mance on data-dependent control flow because of resource idling. We need a way of truly

avoiding unnecessary computations.

The control flow of a program can be schematically represented as a directed graph

where the nodes have only linear control flow and the arcs represent data-dependent bran-

ches. In a multi-pass streaming computation framework, the control graph can be inter-

preted as a data flow chart: nodes are independent pure SIMD programs calledkernelsthat

operate on large sets of data. This graph is called astreaming graph.

The contribution of this thesis is a design for a system that transparently transforms

the GPU1 into a general purpose stream processor with asymptotically efficient data-

dependent control structures.

An implementation of this system was built on top of the Sh library. Sh [15] is a high-

1Not all of the GPU resources are used in this framework.
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ShProgram ifp = SH_BEGIN_PROGRAM("gpu:stream"){
ShInputTexCoord3f input; / / input
ShOutputColor3f ocolor; / / output

/ / Kernel A: some initial computations

/ / ... computations ...

/ / Split the data flow into two branches
SH_IF( ... condition... ){

/ / Kernel B
/ / ... computations ...

} SH_ELSE{

/ / Kernel C
/ / ... computations ...

} SH_ENDIF;

/ / Kernel D
/ / ... Final computations ...

} SH_END_PROGRAM;

Listing 1.1: Sample Sh code

level GPU programming language implemented as a C++ library. The Sh syntax supports

data-dependent conditional and iteration statements. Sh also provides an implementation

of a stream/shader algebra that exposes an API to modify programs [13] and apply pro-

grams to streams.

A general purpose Sh program is represented as a streaming graph that is executed in

multiple passes. Listing 1.1 shows a simple Sh program that corresponds to the data flow
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Figure 1.1: Data flow of a simple streaming graph with conditional control.

in figure 1.1. First, kernelA process all the input data and splits the data stream based on

a data-dependent condition. Then, one of the kernelsB andC is scheduled to process its

data. In our example, kernelC is the next running kernel. After that, kernelB process its

data and thanD. Each instance of a kernel execution is called a pass and it is possible to

execute any program with arbitrary data-dependent control structure in multiple passes. At

each pass a sub-stream of the original input stream takes one step through the graph. This

process is repeated until all intermediate buffers are empty and all input data is consumed.

This thesis deals with three aspects of this process:

Stream Graph Construction. The program output by the Sh compiler has to be trans-

formed into a canonical form that is understood by the scheduler. This involves

partitioning the program and altering its structure.
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Kernel Scheduling. In each pass, a kernel will be selected by the scheduler based on

heuristics to maximize throughput.

Resource Maximization I used and extended the conditional streams concept [9] to com-

pactly pack data into different buffers to handle conditional outputs and eliminate

idling.

The Sh compiler, shader and stream algebra and scheduler together form a complete

programming system for GPUs that supports imperative paradigms including datadependent

control flow structures. My task is to find a mapping of the data-dependent constructs to

current SIMD GPUs.

In chapter 2 I describe more formally the problem of data parallelism and various

approaches to expressing and implementing parallel computations. I also survey the ba-

sic architecture of contemporary GPUs (circa 2003/2004) (Section 2.2) and I present an

overview of Sh (section 2.5), the high level programming system that I used to target real

GPUs.

There are two implementations of our systems. One runs on a software simulator (Sm)

that I used initially to develop the scheduling algorithm. Another implementation runs on

top of Sh and targets real GPUs. In chapter 3 I describe in detail the Sm implementation

and in chapter 4 I describe the system that targets real GPUs. In chapter 5 I advance

conclusions and outline future work.



Chapter 2

Background

2.1 Parallel Architectures

One way to increase the performance of a given system is to distribute the workload across

multiple computational units. Several computers working cooperatively to solve a problem

or a multi-threaded program on a multi-processor machine are examples of such parallel

computing.

There are several models of parallel computing: a collection of independent machines

connected by a network, one machine with one memory space but several processors, or

one machine with one memory space and one processor, but several parallel functional

units for performing arithmetic. GPUs are a combination having one memory space and

multiple processing units, but also each processing unit has multiple functional units that

can operate in parallel. However, GPUs have restrictions on their memory model. For

instance, they cannot read and write to the same memory locations simultaneously, but

6



CHAPTER 2. BACKGROUND 7

must do so in separate “passes”.

There are many architectural classes of parallel systems. A simplified classification

due to Flynn [24] is based on the number of control units and number of processing units

available:

• Single instruction stream (abbreviated as SI)

• Multiple instruction streams (abbreviated as MI)

• Single data stream (abbreviated as SD)

• Multiple data streams (abbreviated as MD)

These criteria yield four classes: SISD, SIMD, MISD, MIMD. This thesis focuses on

Single Instruction Stream Multiple Data Streams (SIMD) and specifically, stream archi-

tectures, which are a specialized form of SIMD architecture that extends the SIMD model

with sequentialmemory access.

2.1.1 Single Instruction Stream Multiple Data Streams (SIMD)

The classical SIMD architecture [24] is composed of an array of processing elements that

execute the same instructions simultaneously. The processing elements are programmable

and have local memory. This array of processing elements are a co-processor to a host

computer that generates the instructions and to a memory hierarchy for data I/O. The con-

nection to the memory hierarchy is generally done using a wide data path to allow parallel

data fetching by the processing units. An extension of the traditional SIMD architectures

is SIMD Within a Register (SWAR) [6]. SWAR adds an additional layer of parallelism:
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each processing unit has parallel pipelines allowing parallel vector computations on the

input data. The data path from memory to the processing units is subdivided once to feed

each individual processing unit and it is subdivided further into fields that can be processed

in parallel. This design is useful for graphics and multimedia computations where 3D or

4D vectors are often used as primitive types. Even though data independent control flow

SIMD architectures are considered to perform efficiently, e.g., high resource utilization,

they tend to perform poorly on data dependent control flow. On a SIMD machine, all pro-

cessing elements execute the same instructions, therefore processing is more efficient if

the input stream is made of homogeneous records: records that have the same control path

within the control graph of the program. A branching instruction, for example, can break

the homogeneity of the input data and some of the processing units have to idle, waiting

for the data to be synchronized. For example, in fig. 2.1, the input is a stream of integers.

Since, in this example, only the even integers are incremented and the stream is made out

of a mix of even and odd integers, some processing elements will idle.

4

703 153 234 550
3

6

53

106

34

35

70

789
89

178

504

51

101

Idle Idle Idle

    i = i % 100;
    if(i % 2 ==0){
       i+=1;
   }
   i*=2;

i

Processing Elements

404

10

5

4

3 4 5210

Figure 2.1: SIMD execution of a simple program that uses conditionals
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Elements
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Figure 2.2: The records of a stream are processed in blocks.

2.1.2 Stream Processing Model

A programming model that maps well onto SIMD architectures is the Stream Processing

Model. A stream is a sequence of elements of the same type. Each element, however, may

have a number of subfields. Programs operating on streams are called kernels [18]. Ker-

nels are small programs that are repeated for each element of its input stream to produce

an output stream. The stream records are not processed sequentially, they are processed in

blocks as illustrated in figure 2.2. This is calledstrip mining. This computational model

achieves high parallelism and throughput by maintaining a high data bandwidth and allow-

ing deterministic pre-fetching and block oriented transfer. One of the recent experimental

processors designed to use the streaming computational model is the Imagine processor

[23, 18] developed by the Stanford Computer Systems Laboratory. Imagine is a single chip

processor that has multiple arithmetic logic units (ALUs) connected to aStream Register

File (SRF). The SRF is a block of memory that acts as a managed cache with high band-

width to the arithmetic units. The SRF is partitioned intostream buffersallowing each of

the arithmetic units (also calledarithmetic clusters) to fetch stream elements from the SRF
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and to then execute a kernel on an element of the stream. In this model, no cross-feeding

of the arithmetic clusters is allowed: the ALUs can fetch data only from their own stream

buffer.

Their experiments showed a significant increase in performance for algorithms that fit

the stream processing framework. An OpenGL implementation was created on the Imag-

ine stream processor [19] and the analysis showed that the only stage of the pipeline that

did not benefit from the streaming computation model was the rasterizer. This deficiency

may lead to the idea that a separate hardware rasterizer on the chip might be useful, but for

other graphics tasks the streaming computational model appears to be quite appropriate.

The significant potential increase in performance makes the streaming computational

model attractive. The performance of such a stream-based computer system relies heavily

on data locality. Fortunately, most multimedia and graphics applications are characterized

by little data reuse and high computation to memory access ratio, making them ideal for

a stream computation framework. However, not all algorithms fall into this paradigm

and particularly data-dependent branches and random memory access often break data

locality. On average, in typical general purpose programs, one in five instructions is a

branching instruction, so it can be seen that the scope of the naive stream processing

model is relatively narrow.

Some work has been done to address this problem. An interesting alternative approach

for implementing conditional execution efficiently is theconditional stream[9]. Con-

ditional streams introduce a few incremental changes to the streaming model described

before. From the perspective of the streaming processing model, branching instructions

can induce an implicit partitioning of the stream into two or more sub-streams. Processing
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404 234 550703 153 789
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Figure 2.3: Stream Partitioning and Compression

the main stream in a SIMD fashion results in resource idling (Fig. 2.1). However, if these

interleaved sub-streams could be extracted and compressed into smaller but homogeneous

streams, the streams can be processed with maximum resource utilization. For example,

figure 2.3 shows how the idling in the previous example (fig 2.1) can be avoided. Again,

we are given a the same stream of integers subject to the same even/odd partitioning. The

top row shows the original stream. The original stream can be separated into two groups

as shown in the bottom left part of the figure. This will result in two sparse streams. The

resulting two sparse streams can be compacted resulting in two dense and homogeneous

streams that can be processed optimally. However, after processing, the two sub-streams

have to be merged back together to restore the structure of the original stream. To achieve

that, we encode the merging order into a binary stream as illustrated in the bottom right

corner of the figure.

Conditional streams are basically streams that can be accessed based on a condition

local to the stream elements. This conditional access allows stream compression and ex-

pansion via two operations denoted asswitchingandcombining.
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Figure 2.4: Switching and Combining Conditional Streams

Switching: This operation uses conditional output to compress a stream. Output data is

routed into one or more destination streams so that each stream consists of homoge-

neous data.

Combine: This operation uses conditional input to merge two streams. When a stream

is partitioned and compressed, the order of the original stream is lost (Fig 2.3).

The order must be encoded in an additional thirdcontrol streamthat contains the

interleaving order of the compressed streams. This control stream usually requires

a small number of bits to encode.

Figure 2.4 shows how the switching and combining operations integrate with the tradi-
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tional stream processing

An implementation of conditional streams requires some incremental hardware changes

to the traditional SIMD architecture. Kapasi [9] argues that the changes are small and they

focus mainly on data cross-feeding of the processing elements. I rely on his analysis to

make a similar claim for GPUs.

In my opinion, the terminology that Kapasi uses when referring to stream compaction

is ambiguous. He uses the terms compression and expansion. The term “compression”, es-

pecially, can be easily misinterpreted. Therefore, I propose a simpler terminology: packing

and unpacking. Packing is the spatial compaction of stream data in order to avoid redun-

dant computations on null records. Unpacking is the opposite operation that merges two

previously compacted streams with a common control stream into one stream.

2.2 GPU Architectures

GPUs are co-processors designed and optimized to process 2D and 3D geometry. Data is

transfered between the main memory and the GPU memory via a dedicated Accelerated

Graphics Port (AGP). On current GPUs, data transfer between the CPU memory and the

GPU is much slower compared to the processing speeds of either the CPU or the GPU.

This is an important limitation that shows up in a few places in this thesis.

The overall functional organization of modern GPUs as a pipeline has not changed

much in recent years. However, the performance and feature set supported by the hardware

improves dramatically with every generation. Modern GPUs are programmable and they

employ parallel pipelines for better performance and a SWAR model of execution.
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Vertex stream Rasterizer Fragment stream
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Fragment 
Unit

Vertex 
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P-BufferTexture 
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Figure 2.5: Simplified GPU pipeline. Top: generation of fragment streams. Bottom:
Schematic data flow of a GPU.

Conceptually, a graphics pipeline works as follows (Figure 2.5): the user discreetly

specifies the geometry as a set of points called vertices and a set of faces. Faces are in-

dexed values in the array of vertices. The vertex stream specified by the user is processed

by the vertex units using a vertex program or shader1 specified by the user (including the

application of the model-view, projection and viewport transformations). The vertices are

grouped together in triangles and are scan-converted by the rasterizer (the clipping stage is

omitted for simplicity). The outcome of this operation is a large stream of elements called

fragments, which represent individual pixels on the screen. These fragments are further

processed by the fragment units using a fragment shader specified by the user. After that,

the fragments are written into a memory buffer, also called a frame buffer, that is copied

1In the computer graphics literature, GPU programs are commonly refer to as shaders.



CHAPTER 2. BACKGROUND 15

into the video memory producing an image on the screen. I refer to this process as one

rendering pass. Some algorithms cannot be implemented in one rendering pass, therefore,

multi-pass rendering techniques have been developed. The traditional multi-pass render-

ing technique uses a compositor module located on the GPU to combine the fragment of

the current pass with the fragments already in the frame buffer from previous passes. A

more powerful technique is to take the data from the frame buffers and feed it back to

the fragment or even vertex units. However, the frame buffers are integer buffers with

(usually) 8-bit precision per component. For visualization, this precision is sufficient, but

for general purpose computations or for fragment feed-back this precision is insufficient.

However, modern GPUs have a special type of buffer, called a P-Buffer, that can be used if

higher precision is required. P-Buffers can be used as render targets and support high pre-

cision floating-point data. P-Buffers can later be used as floating point textures facilitating

multi-pass rendering. However, P-Buffers cannot be used to directly drive a display.

The above description of the GPU pipeline is greatly simplified. Several features like

occlusion culling and stencil tests have been omitted for clarity. The most relevant parts

of the graphics pipeline with respect to my research are the vertex and the fragment units

since they are the programmable processors on the GPU. The vertex and fragment units

have similar programming capabilities. In addition to their mutual programming features,

the fragment unit can perform texture look-up operations2, but has the disadvantage that it

cannot change the position of the fragment on the screen. This restriction is an important

limitation because it means discarding fragments from a fragment stream does not remove

their storage, resulting in poor data locality.

2The recently released GeForce 6800 can also do texture lookup in the vertex unit, which is part of a
general trend of convergence in the abilities of the vertex and fragment units.
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Both vertex and fragment shader units can be programmed directly using an assem-

bly programming interface. Instructions can have one, two or three source registers and

up to one destination register. The primitive register type is a four-component vector of

floats. The instruction set is a mix of scalar and vector operations. For example, the

ADD instruction adds two vectors component-wise while a dot product operation takes

two vectors and returns a scalar. Vector operations are performed in parallel on all four

components. Most current GPUs efficiently support swizzling and write masking. Swiz-

zling allows an arbitrary reordering of the vector components and write masking restricts

the write operation to an arbitrary subset of components. For example, ifv1, v2 andv3 are

3 component vectors, the instructionMUL(v1.xy, v2.xx, v3.zw) doesv1.x = v2.x∗v3.z

andv1.y = v2.x ∗ v3.w while v1.z andv1.w remain unchanged. These features provide a

great deal of flexibility to the programming interface.

This style of vector computation is very useful in multimedia applications and some-

thing similar has been supported on Intel and AMD CPUs as extensions to the traditional

x86 instruction set. For example, the MMX instruction set [20] supports a SWAR style

of execution on integer vector elements. The system delivers up to twice the performance

of the traditional scalar execution model if the problem is appropriate for this vector ap-

proach. Intel extended the vector support to floats in their Streaming SIMD Extensions

(SSE, SSE2) [22]. 3DNow! technology from AMD [17] is also an extension to MMX in-

struction set targeted to graphical applications that supports single precision floats. How-

ever, neither of the SSE nor 3DNow! extensions support efficient swizzling.

The SWAR/SIMD stream computational model raises a number of challenges in the

areas of language semantics, data packing, compiler optimization, and scheduling. Among
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these issues, this thesis deals with data packing and scheduling.

There are currently two standard APIs available to access GPU resources: OpenGL

and Direct3D. Even though some important features are better exposed in Direct3D, due

to wider support and portability our systems use OpenGL. These APIs expose a low level

of abstraction.

2.3 GPUs and Stream Processing

The nature of the data that GPUs operate on make them suitable for a streaming computa-

tional model [18]. Traditional vertex and fragment operations exhibit the sequential data

locality characteristic of the streaming computational model, and the vertex and fragment

processing pipeline can be naturally broken down into kernels [23], which makes them

suitable for a stream processing architecture.

In terms of the streaming computational model, data inside the GPU can be classified

as vertex streams and fragment streams. The vertex streams are processed by the vertex

units and the fragment streams by the fragment units. In a typical graphics application, the

fragment streams can be much larger than the vertex streams, therefore, GPUs typically

have more fragment units than vertex units.

Even though the implementation details of current GPUs are generally kept confi-

dential, performance analysis and published documentation suggest that most GPUs are

indeed implemented roughly following the streaming paradigm. Therefore, I tried to use

the fragment shading unit, in particular, as a streaming processor. I also want to imple-

ment an efficient and transparent programming framework that supports the entire palette
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of imperative control constructs including data-dependent conditionals and iterations.

Arguably, the vertex unit and the rasterizer can potentially be used as powerful players

in such a framework. For instance, the vertex unit can be used as a scattering engine:

vertices coming into the vertex unit can be placed anywhere on the screen. However, for

our initial attempt I restricted my prototype to a simpler framework involving only the

fragment unit.

The GPU streams abstraction implemented in Sh uses GPU fragments as stream ele-

ments. Streams are stored in textures for reading operations and in P-buffers for writing

operations. The branching instructions are handled using conditional assignment and mul-

tiple output buffers. Conditional assignment allows dynamic selection of an assignment

based on a datadependent condition, and multiple output buffers allow multiple output

targets. Each output variable has an output buffer to write the result to. In this way the

data flow is routed to the appropriate kernels. For example, in fig. 2.6 data fromA is

conditionally routed based on a run-time boolean variablec. However, the two gener-

ated sub-stream are not compact. Subsequent processing of these sparse streams results in

redundant computation since the null records cannot be avoided.

While current GPUs support data-dependent texture look-ups that allow random access

on reads, the positions of the fragments on the viewport cannot be changed. Therefore,

A
B

Cc

c

c

c
A

B

C

Figure 2.6: Conditional Flow
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kernels implemented using fragment shaders can modify only the current record that is

processed. Replicating the behavior of conditional streams on GPUs requires hardware

support for packing and unpacking streams. Unfortunately, the structure of the fragment

stream generated by the rasterizer is fixed, therefore packing fragment streams cannot be

done in one pass on current GPUs. This thesis follows a main thread where I assume

that GPUs can be augmented with special hardware to support packing efficiently, and a

tangential thread where I discuss possible strategies of packing on the GPU. For the main

thread, I argue in section 4.1.1 that the hardware modifications to accomplish efficient

packing are small.

Most GPUs also have a limited number of resources that can be used in a single pass:

instructions, input/output registers, texture look-ups, and texture units. Therefore, even if a

program does not use data-dependent control flow, it may not be able to run due to resource

exhaustion. Chan et al. [5] showed that it is possible to take an arbitrary program with

linear control flow and one output, and partition it efficiently and nearly optimally into

executable blocks and run it in multiple passes. My system can be extended to incorporate

suchvirtualization. However, to limit the scope of this thesis, I assume that the system

already has a virtualizer and can support kernels of arbitrary length. In practice, in my

prototype, Sh will detect if the resource limits of a kernel are exceeded and it will exit

with an error.
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2.4 Parallel Performance

The performance of a parallel architecture is governed by Amdahl’s law [1]. A given pro-

gram can be partitioned into a parallel part that can be independently distributed over sev-

eral computational units and a serial part that is not parallelizable. For example, consider

a problem where the input is a set of points that require some processing and the output

is the distance between the two closest points. The processing of the individual points

can be done in parallel, but finding the two closest points is more difficult to parallelize.

Amdahl’s law states that

S =
N

(B ∗N) + (1−B)
(2.1)

whereS is the speed-up if usingN processors as opposed to just one, andB is the serial

fraction of the program; therefore0 6 B 6 1. ‘ If the program is fully parallelizable, the

speed-up factor isN and if the program is fully serial, the speed-up factor is 1. Also asN

goes to infinity, the running time of the parallel part converges asymptotically to zero and

the serial part does not change; therefore, the lower bound of the running time is the serial

part of the program. The execution model of a parallel program is an alternating sequence

of serial and parallel parts. According to Amdahl’s formula, the main challenge in writ-

ing a parallel application is to minimize its serial part. The serial part of an application

often includes the overhead associated with communication and operating system tasks.

Generally speaking, access to shared resources forces serialized execution.

In my system, the scheduler is an example of a serial resource. While the scheduler

is busy selecting a candidate from the kernel pool, the entire pipeline is waiting. This

serialization can make the scheduler the bottleneck of the system. Since the scheduler
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Scheduler
choses A

A
B C

Scheduler
choses A
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B C

GPU

CPU Scheduler
choses B

Figure 2.7: The scheduler and the GPU programs running serially

runs on the CPU and the data processing is done on the GPU they could run in parallel.

Therefore, I can avoid scheduling serialization problems by requiring the schedule to have

a decision ready by the time the GPU needs more data. For example, figure 2.7 shows

a snapshot of a program execution involving three kernels:A, B andC. At the end of

each rendering pass, the scheduler makes a decision based on the most recent information

available. However, this wastes numerous cycles on both CPU and GPU. In figure 2.8, the

same kernels are scheduled one step in advance. This approach may lead to a less optimal

scheduling sequence, but it increases resource utilization.

A
B C

Scheduler
choses A

Scheduler
choses C

A
B C

A
B CGPU

CPU Scheduler
choses B

Figure 2.8: The scheduler and the GPU programs running in parallel
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2.5 Sh System

Sh started as a prototype for a shading language [15] and has evolved into a complete

GPU programming system with stream semantics and support for multi-pass execution.

Sh targets various kinds of graphics hardware as well as the Sm simulator. I used Sh as

the platform for my dynamic multi-pass scheduling algorithm targeting real GPUs. The

following section emphasizes the critical features of Sh that facilitated the implementation

of my algorithms. The complete reference manual of Sh [12] including its standard library

can be found at:http://libsh.sourceforge.net/ .

2.5.1 Stream Abstraction

Sh has a stream abstraction that converts data streams into fragment streams that are passed

through the graphics card for processing. The data is transfered to the card as texture

data and the computation is driven by rendering one or two rectangles into an OpenGL

buffer.When compiled to a stream processing target, the program is modified so it fetches

its input data from a texture. Internally, a stream is a collection of channels and a channel

is an ordered sequence of a primitive type. Primitive types in Sh are tuples of up to four

floating point data components. On GPUs, a stream of an arbitrary complex type (e.g.

like a structure) is stored as several independent channel. This requirement is due to the

memory organization of GPUs. However, the Sh stream abstraction hides all these low

level details.

Sh provides a high level API to manipulate streams and programs. For example, ifS1

is a stream of 3D vectors,S2 is a stream of scalar floating point data, andP is a program

http://libsh.sourceforge.net/
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that computes the Euclidean norm of a vector, the operationS2 = P << S1 makesS2 a

stream of floating point values that corresponds to the norms of the vectors inS1. Also,

one can create streams with more complex composite records by combining several other

streams or combining a stream with one or more channels. For example, if a streamS1 is

made out of 2 channels of 3-tuples andS2 is made out of 3 channels of 3-tuples andC is

just one channel of 3-tuple thanS1&S2&C is a stream of six 3-tuples. The channels of

a stream need not be of the same type. The number of channels in a stream is called the

width of the stream. Therefore, an expression like(S1&S2&S3) = P << (S4&C1&C2)

is valid only if the semantic type and width ofS1, S2 andS3 matches the output of the

programP and when the semantic type and width ofS4, C1 andC2 matches the input of

the programP . If these conditions are not met, a run-time exception is raised. This error

is not capture at compile time because Sh compiles the GPU programs at run-time.

2.5.2 Shader Algebra

The stream abstraction provides an API to combine streams with programs. The shader

algebra operations [13] in Sh provide a standard API to combine programs. These op-

erations are a powerful mechanism allowing the manipulation of programs as first class

objects and provide the programmer with tools to combine programs in a flexible way.

These operations are useful since the programs output by the Sh compiler are eventually

subject to a series of complex transformations that split it into several pieces to be executed

by the multi-pass scheduler.

The shader algebra defines two operators:connectandcombine. The operators are

binary and output objects of the same type as their inputs: Sh programs. Connect is
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defined as functional composition: the outputs of the first program are fed into the inputs

of the second program. The output signature of the first program must match the input

signature of the second program. If they do not match, the system raises an exception.

Combine is defined as a “union” operator: given two shader programsA andB, the result

programC contains the statements of both programs and the list of inputs and outputs is

the concatenation of the list of inputs and respectively outputs of the two programs. The

connect operator is denoted by<< with inputs to the left and outputs to the right:a << b.

The combine operator is denoted by&: a&b.

These two operators have rigid semantics. For example, the connect operator requires

the input and output of the two programs to match. Often, a user may need to perform

little adjustments to permute the outputs or ignore some output values. Another situation

is illustrated in Figure 2.9. ConnectingA andB requires ignoring an input. ConnectingB

andC requires producing a new input, maybe a duplicate of one ofB’s outputs or a con-

stant value. Connecting all three programs could require thatA’s third input to be carried

forward toC. These operations can be expressed by defining small glue programs, but are

so common that Sh provides a set of manipulator objects that build them automatically.

Example of manipulators are:

shDrop: Discards a channel and rearranges the rest to close the gap

shKeep: Copies channels from the program’s input to its output

shSwizzle: Rearranges the order of inputs and outputs.

For the interested reader, further stream algebra details can be found in theShader

Algebrapaper [13]
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Figure 2.9:B << A matchesoA1 andoA2 with iB1 andiB2 and the resulting shader
has a third output equal tooA3. C << B is invalid since the third input ofC is not bound
to any variable.C << (B << A) matchesoA3 to iC3.

2.6 Organizational Notes

There are two implementations of the basic ideas discussed in this thesis. One runs on

a software simulator, Sm, and the other runs on top of the Sh system and targets real

hardware. The motivation to build a software simulator is twofold. On the one hand, when

I started this research, the state of the art in graphics hardware was missing some essential

features and, on the other hand, building a software simulator allowed us to experiment

with various possible supplementary hardware features, and to analyze which of these

features would be worth having on a GPU. The Sm system does not convert the output of

the compiler into streaming graphs. Instead, the streaming graphs are created “by hand”.

Chapter 3 describes the Sm implementation of my system. This work represents an initial

effort in designing the multi-pass scheduling system.

Before describing either of the two systems in detail, some notational conventions are

necessary. The two systems use different types of containers for streams. The simulator

uses a one dimensional memory buffer as a stream container and it fills it in a FIFO fashion

with data records. The GPU prototype uses textures and frame buffers as containers for

streams. Both textures and frame-buffers are two dimensional containers that are ordered

left to right and top to bottom (scan line order). In the GPU implementation, records
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are distributed over multiple channels that in turn correspond to individual textures and

respectively frame buffers. The difference between the two is illustrated in figure 2.10.

point3 vector3 float3 point3 vector3 float3 ...
point3

vector3
float3

Figure 2.10: Left: serial data stream; Right: sliced data stream.

On the left, there is a serial data stream that stores the records clustered together. Ac-

cessing the Nth record requires an offset ofN ∗ sizeof( sequences of records

This yields two different notations as illustrated in figure 2.11. On the simulator, a

kernel and its respective input buffer is denoted by a circle and a rectangle. On our GPU

prototype, the kernel and its associated input buffer is represented by a square.

AA

Figure 2.11: Left: kernel and buffers in Sm. Right: kernels and their respective input
buffers are represented by a square on the GPU prototype.
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The Sm System

3.1 The Sm Simulator

Sm, the stream processor software simulator that I used, implements a packet-based stream

architecture conceptually similar to Chromium [7]. The system consists of a number of

modules that communicate by means of self-identifying variable-length packets. For my

tests I used a configuration of modules functionally equivalent to a GPU: vertex unit,

rasterizer, fragment unit and compositor. At a high level, Sm is organized as a C++ library

and it exposes an OpenGL-like API.

All communication in the system (including download of texture data and shader pro-

grams) is by means of these packets; each API call simply generates an appropriate packet

or sequence of packets, and modules forward packets they do not understand to the next

module. The last module has a connection back to the API for the purpose of uploading

data.

27
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A given configuration of the graphics pipeline, including rasterizer state, vertex and

fragment programs, and compositing operations, corresponds to exactly one kernel in the

streaming graph. Given a streaming graph, a dynamic scheduler runs the kernels sequen-

tially until all input data is processed. The order of the kernels is decided at run-time and

it uses a greedy heuristic to maximize throughput. See section 3.2 for details.

A single kernel can read one stream but it can write to at least two output streams and it

can output more than one record to each output stream. Permitting a kernel to conditionally

write larger records to an output than are read on an input allows data amplification. In

this context, the data amplification factor is defined as the ratio between the sizes of the

output and input data. The size of this data is expressed in words rather than records.

Data amplification together with feedback paths can be used to implement some recursive

algorithms such as the adaptive tessellation algorithm described in section 3.3.

Data streams are stored in off-chip memory buffers called stream buffers. It is desir-

able to support a limited number of fixed size on-chip stream buffers to improve effective

bandwidth. I call these on-chip buffersstream registers. The number and size of stream

registers is hardware-dependent. Access to stream registers can be significantly more ef-

ficient than access to off-chip memory, but the user needs to be careful to avoid buffer

overflow, since stream registers are of fixed size. To avoid processing partial records, the

stream registers only store complete records.

Allowing data amplification factors greater than one, the amount of data that needs to

be stored can grow without bound. This problem can be addressed using a dynamic mem-

ory allocation scheme (for instance, growing stream buffer sizes as needed). However, the

queue (FIFO) semantics of stream buffers are not ideal for recursion. FIFO storage leads
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Figure 3.1: An example of multi-pass execution with data amplification.

to a breadth-first exploration of a recursion tree, which consumes memory exponential in

the recursion depth. The more usual depth-first recursion requires only linear storage with

respect to the recursion depth. However, a simple LIFO (stack) buffers cannot be used

instead of FIFO buffers because to achieve high performance we need to process a large

number of records in one pass to achieve high throughput. Depth-first recursion requires

to immediately use an output as an input to another invocation of a kernel, a strong data

dependency that leads to difficulty scheduling parallel computations. To deal with these

issues, Sm uses astackof stream registers. The scheduler will allocate a new stream reg-

ister on the stack as needed for kernels writing to one of the arcs (selected by the user) of

the feedback cycle. This approach leads to a hybrid depth and breath order for exploration

of the recursion tree.

It is important to emphasize that this stack based allocation scheme is required only

in the case of data amplification combined with feedback. Otherwise, a simpler list based
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allocation scheme is more appropriate. Additional work is required to integrate the two

schemes into the same algorithm.

My approach is to classify the arcs of a streaming graph into two categories: regular

arcs and stack arcs. In a streaming graph, arcs correspond to buffers that hold input and

respectively output data of their adjacent kernels. Arcs pointing to the same node share

the same stream register. Regular arcs correspond to a statically allocated stream register

while stack arcs have a stack register allocation protocol. The active register on top of the

stack is the only one valid for accessing. The system spills stream registers deeper on the

stack to off-chip stream buffers when necessary. In this way, the depth of the stack can

be virtualized and the programmer can treat it as being infinite, given sufficient off-chip

memory for spilling.

Figure 3.1 illustrates this process with a simple example. The streaming graph has four

kernels with their associated data amplification factors as illustrated in the figure. The arc

AB is marked as a stack arc. All other arcs are regular arcs. The figure shows a snapshot

of three rendering passes among all the rendering passes required to run that program.

After the second pass, no kernel can consume much data. Most buffers are almost full and

even though the buffer atBD is empty, it is unknown if the data fromB will be routed

throughC or D, and therefore, in the worst case there is little data throughput. Therefore,

the stack is pushed and a new empty stream register will be added and therefore the kernel

A can be scheduled with very high data throughput.

A detailed analysis of the scheduler is presented in section 3.4. For more information

on the Sm architecture, the interested reader can consult [14].

The current trends in chip design seem to be converging towards a cell model [25]
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where a large number of computational units with high communication bandwidth be-

tween them are placed on a single chip, perhaps with multiple such units connected by a

point to point network. A strong indication that this is true is the joint project of three of

the biggest players on the market: Sony, IBM, and Toshiba to build such an architecture

(http://www-3.ibm.com/chips/news/2001/0312_sony-toshiba.html ).

It may be possible to map stream architectures onto this grid model as well. Similar to Sm,

in this scenario the kernels will no longer be simple programs, but rather entire network

states: multiple programs and data paths. Scheduling will be more difficult because of the

additional degrees of freedom, but a simple greedy approach might work in this case as

well.

3.2 Scheduling Strategies

The goal of the scheduler is to minimize state changes by processing the maximum number

of records at each pass. I implemented a greedy approach where the kernel that has the

highest probability to consume the most data is selected to execute.

I call the maximum amount of data that can be consumed by a kernel in a given pass as

the weight of the kernel. The weight of a kernel is expressed in words. At every pass, the

scheduler estimates in a conservative way the weight of each kernel and it schedules the

heaviest one. The estimate is the minimum between the input buffer size and the free space

of each of the output buffers multiplied by their amplification factors. This last number

is rounded down modulo the size of the record of the respective kernel. I do this to avoid

processing partial records.

http://www-3.ibm.com/chips/news/2001/0312_sony-toshiba.html
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Figure 3.2: Greedy scheduling: in the worst case, kernelA can process the most data.

For each of the stack arcs, we have two scenarios corresponding to the cases where

the stack is pushed or not. For example, figure 3.2 shows a streaming graph with four

kernels and one stack arc. The numbers above the buffers represent how full the buffers

are assuming that all buffers have the same capacity and ignoring for simplicity the issue of

record boundaries. Looking at the figure, one can observe that if the stack is not pushed, in

the worst caseA can process 60%,C andD can process 20% andB can process roughly

3%. This estimates are conservative and assume the worst data path. In this caseA is

the best candidate with 60%. However, if the stack arcAB is pushed,A is still the best

candidate, but it can output 80% rather than just 60%. In my implementation, for the stack

arcs, new registers are allocated only when the top of stack register is more than 50% full.

When the top buffer on the stack is empty, similar analysis is done in deciding to pop or

not to pop the stack.

In the scheduler API, the fill fraction allowed is a parameter specified by the user. More

details on scheduling strategy and performance analysis of the Sm system is available in

[14].
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3.3 Simulator Results

There are three interesting algorithms that I have implemented on the simulator:

Material mapping: Combines two shaders in a spatially variant way, dependent on a

texture map. This example is a test of conditional control flow.

Julia Set: A Julia set evaluation is used to test iteration. This example is similar to the

one implemented on real hardware.

Adaptive Tessellation: The triangles of a base surface are recursively split until the ap-

proximation (in screen space) to the displaced surface meets a given parallax error

criterion. The algorithm that I have implemented can be found in [16]. This example

illustrates the implementation of recursion, a feature that was implemented on the

simulator, but I was not able to implement on a real GPU. It is implemented using

data amplification.

The images generated by the test runs are shown in Figure 3.3. More details about

these can be found in [14].

3.4 Performance Analysis

To generate meaningful numerical results, I assumed that actual hardware would have a

200MHz instruction issue rate, would use 16x SIMD execution for both vertex and frag-

ment programs, would have a total off-chip memory bandwidth of 2GB/s, and would have

a total bandwidth to on-chip stream registers of 20GB/s. These numbers are used by the
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Figure 3.3: From left to right: material mapping, Julia texture, and adaptively tessellated
displacement mapping. Renderings were antialiased using2× 2 supersampling.

scheduler heuristics. The clock rate and SIMD width assumptions are important for es-

timating kernel computation performance, while the off-chip bandwidth is important for

estimating spill costs. Changing these numbers changes the passes that the scheduler

chooses, since it is designed to adapt to different hardware configurations. With these as-

sumptions, I wanted to evaluate the performance of the heuristically-driven scheduler in

minimizing overhead and memory usage, and evaluate architectural tradeoffs, such as the

number and size of stream registers.

Of the three algorithms tested, only the adaptive tessellation algorithm resulted in

stream register spilling. I tested this algorithm under a number of different assumptions as

to number of stream registers and the sizes of these stream registers, using the same view

for each run. The results are shown in Table 3.1.

Using this test case, I can evaluate the scheduler’s ability to minimize overhead in the

form of costs to load new kernels and save and restore stream registers. Note that the total

benefit — the total number of records processed by all kernels — is always the same for
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each run. A large maximum recursion depth of nine and a small error threshold was used

for this test run to stress the system. The results indicate that a large number of small

registers decreases off-chip bandwidth requirements but requires more passes and kernel

switches. In fact, for some of the register configurations given, spilling of registers is

requiredsince there are more arcs in the graph than registers. In general, the desirability

of a given register configuration depends on the relative cost of register spilling and kernel

switching, although there is a lower bound2WR on stream register size given by the

maximum record sizeR, the SIMD widthW , and the 50% full rule for enabling stack

pushes.

The relatively constant stream register utilization is a consequence because most of the

available stream registers end up getting used for the stack. The stream register storage

space utilization (60%) could be increased by raising the push threshold, although at the

cost of greater scheduling difficulty. However, since only valid data is accessed from

stream registers, low stream register utilization does not (directly) reduce stream register

or off-chip memory bandwidth utilization.

I assumed a relatively high cost for kernel switching, to see how well our scheduler

could minimize it. In practice, the total number of instructions required for this particular

algorithm is low enough that a modestly-sized on-chip memory can hold them all. Recall

that in a SIMD machine the instruction memory can be shared among all PEs.

Figure 3.4 shows the streaming graph for our test cases. The numbers on the arcs

of these graphs correspond to the total bandwidth on each arc used when rendering the

corresponding images in Figure 3.3. An explanation of the symbols used is provided in

table 3.2
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8 4 32 9972 9222 981 6.86 59%
8 64 4702 4427 531 7.11 59%

16 128 2416 2212 243 7.00 59%
32 256 1208 1122 121 6.86 58%
64 512 618 568 58 6.57 56%

128 1024 328 300 30 6.83 53%
16 2 32 22748 21174 1967 5.40 56%

4 64 9972 9222 981 5.55 59%
8 128 4876 4506 493 5.68 59%

16 256 2416 2212 243 5.51 59%
32 512 1208 1122 121 5.41 58%
64 1024 618 568 58 4.62 56%

32 1 32 59643 52073 3685 2.90 50%
2 64 22748 21174 1967 3.01 56%
4 128 9972 9222 981 2.98 59%
8 256 4876 4506 493 3.06 59%

16 512 2416 2212 243 2.84 59%
32 1024 1208 1122 121 2.54 58%

Table 3.1:
Performance of scheduler on adaptive tessellation test case relative to number and size of
stream registers.

The top example shows the material mapping example. TheRastSplitkernel routes

the fragments based on a mask stored in a texture map. KernelsHF andWoodare shader

programs that simulate garnet red using homomorphic factorization and wood respectively.

The middle example shows the Julia set example. The fragments are looped back until
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successor
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Merge.
Combines two streams with
the same record type. Does not
preserve order of records.

3

Symbols

A

processing
kernel
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S

template
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priority
merge

conditional
merge

greedy
merge

sequential
stream buffer

nonsequential
stream buffer

Control Graph

D
C

B
A

Priority Merge.
Combines two streams with
the same record type; does not
preserve order. Preferentially
reads from lower
higher-priority input first.

Table 3.2: Symbols used in control graph diagrams.

either the maximum number of iterations is met or the fragment escaped the circle of radius

two. Two versions of this algorithm were implemented. The first uses a feedback arc as

shown in the figure. However, we also implemented in-place iteration, in which a special

instruction indicates whether the shader should be repeated. If a true value is passed to

this instruction, a new input record is not read, instead the shader is run again on the next
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julia short 2863 1681 1253 986 839 767
julia 90751 53287 32672 20846 11593 6100
matmap 1096 568 287 146 69 37
at32 52073 21174 9222 4506 2212 1122

1 2 4 8 16 32

Table 3.3: Number of kernel switches vs. test case and stream register size.

SIMD cycle (without clearing the temporary registers first).

The bottom example shows the adaptive tessellation example. In this case, the input

stream is a stream of triangles containing the three vertices are stream records. TheOracle

shader decides whether the triangles need to be split. Based on the oracle’s decision, the

Split kernel routes the triangles to the appropriate kernel. KernelsTess2, Tess3andTess4

split the triangles recursively as described in [16]. TheBumpkernel tessellate the triangles

and render them using bump-mapping.

Table 3.3 compares four test cases: the two versions of the Julia set implementation,

material mapping, and adaptive tessellation. For the adaptive tessellation case, data for the

case of 32 registers was used. For all other cases, 8 registers sufficed (without spilling).

For the Julia set example, use of a feedback loop is compared with iteration in-place.
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Figure 3.4: Streaming graphs for test programs. From top to bottom: material mapping,
Julia set procedural texture, and adaptive tessellation.
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In summary, the hardware specifications that we used to assess the performance of the

system are not based on a real hardware design so it is difficult to assess their validity.

I discovered that there is a strong tradeoff between the amount of memory available and

the frequency of kernel switching and in-place iteration greatly reduces the number of

switches. However, for nested iterations or for iteration bodies that include conditionals,

use of the feedback loop approach is required.



Chapter 4

GPU System

This chapter describes the GPU implementation of my system implemented inside Sh,

taking advantage of its features as presented in section 2.5: stream abstractions, program

abstractions, and shader algebra operations.

The scheduling process has a pre-computation stage, where the control graph output by

the compiler is transformed into a streaming graph, and a run-time stage, where a run-time

scheduler searches for an optimal sequence in which to run the kernels.

Conditional execution can be handled in the streaming computational model using

conditional assignment and multiple output buffers (section 2.3). However, the result of a

branch is a set of sparse streams. Any further computations on sparse streams results in

resource idling and thus loss of performance. To avoid that, a packing operation should be

performed where the data of a sparse stream is compacted and the streams are reduced to

smaller, denser streams.

41
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4.1 Stream Packing and Unpacking

This thesis deals with two different scenarios that are treated separately. In the first sce-

nario I assume that GPUs support “packing on write”: the null records are eliminated from

the streams at write time. In this case, the overhead associated with the packing is neg-

ligible. I describe this scenario in section 4.1.1. However, this requires special hardware

and cannot be implemented on current GPUs. In the second scenario I explore various

methods to pack the data using current GPU features. This case is discussed only briefly

in section 4.1.2.

4.1.1 Stream Packing using Beněs Networks

This section describes a method that can be used to modify current GPU architectures

to support “packing on write”. Before elaborating on this approach, some preliminary

information is presented.

In a multi-processor system, the processors are connected to memory via a network [8].

There are many designs of such networks, based on various characteristics such as network

topology, timing protocol, switching method and control strategy [8]. We focus on one

particular type of network to apply to the GPUs: The Beneš network (Figure 4.1). A

Beněs network can implement an arbitrary permutation of its input channels [24] without

blocking. This approach means that I can generate any permutation of the input/outputs

and perform simultaneous data transfers using that permutation through the network with

constant latency.

A Beněs network takes2∗ log N−1 stages and2∗N ∗ log N−N switches [24] where
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Figure 4.1: Hardware to support stream compression. This one is used to connect the out-
put of 8 parallel fragment shader units to an 8-way striped memory system. The network
is used both to compress out gaps in the five records being written (in this example) and to
align the records being written with the striping pattern of the memory.

N is the number of programming elements (PEs). For a typical configuration with 8 or 16

PEs, the implementation of a Beneš network on the GPU requires 40 and respectively 120

switches, a modest hardware cost compared to the rest of the GPU.

Using a Beněs network for memory I/O, null records can be skipped and the valid

records can be “packed on write”, achieving packing at a small constant cost (Figure 4.1).

This approach attaches the network to one bank of memory or register file. However, in

a typical branching instruction, the records are not killed, but rather routed to different

buffers. A refinement of this basic approach, therefore, is to attach the Beneš network to

two memory banks or register files. The records are classified into two categories based on

the control flow and are simultaneously packed and routed accordingly. This achieves true
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branching at virtually no execution time cost. Alternatively, I can write to the different

targets in different clocks and just need the ability to rapidly redirect the output of the

entire network to a different portion of memory.

4.1.2 Stream Packing on Current GPUs

Since hardware features vary from model to model, I’ll restrict the discussion to two

groups of GPUs that were considered to develop the system: The NVidia GeForce FX

series (Ge Force FX 5200, 5600 and 5900) and ATI Radeon series (Radeon 9700, 9800). I

refer to these cards generically as NVidia and ATI GPUs respectively.

The packing operation can be explicit, like in the case of conditional streams or Beneš

networks, where data is moved around to compact the stream, or implicit, where the data

does not move (or the move is opaque to the user), but there is a mechanism to mask out

and avoid computations on null records.

All graphic cards support some form of conditional masking of fragments. The ear-

lier GPUs employ a stencil buffer that masks out regions of the screen. Controlling the

stencil buffer bit, one can control the data written into the buffer. More recent graphic

cards also support conditional assignment and conditional fragment kill operations. Inside

the fragment shader, an output variable can be given a specific value based on a data-

dependent condition or, in the case of fragment kill, an element can be discarded based on

a data-dependent condition. The fragment kill support on current GPU has two important

limitations:

• It does not necessarily improve performance: the SIMD execution style employed

results in idling the fragment unit until the rest of the adjacent fragments finish their
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execution.

• It does not remove redundant space from the stream. For example, killing all frag-

ments but the first and the last, results in a sparse stream that is stretched across the

same space as the original one.

Some GPUs have support for “early stencil test” or “early depth test”. The “early”

tests allows the GPU to avoid redundant computations on null records by masking them

early in the pipeline and using a load balancer to re-distribute the work load. However, for

this to work, the stencil or depth buffers need to be set up in a previous pass.

The early decision implies additional passes and the tests are not 100% percent accu-

rate: not all null records are eliminated, because a lower-resolution stencil or z-buffer is

used for the early test. These lower resolution buffers effectively break the test into spa-

tially coherent tiles, and work is only avoided if all records in a tile are null. The success

of the early tests rely on the distribution of the null records. While for a typical graphical

application, the performance gain using early tests is considerable, for general purpose

stream data this might not be the case.

4.1.3 Unpacking

The packing algorithm is conceptually simple: sparse data in a buffer is moved sequen-

tially to the beginning of the buffer resulting in a smaller contiguous block. The problem is

that the original position of the stream elements is lost. In most cases, the stream elements

have to be moved back to their original position later. This step can be done efficiently on

current hardware as described in the following sections (Fig. 4.2).
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The information required to reconstruct the original stream is built and stored on the

card. I call this generically areconstruction map. I developed two ways to implement the

reconstruction map:

Data Scaterring: the original position of a fragment must be stored in the data stream.

When required, the original stream can be reconstructed by scattering the data using

the original location stored with the stream elements. This approach minimizes

memory usage, and it is conceptually simple. Data scattering support on GPUs is

described in section 2.3, but basically requires feedback through the vertex unit that

is currently poorly supported.

Permutation Map: This representation maintains a separate full size map with the origi-

nal positions of all fragments. The stream is reconstructed by rendering a large quad

and using the permutation map as texture coordinates in the packed stream. This

approach is not as efficient as the data scattering approach since a larger number of

fragment than necessary are processed, but due to limitations with vertex feedback

on current GPUs, this is the method that we implemented. Therefore, it is discussed

in detail in the following sections.

The packing operation behaves well under composition. An already packed stream can

be packed again by composing the old reconstruction map with the new reconstruction

map. However, this discards any intermediate information. An alternate solution is to

maintain a stack of such maps. However, maintaining a map stack is too complicated

and memory demanding and my results showed that streaming graphs can be optimized to

avoid unpacking until the very last stage of the algorithm. Therefore, the system maintains
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X

Figure 4.2: Left: Sparse stream, middle: permutation map, right: packed stream.

only one map, which is used to reconstruct the order of the original stream.

Packing, unpacking and other buffer management operations require precise informa-

tion about the streams: marking discarded pixels, permutation maps, etc. I store all this

information separately into a control channel and a permutation map, respectively. I keep

one control channel and one permutation map per stream.

The permutation map (Fig. 4.2) is a fixed size texture that uses the first two components

to map each texel to its offset in the stream and the third coordinate to mask out invalid

fragments. To reconstruct the stream, the reconstruction map encodes the offset in the

packed stream and it copies the record from there. If the reconstruction map does not

point to anything (the black areas in the picture) it means that the corresponding record is

null.

The control channel stores state information about the stream data. The control chan-

nel, unlike the permutation map, has to be the same size as the stream. Currently, the

control channel uses only one component to mask out invalid fragments. I need a frag-

ment mask for both the permutation map and the data stream because the algorithm does
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Figure 4.3: Resolving dependencies by adding new variables.

not need packing at every iteration. Therefore, when packing/unpacking is performed,

masking bits from both the permutation map and from the control stream are used to mask

out fragments.

To resolve stream size queries, the system uses the OpenGL extensionGL ARB-

occlusion query. This allows the schedule to determine how much non-null data exists

in an output stream after a conditional write, and allows the scheduler to make a dynamic

decision about scheduling and packing. This extension is easy to use and commonly sup-

ported on current GPUs. However, the overhead associated with it includes an additional

rendering pass and some data transfer between the host and GPU memory. This step can

be an expensive operation. Some of this cost can be amortized if this extension is used

asynchronously.
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4.2 Graph Structure

The transformation module takes the control graph output from the Sh compiler in a stan-

dardized format and transforms it into a format that our scheduler can operate on and that

is suitable for a multi-pass approach. The main difference between the two formats is that

the entire control graph output by the compiler represents semantically one program while

in a streaming grapheach noderepresents a separate program that can be independently

run with no knowledge of the global context. Several issues need to be taken care of to

convert one form to another. In particular, the system needs to resolve dependencies be-

tween adjacent nodes. Temporary data needs to be carried “forward” or “backward” from

pass to pass. For example, suppose a variablea in the original program is used in both

kernelsA andC. Variablea is mapped to two different variablesa1 in kernelA anda2 in

kernelC as illustrated in figure 4.3. There is no arc in the graph fromA to C, but there

is a path that goes throughB or a path that goes throughB′. The data froma1 has to be

passed toa2, soB has to be augmented. This procedure should be done only if B has a

conditional output; however in my experimental prototype I do this regardless if B has a

conditional output or not. Some of these scheduling problems are difficult to solve effi-

ciently. Therefore, I imposed a few restrictions that, while they may affect performance,

do not diminish the scope or correctness of the algorithm.

The first restriction is that I allow at most two output arcs (one conditional and one

unconditional) and at most two input arcs. While this effectively forbids direct translation

of certain high-level constructs likecasestatements, at a semantic level any graph can be

reduced to an equivalent one that has at most two arcs coming in and two going out. The

second restrictive decision, perhaps with more impact on performance, is my implementa-
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tion of synchronization. As illustrated above, some temporary variables used in more than

one node of the graph need to be synchronized and passed from one node to the following

nodes maintaining temporal coherence and data consistency. One solution is to label all

variables that are used in more than one block and to carry them in separate channels. Such

a variable is called ashared variable.

The final version of the streaming graph is structured as follows: the entire graph

contains exactly one entry node and one exiting node. The arcs represent streams of data

passed from node to node. Under the above mentioned assumptions, all arcs have the same

structure: an ordered sequence of data channels for each shared variable. If a variable is

not used in a given node, it is automatically passed through. Buffer allocation is done au-

tomatically by the system at the end of the pre-processing stage. Each node has a program

associated with it that is ready to be bound and executed. Since these programs have input

and output signatures dictated by the shared variables, the entry and exit nodes have two

additional programs associated with them that correspond to the global program’s input

and, respectively, output signatures. These programs are calledsecondary programs.

4.2.1 Node Types

On the simulator, kernel output is written into a stream register. The stream register does

not have to be empty when the data is written; data in the stream register can be accumu-

lated over multiple passes as illustrated in figure 4.4.

In the case of GPU frame-buffers, there are two cases: with packing and without pack-

ing. The case where there is no packing is similar to the simulator. Data can be accumu-

lated over multiple passes (fig 4.5). The only difference from the simulator is that the data



CHAPTER 4. GPU SYSTEM 51

streams are not compact anymore. Therefore, the user has to guarantee that it does not

overwrite previously written data because in this case the new stream is not appended, but

rather interleaved with the old one.

� �� �� �
� �� �� �

� �� �� �
� �� �� �� �� �

A A A

Second PassFirst Pass Third Pass

Figure 4.4: In the Sm simulator, data in the stream registers can be filled sequentially over
multiple passes.

However, when packing is done, it is trickier to maintain data coherency. Recall that

processing a packed stream is done by rendering two adjacent quads. This method works

under the assumption that the rendering buffer is empty. If the buffer is not empty, these

two quads overwrite previously written data. One solution to this problem is to render

a different set of quads that tiles a contiguous block of data adjacent to the one already

there as illustrated in fig 4.6. This technique works only if the target buffer is packed

and querying the size is required It also makes the buffer management and packing more

complicated. Therefore, for the purpose of this prototype, a kernel can be scheduled only

if its output buffers are empty.

This assumption may lead to redundant passes due to fragmentation of the original

stream. To address this problem the system allows explicit merging operators. For ex-

ample, figures 4.7 and 4.8 show a snapshot of a scheduling process. The programs have

four kernels and at each pass data flows from the first kernel (A) to the last kernel (D). In

figure 4.8, we explicitly merge the data at nodeD. That is, we wait for all the data from
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Figure 4.5: On the GPU, with no packing, the frame buffers or P-buffers can be filled over
multiple passes. In this case the streams can be sparse.
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Figure 4.6: Appending data to a packed buffer by rendering three quads.

all the input branches to arrive before scheduling kernelD. This only takes 5 passes. In

figure 4.7, scheduling with no explicit merging takes 7 passes, because kernelsD andE

are scheduled twice. I refer to this case as aspatial merge.

If data is packed, even if there are 5 or 7 passes, the total number of processed frag-

ments is the same in both cases. The gain is only in the overhead associated with kernel

switching. This overhead can be small, if it is simply a state change, or it can be large if

additional data has to be copied into the GPU memory.

Similar optimizations can be found for iterations as well. Data exiting a loop can be

merged together. I refer to this case as atemporal merge. Figures 4.9 and 4.10 illustrate

this. In both cases there are three kernels:A represents the condition at the head of a loop,

B represents the body of the loop andC represents the code that is executed after the loop

is completed. In figure 4.9, scheduling with no explicit temporal merging takes 8 passes
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Figure 4.7: A correct scheduling sequence with no synchronization takes 7 passes to solve.

while in figure 4.10 with explicit merging it takes only 6 passes.

These merging operation are done using some special types of nodes in the graph as

described in the following paragraphs. An analysis of these nodes is provided in sec-

tion 4.4.2.
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Figure 4.8: A correct scheduling sequence with synchronization on merge takes 5 passes
to solve.

A streaming graph has three node types:

Accumulation Node. It is used for explicit temporal merging. In a “while” loop structure,

some data may complete the loop on any iteration. This node is used to block the

data flow until it accumulates all data that entered the loop. The accumulation node

has special properties: it has exactly one predecessor and only one follower and it

runs in two beats: the first beat is right after its parent so it can cache the data that

escaped the loop and the second beat is when all data in the loop is consumed, it

synchronizes and releases it for further processing.

Merging Node. This node synchronizes two streams that have been previously split by a

branch. Unlike the accumulation node, this is a spatial synchronization point where
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Figure 4.9: A correct scheduling sequence with no synchronization takes 8 passes to solve.
Packing is omitted for clarity.

data from two streams are interleaved based on the original ordering. The merging

is based on the control channel data. The branching operation has the property

that at most a fragment in any given position is valid in exactly one control stream.

However, this implies that unpacking is required before or while a merge node is
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Figure 4.10: A correct scheduling sequence with synchronization takes 6 passes to solve.
Packing is omitted for clarity.

executed. This node has two inputs and is not restricted on the number of outputs.

This node is also optional used by the scheduler for optimization purposes similar

to the accumulation node mentioned above.

Regular Nodes.A node that is neither an accumulation node nor a merging node.

The accumulation nodes and merging nodes are optional. A graph can be constructed

from regular nodes only. The purpose of the accumulation and merging nodes is to perform
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explicit merging for optimization purposes.

Any node in the graph (with the exception of the accumulation node) can be marked

as a branching node. These nodes split the output data based on a conditional variable

and send it over two different arcs. While my results work on an arbitrary control graph

subject to the restrictions mentioned above, the compiler generates only two non-trivial1

subgraph types: branching and looping (Figure 4.11).

4.2.2 Graph Transformation Algorithm

The graph transformation algorithm has the following stages:

Build a Variable Map: Traverse the program graph and record for each variable what

blocks it is used in and for what purpose: read, write or conditional.

Create the Individual Programs: Take each basic block and transform it into an inde-

pendent program:

1. Traverse the statement list, and for each variable create a new one that has the

correct scope (e.g. input, output, const, temp, etc.) and the correct state (e.g.

swizzle, data, etc.).

2. Copy all statements using the newly created variables.

3. Add the unused shared variables to the list of inputs and outputs so the system

passes them forward.

1A trivial graph is a graph that has a linear structure.
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Figure 4.11: Left: graph generated by anSH_IF / SH_ELSE/ SH_ENDIF statement;
Right: graph generated by aSH_WHILE/ SH_ENDWHILEstatement. All regular nodes
that do not have a follower (or a predecessor) can be connected to another graph down-
stream (or respectively upstream)

4. Order the list of input and output variables so they match the input and out-

put variables of the adjacent nodes. The consistency of the input and output

variables is achieved by imposing a global order on shared variables.

5. Add additional inputs and outputs for the control stream.
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6. Append or prepend snippets of code as needed. These pieces of code used to

glue the programs together are calledauxiliary programs. This transformation

is done using shader algebra operators as described in section 2.5. These are

the situations where this is required:

• Branching. Appends a program that conditionally writes the data into a

different stream.

• Loop Merging. Loop merging occurs when the data escaping a loop is

accumulated. A special node is inserted that acts like a barrier. This node

is the only node that is not based on a former basic block, and therefore, it

is not created using the shader algebra.

• Regular Merging. Prepends a program that chooses the valid fragments

from two streams based on their control channels. I established before

that I can guarantee that they cannot both be valid fragments.

Figure 4.12 describes steps 5 and 6 in more detail.

7. Repeat steps 2-5 for the secondary programs if applicable (e.g. this node is an

entry or exiting node).

The input and output variables need to have a global ordering, so I created the following

ordering convention:

1. Conditional variable, if applicable. No conditional output variable exists in the final

form of the stream graph, but since the graph transformation are made in indepen-

dent stages using the algebra operators, some intermediary programs might have

conditional input/output variables.
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Figure 4.12: Describes how the shader algebra is used to add data-dependent control
flow support to kernels. Top: attach a pass-through variable. Middle: append a program
that branches the input based on a conditional variable. Bottom: prepend a program that
merges two streams.

2. Shared variables. Data passed from one node to the next. The shared variables are

subject to global ordering.
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ShProgram ifp = SH_BEGIN_PROGRAM("gpu:stream"){
ShInputTexCoord3f input; / / the coordinate of the point scaled between [0, 1]
ShOutputColor3f ocolor; / / output color

ShAttrib1f d = 0.1;
ShAttrib3f s;

s(0)= (floor(input(0) / d(0)) + floor(input(1) / d(0))) * 0.5;
s(1) = floor(s(0));

SH_IF(s(0) - s(1) > 0.25){
ocolor = ShAttrib3f (0, 0, 0);

} SH_ELSE{
ocolor = ShAttrib3f (1, 1, 1);

} SH_ENDIF;

} SH_END_PROGRAM;

Listing 4.1: Checkerboard code

3. Control variables. The current implementation has only one control variable that

is used as a mask to determine if the record is valid or null. However, if this is a

branching node, there is one control variable for each output stream.

If we have multiple incoming or outgoing streams, the stream ordering has higher

priority. For example, if the current configuration has three shared variables,normal,

tangentandcolor; the output of a regular node is:normal, tangent, color, control-variable.

If this node is a branching node, the output variables are:normal1, tangent1, color1,

normal2, tangent2, color2, control-variable1, control-variable2.
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t3423 := 0.1
t3426 := i3421(1) DIV t3423

t3427 := FLR t3426
t3428 := i3421(0) DIV t3423

t3429 := FLR t3428
t3430 := t3429 ADD t3427
t3432 := t3430 MUL 0.5

t3425(0) := t3432
t3433 := FLR t3425(0)

t3425(1) := t3433

t3434 := t3425(0) ADD -t3425(1)
t3436 := t3434 SGT 0.25

t3437(0) := 0
t3437(1) := 0
t3437(2) := 0

o3422 := t3437

t3436

t3441(0) := 1
t3441(1) := 1
t3441(2) := 1

o3422 := t3441

1

2

3 4

5

6

Figure 4.13: Checkerboard and its program graph output by the Sh compiler

4.3 Examples

I illustrate my algorithm using two simple examples. The streaming graphs for these

examples are similar to the ones in figure 4.11

4.3.1 Checkerboard

Consider the program from Listing 4.1 that renders a checkerboard. The graph output by

the compiler can be seen in Figure 4.13.
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The algorithm proceeds as follows:

1. It scans all the nodes of the graph for shared variables. It marks the variablet3425

ando3422 as shared variables. The variablet3425 corresponds tos ando3422 cor-

responds toocolor variables in the original program. The variablet3425 is used in

blocks 1 and 2 ando3422 is used in blocks 3 and 4. The program also marks the

variablet3436 as a conditional variable.

2. It generates the kernels: new independent programs for each of the blocks. The

shared variables marked in the above step become input/output variables in the new

programs, which ensure the data gets forwarded. The conditional variable becomes

an output variable that is appended to a branching auxiliary program. If the con-

ditional variable is also a shared variable, the transformation has to duplicate the

variable, because a copy is needed to be passed forward.

3. Since not all shared variables are used in all blocks, but they need to be passed

forward, I iterate through the kernels and add each unused shared variable to the lists

of inputs and outputs. This situation is demonstrated better in the Julia set example.

In this simple example, this operation is unnecessary as data travels at most one

step. Even in this case, the algorithm still copies the data because in this prototype

no complete dependency analysis is made. In theory, a further optimization step

could eliminate some pass-through operations in the absence of conditionals.

4. When executed, the data flows from one kernel to the next. Therefore, the order of

the outputs of a kernel has to match the order of the inputs of the following kernel.

A global ordering is forced: in this caset3436, t3425, o3422.
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5. The raw kernels generated based on the basic blocks of the original graph are fur-

ther processed to accommodate the data flow. An auxiliary program is appended to

kernel 2 to split the data and kernel 5, since it does not have any code, is replaced by

an auxiliary program to merge the data. It should be noted that the computation per-

formed by this kernel inside the conditionals is far too simple for this transformation

to be worthwhile, and in practice conditional assignment would be more efficient.

However, the example is presented like this for illustration purposes. It should be

kept in mind that this transformation is most useful when the computation guarded

by the IF statement is expensive or potentially non-terminating.

4.3.2 Computing the Julia set

The Julia set example tests the looping support of the system. Listing 4.2 shows the Sh

code used to produce the Julia. Figure 4.14 shows the control graph of the Julia set and

figure 4.15 shows the results.

The algorithm proceeds as follows:

1. Scan all the nodes of the graph for shared variables. Variablest3423, t3424, t3428

correspond in the high level code to the variablespos, i andc respectively are the

shared variables. Variablet3451 is marked as conditional variable.

2. Generate the kernels.

3. Iterate through the kernels and add the unused shared variables to the list of inputs

and outputs. Variablec (aliast3428) is used in blocks 1 and 3. Block 2 does not use
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ShAttrib1f iterations = 5.0; / / number of iterations
ShAttrib1f color_scale_factor = 1.0 / (iterations+1.0);

ShProgram ifp = SH_BEGIN_PROGRAM("gpu:stream"){

ShInputColor3f input; / / (x, y) position of a point in the interval [-2, 2]
ShOutputColor3f output; / / color

ShAttrib3f pos = input; / / stores the positions
ShAttrib3f i(0, 0, 0); / / iterator variable
ShAttrib3f c(-0.122, 0.745, 0.0); / / julia set constant

/ / one iteration
ShAttrib3f temp = pos;
pos(0) = temp(0) * temp(0) - temp(1) * temp(1) + c(0);
pos(1) = 2.0 * temp(0) * temp(1) + c(1);

/ / stoping conditions
SH_WHILE( (i(0)<iterations)*(pos(0) * pos(0) + pos(1) * pos(1) <= 4.0f))
{

/ / iterate
ShAttrib3f temp = pos;
pos(0) = temp(0) * temp(0) - temp(1) * temp(1) + c(0);
pos(1) = 2.0 * temp(0) * temp(1) + c(1);

i(0) = i(0) + 1;
}SH_ENDWHILE;

/ / final colour
output = i(0, 0, 0) * color_scale_factor(0, 0, 0);

}SH_END_PROGRAM;

Listing 4.2: Julia set code

it, so it does not appear in the kernel associated to block 2. Therefore, the system

must add it artificially to maintain data coherency.

4. The global ordering in this case is:t3451 < t3423 < t3424 < t3428
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t3424(0) := 0
t3424(1) := 0
t3424(2) := 0

t3428(0) := 0.233
t3428(1) := 0.5378

t3428(2) := 0
t3432 := t3423

t3433 := t3432(1) MUL t3432(1)
t3434 := t3432(0) MUL t3432(0)

t3435 := t3434 ADD -t3433
t3436 := t3435 ADD t3428(0)

t3423(0) := t3436
t3437 := 2

t3439 := t3437 MUL t3432(0)
t3440 := t3439 MUL t3432(1)
t3441 := t3440 ADD t3428(1)

t3423(1) := t3441

t3442 := 4
t3444 := t3423(1) MUL t3423(1)
t3445 := t3423(0) MUL t3423(0)

t3446 := t3445 ADD t3444
t3447 := t3446 SLE t3442

t3448 := 256
t3450 := t3424(0) SLT t3448
t3451 := t3450 MUL t3447

t3452 := t3423
t3453 := t3452(1) MUL t3452(1)
t3454 := t3452(0) MUL t3452(0)

t3455 := t3454 ADD -t3453
t3456 := t3455 ADD t3428(0)

t3423(0) := t3456
t3457 := 2

t3459 := t3457 MUL t3452(0)
t3460 := t3459 MUL t3452(1)
t3461 := t3460 ADD t3428(1)

t3423(1) := t3461
t3462(0) := 1
t3462(1) := 1
t3462(2) := 1

t3466 := t3424 ADD t3462
t3424 := t3466

t3451

t3467(0) := 0.00389105
t3467(1) := 0.00389105
t3467(2) := 0.00389105

t3471 := t3424 MUL t3467
o3422 := t3471

2

1

3

4

5

Figure 4.14: Compiler control graph for the Julia set

5. In this stage, auxiliary programs are glued similar to the previous example. The only

exception is the accumulation node. The accumulation node is inserted in the graph

between nodes 2 and 5 (Figure 4.14)

4.3.3 Combined Example

To show a more complex example, I combined the checkerboard example with the Julia set

example (figure 4.16). The streaming graph in figure 4.17 illustrates the high level struc-

ture of the program. The program consist of two iteration loops nested inside a conditional.
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Figure 4.15: Julia set examples. Left: 256 iterations withc = (0.233, 0.5378, 0). Right:
10 iterations with c = (-0.122, 0.745, 0.0)

Figure 4.16: This shows a combination of the Julia set and the checkerboard example.
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The conditional construct corresponds to the checkerboard and the iterations correspond

to the Julia set.
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Figure 4.17: Schematic streaming graph of the checkerboard Julia set example.
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4.4 Scheduler

4.4.1 Scheduling Algorithm

The scheduler takes a streaming graph, an input stream and an output stream. It executes

the graph until all inputs are consumed and all results are written to the output stream.

First, I allocate intermediate buffers that are used to facilitate the data flow from one kernel

to the next. Therefore, each arc has some GPU memory associated to it. Then, for each

pass, the scheduler chooses the next running kernel from a pool of active kernels. A

kernel is active if it has input data to consume and its output streams are empty. If a

kernel is not active, it is either in a state of starvation (no input data) or congestion (it

has no space to write the output). Table 4.4.1 formalizes these conditions for the various

node types. Consider first the case where the scheduler does no packing or unpacking

Conditions for Data Starvation Conditions of Data Congestion
Regular Node all input streams are empty any of the output streams are full
Merging Node any of the input streams are emptyany of the output streams are full
Acc. Node any of the input streams are emptyN/A

Table 4.1: Node types and their availability conditions

operations. The control graph together with the current history of kernel executions give

information about which kernels can execute at a given point in time. In fact, if the control

graph has no loops, a static schedule of kernels can be created. If the control graph has

loops, a static schedule is not sufficient and the system has to rely on querying the size

of the streams to find a correct scheduling sequence, where a correct scheduling sequence

is a finite sequence of passes that yield the expected result in the output stream. For a
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general program that uses data-dependent iterations, a combination of static flow analysis

and dynamic scheduling is required. I have considered so far the easier case where there

is no packing. Packing increases significantly the complexity of the problem. Even simple

programs with branching and no loops can have different performance depending on the

scheduling order and the structure of the streaming graph.

The scheduling algorithm goes as follows:

1. All kernels maintain an execution count that is initialized to zero. As a preprocessing

step, a breadth first search tree is run and all arcs are marked as being “forward” or

“backward” based on whether or not they belong to the tree. The backward arcs

correspond to the “feed-back” arcs in a loop structure. When a kernel runs, its count

is incremented with the exception of the accumulation nodes. The accumulation

node is blocked until the opposite arc of its parent has size zero. This indicates that

the loop is exhausted. The accumulation point is scheduled next and its count is set

to the count of its parent.

2. From the pool of active kernels, choose one based on a heuristic (to be described

later).

3. Unpack the incoming streams if necessary.

4. Run the kernel.

5. Pack the output data streams if necessary.

6. Update the pool of active kernels.

7. Repeat steps 2-6 until the pool of active kernels is empty.
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Figure 4.18: The system avoids dead-locks by creating artificial nodes
.

A kernel is active if it is neither in a state of starvation nor in a state of congestion. Ifq,

p andf are nodes and̀is an arc, letsize(`) be the size of the stream associated with that

arc,c(p) denote the execution count ofp andback(p, q) be a function that returns true if the

arc fromp to q exists and it is a backward arc and false otherwise. Ifq is a accumulation

node, by construction it has only one predecessor and the predecessor is a branching node

having exactly 2 output arcs: one towards q and another denoted byf(q). If, in particular

• A regular nodeq is not starving iff∃p a predecessor ofq, (back(p, q) ∧ c(p) =

c(q)) ∨ c(p) > c(q)

• A merging nodeq is not starving iff∀p predecessor ofq, back(p, q)∧ c(p) = c(q)∨

c(p) > c(q)

• An accumulation nodeq is not starving iffsize(f(q)) = 0

• A node is not congested iff∀f follower of q, back(q, f)∧ c(q) < c(f)∨ c(q) ≤ c(p)

• If a node is neither starving or congested, it is active and it can be scheduled for

execution.
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The packing/unpacking rules are as follows:

• Streams should only be packed following a branch. Otherwise, the packing has no

benefit.

• Both branches going into a merge node need to be unpacked. A similar rule applies

for arcs going into an accumulation node, which is a condition required to insure

data consistency.2

To avoid dead-lock I do not allow self-looping (Figure 4.18). In the construction phase,

a dummy program and a loop merge program with their associated buffers are inserted in

the graph. This avoids having programs write to their inputs, an operation not permitted

on GPUs.

4.4.2 Scheduling Strategies

There are two cases. In the first case, data is always packed on write and the overhead

associated with it is negligible. In the second case, packing is a distinct operation with

potentially significant overhead. This implementation assumes the first case and since

current GPUs do not pack on write, and packing is simulated on the CPU. Unpacking, on

the other hand, can be implemented on current GPUs using fragment programs (section

4.1.3).

To avoid redundant passes, the GPU implementation uses merging nodes and accu-

mulation nodes whenever possible as described in section 4.2.1 . These types of nodes

require data to be unpacked before processing. Figure 4.19 illustrates why this is the case.

2Note that these nodes are optional and they serve only optimization purposes.
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Figure 4.19: Spatial merging of packed stream is done in two stages: unpacking and than
rendering one on top of the other.

Merging two streams on the GPU is done rendering them in sequence. In order not to

overwrite records, a valid fragment in the first stream must be invalid in the second stream

and vice-versa. This can be guaranteed only if the streams are unpacked.

In some cases this leads to additional unpacking steps that may degrade performance.

However, on a processor that supports “packing on write”, this problem does not apply. On

such a platform, the data is sequentially written to a buffer that is not necessarily empty,

resulting in free merging3.

3Without preserving the order.
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4.5 Performance Analysis

4.5.1 Cost Models

The cost model of an application running on a GPU has to include the overhead of trans-

ferring data to and from the GPU memory. For current GPUs, this transfer has relatively

high cost and it is more efficient to transfer data in large blocks rather than a few records

at a time.

Buck et al. [3] present an analysis of the computational advantage of CPUs vs. GPUs

on a streaming computational model. Their results show that for small streams, GPU

running time is bounded by the transfer time. It is only for large enough streams that the

actual computations dominate the running time. The relationship of one computational

advantage over the other is thus defined as the ratio between the number of computations

and the size of the transfered data. This ratio is calledarithmetic intensityand is denoted

by α. According to their results, GPU outperforms the CPU if:

α >
R−1 + W−1

K−1
cpu −K−1

gpu

(4.1)

whereR andW are the bandwidth rates of reading from and respectively writing to the

GPU; andKcpu andKcpu are the execution rates for the GPU and for the CPU, respectively.

As defined above, on a given architectureα should be a constant. However, the transfer

rates depend on the size of the data transferred. Roughly, on GPUs similar to what I

used, for streams between10, 000 32-bit floating point data (floats) to100, 000 floats,

the α cutoff is 100 and for streams of over1, 000, 000 floats, theα cutoff is about40.
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Therefore, to give the GPU a computational advantage on a stream containing10, 000

floats, a program of at least1, 000, 000 instructions is needed, a large size for a program

running on current GPUs.

Most of my testing programs have under10, 000 instructions with a data set of500, 000

floats; therefore, it is not surprising that the running times for my programs are larger than

if they were executed on the CPU. Our goal however, is not to compare GPU and CPU

speeds, but rather to verify the hypothesis that stream packing improves overall perfor-

mance. Another factor not included in their analysis is kernel switching. This aspect is

important because on current GPUs, the maximum size of a fragment program is rela-

tively small (1024 instructions on NVIDIA GeForce FX cards and 64 instructions on ATI

RADEON 9700-9800); therefore, a large program may require the number of passes to be

in the order of thousands. In these cases, even a small overhead can be amplified into a

significant delay.

Without creating a formal cost model, my performance analysis decouples the imple-

mentation layers, analyzing one implementation layer at a time. My algorithm operates

on the stream abstraction available in Sh and it uses it opaquely. Should another stream

implementation be available with similar functionality, this performance analysis will still

apply.

4.5.2 Methodology

This implementation suffers from two important limitations. The first one is that packing

is done on the CPU and its cost is large compared to the other stages of the algorithm. The

second is due to the(current, suboptimal)stream implementation on Sh(unnecessarily)
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copies the data between GPU memory and main memory for every pass. To make a plau-

sible analysis, I need to make some assumptions related to these limitations. I believe that

with some small extensions (section 4.1.1), packing can be done in the future on the GPU

while writing fragments. This change would result in virtually free packing. Therefore, in

this analysis, I factored out the packing overhead. To account for the second limitation, I

ignore the GPU to host memory timings4.

Since the implementation uses the Sh stream abstraction, we divide the performance

analysis into two layers:

Low level layer: I timed the low level stream implementation.

High level layer: I timed various high level stream operations used in our algorithms (e.g.

unpacking).

For profiling, I used a modified Julia set program. I appended to the loop kernel a large

set of dummy instructions so the kernel has almost the maximum number of instructions

allowed by the GPU (1024). I prevented the driver from optimizing the code by creating

artificial variable dependencies. I ran the program on three buffer sizes: 64x64 (4096),

256x256 (65,536) and 512x512 (262,144) fragments. I varied the maximum number of

iterations from 5 to 20. I executed each test three times and averaged the results.

4.5.3 Benchmarks

A stream execution has four major steps:

4Because I do not control the details of driver’s memory management, I cannot factor them out com-
pletely.
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GLX Context setup: creating an OpenGL context in which the stream execution takes

place.

Fragment program setup: compiling and optimizing the fragment program. Since the

GPU that I used for my implementation does not support multiple output buffers,

Sh simulates this behavior by rendering multiple passes with a different output each

time. The Sh optimizer performs dead-code removal at each step generating a dif-

ferent program for each of the passes. On a GPU that supports multiple buffers, this

stage can be avoided by caching the pre-compiled programs.

Binding: downloading the program and its associated dependencies on the GPU (e.g.

textures, matrices, etc.)

Rendering: actual data processing time.

The low level timing analysis of the system (Table 4.5.3) shows that the rendering and

binding stages have almost equal running time. This similarity is because, at this stage of

Sh development, streams are not optimized and redundant data is copied to and from the

GPU. Both the fragment setup and binding stages can be optimized by a large factor once

GPUs will have support for multiple output buffers and as the Sh streams implementation

matures.

Resolution GLX context Fragment program setupRendering Binding
256x256 3.62 % 23.40 % 38.19 % 33.19 %
512x512 2.27 % 11.48 % 44.79 % 40.85 %

Table 4.2: Work load distribution for Sh streams
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At the high level, the execution of the algorithm has three major stages5:

Running time: Executing kernels.

Unpacking: Unpacking previously packed data.

Other: Miscellaneous overhead, independent of the packing strategy.

Table 4.5.3 illustrates the improvement in performance. The “Improvement” column

shows the net improvement of run-time using packing. The “Improvement on run” column

shows the theoretical speed-up of the execution time. The difference between the two is

due to the unpacking overhead. The results show that the run-time performance of packing

scales well with the size of the stream, showing increases in performance of up to 25%.

The results meet our expectation since for large data sets the contribution of the constant

overhead goes asymptotically to zero.

Table!4.5.3 outlines the various stages in the algorithm together with their distribution

in terms of GPU/CPU time.

5packing is not included since we assumed it is free
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Resolution Iterations Elapsed time Elapsed Time Improvement Improvement
when without (%) on run (%)
packing (ms) packing (ms)

64x64 5 1796 1733 -3.5 1.9
64x64 10 3451 3360 -2.7 2.4
64x64 20 6723 6528 -2.9 2.5
256x256 5 2413 2588 6.7 16.1
256x256 10 4416 4950 10.8 19.7
256x256 20 8462 9655 12.3 21.6
512x512 5 4182 5391 22.4 35.1
512x512 10 7572 10223 25.93 39.58
512x512 20 14415 19925 27.65 40.94

Table 4.3: Performance improvements of packing

Resolution Iterations Run (%) Unpacking (%) Other (%)
64x64 5 88.64 4.85 6.51
64x64 10 89.33 4.98 5.68
64x64 20 89.56 5.23 5.33
256x256 5 83.17 7.92 8.91
256x256 10 83.47 8.42 8.11
256x256 20 83.42 8.82 7.76
512x512 5 76.20 12.20 11.60
512x512 10 74.83 13.03 11.54
512x512 20 75.10 13.75 11.15

Table 4.4: Work distribution when packing
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Conclusion

This thesis has presented a method to implement a stream processing computational model

including data-dependent control flow on SIMD GPUs, more specifically on the fragment

units. The method consists of a series of algorithms used to transform the control graph

of a program output by a compiler into a stream graph, a structure suitable for multi-pass

computations. A run-time scheduling algorithm is presented that takes the stream graph

and determines the order in which the individual kernels run. I introduced the concept

of packing, where the data of a sparse stream is rearranged into a contiguous block to

avoid redundant computations. Two parallel control streams are generated to maintain

data coherency and encode ordering information. I presented an analysis of packing and

unpacking operations and how they integrate with the scheduler.

81
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5.1 Systems Comparison

I described two implementations of this system: one running on Sm, a software simulator,

and one running on top of Sh system and targeting real GPUs.

Sm was designed as an alternative architecture for next generation GPUs. Unlike cur-

rent GPUs, Sm “packs on write” and it stores data streams1 in one dimensional buffers.

Sm supports a limited form of recursion by allowing data amplification, and a hybrid depth

and breath order for exploration of the recursion tree. A dynamic scheduler drives the sim-

ulator running kernels in sequence using a greedy based heuristic.

The GPU implementation uses the Sh system to drive the GPU. The most challeng-

ing problem on the GPUs was packing. Not only do current GPUs not support packing

on write, but explicit packing on current GPUs proved to be difficult and inefficient. I

provided a theoretical method to extend the current GPUs to support packing on write and

analyzed the performance under this assumption while my prototype performs the packing

on the CPU. I also discussed briefly various scenarios of packing on current GPUs.

5.2 Future Work

One of the bottlenecks in the system is redundant data transfer between kernels. A more

comprehensive analysis of the streaming graph using algorithms and data structures bor-

rowed from compiler theory should be used to sort out dependencies between variables

and their associated data streams.

This system uses only the fragment unit of the GPU. The vertex unit can be used as a

1vertex and fragment streams
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vertex scatter engine for more efficient and less memory intensive unpacking. Even so the

vertex unit would probably be idle most of the time. A better use of all GPU resources is

desirable.

I currently pack data on the CPU which significantly reduces performance since the

data transfer to and from the host is costly. An algorithm to pack data on the GPU has

been developed, but due to limitations of the current graphics cards, the integration of

GPU packing into our system was difficult. A hardware extension to current SIMD GPUs

was presented that provides low cost “packing on write”.

While I presented a detailed analysis of various heuristics under the “packing on write”

assumption, I did little to analyze the situation where packing is done explicitly at some

potentially significant cost. The scheduling algorithm has in this case an extra degree of

freedom deciding whether or not to pack. Since packing can be expensive, it can domi-

nate the computation in a case where the stream has a small number of null records. The

decision “to pack or not to pack” depends not only on the number of null records in the

stream, but also on the computational cost of the kernels. For example, on the one hand,

if there are 10,000 null records as input to a kernel that has only few instructions, the re-

dundant execution might be faster than packing. On the other hand, if there are only 1,000

null records running a complicated program, the redundant execution might be slower than

packing. Empirical heuristics can be developed in this case to make the packing decision.

My algorithm preserves the order of the data in the stream. However, there are cases

when maintaining the order is not required. There are also cases where in the final stage

of the algorithm the order is required, but not for intermediate steps. Such cases can yield

optimizations. More efficient packing algorithms that do not maintain ordering might be
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useful for such cases. The stream algebra can be extended to support a mix of ordered and

unordered streams. Also fast packing algorithms that reduce the number of null records

but do not eliminate them entirely might be considered.

The graph generated by the compiler and further transformed by my algorithm is not

optimal. Several optimizations should be developed and applied to transform the graph

further into a semantically equivalent, but more efficient form.
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