
Crystallizing Application Configurations 

 

by 

 

Ken (Zanqing) Zhang 

 

A thesis  

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of  

Master of Mathematics 

In 

Computer Science 

 

Waterloo, Ontario, Canada, 2006 

Ken (Zanqing) Zhang 2006 



 ii 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 



 iii 

 Abstract 

 

Software applications have both static and dynamic dependencies. Static dependencies 

are those derived from the source code. Dynamic runtime dependencies are established at 

runtime and may be based on information external to the source code, such as 

configuration files. Flexible applications commonly rely on configuration to adapt to 

diverse environments. An application’s configuration encodes runtime dependencies 

between the various parts of the application. Reverse engineering tools have traditionally 

been based solely on static dependencies extracted from the source code. Neglecting 

dynamic dependencies encoded in an application’s configuration can result in incorrect or 

incomplete program comprehension. Unfortunately, many applications store their 

configuration in an ad hoc, unstructured format from which it is not feasible to extract 

runtime dependencies by traditional reverse engineering. Our work takes advantage of 

well structured, published configuration formats, such as that of J2EE applications. Using 

these formats we are able to extend reverse engineering to analyse this previously 

neglected information. We introduce a technique called crystallization, which extracts 

configuration facts that encode dynamic dependencies. We use these recovered facts to 

predict and validate dynamic dependencies. Crystallizing configurations has the potential 

to increase developer productivity by providing better program comprehension.



 iv 

Acknowledgements 

 

 

This thesis would not have been possible without the continuous support of my family 

who gave me the strength and will to succeed. 

 

I would like to thank my supervisor Professor Richard C. Holt for his support and advice. 

Thanks for listening to and put up with my sometime naïve ideas. I will benefit from his 

guidance through out my life. 

 

I appreciate the valuable time and encouragement Jingwei Wu provided during my 

studies. 

 

  



 v 

 

1 INTRODUCTION............................................................................................................................... 1 

1.1 WEB APPLICATION AND ENABLING TECHNOLOGIES .................................................................... 1 
1.1.1 Configuring Web Applications ............................................................................................... 4 
1.1.2 Reference by Name ................................................................................................................. 5 

1.2 BENEFITS OF CRYSTALIZATION .................................................................................................... 7 
1.2 THESIS CONTRIBUTION ................................................................................................................ 8 
1.3 THESIS ORGANIZATION ................................................................................................................ 8 

2 RELATED WORK ........................................................................................................................... 10 

2.1 PROGRAM COMPREHENSION ...................................................................................................... 10 
2.2 REVERSE ENGINEERING ............................................................................................................. 11 
2.3 SOFTWARE VISUALIZATION ....................................................................................................... 12 
2.4 STATE OF THE ART ..................................................................................................................... 14 

3 DEPENDENCY CRYSTALLIZATION......................................................................................... 16 

3.1 J2EE CONFIGURATION ............................................................................................................... 20 
3.1.1 Web Tier Components and Configuration ............................................................................ 21 
3.1.2 Business Tier Components and Configuration ..................................................................... 23 
3.1.3 Java Messaging Service (JMS) ............................................................................................. 25 

3.2 J2EE APPLICATION DEVELOPMENT CHALLENGES ..................................................................... 27 
3.3 CRYSTALLIZING CONFIGURATION DEPENDENCIES..................................................................... 29 
3.4 CRYSTALLIZATION PROCESS ...................................................................................................... 29 
3.5 DEPENDENCY NOTATION AND OPERATION ................................................................................ 31 
3.6 TA SCHEMA FOR CONFIGURATION DEPENDENCIES..................................................................... 32 
3.7 IMPORTANT J2EE APIS .............................................................................................................. 33 
3.8 CRYSTALLIZING WEB DEPENDENCIES........................................................................................ 35 
3.9 CRYSTALLIZING EJB DEPENDENCIES......................................................................................... 38 
3.10 CRYSTALLIZING JMS DEPENDENCIES ........................................................................................ 39 

4 CRYSTALLIZATION IMPLEMENTATION............................................................................... 42 

4.1 REQUIREMENTS OF CRYSTALLIZATION TOOLING ....................................................................... 42 
4.2 ECLIPSE INTRODUCTION............................................................................................................. 43 
4.3 JDT INTRODUCTION ................................................................................................................... 44 
4.4 CRYSTALLIZATION FRAMEWORK ............................................................................................... 46 
4.5 CRYSTALLIZATION EXTENSION INSTALLATION.......................................................................... 50 
4.6 DEPENDENCY VISUALIZATION ................................................................................................... 51 
4.7 PERFORMANCE AND SCALABILITY ............................................................................................. 52 

5 CASE STUDY ................................................................................................................................... 54 

5.1 THE PET STORE APPLICATION.................................................................................................... 54 
5.2 DEPENDENCY MANIFESTATION.................................................................................................. 55 
5.3 SOURCE FILE VISUALIZATION .................................................................................................... 58 
5.4 SUMMARY OF CASE STUDY ........................................................................................................ 58 

6 CONCLUSION AND FUTURE WORK ........................................................................................ 60 

6.1 CONCLUSION.............................................................................................................................. 60 
6.2 FUTURE WORK........................................................................................................................... 61 

 



 vi 

List of Figures 

Figure 1: Traditional Component Relationship .................................................................. 3 
Figure 2: Development Process .......................................................................................... 4 
Figure 3: Traditional Component Relationship .................................................................. 7 
Figure 4: As-built Architecture and Program Comprehension ......................................... 12 
Figure 5: Static Dependency in Traditional OO ............................................................... 18 
Figure 6: J2EE Components and Services ........................................................................ 21 
Figure 7: Snippet from Web Deployment Descriptor....................................................... 22 
Figure 8: Snippet from EJB Deployment Descriptor........................................................ 24 
Figure 9: JMS Communication......................................................................................... 27 
Figure 10: Crystallization Process .................................................................................... 30 
Figure 11: Snippet from Web Deployment Descriptor..................................................... 37 
Figure 12: Crystallized Web Dependency ........................................................................ 38 
Figure 13: EJB Interaction ................................................................................................ 39 
Figure 14: Crystallized JMS Interaction ........................................................................... 41 
Figure 15: Eclipse Architecture [1]................................................................................... 44 
Figure 16: Key Connections between JDT and Eclipse [1].............................................. 45 
Figure 17: Crystallization Workflow................................................................................ 47 
Figure 18: Crystallization Framework Architecture ......................................................... 48 
Figure 19: Highlighting Invalid Dependency in Unmodified Eclipse .............................. 56 
Figure 20: Highlighting Invalid Dependency in “Crystallized” Eclipse .......................... 56 
Figure 21: Highlighting Invalid Dependency in Problems View ..................................... 56 
Figure 22: Class View....................................................................................................... 58 
 

 



 1 

1 Introduction 
 
 

1.1 Web Application and Enabling Technologies 
 
 
The Internet is 15 years old now and the number of users has grown from thousands to 

millions. Instead of using the Internet for its original purpose such as exchanging files, 

people are using it to do banking, shopping, etc. Web applications such as e-commerce 

and Internet banking have become part of our lives. Information that was available at a 

designated time, at specific locations such as stores and bank branches, is now available 

anytime, anywhere in the world, given appropriate authentication and authorization. 

Allowing secure access to information easily has become a vital way to improve quality 

of service and retain customers. The Internet has become the pervasive vehicle for 

customer service delivery.  

 

These applications do not exist without the support of enabling technologies such as Java 

2 Enterprise Edition (J2EE) and Microsoft .NET Framework. These enabling 

technologies allow software engineers to develop web applications that interact with 

enterprise information systems. J2EE and Microsoft .NET technology provide services 

such as dynamic web page construction, application component life cycle management 

and configuration based flexible integration. Enhanced with these technologies, the 

Internet is capable of presenting not only static information such as company addresses, 

but also dynamic information such as real-time stock pricing that is retrieved from the 

enterprise information system.  

 



 2 

J2EE and Microsoft .NET emerged to support development of reusable, scalable, reliable, 

and secure enterprise web applications. In addition to supporting development of 

dynamic web pages, these technologies provide functionality to develop highly 

decoupled, componentized application modules and allow application integration to be 

done at a later stage called deployment using configuration. This approach clearly 

demarcates the responsibility of development and integration. It also allows developers to 

focus on developing reusable components and deployers to focus on deployment time 

issues. Application components developed following the framework guidelines can be 

customized to interact with other components at the integration stage. To simplify our 

discussion, we will use J2EE as an example of the enabling technologies. 

 

The following is a small example illustrating the difference between the traditional 

programming model and the J2EE programming model. An application allowing 

customers to browse products and place orders needs components to support the 

functionality of “Placing Order”, “Processing Order” and “Shipping Order”. Figure 1 

shows the relationship between these components in the traditional programming model. 

The PlaceOrder component requires a reference to the ProcessOrder component. The 

ProcessOrder component requires a reference to the ShipOrder component. The 

PlaceOrder component invokes ProcessOrder component to process collected order 

information. Upon successful processing, the order information is further passed to 

ShipOrder component to finalize the order.  



 3 

 

Figure 1: Traditional Component Relationship 

 

With the J2EE framework, the same functionality can be implemented using Java 

ServerPage (JSP) and Servlet technology. Using JSP/Servlet, all components interact 

with each other by sending or receiving HTTP [22] requests.  For example, PlaceOrder 

collects and submits order information to ProcessOrder using HTTP. The processed 

order information is further submitted to ShipOrder to finalize the order.  

 

Each resource such as JSP and Servlet is given a name that is specified by developers. 

These names are stored in XML configuration files called deployment descriptors. The 

following is a pseudo snippet from a deployment descriptor showing how PlaceOrder is 

mapped to its implementation class, PlaceOrderImpl. 

    … 

    <component> 

      <name>PlaceOrder</name> 

      <class>PlaceOrderImpl</class> 

    </component> 

    …  

 

When an HTTP request is submitted (sent), the receiver of the request is identified using 

a Uniform Resource Locator (URL) [17]. The URL for JSP and Servlet, as specified by 

the URL standard, consists of three parts: protocol, hostname and resource name. For 



 4 

web application, the protocol defaults to HTTP. The default value of hostname is the 

name of the server hosting the application. Both protocol and hostname are optional, the 

default values will be used when they are absent. 

1.1.1 Configuring Web Applications 

 
In a J2EE environment, application components are loosely coupled application 

components with maximum flexibility and minimum configuration. J2EE components 

cannot work together to perform an end-to-end business function without additional 

configuration to help the J2EE runtime resolve required dependencies. Typically, the 

configuration required is information that guides the J2EE framework to locate dependent 

components, services and resources.  

 

Assemble

Configuration

Unbound Components Bound Components  

Figure 2: Development Process 

 
 
Figure 2 sketches the process of assembling J2EE components into applications. In the 

J2EE programming model, a new role called Application Assembler is introduced. 

Application Assemblers are responsible for configuring application components they 



 5 

receive from either internal development teams or component vendors. Information such 

as the name of application components is configured so that the J2EE framework runtime 

would be able to resolve the required components to perform end to end business 

functions. All this configuration information is added to the deployment descriptors of 

the J2EE application. These deployment descriptors are loaded by the J2EE framework 

when the J2EE application is started.  

J2EE Application Assemblers must ensure required resources are available and registered 

using the right name. For example, as mentioned in previous section, PlaceOrder collects 

order information and submits it to ProcessOrder using an HTTP request. Logically, it is 

obvious that PlaceOrder depends on ProcessOrder. It is the Application Assemblers’ 

responsibility to ensure the implementation of “ProcessOrder” is available and registered 

with the name “ProcessOrder”. 

 

1.1.2 Reference by Name 

 
 
J2EE improves the flexibility of application components by enabling components to 

reference each other using literal strings that we call logical names. J2EE lets 

programmers define “logical names” to which application components can forward 

control. An application component can forward control to “Process Order” component, 

without knowing the type of the component nor holding an object reference. We call the 

ability to forward control to application components “reference by name”. Although it is 

still possible to reference Java classes using typed object references, reference by a 

component’s logical name is required in order to leverage the flexibility provided by the 



 6 

framework at application integration time. Component logical names are mapped to their 

concrete implementation when an application is deployed. The component’s 

implementations, normally Java classes, will be looked up and instantiated by the J2EE 

framework to provide the requested service.  

 

Reference by name, an extra layer of indirection, helps achieve flexibility so that 

components can be integrated at a later stage based on business requirements; however, it 

poses problems to application development. Because a component name, e.g., the 

“Process Order”, is just a literal string from the compiler’s point of view, the compiler 

can not distinguish “component names” from other regular strings and hence is not able 

to detect missing components or components missing implementation. The un-typed 

nature of reference by name makes checking for the existence of a component objects 

part of the regular development responsibility and adds burden to the developer’s already 

overloaded shoulders. This is not only tedious, but also error prone.  

 

On the other hand, reference by name also has a significant impact on development 

efficiency and quality. Developers can no longer depend on the mandatory, automatic 

compiler validation to assure the quality of their programs. They have to first start the 

application, and then run the business functions that would hit the code to be validated, 

and finally verify the result to confirm the expected behaviour is achieved. Due to this 

prolonged validation processes; it takes much longer to verify defect fixes and feature 

implementations. It is also harder to ensure all expected behaviour is validated due to this 

manual, tedious, and optional validation procedure. 



 7 

 

1.2 Benefits of Crystalization 
 

Reference by name, as one of the most important J2EE techniques to improve flexibility, 

has also introduced inconvenience to the development society. As compiler aware 

dependencies being moved into indirect, dynamic, compiler unaware dependencies, 

getting applications to function correctly is more chanllenging. 

 

 

Figure 3: Traditional Component Relationship 

 

For example, developers are very often relying on compilers to type check, among many 

other validations, the reference from PlaceOrder to ProcessOrder, and the reference from 

ProcessOrder to ShipOrder. These vadiations must be done maunually by developers 

when reference by name is used since reference by name is typeless. The crystallization 

technique understands the reference by name technique and detects the usages of this 

technique. It further analyzes the detected usages to validate the usages. The 

crystallization technique not only brings back to the world of “reference by name” the 

validation capabilities that are available in compilers, but also allows organizations to 

implement their own validation so that business logic specific validation can be carried 

out automatically. 



 8 

 

1.2 Thesis Contribution 
 
 
In this research, we developed a reverse engineering method we call crystallization to 

explore a new type of information source: application configuration. Crystallization takes 

into account not only the source code, but also the well structured configuration files that 

are found in many modern application frameworks. We developed an extensible 

crystallization framework which can be extended to understand specific application 

frameworks such as J2EE and Microsoft .NET. The extension framework defines the 

interface of application framework dependency extractors and validators. The extension 

framework is capable of detecting installed extractors and validators, and then visualizes 

extracted and validated dependencies. To illustrate the framework’s capabilities we have 

also implemented a J2EE crystallization extractor and validator. The crystallization 

method is fully integrated with the Eclipse Integrated Development Environment so that 

it can provide real-time assistance to programmers without leaving their familiar 

development environment.  

 

1.3 Thesis Organization 
 

The rest of this thesis is organized as follows:  Chapter 2 introduces related work in the 

area of reverse engineering and program comprehension. We explain J2EE components 

and services, and the crystallization process for each type of components and services in 

chapter 3. The implementation of the crystallization framework is illustrated in chapter 4. 



 9 

We demonstrate crystallization with an example in chapter 5 followed by possible 

enhancements in the future in chapter 6. Chapter 7 concludes the thesis. 



 10 

 

2 Related Work 
 
 
In this chapter, we introduce research activities related to the topic of this thesis. 

 

2.1 Program Comprehension 
 
 
Program comprehension has long been recognized as one of the most important activities 

of software construction. Program comprehension is normally done by reading the 

documents, source codes, etc. of the program under investigation. Reading is a key, if not 

the key technical activity for verifying and validating software work products [14]. As the 

life span of applications grows longer and longer, the size of applications is also 

becoming larger and larger. Many developers with different programming experience and 

styles may have maintained the application and introduced inconsistencies into the code 

base. Software developers spend more and more time reading the documentation and 

source code because of both the inconsistencies and size.  

 

The direct impact of this long and difficult comprehension process is the increased cost of 

application development and maintenance. The cost of development/maintenance 

consists of two main parts:  first the direct cost such as developer salaries to maintain 

applications and second, the indirect cost of defects in the application. Any assistance to 

developers in understanding the application quickly and correctly can directly contribute 

to lower costs for application maintenance with better quality of the application. 

 



 11 

As the scale of these applications become larger, it is common for these applications to be 

developed by physically disparate teams located on different continents and speaking 

different languages. It is crucial to be able to quickly and correctly comprehend artifacts, 

especially foreign artifacts based on information contained in the document and source 

code. Accurate program comprehension by all developers is a prerequisite to 

implementation consistency and integrity across the whole application. 

 

2.2 Reverse Engineering 
 
 
The process of reverse engineering is introduced as an aid in program understanding. 

This process is concerned with the analysis of existing software systems to make them 

more understandable for maintenance, re-engineering and evolution purposes. [15] 

Reverse engineering techniques [6, 10, 11, 12, 13] have long been focusing on extracting 

facts from source code, documentation, change logs, etc. to reconstruct the “as-built” 

architecture of the application. The “as-built” architecture gives a high level overview of 

the structure of the application and the relationship between application components. 

Code level facts that are not architecturally significant are excluded from the architecture. 

The architecture is created in the hope to present a consistent, integrated, and easier to 

understand view of the application under investigation. As shown in Figure 4, the as-built 

architecture is expected to be one step closer to the mental model to be constructed by 

software developers during the program comprehension process.  

 



 12 

 

 

Figure 4: As-built Architecture and Program Comprehension 

 

Some of the most often extracted information includes function calls, object inheritance, 

and directory structures. The extracted facts such as function calls between components 

represent the relationships between application artifacts and the number of the function 

calls suggests how tightly the two components are coupled. The facts are further 

processed using various clustering techniques to collect artifacts into logical groups. 

 

2.3 Software Visualization 
 
 
Among the methods to support software development that have been proposed in 

literature, software visualization has long been considered as a technique to aid 



 13 

comprehension. Much effort has been placed in this area. Tools such as LSEditor[18] and 

Rigi[19]. have been developed to assist developers in investigating the static relationships 

between application modules interactively. These tools visualize software by relying on 

static facts extracted from the source code based on syntax. Some of these fact extractors 

are constructed by modifying the compiler so that instead of generating machine code, it 

generates facts in a format can be used by the tools. LSEditor supports multiple different 

algorithms to cluster application components. Users are allowed to try different layout 

and clustering methods so that application components are visualized in such a way that 

aligns with the mental model they constructed during the program comprehension 

process. The cluster of the application components and the mental model are dynamic 

which could change over time based on the information and the better understanding of 

the source code.  

 

There are also tools such as GROOVE [26] that analyzes and visualizes the runtime 

aspects of applications. GROOVE captures runtime events such as Instance Create and 

Method Invoke to construct a presentation of the runtime attributes of an application. 

GROOVE is a very useful tool for tracing and debugging applications. Another type of 

tools that are used to trace runtime attributes is UML sequence diagram generators. These 

tools capture method invocations and use this information to generate UML sequence 

diagram. Althought it is useful, sometimes the generated UML diagram can be very 

difficult to follow due to the amount of detail information, for example, all the calls to 

library methods that are not of interest. 

 



 14 

2.4 State of the Art 

 
 

Much effort has been spent to improve the integreated development environment for 

J2EE based applications. Many tools incluing Eclipse, Rational Application 

Developer[28], NetBeans[29], OptimalJ[27], IDEA[30], just to name a few, provides 

great help to developer to improve productivity and quality.  

 

One of the most important functionality that helps developer quickly comprehend the 

source code is the ability to quickly navitage the source code. The faster that developers 

can nagivate the source code, the quicker they would be able to find the information 

needed to comprehend the source code. IDEs have gone a long way in this direction to 

assist program comprehension. For example, when a Java class is opened in a Java source 

code editor in Eclipse, finding out the definition of a Java class used in the code is only a 

single mouse click away. Besides class definition, it is also extremely easy to look for all 

the references to a class, all of the invocations to a method, all the subclasses, etc. The 

overall view of code, for example, all the invocation to a method, gives developers 

information how the method is used. It not only helps developers understand the purpose 

of the method, but also allows them to evaluate the impact of change if the method is to 

be changed. 

 

Many IDEs, including those mentioned above, cooperate color highlighting, integrated 

compilation, and unified error report to improve development productivity and quality. 

The Web Tool Eclipse Project goes one step further to validate configurations Java 



 15 

classes that are used in JSPs.  This is done by extracting Java snippets embedded in JSPs 

and statically analysing it. Althought it is able to help developers validate the format of 

certain types of configuration files, it is not able to analyze and integrate the information 

from multiple configuration files to validate the correctness of the application. 

 



 16 

3 Dependency Crystallization 
 
 

The J2EE specification specifies a set of standard configuration files that are used to 

integrate J2EE applications. Application components that are decoupled at compile time 

may interact due to configuration. The way that J2EE framework achieves this flexibility 

is by referencing J2EE components using their logical names and by allowing application 

deployers to associate logical names with J2EE components when applications are 

configured and deployed.  

 
To help developers understand applications, the reverse engineering community 

commonly uses analysis techniques [6, 10, 11, 12, 13] to extract dependencies from the 

application’s source code and then uses these dependencies to help developers understand 

the relationships between its components. Unfortunately, the static dependencies derived 

from an application’s source code may be insufficient to reveal key relationships between 

its components. This is due to external information such as its configuration adding or 

modifying relationships between the components. The information encoded in an 

application’s configuration can be essential to the comprehension of a program. But, in 

many cases, the ad hoc, unstructured format of this configuration information makes it 

difficult to understand. This is especially difficult in that each application could store its 

configuration in its own particular manner. Integrated Development Environments (IDEs) 

typically do not understand an application’s configuration information and are thus 

unable to help developers ensure that the configuration is correct. Fortunately, application 

frameworks such as J2EE have a well structured, published format to store configuration 



 17 

information. This makes developing program comprehension tools, including IDEs that 

leverage configuration information, possible.  

 

Our technique, which we call crystallization, enhances static dependencies from source 

code, with dynamic dependencies [10, 11, 12. 13] encoded in the configuration. This 

more complete extracted information allows us to deduce and validate dynamic 

dependencies. While our discussion and implementation is based on J2EE, our technique 

can be applied to other frameworks which use structured formats to configure runtime 

application dependencies. 

 

We will use an example to illustrate one of the ways that the configuration of a J2EE 

application determines dynamic dependencies.  In Object Oriented (OO) software, a 

reference to an object instance is used to invoke methods of the object. J2EE generalizes 

this approach in that the name of a component is used to invoke predefined methods in 

particular components. As illustrated by Figure 5, in traditional OO programming class 

Foo references object BarImpl which implements the Bar interface. The new construct 

creates the object instance. The reference to the new object instance is stored in ref, 

which is used to invoke a method, for example, doPost().  



 18 

 

+process()

Foo

+doPost()

Bar

                                                          

+doPost()

BarImpl

<<use>>

Bar ref = new BarImpl();

ref.doPost();

 

Figure 5: Static Dependency in Traditional OO 

 

J2EE stores configuration information in deployment descriptors (DDs), which are XML 

files. Deployment descriptors contain definitions of J2EE components including their 

names, implementing Java classes and other runtime attributes. Each component is 

defined in a component type tag containing a name and an implementing class element. 

As illustrated in the pseudo snippet below, a component named BAR with implementation 

class BarImpl is declared. 

    … 

    <component> 

      <name>BAR</name> 

      <class>BarImpl</class> 

    </component> 

    …  



 19 

In J2EE, it is encouraged to reference components by name instead of by object reference 

to acquire the services they provide. The use of component name allows application 

integrators and deployers to easily change the binding of the name. In other words, 

application integrators and deployers can change the implementation associated with a 

logical name dynamically. The use of the name of a component implies a dynamic 

dependency on that component, and hence on the implementing class of the component. 

For example, at runtime the following statement 

   HttpServletResponse.sendRedirect(“BAR”) 

which references component BAR by name, triggers J2EE to create an instance of 

BarImpl, the implementing class of component BAR and to invoke BarImpl’s predefined 

method, doPost(). If the configuration is changed so that the implementing class of BAR 

becomes BarImpl2, an instance of BarImpl2 would be created and its doPost() would be 

invoked. This is an example of the flexibility J2EE provides to switch implementations 

without recompilation.  In this example, there is neither an object reference nor a function 

call involved and thus static analysis techniques would be unable to capture the 

dependency from component BAR to the implementing class BarImpl.  

 

These dynamic configuration dependencies are neither captured nor indicated by tools 

such as compilers and IDEs when there is a mis-configuration.  This increases the 

likelihood that new members of a development team who are not familiar with the code 

base will make mistakes. For example, the newcomer, in the process of refactoring the 

source code, may change the name of a class without knowing the dependencies on the 

name of the class. This would break dynamic dependencies without introducing any 



 20 

compilation errors. Components that are still using the old name to acquire services from 

the component would fail since the J2EE framework would not be able to resolve the 

name. One common approach is to manually inspect the code base to catch mis-

configuration, which is time consuming and tedious.  

 

In order to tackle the difficulties brought in by dynamic dependencies, tools need to 

understand not only the language used to construct the components, but also the 

configuration that establishes runtime dependencies so that mis-configured dependencies 

will be captured at an earlier stage.  

 

Our crystallization processes first extracts component definitions from deployment 

descriptors and component name references from the source code, and then resolves these 

component name references and component definitions in a way similar to how the J2EE 

framework runtime resolves dynamic dependencies.  The crystallization process notifies 

developers to correct any erroneous dependencies such as references to components that 

do not exist. 

 

3.1 J2EE Configuration 
 
 
Our experimental work is based on the J2EE framework. We will explain J2EE 

configuration and how it introduces dynamic dependencies between components. This is 

not meant as a J2EE tutorial but as an introduction to components that are difficult to 

understand or maintain due to dynamic configuration dependencies. 

 



 21 

J2EE provides an architecture framework for enterprises to build multi-tier distributed 

applications. As shown in Figure 6, J2EE provides JavaServer Page (JSP) [7, 9] and 

Servlet technology to implement web tier components. It also provides Enterprise 

JavaBean (EJB) [8, 9] technology to implement business tier components. J2EE supports 

component communication and interaction using Java Messaging Service (JMS) 

technology, which supports application modularity, scalability and flexibility.  

JSP/ Servlet

EJB

Web Container

EJB Container

WDD

EDD

J
M
S

WDD –  Web Deployment Descriptor

EDD –  EJB Deployment Descriptor  

Figure 6: J2EE Components and Services   

 

3.1.1 Web Tier Components and Configuration 

 
JavaServer Page (JSP) and Servlet are technologies used to implement web tier 

components of J2EE applications. These components run in a Web Container as shown in 

Figure 6. JSP and Servlet technology simplify web based user interface development. 

JSPs are comprised of HTML intermingled with scriptlets of Java code which 



 22 

dynamically generate HTML code. The static and dynamically generated HTML code 

works together to present user interface in browsers. Servlets are written in pure Java. 

While they can be used for the same purpose as a JSP, e.g. dynamically generating 

HTML code without having any static HTML code, their intended purpose is to provide 

business workflow control. This allows JSP developers to take HTML pages that are 

designed by graphic designers and add business logic such as retrieving data dynamically 

without dramatically altering the HTML code and without worrying about the page 

layout. User input collected from HTML forms [16], either created statically or 

dynamically by JSPs’ Java scriptlet, is normally submitted to Servlets. These Servlets 

collate the input and invoke business logic components such as EJBs to process the input 

and redirect to a JSP  to present the result of the process.  

  <servlet-mapping>

    <servlet-name>BARServlet</servlet-name>
    <url-pattern>BAR.DO</url-pattern>

  </servlet-mapping>

  <servlet>

    <servlet-class>example.web.Bar</servlet-class>
  </servlet>

    <servlet-name>BARServlet</servlet-name>

 

 Figure 7: Snippet from Web Deployment Descriptor 

Each JSP or Servlet is assigned a name in the web deployment descriptor (WDD). As 

illustrated in Figure 7, servlets are defined in a servlet tag, <servlet>, which contains a 

servlet name element, <servlet-name>, and a servlet class element, <servlet-class>. The 

servlet name is an internal name, e.g. BARServlet, which is used in the <servlet-

mapping> element to define the external name that the servlet will be referenced by. The 

servlet class defines the implementing class. A servlet definition is followed by a servlet 



 23 

mapping tag, <servlet-mapping>, containing a mapping from the internal name to the 

external name, e.g., from BARServlet to BAR.DO. A component’s name, optionally 

prefixed with the name of the server hosting the J2EE application forms a Unified 

Resource Locator (URL)[17], which is used to reference the component. The server name 

prefix is only required only when referencing component in a different context, for 

example, another component hosted on a different server. 

 

As elaborated, a reference, possibly in URL format, to a web component name defined in 

the web deployment descriptor implies a dynamic dependency on the implementing class 

of the component. From the traditional static analysis’ point of view, the references to 

components’ names are just regular string literal references.  

3.1.2 Business Tier Components and Configuration 

 

EJBs [8] are business tier components and run in EJB Containers as depicted in Figure 6 

previously. EJBs can be deployed on multiple servers and the J2EE framework provides 

load balancing and fail-over protection to improve service performance, availability and 

scalability. In addition to these services, J2EE also provides transaction management 

facilities to applications.  

 

Commonly, large-scale applications deploy EJBs on multiple servers. These servers work 

together as a cluster waiting for service requests. A designated server running the J2EE 

framework dispatches service requests using algorithms such as round robin to all the 

servers in the cluster. Since all services are available at more than one server, there is no 



 24 

single point failure in the application. Increased scalability of the application can also be 

achieved by adding more servers to the cluster and deploying EJBs. 

 

At runtime, EJB service requesters ask the J2EE framework for an EJB instance by name. 

Figure 8 shows a snippet from an EJB deployment descriptor that defines an EJB named 

BAREJB as specified in the <ejb-name> tag. The BAREJB provides services defined in 

the remote interface, example.ejb.BarRemote as specified in the <remote> tag. The 

services BAREJB provides are implemented in example.ejb.BarImpl as specified in the 

<ejb-class> tag. 

  <enterprise-beans>

    <session>

      <display-name>BAREJB</display-name>

      <ejb-name>BAREJB</ejb-name>

      <ejb-class>example.ejb.BarImpl</ejb-class>

      <session-type>Stateful</session-type>

<remote>example.ejb.BarRemote</remote> 

 

Figure 8: Snippet from EJB Deployment Descriptor 

Each EJB service requester has an object reference to the EJB remote interface, 

example.ejb.BarRemote, and the implementation logically “implements” the remote 

interface. By logically implementing the remote interface, we mean the implementing 

Java class does not have to inherit the remote interface using the Java keyword 

“implements” although it does contain implementation of all the methods defined in 

example.ejb.BarRemote. 

 

J2EE discourages EJB implementing classes from implementing EJBs by inheriting the 

remote interface. Instead, it is the configuration, namely the EJB Deployment Descriptor, 



 25 

which glues the parts of EJBs together. The references to remote interface are bound to 

object instances of the implementing class at runtime. The J2EE framework picks the 

instance to be bound to remote interface references from a pool of instances of 

implementing classes that are initialized when the J2EE framework is started. All method 

invocations are dispatched to the implementing class. Since the implementing class does 

not implement the remote interface, an instance of the implementing class “is” not an 

instance of the remote interface and the invocation dispatch is not performed in the same 

way as polymorphism where implementing classes implement the remote interface.  

 

The components holding a reference to the remote interface require the implementing 

classes to present at runtime in order to perform its function. Hence, a reference to the 

remote interface implies a dynamic dependency on the EJB implementing class. Because 

the implementation implements the remote interface “logically” and hence does not have 

any syntactic relationship to the referencing component, static analysis techniques are 

unable to capture these dependencies.  

 

3.1.3 Java Messaging Service (JMS) 

 
 
JMS allows J2EE components to communicate by exchanging synchronous or 

asynchronous messages using message queues or topics. JMS queues may have multiple 

senders and multiple receivers. The messages sent to a JMS queue are guaranteed to be 

delivered to a receiver once and only once. JMS Topic is a subscription based messaging 

model. It delivers all messages sent to a topic to all of its subscribers to the topic. While 



 26 

we focus on JMS queue in our research, a similar approach can be applied to JMS topic 

based communication.  

 

This message based communication model decouples message senders from message 

receivers. At compile time, each message sender knows the name of queue to which it is 

sending and each receiver knows the name of queue from which it is receiving. However, 

a sender does not in general know which receiver will receive a given message, nor does 

a receiver know which sender sent a message. This allows different developers, possibly 

different vendors to work on senders and receivers separately although a common 

message format must agreed upon. The ability to ensure the persistence of messages 

allows the message sender and receiver to run asynchronously. These persistent messages 

are delivered when receivers become available.  

 

Another benefit of using JMS services is the ability to achieve scalability. As you might 

have noticed that JMS queues allow multiple message receivers, it is a common practice 

to increase the number of receivers, possibly running on different servers, to increase the 

throughput of message processing. Adding more receivers can increase the availability of 

the application since no single receiver failure would bring down the application.  

  

As illustrated in Figure 9, Foo and Bar are not statically dependent on each other. At 

runtime, Foo and Bar ask the J2EE framework for a reference to a common queue by 

invoking a predefined method. This queue object is used to send or receive messages. It 



 27 

is clear that when Foo, the sender and Bar, the receiver are referencing the same queue, 

Foo has a dynamic dependency on Bar. 

 

Foo Bar

Queue
 

Figure 9: JMS Communication 

Although there are no configuration files required for components using JMS, we 

consider the name of the JMS queue to be the configuration information since this can be 

changed without affecting expected behaviour of the component. In fact, the name of the 

JMS queue used by components is normally stored in a configuration file as key value 

pairs such as Order.Queue.Name=orderQueue, although this is not specified by J2EE 

specification as a standard configuration convention. 

  

3.2 J2EE Application Development Challenges 
 

J2EE provides great flexibility to configure application behaviour to meet changing 

business requirements without recompilation; it also introduces additional complexity to 

application development. Because components are statically decoupled and no longer 



 28 

have syntactic dependencies that are visible to regular IDEs, dynamic configuration 

dependencies that are established at runtime are often not apparent to developers.  

 

For example, large, evolving projects with web interfaces may have many, possibly 

thousands of ever changing JSPs. Due to changing requirements, JSPs can be obsolete 

very quickly. Very often, these JSPs are not removed from the code base immediately, 

which results in many unused JSPs. Without assistance from tools that crystallize 

dynamic configuration dependencies, it is difficult to locate and remove these unused 

JSPs due to these unapparent dynamic dependencies. 

 

EJBs also pose problems, since the implementing class is not required to inherit the 

remote interface. Missing implementations of exposed remote interface would not cause 

compilation errors. Mis-configuration such as a typo in the name of the implementing 

class would not be detected immediately either. Errors may not surface until the 

application is up and running. This delays detection of these errors and consequently 

lowers programming productivity. 

 

Although JMS technology is not difficult to understand conceptually, the way 

components interact using JMS is not recognized by traditional IDEs. Developers have to 

inspect the source code manually in order to determine the communication channel. 

Without a tool that understands JMS communication and configuration, JMS 

communication related problem determination is time-consuming and error prone. 

 



 29 

3.3 Crystallizing Configuration Dependencies 
 
 
Understanding dynamic configuration dependencies is a challenge facing J2EE 

application developers. Existing Java compilers and IDEs do not warn developers of 

erroneous dependencies resulting from mis-configuration. To assist developers in 

overcoming these challenges we developed a process to crystallize the configuration 

information into an understandable form. The crystallized configuration information is 

further processed and graphically presented to users so that errors in the artifacts they are 

working on are captured easily. 

 

We accomplish this using our crystallization process as follows.  First, we analyze the 

J2EE technology and its configuration to identify configuration and coding patterns that 

could result in runtime dependencies. Second, we search for the identified patterns in the 

source code and configuration to predict dynamic dependencies.  Finally, recovered 

dependencies are graphically presented to developers in an easily consumed form using 

approaches such as color highlighting.   

 

3.4 Crystallization Process 
 
 
In order to crystallize dynamic configuration information, we need to understand what 

and how J2EE components are invoked at runtime. Different types of J2EE components 

are invoked in different ways. J2EE provides APIs to invoke J2EE components. The 

name of the invoked J2EE component is normally passed to the API methods as 

parameters. The name is resolved into either Java classes such as Servlet or EJB 



 30 

implementing class or J2EE services such as JMS queue, based on the type of the 

invocation. J2EE configuration files, e.g. Deployment Descriptors, are the central place 

for information used for the resolution. 

 

Figure 10 shows the type of documents that are included in our process. Java Server and 

HTML Pages, Web deployment descriptors, and EJB Deployment descriptors are 

analyzed using our crystallization parsers. The Java source code is analyzed using 

traditional reverse engineering methods to extract static dependencies. Furthermore, our 

crystallization parser is also applied to Java source code to capture parameters that are 

used to invoke special APIs. The information from these parameters is later used in the 

crystallization process to determine the target of the invocation. 

 

Java Server/

HTML

Pages

Web 

Deployment 

Descriptor

EJB 

Deployment 

Descriptor

Java Source 

Code

TA Fact 

Base

Extract URL References Extract Web Component 
Definitions

Extract EJB Component 
Definitions

Extract JMS queue lookup, 

EJB lookup, Queue sender 
and receiver creation, 

HTTP redirect/forward in 
Servlet

Visualization 

in Eclipse

 

Figure 10: Crystallization Process 

 
 



 31 

 

3.5 Dependency Notation and Operation 
 

There are several choices including Graph eXchange Language (GXL) and Tuple 

Attribute[2] (TA) in terms of the format of record of extracted facts. The GXL format is 

XML based with hierarchical information. Although GXL provides better readability, it 

is designed for data exchange between tools, across various platforms. It is difficult and 

inefficient to apply logics on fact represented in GXL format to extract high level 

information, especially when the number of the facts is large. The TA format is not only 

easy to understand and simple to represent, but also feature rich. Since each TA record 

represents a relation, all relational algebra operations can be applied to TA records to 

extract high level relationship. Grok[23], a efficient and easy to use relational calculator 

that applies relational algebra operations to TA records, is widely used in the reverse 

engineering society to manipulate facts recorded in TA format to calculate architectural 

level relations. In our implementation the extracted dependencies such as method 

invocations are stored in TA format as follows: 

relation-type origin destination 

The left part in the tuple is the type of the relation, followed by the origin and the 

destination of the relation. For example, a reference to URL bar.do in foo.java is 

recorded as  

url-reference foo.java bar.do 

This relation can be read as: there is a url-reference from the origin foo.java to 

the destination bar.do.  

A web component named bar.do with implementing class, example.web.Bar is stored as  



 32 

web-definition bar.do example.web.Bar.  

This relation can be read as: there is a web component definition for bar.do which is 

implemented by the class example.web.Bar.  

 

In order to find out the real target of the url-reference from foo.java to bar.do, we 

need to find out the definition of bar.do which is available in the web-definition 

relation. The composition of url-reference and web-definition reveals the 

real target of the url-reference, namely the runtime dependency between foo.java 

and example.web.Bar.  The following formula illustrates the steps to recover the real 

target mathematically. The composition of relations, e.g. url-reference and web-

definition, is noted as url-reference )))) web-definition. 

 

url-reference origin-comp dest-component 

web-definition web-component implementation 

url-reference )))) web-definition origin-comp implementation 

 

The employment of TA allows us to apply relational calculus operations such as union, 

subset, and composition [2] on the set of extracted references to obtain higher level, 

meaningful relations.  

3.6 TA Schema for configuration dependencies 

 
The following is a list of the relations that is created by the crystallization framework, in 
the form of TA schema. Each relation is followed by a brief description.  



 33 

 
SCHEME  TUPLE 
 
url-reference  file  component 
//web component is referenced in file using url 
 
web-definition  file  component 
//web component is defined in file 
 
queue-send  file  queue 
//file sends message to the queue 
 
queue-recv  file  queue 
//file receives message from the queue 
 
ejb-implementation file  component 
//EJB component is implemented by file 
 
ejb-remote  file  component 
//EJB component remote interface is defined in file 
 
ejb-reference  file  component 
//EJB component is reference by file 
 
 

The crystallization framework keeps extra information such as line number of relations. 

Although this kind of information can also been expressed in TA record, we decided to 

make it an attribute to each relation. The line number information allows us to accurately 

pinpoint invalid relations in the visualization component of crystallization framework. 

 

3.7 Important J2EE APIs 
 
 
As a complex framework, J2EE is not different from any others that introduce yet another 

set of APIs for interactions between both application components and J2EE services. 

Method invocations to particular J2EE APIs, such as Servlet request dispatches and JMS 

queue sender and receiver creation, contain semantic information that are useful for 

dependency crystallization. The semantics of the invocation and the parameters to the 



 34 

invocation, together with information gathered from deployment descriptors, enable us to 

locate target J2EE components to be invoked at runtime and hence allow us to predict 

possible dynamic dependencies in the source code. 

 

Servlets are designed for business workflow control. Servlets decide the next step to be 

carried out based on the context and the result of the current process. It is an essential 

requirement to be able to forward or redirect requests to another servlet for further 

processing. J2EE introduced a class called RequestDispatcher to perform this action. In 

order to forward or redirect requests, the Servlet creates a RequestDispatcher object and 

calls its forward() method. The URL of the target web component is passed to the 

invocation as parameters. These invocations indicate dependencies from the Servlet to the 

web component identified by the URL.  

 

The way some APIs are invoked can be used to distinguish the type of the component. 

For example, JMS senders and receivers can be distinguished by the API method invoked. 

Senders and receivers are created by invoking javax.jms.QueueSession.createSender() 

and javax.jms.QueueSession.createReceiver() respectively. Based on this difference, we 

are able to determine the direction of the communication and hence the direction of the 

dependency.  

 

Table 1 summarizes the types of reference that exist in different types of components. For 

example, we can find component-url type references in web components defined in 

HTML and JSP pages. On the other hand, if we find a invocation to forward() method 



 35 

in a JSP or a Servlet, we know the JSP or Servlet is referencing a web component and the 

name of the component is the parameter that is used in the method invocation. 

 

Component Type Types of References   Sources 

 “component-url”  HTML, JSP  Web 

 Component  sendRedirect() 

 forward() 

 Servlet 

 EJB  ejb.RemoteInterface  Java 

 JMS  Queue queue = … 

 createSender(); 

 createReceiver(); 

 Java 

Table 1: Component References and Sources 

 

3.8 Crystallizing Web Dependencies 
 
 

The goal of crystallizing web dependencies is to recover the relationship between HTML, 

JSP and Servlets. Since all web components are referenced using their URL, the first step 

is to extract URLs contained in the web components. because the extracted URLs are not 

physical artifact of an application, they need to be further resolved into physical files to 

reveal the real relationship.  

 

We need to identify the places that URL might be used in order to extract URLs. There 

are various places that URL may be used: 



 36 

• HTML links, e.g.,  <a href = “bar.do”>bar</a> 

• HTML form action targets <form action=”bar.do”> 

• JSP forward tags, a special tag used by JSP to forward HTTP requests 

• Servlet request redirects and forwards, invocations to sendRedirect() and 

forward() introduced in section 3.7 

 

Extracting the URL references in HTML, JSP and Servlet is the first step to crystallizing 

web dependencies. For this step, We have built three parsers. The HTML/JSP parser 

extracts references to URLs. The Servlet parser captures method invocations and the 

parameters to sendRedirect() and forward(). The deployment descriptor parser extracts 

web component definitions.  

 

The following source code snippet from a Servlet, foo.java,  (can also see this in a JSP) 

shows how a HTTP request is dispatched to “bar.do” by invoking the 

RequestDispatcher.forward() method.  First, a ServletContext, context, is 

obtained. This object contains the information of the context where the Servlet is running. 

Second, a RequestDispatcher, dispatcher, is created by invoking 

getRequestDispatcher("bar.do"). The dispatcher object contains the URL of 

target, e.g., bar.do. The forward is finally done by calling the forward() method to 

pass all the information that is originally passed to foo.java. URL reference is done by 

capturing the parameter that is used in the method invocation 

getRequestDispatcher("bar.do"). 

 



 37 

ServletContext context =  getServletConfig().getServletContext(); 

RequestDispatcher dispatcher = context.getRequestDispatcher("bar.do"); 

dispatcher.forward(req, resp); 

 

With the URL extracted from previous step, we still do not know which physical artifacts, 

e.g., which HTML, JSP or Servlet that is referenced. In other words, what exactly is 

bar.do. We cannot answer this question without looking in to the web deployment 

descriptors. In the deployment descriptor shown in Figure 11, “bar.do” is implemented 

by example.web.Bar. An HTTP request to “bar.do” results in the invocation of the 

predefined method in example.web.Bar, the doPost(). 

  <servlet-mapping>

    <servlet-name>BARServlet</servlet-name>
    <url-pattern>BAR.DO</url-pattern>

  </servlet-mapping>

  <servlet>

    <servlet-class>example.web.Bar</servlet-class>
  </servlet>

    <servlet-name>BARServlet</servlet-name>

 

Figure 11: Snippet from Web Deployment Descriptor 

 

The extracted URL reference in TA notation, url-reference foo.java bar.do, is 

composed with the web component definition, web-definition bar.do 

example.web.Bar, which reveals a dynamic dependency from foo.java to 

example.web.Bar as shown in Figure 12. 

 



 38 

 

Figure 12: Crystallized Web Dependency 

 

3.9 Crystallizing EJB Dependencies 
 
 
EJB callers possess references to the remote interface defined in the EJB deployment 

descriptor. The remote interface defines the business methods that are exposed by the 

EJB.  

 

As shown in the following code snippet, the EJB caller has a reference bean to the 

BarRemote interface as depicted in Figure 8 previously. The reference is bound to an 

instance of the EJB implementation class by calling the method getInstance(). We neglect 

the details of binding the remote interface reference to an instance of the implementing 

class since it is not related to how dependencies are crystallized. The information that is 

important to our crystallization process is the presence of the remote interface reference 

and the usage of this reference, e.g., the declaration of the remote interface variable as 

shown below and method invocations using the reference. 

 

BarRemote bean = getInstance(); 

bean.method1(); 

bean.method2(); 

 



 39 

The EJB parser captures references to remote interfaces of EJBs. As shown in Figure 13, 

the remote interface reference relation is composed with EJB definitions found in EJB 

deployment descriptors to reveal the real dependency between the referencing component 

and the EJB implementing class.  

 

 

Figure 13: EJB Interaction 

 

3.10 Crystallizing JMS Dependencies 
 
 
In order to communicate through a JMS queue, senders and receivers must have a 

reference to the JMS queue. Capturing JMS interactions starts with capturing JMS queue 

references. JMS queue references reveal all components; consisting of senders and 

receivers. However, we are not only interested in the participants of communication but 

also their relationships. JMS participants invoke the createSender() and createReceiver() 

methods, capturing these invocations allows us to separate them into senders and 

receivers.  

 

The following code snippet shows how QueueSender, the sender, and QueueReceiver, the 

receiver, are created. JMS participants ask J2EE for a reference to a queue instance. To 

initiate communication a connection must be established followed by opening a session.  

 



 40 

Queue queue = (Queue)  context.lookup(“OrderQueue”); 

QueueConnection conn = createConnection(); 

QueueSession session = createSession(conn); 

QueueSender qSender = session.createSender(queue); 

QueueReceiver qReceiver = session.createReceiver(queue); 

 

JMS queue communication involves sender(s) and receiver(s); we need to determine 

which sender(s) is associated with which receiver(s). This is achieved by matching 

sender(s) and receiver(s) that communicate through the same queue. Since a reference to 

a JMS queue is obtained from J2EE by queue name as follows: 

 

Queue queue = (Queue) context.lookup(“OrderQueue”); 

 

In TA notation, the above fact is recorded as: 

 

queue-send Foo.java OrderQueue 

queue-recv Bar OrderQueue 

 

The composition of these relations yields the following dependency: 

 

Jms-dependency foo.java bar.java 

 

This is illustrated in Figure 14.  



 41 

 

Figure 14: Crystallized JMS Interaction 

 



 42 

4 Crystallization Implementation 
 

In this chapter we discuss the implementation of crystallization process. The 

crystallization tool is implemented as plugins to the popular Integrated Development 

Environment, Eclipse. The implemented crystallization tool also exposes extension points 

so that it can be extended to extract and validate other configurations. 

 
 

4.1 Requirements of Crystallization Tooling 
 
 
The crystallization tool was created to improve software development productivity. It 

should not only help improve development efficiency, but also development quality. 

Building a defective system that requires massive maintenance efforts post-development 

is more expensive than developing it correctly on the first try. Based on the requirements 

of Computer-Aided Software Engineering (CASE) tool outlined by [20], we collected the 

requirements of the crystallization tool: 

 

1. An interactive presentation providing a consistent, “friendly” user-interface to 

analysis of the inter relationship between application artifacts; 

2. Automatic validation of changed artifacts without manual user intervention with 

automatic notification whenever invalid relationships are found; 

3. A navigation system that allows the user to traverse the relationship graph easily; 

4. A graphical presentation of the relationship of the “context”, e.g. the artifacts that 

the user is currently working on. 



 43 

 
 

4.2 Eclipse Introduction 
 
 
We choose Eclipse as the foundation of our implementation for numerous reasons. 

Eclipse is an extensible, open source platform for development of highly integrated tools. 

The Eclipse platform, when combined with Java Development Tools (JDT), offers many 

of the features you would expect from a commercial-quality IDE: a syntax-highlighting 

editor, incremental code compilation, a thread-aware source-level debugger, a class 

navigator, a file/project manager, and interfaces to standard source control systems. Such 

as CVS and ClearCase. 

 

Despite the large number of standard features, Eclipse is different from traditional IDEs 

in a number of fundamental ways. The most interesting feature of Eclipse is that it is 

designed to be platform and language neutral. In addition to the eclectic mix of languages 

supported by the Eclipse consortium such as Java, C/C++, and Cobol, there are also 

projects underway to add support for languages as diverse as Python, Eiffel, PHP, and C# 

to Eclipse. Figure 15 illustrates the architecture of the Eclipse platform. 

 



 44 

 

Figure 15: Eclipse Architecture [1] 

 

A plug-in is a structured component that contributes code (or documentation or both) to 

the platform and describes it in a structured way. Plug-ins can define extension points, 

well-defined function points that can be extended by other plug-ins. Using a common 

extension model provides a structured way for plug-ins to describe the ways they can be 

extended, and for client plug-ins to describe the extensions they supply. Defining an 

extension point is much like defining any other API. The key difference is that the 

extension point is declared using XML instead of a code signature. Likewise, a client 

plug-in uses XML to describe its specific extension to the system.  

 

4.3 JDT Introduction 
 
 
The JDT is implemented as a group of plug-ins[1]. JDT adds Java specific behaviour to 

the Eclipse framework and contributes to the Eclipse UI Java specific views, editors and 



 45 

actions. JDT is divided into UI plug-ins and Non-UI core plug-ins. Besides implementing 

features supporting Java development, both the UI plug-ins and Non-UI plug-ins expose 

extension points that allow third parties to extend JDT. Figure 16 is a diagram illustrating 

the relationship between JDT and Eclipse with a list of extension point that are 

implemented by JDT. 

 

Figure 16: Key Connections between JDT and Eclipse [1] 



 46 

 

4.4 Crystallization Framework  
 
 
The crystallization framework is implemented as an extension to the JDT and is 

seamlessly integrated with the Java views, editors and actions. Our tool does not change 

the pattern of typical programming activities in JDT.  

 

The parsers we have implemented extract dependencies from HTML files, JSPs, Java 

sources and deployment descriptors. These parsers are implemented as extensions to 

org.eclipse.core.resources.builders extension point. We integrated these 

parsers into the JDT, and extended the JDT Java editor with the ability to traverse not 

only static relationships that are visible to the compiler, but also relationships that are 

crystallized from the configuration. The integration of these parsers within an IDE 

ensures the instant accessibility of the crystallization technique without switching over to 

a separate tool. Figure 17 shows the workflow of crystallization process in our 

implementation. 



 47 

 

Figure 17: Crystallization Workflow 

 
 

The crystallization framework consists of two parts: First, there is the visualization 

component responsible for visualizing dependencies. Valid and invalid dependencies are 

presented using the existing style available in Eclipse. Second, there are the parser and 

validator that understand a specific technology. The visualization component relies on the 

parser and validator to extract and validate dependencies. Dependency information such 

as origin, destination, and validity, are passed back to the visualization component for 

presentation purposes. 

 

The crystallization framework is responsible for presenting dynamic dependencies in a 

manner that does not interfere with ongoing programming activities. Our integration of 

crystallization into Eclipse does not clutter the existing Java Development Tool (JDT) 



 48 

user interface. Dependencies are presented to developers as HTML like links that become 

visible only when the “control” key is pressed while the curser is over the origin of a 

dynamic dependency. By clicking on the link, the IDE unveils the implementing source 

code in an editor. This allows the developer to easily comprehend dynamic dependencies. 

The framework displays erroneous dependencies by placing problem markers, shown as 

red crosses, beside their origins in the source code editor. 

  

Crystallization Framework

J
a

v
a

P
a

rs
e
r

H
T

M
L
/J

S
P

P
a

rs
e
r

W
D

D

P
a

rs
e
r

E
D

D

P
a

rs
e
r

J2EE Extension

Another Extension
 

Figure 18: Crystallization Framework Architecture 

As shown in Figure 18, the Crystallization Framework relies on extensions [1] to detect 

and validate dynamic dependencies. The crystallization framework is implemented as an 

Eclipse extension point [1] to leverage the capability of extension automatic discovery. A 

crystallization extension point contains information of the name of the extractor and the 

class implementing the extractor, and the name of the validator and the class 



 49 

implementing the validator. The following is a snippet of the crystallization extension 

point schema:  

<?xml version='1.0' encoding='UTF-8'?> 

<schema targetNamespace="swagkit"> 

… 

   <meta.schema plugin="swagkit" id="crystallization" /> 

   <element name="parser"> 

         <attribute name="class" type="string"> 

         <meta.attribute kind="java"/> 

   <element name="validator"> 

         <attribute name="class" type="string"> 

         <meta.attribute kind="java"/> 

   </element> 

</schema> 

 

This schema dictates the structure of the extension. The line <meta.schema 

plugin="swagkit" id="crystallization" /> contains the name of the plugin, e.g., 

swagkit, defining the extension point and the id of the extension point, e.g., 

crystallization. The global identifier consists of the name of the plugin and the id, e.g. 

swagkig.crystallization. The extension point contains two more elements, the parser, and 

the validator. Each of them must have a string indicating the name of the java class that 

implements the extension point. 

  

The schema dictates the structure of the xml that is used to register new extensions. The 

following is a snippet of the registration xml file that registers an extension called “J2EE 

Servlet”. Both the parser and validator element contains a name attribute, the name of the 

extension, and a class attribute, the implementing Java class. 

<extension 

         id="j2eeservlet" 

         name="J2EE Servlet" 

         point="swagkit.crystallization"> 

         <parser name="Servlet Parser" 

class="edu.uwaterloo.swag.extractor.impl.compilationunit.ServletR

eferenceExtractor"/> 



 50 

         <validator name="Servlet Dependency Validator" 

class="edu.uwaterloo.swag.extractor.impl.compilationunit.ServletR

eferenceVerifier"/> 

</extension> 

All extensions must implement a parser that extracts a specific type of dependency and a 

validator that validates the extracted dependency. When Eclipse starts, it discovers all the 

installed extensions by parsing the above xml. No object instance is created until the 

crystallization framework needs it. As shown in the above sample extension, , the 

ServletReferenceExtractor is the parser and ServletReferenceVerifier is the 

validator of the new extension. ServletReferenceExtractor is instantiated when 

crystallization tries to parse an opened Servlet file to extract all Servlet related facts. 

ServletReferenceVerifier will be used by the visualization component to verify the 

extracted dependencies. 

 

Although we have only implemented a J2EE extension to assist developers in 

comprehending J2EE applications, the crystallization framework is extensible to cover 

other technologies in J2EE, application frameworks such as Microsoft .NET[25], and 

add-on frameworks such as Struts[24].  

  

4.5 Crystallization Extension Installation 
 
 
Installation of crystallization extensions is straight forward. Simply adding the compiled 

binary code of the extension into a predefined directory together with the metadata such 

as the extension registration xml file will make the extension available to the Eclipse 

runtime. Eclipse even supports dynamic enabling of newly installed extensions without 

restarting Eclipse.  When Eclipse starts, it searches for the predefined directories for 



 51 

existing plug-ins, which may or may not contain extensions. Eclipse also parses the 

metadata contained in each plug-in for information such as the location of the Java 

classes, etc. The Java classes are not instantiated until they are actually used. 

 

4.6 Dependency Visualization 
 

One of the responsibilities of the crystallization framework is to present the dependencies 

in a way that is convenient to the developer. The presentation of the dependency should 

not interfere with the ongoing activities of developers. For example, we do not want to 

display all the recovered dependencies since this would confuse the user interface with 

information that is not entirely pertinent. However, the presentation of the dependency 

information should be readily available to the developer, especially when developers 

change from programming to debugging.  

 

Besides revealing valid and erroneous dynamic dependencies using HTML like links and 

problem markers, we have also implemented a class view that graphically presents all 

dynamic dependencies of the currently edited source file using arrows and boxes. The 

graph in the view contains the class itself and all the other application components that 

are referenced by syntactic or configuration relations. All components are represented as 

boxes and relations are represented as arrows. Valid and erroneous dynamic 

dependencies are differentiated using colors. This view provides developers with a high-

level overview of all dynamic dependencies in the source file currently being edited.  

 



 52 

We also leverage the existing JDT problem view by populating it with dependencies that 

failed the validation process. Invalid dependencies in the view can be sorted by different 

criteria such as severity, description, origin, etc. to allow the user to quickly search for 

erroneous dependencies. 

 

4.7 Performance and Scalability 
 

Reverse engineering is traditionally a slow process because it extracts and calculates 

dependencies from the complete code base. The steps of traditional reverse engineering 

include: 

• Full scan of the code base to generate a fact base that is usually huge 

• Rearrangement of the extract facts  

• Visualizing extracted facts. 

 

All the above steps are carried out based on the full system that is under examination. 

The time required to complete the above steps is proportional to the size of the 

application.  

 

Since we are integrating our crystallization technique into Eclipse, it is unacceptable for 

this integration to incur a perceivable impact on its responsiveness. Even more 

importantly, the responsiveness should not be affected by the size of the application. Any 

slow down due to crystallization will seriously degrade the usability of the IDE. In order 

to achieve the required performance, we employ a “lazy” approach, which extracts and 

processes only those dependencies in the source code currently being edited. These 



 53 

extracted dependencies are cached into an in-memory database for reuse. Extracting facts 

from only source code currently being edited makes perfect sense since this is the context 

the developer is working in.  

 

Since Crystallization extracts only dependencies from files that are currently being 

edited, the number of dependencies is reduced. Our extraction strategy ensures the ability 

to scale to large projects because a developer is only capable of working on a handful of 

files at any given moment. The number of files to be processed is not proportional to the 

size of the application either, instead; it is proportional to the number of files that a 

developer can work on concurrently. 

 

The crystallization framework initiates a dependency extraction process whenever a 

source code file is opened in the editor or changed. In one test, Eclipse demonstrated 

acceptable responsiveness with one million dependencies in the in-memory database. 

When editing a Servlet with 898 lines of code, invalid dependencies are recovered 

without noticeable delay. 

 

In this chapter, we introduced an extensible crystallization framework that can be 

extended to recover dependencies built upon various application frameworks. It can also 

be extended to extract dependencies from applications that are build upon add-on 

frameworks such as struts[24]. The parsers and validators that are contributed by 

extensions are invoked on demand to reduce the impact on the responsiveness of the IDE. 



 54 

5 Case Study 
 

In this chapter, we describe validation that we have done to verify the proposed and 

implemented crystallization framework. 

 

5.1 The Pet Store Application 
 

The Pet Store application is a sample J2EE application [3] from Sun Microsystems used 

to evangelize J2EE technologies. The Pet Store application demonstrates the capabilities 

these technologies provide to develop robust, scalable, portable and maintainable 

distributed e-business enterprise applications. The Pet Store application is a good 

candidate for our case study not only because it covers all the technologies that are 

provided in the J2EE specification, but also because it is a mid-size application. The 

following table enumerates the artifacts found in the Pet Store application. 

 

Number of Java Classes 283 

Number of JSPs 75 

Lines of Java Source Code 45261 

EJB Components 23 

Lines of Configuration (WDD + EDD) 14710 

Other Configuration Files 20 

 



 55 

We use this application to demonstrate how the crystallization technique increases the 

visibility of erroneous dependencies and hence improves programming productivity, e.g. 

both efficiency and quality.  

 

We imported the source code of the Pet Store into an Eclipse project. There were 

numerous compilation errors detected before we correctly configured the classpath and 

source folders of the project. These errors disappeared after the classpath of the project 

contained the required library jar files and source folders. When a class is successfully 

compiled, the Java editor allows developers to traverse the syntactic relationships such as 

class references, method invocations by clicking on the name of the class or method. But 

there is no traversal support for references to Servlets, JSPs1, etc. Clicking on EJB remote 

interfaces will open the remote interface itself in the Java editor. Using the built-in search 

function of JDT for the implementation of the remote interface will not reveal anything 

since the implementation is not recommended to implement (inherit) the remote interface.  

 

5.2 Dependency Manifestation 
 
The editor contained in the unmodified Eclipse provides real-time dependency checking 

and syntax highlighting. Eclipse pinpoints erroneous static dependencies though the use 

of problem markers and underlining. Within the Crystallization Framework, invalid 

dynamic dependencies are shown in the same manner. 

                                                 
1 The Web Tools Platform project [21] has tools that support traversal of relationship between JSPs, but, 
there is still no support for traversal of relationship involving Servlets. It does support reference to JSPs 
from Servlets either. 



 56 

 

 

Figure 19: Highlighting Invalid Dependency in Unmodified Eclipse 

 

  

Figure 20: Highlighting Invalid Dependency in “Crystallized” Eclipse 

 

Figure 21: Highlighting Invalid Dependency in Problems View 

 
Figure 19 is a screen shot of the unmodified Eclipse showing an invalid dependency, 

“invalidObjectRef”. The “Problems” view, as shown above, is the view that displays all 

problems that are recovered by Eclipse. The invalid dependency, a reference to 

“NonexistSvlt”, is not displayed in the view. However, the “crystallized” Eclipse is aware 

of both the “invalidObjectRef” and the “NonexistSvlt” problem, as shown in Figure 20. 



 57 

The invalid dependency is shown on the left hand side of the editor pane as a cross. 

Invalid Servlet references are shown in the same manner as invalid object references.  

 

Figure 21 is a screen shot of the problems view which contains both syntactic and 

configuration dependencies. Each problem in the view has a description, the resource 

containing the problem, and the line number of the problem. This view allows the user to 

sort all of the “problems” found in the file opened by the currently active editor. 

 

The attention grabbing red color used in the “cross” enables developers to quickly 

identify problems. On the right hand side is a bookmark, which if clicked will take the 

developer immediately to the origin of the invalid dependency. This is especially 

beneficial when working with large source files.  

 

The “lazy” approach we employ allows us to focus on a specific source file without 

incurring a noticeable impact on responsiveness. Dependencies are extracted from the 

source code and deployment descriptors and validated on the fly as the developer is 

typing. Changes to source files trigger the extraction and validation process to ensure the 

up-to-date analysis of dependencies. 

 

Since extracted dependencies are not discarded when developers switch to another source 

file, we do not perceive any negative impact in responsiveness after many files are 

scrutinized. This ensures the scalability of the enhanced Eclipse. 

 



 58 

5.3 Source File Visualization 
 

Although the erroneous dependencies are indicated clearly in the source editor and the 

problems view, this presentation is insufficient to provide a concise overview of large 

source files with many dependencies. We have thus introduced a “Class View” which 

presents dynamic dependencies that are extracted by our crystallization process. 

 

 

Figure 22: Class View 

Figure 22 shows the class viewer of dynamic dependencies extracted from the 

“RcvrRequestProcessor” servlet. It shows a dependency against the “NonexistSvlt” in red 

which indicates an erroneous dependency. This view is refreshed whenever there is a 

change to the source code. 

 

5.4 Summary of Case Study 
 

The crystallization process has been successfully applied to the mid-sized J2EE 

application, Pet Store. The extensions that have been built are able to extract and validate 

pertinent dependency information. The visualization provided by our implementation was 



 59 

also found helpful in problem diagnosis. In cases where literal strings are used to 

reference J2EE components including web components and JMS queues, the 

crystallization framework is able to detect component references and validate them. 

Although there are about 70% of the references, mostly web component references that 

are using literal strings, there are still 28% of the references that are using constants. 

There are also places that the name of the components is calculated at runtime based on 

project specific naming conventions. Although the current crystallization extensions are 

not able to tackle component references using contants, we have identified ways to 

improve the extensions. It is very important to have the capability to detect references 

using constants because the best practices suggest using contants to reference 

components other than web components. 

  

The crystallization extension was installed on 20+ developers to help them gain deeper 

and broader understanding of a large application with more than 300 modules and 200 

megabytes of source code. The extension did not incur any noticeable slowed in the IDE. 

Since developers no longer need to go through hundreds of directories to find 

configuration files and to verify the configuration, the time for problem diagnosis was 

reduced from minutes, sometimes hours, to seconds. 

 



 60 

6 Conclusion and Future Work 
 

6.1 Conclusion 
 
 
In this thesis, we have shown that with the capability provided by the crystallization 

framework, developers can obtain prompt feedback about not only syntactic validation, 

but also configuration verification. With our integrated development environment, the 

validation is carried out in the background without user intervention. The IDE helps 

developers to create “correct” application with a smaller number of “trial and error” 

cycles. A programming language should not be considered “good” without a IDE that 

helps improving the correctness of developed application. 

  

Typically developers use a “trial and error” strategy to gain program comprehension and 

to test applications. Feedback from IDEs assists developers in understanding the 

dependencies between components. The speed of the feedback is one of the primary 

contributing factors affecting not only effectiveness of program comprehension, but also 

the efficiency of software development. Without prompt feedback on dynamic 

dependencies, the “trial and error” learning cycle is prolonged and hence results in a 

longer learning cycle. Developers must either wait until runtime or manually inspect the 

configuration and source code to observe dynamic dependencies. This resulting long turn 

around time complicates the program comprehension process. 

 

The context sensitive approach the crystallization process takes helps developers focus on 

the current work and places developers in the current configuration context when 



 61 

validating the program under construction. Only source files that are opened by 

developers are validated. In another word, the crystallization framework uses the opened 

files as the scope of recovery. 

 

Crystallization allows IDEs to detect and validate dynamic dependencies in application 

and to report the results to the developers. The results of crystallization can potentially 

improve developer efficiency, coding productivity and code quality. 

 

6.2 Future Work 
 

There is considerable amount of work that we were not able to complete due to time and 

resource constraints. First, the case study we carried out was based on an intermediate 

sized application. It would be a further validation of our technique if it was carried out on 

a larger sized enterprise application. Second, ideally a case study could compare the 

development productivity of two groups. One group would use the unmodified version of 

Eclipse and the other would use our enhanced Eclipse. Comparing the time to develop an 

application and the number of defects found would be valuable metrics to measure the 

effectiveness of the crystallization process. Another technique that could be used to 

evaluate the crystallization process is to measure the total development time spent to 

reach the same level of quality. 

 

Our implementation covers only the cases where string literals are used to represent 

component names. Consequently, it is not able to detect dependencies on components 

referenced using constant string variables, even though their values are known at compile 



 62 

time. Further analysis of the Java Abstract Syntax Tree should allow us to recover names 

of components that are referenced using string constants. 

 

There are other J2EE technologies that need to be further investigated in order to 

completely crystallize other types of J2EE applications. Although our research covers 

several important areas of J2EE, we did not crystallize tag libraries. Tag library 

technology is one the most important technologies that simplifies Java Server Page 

development. It allows developers to define custom tags similar to HTML tags. These 

tags are mapped to a Java class executed on the J2EE server and generate HTML code. 

An HTML or JSP page using a custom tag has a dependency on the tag library’s 

implementing Java class which is specified in the tag library configuration file. 

 

We have not used extracted dynamic dependencies to help derive application 

architectures. With an integrated application architecture viewer, the crystallization 

process can assist developers, especially newcomers to grasp the intricacies of application 

components and their interrelations and thus gain program comprehension.



 63 

Bibliography: 

 
[1] The Eclipse Project, http://www.eclipse.org 

 

[2] R. C. Holt. An Introduction to TA: the Tuple-Attribute Language, March 1997 

 

[3] Java Pet Store. http://java.sun.com/developer/releases/petstore/, Sun Microsystems 

Inc. 

 

[4] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Muller, J. Mylopoulos, S. 

Perelgut, M. Stanley, and K. Wong. The Software Bookshelf, IBM Systems Journal, Vol. 

36, No. 4, pp. 564-593, November 1997. 

 

[5] Inversion of Control Containers and the Dependency Injection Pattern. Martin 

Fowler, http://www.martinfowler.com/articles/injection.html 

 

[6] Ahmed E. Hassan. Architecture Recovery of Web Applications, Master’s Thesis. 

Department of Computer Science, Faculty of Mathematics, University of Waterloo, 

Ontario, Canada. 2001 

 

[7] JavaServer Pages Technology - Documentation. 

http://java.sun.com/products/jsp/docs.html 

 



 64 

[8] Enterprise JavaBeans Fundamentals: Introduction. 

http://java.sun.com/developer/onlineTraining/EJBIntro/ 

 

[9] J2EE introduction. http://java.sun.com/developer/technicalArticles/J2EE/Intro/ 

 

[10] Lei Wu, Houari Sahraoui, Petki Valtchev. Program comprehension with dynamic 

recovery of code collaboration patterns and roles. Proceedings of the 2004 conference of 

the Centre for Advanced Studies on Collaborative research. 2004 

 

[11] Kenny Wong. Software Understanding through integrated structural and run-time 

analysis. Proceedings of the 1994 conference of the Centre for Advanced Studies on 

Collaborative research. 1994. 

 

[12] Carlo Bellettini, Alessandro Marchetoo, Andrea Trentini. WebUml: Reverse 

Engineering of Web Applications. Proceedings of the 2004 ACM symposium on Applied 

computing. 2004. 

 

[13] Eleni Stroulia, Tarja Systä. Dynamic Analysis for Reverse Engineering and Program 

Understanding. ACM SIGAPP Applied Computing Review. 2002. 

 

[14] Basili, V. R., Green, S., Laitenberger, O., Shull, F., Sørumgård, S., and Zelkowitz, 

M. V. 1995 The Empirical Investigation of Perspective-Based Reading. Technical 

Report. UMI Order Number: CS-TR-3585., University of Maryland at College Park. 



 65 

 

[15] H. Müller, K. Wong, and S. Tilley, "Understanding software systems using reverse 

engineering technology", In The 62nd Congress of L'Association Canadienne Francaise 

pour l'Avancement des Sciences Proceedings (ACFAS), 1994. 

 

[16] HyperText Markup Language (HTML) Home Page, http://www.w3.org/MarkUp/ 

 

[17] Uniform Resource Locators (URL), http://www.ietf.org/rfc/rfc1738.txt 

 

[18] LSEdit, http://www.swag.uwaterloo.ca/lsedit/index.html 

 

[19] H. Muller. Rigi - A Model for Software System Construction, Integration, and 

Evaluation based on Module Interface Specifications. PhD thesis, Rice University, 1986. 

 

[20] Case, A. F. 1985. Computer-aided software engineering (CASE): technology for 

improving software development productivity. SIGMIS Database 17, 1 (Sep. 1985), 35-

43. DOI= http://doi.acm.org/10.1145/1040694.1040698 

 

[21] Eclipse WTP Project, http://www.eclipse.org/webtools/ 

 

[22] HTTP - Hypertext Transfer Protocol, http://www.w3.org/Protocols/ 

 

[23] Introduction to Grok, 

http://swag.uwaterloo.ca/~nsynytskyy/grokdoc/grokintro.html 



 66 

 

[24] Apache Struts Project, http://struts.apache.org/ 

 

[25] Microsoft .NET, http://www.microsoft.com/net/default.mspx 

 

[26] Jerding, Dean F. and Stasko, John T., " Using Visualization to Foster Object-

Oriented Program Understanding", Graphics, Visualization, and Usability Center, 

Georgia Institute of Technology, Atlanta, GA, Technical Report GIT-GVU-94-33, 

July 1994.  

 

[27] OptimalJ, http://www.compuware.com/products/optimalj/ 

 

[28] IBM Rational Software, www.ibm.com/software/rational 

 

[29] NetBeans, http://www.netbeans.org/ 

 

[30] IntelliJ IDEA, http://www.jetbrains.com/idea/ 

 

 


