
Graph-Based Fracture Models for

Rigid Body Explosions

by

Jessica Leigh Socha

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2005
c© Jessica Leigh Socha 2005

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Explosions are one of the most powerful and devastating natural phenomena.
The pressure front from the blast wave of an explosion can cause fracture of objects
in its vicinity and create flying debris. In this thesis, I outline a previously proposed
explosion model. An explosion is treated as a fluid with its behaviour governed
by the Navier-Stokes equations and the gaseous products modeled using particles.
Explosions are simulated as a means for initiating fracture of rigid bodies in the
vicinity of an explosion.

In contrast to fracture models that are based on physics, I propose a new
approach to simulating fracture which treats fracturing the rigid body as a pre-
processing step. A rigid body can be pre-fractured by treating it as graph and
using one of the two proposed graph partitioning algorithms to divide the object
into the desired number of pieces. By treating fracture as a pre-processing step,
much less computation need be done during the simulation than models based on
physics.

It is shown that the recursive breadth-first search graph partitioning algorithm
produces physically realistic results for shattering windows that are consistent with
observations of real broken windows. The curvature-driven spectral partitioning
algorithm fractures objects into two pieces where the object is weakest, where
weakest is defined by the area with largest curvature. Numerical simulations of
explosions and fracture were conducted to produce data that was used by a ray
tracer and volume renderer to create images which were assembled into animations.

iii

Acknowledgments

First and foremost I would like to thank my supervisor, Professor Justin Wan for
his guidance and supervision. This work would not have been possible without
his support and friendship. I thank him for always being available to talk to and
providing excellent direction with my thesis work.

I would like to extend sincerest gratitude towards Professor Gladimir Baranoski.
The knowledge I have gained through his graduate courses and informal meetings
with him has been very valuable. I would also like to thank Professor Stephen
Mann and Professor Bruce Simpson for being a part of my thesis committee.

Thank you to my family for your continued love and support. Thank you to
my brother Steve for creating the background images used in the final animations.
A special thank you to my boyfriend Edwin Vane for providing moral support
throughout my thesis work. It is greatly appreciated.

Last, but not least, I would like to thank my colleagues in the Scientific Com-
putation Lab and the Computer Graphics Lab for their friendship and providing
an enjoyable environment to work in.

The meshes used in this thesis were obtained from the Introduction to Computer
Graphics course CS 688.

iv

Dedication

For my parents

v

Contents

1 Introduction 1

2 Modeling Explosions 3

2.1 Previous Work . 3

2.2 Modeling Fluid Flow . 5

2.3 Modeling Gaseous Products . 6

2.4 Numerical Solutions . 8

2.4.1 Discretization . 8

2.4.2 Finite Differences . 8

2.4.3 Initial and Boundary Conditions 11

2.4.4 Solving for Pressure . 11

2.4.5 Updating Particles . 12

2.4.6 The Time-Stepping Algorithm 16

3 Rigid Bodies 18

3.1 Modeling Rigid Bodies . 18

3.2 Mechanics of Rigid Body Motion 20

3.3 Triangulation . 23

4 Graph-Based Fracture Models 27

4.1 Previous Work . 27

4.2 Graph Partitioning . 29

vi

4.2.1 Recursive Breadth-First Search Graph Partitioning 30

4.2.2 Curvature-Driven Spectral Partitioning Algorithm 33

5 Results 42

5.1 Animations . 42

5.2 Conclusions and Future Work . 51

A Rendering 55

A.1 Ray Tracing . 55

A.1.1 Intersections . 56

A.1.2 Lighting Models . 57

A.1.3 Features . 60

A.2 Volume Rendering . 65

A.2.1 Blackbody Radiation . 67

vii

List of Figures

2.1 A cell at position (i, j, k) in the staggered grid 9

3.1 A polygonal mesh of a cow . 20

3.2 Linear and angular velocity of a rigid body 21

3.3 Decomposition of Force vector . 23

3.4 Trisection triangulation . 25

3.5 Voronoi diagram . 25

3.6 Delaunay triangulation of points in Figure 3.5 26

4.1 The first step of the breadth-first search graph partitioning algorithm 32

4.2 The second step of the breadth-first search graph partitioning algo-
rithm . 33

4.3 Modes of a vibrating string . 34

4.4 A curved surface . 35

4.5 The two partitions of the curved surface 36

4.6 A sample mesh . 41

4.7 The sample mesh after curvature-driven spectral partitioning 41

5.1 Rigid body motion of a rectangular block 45

5.2 Fracture of a piece of glass using the breadth-first search partitioning
algorithm . 46

5.3 Fractured meshes using the curvature-driven spectral partitioning
algorithm . 47

viii

5.4 A sequence of frames from the fracturing window animation with
trisection triangulation . 49

5.5 A sequence of frames from the fracturing window animation with
Delaunay triangulation and a close-up view 50

5.6 A sequence of frames from the first fractured cow animation 52

5.7 A sequence of frames from the second fractured cow animation . . . 53

A.1 Vectors in the Phong lighting model 58

A.2 Aliasing of a straight line . 61

A.3 The reflection vector . 64

A.4 The refraction vector . 65

ix

List of Tables

2.1 Particle attributes . 7

2.2 Variables used in the Navier-Stokes equations 17

3.1 Parameters that define a rigid body 19

5.1 User controllable parameters . 44

5.2 The total number of vertices in each mesh and the number in each
partition after curvature-driven spectral partitioning 48

5.3 Animation parameters . 54

A.1 Variables in the Phong lighting model 59

A.2 Variables used in the Ashikhmin lighting model 60

x

Chapter 1

Introduction

Explosions are one of the most powerful and devastating natural phenomena. Ex-
plosions are a sudden release of energy creating an outward-propagating blast wave.
This blast wave is capable of causing other secondary effects such as soot, fireballs,
flying debris and the fracture and deformation of objects in the explosion’s vicinity.
It is desirable to simulate explosions for a variety of reasons. Real explosions are
dangerous and costly to produce. There is very little danger involved in simulating
an explosion. A simulation is also repeatable and can be changed in an iterative
fashion until the desired effect is achieved.

Widely seen in movies and videos games, most people are fortunate to have
not witnessed an explosion in person. In movies and video games, the explosions
are generally much larger than would actually occur in the observed setting to
increase dramatic effect and create a visually appealing explosion. The simulation
of explosions, both the blast wave and secondary effects, is one area of computer
graphics that has been explored. The focus of these simulations is to produce
realistic visual effects using physical equations. This thesis outlines a recently
proposed explosion model that was implemented as a means for initiating fracture.

The fracture and shattering of objects is another special effect seen in movies
and video games. Fracture has also been studied from a physics point of view,
and simulated in computer graphics applications. Physically based models include
those that compute stress and strain when determining where a fracture will occur,
and those that are dependent on the presence of a crack to determine where it
will spread. While these models produce physically realistic results, they are also
computationally expensive. This thesis proposes a different approach to fracture.

The objects to be fractured are rigid bodies, where a rigid body is one that does
not deform when force is applied to it. A rigid body is represented as a polygonal

1

mesh. This thesis proposes treating a rigid body as a graph and using a graph
partitioning algorithm to divide the mesh into the desired number of pieces prior
to the simulation. This allows the simulation to be concerned with only updating
the pieces of the rigid body each time-step without calculating stress or strain on
the object, which is time consuming. This approach to fracture is justified in the
fact that explosions happen on a very short time scale. Objects will fracture almost
instantaneously when in the vicinity of an explosion and the pieces will quickly fly
away from the source of the explosion. The same visual results are obtained with a
graph-based approach as would be obtained with a physically based simulation, but
the graph-based approach to pre-fracture objects results in a much faster simulation.

My contribution in this thesis is the proposal of the recursive breadth-first search
graph partitioning algorithm and the curvature-driven spectral partitioning algo-
rithm as graph-based approaches to simulating fracture. The breadth-first search
graph partitioning algorithm classifies the vertices of the mesh into levels, and splits
the vertices based on this classification. To demonstrate the appropriateness of this
algorithm for fracturing objects in the vicinity of explosions, a mesh representing a
piece of glass is placed in front of an explosion and the fracture is observed. This
animation shows that while not physically based, the breadth-first search graph par-
titioning algorithm is capable of producing physically realistic results for fracture
when used with explosions. The curvature-driven spectral partitioning algorithm
is based on the spectral bisection algorithm which is motivated by the harmonics
of a vibrating string. The curvature-driven spectral partitioning algorithm uses
curvature of each edge to determine the weakest place to break the mesh, where
the weakest region of the mesh is defined as the region with largest curvature.
To demonstrate that this model produces physically realistic results, a complex
polygonal is fractured resulting in two pieces that would intuitively be expected.

The remainder of this thesis is organized as follows. Chapter 2 outlines the
equations used in the explosion model, and how the motion of the explosion is
tracked through the use of particles. Chapter 3 introduces the concepts of rigid
bodies, including a description of how they are represented and how their motion
is updated. The chapter concludes with a discussion of triangulation algorithms
for creating 2D meshes. Chapter 4 proposes two graph-based approaches to frac-
ture, the breadth-first search graph partitioning algorithm and the curvature-driven
spectral partitioning algorithm. Chapter 5 presents results of simulations followed
by conclusions and future work. Appendix A provides a discussion of the ray tracer
and volume renderer used to produce images from the simulation results.

2

Chapter 2

Modeling Explosions

A model for visualizing explosions must consist of three parts: a representation of
the explosion, a model for its behaviour, and a graphical renderer to visualize its
appearance. The explosion is modeled as a fluid, with the behaviour of an explosion
dictated by a set of physical equations for fluid flow known as the Navier-Stokes
equations. Particles are placed in the fluid to represent the gaseous products of
the explosion such as fuel and soot. Their position is tracked to determine how the
explosion is moving. Rendering of explosions is discussed in Appendix A.

2.1 Previous Work

Stam and Fiume [43] proposed one of the first models for animating gaseous phe-
nomena such as flames and the spread of fire. In their model, a user specifies a
wind field to govern the behaviour of a gas. The temperature and expansion of
the gas is computed using an advection-diffusion equation, with the assumption of
constant density which captures the main characteristics of a gas. The source of the
gas is either user-defined or based on a model of chemical reactions. Their model is
advantageous if user-control is desirable. However, the simple advection-diffusion
equation does not give a complete physical model.

Uhl and Blanc-Talon [46] proposed an explosion model that improves on smooth
particle hydrodynamics. Smooth particle hydrodynamics governs the evolution of
density, thermal energy, particle speed, radius and position. Uhl and Blanc-Talon
modified these equations to account for different types of gases and behaviours by
adding chemical rules and measured data. Since the model is an N -body problem,

3

the complexity is O(N2). However, it is capable of producing physically realistic
images, which was the goal of the authors.

The work by Neff and Fiume [30] models the blast wave of an explosion while
ignoring the explosion cloud. They simulated the detonation of a spherical charge
of trinitrotoluene (TNT) and studied how the wave propagated. The blast wave is
approximated by a triangular pressure pulse that is calculated using blast curves.
The blast curve approach is less computationally expensive than a simulation in-
volving physical equations, and data is readily available. Mazarak et al. [29] also
proposed a blast wave model to study the pressure changes across a shock front.
They used the Friedlander equation [6] to compute pressure changes at any distance
from the source of the explosion. Both models use a simplified set of equations that
can capture some key aspects of a blast wave. However, accuracy of the simulation
is sacrificed for speed.

Yngve et al. [49] proposed an explosion model based on computational fluid
dynamics. Their model assumes that a detonation has occurred according to some
initial conditions. The explosion is modeled post-detonation as a fluid using the
equations for compressible, viscous flow. To simplify the equations, it assumed that
changes in vibrational energies or molecules is negligible and that air is at chemical
equilibrium. This model was one of the first to use a computational fluid dynamics
approach to model explosions. The model is physically-based and able to capture
many of the effects of an explosion that blast wave models cannot. However, it is
computationally more expensive than approaches that are not based on physical
equations.

The work conducted by Martins et al. [28] expands on Mazarak’s model to
simulate the blast wave and its effects. The goal of the authors was to create a
physically realistic model capable of executing in real time. Their blast wave model
is a combination of simplified physically-based equations and experimental data.
They are able to capture some relevant physical properties of an explosion, such
as the blast wave, smoke and dust, while simplifying and optimizing others. As
a result, Martins et al. produce a “physically believable” model that is not too
computationally expensive.

Feldman et al. [12] describe a model for animating suspended particle explo-
sions. Their work disregards the blast wave in favour of modeling the motion of
the gas with the incompressible fluid equations. The divergence field is adjusted
at a specified location to simulate a detonation and allow the gaseous products to
expand. Many of the parameters that define the behaviour of the explosion are
user-specified. Although their explosion model does not include the blast wave, it
provides a physically-based simulation of the gas that was comparable to observa-

4

tions from real explosions.

2.2 Modeling Fluid Flow

The explosion model described in this thesis follows the work of Feldman et al.
The explosion is modeled as an incompressible, inviscid fluid that evolves over time
according to the incompressible Navier-Stokes equations. The use of the compress-
ible fluid equations would lend itself to a more physically-based model of explosions.
However, the incompressible Navier-Stokes equations used by Feldman et al. were
also used here because they lend themselves to easier implementation and are suit-
able for the purpose of this thesis.

The Navier-Stokes equations approximate physical laws governing motion, tem-
perature and combustion. They have been used to animate the motion of natural
phenomena such as water [14][15][41], gas [16], smoke [11][42], fire [31] and flames
[22], viscoelastic fluids such as soap and clay [17], and the melting of wax [9].

Incompressible flows are characterized by the property that density changes are
negligible [18, page 11]. In the proposed explosion model, density is assumed to
be constant at a value of 1 and the density term, ρ, has been removed from the
equations for simplicity. The law of conservation of momentum is given by

∂u

∂t
+

∂p

∂x
=

1

Re

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

− ∂(u2)

∂x
− ∂(uv)

∂y
− ∂(uw)

∂z
+ gx

∂v

∂t
+

∂p

∂y
=

1

Re

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

− ∂(uv)

∂x
− ∂(v2)

∂y
− ∂(vw)

∂z
+ gy

∂w

∂t
+

∂p

∂z
=

1

Re

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

− ∂(uw)

∂x
− ∂(vw)

∂y
− ∂(w2)

∂z
+ gz,

where u, v and w is the fluid velocity in the x, y and z direction respectively, t is
time, p is pressure, Re is the Reynold number, and gx, gy and gz are external forces
in the x, y and z directions respectively.

For an incompressible fluid, the divergence of the flow field is zero. The fluid
obeys conservation of mass:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

To simulate the detonation of an explosion, a rapid change in pressure is re-
quired. However, to cause an explosion to expand, fluid needs to be added to the

5

environment which affects the conservation of mass equation. To use the incom-
pressible equations to simulate explosions, the conservation of mass equation is
modified to include the term φ,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= φ,

where φ controls the rate of expansion. The value of φ is initialized to zero every-
where except in the region of the detonation. To allow the gaseous products to add
heat to the fluid, the energy transport equation

∂T

∂t
= ck

(

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

− ∂(uT)

∂x
− ∂(vT)

∂y
− ∂(wT)

∂z
+ Ḣ − cr

(

T − Ta

Tmax − Ta

)4

is incorporated, where T is temperature, Ta is the ambient temperature of the fluid,
Tmax is the maximum temperature in the environment, ck is a thermal conductiv-
ity constant, cr is a cooling constant and Ḣ is the heat transfered into the fluid.
Diffusive transfer, the expansion of heat, is approximated by the first term. The
second term models the transfer of heat by the fluid. The third term represents
heat transfered into the fluid from external sources. The last term approximates
radiative loss into the environment.

2.3 Modeling Gaseous Products

The motion of the gaseous products, fuel and soot, in the explosion is modeled using
a particle system. The seminal work by Reeves [38] introduced particle systems and
their use for modeling “fuzzy” objects without hard boundaries such as smoke, fire
and clouds. A particle system is responsible for generating particles, moving and
transforming them, and possibly allowing them to die over time. An in-depth look
at the implementation of particle systems is given in [47].

The basic attributes for a particle include position, velocity, radius and mass.
In addition to these variables, the particles used to model the gaseous products
have the attributes listed in Table 2.1, which also gives the variables used for each
attribute used in equations that follow. In addition to these variables, a particle
has a ‘type’ denoting whether it is fuel or soot. A particle also has two flags, one
for whether it is ignited or not, and the other for whether soot has been created
from the particle or not.

At the beginning of the simulation, a user-defined number of fuel particles is
created. Fuel particles can also be created at the end of each time-step. A fuel par-
ticle’s position is initialized to a random location on a sphere of radius rd centered

6

Attribute Variable
position pos
velocity vel
mass m

temperature Ẏ
thermal mass cm

radius r
soot mass s
ignition temperature Ti

Table 2.1: Particle attributes

at the position of the detonation, posdet. Velocity, temperature, and soot mass of
a fuel particle are initially zero. The flags for whether a fuel particle is ignited,
and whether soot has been created are both initially set to false. The mass, ther-
mal mass, and ignition temperature of both fuel and soot particles are set to user
defined parameters. A particle’s radius is 0.1.

The motion of the fuel particles is dictated by the movement of underlying fluid
flow of the explosion. The fuel particles also affect the fluid flow. Fuel particles,
once ignited, will start to consume their own mass at the burning rate, z. Ignited
particles generate heat at a rate

Ḣi,j,k = bhz

where bh is the amount of heat released per unit combusted mass of fuel. An ignited
particle also accumulates soot mass at a rate

s = bsz

where bs is the mass of soot produced per unit combusted mass of fuel. Ignited
particles add gaseous products to the fluid according to

φi,j,k = φi,j,k +
1

V
bgz

where V is the volume of a cell and bg is the volume of gas released per unit
combusted mass of fuel. Lastly, if an ignited particle has accumulated soot mass
reaching a set threshold, then a soot particle is created. The initial position and
velocity of the soot particle is set to the same position and velocity of the fuel
particle from which it was created, with a small perturbation. The movement of
soot particles is also dictated by the fluid flow, but soot particles do not affect the
flow field and do not affect the conservation of mass equation.

7

2.4 Numerical Solutions

The Navier-Stokes equations cannot be solved exactly. Instead, numerical solutions
are used to approximate the solution of the equations at each time-step. The
numerical method consists of a series of steps: determine the size of the time-
step, set boundary conditions, solve for the right-hand side of the equation, update
pressure, update velocity.

2.4.1 Discretization

To solve the Navier-Stokes equations numerically, the continuous domain must be
discretized. The values of the solution are determined at a finite number of points
in the domain. Consider a three dimensional region

Ω := [0, a] × [0, b] × [0, c] ⊂ R
3.

The region is divided into imax×jmax ×kmax uniformly sized cells or voxels of width
∆x, height ∆y and depth ∆z, where ∆x = a

imax
, ∆y = b

jmax
and ∆z = c

kmax
.

Scalar values, such as pressure, p, and temperature, T , are located in the cell
centers. The values for the components of the velocity vectors are stored using a
staggered grid; each component is located in the center of one of the faces of the
cell. The u component is located at the left face of the cell, the v component is
located at the bottom face of the cell and the w component is located at the rear
face of the cell, see Figure 2.1. As a result, the discrete values of u, v, w and P are
located on four separate grids, each shifted by half a grid spacing to the bottom,
to the left, to the rear and to the rear lower left, respectively. This arrangement
prevents possible oscillations that could occur if all unknowns are evaluated at the
same grid points.

2.4.2 Finite Differences

Finite differences [44] can be used to solve the Navier-Stokes equations on the
staggered grid. The idea of finite difference schemes is to replace derivatives by
finite differences. This can be accomplished in many ways. For example, a second
derivative appearing in the Navier-Stokes equation can be solved using a central-
differencing scheme

[

∂2u

∂x2

]

i,j,k

=
ui+1,j,k − 2ui,j,k + ui−1,j,k

(∆x)2
.

8

ui,j,k

wi,j,k

vi,j,k

Figure 2.1: A cell at position (i, j, k) in the staggered grid

Other second derivates are treated analogously. The spatial pressure terms are also
solved using a central difference scheme, for example

[

∂p

∂x

]

i,j,k

=
pi+1,j,k − pi,j,k

∆x
.

The discretization of the convective terms is more involved. For example, to
discretize ∂(uv)/∂x, points are needed in both the u and v directions. The average
of the u and v terms is used, giving
[

∂(uv)

∂x

]

i,j,k

=
1

∆x

((

ui,j,k + ui,j+1,k

2

vi,j,k + vi+1,j,k

2

)

−
(

ui,j−1,k + ui,j,k

2

vi,j−1,k + vi+1,j−1,k

2

))

.

Similarly, to discretize ∂(u2)/∂x, central differencing of averaged values is used

[

∂(u2)

∂x

]

i,j,k

=
1

∆x

((

ui,j,k + ui+1,j,k

2

)2

−
(

ui−1,j,k + ui,j,k

2

)2)

.

The convective terms in the momentum equations become dominant when Re
is large or the velocity is high. To prevent this from happening, the donor-cell
method can be incorporated. The donor-cell method computes a weighted sum of
two finite difference techniques.

Euler’s method is used to discretize the time derivates as follows:
[

∂u

∂t

]n+1

=
un+1 − un

∆t
.

The finite difference techniques described are also applicable to the temperature
equation. However, since temperature is defined at the center of cells, there is no

9

need to average the u, v and w terms in the evaluation of ∂(uT)/∂x, ∂(vT)/∂y and
∂(wT)/∂z, for example

[

∂(uT)

∂x

]

=
1

∆x

(

ui,j,k
Ti,j,k + Ti+1,j,k

2
− ui−1,j,k

Ti−1,j,k + Ti,j,k

2

)

.

The momentum equation discretized by time is

un+1 = un + ∆t

[

1

Re

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

− ∂(u2)

∂x
− ∂(uv)

∂y
− ∂(uw)

∂z
+ gx −

∂p

∂x

]

vn+1 = vn + ∆t

[

1

Re

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

− ∂(uv)

∂x
− ∂(v2)

∂y
− ∂(vw)

∂z
+ gy −

∂p

∂y

]

wn+1 = wn + ∆t

[

1

Re

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

− ∂(uw)

∂x
− ∂(vw)

∂y
− ∂(w2)

∂z
+ gz −

∂p

∂z

]

.

The variables F n, Gn and Hn are introduced as abbreviations defined by

F n = un + ∆t

[

1

Re

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

− ∂(u2)

∂x
− ∂(uv)

∂y
− ∂(uw)

∂z
+ gx

]

Gn = vn + ∆t

[

1

Re

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

− ∂(uv)

∂x
− ∂(v2)

∂y
− ∂(vw)

∂z
+ gy

]

Hn = wn + ∆t

[

1

Re

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

− ∂(uw)

∂x
− ∂(vw)

∂y
− ∂(w2)

∂z
+ gz

]

.

F n, Gn and Hn are evaluated at time tn while the pressure terms, ∂p/∂x, ∂p/∂y
and ∂p/∂z are associated with time tn+1. This gives

un+1 = F n − ∆t
∂pn+1

∂x

vn+1 = Gn − ∆t
∂pn+1

∂y

wn+1 = Hn − ∆t
∂pn+1

∂z
.

The Courant-Friedrichs-Lewy (CFL) condition,

∆t = min

(

Re

2

(

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)−1

,
RePr

2

(

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

)−1

,

∆x

|umax|
,

∆y

|vmax|
,

∆z

|wmax|

)

is imposed on the value of ∆t to ensure numerical stability and avoid generating
oscillations.

10

2.4.3 Initial and Boundary Conditions

The driving force behind the explosion is the incorporation of φ to create outward
pressure. Consequently, it is desirable to have the velocity vanish at the boundary
to satisfy a no-slip condition. The no-slip boundary conditions are

u(i,j,0) = −u(i,j,1) u(i,j,kmax+1) = −u(i,j,kmax) i ∈ [0, imax], j ∈ [0, jmax+1]

u(i,0,k) = −u(i,1,k) u(i,jmax+1,k) = −u(i,jmax,k) i ∈ [0, imax], k ∈ [0, kmax+1]

v(i,j,0) = −v(i,j,1) v(i,j,kmax+1) = −v(i,j,kmax) i ∈ [0, imax+1], j ∈ [0, jmax]

v(0,j,k) = −v(1,j,k) v(imax+1,j,k) = −v(imax,j,k) j ∈ [0, jmax], k ∈ [0, kmax+1]

w(i,0,k) = −w(i,1,k) w(i,jmax+1,k) = −w(i,jmax,k) i ∈ [0, imax+1], k ∈ [0, kmax]

w(0,j,k) = −w(1,j,k) w(imax+1,j,k) = −w(imax,j,k) j ∈ [0, jmax+1], k ∈ [0, kmax].

Neumann boundary conditions are used for temperature:

T(i,j,0) = T(i,j,1) T(i,j,kmax+1) = T(i,j,kmax) i ∈ [1, imax], j ∈ [1, jmax]

T(i,0,k) = T(i,1,k) T(i,jmax+1,k) = T(i,jmax,k) i ∈ [1, imax], k ∈ [1, kmax]

T(0,j,k) = T(1,j,k) T(imax+1,j,k) = T(imax,j,k) j ∈ [1, jmax], k ∈ [1, kmax].

Temperature, heat, pressure and φ are initialized to zero. The velocities are
initialized to small random numbers very close to zero to reduce symmetry in the
pressure.

2.4.4 Solving for Pressure

The Poisson equation for pressure at time tn+1 is

∂2pn+1

∂x2
+

∂2pn+1

∂y2
+

∂2pn+1

∂z2
=

1

∆t

(

∂F n

∂x
+

∂Gn

∂y
+

∂Hn

∂z

)

.

To enforce the modified conservation of mass equation, a modified version of the
Poisson equation,

∂2pn+1

∂x2
+

∂2pn+1

∂y2
+

∂2pn+1

∂z2
=

1

∆t

(

∂F n

∂x
+

∂Gn

∂y
+

∂Hn

∂z
− φ

)

.

is used when solving for pressure. This equation is discretized using the techniques
described in section 2.4.2 resulting in imaxjmaxkmax equations in imaxjmaxkmax un-
knowns. Using a direct method such a Gaussian elimination to solve this system

11

of equations is too costly. Large, sparse systems such as the one obtained from the
Poisson equation for pressure tend to be solved efficiently using iterative techniques
such as conjugate gradient [44, page 327]. The conjugate gradient method begins
with an initial guess for the solution and computes successive approximations to
the solution by computing residuals which determine the search direction. The
conjugate gradient method for solving Ax = b is outlined in Algorithm 1, where A
is the three-dimensional Laplacian, b is the right-hand side of the pressure equation
and x is the value being solved for.

Algorithm 1 Conjugate Gradient
x ⇐ 0
r ⇐ b
d ⇐ r
δ0 = rT r
δ1 = δ0

while δ1 > tolerance do
q ⇐ Ad
α ⇐ δ1

dT q

x ⇐ x + αd
r ⇐ r − αq
δ0 ⇐ δ1

δ1 ⇐ rTr
β ⇐ − δ1

δ0
d ⇐ r + βd

end while

2.4.5 Updating Particles

At the beginning of each time-step, the particles must be updated according to the
underlying flow field determined by the equations of the explosion model. First,
particles with a mass below a specified threshold are deleted. Remaining particles
are considered in turn. The velocity and temperature of the fluid at the particle’s
current position are calculated by interpolating the velocity and temperature at the
corners of the cell is occupies. The indices into the flow field, i, j and k, and scaling
terms, dx, dy and dz, are computed based on the position of the particle (pu, pv,
pw). Since the fluid is being calculated over a staggered grid, see Figure 2.1, the
computation of the velocity components and temperature are dealt with uniquely.
The calculations in each case need to be offset in certain dimensions so that the

12

flow field is being indexed correctly. The indices and scalars for the velocity in the
u direction are

i = int(pu/∆x)

dx = pu/∆x − i

j = int((pv + 0.5∆y)/∆y)

dy = (pv + 0.5∆y)/∆y − j

k = int((pw + 0.5∆z)/∆z)

dz = (pw + 0.5∆z)/∆z − k,

where the operator int means to take the integer value of the result. The values
∆x, ∆y and ∆z denote the size of a cell in each of the x, y and z dimensions. The
indices and scalars for the velocity in the v direction are

i = int((pu + 0.5∆x)/∆x)

dx = (pu + 0.5∆x)/∆x − i

j = int(pv∆y)

dy = pv/∆y − j

k = int((pw + 0.5∆z)/∆z)

dz = (pw + 0.5∆z)/∆z − k.

The indices and scalars for the velocity in the w direction are

i = int((pu + 0.5∆x)/∆x)

dx = (pu + 0.5∆x)/∆x − i

j = int((pv + 0.5∆y)/∆y)

dy = (pv + 0.5∆y)/∆y − j

k = int(pw∆z)

dz = pw/∆z − k.

Lastly, the indices and scalars for temperature are

i = int((pu + 0.5∆x)/∆x)

dx = (pu + 0.5∆x)/∆x − i

j = int((pv + 0.5∆y)/∆y)

dy = (pv + 0.5∆y)/∆y − j

k = int((pw + 0.5∆z)/∆z)

dz = (pw + 0.5∆z)/∆z − k.

13

Each component of the interpolated velocity, velinterp = (uinterp, vinterp, winterp),
is calculated using the appropriate indices and scalars. For example,

uinterp = (1 − dz)

(

(1 − dy)

(

(1 − dx)wi,j,k + dxwi+1,j,k

)

+

dy

(

(1 − dx)wi,j+1,k + dxwi+1,j+1,k

))

+

dz

(

(1 − dy)

(

(1 − dx)wi,j,k+1 + dxwi+1,j,k+1

)

+

dy

(

(1 − dx)wi,j+1,k+1 + dxwi+1,j+1,k+1

))

.

The remaining two components of the interpolated velocity are computed analo-
gously using the appropriate values for the indices and scalars. The interpolated
velocity is used with the current velocity of a particle, vel, to determine the force

f = αdr
2|velinterp − vel|(velinterp − vel) (2.1)

on a particle, where αd is the drag coefficient. If the mass of a particle is below a
threshold then this calculation is ignored and the force is zero. The position of a
particle is updated according to

pos = pos + ∆tvel,

where ∆t is the size of the time-step. If this calculation results in a particle’s
position lying outside of the computational grid, then the particle is deleted. The
velocity of a particle is updated by

vel = vel +
∆tf

m
,

where f is the force calculated in equation (2.1) and m is the mass of the particle.

A particle’s temperature, Ẏ , is updated by

Ẏ = Ẏ +
∆tαhr

2|Ẏi − Ẏ |
cm

,

where Ẏi is the interpolated temperature and αh is the coefficient of thermal con-
ductivity. If the thermal mass of a particle is below a threshold then this calculation
is ignored. The entire process of updating particles is summarized in Algorithm 2.

14

Algorithm 2 Updating of particles

for each particle p do
if p is of type fuel and mass is below threshold then

Delete p
end if
Calculate interpolated velocity of p from flow field
Calculate force on p
Update position of p
if the position of p is outside the boundary then

Delete p
end if
Calculate acceleration of p
Update velocity of p
Calculate interpolated temperature of p
if p is of type fuel then

if p’s temperature is above ignition temperature and p not ignited then
Ignite p

end if
if p is ignited then

p will consume its own mass
p accumulates soot mass
p generates heat
p adds gaseous products into the fluid

end if
if soot mass of p is above threshold then

Create a soot particle from p
Flag that soot has been created from p

end if
end if

end for

15

2.4.6 The Time-Stepping Algorithm

The entire procedure to solve the Navier-Stokes equations and update the particles
and rigid bodies is adapted from [18, page 135] and given in Algorithm 3. Rigid
bodies are listed here for completeness. The implementation details for rigid bodies
are given in Chapter 3.

Algorithm 3 Navier-Stokes solver [18, page 135]

t ⇐ 0
create initial particles and rigid bodies
initialize u, v, w, p, T, Ḣ, φ
while t < tend do

Export the particle and rigid bodies for rendering
Update particles and rigid bodies
Select ∆t according to the CFL condition
Set boundary values for u, v, w, T
Compute F n, Gn, Hn, T n

Compute the right-hand side of the pressure equation
Perform conjugate gradient to solve the pressure equation
Compute un+1, vn+1 and wn+1

Reset Ḣ and φ to 0
Create new particles
t ⇐ t + ∆t

end while

A summary of the variables used in the Navier-Stokes equations is given in Table
2.2.

16

ck thermal conductivity constant
cr cooling constant
gx external force in x direction
gy external force in y direction
gz external force in z direction

Ḣ heat transfered into the fluid
p pressure

Re Reynold number
t time
T temperature
Ta ambient temperature

Tmax maximum temperature in the environment
u fluid velocity in x direction
v fluid velocity in y direction
w fluid velocity in z direction

Table 2.2: Variables used in the Navier-Stokes equations

17

Chapter 3

Rigid Bodies

To enhance the explosion model and study the effects of flying debris and the frac-
ture of objects, rigid bodies were added to the simulation in the form of spheres,
cubes and polygonal meshes. Rigid bodies are objects that produce negligible de-
formation when a force is applied to them. A force can only produce a change in the
position of the center of mass and rotational motion. In the simulations produced
with the explosion model, the motion of the rigid bodies is unconstrained, that is
that the simulation is not concerned with collisions between rigid bodies. Since
explosions happen so fast and debris is moving quickly away from the detonation,
collision detection is not considered.

3.1 Modeling Rigid Bodies

A rigid body is formally defined by a set parameters as presented in the work
by Jansson [20] and given in Table 3.1. The variable names given will be used
throughout the remainder of the section in descriptions and equations that follow.
Each type of rigid body (sphere, cube and polygonal mesh) contain the parameters
in the table in addition to other unique variables for each type. All three types of
rigid bodies are initialized with a velocity, orientation and angular velocity of zero.
The mass is defined by the user when creating the rigid body. The initialization
of the remaining variables, and a discussion on the representation of each type of
rigid body follows.

Spheres are created by specifying the center of mass and radius r. The moment
of inertia tensor for a sphere is

Ĩ =
2mr2

3
.

18

pos position of center of mass
vel velocity of center of mass
m mass of the rigid body
α orientation of the rigid body
ω angular velocity

Ĩ moment of inertia tensor
nv number of vertices

verts list of vertices

Table 3.1: Parameters that define a rigid body

Points are sampled on the surface of a sphere at each of the poles, giving nv = 6
and verts = {(r, 0, 0), (−r, 0, 0), (0, r, 0), (0,−r, 0), (0, 0, r), (0, 0,−r)}, where nv is
the number of vertices and verts is the list of vertices.

Cubes are created by specifying the rear, left, lower corner, corner = (cu, cv, cw),
and a width, height and depth. The remaining seven vertices are calculated based
on the specified corner and dimensions of the cube giving nv = 8 and verts =
{(cu, cv, cw), (cu, cv, cw+depth), (cu, cv+height, cw), (cu, cv+height, cw+depth), (cu+
width, cv, cw), (cu+width, cv, cw+depth), (cu+width, cv+height, cw), (cu+width, cv+
height, cw +depth)}. The corner and width, height and depth are used to calculate
the center of mass

pos = (cu + width/2, cv + height/2, cw + depth/2). (3.1)

All vertices are then updated by translating them by (pos − corner) so that they
are stored with respect to a center of mass at the origin. However the value of pos
does not change from that calculated in equation (3.1). This is done to make the
mechanics of updating the cube easier. The moment of inertia tensor for a cube is

Ĩ =
2m min(width, height, depth)2

3
.

Polygonal meshes are the most complicated of the three types of rigid bodies.
A polygonal mesh is defined as follows. The number of vertices, nv, is specified,
follow by a list of vertices, verts. Then the number of faces, nf , is given, followed by
the faces, faces, which are indices into the verts list. For simplification, polygonal
meshes are only allowed to be specified using triangles. An example of a polygonal
mesh of a cow is given in Figure 3.1.

The center of mass is approximated by

pos = (sumX/nv, sumY/nv, sumZ/nv), (3.2)

19

Figure 3.1: A polygonal mesh of a cow

which requires sums; sumX, sumY , sumZ; for each of the x, y and z components
of each vertex respectively. As with cubes, all the vertices of the mesh are adjusted
so that they are stored with respect to a center of mass at the origin by translating
each vertex by −pos. The calculated pos from equation (3.2) remains unchanged.
The moment of inertia for a mesh is

Ĩ =
2m min(width, height, depth)2

3
.

The width, height and depth of the mesh are calculated by finding the difference
of the minimum and maximum value of each x, y and z co-ordinate respectively.

3.2 Mechanics of Rigid Body Motion

The motion of a rigid body is defined as translations of and rotations about the
center of its mass. The mechanics of rigid body motion describe how a rigid body’s
position, pos = (posu, posv, posw), and orientation, α = (αu, αv, αw), change over
time according to linear velocity, vel, and angular velocity, ω, respectively. The
velocity vectors are depicted in Figure 3.2.

20

ω

vel

pos

Figure 3.2: Linear and angular velocity of a rigid body

The position and orientation of the rigid bodies in the fluid volume are influenced
by the underlying flow field determined by the explosion model. However, rigid
bodies do not have any affect on the flow field. Explosions are so vigorous that the
effect of the motion of rigid bodies is negligible.

Forces act on rigid bodies at a particular geometrical location on the body due
to some external source, for example gravity. The total force on a rigid body is the
sum of the forces at each vertex. Torque refers to the forces that produce rotation.
The calculation of torque is dependent on the position of the vertex relative to the
center of mass. As with force, the total torque acting on a body is the sum of the
torque at each vertex.

To update the parameters associated with a rigid body, the force and torque at
each vertex is calculated. For an in-depth derivation of the equations to follow, the
reader is referred to [7].

Each vertex, vert = (vertu, vertv, vertw), of a rigid body is stored with respect
to the center of mass considered at the origin. First, the actual position of the
vertex,

posactual = RuRvRw

vertiu + posu

vertiv + posv

vertiw + posw

is calculated based on the position of the center of mass, and the rotational matrices
Ru, Rv, Rw which represent rotation about the center of mass in the x-axis, y-axis

21

and z-axis respectively, and are defined as:

Ru =

1 0 0
0 cos(αu) − sin(αu)
0 sin(αu) cos(αu)

 , Rv =

cos(αv) 0 sin(αv)
0 1 0

− sin(αv) 0 cos(αv)

 ,

Rw =

cos(αw) − sin(αw) 0
sin(αw) cos(αw) 0

0 0 1

 .

The interpolated velocity, velinterp, at position posactual is calculated analogously
to particles. The interpolated velocity is then used to calculate the force,

F =
Fcvelinterp

m
,

at position posactual, where Fc is a user-defined constant. The vector,

r = pos − posactual

is a vector from a vertex’s actual position to the center of mass. The force at
posactual is decomposed into two components, parallel and perpendicular to r as
depicted in Figure 3.3. The parallel vector,

F‖ =
F · r
|r|2 r,

is calculated by computing a vector projection of F onto r. The total parallel force
is accumulated in a sum, ‖P. The perpendicular vector,

F⊥ = F − F‖,

is calculated by computing a vector difference of the force and its parallel compo-
nent. The torque on a rigid body is determined by

τ =
1

Ĩ
(r × F⊥).

The total torque is accumulated in a sum, τP. Once the force and torque have been
calculated at each vertex resulting in ‖P and τP, the motion of the rigid body is
updated. First the position of the rigid body is updated:

pos = pos + ∆tvel.

22

F

pos

F‖

r

F⊥

posactual

Figure 3.3: Decomposition of Force vector

The orientation is updated:
α = α + ∆tω.

The velocity is updated:

vel = vel +
∆t ‖P

m
.

Lastly, angular velocity is updated:

ω = ω + ∆tτP.

The entire process of determining and updating the motion of a rigid body is
summarized in Algorithm 4.

3.3 Triangulation

To simulate the fracturing of windows, mirrors and other planar objects, an al-
gorithm that performs planar triangulation is used to create a 2D mesh for such
objects. Two triangulation algorithms are considered to achieve different effects.
Each algorithm starts with a number of random points and computes a triangulated
mesh in the xy-plane.

The trisection triangulation algorithm is a divide and conquer algorithm. The
algorithm begins by computing the convex hull of the points. The convex hull is the
boundary of the smallest convex polygon containing all the points [37, page 18]. A
random interior point is selected and used to divide the convex hull into triangles.
For each triangle created, it is further trisected by selecting a random interior point
until no such point exists. This algorithm does not result in a minimum-weight

23

Algorithm 4 Updating of rigid bodies

for each rigid body rb do
∑

‖ ⇐ 0
∑

τ ⇐ 0
for each vertex vi of rb do

Calculate position posactual of vi in volume based on pos and α
Calculate interpolated velocity at posactual

Determine the force F at posactual

Decompose F into F‖ and F⊥
∑

‖ ⇐
∑

‖ +F‖

Calculate torque τ on vi
∑

τ ⇐
∑

τ +τ
end for
Update position of rb
Update orientation of rb
Update velocity of rb
Update angular velocity of rb

end for

triangulation, one in which the total length of the triangulation edges is minimized.
A triangulation of 200 points produced from the trisection triangulation algorithm
is given in Figure 3.4.

The Delaunay triangulation [37, page 203] is a minimum-weight triangulation.
The Delaunay triangulation first computes the Voronoi diagram of the points. A
Voronoi diagram gives for each point p, the region for which p is the closest point.
By connecting pairs of points that share a Voronoi edge, a triangulation is created.
A Voronoi diagram, and the resulting Delaunay triangulation are given in Figures
3.5 and 3.6 respectively. The figures use the same 200 points that were used to
obtain the trisection triangulation in Figure 3.4.

To use a 2D mesh from a triangulation algorithm to simulate glass, it is desirable
that the glass have some thickness for light to pass through. Each piece of glass
is a separate mesh with its own set of vertices and triangles. First, the list of
triangles is duplicated. The triangles in first copy of the list are assigned a constant
z coordinate, depth1. The triangles in the second copy of the list are assigned
another constant z coordinate, depth2,

depth2 = depth1 + thickness

according to a user-defined constant for thickness.

24

Figure 3.4: Trisection triangulation

Figure 3.5: Voronoi diagram

25

Figure 3.6: Delaunay triangulation of points in Figure 3.5

To join the two planar meshes together, the vertices on the exterior of the
mesh are determined, and triangles are created joining exterior points. This is
accomplished by first considering one of the triangle lists and determining which
edges of each triangle are shared with other triangles. For each unshared edge, (x1,
y1, depth1), (x2, y2, depth1) in the first list, there is a corresponding unshared edge,
(x′

1, y′
1, depth2), (x′

2, y′
2, depth2) in the second list. Two triangles

(x1, y1, depth1), (x
′
2, y

′
2, depth2), (x

′
1, y

′
1, depth2)

and
(x1, y1, depth1), (x1, y2, depth1), (x

′
2, y

′
2, depth2)

are created to join these edges and create sides of the mesh so it will be become a
solid 3D object.

26

Chapter 4

Graph-Based Fracture Models

Cracking and fracture are common effects of the destruction of objects. Cracks
result from internal stress on an object caused by external forces or nonuniform
expansion or contraction. The proposed models study the fracture of rigid bodies
induced by explosions.

4.1 Previous Work

The seminal work by Terzopoulos et al. [45] introduced the mechanics of the de-
formation and fracture of a rigid body due to an external force. Norton et al. [32]
implemented a physical simulation of the fracture of objects based on the work
by Terzopoulos et al. The authors used a spring-mass model for the rigid bodies
where the object is broken into equally sized cubes connected by springs. When the
force on a spring connecting two nodes is greater than a threshold, the connection
between the two nodes breaks. Fracture occurred only along the boundaries in the
mesh creating artifacts.

Hirota et al. [19] proposed a physically-based simulation of crack patterns. Ob-
jects are modeled by specifying both the surface that is allowed to crack, and the
layer below the surface where cracks do not reach. The surface layer is constructed
of nodes representing volume elements with springs that represent the physical con-
nections between the elements. Cracks are generated by contracting the object and
simulated by the cutting of springs according to force constraints presented in the
paper. Since the structure of an object relates to where it is likely to crack, a finely
detailed surface model of the object is required to generate realistic crack patterns.

27

Mazarak et al. [29] model the blast wave of an explosion to simulate debris. Rigid
bodies are modeled with connected voxels and links between adjacent voxels. The
links are infinitely stiff, maintaining the rigidity of the object. The blast wave model
is used to calculate pressure between links. A link is broken if its pressure exceeds
a predetermined yield limit, simulating cracks. The complete fracture of the object
may occur if a fragment of the object becomes disjoint from the remainder of the
object. The proposed fracture model also takes into account multiple explosions.
If an object is in the vicinity of the first explosion, the links are weakened, making
it easily susceptible to damage from subsequent explosions. The proposed model is
unable to account for non-uniform pressure waves.

Neff and Fiume [30] proposed a technique for the fracture of objects as the result
of a blast wave. The fracture model is dependent on an initial crack being present
in the model, determined by pressure calculated from the blast wave. This crack
is then propagated in each direction, creating a crack tree. Objects are modeled
using polygonal meshes. The geometry of the mesh is mapped to a panel on which
forces and torques are calculated. A panel consists of the position of its center, its
normal and its area. Since panels are two dimensional planes, the algorithm is not
easily extensible to three dimensions.

O’Brien and Hodgins [33] animated fracture of objects based on linear elastic
fracture mechanics. Objects are represented by a set of differential equations which
are discretized for use with a finite element method. Local deformation is calculated
by using Green’s strain tensor. A stress tensor is calculated based on the material
of the object. Together the stress and strain are used to calculate where cracks
begin and where they will propagate. Once the placement of a crack has been
determined, the elements must be modified to reflect the crack. This requires a
local remeshing of the object in the vicinity of the crack. The fracture and distance
a fracture can travel during a time-step is dependent on the number of elements
used to represent the object.

In the work by Smith et al. [40], the authors present an efficient method for
controlling the shattering of brittle objects. In addition to vertices specified on
the surface of an object, interior vertices are added to create connected tetrahe-
dra. The tetrahedra are converted into a representation of constraints connecting
point masses. The distance-preserving constraints are associated with an ultimate
strength by user-specified functions and heuristics based on the geometry of the ob-
ject. The force on the constraints is calculated by solving for Lagrange multipliers
using a conjugate gradient method. These forces indicate where and when an object
will break. When a connection is broken, the constraints around it are weakened
so that pre-existing cracks are more likely to spread rather than new cracks form-

28

ing. This user-controlled method is fast and produces realistic results. However,
fractures can only occur along mesh boundaries, and a fully tetrahedralized mesh
is required.

Martinent et al. [27] propose a fracture model in which the user can control the
pattern of cracks, and the shape and size of the fragments. The model employs a
Hybrid Tree model in which objects are represented as a hybrid of skeletal implicit
surfaces and triangular meshes. To cause the fracture of an object, the user defines a
crack pattern that is converted to a graph representation. The graph is mapped on
the object to give the skeleton of the crack which is then converted into a volumetric
representation. The crack is then removed from the original object. Their model
allows for a user to efficiently simulate cracks and create interlocking fragments.

4.2 Graph Partitioning

The main difference in previously proposed fracture models is how meshes are
modeled. Some authors employ a spring-mass model, some authors depend on
the presence of a crack and determine the direction in which it spreads, while
other authors compute stress and strain on objects to determine weakest points
and allow them to crack. The drawbacks of all these models is twofold. First,
these models are dynamic in nature. They need to compute forces at each time-
step of the simulation to determine the nature of cracks and fracture. This can
be a computationally expensive process. Secondly, these models all require some
knowledge of physics to understand crack formation and fracture patterns.

The models proposed here treat fracturing as a pre-processing step. The mesh is
subdivided into n pieces before the simulation begins so that it initially appears to
be one solid object at the beginning of the simulation. However, as the simulation
progresses, the individual pieces are each updated independently causing them to
move apart and simulate fracture of the object. Since explosions happen so quickly,
the fractured pieces will rapidly be moving away from the source of the explosion. In
this situation, the pre-fracturing step obtains the same visual results as a physically
based fracture model while using less computation time.

The following section proposes two fracture models that treat meshes as graphs.
The breadth-first search graph partitioning algorithm works by classifying nodes
into levels and splits the nodes based on level number. The curvature-driven spec-
tral partitioning algorithm uses curvature as a measure of the weakness of edges to
determine where to break the mesh.

29

Definition 1 A graph G is a pair G = (V, E), where V is a finite set of nodes or
vertices and E has as elements subsets of V of cardinality two called edges. The
vertices of V are usually called v1, v2, If v1 and v2 are joined by an edge, we
say that v1 is adjacent to v2 (and vice versa).

The vertices that define the polygonal mesh become the set V . Each triangle
T = (vi, vj, vk) consists of three edges, e1 = (vi, vj), e2 = (vj , vk) and e3 = (vk, vi).
The triangles are divided into two groups N1 and N2 based on a graph partitioning
algorithm, where T = N1 ∪N2. This has the effect of fracturing the object into two
pieces.

A graph-based approach to fracture has several advantages over previously pro-
posed models. A graph partitioning algorithm is used a pre-processing step. As a
result, during the simulation, there is no need to compute stress, strain or other
forces on the object. It is only necessary to update the position of each piece of
the mesh according to the flow of the fluid volume, which is much less compu-
tationally expensive. The graph-partitioning algorithms proposed here are easier
to implement than dynamic methods and require no knowledge of physics. Both
approaches are applicable to planar meshes and 3D meshes.

4.2.1 Recursive Breadth-First Search Graph Partitioning

To divide a mesh according to a recursive breadth-first search graph partitioning
algorithm, a user-defined variable, m, which is the number of desired pieces, is used
to determine the maximum level of recursion,

maxRec = log2(m).

The initial call to the algorithm uses the complete list of triangles in the mesh, T ,
and an initial level of 0. The algorithm progresses by selecting a node, r, from the
list T , assigning it level 0 and adding it to the queue, Q, and the list of classified
nodes, C. While the queue is not empty the first node in the queue, n, is removed.
All of the children of n are identified, where children are all other triangles that
share a vertex with n. For each unprocessed child, it is assigned a level as one more
than its parent, and then added to the queue and the node list. Once the queue is
empty, the list C contains each triangle and its level. This list is divided according
to a value L, where nodes with level less than or equal to L belong in one partition,
and nodes with level greater than L belong in the second partition. The complete
algorithm is given in Algorithm 5. Figure 4.1 gives the levels of the triangles in a

30

Algorithm 5 procedure RecBFS(T , level)

if level = maxRec then
Output mesh data
return

else
Q ⇐ empty queue
C ⇐ {(r, 0)}
Add (r,0) to Q
Flag r as processed
while Q is not empty do

(n,level) ⇐ remove from Q
for all unflagged children c of n in T do

C ⇐ C ∪ (c,level + 1)
Add (c,level + 1) to Q
Flag c as processed

end for
end while
L ⇐ maxLevel

2

N1 ⇐ nodes with level ≤ L
N2 ⇐ nodes with level > L
RecBFS(N1, level + 1)
RecBFS(N2, level + 1)

end if

31

0

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

333

3

3

4

4

4

4

43

4

433

4

4

44

4

4

44

4

4

4

5

Figure 4.1: The first step of the breadth-first search graph partitioning algorithm

mesh after one level of recursion of the breadth-first search graph partitioner. The
bold line shows the division of the mesh into two pieces using L = 2.

In some cases, the breadth-first search may fail to classify all triangles to a
level and consequently these triangles are lost and not passed on to the next level
of recursion. Consider the right partition of the mesh given in Figure 4.1. This
piece is recursed on to again partition it. However, the partitioner may classify
the triangles into levels as given in Figure 4.2. If the mesh is split using L = 2
as shown with the bold lines, the result is two partitions in which one consists of
disjoint pieces. When the pieces at levels 3, 4 and 5 are again passed to the graph
partitioner, the partitioner is only able to classify the triangles in one of the pieces
as it will not be able to identify any of the triangles in the other piece as children,
and these triangles will essentially be lost resulting in an incomplete mesh.

To overcome this problem, an addition was made to Algorithm 5. After the
while loop, the algorithm checks for lost triangles by comparing the list of triangles
C with the list of triangles T that was passed in. Any triangles in T that do not
appear in C are added to the end of C. C now contains a list of triangles sorted
by level, with unclassified triangles at the end. To partition the triangles, the list
C is divided in half and each piece is recursed on.

The breath-first search graph partitioner is capable of creating both small homo-

32

1

1

1

1

1

0

1

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

5

Figure 4.2: The second step of the breadth-first search graph partitioning algorithm

geneous pieces from the mesh object or pieces of varying sizes depending on where
the triangle lists are divided. Although this algorithm is not physically-based, it is
still capable of generating realistic looking results. In particular, the simulations of
broken glass using the breadth-first search graph partitioning algorithm match the
behaviour of the observed fracture of glass [1] [2].

4.2.2 Curvature-Driven Spectral Partitioning Algorithm

The spectral bisection algorithm is based on techniques proposed by Fiedler [13]
in 1973, and made popular by Pothen et al. [3] in 1990. The technique is motived
by the modes of a vibrating string, as depicted in Figure 4.3. The dotted line
represents the rest position of the string. Each part of the string is labeled as (+) if
it is above the rest position and (-) if it is below. Notice that the second frequency
divides the string into two equal sized connected parts. If a graph is treated as a
string, where the nodes represent a set of identical masses and the edges the springs
connecting the masses, then a graph can also be partitioned in a similar fashion.

For rigid bodies, it is desirable to be able to break the mesh (partition the
corresponding graph) in such a way that it is related to the geometry of the object.
Curvature can be used as a measure of how weak the edge connecting two vertices

33

+ lowest frequency, λ1

second frequency, λ2
+

+ +
third frequency, λ3

Figure 4.3: Modes of a vibrating string

is. Gaussian curvature [50], K, of a vertex is approximated by

K =
A

3∆θ
,

where A is the total area of the adjacent triangles Ti for i = 1, 2, 3, . . . and ∆θ is
the angle deficit calculated as

∆θ = 2π −
∑

i

θi.

The curvature of an edge is the average of the curvature of the vertices connecting
it. Edges of largest curvature are interpreted as the weakest regions of the mesh
so that an area of large curvature is more susceptible to fracture than areas with
small curvature. The curvature of each edge is used to create the Modified Laplacian
matrix of G.

Definition 2 The Modified Laplacian matrix, ML(G), of a graph G is an |N |×|N |
symmetric matrix with one row and one column for each vertex. It is defined as
follows:

ML(G)(i, j) =

Ke ≡ −Ki+Kj

2
if there is an edge between i and j, i 6= j

−∑

k,i6=k ML(G)(i, k) if i = j

0 otherwise.

A value of 0 in entry (i, j) means there is no connection between i and j. Edges
with large curvature contain the smallest entries in the matrix to show that there
is a small connection between the vertices, and edges with small curvature contain
the largest values to show that the connection is strong. Note that in graph theory,
the Laplacian matrix, L(G), contains a −1 for where there is an edge between i
and j for i 6= j.

34

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 4.4: A curved surface

Definition 3 The Modified Incidence Matrix, MIn(G), of a graph G is an |N | ×
|E| matrix, with one row for each node and one column for each edge. For an edge
e = (i, j), column j of MIn(G) is zero except for the ith and jth entries, which are√

Ke and −
√

Ke respectively.

The curvature-driven spectral partitioning algorithm uses the idea behind the
spectral bisection algorithm and incorporates the use of curvature as a means to
direct the algorithm to the weakest place to partition the graph. Consider the
curved surface in Figure 4.4. Consider the surface to be a rigid body. If the rigid
body were to be dropped, intuitively it should break where the curvature is highest.
Using the curvature-driven spectral partitioning algorithm, Figure 4.5 demonstrates
that the surface does in fact break at the region of largest curvature, by depicting
the two partitions of the mesh. The use of the curvature of an object allows the
object to fracture in a physically realistic way. The concept of using curvature to
determine weaknesses has been explored by Richards [39] who used curvature as
a measure of fracture density to predict fracture and faults in reservoirs to reduce
exploration risk.

The curvature-driven spectral partitioning algorithm is motivated by the fol-
lowing theorem.

Theorem 1 For a given graph G, its associated matrix ML(G) has the following

35

0

5

10

15

20

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Figure 4.5: The two partitions of the curved surface

properties:

1. Let e = [1, ..., 1]T , i.e., the column vector of all ones. Then ML(G)e = 0.

2. ML(G) = MIn(G)MIn(G)T . This is independent of the signs chosen in
each column of MIn(G).

3. Suppose ML(G)v = λv, λ 6= 0, so that v is an eigenvector and λ an eigenvalue
of ML(G). Then

λ =

∑

e=(i,j) Ke(v(i) − v(j))2

∑

i v(i)2

4. The eigenvalues of ML(G) are nonnegative:

0 = λ1 ≤ λ2 ≤ . . . ≤ λn

5. The number of connected components of G is equal to the number of eigenval-
ues of ML(G) equal to 0. In particular, λ2 6= 0 if and only if G is connected.
λ2, is referred to as the algebraic connectivity.

36

Proof of part 1. The ith entry of ML(G)e is the sum of the entries of the ith row of
ML(G). The diagonal entry of the ith is the negative of the sum of the off-diagonal
entries. Therefore the sum of the ith row is exactly zero.

Proof of part 2.

(MIn(G)MIn(G)T)(i, j) =
∑

k

MIn(G)(i, k)MIn(G)T (k, j)

=
∑

k

MIn(G)(i, k)MIn(G)(j, k)

= MIn(G)(i, k)MIn(G)(j, k)

=
√

Ke(−
√

Ke) where e = (i, j)

= −Ke

(MIn(G)MIn(G)T)(i, i) =
∑

k

(MIn(G)(i, k))2

=
∑

edges e that contain i

(MIn(G)(i, e))2

=
∑

e

Ke

Proof of part 3. Suppose ML(G)v = λv where λ is an eigenvalue of ML(G) and
v is a nonzero eigenvector of ML(G). Then vT ML(G)v = λvTv, where vT v is a
positive scalar. Then

λ =
vT ML(G)v

vT v

=
vT MIn(G)MIn(G)T v

vT v

=
yTy

vT v
where y = MIn(G)T v

=

∑

e=(i,j)(
√

Kev(i) −
√

Kev(j))2

∑

i v(i)2

=

∑

e=(i,j) Ke(v(i) − v(j))2

∑

i v(i)2

Proof of part 4. This follows from part 3. Since each eigenvalue λ is the quotient
of two nonnegative quantities, λ must be nonnegative.

37

Proof of part 5. For λ to equal 0, each v(i) − v(j) in the expression

λ =

∑

e

√
Ke(v(i) − v(j))2

∑

i v(i)2

must be zero. This means v(i) = v(j) for each edge e = (i, j). For any node
i, the fact v(i) = v(j) is repeatedly applied. Any node k reachable from i also
satisfies v(k) = v(i) = c for some constant c. The eigenvector v has the value c
for each connected component. Since ML(G) is symmetric, the number of unique
eigenvectors corresponding to λ = 0 is equal to the number of eigenvalues equal
to 0. If there is exactly m connected components, there are exactly m unique
eigenvectors. Choosing m constants c(1), . . . , c(m) determines each eigenvector.

As a consequence of this theorem, partitioning a graph is a matter of computing
λ2 for ML(G). For each node in G, if the corresponding entry in the eigenvector
is negative, then the node belongs in the first partition, N1. If the corresponding
entry in the eigenvector is positive, then the node belongs in second partition, N2.
This partitions the graph into two components with the following consequences.

Theorem 2 (M. Fiedler [13]). Let G be connected and N1 and N2 be defined as
above. Then N1 is connected. If no entry in the second eigenvector is equal to 0,
N2 is also connected.

Theorem 3 (M. Fiedler [13]). Let G1(N, E1) be a subgraph of G(N, E) so that
G1 is “less connected” that G. Then the algebraic connectivity of G1 is less than or
equal to the algebraic connectivity of G.

With the existence of these theorems, the curvature-driven spectral partition al-
gorithm has a theoretical advantage over the breadth-first search algorithm. As was
demonstrated with the breadth-first search algorithm, there may be cases where it
fails to classify nodes into a partition. However, with the curvature-driven spectral
partition algorithm it can always be determined whether the two partitions will be
connected. In general, if the graph was connected to begin with, the algorithm will
split the graph into two connected pieces.

What remains to be accomplished is reconstructing the meshes into two groups
of triangles based on the partition of the nodes. For each triangle, if two or three of
its vertices are in N1, then the triangle belongs in the first partition, otherwise it be-
longs in the second partition. The curvature-driven spectral partitioning algorithm
is given in Algorithm 6.

38

Algorithm 6 Curvature-Driven Spectral Partitioning

Read in mesh data (vertices and triangles)
Determine the curvature, K, of each vertex
Create the Modified Laplacian matrix, ML
Find the second smallest eigenvalue of ML and the corresponding eigenvector v2

for each vertex verti do
if v2(i) < 0 then

N1 ⇐ N1 ∪ verti
else

N2 ⇐ N2 ∪ verti
end if

end for
for each triangle Ti do

if Ti has 2 or 3 vertices in N1 then
T1 ⇐ T1 ∪ Ti

else
T2 ⇐ T2 ∪ Ti

end if
end for
Output the triangles of T1 as a mesh
Output the triangles of T2 as a mesh

39

As an example, consider the mesh in Figure 4.6. The list of vertices is given by

v1 = (0.0, 0.0, 0.0) v2 = (1.0, 0.0, 0.0) v3 = (0.5, 0.5, 1.0)

v4 = (1.0, 1.0, 0.0) v5 = (0.0, 1.0, 0.0) v6 = (0.5, 0.5,−1.0).

The triangles created from these vertices are

T1 = (v1, v2, v3) T2 = (v2, v3, v4) T3 = (v3, v4, v5)

T4 = (v1, v3, v5) T5 = (v1, v2, v6) T6 = (v2, v4, v6)

T7 = (v4, v5, v6) T8 = (v1, v5, v6).

The corresponding Modified Laplacian matrix is given by:

ML(G) =

1.699 −0.474 −0.372 0 −0.477 −0.376
−0.474 1.703 −0.373 −0.479 0 −0.377
−0.372 −0.373 1.498 −0.377 −0.376 0

0 −0.479 −0.377 1.720 −0.482 −0.381
−0.477 0 −0.376 −0.482 1.716 −0.380
−0.376 −0.377 0 −0.381 −0.380 1.515

.

The second eigenvector computed using Matlab is given by:

[−0.538,−0.020,−0.329, 0.521,−0.179, 0.546].

This means that vertices v4 and v6 belong in one partition, and vertices v1, v2,
v3 and v5 are in another partition. This splits the mesh into one partition of two
triangles (T6 and T7), and another with six (T1, T2, T3, T4, T5, T8) as depicted in
Figure 4.7.

40

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy

z

v1

v3

v6

v5
v2

v4

Figure 4.6: A sample mesh

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
−1

−0.5

0

0.5

1

xy

z

v1

v2

v3

v4

v4

v5

v5

v2

v6

v6

Figure 4.7: The sample mesh after curvature-driven spectral partitioning

41

Chapter 5

Results

5.1 Animations

To demonstrate the explosion and the proposed fracture models, animations were
created from sequences of images using the rendering techniques described in Ap-
pendix A. Creating animations consisted of determining values for all user-controllable
parameters, determining the vertices and faces that make up rigid bodies, and set-
ting up the scene. Table 5.1 lists all user-controllable parameters.

To demonstrate different aspects of the simulations independently, simple ani-
mations highlighting certain features were first created. These animations demon-
strate rigid body motion, and verify that a piece of glass using the breadth-first
search graph partitioning algorithm achieves correct visual results, and the curvature-
driven spectral partitioning algorithm partitions a complex polygonal mesh in a
physically realistic location. More detailed animations demonstrating both frac-
ture models follow.

To verify that the movement of rigid bodies is in accordance with the underlying
flow field, a rectangle is placed inside a circular fluid flow. The fluid moves as if it
were a glass of water being stirred. Objects at the center of the fluid move with
the flow in a circle while moving towards the boundary of the fluid. A sequence of
images evenly spaced in time showing the movement of the rectangle is shown in
Figure 5.1. The arrows show the direction of the fluid flow. The magnitude of the
arrow is in relation to the size of the velocity vector at that location. Observe that
both translations and rotations are used to update the position of the rectangle
and that the behaviour of the rectangle moves as predicted by moving in a circular
path towards the boundary of the fluid.

42

To demonstrate the breadth-first search graph partitioning algorithm, a mesh
representing a piece of glass is created from the trisection triangulation. Note that
the trisection triangulation tends to produce highly irregular shapes of shards, for
example the piece in the lower left corner. The piece of glass mesh is placed in
front of an explosion and its movement is tracked. The piece of the glass fractures
from the center and the shards move away from the source of the detonation. A
sequence of images showing the movement of the pieces of the fractured window is
shown in Figure 5.2. The explosion has been omitted from the images for clarity.

In demonstration of the curvature-driven spectral partitioning algorithm, com-
plex polygonal meshes were partitioned as depicted in Figure 5.3. The cow and the
teddy bear are partitioned at the neck so that the head forms one piece and the rest
of the body forms the other. The statue of Venus is fractured at the waist and the
pumpkin is divided roughly in half through the stem. The nature of the algorithm
is to fracture meshes in a region of large curvature while also aiming to achieve as
much of a bisection as possible. The total number of vertices in each mesh and the
number of vertices in each partition is given in Table 5.2.

Complex animations using the explosion model and the breadth-first search
partitioning algorithm were created. The first animation shows the front-view of
a building with a window. An explosion is placed behind the window so that the
pieces will fly out towards the viewer away from the position of the detonation. The
window is created using a trisection triangulation and giving it depth (see Section
3.3). The window is both refractive and reflective. An image representing the
opposite side of the street to the building is texture mapped onto a plane behind
the viewer so that it reflects in the pieces of the window. The mesh of the window
was partitioned into 16 pieces to be able to see this effect better in fewer large
pieces. To add realism to the movement of the pieces of the window, the mass of
each piece is proportional to its surface area. This allowed smaller pieces to fly away
from the explosion faster than larger pieces. Gravity was incorporated so that the
pieces of the window fly outwards from the explosion and then eventually fall to the
ground. Figure 5.4 gives a sequence of images from the animation. Observe that
the shattering of the window creates shards that break from the center that are
consistent with observed images of shattered glass. Observe also that blackbody
radiation assigns colour to the explosion that is consistent with observations of
real explosions and that the colour progress through red, orange and yellow as the
temperature rises.

The second animation is set in the same building as the first with a close-up view.
The Delaunay triangulation was used to create the mesh for the window, and the
window was fractured into 512 pieces. This was to further demonstrate the breadth-

43

α Gaussian blur rate
mind minimum density of a cell
maxd maximum density of a cell
nf Gaussian filter size
τ constant controlling conversion of density to opacity
αd drag coefficient
αh coefficient of thermal conductivity
bh amount of heat released per unit combusted mass of fuel
bg volume of gas released per unit combusted mass of fuel
bs mass of soot produced per unit combusted mass of fuel
cm thermal mass of a particle
ck thermal conductivity constant
cr cooling constant
Fc force constant
m mass of a particle
np number of particles
nr number of rigid bodies

nx × ny × nz fluid grid size
rd radius of detonation
Ta ambient temperature
Ti particle’s ignition temperature

Tmax maximum temperature in the environment
zf burn rate for fuel particles
zs burn rate for soot particles

vx × vy × vz density and colour grid size
posdet location of detonation

thresmf
fuel mass threshold

thresms
soot mass threshold

threscm
thermal mass threshold

csoot soot creation constant
npi number of particles initially ignited
npit number of new particles created each iteration

Table 5.1: User controllable parameters

44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) (f)

Figure 5.1: Rigid body motion of a rectangular block

45

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Fracture of a piece of glass using the breadth-first search partitioning
algorithm

46

before after

Figure 5.3: Fractured meshes using the curvature-driven spectral partitioning al-
gorithm

47

cow teddy pumpkin Venus
total vertices 5804 3192 10000 1418

vertices in partition 1 1884 708 4826 698
vertices in partition 2 3920 2484 5174 720

Table 5.2: The total number of vertices in each mesh and the number in each
partition after curvature-driven spectral partitioning

first search partitioning fracture model. In this instance, many small homogeneous
pieces are created which again fly away from the source of the detonation. A
sequence of images from the animation are given in Figure 5.5. The values of the
parameters used in the window animations are given in Table 5.3. The parameters
presented by Feldman [12] were used as an initial set of parameters for the animation
and were fine-tuned to create the desired results. On average, 892 seconds were
required to simulate one frame and 1680 seconds were required to render one 300×
300 image using a sample size of 2 for anti-aliasing on an Intel Pentium 4 3.00GHz
processor with 1Gb of RAM.

Two complex animations were created to demonstrate the curvature-driven
spectral partitioning algorithm. The first animation features the polygonal mesh
of a cow viewed from the side. The curvature-driven spectral partitioning algo-
rithm partitioned the cow mesh into two pieces at the neck as demonstrated pre-
viously. The mesh representing the head was further partitioned with the breadth-
first search partitioning algorithm. In practice, small regions do not vary much
in terms of curvature, so curvature is less important and the breadth-first search
partitioning algorithm gives an acceptable partition. An explosion is placed inside
the cow’s head which results in the head separating from the body and breaking
apart while the body remains intact. A sequence of images from the animation is
given in Figure 5.6. The explosion is not rendered so the effect of the partitioning
can be observed without obstruction.

The second animation also makes use of the cow mesh. However, in this anima-
tion the mesh is deformed prior to fracturing. To deform the mesh, an explosion
is placed inside the cow’s body and the position of each vertex is updated based
on the underlying flow field as is done with particles. This allows the cow to ex-
pand like it were a balloon before it fractures. The entire mesh is fractured by
first splitting the cow into two pieces (the head and the body) with the curvature-
driven spectral partitioning algorithm, and then running the breadth-first search
partitioning algorithm on the body. Figure 5.7 gives a sequence of images from the
animation. As with the first cow animation, the explosion is not rendered so the
fracturing can be observed without obstruction. However, the colour of each piece

48

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: A sequence of frames from the fracturing window animation with tri-
section triangulation

49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: A sequence of frames from the fracturing window animation with De-
launay triangulation and a close-up view

50

of the cow is changed by determining the average temperature over all the vertices
and using that temperature with blackbody radiation to determine the colour. On
average, less than one second was required to simulate one frame. This is because
explosions were not rendered and computing and storing the volume data was not
necessary. On average, 125 seconds were required to render one 300 × 300 image
using a sample size of 2 for anti-aliasing on an Intel Pentium 4 3.00GHz processor
with 1Gb of RAM.

5.2 Conclusions and Future Work

This thesis proposed graph-based approaches to simulating fracture and used ex-
plosions to initiate the fracture process. Treating an explosion as a fluid, the in-
compressible Navier-Stokes equations were used to model its behaviour. To allow
for the incompressible equations to be used, the divergence of the flow field was
adjusted to account for the addition of gaseous products to the fluid. The models
were used with a ray tracer and volume renderer to create a sequence of images
that were assembled into animations. The animations demonstrate that explosions
rendered using blackbody radiation create realistic looking results.

Both graph-based approaches for fracture are much less computationally expen-
sive than models based on physics which require stress and strain to be calculated
at each iteration of the simulation. The breadth-first search graph partitioning
algorithm achieves physically accurate results for shattering windows and glass.
To fracture three dimensional rigid bodies, curvature was used to determine the
weakest area on the rigid body. The curvature-driven spectral graph partitioning
algorithm splits meshes into two pieces in a physically realistic way.

One possible avenue for future work involves incorporating some form of solid-
fluid interaction. The incorporation of collision detection in the simulations is also
left as future work.

51

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: A sequence of frames from the first fractured cow animation

52

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: A sequence of frames from the second fractured cow animation

53

parameter fractured windows fractured cow 1 fractured cow 2
α 1.4 N/A N/A

mind 0.05 N/A N/A
maxd 0.95 N/A N/A
nf 5 N/A N/A
τ 0.01 N/A N/A
αd 0 0 0
αh 200000 50000 30000
bh 23000 3000 6000
bg 2.61 2.61 2.61
bs 1.0 1.0 1.0
cm 20.54 10 10
ck 0.0 0.0 0.0
cr 5.0 5.0 5.0
Fc 30.0 40.0 10.0
m 0.36 0.36 0.36
np 1000 100 100
nr 16/512 17 33

nx × ny × nz 32 × 32 × 32 20 × 20 × 20 20 × 20 × 20
rd 0.1 0.01 0.05
Ta 5.0 5.0 5.0
Ti 10.0 10.0 10.0

Tmax 100.0 100.0 100.0
zf 0.21 0.21 0.21
zs 0.5 0.5 0.5

vx × vy × vz 300 × 300 × 300 N/A N/A
posdet (0.46573, 0.52375, 0.48) (0.5, 0.55, 0.5) (0.525, 0.525, 0.48)

thresmf
0.000001 0.000001 0.000001

thresms
0.00001 0.00001 0.00001

threscm
0.0001 0.0001 0.0001

csoot 0.02 0.02 0.02
npi 10 1 1
npit 50 5 25

Table 5.3: Animation parameters

54

Appendix A

Rendering

In order to visually capture the effects of the explosions, fracture and flying debris,
a rendering algorithm is needed to create images from the simulation data. There
are several different major techniques for rendering scenes. One technique may
sacrifice certain features to make other features more accurate and efficient. The
rendering of explosions with solid objects requires the ability to produce an image
from both rigid bodies and particle data. Rigid bodies are most easily ray traced
since they have a defined surface, while particle data is often used with a volume
renderer. These two techniques are combined to achieve realistic explosion images.
The following section outlines the implementation details of the ray tracer and
volume renderer used to produce the images that were used to create the animations
presented in Chapter 5.

A.1 Ray Tracing

Ray tracing is an approach to rendering scenes in which rays are cast from the eye
through a pixel in the image plane, and into the scene. The path of the ray is
traced to determine which object in the scene was intersected with first. A lighting
model is used to compute the colour at the point of intersection, which in turn is
the colour of the pixel. Algorithm 7 gives the basic steps of a ray tracer. For an
in-depth introduction to ray tracing, the reader is referred to [21, Chapter 14].

Ray tracing is advantageous due to its inherent ability to do automatic hidden-
surface removal. It is also easy to add features such as reflection, refraction and
shadows. However, ray tracers do not give complete global illumination. Although

55

Algorithm 7 Ray Tracing [21, page 736]

Define the objects and light sources in the scene
Set up the camera
for each row r do

for each column c do
1. Build the rcth ray
2. Find all intersections of the rcth ray with objects in the scene
3. Identify the intersection that lies closest to, and in front of, the eye
4. Compute the “hit point” where the ray hits this object, and the normal
vector at this point
5. Find the colour of the light returning to the eye along the ray from the
point of intersection
6. Place the colour in the rcth pixel

end for
end for

some optimization techniques exist, ray tracers are can only be accelerated to a
certain point.

A.1.1 Intersections

For each of the rigid bodies considered, spheres, cubes and polygonal meshes, an
intersection routine is required. A ray is given by

r(t) = r0 + rdt (A.1)

where rd is the ray’s direction and ro is the ray’s origin. A sphere of radius r has
the implicit form

F (r) = r2 − 1. (A.2)

To determine the intersection of a ray and a sphere, equation (A.1) is substituted
into equation (A.2) giving

t = −B

A
±

√
B2 − AC

A

where A = |rd|2, B = ro · rd and C = |ro|2 − 1. The smallest positive value for t is
computed, which corresponds to the closest intersection point on the sphere that is
in front of the eye.

56

A cube is aligned with each of the axis in its object space. The equation of the
plane that each face lies on, and its normal, can be calculated. To intersect with a
cube, each of the six faces are tested for intersection. It is first determined if the ray
intersects with the plane the face lies on by substituting the equation of the ray into
the equation of the plane and looking for a positive t value. If such a t is found, then
a further check that the point at this t value actually lies on the face of the cube is
performed. The smallest positive t value over all the faces is the closest intersection
point on the cube that is in front of the eye. Cubes are also important in that
they can be used to optimize intersection tests for more complicated objects such
as polygonal meshes. A polygonal mesh can be placed inside a cube, referred to in
this case as a bounding box. Only when the bounding box is intersected with, does
the polygonal mesh inside then start to compute intersections. Bounding spheres
can also be considered. This reduces the number of times the computationally
expensive ray-mesh intersection test need to be done. The intersection routine for
polygonal meshes employed Badouel’s efficient ray-polygon intersection routine [5].

A.1.2 Lighting Models

The actual colour at any point on the surface of a rigid body is dependent on what
kind of light the surface is receiving. Diffuse reflection refers to light coming from
a source at a particular direction in space. Diffuse light is reflected equally in all
directions. Specular reflection is the amount of shiny reflection which causes high-
lights to occur when light hits the surface of an object and is reflected back towards
the viewer. The colour of a point on a surface is the sum of the diffuse and specular
reflection components. Some lighting models also include an ambient light com-
ponent. Ambient light is background lighting found throughout the environment
and is usually assumed to be constant. The following two sections describe how
the diffuse and specular terms are computed using the Phong and the Ashikhmin
lighting models.

Phong Lighting

The Phong lighting model [36] is one of the most commonly used models in com-
puter graphics. The Phong model improves on previously proposed models by more
accurately imitating real physical shading situations. The Phong lighting equation

I = RaIa +
m

∑

i=1

Is(Rd(N · L) + Rs(V · R)f)

57

light

eye

V N

LR

Figure A.1: Vectors in the Phong lighting model

is depicted in Figure A.1. Variables and their meaning in the Phong lighting model
are given in Table A.1. Note that all vectors should be normalized.

Ashikhmin Lighting Model

The Ashikhmin anisotropic lighting model [4] is a view-dependent model that cre-
ates a brushed-metal effect. This model improves on other proposed models because
is obeys energy conservation and reciprocity law and has a non-constant diffuse
term. The Ashikhmin lighting model is used on a per-object basis. A diffuse and
specular term are specified, as well as nu and nv, Phong-like exponents that control
the shape of the specular highlight.

When a rigid body is intersected with, its uv coordinates are calculated (de-
scribed in Section A.1.3). The partial derivatives uV ec and vV ec in the direction
of u and v respectively are calculated for each type of rigid body. The partial
derivatives form the following relations with the normal, n:

n = uV ec × vV ec.

The partial derivatives for a sphere are

uV ec = (− sin(2πu), 0,− cos(2πu))

vV ec = (cos(πv) cos(2πu),− sin(πv),− cos(πv) sin(2πu)).

When intersecting with a cube, the intersection routine knows which face the
ray intersected. The uV ec and vV ec are set to the directions in which the u and

58

Ra ambient coefficient
Rd diffuse surface coefficient
Rs specular surface coefficient
Ia intensity of ambient light
Is intensity of light source
I total computed intensity
N surface normal
L light vector
V view vector
R reflection vector
f specular exponent
m number of lights in the scene

Table A.1: Variables in the Phong lighting model

v values are moving. For example, if a ray intersects with the front face, then
u corresponds to the x coordinate and v corresponds to the y coordinate. As x
increases, u increases, resulting in a value of (1, 0, 0) for uV ec. Similarly, as y
decreases, so does v resulting in a value of (0, −1, 0) for vV ec.

For polygonal meshes, the partial derivatives of each face are constant across
the face. As a result, the partial derivatives can be calculated when the mesh is
created and stored for later use. Using the vertices of a triangle, (p1, p2, p3), and
the uv coordinates at each of these vertices, (u0, v0), (u1, v1), (u2, v2), the partial
derivatives for the face are

uV ec =
v2 − v0

M
(p1 − p0) +

v0 − v1

M
(p2 − p0)

vV ec =
u0 − u2

M
(p1 − p0) +

u1 − u0

M
(p2 − p0)

where
M = (u1 − u0)(v2 − v0) − (v1 − v0)(u2 − u0).

To determine pixel colour based on the Ashikhmin lighting model, the final
colour is the sum of the diffuse term,

ρd(k1, k2) =
28Rd

23π
(1 − Rs)(1 − (1 − n · k1

2
)5)(1 − (1 − n · k2

2
)5),

and the specular term,

ρs(k1, k2) =

√

(nu + 1)(nv + 1)

8π

(n · h)
nu(h·uV ec)2+nv(h·vV ec)2

1−(h·n)2

(n · k) max((n · k1), (n · k2))
F (k · h),

59

Rd diffuse colour of the object
Rs specular colour of the object

nu, nv Phong-like exponents for controlling the highlight
k1 light vector
k2 view vector
n surface normal

uV ec, vV ec tangent vectors that form an orthonormal basis with n
ρ(k1, k2) BRDF

h half vector between k1 and k2

F (cos(θ)) Fresnel reflectance for incident angle θ

Table A.2: Variables used in the Ashikhmin lighting model

where
F (k · h) = Rs + (1 − Rs)(1 − (k · h))5.

is an approximation to the Fresnel coefficient. The variables and their meaning in
the Ashikhmin lighting model are summarized in Table A.2. Note that all vectors
should be normalized. Further note that when k appears with no subscript, either
k1 or k2 can be used.

A.1.3 Features

Ray tracers typically exhibit extra features in addition to a standard lighting model.
The following sections describe the features used to obtain the results presented in
this thesis.

Anti-aliasing

Aliasing is the sampling error caused by representing a continuous quantity with
discrete signals [34]. It describes the effect of seeing “stair-casing” where a straight
line is intended, see Figure A.2, and is caused because a raster display is only able
to display a discrete number of pixels in a fixed rectangular area. Anti-aliasing
is the name for techniques designed to reduce or eliminate this effect. The three
main strategies for anti-aliasing are prefiltering, supersampling and postfiltering.
The approach used in this work is stochastic jittered supersampling. For an ex-
cellent discussion on the concept of aliasing and an in-depth look at anti-aliasing
techniques, the reader is referred to [10].

60

Figure A.2: Aliasing of a straight line

Jittered supersampling attempts to reduce the effects of aliasing by dividing
each pixel into an n × n array of sub-pixels, where n is referred to as the sample
size. A ray is then cast to the center of each sub-pixel and jittered. Jittering is
accomplished by generating a random number ζ between 0 and 1/nth of the width
of a pixel and multiplying ζ by the components of the ray. To further increase the
effectiveness of this technique, the final colour for each pixel is computed using a
weighted sum. Sub-pixels at the edges of a pixel are given a weight of 1, while
interior sub-pixels are given a weight 1.5.

Phong Shading

When shading the triangles in a polygonal mesh, it may be most efficient to choose
a colour from one of the vertices and shade an entire face with that colour, a
technique known as flat shading. However, this results in each face being easily
distinguished from its neighbors, producing a “faceted” appearance. Flat shading
also suffers from the inability to capture specular highlights.

Phong shading strives to reduce the faceted appearance and make polygonal
meshes look smooth. This is accomplished by interpolating the normal at each point
in the face and recomputing the lighting at each pixel. Although this technique is
computationally more expensive that flat shading, it allows for more accuracy,
smoother surfaces and better highlighting.

The polygonal mesh must do a preprocessing step to use Phong shading. The
mesh must create an array of normals, one per vertex to later be used in the
interpolation. This process is outlined in Algorithm 8.

When intersecting with each triangle of a mesh, the barycentric coordinates, α
and β, for the intersection point are computed. These coordinates are used with
the vertices of the triangle, v0, v1 and v2, to calculate the interpolated normal,

ni = (1 − (α + β)) · normals(v0) + α · normals(v1) + β · normals(v2).

The interpolated normal is then used in lighting calculations in place of the face
normal.

61

Algorithm 8 Phong Shading Pre-processing Step

for each vertex vi do
initialize vector ni;
for each face fj do

for each vertex vk in face fj do
if vk = vi then

normalfj
⇐ fj’s normal

ni ⇐ ni + normalfj

end if
end for

end for
normalize ni

add ni to array at position i
end for

Texture Mapping

Texture mapping is the process of adding a separately defined 2D texture or image
to a surface to change its colour [8]. It is a mathematical mapping from the texture
domain to the object space. For each type of rigid body, the intersection point (x,
y, z) is converted into uv coordinates that are used in texture mapping. Each type
of rigid body calculates its uv coordinates uniquely.

For spheres, the north pole is assigned v = 0 and the south pole is assigned
v = 1. At the positive x-axis, u = 0 and increases counter-clockwise around the
y-axis. The values of u and v are determined by

u =

{arccos(x
r sin(vπ)

)

2π
if z ≤ 0

1 − arccos(x
r sin(vπ)

)

2π
otherwise

v =
arccos(y

r
)

π

where r is the radius of the sphere. The calculation of u takes into account the
dual solution of inverse trigonometric functions.

To assign uv coordinates to a cube, each face will have values for u and v rang-
ing from 0 to 1. As a result, the entire texture will be mapped to each face of the
cube rather than warping it around the box. During the intersection process, it
is known which of the six faces was intersected with and the normal. The coordi-
nate corresponding to the non-zero component of the normal is dropped and the

62

remaining two are used as the u and v values. These values may need to be scaled
to the range [0, 1] depending on the dimensions of the box.

To texture map the triangles of a polygonal mesh, the uv coordinates of each
vertex are optionally specified with the vertices and faces of the mesh. This allows
for the freedom to apply a texture over the whole mesh, or have each triangle
texture mapped independently. Using the vertices of a triangle, (u0, v0), (u1, v1),
(u2, v2), and the barycentric coordinates of the point of intersection, α and β, the
u and v coordinates for the point of intersection are determined by

u = u0 + α(u1 − u0) + β(u2 − u0)

v = v0 + α(v1 − v0) + β(v2 − v0).

To use the texture map to determine the colour of a pixel, the uv values are con-
verted into texture coordinates s and t,

s = u(width − 1)

t = v(height − 1).

The dimensions of the texture map are specified by width and height. The texture
coordinates are used to index into the texture map to determine the diffuse colour
of a pixel.

Procedural Textures

Procedural textures define a texture by a mathematical function based on the 3D
point of intersection. Perlin Noise [35] is commonly used in procedural textures, and
is a function of the form PerlinNoise3D(x, y, z, α, β, n) which computes a harmonic
summing function from 1 to n. The parameters x, y and z are the coordinates of
the intersection point, α is the weight when the sum is formed and β is harmonic
scaling/spacing.

Each procedural texture has two colours, colour1 and colour2 associated with
it. The variable texture is the resultant diffuse colour for each procedural texture.
The procedural texture for wood is created using

noise = (1 + PerlinNoise3D(x, y, z, 2, 1.2, 8)/2) ∗ 20

texture = colour1 + (colour2 + (colour1 ∗ −1)) · (noise − int(noise)),

where int is an operation that takes the integer value of a variable. The procedural
texture for marble is given by

noise = |sin(180 ∗ (0.01x + 0.02PerlinNoise3D(x, y, z, 2, 2, 8)))|
texture = noise · colour1 + (1 − noise) · colour2,

63

θi

rreflect

n

i

θi

Figure A.3: The reflection vector

and the procedural texture for a checkerboard uses the uv coordinates of the inter-
section point with a constant SIZE that defines the width and height of a checker,
giving the function

texture =

{

colour1 if (SIZE ∗ u mod 2) = (SIZE ∗ v mod 2)

colour2 otherwise.

Reflection and Refraction

When a ray is intersected with a reflective or refractive object, a secondary ray is
generated in the direction of perfect reflection or perfection refraction respectively.
To control the amount of secondary rays that are cast, a maximum recursion depth
is set. A reflective ray is

rreflect = i − 2n cos(θi),

where i is the incoming ray, θi is the angle of incidence, and n is the surface normal.
The reflection ray is depicted in Figure A.3.

A refractive ray, rrefract is depicted in Figure A.4 and calculated using Snell’s
law

rrefract =
ηi

ηr
i − (cos(θr) −

ηi

ηr
cos(θi))n.

In addition to the same variable definitions as reflection, ηi and ηr are the indices
of refraction for the incident and refracting material respectively, θr is the angle of
refraction, with

cos(θr) =

√

1 − (
ηi

ηr
)2(1 − cos2(θi)).

If this quantity is negative then there is total internal reflection. Instead of casting
a refractive ray, a reflection ray is cast.

64

material 1

material 2

i

n

rrefract

ηi

ηr

θr

θi

Figure A.4: The refraction vector

To simplify the refraction process, it is assumed that when a ray enters or leaves
a refractive object that is is always from/to air. Objects with different refractive
indices do not intersect.

A.2 Volume Rendering

Volume rendering is a technique to display surfaces from three-dimensional sam-
pled data [23]. Rather than fitting a surface to the data, rays are traced from the
eye through the volume data and projected onto the image plane. Volume render-
ing is advantageous because of its ability to display “fuzzy” surfaces, for example
explosions, smoke and clouds. To overcome possible aliasing artifacts and loss of
resolution, the volume grid must be the same dimensions as the image. However,
when the volume is finely divided and there exist many cells with non-zero density,
volume rendering is computationally expensive.

Two grids of the same size as the fluid grid are created, one for densities and
one for colour. However, the density and colour grids are discretized much finer
(300 × 300 × 300) than the fluid grid to prevent aliasing in the rendered images.
As each particle is processed, its current position in the density and colour grid is
computed and used to accumulate density and colour for each cell.

Once the density and colour is obtained for each cell, this data needs to be
smoothed. Without a smoothing function, the data may contain a large positive
value next to an empty cell resulting in a drastic change or sharp edge in the

65

resulting image. A Gaussian blur filter

G(x, y, z) =
1

(2π)3/2α3
e−

x2+y2+z2

2α2

is used to smooth or blur the data to remove detail and sharpness where the pa-
rameter α controls the amount of decay. The function is evaluated over the range
−n−1

2
to n−1

2
for each of x, y and z, where n is the filter size, n odd.

The Gaussian blur function is applied to both the density and colour data

R(i, j, k) =
1

S

n
∑

i=1

n
∑

j=1

n
∑

k=1

D(i, j, k)F (i, j, k)

where R(i, j, k) is the filtered data, S is the sum of the entries in the Gaussian
filter, n is the size of the filter, D(i, j, k) is the data (either density or colour), and
F (i, j, k) is the value in the Gaussian filter at index (i, j, k).

Once both the density and colour values have been blurred, the blurred colour is
divided by the blurred density of each cell. The final step in preparing the volume
data for rendering is to map the blurred density values to a specified range [min,
max] where 0 ≤ min < max ≤ 1. The density and colour values are then passed
to a volume renderer. To accomplish this, a cube rigid body is created for each cell
with non-zero density, and designated to hold volume data by specifying that it is
made of volume material.

The volume renderer uses the ray tracer to intersect with the cells in the volume.
As the ray passes through the volume from front to back, colour and opacity are
accumulated. The opacity of a cell is

a = 1 − e−τD(x)dz

where D(x) is the density of the cell, dz is the depth of the cell in the direction
of the ray, and τ is a constant controlling the conversion from density to opacity.
Instead of using a lighting model, the accumulated colour is used to shade the pixel.

Opacity is accumulated along a ray using

Am+1 = Am + a(1 − Am) (A.3)

and colour is accumulated according to

Cm+1 = Cm + a(1 − Am)I(x) (A.4)

66

where I(x) is stored illumination of the cell. If the opacity becomes greater than
0.999 then no more intersections need be considered and the colour accumulated
to that point is returned. Other methods for improving the efficiency of volume
rendering include octrees and adaptively terminating the ray [24].

A hybrid algorithm proposed by Levoy [25] was used to combine the volume
data with the rigid bodies. All intersections with both rigid bodies and the cubes
representing volume data are intersected with. All the intersection points are sorted
in increasing order from front to back and then processed in order. If an intersection
was with volume data, equations A.3 and A.4 are used as with normal volume
rendering. However if the intersection was with a rigid body, then either the Phong
or Ashikhmin lighting model is used to determine I(x) for the object, and used with
equations A.3 and A.4. After all intersections have been processed, or the opacity
becomes greater than 0.999, the accumulated colour is used to shade the pixel.

A.2.1 Blackbody Radiation

A blackbody is an object that absorbs all light that hits it. It reflects no light and
appears perfectly black [48]. All blackbodies heated to a certain temperature will
emit thermal radiation with the same spectrum. Planck’s law,

P (T) =
2πhc2

λ5(e
hc

λkT − 1)
(J · m−3) (A.5)

gives the energy radiated by a blackbody as a function of temperature. Planck’s
formula can be used to create blackbody radiation curves which show the amount
of energy radiated at each wavelength for a certain temperature, T in kelvin. In
equation (A.5), h is Planck’s constant (6.626176×10−34 J · s), c is the speed of light
(2.997924×108 m/s) and k is the Boltzmann constant (1.380662×10−23 J/K). A true
blackbody radiator does not exist, but in practice blackbody radiation can be used
as an approximation to determine the colour of certain physical phenomena such as
fire [31] and planetary nebulae [26]. Blackbody radiation is used to determine the
colour of the particles in the explosion model. The resultant colour from Planck’s
formula is adjusted according to

2P (Tλ)
2 + 100P (Tλ) + 1000

so that it matches the observed range of colour in real explosions.

67

Bibliography

[1] [online]Available from: http://www.ariastechltd.com/arias_tech_

english/graphics/broken_window.g%if.

[2] [online]Available from: http://www.brypix.com/pic_of_day/24-Jan-2005_
shattered_glass.jpg.

[3] Khang-Pu Liou Alex Pothen, Horst Simeon. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):403–452, 1990.

[4] Michael Ashikhmin and Peter Shirley. An anisotropic Phong BRDF model.
Journal of Graphics Tools: JGT, 5(2):25–32, 2000.

[5] Didier Badouel. An efficient ray-polygon intersection. Graphics gems, pages
390–393, 1990.

[6] W. E. Baker. Explosions in air. University of Texas Press, 1973.

[7] David Baraff. An introduction to physically based modeling: Rigid body sim-
ulation i - unconstrained rigid body dynamics. 1997.

[8] James F. Blinn and Martin E. Newell. Texture and reflection in computer
generated images. Communications of the ACM, 19(10):542 – 547, 1976.

[9] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid: animating the
interplay between rigid bodies and fluid. ACM Trans. Graph., 23(3):377–384,
2004.

[10] Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions
on Graphics (TOG), 5:51 – 72, 1986.

[11] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 15–22. ACM Press, 2001.

68

[12] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Animating suspended
particle explosions. In Proceedings of ACM SIGGRAPH 2003, pages 708–715,
August 2003.

[13] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. Journal, 23:298–
205, 1973.

[14] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer graphics and in-
teractive techniques, pages 23–30. ACM Press, 2001.

[15] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical
Models and Image Processing, 58(5):471–483, 1996.

[16] Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbulent
gas. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 181–188. ACM Press/Addison-Wesley Publishing
Co., 1997.

[17] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. A method for
animating viscoelastic fluids. ACM Trans. Graph., 23(3):463–468, 2004.

[18] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical sim-
ulation in fluid dynamics: a practical introduction. Society for Industrial and
Applied Mathematics, 1998.

[19] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. Generation of crack
patterns with a physical model. In The Visual Computer, number 3, pages 126
– 137. Springer-Verlag Heidelberg, July 1998.

[20] Johan Jansson and Joris S.M. Vergeest. Combining deformable- and rigid-body
mechanics simulation. In The Visual Computer, pages 280 – 290. Springer-
Verlag, February 2003.

[21] Francis S. Hill Jr. Computer Graphics Using OpenGL. Prentice Hall, second
edition, 2001.

[22] Arnauld Lamorlette and Nick Foster. Structural modeling of flames for a pro-
duction environment. In Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, pages 729–735. ACM Press, 2002.

[23] Marc Levoy. Display of surfaces from volume data. In IEEE Computer Graph-
ics and Applications, volume 8, 1988.

69

[24] Marc Levoy. Efficient ray tracing of volume data. In ACM Transactions on
Graphics, volume 9, pages 245–261, 1990.

[25] Marc Levoy. A hybrid ray tracer for rendering polygon and volume data. In
IEEE Computer Graphics and Applications, volume 10, pages 33–40, 1990.

[26] Marcus Magnor, Gordon Kindlmann, and Charles Hansen. Constrained in-
verse volume rendering for planetary nebulae. In VIS ’04: Proceedings of the
conference on Visualization ’04, pages 83–90, Washington, DC, USA, 2004.
IEEE Computer Society.

[27] Aurélien Martinet, Eric Galin, Brett Desbenoit, and Samir Akkouche. Proce-
dural modeling of cracks and fractures, June 2004. Technical Sketch, Proceed-
ings of Shape Modeling International. Available from: http://artis.imag.

fr/Publications/2004/MGDA04.

[28] Claude Martins, John Buchanan, and John Amanatides. Animating real-time
explosions. In The Journal of Visualization and Computer Animation, vol-
ume 13, pages 133–145, 2002.

[29] Oleg Mazarak, Claude Martins, and John Amanatides. Animating exploding
objects. In Proceedings of the 1999 conference on Graphics interface ’99, pages
211–218. Morgan Kaufmann Publishers Inc., 1999.

[30] Michael Neff and Eugene Fiume. A visual model for blast waves and fracture.
In Graphics Interface, pages 193–202, 1999.

[31] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically
based modeling and animation of fire. In Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, pages 721–728. ACM
Press, 2002.

[32] Alan Norton, Greg Turk, Bob Bacon, John Gerth, and Paula Sweeney. Ani-
mation of fracture by physical modeling. Vis. Comput., 7(4):210–219, 1991.

[33] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and anima-
tion of brittle fracture. In Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pages 137–146. ACM Press/Addison-
Wesley Publishing Co., 1999.

[34] Alan V. Oppenheim and Alan S. Willsky. Signals and Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1983.

70

[35] Ken Perlin. Ken Perlin’s homepage [online]. Available from: http://mrl.

nyu.edu/~perlin/doc/oscar.html\#noise.

[36] Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311–317, 1975.

[37] Franco P. Preparata and Michael I. Shamos. Computational geometry: an
introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[38] William T. Reeves. Particle systems. In Proceedings of the 10th annual confer-
ence on Computer graphics and interactive techniques, pages 359–375. ACM
Press, 1983.

[39] David Richards. Fractured reservoirs: software and workflow advancements
in fracture and fault prediction, characterization, and connection to reservoir
modeling. CSEG Recorder, April 2000.

[40] Jeffrey Smith, Andrew Witkin, and David Baraff. Fast and controllable simu-
lation of the shattering of brittle objects. In Graphics Interface, May 2000.

[41] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pages 121–128. ACM Press/Addison-
Wesley Publishing Co., 1999.

[42] Jos Stam. Interacting with smoke and fire in real time. Commun. ACM,
43(7):76–83, 2000.

[43] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena us-
ing diffusion processes. In Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 129–136. ACM Press, 1995.

[44] John C. Strikwerda. Finite difference schemes and partial differential equa-
tions. Wadsworth Publ. Co., Belmont, CA, USA, 1989.

[45] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: vis-
colelasticity, plasticity, fracture. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interactive techniques, pages 269–
278, New York, NY, USA, 1988. ACM Press.

[46] Fabrice Uhl and Jacque Blanc-Talon. Rendering explosions. In SCS, Military,
Government, and Aerospace Simulation, volume 29, pages 121–126, 1997.

[47] Andrew Witkin. An introduction to physically based modeling: Particle system
dynamics. 1997.

71

[48] Gnther Wyszecki and W. S. Stiles. Color Science: Concepts and Methods,
Quantitative Data and Formulae. John Wiley & sons, second edition, 1982.

[49] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating explo-
sions. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 29–36. ACM Press/Addison-Wesley Publishing
Co., 2000.

[50] Laizin Zhou and Alex Pang. Metrics and visualization tools for surface mesh
comparison. SPIE Proceedings on Visual Data Exploration and Analysis,
4302:99–110, 2001.

72

