
Unfolding and Reconstructing

Polyhedra

by

Brendan Lucier

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©Brendan Lucier, 2006

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Brendan Lucier

ii

Abstract

This thesis covers work on two topics: unfolding polyhedra into the plane and reconstructing

polyhedra from partial information. For each topic, we describe previous work in the area and

present an array of new research and results.

Our work on unfolding is motivated by the problem of characterizing precisely when overlaps

will occur when a polyhedron is cut along edges and unfolded. By contrast to previous work, we

begin by classifying overlaps according to a notion of locality. This classification enables us to

focus upon particular types of overlaps, and use the results to construct examples of polyhedra

with interesting unfolding properties.

The research on unfolding is split into convex and non-convex cases. In the non-convex case,

we construct a polyhedron for which every edge unfolding has an overlap, with fewer faces than

all previously known examples. We also construct a non-convex polyhedron for which every

edge unfolding has a particularly trivial type of overlap. In the convex case, we construct a

series of example polyhedra for which every unfolding of various types has an overlap. These

examples disprove some existing conjectures regarding algorithms to unfold convex polyhedra

without overlaps.

The work on reconstruction is centered around analyzing the computational complexity of a

number of reconstruction questions. We consider two classes of reconstruction problems. The

first problem is as follows: given a collection of edges in space, determine whether they can be

rearranged by translation only to form a polygon or polyhedron. We consider variants of this

problem by introducing restrictions like convexity, orthogonality, and non-degeneracy. All of

these problems are NP-complete, though some are proved to be only weakly NP-complete. We

then consider a second, more classical problem: given a collection of edges in space, determine

whether they can be rearranged by translation and/or rotation to form a polygon or polyhedron.

This problem is NP-complete for orthogonal polygons, but polynomial algorithms exist for non-

orthogonal polygons. For polyhedra, it is shown that if degeneracies are allowed then the problem

is NP-hard, but the complexity is still unknown for non-degenerate polyhedra.

iii

Acknowledgments

First and foremost, I would like to thank my supervisors Ian Munro and Anna Lubiw. They

consistently directed me toward interesting problems, and this thesis would be in a poor state

indeed without their invaluable feedback on my innumerable first chapters. I would also like to

thank Anna Lubiw again in her capacity as instructor for the course Algorithms for Polyhedra

that began my journey toward this thesis topic.

iv

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Polygons and Polyhedra . 5

2.2 Unfoldings . 10

2.2.1 Formal Definition . 10

2.2.2 Zero-curvature vertices . 13

2.2.3 Unfolding Angles . 13

2.2.4 Defining Unfoldings Algorithmically . 14

2.2.5 General Unfoldings . 15

2.3 Reconstruction . 15

2.3.1 Vectors and Lengths . 15

2.3.2 Chains and Polygons . 16

2.3.3 Problem Complexity . 18

3 Background 21

3.1 Unfolding Polyhedra . 21

3.1.1 Polyhedra and Art . 21

3.1.2 Other Types of Simple Unfoldings . 22

3.1.3 Unfolding Classes of Orthogonal Polyhedra 24

3.1.4 Ununfoldable Polyhedra . 24

3.2 Reconstructing Polyhedra . 28

3.2.1 Reconstruction from Edge Lengths . 28

3.2.2 Reconstruction from Face Directions . 29

3.2.3 Reconstruction from Nets . 29

v

4 Ununfoldable Polyhedra 33

4.1 Introduction . 33

4.2 Local Overlaps . 34

4.3 Unavoidability of 1-Local Overlaps . 35

4.3.1 Intuition . 36

4.3.2 The Polyhedron . 36

4.3.3 1-Local Overlaps . 38

4.4 A Small Ununfoldable Polyhedron . 39

4.4.1 Symmetric Example . 39

4.4.2 Asymmetric Example . 41

4.4.3 Ununfoldability . 42

4.4.4 Removing Coplanar Faces . 46

4.5 Arbitrary Cuts . 48

4.5.1 Combinatorics of the Cut Tree . 48

4.5.2 Cutting Into Vertices . 50

4.5.3 Embedding of the Cut Tree . 51

5 Unfolding Convex Polyhedra 53

5.1 Introduction . 53

5.2 2-Local Overlaps . 54

5.3 Counterexamples to Unfolding Algorithms . 57

5.3.1 Shortest Path Trees . 57

5.3.2 The Steepest Edge Algorithm . 62

5.3.3 Counterexample . 63

5.3.4 Normal Order Unfoldings . 69

6 Reconstructing Polygons and Polyhedra 75

6.1 Introduction . 75

6.2 Preliminaries . 76

6.2.1 Lengths and Orientations . 76

6.2.2 Equivalence of Convex and General Polygons 77

6.2.3 Sets of Edge Lengths . 78

6.3 Problems For Reduction . 83

6.4 Reconstructing from Edge Vectors . 86

6.4.1 Polygons . 86

6.4.2 Polyhedra . 95

vi

6.4.3 Open Problems . 99

6.5 Reconstructing from Edge Lengths . 99

6.5.1 Polygons . 99

6.5.2 Orthogonal Polyhedra . 103

6.5.3 Degenerate Polyhedra . 104

6.5.4 Open Problems . 105

6.6 Summary . 106

7 Conclusion 107

vii

List of Tables

6.1 Summary of computational complexity results . 106

ix

List of Figures

1.1 Forming polyhedra from paper cut-outs . 1

2.1 A polygon . 6

2.2 Genus of a polyhedron . 7

2.3 Convex and non-convex sets . 8

2.4 Examples of degenerate polyhedra . 9

2.5 Polygon angles . 9

2.6 Angles in a polyhedron . 10

2.7 Graphs of a cube . 11

2.8 A cut tree and corresponding adjacency tree for a cube 12

2.9 Simple and overlapping unfoldings . 12

2.10 Unfolding angles at a vertex . 14

2.11 Examples of edge vectors . 16

2.12 Open and closed chains . 17

2.13 A convex polygon as a pair of chains . 18

3.1 A vertex-unfolding . 23

3.2 An ununfoldable polyhedron with non-convex faces 25

3.3 Ununfoldable orthogonal polyhedra . 25

3.4 Ununfoldable polyhedra formed with Witch’s Hats 26

3.5 Ununfoldable polyhedra constructed by Grünbaum 27

3.6 Reconstructing a polygon from a set of sticks. 28

3.7 Five foldings of the latin cross . 30

4.1 Examples of k-local overlaps . 34

4.2 Different views of polyhedron P4(α, β) . 37

4.3 Polyhedron P4(∞, 0) . 37

4.4 Different views of polyhedron P3(α, β) . 40

xi

4.5 A simple unfolding for P3 . 41

4.6 The polyhedron P φ
3 . 42

4.7 An overlap in an unfolding of P φ
3 , from Lemma 4.4.3 43

4.8 Polyhedron P 10◦
3 (∞, 0) with face angles given . 44

4.9 The overlap that occurs in the unfolding of P φ
3 in Case 2 of Lemma 4.4.4 45

4.10 The overlap that occurs in the unfolding of P φ
3 in Case 4 of Lemma 4.4.4 45

4.11 The overlap that occurs in the unfolding of P φ
3 in Case 5 of Lemma 4.4.4 46

4.12 The overlap that occurs in the unfolding of P φ
3 in Case 6 of Lemma 4.4.4 47

4.13 An example of the construction of points pv
i in Theorem 4.5.1 50

4.14 The construction of a tree embedding in Theorem 4.5.1 52

5.1 Examples of k-local overlaps . 54

5.2 Unfoldings in Lemma 5.2.1 . 55

5.3 The conditions of Lemma 5.2.2 . 56

5.4 The planar figure used to disprove Conjecture 5.3.1 58

5.5 The planar figure used to disprove Conjecture 5.3.2 60

5.6 Illustration of steepest edges . 63

5.7 The planar graph M∗
1 and unfolding of terrain M1(α) 64

5.8 Illustrations for Lemma 5.3.9 . 67

5.9 An example of normal order unfolding . 70

5.10 The planar graph M3 . 71

5.11 The 2-local overlaps that occur in normal order unfoldings of M3(α) 72

5.12 A 3-local overlap in a normal order unfolding of M3(α) 72

6.1 A sample polygon . 76

6.2 Line segments opposite an edge e . 79

6.3 The three sets in Lemma 6.2.3 . 81

6.4 Bit format of an integer in Theorem 6.3.1 . 84

6.5 An example of the construction in the proof of Lemma 6.4.3 88

6.6 Forming a degenerate orthogonal polygon from an instance of Partition. 91

6.7 Obtaining a solution to Partition from a reconstructed orthogonal polygon. . . . 92

6.8 An example of non-degenerate orthogonal polygon reconstruction 94

6.9 A convex polyhedron constructed from a solution to an instance of ECUVP. . . . 97

6.10 Forming a degenerate orthogonal polyhedron from an instance of Partition. . . . 98

6.11 Orthogonal reconstructions from edge lengths . 100

6.12 Forming a degenerate tetrahedral polyhedron from an instance of Partition . . . 105

xii

Chapter 1

Introduction

The idea of folding and unfolding polyhedra is as intuitive as it is long-studied. If one were charged

with the task of creating a model of a simple three-dimensional object, a natural solution is to

cut some pattern from a piece of paper and fold it into the desired shape. For example, to create

a cube one might use the well-known cross pattern shown in Figure 1.1(a). In a similar way, one

might construct a tetrahedron or a square pyramid from paper cut-outs given in Figures 1.1(b)

and 1.1(c).

Paper cut-outs of this form are called nets of polyhedra. These constructions have been studied

for hundreds of years, at least as far back as Dürer in 1525 [9]. Since then, many questions have

been raised about nets. For example, does every convex polyhedron have a net? In Dürer’s time

it was assumed that the answer is yes. However, a proof that every convex polyhedron has a net

has eluded computational geometers since it was first formally posed by Shephard in 1975 [32].

Since then, researchers have been trying to find algorithms to generate nets for convex polyhedra,

(a) Cube (b) Tetrahedron (c) Square Pyramid

Figure 1.1: Forming polyhedra from paper cut-outs

1

2

but thus far none have been successful.

To see what makes this question difficult, we can think of the act of unfolding a polyhedron.

Since a net can be folded into a polyhedron, we can consider unfolding a polyhedron to get back

the net. We call this operation edge-unfolding, since we cut a polyhedron along its edges to allow

it to unfold. Every polyhedron has many edge-unfoldings: simply cut edges until the surface can

unfold into the plane. The resulting object is called an edge-unfolding, but not every unfolding

is a net. The issue is that two or more faces might overlap when the surface is unfolded. In such

a situation, multiple faces occupy the same location, so the planar figure cannot be cut out of a

piece of paper and folded back into the original polyhedron.

The problem of finding nets for polyhedra is therefore the same as the problem of avoiding

overlaps in unfoldings of polyhedra. Unfortunately, it has proven quite difficult to analyze overlaps

in polyhedron unfoldings. It was not even known whether every polyhedron (not necessarily

convex) with convex faces had a net until this past decade (they do not; counterexamples were

constructed in [4] and [34]).

In the first half of this thesis, we present some results on unfoldings and overlaps. We first

consider non-convex polyhedra, and construct some examples of polyhedra with interesting un-

foldings. We first present a polyhedron for which every unfolding has an overlap of a particularly

trivial form. This polyhedron is then modified to form a polyhedron with no net that has only 9

faces, improving upon the previously best known bound of 13. We then turn to convex polyhe-

dra, and consider certain conjectures of the form “every convex polyhedron has an unfolding of

the form x that is a net.” We disprove these conjectures by constructing counterexamples that

generate overlaps of a special form.

Let us now turn away from unfoldings. Suppose that we are asked once again to construct a

model of a polyhedron. Instead of modeling the surface of the polyhedron with paper, perhaps

we create our model by constructing a skeleton of its edges. A natural thing to do, then, is to

take a set of rigid bars or sticks of the appropriate lengths and attach them at their endpoints

to form a three-dimensional shape. Every polyhedron, convex or not, can certainly be recreated

in this way. The cube of Figure 1.1(a) could be constructed out of 12 equal-length sticks. The

tetrahedron of Figure 1.1(b) and the square pyramid of Figure 1.1(c) can be constructed from 6

and 8 equal-length sticks, respectively.

Suppose now that one were presented with a pile of sticks and asked: “can some polyhedron

be constructed with these sticks as edges?” This problem has been fully solved in two dimensions:

a polygon can be reconstructed precisely when no stick is longer than all the others put together.

In three dimensions, however, the answer is much less clear.

In the second half of this thesis, we analyze the computational complexity of this reconstruc-

tion problem, along with a number of variants. We also examine the complexity of a related

3

problem, which is to reconstruct a polygon or polyhedron when both the edge lengths and their

orientations are given. That is, one is presented with a set of rigid sticks floating in space. One

must then form a polyhedron simply by translating the given sticks only, not rotating them. It

will turn out that most variants of these problems are hard, but the complexity depends on such

factors as the type of polyhedron to construct (e.g. convexity) and types of degeneracies that are

allowed (e.g. collinearity of incident edges).

Chapter 2

Preliminaries

Polyhedra have great intuitive appeal. One can visualize a cube, consider the process of folding

and unfolding that cube, and imagine constructing the cube from its component edges without

too much difficulty. Certainly one does not need any more than informal notions of “polyhedron”

and “unfolding” and “edge” to think and reason about such properties of cubes.

Unfortunately, as in any other discipline, our intuitive ideas about unfolding and reconstruc-

tion must be grounded by formal definitions. Though tedious, this process is absolutely vital:

otherwise we would certainly become muddled in the details of what precisely constitutes a poly-

hedron or some similar thing. To this end, we shall use this chapter to rigorously define notation

for describing and discussing polyhedra.

Our definitions are loosely grouped by category: general definitions regarding polyhedra, the

formal definitions involved in unfolding polyhedra, and analytic definitions used for reconstructing

polyhedra. It should go without saying that no results in this chapter should be regarded as new.

In fact, many of the “results” herein are so well-established in the study of polyhedra that we

shall simply state them as properties of the objects in question. If more detail on the derivation of

properties of polyhedra is desired, we recommend any one of a number of surveys on the subject

[9, 10, 27].

2.1 Polygons and Polyhedra

A polygon is a union of straight line segments in the plane that define a planar figure topologically

equivalent to a disc. Every line segment intersects another at each of its two endpoints, and two

line segments can intersect only at their endpoints. See Figure 2.1. The area bounded by these

line segments is the interior of the polygon, and the remaining region of the plane is the exterior.

5

6

interior exterior

edge

vertex

Figure 2.1: A polygon

The line segments themselves are called the edges of the polygon. The boundary of a polygon is

the union of its edges. Any point at which two edges meet is a vertex of the polygon. In a slight

abuse of notation, we shall sometimes use the term polygon to refer to the boundary plus interior

of a polygon.

We take V (P) and E(P) to mean the sets of vertices and edges of polygon P , respectively.

We say that vertex v and edge e are incident if v ∈ e, and two edges are incident if they have

an incident vertex in common. Two vertices are adjacent precisely when they are incident with

a common edge.

We now turn to the definition of a polyhedron, which is not as straightforward as that of a

polygon. The following definition is taken from Page 209 of Cromwell [9].

Definition 2.1.1 (Polyhedron). A polyhedron is the union of a finite set of polygons such that

(i) Any pair of polygons meet only at their edges or vertices.

(ii) Each edge of each polygon meets exactly one other polygon along that edge.

(iii) It is possible to travel from the interior of any polygon to the interior of any other, where

crossing from one polygon to another occurs via a common edge.

(iv) Let V be any vertex and let F1, F2, . . . , Fn be the n polygons which meet at V . It is possible

to travel over the polygons Fi from one to any other without passing through V .

Each polygon making up the polyhedron is a face of the polyhedron. When two faces intersect

along their edges, the intersection is an edge of the polyhedron. Similarly, when multiple faces

intersect at their vertices, that intersection point is a vertex of the polyhedron. The interior of a

polyhedron is the open region bounded by its faces. We shall sometimes refer to a polyhedron as

7

(a) Genus 0 (b) Genus 1

Figure 2.2: Genus of a polyhedron

the surface of a polyhedron to further distinguish it from its interior. The exterior of a polyhedron

is set of points not in the interior or surface of the polyhedron.

We take V (P), E(P) and F (P) to be the sets of vertices, edges, and faces of a polyhedron P .

A vertex v and edge or face e are incident if and only if v ∈ e. Similarly, an edge e is incident

with face f if and only if e ∈ f . Two faces or vertices are said to be adjacent if they are incident

with a common edge, and two edges are said to be incident if they are incident with a common

vertex.

We now briefly mention the notion of genus. Unlike a polygon, which is always topologically

equivalent to a circle, a polyhedron may not be topologically equivalent to the surface of a sphere.

The genus of a polyhedron can be defined informally as the number of so-called tunnels it has.

A cube, for example, has genus zero, while a toroidal polyhedron has genus one. See Figure 2.2.

A slightly more formal definition is as follows: a sphere has genus zero, a torus with n holes

has genus n, and any polyhedron that can be continuously deformed into a surface of genus g

has genus g. In particular, a polyhedron has genus zero precisely when it can be continuously

deformed into a sphere.

For a more formal definition of genus please see a survey on topology [21, 29]. For the

remainder of this paper, we shall only consider polyhedra of genus zero. We shall therefore take

“polyhedron” to mean “polyhedron of genus zero.”

A key result on polyhedra is Euler’s formula relating the numbers of vertices, edges, and faces.

Theorem 2.1.2 (Euler’s Formula). For any polyhedron P of genus zero, we have

|V (P)| − |E(P)| + |F (P)| = 2.

We now turn to the notion of convexity. A set of points is convex if the line segment between

any two points in the set is completely contained in the set. More formally, given set S ∈ Rd, we

say that S is convex if and only if, given any p, q ∈ S, we have that {tp+(1−t)q | 0 ≤ t ≤ 1} ⊂ S.

See Figure 2.3.

8

(a) Convex (b) Nonconvex

Figure 2.3: Convex and non-convex sets

We say that a polygon is convex if and only if its interior is a convex set. Similarly, a convex

polyhedron is one whose interior is a convex set. Equivalently, a polygon or polyhedron P is

convex if the line segment joining two points upon the surface of P does not intersect the exterior

of P .

Given any set of points S ⊂ Rd, we define the convex hull of S to be

CH(S) = {tp+ (1 − t)q | p, q ∈ S, 0 ≤ t ≤ 1}.

Then the convex hull of S is the smallest convex set containing S.

A set of points is starlike if it contains a fixed point p such that the line segment between p and

any other point in the set is completely contained in the set. More formally, set S ∈ Rd is starlike

if and only if there is a p ∈ S such that, given any q ∈ S, we have that {tp+(1−t)q | 0 ≤ t ≤ 1} ∈ S.

As with convexity, a polygon (polyhedron) is starlike if and only if its interior is a starlike set.

Let us now turn to particular types of polyhedra. A polyhedron is said to be convex-faced if

its faces are all convex as polygons. Further, a polyhedron is simplicial if its faces are all triangles.

A polygon is orthogonal if its edges are all axis-aligned. A polyhedron is orthogonal if each of

its faces is perpendicular to the x-, y-, or z-axis. Equivalently, an orthogonal polyhedron is one

in which each face is parallel to one of the xy-, yz-, or xz-plane.

We say that a polygon is degenerate if it contains a pair of adjacent edges that are collinear.

A polyhedron is degenerate if it contains a degenerate face or if it has a pair of adjacent faces

that are coplanar. See Figure 2.4.

We now define special angles of polygons and polyhedra. If v is a vertex of a polygon, we

say that the interior angle at v is the angle between its incident edges that faces toward the

9

(a) Coplanar Faces (b) Collinear Edges

Figure 2.4: Examples of degenerate polyhedra

interior angle

exterior angle

v

Figure 2.5: Polygon angles

10

v
θ

1
θ

2

θ
3

(a) Face Angles (b) Dihedral Angle

Figure 2.6: Angles in a polyhedron

interior of the polygon. Similarly, the exterior angle at v is the angle facing toward the exterior

of the polygon. Note that the interior and exterior angles at a vertex v always sum to 2π. See

Figure 2.5.

Now suppose v is a vertex of a polyhedron. The interior angle at v in an incident face is called

a face angle. The total face angle at v is the sum of all face angles at v. The curvature at v is

2π minus the total face angle at v. Finally, a dihedral angle is the interior angle between two

adjacent faces. See Figure 2.6.

Another key result is Descartes’ characterization of the total curvature of a polyhedron of

genus 0. Namely, the sum of the curvatures at all vertices of a polyhedron is 2π(2−2G), where G

is the genus of the polyhedron. Thus the sum of curvatures for a polyhedron of genus zero is 4π.

2.2 Unfoldings

2.2.1 Formal Definition

Informally, one unfolds a polyhedron by first cutting its surface and then flattening it into the

plane. In this section we define this concept more rigorously, making use of the underlying graph

structure of a polyhedron.

Given a polyhedron P , the graph of P is the graph (V (P), E(P)). That is, it is the graph

of vertices and edges of P . A graph contains a cycle if it contains a sequence of distinct edges

e0, e1, . . . , en−1 such that ei is incident with e(i+1 mod n) for all i. A graph is connected if for

any vertices p and q there is a sequence of edge e1, e2, . . . , en such that p is incident with e1, q is

incident with en, and ei is incident with ei+1 for all i. A graph that is connected and contains no

11

(a) A cube (b) The graph and adjacency graph of the cube

Figure 2.7: Graphs of a cube

cycles is a tree. A spanning tree of a graph G is a subgraph of G that contains all vertices of G

and is a tree.

Given any edge e ∈ E(P), we define the dual of e to be an edge e∗ that connects the two

faces incident with e. The dual graph of P is the graph (F (P), {e∗ | e ∈ E(P)}). The vertices

of this graph are the faces of P , and two vertices are connected by an edge if and only if the

corresponding faces are adjacent. See Figure 2.7.

A cut tree T of polyhedron P is a spanning tree of the graph of P . The adjacency tree of P

corresponding to T is the complement of T in the dual graph of P . In other words, if A is the

adjacency tree corresponding to T , then two faces are adjacent in A if and only if their common

edge is not in T . We also say that T is the cut tree corresponding to A. See Figure 2.8 for an

example.

Definition 2.2.1 (Unfolding). Let P be a polyhedron with adjacency tree A. For each f ∈ F (P),

define an isometric function φf : f → R2. That is, φf is a function mapping each face into the

plane that preserves distances. We further require that for every edge e ∈ E(p) such that

e∗ = (f1, f2) is in A, φf1
(e) = φf2

(e). Then the unfolding of P with respect to A is the mapping

φ : P → R2 defined by φ(p) = ∪f :p∈fφf (p). In other words, φ(P) is the union of all the images

φf (f). Note that edges and vertices can have multiple images under φ.

We will also sometimes refer to the image φ(P) as an unfolding of P , for convenience. These

unfoldings are sometimes called edge-unfoldings, to distinguish them from the more general general

unfoldings. See Section 2.2.5 for more information on this distinction.

12

Figure 2.8: A cut tree (edges in bold) and corresponding adjacency tree for a cube

boundary

A
B

C

pqr

s

(a) A simple unfolding of the cube (b) Overlaps in an unfolding

Figure 2.9: Simple and overlapping unfoldings

13

Now suppose φ is an unfolding of P . If there are two faces f1, f2 of P such that φ(f1)∩ φ(f2)

contains interior points then we say that f1 and f2 overlap in the unfolding. Note that we only

consider interior points, so faces can intersect at edges or vertices without creating overlaps. An

unfolding that contains no overlaps is a simple unfolding. A simple unfolding is also called a net.

A polyhedron that has no simple unfolding is called ununfoldable, since every unfolding contains

an overlap.

The mapping φ maps each face of P to a polygon in the plane. Consider the behaviour of φ

upon the edges and vertices of P . Each edge e whose dual e∗ is in A will be mapped to a single

edge by φ, since both faces incident with e will be connected in φ(P). On the other hand, an edge

e whose dual is not in A will have two images, corresponding to the images of its two incident

faces. These edges with two images are precisely the edges in C, the cut tree corresponding to A.

The union of all such images of edges is called the boundary of the unfolding. See Figure 2.9(a).

Every image of every vertex of P will lie upon the boundary of the unfolding, since the cut

tree spans all vertices. Further, the number of images of vertex v is precisely the degree of v in

the cut tree C. This is because every image of v is the intersection of the images of two cut edges

incident with v, and each cut edge has two images.

2.2.2 Zero-curvature vertices

We now comment briefly on vertices of curvature 0. Suppose a polyhedron contains vertex v of

curvature 0. Technically speaking, if we want to unfold the polyhedron into the plane, we do not

need to cut an edge incident with v. However, if we take such an unfolding and simply add cuts

so that we obtain a spanning tree of the vertices (and, in particular, have a cut incident with v),

we obtain a new unfolding. In this new unfolding all faces are in the same locations as before, but

certain edges between faces are now thought of as two edges that happen to occur in the same

position, and the corresponding faces are no longer adjacent. In effect, we have the same unfolding

whether or not we make a cut into vertex v; we are simply interpreting the unfolding slightly

differently either way. We can therefore assume without loss of generality that all unfoldings are

generated by spanning trees of cuts, even if vertices of zero curvature are present.

2.2.3 Unfolding Angles

Let T be a cut tree and consider the faces incident with a vertex v. We wish to partition these

faces into groups, each group corresponding to the faces whose images are incident with a given

image of v. More precisely, let the images of v in the unfolding be v1, . . . , vk. Then all of the

faces incident with a given vi in the unfolding form an unfolding group or component of v. Note

that no face can belong to more than one unfolding group, since such a face would have to be

14

v

w

w‘w‘’

θ
1
θ

2

θ
3

θ
4

θ
5

A

B

CD

E

F
G

H

Figure 2.10: Unfolding angles at vertex v. The unfolding groups at v are ABC, DE, FG,

and H. The unfolding angle bounded by (v, w) and (v, w′) is θ1 + θ2 + θ3. The unfolding

angle bounded by (v, w) and (v, w′′) is θ4+θ5. Both are considered to be unfolding angles

bounded by (v, w).

incident with v at two places along its boundary, an absurdity.

There is a relationship between unfolding groups and the cut tree T . Two faces f1 and f2 are

in the same unfolding group precisely when one can traverse the faces incident with v from f1

to f2 (either clockwise or counterclockwise) without crossing an edge in T . Informally speaking,

the edges in T split the faces incident with v into the unfolding groups. This implies that the

number of unfolding groups at v is precisely the degree of v in T . See Figure 2.10.

The sum of the face angles at v over all faces in an unfolding group is called an unfolding

angle at v. The important thing to note is that the unfolding angles at v are precisely the interior

angles of v1, . . . , vk in the unfolding. This is because the interior angle at some vi is simply the

sum of all face angles at vi, which is the same as the face angles at v for all faces in the unfolding

group corresponding to vi.

Finally, if e is a cut edge incident with v, we say that an unfolding group is bounded by e if

a face in the group is incident with e. The unfolding angle of such a group is referred to as an

unfolding angle bounded by e. See Figure 2.10.

2.2.4 Defining Unfoldings Algorithmically

We have presented a mathematical definition of polyhedron unfoldings. It is also possible to

define unfoldings algorithmically, so that it becomes clear that there is a unique unfolding (up to

translation/rotation) for a given polyhedron and cut tree. To this end, we describe a process by

which an unfolding is created.

15

Take an adjacency tree A of polyhedron P and root it at some arbitrary face f0. Place face

f0 in the plane, such that the side facing the interior of P faces upward. Now any child fc of f0

is connected to f0 via an edge e∗ ∈ A. Then e∗ is the dual of an edge e ∈ E(P) that is incident

with both f0 and fc. We now place fc in the plane (again, side facing the interior of P facing

upward) by attaching it to f0 at the common edge e.

We repeat this process for all children of f0. We then continue by repeating for all children

of the faces that have been placed. We are effectively performing a traversal of A, at the end of

which all faces are placed in the plane. The resulting complex of polygons is the unfolding of P

corresponding to A.

2.2.5 General Unfoldings

The terms “Unfolding” and “Cut tree” are motivated by the process by which one would convert

the surface of a polyhedron into an unfolding. Suppose we have a polyhedron P and a cut tree

T . Let C be the union of the edges of T . We now remove C from P ; effectively “cutting” along

the cut tree. The resulting surface P − C can now be unfolded (i.e. isometrically mapped) into

the plane, and this process is equivalent to the unfolding φ corresponding to cut tree T .

Motivated by the description of an unfolding as a polyhedron with a set of edges removed, we

now generalize our notion of an unfolding. Let C be the union of some connected set of curves on

the surface of polyhedron P , where any two such curves intersect only at their endpoints. Note

here that a curve in C may contain points on the interior of faces. Then as long as C contains

every vertex of P , the surface P − C can be isometrically mapped into the plane. The resulting

planar surface is called a general unfolding of P . Less formally, a general unfolding is one in

which cuts are allowed to occur across faces. We will sometimes call unfoldings edge-unfoldings

to distinguish them from general unfoldings.

2.3 Reconstruction

We now give some rather technical definitions to assist in analytic discussions of polygons and

polyhedra.

2.3.1 Vectors and Lengths

Given a vector v, we denote by |v| the length of v. The coordinates of v are denoted v.x, v.y, and

(if applicable) v.z. Similarly, the coordinates of a point p are denoted p.x, p.y, and (if applicable)

p.z. We say that vector v is positive facing (or just positive) if its first non-zero coordinate is

16

1

2
least vertex

1

2

1

(a) Rectangle (b) Rectangular Prism

Figure 2.11: Examples of edge vectors

positive. A vector that is neither positive nor the zero vector is negative. The slope of a two-

dimensional vector v is given by v.y
v.x

if v.x 6= 0. When v.x = 0, we will take the slope of v to be

+∞ if v.y > 0, −∞ if v.y < 0, or undefined if v.y = 0. In particular, when positive vectors are

sorted in decreasing order by slope, those with v.x = 0 will always occur first.

Suppose edge e of a polygon or polyhedron has endpoints p1 and p2. Then we denote by v(e)

the vector p2 − p1 or p1 − p2, whichever is positive. Then, given a polygon or polyhedron P , we

can consider the multiset of edge vectors Vec(P) = {v(e) | e ∈ E(P)}. We can also consider the

multiset of edge lengths Len(P) = {|v(e)| | e ∈ E(P)}. Consider the examples in Figure 2.11.

If P2d is the rectangle in Figure 2.11(a), then we have Vec(P2d) = {(0, 1), (0, 1), (2, 0), (2, 0)} and

Len(P2d) = {1, 1, 2, 2}. Now take P3d to be the rectangular prism in Figure 2.11(b). Then

Vec(P3d) = {(0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1),

(0, 0, 1), (0, 0, 1), (2, 0, 0), (2, 0, 0), (2, 0, 0), (2, 0, 0)}

and

Len(P3d) = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2}

.

2.3.2 Chains and Polygons

Suppose we have a sequence of line segments l1, l2, . . . , ln such that each li has one endpoint in

common with li−1 and its other endpoint in common with li+1 for 1 < i < n. Then this sequence

of line segments forms a chain. We say that the endpoint that li−1 shares with li is the end of

li−1 and start of li. In the case of l1, the endpoint that is not the end is taken to be the start,

and vice-versa for ln. The start of the chain is the start of l1, and the end of the chain is the

17

l
1

l
2 l

3

l
4

l
5

l
6

start

end

l
7

l
6 l

5

l
4

l
3

l
2l

1

start/end

(a) Open Chain (b) Closed Chain

Figure 2.12: Open and closed chains

end of ln. If the start and end of the chain coincide, we say that the chain is closed, otherwise

it is open. For each li, the direction of li is the vector resulting from subtracting the start of li
from the end of li. The orientation of li is either the direction of li or its negative, whichever is

positive.

Note the relationship between closed chains and polygons. A closed chain corresponds to a

polygon precisely when the only intersections between line segments occur between li and li+1 at

their common endpoint for some i, or between l1 and ln at the start/end point of the chain.

Given a polygon P in the plane, the least vertex of P is the vertex p with minimum p.x, then

minimum p.y. The standard traversal of the edges and vertices of P is the traversal beginning

at p and proceeding in clockwise order. Note that this traversal implies a closed chain with start

and end point p. This chain imposes an order and direction upon the edges of P ; we call these

the standard order and standard direction of (the edges of) P . For example, the rectangle P2d in

Figure 2.11(a) has arrows to show the standard direction of its edges. Recall that the edge vectors

of P2d are Vec(P2d) = {(0, 1), (0, 1), (2, 0), (2, 0)}, but the sequence of edge vectors in standard

order and direction is ((0, 1), (2, 0), (0,−1), (−2, 0)).

The following technical lemma will be of great use.

Lemma 2.3.1. Suppose a closed chain of line segments corresponds to a polygon, where the start

point of the chain is the least vertex of the polygon. Then this chain corresponds to a convex

polygon if and only if its direction vectors are ordered as

1. positive vectors in decreasing order by slope, then

2. negative vectors in decreasing order by slope.

18

least vertex

lower chain

upper chain

Figure 2.13: A convex polygon as a pair of chains

Proof. This result follows from the fact that a polygon is convex if and only if it has no interior

angle greater than π. The details are omitted.

In light of this lemma we shall consider a convex polygon as having two halves. The par-

tial chain containing all positive vectors (under standard direction) is the upper chain, and the

remaining partial chain containing all of the negative vectors in standard direction is the lower

chain. See Figure 2.13.

2.3.3 Problem Complexity

We now give a brief review of some terminology regarding complexity classes of problems. We

direct the reader to Chapter 34 of [8] for a more complete introduction to complexity. A decision

problem is a question, asked over some set of possible input values, to which the answer is “yes”

or “no” for each possible input. For example, the question “is this polygon convex?” is a decision

problem where the set of possible input values is precisely the set of polygons. We say that a

machine solves a decision problem if it accepts precisely those input strings which encode instances

of the problem for which the correct answer is “yes.” Note that the manner in which input should

be encoded is specified as part of a decision problem. An oracle for a decision problem is a

machine which instantly gives the correct answer to any given instance of that problem.

We say that an algorithm is polynomial or polytime if it runs in a number of steps that is

polynomial with respect to its input size. The set of decision problems that can be solved in

polynomial time by a non-deterministic Turing machine is denoted NP. Given two problems P1

and P2, a polytime reduction from P1 to P2 is a polynomial (deterministic) algorithm that solves

P1, making use of an oracle for P2. Polytime reductions are also called Cook reductions or Turing

reductions. A polytime reduction in which the oracle is used only once at the end of the algorithm

is called a Karp reduction.

19

A decision problem to which there is a polytime reduction from any other problem in NP is

called NP-hard. A decision problem in NP that is NP-hard is called NP-complete. To show that

a problem is NP-hard, one typically performs a polytime reduction from another problem known

to be NP-hard. For more information on NP-hardness and reductions, see [17].

When dealing with problems that involve numerical value, the choice of an encoding for the

input is very important. The complexity of a problem can often change depending on whether

numbers are encoded in binary or unary, since the size of a unary encoding may be exponential

in the size of a corresponding binary encoding. We say that a problem is strongly NP-hard if

it is NP-hard even when all numerical values are represented in unary. If a problem is NP-

hard but not strongly NP-hard, we say that it is weakly NP-hard. To show that an NP-hard

problem is weakly NP-hard, one gives an algorithm to solve the problem that is polynomial with

respect to the numerical values in the problem (not the input size). Such an algorithm is called

a pseudo-polynomial or pseudo-polytime algorithm.

Chapter 3

Background

Before we move on to our main results, it is worthwhile to discuss the work that has come before.

There has been a recent surge of interest in the study of polyhedra unfoldings. This thesis is

largely motivated by results discovered and questions posed in only the last few years.

In staying with the common theme of this thesis, this chapter will be split into two parts.

These correspond to the two fundamental problems that we address: the unfolding of a polyhedron

into the plane and the complexity of determining whether a polyhedron can be reconstructed from

certain partial information. In general these areas are largely disjoint but, as we shall see, work

on folding polyhedra has provided a link between the two.

3.1 Unfolding Polyhedra

3.1.1 Polyhedra and Art

The first person known to study unfoldings was Albrecht Dürer in the early 16th century. He

published a sequence of four books entitled “Instruction in the Art of Measurement with Com-

passes and Rule of Lines, Planes and Solid Bodies” (translated from German). The purpose of

this work was to instruct artists in perspective and the theoretical aspects of illustration. In the

fourth book, Dürer analyzes solid geometry; he considers various well-known polyhedra and how

they should be correctly illustrated. It is here that Dürer introduced the notion of using a paper

cut-out of a polyhedron to convey information about it. Though he did not use the term at the

time, Dürer had created the concept of a net.

Dürer implicitly assumed that every convex polyhedron had a net. Of course, we now know

that this assumption was unfounded: it is still open whether or not this is true, even after 500

years.

21

22

Edge-Unfoldings of Convex Polyhedra

In 1975 the question of whether or not every convex polyhedron has a net was posed formally by

Shephard [32].

Conjecture 3.1.1 (Shephard’s Conjecture). Every convex polyhedron can be cut along some of

its edges and unfolded into the plane without overlap.

There have been many attempts to resolve Shephard’s Conjecture since it was posed in 1975.

Much of this work has manifested in numerous proposed algorithms meant to create a simple

unfolding for any given convex polyhedron. Unfortunately, a counterexample has been found for

every algorithm yet proposed.

Fukuda put forth a number of conjectures on simple unfoldings of convex polyhedra [18]. He

first proposed that cutting along the minimal edge-length spanning tree for a convex polyhedron

would always yield a net, but a counterexample was found by Günter Rote [18]. Fukuda also

suggested that the shortest-path tree would form a cut tree for a convex polyhedron, but this

was disproved in an experiment by Schlickenrieder [30]. Finally, Schlickenrieder conjectured that

the Steepest-Edge Cut algorithm would always be successful for finding a net. However, a main

result of this thesis is the construction of a counterexample to Schlickenrieder’s conjecture. For a

more detailed discussion of the Steepest-Edge Cut algorithm and our counterexample, please see

Section 5.3.2.

In related work, Fukuda and Namiki performed experiments on random unfoldings of large

convex polyhedra. These experiments were performed using the UnfoldPolytope mathematica

package, which performs unfolding operations using a number of heuristics to form cut trees

[24, 25]. Based on the results of these experiments, it was conjectured that the probability

that a random unfolding of a random n-vertex convex polyhedron has an overlap approaches 1

as n → ∞. In other words, almost all unfoldings of large convex polyhedra contain overlaps.

This does not discount the possibility of at least one non-overlapping unfolding of every convex

polyhedron. However, the high density of overlaps in large polyhedra implies that if Shephard’s

Conjecture is true then simple unfoldings for convex polyhedra are exceptions to the rule that

most unfoldings contain overlaps.

3.1.2 Other Types of Simple Unfoldings

While there has been little progress in resolving Shephard’s Conjecture, there has been some work

in considering other types of unfoldings and showing that they can be formed without overlap.

23

Figure 3.1: A vertex-unfolding of a simplicial cube. Image due to [14].

General Unfoldings of Convex Polyhedra

The first significant progress was the demonstration that every convex polyhedron has a general

unfolding that does not overlap. Recall that a general unfolding is an unfolding that allows cuts

across faces, not just along edges. In fact, two types of non-overlapping general unfoldings are

known: the source unfolding and the star unfolding.

In the star unfolding, a point x is chosen on the surface of the polyhedron such that there

is a unique shortest path from x to each vertex. The polyhedron is then cut along each of

those shortest paths. It was shown in [3] that the star unfolding does not overlap. The star

unfolding also has some applications to efficient computation of shortest-paths on the surface of

a polyhedron [1]. The source unfolding is similar, but instead of cutting along the path from x

to each vertex, one cuts along the locus of all points for which there are two or more distinct

shortest paths from x. The source unfolding also does not overlap; the proof of this is also much

simpler than that for the star unfolding [31].

Vertex-Unfoldings

Another recent approach has been the exploration of vertex-unfoldings [14]. In a vertex-unfolding,

cuts are made along edges (just as in edge-unfoldings). However, faces are not required to meet at

common edges; two faces are allowed to meet at a common vertex. The resulting unfolded figure

is connected, but the interior of the figure may not be. It has been shown that every simplicial

manifold (including polyhedra, surfaces with boundary, and surfaces in higher dimensions) has a

non-overlapping vertex-unfolding. The idea is to form a sequence of cuts that splits the surface

into individual faces connected at vertices, then “string” these faces in an approximate line. See

Figure 3.1 for a vertex-unfolding of a triangulated cube. It is still open whether all manifolds

24

with non-triangular faces, in particular non-simplicial convex polyhedra, have non-overlapping

vertex-unfoldings.

Multi-piece Unfoldings

In an edge-unfolding, it is required that the unfolded planar figure be connected. However, we can

imagine allowing our unfolding to split the faces of a polyhedron into a number of disconnected

pieces. Another avenue of attack upon Shephard’s Conjecture is determining bounds upon the

number p of pieces necessary to obtain a non-overlapping unfolding. Taking p = 1 corresponds

to an edge-unfolding. On the other extreme, taking p = n (where n is the number of faces in the

polyhedron) corresponds to the trivial case where each face lies in a separate component.

If we consider p to be a function of n, we obtain a manner of discussing lower bounds on the

number of pieces necessary to form a simple unfolding with respect to n. Michael Spriggs has

obtained a bound of p ≤ 1
2n [33]. Proving a sublinear bound would represent significant progress

in this area.

3.1.3 Unfolding Classes of Orthogonal Polyhedra

Another avenue of research is to consider particular classes of polyhedra. Biedl et al. demon-

strated that certain classes of orthogonal polyhedra have simple general unfoldings [6]. In partic-

ular, they showed that orthostacks and orthotubes can be cut across faces and unfolded without

overlap.

Another type of unfolding, grid unfoldings, applies only to orthogonal polyhedra. In this

unfolding type one is allowed to cut across faces, but only along axis-aligned grid lines. The

maximum number of grid lines given per face is the degree of the grid unfolding. It was shown

in [12] that another class of orthogonal polyhedra, dubbed Manhattan Towers, are unfoldable

with grid unfoldings of degree 5. It was also shown in [16] that orthostacks (a class of orthogonal

polyhedra) can be vertex-unfolded using only grid cuts.

Further, in [11], it was shown that well-separated orthotrees can be edge-unfolded without

overlap. It was suggested that a similar method might be applied to demonstrate that all or-

thotrees can be edge-unfolded, but this problem is still open.

3.1.4 Ununfoldable Polyhedra

The question of whether every convex polyhedra has a net has proved quite vexing, but what of

non-convex polyhedra? There are very simple examples of general polyhedra with no nets. In the

star-shaped prism of Figure 3.2, for example, no face adjacent to the top face can be attached

without causing an overlap.

25

Figure 3.2: An ununfoldable polyhedron with non-convex faces

Figure 3.3: Ununfoldable orthogonal polyhedra due to [6].

26

Figure 3.4: Ununfoldable polyhedra formed by applying Witch’s Hats to the sides of a

tetrahedron, from [5].

The work in this area is therefore to characterize precisely which polyhedra are ununfoldable.

Motivated by Figure 3.2, it is tempting to ask whether every orthogonal polyhedron is unfoldable

without overlap. Once again, the answer is negative. The two examples shown in Figure 3.3

have no nets: the first because the smaller cube does not have enough space to unfold within

the hole of the larger face, and the second because when two large faces are connected (either

directly or via smaller faces), there is not enough space for the smaller faces to unfold [6]. These

two examples are similar in that they are not topologically convex. A polyhedron is topologically

convex if it has the same graph as a convex polyhedron. This is not true for the two polyhedra

in Figure 3.3 since the first has a face not topologically equivalent to a disc and the second has

instances of two faces being connected at two different edges.

The next logical question is whether all topologically convex polyhedra are unfoldable without

overlap. This turns out to be false as well; examples by Tarosov [34] (cited from [19]) and Demaine

et al. [4] were found independently. In fact, these polyhedra are even convex faced and starlike.

Demaine et al. constructed their example using a structure they call the Witch’s Hat: replacing a

triangular face of a polyhedron with a terrain that includes a large spike. Making this modification

to the faces of a tetrahedron forms an ununfoldable polyhedron. See Figure 3.4(a). Tarasov’s

construction was similar, but he added spikes at the vertices of a polyhedron rather than at the

interior of its faces. See Figure 3.5(a).

The Witch’s Hat construction was later modified to consist only of triangles [5]. See Fig-

ure 3.4(b). This resolved the stronger open question of whether every simplicial polyhedron is

27

(a) (b)

Figure 3.5: Ununfoldable polyhedra constructed by Grünbaum. (a) An ununfoldable

polyhedron similar to the one constructed by Tarasov. Image due to [19]. (b) An unun-

foldable polyhedron with 13 faces, from [20].

28

(a) Long edge and arm (b) Matching endpoints

Figure 3.6: Reconstructing a polygon from a set of sticks.

simply unfoldable: they are not.

A few years later, Grünbaum considered lower bounds on the number of faces of an un-

unfoldable polyhedron [19]. He constructed an ununfoldable starlike polyhedron with 13 faces,

whereas the Witch’s Hat construction uses 24 faces and the simplicial version has 36 faces. See

Figure 3.5(b). Grünbaum conjectured that 13 was optimal:

Conjecture 3.1.2 (Grünbaum). Every convex-faced starlike polyhedron with at most 12 faces

has a net.

This thesis shall resolve Conjecture 3.1.2 negatively: one of the main results of this thesis is

the construction of an ununfoldable polyhedron with 9 faces. We also improve on the number

of vertices: Grünbaum’s ununfoldable polyhedron has 13 vertices, whereas our ununfoldable

polyhedron has only 8. See Section 4.4.

3.2 Reconstructing Polyhedra

The underlying idea of a reconstruction problem is simple: one is given (supposed) partial infor-

mation about an object and must either recreate the original object or determine whether such

an object exists. In some cases the object is uniquely specified by the partial information, and in

others there can be many satisfying objects and we need only find one. In our case, the objects

to be reconstructed are polygons or polyhedra, possibly of a particular class.

3.2.1 Reconstruction from Edge Lengths

An old and well-known result in this area concerns the reconstruction of polygons from edge

lengths. It turns out that a polygon can be constructed from a set of edge lengths (or, equivalently,

29

a set of sticks) if and only if the largest stick has length less than the sum of all other lengths

(Lemma 3.1 of [22]). This polygon is intuitively quite easy to construct: simply place the longest

edge in the plane, then form a flexible arm from the remaining sticks. Attach the arm to one end

of the longest edge and bend it so that its other endpoint meets the remaining endpoint of the

longest edge. See Figure 3.6.

Unfortunately, there does not seem to be such a simple characterization of the cases in which

a polyhedron can be built from a set of sticks [15]. The chapter of this thesis on polygon and

polyhedron reconstruction is largely motivated by this problem.

3.2.2 Reconstruction from Face Directions

A very different problem is that of reconstructing a polyhedron from its face directions. That is,

if one is given a sequence of vectors, can one reconstruct a polyhedron with precisely those vectors

as face normals? This problem was studied by Minkowski for convex polyhedra [15]. He showed

that for any sequence of vectors that sum to 0, there is a unique convex polyhedron so that each

vector is the normal to a face, and the length of each vector is the area of the corresponding face.

The problem of reconstructing this polyhedron from the given vectors remains open, however.

Alexandrov later studied reconstruction problems for convex polyhedra in his book Convex

Polyhedra, recently translated from Russian [2]. Alexandrov considered reconstruction from face

normals, like Minkowski, but extended the work to include unbounded polyhedra (i.e. polyhedra

with infinite interior). Alexandrov also studied other reconstruction problems, including the

reconstruction of convex polyhedra from unfolding information.

3.2.3 Reconstruction from Nets

A net is formed by unfolding a polyhedron into the plane. One might therefore consider the

opposite act: folding a net into a polyhedron. This gives rise to a number of related problems.

What is the complexity of determining whether a net can be folded into a polyhedron? What

is the complexity of finding a polyhedron that can be folded from a given net? These are major

open problems in this area, and have been the focus of much study.

Convex Polyhedra

There are a pair of famous results in this area that apply to convex polyhedra: Cauchy’s Rigidity

Theorem and Alexandrov’s Theorem.

Cauchy’s Rigidity Theorem states that there is only one convex polyhedron (up to rigid

transformation) with a given net. In other words, a convex polyhedron is rigid: the faces of

30

Figure 3.7: Five foldings of the latin cross, taken from [10].

a convex polyhedron cannot be flexed to form a new polyhedron with the same combinatorial

structure.

Alexandrov’s Theorem provides a stronger result that guarantees existence as well as unique-

ness. However, Alexandrov’s Theorem does not apply to nets. We must therefore define (albeit

informally) Alexandrov’s notion of a development. A development is a closed chain in the plane,

much like a polygon, but with the possibility of overlap. A development also includes gluing

information between edges. Each edge of the chain is glued to exactly one other edge, and the

orientation of this gluing is given (so that it is known which endpoint is glued to which). The re-

sulting planar object is very similar to an unfolding, except that no internal creases (i.e. divisions

between faces) are given.

Theorem 3.2.1 (Alexandrov). Each development homeomorphic to the sphere with the sum of

angles at most 2π at each vertex defines a unique closed convex polyhedron by gluing.

The uniqueness stated in Alexandrov’s Theorem comes from the fact (also proven by Alexan-

drov) that two closed convex polyhedra with the same development must be the same up to rigid

transformations. Thus each development that satisfies the conditions of Alexandrov’s Theorem

defines exactly one convex polyhedron by gluing.

Alexandrov’s Theorem is very powerful, in that it completely characterizes the ways in which

a net can be folded into a convex polyhedron by performing edge-to-edge gluings. Using this

theorem, Lubiw and O’Rourke created a polynomial-time algorithm to determine all edge-to-

edge gluings for a polygon that will yield a convex polyhedron [23]. An interesting result of this

research is that the Latin Cross unfolding of the cube can be glued in different ways to obtain

five different convex polyhedra. See Figure 3.7.

The complexity of actually constructing a polyhedron from a development remains unknown.

31

One can determine a superset of the creases to be used in the folding process in linear time by

taking shortest paths between all pairs of vertices [23, 27]. However, even if one has the creases

(that is, one has a net), the complexity of discovering the polyhedron to which it folds is unknown.

Cauchy’s Theorem implies uniqueness of a convex polyhedron folded from a net, but does not

give a way to construct it.

General Polyhedra

When we consider non-convex polyhedra, Cauchy’s Rigidity Theorem and Alexandrov’s Theorem

no longer apply. The complexity of determining whether a polyhedron even exists with a given

net is not yet known. Biedl et al. proved that this problem is weakly NP-Complete when both the

net and the constructed polyhedron are orthogonal [7]. The more general version of this problem

is still open.

Chapter 4

Ununfoldable Polyhedra

In this chapter we explore polyhedra for which every edge-unfolding has an overlap. We intro-

duce the notion of a k-local overlap in an unfolding, which is an overlap between faces that are

connected by a path of at most k vertices in the unfolding. We present an example of a polyhe-

dron with 16 triangular faces for which 1-local overlaps cannot be avoided, and hence no k-local

overlaps can be avoided. We then modify this example to form an ununfoldable polyhedron with

9 faces. Finally, we show that if cuts through faces are allowed then certain types of local overlaps

can be avoided.

4.1 Introduction

In the study of polyhedron unfolding, we are primarily concerned with overlaps. In particular,

we wish to study cases where every unfolding of a polyhedron contains overlapping faces. It has

been known for some time that such polyhedra, the ununfoldable polyhedra, exist [4, 5, 19, 34].

The focus of study in this area has since turned to characterizing the ununfoldable polyhedra.

For example, some work has been done on showing that certain classes of orthogonal polyhedra

can always be unfolded without overlap [6]. There has also been work on finding the smallest,

simplest examples of ununfoldable polyhedra [20].

One problem in the analysis of unfoldings is that an overlap may occur between two faces

in vastly different parts of a polyhedron. Such an overlap seems to occur for no theoretically

satisfying reason; it is simply an artifact of the unfolding in question. By contrast, the analysis

of overlaps between faces that are close together seems intuitively simpler.

Motivated by these informal ideas, we introduce a measure of the locality of an overlap. We

shall make formal definitions later, but for now we say informally that an overlap is k-local if

33

34

A
B

C

pqr

s

(a) (b)

Figure 4.1: Examples of k-local overlaps for (a) k = 3, 4 and (b) k = 1

the overlapping faces are connected in the unfolding by a path containing at most k vertices.

Note that we are concerned with the relationship between the faces in the unfolding, not in the

polyhedron.

The known ununfoldable polyhedra have no simple unfoldings, but the overlaps in their unfold-

ings have varying degrees of locality. One of the motivating questions for this chapter is whether

or not k-local overlaps can be avoided for all convex-faced polyhedra, for some sufficiently small

k. It will turn out that the answer is “no”: there is a polyhedron for which every unfolding

contains a 1-local overlap, and hence a k-local overlap for all k. We then modify our example of

a polyhedron that cannot avoid 1-overlaps to find a convex-faced ununfoldable polyhedron with

9 faces, where the previously known smallest example has 13 [20].

4.2 Local Overlaps

We now define precisely what we mean by a k-local overlap, and discuss some basic properties

thereof.

Suppose P is a polyhedron with an unfolding P ′. Suppose further that there is an overlap

between faces f1 and f2. Then if there are at most k vertices in the shortest path along edges of

P ′ starting with a vertex incident to f1 and ending with a vertex incident with f2. See Figure 4.1

for an example. In particular, an overlap is 1-local if f1 and f2 are both incident with a common

vertex. If the vertex separating f1 and f2 is an image of vertex v of P , we say that the 1-local

overlap occurs at v.

Lemma 4.2.1. Suppose we unfold a polyhedron P . Then a 1-local overlap will occur at vertex v

if and only if v has an unfolding angle greater than 2π.

35

Proof. Suppose an image of v, say v′, has interior angle greater than 2π in the unfolding. Then

the faces incident with v′ in P ′ cannot be placed in the plane without overlap, as v′ has only an

angle of 2π around it in the plane. But in such an overlap, all faces involved are incident with v′,

and hence the overlap is 1-local.

On the other hand, suppose the total face angle at v′ is no more than 2π for each image v′ of

v. Since the faces are convex, each will lie in a sector of the plane centered at v′ corresponding

to its face angle with v′. These sectors will not overlap, since the total face angle around v′ is no

more than 2π. Thus no two faces incident with a single image of v will intersect in the unfolding

and hence no 1-local overlaps occur at v.

Corollary 4.2.2. A 1-local overlap cannot occur at a vertex with non-negative curvature.

Proof. A 1-local overlap can occur at vertex v only if v has an unfolding angle greater than 2π.

But the unfolding angles at v are no greater than the total face angle at v. Hence a 1-local

overlap can occur at v only if v has total face angle greater than 2π, which is equivalent to v

having negative curvature.

Corollary 4.2.3. No unfolding of a convex polyhedron contains a 1-local overlap.

Proof. Follows from the fact that convex polyhedra contain no vertices with negative curvature.

Corollary 4.2.4. Any edge cut tree for P that avoids 1-local overlaps must have degree at least

2 at all vertices of P with negative curvature.

Proof. Let T be an edge cut tree for P , and suppose v is a vertex of P with negative curvature

such that the degree of v in T is 1. Then v has only one unfolding component, and hence it has

an unfolding angle equal to its total face angle. But the total face angle at v is greater than 2π,

and hence by Lemma 4.2.1 the unfolding implied by T has a 1-local overlap at v.

4.3 Unavoidability of 1-Local Overlaps

In this section we show that there are polyhedra for which every unfolding contains a 1-local

overlap. Even more surprisingly, there is such a polyhedron that is star-shaped, simplicial, and

contains only 16 faces. It should be noted that the previously smallest known example of an

ununfoldable simplicial polyhedron has 36 faces [5].

36

4.3.1 Intuition

The construction of ununfoldable polyhedra is related to the notion of curvature. Vertices with

negative curvature seem (informally) to present the largest barrier to simple unfolding. A strategy

for finding an ununfoldable polyhedron is to have as many vertices with negative curvature as

possible.

A theorem of Descartes states that the total sum of all curvatures on a polyhedron of genus

zero is 4π. It is therefore not possible to create a polyhedron such that all vertices have negative

curvature. Indeed, since the curvature at a vertex must be strictly less than 2π, a polyhedron

requires at least three vertices with positive curvature. One strategy for forming an ununfoldable

polyhedron is therefore to create a few vertices with as large a curvature as possible; for example,

the apex of a sufficiently sharp spike. The remaining vertices may then have negative curvature,

impeding the creation of a simple unfolding. All examples of ununfoldable polyhedron constructed

at the time of this writing were created via this strategy: the witch’s hats of [4, 5] and the spiky

polyhedra of [34, 19].

We applied a similar method to find our polyhedron that cannot avoid 1-local overlaps. We

use 4 spikes, roughly aligned as axes in a plane. The reasoning behind the use of four spikes, as

opposed to the lower bound of three, will become more clear when we discuss the three-pointed

version in Section 4.4.

4.3.2 The Polyhedron

In this section we describe our example of a polyhedron for which every unfolding contains a

1-local overlap. See Figure 4.2 for an illustration.

Let α and β be positive values. We think of α as being large and β as being small. Our

polyhedron then consists of four spikes, having endpoints A1 = (α, 0, 0), A2 = (0,−α, 0), A3 =

(−α, 0, 0), and A4 = (0, α, 0). These spikes intersect pairwise at vertices B1 = (1, 1, 0), B2 =

(1,−1, 0), B3 = (−1,−1, 0), and B4 = (−1, 1, 0). In other words, there is an edge from Ai to

Bj if and only if i = j or i + 1 ≡ j mod 4. Finally, there are central points C1 = (0, 0, β) and

C2 = (0, 0,−β) that are connected to all other vertices, but not to each other.

The result is a symmetrical four-pointed star. We shall denote this polyhedron by P4(α, β).

See Figure 4.2.

We now wish to analyze the face angles in this construction. To do this, we consider the class

of polyhedra P4(α, β) as α → ∞ and β → 0. In the limit, the vertices Ai occur at infinity, the

vertices C1 and C2 both occur at the origin, and our polyhedron is a doubly-covered, infinite

portion of the plane. See Figure 4.3. We consider this highly degenerate construction because its

angles are easy to analyze. The face angles at each Ai vertex are 0, the face angles at each Bi

37

A
1

A
4

A
3

A
2

C
1

B
1

B
3

B
4

B
2

A
3

A
4

A
1

A
2

C
2

B
4

B
2

B
1

B
3

A
1

A
3

C
1

C
2

B
2

B
3

α

β

1

(a) (b) (c)

Figure 4.2: Different views of polyhedron P4(α, β): (a) the top view, (b) the bottom

view, and (c) a view from the side, illustrating parameters α and β.

B
1

B
2

B
3

B
4

A
1

A
2

A
3

A
4

C
1

Figure 4.3: The polyhedron P4(α, β) as α→ ∞ and β → 0.

38

vertex are 3π
4 , and the face angles at each Ci vertex are π

4 .

Now let us return to the non-limit case. As α becomes large and β becomes small, our face

angles will approach the limit values given above. In particular, the face angles at each Bi will

approach 3π
4 from below and the angles at each Ci will approach π

4 from above. To see the latter,

note that each Ci vertex is in fact a saddle point, and will therefore have negative curvature.

To show that P4(α, β) is ununfoldable, we shall require that the face angles at each Bi vertex

are all greater than 2π
3 . We therefore take α large enough and β small enough that this condition

is satisfied. Values α ≥ 10 and β ≤ 1 are sufficient for this purpose. Thus, for the remainder of

this section, we shall consider the polyhedron P4(10, 1).

4.3.3 1-Local Overlaps

We now prove the main result of this section, which is that all unfoldings of the polyhedron

P4(10, 1) have a 1-local overlap. We proceed by a sequence of lemmas regarding the nature of cut

trees for P4(10, 1). For convenience of notation, we shall henceforth use P4 to denote P4(10, 1).

Lemma 4.3.1. Any cut tree for P4 that avoids 1-local overlaps must cut at least two opposing

edges incident to each of Bi. In other words, there must be cuts from each Bi to the two adjacent

Aj vertices or to the vertices C1 and C2.

Proof. As discussed when we constructed P4, the face angles at each Bi are larger than 2π
3 .

Suppose that there is a cut tree that does not cut two opposing edges of some Bi. Then, since

there are four faces incident with Bi, three of those faces would be in a single unfolding component.

But then the unfolding angle of that component is greater than 32π
3 = 2π. Lemma 4.2.1 then

implies that this unfolding contains a 1-local overlap.

Lemma 4.3.2. Any cut tree for P4 that avoids 1-local overlaps must cut from some Bi (without

loss of generality, B1) to C1 and C2. For the other three vertices Bi, the edges from Bi to the

adjacent Aj vertices must be cut.

Proof. By Lemma 4.3.1, each Bi must have a pair of opposing cuts. These cuts will either be

to C1 and C2, or to the two adjacent Aj vertices. Now if all Bi have cuts to their adjacent Ai

vertices then the cut tree will contain a cycle: B1, A1, B2, A2, B3, A3, B4, A4, B1. Thus at least

one Bi must have cuts to the points C1 and C2.

Suppose there are cuts from vertex Bi to C1 and C2, and also cuts from some other vertex

Bj to C1 and C2. Then we get another cycle in the cut tree: Bi, C1, Bj , C2, Bi. We conclude

that there can be cuts from only one Bi to both C1 and C2. There must therefore be cuts from

the remaining Bi’s to their adjacent Aj vertices, as required.

39

Lemma 4.3.3. Any cut tree for P4 that avoids 1-local overlaps must cut at least two edges incident

to each of C1 and C2.

Proof. Each of C1 and C2 has negative curvature, so the result follows from Lemma 4.2.4.

Lemma 4.3.4. Any unfolding of P4 must contain a 1-local overlap.

Proof. Recall that a cut tree must be a spanning tree over the vertices of P4. Since P4 has 10

vertices, any cut tree for P4 must have 9 cuts.

Lemma 4.3.2 describes 8 cuts that must be made, those being (B1, C1), (B1, C2), (B2, A1),

(B2, A2), (B3, A2), (B3, A3), (B4, A3), and (B4, A4). But of these, only one cut is incident to each

of C1 and C2. By Lemma 4.3.3, there must be an additional cut incident to each of C1 and C2.

There is only one cut left to make, but since C1 and C2 are not adjacent this cut cannot be made

incident with both. There is therefore no cut tree for P4 for which the associated unfolding has

no 1-local overlaps.

Theorem 4.3.5. There exists a simplicial, star-like polyhedron with 16 faces for which every

unfolding contains a 1-local overlap

Proof. The polyhedron P4(10, 1) is simplicial with 16 faces. By Lemma 4.3.4, any unfolding of

P4(10, 1) contains a 1-local overlap. To see that P4(10, 1) is star-like, consider the origin (0, 0, 0)

in the interior of P4(10, 1). The interior of every face of P4(10, 1) is visible from this point. Thus

P4(10, 1) satisfies the requirements of this theorem.

4.4 A Small Ununfoldable Polyhedron

We now modify our example from the previous section to create a smaller polyhedron for which

every edge-unfolding contains an overlap. The idea is to use only three spikes instead of four.

As we shall see, if these spikes are arranged into a three-way symmetrical structure then the

resulting polyhedron can be unfolded without overlap. However, if the spikes are perturbed to

remove some symmetry, we obtain an ununfoldable polyhedron.

4.4.1 Symmetric Example

Here we present the polyhedron obtained via a similar construction as P4(α, β), using only three

spikes instead of four. We also simplify the spikes so that each is made of three faces instead of

four: two on top and one on the bottom. We call this polyhedron P3(α, β). See Figure 4.4 for an

illustration of this polyhedron. We shall see that P3(α, β) can be edge-unfolded without overlap

for any choice of α and β.

40

B
1

B
3

B
2

A
1

A
3

A
2

C
1

B
1

B
2

B
3

A
3

A
1

A
2

C
2

C
2

C
1

B
2

B
2

A
3

A
1

(a) (b) (c)

Figure 4.4: Different views of polyhedron P3: (a) the top view, (b) the bottom view, and

(c) a view from the side.

Just as with P4, the points Ai and Bi lie in the xy-plane. The point C1 lies at (0, 0, β), but C2

is now located at the origin. One can think of our simplification of the spikes as taking only the

part of a spike that lies above the xy-plane. The faces incident with C2 are now quadrilaterals

that lie in the xy-plane.

This polyhedron has the undesirable property that adjacent faces (those incident with C2) are

coplanar. This degeneracy can be removed by perturbing each Ai slightly in the negative z direc-

tion and moving C2 the appropriate amount in the positive z direction to preserve coplanarity.

We shall leave a more formal analysis of this process until the next section, when we analyze a

slightly modified polyhedron. For now, we shall leave P3(α, β) degenerate.

Now consider the face angles of P3. Just as in our analysis of P4, this is easiest if we consider

the limit case of α = ∞ and β = 0. In this degenerate polyhedron, the face angles at Ai are 0, at

Bi are 2π
3 , at C1 are π

3 , and at C2 are 2π
3 . In the non-limit case, the face angles in the polyhedron

approach these limit values (from below in the case of Bi, and from above in all other cases).

The polyhedron P3 has a simple edge-unfolding for any values of the parameters α and β. For

an illustration of this unfolding, see Figure 4.5. Note that, in this illustration, we have taken α

to be sufficiently large and β sufficiently small that edges incident with any given Ai can be seen

as arbitrarily close to parallel.

The intuition as to why this unfolding can occur is that the face angles at vertices Bi are

all less than 2π
3 . Thus, in an unfolding, three of these faces can be adjacent without causing an

overlap. Compare this to the situation with P4 in Section 4.3, where the face angles at the vertices

Bi were all greater than 2π
3 (in fact, only slightly less than 3π

4). That posed the restriction that

41

C
1

C
2

C
2

C
2

C
1

B
1

B
2

B
1

B
3

B
2

B
3

Figure 4.5: A simple unfolding for P3

no three faces at Bi could be adjacent, and hence two opposing edges adjacent to Bi needed to

be cut. In this example with three spikes, that restriction is no longer present, and hence there

is more freedom in how cuts can be made. The trick to making this polyhedron ununfoldable

seems to be to create face angles greater than 2π
3 at the Bi vertices.

4.4.2 Asymmetric Example

This section will contain a number of arguments in which various angles and sums of angles are

compared. Hence, for improved readability, we shall switch to expressing angles in degrees for

the remainder of this section.

As discussed above, we would like to have face angles about the vertices Bi that are greater

than 120◦. The geometry prevents this from being true for all three vertices. However, if we

perturb the relative angles between the spikes, we can cause the face angles at two vertices, say

B2 and B3, to increase while the face angles at the other decrease.

In more detail, consider the vectors from the origin to each vertex Ai. In P3, the angles

between these vectors are all 120◦, by symmetry. We shall now rotate vertices A1 and A3 toward

A2 about the origin, so that they each make angles of 120◦ − φ. The angle between A1 and A3

about the origin will therefore increase to 120◦ + 2φ. Identical spikes, of the form in P3, now

emanate from each Ai toward the origin, and the resulting polyhedron will be denoted P φ
3 (α, β).

See Figure 4.6 for an illustration.

It should be noticed that the faces incident with C2 are coplanar, and the total face angle at

C2 is therefore 360◦. This is a slight degeneracy that is undesirable. We shall proceed to analyze

this polyhedron as is, but at the end of this section we shall show how to modify P
φ
3 (α, β) to

42

A
1

A
2

A
3

B
1

B
2

B
3

C
1

A
3

A
2

A
1

B
1

B
3

B
2

C
2

A
1

A
2

A
3

120o-φ120o-φ

120o+2φ

(a) (b) (c)

Figure 4.6: The polyhedron P φ
3 as seen from (a) the top and (b) the bottom. In (c) the

positioning of vertices A1, A2, and A3 is shown.

remove this degeneracy. A continuity argument will imply that the modified polyhedron is also

ununfoldable.

Now, just as with our analyses of the face angles in P4(α, β) and P3(α, β), we consider the

limit case of α = ∞ and β = 0. In this case the face angles at B1 are 120◦ − φ and the face

angles at B2 and B3 are 120◦ + 1
2φ. Thus, as α→ ∞ and β → 0, the face angles of P φ

3 (α, β) will

approach these limit values.

In particular, the choices of parameters α and β can be made so that the face angles at B1 are

arbitrarily close to 120◦−φ. Similarly, the face angles at B2 and B3 can be made arbitrarily close

to 120◦ + 1
2φ, and hence greater than 120◦. Finally, for the non-limit case β > 0, the curvature

at C1 will always be negative. Note, however, that the curvature at C2 is precisely 0.

4.4.3 Ununfoldability

We shall now show that there exist parameters α and β for which P φ
3 (α, β) is ununfoldable. We

shall use Pφ
3 to mean “Pφ

3 (α, β) for sufficiently large α and sufficiently small β.”

Lemma 4.4.1. Any cut tree for P φ
3 that avoids 1-local overlaps must cut two opposing edges

incident to each of B2 and B3.

Proof. Since the face angles at B2 and B3 can be made arbitrarily close to 120◦ + 1
2φ, they can

certainly be made greater than 120◦. The result then follows as in the proof of Lemma 4.3.1.

Lemma 4.4.2. Any cut tree for P φ
3 that avoids 1-local overlaps must contain two edges incident

to C1 and B1.

43

C
2B

2 B
3

B
1

C
1

C
1

Figure 4.7: An overlap in an unfolding of P φ
3 , from Lemma 4.4.3. Note that the edge

(B1, C2) is cut, but since the curvature at C2 is 0 both images of B1 occur at the same

location.

Proof. The result follows from Corollary 4.2.4 and the fact that C1 and B1 have negative curva-

ture.

Lemma 4.4.3. Any cut tree for P φ
3 that avoids overlaps must have cuts from one of B2 or B3

to both C1 and C2.

Proof. Suppose a cut tree that does not have an overlap does not have the specified cuts. Then,

by Lemma 4.4.1, the cut tree must have cuts (B2, A1), (B2, A2), (B3, A2), and (B3, A3). Recall

that since the cut tree is a spanning tree over the 8 vertices of P φ
3 , it must have 7 edges.

Now there are 3 cuts left to make. Vertex B1 must have two incident cuts, as must C1 (by

Lemma 4.4.2). There must also be a cut incident to C2 (even though the curvature at C2 is 0;

see Section 2.2.2).

We conclude that there must be cuts (B1, C1) and (B1, C2), and the final cut must be incident

with C1. But then a portion of the unfolding will look as in Figure 4.7, which contains an overlap.

We conclude that a cut tree without the given cuts will generate an overlap.

We shall now again consider the highly degenerate case of P 10◦
3 (∞, 0). This construct is a

double-covering of an unbounded portion of the xy-plane. See Figure 4.8 for an illustration.

Vertices C1 and C2 both occur at the origin and the vertices Ai are considered to lie at infinity.

We shall show that overlaps with interior points occur in every unfolding of P 10◦
3 (∞, 0). Then,

as this is the limit of our true polyhedra, it will turn out that all the overlaps presented will still

occur in P 10◦
3 (α, β) for sufficiently extreme values of α and β.

44

125125

125 125

140

110 110

110 110

5555

7070
5555

B
1

B
3 B

2

A
2

A
3 A

1

125125

125 125

110

140

110 110

125 125

110 110

B
1

B
2

B
3

A
2

A
1

A
3

(a) (b)

Figure 4.8: The centre portion of polyhedron P 10◦
3 (∞, 0) with all face angles given (in

degrees). The polyhedron is shown (a) from the top and (b) from the bottom.

Lemma 4.4.4. Any unfolding of P 10◦
3 (∞, 0) must contain an overlap with interior points.

Proof. See Figure 4.8 for an illustration of P 10◦
3 (∞, 0). This is a degenerate case where the

polyhedron lies entirely in the xy-plane, and the vertices Ai lie at infinity. All edges to a given

vertex Ai are therefore parallel.

Suppose there exists a cut tree for P 10◦
3 (∞, 0) that generates a simple unfolding. Without

loss of generality this tree must include edges (B2, C1) and (B2, C2) by Lemma 4.4.3. Then, by

Lemma 4.4.1, the tree must also include edges (B3, A2) and (B3, A3) (since if B3 were cut to C1

and C2 then the cut tree would contain cycle C1, B3, C2, B2, C1).

Since our cut tree must contain 7 edges and we have specified 4, there are now 3 edges left

to choose. By Lemma 4.4.2, at least two edges in the cut tree must be incident with B1 and at

least one must be incident with C1. Also, since the cut tree is spanning, at least one edge must

be incident with A1.

We shall proceed by cases on the vertices adjacent to B1 in the cut tree T . For each case we

present a diagram illustrating the overlap that occurs. We have omitted the details of proving

that these overlaps actually do occur as we have drawn them; the proofs are unenlightening and

quite lengthy. Suffice it to say that all illustrations are unfoldings of P 10◦
3 (∞, 0) and can be

verified via simple geometry.

Case 1: C1 and C2 are adjacent to B1 in T . Then our cut tree contains cycle B1, C1,

B3, C2, B1, a contradiction.

Case 2: A1 and A3 are adjacent to B1 in T . The final cut must then be incident with

45

C
2

B
2

B
3

B
1

C
1

Figure 4.9: The overlap that occurs in the unfolding of P φ
3 in Case 2 of Lemma 4.4.4

C
2

B
2

B
3

B
1

B
3

C
1

B
1

Figure 4.10: The overlap that occurs in the unfolding of P φ
3 in Case 4 of Lemma 4.4.4

C1. But then, in particular, edges (B1, C2), (B3, C2) and (B2, A2) are not in the cut tree. Thus

the unfolding will have the overlap illustrated in Figure 4.9, since each of the three face angles

shown at B2 are greater than 2π
3 .

Case 3: C1 and A3 are adjacent to B1 in T . The final cut must then be incident with

A1. But then edges (B1, C2), (B3, C2) and (B2, A2) are not in the cut tree. As in the previous

case, the unfolding will have the overlap illustrated in Figure 4.9.

Case 4: C1 and A1 are adjacent to B1 in T . The final edge must be incident with one

of B3, A2, or A3 to form a connected tree. Note that if this final edge is not one of (B3, C2) or

(B2, A2) then the overlap from the previous two cases, shown in Figure 4.9, will occur. However,

if the edge is one of those, then the overlap shown in Figure 4.10 will occur. Thus, in either case,

the corresponding unfolding will have an overlap.

Case 5: C2 and A1 are adjacent to B1 in T . The final edge must be incident with C1,

and also with one of A2, A3, or B2. In any of these cases, the overlap shown in Figure 4.11 will

46

C
2

B
2

B
3

B
1

C
1

C
1

Figure 4.11: The overlap that occurs in the unfolding of P φ
3 in Case 5 of Lemma 4.4.4

occur.

Case 6: C2 and A3 are adjacent to B1 in T . Then the final edge must be (C1, A1). The

unfolding is then as shown in Figure 4.12. This unfolding has an overlap.

Thus, in all cases, the corresponding unfoldings are not simple. We conclude that there is no

cut tree for P3 that generates a simple unfolding, as required.

Theorem 4.4.5. There exist parameters 0 < β < ∞ and 0 < α < ∞ such that every unfolding

of P 10◦
3 (α, β) contains an overlap.

Proof. By Lemma 4.4.4, any unfolding for P 10◦
3 (∞, 0) contains an overlap with interior points.

Enumerate all combinatorial unfoldings of P 10◦
3 (α, β) as U1, U2, . . . , Uk. Then, for each 1 ≤ i ≤ k,

unfolding Ui applied to P 10◦
3 (∞, 0) contains an overlap with interior points. Then, by continuity,

there exist ǫi > 0 and Γi > 0 such that for all α > Γi and 0 < β < ǫi, the unfolding Ui applied to

P 10◦
3 (α, β) will contain an overlap.

Now take ǫ = mini{ǫi} and Γ = maxi{Γi}. Set α = Γ + 1 and β = 1
2ǫ. Then for every Ui we

have that α > Γi and 0 < β < ǫi, so Ui will contain an overlap when applied to P 10◦
3 (α, β). Thus

any edge-unfolding of this polyhedron will contain an overlap, as required.

4.4.4 Removing Coplanar Faces

We now modify polyhedron P φ
3 to remove the coplanarity of the faces incident with C2. Consider

moving point C2 so that, instead of lying at (0, 0, 0), it lies at (0, 0, γ) for some 0 < γ < β. We

47

C
1

C
2

B
3

B
3

B
2

B
1B

1

C
2

B
2

C
1

Figure 4.12: The overlap that occurs in the unfolding of P φ
3 in Case 6 of Lemma 4.4.4

understand γ to be arbitrarily small (and an arbitrarily small fraction of β). We would then move

each Ai below the xy-plane so that each face incident with C2 remains planar. This modified

polyhedron will be called P φ
3 (α, β, γ). Note that no adjacent faces are coplanar in this polyhedron.

If α and β are fixed, for any ǫ we can choose 0 < γ < ǫ such that the displacement of each Ai

is less than ǫ. A continuity argument now implies that there are parameters such that P φ
3 (α, β, γ)

has no simple unfolding.

In more detail, Theorem 4.4.5 implies that all unfoldings of P 10◦
3 (α, β) contain overlaps with

interior points for certain parameters α and β. The new parameter γ can be chosen small

enough that any unfolding of P 10◦
3 (α, β, γ) is arbitrarily similar to the corresponding unfolding

of P 10◦
3 (α, β) (that is, all vertices in an unfolding of P 10◦

3 (α, β, γ) will be arbitrarily close to their

corresponding images in P 10◦
3 (α, β)). Thus we can take γ small enough that every unfolding of

P 10◦
3 (α, β, γ) has an overlap, as required.

Theorem 4.4.6. There exists a starlike ununfoldable polyhedron with 9 faces.

Proof. It was demonstrated above that P 10◦
3 (α, β, γ) is a polyhedron that satisfies the required

conditions, except for being starlike. To see that P 10◦
3 (α, β, γ) is starlike, consider the point

(0, 0, δ) for any γ < δ < β. The quadrilateral faces are all visible from this point, since it lies

above C2. The triangular faces are also all visible from this point, since it lies below C1. Thus

P 10◦
3 (α, β, γ) is starlike as required.

48

4.5 Arbitrary Cuts

In Section 4.3 we saw an example of a polyhedron for which every edge-unfolding contains a

1-local overlap. Indeed, this form of overlap is quite trivial: it corresponds to a vertex in the

unfolding with total face angle greater than 2π.

We now extend our consideration from edge-unfoldings to arbitrary unfoldings. That is, we

allow cuts to cross faces. It is tempting to believe that a polyhedron for which every edge-unfolding

has a vertex with interior angle greater than 2π may have a similar property for general unfoldings

as well. Such a result would be exciting, as it would resolve the open problem of whether all

polyhedra can be cut across faces and unfolded into the plane without overlap [5]. Alas, we shall

show that the trivial sort of overlap that must occur in an unfolding of P4(10, 1) can always be

avoided with arbitrary unfoldings. More specifically, we shall prove the following theorem:

Theorem 4.5.1. Any polyhedron P of genus 0 can be cut along its surface and unfolded such

that no vertex in the unfolding has total face angle greater than 2π.

For the remainder of this section, let P be any polyhedron of genus 0 with n vertices. We

shall construct an arbitrary cut tree C upon the surface of P . Recall that this means C is a

spanning tree for the vertices of P and the cuts of C are allowed to cross faces of P .

The idea of our construction is to make cuts into every vertex within a small neighbourhood.

These cuts will be simple line segments made uniformly around each vertex. Enough cuts will

be made so that every unfolding angle is no more than 2π. These little cuts are then connected

together into a tree.

Our proof is now split into three parts. First, we describe the combinatorics of the tree to be

constructed. Then we consider the manner in which we cut into a vertex. Finally, we form an

embedding of our tree on the surface of the polyhedron.

4.5.1 Combinatorics of the Cut Tree

For each vertex v, let f(v) be the total face angle at v. Let w′(v) =
⌈

f(v)
2π

⌉

.

Lemma 4.5.2.
∑

v∈P

w′(v) ≤ 2n− 2.

Proof. Recall by Euler’s Formula that the total curvature over all vertices of P must be 4π. Then

the total face angle over all n vertices satisfies

∑

v∈P

f(v) = 2πn− 4π.

49

But then

∑

v∈P

f(v)

2π
= n− 2

∑

v∈P

⌈

f(v)

2π

⌉

≤ n+ n− 2 (since P has n vertices)

∑

v∈P

w′(v) ≤ 2n− 2

as required.

We want to create a tree over the vertices in P such that the degree of each vertex v is at

least w′(v). We do so by noting the following simple result.

Lemma 4.5.3. Suppose we have a set of positive integers w1, . . . , wn such that
∑n

i=1wi = 2n−2.

Then there is a tree T on n vertices v1, . . . , vn such that the degree of vi is wi for all 1 ≤ i ≤ n.

Proof. We proceed by induction on n. The result trivially follows for n = 1.

For general n, we construct a rooted tree T . Take the root to be vertex v1 and let R = w1.

Note that R ≥ 1 and we must have at least R− 1 values among {w2, . . . , wn} that are equal to 1

(because the sum of all wi is 2n−2). Assume without loss of generality (by relabeling) that these

values are w2, . . . , wR. We then set the vertices v2, . . . , vR to be children of v1, all of degree 1.

Now if wi = 1 for all i > R then we must have n = R+1, so simply take vR+1 to be a child of

v1 and we are done. Otherwise, suppose (again, by relabeling) that wn > 1. Then {wR+1, . . . , wn}
is a set of n− R values that satisfies

∑n
i=R+1wi = 2(n− R) − 2 + 1. By induction we therefore

know that there is a tree T ′ over vertices {vR+1, . . . , vn} such that the degree of each vi is wi for

i < n, and vn has degree wn − 1. We take T ′ to be a subtree of T , with vn a child of v1. Then

the degree of vn in T is now wn − 1 + 1 = wn. We conclude that T is the desired tree.

Corollary 4.5.4. There is a tree T over the vertices of P such that the degree of v in T is at

least w′(v) for each v ∈ P .

Proof. Label the vertices of P as v1, . . . , vn. Take wi = w′(vi) for all 2 ≤ i ≤ n, and w1 =

w′(v1) +
[
∑

v∈P w
′(v) − (2n− 2)

]

. The result then follows from Lemma 4.5.3.

Let T be the tree from Corollary 4.5.4. Let w(v) be the degree of vertex v in tree T . Note

that T is simply a combinatorial tree describing which vertices are adjacent; we have not yet

embedded T onto the surface of P , which is the focus of the remainder of our proof.

50

v

v

B
α
(v)

pv

1

pv

2

pv

3

(a) (b) (c)

Figure 4.13: An example of the construction of points pv
i in Theorem 4.5.1. In (a) we

have a vertex v with a total face angle of, say, 5π. In (b) this vertex is shown from

above, and Bα(v) is shaded. The split of Bα(v) into sectors, marked by points pv
i on the

boundary of Bα(v), is shown in (c). Since ⌈5π
2π
⌉ = 3, this region is split into three sectors,

each having total face angle 5π
3 < 2π.

4.5.2 Cutting Into Vertices

We now wish to consider a set of small cuts that separate a small neighbourhood around each

vertex into components with equal face angle. Let us introduce some terminology. Given any

ǫ > 0, we say that the closed ǫ-neighbourhood of a vertex v, Bǫ(v), is the set of points on the

surface of P whose distance from v is at most ǫ. Bǫ(v) will always be a closed region.

We now wish to define a value α > 0 that depends on P . Take α to be any value small

enough that no two neighbourhoods Bα(v) and Bα(w) intersect, where v and w are vertices of

P . Also set α small enough that the only edges that intersect with Bα(v) are incident with v, for

all vertices v of P . In other words, Bα(v) lies entirely upon faces incident with v.

Now, for each v, we define w(v) points pv
1, . . . , p

v
w(v) on the boundary of Bα(v). Let lvi be the

line segment from v to pv
i . Then li has length α for each i. Note that each lvi will lie on the

surface of P , since the only edges of P that intersect with Bα(w) are incident with v. We place

points pv
i such that the face angle at v between lvi and lvi+1 is f(v)

w(v) for each i (and also between

lv
w(v) and lv1).

It is certainly possible to find such points. First, place pv
1 arbitrarily on the boundary of

Bα(v). Now travel around the boundary (in, say, the clockwise direction) until an angle of f(v)
w(v)

from lv1 is reached; place pv
2 at that location. Continue in this way until all points are placed.

Since the total face angle is f(v) and there are w(v) points to be placed, it will be possible to

51

place all of our points in this fashion. See Figure 4.13 for an illustration.

4.5.3 Embedding of the Cut Tree

We are now ready to construct our cut tree. We wish to draw tree T on the surface of P . This

tree will be drawn so that edges approach their endpoint vertices only along the lines lvk.

This problem is very similar to that of embedding a planar graph in the plane with fixed

vertex locations. We will use a solution to that problem in order to construct our embedding of

the tree T .

We construct a new tree T as follows. Suppose T contains edge e = (v, w). Then T ′ will have

edges (v, pv
i), (pv

i , p
w
j), and (w, pw

j) where i and j are chosen so that pw
j and pv

i are unique to this

edge e. This can certainly be done, since the number of points pv
i for vertex v is equal to the

degree of v in T . Note that T ′ is similar to T ; we have simply fragmented the edges of T .

We now want to embed T ′ on the surface of P , with the restriction that the edges of the form

(v, pv
i) must be straight line segments. This restriction guarantees that the edges of T ′ split the

face angle at each vertex v uniformly. This is very similar to the problem of embedding a tree in

the plane with fixed vertex locations, when the embedding of certain edges is already given. See

Figure 4.14 for an illustration of this process.

It is known that a solution to the problem of embedding a tree in the plane with predescribed

vertex locations will always exist [28]. However, the surface of P is topologically equivalent to

a sphere, not the plane. However, this problem is trivially fixed. We simply remove some point

from the surface of P (which does not lie on any of the line segments already specified for T ′).

The resulting surface is equivalent to a plane, so we know an embedding C of tree T ′ must exist

upon that surface. But this curve is also an embedding of T ′ on the surface of P , as required.

But this embedding of T ′ is also an embedding of T : we simply reinterpret each path of

edges (v, pv
i), (pv

i , p
w
j), (w, pw

j) as a single edge (v, w). We have therefore constructed our desired

embedding of T .

Now our embedding of T is a cut tree such that the angle between two consecutive cuts to

vertex v is precisely f(v)
w(v) . Recall w(v) ≥

⌈

f(v)
2π

⌉

. We conclude that the angle between any two

cuts to v is no more than 2π. The unfolding that corresponds to our cut tree therefore has no

unfolding angles greater than 2π.

This completes our proof of Theorem 4.5.1.

52

(a) (b) (c)

Figure 4.14: The construction of a tree embedding. (a) A portion of the surface of a

polyhedron P with α-neighbourhoods shaded and points pv
i shown. (b) The straight line

segments lvi . (c) The additional curves connecting the straight line segments to complete

the embedding of T ′.

Chapter 5

Unfolding Convex Polyhedra

5.1 Introduction

In this chapter we continue to analyze local overlaps in polyhedron unfoldings. However, we now

consider unfoldings of convex polyhedra.

This work is motivated by Shephard’s conjecture, restated here as an open problem:

Problem 5.1.1. Can every convex polyhedron be cut along its edges and unfolded into the plane

such that the resulting surface does not self-intersect?

In other words, the problem is to determine whether every convex polyhedron has a simple

unfolding. It has long been believed that the answer is yes, but there have been distressingly few

proven results on this topic. A thesis by Schlickenrieder [30] proposed a promising algorithm for

unfolding convex polyhedra without overlap, but left open the task of proving whether or not it is

successful in all cases. One of the main results of this chapter is that Schlickenrieder’s algorithm

is not successful for all convex polyhedra.

We shall examine this question from the point of view of local overlaps. Recall from the

previous chapter that a k-local overlap is one in which the overlapping faces are connected by a

path of at most k vertices on the boundary of the unfolding.

In Chapter 4 we analyzed 1-local overlaps in unfoldings of polyhedra. However, Corollary 4.2.3

states that no convex polyhedron contains a 1-local overlap. We shall therefore analyze 2-local

overlaps in convex polyhedron unfoldings. In particular, we wish to characterize some conditions

for cut trees that cause 2-local overlaps to occur. We shall then use these results to construct

examples of convex polyhedra for which certain types of unfoldings will always contain overlaps.

In particular, we shall construct a convex polyhedron for which cutting along any shortest path

tree creates an unfolding with an overlap. We then construct a convex polyhedron for which

53

54

A
B

C

pqr

s

A
wv

B

(a) (b)

Figure 5.1: Examples of k-local overlaps for (a) k = 3, 4 and (b) k = 2.

Schlickenrieder’s algorithm will always generate an overlap. Finally, we consider a more general

class of unfoldings: the normal order unfoldings. Again using 2-local overlaps we shall show that

there is a convex polyhedron for which every normal order unfolding contains an overlap.

5.2 2-Local Overlaps

We defined k-local overlaps in the previous chapter, but we shall repeat the definition here for

completeness. Suppose a polyhedron unfolding has an overlap between two faces, f1 and f2. This

overlap is called k-local if there are at most k vertices in the shortest path of the unfolding that

starts with a vertex incident with f1 and ends with a vertex incident to f2. In particular, any

overlap which is k-local is also r-local for any r > k. In Figure 5.1(a) the overlap between faces

A and B is 3-local, corresponding to points p, q, and r. The overlap between faces A and C is

4-local, as it involves point s as well. Figure 5.1(b) shows an example of a 2-local overlap.

We shall now develop conditions for cut trees on convex polyhedra that will result in 2-local

overlaps. We begin by providing a sufficient condition on unfoldings.

Lemma 5.2.1. Suppose P ′ is an unfolding of a convex polyhedron. Let e1, e2, and e3 be incident

edges on the boundary of P ′, where e1 and e2 have common vertex v and e2 and e3 have common

vertex w. Further suppose that |e3| = |e2|. Let φ be the exterior angle at v, and let θ be the

exterior angle at w. If

1. θ + 2φ < π, and

2. |e1| ≥ |e2| sin θ
sin(π−θ−φ)

then P ′ will contain a 2-local overlap.

55

φ
θ

e
1

e
3e

2
v

w

v w

q

θφ

π-φ-θ

ψ

ψ

e
1

e
2

e
3

v‘

(a) (b)

Figure 5.2: Unfoldings in Lemma 5.2.1. Shaded areas represent interiors of faces. (a)

The configuration of edges, vertices, and angles in the statement. (b) A 2-local overlap,

showing derivation of the edge length condition. Note that the line drawn from v to v′

is not an edge; it is meant to illustrate angle ψ.

Proof. See Figure 5.2(a) for an illustration of the statement of this lemma.

Note first that θ ≤ π and φ ≤ π
2 by the first condition in the claim.

Let v′ be the vertex besides w incident with e3. Now consider the isosceles triangle formed

by v, v′, and w. This triangle has angle θ at w, and angle ψ := 2π−θ
2 at v and v′. But we know

that θ + 2φ ≤ π, so φ ≤ 2π−θ
2 = ψ. This means that v will be on the interior side of the line

containing edge e1. Thus edge e1 will intersect e3, assuming e1 is sufficiently long.

We now determine the required length of e1. Extend edge e1 from v until it intersects e3.

Call that point of intersection q. Consider now the triangle formed by v, w, and q. The angle at

q will be π− θ−φ. See Figure 5.1(c). Then, by the sine rule (and since |e2| = |e3|), we have that

|q − v|
sin θ

=
|e3|

sin(π − θ − φ)
.

We conclude that e1 will contain point q, and hence intersect e3, if

|e1| ≥ |q − v| = |e3|
sin θ

sin(π − θ − φ)

as required.

We shall now present another condition that is sufficient to guarantee presence of a 2-local

56

v

w

φ
0

w

v

(a) (b)

Figure 5.3: (a) A portion of the surface of a polyhedron, illustrating the conditions of

Lemma 5.2.2. Cut edges are shown in bold and φ0 > 3π
2 . (b) The resulting 2-local

overlap.

overlap. However, this condition applies to a polyhedron and cut tree directly, as opposed to

Lemma 5.2.1 which applies to an unfolding.

Lemma 5.2.2. Let P be a convex polyhedron with cut tree C. Suppose w ∈ V (P) has degree 1

in C, and is adjacent to v ∈ V (P) in C. Suppose further that there is an unfolding angle φ0 at

v bounded by (v, w) with φ0 >
3π
2 . Then there exists an angle θ0 that depends on C and φ0 such

that the unfolding implied by C will contain a 2-local overlap if the curvature at w is less than θ0.

Proof. See Figure 5.3 for an illustration of the statement of this lemma. Let P ′ be the unfolding

implied by C. Since w is incident with only one edge in C, it will have a single image in P ′, say

w′. The exterior angle at w′ will be precisely the curvature at w, say θ. The edge of C incident

with w will have two images in P ′, say e1 and e2. They will satisfy |e1| = |e2| and both will be

incident with w′.

As w is incident with v, both e1 and e2 will be incident with images of v, say v1 and v2

respectively. The faces adjacent to v1 and v2 are precisely the unfolding groups of v bounded by

(v, w). Thus, one of v1 and v2 (without loss of generality, v1) will have total face angle greater

than 3π
2 , and hence exterior angle less than π

2 . Let φ be the exterior angle at v1. Let e′ be the

edge incident to v1 on the exterior of the unfolding, besides e1.

Then if 0 < θ < π − 2φ, we have that

θ + 2φ < π. (5.1)

57

Note further that if sin θ < |e′|
|e1|

sin(π − θ − φ), then

|e′| > |e1|
sin θ

sin(π − θ − φ)
. (5.2)

But as θ → 0, we have sin θ → 0 and sin(π − θ − φ) → sin(π − θ) > 0. We conclude that there

exists some θ1 > 0 such that 0 < θ < θ1 implies sin θ < |e1|
|e′| sin(π − θ − φ).

Take θ0 = min{π − 2φ, θ1}. Then we conclude that if the curvature at w is less than θ0 then

both (5.1) and (5.2) hold. Thus the conditions of Lemma 5.2.1 are satisfied, so P ′ will indeed

contain a 2-local overlap.

5.3 Counterexamples to Unfolding Algorithms

Over the past decade, a number of conjectures have arisen proposing that some algorithm or

another always generates simple unfoldings for convex polyhedra. All such conjectures have so

far been false, but demonstrating that they are false is often quite difficult. There has been no

particularly good way to construct examples of convex polyhedra that contain overlaps under a

specified unfolding algorithm or class of unfoldings.

In this section we use Lemma 5.2.2 to construct examples of convex polyhedra. Each convex

polyhedron will be such that every unfolding of a certain class will have an overlap. In the first

three examples, the polyhedra will be presented to refute a particular unfolding algorithm. In

the fourth example, a broad class of unfoldings not motivated by any particular algorithm will

be discounted.

5.3.1 Shortest Path Trees

Given a polyhedron P and a vertex v ∈ V (P), the shortest path tree at v is the tree formed by

taking the union of the shortest paths from each vertex w ∈ V (P) to v along the edges of P . It

is well known that this subgraph is, indeed, a tree [18]; call it SPT (v).

Counterexample for One Vertex

Fukuda made the following conjecture [18]:

Conjecture 5.3.1 (Fukuda). For every convex polyhedron P and every vertex v ∈ V (P), the cut

tree SPT (v) forms a simple unfolding of P .

58

135

135 90

90

150

150

150

150
60

a b

c

de

f

g

(a) (b)

Figure 5.4: The planar figure used to disprove Conjecture 5.3.1. (a) The underlying

structure. All line segments are of length 1 and angles are shown in degrees. (b) The

completed figure. The bold line segments form SPT (b).

This conjecture was resolved negatively by Schlickenrieder. However, Schlickenrieder’s proof

was empirical: he did not provide a formal construction of a counterexample. We fill this gap by

constructing a polyhedron that disproves Conjecture 5.3.1.

A note before we begin: in the next section we shall show that a stronger conjecture, Conjec-

ture 5.3.2, is false. This will imply that Conjecture 5.3.1 is false as well. In a sense, this makes the

construction in this section redundant. However, the construction in this section is much simpler

than those that will come later. We are therefore including this section to introduce gently the

underlying ideas of our method of proof.

We shall construct a convex polyhedron that negatively resolves Conjecture 5.3.1. Consider

the embedded graph shown in Figure 5.4(b). The tree SPT (b) is illustrated in that figure. The

important thing to note is the construction around vertices c and d. The example was created

such that our tree includes edges (b, c) and (c, d) but not (c, g). The result is that faces (b, c, g)

and (c, d, g) together form a component with angle greater than 270◦ at c. Further, vertex d has

degree 1 in our tree. These properties are reminiscent of the requirements in Lemma 5.2.2.

We now wish to turn this graph into a convex polyhedron. We do this by first converting

it into a convex terrain. Conceptually, we take vertices c, d, and e and raise them off the page

by small distances, say αc, αd, and αe. Note that αd and αe are determined by αc, since face

(a, b, c, d, e) must remain planar, so we need only specify αc. Note that this construction works

(i.e. it is possible for all faces to remain planar) because no face has more than two vertices upon

the boundary of the graph. Finally, we add a single face (a, b, g, f) on the bottom of this terrain

59

to complete a convex polyhedron P (αc) that depends on αc.

Note that as αc → 0 we will have αd → 0 and αe → 0 as well. We can therefore choose

αc to be very small and the lengths of edges in the construction will be as close as we desire

to the lengths in the original planar figure. In particular, if αc is small enough, SPT (b) for our

polyhedron will be precisely the tree illustrated in Figure 5.4(b).

But now consider the properties of SPT (b) as a cut tree upon our polyhedron. Faces (b, c, g)

and (c, d, g) together form an unfolding group with angle greater than 270◦ at c (as long as αc

is small enough that the total face angle at c is sufficiently close to 360◦). Also, vertex d has

degree 1 in the cut tree. All that remains to satisfy the requirements of Lemma 5.2.2 is for the

curvatures at vertex d to be sufficiently small. But recall that we can choose αc to be as small

as desired. We can therefore choose αc to be small enough that the curvature at d is as small as

required by Lemma 5.2.2. But then Lemma 5.2.2 implies that cutting along SPT (b) will create

an unfolding that contains a 2-local overlap.

We conclude that there exists a value of αc such that the convex polyhedron P (αc) is a

counterexample to Conjecture 5.3.1.

Counterexample for All Vertices

In the previous section we showed that Conjecture 5.3.1 is false. Now consider the following

conjecture:

Conjecture 5.3.2. For every convex polyhedron P there exists a vertex v such that SPT (v)

forms a simple unfolding.

This conjecture is stronger than Conjecture 5.3.1 because it allows a choice among the vertices

for the root of the shortest path tree. In this section we construct a convex polyhedron that

demonstrates for the first time that Conjecture 5.3.2 is false.

The idea of the construction is to create a convex terrain very similar to the one presented in

Section 5.3.1. However, the tree SPT (v) must satisfy the properties of Lemma 5.2.2 no matter

which vertex v is chosen. If we were to use the construction of Figure 5.4(b) and v were chosen

to be one of the interior vertices (say c in Figure 5.4(b)), our tree would not turn out as desired.

To get around this, we use (a variant of) the previous construction as a widget, and we will use

multiple copies of it in our new construction. Thus, no matter where our vertex v is chosen, there

will be some copy of the widget that will unfold in a manner to create a 2-local unfolding.

The planar graph we use as a starting point is illustrated in Figure 5.5. Note that the graph in

Figure 5.5(a) is similar to the construction of Section 5.3.1. Our final planar figure in Figure 5.5(b)

has four of these constructions as pieces.

60

a

b
c

d

e

f

g

h

i

g‘

80o

170o

80o

110o

170o

110o

130o

130o

130o 120o

140o

140o

50o

50o

a

b

c

d

e
f

g

h

i

g‘
d‘

h‘

i‘

b‘
c‘

e‘
e‘’

a‘

(a) (b)

Figure 5.5: The construction of our terrain used to disprove Conjecture 5.3.2. (a) The

main component. All line segments have length 1, except (a, g′) which is longer than 1.

(b) The completed terrain.

61

Now consider turning Figure 5.5(b) into a convex terrain by raising every internal vertex

above the page so that all faces remain planar and no vertex is raised more than some parameter

α. Turn this terrain into a polyhedron by adding a single face on the bottom, incident to all

edges on the boundary of the terrain. Let P (α) be such a convex polyhedron.

We now show that P (α) forms a counterexample to Conjecture 5.3.2.

Theorem 5.3.3. There is a value of α such that every shortest path tree of P (α) induces an

unfolding that contains a 2-local overlap.

Proof. We shall show that the result is true for sufficiently small α > 0.

Let v be any vertex of P (α). Let L = {a, b, c, d, e, f, g, h, i} be the lower-left vertices in

Figure 5.5(b). By symmetry, we can assume that v ∈ L. We now consider the nature of SPT (v)

in the upper-left portion of the graph.

Claim 5.3.4. The shortest path from any w 6∈ L to v ∈ L is the union of the shortest path from

w to one of a, b, h, or i, and the shortest path from that vertex to v.

Proof. Any path from w to v must pass through one of a, b, h, or i. If the path has minimum

length then its subpaths must have minimum length as well, so the result follows.

Claim 5.3.5. SPT (v) must contain edges (c′, d′) and (d′, e′).

Proof. By Claim 5.3.4, the shortest path from c′ to v must contain the shortest path from c′ to

one of a, b, h, or i. But each of these paths contains edges (c′, d′) and (d′, e′). We conclude that

(c′, d′) and (d′, e′) must be in SPT (v).

Claim 5.3.6. SPT (v) will not contain edges (b′, c′) and (c′, h′).

Proof. Take some vertex w 6∈ L. Consider the shortest path from w to v. We can think of this

path as a sequence of directed moves from one vertex to another, starting at w and ending at v.

By Claim 5.3.4, this path consists of the shortest path from w to one of a, b, h, or i, followed by

the shortest path from that vertex to v.

Further suppose for contradiction that our shortest path contains a move from b′ to c′. It

follows that the shortest path from b′ to one of a, b, h, or i begins with a move to c′. However,

this is not true: the shortest path from b′ to any of a, b, h, or i begins with a move to a′.

Suppose instead that our shortest path contains a move from c′ to b′. Then the shortest path

from c′ to one of a, b, h, or i must begin with a move to b′. Again, this is not true: the shortest

path from c′ to any of a, b, h, or i begins with a move to d′ (since the edge (a, g′) has length

greater than 1).

62

We conclude that the path from w to v does not contain a move from b′ to c′ or from c′ to b′.

Therefore edge (b′, c′) is not included in SPT (v).

A similar argument shows that SPT (v) does not contain (c′, h′). We have already shown that

the shortest path from c′ to any of a, b, h, or i does not begin with a move to h′. On the other

hand, shortest paths from h′ to a, b, or i begin with a move to e′, and the shortest path from h′

to h begins with a move to either e′ or e′′ (as both directions lead to paths of equal length).

Thus SPT (v) does not contain (b′, c′) or (c′, h′), as required.

Now choose α small enough that P (α) has the same shortest path trees as the planar graph

of Figure 5.5(b). Then Claim 5.3.5 and Claim 5.3.6 imply that if we take SPT (v) as a cut tree,

we will cut (c′, d′) and (d′, e′) but not (b′, c′) or (c′, h′). Thus c′ has degree 1 in the cut tree, and

faces (c′, d′, h′) and (d′, e′, h′) form an unfolding group incident with (c′, d′) with unfolding angle

greater than 270◦.

Lemma 5.2.2 now implies that a 2-local overlap will occur, as long as the curvatures at c′

and d′ are sufficiently small. But these curvatures are determined by α, which we can make

arbitrarily small. We therefore choose α small enough that our curvatures meet the requirements

of Lemma 5.2.2. Then SPT (v) will contain a 2-local overlap, as required.

5.3.2 The Steepest Edge Algorithm

Schlickenrieder performed empirical tests to compare different types of unfolding algorithms [30].

He put forth a conjecture regarding a particular directional algorithm: the Steepest Edge algo-

rithm. In this section we shall describe this algorithm, present Schlickenrieder’s conjecture, and

prove that it is false.

Algorithm Description

The Steepest Edge algorithm proceeds as follows. Take as input a convex polyhedron P . Pick a

unit direction vector ζ. We shall informally refer to the direction of ζ as “up”. Without loss of

generality we can assume that ζ = (0, 0, 1) (by reorienting space). Let v+ be the vertex of the

polyhedron with maximum z-coordinate.

Now for each vertex v in V (P) − {v+}, and for each edge (v,w), consider the unit vector

d(v, w) := w−v
|v,w| . That is, d(v, w) is the unit vector that follows edge (v, w) beginning at v. We

shall say that the steepest edge at v is the edge (v, w′) for which the z-coordinate of d(v, w′) is

maximal. The Steepest Cut algorithm chooses the cut tree C to be the set of steepest edges for

each vertex in V (P)−{v+}. Heuristically, we are cutting “the most upward” that we can at each

vertex. Schlickenrieder shows that C is indeed a cut tree [30].

63

Figure 5.6: Illustration of steepest edges, assuming ζ faces the top of the page.

See Figure 5.6 for an illustration; this figure illustrates a portion of the surface of a polyhedron,

where ζ points to the top of the page and curvatures are assumed to be small. The steepest edge

for each vertex in the illustration is drawn in bold.

In his empirical tests, Schlickenrieder found that this algorithm generated a simple unfolding

for roughly 93% of all tested polyhedra when ζ was chosen at random [30]. For those that had

an overlap, the algorithm would simply choose another vector for ζ and try again. In this way, a

simple overlap was found for all tested polyhedra within a few iterations.

Based on these results, Schlickenrieder put forth the following conjecture, reworded into our

notation.

Conjecture 5.3.7 (Schlickenrieder). For every convex polyhedron P there exists some unit vector

ζ such that the Steepest Edge algorithm with direction ζ generates a simple unfolding.

Unfortunately, this promising conjecture is false, as we shall now show.

5.3.3 Counterexample

We shall disprove Conjecture 5.3.7 by constructing a counterexample. That is, we construct a

polyhedron for which the Steepest Edge algorithm generates an unfolding with a 2-local overlap

for every possible direction vector ζ.

The counterexample to Conjecture 5.3.7 is considerably more involved than the previous

two. The main difficulty is that the algorithm in Conjecture 5.3.7 allows choice of a continuous

parameter (a direction).

64

b = (4,0,2)

a = (2,0,3)

c = (8,0,2)

d = (4,0,4)

e = (0,0,3)

f g = (8,0,0) = (0,0,0)

a

b

f g

e

a

d d

c

(a) (b)

Figure 5.7: (a) The planar graph M∗
1 , with (0, 0, 1) directed toward the top of the page.

(b) The steepest edge unfolding of M1(α) for small α and direction vector ζ = (0, 0, 1).

Outline

We begin by constructing a convex terrain for which the Steepest Edge algorithm does not work

for a particular choice of ζ, say ζ0. That is, if the Steepest Edge algorithm is applied to our

terrain with ζ = ζ0, an overlap will occur. We further show that our ζ need not be precisely ζ0;

it is sufficient for ζ to be within some small angle φ of ζ0. Furthermore, this φ is independent of

scaling, translation, and rotation of the terrain (and of the corresponding vector ζ0). Finally, we

shall construct a polyhedron by gluing together many copies of this terrain in various orientations.

The result will be that every possible choice of ζ will be within ζ0 for some copy of the terrain,

and hence that terrain will form an overlap. Thus, no matter what ζ is chosen, the resulting

unfolding of the polyhedron will contain an overlap.

The Terrain

Consider the planar graph M∗
1 illustrated in Figure 5.7(a). We are taking ζ0 = (0, 0, 1) in this

illustration. This graph is thought of as lying in the xz-plane, with the positive z-axis facing

the top of the page and the positive y-axis directed out of the page. One thing to note is that

the angle 6 dab is less than π
2 . We can convert this graph into a convex terrain by raising the

interior vertices a and b. In particular, given parameter α > 0, we denote by M1(α) the convex

terrain formed by raising the vertices a and b to a height of α. Thus the coordinates of a and

b will be (2, α, 3) and (4, α, 2), whilst the remaining vertices have y-coordinate 0. Note that the

quadrilateral a, b, c, d remains planar under this modification, since the edges (a, b) and (c, d) are

parallel. Also, as α→ 0, the curvatures at a and b become arbitrarily small.

65

Lemma 5.3.8. Suppose that M1(α) forms part of a polyhedron P . Then there exists an α0 > 0

and φ0 > 0 such that when the Steepest Cut algorithm is applied to P with ζ within an angle of

φ from (0, 0, 1), the corresponding unfolding of P will contain a 2-local overlap whenever α ≤ α0

and φ ≤ φ0. Further, our choice of φ0 is independent of any scaling operations performed upon

M1(α). That is, φ0 does not depend on the size of M1(α).

Proof. First suppose that we take ζ = (0, 0, 1). Choose α small enough so that the relative

steepness of edges in M1(α) is identical to that in M∗
1 .

Now M1(α) is embedded in a polyhedron P . This means that the external vertices of M1(α)

(i.e., all but a and b) may have additional incident edges in P . Vertices a and b, however, will

have no other additional incident edges. Thus we can determine which edges will be steepest

from vertices a and b.

Note that, of all edges adjacent to b, edge (a, b) is steepest. This edge will therefore be cut.

Similarly, edge (a, d) is the steepest from vertex a, so it will be cut.

For the remaining vertices we cannot determine which incident edge will be steepest, since

steeper edges may be added when M1(α) is embedded in P . However, consider the edges (b, c),

(b, g), (b, f), (b, e), and (a, e). For each vertex of each of these edges, there is another incident edge

that is steeper. Thus, none of these edges will be cut by the Steepest Cut algorithm, regardless

of what additional edges may be added.

We conclude that b has degree 1 in C. Recall that the angle 6 dab in M∗
1 is less than π

2 . Thus,

if the curvature at a is small enough in M1(α), the face angles at a of faces (a, d, e) and (a, b, e)

will sum to more than 3π
2 . That is, the unfolding angle at a bounded by (a, b) and (a, d) is greater

than 3π
2 for sufficiently small α. Thus, by Lemma 5.2.2, a 2-local overlap occurs when we unfold

if the curvature at a and at b is small enough (and hence if α is small enough). Hence a 2-local

overlap occurs when α is small enough to satisfy all of the above conditions. We take α0 to be

some such small value; so any 0 < α < α0 will be sufficient. See Figure 5.7(b).

Note that, given a fixed α < α0, our overlap was caused only by the cutting of (a, b) and

(a, d), and the fact that (b, c), (b, g), (b, f), (b, e), and (a, e) were not cut. Thus, for any direction

vector ζ such that these cuts and non-cuts occur, the resulting unfolding will contain an overlap.

Now note that if ζ0 is perturbed by a small enough amount in any direction, this same pattern

of cuts and non-cuts will occur. This implies that there is some open range D(ζ0) of choices for

direction vectors on the unit sphere that will cause an overlap. We can therefore find an angle φ0

such that if the angle between ζ and ζ0 is within φ0 then the illustrated 2-local overlap will occur

when ζ is chosen as the direction in the Steepest Edge algorithm. Since D(ζ0), and hence φ0,

depends only on the orientations of edges and not upon their lengths, the value φ0 is independent

of the size of M1(α).

66

We shall now takeM1 to meanM1(α0), where α0 is as defined in the statement of Lemma 5.3.8.

Our eventual goal is to glue many copies of M1 together into a polyhedron. In order to make

this task easier, we shall first embed M1 into a triangle. Our terrain will then have a triangular

border and the gluing will be easier to visualize.

We embed M1 into an isosceles triangle, as shown in Figure 5.8(a). Note that the edge (q, r)

is shorter than edges (p, q) and (p, r). Lower the vertices of the triangle by α0, so they occur with

a y-coordinate of −α0. Call the resulting convex terrain M2.

Lemma 5.3.9. Suppose that M2 is embedded in a convex polyhedron P and the Steepest Cut

algorithm is applied to P with ζ within an angle of φ0 from (0, 0, 1). Then the corresponding

unfolding of M2 will contain a 2-local overlap.

Proof. Such an embedding can be thought of as an embedding of M1 in polyhedron P , since M1

is embedded in M2. The result then follows from Lemma 5.3.8.

Transforming the Terrain

We now wish to consider instances of M2 in different orientations. Informally, we simply rotate

M2 in three dimensions and apply the same change of orientation on direction vector ζ. Then the

rotated instance of M2 will unfold in the same way when the Steepest Cut algorithm is applied

with the rotated direction vector.

More formally, suppose we have an instance of a triangle T = (p, q, r) in R3, similar to the

bounding triangle in M2. This can be thought of as a 3-dimensional rotation (plus translation

and uniform scale) of the embedding triangle in M2. Let c(T) be the unit vector that results

from applying this rotation to (0, 0, 1). Note that this is well-defined, since (as T is isosceles) one

can derive the necessary rotation from the vertices of T .

Now suppose a copy of M2 is embedded in T . Then the resulting convex terrain would unfold

with a 2-local overlap if the Steepest Edge algorithm were applied with direction vector within

angle φ0 of c(T). Here φ0 is chosen as in the statement of Lemma 5.3.8. Recall that φ0 is

independent of the orientation and size of M2, so indeed the same value φ0 applies no matter

how we transform our terrain M2, and hence no matter what triangle T is chosen.

The Desired Polyhedron

First some definitions. Let S be the surface of the unit sphere. Choose φ0 as in the statement of

Lemma 5.3.8. Given unit vector ζ, let D(ζ) be the set of all unit vectors within angle φ0 of ζ.

Then D(ζ) can be thought of as an open disc lying upon S.

67

p

qr

c
i

D(c
i
)

E
a

B

(a) (b)

Figure 5.8: Illustrations for Lemma 5.3.9. (a) Embedding of M1(α) into a triangle. (b)

Placing triangle i on the unit sphere.

We are now ready to construct our polyhedron. The idea of the construction is to glue together

many copies of M2 so that, for their corresponding direction vectors ζ1, . . . , ζk, the D(ζi) cover

all of S. Thus, for any choice of direction vector ζ, ζ will fall within some D(ζi), and hence the

ith copy of M2 will have an overlap when we unfold, by Lemma 5.3.9.

We begin by showing that, given any finite set of direction vectors, we can glue together

the boundaries of many copies of M2 to match those direction vectors. We will end up with a

spherical polyhedron; that is, a polyhedron with all vertices lying upon the surface of a sphere.

Lemma 5.3.10. Suppose k ≥ 0, and {ci}k
i=1 is a set of unit vectors. Then there exists a spherical

polyhedron P with a subset of faces {fi}k
i=1 ⊂ F (P) such that each fi is similar to the bounding

triangle in M2(α) and c(fi) = ci for all i.

Proof. We shall proceed by induction on k, proving the result with the additional constraint that

each fi has a diameter of at most 1
2i . Recall that the diameter of a polygon is the maximum

distance between any two points upon it. This proof will also make use of convex hull. Given a

set A of polygons in space, we shall take CH(A) to mean the convex hull of all vertices of the

polygons.

First consider k = 0. Then the regular tetrahedron, with vertices lying upon the unit sphere,

trivially satisfies the conditions of the lemma.

Next consider k = 1. Place vertices p, q, and r on the unit sphere such that the resulting

68

triangle T is similar to that in M2(α), and rotate so that c(T) = c1. Add any other vertex s on

the surface of the sphere, so that s is not coplanar with T . Then the convex hull of p, q, r, and

s is a convex polyhedron satisfying the conditions of the lemma.

Now suppose k > 1, and the result is true for n = k−1. Let P ′ be a spherical polyhedron that

satisfies the conditions of the lemma for vectors {ci}k−1
i=1 . Take the set of faces Ak−1 := {fi}k−1

i=1

of P ′ corresponding to {ci}k−1
i=1 . Then since Ak−1 is a set of faces of a polyhedron, CH(Ak−1)

contains all the faces in f1, . . . , fk−1. We now wish to add vertices p, q, and r to form face fk,

such that if Ak = Ak−1∪{fk}, we shall have that the CH(Ak) contains all faces f1, . . . , fk. This is

equivalent to having the spherical region covered by fk not intersect the spherical regions covered

by each fi.

Well, let E be the equator of S that lies on a plane perpendicular to ck. We wish to find a

point a ∈ E such that a disc lying on S centered at a of diameter less than 1
2k does not intersect

any faces fi for 1 ≤ i < k. But such a point certainly exists; E has length 2π, and each face fi

has diameter at most 1
2i . Thus the total length of E that could be covered by faces fi is at most

k−1
∑

i=1

1

2i
< 1 < 2π.

There is therefore a point a upon E that is exterior to every face fi. See Figure 5.8(b).

Let B be a disc centered at a that is small enough not to intersect any fi, and has diameter

less than 1
2i . Note that such a disc exists, since the set of points of S exterior to all fi is an open

region. Now place points p, q, r upon S, within B, such that they form a triangle T that is similar

to the bounding rectangle of M2(α), with c(Tk) = ck. Such a triangle exists: we can make this

triangle arbitrarily small, and vector ck is tangent to S at a, so we simply take the plane of T to

be parallel to the tangent plane at a.

Take fk = T . Then fk lies in a region of S that does not intersect any other faces fi, so the

convex hull of f1, . . . , fk contains faces f1, . . . , fk. In addition, c(fk) = ck and fk has vertices

upon S, as required. We therefore take our polyhedron to be the convex hull of f1, . . . , fk and

the conditions of the lemma are satisfied.

We are now nearly done. We need only define our set of direction vectors such that all possible

choices for the Steepest Edge algorithm are covered, build the polyhedron from Lemma 5.3.10,

and paste copies of M2 upon the boundaries given in that polyhedron.

Theorem 5.3.11. There exists a polyhedron P such that the Steepest Edge algorithm generates

an unfolding with a 2-local overlap for any choice of direction vector ζ.

69

Proof. Choose any set of direction vectors {ζi}k
i=1 such that ∪k

i=1D(ζi) = S. Such a finite set ex-

ists, since S is a compact set. By Lemma 5.3.10 there exists a spherical polyhedron P0 containing

triangular faces f1, . . . , fk, each similar to the bounding rectangle of M2(α), such that c(fi) = ζi

for each i. Form polyhedron P1 by replacing each fi in P0 with a copy of M2(α). Here we take α

small enough that Lemma 5.3.9 applies (recall that M2 in Lemma 5.3.9 depends on α), and also

small enough that the polyhedron remains convex. That is, α < α0 and α is small enough that

the angles between the faces of M2(α) and the plane are negligible compared to the face angles

of P0.

But now for any ζ ∈ S, ζ will lie in some D(ζi). Thus, by Lemma 5.3.9, the embedding

of M2(α) in face fi will unfold to create a 2-local overlap when the Steepest Edge algorithm is

applied with direction ζ. Thus, for any direction vector ζ, the steepest edge algorithm will unfold

polyhedron P1 to generate a 2-local overlap, as required.

5.3.4 Normal Order Unfoldings

We now give a final example of the use of 2-local overlaps to analyze a class of unfoldings. We

shall define a class of unfoldings: the Normal Order unfoldings. At the outset of our research, we

were of the opinion that every convex polyhedron has a simple normal order unfolding. However,

this is not the case: we shall prove that there exists a polyhedron P such that every normal order

unfolding of P contains an overlap.

Definition

Let P be a convex polyhedron. Choose a direction vector ζ. Reorient space so that ζ = (0, 0, 1).

Choose any f ∈ F (P), and let n be the outward-facing unit normal for f . Denote by z(f) the

z-coordinate of n. We say z(f) is the height of f .

Now consider a cut tree C of P , with corresponding adjacency tree A and unfolding P ′. We

say that the unfolding P ′ is a normal order unfolding if, for all δ ∈ [−1, 1], the set {f ∈ F (P) :

z(f) ≤ δ} is connected in A. We also say in this case that A is in normal order.

Informally, a normal order unfolding is constructed by first choosing a face f in P with

minimum z(f), then attaching faces to the adjacency tree one by one in ascending order by

height. Note that there may be many normal order unfoldings for a polyhedron P and fixed

direction vector ζ; a given face may have many lower faces to which it may be attached in A, and

each choice leads to a different normal order unfolding. See Figure 5.9.

Lemma 5.3.12. Suppose adjacency tree A of convex polyhedron P is in normal order. Then, for

every face f ∈ F (P), either

70

f

g

h

f
g

h
f

g

h

(a) (b) (c)

Figure 5.9: An example of normal order unfolding. (a) A tetrahedron with face normals,

oriented with (0, 0, 1) facing the top of the page. (b) A normal order unfolding of the

tetrahedron, rooted at face f . (c) An unfolding that is not in normal order with respect

to direction (0, 0, 1), as one of f or h will violate Lemma 5.3.12.

1. f is the unique face with minimal z(f), or

2. f is adjacent in A to another face g with z(g) ≤ z(f).

Proof. Suppose that A is in normal order but f0 ∈ F (P) is not adjacent in A to any face g with

z(g) ≤ z(f0). We shall show that f0 must be the unique face in F (P) with minimal z(f0).

Suppose that there is some f1 ∈ F (P) with z(f1) ≤ z(f0). Take the set S = {f ∈ F (P) :

z(f) ≤ z(f0)}. Then f0 is not adjacent to any other face in S. But f1 ∈ S, f1 6= f0. We conclude

that S is not connected in A, contradicting the normal order of A.

Thus z(f0) > z(f) for all f ∈ F (P), and hence f0 is the unique face that minimizes z(f0) as

required.

A Polyhedron With No Simple Normal Order Unfolding

We shall now construct a polyhedron for which every normal order unfolding contains an overlap.

These overlaps will not necessarily be 2-local, but every normal order unfolding that does not

contain a 2-local overlap contains a 3-local overlap.

The method of construction is very similar to that for the counterexample to Conjecture 5.3.7.

In particular, it is based upon the idea of forming a construct of faces that will form a k-local

overlap under a given orientation, then forming a polyhedron built with many instances of it.

Consider the planar graph M3 illustrated in Figure 5.10(a). Here the positive z-axis is thought

of as pointing toward the top of the page, and the positive y-axis points out of the page. The

71

a b

c

d

e

f
g

h
i

a b

c
d

e

f

g

h
i

(a) (b)

Figure 5.10: The planar graph M3. In (b) the edges that will not be cut in a normal

order unfolding are marked, as are notable angles that are less than π
2 .

important thing to notice about this graph is that the angles 6 icd, 6 dfh, and 6 deg are all less

than π
2 , see Figure 5.10(b).

Consider raising the interior vertices of M3 in such a way that each face of M3 remains

planar. More specifically, take some δ > 0 and raise point d so that its y-coordinate is δ. Now

raise vertices e and c so that the polygon (a, b, c, d, e) remains planar. Finally, raise vertex f so

that the polygon (c, d, f, h) remains planar.

Suppose the largest y-coordinate of any vertex raised in this way is α; then we call the resulting

convex terrain M3(α). Note that α > 0, and that as our choice of δ approaches 0, so does α.

Hence α can be made arbitrarily small, and thus the curvature at all interior vertices of M3(α)

can be made arbitrarily small by taking α to be arbitrarily close to 0.

Lemma 5.3.13. Suppose ζ is a unit vector that has angle at most φ from (0, 0, 1). Then any nor-

mal order unfolding of M3(α) with respect to ζ contains an overlap, when α and φ are sufficiently

small.

Proof. First suppose that ζ = (0, 0, 1). Note that for any adjacent faces f1 and f2 in M3(α) with

common edge e, if f1 lies above e in Figure 5.10(a) then we will have z(f1) > z(f2).

Now consider Figure 5.10(b). In this illustration of M3(α), the bold edges will not be cut in

a normal order unfolding. These are the situations in which a face is incident to only one lower

face, and thus must be adjacent to that face in any normal order unfolding by Lemma 5.3.12.

Let F denote the face (c, d, f, h). Note that there is a choice regarding edges incident with F

to cut. In a Normal Order unfolding, one of edges (d, f) or (c, d) must not be cut.

Case 1: edge (c, d) is cut. Then a portion of the unfolding is as illustrated in Figure 5.11(a).

Recall that angle 6 icd is less than π
2 in M3. Thus, if α is sufficiently small, the sum of the angles

of faces (i, c, b) and (a, b, c, d, e) at vertex c will be greater than 3π
2 . But then, by Lemma 5.2.2,

72

a b

e

d

c
c

i
h

f
i

ba

c

d

hh

f

f

e

(a) (b)

Figure 5.11: The 2-local overlaps that occur in normal order unfoldings of M3(α)

a = (0, 0, 0) b = (100, 0, 0)

c = (80, 20, 2)

d = (60, 30, 3)

e = (20, 20, 2)

f = (48, 40, 3)

g = (18, 40, 0)

h = (60, 50, 0)
i = (82, 40, 0)

a = (0, 0) b = (100, 0)

c = (80, 20.1)

h

g = (17.57, 40.18)

e = (20, 20.1)

e = (17.21, 24.92)

f

f = (48.05, 40.21)

d = (60, 30.15)

(a) (b)

Figure 5.12: (a) A particular instance of M3(α). (b) The 3-local overlap that can occur

in a Normal Order unfolding of M3(α), using the embedding from (a).

a 2-local overlap will occur in this unfolding of M3(α) (again for sufficiently small α). See

Figure 5.11(a) for an illustration.

Case 2: edge (d, f) is cut. We now have two subcases.

Case 2.1: edge (f, h) is cut. Then our situation is similar to that discussed in Lemma 5.3.9.

That is, the angles at f in faces (d, e, f) and (e, f, h) sum to more than 3π
2 when α is sufficiently

small. So, by Lemma 5.2.2, a 2-local overlap will occur in this unfolding when α is sufficiently

small. See Figure 5.11(b).

Case 2.2: edge (f, h) is not cut. Then edge (f, e) must be cut. But then, taking curvatures

sufficiently small, there will be an overlap between faces (a, e, g) and (e, f, h). See Figure 5.12.

This situation requires particular attention, since the occurrence of an overlap does not follow

immediately from Lemma 5.3.9. In particular, a 2-local overlap does not occur. We therefore

proceed by explicitly determining the coordinates of the vertices in the unfolding to demonstrate

73

that an overlap occurs. See Figure 5.12 for this information. The result is a 3-local overlap

between faces (a, e, g) and (e, f, h).

We conclude that there is no way to unfold terrain M while respecting the normal order

induced by ζ. Note that no edges in M3 are parallel to the z-axis. Thus we do not have any

boundary conditions upon the ordering of heights of faces in M3(α). There is therefore an open

range of direction vectors ζ for which M cannot be simply unfolded. This implies that there is

some angle φ such that if ζ is within φ of (0, 0, 1), then any normal order unfolding of M3(α)

with direction ζ will contain an overlap.

Theorem 5.3.14. There exists a convex polyhedron P such that every normal order unfolding

of P contains an overlap.

Proof. The proof of this theorem is identical to that of Theorem 5.3.11. We therefore only sketch

the ideas.

We first embed M3(α) into an isosceles triangle to simplify the construction. Then we argue

that the value of φ in Lemma 5.3.13 is independent of the orientation and scaling of M3(α). We

are therefore free to rotate, translate, and uniformly scale M3(α) and Lemma 5.3.13 will still

apply (with vector ζ0 in place of (0, 0, 1) to denote the orientation of M3(α)).

We then form a polyhedron by placing instances of M3(α) upon the unit sphere. These

instances will be placed so that for each choice of ζ there is some instance of M3(α) such that ζ

is within angle φ of the corresponding ζ0. But then this instance of M3(α) creates an overlap in

the unfolding, by Lemma 5.3.13. We conclude that the polyhedron will unfold with an overlap

in any normal order unfolding.

Chapter 6

Reconstructing Polygons and

Polyhedra

In this chapter we investigate the problem of reconstructing a polygon or a polyhedron from edge

information. We consider two main variants of this problem: reconstruction from edge lengths

and reconstruction from edge vectors. We also investigate the effect of imposing restrictions such

as convexity, orthogonality, and non-degeneracy upon the constructed objects. It is proved that

most of these problems are NP-complete, although some are only weakly NP-complete.

6.1 Introduction

The results in this chapter are most directly motivated by a summary of open problems in the area

of polyhedron reconstruction by Demaine and Erickson [15]. Among other questions, Demaine

and Erickson ask whether it is NP-hard to determine whether a polyhedron can be constructed

from a given multiset of vectors as edges. That is, we wish to reconstruct a polyhedron given the

lengths and (undirected) orientations of its edges.

The equivalent problem for polygons is somewhat simpler since the edges of a polygon always

form a simple cycle. In other words, a sequence of vectors can form the edges of a polygon if and

only if they can be arranged into a simple closed chain. The key step in finding such a closed

chain is an assignment of direction to each vector, such that the sum of the resulting vectors is

zero. In other words, we must split our (positive) vectors into two subsets with equal sum. This

problem is reminiscent of the well-studied NP-hard problem Partition. Indeed, this similarity

is key for our results: we use it as a foothold for our NP-hardness proofs.

An associated problem is that of reconstructing polygons and polyhedra from edge lengths

75

76

(0,0)

(2,2)
(5,3)

(7,-1)

(3,-3)

Figure 6.1: A sample polygon

only. A well-known result is that it is easy to determine whether a convex polygon can be

constructed with a given multiset of edge lengths ([22], Lemma 3.1). However, this result depends

(informally speaking) on the large degree of freedom inherent in configuring a closed polygonal

chain. When restrictions such as orthogonality are added, the decision problem becomes NP-hard,

as we shall prove.

In this chapter we shall analyze the complexity of reconstructing various classes of polygons

and polyhedra from either edge lengths or edge lengths and orientations. A full summary of our

results is presented in Table 6.1. Among our key results is that the problem of reconstructing

polygons from edge vectors is weakly NP-complete, the problem of reconstructing polyhedra from

edge vectors is NP-complete when degeneracies are allowed, and the problem of reconstructing

polyhedra from edge lengths is NP-hard when degeneracies are allowed.

6.2 Preliminaries

6.2.1 Lengths and Orientations

We begin by making explicit the notions of “edge length” and “edge orientation” via an example.

Consider the polygon P shown in Figure 6.1. We wish to extract information about the edges of

this polygon. There are many pieces of data that could be stored; the locations of all endpoints,

the combinatorial structure of which edge is incident with which, the angles between edges, etc.

All of this information together would completely specify our polygon, so reconstructing the

polygon from this information is trivial. The more interesting problem is to specify only a small

amount of information, then attempt to reconstruct the polygon.

The least information we shall consider is the length of each edge. For the sample polygon,

this information would be given as the multiset Len(P) = {
√

8,
√

10,
√

18,
√

20,
√

20}. This

information is referred to as the edge lengths.

77

In addition to the length of each edge, we may also be given information about how the

edges are to be oriented. This corresponds to storing a vector for each edge of the polygon.

However, for each edge, there are two possible vectors: one positive and one negative (recall that

a vector is positive when its first non-zero coordinate is positive). We shall take all vectors to

be positive. For our sample polygon, this information would be given as the multiset Vec(P) =

{(2,−4), (2, 1), (2, 2), (3,−3), (4, 2)}. This information is referred to as the edge orientations or

edge vectors.

If we do not require that all vectors be positive, it is possible to encode an additional bit

of information for each edge in the choice of positive or negative vectors. In particular, we

could use the signs of the vectors to determine the standard directions of the edges from the

standard traversal described in Lemma 2.3.1. For our example, this corresponds to the multiset

{(2,−4), (2, 1), (2, 2), (−3, 3), (−4,−2)}. We call this information the edge directions. In other

words, the edge direction information is directed, whereas the edge orientation information Vec(P)

is undirected.

We will not be considering the problem of reconstruction from edge directions in this thesis.

We have defined edge directions here merely to distinguish them from edge orientations. We will

also be making use of edge directions in some of our proofs, so it is especially important not to

confuse the two.

6.2.2 Equivalence of Convex and General Polygons

Our first result is a simple consequence of Lemma 2.3.1 applied to reconstruction from vectors.

The idea is that since every polygon is a chain of edges and all closed chains of edges in a particular

order form convex polygons (by Lemma 2.3.1), one can always reorder the edges of any polygon

to form a convex polygon.

Lemma 6.2.1. If collinear edges are allowed, a polygon can be reconstructed from a sequence of

edge vectors if and only if a convex polygon can be reconstructed from those vectors.

Proof. We prove the non-trivial direction. Suppose that a non-convex polygon can be constructed

from a given sequence (V1, . . . , Vn) of edge vectors. Take the standard order and direction of those

vectors, (W1, . . . ,Wn). Now reorder these vectors to the order specified in Lemma 2.3.1. That is,

reorder the vectors to all positive vectors in decreasing order by slope, followed by all negative

vectors in decreasing order by slope. Form a chain from the vectors in this new order. Then

the resulting chain, say (Wσ(1), . . . ,Wσ(n)) where σ is a permutation, is still closed, and now

corresponds to a convex polygon by Lemma 2.3.1. Note, however, that the original polygon may

have been non-degenerate, and this reordering process may have introduced degeneracies.

78

6.2.3 Sets of Edge Lengths

These next two lemmas are technical results regarding the distributions of edge lengths in poly-

hedra. The first is a rough analog of the result for polygons: that the largest edge length is not

larger than the sum of the others. In the case of polyhedra, if there is one edge with a long length,

then there must be 2 disjoint sets of edges such that each set has total length at least as large as

that long edge. The second result is for orthogonal polyhedra, where it will turn out that 3 such

disjoint sets are guaranteed.

Edge Lengths in Polyhedra

Lemma 6.2.2. Given a polyhedron P and edge e0 of P , reorient P such that e0 is parallel to the

x-axis. Suppose |e0| = k. Then there are disjoint sets A1, A2 of edges of P such that
∑

e∈Ai

|v(e).x| ≥ k

for i = 1, 2.

Proof. The edge e0 must be adjacent to two faces of P , say f1 and f2. These faces can have no

other edge in common, since otherwise they would share interior points which contradicts the

definition of a polyhedron. Let A1 be the set of all edges adjacent to f1 besides e0. Define A2

similarly with respect to f2. We then have that A1 and A2 are disjoint.

But now, since {e0} ∪ A1 forms a polygon, the vectors of {e0} ∪ A1 form a closed chain and

therefore sum to 0 under a standard orientation. Hence
∑

e∈A1

|v(e).x| ≥ |v(e0).x| = k.

The same result holds for the edges in A2.

Edge Lengths in Orthogonal Polyhedra

The result of this section is similar to Lemma 6.2.2, but is rather stronger. In an orthogonal

polyhedron we can construct three sets of edges with length at least any given edge length, rather

than just two. The proof of this result is far more involved than that of Lemma 6.2.2, and will

be done via a series of claims.

Lemma 6.2.3. Suppose P is an orthogonal polyhedron and e0 is an edge of P with |e0| = k.

Then there are disjoint sets A1, A2, A3 of edges of P parallel to e0 such that
∑

e∈Ai

|e| ≥ k

79

e

Figure 6.2: Line segments opposite an edge e. If e is the labeled thick edge in the drawn

polygon P , the line segments in bold are L(P, e). The grayed lines are drawn as guides.

for i = 1, 2, 3.

Let us first provide a sketch of the proof. The idea is similar to that in Lemma 6.2.2. That

is, we take edges in the two faces incident with e0 and argue that their sum is larger than |e0|.
However, we can take this argument one step further. Take one of those two faces, and for

every edge considered we can apply the same operation again: choose another face incident with

that edge, and sum up its edges. This roughly gives us our third set, but does not guarantee

disjointness of all edges. We get around this problem by considering segments of edges, instead of

working with edges directly. Note that the reason we require such a complex argument is that we

are not restricting P to be non-degenerate; faces similar to that in Figure 6.2 can occur, possibly

interlocked with coplanar faces.

Note that this result does not hold for non-orthogonal polyhedra. Consider a long, skinny

triangular prism, and take e0 to be one of the long edges. Then there are only 2 other edges

as long as e0, and no third set can be formed. The difference for orthogonal polyhedra is that

they are limited in their possible face orientations, so in the following proof we can make strong

arguments about disjointness of sets of edges.

Proof. Let us first make a few definitions. Suppose a polygon P0 has an edge e. At each point p

of e, take the ray orthogonal to e directed toward the interior of P0 and let p′ be the first point

on an edge of P0 (other than e) intersected by this ray. We say that p′ is the point opposing e at

point p. Let A(P0, e) be the set of all points opposing e (at some point in e) in polygon P0.

80

Note that the set A(P0, e) forms a finite set of line segments, corresponding to segments of

edges in P0. Let L(P0, e) be that set of line segments corresponding to A(P0, e). See Figure 6.2

for an illustration of L(P, e). We also define A(P0, r) and L(P0, r) where r is a segment of an

edge e. These are simply the subsets of A(P0, e) and L(P0, e) corresponding to points opposite

points in r.

Claim 6.2.4. Suppose orthogonal polygon P contains edge e, and point p′ is the point opposing

e at point p. Then p′ lies upon an edge e′ parallel to e, and p is the point opposing e′ at p′.

Proof. We first prove the parallel requirement. Every edge of P is parallel with e or orthogonal

to e. If edge e′ is parallel to e we are done. If an edge e′ is orthogonal to e′, the only way in which

it can have a point p′ opposing e is if p′ is on a corner: p′ is the vertex incident with e′ that is

closest to e, and p′ is also incident with an edge parallel to e. Thus, in either case, p′ must be a

point upon an edge parallel with e.

Let e′ be the parallel edge containing p′. Then the line orthogonal to e′ at p′ is identical to

the line orthogonal to e at p. Since we know this line has no intersections with the boundary of

P between p and p′, we conclude that p must be the point opposite e′ at p′, as required.

Claim 6.2.5. If orthogonal polygon P contains edge e, and r0 is a line segment contained in e,

then
∑

r∈L(P,r0) |r| = |r0|. In particular,
∑

r∈L(P,e) |r| = |e|.

Proof. By Claim 6.2.4, each segment r ∈ L(P, r0) is parallel to e. The line segments of L(P, r0) are

therefore simply translations of corresponding line segments contained in r0 of the same length,

and every point of r0 lies upon exactly one such line segment. We conclude that the sum of the

lengths of these segments is precisely the length of r0.

Now we prove the desired result. See Figure 6.3 for a simple example of the three sets of edges

that we are interested in. We shall define these sets of edges formally.

There must be two disjoint faces adjacent to e0 in P , call them f1 and f2. Orient P in R3 so

that e0 has endpoints (0, 0, 0) and (k, 0, 0), and the interior of f1 lies in the positive y direction

relative to e0. Note then that either f2 lies upon the xz-plane or the interior of f2 lies in the

negative y direction relative to e0.

Now consider A(f1, e0) and A(f2, e0). These will form the first two of our desired three sets.

Then for each line segment r ∈ L(f1, e0), let fr be the face incident with r besides f1. Consider

A(fr, r) for each such r. The union of these sets will form the last of our desired sets.

The bulk of the remaining proof will be in showing disjointness (or near disjointness) of these

sets.

Claim 6.2.6. No edge contains segments in both L(f1, e0) and L(f2, e0).

81

e

Figure 6.3: A portion of an orthogonal polyhedron showing the three edge sets of interest

in Lemma 6.2.3, relative to edge e. One set consists of the hashed edges, another of the

thick black edges, and the last of the thick gray edges (shown through the face in the

forefront).

Proof. All points in A(f1, e0) lie in the (strictly) positive y halfspace, as the inward-facing normal

of e0 for polygon f1 is (0, 1, 0). Further, the points in A(f2, e0) either lie upon the xz-plane or in

the negative y halfspace. We conclude that A(f1, e0) and A(f2, e0) are distinct.

All edges containing segments in L(f1, e0) or L(f2, e0) are parallel to e0, by Claim 6.2.4.

Thus each such edge is parallel to the xz-plane, and cannot contain points both in the positive

y halfspace and not in the positive y halfspace. So no edge can contain points in both A(f1, e0)

and A(f2, e0), as required.

Claim 6.2.7. No edge contains segments in both L(fr, r) and L(f2, e0) for any r ∈ L(f1, e0).

Proof. Note that the interior of f1 lies in the negative y direction from r. Then the interior of

fr cannot lie in the negative y direction from r (since then it would intersect f1). We conclude

that fr is either parallel to the xz-plane, or the interior of fr is in the positive y direction from r.

Then we have that A(fr, r) must contain only points in the positive y halfspace, so A(fr, r) and

A(f2, e) are disjoint for all r ∈ L(f1, e0).

Note also that r must be parallel to e0, by Claim 6.2.4. This implies that no edge can contain

segments in both L(fr, r) and L(f2, e0), by an argument identical to that in Claim 6.2.6.

Claim 6.2.8. No edge contains segments in both L(fr, r) and L(f1, e0) for any r ∈ L(f1, e0).

82

Proof. Suppose edge e parallel to e0 contained a point in A(fr, r) and a point in A(f1, e0). So in

particular e is a common edge between fr and f1. But line segment r lies upon another edge in

common between f1 and fr. We conclude that f1 and fr must be coplanar.

Note that r must lie between e and e0, since otherwise the points of e between r and e0 would

have been in A(f1, e0), so r would not be in L(f1, e0). But now the interiors of faces f1 and

fr must lie in the same direction from e, since both r and e0 lie in that direction! This is a

contradiction.

Claim 6.2.9. There are only finitely many points that lie in two different sets A(fr, r) and

A(fr′ , r
′) for r, r′ ∈ L(f1, e0).

Proof. Suppose that A(fr, r) and A(fr′ , r
′) contain a point p in common for some r, r′ ∈ L(f1, e0).

Say p line on the interior of an edge e. Consider the point opposing e at p. By Claim 6.2.4, this

point must lie on both r′ and r. This implies that p is the point opposing r and r′ at a common

endpoint – that is, a vertex of the polyhedron. If, on the other hand, p does not lie on the interior

of an edge, then e is a vertex of the polyhedron.

So for each pair r, r′ ∈ L(f1, e0), A(fr, r) ∩ A(fr′ , r
′) is finite. Since there are only finitely

many such pairs, the result follows.

We can now finally define our sets of edges. Let A1 be the set of edges from which L(f1, e0)

contains a segment. In other words, if r ∈ L(f1, e0) where r is a segment on edge e, then e ∈ A1.

Let A2 be the set of edges from which L(f2, e0) contains a segment. Let A3 be the set of edges

from which L(fr, r) contains a segment for some r ∈ L(f1, e0). Then Claims 6.2.6, 6.2.7, and

6.2.8 imply that A1, A2, and A3 are pairwise disjoint.

Now Claim 6.2.9 implies that the line segments opposing all line segments opposing e0 are

disjoint, except for possibly some set of points that is finite (and hence has measure 0). We can

then apply Claim 6.2.5 twice to conclude that
∑

e∈A3

|e| ≥
∑

r∈L(f1,e0)

∑

r′∈L(fr,r)

|r′| =
∑

r∈L(f1,e0)

|r| = k.

Further, Claim 6.2.5 can be applied to L(f1, e0) and L(f2, e0) to get that
∑

e∈A1

|e| ≥
∑

r∈L(f1,e0)

|r| = k

and
∑

e∈A2

|e| ≥
∑

r∈L(f2,e0)

|r| = k

as required.

83

6.3 Problems For Reduction

In this section we shall introduce the problems that we will use for reductions in our NP-hardness

proofs. Most are known to be NP-complete, although for one variant this will need to be proven.

The main problem we employ is Partition. An instance of Partition is a sequence of

n positive integers (w1, . . . , wn). The problem is to determine whether these integers can be

partitioned into disjoint sets A1 and A2 such that

∑

w∈A1

w =
∑

w∈A2

w.

It is well known that this problem is NP-complete [17]. It should also be noted that if we define

S by 2S =
∑n

i=1wi, this problem is equivalent to finding a subset of the wi that sum to S.

We now list some useful variants of Partition.

Equal-Cardinality-Partition: In this variant we require that |A1| = |A2|. This problem

is known to be NP-hard; see [17].

Unique-Values-Partition: This problem is identical to Partition, except that the inputs

wi are necessarily distinct. The proof that this problem is NP-hard follows from the proof that

Partition is NP-hard [17]. Instead of restating this proof formally, we defer to the proof that

the next variant is NP-hard, which implies by trivial reduction that Unique-Values-Partition

is NP-hard.

Equal-Cardinality-Unique-Values-Partition: In this variant we require that the input

values all be unique, and that the solution satisfy |A1| = |A2|. The proof is a simple extension of

the Partition reduction given in [17], but we include it formally here for completeness.

Theorem 6.3.1. Equal-Cardinality-Unique-Values-Partition (ECUVP) is NP-complete.

Proof. It is not difficult to see that ECUVP is in NP. A certificate can be provided in the form

of a particular subset, A1, and its sum and cardinality can be checked in polynomial time.

To show NP-hardness, we shall reduce from Three-Dimensional Matching (3DM). An

instance of 3DM is three disjoint sets U = {u1, . . . , un}, V = {v1, . . . , vn},W = {w1, . . . , wn} and

a set of triples M = {m1, . . . ,mk}, where M ⊂ U ×V ×W . The problem is to determine whether

some subset of M is a perfect matching; that is, whether there exists M ′ ⊂ M such that each

item in U , V , or W occurs in precisely one m ∈ M ′. The 3DM problem is NP-Complete; there

is a known reduction from 3-SAT [17].

Suppose we have an instance U, V,W,M of 3DM. We can assume that at least one value in U ,

V , or W is included in 3 or more matchings (otherwise the problem can be solved in polynomial

time [17]). Without loss of generality (by renaming sets and/or reindexing), say u1 is included

84

k bits t bits

z
1

z
2

z
3 z

3n

{ {

Figure 6.4: Bit format of an integer corresponding to a triple mi in the reduction from

3DM. The blocks z1, . . . , z3n correspond to the elements of U , V , and W . These blocks

are ordered so that the entry corresponding to z1 occurs in at least three triples.

in 3 or more matchings. We now create an instance of ECUVP that has a solution if and only if

there is a solution to our instance of 3DM. That is, we shall construct a set of input values for

ECUVP. We build these values by specifying their bits in base 2, with most significant digits to

the left.

Let t = ⌊lg(k + 1)⌋. We first construct one integer weight xi for each mi ∈ M , as follows.

The integer xi consists of 3n blocks of t bits each, with k additional bits on the left. Each block

corresponds to an item in U , V , or W . Call these blocks z1, z2, . . . , z3n, where the first n blocks

correspond to the values in U in order of index, the next n correspond to the values in V , and

the last n to the values in W . In particular, z1 corresponds to u1. See Figure 6.4.

Initially, set all bits of every block to 0. Then, if mi = (u, v, w), set the rightmost bit of each

block corresponding to u, v, and w to 1. Finally, we set bit i of the leftmost k bits to 1. The

resulting bit string is the binary representation of xi.

We now construct another integer yi for each mi. This is done by only setting bit i of

the leftmost k bits to 1, and leaving all bits in the 3n zi blocks zero. In other words, yi =

xi AND 1k03tn.

An important thing to notice about our construction is that since there are only k triples in

M , and each value in U , V , or W can occur only once in a triple, there are at most k values xi

with a 1 in any particular block zi. Thus, since a block zi can represent integers at least as large

as k, there will be no overflow between blocks if all the xi and yi are added together.

Take S to be the sum of all the xi and yi. Denote by A the integer formed by setting the

rightmost bit of each block to 1, and setting all of the leftmost k bits to 1. Define two additional

values b1 = 2S −A and b2 = S +A. Our instance of the ECUVP is then b1, b2, and the xi’s and

yi’s.

To demonstrate that this is a valid instance of ECUVP, we need to show distinctness of the

values.

85

Claim 6.3.2. The values b1, b2, x1, . . . , xk and y1, . . . , yk are all distinct.

Proof. We first show that S > 2A. Consider the block z1. Left of that blocks, S and 2A are

identical: both are the sum of two instances of k 1’s. Within the block z1, 2A will have a value

of 2 in that block, but S will have a value of at least 3 (since u1 occurs in at least 3 matchings).

Thus b1 > b2 and certainly b2 is larger than any xi or yi. All xi and yi are distinct, by

differences in the k leftmost bits and the fact that each xi will have exactly three blocks with

non-zero entries, whereas each yi has none. We conclude that all of our values are unique.

We are now ready to show that we have a reduction from 3DM to ECUVP.

Since the total sum of all values in our instance is 4S, and there are 2n + 2 values given, a

solution to our instance of ECUVP corresponds to finding two disjoint subsets of n + 1 values

that sum to 2S.

Suppose that there is a solution M ′ to our instance of 3DM. Then we take xi for every

mi ∈M ′, and yi for every mi 6∈M ′. These will sum to A, as each entry occurring in exactly one

matching implies that there is exactly one 1 for each block in the sum, and one of xi or yi for

each i implies that the leftmost k bits are all 1 in the sum. Thus these values plus b1 will equal

2S. This gives a subset with n+ 1 values that sum to 2S, as required.

Now suppose that there is a solution to our instance of ECUVP. As b1 + b2 = 3S > 2S, we

know that b1 and b2 occur in different subsets. Consider the subset containing b1 = 2S − A, say

A1. The remaining values in A1 must sum to A. Since there can be no carry between blocks,

there must be precisely one value with a 1 in each block of our integer representation. Also, since

there are only two weights with bit i of the leftmost k bits being 1, and all these bits must be 1

in the sum, we must have exactly one weight with bit i of the leftmost k bits being 1, for each i.

We conclude that the remaining n values in this subsets are precisely one of xi or yi for each

i. Every block zi has a non-zero entry in precisely one of the xi’s chosen for this subset. That

is, every value in U , V , and W is represented exactly once in the triples mi for each xi in this

subset. A solution to our instance of 3DM is therefore {mi : xi ∈ Ai}.
As a final note, we argue that the size of integers in the instance to ECUVP is not too large.

The instance of 3DM is given by the entries of the triples, which are 3k values each referring to one

of n entries in U , V , orW . Thus the total problem size is O(k lg n). Note also that each value in U ,

V , or W must occur in some triple, otherwise the problem is trivial. We therefore have n = O(k),

so problem size is O(k lg k). Our constructed integers have k+3n lg k = O(k+n lg k) = O(k lg k)

bits. We have 2n + 1 such integers, for a total problem size of O(k2 lg n), which is certainly

polynomial in the original problem size.

86

6.4 Reconstructing from Edge Vectors

In this section we consider the problem of reconstructing a polygon or polyhedron from a set of

edge vectors. That is, we are given vectors V1, . . . , Vn and wish to determine whether they can

be placed to form the edges of a polygon or polyhedron. We assume that each vector has integer

coordinates, each representable in k bits.

It is important to recall that we consider the edge vectors as being undirected, as discussed in

Section 6.2.1. That is, the problem remains the same if we negate some of the input vectors. Our

vectors therefore denote the length and orientation of edges in R2 or R3 but do not represent any

information about that edge’s position relative to any given traversal of our constructed object.

6.4.1 Polygons

We begin by attempting to reconstruct convex polygons from edge vectors. This problem will be

shown to be NP-complete. We then consider variants of the problem by allowing degeneracy or

non-convexity, or by enforcing orthogonality, or some combination of these. It will turn out that

all of these variants are NP-complete as well.

We also consider whether these problems are strongly or weakly NP-complete. It will turn

out that convex, orthogonal, and degenerate polygons can be reconstructed in pseudo-polynomial

time, and these problems are therefore only weakly NP-complete. The question as to whether

the decision problem for general polygons is strongly or weakly NP-complete is left open.

Reconstructing Polygons and the Class NP

We will show that all variants of deciding whether a polygon (not necessarily convex) can be

reconstructed from edge vectors are in NP. Informally, this follows because a set of vectors form

a polygon if and only if they form a simple closed chain, by definition. An oracle can therefore

simply provide this chain as a certificate.

Lemma 6.4.1. The problem of determining whether a polygon can be reconstructed from a se-

quence (V1, . . . , Vn) of edge vectors is in NP.

Proof. Suppose the vectors can be placed together to form a polygon P . Let (W1, . . . ,Wn) be

the vectors in standard order and orientation (where each Wi is either Vj or −Vj for some j).

We supply (W1, . . . ,Wn) as a certificate for this solution. To verify that these vectors indeed

trace out a polygon, we need only check that the implied chain is closed and simple. The chain

is closed if and only if the vectors sum to 0, which is easily verified. For simplicity, we must

verify that the corresponding line segments intersect only at incident vertices. Since each vector

87

has integer coordinates, each line segment has integer coordinate vertices as well; the endpoints

for the line segment corresponding to Wj are
∑j−1

i=1 Wi and
∑j

i=1Wi. We can therefore compute

the endpoints of all the line segments, then use any known polynomial-time algorithm to find all

intersections between segments (since intersection points will have rational coordinates).

Thus our certificate can be verified to correspond to a polygon in polynomial time, as required.

It remains to show that the requirements of each variant of our reconstruction problem can

also be verified from our given certificate in polynomial time.

Lemma 6.4.2. The problem of determining whether a polygon can be reconstructed from a se-

quence (V1, . . . , Vn) of edge vectors is in NP, even if we restrict the polygon to be one or more of

orthogonal, convex, and non-degenerate.

Proof. We use the same certificate as in Lemma 6.4.1. We need only show that each of the

specified restrictions can be verified in polynomial time for our certificate.

Orthogonality can be checked simply by verifying that each vector has exactly one non-zero

coordinate. Non-degeneracy is verified by ensuring that no two consecutive vectors have the same

slope.

The test for convexity follows from Lemma 2.3.1. We need only test that the certificate vectors

are in the order stated in that lemma, which can be done in polynomial time.

Convex Polygons

Our first problem is one of reconstructing convex polygons from edge vectors. We assume here

that our polygon must be non-degenerate, meaning that no two adjacent edges can be collinear.

Lemma 6.4.3. It is NP-hard to determine whether a set of 2-dimensional vectors can form the

edges of a non-degenerate convex polygon.

Proof. We shall reduce from Equal-Cardinality-Unique-Values-Partition (ECUVP). Sup-

pose we have an instance (wi)
2n
i=1 of ECUVP. Define S by 2S =

∑2n
i=1wi. Then we supply the

following vectors to our reconstruction problem:

1. Xi = (wi, 1) for 1 ≤ i ≤ 2n

2. B1 = B2 = (S, n)

We claim that these vectors form the edges of a convex polygon if and only if there is a

solution to our instance of ECUVP.

88

X
i

w
i

1

B
1

B
2

X
i
 : w

i
 in A

1

X
i
 : w

i
 in A

2

{

{

(a) (b)

Figure 6.5: An example of the construction in the proof of Lemma 6.4.3. (a) The

construction of the vector Xi from a value wi. (b) The polygon resulting from a solution

to Partition on the values (wi).

Suppose that our instance of ECUVP has a solution A1, A2. Then we form our polygon as a

chain of vectors (Wi)
2n+2
i=1 , as follows:

• W1, . . . ,Wn are the vectors Xi corresponding to values of A1, sorted by increasing wi value.

• Wn+1 = B1.

• Wn+2, . . . ,W2n+1 are the vectors −Xi corresponding to values of A2, sorted by increasing

wi value.

• W2n+2 = B2.

See Figure 6.5 for an illustration of this construction.

Then we note that the sum of these vectors is 0, so they form a closed chain. Also, note

that they are ordered by slope as required by Lemma 2.3.1, so they form a convex polygon. We

conclude that this is a solution to our reconstruction problem, as required.

For the reverse direction, suppose that our constructed vectors form the edges of a convex

polygon P . Let W1, . . . ,Wn be the vectors Xi in standard orientation, and similarly let B′
1, B

′
2

be vectors B1, B2 in standard orientation. Let A1 = {wi : Wi = Xi} and A2 = {wi : Wi = −Xi}.
We claim that A1, A2 is a solution to ECUVP.

Note first that the sum of all Wi and B′
i must be 0, since they form a closed chain.

Claim 6.4.4. Either B′
1 = −B1 and B′

2 = B2, or B′
1 = B1 and B′

2 = −B2.

89

Proof. Suppose for contradiction that B′
1 = B1 and B′

2 = B2. Then B′
1 + B′

2 = (2S,−2n). To

yield a sum of 0 on the x-coordinate, we must have Wi = −Xi for all i. But this does not

achieve a sum of 0 on the y-coordinate, a contradiction. Similarly, we cannot have B′
1 = −B1

and B′
2 = −B2. This concludes the proof of the claim.

Without loss of generality, assume B′
1 = B1 and B′

2 = −B2. Then B′
1 + B′

2 = 0, so we must

have
2n
∑

i=1

Wi = (0, 0)

and hence
∑

Wi=Xi

Xi −
∑

Wi=−Xi

Xi = (0, 0)

which implies (by examining x-coordinates and y-coordinates separately)

∑

wi∈A1

wi =
∑

wi∈A2

wi

and
∑

wi∈A1

1 =
∑

wi∈A2

1

and hence |A1| = |A2|. We conclude that our partition of the wi’s forms a solution to our instance

of ECUVP.

We have now shown that determining whether a non-degenerate convex polygon can be con-

structed from a set of edge vectors is NP-hard. This particular problem is only weakly NP-hard,

however. There is a pseudo-polynomial algorithm for solving it, which proceeds as follows.

Lemma 6.4.5. There is a pseudo-polytime algorithm to determine whether a convex polygon can

be reconstructed from a sequence of edge vectors.

Proof. Suppose we are given vectors V1, . . . , Vn. We can assume that all of these vectors are

non-negative (simply negate any vectors for which this is not true, since initial orientation is

irrelevant). Let S = 1
2

∑n
i=1 Vi. Our problem is now to find some subset of the Vi that sums to S.

We shall use dynamic programming to find this subset. Our pseudo-polynomial parameter will

be m, defined as

m = max

{

S.x,

n
∑

i=1

|Vi.y|
}

.

90

Recall that a pseudo-polynomial parameter is a value that is polynomial in the input size if the

input values are expressed in unary, but exponential in the input size if the input values are

expressed in binary. This value m will be used as a parameter in the time complexity of our

algorithm.

First we check that non-degeneracy is possible. If any 3 of the Vi have the same slope, there

is no possible non-degenerate convex polygon so our algorithm returns false. This follows from

Lemma 2.3.1: each vector must be in either the upper or lower chain, and the vectors in those

chains must be ordered by slope, so if there are three parallel vectors then at least two must be

adjacent and collinear which contradicts non-degeneracy.

If there are no 3 parallel vectors, relabel the Vi so that any two vectors with the same slope

are labeled Vi, V
′
i . We say in this case that V ′

i is the twin of Vi. Note now all Vi have unique

slopes (i.e. excluding the V ′
i); say there are n′ ≤ n such vectors. Finally, take V ′

i = (0, 0) if Vi

has no twin.

We now perform dynamic programming. We fill a three-dimensional binary table, indexed

by e(i, j, k), for 1 ≤ i ≤ n′, 0 ≤ j ≤ m, and −m ≤ k ≤ m. We wish to fill this table such that

e(i, j, k) = 1 if some subset of vectors with indices at most i can sum to (j, k), where exactly one

of any Vl, V
′
l pair must be used for each 1 ≤ l ≤ i. Otherwise, e(i, j, k) = 0.

We fill the table as follows. Initially we set e(1, Vi.x, Vi.y) = e(1, V ′
i .x, V

′
i .y) = 1, all other

e(1, j, k) = 0. Then for each subsequent value i, and for all j and k, set e(i + 1, j, k) = 1 if

e(i, j − Vi.x, k − Vi.x) = 1 or e(i, j − V ′
i .x, k − V ′

i .x) = 1. When we are finished filling the table

(i.e. we reach i = n′), we return true if and only if (n′, S.x, S.y) = 1. There are at most 2nm2

entries in the table, so total running time is O(nm2).

To justify this algorithm, suppose there is some positive set of vectors adding to S. These will

form the upper chain as in Lemma 2.3.1. We order them by decreasing slope, with any vertical

vectors being placed first. Note that since only one of each Vi, V
′
i is chosen for each i, the slopes

in the upper chain will all be unique. For all values not taken, take their negatives and form the

lower chain from them. Again, order by decreasing slope as prescribed by Lemma 2.3.1. These

vectors must add to −S, since the sum of all the original vectors is 2S. We conclude that the

resulting chain is closed. Finally, Lemma 2.3.1 now gives us that the chain corresponds to a

convex polygon, as required.

Pairing the above argument with the result of Lemma 6.4.2, we conclude the following theorem.

Theorem 6.4.6. Determining whether a set of 2-dimensional vectors can form the edges of a

non-degenerate convex polygon is a weakly NP-complete problem.

91

{

B
2

B
1

X
i

Figure 6.6: Forming a degenerate orthogonal polygon from an instance of Partition.

Degenerate Polygons

We now modify our problem to allow degeneracies in our polygons. It turns out that this variation

is also NP-hard, via a simpler construction than that for non-degenerate convex polygons. We

begin by considering the special case of convex orthogonal polygons. In other words, we consider

box-shaped polygons, possibly with collinear edges.

Lemma 6.4.7. It is NP-hard to determine whether a set of 2-dimensional vectors can form the

edges of a (possibly degenerate) convex orthogonal polygon.

Proof. Given 2-dimensional vectors V1, . . . , Vn, we wish to determine whether they can be placed

in R2 to form the edges of a convex orthogonal polygon, where degeneracies (i.e. adjacent collinear

edges) are allowed.

Given an instance (wi)
n
i=1 of Partition, we supply the following vectors:

1. Xi = (wi, 0) for 1 ≤ i ≤ n

2. B1 = B2 = (0, 1)

We now claim that these vectors form a (possibly degenerate) convex orthogonal polygon if

and only if there is a solution to our instance of Partition. Suppose that A1 and A2 are a

solution to Partition. Then we form our polygon as a rectangle with height 1 and width S;

see Figure 6.6. This rectangle has B1 and B2 being the opposing edges of length 1, the edges of

A1 placed collinearly to form one side of length S (i.e. the top of the box), and the edges of A2

placed collinearly to form the other side of length S (i.e. the bottom).

Suppose now that the Xi and Bi are arranged to form a polygon P . Take (W1, . . . ,Wn) to

be the vectors Xi in standard direction. For each i, place wi in A1 if Wi = Xi. Otherwise (i.e.

Wi = −Xi) place wi in A2. Then A1 and A2 form a partition of (vi), and indeed the sums of values

in A1 and A2 must be equal since the total displacement along the x-coordinate of the circuit

made around P is 0. See Figure 6.7 for a general example of this approach (for a non-convex

polygon, in this case).

92

p

Figure 6.7: Obtaining a solution to Partition from a reconstructed orthogonal polygon.

But now Lemma 6.2.1 and the definition of polygon orthogonality imply the following result.

Lemma 6.4.8. Deciding whether the following polygon types can be reconstructed from edge

vectors is NP-Complete, when collinear adjacent edges are allowed.

1. Convex Polygons

2. Orthogonal Polygons

3. General Polygons

Proof. By definition, any polygon reconstructed from axis-aligned vectors must be orthogonal.

We can therefore drop the orthogonality requirement from the statement of Lemma 6.4.7 as

it is implied by any reduction to orthogonal vectors. Also, by Lemma 6.2.1, a general (resp.,

orthogonal) polygon can be reconstructed if and only if a convex (resp., convex orthogonal)

polygon can be reconstructed when degeneracies are allowed. Thus Lemma 6.4.7 implies NP-

hardness of all the required polygon classes.

In fact, these are all weakly NP-complete: there are pseudo-polytime algorithms for each of

the decision problems.

Lemma 6.4.9. There are pseudo-polytime algorithms to determine whether a set of vectors form

the edge vectors for a convex, orthogonal, or general polygon, when degeneracies are allowed.

Proof. We shall modify the algorithm from Lemma 6.4.5 to relax its non-degeneracy and convexity

conditions.

For the case of convex polygons, we proceed with the algorithm from Lemma 6.4.5 but omit

the notion of twins. Instead, we set each V ′
i = (0, 0). We also no longer test whether there are

93

three parallel vectors. The correctness of this algorithm follows in exactly the same manner as in

Lemma 6.4.5.

This algorithm also answers the question for general polygons, since we can apply the algo-

rithm to general polygons by Lemma 6.2.1.

Finally, for orthogonal polygons, we use our modified algorithm for convex polygons but

additionally check that each vector has exactly one non-zero coordinate; otherwise no orthogonal

polygon can be constructed.

Putting all these results together, we get the following characterization of our reconstruction

problems.

Theorem 6.4.10. The problem of deciding whether the following polygon types can be recon-

structed from edge vectors, when collinear adjacent edges are allowed, is NP-complete.

1. Convex Polygons

2. Orthogonal Polygons

3. General Polygons

Non-Degenerate, Non-Convex Polygons

We now consider the reconstruction of non-convex polygons where collinear edges are not allowed.

There are two main variants: orthogonal polygons and general non-convex polygons.

Lemma 6.4.11. It is NP-hard to determine whether a set of 2-dimensional vectors can form the

edges of a non-degenerate orthogonal polygon.

Proof. We proceed by performing a Turing reduction from Partition. That is, our reduction

uses multiple instances of the reconstruction problem. Given an instance (wi)
n
i=1 of Partition

we create three instances of this reconstruction problem by supplying the following vectors with

k = 1, 2, 3:

1. Xi = (wi, 0) for 1 ≤ i ≤ n

2. Yi = (0, 1) for 1 ≤ i ≤ n− 2

3. B1 = (0, 1), B2 = (0, k)

94

B
1

B
2

X
i

Y
i

B
1

B
2

X
i

Y
i

(a) (b)

Figure 6.8: An example of non-degenerate orthogonal polygon reconstruction from an

instance of Partition. The cases where (a) k = 1 and (b) k = 3 are shown.

We now claim that these vectors form a (possibly degenerate) orthogonal polygon for one

of k = 1, 2, 3 if and only if there is a solution to our instance of Partition. Thus, to solve

Partition, we need only run three instances of our reconstruction problem, which causes a

contradiction if this problem can be solved in polynomial time.

Suppose that A1 and A2 are a solution to Partition. Then we form our polygon as a “lumpy

rectangle;” see Figure 6.8. Place B1 as the left side of the polygon. Now for each wi in A1, place

Xi along the top of the polygon. Attach to this Xi a vector from Yi, alternately angling up and

down, starting upwards. Perform the same operation for the bottom of the polygon, using the

values from A2 and starting downward. The result is that the endpoints of the upper and lower

perimeters are vertically aligned (they both have x-coordinate S). However, the distance between

the two endpoints depends on the parity of A1 and A2.

• If |A1| and |A2| are odd then a vector of length 1 is needed.

• If |A1| and |A2| are even then a vector of length 3 is needed.

• If exactly one of |A1| or |A2| is odd then a vector of length 2 is needed.

Thus, for one value of k, the vector B2 will be the appropriate length and can be placed as the

right end of our rectangular structure.

Suppose now that the vectors can be arranged to form a polygon P for one of the values of k.

Then we can form a partition A1 and A2 solving Partition by using the standard order of edge

vectors for P , just as was done for degenerate orthogonal polygons in Lemma 6.4.7. See Figure

6.7 for an example.

Our use of a Turing reduction for the preceding proof is unfortunate. It is tempting to try to

remove this requirement by reducing from Equal-Cardinality-Partition so that the correct

95

k to use can be derived from n. However, we have not found a way to derive a solution to

Equal-Cardinality-Partition from an instance of orthogonal polygon reconstruction.

It is a simple matter to remove the orthogonality condition of Lemma 6.4.11, giving us the

following theorem.

Theorem 6.4.12. It is NP-complete to determine whether a set of 2-dimensional vectors can

form the edges of a non-degenerate polygon. The problem remains NP-complete if we restrict the

polygon to be orthogonal.

Proof. The orthogonality of the reconstructed polygon in Lemma 6.4.11 can be guaranteed simply

by providing orthogonal vectors to the reconstruction problem. The orthogonality condition can

therefore be removed from the statement of that lemma and the result follows.

We leave open the question of whether these problems are weakly or strongly NP-complete.

6.4.2 Polyhedra

In this section we extend the hardness proofs for polygons to three dimensions. Most of the results

for polygons carry over to polyhedra, though with proofs involving more complex constructions.

In particular, the decision problems remain in NP for polyhedra.

Lemma 6.4.13. The problem of deciding whether a sequence of vectors can form the edges of a

polyhedron is in NP.

Proof. Supposing that a given sequence of vectors (Vi)
n
i=1 can form a polyhedron P , we provide

the following certificate. Translate P so that it has a vertex v located at (0, 0, 0). Then all vertices

of P occur at lattice points, bounded by the sizes of the edge vectors provided, and can therefore

be represented in polynomial space. The certificate is therefore the polyhedron represented as a

list of vertices, edge connectivity information, and face connectivity information. A winged-edge

data structure would be a sufficient certificate [26].

To verify this construction, we need only match each edge (p1, p2) in this polyhedron with

exactly one input vector which equals either p1 − p2 or p2 − p1. Note that this can be done in

polynomial time: ensure that the input vectors are all positive (by negating any that are not),

then only compare whichever of p1 − p2 or p2 − p1 is positive.

We need now only verify that the given construction is a valid polyhedron. There are well-

known polytime algorithms for such verification. We need only verify that each edge is in two

faces, the surface is connected, the cyclic sequence of faces around every vertex is connected, and

no two faces intersect other than at common edges. See, for example, the algorithms presented

by O’Rourke [26].

96

In addition, many properties about polyhedra can be verified in polynomial time given a

reasonable data structure as a certificate. This implies the following.

Lemma 6.4.14. The problem of deciding whether a sequence of vectors can form the edges of

a polyhedron is in NP, even when we require that the polyhedron be one or more of convex,

orthogonal, and non-degenerate.

Proof. We need only verify the required properties given a winged-edge data structure as a

certificate. Testing for orthogonality is easy; simply check that all faces are parallel to one of the

axis-aligned planes. For non-degeneracy, check that no two incident faces are coplanar and that

no two edges incident along the boundary of a face are collinear. To test for convexity, we need

only test that all dihedral angles are no more than π, which is done by comparing the planes of

the two faces incident with each edge of the polyhedron.

Convex Polyhedra

We now show how to extend the NP-hardness construction for convex polygons to convex poly-

hedra.

Theorem 6.4.15. It is NP-complete to determine whether a set of 3-dimensional vectors can

form the edges of a non-degenerate convex polyhedron.

Proof. The fact that the problem is in NP follows from Lemma 6.4.14. It remains to show

NP-hardness.

We shall reduce from Equal-Cardinality-Unique-Values-Partition (ECUVP). Suppose

we are given an instance of ECUVP, and A is the set of 2-dimensional vectors given in the proof

of Lemma 6.4.3. We supply the following vectors to the polyhedral construction problem:

1. Pi = Qi = (x, y, 0) for each ai = (x, y) ∈ A

2. Bi = (0, 0, 1) for each ai ∈ A

We claim that a polyhedron can be reconstructed from these vectors if and only if there is a

solution to our instance of ECUVP.

Suppose that we are given a solution A1, A2 to our instance of ECUVP. Then we can con-

struct a polygon p1 from the vectors Pi and an identical polygon p2 from the vectors Qi as in

Lemma 6.4.3, and connect these polygons into a prism using the vectors Bi. See Figure 6.9. A

polyhedron can therefore be constructed from these vectors, as required.

On the other hand, suppose we can construct polyhedron P from these vectors. The Bi are

the only vectors with a non-zero z-coordinate, so each face of P is either parallel to the x, y-plane

97

P
i

Q
i

B
i

Figure 6.9: A convex polyhedron constructed from a solution to an instance of ECUVP.

or to the z-axis. Since P is non-degenerate, every vertex must be adjacent to a vector from Bi.

Indeed, each vertex must be adjacent to exactly one; if a vertex v were adjacent to two, one

going up and the other going down, then the corresponding faces would be coplanar (since our

polyhedron must be convex).

We conclude that P must be a prism. See Figure 6.9 for a visualization of this polyhedron.

That is, it corresponds of two identical polygons p1 and p2 parallel to the x, y-plane connected by

z-axis-parallel edges at each vertex. But, since p1 and p2 are identical (and hence have identical

edges) we can assume without loss of generality that the edges of p1 are precisely Pi and the

edges of p2 are precisely Q1. But now p1 is a convex non-degenerate polygon on the edges in A,

and therefore implies a solution to our instance of ECUVP, as required.

Degenerate Convex Polyhedra

As with our argument for degenerate polygons, we shall first consider orthogonal polyhedra.

Lemma 6.4.16. It is NP-hard to determine whether a set of 3-dimensional vectors can form the

edges of a (possibly degenerate) convex orthogonal polyhedron. This is true even if we remove the

convexity requirement.

Proof. We proceed in a manner similar to Lemma 6.4.15. However, the construction for the

previous proof is not as simple to prove correct when degeneracies are allowed, since the resulting

polyhedron need not necessarily be a prism. However, we can force creation of a prism by

modifying the input to the reconstruction problem.

98

{ D
3

D
1 P

i
 : w

i
 in A

1{
P

i
 : w

i
 in A

2

D
2

B
1

B
3

B
2

C
2

Figure 6.10: Forming a degenerate orthogonal polyhedron from an instance of Partition.

Suppose we are given an instance (wi)
n
i=1 of Partition. Let 2S =

∑n
i=1wi. Then we

construct the following vectors.

1. Pi = (0, wi, 0) for each 1 ≤ i ≤ n

2. B1 = B2 = C1 = C2 = (1, 0, 0)

3. B3 = C3 = (0, S, 0)

4. D1 = D2 = D3 = D4 = (0, 0, 1)

Suppose our instance of Partition has a solution. Then an orthogonal, convex, degenerate

polyhedron can be constructed as in Figure 6.10. We basically group the Pi’s into two sets,

forming edge-constructs of length S, and form a (1, 1, S) box.

For the reverse direction, suppose these vectors can form a convex orthogonal polyhedron P .

Then certainly vector B3 must be present in P . Since it is parallel to the y-axis of length S and

the only other vectors with non-zero y-component are the Pi and C3, we must be able to separate

these vectors into 3 sets, each with total y-component at least S, by Lemma 6.2.3. The only way

to do so is to take C3 as one set, and partition the Pi into two sets, each with sum of wi’s being

S. This implies a solution to Partition.

Note that the convexity requirement upon the polyhedron was not used to form our solution

to Partition. Our argument implies that the reconstructed polyhedron must be convex, whether

or not we required it to be so. Since a reconstructed convex orthogonal polyhedron is trivially

an orthogonal polyhedron, we conclude that the NP-hardness result follows even if the convexity

requirement is removed.

99

A polyhedron reconstructed from axis-aligned vectors must be orthogonal (since the cross-

products of non-collinear pairs of these vectors, and hence face normals, will be axis-aligned as

well). We can therefore drop the orthogonality constraint from the statement of Lemma 6.4.16,

since it will be implied by an input consisting of orthogonal vectors. We therefore conclude the

following result.

Lemma 6.4.17. It is NP-hard to determine whether a set of 3-dimensional vectors can form the

edges of a (possibly degenerate) polyhedron. The problem remains NP-hard when we require the

polyhedron to be orthogonal and/or convex.

Putting together all these results, plus Lemma 6.4.14, gives the following characterization.

Theorem 6.4.18. The problem of determining whether a set of 3-dimensional vectors can form

the edges of a polyhedron is NP-complete when degeneracies are allowed. The decision problem

remains NP-complete even when we restrict the polyhedron to be convex or orthogonal.

6.4.3 Open Problems

The complexity of reconstructing general and orthogonal non-degenerate polyhedra from edge

vectors remains open. We have shown that these problems are in NP, but have not yet found a

reduction to demonstrate that they are NP-complete.

The issue is that the proof of 6.4.15 relies upon the fact that the reconstructed polyhedron

must be a prism. When the convexity requirement is removed, this is no longer true; consider

Figure 3.3. Our approach of reducing the polyhedral version of the problem to two instances of

the polygonal version is therefore not directly applicable.

6.5 Reconstructing from Edge Lengths

In this section we consider problems similar to reconstruction from edge vectors, but here we

are given only a set of numbers and we are asked whether they can form the lengths of edges

in a given construct (polygon or polyhedron). This problem can be thought of as being given a

pile of sticks, each of fixed length, and asked whether they can be arranged to form the edges

of a polygon or polyhedron. Unlike the edge vector reconstruction problem, the sticks can be

arbitrarily rotated as well as translated.

6.5.1 Polygons

Here we are given a sequence of values (li)
n
i=1 and are asked whether they can form the lengths

of edges of a given polygon. It is a well-known result that this question can be answered in linear

100

(a) (b)

Figure 6.11: Reconstructing an orthogonal (a) polygon and (b) polyhedron from an

instance of Partition.

time for general or convex polygons, either with or without degeneracies allowed.

Theorem 6.5.1 (Lemma 3.1 of [22]). Given a sequence of values (li), one can determine in

linear time whether they can form the lengths of the edges of a polygon, either necessarily convex

or not.

However, if we restrict to orthogonal polygons, this result is no longer true.

Lemma 6.5.2. It is NP-hard to determine whether a sequence of values can form the edge lengths

of an orthogonal (possibly degenerate) polygon.

Proof. Suppose we are given an instance of Partition, (wi). We provide the following values to

our decision problem: (3w1, . . . , 3wn, 1, 1). We claim that these values can form the lengths of

the edges of an orthogonal polygon if and only if there is a solution to our instance of Partition.

If a solution A1, A2 to Partition exists, we can use it to form a polygon. Simply form a box

with height 1 and width 3S by taking all edges corresponding to A1 and placing them collinearly

horizontal, and similarly for the edges corresponding to A2. The vertical sides of the box are

formed by the edges of length 1. See Figure 6.11.

If a polygon P can be formed, we simply traverse the edges of the polygon to partition the

vertical edges into two sets V1, V2 with the same sum of lengths, and similarly for the horizontal

edges into H1, H2. In order for the sums to be equal, the two edges of length 1 must either be

both horizontal or both vertical, and in opposite sides of the corresponding partition. Thus they

can be removed from our partitions and equality still holds, so we have partitioned our values into

four sets H1, H2, V1, V2 such that V1 = V2 and H1 = H2. Thus take A1 = V1 ∪H1, A2 = V2 ∪H2

to get a solution to Partition.

However, as with edge vectors, there is a pseudo-polytime algorithm to reconstruct an orthog-

onal degenerate polygon from edge lengths.

101

Lemma 6.5.3. There is a pseudo-polynomial time algorithm that will determine if a (possibly

degenerate) orthogonal polygon can be reconstructed from a multiset of edge lengths.

Proof. An orthogonal polygon can be constructed with given edge lengths if and only if there

is an associated multiset of orthogonal vectors with the appropriate lengths that can be used

to reconstruct an orthogonal polygon. But by Lemma 6.2.1, this occurs if and only if a convex

orthogonal polygon can be constructed. We can therefore limit ourselves to the problem of

reconstructing a convex orthogonal polygon with degeneracies. Such a polygon is a box with

edges possibly subdivided.

If such a polygon exists, it must have a vector associated with each given edge length. For

edge length li, the associated vector must be one of (li, 0),(−li, 0),(0, li), or (0,−li). Our approach

is to use dynamic programming, where for each i exactly one of the above vectors must be chosen,

and we wish to determine if a final vector sum of (0, 0) can be reached.

Formally, suppose our input lengths are (li)
n
i=1. Let our pseudo-polynomial parameter be

m =
∑n

i=1 li. Recall that a pseudo-polynomial parameter is a value that is polynomial in the

input size when input values are represented in unary, but exponential in the input size when

values are represented in binary. We usem as a parameter in the time complexity of our algorithm.

We proceed by filling a three-dimensional table of values. The entries of this table are denoted

e(i, j, k), where 1 ≤ i ≤ n, −m ≤ j ≤ m, −m ≤ k ≤ m. Our algorithm will fill this table so that

e(i, j, k) is 1 precisely when there are orthogonal vectors with lengths l1, . . . , li that sum to (j, k).

Our initial setting is e(1, 0, l1) = e(1, 0,−l1) = e(1, l1, 0) = e(1,−l1, 0) = 1, and all other

e(1, j, k) are set to 0. Then for each i (incrementally), we set e(i, j, k) = 1 if and only if one of

e(i− 1, j− li, k), e(i− 1, j+ li, k), e(i− 1, j, k− li), or e(i− 1, j, k+ li) is 1. When the entire table

is filled in this way, the relevant entry is e(n, 0, 0). If e(n, 0, 0) = 1 then we return true, otherwise

return false.

The total runtime of this algorithm is O(nm2), as there are 4nm2 entries in the table. As

justification for this algorithm, note that if indeed we have e(n, 0, 0) = 1 then there is an assign-

ment of orthogonal vectors to each length that sum to (0, 0); we simply place these in the order

specified by the standard traversal of a polygon to obtain a box. More specifically, we place all

vectors of the form (0, li), then (li, 0), then (0,−li), and finally (−li, 0). If e(n, 0, 0) = 0, then

there is no such box, and hence by Lemma 6.2.1 there can be no orthogonal polygon constructed

with the given edge lengths.

When the possibility of degeneracies is removed, the problem remains NP-hard. However, the

question of whether or not there is a pseudo-polytime algorithm is left open.

Lemma 6.5.4. It is NP-hard to determine whether a sequence of values can form the edge lengths

of an orthogonal, non-degenerate polygon.

102

Proof. The proof is very similar to that for Lemma 6.4.11 (non-degenerate orthogonal polygons

reconstructed from edge vectors). In particular, we require a Turing reduction with three separate

cases. See Figure 6.8 for an illustration.

Given an instance (wi) of Partition, we supply values (2nw1, . . . , 2nwn, a1, . . . , an, b, k) where

ai = 1 for each i, b = 1, and k is one of 1, 2, 3. Note that the numerical complexity of the input

is increased by a factor of n, but the input size is still polynomial in the size of the Partition

instance. We now claim that an orthogonal, non-degenerate polygon can be constructed with

these edge lengths if and only if there is a solution to our instance of Partition.

If a solution to this instance of Partition exists, we form a polygon in the same way as in

the edge vector case. See Figure 6.8. We use vertical edges of length ai to offset the horizontal

edges of length vi. The edge of length b forms one vertical end our our pseudo-rectangle, and the

edge of length k forms the other.

We need multiple cases for k in order to cover the parity cases of the solution sets A1 and A2 for

Partition. We omit the details of this argument, as they are identical to those in Lemma 6.4.11.

If a polygon P can be formed, a solution to Partition is implied by a similar argument to

that for Lemma 6.5.2. That is, we split the horizontal and vertical edges into those that have

positive direction and those that have negative direction in the standard traversal. Since all of

the ai, b, and k sum to less than 2n, and all the wi are multiples of 2n, we must have that

the positively-directed horizontal wi edges must have total sum equal to that of the negatively-

directed edges. A similar result holds for the vertically oriented edges. These two partitions can

be combined to form a partition of the values wi into two subsets with equal sum, as required.

Lemma 6.5.5. The problem of determining whether an orthogonal polygon can be reconstructed

with given edge lengths is in NP. This is true whether or not collinear edges are allowed.

Proof. The thing to note is that an orthogonal polygon with integer-length edges will have all

vertices on lattice points. Thus, as a certificate, we can simply provide the line segments cor-

responding to each edge in a lattice-aligned embedding of a reconstructed polygon. We would

provide these line segments in standard order.

To verify the certificate, we verify that the edges are all orthogonal, have the required lengths

(which requires only subtraction as the edges are all orthogonal), form a closed connected chain,

and do not intersect other than at links of the aforementioned chain. These are all trivial to

verify except the last. However, there are polytime algorithms to compute the intersection points

of line segments, so one of these can be used. If degeneracies are not allowed, it remains only

to check that no two adjacent edges (in our chain; the order given in the standard order of the

certificate) are both horizontal or both vertical.

103

Putting these lemmas together, we get the following characterization for the orthogonal variant

of this reconstruction problem.

Theorem 6.5.6. The problem of determining whether an orthogonal polygon can be reconstructed

from a given sequence of edge lengths is NP-complete. The problem is weakly NP-complete when

collinear adjacent edges are allowed.

6.5.2 Orthogonal Polyhedra

In this section we consider the case of constructing degenerate orthogonal polyhedra from edge

lengths. We analyze this case by using a technical lemma from earlier in the chapter. The problem

for non-degenerate orthogonal polyhedra is still open.

Theorem 6.5.7. The problem of determining whether a sequence of values can form the edge

lengths of an orthogonal (possibly degenerate) polyhedron is NP-complete.

Proof. To show that the problem is in NP, we simply provide the constructed polyhedron as

a certificate, in a standard data structure (such as the winged-edge data structure). Since the

polyhedron is orthogonal and has integer length edges, the polyhedron can be embedded such that

all vertices occur at lattice points. Then this certificate can be verified just as in Lemma 6.4.13.

For NP-hardness we reduce from Partition. Given an instance (wi)
n
i=1 of Partition, supply

the following lengths to our reconstruction problem:

1. 10w1, . . . , 10wn

2. ai = 1 for 1 ≤ i ≤ 8

3. b1 = b2 = 10S.

If a solution to our instance of Partition exists, we form our polyhedron as a box with

dimensions 10S, 1 and 1. Use the partition implied by the solution to form two of the edges of

length 10S, with b1 and b2 giving the other two. See Figure 6.11(b) for an illustration of this

construction.

Suppose that an orthogonal polyhedron can be constructed from the given edge lengths. It

must have some edge of length bi = 10S. Then there must be three other disjoint sets of edges

with lengths summing to 10S, by Lemma 6.2.3. The only way for this to happen is to have one

set contain b2, then partition the vi’s into two sets each of total length 10S. Note that ai could

be part of these sets, but are not large enough to allow omission of some vi. Thus a solution to

Partition is implied by our partition of the vi’s.

104

6.5.3 Degenerate Polyhedra

We now release the restriction of orthogonality from our polyhedra, but still retain the possibility

of degeneracy. It is not yet known whether this problem is in NP; we discuss this issue in

Section 6.5.4. However, we can show that this problem is NP-hard.

Theorem 6.5.8. It is NP-hard to determine whether a sequence of values can form the edges

lengths of a (possibly degenerate) polyhedron. The problem remains NP-hard when we require the

polyhedron to be convex.

Proof. Suppose we have an instance (vi)
n
i=1 of Partition. We provide the following lengths.

1. 10v1, . . . , 10vn

2. a = 20S − 5

3. b1 = b2 = 10S − 4

4. c = 1.

Suppose our instance of Partition has a solution A1, A2. Then we form a 4-faced polyhedron,

as illustrated in Figure 6.12. Place an edge of length a. Now form a triangle adjacent to a using

b1 as one side and the edges of lengths in A1 arranged collinearly as the other side. Form another

such triangle adjacent to a using b2 and the lengths in A2, such that b1 and b2 are adjacent.

Finally, rotate these triangles about a such that their vertices not incident with a are precisely 1

from each other; use the edge of length c = 1 to connect them.

Now suppose that a polyhedron can be formed with our given edge lengths. Such a polyhedron

must have an edge of length a. Reorient the polyhedron such that that edge is parallel to the

x-axis. Then by Lemma 6.2.2, there are two disjoint sets B1, B2 of edges such that

∑

e∈Bi

|v(e).x| ≥ a

and hence
∑

e∈Bi

|v(e)| ≥ 20S − 5.

The only way in which this could happen is that one set includes b1 and a subset of the 10vi’s

that sum to 10S, and the other face includes b2 and a disjoint set of the vi’s that also sums to

10S. This is because b1 and b2 together are less than 20S− 5, so the values 10vi in each set must

sum to at least 20S − 5 − b1 − c = 10S − 2. Hence they must sum to at least 10S, since they

105

a c

b
1

b
2

v
i
 : w

i
 in A

2

{

{v
i
 : w

i
 in A

1

Figure 6.12: Forming a degenerate tetrahedral polyhedron from an instance of Parti-

tion. The lightened edge of length c is in the background.

are all multiples of 10. But then this partition of the values 10vi across our two sets implies a

solution to our instance of Partition, as required.

Note that we do not use convexity in our argument, so indeed the NP-hardness result remains

whether or not we require the constructed polyhedron be convex.

6.5.4 Open Problems

A number of problems are left open by our research. First, we have not shown that reconstructing

polyhedra from edge lengths is in NP for non-orthogonal polyhedra. The main issue is that while

edge lengths may be easy to represent (i.e. integers), the orientations of the corresponding edges

may have very high complexity. For example, an edge of unit length could be oriented in a

polyhedron so that its vertex endpoints are irrational. A polyhedron can always be reoriented so

that that particular edge has easily representable endpoints (such as (0, 0, 0) and (0, 0, 1)), but

such an operation cannot be applied independently to all edges. It seems that in order to show

that this problem lies in NP, one would need to find a manner of representing a polyhedron that

does not depend upon the complexity of edge orientations.

Also, we have not determined whether the problem of reconstructing a general, non-degenerate

polyhedron from a set of edge lengths is NP-hard. The issue with proving this result appears to be

that a non-degenerate polyhedron will tend to have many edges, but so far we have no good way

to restrict the placement of these edges. The additional edges needed to allow non-degeneracy

interfere with any arguments regarding equivalence to a solution to Partition. It would seem

that a completely different approach will be required to resolve this particular variant of the edge

length reconstruction problem.

106

Edge Vectors Edge Lengths

Convex Weakly NP-Complete Polynomial

Degenerate Orthogonal Weakly NP-Complete Weakly NP-Complete

Polygons General Weakly NP-Complete Polynomial

Convex Weakly NP-Complete Polynomial

Non-Degenerate Orthogonal NP-Complete NP-Complete

General NP-Complete Polynomial

Convex NP-Complete NP-Hard

Degenerate Orthogonal NP-Complete NP-Complete

Polyhedra General NP-Complete NP-Hard

Convex NP-Complete ?

Non-Degenerate Orthogonal NP NP

General NP ?

Table 6.1: Summary of the computational complexity results presented in this chapter

6.6 Summary

We have analyzed the computational complexity of various reconstruction problems. Table 6.1

summarizes the results presented in this chapter. As shown in that table, many questions still

remain open. For those problems that were shown to be NP-hard, the question still remains as

to whether they are in NP and whether they admit pseudo-polytime algorithms. Some variants

involving polyhedra were not analyzed at all; the computational complexity of these problems is

still completely open.

Chapter 7

Conclusion

The work in this thesis was split into two categories: unfolding and reconstruction. To maintain

a degree of symmetry, we shall split our conclusion in the same way.

Unfolding. One of our main contributions is the construction of the asymmetrical 3-pointed

star Pφ
3 (α, β): an ununfoldable polyhedron with 9 convex faces. This immediately implies an

open question: is 9 the smallest possible? We think that it is not, if only because of the intuitive

simplicity of our constructed example. It is likely that some trick or another may be used to

remove some faces from the 3-pointed star while retaining the properties that imply its ununfold-

ability. However, we feel that a tight bound is being approached: the seemingly key properties

of ununfoldability, negative curvature at many vertices and very high curvature at others, simply

cannot be realized in a polyhedron with too few faces. While the problem of finding an ununfold-

able convex-faced polyhedron with fewer than 9 faces is interesting, of much more significance

would be a proof that a certain number of faces is the true minimum, for such a proof would

(hopefully) shed more light on the precise properties of polyhedra that imply ununfoldability.

This thesis also showed that convex-faced polyhedra cannot avoid overlaps caused by having

too much material around a single vertex. A polyhedron was constructed such that every unfold-

ing has a vertex with face angle greater than 2π. It was further shown that these sorts of overlaps

can be avoided for all genus-0 polyhedra when one is allowed to cut into faces. An interesting

avenue of future research is thus to determine precisely what types of overlaps can and cannot

be avoided with edge-unfoldings and with general unfoldings.

The thesis then turned to convex polyhedra. Our study of unfoldings of convex polyhedra

was motivated by Shephard’s conjecture that all convex polyhedra can be edge-unfolded without

overlap. Others have strengthened this conjecture to claim that specific unfolding methods will

avoid overlap. Our contribution was to disprove some of these conjectures for specific unfolding

107

108

methods. In particular, we formally constructed a convex polyhedron for which cutting along

a certain minimum path tree creates an overlap, disproving a conjecture by Fukuda. We then

constructed a convex polyhedron for which cutting along any minimum path tree creates an

overlap. Next, we constructed a polyhedron for which any steepest edge cut tree creates an

overlapping unfolding, disproving a conjecture by Schlickenrieder. Finally, we constructed a

polyhedron for which every normal order unfolding contains an overlap.

All of our example convex polyhedra were constructed by appealing to a particular type of

overlap, which we called a 2-local overlap. The next step in this line of research is to finish an

analysis of the avoidability of 2-local overlaps. Can every convex polyhedron be edge-unfolded so

that no 2-local overlaps occur? Or is there a convex polyhedron for which every edge-unfolding

contains a 2-local overlap? Such an example would disprove Shephard’s conjecture, whereas an

edge-unfolding method that avoids 2-local overlaps might be an important step towards proving

Shephard’s conjecture.

Reconstruction. In the research on reconstruction we consider two classes of reconstruc-

tion problems: reconstructing from edge orientations and reconstructing from edge lengths. In

the first, one is given a collection of edges in space, and must determine whether they can

be rearranged by translation only to form a polygon or polyhedron. This problem was shown

to be NP-complete in almost all cases: whether we discuss polygons or polyhedra, and even

when additional constraints such as convexity, orthogonality, and (in the case of polygons) non-

degeneracy are introduced. The complexity remains open for polyhedra that are required to be

non-degenerate and not required to be convex. We additionally showed that some variants of this

problem for polygons (namely when degeneracy is allowed or convexity is required) are weakly

NP-complete by providing pseudo-polytime algorithms to solve them. Determining whether the

remaining variants of this problem are strongly or weakly NP-hard remains open.

The second problem, reconstructing polyhedra from edge lengths, is the more classical of

the two and is what motivated our research on reconstruction problems. In this reconstruc-

tion problem, one is given a collection of edges in space and must determine whether they can

be rearraged by translation and/or rotation to form a polygon or polyhedron. It was already

known that polynomial algorithms exist to determine whether general or convex polygons can

be reconstructed from such information. We demonstrated that this problem is NP-complete for

orthogonal polygons. For polyhedra, we demonstrated that if degeneracies (coplanar adjacent

faces or degenerate faces) are allowed then the problem is NP-hard. However, many open prob-

lems remain. The complexity of this reconstruction problem is not known when the polyhedra

are constrained to be non-degenerate. Also, for cases where the polyhedron is not required to be

orthogonal, it is not even known if the problem is in NP. More research will be necessary before

we fully understand the complexity of this long-standing decision problem.

Bibliography

[1] P. K. Agarwal, B. Aronov, J. O’Rourke, C. A. Schevon. Star Unfolding of a Polytope with

Applications. SIAM Journal on Computing, 26(6):1689–1713.

[2] A. D. Alexandrov. Convex Polyhedra [Translated from Russian]. Springer Monographs

in Mathematics, Berlin, 2005. Russian edition originally published by Gosudarstv. Izdat.

Takhn.-Teor. Lit., Moscow-Leningrad, 1950.

[3] B. Aronov and J. O’Rourke. Nonoverlap of the star unfolding. Discrete Computational Geom-

etry, 8:219–250, 1992.

[4] M. Bern, E. D. Demaine, D. Eppstein and E. Kuo. Ununfoldable polyhedra. In Proceedings of

the 11th Canadian Conference on Computational Geometry, Vancouver, B.C., August 15-19,

1999.

[5] M. Bern, E. D. Demaine, D. Eppstein, E. Kuo, A. Mantler and J. Snoeyink. Ununfoldable

polyhedra with convex faces. Computational Geometry: Theory and Applications. 24(2):51–

62, 2003.

[6] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, M. Overmars, J. O’Rourke, S. Robbins, and

S. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proceedings of the 10th

Canadian Conference on Computational Geometry, Montréal, Canada, August 1998.

[7] T. Biedl, A. Lubiw, and J. Sun. When can a net fold to a polyhedron? In Proceedings of the

11th Canadian Conference on Computational Geometry, Vancouver, Canada, August 1999.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(Second Edition), McGraw-Hill, 2001.

[9] P. R. Cromwell. Polyhedra. Cambridge University Press, Cambridge, 1997.

[10] E. Demaine. Folding and Unfolding. Ph. D. Thesis, University of Waterloo, 2001.

109

110

[11] M. Damian, R. Flatland, H. Meijer, and J. O’Rourke. Unfolding well-separated orthotrees.

15th Annual Fall Workshop on Computational Geometry, University of Pensylvania, Novem-

ber 2005. [http://www.research.att.com/k̃rishnas/fwcg05/abstracts/6.pdf].

[12] M. Damian, R. Flatland, and J. O’Rourke. Unfolding Manhattan Towers. In Proceedings

of the 17th Canadian Conference on Computational Geometry, 211–214, Windsor, Ontario,

August 2005.

[13] E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, and I. Pashchenko. Metamorphosis of

the cube. In Proceedings of the 15th Annual ACM Symposium on Computational Geometry,

409–410, 1999. Video and abstract.

[14] E. D. Demaine, D. Eppstein, J. G. Erickson, G. W. Hart, and J. O’Rourke. Vertex-unfoldings

of simplicial manifolds. Proceedings of the 18th Annual ACM Symposium on Computational

Geometry, 237–243, 2002.

[15] E. D. Demaine and J. Erickson. Open Problems on Polytope Reconstruction. Manuscript,

July 1999. [http://theory.csail.mit.edu/ẽdemaine/papers/PolytopeReconstruction/].

[16] E. D. Demaine, J. Iacono, and S. Langerman. Grid vertex-unfolding orthostacks. In Re-

vised Selected Papers from the Japan Conference on Discrete and Computational Geometry,

Lecture Notes in Computer Science, volume 3742, 76–82, Tokyo, Japan, October 2004.

[17] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, 1979.

[18] K. Fukuda. Strange Unfoldings of Convex Polytopes, 1997. World Wide Web, available at

[http://www.ifor.math.ethz.ch/̃fukuda/unfold home/unfold open.html].

[19] B. Grünbaum. A starshaped polyhedron with no net. Geombinatorics, 11:43–48, 2001.

[20] B. Grünbaum. No-net polyhedra. Geombinatorics, 11:111–114, 2002.

[21] P. Hoffman. Barebones Algebraic Topology. Course Notes in Algebraic Topology, University

of Waterloo, 2004.

[22] W. J. Lenhart and S. H. Whitesides. Reconfiguring closed polygonal chains in Euclidean

d-space. Discrete Comput. Geom., 13:123–140, 1995.

[23] A. Lubiw and J. O’Rourke. When can a polygon fold to a polytope? Technical Report 048,

Smith College, 1996.

111

[24] M. Namiki and K. Fukuda. Unfolding 3-dimensional convex polytopes: A package for Math-

ematica 1.2 or 2.0. Mathematica Notebook, Univ. of Tokyo, 1993.

[25] M. Namiki and K. Fukuda. UnfoldPolytope: A Mathematica package for

unfolding general convex polytopes, 1992. World Wide Web, available at

[ftp://ftp.ifor.math.ethz.ch/pub/fukuda/mathematica].

[26] J. O’Rourke. Computational Geometry in C (Second Edition). Cambridge University Press,

1998.

[27] J. O’Rourke. Folding and Unfolding in Computational Geometry. Lecture Notes In Computer

Science, Vol. 1763, 258–266, Springer-Verlag, Berlin, 2000.

[28] J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. In Graphs

Combin., 17:717–728, 2001.

[29] J. J. Rotman. An Introduction to Algebraic Topology. Springer-Verlag, New York-Berlin,

1988.

[30] W. Schlickenrieder. Nets of Polyhedra. Master’s Thesis, Technische Universität Berlin, June

1997.

[31] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:193–

215, 1986.

[32] G. C. Shephard. Convex polytopes with convex nets. Mathematical Proceedings of the Cam-

bridge Philosophical Society, 78:389–403, 1975.

[33] M. Spriggs. Personal Communication, 2005.

[34] A. S. Tarasov. Polyhedra that do not admit natural unfoldings. [In Russian] Uspekhi Mat.

Nauk 54, no. 3(327):185–186, 1999. Translation: Polyhedra with no natural unfoldings.

Russian Math. Surveys 54, 3:656–657, 1999.

