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Abstract 

A framework designed to guide the effective use of remote sensing in large-area, multi-

jurisdictional habitat mapping studies has been developed.  Based on hierarchy theory 

and the remote sensing scene model, the approach advocates (i) identifying the key 

physical attributes operating on the landscape; (ii) selecting a series of suitable remote 

sensing data whose spatial, spectral, radiometric, and temporal characteristics correspond 

to the attributes of interest; and (iii) applying an intelligent succession of scale-sensitive 

data processing techniques that are capable of delivering the desired information.  The 

approach differs substantially from the single-map, classification-based strategies that 

have largely dominated the wildlife literature, and is designed to deliver a sophisticated, 

multi-layer information base that is capable of supporting a variety of management 

objectives.  The framework was implemented in the creation of a multi-layer database 

composed of land cover, crown closure, species composition, and leaf area index (LAI) 

phenology over more than 100,000 km2 in west-central Alberta.  Generated through a 

combination of object-oriented classification, conventional regression, and generalized 

linear models, the products represent a high-quality, flexible information base constructed 

over an exceptionally challenging multi-jurisdictional environment.  A quantitative 

comparison with two alternative large-area information sources – the Alberta Vegetation 

Inventory and a conventional classification-based land-cover map – showed that the 

thesis database had the highest map quality and was best capable of explaining both 

individual- and population-level resource selection by grizzly bears.   
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Chapter 1: Introduction 
 
 
Environmental management and conservation agendas commonly include requirements 

for mapping and monitoring wildlife habitat for the purpose of estimating population 

sizes, identifying critical habitat, and predicting the impacts of development or 

environmental change.  While occasionally conducted over small geographic areas (e.g. 

Radeloff et al., 1999; Lauver et al., 2002) these initiatives commonly require regional, or, 

increasingly, global perspectives that defy traditional field-based strategies (e.g. 

Skidmore and Gauld, 1996; Corsi et al., 1997; Osborne et al., 2001; Wulder et al., 2003; 

Zhu and Waller, 2003).  In light of these challenges, remote sensing has often been 

identified as a key data source for supporting habitat mapping and other large-area 

wildlife applications (Graetz, 1990; Roughgarden et al., 1991; Wickland, 1991).  The 

promise of the technology lies in its potential to deliver information about key 

environmental parameters over large areas with regular temporal revisit periods.  These 

sentiments are reflected in the growing number of integrated remote sensing-ecology 

studies in the literature (e.g. Hines and J. Franklin, 1997; Carroll et al., 1999; Kobler and 

Adamic, 1999; Skidmore, 2002).  However, the technology remains a “blunt tool” 

(Plummer, 2000) requiring a significant amount of multidisciplinary research and joint 

understanding in order to reach its full potential. 

Multidisciplinary approaches to science and management are tremendously 

appealing, because they bring together individuals with different experience and 

backgrounds whose constructive exchange of ideas have the potential to generate novel 

solutions.  However, such projects are often challenging in that researchers entering new 
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disciplines do not possess the necessary background knowledge, and lack the ability to 

communicate effectively with their new peers.  Such is clearly the case with the remote 

sensing-ecology interface, where significant gaps of understanding exist between the 

tools experts – practitioners of remote sensing, geographic information systems (GIS), 

and other spatial techniques – and ecologists.  Plummer (2000) lamented the issue in the 

context of ecological process models, but a wider survey of the literature reveals this to 

be a common pattern.  In their review of remote sensing protocols used in the national 

Gap Analysis Program, Eve and Merchant (1998) offered the following advice to new 

projects just getting underway with their ecological mapping: “Brace yourself and good 

luck!”   

There is a need for users and producers of remotely sensed information to seek 

common ground with respect to the capabilities of the tools.  Hoffer (1994) referred to the 

“information needs definition circle” (Figure 1-1) in which resource managers and 

remote sensing/GIS specialists – lacking a common background and thorough 

understanding of each other’s fields – struggle to communicate with one another.  The 

resource manager requires a variety of information products at a wide range of scales but 

is unsure of the capabilities of remote sensing and GIS, and so asks “What can the tools 

do to help me?”  The remote sensing specialist, unfamiliar with the complex intricacies of 

ecology and ecosystem processes, asks in turn “What type of information do you need?”  
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Figure 1-1: The information needs definition circle.  Adapted from Hoffer, 1994. 

 

 

This research attempts to traverse that knowledge gap, looking specifically at the 

use of remote sensing and other geospatial tools for large-area habitat mapping.  The 

extent to which wildlife studies have come to rely on remote sensing-derived products is 

illustrated by the increasing frequency with which they occur in the literature (e.g. May et 

al., 2004; Osko et al., 2004; Jackson et al., 2005; Hoving et al., 2005).  In Alberta, the 

Foothills Model Forest Grizzly Bear Research Program (FMFGBRP) has pioneered the 

use of remote sensing-based land-cover maps, derived through a combination of 

supervised classification, decision rules, and pre-existing GIS information (Franklin et 

al., 2001), to create resource selection functions: statistical models that relate grizzly bear 

telemetry data with environmental information to create spatially explicit map products 

that summarize the probability of grizzly bear occurrence (Nielsen, 2004).  These 

products, in turn, serve as management tools to help ameliorate the impact of 

development in sensitive bear range.  The ultimate goal of the FMFGBRP is to map and 

monitor grizzly bear habitat across the entire province (Stenhouse, 2005), and there is a 
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critical need for next generation remote sensing techniques that are both robust scaleable 

over very large areas.   

The basic premise behind this work is that while many of these collaborative 

studies have shown substantial promise, an effective framework for applying the remote 

sensing toolset to wildlife habitat applications has yet to be formally articulated (Glenn 

and Ripple, 2004).  Previous efforts have relied too heavily on single-map, classification-

based approaches developed for other applications that fail to recognize the particular 

needs of the wildlife community, and may therefore fall short of expectations.  For 

example, Throgmartin et al. (2004) documented a number of discrepancies and spatial 

inconsistencies in the National Land Cover Dataset – the most current and widely 

available representation of land cover in the contimerous United States – in a bird habitat 

model over the upper Midwestern United States.   

While it is unreasonable to expect flawless information from remote sensing, 

multi-disciplinary collaborators do require high levels of quality and consistency.  It is 

also desirable to produce flexible high-level data products wherever possible that can be 

adjusted to meet the diverse and evolving needs of research and management partners.  In 

developing the methodological framework that is the main subject of this research, the 

following has served as guiding principles: 

1. The process must be sensitive to scale, and avoid over-simplifying complex 

phenomenon with single catch-all maps; 

2. The methodological procedures must be robust and scalable enough to be applied 

effectively over very large areas;  
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3. The products must be consistent, with no discernable seam lines or sharp breaks 

in quality; and 

4. The information base should be flexible enough to address a variety of 

management objectives. 

1.1 Research Objectives 

The central goal of this research is to establish an effective framework for deriving high-

quality land and vegetation information over large, multi-jurisdictional areas in order to 

support contemporary wildlife research and conservation agendas.  In working to achieve 

this goal, three main objectives must be met: 

1. A methodological approach for creating high-quality, spatially explicit 

environmental information over large areas must be articulated, 

2. Robust strategies for creating attribute-based maps of land cover, crown closure, 

species composition, and leaf area index (LAI) phenology must be established, 

and 

3. The effectiveness of these new products for supporting operational wildlife 

management objectives over large, multi-jurisdictional areas must be determined. 

Within the context of these main objectives, a number of specific research questions can 

be posed: 

• What are the most effective methods for mapping physical ground processes and 

attributes such as land cover, crown closure, species composition, and LAI 

phenology?  What roles do object-oriented classification, per-pixel modelling, and 

other advanced processing procedures play in the overall strategy? 
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• How do you make the most effective use of spectral, spatial, geomorphometric, 

and other supplemental GIS information in this style of mapping?  What are the 

best sources for these data? 

• What is the proper series of preprocessing and processing procedures for 

eliminating seam lines and other spatial inconsistencies in map products generated 

over large, multi-scene mosaics? 

• What strategies can be incorporated into the mapping procedure to maximize the 

flexibility of the end products and enhance their utility to support multiple 

research and management objectives? 

• How do the information products generated through this research compare to 

other traditional sources of environmental information?  Does the information 

base generated in this work provide an effective foundation for operational 

wildlife management? 

These objectives and research questions provide the foundation upon which this thesis 

was organized.    

1.2 Organization of Thesis 

The introductory chapter provides a brief introduction to the role of remote sensing in 

multi-disciplinary ecological studies, and an overview of the specific research objectives 

to be addressed in this thesis.  Chapter 2 reviews the use of remote sensing in wildlife 

habitat research, including a definition of critical terms, an overview of common 

strategies, and a description of an attribute-based framework for linking environmental 

information needs with remote sensing techniques that is based on hierarchy theory and 

the remote sensing scene model.  Chapter 3 provides an overview of the applied portion 
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of this thesis, including a description of the 100,000 km2 study area in west-central 

Alberta and the partner projects that have contributed to this work.  The next two chapters 

contain the core remote sensing components of the thesis which describe the creation, 

testing, and assessment of the environmental database produced in this research: Chapter 

4 with methods, and Chapter 5 with results and discussion.  Chapter 6 outlines the details 

of a comparison between the attribute-based layers created in this work with two 

alternative sources of spatially explicit environmental information: the Alberta 

Vegetation Inventory, and the Alberta Ground Cover Categorization map.  Chapter 7 

contains a summary of the thesis, conclusions, and recommendations for future work.   
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Chapter 2: Remote Sensing for Large-Area Habitat 
Mapping: A Review 

 

2.1 Definitions and Nomenclature 

In 1942, Raymond Lindeman penned a landmark paper that defined ecosystem as “the 

system composed of physical-chemical-biological processes active within a space-time 

unit of any magnitude, i.e. the biotic community plus its abiotic environment”.  While the 

definition is not strictly spatial, it is generally understood that the area referred to by an 

ecosystem is a common and recognizable environmental unit.  Habitat, in turn, occupies 

a somewhat adjunct position, referring specifically to the place or physical environment 

occupied by a population of organisms (Colinvaux, 1986).  Unfortunately, the two terms 

have become so ubiquitous over time that their potential for misuse is high.  For example, 

authors in the remote sensing community are quick to label their classification products 

“habitat maps” whenever the work falls within an ecological context (e.g. Dechka et al., 

2000; Vinluan and DeAlban, 2001) when, in many cases, the term “land-cover maps” 

(Wyatt et al., 1994) might be more appropriate.  However, the issue is complicated, being 

hampered in practice by multiple definitions and frequent inconsistencies in the literature. 

The fact that habitat is rarely defined suggests that its meaning is generally taken 

for granted, yet even a simple dictionary search reveals two different definitions: one 

relating to location – the place where a species is commonly found – and the other 

relating to condition – the type of environment in which an organism normally occurs 

(Merriam-Webster, 1998).  While Morrison et al. (1992) noted this initial dichotomy, a 

survey of the literature reveals an even more complicated situation.  Corsi et al. (2000) 
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partitioned the various meanings of habitat into a nine-cell matrix (Table 2-1), showing 

that the term can refer to a distinct species or community (e.g. grizzly bear habitat), or a 

land attribute with no relation to biota (e.g. riparian habitat).  Specific definitions can also 

include elements of Cartesian space, environmental space, or both.  The situation is 

further complicated by frequent examples of ambiguity in the literature; sometimes 

within the same publication.  For example, Lehmkuhl and Raphael (1993) used the terms 

“old-forest habitat” and “owl habitat” simultaneously in a paper about northern spotted 

owls in the Olympic Peninsula.  All of the above contributes to misunderstanding 

amongst multidisciplinary colleagues, and prompted Hall et al. (1997) to issue a plea for 

standard terminology.   

 

 

Table 2-1: The various meanings of the term habitat, with selected references from the literature.  
Modified after Corsi et al. (2000). 

 Biota  

 Species Species and 
Communities Land 

 
Cartesian Space 

 
Begon et al., 1990; Krebs, 
1985; Odum, 1971 

 
Zonneveld, 1995,  

 

 
Environmental 

 
Collin, 1988; Whittaker et 
al., 1973; Moore, 1967 

  

 
Environmental & 

Cartesian 

 
Morrison et al., 1992; 
Mayhew and Penny, 1992 

 
Yapp, 1922; Colinvaux, 
1986 

 
Stelfox and Ironside, 1982, 
USFWS, 1980a, b; Herr 
and Queen, 1993 
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Corsi et al. (2000) speculated that the origin of the word habitat – Latin for 

habitare, or “to dwell” – reflects its initial purpose as a term to describe the environment 

a species lives in.  Its gradual transformation into more of a land-based concept is likely 

related to the emergence of widespread habitat and biodiversity mapping, in which 

individual maps for every species are virtually impossible to produce (Kerr, 1986).  The 

term habitat type, defined as a mappable unit of land homogeneous with respect to 

vegetation and environmental factors (Jones, 1986), is a likely product of this trend.  In 

retrospect, this context likely forms the basis of many remote sensing habitat maps, and 

subsequent confusion over the use of the term.   

Considered carefully, the value of habitat type maps is based on the assumption 

that an area exhibiting similar vegetation cover is also likely to contain homogeneous 

conditions with respect to other environmental gradients.  However, it seems unlikely that 

the variation of factors affecting the distribution of all species is completely 

interdependent, which would lead one to conclude that habitat types are not truly 

homogeneous.  It also seems reasonable to speculate that the focus on habitat types as an 

ecological mapping unit may have arisen from an early lack of sophisticated spatial tools 

capable of portraying the many environmental factors that affect the distribution of 

species, such as land cover, soil type, temperature variability, food availability, and 

shelter (among many others) (Corsi et al., 2000).  The recent development of geographic 

information system (GIS) technology, however, has revolutionized the feasibility of these 

more sophisticated environmental characterizations, and a subsequent revival of the 



 11

original species-specific meaning of habitat.  Given these observations, I will adopt the 

following definition after Hall et al., 1997: 

Habitats are the resources and conditions present in an area that 
produce occupancy, including survival and reproduction, by a 
given organism, and, as such, implies more than vegetation and 
vegetation structure.  It is the sum of the specific resources that 
are needed by an organism. 

 

As a result, habitat is considered to be a species-specific concept, and includes 

elements of both environmental and Cartesian space. Table 2-2 presents a summary of 

habitat-related terminology, including several not discussed directly in this work, but 

commonly encountered in the ecological literature.   

 

 

Table 2-2: Habitat terminology.  Modified after Krausman (1999). 

Term Definition 

Habitat The sum and location of the specific resources needed by an organism for survival and 
reproduction 

Habitat Type A mappable unit of land considered homogeneous with respect to vegetation and environmental 
factors 

Habitat Use The way an organism uses the physical and biological resources in a habitat 

Habitat Selection A series of innate and learned behavioural decisions made by an animal about what habitat it 
would use 

Habitat Preference The consequences of habitat selection 

Habitat Availability The accessibility and procurability of the physical and biological components of a habitat  

Habitat Suitability The ability of the habitat to sustain life and support population growth 

Habitat Quality The ability of the environment to provide conditions appropriate for individual and population 
persistence 

Critical Habitat A legal term describing the physical or biological features essential to the conservation of a 
species, which may require special management considerations or protection 
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It is useful to consider the relationship between the habitat concept and that of land 

cover: the attribute most commonly mapped with remote sensing methods.  Land cover is 

generally defined as the observed (bio)physical description of the earth’s surface 

(DiGregio and Jansen, 2000).  While land cover is often the first data layer produced in a 

mapping exercise, it is usually desirable to combine this information with additional 

ancillary data in order to derive other spatial products that are more useful to managers 

and researchers.  A good example of this is the transformation of land cover to land use, 

which describes not only the physical and biological cover of an area, but also contains 

information on how the land is used by humans.  The transformation can either be 

accomplished indirectly through implied relationships, or directly through the integration 

of other spatially referenced information (Jensen and Cowen, 1999).   

From the practical perspective of a remote sensing scientist, the relationship 

between land cover and habitat is analogous to that which exists between land cover and 

land use.  Habitat (or other ecological properties) can either be inferred from land cover 

indirectly or modelled explicitly through integration with other environmental factors 

(Corsi et al., 2000).  The ecological literature contains examples of both strategies. 

2.2 Previous Studies 
 
A survey of the literature reveals a variety of remote sensing strategies applied to habitat 

mapping projects spanning a wide range of spatial scales (Table 2-3).  Manual 

interpretation of aerial photographs has often been employed by studies that involve 

species with limited ranges and/or the analysis of relatively small areas.  For example, 

Palma (1999) used manual interpretation of 1:10,000 aerial photography to extract a 
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variety of environmental variables including land cover, land-cover diversity, road 

density, and drainage density in order to characterize the habitat immediately surrounding 

confirmed sightings of Iberian lynx in the western Algarve region of Portugal.  Lauver et 

al. (2002) used 1:12,000 digital orthophotos to map detailed environmental variables 

such as tree density and hedgerow location in order to assess loggerhead shrike habitat 

suitability over a 40,000 ha study area in Kansas.  In both these cases, remote sensing 

served primarily as a complement to field surveys, and made use of skilled interpreters to 

generate detailed, high-quality information.  Unfortunately, the labour-intensive nature of 

such manual procedures tends to limit the range over which this type of analysis can be 

conducted.  

Researchers faced with larger study areas have typically turned to digital 

processing of medium-spatial-resolution satellite imagery such as Landsat Multispectral 

Scanner (MSS), Thematic Mapper (TM), or Enhanced Thematic Mapper Plus (ETM+) 

for more efficient acquisition of environmental information.  Land cover, in particular, 

plays a prominent role in most regional-scale habitat studies.  McClain and Porter (2000), 

for example, used TM-derived land-cover maps to evaluate white-tailed deer habitat in 

the Adirondacks of New York.  A second study by Nielsen et al. (2003) used resource 

selection functions to link grizzly bear location data to a land-cover map covering more 

than 10,000 km2 in the foothills of Alberta, Canada.  However, while land-cover maps 

may contain useful predictive power, they are often not capable of revealing the 

underlying mechanisms and dynamic nature of complex natural landscapes.   
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Table 2-3: Literature examples showing the range of scales and remote sensing-derived variables 
used in previous habitat-mapping studies. 

 Local Regional National/Continental 

 
Land cover 

 
Palma et al., 1999; 
Radeloff et al., 1999; 
Lauver et al., 2002 

 
Hines and Franklin, 1997; 
Roseberry, 1998; Kurki et 
al., 1998; Carroll et al., 
1999; Smith et al., 1998; 
McLain and Porter, 2000; 
Borboroglu et al., 2002; 
Ciarniello et al., 2002; 
Danks and Klein, 2002; 
Norris et al., 2002; 
Rushton et al., 1997; 
Woolf et al., 2002; Nielsen 
et al., 2003 
 

 
Osborne et al., 2001 

 
Topography 

 
Palma et al., 1999 

 
Ciarniello et al., 2002; 
Danks and Klein, 2002; 
Woolf et al., 2002; Nielsen 
et al., 2003 
 

 
Osborne et al., 2001 

 
Fragmentation 

 
Radeloff et al., 1999; 
Palma et al., 1999 

 
Hines and Franklin, 1997; 
Roseberry, 1998; Kurki et 
al., 1998; Hargis et al., 
1999; Woolf et al., 2002 
 

 

 
Vegetation 
Greenness/Phenology 

  
Verlinden and Masogo, 
1997; Ciarniello et al., 
2002 

 
Wallin et al., 1992 

 
Vegetation Structure 

 
Radeloff et al., 1999; 
Lauver et al., 2002 
 

 
Hines and Franklin, 1997; 
Carroll et al., 1999 

 

 

 

Several researchers have attempted to supplement basic land cover information 

with fragmentation metrics, topographic measures, and vegetation indices, among others.  

For example, Danks and Klein (2002) used the topographic variables elevation, slope, 

aspect, and ruggedness to develop predictive models of muskoxen habitat in northern 

Alaska.  Other studies have demonstrated the value of fragmentation metrics as indicators 

of habitat structure.  For example, Hargis et al. (1999) employed a suite of spatial 

statistics to investigate the effects of forest fragmentation on American martens in the 
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Uinta Mountains of Utah.  In a later study, Hansen et al. (2001) explored the spatial 

effects of timber harvesting on woodland caribou habitat in south-eastern British 

Columbia, Canada.  While these approaches seem capable of summarizing complex 

spatial habitat requirements, the challenge involves selecting the correct metrics and 

identifying the appropriate scale of observation. 

The challenge of balancing the need for detailed information with the cost and 

complexities involved with producing such information increases directly with study area 

size.  Habitat projects operating at the national and continental level are often forced by 

practical reasons to use more generalized variables from coarse-resolution satellite data.  

For example, Wallin et al. (1992) used the Normalized Difference Vegetation Index 

(NDVI) of 4km Advanced Very High Resolution Radiometer (AVHRR) imagery in their 

analysis of breeding habitat for the red-billed quelea in sub-Saharan Africa.  The authors 

hypothesized that NDVI would be capable of providing a reasonable index of more 

detailed (and unavailable) measures such as vegetation condition and food availability.   

The growing demand for large area environmental information is reflected by the 

numerous large-area data initiatives, including land cover maps of the United States 

(Loveland et al., 1991), Canada (National Resources Canada, 1995), and the world 

(Hansen et al., 2000); the Pathfinder (Maiden, 1994; James and Kalluri, 1994) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice and Townshend, 

2002) datasets; and the National Gap Analysis Program (Scott et al., 1993).   However, 

these data are likely to lack the spatial grain and environmental detail necessary for most 

habitat-mapping projects.   
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At the leading edge of the discipline are studies that have attempted to incorporate 

detailed vegetation attributes such as taxonomy, age, and structure derived from widely 

available satellite imagery.  The work by Carroll et al. (1998) stands out with its use of 

sophisticated TM-derived estimates of canopy closure, tree size, and percent conifer in a 

study of fisher habitat in the Klamath region of Oregon and California.  In similar works, 

Hines and J. Franklin (1997) and J. Franklin and Stephenson (1995) demonstrated the 

value of a high-quality, regional-scale (2 million ha) vegetation database in the San 

Bernardino Mountains of southern California that included spatially detailed information 

on forest cover (land cover, fragmentation) and canopy structure (canopy coverage, tree 

crown size) with an analysis of habitat quality for the California spotted owl.   

While obviously expensive and difficult to produce, large-area vegetation 

databases with at least moderate levels of structural and taxonomic detail are likely 

required for most large-area habitat studies.  Deriving such databases is a tremendous 

challenge that requires the intelligent coupling of ecological theory and remote sensing 

technique.   

2.3 Remote Sensing Information Extraction Strategies 
 
The application of remote sensing techniques to large-area habitat projects is often 

hindered by the relative immaturity of the remote sensing/GIS discipline.  Researchers 

both inside and outside the field tend to forget that we have only been working with 

earth-observing satellites for about thirty years, and that truly large-area projects (those 

combining information from two or more adjacent scenes) have only been widely 

attempted within the past decade.   
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Several works (e.g. Meyer and Werth, 1990; Mladenoff and Host, 1994) have 

criticized the “overselling” of Landsat data, citing the inconsistent delineation of species 

composition and detailed vegetation structure, among other issues.  In response, some 

specialists have pointed to the vast technical gains over early MSS instruments (Hoffer, 

1994), improved algorithms (e.g. Bolstad and Lillesand, 1992; Cohen et al., 1995; Cohen 

et al., 2003), and the introduction of new sensor technologies (e.g. Asner et al., 2000; 

Lim et al., 2003).  Others (e.g. Trotter, 1991) have questioned the necessity for higher 

accuracy map products destined for use with data of lesser or unspecified quality.  

Regardless of the debate, ecologist and resource managers require at least a basic 

understanding of the techniques and capabilities of remote sensing.  Together, these 

constitute the toolset for large-area habitat mapping. 

2.3.1 Classification 

Image classification – the systematic grouping of remote sensing and other 

geographically referenced data by categorical or, increasingly, fuzzy decision rules – is 

the best-known and most widely used information extraction technique in remote sensing.  

Given a choice, many technicians prefer classification, because (i) the methodological 

procedures are widely known and available, (ii) the output is generally simple to 

understand, and (iii) the accuracy of the results is relatively easy to assess.   

The vegetation attributes typically mapped through classification include a 

general typing of physiognomy and dominant species composition.  These are reviewed 

in detail by S. Franklin (2001), and are generally broken down hierarchically into broad 

classes of land cover at Level I (e.g. forest, non-forest, water, etc), forest types at Level II 

(e.g. conifer, broadleaf, mixed forest, etc), and more detailed species composition/canopy 
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structure criteria at Level III (e.g. open-canopy spruce, closed-canopy spruce, trembling 

aspen, etc).  While consistent separation at Level III is challenging (J. Franklin et al., 

2003), particularly over mixed forest targets (Reese et al., 2002), acceptable accuracies 

can generally be obtained with the correct image processing procedures (e.g. Brown de 

Colstoun et al., 2003).   

There are literally dozens – if not hundreds – of classification techniques used in 

the processing of remotely sensed imagery, and they are well described by other works 

(e.g. Jensen, 1996; Mather, 1999).  The purpose of this review is not to duplicate those 

efforts, but rather to provide a summary of the major choices required for all 

classification projects, paying particular attention to the use of satellite imagery over 

large areas.   

2.3.1.1 Variable Selection 

Satellite remote sensing instruments deliver spectral measures that are highly related to 

land cover, and represent a powerful dataset for mapping surface patterns across broad 

regions (e.g. DeFries and Belward, 2000; Lunetta et al., 2002; Cihlar et al., 2002; Walker 

et al., 2002; Homer et al., 2002).  However, the successful application of these data 

depends largely on the selection of appropriate mapping variables.  Raw spectral values 

can undergo wide variety of mathematical transformations including principal 

components (Fung and LeDrew, 1987; Piwowar and LeDrew, 1996), tasseled cap (Kauth 

and Thomas, 1976; Crist and Cicone, 1984), and band ratioing (Satterwhite, 1984) 

techniques designed to reduce data dimensionality, subsume noise, and enhance specific 

spectral phenomena.  These data can often also benefit from a variety of textural 

(Haralick et al., 1973; Irons and Peterson, 1981; Clausi, 2002), contextual (Binaghi et al., 
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1997), and other (Read and Lam, 2002) pattern recognition techniques aimed at capturing 

additional information in the spatial domain.  Numerous studies have also demonstrated 

the utility of spatially referenced ancillary data for classification, including topography, 

climate, geology, landform, and soils (e.g. S. Franklin and Moulton, 1990; McDermid 

and S. Franklin, 1995; Treitz and Howarth, 2000; Gould et al., 2002).  Multitemporal 

analysis – the integration of scenes acquired at different seasons – is often applicable, 

particularly for detailed forest species discrimination at the stand level (e.g. Wolter et al., 

1995; Brown de Colstoun, 2003).    

2.3.1.2 Supervised Versus Unsupervised Classification 

Classification approaches can generally be considered as either supervised, unsupervised, 

or hybrid (Fleming and Hoffer, 1975).  Unsupervised routines are designed to illuminate 

the natural groupings or clusters present in the mapping variables, and require no prior 

knowledge of the study area.  Supervised classification techniques, in contrast, use 

intensive hands-on training in an attempt to extract pre-defined information classes from 

the explanatory variables, and, as such, require specific a priori knowledge.   

Because of the reduced need for spatially detailed ground information, many 

large-area mapping projects have relied heavily on unsupervised techniques.  A survey of 

21 participants in the National Gap Analysis Program (GAP) who used pure classification 

approaches as their primary mapping protocol revealed that 41% used unsupervised 

classification, compared to just 5% for supervised classification (Eve and Merchant, 

1998).  Unfortunately, the benefits of the unsupervised technique are often outweighed by 

the difficulty of post-classification labelling (which itself requires substantial ground 

information) and the procedure has often been shown to produce sub-optimal results.  
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Huang et al. (2003) compared the accuracy of two large-area mapping projects in Utah: 

one nine-scene application that was classified with a supervised technique, and one 14-

scene area classified with unsupervised criterion.  While other factors almost certainly 

played a role, the authors attributed at least some of the roughly 8% overall accuracy 

improvement to the high-quality training data employed in the supervised classification. 

The potential conflict between spectral clusters and desired information classes – 

combined with the difficulty of obtaining abundant training data over broad areas – has 

encouraged many researchers to employ hybrid supervised/unsupervised elements to their 

strategy.  Reese et al. (2002) used “guided clustering” in the production of a 12-scene 

land-cover map of Wisconsin from Landsat Thematic Mapper (TM) data.  The approach 

involved the application of an unsupervised routine on training pixels for which the 

information class was already known.  Clusters were merged on the basis of transformed 

divergence values, spectral space plots, and visual assessment.  Eventually, all of the 

subsets for each information class were assembled into unique signature sets, which were 

then applied in a standard maximum likelihood classification.  Using these methods, the 

authors were able to achieve overall classification accuracies in the range of 70% to 84% 

for Anderson Level II/III land cover classes.  Early successes with these hybrid methods 

in the GAP program (e.g. Lillesand, 1994) led to their subsequent adoption by 48% of the 

states surveyed. 

2.3.1.3 Decision Rules 

All remote sensing classifiers operate as pattern recognition algorithms that rely on 

decision rules to define boundaries and assign class membership.  While these rules can 



 21

be organized along a variety of lines, the parametric/non-parametric categorization 

presents a convenient basis for discussion.   

Many of the most familiar classifiers operate in Euclidean space, and rely on 

statistical measures such as central tendency, variance, and covariance to perform their 

functions.  These routines – clustering algorithms, discriminant functions, and maximum 

likelihood, for example – are robust and well-behaved when the input variables conform 

to basic statistical assumptions, but may perform poorly in the presence of non-

parametric distributions (Peddle, 1995).  The maximum likelihood classifier (MLC) is 

perhaps the best-known of the parametric classifiers.  A supervised technique, MLC uses 

training to characterize information classes on the basis of the mapping variables’ mean 

values and covariance matrices.  In the decision phase, unknown pixels are assigned a 

probability-of-membership for each class, and placed in the most likely category.  While 

the sensitivity of MLC to variables with non-normal – particularly multimodal – 

distributions is well-known, the technique remains very popular.  In practice, many of the 

normality issues can be resolved by pre-stratifying the imagery with ancillary data 

(Hutchinson, 1982; Harris and Ventura, 1995) or unsupervised classification (Homer et 

al., 1997).  However, these procedures can become unwieldy, and MLC remains 

incapable of incorporating low-level (nominal, ordinal) data directly. 

Researchers have invested a significant amount of effort in the search for decision 

rules free of parametric constraints.  The nearest neighbour (NN, or kNN) classifier is a 

supervised technique that assigns unknown observations to the class of the nearest 

training vector (or majority of k vectors), and has proven effective in several recent 

studies (e.g. Kuncheva and Jain, 1999; Barandela and Juarez, 2002).  However, NN 
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classifiers are computationally intensive and highly susceptible to errors in training data 

(Brodley and Friedl, 1999).  

Artificial neural networks (ANNs) are a second non-parametric approach to 

classification that have recently received a lot of attention in the remote sensing literature 

(e.g. Ripley, 1996; Atkinson and Tatnall, 1997; Murai and Omatu, 1997; Kimes et al., 

1999).  The technique falls within a group of machine learning classifiers that learn 

decision rules through training observations without statistical constraints.  ANNs learn 

patterns by iteratively considering the multivariate characteristics of each class, 

multiplying the explanatory variables by a set of weights, applying a transfer function to 

their weighted sum, and using these to predict the identity of the original training data.  

Subsequent iterations are designed to improve the fit between actual and predicted class 

membership, and increase the utility of the classifier.  One of the strengths of ANNs lies 

in their ability to handle information categories that consist of many spectral subclasses 

without the explicit stratifying that would be necessary with parametric techniques such 

as MLC (Pax-Lenney et al., 2001).  However, many technicians are uncomfortable with 

the “black box” nature of ANNs, and they remain poorly integrated into most commercial 

image processing packages (J. Franklin et al., 2003).  

Decision trees are another of the machine-learning classifiers, but are far more 

conceptually transparent than ANNs.  Decision trees handle classification by recursively 

partitioning a data set into smaller and smaller subdivisions on the basis of tests 

performed at branches or nodes in a tree (Hansen et al., 1996).  The tree is composed of a 

root node (composed of all the data), a set of internal nodes (splits), and a set of terminal 

nodes (leaves).  Within this framework, an image is classified by sequentially subdividing 
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it according to the decision framework defined by the tree (Friedl and Brodley, 1997).  

Decision trees work well when the boundaries between classes have well-defined 

thresholds, and are capable of handling large numbers of dependent variables of all data 

levels (Fayyad and Irani, 1992).  S. Franklin et al. (2001) modified the decision tree 

concept somewhat in a large-area classification of land cover in Alberta by selectively 

combining parametric (ML), non-parametric (kNN), and GIS decision rule criteria where 

conditions for each method were optimal.  This (S. Frankin et al., 2001) and other (e.g. 

Borak and Strahler, 1999; Rogan et al., 2002) studies have found decision trees to 

outperform both MLC and other non-parametric classifiers. 

2.3.1.4 Hard Versus Soft Classification 

The natural world is a heterogeneous place that does not easily lend itself to the nominal 

information scales imposed by classification.  Traditional hard classifiers use binary logic 

to determine class membership, in that each observation can belong to one and only one 

category.  Classification strategies that employ fuzzy logic, by contrast, assign 

observations membership in each category (Foody, 1996a; 1999).  The result is a more 

conceptually appealing classification model that seems better capable of representing the 

partial truth that we observe in the real world.  For example, white spruce and trembling 

aspen species often blend together into mixed stands in the forests of western Alberta, 

and create a problem for traditional classification schemes.  A hard classifier might 

address the issue by establishing a mixed forest class through the placement of decision 

boundaries along the species composition continuum – made up of, say, stands with more 

than 25% coniferous trees, but less than 75%.  Under this scenario, a stand with 25% 

conifers would be considered pure, while a stand with 26% would be called mixed.  A 
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fuzzy classifier, on the other hand, could soften these decision boundaries by allowing 

mixed observations to have membership in each class.  Even probabilistic classifiers (like 

MLC) that are not based on fuzzy set theory can have their decision boundaries softened 

by retaining the class probability values (Foody, 1996b).   

While fuzzy and other soft classification techniques are appealing, they also face 

challenges.  For example, visualizing the results of a fuzzy classification for the purpose 

of decision-making or thematic map production often requires a de-fuzzification process 

in order to assign observations into definitive classes.  Developing methods to better 

incorporate fuzzy information for ecosystem management and landscape planning still 

requires more research (J. Franklin et al., 2003).    

2.3.2 Sub-pixel Models 

While nominal compilations of vegetation at the stand level are normally the domain of 

image classification procedures, the more detailed biophysical attributes of vegetation are 

usually better handled by per-pixel models.  There are two primary reasons for this: first, 

because the vegetation elements normally considered at this level – LAI, biomass, crown 

closure, volume, density, etc. – vary continuously across the landscape and are not well 

represented by categorical measures, and second, because attributes at this level of detail 

are commonly smaller than the pixel size of optical satellite imagery.  While detailed 

structural/biophysical factors can be summarized at the stand level and mapped discretely 

through classification, models that estimate biophysical attributes on a continuum provide 

much more flexibility with regard to their future use.  One can also argue that pixel-based 

outputs present a more realistic spatial characterization of tree/gap-level information.  

Cohen et al. (2001) used TM imagery and empirical models to map percent conifer, 
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crown diameter, and age across five million hectares of forest in western Oregon.  

Besides generating a seamless output over the entire study area, their methods resulted in 

a forest information database with exceptional flexibility.  By maintaining high-order 

information, the system provides managers with divergent needs the opportunity to define 

categories that suit their individual application.  For example, one manager might use the 

system to define a GIS layer composed of three age classes: <80 years, 80-200 years, and 

>200 years (Cohen et al., 1995).  While this suits the needs of the first application, a 

second prospective user may only require two categories, or perhaps three classes with 

different thresholds.   

While simple regression analysis is the most popular method for estimating sub-

pixel properties from remote sensing data, it is certainly not the only one.  Recent work 

has illustrated the effectiveness of alternative regression procedures such as canonical 

correspondence analysis (Cohen et al., 2003; Ohmann and Gregory, 2002), generalized 

linear models (J. Franklin, 1995; Moisen and Edwards, 1999), and generalized additive 

models (Frescino et al., 2001; Edwards et al., 2002) that are capable of incorporating 

non-linear, categorical, or other non-parametric data into the analysis.  Mixture models 

are commonly used to map the fraction of scene elements across an image (e.g. Mustard, 

1993; Huguenin et al., 1997) and can be linked with physical scene models to estimate 

specific structural attributes (e.g. Peddle et al., 1999).   

One of the dangers of the modelling approach is the illusion of precision afforded 

by continuous variable estimation.  The experience of many researchers (e.g. Peterson et 

al., 1987; Cohen and Spies, 1992; S. Franklin and McDermid, 1993; S. Franklin et al. 

2003) has shown that there are definite limitations to the extent to which specific tree/gap 
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parameters can be characterized by moderate-resolution sensors.  This is particularly true 

in closed stands, where changes in the physical variable may not translate to a measurable 

difference in the canopy.  While these limitations can be ameliorated somewhat through 

the introduction of other (non-spectral) environmental variables into the modelling 

process (J. Franklin, 1995), specific care must be taken to guard against over-extending 

the limits of the data.   

2.3.3 Quantifying Landscape Heterogeneity 

While the great majority of remote sensing techniques are designed to extract knowledge 

concerning land composition and physical dimension, an important additional branch of 

digital processing is concerned with analysis of spatial structure.  Scientists have long 

been aware that ecological processes are influenced by environmental patterns, and the 

subject of quantifying environmental heterogeneity has been an active research area for 

decades (e.g. Pielou, 1975).  However, recent interest in the subject has increased 

dramatically, due to the complementary development of GIS and spatial statistics, 

coupled with the emergence of orbiting satellites as platforms for large-area ecological 

observations.  It is within this context that the discipline of landscape ecology has 

emerged to examine landscape pattern, the influence of environmental actions on a 

landscape mosaic, and changes in landscape pattern and process over time (Turner et al., 

2001).  Prominent among the discipline’s core objectives are efforts to produce 

quantitative measures of landscape heterogeneity, a pursuit that has culminated in the 

development of an impressive array of indices designed to capture the various nuances of 

spatial structure (e.g. McGarigal and Marks, 1995; Elkie et al., 1999).  A number of 

studies (e.g. Hargis et al., 1999; Lawler and Edwards, 2002; Woolf et al., 2002) have 
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demonstrated the potential of these variables as predictors of habitat quality and other 

environmental concerns.   

In spite of recent accomplishments, the effective quantification of environmental 

heterogeneity remains problematic (Gustafson, 1998).  Despite – some would argue 

because – of the ready availability of software capable of generating large numbers of 

spatial pattern indices from many forms of digital maps, many researchers remain unclear 

regarding which metrics to use and what these measures might mean (Kepner et al., 

1995).  Whereas early studies relied on as little as three core indices (e.g. O’Neill et al., 

1988), recent efforts commonly contain a much larger number of metrics (e.g. Luque et 

al., 1994; Lawler and Edwards, 2002).  In describing the functionality of the software 

package FRAGSTATS, McGarigal et al. (2002) describes well over 150 variables, 

divided into eight separate categories.  Overwhelmed researchers often turn to principal 

components analysis and other data reduction techniques to reduce redundancy and limit 

the amount of variables to a more reasonable number (Haines-Young and Chopping 

1996).  For example, Riitters et al. (1995) used factor analysis to explore the redundancy 

of 55 landscape metrics derived from a variety of land-use and land-cover maps, and 

concluded that close to 90% of the original variance could be explained by six univariate 

measures corresponding roughly to the first six factors of the analysis.  The search for a 

relatively small number of meaningful variables that can be effectively applied to diverse 

landscapes remains an active research issue (Cushman et al. in review).    

Even more elusive than the pursuit of parsimony is an understanding of the 

relationship between ecologically meaningful heterogeneity and that which can be 

mapped and measured by remote sensing.  Spatial (and ecological) variability is a 
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function of both scale and time; the observed structure of a natural landscape is 

dependent on the spatial resolution of the data (grain), the physical size of the study area 

(extent), and the time period over which observations were acquired (Gustafson, 1998).  

Complexities surrounding the issue of scale is one of ecology’s primary research focuses 

(e.g. O’Neill et al., 1986; Wiens, 1989; Allen and Hoekstra, 1992; Hay et al., 2002; Wu 

et al., 2002).    

2.3.4 Large Area Challenges 

Knowledge concerning the automated extraction of biophysical information from digital 

satellite imagery has been the mainstay of research in the remote sensing community for 

more than 30 years.  However, while most would agree that these efforts have resulted in 

an impressive variety of useful techniques, the fact remains that many of our core 

procedures have never been thoroughly tested on data sets larger than a single image.  

Research involving information extraction over large areas – those consisting of two or 

more adjacent scenes – is currently one of the discipline’s key frontiers (Cihlar, 2000; 

Woodcock et al., 2001, S. Franklin and Wulder, 2003).  The following is a brief overview 

of the core challenges presented by large-area studies. 

2.3.4.1 Image Acquisition and Temporal Heterogeneity 

The multi-day temporal resolution of many earth-observing satellite systems creates a 

significant challenge for acquiring high-quality, cloud-free imagery over large study 

areas – particularly when there are specific temporal objectives.  The inability to collect 

target scenes during specified time periods can derail certain information extraction 

techniques (multitemporal analysis, for example) and introduce unwanted variance to 
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others.  Substituting historical imagery or data from alternate sensors – including 

synthetic aperture radar – is often required to meet specific mapping objectives, 

particularly in areas of persistent shadow or cloud cover (Wagner et al., 2003; S. Franklin 

and Wulder, 2003).   

Even under ideal conditions, study areas that traverse satellite path lines will have 

to deal with variability caused by temporal heterogeneity.  Images acquired on different 

dates are likely to contain differences caused by changing ground conditions – moisture, 

vegetation phenology, and biomass (Schriever and Congalton, 1995) – in addition to 

atmospheric and illumination effects.  All of these factors serve to complicate the 

mosaicking process and confound model and signature extension.  While some of these 

issues can be accounted for in the image preprocessing phase, ground-based differences 

are difficult to overcome.  Strategies for dealing with seam lines – abrupt changes 

between images caused in part by temporal heterogeneity – remains an active research 

issue. 

2.3.4.2 Image Preprocessing 

Radiometric processing in the form of atmospheric and/or topographic correction 

presents a significant challenge to large-area mapping and modelling activities, which 

require common radiometric scales across not only space and time, but potentially across 

sensors as well.  Unfortunately, we presently lack a widespread standard for performing 

such adjustments.  While much of the atmospheric correction literature is concerned with 

absolute calibration via radiative transfer models (e.g. Vermonte and Kaufman, 1995), 

the detailed atmospheric observations demanded by such solutions are rarely available.  

As an alternative, many users have come to rely on standard atmosphere parameterization 



 30

from commercial image processing packages.  However, this is often an unsatisfactory 

approach; commonly producing poor or unexpected results (Cohen et al., 2001; 

McDermid et al., in prep.).  Relative calibration procedures that normalize slave images 

to a high-quality master through histogram matching (Homer et al., 1997), dark object 

subtraction (Chavez, 1988), or linear transformation (Hall et al., 1991; McGovern, et al., 

2002) present an attractive set of alternatives.   

Even less well defined is the role of topographic corrections over large areas.  

While topographically induced variance can be safely ignored over flat terrain, the effects 

can be significant in high-relief environments (Kimes and Kirchner, 1981; Allen, 2000).  

Numerous techniques have been devised to correct for terrain illumination differences, 

including simple cosine correction (S. Franklin, 1991) and the Minnaert correction 

(Tokola, 2001), among others (Civco, 1989; Conese et al., 1993; Meyer et al., 1993; 

Townshend and Foster, 2002).  However, no geometry-based method seems capable of 

accounting for all topographic variation, since the issue is complicated by vegetation 

canopy geometry and the anisotropic behaviour of most cover types (Gu and Gillespie, 

1998).  At present, most large-area studies have chosen to ignore the topographic effect, 

dealing with it instead through stratification or the use of non-parametric methods that are 

less sensitive to its effects.   

2.3.4.3 Large-area Diversity and Spatial Heterogeneity 
 
In image classification, the concept of signature extension represents the distance over 

which the training data from one location – say, a pine forest – can represent other similar 

locations across space (Jensen, 1996), and reflects the overall efficiency of the 

classification procedure.  Spatial heterogeneity is the primarily limitation on signature 
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extension; for example, phenological differences between pine forests at low elevation 

and those up high can create the need for additional high-cost training data, limit the 

ability to map consistent information classes, or both.  The frequency with which these 

factors become an issue increases directly in proportion with the size and spatial detail of 

the mapping effort, and is one of the core challenges of large-area mapping exercises.   

In many respects, large-area projects are crucibles of remote sensing efficiency.  

With limited resources, researchers are constantly challenging the limits of ground data, 

and pushing the envelope of spectral/temporal generalization.  Previous studies have 

shown that spectral (Reese et al., 2002) and physiographic (Homer et al., 1997) 

stratification are the best strategies for maximizing efficiency over large, spatially 

heterogeneous study areas.  Lillesand (1996) described the process of stratifying TM 

scenes into “spectrally consistent classification units” that attempted to maximize both 

spectral and physiological homogeneity.  Manis et al. (2001) developed 74 mapping 

zones across five southwest states (Utah, Nevada, New Mexico, Colorado, and Arizona) 

in support of the southwest GAP project.  The goal of each of these efforts was twofold: 

(i) to partition massive volumes of data into manageable and logical units, and (ii) to 

improve the efficiency of vegetation modelling and land-cover classification.  Previous 

work in Minnesota by Bauer et al. (1994) showed that physiographic stratification 

improved overall classification accuracies by 10 to 15 percent.   

Image stratification coupled with robust and/or non-parametric information 

extraction techniques are the key strategies for dealing with large-area diversity and 

spatial heterogeneity.  Digital elevation models, soils maps, census data, ecoregion zones, 

and previous classification products can all contribute to the stratification process.  
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Operators must juggle diverse and potentially contradictory data sources, and define 

processing units that strike the correct balance between detail and cost.  

2.3.4.4 Accuracy Assessment 

The quality of a spatial data set is a broad issue that can relate to a variety of properties, 

including vagueness, precision, consistency, and completeness, among others (Worboys, 

1998).  The property of most frequent interest, however, is accuracy (Foody, 2002).  That 

a map is not truly complete until its accuracy is properly assessed is one of the 

discipline’s key tenets (Stehman and Czaplewiski, 1998; Cihlar, 2000).   

Validation is the process of assessing – by independent means – the accuracy of 

remote sensing information products (Justice et al., 2000), and the literature contains 

numerous references on the subject (see annotated bibliography by Veregin, 1989).  

However, very little has been done to assimilate the wide variety of techniques into a 

standard set of methods suitable for consistent application over large-areas (Edwards et 

al., 1998).  Outstanding issues include the design of statistically valid and logistically 

feasible sampling strategies, the adoption of stable and widely understood accuracy 

metrics, the assessment of positional errors, and the determination of reference data 

accuracy (S. Franklin and Wulder, 2003).   

Ideally, researchers validate maps by way of comparison with some independent 

data set – preferably ground data – collected for that specific purpose.  Unfortunately, 

these data are expensive, and commonly end up being used for more urgent needs, like 

training classifiers and establishing empirical relationships.  Specific strategies like 

cluster sampling can be used to increase the efficiency of field data collection, but, in 

general, these data contain less information per unit sampled than those from pure or 
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stratified random procedures (Edwards et al., 1998).  Air photos and other higher-

resolution brands of remote sensing are by far the most common source of validation 

information for large-area projects (S. Franklin and Wulder, 2003).  For example, coarse-

resolution AVHRR products are routinely validated with higher-resolution TM imagery 

(e.g. Fazakas and Nilsson, 1996; Scepan, 1999).  IKONOS and QuickBird instruments 

could perform a similar function for Enhanced Thematic Mapper Plus (ETM+).  The 

ultimate solution could resemble the coordinated use of field- and image-based validation 

methods similar to the procedures described by Tomlinson et al. (1999).  Clearly, more 

research is required.   

2.4 Linking Information Needs with Remote Sensing Strategy  

Ecosystems are a somewhat abstract concept, and there are competing viewpoints as to 

which elements are important to map for the purpose of science and management over 

large areas.  Graetz (1990) suggested that the characteristics of ecosystems are 

determined by the primary trophic level – the vegetation – and that vegetation can 

therefore be taken as the functional equivalent of terrestrial ecosystems.  Remote sensing 

scientists have been quick to adopt this viewpoint, since vegetative units are much 

simpler to map than the complex interplay of physical (soils, climate, topography) and 

biological (wildlife, vegetation, micro organisms) agents that define the alternative 

viewpoint.   

Unfortunately, many remote sensing products can be criticized for presenting an 

overly simplistic representation of vegetation, perhaps contributed to by historical 

limitations of satellite data and the ubiquitous use of classification as an information 

extraction technique.  However, both of these factors have undergone recent change, with 
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the growing number and availability of commercial and non-commercial satellites 

acquiring data with ever-increasing spatial, spectral, and temporal dimensions (Phinn, 

1998).  While these newfound choices have the potential to greatly enhance our ability to 

conduct ecological monitoring and management, they also present unique challenges 

surrounding the selection of appropriate data and techniques.  The discussion of 

information-extraction strategies for use in large-area ecosystem management 

applications must therefore begin with a review of the remote sensing scene model, and 

how it relates to vegetation as a hierarchical, multi-scale phenomenon. 

2.4.1 Multi-scale Vegetation Structure 

Understanding the structure of complex, natural systems is a key challenge for all 

disciplines dealing with these phenomena (Marceau and Hay, 1999).  Contemporary 

works in landscape ecology (e.g. Gardner et al, 2001; Turner et al., 2003) emphasize the 

interaction between vegetation stands distributed across the Earth’s surface.  This mosaic 

of patches implies a certain conceptual model concerning the nature of vegetation, which 

can be articulated formally as complex systems theory.  Complex systems theory 

describes the behaviour of ecological systems characterized by a large number of 

components interacting in a non-linear way and exhibiting adaptive properties through 

time (Kay, 1991; Hay et al., 2002).  An important characteristic of complex systems is 

that they intuitively take the form of a nested hierarchy, in that finer categorical divisions 

(leaf, canopy) are nested within broader ones (tree, stand).  This hierarchical structure is 

employed by many classification systems in their attempt to organize vegetation by 

process rate, scale, or taxonomy (see summaries by J. Franklin and Woodcock, 1997 and 

S. Franklin, 2001).   
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Woodcock and Harward (1992) presented a hierarchical model that describes 

patterns of matter and energy flux in a forested scene that consists (in ascending order) of 

trees/gaps, stands, forest types, and scenes.  Their model compares closely to Urban et 

al.’s (1987) process-based organization of vegetation into gaps, stands, cover type, 

provinces, and biomes.  The stand (often referred to as a patch in the landscape ecology 

literature) is defined as a contiguous area of similar species composition, plant cover, and 

plant size distribution (J. Franklin and Woodcock, 1997).  Trees and gaps are nested 

within stands, which in turn are subsumed by larger landscape units or cover types, 

defined by Cousins (1993) as a complex of systems that form a recognizable entity.  

While there is some discussion regarding the scale of cover-type units (e.g. Forman and 

Godron, 1986; Urban et al., 1987; Turner et al., 2001) they are generally considered to be 

on the order of 1000s of hectares, and correspond quite closely to the Level II classes of 

Anderson et al. (1976).  

While differences between the various classification systems in use (spatial, 

taxonomic, process-based) can create considerable confusion, the understanding of 

vegetation as a complex system – and subsequent adoption of one or more hierarchies – 

is important to large-area habitat mapping projects for the following reasons:  

1. They represent the foundation of communication between resource managers and 

remote sensing specialists, 

2. They provide a framework for conducting multi-scale mapping and modeling 

activities, and 

3. They provide a conceptual basis for linking ecological information to the remote 

sensing scene model and subsequent information extraction techniques. 
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2.4.2 The Scene Model 

Strahler et al. (1986) described the remote sensing model as having three distinct 

components: the sensor, the atmosphere, and the scene.  The scene model comprises the 

area of interest, which, in a forest, is composed of a forested portion of the Earth’s 

surface viewed at a specific scale.  For many applications, it is appropriate to consider the 

scene as a spatial arrangement of discrete two- or three-dimensional objects distributed 

on a background (Jupp et al., 1988; 1989).  In real scenes, objects are formed by 

spectrally homogeneous pixels, and can take many different forms depending on scale.  

For example, a conifer forest scene could be modeled at a detailed scale as a series of 

two-dimensional objects composed of sunlit and shaded patches of forest and 

understorey, or, at a broader scale, as a mosaic of structurally homogenous forest stands.   

The relationship between the size of the objects and the spatial resolution of the 

scene follows one of two types: H-resolution or L-resolution (Strahler et al., 1986).  The 

H-resolution case occurs when the pixel size of the scene is significantly smaller than the 

objects of investigation, while the L-resolution case occurs when pixels are larger than 

objects (Figure 2-1).  This designation is important, since it describes the fundamental 

relationship between the objects of interest and the spatial resolution of the image, which 

in turn governs the choice of subsequent information extraction techniques.  
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Figure 2-1: H- and L-resolution scene models for a forested scene.  At the tree/gap level (top), 
Landsat ETM+ multispectral pixels are L-resolution, while IKONOS panchromatic pixels are H-
resolution.  At the stand level (bottom) Landsat ETM+ multispectral pixels are H-resolution, 
while MODIS band 3 pixels are L-resolution. 

 

Generally speaking, H-resolution images are best suited for classification, since the 

objects of interest occur over areas larger than individual pixels.  Depending on the 

specific structure of the scene, analysts can employ a wide variety of image processing 

techniques to extract the variables necessary for consistent discrimination, and may 

employ re-sampling (S. Franklin and McDermid, 1993) or segmentation (Woodcock and 

Hayward, 1992) strategies to better define the objects of investigation.  L-resolution 

scenes, on the other hand, are more suited to per-pixel routines such as vegetation indices 
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(Satterwhite, 1984; Cohen, 1991), empirical (Moisen and Edwards, 1999; Cohen et al., 

2002) or physical (Goel, 1988; Scarth and Phinn, 2000) models, and spectral mixture 

analysis routines (Peddle et al., 1999) that relate sub-pixel biophysical properties to 

multispectral reflectance measurements. 

A critical characteristic of remote sensing scenes is the following: since natural 

systems are composed of objects in a multi-scale hierarchy, a single image can be both H-

resolution with respect to some types of information, and L-resolution with respect to 

others.  Following Woodcock and Harward’s (1992) hierarchical forest scene model 

described earlier, a Landsat ETM+ image would be L-resolution at the tree/gap level, 

since each 30-metre pixel consumes several tree/gap objects (top part of Figure 2-1).  

However, the same 30-metre imagery would be considered H-resolution with respect to 

stands, which may cover 10s or 100s of hectares and consume many individual pixels 

(bottom part of Figure 2-1).  As a result, the correct information extraction strategy for 

ecosystem management can vary greatly, and depends jointly on (i) the scale of 

information desired, and (ii) the spatial resolution of the image used.      

2.4.3 A Framework for Application 
 
Phinn et al. (2003) presented a framework for selecting the appropriate remote sensing 

data for environmental scientists.  The process consists of the following six steps: (i) 

identify the information requirements for the project; (ii) organize the information needs 

in terms of an ecological hierarchy; (iii) conduct an exploratory analysis using existing 

digital data; (iv) identify the ideal remote sensing data, considering spatial, spectral, 

radiometric, and temporal dimensions; (v) select and apply a suitable set of information 

extraction techniques; and (vi) conduct a cost benefit analysis.  This process can be 
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visualized with the help of Figure 2-2: a hypothetical landscape that is to be the study 

area of a regional habitat-mapping project.  By identifying various vegetation attributes 

as the required information products, we can adopt a multi-scale hierarchy that organizes 

the scene in ascending scale as tree/gap, stand, and cover type.  Specifications for the 

ideal remote sensing data can vary, depending on vegetation conditions, study area size, 

and available image processing techniques.  Figure 3 offers H- and L- resolution 

suggestions at each level of the hierarchy.  The choice of data should dictate – at least 

initially – the subsequent image processing techniques pursued: generally, classification 

for H-resolution data and physical or empirical modelling for L-resolution cases.  

Assessing the benefits of the resulting investment should take into account, among other 

things, the accuracy of the information products generated, the value of the resulting 

habitat maps, and the utility of the vegetation database for other resource management 

applications.  
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Figure 2-2: A vegetation hierarchy is imposed on a theoretical landscape for the purpose of selecting the ideal remote sensing data and information 
extraction techniques.
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2.5 Chapter Summary 

A strong alliance is forming between remote sensing and ecology to address the 

challenge of large-area habitat mapping.  However, the harmony of this multidisciplinary 

approach to science is hindered by miscommunication and a lack of common 

understanding.  Pioneering work has demonstrated the promise of geospatial tools in 

cross-disciplinary work, but a tremendous amount of research yet remains.  Image 

classification, per-pixel models, and spatial pattern analysis techniques are effective tools 

for extracting information, but scientists and resource managers require guidance for their 

effective application.  A framework that combines hierarchy theory with elements of the 

remote sensing scene model presents a mechanism for linking information needs with 

image processing technique, as well as a foundation for communication between 

ecologists and specialists in remote sensing.  Future research should explore the 

integrated role of new remote sensing instruments and emerging technologies, develop 

techniques for constructing multi-scale vegetation databases over large areas, and test the 

utility of these databases for supporting diverse environmental applications.   
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Chapter 3: Project Overview and Description of the 
Study Area 

 

The central purpose of this research is to create a framework for deriving high-quality 

land and vegetation information for large-area habitat mapping using remote sensing and 

other geospatial tools.  In addition to being applicable over very large areas, it is also 

desirable that these methods be flexible enough to support multiple objectives.  This 

means avoiding the use of nominal information categories and pre-defined classes, and 

making use of continuous variables to store vegetation information attributes as much as 

possible.   

The land and vegetation information base envisioned in this work is composed of 

four components – physical landscape attributes – that operate on the landscape and are 

judged to be important to habitat use patterns observed in grizzly bears and other wildlife 

species in western Alberta: (i) land cover/physiognomy, (ii) crown closure, (iii) species 

composition, and (iv) phenology.  The approach varies from that used in the generation of 

most other large-area remote sensing maps in at least two important respects.  First is the 

recognition that land and vegetation information exists at a variety of spatial and 

temporal scales, and that no single map is capable of capturing the full range of 

variability observed in reality.  While it would be certainly incorrect to claim that a four-

level database is capable of simulating reality, I do contend that an attribute-based 

approach that attempts to identify and account for the major spatial, structural, and 

temporal patterns observed on the landscape is more appropriate than a single catch-all 

map.  The second major difference involves the selective application of remote sensing 

techniques sensitive to the scale at which these attributes appear on the landscape.  
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Guided by hierarchy theory and the remote sensing scene model, the framework adopted 

in this research calls for a variety of information-extraction strategies, including 

regression analysis and object-oriented classification designed specifically to exploit H- 

and L-resolution information, as appropriate.  Finally, a concerted effort has been made 

in the construction of the current environmental database to map selected attributes as 

continuous variables wherever possible, in order to achieve maximum flexibility with the 

completed product.  This decision was the product of hard-won experience gained in 

previous collaborative experiences, in which decisions concerning class labels and 

boundaries made early on in the project have a tendency to change over time as new 

opinions, challenges, and information arise.  For example, initial consultation amongst 

team partners might determine that two categories for crown closure are sufficient: open 

(6-50%) and closed (51-100%).  Upon further review, however, (normally when the 

products are complete!) it is determined that the classes are too broad, and that a three-

category configuration of crown closure would be more appropriate.  If the map was a 

standard ordinal classification, then this request would require thorough revisions, adding 

weeks or months to the project’s timeline.  If the underlying product were a continuous-

variable model of crown closure, however, then the reconfiguration would be a simple 

GIS exercise that could be completed within hours.  This flexibility is an important 

advantage, both for preserving harmony within a multi-disciplinary team as well as 

enabling the finished database to be adapted and applied to other projects with potentially 

divergent objectives with minimal re-investment.    
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3.1 Location and Description of the Study Area 

The study area for this research is located in the west-central portion of Alberta, Canada 

(Figure 3-1), along the front range of the Rocky Mountains.  This expansive region, 

covering more than 100,000 km2, encompasses one of western Canada’s most 

physiographically  and biologically diverse landscapes.   The area is internationally 

recognized for the quality of its physical and biological systems, and contains a number 

of provincially  and federally  protected reserves (Figure 3-2), including Banff and Jasper 

National Parks.  Outside of these well-known protected areas, however, the region is 

subject to rapid development and intensive resource extraction.  Oil and gas development 

(Figure 3-3), forestry, mining, and agriculture form the foundation of Alberta’s economy 

and exert a profound influence on the natural and political landscape.  This apparent 

dichotomy places tremendous pressure on the region’s management agencies, which must 

balance the demands of economic activity with the obligations of ecological 

sustainability.   

3.1.1 Natural Regions and Subregions 

The Natural Regions and Subregions is a hierarchical land classification system designed 

for broad-scale description of provincial land resources, and is used by the Alberta 

government for a variety of planning purposes (Achuff and Wallis, 1977).  The system 

classifies the landscape on the basis of biogeographic features – geology, hydrology, 

soils, climate, vegetation, etc. – and provides a convenient framework for describing the 

current study area.   
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Figure 3-1: Location of the study area in west-central Alberta. 
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Figure 3-2: Protected regions in the study area.  Large reserves (>40,000 Ha) are labelled. 

 
Figure 3-3: Oil and gas well sites in the study area. 
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The study area contains five of the province’s six natural regions: Rocky 

Mountain, Foothills, Parkland, Boreal Forest, and Grassland (Achuff, 1992).  The highest 

level of the hierarchical system, natural regions reflect broad patterns of vegetation, 

physiography, soil, and vegetation.  Finer-scale landscape patterns are recognized in 

subregion designations.  For example, the Rocky Mountain natural region is divided into 

three subregions on the basis of vegetation patterns, soil, and climate: alpine, subalpine, 

and montane.  Table 3-1 provides a summary of the common vegetation, geology, and 

landform patterns observed in the natural regions and subregions occurring in the study 

area.   

3.1.1.1 Rocky Mountain Natural Region 
 
 
The Rocky Mountain natural region is part of the major geological uplift trending along 

the western part of the province that forms the continental divide, and makes up 31% of 

the study area.  The region is underlain primarily by upthrust and folded carbonate and 

quartzitic bedrock, expressed in dramatically rugged topography that ranges from less 

than 1000 metres in the bottom of the Athabasca valley to the 3747-metre summit of 

Mount Columbia in the northwest corner of the Columbia Icefields.  The region consists 

of two major mountain ranges: the easterly Front Range, and the westerly Main Range 

(Gadd, 1986).  The major valleys trend south-east/north-west, and represent the origins of 

some of the largest rivers in Alberta: the Bow, Red Deer, North Saskatchewan, and 

Athabasca.  The climate, soils, vegetation, and wildlife in the Rocky Mountain region  
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Table 3-1: A summary of the natural regions and subregions found in the study area, including 
dominant vegetation and characteristic geology and landforms.  Information compiled after 
Achuff, 1992. 

Region Subregion Vegetation Geology and Landforms 

Alpine 

 
Black alpine sedge, heathers, grouseberry, 
mountain avens, willow, moss, lichens 

 
Bedrock, snowfields, glaciers, and 
colluvium in extremely rugged terrain.  
Rock glaciers and other permafrost 
features can be found in places 
 

Subalpine 

 
Lodgepole pine, Englemann Spruce, 
subalpine fir, whitebark pine, buffaloberry, 
aster, hairy wild rye, junipers, grouseberry, 
false azalea, huckleberry, bunchberry, 
arrowleaf groundsel, willow 
 

 
Rugged terrain consisting of morainal 
and colluvial deposits overlying 
Rocky Mountain strata.  
  

Rocky Mountain 

Montane 

 
Douglas fir, limber pine, white spruce, aspen 
poplar, pine grass, hairy wild rye, bearberry, 
juniper, wheatgrass, Idaho fescue 
 

 
Fluvial and glaciofluvial terraces and 
deposits in road river valleys.   

Upper Foothills 

 
White spruce, black spruce, lodgepole pine, 
buffaloberry, bunchberry, Labrador tea, 
fireweed, feathermoss, dwarf birch, peat 
moss 
 

 
Strongly rolling topography with 
frequent bedrock outcrops.  Ground 
moraine over bedrock, with some 
colluvium on steep terrain. 
  

Foothills 

Lower Foothills 

 
White spruce, black spruce, lodgepole pine, 
balsam fir, aspen polar, paper birch, balsam 
poplar, buffaloberry, juniper, Labrador tea, 
fireweed, dwarf birch, horsetail, willow, peat 
moss 
 

 
Rolling topography created by 
moraine over bedrock.  Extensive 
organic deposits in valleys and wet 
depressions 

Foothills 
Parkland 

 
Aspen poplar, balsam poplar, snowberry, 
saskatoon, white meadowsweet, glacier lily, 
Bebb’s willow 
 

 
Hummocky ground moraine, outwash 
deposits, and extensive river terraces 

Parkland 

Central Parkland 

 
Aspen polar, balsam poplar, snowberry, 
saskatoon, bunchberry, red osier dogwood, 
willow, alder, rough fescue 
 

 
Hummocky ground moraine and fine-
textured glaciolacustrine deposits 

Dry Mixedwood 

 
Aspen poplar, balsam poplar, white spruce, 
balsam fir, jack pine, black spruce, tamarack, 
cranberry, red-osier dogwood, feathermoss, 
bearberry, lichen, Labrador tea, peatmoss, 
sedge 
 

 
Low-relief terrain composed of 
ground moraine and sandy outwash 
plain 

Boreal Forest 

Central 
Mixedwood 

 
Aspen poplar, balsam poplar, paper birch, 
white spruce, balsam fir, jack pine, black 
spruce, cranberry, red-osier dogwood, 
dewberry, feathermoss, lichen, bearberry, 
Labrador tea, peatmoss, sedge 
 

 
Low relief on a level to undulating 
surface.  Ground moraine, sandy 
outwash plain, and glaciolacustrine 
deposits 

Grassland Foothills Fescue 

 
Rough fescue, Idaho fescue, oatgrass, sticky 
geranium and prairie crocus, balsam-root, 
narrowleaf cottonwood 
 

 
Flat to gently rolling terrain  made up 
of moraine and glaciolacustrine 
deposits 
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vary substantially with elevation, and combine to produce three distinct natural 

subregions: Montane, Subalpine, and Alpine (Figure 3-4).  

 

 

Figure 3-4: Rocky Mountain natural subregions. 

 

 
Occupying the lower portions of the study area’s four major river valleys, the 

Montane subregion is characterized by the influence of warm, dry chinook events that 

ameliorate the winter temperatures to create intermittent snow-free zones.  Vegetation is 

typically open forests and grasslands, with Douglas fir (Pseudotsuga menziesii), white 

spruce (Picea glauca), trembling aspen (Populus tremuloides), and limber pine (Pinus 
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flexilus) occurring in forested areas, and fescues (Fescuta spp.), oatgrasses (Danthonia 

spp.), and bluebunch wheatgrass (Agropyron spicatum) dominating the grasslands 

(Achuff, 1992).   The abundance of herbs and intermittent winter snow makes the 

Montane subregion wildlife hotspots for many Rocky Mountain species, including elk, 

bighorn sheep, wolf, and mule deer.   

The Subalpine natural subregion occupies the middle elevations between the 

Alpine and Montane subregion in the major river valleys and the Upper Foothills and 

Alpine subregions elsewhere.  Lower Subalpine elevations are covered with glacial till 

and moraine deposits, while the higher elevations are dominated by colluvium and 

residual bedrock material.  Brunisol and Luvisol soils are widespread, but diverse 

physical conditions produce also produce a variety of regosols, podsols, and cryosols 

(Achuff, 1992).  Closed stands of fire-successional lodgepole pine (Pinus contorta) at the 

lower elevations give way to Englemann spruce (Picea englemannii) and subalpine fir 

(Abies lasiocarpa) on the upper slopes.  Important understorey species include 

buffaloberry (Shepherdia canadensis), hairy wild rye (Elymus innovatus), false azalia 

(Menziesia ferruginae), huckleberry (Vaccinium membranaceum), and grouseberry 

(Vaccinium scoparium).  Mature mesic forests have a thick carpet of mosses and lichens.  

Open forests and shrubby areas mark the transition between the subalpine and alpine 

subregions, with Englemann spruce, subalpine fir, whitebark pine (Pinus albicaulus), 

subalpine larch (Larix lyallii), rock willow (Salix vestita), heathers (Phyllodoce spp.), and 

arrowleaf groundsel (Senecio triangularis) among the common vegetation species.   

The Alpine natural subregion represents the highest areas of the Rocky Mountains 

above treeline - typically about 2100 metres in the study area.  Land cover here includes 
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alpine meadows, non-vegetated rock, snow, and glaciers.  Soils are thin or non-existent 

on deposits of bedrock and colluvium.  Vegetation patterns are typically complex, 

controlled by microclimatic variations of slope, aspect, exposure, and moisture.  

Communities at the highest elevation are limited to lichens, while lower-elevation 

meadows may contain alpine sedge (Carex nigricans), dwarf shrub heath (Phyllodoce 

and Cassiope spp.), grouseberry (Vaccinium scoparium), white mountain avens (Dryas 

octopetala) and willow (Salix spp.) (Achuff, 1992).  Alpine areas form critical seasonal 

habitat for many Rocky Mountain species, including grizzly bear, bighorn sheep, 

mountain goat, ptarmigan, and woodland caribou.   

3.1.1.2 Foothills Natural Region 

The Foothills natural region covers about 50% of the total study area – the largest 

proportion of the four natural regions occurring therein.  Transitional between the Rocky 

Mountain/Boreal Forest natural regions in the north, and the Rocky Mountain/Parkland 

regions in the south, the Foothills zone is characterized by rolling to strongly rolling 

topography underlain by sandstone and shale.  The boundaries of the Foothills zone are 

determined largely by structural geology, with folded bedrock materials contrasting with 

the thrusts and faults of the Rocky Mountains or the flat-lying terrain of outlying regions 

(Strong, 1992).  However, Achuff (1992) also recognizes distinctive patterns with respect 

to vegetation, wildlife, and physiography.   

The Foothills natural region is divided into two subregions: Upper Foothills and 

Lower Foothills (Figure 3-5).   The Upper Foothills is characterized by strongly rolling 

topography on the eastern edge of the Rocky Mountain region, with an additional disjunct 

outlier occurring in the Swan Hills region in the north-eastern part of the study area.  
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Morainal deposits are widespread throughout the region, with colluvium deposits 

occurring alongside bedrock outcrops on steeper terrain.  Vegetation is strongly 

dominated by coniferous forests of lodgepole pine, white spruce, black spruce (Picea 

mariana), and (less frequently) subalpine fir.  Lodgepole pine forests are widespread on 

the upland slopes, with understories typically including false azalea, buffaloberry, 

bunchberry, and fireweed.  Spruce communities on mesic sites commonly have a thick 

carpet of feathermosses (Hylocomium splendens, Pleurozium shreberi, and Ptilium 

crista-castrensis).  The limited wet sites host black spruce forests with Labrador tea, 

dwarf birch (Betula spp.) and peat moss (Sphagnum spp.).   Wildlife species in the Upper 

Foothills typically includes pine siskin, varied thrush, black bear, grizzly bear, and elk 

(Achuff, 1992).    

The Lower Foothills subregion occurs over rolling topography with morainal 

deposits laid on top of folded bedrock.  The area contains extensive wetlands, with 

organic deposits and wet depressions common across low-lying terrain.  The vegetation 

in the Lower Foothills is more varied than the coniferous monotone observed in the 

adjacent Upper Foothills subregion.  Mixed forests of white spruce, lodgepole pine, 

balsam fir, aspen, and paper birch are common throughout the area.  Dry upland sites are 

commonly covered with fire-successional pine forests, where understorey species 

typically include bearberry (Actostaphylos uva ursi), buffaloberry (Shepherdia 

canadensis), and juniper.  Mesic sites commonly host mixed stands of white spruce and 

aspen, with a well-developed understorey of bunchberry, Labrador tea, fireweed, and bog 

cranberry (Vaccinium vitis-idaea).  Black spruce forests occupy the moist organic soils in  
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Figure 3-5: Foothills natural subregions. 

 
 
the central and northern parts of the study area, with Labrador tea, dwarf birch, peat 

moss, and horsetail (Equisetum spp.) occurring commonly in the understorey.  Wetland 

fens are widespread in wet depressions, composed of peat moss, sedge (Carex spp.),  

Labrador tea, dwarf birch, willow, and scattered black spruce and tamarack (Larix 

larciana).  The vegetation diversity in the lower foothills contributes to an equally 

diverse range of wildlife; the area draws wide-ranging species from the adjacent Rocky 

Mountain and Boreal regions, including moose (Alces alces), elk, spruce grouse, and 

purple finch (Achuff, 1992).   
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3.1.1.3 Boreal Forest Natural Region 

The Boreal Forest natural region occurs in the north and far eastern portions of the study 

area, and makes up about 15% of the total area.  The largest natural region in the 

province, the Boreal Forest consists of broad lowland plains with deeply buried bedrock, 

extensive wetlands, and expansive forested areas.  Tremendously diverse, the Boreal is 

composed of six natural subregions, two of which – Dry Mixedwood and Central 

Mixedwood – are represented in this study (Figure 3-6).   

 

 

Figure 3-6: Boreal Forest natural subregions. 
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The Central Mixedwood natural subregion can be found in the far northern part of 

the study area.  The terrain here is relatively flat, with glacial till being the dominant 

surficial material.  Broadleaf species such as aspen, balsam poplar, and paper birch are 

the widespread, with forests tending successionally towards white spruce and balsam fir 

in the absence of fire (Achuff, 1992).  The understories of upland broadleaf communities 

are rich and diverse, with low-brush cranberry (Vibernum edule), red-osier dogwood, 

sasparilla (Rubus pubescens), and twinflower (Linnaea borealis) among the common 

understorey species.  Coniferous-dominated spruce/fir forests are less common, and have 

a less diverse understorey dominated by mosses and lichens.  Black spruce-and peat-

dominated fens occur on poorly drained lowland sites, with Labrador tea, dwarf birch, 

and sedges locally abundant.  Wildlife of the Central Mixedwood subregion is the most 

diverse of the Boreal Forest, including black bear, wolf, lynx, moose, and ermine.   

The Dry Mixedwood subregion occurs in four discontinuous patches along the 

eastern and northern edges of the study area.  Vegetation is transitional between Central 

Parkland and Central Mixedwood subregions, with aspen and balsam poplar occurring in 

both pure and mixed stands.  Forests evolve successionally towards white spruce, but the 

presence of fire generally prevents this from occurring and upland forests here tend to be 

largely broadleaf.  As with aspen/balsam poplar communities elsewhere in the study area, 

the understories are typically rich and diverse, with low-brush cranberry, rose 

(Rosa spp.), red-osier dogwood, and twinflower (Linnaea borealis) among the common 

species.  Coniferous stands – where they occur – host a more limited understorey, 

dominated primarily by moss species.  Wetlands are common throughout the Dry 

Mixedwood, but are not as prevalent as in the Central Mixedwood and other Boreal 
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subregions (Achuff, 1992).  Vegetation here is dominated by black spruce, Labrador tea, 

tamarack, peat mosses, and dwarf birches.  Characteristic animals include beaver, moose, 

wolf, and black bear.   

3.1.1.4 Parkland Natural Region 

Occupying a transitional zone between Grassland and Foothills, the Parklands natural 

region makes up about 4% of the study area, split into Central Parklands and Foothills 

Parklands subregions located along the south-eastern boundary (Figure 3-7).   

 

 

Figure 3-7: Parkland natural subregions. 
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 The Central Parkland subregion is characterized by hummocky moraines, 

glaciolacustrine deposits, and glacial outwash plains.  Black and dark-brown Chernozem 

soils have historically supported aspen parkland vegetation – dense aspen stands broken 

by grassy openings – but agricultural developments have displaced virtually all of the 

native vegetation cover in this subregion (Achuff, 1992).  Balsam poplar (Populus 

balsamifera) forests with dense, species-rich understories occur locally on floodplains, 

and small woodlots of aspen communities with snowberry, saskatoon (Amelancier 

alnifolia), and chokecherry (Prunus virginiana) understories remain locally scattered 

amongst the alfalfa fields.  Small wetlands and pothole lakes support a wide variety of 

birds and amphibians, along side white-tailed deer, porcupine, pocket gophers, and 

snowshoe hare.  

 Further south in the study area, the Central Parklands yield to the Foothills 

Parkland natural subregion.  Physiographically similar to the Central Parklands further 

north, the Foothills Parklands are characterized by distinctive vegetation species, 

including lupines (Lupinus spp.), oatgrass (Danthonia spp.), and Idaho fescue (Fescuta 

idahoensis) (Achuff, 1992).  However, most of the native species in this subregion have 

also been cleared for agriculture.   

3.1.1.5 Grassland Natural Region 

A very small portion of the study area (less than 1%) occupying the Bow valley in the 

extreme south-eastern portion of the region is categorized as Grassland.  Grasslands in 

Alberta occupy generally flat to gently rolling terrain, with bedrock covered by thick 

deposits of glacial till (Achuff, 1992).  A relatively warm, dry climate coupled with rich 
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Chernozemic soils results in a natural vegetation cover dominated by grasses and forbs.  

In this study area, these lands have been converted to agriculture.   

3.2 Partner Studies  

In order to maximize the effectiveness of this research over its very large study area, a 

number of partnerships were established with projects operating within the region.  Brief 

descriptions of these studies and their role within the project are provided below.   

3.2.1 The Foothills Model Forest Grizzly Bear Research Program 

The project to which this work is most closely tied is the Foothills Model Forest Grizzly 

Bear Research Program (FMFGBRP).  The FMFGBRP was created in 1999 to provide 

knowledge and planning tools to land and resource managers in order to ensure the long-

term conservation of grizzly bears in Alberta.  It represents a unique partnership amongst 

more than 50 collaborators and sponsors from various levels of industry, academics, and 

government.  Key to the FMFGBRP’s efforts is sound scientific field research, practical 

results, and a large-area or landscape level approach toward grizzly bear conservation.  

With a focus aimed primarily at grizzly bear management, the program is designed to 

assess bear populations and evaluate bear responses to both human activities and habitat 

conditions.  Major research activities within the project include:  

• Remote sensing tools and procedures allowing the creation of grizzly bear habitat 

maps over large areas; 

• Resource selection function (RSF) models that build on remote sensing maps and 

other environmental information sources to identify important grizzly bear 

habitats on the landscape; 
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• Animal movement models, based on graph theory analysis, that are designed to 

identify grizzly bear movement corridors across the landscape; 

• Techniques to monitor and assess grizzly bear health; 

• DNA grizzly bear census techniques to enhance our ability to monitor grizzly bear 

population status over time; and  

• New procedures and techniques for the capture and handling of grizzly bears for 

research and management purposes.  

 

The FMFGBRP study area has occupied a series of expanding regions since its 

inception in 1999, as the scope of the program has evolved to encompass larger and 

larger portions of the province.  Starting across an original zone covering 

approximately 10,000 km2 south of Hinton in 1999, the study area grew to about 

40,000 km2 in 2003 (Figure 3-8).  While the project’s area of interest has continued to 

expand both northwards and southwards since 2003, it is this 40,000-km2 phase that 

oversaw the bulk of cooperative research reported here. 

The FMFGBRP provides the overriding framework for the activities reported in 

this thesis.  The project was the primary source of funding for this work, and 

supported nearly every aspect of field research and data collection.  In return, the 

accomplishments reported here represent the primary vehicle for remote sensing 

research within the FMFGBRP from 2002 through 2004.   
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Figure 3-8: The FMFGBRP's core 2003 study area, upon which the bulk of the work in this thesis is 
based. 

 

3.2.2 The Alberta Ground Cover Characterization Project 

The Alberta Ground Cover Characterization (AGCC) project is an on-going initiative 

between the University of Alberta and its partners in the provincial and federal 

government to map the land cover across the forested portions of Alberta.  Built upon 

unsupervised classification strategies using medium-spatial-resolution Landsat data, the 

AGCC has adopted a phased approach to mapping the province, moving more or less 

systematically from the northeast towards the southwest.  In 2003, the AGCC became a 

partner of this research in an effort to (i) join forces for the purpose of field work for map 

production and error characterization, and (ii) collaborate on the evaluation of different 
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large-area satellite mapping strategies for wildlife habitat assessment.  These initiatives 

resulted in the execution of a joint field program in 2003, which contributed towards the 

development of the remote sensing map products presented in Chapters 4 and 5, and a 

map comparison study, the results of which can be found in Chapter 6.   

3.2.3 The South Jasper Woodland Caribou Project 

The South Jasper Woodland Caribou Project (SJWCP) is an initiative of Parks Canada 

designed to examine the status of the south Jasper woodland caribou herd, a 

geographically isolated population that has declined by an estimated 39-47% between 

1988 and 2003 (Parks Canada unpublished data).  The SJWCP began in 2002, and its 

findings have contributed substantially to the recent Alberta Woodland Caribou Recovery 

Plan (Herivieux et al., 2005).  Based largely around a series of resource selection studies 

using telemetry data from collared caribou, the project also included substantial land 

cover and vegetation surveys within Jasper.  Through collaboration with SJWCP 

managers and field personnel, field data collection protocols of Parks field crews were 

augmented to enhance compatibility with ground measurements acquired by crews 

contributing to this research.  The resulting field data – including valuable points from 

challenging, high-altitude locations within Jasper National Park – contributed to the 

development of the remote sensing map products presented in Chapters 4 and 5.   
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Chapter 4: Remote Sensing Map Production - Methods 

4.1 Data Acquisition 

In its most common form, information extraction using modern remote sensing involves 

establishing statistical relationships between ground truth information acquired in the 

field and digital data acquired from a distance using various airborne or spaceborne 

instruments.  Once established, these relationships are applied spatially in order to create 

extended information products over larger areas.  The following subsections provide an 

overview of the primary data sources available here to carry out this process, and their 

respective roles in this research.   

4.1.1 Ground Biophysical Data  

An extensive database of ground biophysical data was required to create and validate the 

map products that make up the land/vegetation information base used in this research.  

Observations and measurements of land cover, crown closure, species composition, and 

LAI were required to train and test a variety of statistical models and classifications.   

Under normal conditions, ground truth data are compiled from a single source – 

commonly a field campaign carried out by researchers from within the project.  However, 

the size and diversity of this study area necessitated the coordinated use of multiple 

information sources.  The biophysical database used in this study combines field data 

from the Foothills Model Forest Grizzly Bear project, the South Jasper Woodland 

Caribou Study, the Alberta Ground Cover Categorization (AGCC) project, and some 
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manual interpretation of satellite imagery and aerial photographs.  Each of these major 

data sources is described briefly below. 

4.1.1.1 Foothills Model Forest Grizzly Bear Project Field Data 

A total of four field campaigns have been conducted in support of the remote sensing 

activities in the Foothills Model Forest Grizzly Bear Research Program from 2000 to 

2003, and this research used field data from each campaign.  The first two campaigns – 

carried out in the summers of 2000 and 2001 – were designed primarily to support the 

initial land cover classification work performed over that project’s Phase 1 and Phase 2 

study areas, described in the literature as the “integrated decision tree” (IDT) approach to 

mapping by S. Franklin et al. (2001).  The field work took place across a stratified 

random sample generated on the basis of some initial classification work performed by 

the consulting group GeoAnalytic (GeoAnalytic, 1999).  About two-thirds of the 592 

sites visited in these early years were ground visits, while inaccessible areas in high-

altitude and/or wetland regions received air call visits from field personnel in a 

helicopter.  The ground protocol involved measurements of vegetation composition 

(species, percent cover) and structure (height, crown closure, and volume) using standard 

vegetation sampling and timber cruise methods across a 30-metre plot analogous in size 

to a Landsat Thematic Mapper (TM) pixel.  In addition, a field call was used to classify 

each plot into one of the 16 vegetation/land cover classes that made up the classification 

legend in use at the time (Table 4-1).  The air call protocol was adapted to provide 

analogous measures of vegetation composition and structure, but relied on ocular 

estimates and interpretations of photographs recorded from a low-hovering helicopter.   
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Table 4-1: Vegetated portions of the IDT classification legend from Phases 1 and 2 of the Foothills 
Model Forest Grizzly Bear Research Program. 

Class Description 

Alpine/Subalpine Mosses, willows, and grasses above 1800m 

Recent Burn Areas burned 2 years prior to image acquisition 

Closed Conifer Conifer vegetation with crown closure between 51 and 100% 

Closed Deciduous Deciduous vegetation with crown closure between 51 and 100% 

Cut 0-2 Areas harvested 2 years prior to image acquisition 

Cut 3-12 Regenerating vegetation in a cutblock that occurred 3-12 years prior to image 
acquisition 

Cut >12 Regenerating vegetation in a cutblock that occurred greater than 12 years prior to 
image acquisition 

Herbaceous <1800m Grassy areas below 1800m 

Herbaceous Reclamation Areas planted with non native vegetation associated with mining activities 

Mixed Conifer Forested stands containing >50% conifer stems 

Mixed Deciduous Forested stands containing >50% deciduous stems 

Open Conifer Conifer vegetation with crown closure between 0 and 50% 

Open Deciduous Deciduous vegetation with crown closure between 0 and 50% 

Shrub <1800m Shrub areas below 1800m 

Wet Open Swampy or marshy areas with grassy vegetation 

Wet Treed Swampy or marshy areas with trees or shrubs 

 

 

In contrast to the first two Grizzly Bear Project field campaigns, which were designed 

primarily to acquire training and testing data for a categorical land cover classification, 

the third campaign – conducted in the summer of 2002 – focussed on the characterization 

of more detailed vegetation attributes such as species composition, crown closure, and 

leaf area index (LAI).  The underlying motivation was a need to provide more depth and 
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richness to the remote sensing map products than what was provided by the original 

classification, and laid the foundation for the attribute-based approach to mapping upon 

which this research is based. 

A particular goal of the 2002 field campaign was to assess the seasonal variability 

of various vegetation attributes by conducting field visits at two different times of the 

summer growing season.  A stratified random sample of 74 sample plots was established 

across the 15 vegetated IDT classes, limited to areas within 350 metres of a road, seismic 

cut line, or other access features.  The tasseled cap derivative greenness (Crist and 

Cicone, 1984) was used to stratify sample locations within each land cover class in an 

attempt to better capture the full range of variability observed on the landscape.  Instead 

of a long, drawn-out field season stretched out across an entire summer, the sites were 

visited during two focussed campaigns in order to observe the change in time-sensitive 

variables such as canopy closure and LAI.  The first campaign took place in the early 

summer between June 20 and July 7, 2002.  During this time period, referred to by 

biologists in the Foothills Model Forest Bear Research Program as the early 

hyperphagia1 season, the herbaceous understorey plants observed across much of the 

study area are not fully developed.  The second campaign – held during the late 

hyperphagia period from August 15 to September 2, 2002 – took place under conditions 

when plant canopies and undergrowth were at their maximum.   

The field protocol for both 2002 campaigns was the same.  A 30- by 30- metre 

ground plot oriented along a north-bearing transect (Figure 4-1) was established at each 

sampling location.  If trees were present, a prism sweep was conducted from the centre of 

                                                 
1 The term hyperphagia is defined as excessive ingestion of food, and refers to the critical time of year 
when grizzly bears eat heavily in order to gain the body mass necessary to sustain them through winter. 
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each plot using a Basal Area Factor 2 or 4 prism.  Each tree was labelled, identified for 

species, and measured for diameter at breast height (DBH).  Three representative trees of 

each species in the sweep were selected for more detailed measurements, including 

height, height to live crown, and coring with an increment bore.  Five 5-metre radius 

subplots located in the centre and four corners of the master plot provided the basis for a 

series of cover measurements made at each strata of vegetation: tree, shrub, herb, and 

ground.  At each level, an ocular estimate was made of both the overall cover percentage 

and the percent exposed to the sky.  The same five sub-plots were used as measuring 

stations for measuring crown closure with a spherical densiometer.  Finally, an AccuPAR 

ceptometer was used to measure photosynthetically active radiation (PAR) in the 400 to 

700 nanometer wavelengths at three different heights: 1.3 metres, 0.3 metres, and ground 

level.  The ceptometer measurements were only taken when light conditions were stable – 

either fully diffuse or fully direct – and only within three hours of solar noon if the light 

conditions were direct.  In order to facilitate later computations of FPAR – the fraction of 

absorbed PAR – accompanying above-canopy clearsky readings were acquired before 

and after each series of sub-canopy measures in the centre of clearings a minimum of 2x 

the size of the surrounding vegetation canopy.  Additional information regarding global 

positioning system (GPS) location and error, qualitative plot description, light conditions, 

disturbance, and photography were recorded on the field sheet found in Appendix A.   

The field campaign in 2003 coincided with expansion of the Foothills Model 

Forest Grizzly Bear Research Program to its Phase 3 study area – the same study area 

adopted for this research.  Field efforts that summer focussed on establishing plot 
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locations in the new regions north and south of the core.  A stratified random sampling 

procedure was used to select 219 sample locations distributed in an area-weighted 

 

Figure 4-1: Plot layout used to characterize vegetation and ground cover across a 30-metre Landsat 
pixel. 

 

fashion amongst the six natural subregions occurring in the expanded area.  To arrive at 

the final sample locations, 1000 random points per natural subregion were placed in areas 

that were within 350 metres of a road.  From these, a preliminary land-cover map 

produced from points in the core area and additional information from the Alberta 

Vegetation Inventory was used to choose locations stratified across each predicted cover 

type.  The field work was carried out in July and August, 2003, using essentially the same 

field protocol described previously.   
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4.1.1.2 EOSD/AGCC Field Data 

In order to maximize the amount of ground data, an effort was made to collaborate and 

share resources amongst other field projects operating in the study area.  The Earth 

Observation for Sustainable Development of Forests (EOSD) is a joint initiative of the 

Canadian Forest Service and the Canadian Space Agency that aims to map the land cover 

of all the forested lands in Canada at 30-metre resolution by 2006 (Wulder et al., 2003).  

The work is designed to permit the ongoing monitoring of Canadian forests for the 

purpose of carbon accounting (Apps et al., 1999), monitoring of sustainable development 

(Wood et al., 2002), and contributing to the National Forest Inventory (Gillis, 2001).  In 

Alberta, the mapping is being carried out in concert with a provincial mapping initiative 

called the Alberta Ground Cover Characterization (AGCC) which aims to produce a 30-

metre land-cover map of the entire forested region of the province.   

By coordinating the field activities in this research with those in the AGCC 

project, an additional 86 plots were acquired in the northern portion of the study area.  

The field protocol for these plots differed somewhat to that adopted by field crews in the 

Foothills Model Forest Grizzly Bear Research Program, but still contained prism sweep, 

densiometer, field photographs, and land cover calls useful for product development in 

this research.   

4.1.1.3 South Jasper Woodland Caribou Project Field Data 

Field personnel in the South Jasper Caribou Project conducted habitat sampling for 300 

field plots in Jasper National Park in the summer of 2003.  The plots locations were 

selected by initially identifying points stratified by caribou telemetry (use, non-use), 

dominant forest species, (pine, spruce, alpine), forest age (greater than or less than 150 
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years old), and aspect (northwest or southeast).  The physical (non-telemetry) 

stratification features were based on information from the Parks ecological land 

classification (Van Tighem and Holroyd, 1983), while the caribou use points were 

acquired from 11 caribou collared in 2002.  Within each stratification, random locations 

were generated within five and ten kilometres from roads for the subalpine and alpine 

ecoregions, respectively.  Plots were 20 by 20 metres in size.  Within these, 

measurements were made concerning percent tree canopy cover, ground cover, and shrub 

cover.  Tree characteristics including species, DBH, age, and height were measured for 

all trees falling within two 10 by 10 metre fixed plots located in opposite corners of the 

plot.   

4.1.1.4 Merging Data Sets 

The task of merging field data from multiple sources proved to be a more formidable 

undertaking than was initially envisioned.  Some of the data issues – differences in 

sampling strategies between field programs, for example – were judged to be less 

important than gaining a more complete coverage of field points.  Others, however, were 

more problematic.  For example, while each field dataset contained estimates of crown 

closure, distinct differences could be detected related to origin of the observations.  Some 

of these differences were expected – ocular estimates of crown closure and species 

composition made from a helicopter are likely to be inconsistent from instrument 

readings made on the ground, for example – but others were more subtle.  For instance, 

an examination of the summary statistics of crown closure measurements taken from 

different field campaigns (Figure 4-2) reveals substantial differences.  The spherical 

densiometer instrument traditionally used to measure crown closure requires counting the 
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number of squares on a concave mirror covered by the reflected canopy.  It is a procedure 

that takes some skill to master, and one that is prone to errors in judgement.   

 

 

Figure 4-2: Box plots displaying marked differences in crown closure measurements taken in the 
Foothills natural region during the 2001 and 2003 field campaigns. 

 

 

In order to ensure quality and consistency amongst field data, each data source 

was carefully reviewed.  Individual field protocols were examined for procedural 

inconsistencies, plots locations were examined visually in a GIS for location errors and 

edge effects, and summary statistics were generated.  In some cases, procedural 

differences in data processing were overcome by re-calculating summary variables.  For 

example, some campaigns based species composition measures on basal area proportion 



 71

rather than stem counts.  By re-processing the original prism sweep data, it was possible 

to adjust many of these inconsistencies.  Translation procedures were created to re-code 

land cover calls to a common framework to ensure global consistency amongst those 

observations.  However, some differences were too large to overcome.  In all cases, 

decisions were made to err on the side of caution.   

Table 4-2 summarizes the source and final sample count of ground biophysical 

data used in the various mapping phases of this study.  In total, 1125 field samples were 

used for mapping land cover, 321 for crown closure, 241 for species composition, and 76 

for leaf area index. 

 
Table 4-2: Sources of ground biophysical data used in the study. 

Data Source Land Cover Crown 
Closure 

Species 
Composition LAI 

 
FMF Grizzly Bear Project 1999-2001 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
FMF Grizzly Bear Project 2002 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
FMF Grizzly Bear Project 2003 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
AGCC Project 2003 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
South Jasper Caribou Project 2003 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
Image/Photo Interpretation 
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241 

 

 
76 
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4.1.2 Satellite Imagery and Digital Data 

Remote sensing imagery from two different satellite sensor systems were acquired in 

support of this research: Landsat Thematic Mapper (TM) and the Moderate Resolution 

Imaging Spectrometer (MODIS).  Multispectral TM imagery from Landsat 5 were used 

to map land cover, crown closure, and species composition, while MODIS data were used 

to map LAI.  An additional suite of digital data products, including a digital elevation 

model (DEM), data from the Alberta Vegetation Inventory, and other miscellaneous GIS 

layers, helped with various processing tasks and formed ancillary data for subsequent 

mapping and modelling efforts.  A description of these digital data sets and the 

preprocessing routines used to prepare them follows below.   

4.1.2.1 Landsat Imagery 

Despite the recent failure of the Enhanced Thematic Mapper Plus (ETM+) instrument on 

board Landsat 7 and the age of the TM-5 sensor, these data were chosen as the primary 

data source for mapping land cover, crown closure, and species composition because of 

their long-term data continuity with other Landsat sensors, well-known radiometric 

qualities, and compatibility with common image processing procedures.  The imagery 

offers a balanced blend of spatial detail (30-meter pixel size) and expansive ground 

coverage (more than 3 million hectares per scene) over seven multispectral bands.  While 

the sensor is currently operating well beyond its intended life span, recently revised 

radiometric calibration procedures (Chander and Markham, 2003) have significantly 

improved the quality of recent imagery and the sensor continues to perform well.    

The study area is covered by five overlapping World Reference System (WRS) 

scenes, the footprints of which are shown in Figure 4-3.  A total of seven images were 
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acquired for the study from the summers of 2002 and 2003 (Table 4-3).  Of these, the 

2003 imagery were used to map land cover, crown closure, and species composition, 

while the 2002 imagery – acquired coincident with the focused field campaigns 

conducted that year – contributed to the mapping of LAI.   

 

Figure 4-3: Landsat WRS scenes covering the study area. 

 

Table 4-3: Landsat imagery used in the study. 

 
WRS Scene Acquisition Date(s) 

Path 43 Row 24 June 17, 2003* 

Path 44 Row 23 June 13, 2002†; July 10, 2003* 

Path 44 Row 24 July 10, 2003* 

Path 45 Row 22 September 3, 2003* 
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Path 45 Row 23 August 23, 2002†; September 3, 2003* 

 * Used for land cover, crown closure, species composition 
 † Used for LAI 
 

 

A series of preprocessing routines were applied to all the Landsat images in order 

to establish the seamless and consistent geometric and radiometric properties necessary 

for subsequent mapping work.  Radiometric processing in the form of atmospheric and/or 

topographic correction is a common methodological step in the information extraction 

process (Jensen, 1996).  The electromagnetic radiation signals measured by satellite 

sensors in the solar spectrum are modified by gases and aerosols in the Earth’s 

atmosphere in complex and often contradictory ways.  In cases where the application 

calls for a common radiometric scale – such as in this research when classification 

signatures and models need to be extended beyond the border of a single image – the 

effects of atmospheric attenuation must be accounted for (Song et al., 1999).   

Unfortunately, there is no standard, reliable method for performing atmospheric 

correction.  Much of the literature on the subject is concerned with absolute calibration of 

individual image scenes, whereby sensor characteristics, atmospheric conditions, and 

illumination angles are modelled explicitly (e.g. Vermonte and Kaufman, 1995).  

However, the detailed atmospheric observations required to drive these models are rarely 

available, leading most users to rely on standard atmosphere parameterization from 

commercial image processing packages.  Unfortunately this is often an unsatisfactory 

approach, commonly producing poor or unexpected results (Cohen et al., 2001).  

A class of alternative solutions - known collectively as relative calibration - are 

procedures whereby individual scenes are normalized with respect to each other, using 
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little or no ancillary data (Hall et al., 1991; Narayana et al., 1995).  The techniques vary 

widely, and include the use of anniversary dates (Lambin, 1996), histogram matching 

(Homer et al., 1997), dark object subtraction (Chavez, 1988), and linear transformation 

(McGovern, et al., 2002).  To date, no single “best” calibration procedure has emerged, 

due likely to the wide range of ground and atmospheric conditions encountered in 

practice. 

In order to identify a reliable routine, three brands of relative and absolute 

radiometric correction algorithms were tested on eight Landsat TM and ETM+ images 

from within the study area.  Though not the same scenes used in subsequent mapping 

work, they did represent a good sample of imagery from a variety of dates and 

atmospheric conditions over the same region, and were believed to comprise a reliable 

test on which to base subsequent radiometric processing decisions.  Two candidate 

radiometric correction strategies were performed: (i) an absolute atmospheric correction 

using the ATCORR radiative transfer model available in PCI Geomatica, and (ii) a 

relative calibration procedure based on atmospheric normalization through linear 

transformation.  In order to maintain a standard radiometric scale for comparison, the 

ground reflectance estimates were scaled back to 8-bit digital numbers (DNs) to match 

the radiometric resolution of the raw and relatively calibrated products.   

The quality of the two candidate radiometric preprocessing procedures were 

judged using pseudo-invariant features (PIFs): locations on the landscape whose surface 

reflectance properties should not change over time, such as deep clear lakes, large asphalt 

surfaces, and large flat gravel pads.  DNs of a selection of PIFs identified in the overlap 

portions of adjacent scenes were extracted for each set or transformed imagery, and the 
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root mean square error (RMSE) was calculated.  The RMSE equation takes the following 

form: 
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Equation 4-1 

where  

n   = the number of pseudo invariant features,  

DNimage1  = the DN of a PIF on the first image, and  

DNimage2  = the DN of the corresponding PIF on the adjacent image.   

 

A summary of the RMSE values generated for each of the two candidate 

radiometric processing techniques – as well as those for the original uncorrected imagery 

– is shown in Figure 4-4.  The mean RMS error of the raw imagery (51 DNs) was 

reduced to 37 through ATCOR’s absolute radiometric correction routine.  These modest 

results clearly undermine the perception that absolute correction – at least the 

parameterized brand performed in the absence of detailed atmospheric observations – as 

an effective tool for radiometric normalization.  In fact, in one of the observed cases 

(August 17, 2000), conversion to ground reflectance actually increased radiometric 

variability over that observed in the raw imagery.   
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The relative radiometric processing routine consistently produced the best results, 

reducing radiometric variability down to a mean RMS of 2 DNs.  In no case was the 

observed variance higher than 10 DNs.  Based on these results, the relative normalization 

procedure was selected as the most reliable means of reducing radiometric variability, 

and adopted as the standard for all subsequent preprocessing.   

The relative calibration procedure used to perform atmospheric normalization 

with Landsat images in this research is based on the work of Hall et al. (1991) who 

reported that a “slave” image could be radiometrically normalized to a “master” through 

a series of empirical transformation models developed for each spectral band.  The 
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Figure 4-4: RMS errors illustrate the variability of pseudo-invariant features observed across 
seven Landsat scenes using three strategies of radiometric correction.
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models are generated by deriving linear transformations between pixels selected from 

PIFs in each scene.  The models are expressed in the form  

 

iOriginaliiiNormalized DNbaDN )()( +=  

Equation 4-2 

where  

DNNormalized  = the DN value of a pixel in the normalized image;  

DNOriginal  = the DN value of the same pixel in the original image;  

bi   = a coefficient that accounts for differences in solar 

irradiance, downwelling sky radiance, and atmospheric transmission; and  

ai   = differences in sensor calibration and path radiance.   

 

While some authors have reported automated means of selecting no change pixels 

(e.g. Elvidge et al., 1995) between two different image datasets, PIFs in these imagery 

were chosen manually in order to avoid locations in rugged topography or with marked 

differences in elevation.  It should be pointed out that like all relative calibration 

procedures, the linear transformation technique does not remove the effects of the 

atmosphere, but instead make multiple images look like they were acquired through the 

same atmosphere.   

The final radiometric preprocessing routine used on all Landsat data handled in 

this research involved the following four steps (i) selecting a master image, (ii) 

converting the DN values of the master image to 8-bit, top-of-atmosphere reflectance, 

(iii) performing atmospheric normalization through linear transformation on the 

remaining slave images, and (iv) calculating the tasseled cap components.  The master 
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image chosen for all the mapping work in this study was the WRS path 45, row 23 image 

acquired on September 3, 2003 – a high-quality image acquired through an exceptionally 

clear atmosphere.  Calculating TOA reflectance values first required converting the 

digital numbers (DNs) back to the original 32-bit radiance values measures by the sensor 

with the following equation:   

 

λλλλ BiasDNGainL += *  

Equation 4-3 

where 

 λ  =  TM band number, 

 L  =  at-satellite radiance, 

 Gain =  band-specific gain, obtained from header file, and  

 Bias =  band-specific bias, obtained from header file. 

 

Once the physical radiance values were obtained, at-satellite reflectance was 

calculated as  
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Equation 4-4 

where 

 λ  =  TM band number, 

 L  =  at-satellite radiance, 

 ρ = TOA reflectance,  
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 ESUN = mean solar exoatmospheric irradiance, and  

 θ = sun elevation angle, obtained from the header file. 

 

The exoatmospheric irradiance tables are calculated according to Iqbal (1983), and are 

available on line from a variety of sources.   

Once the master image was prepared, the other six slave Landsat images were 

radiometrically matched to it using the linear transformation procedure described 

previously.  The entire five-scene study area was processed sequentially using the 

overlapping portions of adjacent image scenes (Figure 4-4).  No topographic corrections 

were performed.   

 

 

Figure 4-4: Radiometric normalization sequence for Landsat TM imagery. 
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The final step in the radiometric preprocessing routine involved performing the 

tasseled cap transformation of Crist and Ciccone (1984) to generate the standard 

orthogonal components brightness, greenness, and wetness.  The components are 

calculated by performing weighted summations of Landsat’s reflective bands using 

coefficients chosen to match the radiometric state of the imagery.  The coefficients for 8-

bit, at-satellite reflectance imagery are shown in Table 4-4.  The resulting components 

reduce the dimensionality of the original six-band dataset with minimal loss of variance, 

and create efficient variables for subsequent classification and modelling.   

 

Table 4-4: Coefficients for calculating the tasseled cap components from 8-bit, at-satellite reflectance 
imagery. 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Brightness  0.35612057  0.39722876  0.39040367 0.69658643  0.22862755  0.15959082 

Greenness -0.33438846 -0.35444216 -0.45557981 0.69660177 -0.02421353 -0.26298637 

Wetness  0.26261884  0.21406704  0.09260517 0.06560172 -0.76286850 -0.53884970 

 
 

In addition to the radiometric normalization described above, careful geometric 

preprocessing of the Landsat scenes was necessary in order to permit precise integration 

of optical satellite imagery with other geographic data in a GIS environment.  As with all 

digital remote sensing imagery, TM data are subject to a variety of systematic and non-

systematic distortions including detector delay, slight variations in spacecraft movement, 

earth rotation, panoramic distortion, and relief displacement (Landsat Project Science 

Office, 1998).  Landsat level 1R data – the type acquired for this study – have been 

processed at the United States Geological Survey’s EROS Data Center to remove many 
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of these systematic errors, but remain in a path-oriented configuration with imagery 

aligned in the direction of the satellite orbit.  Precision products – orthorectified imagery 

in which errors caused by relief displacement have been removed and the data re-sampled 

to a standard map projection – require further refinement with digital elevation models 

and ground control points.  Orthorectification was performed using the satellite orbital 

math model (Toutin, 1995) found in Geomatica OrthoEngine.  Orthorectified Landsat 7 

imagery downloaded from the Geogratis collection maintained on the Internet by Natural 

Resources Canada was used for reference in image-to-image ground point collection, 

with geometric models generated to within 0.5 pixels using a minimum of 50 ground 

control points per scene.  The project imagery were then re-sampled with bilinear 

interpolation to 30-metre pixels in UTM zone 11 using the NAD83 datum, based on the 

GRS80 ellipsoid.  The bilinear interpolation method was selected in order to reduce re-

sampling artefacts while keeping the dubsequent DN values close to their original values.  

The geometric quality of the resulting images was inspected visually using roads, cut 

lines, and other linear features in a GIS environment in order to ensure a high-quality 

rectification.  A complete, radiometrically normalized orthomosaic of the study area 

using the best cloud-free Landsat imagery available in the archive is shown in Figure 4-5.   
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Figure 4-5: False-colour, radiometrically-normalized Landsat orthomosaic of the study area. 
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4.1.2.2 MODIS Imagery 

While Landsat TM data provide exceptional support for long-term land-cover mapping, 

the 16-day temporal resolution of the sensor seriously limits access to time-sensitive 

information or multi-temporal analysis.  In some locations (e.g. the tropics) and times of 

the year (e.g. springtime and early summer in Alberta) high-quality Landsat data are 

extremely difficult to acquire because of persistent cloud cover.  MODIS, one of the key 

instruments on board the Earth Observing System’s (EOS’s) Terra and Aqua satellites, 

views the entire surface of the earth every one to two days, acquiring data over 36 

spectral bands ranging in spatial resolution from 250 to 1000 metres (Table 4-5).  The 

tremendous frequency with which these data are acquired makes it possible to create 

high-quality, cloud-free mosaics of areas that are rarely captured by Landsat.  In addition 

to enhanced temporal, spectral, and radiometric resolution, MODIS distinguishes itself 

from Landsat and most other satellite image platforms in two important respects.  First, 

the development of high-level data products is one of the EOS’s core goals, so the 

MODIS project is supported by an international team of scientists working to develop 44 

separate data products in five categories: calibration, atmosphere, land, cryosphere, and 

ocean (Table 4-6).  As a result of this research effort, MODIS data users can choose from 

dozens of high-end products developed by some of the leading scientists in their 

discipline.   
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Table 4-5: MODIS bandset. 

 
Band Bandwidth Spatial Resolution Primary Use 

1 
2 

620-670nm 
841-876 nm 

250m 
 

Land/Cloud/ 
Aerosols Boundaries 

3 
4 
5 
6 
7 

459-479 nm 
545-565 nm 
1230-1250 nm 
1628-1652 nm 
2105-2155 nm 

500m 
 

Land/Cloud/Aerosols 
Properties 

8 
9 
10 
11 
12 
13 
14 
15 
16 

405-420 nm 
438-448 nm 
483-493 nm 
526-536 nm 
546-556 nm 
662-672 nm 
673-683 nm 
743-753 nm 
862-877 nm 

1000m 
Ocean Colour/ 
Phytoplankton/ 
Biogeochemistry 

17 
18 
19 

890-920 nm 
931-941 nm 
915-965 nm 

1000m Atmospheric Water 
Vapour 

20 
21 
22 
23 

3.660 -3.840µm 
3.929-3.989µm 
3.929-3.989µm 
4.020-4.080µm 

1000m Surface Cloud 
Temperature 

24 
25 

4.433-4.498µm 
4.482-4.549µm 1000m Atmospheric Temperature 

26 
27 
28 

1.360-1.390µm 
6.535-6.895µm 
7.175-7.475µm 

1000m Cirrus Clouds/Water 
Vapour 

29 8.400-8.700µm 1000m Cloud Properties 

30 9.580-9.880µm 1000m Ozone 

31 
32 

10.780-11.280µm 
11.770-12.270µm 1000m Surface/Cloud 

Temperature 
33 
34 
35 
36 
 

13.185-13.485µm 
13.485-13.785µm 
13.785-14.085µm 
14.085-14.385µm 
 

1000m Cloud Top Altitude 
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Table 4-6: MODIS data products. 

 
Calibration 
  MOD 01 - Level 1A Radiance Counts  
  MOD 02 - Level-1B Calibrated Geolocated Radiances 
  MOD 03 - Geolocation Data Set 
 

 
Land 
  MOD 09 - Surface Reflectance  
  MOD 11 - Land Surface Temperature & Emissivity  
  MOD 12 - Land Cover/Land Cover Change  
  MOD 13 - Vegetation Indices   
  MOD 14 - Thermal Anomalies, Fires & Biomass Burning  
  MOD 15 - Leaf Area Index & FPAR  
  MOD 16 - Evapotranspiration  
  MOD 17 - Net Photosynthesis and Primary Productivity  
  MOD 43 - Surface Reflectance  
  MOD 44 - Vegetation Cover Conversion 
 

 
Atmosphere 
  MOD 04 - Aerosol Product 
  MOD 05 - Total Precipitable Water (Water Vapor) 
  MOD 06 - Cloud Product 
  MOD 07 - Atmospheric Profiles 
  MOD 08 - Gridded Atmospheric Product  
  MOD 35 - Cloud Mask  
 

 
Cryosphere 
  MOD 10 - Snow Cover  
  MOD 29 - Sea Ice Cover 

 
Cryosphere 
  MOD 10 - Snow Cover  
  MOD 29 - Sea Ice Cover 
 

 
Ocean 
  MOD 18 - Normalized Water-leaving Radiance  
  MOD 19 - Pigment Concentration  
  MOD 20 - Chlorophyll Fluorescence  
  MOD 21 - Chlorophyll_a Pigment Concentration  
  MOD 22 - Photosynthetically Available Radiation (PAR)  
  MOD 23 - Suspended-Solids Concentration  
  MOD 24 - Organic Matter Concentration  
  MOD 25 - Coccolith Concentration  
  MOD 26 - Ocean Water Attenuation Coefficient  
  MOD 27 - Ocean Primary Productivity  
  MOD 28 - Sea Surface Temperature  
  MOD 31 - Phycoerythrin Concentration  
  MOD 36 - Total Absorption Coefficient  
  MOD 37 - Ocean Aerosol Properties  
  MOD 39 - Clear Water Epsilon 
 

 
 
 

The second important characteristic that distinguishes MODIS data products from 

those of Landsat and most other platforms is that the data products from each of the 

science teams can be acquired from NASA at no charge.  The data are housed and 

distributed through three Distributed Active Archive Centers located in NASA facilities 

across the United States, and are available for download across the Internet through the 

EOS Data Gateway.  This exceptional availability of high-level data products stands in 
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stark contrast to the more limited policies of Landsat and most other satellite data 

platforms, and greatly relieves the burden of data acquisition and preprocessing.   

Data from MOD 13 – vegetation indices (VIs) – were used to map and monitor 

LAI across the study area.  Headed up by team leader Alfredo Huete, MOD 13 products 

are designed to provide consistent spatial and temporal monitoring of global vegetation 

conditions (Huete et al., 1999).  MOD 13 uses two different algorithms in its production 

of global VIs: the normalized difference vegetation index (NDVI) and the enhanced 

vegetation index (EVI).  Both indices exploit the well-known relationship observed 

between healthy vegetation and reflected energy in the visible and near-infrared portions 

of the electromagnetic spectrum.  Previous studies have shown that most of the near-

infrared energy is reflected by the foliage, while much of the visible energy – particularly 

in the red wavelengths – is absorbed for photosynthesis (Colwell, 1974).  Jordon (1969) 

was the first to exploit this relationship for the derivation of LAI with the simple ratio 

(SR), calculated as  
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Equation 4-5 

 

where 

 DNnir  = Digital number of the near-infrared band, and 

 DNred  = Digital number of the red band. 
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The NDVI of Deering (1978) normalized the index to values of –1 to +1 with the 

equation 
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Equation 4-6 

 

As a vegetation monitoring tool, NDVI has been used to estimate a wide variety 

of biophysical parameters, including LAI (Curran et al., 1992), green biomass (Reeves et 

al., 2001), percent green cover (Elvidge and Chen, 1995), and fraction of absorbed 

photosynthetic radiation (Asrar et al., 1984).   

Despite the long history of use, a significant body of research illustrates a series 

of limitations to NDVI that may impact upon the quality of the index, including 

atmospheric effects (Goward et al., 1991), anisotropy (Cihlar, et al., 1994), and 

background contamination (Huete and Warrick, 1990; Qi et al., 1993).  The second MOD 

13 vegetation index – the EVI – is designed specifically to address some of these issues 

by reducing canopy background and sub-pixel atmospheric effects not accounted for in 

the 20km-resolution atmospheric correction algorithms (MOD 09).  The equation takes 

the form 
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where 

 G = Gain factor 
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ρnir  = Near-infrared reflectance factor, 

 ρred = Red reflectance factor, 

 ρblue  = Blue reflectance factor, 

 L  = Canopy background brightness correction factor 

 C1 = Atmospheric resistance red correction factor, and 

 C2  = Atmospheric resistance blue correction factor. 

 

The terms G, L, C1 and C2 are each empirically determined constants, the details of which 

are beyond the scope of this discussion.  A complete description of the theoretical 

foundation of the EVI can be found in Huete et al. (1999).   

The MOD 13 product list (Table 4-7) consists of 21 variations based on spatial 

grain (500m, 1km, and 0.05 degree climate modelling grid), composite window (16-day 

or monthly), platform (Terra, Aqua, Terra/Aqua combined), and version (V003 or V004).  

The data used for this project were MOD13Q1 16-day composites from the Terra 

satellite.  The V004 designation reflects a “validated” product assessed in a systematic 

and statistically robust fashion (Huete et al., 1999).  The study area is split across MODIS 

tiles h10v03 and h11v03, and distributed in a sinusoidal projection in the NASA .hdf 

format.  The MODIS reprojection tool (downloaded from the Land Processes Distributed 

Active Archive Center) was used to mosaic the required scenes, reproject to UTM zone 

11 (NAD 83), and translate to a more useable file format.  Figure 4-6 shows a false-

colour composite of the MODIS mosaic containing the study area; the MOD13Q1 NDVI 

product is shown in Figure 4-7.   
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Figure 4-6: False colour MODIS composite (August 18, 2003) containing the study area. 

 

 

Figure 4-7: MOD13Q1 NDVI mosaic (August 18, 2003) containing the study area. 
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Table 4-7: MOD 13 data products. 

Data Product Terra V004 Aqua V003 Aqua V004 Terra/Aqua 
Combined 

Vegetation Indices 16-Day L3 Global 500m MOD13A1 MYD13A1 MYD13A1 MCD13A1 

Vegetation Indices 16-Day Global 1km MOD13A2 MYD13A2 MYD13A2 MCD13A2 

Vegetation Indices Monthly L3 Global 1km MOD13A3 - MYD13A3 MCD13A3 

Vegetation Indices 16-day L3 Global 0.05Deg CMG MOD13C1 - MYD13C1 MCD13C1 

Vegetation Indices Monthly L3 Global 0.05Deg CMG MOD13C1 - MYD13C1 MCD13C1 

Vegetation Indices 16-day L3 Global 250m MOD13Q1 MYD13Q1 MYD13Q1 MCD13Q1 

 

4.1.2.3 Digital Elevation Model 

The value of topographic and geomorphometric information from digital elevation 

models for analyzing vegetation (e.g. Davis and Goetz, 1990; Franklin et al., 1994), land 

cover (Franklin and Moulton, 1990; Fahsi et al., 2000), hydrology (Moore et al., 1991; 

Tarboton, 1997), and landforms (McDermid and Franklin, 1993; Macmillan et al., 2003) 

are well-established.  The early IDT map of the Foothills Model Forest Grizzly Bear 

Research Program’s phase 2 study area (Franklin et al., 2001) relied heavily on 

topographic variables for GIS decision rules and a source of ancillary data for supervised 

classification.  A commercial model from the Canadian company DMTI Spatial was 

acquired for this study through an academic agreement with the University of Calgary 

library.  The DEM was created through interpolating of the National Topographic 

Database 1:50,000 digital map contours, contours, spot heights, and water body polygons.  

A smoothing algorithm (Hutchinson, 1989) was used to eliminate stepping and pit 

artefacts commonly associated with similar medium-quality elevation models.  The 

model was created at 30-metre resolution, and distributed by 1:250,000 map sheet.  
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Samples of the DMTI data were compared with those from the 50-metre provincial DEM, 

and judged to be of a slightly higher quality.   

Wall-to-wall DEM coverage of the study area (Figure 4-6) was achieved by 

mosaicking 1:250,000 map sheets in ArcView.  Further morphometric processing was 

used to derive topographic variables of slope and angle of incidence for use in subsequent 

mapping activities.   Slope was calculated over a 3x3 neighbourhood surrounding each 

pixel in the image as the slope of the plane formed by the vector connecting the left and 

right neighbours and the vector connecting the upper and lower neighbours of the pixel, 

and ranges between 0 and 90 degrees.  The angle of incidence is the angle between a 

point on the surface and the line connecting this point to a user-selected light source, and 

ranges from 0 to 90 degrees.  A value of 0 indicates that light will not strike the surface, 

while a value of 90 indicates a direct 90-degree angle.  Incidence was calculated using a 

light source at 152° azimuth and 57° elevation – typical for a late-summer day at the 

latitude of the study area during which most of the imagery in this study was acquired.  

Together, the measures of elevation, slope, and incidence provided a basic description of 

topography for each pixel in the elevation model in linear variables suitable for statistical 

analysis, classification, and modelling.   
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Figure 4-6: Pseudo-coloured digital elevation model containing the study area. 
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4.1.2.4 Additional Digital Data Sources 

4.1.2.4.1 Alberta Vegetation Inventory 

The Alberta Vegetation Inventory (AVI) is the provincial standard for forest inventory on 

Alberta’s public lands.  Generated through manual interpretation of aerial photographs, 

the AVI contains a variety of information related to timber productivity, moisture regime, 

crown closure, height, tree species composition, and age at a scale of about 1:20,000 

(Alberta Sustainable Resource Development, 1991).  While various issues related to 

accuracy, consistency, and completeness limit the usefulness of the AVI across the entire 

study area, it did provide a valuable source of supplemental information in areas where 

no other ground data were available. 

4.1.2.4.2 Cut Block/Forest Regeneration Mask 

The land cover/vegetation mapping and modelling work conducted within this research 

was designed primarily around natural vegetation communities occurring outside of 

disturbed and regenerating areas formed by cut blocks, burns, and other natural and 

anthropogenic processes.  While the products certainly cover these areas, observations 

made in the preliminary stages of this project suggested that the patterns and processes 

operating in cut blocks and other regenerating surfaces are fundamentally different from 

those in surrounding undisturbed lands, and the quality of products within these areas is 

expected to be lower.  As a result, a cut block/forest regeneration mask covering the 

study area was created using a combination of object-oriented change detection 

(McDermid et al., 2003) and manual digitizing.  The resulting layer (Figure 4-7) served 

as the basis for segregating field points acquired in disturbed areas from those in 
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surrounding undisturbed regions for the purpose of map and model generation, and was 

included in the package of completed products as a source of additional information.  

However, it is not considered a core remote sensing derivative, and is therefore not 

described further within this document.   

 

Figure 4-7: Cut blocks and regenerating regions in the study area. 

 

4.1.2.4.3 Additional GIS Layers 

A series of additional spatial information products served a variety of miscellaneous 

functions within this research, including stratification, field work planning, and 

map/figure production.  These layers include roads, cut lines, streams, political 
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boundaries, protected areas, and populated areas, among others, and were acquired from a 

variety of local and provincial sources. 

4.2 Digital Image Processing and Map Product Development 

The flow chart shown in Figure 4-8 provides an overview of the various image 

processing and map product development procedures used in this study, and serves as a 

guide for the remainder of this chapter.  It outlines a scale-sensitive framework for 

extracting high-quality information on land cover, forest structure, and vegetation 

phenology over large areas using remote sensing and other geospatial data sets.  Object-

oriented classification was used to map land cover with H-resolution TM data, while 

regression analysis techniques were used to derive continuous-variable models of the L-

resolution processes of crown closure and intra-pixel species composition.  Multi-

temporal derivation of LAI from MODIS imagery was performed to gain insight on 

seasonal patterns of LAI phenology across the growing season.  Combined together with 

other information layers in a GIS environment, these products provide a powerful 

database of environmental information suitable for supporting large-area, multi-

jurisdictional habitat mapping and other resource-management activities.  
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Figure 4-8: Flow chart illustrating the basic methodology for producing the flexible, scale-sensitive land and vegetation information base used in this 
research.
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4.2.1 Land-cover Mapping 

Land cover classification was performed using object-oriented image processing 

techniques implemented within the software package eCognition.  The procedure 

involved performing a multi-resolution segmentation of the five scene comprising the 

study area to identify a nested hierarchy of image object primitives: homogeneous groups 

of pixels that formed the basis of all subsequent processing.  Classification was 

performed using fuzzy rule-based and nearest neighbour analysis in a top-down approach 

based on a three-level land classification hierarchy, and evaluated using 249 independent 

test sites.   

4.2.1.1 Segmentation 

The segmentation algorithm provided in eCognition uses a region-merging technique that 

starts with single pixels and creates subsequently larger objects through a clustering 

process based on weighted heterogeneity (Baatz and Schape, 1999).  The size of the 

resulting objects is controlled by weight, scale, and shape parameters, enabling the user to 

exercise some control over the size and nature of the resulting objects.  To create the 

objects used in this classification, various combinations of input variables and parameters 

were experimented with in order to create meaningful object primitives that were judged 

to be small enough to avoid merging obviously separate objects (e.g. cut block edges, 

road allowances, stand boundaries, etc), yet large enough to identify meaningful groups 

of similar pixels.  This stage of the analysis relies largely on the skill and judgement of 

the image analyst, and there is likely no optimal combination of variables and parameters 
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capable of producing ideal objects over the entire image.  Where possible, decisions were 

made which erred on the side of detail, knowing that post-classification merging could be 

used to combine contiguous groups of too small primitives into larger objects more 

suitable for the given classification level.  The combination ultimately used was based on 

a blend of the tasseled cap variables brightness, greenness, and wetness (weight 1.0), and 

the DEM derivatives of slope and incidence (weight 0.3).  The scale parameter was 9, and 

the composition criteria were colour: 0.8, shape: 0.2, smoothness: 0.8, and compactness: 

0.2.   

4.2.1.2 Classification and Map Product Development 
 
 
In order to characterize land cover and basic physiognomy of the study area, a 

hierarchical land cover classification scheme composed of three levels of detail was 

adopted (Table 4-8).   The hierarchy aided in the development of the final land cover 

product and provided a mechanism for easily tracking accuracy at multiple land-cover 

scales.  The original Landsat orthomosaic was stratified into four pieces, based on the 

Natural Regions classification of Achuff (1994): mountains, foothills, boreal forest, and 

parkland/grassland.  All subsequent segmentation and classification activities took place 

within each of these broad units of analysis.  Beginning at the most general level in the 

land cover classification scheme, an iterative process of training, classification, and 

refinement was adopted until an acceptable level of accuracy (>80%, if possible) had 

been arrived at.  Once achieved, a classification-based segmentation was used to merge 

the original object primitives into new composite objects appropriate for that level of 

classification.  In this way, an object-based hierarchy that matched the land cover 
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classification scheme was created, and used to drill down towards the most detailed 

classification (level III).  The technique is similar to the Integrated Decision Tree 

Approach (IDTA) developed by Franklin et al. (2001) that selectively combined 

supervised, unsupervised, and GIS decision rule criteria in concert with a three-level 

classification scheme.  The hierarchical, multi-step nature of the strategy enabled class-

specific decision rules (e.g. water separated from shadow on the basis of slope and 

elevation) and variable sets to be applied in a selective manner best suited to the 

particular level of classification.   

 

Table 4-8: Class hierarchy used in object-based land cover classification. 

Level I Level II Level III 

a. Upland Trees 
1. Trees 

b. Wetland Trees 

c. Upland Herbs 
2. Herbs 

d. Wetland Herbs 

3. Shrubs e. Shrubs 

A. Vegetation & Shadow 

4. Shadow f. Shadow 

5. Water g. Water 

6. Barren Land h. Barren Land 

7. Snow/Ice i. Snow/Ice 
B. No Vegetation 

8. Cloud j. Cloud 

 

The approach to land cover classification adopted in this research differs from the 

IDTA method used in previous phases of the Foothills Model Forest Grizzly Bear 

Research Program in several important respects.  First, it employs an object-based style 

of analysis rather than one based on pixels, providing a more appropriate scale for H-
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resolution classification, and eliminating the need for majority filters and other post-

classification processing procedures.  Second, the current methods used eCognition: a 

software package specifically designed for multi-resolution analysis, decision rules, and 

supervised classification, thereby reducing the need for complex procedures requiring 

multiple software packages and making the process more attainable for use in an 

operational environment.  Perhaps the most important difference, however, was the 

reduced emphasis placed on classification techniques overall in the current 

methodological framework.  The IDTA relied exclusively on classification (augmented 

substantially with GIS information from the AVI) as an information-extraction technique 

in the production of 23 information classes.  The current approach, by contrast, produces 

only ten classes at its most detailed level, focussing exclusively on broad, H-resolution 

information that is well-suited to classification-based techniques using Landsat.  

Additional information from other more detailed attributes of the landscape – crown 

closure, intra-pixel species composition, and phenology – are generated separately using 

other more appropriate strategies.   

eCognition uses a fuzzy rule base to classify image objects, with membership 

boundaries defined by fuzzy membership functions (Definiens, 2003).  Membership 

functions can be created manually through one-dimensional membership classes, or 

automatically through nearest neighbour analysis of training data.  One-dimensional 

membership functions are defined manually through a graphical user interface, and take 

the form of decision rules based on one of the many dozens of object features available in 

the software.  For example, a decision rule was used to help define the membership 

function of water at classification level II, in which class membership was limited to 
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objects with a mean slope less than 2 degrees.  This simple rule effectively eliminated 

confusion between water and shadow classes – two information categories that are 

commonly confused in pure multispectral feature space.  Function slopes can take on a 

variety of forms to match such logical conditions as larger than, smaller than, boolean, 

and range, among others, and multiple rules can be combined together with and/or 

operators to define complex heuristics.   

While the combined use of one-dimensional functions can be used to cover multi-

dimensional feature space, the strategy becomes unwieldy in large, complex classification 

problems.  For that reason, eCognition also offers the ability to generate multi-

dimensional membership functions automatically through training sites and nearest 

neighbour analysis.  The analyst identifies a representative set of sample sites and defines 

the feature space (the spectral, spatial, textural, contextual, and hierarchical attributes 

associated with each object) to be used for analysis.  In the classification phase, the 

algorithm assigns membership values ranging from 0 (no assignment) to 1 (full 

assignment) to each unknown object on the basis of its distance to known sample objects.  

eCognition computes distance as follows:  

 

2)()(

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

f f

o
f

s
f vv

d
σ

 

Equation 4-8 

where 

 d  = distance sample object s and image object o, 

 )(s
fv  = feature value of known sample object for feature f, 
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 )(o
fv  = feature value of unknown image object for feature f, and  

 fσ  = standard deviation of the feature values for feature f.   

 

Dividing the distance in feature space between a known sample object and 

unknown image object by the standard deviation of all feature values serves to 

standardize distance measures so that features of varying ranges can be combined.  A 

distance value of d=1 means that the distance equals the standard deviation of all feature 

values defining the feature space.  The steepness of the membership function – i.e. the 

quality that determines the class membership value associated with each value of d – is 

controlled by the function slope: a variable parameter that can be modified for each class 

by the user.  The default value is 0.2.  Values less than that create narrower membership 

functions in which image objects have to be closer to sample objects in feature space in 

order to be classified.  Larger values relax the membership function and create higher 

class membership values for unknown objects further away from the sample objects.   

In general, the generation of effective multi-dimensional membership functions 

was found to be training intensive, requiring large numbers of sample sites in order to 

properly partition the n-dimensional feature space.  The final classification products 

created with eCognition required supplemental training samples beyond the 844 points 

generated through field work.  Additional training points were chosen manually with the 

help of the AVI combined with image- and air photo-based interpretation.  This was 

particularly true in the Parkland and Boreal Forest portions of the study area, where 

biophysical ground data were slim.   
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4.2.1.3 Error Characterization 

The number of field data points suitable for land cover assessment was richer and more 

numerous than for any other ground attribute mapped in this research, with 1125 samples.  

This data set was divided randomly into 893 points for training, and 232 for testing, using 

a rough 80/20 rule of thumb that was adopted for most of the analyses conducted in this 

research.  The independent test data were used to construct standard contingency matrices 

and Kappa coefficient statistics for each level in the land cover hierarchy. 

4.2.2 Crown Closure and Species Composition 

Vegetation attributes that vary at the tree/gap level are not well-suited to classification 

procedures using Landsat data, since objects of interest occur over areas that are smaller 

than individual pixels (L-resolution).  In addition, there is an incentive to perform 

analyses that maintain higher-order data than the nominal and ordinal values produced by 

most categorical classification procedures, in order to maintain flexibility in the finished 

product.  As a result, a variety of regression analysis techniques were used to produce 

continuous variable models of crown closure and species composition – defined here in 

the most general sense as percent broadleaf and percent conifer – within each pixel of the 

geospatial data set.   

Box diagrams of the field reference data (Figure 4-9) illustrate the wide range of 

crown closure and species composition conditions that were sampled across the natural 

forested regions of the study area.  Regenerating forest stands occurring in cut blocks and 

regenerating forests were not modelled because of the tremendous variability observed 

here related to re-planting strategy, scarification, and other silvicultural practices.  These 
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disturbed forests likely require separate treatment and additional reference data not 

available in this study.   

 
 

 

 
Figure 4-9: Crown closure (top) and species composition (bottom) box plots of the Foothills and 

Rocky Mountain natural subregions from ground biophysical data. 
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4.2.2.1 Model Development 
 
Simple linear regression assumes that variance is constant and that the errors are 

normally distributed.  Proportional data such as % conifer and % crown closure often 

displays ∩-shaped variance patterns that violate these assumptions and require the use of 

binomial-family generalized linear models (GLM’s) with a logit link (Crawley, 2002).  

The logit transformation takes the form  

logit ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

q
pln  

Equation 4-9 

where 

 p  = the number of failures in a proportional data count and  

 q   = the number of successes (i.e. 1 - p). 

 

In addition to producing the linear predictor necessary for analysis, the 

proportional data are strictly bounded between 0 and 100, eliminating the unreasonable 

results commonly encountered with untransformed data.  The failure and success counts 

necessary for constructing the two-vector response variable were obtained from the dot 

counts and stem counts from densiometer and prism sweep data respectively.   

While the binomial-family GLM appeared to work well for the species 

composition data, preliminary analyses with crown closure models revealed residual 

deviance more than 10-times the residual degrees of freedom, suggesting a poorly 

specified model (Crawley, 2002).  A survey of the literature revealed that some kinds of 

proportional data, including percent cover, are best analysed using conventional 
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regression models following arcsine transformation (e.g. Mazerolle and Hobson, 2002; 

Austen et al., 2001).   The arcsine transformation takes the form 

 

py *01.0sin 1−=  

Equation 4-10 

where 

 y = the response variable in radians, and 

 p = the proportion (e.g. cover) in percent. 

 

Using the appropriate regression form, six candidate models of crown closure and 

species composition were constructed from three different groups of predictor variables 

(Table 4-9).  The first two– CCTM and SCTM – were based on TM data alone.  CCDEM 

and SCDEM were based on topographic measures of elevation, slope, and incidence, 

while CCTMDEM and SCTMDEM drew from both TM and DEM variables together.  

The variables available for each candidate model were examined for collinearity, and 

determined to be independent at the r<0.6 level.  A stepwise procedure based on Akaike’s 

Information Criterion (Burnham and Anderson, 1998) was used to select the best-fitting 

model with the fewest number of predictor variables, following the principle of 

parsimony, and verified the results through F-tests and analyses of variance.   All 

statistical analyses were conducted in the software package S-SPLUS.   
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Table 4-9: A summary of candidate models constructed for crown closure and species composition. 

Crown Closure 
Models 

Species 
Composition Models Available Predictor Variables 

CCTM SCTM Brightness, Greenness, Wetness 

CCTMDEM SCTMDEM Brightness, Greenness, Wetness, Elevation, Slope, Incidence 

CCDEM SCDEM Elevation, Slope, Incidence 

 

4.2.2.2 Model Application and Map Product Development 

Models of crown closure and species composition were initially derived across the entire 

un-stratified mosaic, but preliminary inspections revealed unwanted seam lines on the 

boundaries of adjacent scenes (Figure 4-10).  In spite of my best efforts at radiometric 

normalization in image preprocessing, the changing ground conditions observed across 

the summer growing season (soil moisture, understorey development, shadow 

component, etc), combined with the sensitivity of continuous-variable parameter 

estimates, lead to unacceptable variability between Landsat scenes.  The same difficulties 

were not observed in the land cover classification component of this study, suggesting 

that categorical discrimination of broad land cover types using supervised classification 

techniques is not as sensitive to subtle changes in ground conditions.   
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Figure 4-10: Seam lines in a draft version of the crown closure map based on mosaic-level processing 
across Landsat scenes. 

 

In order to overcome the seam line issues observed in the continuous-variable 

models, regression processing was conducted on a per-scene basis using the five 

individual TM scenes that composed the original Landsat mosaic.  The complication with 

the per-scene approach to modelling was that the field points with high-quality prism 

sweep and densiometer data were concentrated in the middle portion of the region where 

the bulk of the field work had been conducted (Figure 4-11), rather than distributed 

evenly across the entire area as would be ideal.  In two of the images (path 44, row 23 

and path 45, row 23) there was enough field data to enable the models to be both trained 

and tested, but in the remaining three scenes there was not.  In these cases, a procedure 

described by Cohen et al. (2001) was adapted to permit the extension of model 

predictions from the two source images to the three adjacent destination scenes.  The 

technique involves using model predictions from the source image to train new models 

with explanatory measures obtained from the overlapping portion of the destination 
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image.  Any field data that existed in the destination imagery were used for model 

verification and testing.  The resulting model parameters for the destination scene were 

slightly different, accounting for the differences in ground condition and eliminating the 

unwanted seams.  While similar to the linear transformation procedure used in 

radiometric preprocessing, the model extension method is not limited to pseudo-invariant 

features in its focus, and is therefore perhaps better-suited to handling the subtle changes 

in ground condition that can occur temporally.   

 

Figure 4-11: Distribution of crown closure (left) and species composition (right) ground points across 
the study area. 

 

Figure 4-12 illustrates the basic steps necessary to perform model extension from a 

source image to an adjacent destination scene.  The procedure was used to extend the 

crown closure and species composition from the two source scenes – path 45, row 23 and 
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path 44, row 23 – to the remaining scenes in the mosaic.  The steps are described briefly 

below: 

1. The overlap portion of the source and destination imagery in the target natural 

region was defined using GIS polygon clipping routines.  Necessary layers 

included source image footprint, destination image footprint, and natural region 

boundaries.  The resulting polygon encompassed the extent of the desired natural 

region in the area of overlap. 

2. The second step involved obtaining the samples necessary for constructing a 

model that relates predictor variables from the destination scene from the 

response variable in the source scene (crown closure in the illustrated example).  

In order to ensure that samples are constrained to forested portions of the overlap 

area, it is first necessary to mask out all non-forested regions with a forest/non-

forest layer.  In this case, the results of the Level II land cover classification were 

used to accomplish this.  Five hundred random points were then dropped onto the 

overlap portion to extract the necessary variables.  The large sample size was 

designed to ensure a broad representation of the spectral and topographic 

conditions found in the overlap area.   

3. The destination model was derived by developing a statistical relationship 

between the source response variable and the predictor variables from the 

destination scene.  Destination models were developed in a manner consistent 

with that used to develop the source models – i.e., applying the same 

transformation, using the same regression strategy, and employing the same 

predictor variables.  Attempts were made to achieve parsimony and the minimum 
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effective model, but since the purpose of the exercise was the extension of source 

models across presumably similar terrain, and because the imagery had already 

been radiometrically normalized to adjust for major differences in illumination 

angle and atmospheric effects, the number and form of independent variables 

qualifying for the destination models rarely varied from those observed in the 

source set.    

4. In the final step, the destination model was applied to the appropriate portion of 

the destination scene.  Once again, the forest/non-forest mask was needed to 

eliminate non-forest pixels from the analysis.  Once both models had been 

applied, the source and destination maps could be merged together to form a 

seamless extension of the predicted attribute. 

 

The procedure described above differs from Cohen et al.’s in two important 

respects.  First, all of the imagery was stratified by natural region in order to refine the 

creation of source models and limit the inappropriate extension of destination models.  

The original procedure described by Cohen et al. (2001) used un-stratified Landsat 

scenes as model elements, and the authors observed instances where unique vegetation 

conditions lead to sub-optimal results.  The same might be the case in boreal forest, 

parkland, and grassland portions this study area, which received models derived from 

adjacent foothills natural regions, due to a lack of ground points within these natural 

regions.    
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Figure 4-12: Major steps in model extension procedure. 

 

The second procedural difference between the Cohen method and the current 

technique involves the extraction of sample data for developing the destination models.  

Cohen et al. masked all the pixels for each given integer in the model range (e.g. 6% 

crown closure, 7% crown closure, 8% crown closure, etc.) and derived mean values for 

each of the explanatory variables in the overlap portion of the imagery.  By doing this, 

the authors ensured the inclusion of training data across the full range of the source 

attribute, but assumed that the mean values were good representatives of the explanatory 
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conditions.  By employing random sample techniques, it was thought that a training set 

that better captured the true variance observed between the two scenes could be 

developed, which would lead to more consistent transformation functions.    

The combination of natural region stratification and per-scene model extension 

meant that coverage of the entire study area required adopting a piece-wise strategy of 

deriving and assembling eight sub-models per attribute: four source pieces and four 

destination pieces (Figure 4-13).  The Rocky Mountain region piece labelled 8 in the 

figure came from path 43, row 24, which did not physically overlap with any other Rocky 

Mountain source scene, requiring the execution of a double extension from p45r23 to 

p44r24 (piece 1 to piece 6), then p44r24 to p43r23 (piece 6 to piece 8).  The small portion 

of Rocky Mountain region occurring in path 45, row 23 did not contain enough overlap 

area to create a stable destination model, so the Foothills model was simply applied from 

piece 5.   

4.2.2.3 Error Characterization 

The regression analysis techniques used to model crown closure and species composition 

provide some limited evaluation tools, such as standard errors and coefficients of 

determination.  However, independent test sets provide a much more meaningful means 

of characterizing error.  The reference data set falling within the source portions of the 

study area was divided randomly into portions for model building (80%) and model 

testing (20%) (Table 4-10).  The source models were tested by applying them to the 

independent test data, providing new coefficients of determination calculated for the 

relationship between values observed in the field and predicted by the models.   
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Figure 4-13: Map production strategy for crown closure and species composition. 

 

Additional information regarding error patterns and prediction biases was gained from 

scatterplots and regression equations of measured versus predicted values.   

While model performance in the source areas provides a general indication of 

quality for the final map product, it does not give a precise estimate of the performance of 

the aggregated models or incorporate errors from the adjacent destination scenes.  One of 

the benefits of model extension is that any reference points that occur in the destination 

scenes are not used in the procedure, and are therefore available for map accuracy 

assessment.  These points were added to the original independent test data set and used in 

a second round of error analysis across the entire study area.  Finally, a series of  
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Table 4-10: Summary statistics for reference data used in model training and testing. 

Attribute Minimum Maximum Mean Standard 
Dev. Number 

Model Building 
Crown Closure – Mountains 
Crown Closure – Foothills 
% Conifer – Mountains  
% Conifer – Foothills 
 

10 
8 
0 
0 

92 
96 
100 
100 

60.3 
68.5 
93.6 
65.2 

21.3 
24.1 
22.1 
39.9 

69 
150 
41 
137 

Model Testing 
     

Crown Closure – Mountains 
Crown Closure – Foothills 
% Conifer – Mountains  
% Conifer – Foothills 

10 
6 
28 
0 

89 
96 
100 
100 

58.1 
70.0 
87.5 
63.4 

25.2 
23.5 
23.5 
40.3 

32 
70 
13 
50 

 

 

categorized maps were produced mimicking those that might be generated by end users, 

both to demonstrate the flexibility of the continuous-variable products and track their 

categorical accuracy at different levels of detail.  Contingency tables and standard 

accuracy statistics (% correct, Kappa, Weighted Kappa) were to judge the quality of the 

various map configurations produced under two-, three-, and four-class scenarios (Table 

4-11).   

 

Table 4-11: Two-, three-, and four-class configurations of crown closure and species composition 
used for error characterization. 

 
 Crown Closure (% Closed) Species Composition (% Conifer) 

2-Class 0-50; 51-100 0-50; 51-100 

3-Class 0-50; 51-70; 71-100 0-20; 21-79; 80-100 

4-Class 0-30; 31-50; 51-70; 71-100 0-20; 21-50; 51-79; 80-100 
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4.2.3 Leaf Area Index 

Leaf area index (LAI) represents the amount of leaf surface per unit ground area, and is a 

key parameter related to a broad range of biological and physiological processes, 

including photosynthesis, respiration, transpiration, hydrology, carbon and nutrient 

cycling (Law and Waring, 1994).  Since LAI is a required input to many climate and 

ecological models (e.g. Sellers et al., 1986; Running and Coughlan, 1988; Bonan, 1993; 

Dickinson et al., 1993) its derivation stands out as one of the most common 

contemporary remote sensing tasks (e.g. Curran  et al, 1992; Chen and Cihlar, 1996; 

White et al., 1997; Turner et al., 1999;  Pu and Gong, 2004).  Unfortunately, as is the 

case with many quasi-ubiquitous science terms, the exact definition is more complicated 

than it may first appear.  LAI was initially defined by Watson (1947) as the total one-

sided leaf area per unit ground area.  For broad-leafed vegetation, this definition is 

generally appropriate, since both sides of the leaf have roughly the same area.  However, 

if leaves are round, bent, rolled, or wrinkled, the one-sided area is difficult to define.  In 

order to address this problem, several authors have proposed the concept of projected leaf 

area (e.g. Bolstad and Gower, 1990; Smith, 1991), but the projection coefficient is highly 

dependant on the shape and orientation of the leaves.  Chen and Black (1992) 

summarized the issues surrounding LAI of non-flat leaves and suggested that half the 

total leaf area was a more appropriate foundation for the index, since it has a strict 

physical foundation with important biological implications (e.g. biomass, gas exchange).  

While examples of all three LAI definitions are still commonly encountered in the 

literature, the Chen and Black definition – one half the total leaf area per unit ground area 

– is the most widely accepted (Fassnacht, et al., 1994; Stenberg et al., 1994).   



 118

There are several techniques for measuring LAI directly, including manual 

harvest and litter traps (Chason, et al., 1991; Rhoades et al. 2004), but these methods are 

far too time-consuming and labour-intensive to be used in operational field campaigns 

concerned with characterizing detailed spatial and temporal dynamics over large areas.  

Indirect measurement based on allometric relationships between LAI and sapwood area – 

the pipe model theory (Shinozaki et al., 1964a,b) – have been used successfully in several 

studies (e.g. Waring et al., 1982; Wulder et al., 1998; Meadows and Hodges, 2002).  

However, the technique relies on site-specific allometrics (Mencuccini and Grace, 1995), 

and is limited by several potential inaccuracies, including sapwood measurement errors, 

allometric non-linearity in large trees (Law et al., 2001), and seasonal variability in the 

sapwood-LAI relationship (Le Dantec et al., 2000).   

Optical devices that measure the transmission of photosynthetically active 

radiation (PAR) through a plant canopy compose an alternative set of strategies for the 

indirect measurement of LAI (Jonckheere et al., 2004).  These techniques operate on the 

observation that the absorption of PAR by leaves in a plant canopy can be modelled by 

the Beer-Lambert law: an empirical equation that describes the exponential decay of light 

through a solution.  LAI is related to PAR below the canopy (Qi), PAR above the canopy 

(Qo), and an extinction coefficient (k) by the equation 

 

kQQLAI oi /)/ln(−=  

Equation 4-11 

 

The simplicity of the underlying theory makes estimates of LAI relatively easy to 

obtain in the field.  The gap fraction – Qi/Qo – can be measured or estimated with a 
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variety of instruments, including the Accupar Ceptometer and the LI-COR LAI-2000.  

The extinction coefficient for the canopy must be known or estimated.  Jarvis and 

Leverenz (1983) reported extinction coefficients for 13 needle- and broad-leafed tree 

species between 0.28 to 0.65; canopies with spherical (random) distributions of leaf 

inclination angles are well-approximated with an extinction coefficient of 0.5 (Degagon 

Devices, Inc., 2001).   

The assumption of randomly distributed foliage – typical of all techniques based 

on gap fraction analysis – is commonly violated.   The spatial and angular distribution of 

leaves is often clumped, and optical instruments are unable to distinguish 

photosynthetically active leaf tissues from stems, branches, boles, flowers, and other non-

leaf plant elements that might be present in the canopy (Jonkheere et al., 2004).  Chen 

and Cihlar (1995) used the term “effective LAI” (LAIe) to describe such estimates, 

replacing earlier terminology such as “plant area index” (Neumann et al., 1989) and 

“foliage area index” (Welles and Norman, 1991).  While estimates of true LAI can be 

obtained from LAIe measurements through clumping index corrections obtained with 

instruments, such as the TRAC, designed to quantify the effects of non-random canopy 

distribution (e.g. Hall et al., 2003), the extra costs in terms of instrumentation and 

observation time place this additional step beyond the reach of many large-area studies.  

Chen and Cihlar (1995) argued that LAIe is an intrinsic attribute of plant canopies in its 

own right, and since it is easier to measure and more highly correlated with remote 

sensing VIs, should be the preferred value for many applications.   
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4.2.3.1 Ground Measurement and Model Development 

Ground observation of LAI and subsequent model development activities were designed 

to (i) characterize the structure and variability of LAIe across two important time periods 

related to grizzly bear habitat use, and (ii) investigate the extent to which these patterns 

could be characterized with geospatial techniques.  LAI is a dynamic parameter that 

exhibits substantial seasonal fluctuations (Welles, 1990; Curran et al., 1992), due in large 

part to pronounced changes in herbaceous understorey abundance (Badhwar et al., 1986).  

For many applications, these understorey or background effects are considered unwanted 

noise that interferes with the desired quantity: the LAI of the overstorey canopy.  Chen 

and Cihlar (1996), for example, stated a preference for using Landsat images acquired in 

the late spring in order to minimize the effects of understorey growth on remote sensing 

observations.  Several studies have experimented with mid-infrared correction factors 

designed to reduce the effects of background “contamination” (e.g. Huete, 1988; Spanner 

et al., 1990; Qi et al., 1994).  Nemani et al. (1993) described a mid-infrared correction 

factor, c, designed to compensate for variations in understorey reflectance: 

 

minmax

min

(
)(

1
MIRMIR

MIRMIR
c

−
−

−=  

Equation 4-12 

 

where MIRmin and MIRmax are middle infrared radiances from completely closed and 

completely open canopies from the working image.  The correction factor can be applied 

to a standard VI such as NDVI in the fashion 
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Equation 4-13 

 

The theory is that mid-infrared reflectance changes in response to canopy closure 

(Butera, 1986; Baret et al., 1988), and that the correction factor acts as a scalar for 

canopy closure, scaling down VI response in open canopies dominated by contributions 

from the understorey.    

It is interesting to speculate that the same background “contamination” that some 

authors have attempted to eliminate with mid-infrared correction factors (e.g. Brown et 

al., 2000; Pocewicz et al., 2004) may well represent important wildlife habitat 

information such as seasonal food sources and ground cover in the understorey.  Rather 

than discarding this information, it would seem desirable to investigate the feasibility of 

separating the understorey contribution from the overall LAIe signal and preserving it for 

subsequent habitat analysis.  In addition, this research also attempted to track changes in 

LAI across the growing season in an attempt to capture phenological changes that may 

represent an important facet of vegetation dynamics and a key component of the final 

information base. 

Accupar ceptometers were used to obtain APAR measurements at 76 locations 

south of Hinton and Edson in the central portion of the study area (Figure 4-14).  Ground 

stations were visited twice during the 2002 field season: once in the late spring/early 

summer period from June 19 to July 5, and again in the late summer period from August 

14 to September, roughly matching the coincident Landsat 7 ETM+ scenes acquired on 
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June 13 and August 23.  At each visit, measurements taken at 1.3 metres and ground level 

were used to characterize canopy LAIe (LAIeCan) and total LAIe (LAIeTot), respectively.   

 

 

Figure 4-14: Location of field points used in early- and late-summer LAIe modelling. 

 

AccuPAR PAR-80 Ceptometers are composed of 80 adjacent 1 cm2 PAR 

instruments distributed along a bar.  A data logger within the sensor records mean PAR 

values measured along the bar as well as the percentage cover of sunflecks.  The sunfleck 

data can be used to measure canopy gap fraction directly (e.g. Barradas et al., 1998), but 

the technique is not suitable for use in coniferous forests, where the penumbral effect – 

partial shadows between regions of complete sunlight and complete shade cast by needles 
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from tall canopies – makes sunflecks difficult to distinguish (Jonckheere et al., 2004).  

Estimating gap fraction based on transmitted PAR inversion is much more reliable under 

most conditions (Normal and Jarvis, 1974).  Under this scenario, LAI is calculated as 

)47.01(

ln1
2
11

b

b

fA

f
K

LAI
−

⎥
⎦

⎤
⎢
⎣

⎡
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⎠
⎞

⎜
⎝
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Equation 4-14 

 

where fb is the fraction of incident PAR that is beam, K is the extinction coefficient, and τ 

is the ratio of PAR measured below the canopy to PAR above the canopy.  A is calculated 

as  

2159.0785.0283.0 aaA −+=  

Equation 4-15 

 

where a  is the leaf absorptivity in the PAR band, and is assumed to be 0.9 (Decagon 

Devices, Inc., 2001).  The extinction coefficient, K, is calculated as  

θcos2
1

=K  

Equation 4-16 

 

where θ is the zenith angle of the sun, in radians.  The estimates of PAR necessary to 

calculate τ were acquired by ceptometer measurements collected within field sample plots 

and an additional reading taken in the middle of a clearing at least 1.5-times the height of 

the canopy – often a nearby road or well site.  The fraction of the incident PAR that is 

beam, fb, was estimated by taking an additional above canopy PAR reading with the 
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ceptometer wand shaded by an arm held one metre above the instrument.  Under diffuse 

light conditions, fb=0 and equation 4-13 simplifies to  

A
LAI τln−

=  

Equation 4-17 

 

Under these conditions, measurements of fb and θ are unnecessary, and the procedure 

becomes quite simple.   

Software necessary to perform the above series of calculations was written in the 

Cold Fusion programming language and served over the Internet in order to enable 

decentralized processing by multiple field personnel.  The source code for the web 

application can be found in Appendix C.  The application itself can be accessed at 

http://earthsystems.ucalgary.ca/Ceptometer.  

Simple linear regression was used to model LAIe as a function of spectral VIs 

derived from coincident Landsat imagery.  The simple ratio (SR) and NDVI – both with 

and without the mid-infrared correction factor – made up the suite of explanatory 

variables used in model development.  Exponential transformations were used to 

approximate the non-linear relationship expected between LAIe and spectral VI (Chen 

and Cihlar, 1996; White et al., 1995).  Attempts were made to model LAIeCan and LAIeTot 

in both the early  and late-summer time periods.   

Although not a core component of this research, an additional set of analyses were 

performed to explore the ability of satellite sensors to tease apart the understorey 

component of LAIe (LAIeUn).  The relative LAIeUn – calculated as  LAIeUn/ LAIeTot – was 

regressed against the mid-infrared correction factor, c.  The work is the product of David 
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Couroux’s B.Sc. Honour’s thesis, and is reported more fully in Couroux (2004) and 

Couroux et al. (2005).  

4.2.3.2 Model Application and Map Product Development 

While the TM-derived LAIe estimates produced interesting snapshots of vegetation 

phenology at two key periods of the summer, the extent was limited to the relatively 

small portion of the study area covered by the two specific Landsat scenes.  The second 

phase of the process involved using MODIS data to expand the estimates over the entire 

study area and across additional time frames.  Lacking the field measurements required to 

characterize LAIe over a 250-metre pixel, the TM-based models were used to scale up 

estimates to the resolution of MODIS.  This was accomplished by re-sampling the 

Landsat-derived estimates of LAIe to a 250-metre grid using bilinear interpolation, then 

regressing the modelled values of LAI against the MODIS VI products.  The strategy for 

matching source TM models with destination MODIS models was similar to that 

employed in model extension for crown closure and species composition: a random 

sample of 500 points was used to extract source LAIe values and destination VIs in order 

to construct the statistical model.  The resulting coefficients were then applied to the 

destination scene in order to estimate LAIe across the entire study area.   
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Chapter 5: Remote Sensing Map Production - Results 
and Discussion 

 

5.1 Digital Map Products 

5.1.1 Land Cover 

The contingency matrix describing the results of the level I classification is shown in 

Table 5-1.  eCognition and the object-oriented approach to land cover classification 

proved very effective for performing the relatively simple task of separating vegetation 

and shadow from non vegetation, with an overall accuracy of 99% (Kappa=0.975).  The 

only errors occurred in the alpine zone of the Rocky Mountain region, where two thinly 

vegetated alpine meadows were mis-classified as rock.   Since the Vegetation class 

includes all terrain with greater than 6% green vegetation cover, a certain amount of 

confusion amongst thinly vegetated and non-vegetated sites was expected.   

 

Table 5-1; Land cover level I contingency matrix. 

  Observed 

  

Ve
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ta
tio

n 
&
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N
o 

Ve
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ta
tio

n 

TO
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L 

U
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R
’S

 

Vegetation & Shadow 184  184 100% 

No Vegetation 2 46 48 96% 

TOTAL 186 46 232  

Pr
ed

ic
te

d 

PRODUCER’S 99% 100%   

 Overall accuracy: 99.1%; Kappa:  0.975 
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The level II land cover results are summarized in Table 5-2.  Once again, the 

overall accuracy is quite high, at 94% (Kappa=0.911).  Of the individual classes, only 

shrub generated substantial amounts of confusion, with a producer’s accuracy of just 

74%.  Inspection of previous field records revealed common field classification errors 

between Shrub and Herbaceous classes – particularly in the abundant wetland zones in 

the northern and central portions of the study area.  While most of these errors were 

corrected for this exercise, they illustrate the confusing array of physiographic conditions 

(and resulting spectral response patterns) observed in this land cover category.  The 

Herbaceous class produced accuracies in the low 80% range.  Part of this is due to the 

confusion with Shrub already discussed; other minor discrepancies occurred in the 

transition zones with Trees and Barren Land in the alpine zone.  All of the non-vegetated 

categories were well separated, benefiting both from clear cut spectral response patterns 

(e.g. Snow/Ice, Barren Land) and convenient use of topographic decision rules (Water, 

Shadow).   
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Table 5-2: Land cover level II contingency matrix. 

  Observed 
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Trees 119  5      124 96% 

Herbs 1 25 4      30 83% 

Shrubs  2 25      27 92% 

Shadow    3     3 100% 

Water     10    10 100% 

Barren Land  2    22   24 92% 

Snow/Ice       7  7 100% 

Cloud        7 7 100% 

TOTAL 120 29 34 3 10 22 7 7 232  

Pr
ed

ic
te

d 

PRODUCER’S 99% 82% 74% 100% 100% 100% 100% 100%   

Overall accuracy: 94.0%; Kappa:  0.911 
 

 

The contingency matrix for land cover level III is shown in Table 5-3.  The main 

objective of this level of analysis was the separation of wetland vegetation surfaces from 

upland – an important distinction from a habitat perspective.  From a producer’s 

standpoint, this goal was largely achieved, with class accuracies for Upland/Wetland 

Trees/Herbs all above 83%.  However, the inclusion of the new wetland classes 

introduced substantial accuracies of commission, with user’s accuracies of just 53% and 

71% for Wetland Trees and Wetland Herbs, respectively.  Wetland trees displayed 

confusion with upland trees and shrubs.  The upland/wetland trees confusion reflects the 

spectral similarity of high-crown-closure treed wetlands and adjacent uplands; the shrub 
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issue has already been discussed.  Wetland Herbs displayed confusion with Shrubs, and – 

somewhat surprisingly – Upland Trees.  The Wetland Herb class displayed a significant 

amount of spectral variance across the image, reflecting the different types of fens, bogs, 

marshes, and peripheral shoreline areas that constitute this category.  Since I had a 

relatively small number of test sites for the two wetland categories, these errors did not 

substantially impact the overall classification statistics (91.8% overall accuracy; 

Kappa=0.904).  However, the tendency to over-classify the wetland portions of the study 

area is documented in the accuracy analysis and should be borne in mind.   

 

Table 5-3: Land cover Level III contingency matrix. 
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Upland Trees 106 1   2      109 97% 

Wetland Trees 4 8   3      15 53% 

Upland Herbs   20  3      23 87% 

Wetland 
Herbs 1   5 1      7 71% 

Shrubs   2  25      27 93% 

Shadow      3     3 100% 

Water       10    10 100% 

Barren Land   2     22   24 92% 

Snow/Ice         7  7 100% 

Cloud          7 7 100% 

TOTAL 111 9 24 5 34 3 10 22 7 7 232  

Pr
ed
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te

d 

PRODUCER’S 95% 89% 83% 100% 74% 100% 100% 100% 100% 100%   

Overall accuracy: 91.8%; Kappa: 0.904 
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Colour map composites showing each level of the classification hierarchy are 

shown in Figure 5-1.   

5.1.2 Crown Closure 

5.1.2.1 Source Models 
 
Candidate models of crown closure were constructed from three groups of variables: TM 

data alone (CCTM), DEM data alone (CCDEM), and TM plus DEM data together 

(CCTMDEM).  Summaries of each of each of these models for the source areas are 

shown in Table 5-4.  Since models dealing with spectral data were constructed on a per-

scene basis, there are four source areas originating from the Phase 2 study area of the 

Grizzly Bear Project: the Rocky Mountain and Foothills regions of p44r23 and p45r23.  

Models based on DEM variables alone are free of WRS scene constraints, so there are 

only two source models covering the entire Foothills and Rocky Mountain portions of the 

study area, respectively. 
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Figure 5-1: Land cover levels I, II, and III. 
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Table 5-4: Summaries of crown closure candidate models in the source areas. 

Model 

 
TM 

 
Equation r2 Standard Error 

p45r23 Foothills Y=(0.0289*Wet)-4.3681 0.49 0.1804 on 44 D.F. 

p45r23 Mountains Y=(0.0226*Wet)-3.1279 0.36 0.1954 on 82 D.F. 

p44r23 Foothills Y=(0.0378*Wet)-5.9808 0.60 0.1796 on 71 D.F. 

p44r23 Mountains Y=(0.0228*Wet)-3.2287 0.40 0.1868 on 68 D.F. 

Model 

 
DEM 

 
Equation r2 Standard Error 

Foothills Y=(0.004*Slp)+0.8347 0.01* 0.2733 on 99 D.F. 

Mountains Y=(0.0135*Slp)+0.7403 0.12 0.2484 on 98 D.F. 

Model 

 
TMDEM 

 
Equation r2 Standard Error 

p45r23 Foothills Y=(0.0326*Wet)+(0.0148*Inc)-5.6048 0.56 0.1692 on 43 D.F. 

p45r23 Mountains Y=(0.0213*Wet)+(0.0079*Inc)+(0.0088*Slp)-3.3643 0.50 0.1758 on 80 D.F. 

p44r23 Foothills Y=(0.0418*Wet)-(0.0002*Elev)+(0.0137*Inc)-6.9502 0.65 0.1685 on 69 D.F. 

p44r23 Mountains Y=(0.0191*Wet)-(0.0057*Inc)+(0.0119*Slp)-2.895 0.55 0.1638 on 66 D.F. 

* Not significant at p<0.05 

 
 

All four of the models based on TM data alone were statistically significant 

(p<0.001) in both of the source areas, with coefficients of determination ranging from 

0.36 to 0.6.  In each case, the minimal adequate model contained only one linear variable: 

wetness.  While experiments were performed with quadratics and interaction terms in 

each of the candidate models, no consistent evidence could be discovered to suggest that 

these effects had a statistically significant impact on model performance.  The positive 

relationship between wetness and crown closure is consistent with observations made in 
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previous studies (Hunt, 1991; Cohen and Spies, 1992; Cohen et al., 1995) that suggests 

wetness indices and other measures that contrast middle-infrared reflectance are related 

to the structural complexity of the forest canopy and the optical depth of water in leaves.  

That relationship appears to extend to crown closure, which is an indirect measure of the 

amount of canopy in a pixel.  Coefficients of determination and standard errors indicate 

that spectral models of crown closure from the Foothills region explained generally more 

of the observed variance than those in the Rocky Mountain region.  This result is not 

unexpected, given the more pronounced influence of topography in high-relief terrain 

both on vegetation structure on the ground and spectral response in the image.  The 

topographic effect – the deleterious effects of topography on image analysis – is a well-

documented but incompletely understood phenomenon that image analysts find very 

difficult to account for (Kimes and Kirchner, 1981; Dymond, 1992; Dubayah and Rich, 

1995).  While strategies for ameliorating some of these effects do exist (e.g. Civco, 1989; 

Richter, 1997; Riano et al., 2003) none of them were implemented in this project; a factor 

that may have limited the effectiveness of spectral models, particularly in the high-relief 

portions of the study area.   

Of the two models based on DEM variables alone, only the Rocky Mountains one 

was statistically significant, with a coefficient of determination of 0.12.  Slope was the 

only variable that qualified for this relatively weak model, indicating a generally positive 

relationship with crown closure possibly reflected in the occurrence of open forests and 

wetlands in the flat riparian zones of some alpine valleys.  The CCDEM model for the 

Foothills region generated a statistically insignificant coefficient of determination of just 
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0.02, illustrating the inability of topographic variables alone to accurately account for the 

full range of crown closure variability across that terrain.   

In all cases, the lowest standard errors and highest coefficients of determination 

were achieved with models constructed from the combined CCTMDEM variable set.  

The Foothills models both displayed positive relationships with wetness and incidence 

angle, with the p44r23 model also including a weak yet statistically significant negative 

contribution from elevation.  Both Rocky Mountain models included positive 

contributions from wetness and slope, matching some of the trends noted previously.  

Incidence also qualified for both Mountain models – with a negative sign in p44r23 and a 

positive sign in p45r23.  

While standard errors and coefficients of determination provide some information 

on the performance of candidate models, analyses involving independent test data are 

much more meaningful.  The results of 2-, 3-, and 4-class crown closure classifications 

(Table 5-5) are summarized in Figure 5-2.  The overall trends regarding model quality 

noted with the preliminary model statistics continue with the test data.  Models 

constructed from DEM variables alone (CCDEM) contained almost no predictive value, 

with Kappa statistics <0.2, indicating results the same or just slightly better than random 

chance.  The highest classification accuracies were generally produced by CCTMDEM 

models incorporating both spectral and topographic predictor variables; CCTM models 

tended to be slightly less accurate.  As expected, crown closure in the two-class 

configuration (0-50%, 51-100%) produced the highest overall accuracies, generating 

good or very good (Table 5-6) Kappa scores of over 0.75 in all but one case.  The lone 

exception was the CCTM model for p44r23 with a fair Kappa coefficient of 0.375 for the 
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p44r23 Foothills CCTM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.795 0.543 0.396

Weighted Kappa 0.648 0.615

Percent 91% 70% 57%

2-Class 3-Class 4-Class

 

p4 4 r2 3  Foo t hills C C TM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.375 0.3 0.242

Wei ghted Kappa 0.25 0.353

Per cent 69% 50% 44%

2-Cl ass 3-Cl ass 4-Cl ass

 

p4 5r2 3  Foo t hills C C TM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.755 0.519 0.532

Wei ghted Kappa 0.6 0.662

Per cent 92% 82% 82%

2-Cl ass 3-Cl ass 4-Cl ass

 

p4 5r2 3  M ount ains C C TM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.88 0.674 0.429

Wei ghted Kappa 0.688 0.58

Per cent 94% 78% 56%

2-Cl ass 3-Cl ass 4-Cl ass

 

Foothills CCDEM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0 0 0

Weighted Kappa 0 0

Percent 75% 33% 33%

2-Class 3-Class 4-Class

 

M ount ains C C D EM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.112 0.148 0.078

Wei ghted Kappa 0.163 0.128

Per cent 58% 38% 27%

2-Cl ass 3-Cl ass 4-Cl ass

 

p44r23 Foothills CCTMDEM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.77 0.671 0.66

Weighted Kappa 0.754 0.803

Percent 96% 78% 78%

2-Class 3-Class 4-Class

 

p4 4 r2 3  Foo t hills C C TM D EM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.738 0.435 0.319

Wei ghted Kappa 0.56 0.57

Per cent 81% 63% 50%

2-Cl ass 3-Cl ass 4-Cl ass

 

p4 5r2 3  Foo t hills C C TM D EM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 0.755 0.414 0.43

Wei ghted Kappa 0.519 0.591

Per cent 92% 73% 73%

2-Cl ass 3-Cl ass 4-Cl ass

 

p4 5r2 3  M ount ains C C TM D EM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Kappa 1 0.417 0.308

Wei ghted Kappa 0.571 0.603

Per cent 100% 61% 50%

2-Cl ass 3-Cl ass 4-Cl ass

 
Figure 5-2: Kappa, weighted Kappa, and percent accuracies for classifications of three aggregate crown closure classes.  2-class (0-50%; 51%=100%), 

3-class (0-50%, 51-70%, 71-100%), and 4-class (0-30%, 31-50%, 51-70%, 71-100%).
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two-class aggregate.  The TMDEM model of the same region, however, increased Kappa 

to a more acceptable 0.738.  Increasing the class count to three (0-50%, 51-70%, 71-

100%) generally dropped classification accuracies into the moderate 0.4-0.6 Kappa 

range, while a four-class configuration based on the provincial AVI standard (0-30%, 31-

50%, 51-70%, 71-100%) generally produced fair Kappa statistics in the 0.2-0.4 range.  

Once again, the models from the Foothills natural region tended to perform slightly better 

than those from the Rocky Mountains, perhaps reflecting the greater impact of 

topographically induced noise in the spectral variables.  The weighted Kappa statistics 

reported for the three- and four-class configurations are all slightly higher than the basic 

Kappa scores, because the standard measure does not take into account the degree of 

disagreement between classes.  Since the classes in these cases are ordinal – i.e. class D is 

closer to class C than class B – not all misclassifications are of equal severity.  The 

weighted statistic takes these factors into account, and could be argued to provide a more 

meaningful measure of accuracy than the un-weighted score (Cohen, 1968).   

 

Table 5-5: Crown closure class configurations used in source model testing. 

Configuration Classes 

Two-Class 0-50%; 51-100% 

Three-Class 0-50%; 51-70%; 71-100% 

Four-Class 0-30%; 31-50%; 51-70%; 71-100%  
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Table 5-6: Level of agreement guidelines based on the Kappa statistic, after Altman (1991). 

Agreement Rating Kappa Coefficient Range 

Poor <0.2 

Fair 0.21-0.4 

Moderate 0.41-0.6 

Good 0.61-0.8 

Very Good 0.81-1.0 

 

Some interesting observations regarding error patterns can be made from 

scatterplots of predicted versus observed crown closure summarized in Figure 5-3.  An 

ideal model would produce a tight grouping along a trend line passing through the origin 

with a slope of 1 and a Y-intercept of 0.  The lack of predictive capacity for the DEM 

models across the full range of crown closure observations is indicated by the nearly flat 

(0.003 and 0.014) slopes and large (51 and 56) intercepts.  The models predict 

consistently high values of crown closure – producing accuracies in this range similar to 

those that would be expected from random assignments – and gross exaggerations in 

stands with low values.  This trend of over-predicting crown closure in the low range is 

observed consistently throughout most the models, though not nearly so pronounced.  

The error structures of the TMDEM models are generally better than those produced 

from TM data alone, with slightly tighter groupings and trend lines closer to the ideal. 
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p44r23 Mountains CCTM
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p45r23 Foothills CCTM
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Figure 5-3: Crown closure model predictions versus field observations for independent test data in the source area
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5.1.2.2 Destination Models and Model Extension 

The explanatory variables in the destination scene models were identical to those 

qualifying for the source scenes with few exceptions (Table 5-7).  The tasseled cap 

derivative wetness was the only explanatory variable included in the CCTM series, while 

CCTMDEM models in the Mountain region contained positive contributions from 

wetness, incidence, and slope.  Wetness, and incidence angle both qualified for TMDEM 

variables in the Foothills region, with a small negative contribution coming from 

elevation in p43r24.  It bears mentioning once again that both of the destination models in 

the Rocky Mountain natural region of p43r24 resulted from a double extension, since the 

area did not overlap either of the two Rocky Mountain source areas.  In those cases, the 

destination model from the Mountain portion of p44r24 also served as the source model 

for p43r24.   

The general quality of the model extension procedure is reflected in the difference 

statistics calculated in the overlap portions of the map.  In all cases (Table 5-7 again) the 

mean and median difference of crown closure estimates from source and destination 

models was between +/– 1 %.  Visual evidence of the technique’s performance can be 

seen in the elimination of seam lines that affected draft versions of the crown closure map 

that attempted to apply model equations across orthomosaic scene boundaries (Figure 5-

4).  While the accuracy of the predictions remains a function of the quality of the source 

model, the integrity of the predictor variables, and the homogeneity of the ground scene, 

it seems clear that the stratified, per-scene approach to model building and extension has 

succeeded in solving the problem of creating seamless continuous-variable map products 

across large-area mosaics. 
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Table 5-7: Crown closure destination model summaries and difference statistics calculated for the 
overlap sections. 

Crown Closure Destination Models 

Model 

 
TM 

 
Equation Mean Diff. Median Diff. 

p45r22 Foothills Y=(0.0226*Wet)-3.6340 1 1 

p44r24 Mountains Y=(0.0154*Wet)-1.6389 1 0 

p43r24 Foothills Y=(0.0232*Wet)-2.9912 -1 0 

p43r24 Mountains Y=(0.0137*Wet)-1.1256 0 0 

Model 

 
TMDEM 

 
Equation Mean Diff. Median Diff. 

p45r22 Foothills Y=(0.0253*Wet)+(0.0130*Inc)-4.6591 0 0 

p44r24 Mountains Y=(0.0139*Wet)+(0.0045*Inc)+(0.0080*Slp)-1.6419 1 0 

p43r24 Foothills Y=(0.024*Wet)-(0.0001*Elev)+(0.0101*Inc)-3.3410 0 0 

p43r24 Mountains Y=(0.0117*Wet)+(0.0031*Inc)+(0.0073*Slp)-1.2373 -1 0 

 

 

 

Figure 5-4: Seam line elimination from continuous-variable models.  The map on the left was 
constructed using a single equation applied across an orthomosaic boundary.  The map on the 
right was developed using stratified per-scene analysis and model extension.  
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5.1.2.3 Aggregate Map Composite 

Summaries of the accuracies of 2-, 3-, and 4-class crown closure maps derived from TM, 

DEM, and TM-DEM variable sets are shown in Figure 5-5.  The statistics were generated 

from independent test data not used in model construction, and include ground 

observations from three of the four destination scenes.  No reliable field data from the 

Rocky Mountain portion of p43r24 was available – unfortunate, since this was the double 

extension portion of the map, and it would have been interesting to assess the accuracy of 

that area.   
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Figure 5-5: Kappa, weighted Kappa, and percent accuracy statistics of three aggregate crown closure 
classifications: 2-class (0-50%; 51-100%), 3-class (0-50%; 50-70%; 71-100%), and 4-class (0-
30%; 31-50%; 51-70%; 71-100%).   

 

 
The previous patterns noted within the source scenes continued when the model 

was extended over the entire map.  The highest overall accuracies were produced with the 

combined CCTMDEM data set, with Kappa statistics ranging from 0.79 (91%) for two 

crown closure classes to 0.37 (52%) for the four-class set.  CCTM models produced 

slightly lower accuracies, ranging from 0.65 (86%) to 0.29 (46%).  Once again, the DEM 

models proved incapable of modelling crown closure beyond much more than chance 
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agreement, with Kappas ranging from 0.124 to 0.06.  Error patterns shown in scatterplots 

of predicted versus observed crown closure for independent test points (Figure 5-6) once 

more reveal a tendency to over-predict crown closure values in the low range in both the 

CCTM and CCDEM models.  The slightly tighter and more regular form of the 

CCTMDEM model’s scatterplot reflects the higher accuracies observed in the Kappa 

statistics.   

The final, continuous-variable crown closure map, based on combined spectral 

and topographic models developed across natural region-stratified source areas in the 

core of the study area and extended piece-wise across other scenes in the mosaic is shown 

in Figure 5-7.  Statistical analyses using independent test sites suggested that this map is 

best used in an aggregate two-class configuration (Open: 0-50% and Closed: 51-100%), 

under which scenario we might expect very good accuracies in the 90% range 

(Kappa=0.8).  A three-class configuration would be expected to yield moderately 

accurate results in the 65% (Kappa=0.5) range, while attempting to extract four crown 

closure classes would result in just fair accuracies around 50% (Kappa=0.4).  Such a 

scenario might well be suitable if a little leeway regarding categorical precision is 

acceptable, since weighted Kappa statistics – those that account for ordered classes where 

a one-class disagreement is not penalized as severely as other more serious errors – 

suggest moderately accurate results in the Kappa=0.58 range with the four-class map.  

Regardless, the flexibility lies in the hands of the end user – to apply the product in the 

fashion that best suits the application.   
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Figure 5-6: Crown closure model predictions versus field observations for independent test data. 
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Figure 5-7: Continuous-variable map of crown closure modelled from spectral and topographic 

variables at 30-metre resolution.  The product is a composite of CCTMDEM source models 
extended in a stratified piecewise fashion across the study area. 
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5.1.3 Species Composition 

5.1.3.1 Source Models 

As in the case with crown closure models in the previous sections, candidate models of 

species composition were constructed from three groups of variables: TM data alone 

(SCTM), DEM data alone (SCDEM), and TM plus DEM data together (SCTMDEM).  

Summaries of each of each of these models for the source areas are shown in Table 5-8.  

As with crown closure models, those dealing with spectral data were performed on a per-

scene basis in order to avoid seam lines with the finished products.  However, they were 

not stratified by natural region, since there were not enough points in the Rocky 

Mountains – particularly within broadleaf and mixed plots – to develop stable models.  

As a result, there are only two sources scenes for model development: p44r23 and 

p45r23.  Models based on DEM variables alone are free of WRS scene constraints, so 

there is only one model, which covers the entire study area. 

 Of the three candidate models evaluated in this modelling exercise, the TMDEM 

models – those based on both spectral and topographic variables – consistently showed 

the greatest AIC support.  All three of the topographic variables qualified for both source 

models, suggesting strong topographic controls on the distribution of broadleaf and 

coniferous and trees in the study area.  The proportion of coniferous trees measured in the 

field displayed a direct relationship to DEM-derived measurements of elevation and 

incidence angle, and an inversely relationship to local slope.  In western Alberta, 
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Table 5-8: Summaries of species composition candidate models in the source areas. 

Model 

 
p45r23 

 
Equation AIC 

Residual 
Deviance 

SCTM ln(p/1-p)=(0.4645376*Bright)-
(0.4891548*Green)+(0.2949501+Wet)- 46.3816202 1017 920 on 189 D.F. 

SCDEM 
 
ln(p/1-p)=(0.005575367*Elev)-(0.076216613*Slp)-5.699852754 
 

1032 1292 on 190 D.F. 

SCTMDEM 
ln(p/1-p)=(0.054441354*Bright)-
(0.175900519*Green)+(0.003758458*Elev)-
(0.045612475*Slp)+(0.120496764*Inc)-0.167521106 

988 703 on 187 D.F. 

Null Model   1663 on 192 D.F. 

Model 

 
p44r23 

 
Equation AIC 

Residual 
Deviance 

SCTM ln(p/1-p)=(-0.1213879*Green)-(0.1156707*Wet)+29.9484436 1086 800 on 203 D.F. 

SCDEM ln(p/1-p)=(0.005486834*Elev)-(0.106288433*Slp)-5.332853814 
 1114 1368 on 203 D.F. 

SCTMDEM 
ln(p/1-p)=(-0.142734694*Green)-
(0.045642346*Wet)+(0.004178619*Elev)-
(0.039307682*Slp)+(0.171034587*Inc)+7.178821814 

1031 523 on 200 D.F. 

Null Model   1688 on 205 D.F. 

 

 

broadleaf trees are generally found in the lower elevations with gentle slopes and higher 

local incidence angles.  Two spectral variables also qualified for the mixed models: 

brightness and greenness in p45r23 and greenness and wetness for p44r23.  Both models 

displayed an inverse relationship between coniferous proportion and greenness, reflecting 

the fact that broadleaf-dominated pixels tend to be greener than their coniferous-

dominated counterparts, likely due to the smaller amount of shadow in broadleaf stands.  

This is consistent with the findings of Cohen et al. (2001) in Oregon.  Additional spectral 

patterns were less consistent, and likely reflect the variable nature of vegetation patterns 

observed across the very large study area.   

The results of accuracy assessment involving independent test data arranged in 

two-, three-, and four-class species composition configurations (Table 5-9) are 
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summarized in Figure 5-8.  Overall, the trends in these analyses reflect those noted with 

AIC and residual deviance in the preliminary model statistics.  Models constructed from 

DEM data alone performed very poorly, producing Kappa and weighted Kappa statistics 

firmly in the poor range <0.2, indicating results very similar to those that could be 

expected from random assignment.  As with the models describing crown closure, the 

highest classification accuracies were produced by CCTMDEM models that incorporated 

both spectral and topographic predictor variables.  CCTM models produced from spectral 

variables alone tended to be slightly less accurate.  As expected, the highest accuracies 

were achieved with the least-demanding two-class configuration (0-50%, 51-100%), with 

Kappa scores of 0.79 and 0.61 (i.e. very good and good according to Altman’s (1991) 

guidelines summarized in Table 5-5) for p44r23 and p45r23, respectively.  Kappa scores 

fell to moderate levels of 0.56 and 0.50 for the three-class configuration of 0-20% (pure 

conifer), 21-80% (mixed), and 81-100% (pure broadleaf) break points used in Phase I and 

II of the Grizzly Bear Research Program and published in Franklin et al. (2001).  Similar 

moderate Kappa scores (0.55 and 0.45 for p44r23 and p45r23, respectively) were 

achieved in the more detailed four-class configuration.  Weighted Kappa statistics that 

consider the non-ordinal nature of the three- and four-class crown closure configurations 

are all slightly higher than the basic Kappa scores, reflecting statistics that weight the 

severity of misclassifications (Cohen, 1968).   
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Table 5-9: Species composition class configurations used in source model testing. 

Configuration Classes 

Two-Class 0-50%; 51-100% 

Three-Class 0-20%; 21-80%; 81-100% 

Four-Class 0-20%; 21-50%; 51-80%; 81-100%  

 

 

p44r23 SCTM
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1
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Figure 5-8: Kappa, weighted Kappa, and percent accuracies for classification of three aggregate 
species composition classes.  Two-class (0-50%; 51-100%), three-class (0-20%; 21-80%; 81-
100%), and four-class (0-20%; 21-50%; 51-80%; 81-100%). 

 
 
 

Of some interest is the observation that models for the p44r23 source area 

performed somewhat better than those from p45r23.  The same pattern was noted in the 

models for crown closure, and likely reflects the more serious influence of the 

topographic effect created by the rugged terrain in the western portion of the study area.  

Once again, these results suggest that future efforts to correct for topographic noise in the 

preprocessing phase would be worth investigating.     
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Scatterplots of predicted versus observed species composition for each variable 

set over the two source areas are shown in Figure 5-9.  Once again, the lack of predictive 

capacity in DEM-based models alone for predicting species composition across large 

areas is graphically apparent.  The error structure for SCTMDEM models are slightly 

better than their SCTM counterparts, but both models tend to over-predict the proportion 

of coniferous trees in some mixed stands.  In other cases, pure coniferous stands – usually 

open stands with lush understories – display under-predicted coniferous proportions.   
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Figure 5-9: Species composition model predictions versus field observations for independent test data 
in the source area. 
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5.1.3.2 Destination Models and Model Extension 

Table 5-10 summarizes the SCTM and SCTMDEM models for the destination scenes in 

the mosaic, as derived through model extension in the overlap portions of the study area.  

The pattern of explanatory variables qualifying for source and destination models for 

species composition were not as consistent as those observed in the crown closure case.  

Whether this suggests instability in the model extension or simply reflects the more 

complex nature of species composition patterns across the study area is unknown.   Two 

of the tasseled cap variables qualified for each spectral model, but there are few 

discernible patterns.  However, greenness was the only tasseled cap derivative to qualify 

for any of the SCTMDEM series of models, displaying once again the inverse 

relationship between greenness and proportion of coniferous trees noted in the two source 

areas.  Also similar is the influence of topographic controls on species composition 

reflected in the consistent qualification of topographic variables in the blended TMDEM 

models.   

 Table 5-10 also provides the mean and median differences between species 

composition estimates from source and destination models in the overlap portions of the 

study area, providing a basic indicator of extension quality.  In all cases, the extension 

revealed differences less than 4%.  Once again, these results – combined with visual 

inspection of the finished map products – point to the success of the stratified, per-scene 

approach to model building and extension for producing seamless map products over 

large, multi-scene areas.   
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Table 5-10: Species composition destination model summaries and difference statistics calculated for 
the overlap sections. 

Species Composition Destination Models 

Model 

 
SCTM 

 
Equation Mean Diff. Median Diff. 

p45r22 ln(p/1-p)=(-0.09993824*Bright)-(0.06579041*Wet)+18.11026970 0 -0.04 

p44r24 ln(p/1-p)=(0.133335*Bright)-(0.1885151*Green)+7.2046243 0 -0.01 

p43r24 ln(p/1-p)=(-0.12789990*Green)-(0.05711102*Wet)+19.55256868 0 -0.01 

Model 

 
SCTMDEM 

 
Equation Mean Diff. Median Diff. 

p45r22 ln(p/1-p)=(-0.094818168*Green)+(0.004553026*Elev)-
(0.057619126*Slp)+(0.098650115*Inc)-0.828845111 0 0 

p44r24 
 
ln(p/1-p)=(-0.07802001*Green)+(0.003938658*Elev) 
+(0.088267777*Inc)-1.91234777 

0 0 

p43r24 
 
ln(p/1-p)=(-0.140161307*Green)+(0.003808408*Elev) 
+(0.121758117*Inc)+0.903450454 

0 0 

 

5.1.3.3 Aggregate Map Composite 

Summaries of the accuracy assessment for two-, three-, and four-class species 

composition maps derived from the SCTM and SCTMDEM models derived from the 

source portions of the study area and extended through the destination scenes are shown 

in Figure 5-10.  Once again, statistics were generated from independent test data that 

were not used in model construction.  Unfortunately, test points are not evenly distributed 

across the full study area, and reflect a concentration of field data from the central 

portion.  However, test points did exist for four of the five map pieces, and the statistics 

reflect these.   
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Figure 5-10: Kappa, weighted Kappa, and percent accuracy statistics of the three aggregate species 
composition classifications: 2-class(0-50%; 51-100%), 3-class (0-20%; 21-80%; 81-100%), and 4-
class (0-20%; 21-50%; 51-80%; 81-100%). 

 
 
 

In general, the accuracy patterns across the aggregated map composite reflect those 

noted for the source areas.  The highest overall accuracies were produced by the 

combined SCTMDEM data set, with Kappa statistics ranging from 0.74 (90%) for the 

two-class configuration to 0.56 (73%) for the more detailed four-class arrangement.  

Composite maps based on spectral variables alone (SCTM) produced somewhat lower 

accuracies ranging from 0.68 (86%) for two classes to 0.45 (64%) for four.  Error patterns 

shown in scatterplots of predicted versus observed species composition for the 

independent test points (Figure 5-11) once again reveal the slightly better overall 

performance of the combined SCTMDEM data set, as well as the tendency to over-

estimate the coniferous portion of some mixed stands.   
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Figure 5-11: Species composition model predictions versus field observations for independent test 

data. 

 
 

 The final, continuous-variable map of species composition – as measured by the 

proportion of coniferous trees – is shown in Figure 5-12.  The map is based on combined 

spectral and topographic models developed in the field data-rich central portions of the 

study area and extended in a piece-wise fashion to adjacent Landsat scenes.  Statistical 

analysis of independent test sites suggests the map would be most accurate in a two-class 

(0-50%; 51-100%) configuration, in which it could be expected to yield good results in 

the 90% range (Kappa=0.74).  Maps organized into more detailed three (0-20%; 21-80%; 



 154

81-100%) and four (0-20%; 21-50%; 51-80%; 81-100%) class configurations would be 

expected to produce moderately accurate results in the 75% (Kappa=0.59) to 73% 

(Kappa=0.56) range.   

5.1.4 Leaf Area Index 

Observed values of LAIe measured in the field ranged from 0.62 to 6.71 for LAIeTot and 0 

to 6.16 for LAIeCan; very similar to the range of values noted in LAI studies conducted in 

similar landscapes, including Hall et al. (2003) in northern Alberta, Wulder et al. (1996) 

in the Kananaskis Country, and White et al. (1997) in Glacier National Park.  Table 5-11 

summarizes the measured values by cover type and season, and while the small sample 

size makes it difficult to make definitive statements, some interesting trends can be 

observed.  For example, while dense conifer stands produced the highest canopy and total 

LAIe values overall, broadleaf stands produced slightly higher mean values.  Predictably, 

treed sites of all types produced higher mean LAIe values than those without trees, with 

the lowest values observed on herbaceous lands.  As expected, LAIeTot was higher than 

LAIeCan in all cases, suggesting that understorey growth contributes measurably to the 

LAIe values measured in this study area.  The greatest contrasts were observed in 

regenerating forests, where generally open canopies permit the development of lush 

understories that contribute significantly to the total.  The contrast is generally not as 

great among treed targets, but can vary widely depending on the complexity of the stand 

and amount of undergrowth.  Dense canopies with thin understories produce very similar 

canopy and total LAIe measurements, while complex stands or stands with dense 
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Figure 5-12: Continuous-variable map of species composition (% conifer) modelled from spectral 
and topographic variables at 30-metre resolution.  The product is a composite of SCTMDEM 
source models extended in a piecewise fashion across the study area. 
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undergrowth can produce substantial differences between LAIeCan and LAIeTot (Figure 5-

13).  All cover types showed measurable mean LAIe growth over the summer growing 

season with the exception of herbaceous sites, which experienced senescence.  Even 

LAIeCan in coniferous stands showed a modest increase from a mean of 3.32 to 4.05.  

Whether this is due to a measurable increase in leaf area or some other external factor is 

difficult to say.  Much larger and more noticeable seasonable differences could be 

detected in total LAIe; particularly in mixed or broadleaf stands, which tended to have 

denser growth in the understorey.  The broadleaf stand shown in the left side of Figure 5-

13 had a canopy LAIe of 2.1 on June 22 and 2.5 on August 21, while LAIeTot over the 

same time frame changed from 3.4 to 4.9.  Clearly, the largest change occurred in the 

understorey, which increased its contribution from 38% of LAIeTot in the early summer to 

51% at the end of summer.  This pattern stands in sharp contrast to the conifer stand on 

the right side of Figure 5-13, with almost no understorey and little LAIe variability from 

June to September.   

5.1.4.1 Landsat Source Models 

Summaries of the Landsat candidate models from early hyperphagia are shown in Table 

5-12.  Coefficients of determination for LAIeCan ranged from 0.29 to 0.52.  VIs using the 

mid-infrared correction factor – NDVIc and SRc – were significantly higher than their 

uncorrected counterparts, with NDVIc producing the best result (r2=0.52).  This 

observation confirms the findings of Nemani et al. (1993) and White et al. (1997).  

Interestingly, early summer estimates of LAIeTot were also best predicted with c-corrected 

VIs.  In this case NDVIc and SRc both produced r2 values of 0.46; significantly better 
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than the 0.39 and 0.37 produced by their non-corrected NDVI and SR counterparts.  This 

observation appears suggests that the value of the mid-infrared correction factor may go 

beyond that of a simple background scalar.  In this study, the correction factor improves 

estimates of LAIeTot as well.   

 

Table 5-11: Summary statistics for LAIe values measured in the early and late hyperphagia periods 
of 2002. 

  Early Hyperphagia (n=32) Late Hyperphagia (n=43) 

  Mean S.D. Min. Max. Mean S.D. Min. Max. 

Canopy LAI 3.32 0.87 1.91 5.29 4.05 1.07 2.23 6.16 
Coniferous 

Total LAI 4.03 0.90 2.77 5.48 4.62 1.15 2.26 6.39 

Canopy LAI 3.46 1.15 2.37 5.06 - - - - 
Broadleaf 

Total LAI 4.28 1.67 2.99 6.71 - - - - 

Canopy LAI 2.69 1.53 1.61 3.77 5.43 - 5.43 5.43 
Mixed 

Total LAI 3.55 1.22 2.69 4.41 5.49 - 5.49 5.49 

Canopy LAI 1.58 1.30 0 3.47 1.97 1.56 0 4.09 
Forest 

Regeneration 
Total LAI 2.79 1.64 0.81 4.77 3.01 1.86 0.91 5.57 

Canopy LAI 1.61 - 1.61 1.61 1.38 0.44 0.96 1.84 
Shrub 

Total LAI 2.69 - 2.69 2.69 2.94 1.20 1.97 4.28 

Canopy LAI 0 0 0 0 0 0 0 0 
Herbaceous 

Total LAI 1.71 1.53 0.74 3.47 0.62 0.62 0.62 0.62 

Canopy LAI 1.4 - 1.4 1.4 1.86 0.54 1.24 2.78 
Treed 

Wetland 
Total LAI 2.34 - 2.34 2.34 2.95 0.82 1.91 4.03 

Canopy LAI 0 - 0 0 0.75 1.70 0.63 0.87 
Herbaceous 

Wetland 
Total LAI 0.74 - 0.74 0.74 1.56 0.07 1.51 1.61 
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Figure 5-13: Structural and seasonal variability of LAIe in broadleaf stand with dense understorey (left) and conifer stand with sparse understorey 
(right).
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The coefficients of determination for all the early summer models of were in the 

moderate range, varying from 0.29 to 0.52.  The image upon which these models were 

based suffered from patchy atmospheric contamination that could not be corrected – a 

common issue with June imagery in the study area.  The quality of the remote sensing 

scene clearly had an impact on the ability to accurately model LAI during the early 

hyperphagia time period.   

 

Table 5-12: Summaries of early hyperphagia LAIe candidate models from TM data.  

Canopy LAIe Total LAIe 
 

r2 Equation r2 Equation 

NDVI 0.34 y=0.29e3.92NDVI 0.39 y=0.65e3.18NDVI 

NDVIc 0.52 y=0.61e3.51NDVIc 0.46 y=1.33e2.41NDVI 

SR 0.29 y=0.43e0.50SR 0.37 y=0.84e0.41SR 

SRc 0.49 y=0.67e0.51SRc 0.46 y=1.38e0.36SRc 

 

 

Summaries of candidate models for the late hyperphagia time frame are shown in 

Table 5-13.  The patterns observed in these results mirror those from the early summer, 

but with significantly stronger results; due no doubt to the superior quality of the late-

summer imagery.  Canopy LAIe models had r2 values ranging from 0.32 to 0.82.  Once 

again, VIs with the mid-infrared correction factor performed significantly better than 

those without the correction factor, with NDVIc (r2= 0.82) performing the best.  The 

correction factor had a less pronounced impact on the models of LAIeTot, but again the 

best results were produced by NDVIc (r2=0.76) and SRc (r2=0.75).   
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Table 5-13: Summaries of late summer LAIe candidate models from TM data. 

Canopy LAIe Total LAIe 
 

r2 Equation r2 Equation 

NDVI 0.55 LAIe=0.08e4.98NDVI 0.63 LAIe=0.18e4.40NDVI 

NDVIc 0.82 LAIe=0.46e3.35NDVIc 0.76 LAIe=0.94e2.61NDVIc 

SR 0.36 LAIe=0.62e0.24SR 0.41 LAIe=1.03e0.21SR 

SRc 0.76 LAIe=0.56e0.31SRc 0.75 LAIe=1.03e0.25SRc 

 

 

An interesting pattern noted in both the early  and late-hyperphagia time frames is 

that the NDVI-based VIs were significantly better than SR in predicting LAIeCan, but 

there was very little difference in their ability to predict LAIeTot.  The physical reason 

behind this observation is unknown, but may be due to the differences in VI response to 

increasing LAI values.  A key feature of the NDVI lies in the ratioing concept, which is 

widely cited as a strength of the index as a factor for reducing certain types of 

multiplicative noise: illumination differences, cloud shadows, atmospheric attenuation, 

and certain topographic effects (Lillesand and Kieffer, 2000).  While NDVI is 

functionally equivalent to the simple ratio in that NDVI=SR-1/SR+1, the NDVI 

approximates a logarithmic stretch of the simple ratio such that low LAI vegetation 

values span a greater range of values (Myneni et al., 1995).  Figure 5-14 shows the 

relationship between NDVI and SR over the plots used in this analysis.  While all VIs 

begin to display saturation at LAI values greater than about 2 (Huete et al., 1999), the 

NDVI’s tendency to asymptote more quickly than the simple ratio is such that its 

advantages begin to level off as LAI increases.  Since values of LAIeTot tend to be higher 
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than LAIeCan, the relative advantages and disadvantages of the NDVI and SR may even 

out, such that there is no appreciable difference in their respective performances.   
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Figure 5-14: Relationship between NDVI and SR in the sites used to model LAIe in this study. 

 

The relationship between LAIeUs and the mid-infrared correction factor, c, are 

summarized in Table 5-14.  Early hyperphagia and late hyperphagia observations 

produced r2 values of 0.37 and 0.57, respectively.  Once again, the weaker early 

hyperphagia model is likely due to the relatively poor quality of the June, 2002 imagery.   

The moderate positive relationship observed between LAIeUs and c is similar to White et 

al.’s (1997) findings in Montana, and seem to confirm a causal relationship between 

understorey LAI and the mid-infrared correction factor.  Additional work surrounding 
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this issue – including a more thorough analysis of LAIeUs and an attempt to map LAIeUs 

spatially across the landscape with ETM+ imagery can be found in Couroux (2004).   

 

Table 5-14: Summary of relative LAIeUS vs. MIR correction factor models. 

Early Hyperphagia Relative LAIeUs Late Hyperphagia Relative LAIeUs 
 

r2 Equation r2 Equation 

MIR Correction Factor 0.37 Rel. LAIeUs=0.52c+0.14 0.57 Rel. LAIeUs=0.52c+0.18 

 

5.1.4.2 MODIS Destination Models 

The source models with the highest explanatory abilities were used to generate spatial 

estimates of LAIe across the respective source imagery: p45f23 for the early hyperphagia 

period and p44f23 for the late hyperphagia.  These in turn were scaled to 250-metre 

spatial resolution to match the corresponding MODIS 14-day composite VIs.  Summaries 

of simple linear regression models linking scaled estimates of LAIe from Landsat to 

explanatory variables from MODIS are shown in Table 5-15.  Of the two MODIS-based 

models generated for each time period, only the ones using NDVI were statistically 

significant, achieving r2 values of 0.51 and 0.51 for the early  and late-hyperphagia stage, 

respectively.  The model based on EVI data had coefficients of determination less than 

0.05 for each time period.  This result was surprising, given the supposedly more 

sophisticated nature of the EVI, and its enhanced ability to account for canopy 

background and atmospheric effects (Huete et al., 1999).  The complete failure of this 

index to model Landsat-scaled estimates of LAIe over two separate time periods, 

combined with the acceptable performance of corresponding NDVI measures from the 

same dataset, suggests some sort of data issue with the EVI.  Since the index relies on 
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specific correction factors for background and atmospheric resistance, it is possible that 

its poor performance may be the result of processing errors in the MOD13 product 

development cycle.  A definitive answer to this puzzling result would require further 

investigation.  Fortunately, the presence of the legacy NDVI in the MOD13 data set 

allowed the mapping of LAIe over the entire study area to continue.   

 

Table 5-15: Summary of models linking scaled LAIe (Landsat) to MODIS VIs. 

Early Hyperphagia Late Hyperphagia 
 

r2 Equation r2 Equation 

NDVI 0.51 LAIe=0.4332e0.0003NDVI 0.58 LAIe=0.1e0.0005NDVI 

EVI 0.01* LAIe=2.1804e0.0001EVI 0.05* LAIe=2.2771e0.0002EVI 

* Not significant at p<0.05 

 

The final maps of LAIe for the early  and late-hyperphagia phases of 2003 are 

shown in Figure 5-15.  Generated through a two-step process involving empirical 

modelling of ground-measured LAI to 30-metre NDVIc data from Landsat, followed by a 

resampling to 250-metres and subsequent extension over the entire study area via MODIS 

NDVI, the maps reflect moderate-resolution estimates of vegetation amount at two key 

time periods, and a basic foundation for characterizing phenological changes across the 

summer growing season.



 164

Early Hyperphagia 

 

Late Hyperphagia 

Figure 5-15: Total LAI maps of the study area for early hyperphagia and late hyperphagia, 2003. 
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5.2 Re-Coding, Re-Classing, and Composite Map Production 

The end result of the multi-scale, attribute-based approach to vegetation and land cover 

information extraction developed in this research is a multi-layer composite of the land 

and vegetation information products, including layers for land cover, crown closure, 

species composition, and LAI (Figure 5-16).  This stands in sharp contrast to the single-

layer classification map generated by most large-area remote sensing projects, and adds 

significant new dimensions of quality and flexibility to the final product.  By separating 

categorical information products that vary at the stand level – land cover – from attributes 

like LAI and crown closure that operate at the tree/gap level and vary continuously across 

the landscape, two key objectives have been realized.  First, a framework has been 

created that matches diverse information needs with appropriate and effective image 

processing techniques.  Based on hierarchy theory and the remote sensing scene model, 

this framework provides a foundation for complex information extraction that is more 

effective than the indiscriminate application of classification techniques.  Second, the 

generation of multiple – and, where appropriate, continuous – estimates of individual 

attributes across the study area resulted in a land cover/vegetation information database 

with exceptional flexibility.  By maintaining high-order information, the system provides 

managers with divergent needs the opportunity to define categories that suit their 

individual application.  By re-coding, re-classing, and combining information from the 

vegetation/land cover information base with geospatial layers from other GIS sources, the 

potential exists to produce a large number of information products potentially suitable for 

a broad range of habitat mapping/environmental management objectives.  For example,  
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Figure 5-16: Major geospatial products used in the characterization of land cover and vegetation in 
the study area. 
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Figure 5-17 shows examples of three different map products generated over a small 

portion of the study area using simple procedures in a GIS environment.  Figure 5-17A 

depicts vegetation structure with three classes of forest species composition: pure conifer 

(>70% coniferous), pure broadleaf (<30% broadleaf), and mixed forest (30-70% 

coniferous), but only two crown closure classes: open (<50% crown closure) and closed 

(>50% crown closure).  The prevalence of old-growth conifer forests in this portion of 

the study area – the Athabasca valley in Jasper National Park – creates a map dominated 

by the closed coniferous forest class.  However, the simple process of re-generating the 

map with a three-class configuration of crown closure: open (<30% crown closure), 

medium (30-70% crown closure), and dense (>70% crown closure) produces a product – 

Figure 5-17B with much more structural detail in the forests common to in this part of the 

study area.  Contrasting these two structural vegetation maps is the phenological view of 

vegetation shown in Figure 5-17C.  In this case, the map was generated to highlight three 

categories of LAI change across the summer growing season: LAI senescence (LAI 

decreasing between June and August), LAI no change (LAI remaining the same between 

June and August), and LAI growth (LAI increasing between June and August).  

Configured in this way, the information base presents a markedly different view of the 

study area, highlighting the substantial increase of foliage observed in the upper valley 

slopes.   

 This exceptional adaptibility is a key advantage that reduces the need for constant 

re-investment (or the pain of chronic dissatisfaction) that is often experienced with 

inflexible classification-based products.  For example, Figure 5-18 shows a simplified 

flow chart for generating a land cover/vegetation map roughly analogous to Franklin et 
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A 

 

B 

 

C 

 

Figure 5-17: Examples of the flexible composite map capability of the current land/vegetation 
information base.  Maps shown here cover a small portion of the study area and were generated 
through simple re-classing and merging procedures in a GIS environment.  
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 al.’s (2001) legacy “Integrated Decision Tree” map that formed the foundation for much 

of the early work in the Foothills Model Forest Grizzly Bear Research Program.  The 

resulting map product is shown in Figure 5-19.   

 

 

Land Cover Forest
Regeneration

Species
CompositionCrown Closure

Re-Class
6-20; 20-80; 81-100

Re-Class
0-50; 51-100Re-Code

Merge/
Overlay

Composite 'IDT'
Map

 
Figure 5-18: Simplified flow chart illustrating the production of sample composite map from land 

cover/vegetation information base generated in this research. 
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Figure 5-19: Sample composite map of land cover and vegetation generated from research 
information layers in a GIS environment. 
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5.3 Chapter Summary 
 
A sophisticated, satellite-based database of land cover and vegetation has been developed 

for a 100,000 km2 study area in west-central Alberta, creating an effective case study of 

the multi-scale, attribute-based framework developed in this thesis to support the 

development of wildlife habitat maps across large, multi-jurisdictional areas.  The 

information base consists of multiple layers designed to characterize four separate 

attributes: land cover, crown closure, species composition, and LAI phenology.  

Generated through a combination of object-oriented classification, conventional 

regression, and generalized linear models, the products represent a high-quality, flexible 

information base constructed over a challenging multi-jurisdictional environment.   
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Chapter 6: Remote Sensing and Forest Inventory for 
Grizzly Bear Habitat Mapping and Resource Selection 

Analysis 
 
Contemporary strategies for wildlife habitat mapping (Manly et al., 2002), biodiversity 

analysis (Scott et al., 1993), and animal movement modeling (Bian, 2001; Musiega and 

Kazadi, 2004) require the use of spatially explicit environmental map layers, such as 

those derived from air photos and satellite imagery.   These data are commonly processed 

for a variety of environmental attributes, including vegetation cover (Hines and Franklin, 

1997; Carroll et al., 1998; McClain and Porter, 2000; Lauver et al., 2002), land use 

(Osborne et al., 2001; Dash Sharma et al., 2004; Witztum and Stow, 2005), landscape 

structure (Ripple et al., 1997; Peery et al., 1999; Hargis et al., 1999; Hansen et al., 2001), 

and phenology (Verlinden and Masogo, 1997; Leimgruber et al., 2001; Serneels and 

Lambin, 2001; Ciarniello et al., 2002).  The extent to which wildlife studies and 

management activities have come to rely on these remote sensing-derived products is 

illustrated by Glenn and Ripple’s (2004) survey of 44 such works published in The 

Journal of Wildlife Management between 2000 and 2002.  The assumption underlying 

each of these efforts is that the chosen environmental map products are an effective 

representation of the natural landscape, and an appropriate source of information for the 

given application.  The validity of these assumptions is an active research issue, and the 

topic of on-going concern within the scientific and resource management communities.   

Researchers and managers selecting the land cover/vegetation information layers 

upon which to base their projects must choose between adapting an existing information 

source and creating custom products of their own.  Many jurisdictions maintain detailed 
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land inventory databases designed to aid in the management and conservation of public 

lands.  The Alberta Vegetation Inventory (AVI) of Alberta, Vegetation Resource 

Inventory of British Columbia, and Forest Resource Inventory of Ontario are examples of 

Canadian inventories retained in public jurisdictions managed for timber harvest.  Public 

lands in the U.S. under the stewardship of the National Forest Service are covered by the 

Forest Inventory Analysis, while the Bureau of Land Management maintains a variety of 

inventories, including those acquired under the National Environmental Policy Act, the 

Abandoned Land Mines program, and various species-directed initiatives.   

Inventory databases offer an attractive alternative for many wildlife studies 

because they reduce or eliminate the cost and burden of production.  In addition, existing 

inventory database systems often contain highly detailed information, and are usually 

distributed in convenient GIS formats.  However, the utility of these data sets may be 

limited by issues of consistency, accuracy, and availability, depending on the scope and 

needs of the project (e.g. Throgmartin et al., 2004).   

Concerns about the suitability of existing datasets have prompted many wildlife 

studies to produce their own environmental information from satellite or airborne remote 

sensing products, particularly for projects involving large areas (e.g. Scott et al., 1993) 

that stretch beyond a single jurisdiction.  The strategy is tempting, given the allure of 

high-quality information perfectly suited to the needs of the study.  However, the 

challenges associated with effectively integrating remote sensing into multidisciplinary 

projects are daunting (McDermid et al., 2005), and the potential for mistakes is high.  

Glenn and Ripple (2004) pointed out the lack of widely accepted standards surrounding 

the use of digital maps in wildlife habitat mapping studies, and the differences resulting 
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from the use of data from different sources.  A wide variety of remote sensing-based 

mapping strategies are available, ranging from relatively inexpensive maps generated 

with well-known unsupervised classification techniques (e.g. Townshend, and Justice, 

1980) to complex and expensive environmental databases produced through sophisticated 

mapping and modeling procedures (e.g. J. Franklin et al., 2000).  Depending on the 

approach and strategy adopted, the remote sensing portion of the program can range from 

a relatively minor component to a major consumer of project resources. 

Even with the necessary resources in place, the question remains: Which mapping 

strategy is most effective?  Are pre-existing inventory databases up to the task?  If new 

information from remote sensing is necessary, must a sophisticated environmental dataset 

be developed, or would a less complicated land-cover map provide a suitable (and less 

costly) alternative?  To help address these questions, three sources of environmental 

information were examined: (i) a pre-existing forest inventory, (ii) the high-cost remote 

sensing product developed in this research, and (iii) a lower-cost remote sensing 

alternative produced by another environmental mapping initiative operating within the 

study area.  The goal was to evaluate the utility of three environmental data sources that 

represent options commonly available to modern wildlife management projects.  The 

evaluation was accomplished by first appraising the quality of the three data sets and, 

second, by investigating their capacity to explain patterns of grizzly bear (Ursus arctos) 

telemetry locations across the study area.  In a previous publication, Franklin et al. (2002) 

highlighted the marked difference observed between maps generated from satellite image 

classification versus those produced from a land inventory database.  This study builds 

upon the theme of that work, and extends it to its logical conclusion.   
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6.1 Data Sets 

6.1.1 Environmental Data Source #1: The Alberta Vegetation 
Inventory (Pre-existing Inventory Data) 
 

The Alberta Vegetation Inventory (AVI) is the provincial standard for forest inventory on 

Alberta’s public lands, and embodies the familiar GIS-based inventory products that 

serve forest resource managers in many jurisdictions (Leckie and Gillis, 1995).  

Generated through manual interpretation of aerial photographs, the AVI is produced by 

provincial and private photo-interpretation experts who map “homogeneous” polygons on 

the basis of tone, texture, pattern, size, shape, shadow, and association.   Once delineated, 

these polygons are assigned attributes associated with timber productivity, moisture 

regime, crown closure, height, tree species composition, and age (Alberta Sustainable 

Resource Development, 1991).  Attributes are generated through a blend of ground 

reference information and the subjective experience of professional interpreters.  The 

quality and consistency of the AVI is maintained through field checks and provincial 

certification, but the information’s accuracy is not quantitatively assessed.  Overall, the 

polygonal format of the data is designed primarily to suit forest harvest management 

needs at the stand level, and the two-hectare minimum mapping unit means that many of 

the smaller ecological details on the landscape are missed.  However, the level of forest 

structural information is unsurpassed by any other large-area information source in the 

region, and the AVI forms the basis of virtually all forest management decisions on 

Alberta’s public lands.   

The AVI has one major drawback for large-area wildlife studies such as the 

Foothills Model Forest Grizzly Bear Research Program, in that it is a jurisdictional 
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database and therefore not available across the entire study area.  As with most such 

provincial forest inventories, it is only maintained on lands managed for timber harvest.  

Parks, private lands, protected areas, First Nations reserves, and other white zone regions 

of the study area are not covered by the AVI (Figure 6-1).  As such, our analysis in this 

data source is limited only to regions in which AVI data was available.   

 

 

 

Figure 6-1: AVI coverage in the study area. 
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6.1.2 Environmental Data Source #2: The Alberta Ground Cover 
Characterization (Low-cost Remote Sensing Alternative) 
 

The Alberta Ground Cover Characterization (AGCC) is an on-going initiative between 

the University of Alberta and its partners in the provincial and federal government to map 

the land cover across the forested portions of Alberta using Landsat data.  The AGCC 

mapping protocol employs a “hierarchical classification” strategy in which unsupervised 

classification/hyperclustering techniques are used to derive land cover information from 

amongst 45 spectral classes.  The approach proceeds iteratively, beginning with known 

features such as roads, water bodies, clear cuts, and burns, and moves systematically 

through increasing levels of detail.  While the AGCC legend has a total of 73 potential 

classes (Table 6-1), the typical number encountered in any given region is considerably 

less.  Imagery used in production of AGCC maps come from the Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) instruments, and are drawn 

primarily from public domain archives such as Geogratis (www.geogratis.ca) and Global 

Land Cover Facility at the University of Maryland (glcf.umiacs.umd.edu).  The AGCC 

maps of the current study area are derived from five ETM+ scenes acquired from 1999 to 

2002 (Table 6-2).   

The unsupervised classification procedures used by the AGCC require a 

substantial amount of manual interpretation in order to label the raw spectral classes that 

are the product of spectral clustering.  Technicians are trained to view a variety of colour 

composites of the imagery in order to separate subtle variations in land cover.  The field 

work component of the procedure is designed primarily to provide technical personnel 

with an overview of the major vegetation types encountered in a region, and is quite
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Table 6-1: AGCC classification legend. 
Undifferentiated Urban and Industrial Features 
Urban  
Commercial and industrial 
Major roads, highway and railways 
Cutlines and Trails 
Surface mines (coal) gravel pits, spoil piles 

Urban and Industrial 

Farmstead and/or ranch (including shelter belts) 
Undifferentiated Agriculture 
Cropland 
Irrigated Land Agricultural 

Agricultural Clearing 
Undifferentiated clear-cut 
Graminoid (grasses/sedges) dominated clear-cut 
Tree/shrub dominated clear-cut Clearcuts 

Tree (replanted - immature trees, <20 years old) dominated clearcut 
Undifferentiated burn 
Graminoid (grasses/sedges) dominated burn 
Tree/shrub dominated burn 
Tree dominated burn 
New Burn 

Anthropomorphic 

Burns 

Herbaceous Burn 
Closed Fir 
Closed Black Spruce 
Closed Pine 
Closed White Spruce 

Closed  

Closed Undifferentiated Conifer 
Open Fir 
Open Black Spruce 
Open Pine 
Open White Spruce 

Coniferous 
Dominated 
Forest  

Open  

Open Undifferentiated Conifer 
Closed Aspen, Balsam Poplar and/or Birch and/or Birch 

Closed  
Riparian Poplar 

Deciduous 
Dominated 
Forest  Open  Open Aspen, Balsam Poplar and/or Birch and/or Birch 

Closed Coniferous Dominated Mixedwood 
Closed Deciduous Dominated Mixedwood Closed  
Closed Coniferous and Deciduous Mixedwood 
Open Coniferous Dominated Mixedwood 
Open Deciduous Dominated Mixedwood 

Forested Land  

Mixed Wood 
Dominated 
Forest  

Open  
Open Coniferous and Deciduous Mixedwood 
Closed Riparian Shrub 
Closed Coulee Shrub Thicket Closed Shrub Land 

(streams and coulees) 
Closed Upland Shrub 
Open Riparian Shrub 
Open Coulee Shrub Thicket 
Open Upland Shrub 

Shrub Land 

Open Shrub Land 

Open Sagebrush Flat 
Fescue Grassland 
Mixed Grassland 
Sandhill Grassland 

Graminoids (grasses and 
sedges) 

Coulee Grassland 

Uplands 

Grassland  

Upland Fords Upland Ford Meadow 
Emergent Wetlands (cattails)  
Graminoid Wetlands (sedges/grasses/forbs) 
Shrubby Wetlands (willow and birch) 
Sphagnum Bog 
Lichen Bog 
Black Spruce Bog (sphagnum understory) 
Black Spruce Bog (lichen understory) 
Undifferentiated Wetlands 

Wetlands 

Woodland Fen (Larch Drainage Flow Patterns) 

Wetlands and Water 

Water Lake, pond, reservoir, river and stream 
Permanent Ice and Snow 
Rock, Talus, and/or Avalanche Chute 
Exposed Soil 
Alkali Flat and/or Mud Flat 
Upland Dune Field 
Alluvial Deposit 
Beach 
Badland 

Barren Lands 

Blowout Zone 
Cloud / Haze Unclassified Shadow 
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Table 6-2: Satellite imagery used in production of the AGCC map of the study area. 

Sensor WRS Scene Acquisition Date(s) 

ETM+ Path 43 Row 24 September 23, 2001 

ETM+ Path 44 Row 23 September 14, 2001 

ETM+ Path 44 Row 24 September 14, 2001 

ETM+ Path 45 Row 22 September 16, 1999 

ETM+ Path 45 Row 23 August 23, 2002 

 

 

limited compared to remote sensing projects that incorporate data-hungry supervised 

classification or empirical modeling procedures.  As such, the AGCC products are 

relatively cost-effective, and represent the low cost end of the remote sensing spectrum 

evaluated in this study.    

6.1.3 Environmental Data Source #3: The Foothills Model Forest 
Grizzly Bear Research Program (High-cost Remote Sensing 
Alternative) 
 

The Foothills Model Forest Grizzly Bear Research Program (FMFGPRP) has been 

conducting field work in the study area since 1999, resulting in the production of a large 

– and expensive – collection of ground plots that have enabled the generation of the 

sophisticated series of remote sensing-based map products reported in this thesis.  The 

database was generated from a multi-source digital dataset using a variety of supervised 

mapping and modelling techniques (Table 6-3).  While produced separately, the four 

layers are designed to work in concert in order to provide a flexible information source 

capable of supporting a broad range of resource management objectives, including 

grizzly bear habitat mapping within the FMFGBRP project (Nielsen et al., 2003; Nielsen, 
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2004).  The FMFGPRP map layers are generated from Landsat TM and MODIS 250-

meter vegetation index (Huete et al., 1999) data (Table 6-4), and topographic derivatives 

from a digital elevation model. 

 

Table 6-3: Summary of environmental information products generated by the Foothills Model Forest 
Grizzly Bear Research Program. 

Map Layer Data 
Sources Mapping Technique Product 

Land Cover Landsat TM, 
DEM 

Supervised, object-oriented 
classification 

Ten-class classification of land 
cover/physiognomy  

Crown Closure Landsat TM, 
DEM 

Multiple regression with arcsine 
transformation 

Continuous-variable (0-100%) crown closure of 
30m pixels 

Species 
Composition 

Landsat TM, 
DEM 

Binomial-family generalized 
linear model with logit link 

Continuous-variable (0-100%) proportion of 
coniferous cover in 30m pixels 

LAIe Phenology Landsat TM, 
MODIS Simple regression Continuous-variable (0-x) estimates of effective 

LAI for early  and late-summer time periods 

   

 
Table 6-4: Satellite imagery used in the Foothills Model Forest Grizzly Bear Research Program maps 

of the study area. 

Sensor Scene Acquisition Date(s) 

TM WRS Path 43 Row 24 June 17, 2003* 

TM WRS Path 44 Row 23 June 13, 2002†; July 10, 2003* 

TM WRS Path 44 Row 24 July 10, 2003* 

TM WRS Path 45 Row 22 September 3, 2003* 

TM WRS Path 45 Row 23 August 23, 2002†; September 3, 2003* 

MODIS H10v03 June 25 – July 10, 2003†, Aug 28 – September 13, 
2003†, October 15 – October 31, 2003† 

MODIS H11v03 June 25 – July 10, 2003†, Aug 28 – September 13, 
2003†, October 15 – October 31, 2003† 

 * Used for land cover, crown closure, species composition 
 † Used for LAI 
 

 

The supervised classification and empirical modeling procedures used in the production 

of the FMFGPRP database required a large number of detailed ground measurements.  As 
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such, the investment needed to create the 1125 field samples used in the creation of the 

current data layers is substantially greater than the limited ground checks required for the 

unsupervised procedures adopted by the AGCC.  As such, the FMFGPRP represents the 

high cost remote sensing alternative evaluated in this study.    

6.1.4 Grizzly Bear Use/Availability Data 

The FMFGBRP has assembled an extensive database of telemetry locations designed to 

help characterize the selection of resources by grizzly bears in western Alberta.  Between 

1999 and 2004, 78 individual bears were captured using aerial darting and snaring 

techniques (Hobson, 2005).  Of these, 64 animals were fitted with Televilt or Advanced 

Telemetry Systems global positioning system (GPS) radio collars programmed to acquire 

positional fixes at intervals ranging from one to four hours.  For the purposes of this 

study, the raw data were restricted to include only individuals that generated a minimum 

of 50 telemetry positions (Leban et al. 2001) and remained within the boundaries of the 

study area.  The resulting dataset consists of 35,572 point locations (Figure 6-2) from 34 

female and 19 male bears (Table 6-5).   

In order to account for seasonal variations in habitat use, the telemetry data were 

stratified into three time periods defined on the basis of previously observed food habits 

and selection patterns (Pearson and Nolan, 1976; Hamer and Herrero, 1987; Hamer et al., 

1991; Nielsen et al, 2003).  The first season, occurring from May 1 to June 15, is termed  
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Figure 6-2: Grizzly bear telemetry locations in the study area. 
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Table 6-5: Summary of grizzly bears contributing to the telemetry location dataset. 

Telemetry Locations Bear ID Sex/Age class Age† MCP (km2) S-1* S-2** S-3*** Total 
G001 M-adult 8.5 1629 0 68 6 74 
G002 F-adult 6.5 694 150 95 48 193 
G003 F-adult 6.7 849 255 349 102 706 
G004 F-adult 6 474 319 1507 943 2769 
G006 M-adult 16.5 1491 142 9 0 151 
G007 F-adult 5 529 96 87 0 183 
G008 M-adult 15.5 1827 304 490 108 902 
G011 F-adult 8 484 171 151 0 322 
G012 F-adult 6.5 1941 757 766 169 1692 
G013 F-subadult 4 2045 0 144 0 144 
G014 M-adult 10.5 2638 139 192 2 333 
G016 F-adult 6 591 121 729 388 1238 
G017 M-adult 8.5 1694 661 347 0 1008 
G020 F-adult 5.5 987 601 850 173 1624 
G023 F-adult 12 798 360 1311 289 1960 
G024 M-adult 6.5 4314 372 780 289 1441 
G026 F-subadult 3 1447 53 134 59 246 
G027 F-adult 12 2928 222 502 231 955 
G028 F-adult 7 1314 88 315 109 512 
G029 M  3745 585 769 110 1464 
G033 M-subadult 4 5044 555 1266 567 2388 
G035 F-subadult 4 294 122 298 68 488 
G036 F-subadult 3.5 1064 213 270 36 519 
G037 F-subadult 4 742 61 209 99 369 
G038 F-adult 15 311 79 107 31 217 
G040 F-subadult 3.5 1000 430 605 278 1313 
G043 M-subadult 3 1833 153 335 164 652 
G044 M-subadult 3 509 78 220 131 429 
G045 M-adult 6 3154 57 0 0 57 
G050 M-subadult 4 903 95 89 0 184 
G054 M-subadult 4 1357 0 54 0 54 
G055 M-subadult 4 879 101 293 49 443 
G057 F  1381 119 113 0 232 
G058 M-subadult  1696 0 257 116 373 
G060 F-adult  325 103 0 0 103 
G061 F-subadult  593 124 363 187 674 
G062 M-adult  4828 0 132 33 165 
G065 F  1278 91 293 164 548 
G066 M  1610 0 60 0 60 
G067 F  1174 166 256 94 516 
G068 M  3795 33 81 0 114 
G070 F  520 0 262 158 420 
G072 M  1819 267 932 358 1557 
G073 F  535 56 339 19 414 
G074 F  419 0 117 26 143 
G075F F  129 0 362 209 571 
G092 F  299 58 120 13 191 
G095 F  176 0 99 25 124 
G096 F  674 0 174 58 232 
G098 F  1184 0 1182 0 1182 
G099 F  327 0 696 500 1196 
G100 F-subadult 3.5 879 304 574 279 1157 
G106 F-subadult  1692 157 269 144 570 
†Age calculated as mean age during telemetry period 
*Hypophagia: May 1 – June 15 
**Early hyperphagia: Jun 16 – August 15 
***Late hyperphagia: August 16 – October 15  
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hypophagia.  During this time period, grizzly bear food resources are relatively limited 

across the landscape, and include vetches (Hedysarum spp.), carrion and ungulate calves, 

and early green herbaceous materials such horsetail (Equisetum arvense) and clover 

(Trifolium spp.).  The second season – early hyperphagia – runs from June 16 to August 

15.  Early hyperphagia is characterized by increasing herbaceous forage, including cow 

parsnip (Heracleum lanatum), graminoids, sedges, and horsetails.  The final season, 

termed late hyperphagia, runs from August 16 to October 15.  During this time period, 

grizzly bears in the region normally seek out the fruit from buffaloberry (Sheperdia 

canadensis), blueberries, and huckleberries (Vaccinium spp.).  It is important to note that 

the seasonal stratification described here represents an average of pooled multi-year 

observations across a very large study area.  No consideration was given to inter-annual 

variability of habitat selection or differences within the study area caused by latitude or 

elevation.   

While telemetry points provide information on bear presence, they do not 

contribute meaningfully to the definition of absence: locations on the landscape that are 

not used by grizzly bears.  GPS collars only provide a limited sample of points on the 

landscape used by the individual being tracked.  Locations visited by the bear between 

telemetry fixes, in addition to the location of uncollared grizzlies living in the study area, 

are completely unaccounted for.  In these situations, it is appropriate to characterize 

availability rather than absence – i.e., points on the landscape that are available for use by 

the animal within its home range (Boyce et al., 2002).  In order to characterize the 

resources available to the GPS-collared grizzly bears used in this study, multi-annual 

100% minimum convex polygon (MCP) home ranges (Figure 6-3) were defined using the
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Figure 6-3: MCP home ranges for grizzly bears in the study area. 
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Hawth’s Tools extension in ArcGIS (Beyer, 2004).  A random point generator was used 

to select random samples within MCP home ranges at a density of roughly five points per 

square kilometre.  Together with the grizzly bear telemetry locations, these data comprise 

the presence and available information suitable for both individual- and population-level 

resource selection analyses (Manly et al., 2002). 

6.2 Methods 

6.2.1 Map Quality Assessment 

The quality of a spatial data set is a broad issue that can relate to a variety of properties, 

including vagueness, precision, consistency, and completeness, among others (Worboys, 

1998).  In this case, the issue is further complicated by the presence of multiple data 

layers with widely varying characteristics.  While a thorough investigation of the quality 

of each data source is beyond the scope of this study, several components of spatial data 

quality that affect each dataset’s utility as a foundation for large-area wildlife work were 

addressed.   

Map accuracy – or deviation of recorded values from true values – was evaluated 

using 245 independent, randomly selected test sites surveyed in the field by trained 

personnel.   In order to establish a consistent baseline for comparing the three candidate 

information sources, a series of derived map products was produced based on land cover 

and structural vegetation attributes common to all three data sources (Table 6-6).  While 

the derived maps represent a simplification of the original products and do not include 

some attributes that are unique to individual sources (for example, the height and age 

information contained in the AVI, or the LAI attributes of the FMFGBRP information 
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base), it does provide a framework for performing a baseline evaluation.  Since the AVI 

does not cover the entire study area, its accuracy was assessed with a reduced set of 175 

sample points.  Observations were made on the basis of contingency tables and basic 

summary statistics such as % accuracy (user’s, producer’s, overall) and the kappa statistic 

(Cohen, 1960).  Other map quality attributes – vagueness, consistency, completeness, 

precision, and depth – that are not as amenable to detailed statistical analyses were 

summarized either qualitatively or with simple summary statistics.   

 

Table 6-6: Structural vegetation classes used to provide baseline accuracy data. 

Class Label AVI AGCC FMFGBRP 

1. Closed 
Coniferous Forest 

>60% Crown closure; >75% 
Conifer, based on basal area 

>50% Crown closure; >80% 
Conifer, based on stem count 

>50% Crown closure; >80% 
Conifer, based on stem count 

2. Open 
Coniferous Forest 

6-59% Crown closure; >75% 
Conifer, based on basal area 

6-49% Crown closure; >80% 
Conifer, based on stem count 

6-49% Crown closure; >80% 
Conifer, based on stem count 

3. Closed 
Broadleaf Forest 

>60% Crown closure; >75% 
Broadleaf, based on basal area 

>50% Crown closure; >80% 
Broadleaf, based on stem count 

>50% Crown closure; >80% 
Broadleaf, based on stem count 

4. Open Broadleaf 
Forest 

6-59% Crown closure; >75% 
Broadleaf, based on basal area 

6-49% Crown closure; >80% 
Broadleaf, based on stem count 

6-49% Crown closure; >80% 
Broadleaf, based on stem count 

5. Closed 
Mixedwood Forest 

>60% Crown closure; 26-74% 
Broadleaf, based on basal area 

>50% Crown closure; 26-79% 
Broadleaf, based on stem count 

>50% Crown closure; 26-79% 
Broadleaf, based on stem count 

6. Open 
Mixedwood Forest 

6-59% Crown closure; 26-74% 
Broadleaf, based on basal area 

6-49% Crown closure; 26-79% 
Broadleaf, based on stem count 

6-49% Crown closure; 26-79% 
Broadleaf, based on stem count 

7. Upland Shrubs >25% shrub cover; <6% tree 
cover 

>25% shrub cover; <6% tree 
cover 

>25% shrub cover; <6% tree 
cover 

8. Upland 
Herbaceous 

<25% shrub cover; <6% tree 
cover 

<25% shrub cover; <6% tree 
cover 

<25% shrub cover; <6% tree 
cover 

9. Treed Wetland >6% Crown closure; wet or 
aquatic moisture regime 

>6% Crown closure; wet or 
aquatic moisture regime 

>6% Crown closure; wet or 
aquatic moisture regime 

10. Open Wetland <6% Crown closure; wet or 
aquatic moisture regime 

<6% Crown closure; wet or 
aquatic moisture regime 

<6% Crown closure; wet or 
aquatic moisture regime 

11. Water >6% Standing or flowing Water >6% Standing or flowing Water >6% Standing or flowing Water 

12. Barren Land <6% vegetation cover <6% vegetation cover <6% vegetation cover 

 

6.2.2 Resource Selection Analysis 

Resource selection functions (RSFs) are any function that is proportional to the 

probability of use by an organism (Manly et al., 2002).  They have been widely employed 
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as tools for resource management planning, habitat mapping, cumulative effects 

assessment, and population viability analysis (e.g. Boyce et al., 1994, Boyce and 

McDonald, 1999; Boyce and Waller, 2000).  RSFs take the general form  

 

)exp()( xxw β=  

Equation 6-1 

 

where )(xw is the resource selection function and β is the selection coefficient of the 

predictor variable x .  Predictor variables are normally derived from environmental 

datasets such as those under investigation in this study, and may be composed of land 

cover, vegetation, structure, disturbance, and topographic measures judged a priori to be 

related to resource selection of the organism under investigation (Burnham and 

Anderson, 2001).  In this study, RSFs were employed not for their ecological insight, but 

rather as a quantifiable means of judging the relative utility of the three candidate 

information sources as foundations for supporting grizzly bear habitat research and 

operational management objectives.   

While the term RSF can apply to a number of statistically rigorous procedures 

designed to predict animal occurrence (Manly et al., 2002), the prevailing methods 

employ binomial generalized linear models (GLM) – usually logistic regression – based 

on presence/absence or presence/available data such as those assembled here for grizzly 

bears (Boyce et al., 2002).  With data such as these, conventional linear regression 

strategies are not appropriate, because the dependent variable is binary (present/available 

– 1/0) instead of unbounded.  In addition, linear regression fitted by least squares assumes 

that errors are normally distributed with a constant variance and mean of zero; conditions 
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that are clearly not met by binary animal location data.  GLMs relax the assumption of 

unbounded dependent variables through link functions, and employ error structures that 

account for non-normal residual errors (Crawley, 2002).   

To evaluate the AVI, AGCC, and FMFGBRP datasets being examined in this 

study, a series of candidate RSF models was constructed in the statistical package S-Plus 

using binomial-family GLMs with log links.  Separate models were developed for male 

and female bears during each of the three observed time frames: hypophagia, early 

hyperphagia, and late hyperphagia.  A stepwise procedure based on Akaike’s Information 

Criterion (AIC) (Burnham and Anderson, 1998) was used in the development of 

minimum adequate models, with decisions confirmed through chi-square tests and 

analyses of variance.  Candidate models were constructed using variables from each of 

the three data sets separately, and evaluated against each other using the AIC statistic and 

null/residual deviance.   

Analyses were performed at both the population and individual levels – the 

“Design I” and “Design III” approaches of Manly et al. (2002), respectively – in order to 

illuminate potential differences with respect to scale.  At the population level, presence 

and available data were sampled across the entire portion of the study area occupied by 

grizzly bears, with individual animals not identified (Figure 6-4A).  Analyses at the 

individual level, by contrast, worked with data drawn from a single animal’s home range 

(Figure 6-4B).  
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Figure 6-4: Presence-available data for population- (A) and individual- (B) level analyses.  Individual 
shown here is G011.  

 

A complicating factor effective at both levels of analysis revolved around the 

incomplete availability of the AVI within the study area.  Since resource selection cannot 

be properly analyzed using incomplete environmental data, it was necessary to create two 

separate presence/absence subsets: one composed of data from all the bears, for which 

only remote sensing information from AGCC and FMFGBRP was available, and the 

second composed of data from bears whose home ranges included complete AVI 

coverage, for which information from all three environmental data sources was available.  

Since grizzly bears – particularly males – occupy such large home ranges, the AVI-

available subset was substantially reduced from the original, containing just 14 of 34 
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females and one of 19 males, constrained almost exclusively to the central foothills 

portion of the study area (Figure 6-5).  Since the AVI-based data reduction was so 

substantial, the population-level analyses were carried out twice: once on the reduced 

dataset, for which all three candidate information sources were evaluated, and once on 

the complete dataset, for which only the AGCC and FMFGBRP sources were evaluated.  

At the individual level, five bears (G070, G073, G074, G012, and G011) were selected 

from the reduced dataset, and formed the basis for evaluation on all three candidate 

information sources.   

Two potential criticisms of the relatively basic modelling techniques employed 

here involve (i) the potential influence of autocorrelation amongst telemetry points on 

model parameters, and (ii) the failure to employ independent test data and other more 

robust statistical techniques in the assessment of model accuracy.  The acknowledged 

presence of autocorrelation in GPS location data means an increased chance of Type I 

errors due to underestimated variances associated with model coefficients.  A number of 

approaches, including data rarification (e.g. Swihart and Slade, 1985) and variance 

inflators (e.g. Nielsen et al., 2002) are available to help account for these factors.  

However, the purpose of this exercise was limited to the relative evaluation of individual 

variables and datasets, not the pronouncement statistical inferences based on absolute 

model coefficients.  Rigorous evaluation of error patterns – critical if the purpose of the 

models included the production of grizzly bear habitat maps or other secondary 

applications – was judged to be similarly unnecessary, given the present needs and the 

lack of effort spent on producing best possible models.   A more complete series of 
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analyses performed in the context of broader information objectives can be found in 

Nielsen (2004).   

 

Figure 6-5: MCP home ranges for grizzly bears in portions of the study area with AVI coverage. 
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6.3 Results and Discussion 

6.3.1 Map Accuracy 

Results of the accuracy assessments on the derived map products based on each of the 

three candidate data sources are summarized in Table 6-7.  The map derived from the 

FMFGBRP – the high cost remote sensing products – performed the best overall, with a 

map accuracy of approximately 78% (Kappa=0.75).  The ACGG map achieved a 55% 

overall accuracy (Kappa=0.48), while the AVI-based product – evaluated using the 

reduced dataset of 175 test points – had an overall accuracy of about 45% (Kappa=0.40).  

Individual (Producer’s) class accuracies varied widely for each data source: 50-100% for 

the FMFGBRP, 0-76% for the AGCC, and 14-100% for the AVI.  None of the three 

information sources mapped the observed wetland classes with better than 53% accuracy, 

reflecting the complexity of wetlands in the study area, the difficulty in achieving 

appropriate ground data for producing high-quality maps of these features, and the 

generally higher emphasis placed on upland classes.   

Complete confusion matrices for the FMFGBRP-, AGCC-, and AVI-based 

derived products are shown in Tables 6-8, 6-9, and 6-10, respectively.  While generally 

producing the best overall results, the FMFGBRP map tended to over-estimate crown 

closure, resulting in confusion between open and closed treed classes.  Pure conifer and 

broadleaf classes were mapped well, but some of the mixedwood sites were mislabelled 

as pure.  Shrub and upland herbaceous lands were predictably confused, while spectrally  

and topographically distinct classes such as water and unvegetated were consistently well 

separated.   
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Table 6-7: Summary of class accuracies (Producer's), overall accuracy, and Kappa statistic for 
derived maps based on three candidate data sources. 

AVI AGCC FMFGBRP Class Label 
N Accuracy (%) N Accuracy (%) N Accuracy (%) 

1. Closed Coniferous Forest 38 60.5 57 61.4 57 89.5 

2. Open Coniferous Forest 7 71.4 8 50.0 8 62.5 

3. Closed Broadleaf Forest 17 41.2 17 35.3 17 76.5 

4. Open Broadleaf Forest 1 100 1 0 1 100 

5. Closed Mixedwood Forest 29 13.8 33 42.4 33 69.7 

6. Open Mixedwood Forest 0 - 0 - 0 - 

7. Upland Shrubs 17 29.4 26 53.8 26 73.1 

8. Upland Herbaceous 23 39.1 28 64.3 28 75.0 

9. Treed Wetland 15 53.3 15 20.0 15 53.3 

10. Open Wetland 8 25.0 8 12.5 8 50.0 

11. Water 4 100 11 72.3 11 100 

12. Barren Land 16 68.8 41 75.6 41 85.4 

OVERALL (%)  45.1  54.7  78.0 

KAPPA  0.40 (fair)  0.48 (moderate)  0.75 (good) 

 

 

The AGCC product did a good job with spectrally unique classes such as water 

and unvegetated areas, but performed only moderately well with the more difficult 

designation of tree species composition and crown closure.  Open coniferous forests were 

significantly over-estimated, and the map was unable to consistently separate pure 

broadleaf classes from spectrally similar mixedwood and dense shrubs.  While none of 

the map sources performed well with the wetland classes, the poor performance of the 

AGCC product in these areas may have been exacerbated by the lack of topographic 

information from a digital elevation model.   
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The AVI map performed reasonably well in the closed, homogeneous tree stands, 

but displayed low class accuracies with other non-treed vegetation.  Above all, this likely 

reflects the primary purpose of the AVI as a timber management tool, and the large 

mismatch in scale between this particular map product and ground plots used to assess it.  

The two-hectare minimum mapping unit used in the production of the AVI combined 

with a focus on operational timber management likely leads human interpreters to 

emphasize large, commercially viable forest stands while simplifying natural variability 

at smaller scales.  If nothing else, these observations illustrate the issues associated with 

using pre-existing data sources for purposes outside of their original intent.  
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Table 6-8: Contingency matrix for structural vegetation map derived from FMFGBRP data products. 
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Closed Conifer 51 1   3  1  1    57 89.5 

Open Conifer 1 5     1  2   1 10 50.0 

Closed Broadleaf 1  13  4   1     19 68.4 

Open Broadleaf   2 1    1     4 25.0 

Closed Mixedwood 3 1 2  23        29 79.3 

Open Mixedwood 1    1    3    5 0 

Upland Shrub  1   1  19 3 1    25 76.0 

Upland Herbaceous       4 21    5 30 70.0 

Treed Wetland     1    8 2   11 72.3 

Open Wetland       1   4   5 80.0 

Water          1 11  12 91.7 

Unvegetated        2  1  35 38 92.1 

No Data               

TOTAL 57 8 17 1 33 0 26 28 15 8 11 41 245  

Pr
ed

ic
te

d 
(F

M
FG

B
P)

 

PRODUCER’S (%) 89.5 62.5 76.5 100 69.7 - 73.1 75.0 53.3 50.0 100 85.4   

Overall accuracy: 78.0% Kappa: 0.75 (good) 
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Table 6-9: Contingency matrix for structural vegetation map derived from AGCC. 
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Closed Conifer 35 2   6  1 2 1  2 2 51 68.6 

Open Conifer 9 4  1     1    15 26.7 

Closed Broadleaf 1 1 6  4    2   1 15 40.0 

Open Broadleaf             0 - 

Closed Mixedwood 4 1 4  14    2    25 56.0 

Open Mixedwood             0 - 

Upland Shrub 1  5  3  14 4 1 2   30 46.7 

Upland Herbaceous   1  1  7 18 1 3  5 36 50.0 

Treed Wetland   1  3  1  3 1   9 33.3 

Open Wetland     1  2 1 3 1   8 12.5 

Water 2    1  1  1 1 8 1 15 53.3 

Unvegetated 1       3   1 31 36 86.1 

No Data 4           1 5  

TOTAL 57 8 17 1 33 0 26 28 15 8 11 41 245  

Pr
ed

ic
te

d 
(A

G
C

C
) 

PRODUCER’S (%) 61.4 50.0 35.3 0 42.4 - 53.8 64.3 20.0 12.5 72.3 75.6   

Overall accuracy: 54.7% Kappa: 0.48 (moderate) 
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Table 6-10: Contingency matrix for structural vegetation map derived from the AVI. 

  Observed 

  

C
lo

se
d 

C
on

ife
r 

O
pe

n 
C

on
ife

r 

C
lo

se
d 

B
ro

ad
le

af
 

O
pe

n 
B

ro
ad

le
af

 

C
lo

se
d 

M
ix

ed
w

oo
d 

O
pe

n 
M

ix
ed

w
oo

d 

U
pl

an
d 

Sh
ru

b 

U
pl

an
d 

H
er

ba
ce

ou
s 

Tr
ee

d 
W

et
la

nd
 

O
pe

n 
W

et
la

nd
 

W
at

er
 

U
nv

eg
et

at
ed

 

TO
TA

L 

U
SE

R
’S

 (%
) 

Closed Conifer 23 1   3   2  1  1 31 74.2 

Open Conifer 9 5 1  3  2  4   1 25 20.0 

Closed Broadleaf   7  2       1 10 70.0 

Open Broadleaf   4 1         5 20.0 

Closed Mixedwood 2    4        6 66.7 

Open Mixedwood 4  3  14   1 1    23 0 

Upland Shrub  1 1    5 5 1   1 14 35.7 

Upland Herbaceous       2 9  3  1 15 60.0 

Treed Wetland     2  1  8 2   13 61.5 

Open Wetland       6 1 1 2   10 20.0 

Water           4  4 100 

Unvegetated       1 5    11 17 64.7 

No Data   1  1        2  

TOTAL 38 7 17 1 29 0 17 23 15 8 4 16 175  

Pr
ed

ic
te

d 
(A

VI
) 

PRODUCER’S (%) 60.5 71.4 41.2 100 13.8 - 29.4 39.1 53.3 25.0 100 68.8   

Overall accuracy: 45.1% Kappa: 0.40 (fair) 
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6.3.2 Map Quality Assessment 

As stated previously, overall map quality is a function of a number of attributes, and a 

complete analysis requires consideration of more than just accuracy.  Table 6-11 

summarizes the relative rank of the candidate data sources among each of five map 

quality attributes: accuracy, vagueness, completion, consistency, precision, and depth.  

Ranking was assigned on the basis of quantifiable scalars where possible, but also 

includes qualitative assessments where necessary.   

 

Table 6-11: Relative quality scores assigned to each environmental information source on the basis of 
accuracy, vagueness, completion, consistency, precision, and depth. 

 Accuracy Vagueness Completion Consistency Precision Depth 
Total Score 

(Rank) 

FMFGBRP 1 1 1 1 1 2 7 (1) 

AGCC 2 1 1 1 3 3 11 (2) 

AVI 3 1 3 3 2 1 13 (3) 

 

 

None of the three information sources examined in this study suffered from 

problems related to vagueness.  Metadata from each source outlined explicit class 

definitions, and information in all cases were related directly to physical ground 

phenomenon.   

The AVI suffered substantially on the basis of map completion, since it was only 

available for about 65% of the study area.  While the remote sensing datasets – which 

obviously do not conform to jurisdictional boundaries – are far more complete, they still 

contain no data values in areas of shadow, clouds, and other obstructions that can affect 
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the overall quality of the product.  A quick analysis revealed these issues to be more 

prevalent in the AGCC dataset than the FMFGBRP products, particularly in the mountain 

and upper foothills portions of the study area, where no data values caused by shadows 

consume more than 13% of the total land area (Figure 6-4).  By comparison, the no data 

component of the FMFGBRP data set in the same mountain and upper foothills zone 

occupies less than 3% of the total area.   The difference is likely a function of increased 

shadows in the original AGCC source imagery combined with excess caution on the part 

of the human interpreter.   

 

  

Figure 6-6: Issues related to map completion caused by shadows (‘No Data’) in the AGCC (left) and 
FMFGBRP (right) map products. 
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Creation and maintenance of the AVI within the study area is the responsibility of 

several different organizations.  In the northern and central portion of the study area, 

individual Forest Management Agreement holders – the logging companies holding 

leases to operate in a given area – are responsible for producing the inventory.  In the 

south, the responsibility lies primarily with the provincial government.  Given that each 

of these agencies operates on a different schedule and updates may occur only once per 

decade or more, consistency within the AVI is an on-going concern.  Even within the 

same organization, individual interpreters make decisions that may impact the overall 

consistency of the data set.  Within the stratification process, a lumper may choose 

consistently larger polygons than a splitter, resulting in noticeable differences within the 

finished product (Figure 6-5).  While maps derived from remote sensing – particularly 

large-area data sets that combine multiple image scenes across time or sensors – also 

have the potential for significant inconsistencies, visual inspections of the AGCC and 

FMFGBRP databases revealed few such issues.  Careful standards relating to image 

preprocessing (McDermid, 2005) and production (Sanchez-Azofeifa et al., 2005) have 

apparently eliminated most of these problems.   
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Figure 6-7: Gaps and inconsistencies in the AVI. 

 

The level of precision afforded to a completed map product is largely a function 

of the procedures that went into its creation.  For example, classification – the systematic 

arrangement of information into categories or groups – produces nominal- or ordinal-

level data levels that are less precise than the interval- or ratio-level measurements upon 

which they are normally based.   While each information source examined in this study 

relies on classification to some extent, the AGCC product – composed entirely of 

nominal- and ordinal-level classes from unsupervised cluster labelling – is the least 

precise.  The FMFGBRP database includes continuous ratio-level estimates of crown 

closure, species composition, and leaf area index.  While not necessarily more accurate 

than corresponding categorical measures, these continuous variables provide end users 
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with divergent needs the opportunity to define categories that suit their individual 

application (Cohen et al., 1995).   The AVI occupies the intermediate position, recording 

ordinal-level estimates for crown closure, interval-level measurements of species 

composition and age (rounded to the nearest 10), and ratio-level estimates of height.   

The AGCC information source received the lowest rank with respect to 

information depth, since it contains just a single variable – land cover.  The FMFGBRP 

dataset, with five separate variables, received the second position, but ranked behind the 

AVI with respect to depth.  The AVI is widely regarded as the richest large-area 

information source in the province, and the only one of the three under investigation here 

to include three-dimensional vegetation information – height – as well as estimates of 

stand age, moisture regime, and productivity.    

To summarize, the FMFGBRP products received the best overall rank, with a 

total score of 7.  The AGCC map was second with a total score of 11, and the AVI was 

third with a total score of 13.  Predictably, the results reflect the relative levels of 

investment tied up in the generation of each map product.  High-end remote sensing 

databases based on large amounts of ground data, using sophisticated multi-source 

mapping and modeling techniques for the express purpose of the host project produced 

the best overall results.  However, the cost of these information sources is high.  Franklin 

et al. (2002) reported a cost-to-project estimate of $2.50/km for a similar high-end map 

from an earlier stage of the FMFGBRP.  The expense is derived by extensive field 

programs, specialized software, and labour costs from highly trained image processing 

technicians.  Maps based on pre-existing forest inventory data such as the AVI, on the 

other hand, cost the project significantly less, requiring only mid-level technical 
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assistance for GIS data handling.  However, the overall map quality is likely to suffer 

from incomplete, inconsistent layers that may not match well with the goals of the study.  

Mid-level map remote sensing solutions with intermediate expense can be achieved 

through unsupervised classification techniques exemplified by the AGCC.  High-quality 

technical expertise and sophisticated software are still required, but the need for 

expensive field data is significantly reduced.   

6.3.3 Resource Selection Analysis 

Summaries of the RSF analyses results at the population level can be found in Tables 6-

12 and 6-13.  Table 6-12 shows the results from the reduced data set, containing only 

those bears whose home ranges were covered by the AVI.  Table 6-13 contains the results 

from the complete grizzly bear database, but is limited to candidate models derived from 

the two remote sensing information sources: AVI and FMFGBRP.  In both cases, results 

are stratified by sex and time period.  For female bears in the reduced dataset, FMFGBRP 

models received the best AIC support for all three time periods, followed by AVI and 

AGCC.  The results suggest that deeper environmental databases containing information 

beyond categorical land cover variables are better suited to explaining female resource 

selection at the population level.  While specific analysis of the univariate contributions 

of individual variables were not performed, AVI and FMFGBRP models consistently 

qualified non-land cover variables such as age and LAI – information that was not 

contained in the AGCC database.  The frequent appearance of LAI and LAI change (the 

difference between LAI in the early  and late-hyperphagia periods) in the FMFGBRP 

models suggests that these may be the key variables responsible for the better overall 

performance of the FMFGBRP information base.   
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There are no results for male bears at the population level, since only one male 

qualified for the reduced dataset – not enough to define a population.  However, results 

from both male and female grizzly bears at the population level were available from the 

complete dataset outside the AVI region (Table 6-13).  The patterns here were the same 

as those noted above, with models from the deeper FMFGBRP being ranked consistently 

higher than those derived using the nominal-level land cover information from the 

AGCC.  Male bears and broader populations from both the mountain and foothills 

regions did not seem to affect the overall pattern of results.   

 

Table 6-12: AIC statistics, ranks, and qualifying variables of minimum adequate models for female 
grizzly bears at the population level.  Models derived from the reduced dataset with full AVI 
coverage.   

Female 
 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 85874 3 Land cover 118355 3 Land cover 63006 3 Land cover 

FMFBGRP 75302 1 Land cover, 
LAI Change 113799 1 Early LAI, CC 

Land cover 58143 1 Land cover, 
LAI Change 

AVI 75441 2 Land cover, 
Age 114202 2 Density, 

Height, Age 61127 2 Age, Density 
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Table 6-13: AIC statistics, ranks, and qualifying variables of minimum adequate models for male 
and female grizzly bears at the population level.  Models derived from the full dataset with no 
AVI coverage. 

Female 
 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 215624 2 Land cover 278894 2 Land cover 224690 2 Land cover 

FMFBGRP 199117 1 Land cover, 
LAI Change 277614 1 Early LAI, 

Land cover 200251 1 Land cover, CC, 
LAI Change 

Male 

 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 204397 2 Land cover 241102 2 Land cover 146949 2 Land cover 

FMFBGRP 175556 1 Land cover, 
CC, Early LAI  218565 1 Land cover, 

Early LAI 111093 1 Land cover, LAI 
Change 

 
 

Summaries of the RSF analyses results for the five selected bears at the individual 

level can be found in Table 6-14.  Once again, it seems clear that environmental data sets 

containing depth beyond land cover are superior for explaining resource selection at the 

individual level.  Models derived from the AGCC database were consistently ranked 

lower than those from the deeper AVI and AGCC information sources.  Age, density, 

LAI, and crown closure were frequently selected in the final minimum adequate models, 

and received better AIC support than models constructed from AGCC-derived land cover 

alone.  However, there seems very little to choose between AVI- and FMFGBRP-based 

models at the individual level, with both sources contributing top-ranked models: seven 

out of ten cases for FMFGBRP and three out of ten for AVI.  There seemed to be no 

discernable patterns regarding time period related to these observations; concrete 

conclusions – if they exist – would require a more detailed analysis.    
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A summary of the mean rankings observed for models at the individual and 

population levels, as well as an overall ranking of all trials is shown in Table 6-15.  

Models from the FMFGBRP dataset were ranked number one overall, followed by the 

AVI and AGCC.  The firm advantage of the AVI and FMFGBRP data sets over the land 

cover-only AGCC offering illustrate the additional explanatory power contained in 

datasets with additional variables such as age, height, LAI, and crown closure.  The 

closeness of the overall ranking of the AVI and FMFGBRP models – particularly at the 

individual level – suggests that one source has no clear-cut advantage over the other, and 

that either might serve effectively as foundations for grizzly bear research and operational 

management activities, depending on the scope and needs of the individual project.  The 

major limitation of the AVI information base is its incomplete coverage, particularly in 

the mountain regions and with respect to male grizzly bears with extensive home ranges.   
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Table 6-14: AIC statistics, ranks, and qualifying variables of minimum adequate models for selected 
male and female grizzly bears at the individual level.   

G070 
 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC    7179 3 Land cover    

FMFBGRP    6803 2 Land cover, Late 
LAI, CC    

AVI    6700 1 Land cover, 
Density, Height    

G073 

 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 4424 3 Land cover 7934 3 Land cover 5989 3 Land cover 

FMFBGRP 3933 1 Land cover, LAI 
Change, CC 7484 2 Land cover, LAI 

Change, CC 5347 1 Land cover, 
LAI Change 

AVI 4136 2 Land cover, 
Age, Density 7481 1 Density, Age, 

Total Conifer 5429 2 Density, Age, 
Total Conifer 

G074 

 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC    6072 3 Land cover    

FMFBGRP    4309 1 Early LAI, CC    

AVI    4827 2 Density, Age, 
Total Conifer    

G012 

 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 23392 3 Land cover 24708 3 Land cover 14509 3 Land cover 

FMFBGRP 23020 1 Early LAI, CC 23250 1 LAI Change, 
CC 11304 1 LAI Change, 

SC 

AVI 23813 2 Density, 
Height, Age 23937 2 Land cover, 

Age 12461 2 Density 

G011 

 S-1 S-2 S-3 

 AIC Rank Variables AIC Rank Variables AIC Rank Variables 

AGCC 6281 3 Land cover 6099 3 Land cover    

FMFBGRP 5484 1 Early LAI, CC 6009 2 Land cover, 
LAI Change    

AVI 5737 2 Density, 
Height, Age 5729 1 Density, 

Height, Age    
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Table 6-15: Mean rank summary of minimum adequate models for at the individual, population, and 
combined (both individual and population) levels.   

 Individual Population Overall 

AGCC 3 3 3 

FMFBGRP 1.3 (1) 1 1.2 (1) 

AVI 1.7 (2) 2 1.8 (2) 

 

6.4 Conclusions 

Three sources of environmental information that are commonly employed in support of 

modern wildlife research and management projects were evaluated on the basis of two 

factors: overall map quality, and the ability to explain grizzly bear habitat use, as 

observed through RSF models of telemetry presence/availability data.  The three 

candidate information sources examined were (i) the Alberta Vegetation Inventory, 

typifying the pre-existing forest inventory databases that are common across productive 

forested lands throughout North America; (ii) the Alberta Ground Cover Characterization 

land-cover map, representing a relatively low-cost remote sensing information product 

derived through unsupervised classification and limited field data; and (iii) the Foothills 

Model Forest Grizzly Bear Research Program information base generated in this 

dissertation, representing a relatively high-cost remote sensing information source 

comprised of land cover, crown closure, species composition, and LAI phenology, 

derived through supervised classification and empirical modelling techniques using large 

amounts of field data.  Map quality – judged here as a function of accuracy, vagueness, 

consistency, completeness, precision, and depth – ranked the high-cost FMFGBRP 

information source the highest.  The AVI – the deepest information source of the three – 

suffered from incomplete coverage across the study area, spatial inconsistencies, and low 
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accuracy at the point scale used in this study.  The AGCC map occupied the middle 

quality position, with good consistency, but lower accuracy and issues related to map 

completeness caused by excessive shadows in the mountain and upper foothills regions.  

In terms of their ability to explain observed patterns of grizzly bear telemetry locations 

across the study area, a series of resource selection function models displayed the 

importance of information depth beyond the basic land cover information contained in 

the low-cost AGCC information set.  AVI- and FMFGBRP-based models both ranked 

consistently higher in terms of AIC support at both the individual and population levels, 

but the AVI was limited by incomplete coverage, particularly with the exceptionally large 

home ranges occupied by male bears, as well as individuals occupying multi-

jurisdictional lands in the upper foothills and mountain regions.   

 To summarize, existing inventory data sources such as the AVI seem capable of 

supporting grizzly bear research and management objectives in regions where coverage is 

complete, but must be judged ineffective across the entire study area.  Issues related to 

map quality – particularly coverage, consistency, and accuracy at the sub-stand level – 

are of particular concern.  Low-cost remote sensing alternatives, while certainly capable 

of producing higher-quality map products over large, multi-jurisdictional areas, display 

consistently lower capacities for explaining observed patterns of grizzly bear habitat use.  

High-cost remote sensing products – such as those developed in this research for the 

Foothills Model Forest Grizzly Bear Research Program – appear to have the depth 

necessary to explain occurrence patterns at levels as good as or better than those observed 

for the AVI, and can still be produced consistently and effectively across large areas.  As 
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such, they are the recommended strategy for wildlife studies conducted across large, 

multi-jurisdictional study areas.   
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Chapter 7: Summary and Conclusions 

A strong alliance is forming between remote sensing and ecology in order to address the 

challenges of habitat mapping and other aspects of contemporary wildlife management.  

Unfortunately, the effectiveness of this partnership has so far been hindered by 

miscommunication and a lack of common understanding between the tools experts – 

practitioners of remote sensing, GIS, and other spatial techniques – and applications 

personnel with expertise in wildlife management and biology.  Pioneering work has 

demonstrated the promise of geospatial tools in cross-disciplinary ecology, but an 

effective application strategy has yet to be formalized.  Classification, per-pixel 

modelling, and spatio-temporal pattern analysis techniques provide useful tools in the 

wildlife management arena, but scientists and resource managers require guidance for 

their practical application.   

At the outset of this endeavour, three major research goals were established:  

1. A methodological approach for creating high-quality, spatially explicit 

environmental information over large areas must be articulated, 

2. Robust strategies for creating attribute-based maps of land cover, crown closure, 

species composition, and LAI phenology must be established, and 

3. The effectiveness of these new products for supporting operational management 

objectives over large, multi-jurisdictional areas must be determined. 

The following paragraphs briefly summarize the successful achievement of these goals.   

1. During the course of this research, a methodological framework has been 

developed to enable the competent application of remote sensing for large-area, 

multi-jurisdictional habitat mapping.  Grounded in hierarchy theory and the 



 213

remote sensing scene model, the approach advocates the identification of key 

physical processes operating on the landscape, followed by the selective 

application of multiple techniques matched to data sources specifically designed 

to extract H- and L-resolution information, as appropriate.  This is fundamentally 

different than the single-map, classification-based strategies typical of most 

remote sensing/wildlife studies, in its recognition that land and vegetation 

information exists at a variety of spatial and temporal scales, and that no single 

map is capable of capturing the full range of variability observed in reality.  Also, 

by focussing on multiple attributes and the production of continuous, high-order 

variables wherever possible, the approach results in the generation of a multi-

source information base flexible enough to support multiple management 

objectives – a desirable attribute that should reduce the need for frequent re-

investment commonly experienced with inflexible, nominal-level classification 

products.   

2. Robust strategies were developed for the creation of a four-attribute database of 

land cover, crown closure, species composition, and LAI phenology over a study 

area covering more than 100,000 km2 of rugged, multi-jurisdictional terrain in 

west-central Alberta.  Generated through a blend of object-oriented classification, 

conventional regression, and generalized linear modelling of Landsat, MODIS, 

and topographic data, the exercise represents a successful case study carried out 

under exceptionally challenging conditions.  Accuracy assessment of individual 

model components revealed generally good results.  The land-cover map, 

produced through object-oriented classification of spectral and topographic 
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variables using the software package eCognition, had an overall accuracy of 

91.8% (Kappa=0.904).  The continuous-variable crown closure map, based on 

combined spectral and topographic models developed across natural region-

stratified source areas in the core of the study area and extended piece-wise across 

the remainder of the study area, displayed accuracies in the 90% range 

(Kappa=0.8) for map aggregates based on a two-class configuration, 65% 

(Kappa=0.5) for a three-class configuration, and 50% (Kappa=0.4) for a four-

class configuration.  The continuous-variable species composition map – again 

based on combined spectral and topographic models – displayed accuracies in the 

90% range (Kappa=0.7) for map aggregates based on a two-class configuration, 

73% (Kappa=0.6) for a three-class configuration, and 73% (Kappa=0.6) for a 

four-class configuration.  Empirical models of effective LAI developed during the 

key early  and late-hyperphagia time periods achieved r2 values of 0.52 and 0.82, 

respectively, using the mid infrared-corrected versions of the Normalized 

Difference Vegetation Index (NDVIc).   

3. In order to assess the effectiveness of these new products for supporting 

operational management objectives over large, multi-jurisdictional areas, a series 

of experiments were designed to measure the thesis database against two 

alternative sources of environmental information: (i) the Alberta Vegetation 

Inventory – the provincial forest inventory database – and (ii) the Alberta Ground 

Cover Characterization – a remote sensing land cover product produced through 

traditional unsupervised classification techniques by technicians at the University 

of Alberta’s Earth Observation Systems Laboratory. The three candidate 
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information bases were assessed in terms of both map quality and their ability to 

explain patterns of grizzly bear telemetry locations.  In both cases, the thesis 

database produced the best overall results.   

 

To conclude, the multi-scale, attribute-based framework for environmental 

information extraction developed in this thesis provides an effective strategy for 

generating consistent, high-quality land and vegetation information over large, multi-

jurisdictional areas.  The Landsat- and MODIS-based products generated over the 

challenging, 100,000-km2 study area serve as an effective case study, demonstrating the 

superior quality of the information base as both a source of map products and a 

foundation for operational grizzly bear research and wildlife habitat mapping.   

7.1 Research Contributions 

With a study area roughly half the size of the United Kingdom, this project ranks among 

the largest and most ambitious satellite mapping exercises ever conducted in Alberta.  In 

achieving this milestone, a number of research contributions have been secured.  First, an 

extensive review regarding the role of remote sensing in large-area habitat mapping and 

other ecological applications was compiled.  Published as McDermid et al. (2005), the 

work articulated the philosophical foundation that would go on to guide all subsequent 

mapping activities.  In addition to this theoretical work, a number of methodological 

contributions have also been made.  Most obvious is the development of the multi-scale, 

attribute-based information-extraction strategy that forms the core of this project, and its 

subsequent application across a large, challenging study area.  Methodological 

contributions were also made concerning operational strategies for radiometric 
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processing and model extension for the elimination of seam lines in multi-scene remote 

sensing products.  Perhaps most significant, however, are the application-based 

contributions of this work.  The map comparison material presented in Chapter 6 

represents the first known evaluation of traditional inventory and remote sensing-based 

alternatives for grizzly bear habitat mapping, and forms a significant contribution to the 

wildlife literature.  Looking forward, the demonstrated utility of the remote sensing-based 

information products for these and other applications, including forthcoming work in the 

study area with mountain caribou and elk forage biomass, reveals the flexibility of the 

approach developed here, and sets the stage for articulating a broader geospatial approach 

for large-area, multi-jurisdiction resource management.   

The Foothills Model Forest Grizzly Bear Research Program (FMFGBRP), the 

project within which the bulk of this research was conducted, was honoured by the 

Alberta provincial government in 2004 with an Emerald Award for Environmental 

Excellence in the Research and Innovation category.  The tools, procedures, and products 

developed in the context of that project have been adopted as a core part of the long-term 

conservation strategy for grizzly bear in Alberta.  In the early part of 2005, the Foothills 

Model Forest held a series of industry workshops designed to introduce the new planning 

tools developed through research in the FMFGBRP – including the remote sensing-based 

products presented in this thesis – to managers and executives in the forestry and oil/gas 

industries.   In opening these workshops, Doug Sklar, the Executive Director of 

Sustainable Resource Development in the province stated that “the next series of forest 

management plans will be expected to use these tools”.  The remote sensing-based 

mapping strategies developed in this research continue to form the foundation for 
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spatially explicit land cover and vegetation information in the FMFGBRP as it expands 

both north and south as part of its stated goal to map all the known grizzly bear habitat in 

the province.   

7.2 Suggestions for Future Research 

While the current work contains a number of substantial research contributions, the 

multi-disciplinary realm of remote sensing in wildlife and resource management is still 

relatively undeveloped, and a large number of research issues yet remain.  The following 

suggestions are among the most relevant topics arising from the work reported in this 

thesis.  

Several issues arose during the administration of this project, but were deemed to 

be outside the scope of the current investigation.  For example, the land cover/vegetation 

mapping and modelling work conducted within this research was designed primarily 

around natural vegetation communities occurring outside of regenerating areas formed by 

cut blocks, burns, and other disturbance features.  While the products certainly cover 

these areas, observations made in the preliminary stages of this project suggested that the 

patterns and processes operating in cut blocks and other regenerating surfaces are 

fundamentally different than those in surrounding undisturbed lands.  Future research 

should attempt to identify the key attributes occurring within these regions, and develop 

maps and models specifically tuned to these important environments.   

A second issue arising out of this research involves the issue of topographic 

correction.  The topographic effect – the deleterious effects of topography on image 

analysis – is a well-documented but incompletely understood phenomenon that image 

analysts find very difficult to account for (Kimes and Kirchner, 1981; Dymond, 1992; 
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Dubayah and Rich, 1995).  While strategies for ameliorating some of these effects do 

exist (e.g. Civco, 1989; Richter, 1997; Riano et al., 2003) none of them were 

implemented in this project; a factor that may have limited the effectiveness of spectral 

models and classification results, particularly in the high-relief portions of the study area.  

Future research efforts should employ an approach similar to the one adopted for 

atmospheric correction to evaluate and identify the most effective strategy for operational 

topographic correction, and document the impacts of topographic correction on the 

resulting products.  One potentially serious limitation in this work revolves around the 

lack of a high-quality DEM over the full study area.  Both major topographic data sources 

– the Alberta provincial DEM as well as the DMTI model used in this project – are 

relatively low-quality models generated through the interpolation of contour lines.  The 

lack of a quality DEM not only limits the ability to perform effective topographic 

correction, but seriously hinders the potential role of geomorphometric derivatives in 

general mapping and modelling activities.  In general, the lack of high-quality 

topographic information stands out as among the most serious limitations of this work.  

Future efforts to engage higher-quality DEMs, such as the recently acquired 

interferometric RADAR product covering Banff National Park, would be productive.   

While the core strategy of the framework developed in this research – the 

identification of key physical attributes of the landscape, followed by the selection of 

intelligent, scale-sensitive strategies for mapping them – has already been established, a 

large amount of work remains regarding the application of this strategy.  In particular, 

two key areas require attention: (i) the evaluation of new data, and (ii) the development of 

new products.  For many years, the number of reliable options for obtaining satellite 
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imagery was quite limited.  However, the large number of recent launches has lead to the 

emergence of a new era with an unprecedented number of choices regarding spectral, 

spatial, and temporal resolution.  The utility of these new data sources for characterizing 

key land cover/vegetation attributes needs to be evaluated.  In particular, data fusion 

techniques involving LiDAR (e.g. Miller, 2003; Asner, et al., 2002) and interferometric 

RADAR (e.g. Treuhaft, et al., 2004; Asner et al., 2000) hold the potential to expand the 

information potential of satellite imagery over vegetated surfaces beyond the two-

dimensional limitations of optical data towards a much more meaningful characterization 

of three-dimensional structure.  In regards to new products, future efforts should work 

towards a much more meaningful multi-scale characterization of natural vegetated 

landscapes.  Priorities include better spatial characterizations of broad-scale entities, such 

as the natural region- and subregion-based classes of Achuff (1992), as well as other 

more detailed vegetation attributes including age, height, density, and forest composition 

at the species level.  The potential also exists to characterize vegetation phenology much 

more thoroughly than the rough preliminary attempts contained in this work by exploiting 

the full potential of high-temporal-resolution sensor systems such as MODIS.  Future 

research should also build on the work of Couroux et al. (2005) in the attempt to tease 

apart the ecologically significant contributions of the understorey from the complete 

phenology measurements recorded by the sensor.   

 One of the initial objectives stated in this research involved creating a 

methodological framework that would generate an information base flexible enough to 

support multiple resource management objectives.  With the current set of products now 

in place over a substantial portion of Alberta, the exciting opportunity exists to apply 
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these data to projects outside of the original FMFGBRP.  With this in mind, a number of 

new research initiatives are already under way.  For example, a collaboration with 

researchers in the Ya Ha Tinda Elk and Wolf Project will attempt to use the 

environmental database developed in this thesis to explain elk movement and habitat 

selection patterns.  Of particular interest is the application of MODIS phenology curves 

to map changes in herbaceous forage biomass: a key component of elk habitat.  In 

another initiative, Parks Canada has provided support the complete mapping of the five 

Rocky Mountain parks: Banff, Jasper, Yoho, Kootenay, and Waterton Lakes using the 

approach developed in this thesis.  The first field season was completed in the summer of 

2005, and a second is scheduled for 2006.  The resulting database is slated to replace the 

outdated Ecological Land Classification, and will contribute immediately towards such 

pressing management issues as Mountain Pine Beetle mapping and monitoring, Mountain 

Caribou habitat assessment, Whitebark Pine mapping and monitoring, and avalanche 

hazard assessment.  The challenges posed by these and other management issues on the 

multi-use, multi-jurisdictional lands of western Canada will fuel future research activities 

for years to come.   
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Appendix A: Field Sheet 
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Appendix B: Cold Fusion Code for Ceptometer Web 
Application 
 
<!--- act_globals.cfm ---> 
 
<cfparam name="url.fuseaction" default=""> 
 
<style type="text/css"> 
<!-- 
.btn {cursor:hand;font-family:Verdana,"MS Sans Serif",Charcoal,Chicago,Arial;font-weight:normal;font-
size:smaller;background-color:#efefef;} 
body,table,tr,td,th,tt {} 
--> 
</style> 
 
 
<!--- index.cfm ---> 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
 
<html> 
<cfinclude template="act_globals.cfm"> 
 
<head> 
 <title>Ceptometer Processing Form</title> 
</head> 
 
<body bgcolor="#FFFFFF" marginheight="0" marginwidth="0" leftmargin="10" topmargin="10">  
 
<table border="0" cellpadding="5" cellspacing="0" width="550" align="center"> 
 <tr> 
  <td bgcolor="#cccc99" align="center" valign="middle" width="100%"> 
   <cfswitch expression=#url.fuseaction#> 
    <cfcase value="process"> 
     <font face="Arial" >&nbsp;<b>Calculation 
Results</b></font> 
    </cfcase> 
    <cfcase value="getform"> 
     <font face="Arial" >&nbsp;<b>Ceptometer Entry 
Form</b></font> 
    </cfcase> 
    <cfdefaultcase> 
     <font face="Arial" >&nbsp;<b>LAI From Ceptometer 
Processing</b></font> 
    </cfdefaultcase> 
   </cfswitch> 
  </td> 
 </tr> 
 
 <cfswitch expression=#url.fuseaction#> 
  <cfcase value="getform"> 
   <cfif form.lightconditions IS "diffuse"> 
    <cfinclude template="dsp_diffuseinstructions.cfm"> 
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    <cfinclude template="frm_diffuseform.cfm"> 
   <cfelse> 
    <cfinclude template="dsp_directinstructions.cfm"> 
    <cfinclude template="frm_directform.cfm"> 
   </cfif> 
  </cfcase> 
  <cfcase value="process"> 
   <cfif form.lightconditions IS "diffuse"> 
    <cfinclude template="act_diffuseprocess.cfm"> 
   <cfelse> 
    <cfinclude template="act_directprocess.cfm"> 
   </cfif> 
    
  </cfcase> 
  <cfdefaultcase> 
    <cfinclude template="dsp_lightinstructions.cfm"> 
    <cfform action="index.cfm?fuseaction=getform" method="POST" 
enablecab="Yes"> 
     <tr> 
      <td bgcolor="#ffffff" align="center" valign="middle" 
width="100%"> 
       <font face="arial"> 
        <cfinput type="Radio" 
name="lightconditions" value="diffuse" required="Yes" message="You must select the light conditions 
under which the measurements were taken."> Diffuse 
        <cfinput type="Radio" 
name="lightconditions" value="direct"> Direct 
       </font> 
      </td> 
     </tr> 
     <tr> 
      <td bgcolor="#cecece" align="center" 
valign="middle" width="100%"> 
       <input type="submit" value="Submit"> 
<input type="reset" value="Reset"> 
      </td> 
     </tr> 
    </cfform> 
  </cfdefaultcase> 
 </cfswitch> 
</table> 
 
</body> 
</html> 
 
 
<!--- dsp_lightinstructions.cfm ---> 
 
<tr> 
 <td bgcolor="#efefef" align="left" valign="middle" width="100%"> 
  Please specify the light conditions under which your ceptometer readings were acquired: 
 </td> 
</tr> 
 
 
<!--- dsp_diffuseinstructions.cfm ---> 
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<tr> 
 <td bgcolor="#efefef" align="left" valign="middle" width="100%"> 
  Measurements acquired under diffuse light conditions are the simplest for LAI 
determination, since they do not require direct beam calculations or assumptions regarding canopy 
structure. All that is required are above- and below-canopy PAR measurements.<br><br> 
  Use the form below to enter the ceptometer measurements acquired in the field: 
 </td> 
</tr> 
 
 
<!--- frm_diffureform.cfm ---> 
 
<cfform action="index.cfm?fuseaction=process" method="POST" enablecab="Yes"> 
 <input type="hidden" name="lightconditions" value="diffuse"> 
 <tr> 
  <td bgcolor="#ffffff" align="center" valign="middle" width="100%"> 
   <font face="arial"> 
    <cfinput type="Text" name="abovecanopy" message="You must enter 
an integer value for above canopy PAR" validate="integer" required="Yes" size="15"> Above canopy 
PAR<br> 
    <cfinput type="Text" name="belowcanopy" message="You must enter 
an integer value for below canopy PAR" validate="integer" required="Yes" size="15"> Below canopy 
PAR<br> 
   </font> 
  </td> 
 </tr> 
 <tr> 
  <td bgcolor="#cecece" align="center" valign="middle" width="100%"> 
   <input type="submit" value="Submit"> <input type="reset" value="Reset"> 
  </td> 
 </tr> 
</cfform> 
 
 
<!--- dsp_directinstructions.cfm ---> 
 
<tr> 
 <td bgcolor="#efefef" align="left" valign="middle" width="100%"> 
  In addition to above- and below-canopy PAR measurements, readings acquired under 
direct light conditions require estimates of beam fraction and solar zenith angle to calculate the extinction 
coefficient for the canopy. Further assumptions must also be made concerning the distribution of leaves in 
the canopy. The calculations made in this application assume a spherical distribution, which is accurate for 
most canopies.<br><br> 
  Use the form below to enter the condition and light measurements acquired in the field: 
 </td> 
</tr> 
 
 
<!--- frm_directform.cfm ---> 
 
<cfform action="index.cfm?fuseaction=process" method="POST" enablecab="Yes"> 
 <input type="hidden" name="lightconditions" value="direct"> 
 <tr> 
  <td bgcolor="#ffffff" align="center" valign="middle" width="100%"> 
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   <table border=0 cellpadding="1"  width="100%"> 
    <tr> 
     <td width="100%" colspan="2" align="center"> 
      <font face="arial"> 
       Date: 
       <cfselect name="Month" message="Please 
specify the complete date/time of measurement" required="Yes"> 
        <option value="1"> January 
        <option value="2"> February 
        <option value="3"> March 
        <option value="4"> April 
        <option value="5"> May 
        <option value="6"> June 
        <option value="7" selected> July 
        <option value="8"> August 
        <option value="9"> September 
        <option value="10"> October 
        <option value="11"> November 
        <option value="12"> December 
       </cfselect> 
       <cfselect name="Day" message="Please 
specify the complete date/time of measurement" required="Yes"> 
        <option value="1"> 1 
        <option value="2"> 2 
        <option value="3"> 3 
        <option value="4"> 4 
        <option value="5"> 5 
        <option value="6"> 6 
        <option value="7" selected> 7 
        <option value="8"> 8 
        <option value="9"> 9 
        <option value="10"> 10 
        <option value="11"> 11 
        <option value="12"> 12 
        <option value="13"> 13 
        <option value="14"> 14 
        <option value="15"> 15 
        <option value="16"> 16 
        <option value="17"> 17 
        <option value="18"> 18 
        <option value="19"> 19 
        <option value="20"> 20 
        <option value="21"> 21 
        <option value="22"> 22 
        <option value="23"> 23 
        <option value="24"> 24 
        <option value="25"> 25 
        <option value="26"> 26 
        <option value="27"> 27 
        <option value="28"> 28 
        <option value="29"> 29 
        <option value="30"> 30 
        <option value="31"> 31 
       </cfselect> 
       <cfselect name="Year" message="Please 
specify the complete date/time of measurement" required="Yes"> 
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        <option value="2002"> 2002 
        <option value="2003" selected> 
2003 
        <option value="2004"> 2004 
        <option value="2005"> 2005 
       </cfselect> 
       Time: 
       <cfselect name="Hour" message="Please 
specify the complete date/time of measurement" required="Yes"> 
        <option value="1"> 1 
        <option value="2"> 2 
        <option value="3"> 3 
        <option value="4"> 4 
        <option value="5"> 5 
        <option value="6"> 6 
        <option value="7"> 7 
        <option value="8"> 8 
        <option value="9"> 9 
        <option value="10"> 10 
        <option value="11"> 11 
        <option value="12" selected> 12 
       </cfselect> : 
       <cfselect name="Minute" message="Please 
specify the complete date/time of measurement" required="Yes"> 
        <option value="00" selected> 00 
        <option value="05"> 05 
        <option value="10"> 10 
        <option value="15"> 15 
        <option value="20"> 20 
        <option value="25"> 25 
        <option value="30"> 30 
        <option value="35"> 35 
        <option value="40"> 40 
        <option value="45"> 45 
        <option value="50"> 50 
        <option value="55"> 55 
       </cfselect> 
       <cfselect name="ampm" message="Please 
specify the complete date/time of measurement" required="Yes"> 
        <option value="AM"> AM 
        <option value="PM" selected> PM 
       </cfselect> 
      </font> 
     </td> 
    </tr> 
    <tr> 
     <td width="50%"> 
      <font face="arial"> 
       <cfinput type="Text" name="latitude" 
message="You must enter an integer value for latitude" validate="float" required="Yes" size="15" 
value="51.03"> Latitude* 
      </font> 
     </td> 
     <td width="50%"> 
      <font face="arial"> 
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       <cfinput type="Text" name="longitude" 
message="You must enter an integer value for longitude" validate="float" required="Yes" size="15" 
value="115.05"> Longitude* 
      </font> 
     </td> 
    </tr> 
    <tr> 
     <td width="100%" colspan="2"> 
      <font face="arial"> 
       <cfinput type="Text" 
name="standardmeridian" message="You must enter an integer value for standard meridian" 
validate="integer" required="Yes" size="15" value="105"> Standard Meridian* 
      </font> 
     </td> 
    </tr> 
    <tr> 
     <td width="100%" colspan="2"> 
      <font face="arial"> 
       <cfinput type="Text" 
name="abovecanopydirect" message="You must enter an integer value for above canopy direct PAR" 
validate="integer" required="Yes" size="15"> Above canopy direct PAR 
      </font> 
     </td> 
    </tr> 
    <tr> 
     <td width="100%" colspan="2"> 
      <font face="arial"> 
       <cfinput type="Text" 
name="abovecanopydiffuse" validate="integer" required="No" size="15"> Above canopy diffuse PAR** 
      </font> 
     </td> 
    </tr> 
    <tr> 
     <td width="100%" colspan="2"> 
      <font face="arial"> 
       <cfinput type="Text" name="belowcanopy" 
message="You must enter an integer value for below canopy PAR" validate="integer" required="Yes" 
size="15"> Below canopy PAR 
      </font> 
     </td> 
    </tr> 
   </table> 
  </td> 
 </tr> 
 <tr> 
  <td bgcolor="#cecece" align="left" valign="middle" width="100%"> 
   *The default Lat/Long values given are for the Kananaskis Field Station.<br> 
   **Leave blank if unavailable. A standard beam fraction value of 0.881 will be 
used<br><br> 
   <div align="center"><input type="submit" value="Submit"> <input 
type="reset" value="Reset"></div> 
  </td> 
 </tr> 
</cfform> 
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<!--- act_diffuseprocess.cfm ---> 
 
<cfset tau=form.belowcanopy/form.abovecanopy> 
<cfset LAI=(log(tau)/0.86)*-1> 
 
 <tr> 
  <td bgcolor="#ffffff" align="left" valign="middle" width="100%"> 
   <font face="arial"><strong>LAI: 
<cfoutput>#decimalformat(LAI)#</strong></cfoutput> 
  </td> 
 </tr> 
 <form action="index.cfm" method=POST> 
  <tr> 
   <td align="center"> 
    <font  face="Arial"><input type=submit class=btn value='Calculate 
Another One'></font> 
   </td> 
  </tr> 
 </form> 
 
 
<!--- act_directprocess.cfm ---> 
 
<!--- Set the date/time based on input form ---> 
<cfif (form.ampm IS "PM") and (form.hour LT 12)> 
 <CFSET theDate = CreateDateTime(form.year, form.month, form.day, (form.hour+12), 
form.minute, "00")> 
<cfelseif (form.ampm IS "AM") and (form.hour IS 12)> 
 <CFSET theDate = CreateDateTime(form.year, form.month, form.day, "00", form.minute, "00")> 
<cfelse> 
 <CFSET theDate = CreateDateTime(form.year, form.month, form.day, form.hour, form.minute, 
"00")> 
</cfif> 
 
<!--- Calculate Julian day ---> 
<cfif ((form.Month IS "1") OR (form.Month IS "2"))> 
 <cfset form.Month=form.Month+12> 
 <cfset form.Year=form.Year-1> 
</cfif> 
<cfset A=form.Year/100> 
<cfset B=A/4> 
<cfset C=2-A+B> 
<cfset E=365.25*(form.Year+4716)> 
<cfset F=30.6001*(form.Month+1)> 
<cfset JD=C+form.Day+E+F-1524.5> 
 
<!--- Calculate day of the year ---> 
<cfset J=dayofyear(thedate)> 
 
<!--- Calculate solar declination --->      
<cfset AA=0.6224+(0.0172*J)> 
<cfset BB=0.03345*Sin(AA)> 
<cfset CC=4.869+(0.0172*J)+BB> 
<cfset DD=0.39785*sin(CC)> 
<cfset Declination=ASIN(DD)> 
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<!--- Convert degrees latitude to radians ---> 
<cfset radian_latitude=form.latitude*0.01745329252> 
 
<!--- Convert clock time to decimal time ---> 
<cfset time=hour(theDate)+(minute(theDate)/60)> 
 
<!--- Correct time for daylight savings ---> 
<cfset time=time-1> 
 
<!--- Calculate the time of solar noon ---> 
<cfset LC=(form.standardmeridian-longitude)/15> 
<cfset theta=(279.575 + 0.986*JD)*pi()/180> 
<cfset ET=(-104.7*sin(theta)+596.2*sin(2*theta)+4.3*sin(3*theta)-12.7*sin(4*theta)-429.3*cos(theta)-
2.0*cos(2*theta)+19.3*cos(3*theta))/3600> 
<cfset timesolarnoon=(12-LC-ET)> 
 
<!--- Calculate solar zenith angle ---> 
<cfset W=0.2618*(time-timesolarnoon)> 
<cfset X=cos(radian_latitude)*cos(Declination)*cos(W)> 
<cfset Y=sin(radian_latitude)*sin(Declination)+(X)> 
<cfset szenith=acos(Y)>  
 
<!--- Calculate beam fraction ---> 
<cfif form.abovecanopydiffuse IS NOT ""> 
 <cfset beam_fraction=1-(abovecanopydiffuse/abovecanopydirect)>  
<cfelse> 
 <cfset beam_fraction=0.881> 
</cfif> 
 
<!--- Leaf absorptivity estimate ---> 
<cfparam name="leaf_absorptivity" default="0.9"> 
 
<!--- Calculate extinction coefficient ---> 
<cfset A=0.283+0.785*leaf_absorptivity-0.159*leaf_absorptivity> 
<cfparam name="leaf_angle_distribution" default="1"> <!--- Assumes spherical distribution ---> 
<cfset K=(1/(2*cos(szenith)))> 
 
<!--- Calculate fPAR ---> 
<cfset this_fPAR=belowcanopy/abovecanopydirect> 
 
<!--- Calculate primitives for LAI=((1-1/2*K)*beam_fraction-1)*Log(this_fPAR)/A*(1-
0.47*beam_fraction)---> 
<cfset AAA=(1/(2*K))> 
<cfset BBB=(1-AAA)> 
<cfset CCC=((BBB*beam_fraction)-1)> 
<cfset DDD=(log(this_fPAR))> 
<cfset numerator=(DDD*CCC)> 
<cfset denominator=(A*(1-(0.47*beam_fraction)))> 
<cfset this_LAI=numerator/denominator> 
 
<tr> 
 <td bgcolor="#ffffff" align="left" valign="middle" width="100%"> 
  <font face="arial">Day of the Year: <cfoutput>#round(J)#</cfoutput><br> 
  <font face="arial">Julian Day: <cfoutput>#round(JD)#</cfoutput><br> 
  <font face="arial">Decimal Time: <cfoutput>#decimalformat(time)#</cfoutput><br> 
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  <font face="arial">Time of Solar Noon (decimal time): 
<cfoutput>#decimalformat(timesolarnoon)#</cfoutput><br> 
  <font face="arial">Declination (radians): 
<cfoutput>#decimalformat(Declination)#</cfoutput><br> 
  <font face="arial">Sloar Zenith Angle (radians): 
<cfoutput>#decimalformat(szenith)#</cfoutput><br> 
  <font face="arial">Beam Fraction: 
<cfoutput>#decimalformat(beam_fraction)#</cfoutput><br> 
  <font face="arial">Extinction Coefficient: 
<cfoutput>#decimalformat(K)#</cfoutput><br> 
  <font face="arial">fPAR: <cfoutput>#decimalformat(this_fPAR)#</cfoutput><br> 
  <font face="arial"><strong>LAI: 
<cfoutput>#decimalformat(this_LAI)#</cfoutput></strong><br> 
 </td> 
</tr> 
<form action="index.cfm" method=POST> 
 <tr> 
  <td align="center"> 
   <font  face="Arial"><input type=submit class=btn value='Calculate Another 
One'></font> 
  </td> 
 </tr> 
</form>
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Appendix C: List of Acronymns 
 
AGCC  Alberta Ground Cover Characterization 
AIC  Akaike’s Information Criterion 
ANN  Artificial Neural Network 
APAR  Absorbed Photosynthetically Active Radiation 
AVHRR Advanced Very High Resolution Radiometer 
AVI  Alberta Vegetation Inventory 
CCDEM Crown Closure Model From DEM Variables 
CCTM  Crown Closure Model From TM Variables 
CCTMDEM Crown Closure Model From TM and DEM Variables 
DBH  Diameter at Breast Height 
DEM  Digital Elevation Model 
DN  Digital Number 
EOS  Earth Observing System 
EOSD  Earth Observation for the Sustainable Development of Forests 
ETM+  Enhanced Thematic Mapper Plus 
FMFGBRP Foothills Model Forest Grizzly Bear Research Program 
FPAR  Fraction of Absorbed Photosynthetically Active Radiation 
GAP   Gap Analysis Program 
GIS  Geographic Information System 
GLM  Generalized Linear Model 
GPS  Global Positioning System 
IDT  Integrated Decision Tree 
IDTA  Integrated Decision Tree Approach 
kNN  Mean Nearest Neighbour 
LAI  Leaf Area Index 
LAIe   Effective Leaf Area Index 
LAIeCan  Canopy Effective Leaf Area Index 
LAIeTot  Total Effective Leaf Area Index 
LAIeUs   Understorey Effective Leaf Area Index 
LiDAR Light Detection and Ranging 
MCP  Minimum Convex Polygon 
MLC  Maximum Likelihood Classifier 
MODIS Moderate Resolution Imaging Spectroradiometer 
MSS  Multispectral Scanner 
NDVI  Normalized Difference Vegetation Index 
NDVIc  Mid Infrared-Corrected Normalized Difference Vegetation Index 
NN  Nearest Neighbour 
PAR  Photosynthetically Active Radiation 
PIF  Pseudo-Invariant Feature 
RMSE  Root Mean Square Error 
RADAR Radio Detection and Ranging 
RSF  Resource Selection Function 
SCDEM Species Composition Model From DEM Variables 



 258

SCTM  Species Composition Model From TM Variables 
SCTMDEM Species Composition Model From TM and DEM Variables 
SR  Simple Ratio 
SRc  Mid Infrared-Corrected Simple Ratio 
SJWCP South Jasper Woodland Caribou Project 
TM  Thematic Mapper 
TOA  Top of Atmosphere 
VI  Vegetation Index 
WRS  Worldwide Reference System 
 


