
Optimal Online Tuning of an Adaptive Controller

by

Jesse Huebsch

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Chemical Engineering

Waterloo, Ontario, Canada, 2004

©Jesse Huebsch 2004

 ii

I herby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

A novel adaptive controller, suitable for linear and non-linear systems was developed.

The controller is a discrete algorithm suitable for computer implementation and is based

on gradient descent adaptation rules. Traditional recursive least squares based algorithms

suffer from performance deterioration due to the continuous reduction of a covariance

matrix used for adaptation. When this covariance matrix becomes too small, recursive

least squares algorithms respond slow to changes in model parameters. Gradient descent

adaptation was used to avoid the performance deterioration with time associated with

regression based adaptation such as Recursive Least Squares methods. Stability was

proven with Lyapunov stability theory, using an error filter designed to fulfill stability

requirements. Similarities between the proposed controller with PI control have been

found.

A framework for on-line tuning was developed using the concept of estimation tracks.

Estimation tracks allow the estimation gains to be selected from a finite set of possible

values, while meeting Lyapunov stability requirements. The trade-off between sufficient

excitation for learning and controller performance, typical for dual adaptive control

techniques, are met by properly tuning the adaptation and filter gains to drive the rate of

adaptation in response to a fixed excitation signal. Two methods for selecting the

estimation track were developed. The first method uses simulations to predict the value

of the bicriteria cost function that is a combination of prediction and feedback errors, to

generate a performance score for each estimation track. The second method uses a linear

matrix inequality formulation to find an upper bound on feedback error within the range

 iv

of uncertainty of the plant parameters and acceptable reference signals. The linear matrix

inequality approach was derived from a robust control approach.

Numerical simulations were performed to systematically evaluate the performance and

computational burden of configuration parameters, such as the number of estimation

tracks used for tuning. Comparisons were performed for both tuning methods with an

arbitrarily tuned adaptive controller, with arbitrarily selected tuning parameters as well as

a common adaptive control algorithm.

 v

Acknowledgments

I would like to thank my supervisor, Dr. Hector Budman, for his time, advice and

support.

I would also like to thank my fiancée, Alyssa, for her love and patience.

 vi

Table of Contents
1 Introduction 1

2 Literature Review 5
2.1 Identification of Plant Models 8

2.1.1 Projection Algorithm 9
2.1.2 Orthogonalized Projection Algorithm (Recursive Least Squares) 11
2.1.3 Exponential Data Weighting (Forgetting Factor) 12
2.1.4 Covariance Resetting 12

2.2 Feedback Laws for Adaptive Control 13
2.2.1 One-Step-Ahead Control 13
2.2.2 Model Reference Control 15
2.2.3 Cautious Control 16
2.2.4 Dual Control 18

2.3 Analysis Techniques of Control 21
2.3.1 Linear Matrix Inequalities 21
2.3.2 Linear Representations of Non-Linear Systems 23
2.3.3 Lyapunov Stability 26
2.3.4 Quadratic Lyapunov Performance 28

3 Controller and Estimator Design 31
3.1 Definitions 31
3.2 Proof of Controller Stability 34
3.3 Implementation of the adaptive estimation method 38
3.4 Avoidance of Division by Zero 40
3.5 Parallels with PI Control 42

4 Theory and Methods 44
4.1 Tuning using tracks 45

4.1.1 Rational 45
4.1.2 Stability of Estimation Tracks 46
4.1.3 Set selection 47

4.2 Track selection methods 48
4.2.1 Bicriteria Method 49
4.2.2 Linear Matrix Inequalities 54

5 Results 68
5.1 Bicriteria Tuning (BC) Method 69

5.1.1 Estimation Tracks 69
5.1.2 Simulation Tracks 71
5.1.3 Simulation Horizon 73
5.1.4 Effect of the uncertainty bounds (M∆) on the simulations carried out around each track 74
5.1.5 Conclusions for BC Method 76

5.2 LMI Configuration 76
5.2.1 Estimation Tracks 77
5.2.2 Uncertainty bounds 78
5.2.3 Conclusions for LMI Method 79

 vii

5.3 Tuning Method Comparison 79
5.3.1 First Order 80
5.3.2 Higher Order Systems 87
5.3.3 Deterministic Disturbances 90

5.4 Comparison with RLS 98

6 Conclusions 102

7 Recommendations 107

References 109

Appendix A: Code for Initialization 111

Appendix B: Code for LMI Tuning Method 114

Appendix C: Code for BC Tuning Method 117

Appendix D: Code for Display of Results 121

Appendix E: Code for LMI Function Evaluation 122

Appendix F: Code for BC Function Evaluation 124

Appendix G: Code for LMI Symbolic Jacobian Solver 126

Appendix H: Example of one Element of the Jacobian 129

 viii

List of Figures

Figure 2.1: Schematic of a one-step-ahead controller with a reference model...................................... 15
Figure 2.2: Schematic of a model reference controller.. 16
Figure 4.1: Lyapunov energy of each estimation track with the current value superimposed............ 46
Figure 4.2: Parameter estimates for the default and tuned adaptive controller 53
Figure 4.3: Estimation track used at each time interval, given by tuning constants 54
Figure 4.4: Parameter estimates for the default and tuned adaptive controller 65
Figure 4.5: track used at each time interval, given by tuning constants.. 66
Figure 4.6: Overlap in parameter space for two tracks in the LMI method... 67
Figure 5.1: Effects of the number of estimation tracks on BC performance... 71
Figure 5.2: Effects of the number of simulation tracks on BC performance .. 73
Figure 5.3: Effects of the simulation horizon on BC performance... 74
Figure 5.4: Effects of adding simulation layers on BC performance ... 75
Figure 5.5: Effects of number of estimation tracks on LMI performance .. 77
Figure 5.6: Effects of the multiplier for ∆k on LMI performance .. 78
Figure 5.7: First order system response ... 82
Figure 5.8: First order system response (Detail).. 83
Figure 5.9: First order system track selection.. 84
Figure 5.10: First order system estimate for the parameter ‘a’ ... 85
Figure 5.11: First order system estimate for the parameter ‘b’ ... 86
Figure 5.12: Second order system parameter estimates.. 88
Figure 5.13: Second order system estimation track selection ... 89
Figure 5.14: Second order system response (Detail).. 90
Figure 5.15: System Error vs. KD value.. 93
Figure 5.16: Deterministic disturbance system estimation track selection.. 94
Figure 5.17: Deterministic disturbance system parameter estimates .. 95
Figure 5.18: Deterministic disturbance system response .. 96
Figure 5.19: Deterministic disturbance system response (detail) ... 97
Figure 5.20: RLS comparison estimate for the parameter ‘a’.. 99
Figure 5.21: RLS comparison estimate for the parameter ‘b’.. 100
Figure 5.22: RLS comparison system response (detail) .. 101

 ix

List of Tables

Table 5.1: Test results for a linear first order system ... 81
Table 5.2: Test results for a second order system.. 88
Table 5.3: Deterministic disturbance system results ... 94
Table 5.4: Test results for a linear first order system with RLS .. 98

 1

1 Introduction

Computer systems supporting advanced control algorithms have advanced to the point

where high performance controllers beyond the standard PID do not have an onerous

computational burden. In general, these high performance control systems rely on a

mathematical model for controller design. A common first mathematical approximation

is a model with linear dynamics, which can be represented as follows:

∑∑
=

−
=

−+ +=
m

j
jkj

n

i
ikik ubyay

00
1

(1.1)

For conventional, non-adaptive control, the controller is constructed such that the closed

loop combination of the controller and the plant model results in some desired closed

loop transfer function. For many processes this calculation is not performed explicitly,

and instead an empirical tuning method is used, such as the Ziegler and Nichols tuning

technique (Seborg et. al., 1989). In the conventional linear control approach, although

the plant may change over time, the controller parameters are kept constant. However,

the changes in the model parameters if severe enough, can cause the closed-loop system

to perform poorly or even become unstable, even if the original open-loop plant is stable.

The conventional approach to avoiding this problem is to design the controller with very

conservative parameter values and manually re-tune the controller periodically.

Adaptive and robust control methods were developed to counteract the problems with

conventional controllers described above. In a robust control approach it is assumed that

even if the model parameters are not known, the uncertainty of the values is known or

 2

bounded. The controller is designed explicitly to take these uncertainties into account,

and guarantee stability and performance through the range of uncertainty. In an adaptive

control approach, parameter estimation methods are used to refine or learn a model of the

plant over time. Design relations similar to the ones used for conventional controllers are

used to calculate the feedback law based on the learned parameters over time. Some

adaptive controllers, referred to as cautious controllers, use the uncertainty of the model

parameters in the feedback law design. Adaptive controllers require an excitation signal

to the process for parameter estimation to occur. One important class of controllers,

referred to as dual adaptive controllers in the literature, use a combination of cautious

control in the face of model uncertainty together with an optimal excitation signal to

optimize the performance of the controller. Thus, the key idea behind the dual control

concept is to achieve a trade-off between sufficient excitation for model learning and

cautiousness or robustness of the controller in the presence of model uncertainty.

In the literature, most adaptive controllers have tuneable parameters that greatly affect

their performance, but the methodology for selecting them has been restricted to rules

based on a priori knowledge of the true system or ad hoc selection based on extensive

trial and error simulations. Neither method is a satisfying solution for a general case.

In chapter two, background material for the current study consisting of brief reviews of

concepts regarding discrete parameter estimation, feedback control laws, dual adaptive

control, Lyapunov stability theory, and linear matrix inequalities are presented. Most of

 3

the adaptive control methods found in the literature have tuneable parameters, but no

systematic methods for selecting these parameters are given.

Chapter three introduces the adaptive control method proposed in this work. Stability is

proven using Lyapunov stability theory. A method for maintaining stability in the event

of a division by zero situation is also presented. Parallels with PI control are discussed.

A novel concept of estimation tracks is introduced in chapter four. Each estimator

requires a constant value for the estimation gains for stability. Estimation tracks are used

to provide the basis for on-line tuning by resetting all estimates and filtered errors to the

values corresponding to the current best track. This idea consists of conducting parallel

closed loop simulations with different set of tuning parameters. Each set is associated to a

specific track. The dual adaptive nature of the proposed methods is discussed. Two new

tuning methods, that have not been previously reported in the literature but are based on

concepts reported in different contexts, are proposed in this work. The first method uses

the bicriteria cost function, a combination of prediction and feedback errors, to predict

which track will have the best performance. The second method draws from robust

control ideas and uses linear matrix inequalities to find an upper bound on the feedback

error for each track to find the track with the lowest error in the presence of model

uncertainty. Simple examples are given to demonstrate each method in operation.

In chapter five detailed results are presented. First the effects of configuration

parameters, such as the number of estimation tracks, time horizon for calculation and

 4

magnitude of the model uncertainty are examined. Next the performance and

computation time of the two proposed tuning methods are compared with an arbitrarily

tuned system. This last simulation is explicitly conducted to illustrate the effect of a non-

optimally tuned system. Finally a comparison with a standard adaptive control method is

presented.

Finally, conclusions and recommendations for future work are presented in chapter six.

 5

2 Literature Review

High performance control systems rely on a mathematical model for controller design.

This model can be obtained mechanistically or empirically. A mechanistic model uses the

chemical, mechanical, electrical or biological properties of the system to derive some

equation describing the dynamic response of the system to inputs and disturbances. An

empirical model uses the observed response of the system to inputs and disturbances to

provide a prediction of the system behaviour after the model parameters are properly

adjusted.

For conventional, non-adaptive control, the model of the system is required to design the

controller. Once it is designed, it is kept fixed until manual retuning is conducted. One of

the major difficulties with these conventional control design methods is their sensitivity

to model errors or mismatch. Model mismatch tends to arise from errors in the initial

modelling and from changes in the true system over time (e.g. change in feedstock,

change in operating conditions, heat-exchanger fouling, etc.). In the presence of model

mismatch an unstable closed-loop system or low control performance can result.

Methods commonly used to compensate for these problems are robust and adaptive

control. This thesis will focus on the topic of adaptive control.

An adaptive control system can be considered to be one where the controller parameters

are changed based on observed input-output behaviour of the system. (Astrom and

Wittenmark, 1989, chapter 1) Thus, adaptive controllers can clearly be used to deal with

model errors or model changes with time.

 6

The variables in a time varying system can be divided into two classes: the dynamic

states of the system and model parameters. For example, in a system of the form:

∑∑
=

−
=

−+ +=
m

j
jkkj

n

i
ikkik ubyay

0
,

0
,1

(2.1)

y is the state, u is the control input and a and b are the model parameters. Dynamic

states usually can be measured directly, or inferred with an observer, and are time-

varying. Model parameters determine the response of the states to the control inputs.

Generally, it is assumed that the model parameters vary slowly with time compared to the

states, and are not deterministically affected by the control input. These two types of

variables give rise to two elements in adaptive control algorithms: estimation and

feedback.

The inner (or fast acting) loop is the feedback/feedforward control law. This loop

resembles traditional control algorithms, and generates a control signal based on an error

between the observed output and a reference signal. Common forms of control

algorithms used are one-step-ahead, pole placement, minimum variance, PID, or

minimum control effort techniques.

The outer (or slow acting) loop is used for system identification. This loop is the one that

provides the adaptation with time. The model estimates are assumed to change slowly

compared to the feedback loop, allowing the model estimate to be updated at slower rates

than the feedback loop control action calculations.

 7

If the adaptive element determines the parameters for a model, such as given in equation

2.1, the algorithm is referred to as indirect or explicit adaptive control (Filatov and

Unbehauen, 2000). In this type of adaptive controller the estimation problem is done

separately from the design problem and the estimation algorithm adapts the parameters of

the model. Common types of estimation algorithm are least squares and gradient decent

estimators. Based on this adapting model the control law is derived using some design

rules or algorithm. Indirect adaptation gives some advantages for analysing and selecting

alternatives. Having an explicit estimate model allows for process simulations and easy

calculation of the prediction error.

If, instead of above, the feedback law parameters are adapted with time as input-output

data becomes available, then the control is referred to as direct or implicit adaptive

control. (Ex. Filatov et. al., 1997) In this method the controller’s parameters are updated

by the process estimator. The error between the observed closed loop system and a

reference model is used to drive the adaptation.

Unlike other model estimation methods, the estimation problem in adaptive control is

done in closed loop. The selection of the feedback law needs to take into account any

requirements for sufficient excitation to the system. Implicit in all forms of adaptive

control is a trade-off between instantaneous or short-term tracking performance and the

accuracy of the estimated plant model. Long-term tracking performance depends on the

plant model. In effect a trade-off is sought between short-term performance for long-

 8

term performance. For a special kind of adaptive control, referred to as dual adaptive

control, this trade-off is made explicit as explained in a later section in this chapter.

2.1 Identification of Plant Models

As stated above, one of the key components of adaptive control is system identification.

For a linear system, the model used for adaptation is generally given in the Discrete

Auto-Regressive Moving Average (DARMA) form:

∑∑
=

−
=

−+ +=
m

j
jkj

n

i
ikik ubyay

00
1

(2.2)

The parameter vector to be considered is:

[]nn bbaa ,...,,,..., 11=θ (2.3)

The vector of parameter estimates at the kth time step is:

[]knkknkk bbaa ,,1,,1
ˆ,...,ˆ,,,...ˆˆ)=θ (2.4)

This vector can be expressed in the form of deviation variables:

[]knkknkkk bbaa ,,1,,1
~,...,~,~,...,~ˆ~

=−= θθθ (2.5)

Convergence of the estimation requires that the norm of vector kθ
~ goes to 0 as k goes to

infinity, i.e.

0~lim =
∞→ kk
θ (2.6)

 9

A regression vector is defined as a function composed of past input-output data up to the

order of the process model as follows:

[]mkkknkkk uuuyyy −−−−= ,...,,,..., 11X (2.7)

This work will focus on recursive algorithms, which have a basic form of the parameter

update equation as follows: (Goodwin and Sin, 1984)

()kf kkk ,,ˆˆ
1 Xθθ =+ (2.8)

A widely used special case of this form is the following linear recursive representation:

kkkkk e111
ˆˆ

−−− += XMθθ (2.9)

Where, the future value of the estimate vector is an algebraic function of the current value

of the estimate vector, the current and past input-output data, and the time step.

Recursive estimation is needed for adaptive control schemes since the new parameter

value is required to calculate the new control action, and the computation time available

for this operation relatively short. A non-recursive method which uses all past data will

have a computation time that is a monotonically increasing function of k, and will

eventually require more time to complete the calculations than the step interval available

for this calculation.

2.1.1 Projection Algorithm

The projection algorithm is one of the most basic adaptation schemes reported in the

literature. It is based on the following parameter update equation:

 10

[]11
11

1
1

ˆˆˆ
−−

−−

−
− −+= k

T
kk

k
T

k

k
kk y θX

XX
X

θθ

With 0θ̂ known.

(2.10)

This equation is based on the following recursive form:

kkkkk e111
ˆˆ

−−− += XMθθ (2.11)

Where,

[]11
11

1
1

ˆ, −−
−−

−
− −== k

T
kkk

k
T

k

k
k ye θX

XX
X

M
(2.12)

The error ke is the error in prediction of the current observed value, based on the last

estimated parameter set. The basic form of the projection algorithm is prone to division

by zero. To avoid this singularity it is modified as follows:

[]11
11

1
1

ˆˆˆ
−−

−−

−
− −

+

⋅
+= k

T
kk

k
T

k

k
kk y

c
a

θX
XX

X
θθ

With 0θ̂ known and 20;0 <<> ac

(2.13)

This algorithm is known as the normalized least-mean-squares (NLMS). In Goodwin

(Goodwin and Sin, 1984), proof is provided that 1
ˆ

−kθ is non-increasing, and that the

parameter set is only guaranteed to converge if the vector 1−kX is orthogonal to kX . These

results provide the motivation for the orthogonalized projection algorithm described in

the next section.

 11

2.1.2 Orthogonalized Projection Algorithm (Recursive Least Squares)

[]11
121

12
1

ˆˆˆ
−−

−−−

−−
− −

+
+= k

T
kk

kk
T

k

kk
kk y

c
θX

XPX
XP

θθ
(2.14)

121

2112
21

−−−

−−−−
−−

+
−=

kk
T

k

kk
T

kk
kk c XPX

PXXP
PP

(2.15)

With 0θ̂ known and 20;0 <<> ac . The initial covariance matrix, P-1 is positive definite.

If one set c = 1, then the resulting algorithm is referred to as the recursive least-squares

algorithm (RLS). The least-squares method has some key advantages. It may converge

faster than the projection algorithm, provided that a good initial guess for the covariance

matrix, P is available. It is also less sensitive to noise. The projection algorithm is easier

to calculate for systems with a large number of states (Astrom and Wittenmark, 1989).

The disadvantages of RLS are that its performance depends on the initial value of P-1.

Also, kP tends to 0 as the algorithm converges. Therefore, the basic form is not suitable

for time varying systems since no further adaptation occurs after the system converges to

an initial set of parameters. There are several variations on the RLS algorithm that can be

implemented to deal with time varying systems. Examples are given in the following two

sections. However, these methods require a fair amount of trial and error or ad-hoc

tuning.

 12

2.1.3 Exponential Data Weighting (Forgetting Factor)

This is a variant of the recursive least-squares algorithm, where the newest data is

assumed to be more important than the old data.

[]11
1211

12
1

ˆˆˆ
−−

−−−−

−−
− −

+
+= k

T
kk

kk
T

kk

kk
kk y θX

XPX
XP

θθ
α

(2.16)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+=

−−−−

−−−−
−

−
−

1211

2112
2

1
1

1

kk
T

kk

kk
T

kk
k

k
k XPX

PXXP
PP

αα

(2.17)

With 0θ̂ and 01 >−P known.

The parameter αk is the forgetting factor and is generally selected ad-hoc. The excitation

of the system is particularly important with this method.

2.1.4 Covariance Resetting

The standard recursive least-squares method is used, in combination with frequent

resetting of the covariance matrix; Pk, becomes Kk*I. When the covariance matrix is

reset at every time interval, this method becomes equivalent to the projection algorithm.

In both of these variants, the performance depends on the selection of α or the resetting

time interval. Of course, in the case of time varying parameters, it is not clear when to

reset the covariance since the times at which the changes occur are unknown a priori.

 13

2.2 Feedback Laws for Adaptive Control

As stated above, in explicit adaptive control methods the model estimator is designed

separately from the control law. Although the estimation and control are chosen

separately, some forms of estimation and control may compliment each other better than

others. Traditional forms of feedback use the certainty equivalence (Bar-Shalom and

Tse, 1974) principle, where the plant model estimate parameters are assumed to be the

true values of the real system for the purpose of designing the feedback mechanism.

Goodwin (Goodwin and Sin, 1984) identifies several common forms of feedback laws in

his text and these are further discussed in the following subsections.

2.2.1 One-Step-Ahead Control

The error criteria to be minimised is the output error at the next step. This method has

the advantage of using the model parameters directly in the control law, so no estimation

algorithm per se needs to be considered.

The cost function to be minimised is:

[]
⎭
⎬
⎫

⎩
⎨
⎧ −= +++

2
111 2

1
kkk yspyJ

(2.18)

With a standard DARMA model:

∑∑
=

−
=

−+ +=
m

j
jkj

n

i
ikik ubyay

11
1

(2.19)

The control law is given as follows:

 14

1
1

21
1

−

=
−

=
−+ ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∑∑ bubyayspu

m

j
jkj

n

i
ikikk

(2.20)

If the true model parameters are unavailable, the estimated model parameters are used as

follows:

1
1

21
1

ˆˆˆ −

=
−

=
−+ ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= ∑∑ bubyayspu

m

j
jkj

n

i
ikikk

(2.21)

The closed loop equation when (2.19) and (2.21) are combined is:

()() ()()∑∑
=

−
−

=
−

−
+

−
+ ⋅−+⋅−+⋅=

m

j
jkjj

n

i
ikiikk ubbbbyabbayspbby

2

1
11

1

1
111

1
111

ˆˆˆˆˆ
(2.22)

If the estimated values are accurate, iijj aabb == ˆ,ˆ then the closed loop system follows:

11 ++ = kk yspy (2.23)

One disadvantage of this method is that it may give excessive control actions if there is a

step change in the set-point. To solve this problem with the one-step-ahead control a

weight is added to the control input in the cost function to be minimised as follows:

[]
⎭
⎬
⎫

⎩
⎨
⎧ +−= +++ kkkk uyspyJ

22
1 2

111
λ

(2.24)

Whereλ is a tuning parameter that provides the input weighting.

An alternative method to deal with excessive control inputs is to filter the reference signal

with a desired tracking model as shown in Figure 2.1.

 15

Figure 2.1: Schematic of a one-step-ahead controller with a reference model

Figure 2.1 represents the basic idea for model reference control, where the desired

closed-loop performance is given in the form of a desired transfer function or if pole

placement control is desired, by a set of desired poles.

2.2.2 Model Reference Control

For model reference control the reference signal is simultaneously fed to the controller

with a transfer function C(z), and to a reference model with transfer function G(z)

(Goodwin and Sin, 1984). The reference model is a known transfer function that is

stable, and has a delay at least as long as that of the system to be controlled. The desired

controller will give feedback such that the closed loop system of C(z) and the plant P(z)

gives an output that is identical to the output of G(z); Y*, when both are driven to the

reference signal, R(z). The preceding system is illustrated in Figure 2.2, as follows:

Ysp Reference One-Step-Ahead Plant

Plant

Ref U Yk

Â

 16

Figure 2.2: Schematic of a model reference controller

In an adaptive control context, the tracking error and the input-output data are used in an

adaptive mechanism to update the controller C(z). Usually this is referred to as a direct

adaptive controller.

2.2.3 Cautious Control

(Astrom and Wittenmark, 1989)

If the controller is selected as a one-step-ahead controller, the control action calculation is

the following control law, from equation (2.20):

[]
1,1

1121 ,...,,,...,,0

+

+−−−−+ −−−
=

k

knkknkkk
k b

yyuuysp
u

θ

(2.25)

The certainty equivalence controller is equal to the one-step-ahead controller but it uses

the parameter estimates instead of the true values as follows:

Reference G(z)

Controller - C(z) Plant - P(z)Uk Yk

Y*
k

+

_
Ek

R(z)

 17

[]
1,1

1121

ˆ
ˆ,...,,,...,,0

+

+−−−−+ −−−
=

k

knkknkkk
k b

yyuuysp
u

θ

(2.26)

On the other hand, for cautious control the uncertainty in the estimates is considered. For

example, with a recursive least-squares algorithm, the uncertainty is accounted through

the covariance matrix, Pk, as follows:

[] [][]
1,1

2
1,1

11,11211,1

ˆ
0,...,0,1ˆˆ,...,,,...,,0ˆ

++

++−−−−++

+

⋅+⋅−−−⋅
=

kbk

kkknkknkkkk
k pb

byyuuyspb
u

Pθ

(2.27)

where 1,1 +kbp is the variance of the parameter 1,1̂ +kb .

When the covariance 0=kP then the cautious controller given in equation (2.27) is

equivalent to the certainty equivalence controller given in equation (2.26). The situation

where 0=kP indicates that the parameter estimation has converged, and that the adapted

model is the best estimate of the true plant.

For example, for a pure integrating controller the certainty equivalence controller is:

k
k

k y
b

u
1

ˆ
1

+

−=
(2.28)

The corresponding cautious controller is:

k
kbk

k
k y

pb
bu

1,
2

1

1

ˆ
ˆ

++

+

+
−=

(2.29)

 18

The net effect of accounting for uncertainty with P is a reduction of the controller gain,

making the performance less aggressive while the uncertainty is large. The downside to

this approach is that the input gain decreases as the uncertainty increases. This can

become a problem when the new input lacks sufficient excitation to better the estimation

and consequently, to reduce the uncertainty. This is called the turn-off phenomenon

(Astrom and Wittenmark, 1989). The dual adaptive control methodology presented in the

sequel, avoids this problem by ensuring sufficient excitation for adaptation.

2.2.4 Dual Control

Implicit in all forms of adaptive control is a trade-off between instantaneous or short-term

tracking performance and the accurate long-term estimation of the plant model. Long-

term tracking performance depends on the plant model, so in effect there is a trade-off

between short-term control performance and long-term performance. For dual adaptive

control this trade-off is made explicit. Unfortunately, the optimal dual problem is only

numerically tractable for very simple examples. Also, analytical solutions are only

available for very simple systems. Thus, suboptimal approximations of optimal dual

control are used.

Sternby (1976) gives an example of a system where an analytical solution to the optimal

dual control problem can be found. The system used is a Markov chain with a finite set

of states and no system dynamics.

 19

Filatov et. al. (1997) introduce the bicriterial approach to a pole placement dual control.

With the bicriterial approach there are two cost functions to be minimised,

() ()[]{ }
() () ()[]{ }k

Ta
k

kn
c
k

kkkyEJ

kykyBEJ

ℑ−+=

ℑ+−+=

|1

,|11
2

22

mp)

(2.30)

yn represents the nominal or desired trajectory, ()1+ky represents the output with no

disturbance, ()kTp) is the vector of estimated parameters and ()km is the input-output

data vector. These two terms represent the expectations of the feedback error and the

prediction error respectively.

Filatov and Unbehauen (1998) extend dual adaptive control to a continuous system. A

dither signal is used for excitation, with an amplitude dependant on the uncertainty of the

estimate.

Dumont (Dumont and Astrom, 1987, Allison et. al., 1995) reported the implementation of

a suboptimal dual controller on a wood chip refiner. The primary purpose of the

controller is to detect and counteract a process gain sign reversal. Heuristic elements are

added to the control algorithm to allow for quick response in the event of a gain reversal.

Veres and Xia (1998) examine the worst case transient performance for adaptive control

systems. They use the context of an airplane that is damaged, causing a sudden change in

the true plant. In this case the eventual convergence of the adaptive control is insufficient

to guarantee overall stability of the algorithm; thus, the states of the system must be kept

stable while adaptation occurs.

 20

Filatov et. al. (1996) use a direct dual adaptive control on a laboratory scale mechanical

example. They use the bicriterial method for designing a feedback law. The setup

demonstrates performance improvements with the dual control over a normal adaptive

controller for an unstable system. No tuning guidelines are given for this algorithm.

Sanner and Slotine (1992) introduce a continuous time framework for adaptive control of

nonlinear systems. A Gaussian network on a fixed grid is used to approximate the

nonlinear system. The network gains are directly updated by the adaptation mechanism.

For this method to work it is necessary for the system to satisfy assumptions about

relative smoothness and bandwidth limitations. A dead-zone around the set-point and

sliding control at the edge of the modeled region are used to ensure stability using

Lyapunov stability criteria. This algorithm, that serves as a basis for the techniques used

in the current study, includes several tuning parameters that are selected ad-hoc or by trial

and error. This is also one of the key disadvantages of dual adaptive algorithms.

Fabri and Kadirkamanathan (1998) demonstrate the applicability of explicit dual control

to nonlinear systems. They use a fixed grid mesh of radial basis functions to estimate a

nonlinear function. The neuron gains are adapted, but not the spacing or variance of the

neurons. The uncertainty of the estimate is taken into account in the design of the

feedback law; providing this algorithm with dual adaptive control features.

 21

2.3 Analysis Techniques of Control

2.3.1 Linear Matrix Inequalities

A linear matrix inequality formulation can be used to evaluate the performance of a

system with uncertain parameters, while taking into account every possible combination

of parameters within the range of uncertainty.

A Linear Matrix Inequality (LMI) has the form:

() 0110 <+++= nnxxx AAAA K (2.31)

Where

[]nxxx K1= is a vector with unknown values, known as the optimization variable.

nAA ,,0 K are known symmetric matrices.

And ()xA is negative definite (i.e. all eigenvalues of ()xA are negative,

or () 0<ηAη xT for all nonzero nℜ∈η

The LMI’s (2.31) can be rearranged to represent () () 0 as 0 <−> xx AA and

() () () () .0 as <−< xxxx BABA

Note that () () 0
2

 0,0 <⎟
⎠
⎞

⎜
⎝
⎛ +

⇒<<
zyzy AAA , thus, the LMI’s (2.31) is a convex

constraint on x. The key properties of the LMI formulation are that its solution set is a

convex subset of nℜ and if there is a solution to (2.31) finding the solution is a convex

 22

optimisation problem. The important thing to note about a convex optimisation is that

even though (2.31) has no analytic solution; a numerical solver can be guaranteed to

converge to a solution, provided a solution exists.

The formulation to be solved that is relevant to this work is the generalized eigenvalue

problem (GEVP). The GEVP is to find the minimum value of the maximum generalized

eigenvalue of a pair of matrices that are affine functions of the LMI optimization

variable. The GEVP is formulated as follows:

Minimize λ subject to: () () () () 0,0,0 >>>− Xxxxλ CBAB (2.32)

Where A, B, C are symmetric matrices that are affine functions of the optimisation

variable x. The result of this computation is λmax, the largest eigenvalue of the GEVP,

after the minimization of (2.32).

In the case that B(x) is positive semi-definite, and not positive definite, the LMI solvers

available in Matlab may not be able to calculate a feasible solution. This is important for

problems where B(x) has the structure

() () () 0,
00
0

1
1 >⎥

⎦

⎤
⎢
⎣

⎡
= x

x
x B

B
B

(2.33)

By replacing the constraints of (2.32),

() () () () 0,0,0 >>>− xxxxλ CBAB (2.34)

with the following constraints:

 23

() () ()

YY

BBY
Y

A

=

><⎥
⎦

⎤
⎢
⎣

⎡
<

T

xxλx

 where

0,,
00
0

11
(2.35)

the resulting problem is equivalent to the original GEVP problem as given in equation

(2.32), and can be solved with the GEVP Matlab function.

Kothare et. al. (1994, 1996) use LMI’s to design a robust model predictive controller

(MPC). They use this LMI formulation to design a control law that results in the least

bad case design. This provides robust performance for the nonlinear process represented

by a robust model composed of a nominal model supplemented by a model error

representation.

Ozkan et. al. (2000) subdivide the control structure of a nonlinear system into pieces

sufficiently small to be represented by piecewise linear models. This representation

proves to be particularly suited to deal with problems with saturation, relays and dead

zones.

2.3.2 Linear Representations of Non-Linear Systems

A linear system with structured uncertainties in the parameters can be represented using

the form of equation (2.31) as follows:

 24

() ()
[] []

() ()

{ } n
nk

kk

knknkknknkk

kkkkk

and

where
uxx

uxx

ℜ∈=

<<

+++++++=
+=

+

+

δδ

δδδδ

,,

0,0
,

1

,1,10,1,101

1

L

KK

δ

δBδA

BBBAAA
δBδA

(2.36)

If the values of nδδ ,,1 L are time varying and bounded equation (2.36) describes a time

varying linear system as follows:

kkkkk uxx BA +=+1 (2.37)

The bounds on nδδ ,,1 L and the structure of (2.36) imply that kk BA and are bounded

by a polytope of matrices. This polytope is structured as follows:

[] []

∑

∑

=

=

=≥

=

L

i
kiki

ii

L

i
kikk

1
,,

1
,

1,0

',',

αα

α BABA

(2.38)

The state matrices used in (2.36) can be represented as a linear combination of a set of i

invariant sub-matrices (Kothare et. al., 1994).

Results from Liu (1968) allow us to approximate a non-linear system as a time varying

linear system. Provided that the Jacobian below is contained in a polytope of matrices,

where the Jacobian is evaluated using the extreme values of the range of the uncertainty

in the parameters of the nonlinear system, i.e.:

 25

()
()

[]iii

L

i
ki

kk

kkk

x
g

u
f

x
f

kxgy
kuxfx

',',',,

,
,,

1
,

1

CBA∑
=

+

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

=
=

α

(2.39)

The matrices []iii CBA ,, give us the ‘vertices’ of the parameter space where the true

system can exist. The location of the vertices depends on the uncertainty involved in

estimating the true parameters of the system.

The polytope resulting from the Jacobian of the nonlinear system is in a form that can be

used in the LMI formulation (2.31).

An example of the Jacobian calculation follows for a simple system:

max

2
1

0 xx
buxx kkk

≤≤
+=+

(2.40)

The Jacobian (2.40) is:

[]bx

u
bu

x
x

u
f

x
f

k

k

k

k

k

,2

,,
2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

(2.41)

Using the known bounds on the system, the polytope that bounds (2.40) is:

[]

[] [] []bxb
where

u
x

x

kkkk

k

k
kkk

max,2,1

1

20''

''

αα +=

⎥
⎦

⎤
⎢
⎣

⎡
=+

BA

BA

(2.42)

 26

2.3.3 Lyapunov Stability

Lyapunov methods are used to mathematically prove the stability of a system. The two

Lyapunov methods are linearization of the system or indirect method, and the Lyapunov

direct method.

The linearization method is used to find the stability in an infinitesimal neighbourhood of

an equilibrium point. The theorem relates the local stability of the linearized system with

the local stability of the non-linear stability, as follows (Slotine and Li, 1991):

• If the linearized system is strictly stable (i.e. 1max <λ), then the equilibrium point

of the original non-linear system is asymptotically stable.

• If the linearized system is unstable (i.e. 1max >λ), then the equilibrium point of

the original non-linear system is unstable.

• If the linearized system is marginally stable (i.e. 1max =λ), then no conclusion

regarding the stability of the equilibrium point of the original non-linear system

can be reached.

The disadvantage to the linearization method is that there is no easy determination of how

big the stable neighbourhood around the equilibrium point is. This disadvantage, along

with the lack of a guarantee of the results for the actual nonlinear system motivates the

Lyapunov direct method.

 27

The Lyapunov direct method uses the concept of physical energy, where stability is

assured if the energy constantly decreases. The basis of the direct method is to construct

a function that gives a scalar value with properties similar to energy, referred to as the

Lyapunov function, (i.e. there is a unique input that will return a value of zero, and all

other inputs will return values larger than zero) that monotonically decreases to zero.

Finding an energy function where this condition is not true does not prove instability; i.e.

stability may be possible to prove for a different function. Therefore, the disadvantage of

this method is that there is no systematic way of selecting the least conservative

Lyapunov function. Slotine (Slotine and Li, 1991) has given some techniques that are

useful for searching for an appropriate Lyapunov function for linear systems. Given a

linear time-invariant system of the form () ()kk Axx =+1 , a quadratic Lyapunov function

has the form, as follows:

() () ()kkkV T Pxx= (2.43)

Were ()kV is the Lyapunov energy and P is a symmetric positive-definite matrix. The

Lyapunov direct method for global stability has the requirements (Slotine and Li, 1991):

Assume that there exists a scalar function V of the state x, with continuous first-order

derivatives such that

o () () ()kkkV T Pxx= is positive-definite

o () () 01 <−+ kVkV

o () () ∞→∞→ kaskV x

Then the equilibrium point at the origin is globally asymptotically stable.

 28

In this work the Lyapunov direct method is applied to the stability of the adaptive

mechanism proposed in chapter 3.

Stability proofs using the quadratic Lyapunov function (2.43) can be referred to as

quadratic Lyapunov stability proofs.

2.3.4 Quadratic Lyapunov Performance

To be able to evaluate the performance of a controller a measurement method is needed.

For control systems, an energy based L2-norm is usually used. The L2-norm is defined

as:

() ()∫
∞

∞−
= dttt T

L
eee

2
 (2.44)

The subscript can be omitted for simplicity and the norm is written as e .

The following system is used for the analysis:

()

known is 0

1

η

η
DC
BδAη

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

k

kk

k

k

e ν

(2.45)

where { } n
nk ℜ∈= δδ ,,1 Lδ is a vector of uncertain but bounded time-varying real

parameters.

νK may represent disturbances to the system or alternatively set point changes.

For the following analysis the following assumptions are used:

• ki,δ is bounded by known values ii δδ and , thus []iiki δδδ ,, ∈

 29

• The state matrix, ()kδA is affinely dependant on the parameters as shown in

(2.36)

The assumptions restrict the parameter vector kδ to existing in a space that forms a

hyper-cube with 2n vertices, which will be referred to as the parameter space, as follows:

() { }{ }iiin www δδ ,:,,1 ∈= LW (2.46)

Quadratic Lyapunov performance is defined as the following (Gao and Budman, 2003):

The system (2.45) has a zero initial state, satisfies quadratic Lyapunov stability and

22 lL
νe γ< (2.47)

for all L2-bounded inputs ν if there exists TPPP => ,0 and a positive definite

quadratic Lyapunov function () () () () ,0, >= tVtttV T Pηη such that

() () () () () () 01 2 <−+−+ tttetetVtV TT ννγ (2.48)

for all admissible uncertainties tδ and for zero initial conditions .0η

Inequality (2.48) is true if and only if

() () ()
() 02 <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

IDC
DIPBBδPAB
CPBδAPδPAδA

TT
i

T

TT
ii

T
i

γ

(2.49)

 30

holds for all admissible trajectories and initial values of the uncertain parameter vector

tδ . Evaluating (2.49) is not tractable in general because it imposes an infinite number of

constraints on P. Under the affine parameter dependence assumptions, as shown in

equation (2.36) Gao and Budman (2003) have proposed a theorem that shows that (2.49)

holds if and only if P satisfies the following system of LMI’s.

Consider the time-varying system (2.45) where ()tt δAδ , and W are defined as in

section 2.3.3. A sufficient condition for quadratic Lyapunov stability of this system is

the existence of TPPP => ,0 such that

() () ()
() 02 <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

IDC
DIPBBPAB
CPBAPPAA

TT
i

T

TT
ii

T
i

w
www

γ , for all W∈w

(2.50)

A proof is given in (Gao and Budman, 2003).

Inequality (2.50) can be solved as a general eigenvalues problem (GEVP) as in (2.32), to

minimise the performance index γ. This minimisation gives the worst expected effect of

the disturbance ν on the error e for all the models included in the family of models

defined by equation (2.45).

 31

3 Controller and Estimator Design

In this section a novel discrete adaptive controller is developed, based on the continuous

time adaptive controller version proposed by Sanner (Sanner and Slotine, 1992). This

discrete adaptive controller has not been reported in the literature. This adaptive

controller is based on a gradient descent based parameter estimation algorithm combined

with a cautious one-step-ahead feedback control law. The one-step-ahead controller is

used for simplicity of the mathematical development, but the stability and tuning results

are valid for other forms of feedback laws, such as pole-placement algorithms.

3.1 Definitions

Given a DARMA (Discrete Autoregressive Moving Average) model of a system that is

nth order with respect to the state and mth order with respect to the input:

∑∑
−

=
−

−

=
−+ +=

1

0

1

0
1

m

j
jkj

n

i
ikik ubyay

(3.1)

The vectors of the parameters ai and bj are defined as follows:

[]Tnaa 10 −= LA (3.2)

[]Tmbb 10 −= LB (3.3)

The parameter estimate vectors are defined as follows:

[]Tknkk aa ,1,0 ˆˆˆ
−= LA (3.4)

 32

[]Tkmkk bb ,1,0
ˆˆˆ

−= LB (3.5)

Let the values of past input and output data be given by the following vectors:

[]Tnkkk yy 1+−= LY (3.6)

[]Tmkkk uu 1+−= LU (3.7)

Then, using equations (3.2), (3.3), (3.6) and (3.7), the DARMA model given by equation

(3.1), can be reformulated in terms of the input and output vectors as follows:

k
T

k
T

ky UBYA +=+1 (3.8)

Also for the purpose of designing an implementable controller, let

[]Tkmk
old
k bb ,1,1

ˆˆˆ
−= LB (3.9)

and,

[]Tmkk
old
k uu 11 +−−= LU (3.10)

A filtered feedback error, to be justified in sections 3.2 and 3.3, is given as follows:

()
D

k
T

kk
T

kkDkk
T

kk
T

k
k K

sKy
s

+
−−−++−−

= −−−−−−−

1

ˆˆ12ˆˆ
1111111 UBYAUBYA

(3.11)

For simplicity, an adaptive algorithm based on a one-step-ahead controller (equation

2.18) will be used. A term proportional to the filtered error, sk, is added, multiplied by a

tuning parameter DK , as follows:

()() 1
,0

ˆ1ˆˆ −⋅−+−−= kkD
old
k

Told
kk

T
kspk bsKyu UBYA (3.12)

 33

Where 0>DK

The errors in the estimated parameters are defined in the form of deviation variables as

follows:

AAA += kk
~ˆ (3.13)

BBB += kk
~ˆ (3.14)

The gradient descent method is used to formulate the parameter update equations where

the error used for updating is the sum of the current and past value of the filtered

errors, ()1−+ kk ss :

()111
ˆˆ

−−− ++= kkkkk ssYKAA A (3.15)

()111
ˆˆ

−−− ++= kkkkk ssUKBB B (3.16)

BA KK , are matrices of adaptation gains, with diagonalstructure as given below:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,

0,

0

0

nA

A

K

K
OAK

AK is invertible and { }1,...,1,0,0,, −∈> niiiAK

(3.17)

and,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,

0,

0

0

mB

B

K

K
OBK

BK is invertible and { }1,...,1,0,0,, −∈> mjjjBK

(3.18)

 34

3.2 Proof of Controller Stability

To ensure that the controller defined in the previous section is stable and that the

parameters converge to their true values when the model structure is correct, a Lyapunov

stability proof is presented. It should be recalled that Lyapunov methods require a

positive definite ‘energy’ function. This implies that the energy is zero at the origin and

greater than zero at any other state. If the energy can be shown to be non-increasing with

time, then the estimate is stable, and if excitation conditions occur such as this energy

function never converges to a non-zero condition, the estimates will converge to their true

values. The error filter, sk, has to be designed to fulfill this Lyapunov criterion.

The Lyapunov function used is a quadratic function made of the combination of the

squares of the estimation errors and the filtered error as follows:

211 ~~~~
kkB

T
kk

T
kk sV ++= −− BKBAKA A (3.19)

 Examining the structure of equation (3.19), it can be seen that every term is composed of

a tuning factor multiplied by the square of the error of each one of the parameter

estimates, or by the square of sk. Clearly each term is positive definite with respect to an

origin that corresponds to zero filtered error and convergence of the parameter estimates

to their true values.

Substituting equation (3.12) into the system equation, (3.8) results in the following:

()()kD
old
k

Told
kk

T
kspk

old
k

Told
kk

T
k sKybby −+−−⋅++= −
+ 1ˆˆˆ 1

,001 UBYAUBYA (3.20)

 35

When the Lyapunov energy converges to zero, .0 and ˆ,ˆ === kkk sBBAA When these

values are used in equation (3.20), the equation reduces to the following:

()()

spk

kDspk
old
k

Told
k

old
k

Told
kk

T
kk

T
k

yy

sKybby

=

−+⋅+−+−=

+

−
+

1

1
,001 1ˆˆˆ UBUBYAYA

(3.21)

Thus, proof of the convergence of the estimated values, to the true values, ensures that

the closed loop system tracks the set-point. It should be noted that any controller that is

stable when designed with the true system parameters (i.e. pole-placement or model

reference controllers) will ensure closed loop stability.

Substituting the Lyapunov convergence conditions, and 01 == −kk ss into equation (3.11)

results in the following:

() () 1111
ˆˆ5.0ˆˆ5.0 −−−− +++= k

T

kkk

T

kkky UBBYAA (3.22)

The RHS of equation (3.22) is the average prediction for y using the parameter estimates

at the current time step, and the last time step. When the estimates have converged,

1
ˆˆ

−= kk AA and 1
ˆˆ

−= kk BB , which results in the following equation:

11
ˆˆ

−− += k
T

kk
T

kky UBYA (3.23)

Thus, when the estimators converge, the prediction error for y is zero when there is no

measurement noise.

After substituting equations (3.13) and (3.14) into equation (3.19):

 36

() () () () 211 ˆˆˆˆ
k

T

k

T

kk sV +−−+−−= −− BBKBBAAKAA kBkA (3.24)

And expanding terms:

21111

1111

ˆˆˆˆ

ˆˆˆˆ

k
TTTT

k
TT

k
T

k

T

kk

s

V

+−−++

−−+=
−−−−

−−−−

kBBkBkBk

AAAA

BKBBKBBKBBKB

AKAAKAAKAAKA

(3.25)

KA and KB are symmetric, thus:

k
TT

k AKAAKA AA
ˆˆ 11 −− = (3.26)

kBBk BKBBKB ˆˆ 11 −− = TT (3.27)

Substituting equations (3.26) and (3.27) into (3.25) gives:

2111

111

ˆ2ˆˆ

ˆ2ˆˆ

k
TTT

A
T

k
T

k
T

kk

s

V

+−++

−+=
−−−

−−−

BKBBKBBKB

AKAAKAAKA

BkBkBk

AA
(3.28)

For Lyapunov stability the ‘energy’ is required to be a non-increasing function as given

below:

01 ≤−+ kk VV (3.29)

To satisfy this criteria, equation (3.28) is formulated at interval k+1 and from the

resulting equation, equation (3.28), is subtracted, resulting in the following expression:

22
1

11
1

11

1
1

1
1

11
1

111
1

1
11

ˆ2ˆ2

ˆˆˆˆˆ2ˆ2

ˆˆˆˆ

kk
TTTT

TTT
k

T
k

TT
k

T
kk

T
kkk

ss

VV

−++−−+

−++−

−+−=−

+
−−

+
−−

−
+

−
+

−−
+

−−−
+

−
++

BKBBKBBKBBKB

BKBBKBAKAAKA

AKAAKAAKAAKA

BkBkBB

kBkkBkAA

AAAA

(3.30)

After collecting like terms:

 37

()
() 22

1
1

1
1

1
1

1

1
1

1
1

1
11

ˆˆ2ˆˆˆˆ

ˆˆ2ˆˆˆˆ

kk

TTT

T

kkk
T

kk
T

kkk

ss

VV

−+−−−+

−−−=−

+
−

+
−

+
−

+

−
+

−
+

−
++

BKBBBKBBKB

AKAAAKAAKA

BkkkBkkBk

AAA
(3.31)

Completing the square as follows:

() ()kk

T

kkk
T

kk
T

k AKAKAAAKAAKA AAAA
ˆˆˆˆˆˆˆˆ 1

1
1

1
1

1
1

1
−

+
−

+
−

+
−

+ +−=− (3.32)

() ()kBkBkkkBkkBk BKBKBBBKBBKB ˆˆˆˆˆˆˆˆ 1
1

1
1

1
1

1
1

−
+

−
+

−
+

−
+ +−=−

TTT (3.33)

Equation (3.32) and (3.33) are substituted into (3.31), and then rearranged as follows:

() ()
() ()
()()kkkk

T
kk

T

kkkk

ssss

VV

−++
−+−+

−+−=−

++

−−
+

−
+

−−
+

−
++

11

11
1

1
1

11
1

1
11

2ˆˆˆˆ

2ˆˆˆˆ

BKBKBKBB

AKAKAKAA

BkBkBkk

AAA

(3.34)

After calculating equations (3.15) and (3.16) at interval k+1 and substituting the result

into equation (3.34), the following expression results:

() ()
() ()
()()kkkk

TT
k

T
kk

kk
TT

k
T

kkkk

ssss
ss

ssVV

−++
−+++

−++=−

++

−−
+

−
+

−−
+

−
++

11

11
1

1
1

11
1

1
11

2ˆˆ
2ˆˆ

BKBKBKKU

AKAKAKKY

BkBkBB

AAAA

(3.35)

Finally, after rearranging equation (3.35):

() () () ()[]kk
T

kkk
T

kkkkk ssssVV −+−++−++=− +++++ 11111 2ˆˆ2ˆˆ BBBUAAAY kk

(3.36)

The filtered error is defined by the implicit equation given below:

() () ()[] ()kkDkk
T

kkk
T

k ssKss +−=−+−++−+ ++++ 1111 2ˆˆ2ˆˆ BBBUAAAY kk (3.37)

Substitute equation (3.37) into (3.36) as given below:

 38

()2
11 kkDkk ssKVV +−=− ++ (3.38)

Equation (3.38) satisfies the requirement that the Lyapunov function is decreasing with

time for any positive value of KD.

3.3 Implementation of the adaptive estimation method

In this section an implementable and causal version of the control law given in equation

(3.12) will be presented. Equation (3.12) is not directly implementable because it

depends on values available at time k. The implementable form of uk should be a

function of values observable at time k-1.

Given equation (3.37) and expanding terms, the following expression is obtained:

() () 0112

ˆˆ2ˆˆ

1

11

=−+++−

++−+

+

++

kDkD
T

k

T
k

T
k

T
kk

T
kk

T
k

sKsKBU

BUBUAYAYAY kk
(3.39)

After substituting equation (3.8) into equation (3.39),

() () 0112ˆ

ˆ22ˆˆ

1

111

=−+++−+

++−+

+

+++

kDkD
T

k
T

k

T
k

T
kkk

T
kk

T
k

sKsK

y

BUBU

BUBUAYAY

k

k
(3.40)

After collecting terms in equation (3.40):

() () 1111 11ˆˆ2ˆˆ
++++ +−=−+++−+ kDkD

T
k

T
kkk

T
kk

T
k sKsKy kk BUBUAYAY (3.41)

Or explicitly, from equation (3.41) in terms of time k:

 39

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−−+

+

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+⎥
⎦

⎤
⎢
⎣

⎡
+
−

=

−−−−−

−−

D

k
T

k
T

kkDk

D

kT

k
D

kT
kk

K
sKy

K
B

K
s

1

ˆˆ12

1
ˆ

1
ˆ

11111

11

UBYA

UY
A

k

(3.42)

From equation (3.42), the following terms are defined:

⎥
⎦

⎤
⎢
⎣

⎡
+
−

= −

D
kA K1,

1kY
S

(3.43)

⎥
⎦

⎤
⎢
⎣

⎡
+
−

= −

D

k
kB K1

1
,

U
S

(3.44)

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−−+

= −−−−−

D

k
T

kk
T

kkDk
kf K

sKy
S

1

ˆˆ12 11111
,

UBYA

(3.45)

And from equation (3.15) and (3.16) define:

[] []1111
ˆˆ

−−−− ⋅++⋅= kkkkkk sAs YKYKA AA (3.46)

[]1, −⋅= kkS YKA A (3.47)

[]111,
ˆ

−−− ⋅+= kkkkf sYKAA A (3.48)

[] []1111
ˆˆ

−−−− ⋅++⋅= kkkkkk ss UKBUKB BB (3.49)

[]1, −⋅= kkS UKB B (3.50)

[]111,
ˆ

−−− ⋅+= kkkkf sUKBB B (3.51)

 40

Substitutions of equations (3.49) and (3.46) into equation (3.42), and use of definitions

(3.43), (3.44), (3.45), (3.47), (3.48), (3.50) and (3.51), result in the following expression:

() () kfkB
T

kfkSkkA
T

kfkSkk Ssss ,,,,,,, ++++= SBBSAA (3.52)

Or, rearranging equation (3.52):

[] kfkB
T

kfkA
T

kfkB
T

kSkA
T

kSk Ss ,,,,,,,,,1 ++=−− SBSASBSA (3.53)

Finally, solving for sk:

kB
T

kSkA
T

kS

kfkB
T

kfkA
T

kf
k

S
s

,,,,

,,,,,

1 SBSA

SBSA

−−

++
=

(3.54)

In the last equation, all the expressions in the right hand side are given by definitions

(3.43) - (3.51). All of these definitions are causal, i.e. they are functions of values

obtained at time k-1, and can be measured or calculated, and therefore can be

implemented on line. Using expressions (3.54), (3.49) and (3.46) the control action can

be calculated online using equation (3.12).

3.4 Avoidance of Division by Zero

In equation (3.12) there is a division by kb ,0
ˆ . This is an estimated parameter value, and

the Lyapunov stability criteria only guarantees that the estimate will converge for ∞→t .

However, during transients, this parameter estimate may reach a zero value. When the

parameter kb ,0
ˆ reaches a value of zero, numerical problems in calculating the next control

input will arise due to a division by zero in equation (3.12). To avoid the numerical

 41

problems if a division by zero is calculated all estimation values should be reset to the

last time step. For the algorithm considered in this work the values that would be reset

are 111 ,ˆˆ,ˆˆ
−−− === kkkkkk uuBBAA and 1−= kk ss .

The question for stability considerations is whether the situation that leads to a division

by zero error will occur for two or more time intervals, that is:

[] [] 0ˆˆ
110,0,110,0, =++= −−−− kkBkkBkk suKbuKsb (3.55)

If 11
ˆ,ˆ

−− kk BA and 1−ks and therefore 1−ku are held constant then the only variable in equation

(3.55) that can change from one interval to the next is ks .

According to equation (3.54):

βα += kk ys (3.56)

Whereα and β are functions of the variables 11
ˆ,ˆ

−− kk BA , 1−ks and yk is the observed output

at time k.

Then, it is obvious that for 0,
ˆ

kb to remain zero, it is necessary yk or sk remain constant

from interval to interval. However it is clear that in a dynamic system, yk will change

with time. Even in the case that the system is at steady state, yk will always be corrupted

by random measurement error and therefore will change. Thus, equation (3.55) will not

occur for an infinite number of consecutive time steps. Consequently, Lyapunov function

 42

will eventually continue to decrease towards the origin corresponding to convergence of

the parameters to their actual values and convergence of the feedback error to zero.

3.5 Parallels with PI Control

In this section, the similarities between the controller algorithm proposed in this study

and conventional PI controllers will be explained.

A conventional discrete PI controller has been given in the literature (e.g. Seborg, Edgar

and Mellichamp,1989), as follows:

() ()zE
z

tKzU
I

C ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
−

∆
+= −11

11
τ

(3.57)

The control law consists of a proportional term, ()zEKC and an integral term,

()zE
z

t

I
⎟
⎠
⎞

⎜
⎝
⎛
−

∆
−11

1
τ

. The similarities between the controller presented in this section and a

PI controller may be established by inspection of equation (3.12) as follows:

()() 1
,0

ˆ1ˆˆ −⋅−+−−= kkD
old
k

Told
kk

T
kspk bsKyu UBYA

The term () 1
,0

ˆ1 −⋅− kkD bsK is equivalent to a nonlinear proportional action because kb ,0
ˆ is

a function of ks . The term old
k

Told
kk

T
kspy UBYA ˆˆ −− represents the prediction error, which

fulfills the function of an integrator as shown in the sequel. The estimates update

equation, (3.15):

 43

()111
ˆˆ

−−− ++= kkkAkk ssYKAA

This equation can be represented as a z-transform as follows:

() () ()[]111 ,,
1

1ˆ
−−− ⋅

−
= kkk ssfZ

z
z YKA A

(3.58)

Thus, Â is the integration of a non-linear function of kk s,1−Y and 1−ks .

 44

4 Theory and Methods

One of the significant features of dual control is the combination of cautious control with

some form of probing. As discussed in section 2.2.3, cautious control reduces the

aggression of the feedback law to take into account the uncertainty and the noise in the

system, and the probing capability refers to the addition of an excitation signal to the

control action to ensure the convergence of the parameter estimates. In most dual control

studies the control action, which includes the excitation signal for probing, is designed

where the adaptation gains are selected ad-hoc, or rules of thumb are used to achieve

optimal control performance. For this work, the amount of excitation or probing will be

considered to be fixed, and it is contained in the reference signal. On the other hand, the

adaptation gains BA KK and are used to adjust the rate of adaptation. Selecting a high

value for the adaptation gains will tend to speed adaptation, while causing the estimates

to be more sensitive to measured noise. The filtered error gain, DK , determines the

system response to sk. The trade-off between cautiousness and probing in this work will

be achieved by adjusting the adaptation and filter gains in an attempt to balance between

adaptation speed and fast oscillations that may be caused by aggressive adaptation in the

presence of noise and model uncertainty.

 45

4.1 Tuning using tracks

4.1.1 Rational

The stability proofs for the discrete adaptive controller developed in section 3.2, as well

as other adaptive control methods in the literature, require that the tuning parameters be

constant with respect to time. Thus, on-line tuning of the parameters is, in principle, not

allowed. However, multiple simultaneous estimations of the plant model parameters can

be calculated with the same input-output data but different tuning parameters. In this

chapter a method for switching parameters for the purpose of tuning the controller is

developed. Each of these simultaneous calculations will be referred to as an estimation

track. At any given time interval, one of the estimation tracks is selected, where the

criteria for selection is as discussed in section 3.2. It will be shown in the next section,

that stability and convergence properties can be still maintained using this method of

switching between estimation tracks. Then, the values of the plant model parameter

estimates, and the filtered error, ks in the selected estimation track can be used to

calculate the control action. For conventional adaptive controllers reported in the

literature, the probing element of the controller is introduced in the control action. Thus,

tuning is difficult in these circumstances because alternative tuning parameters, and

hence control actions cannot be simultaneously calculated and independently

implemented.

 46

4.1.2 Stability of Estimation Tracks

In this section the stability of the proposed tuning method is explained. For each

estimation track, the estimate is guaranteed to be stable and converge only if the tuning

constants, DBA KKK and , , are constant with respect to time. When a new track is

deemed to be the best according to an optimisation criteria, the parameter estimates

kk AB ˆ and ˆ and the filtered error sk are reset to the values corresponding to the new track.

As a result of this, at each time step this switch can cause a local increase in Lyapunov

energy. As an example refer to the jump in Lyapunov energy between letters ‘A’ and ‘B’

in Figure 4.1. In this figure the curves labelled ‘1’ through ‘5’ refer to the energy of the

tracks corresponding to the parameter sets []1,1,1, ,, DBA KKK through []5,5,5, ,, DBA KKK

respectively. Despite the possibility of temporary jumps in Lyapunov energy all the

tracks eventually converge, as shown in Figure 4.1. Thus overall stability, i.e. decrease

of the Lyapunov function is obtained although temporary increases in this function may

occur.

Figure 4.1: Lyapunov energy of each estimation track with the current value superimposed

1

2
3
4
5

A

B

Time

Ly
ap

un
ov

 F
un

ct
io

n

 47

Also, in section 3.4 a method for avoiding numerical problems caused by division by zero

was given where all estimation values are frozen until a non-zero estimate of kb ,0
ˆ can be

found. When multiple tracks are used as explained above, if at least one track has an

estimate for kb ,0
ˆ that is non-zero, then the tracks with a zero estimate can be temporarily

excluded for consideration for use in designing the control law, at that specific interval.

Only if all tracks have an estimate of zero for kb ,0
ˆ , then all estimates must be frozen. It

should be remembered that the condition for a zero estimate of kb ,0
ˆ to be calculated for

two or more intervals is that yk or equivalently sk remain constant from interval to

interval. However as explained in section 3.4, this will never happen because either the

system will be transient, i.e. yk will change, or yk will be corrupted by measurement

noise. For this analysis a first order system has been considered, but for a higher order

system, there are more parameters in the condition equation which must match between

tracks, making the problem of having all estimates for kb ,0
ˆ remaining at zero even more

remote.

4.1.3 Set selection

Each track has a combination of values for DBA KKK and , . There are n tuneable values

in ,AK m tuneable values in BK and DK is scalar, for a total of n+ m + 1 tuneable

parameters. The parameter sets to be considered are selected to cover the range of likely

 48

‘good’ tuning parameters. An example of computer code for the set selection is given

below:

for a = 0 : (tracks_to_check - 1)
 for b = 0 : (tracks_to_check - 1)
 for d = 0 : (tracks_to_check - 1)
 set_number = set_number + 1;
 set(:,set_number) = [(a*4 + 1) / tracks_to_check);
 … (b*4 + 1) / tracks_to_check);
 … (d*4 + 1) / tracks_to_check)];
 end
 end
end

(4.1)

This code selects parameters on a grid, evenly spaced between values of 0 and 4,

excluding these values. To select the range of parameters, some a priori knowledge of

the approximate values of the model parameters is required, e.g. an approximate value for

the time constant for the system. The amount of computational resources available will

influence how good this a priori knowledge needs to be.

4.2 Track selection methods

Ideally, the track with the lowest Lyapunov energy should be selected, but to calculate

the Lyapunov function the true values of the plant model parameters have to be available.

Since the parameters are not known, the Lyapunov energy cannot be calculated online.

In the following sub-sections two methods are discussed to select the proper track. The

Bicriteria method attempts to identify the track with the lowest expectation for prediction

and feedback errors. The second method is based on an LMI formulation that finds the

worst case scenario in the range of expected model error or uncertainty for each track.

The track with the lowest ‘worst-case’ score is used.

 49

4.2.1 Bicriteria Method

The bicriteria error function used by Filatov (Filatov et. al., 1997), given before as

equation 2.30, is repeated below, in terms of the variables used in the method described

in this work:

[]{ }

⎭
⎬
⎫

⎩
⎨
⎧

ℑ⎥⎦
⎤

⎢⎣
⎡ −−=

ℑ−=

+

++

kk

T

kk

T

kk
a
k

kkksp
c
k

UBYAyEJ

yyEJ

|ˆˆ

,|
2

1

2
11,

(4.2)

These two terms represent the expectations of the feedback or short-term tracking error

and the prediction or long term error respectively. Minimising the error is good for short

term purposes; however, if the error is small, learning of the model will be slower and

therefore the prediction error will be larger which is detrimental in the long run. The key

advantage of using the bicriteria cost functions is that they explicitly describe the trade-

off between short and long-term performance that is required in the design of any

adaptive controller. An adaptive controller that produces a sequence of control actions

that produce the minimum possible value for the combined bicriteria cost functions is

referred to as an optimal controller in the literature. It was mentioned in section 2.2.4

that an analytic solution of the optimisation of (4.2) is not possible for most systems.

Thus, most adaptive control methods focus on suboptimal control; where the control

sequence used gives good performance, but not necessarily the best possible

performance. For the estimation track tuning method proposed in this work, a finite set

of valid tuning parameter combinations is considered, and hence a finite set of valid

control actions at any given time interval can be calculated. The set of all valid control

 50

actions does not include all possible control actions. Thus this estimation track tuning

method is expected to be suboptimal.

4.2.1.1 Method

The bicriteria cost functions are an expectation of the value of the feedback and

prediction errors at the next time step. For this work this expected value is calculated by

simulation. The initial value of the plant parameters is taken on a grid to cover the range

of uncertainty in the estimates, and weighted by the likelihood that the estimate is the

correct one.

The filtered error, ks can be used to measure the uncertainty in the estimated values of the

parameters. The ‘energy’ or root-mean-square of recent values of ks will be used as a

basis for the calculation of the confidence interval of the parameter estimates. In this

work a periodic excitation signal of square wave type has been used. Most adaptation

occurs when the excitation signal has large jumps, i.e. at the end of the period, so the time

to consider for calculations will be one period for the excitation signal, as follows:

()
5.0

12 1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ −

−=
∑ ps

k

pki
ik

Where p is the period of the excitation signal used.

(4.3)

The simulation is initialized with an estimate of the plant parameters. The initial values

are chosen on a grid with the current estimate values at the centre, and the corners are

 51

chosen to be, e.g. for a first order system, all the combinations of

,ˆ kk Ma ∆± ∆ kk Mb ∆± ∆
ˆ . A section of code used to select the points on the grid follows:

for a = 1:(points*2+1)
 for b = 1:(points*2+1)
 sim_set(1,a_num) = DeltaK(k,i)*(2*((a-1)/(points*2))-1);
 sim_set(2,a_num) = DeltaK(k,i)*(2*((b-1)/(points*2))-1);
 a_num = a_num+1;
 end
end

(4.4)

A simulation is performed for each point in the simulation set, and a predicted bicriteria

score is calculated. To calculate the overall score for each estimation track, the weighted

sum of all the scores of the simulation runs (i.e. a total of (number of samples for each

parameter)^2 for a first order system) is used. Each score is weighted by the likelihood

that the corresponding simulation used the true parameters. For this calculation k∆ is

assumed to be proportional to the standard deviation. The range of parameters used in

the calculation is equal to .kM ∆∆ Where ∆M is the number of standard deviations to

consider and is referred to as the uncertainty bounds. Thus, the overall score is calculated

by multiplying the vector of simulation scores that use the parameter estimates in

equation (4.4) by the vector of weights given in equation (4.6), as follows for the jth

estimation track:

() ()() weightjsetsimscoresimjscore T *__= (4.5)

The values for kkk sBA and ˆ,ˆ are resetted to the values corresponding to the estimation

track with the lowest score. A section of code follows:

for a = 0:(points*2)
 for b = 0:(points*2)
 it = it + 1;
 weight(it) =
 … normpdf(2*(a/(points*2) - 0.5)*mult,0,1)*

(4.6)

 52

 … normpdf(2*(b/(points*2) - 0.5)*mult,0,1);
 end
end

4.2.1.2 Results (simple example to illustrate method)

A simple example in this section is used to illustrate the bicriteria track selection method.

The system used is as follows:

()005.0,05.01.11 Nuyy kkk ++=+ (4.7)

This represents a first order and open loop unstable system, with Gaussian noise centred

at zero and a standard deviation of 0.005 added. At time interval 50, b is increased from

0.5 to 0.6 to test the response of the adaptation method to a time varying parameter step

change.

 53

0 10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ar

am
et

er
 V

al
ue

Time Interval

Tuned
Arbitrary
True Values

Figure 4.2: Parameter estimates for the default and tuned adaptive controller

In Figure 4.2 above the parameter estimates are compared for the controller tuned with

the bicriteria method and a controller with arbitrarily selected parameters Ka and Kb equal

to 1. The combined bicriteria error score is 0.254 for the system tuned with the bicriteria

method and 0.290 for the default system. The computation time is 10.9 seconds for the

bicriteria method and .03 seconds for the default system. Thus an improvement in score

is achieved but at the cost of significant increase in computation time. In Figure 4.3, the

track selection is indicated. The system tuned with the bicriteria method tends to select

an aggressive value for Kb, and a more cautious value for Ka. In this example the initial

error in the estimate of b is much larger than for a, so this tuning selection result makes

 54

sense. The oscillations for the estimates of b in the tuned system in Figure 4.2 are a

consequence of the use of an aggressive adaptation gain.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

Time Interval

Tu
ni

ng
 C

on
st

an
t V

al
ue

Ka
Kb
Default

Figure 4.3: Estimation track used at each time interval, given by tuning constants

4.2.2 Linear Matrix Inequalities

Using the bicriteria cost function, an optimisation cost is constructed to identify the

estimation track which is expected to offer the best performance at that time interval.

The downside of that method is that when the parameter estimates are not close to their

true values, or the disturbances are significant, the predictions will be inaccurate and that

selection criteria can result in selecting an estimation track with poor performance. For

 55

the LMI method the goal is to test the performance for all possible parameter

combinations in the range of parameter uncertainty considered for calculation. This is in

contrast with the bicriteria method, where only a finite number of combinations of

parameters are considered. It should be noted that the performance score for the LMI

method is not weighted by how likely that combination of parameters to occur is,

whereas for the bicriteria method the expected performance for the current parameter

estimates is weighted the highest.

4.2.2.1 Method

The LMI (Linear Matrix Inequality) formulation used in this method is derived from a

test previously used for robust control design, where the norm of the error in the output

can be bounded by the damping ratio, γ, times the norm of the input vector ν which in

this work corresponds to set-point changes to the process, as follows:

22
ve γ< (4.8)

The LMI based test, to be used in this method, requires a system in the form of a linear

nominal model with a model uncertainty description given as follows:

[] kknnk νδδ BηAAAη ++++=+ L1101
where,
{ }nδδ L1 are the set of uncertainties to consider. In this work

{ }nδδ L1 represent the elements of { }Dkk ∆,~,~ BA , D∆ is the
amplitude of dk, a disturbance

(4.9)

Equation (4.9) can be represented as a time varying linear system, as follows:

 56

nnk

kkkk

where
δδ

ν

AAAA

BηAη

+++=

+=+

L110

1 ,

(4.10)

The adaptive controller used in this work is non-linear based on the parameter estimation

algorithm (equations (4.18) and (4.19)), where states are multiplied together, and the

control action algorithm (equation (4.16)), where there is a division by kb̂ . Also, the

closed loop model is nonlinear with respect to the disturbance. As shown in the literature

(Liu, 1968), a nonlinear system can be bounded by a set of time-varying linear systems.

Thus, Liu showed that if the family of linear time invariant systems satisfy certain

stability and performance tests, the original nonlinear system is also guaranteed to satisfy

these properties. The general nonlinear system representing the model with the adaptive

control algorithm is given as follows:

()
()
()
()

[] [] []DDkkkk

,,,,1,

,,,,1,

,,,,1,

,,,1,

,-,b,b-~,a,a-~
,,,,,ˆ,~,ˆ,~,,,ˆ
,,,,,ˆ,~,ˆ,~,,,ˆ

,,,,,ˆ,~,ˆ,~,,,

,,ˆ,~,ˆ,~,,

∆∆∈∈∈

=

=

=

=

+

+

+

+

kkk

DBAkkkikkikikspkiki

DBAkkkikkikikspkiki

DBAkkkikkikikspkiki

kkkikkikikiki

d

kKsdyyh

kKsdyyg

kKsdyyfs

ksdyey

δδδδ BA

KKBBAAB

KKBBAAA

KKBBAA

BBAA

(4.11)

In this work

krefy ,=ν (4.12)

The actual values of kk BA ~,~ and kd are not known, but upper and lower bounds are

known. As an example, the specific equations used to find ii gf and for a first order

system are shown, as follows:

 57

kkkk dubyay +⋅+⋅=+1 (4.13)

The plant model including the disturbance is given in equation (4.13). The parameters a

and b are unknown, but the uncertainty in the current estimate for those values can be

estimated. Thus equation (4.13) can be represented as follows:

() () kkkkkkkk dubbyaay +−+−=+
~ˆ~ˆ1 (4.14)

The reference model, with time constant dτ , used to calculate the set-point, ,1+sp,ky from

the reference signal, yref,k, is as follows:

() krefdsp,kdsp,k y- y y ,
11

1 1 −−
+ +⋅= ττ (4.15)

The input signal uses the current observed state, the current set-point, the current filtered

error, sk, and the current values of the parameter estimates kk ba ˆ and ˆ as follows:

()() 1
,

ˆ1ˆ −−++−= kkDkspkkk bsKyyau (4.16)

The next value of the filtered error is calculated by the following set of equations:

()

D

k
B

D

k
A

D

kDkkkkk
f

kBS

kkBkf

kAS

kkAkf

K
u

S

K
y

S

K
sKubyay

S

uKB

suKbB

yKA

syKaA

+
−

=

+
−

=

+
−+−−

=

=

+=

=

+=

+

1

1

1
1ˆˆ2

ˆ

ˆ

1

Which all combine to form:

 58

SBSA

fBfAf
k BSAS

BSASS
s

−−

++
=+ 11

(4.17)

The update equations for 11
ˆ and ˆ ++ kk ba are:

11ˆ ++ ⋅+= kSfk sAAa (4.18)

11
ˆ

++ ⋅+= kSfk sBBb (4.19)

Equations (4.13)-(4.19) are combined using the Matlab symbolic manipulation package

and put in terms of observable and measurable variables, such as kspkkkk ybasy ,,ˆ,ˆ,,

together with the uncertain but bounded variables kkk bad ~ and ~, to give the following

equations for : and ,, iiii hgfe

()() k,,kkksp,1, dˆ1yâ-ya +−++=+ kikiDkki bbsKyy (4.20)

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Θ
+++

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Θ
+Θ

−+−−+Θ+

=+

2
,

2
2

k

,

,

,
,

,ki,ksp,
,

1,

ˆy1

ˆ

ˆ
ˆ

ây2ˆ22

ki

B
AD

ki

ki

kiB
ki

kikAkk
ki

k

ki

b
K

KK

b

b

sK
b

syKyd
b
bay

s

(4.21)

 59

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Θ
+++

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Θ
+Θ

−+−−+Θ+

+=+ ki

ki

B
AD

ki

ki

kiB
ki

kikAkk
ki

k

kA s

b
K

KK

b

b

sK
b

syKyd
b
bay

yK ,

2
,

2
2

k

,

,

,
,

,ki,ksp,
,

ki,1ki,

ˆy1

ˆ

ˆ
ˆ

ây2ˆ22

ââ

(4.22)

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Θ
+++

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Θ
+Θ

−+−−+Θ+

Θ+=+

ki

ki

ki

B
AD

ki

ki

kiB
ki

kikAkk
ki

k

Bkiki
b

s

b
K

KK

b

b

sK
b

syKyd
b
bay

Kbb
,

,

2
,

2
2

k

,

,

,
,

,ki,ksp,
,

,1, ˆ

ˆy1

ˆ

ˆ
ˆ

ây2ˆ22

ˆˆ
(4.23)

With

() kiD sK ,kki,ksp, 1yâ-y: −+=Θ (4.24)

The states that are required for the LMI formulation are: kspkkkk ybasy ,,ˆ,ˆ,, which can be

represented altogether as

[]kspkkkkk ybasy ,,ˆ,ˆ,,=η (4.25)

As shown by Kothare et. al. (1994) the nonlinear system defined by equation (4.11) and

expressions for iiii hgfe and ,, as given above can be bounded by taking the Jacobian of

the system with every possible combination of upper and lower bound of the uncertain

variables, kkkd BA ~ and ~, . For kk BA ~ and ~ the magnitude of the uncertainty is ,k∆ that is

 60

calculated with equation (4.3) whereas the magnitude of the uncertainty for kdist is ,d∆

which is based on a priori knowledge about the disturbance’s magnitude. The family of

models defined by equation (4.10) can be viewed as a hyper-volume with vertices defined

by the combinations of the extreme values of the uncertainties k∆ and d∆ . As an

example, for a first order system, kd ∆∆ and are substituted for kkk dba and ~,~ in

equations (4.13) through (4.19) to calculate the ith vertex, as follows:

dkk

dkk

dkk

dkk

dkk

dkk

dkk

dkk

kkk distbai

∆+∆+∆+
∆∆+∆+
∆+∆−∆+
∆∆−∆+
∆+∆+∆−
∆−∆+∆−
∆+∆−∆−
∆−∆−∆−

8
_7

6
_5

4
3
2
1

~~

(4.26)

The Jacobian of the function if in equation (4.11) is taken with respect to the vector of

states, kη and the input, kν , for each combination of uncertainties shown in (4.26), as

follows:

() ()[]

[] ()[]

0,1

,

1
,

1
,

,
1

>=

=

=⎥
⎦

⎤
⎢
⎣

⎡
∂

∂

∑

∑

=

=

+

αα

δα

δ
δ

L

i
ki

ii

L

i
kik

iik
k

ik

AA

A
η

η

(4.27)

Each set of matrices ()[]iik δ,A is the ith vertex of a polytope of matrices, where the

nonlinear system at time k, can be represented as a linear combination of the vertices of

 61

the polytope of matrices, with the weights ki ,α .The overall closed loop system equations

are then given as follows:

()

[]
[]
[]
[]
[]0

10001
10000

ˆˆ

known is

1

,

,

0

,1

=
−=
−=

=

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−

+

D
C
B

η

η

η
DC
BδAη

T
d

krefk

kspkkkkk

k

kiki

k

k

y

ybasy

e

τ

ν

ν

(4.28)

The values of ki ,α in equation (4.27) are related to the true values of kkk dba and ~,~ by a

simple linear transformation. The linear combination of the polytope resulting from

equation (4.27) is equivalent to the form required for a LMI in equation (4.10). As stated

above, if the set of linear time varying systems satisfy certain robustness properties, the

original non-linear system will also satisfy the same robustness properties. The LMI

formulation used to calculate a score for each estimation track is as follows:

{ }
()[]

() () ()
()

{ }

{ }()trackDBAkkkk

trackDBA

TT
i

T

TT
ii

T
i

trackoptimal

Kuybavfe
v
e

and
Ktrack

where

ts

MinMin

,,,,,ˆ,ˆ,,

,
,,set by the defined is

,

0

..

1
2

2

2

KK

KK

IDC
DIPBBδPAB
CPBδAPδPAδA

−

∆

=>

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

=

γ

γ

γγ

(4.29)

 62

Because each element in the linear matrix inequality is either linear or quadratic with

respect to the parameters δ’s , the space considered for the optimization in equation

(4.28) is convex with respect to these uncertainty parameters. Hence, it is sufficient to

satisfy the test in equation (4.28) only at the vertices of the polytope of matrices.

The value of γ calculated for each estimation track is the minimum damping ratio which

satisfies the general eigenvalue problem (GEVP) over the entire range of parameter

uncertainties and disturbances considered. This γ is the worst case performance over the

range of models considered for each track. The estimation track selected is the one which

has the lowest value of γ over all the tracks considered.

A first order system has one equation for the output, xk, one for the filtered error, ks , one

for each of the parameters estimated, ,ˆ and ˆ kk ba and one for the reference

model, ,,kspy for a total of five dynamic states in the system. In a general high order

system there will be 2n + 2m + p states involved, where n is the order of the system with

respect to the past outputs, m is the order with respect to the inputs and p is the order of

the reference model. Each estimated parameter in the vectors kk BA ˆ and ˆ has an error

associated with it, along with the disturbance, dk, which adds one dimension to the LMI

formulation. There are a total of n + m + 1 variables with uncertainty, which require a

total of 2(n + m + 1) vertices to represent the non-linear system of equation (4.11) by a set of

linear models as required for the LMI formulation.

The Jacobian at each vertex is calculated using the equation (4.27), as follows:

 63

()

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂
∂∂∂∂∂∂∂∂∂∂

=

+++++

+++++

+++++

+++++

+++++

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

iik

refrefsrefbrefarefxref
refsssbsasxs
refbsbbbabxb
refasabaaaxa
refxsxbxaxxx

11111

11111

11111

11111

11111

,

ˆˆ

ˆˆ

ˆˆˆˆˆˆˆ
ˆˆˆˆˆˆˆ

ˆˆ

δA

(4.30)

This results in a set of equations for ()[]iik δ,A , in terms of variables that can be observed

or calculated. These equations are implemented in a Matlab function that takes the

parameter estimates, past input and output data, sk, the reference model, and the

uncertainties for one vertex as inputs, and returns the matrices ()[]iik δ,A corresponding to

the vertex considered. An example of one vertex is as follows:

()[] ()111, ,,,,,,,,ˆ,,ˆ −−−∆+∆−∆−= kkkkkspdkkkkiik ssuyyybavertexδA (4.31)

Each vertex contributes to the general eigenvalue problem, an inequality of the following

form:

() () ()
() 02 <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

IDC
DIPBBδPAB
CPBδAPδPAδA

TT
i

T

TT
ii

T
i

γ

(4.32)

With the vertices ()[]iik δ,A calculated with (4.31). The resulting general eigenvalue

problem in equation (4.29) is evaluated using the Matlab function ‘gevp’, which returns

the best value of γ. The value of γ returned for each track indicates the expected worst-

case possible performance within the range of parameter uncertainty used for the

calculation. The track with the lowest value of γ is expected to have the best robust

 64

performance out of all the tracks considered, and thus the variables kkk sba and ˆ,ˆ are reset

to the values corresponding to this track.

With the LMI method, an individual formulation may have a result that is returned as

‘infeasible’, which implies that no upper bound can be found for γ with that particular

estimation track, for that time interval. Estimation tracks for which this result is obtained

are excluded from consideration when they have an ‘infeasible’ score. If all results are

‘infeasible’ then a track with associated default tuning parameters a priori selected should

be used. This tends to happen for the first few time intervals until sufficient data is

available to get a reasonable estimate for the parameter estimates with corresponding

small uncertainty values.

4.2.2.2 Results

The LMI method has the potential to identify performance problems along the entire

parameter space, whereas the bicriteria method studies the performance for a small

number of points in the parameter space. Therefore it is expected that for non-linear

systems, if the model includes a large number of parameters, there can be large

performance variations within the parameter space considered that will not be accounted

for by the bicriteria method. This situation will be clearly illustrated in chapter 5. In the

remainder of this chapter, a simple example that demonstrates the method is given. The

example system used for the LMI method is the same as the one used to demonstrate the

bicriteria method, as given in equation (4.7) with default tuning parameters set to KA = 4,

KB = 0.25 and KD = 1.

 65

0 10 20 30 40 50 60 70
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time Interval

P
ar

am
et

er
 V

al
ue

Tuned
Arbitrary
True Values

Figure 4.4: Parameter estimates for the default and tuned adaptive controller

In Figure 4.4 the parameter estimates are compared for the controller tuned with the

bicriteria method and a controller with arbitrarily selected parameters Ka and Kb equal to

1. The actual value for γ is 0.0231 for the system tuned with the LMI method and 0.0385

for the system with arbitrarily selected parameters. The computation time is 795 seconds

for the LMI method and 0.016 seconds for the default system. Thus, although the LMI

method leads to improvement in control performance, it requires a large amount of

computation time. Hence, it would only be considered for cases where there is a clear

performance advantage over other tuning techniques, such as the bicriteria method. The

LMI method is design to select the most robust estimation track. It is possible to find sets

 66

of tuning parameters that perform better than the LMI selected tracks for the specific

system and noise set used, but there is no way to determine what these estimation tracks

are a priori.

In Figure 4.5 the parameters selected at each interval corresponding to different tracks are

indicated. The LMI method, when used for a simple linear system, tends to switch the

estimation track more often than when using the bicriteria method.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Time Interval

Tu
ni

ng
 P

ar
am

et
er

 V
al

ue

Ka
Kb
Default

Figure 4.5: track used at each time interval, given by tuning constants

With the LMI selection method there is a significant amount of overlap in the parameter

space considered for each estimation track, as illustrated in Figure 4.6. For example, with

 67

a first order linear system the performance score changes slowly with changes in the

estimated parameters. Hence, the worst case performance calculated (i.e. the score

calculated for γ) shows minor variations between the estimation tracks, and small

changes in the noise and estimations can lead to frequent changing of the track. Also, the

LMI method tends to select a more conservative set of tuning constants. This can lead to

slower adaptation, but there is less of a risk of inducing a large error through high

frequency oscillations due to overly aggressive tuning.

Figure 4.6: Overlap in parameter space for two tracks in the LMI method

kâ

kb̂

k∆

2,2,
ˆ,ˆ kk ba

1,1,
ˆ,ˆ kk ba

Track 1

Track 2

Overlap

Parameter Space

 68

5 Results

In this section results obtained for systems of first and higher order than one, the effect of

tuning based on the performance tests presented in Chapter 4, and the behaviour of the

adaptive controller in the presence of deterministic disturbances will be presented. First

the BC and LMI methods will be examined in detail. The two tuning methods will be

compared with a system tuned with arbitrarily selected parameters for the following

cases: a first order system with white noise disturbances, a first order system with a

deterministic disturbance, and for a higher order system. The BC and LMI tuning

methods will also be compared with a traditional adaptive control method, the Recursive

Least Squares (RLS) algorithm. The following first order system will be used for the

comparisons:

{ }

() ()005.0,0,75.0,1
2001506.0

1505.0

20010095.0
10005.1

200,,1

1

1

Ndd
k

k
b

k
k

a

k
where

xy
ubxax

kkk

k

k

kkk

kkkkk

∈=+−=
⎩
⎨
⎧

≤≤
<

=

⎩
⎨
⎧

≤≤
<

=

∈

+=
+=

−

+

ββηβη

η

L

(5.1)

It is assumed that during operation, this process undergoes a step change in each of the

model parameters, a and b. The system given by equation (4.2) is open-loop unstable for

the first 100 time intervals, and open-loop stable for the last 100 time intervals. The

measurement noise is low-pass filtered, as noise near or above the Nyquist frequency of a

discrete type system cannot be dampened effectively due to aliasing.

 69

5.1 Bicriteria Tuning (BC) Method

For the BC tuning method the number of estimation tracks, the number of simulation

tracks used for each estimation track, the simulation time horizon, and the ranges of

uncertainty in the model parameters to be considered in the simulations have to be all set

a priori. These factors, especially the first three, have major impact on the computation

time required. The effect of all these factors has been investigated and the results are

summarized in the following subsections. When each one of these factors is individually

investigated, the other factors are set at the default values as follows: 28 estimation

tracks, 49 simulation tracks, a simulation time horizon of 2, and an uncertainty bounds

multiple, ,∆M of 2. The uncertainty bounds multiple is a scalar that defines the amount

of model parameter uncertainty for each parameter. For example, for a model parameter

a, the range of uncertainty in this parameter is defined as follows

[]kkkk MaMa ∆+∆− ∆∆ ˆ,ˆ

5.1.1 Estimation Tracks

In Figure 5.1, the effect of the number of estimation tracks used is examined. It should

be recalled that the estimation tracks are distributed according to the code given in

equation (4.1), which is a multidimensional numerical grid, with one dimension per

tuning parameter considered, and a total of () 1k_points 1 +++mn estimation tracks used,

where n is the order of the input, m is the order of the output, one adaptation gain per

 70

parameter to be estimated and the filter gain KD, for a total of n+m+1 tuning parameters.

The tuning parameters are selected to be evenly spaced in a fixed range ()4,0 thus, as the

number of tracks is increased the spacing between the tuning parameter values associated

with the estimation tracks becomes smaller.

It should be remembered that the excitation signal is given by the time-varying set-point;

in this work a periodic signal with a period of 20 intervals is used. The diamonds in

Figure 5.1 indicate the error in the system when the simulation score, as represented by

the value of the BC cost function in equation 2.30, is used at each time step and the X’s

indicate the error in the system when the simulation score results are averaged over one

excitation period. Both ways of taking into account the scores, i.e. by considering the

instantaneous score or the average score, have similar results for up to 28 estimation

tracks. Beyond this number of estimation tracks the differences between tuning

parameter sets associated to the different tracks are becoming small, and differences in

scores corresponding to the different tracks are very sensitive to measurement noise.

Between step changes in the square wave excitation signal, i.e. during periods when the

excitation signal is constant, the simulation scores are very strongly affected by

measurement noise because there are no significant input changes to drive the adaptation

process. Thus, the best track, i.e. the track with the lowest BC score, will change

frequently, even if the true best performing track does not. The true best performing

track is referred to the one that would be selected if one had perfect knowledge of the

model parameters and disturbances and consequently will result in the lowest BC score.

By averaging the simulation scores over one excitation period, the random effects of

measurement noise can be reduced, at the cost of a slower response to a change in model

 71

parameters. The computation time is proportional to the number of tracks used, which

results in a rapid increase in computation time beyond a small number of estimation

tracks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 9 28 65 126 217

Estimation Tracks

Er
ro

r S
co

re

0

5

10

15

20

25

30

35

40

45

50

Ex
ec

ut
io

n
Ti

m
e

Error Error - Averaged Time
Figure 5.1: Effects of the number of estimation tracks on BC performance

5.1.2 Simulation Tracks

In Figure 5.2, the effects of varying the number of simulation tracks used to predict the

bicriteria error for each of the estimation tracks are examined. It should be remembered

that each track is associated to a specific set of tuning parameters. At any given interval

of time, certain values of model parameter estimates are computed with some

corresponding uncertainty in these parameters. Then the different simulations for that

track used a specific set of tuning parameters but are conducted for different

 72

combinations of model parameter values based on the calculated uncertainty in these

model parameters. Thus, the simulations use parameters in the range

[]kkkk MaMa ∆+∆− ∆∆ ˆ,ˆ and []kkkk MbMb ∆+∆− ∆∆
ˆ,ˆ where M∆ is constant.

The score corresponding to ‘1’ simulation track is equivalent to the certainty equivalence

(CE) principle found in the literature, where the current plant parameter estimates are

assumed to be the correct ones.

 Thus increasing the number of simulation tracks increase the density of the parameter

combinations in this range, but the overall range is constant. Almost all the benefit of

simulating different possible combinations of parameter uncertainty is realised by a

single layer of parameter values (i.e. 9 in Figure 5.2) combinations around the CE design

trajectory. Additional combinations do not improve the controller performance much in

terms of the error as shown in Figure 5.2. The computation time required is proportional

to the number of simulation trajectories used.

 73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 9 25 49 81 121 169 225 289 361

Simulation Tracks

Er
ro

r S
co

re

0

5

10

15

20

25

30

35

40

45

50

Ex
ec

ut
io

n
Ti

m
e

Error Time
Figure 5.2: Effects of the number of simulation tracks on BC performance

5.1.3 Simulation Horizon

In Figure 5.3, the effect of varying the number of time steps used for the calculation of

the bicriteria error for each one of the estimation tracks is examined. A simulation

horizon of ‘1’ uses only current time step values, and is equivalent to basing the selection

on the prediction error only, and not the feedback error. The reason for this is that the

feedback error is equal for all tracks at the current time step, so the only difference in the

calculation for the different tracks is in the prediction error, thus feedback error does not

contribute to the differences in the BC scores for track selection. Beyond 3 time steps the

uncertainty compounds to the point that the estimation track selection is not reliable, thus

performance is inconsistent for a simulation horizon of more than 3 time steps.

 74

The computation time changes corresponding to an increase in the number of estimation

tracks, the number of simulations tracks per estimation track, or the simulation horizon

compound with each other in an approximately multiplicative fashion (i.e. if each one of

the 3 factors is doubled, the overall computation time required increases approximately

by 8 times).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 10 13 17 20 25

Simulation Horizon

Er
ro

r S
co

re

0

5

10

15

20

25

30

35

40

45

50

Ex
ec

ut
io

n
Ti

m
e

Error Time
Figure 5.3: Effects of the simulation horizon on BC performance

5.1.4 Effect of the uncertainty bounds (M∆) on the simulations carried

out around each track

In Figure 5.4, the effects the uncertainty bounds, ,∆M are examined. The entry ‘0’

indicates that the only simulation track uses the CE assumptions, as per section 5.1.2.

 75

The entry ‘1’ uses all possible combinations of { } ˆ,ˆ,ˆ 3
1

3
1

kkkkk aaa ∆−∆+ and

{ }kkkkk bbb ∆−∆+ 3
1

3
1 ˆ,ˆ,ˆ as the initial values of the plant models for the simulation. For

the entry ‘2’, all possible combinations of

{ } ˆ,ˆ,ˆ,,ˆ,ˆ 3
2

3
1

3
1

3
2

kkkkkkkkk aaaaa ∆−∆−∆+∆+ and

{ }kkkkkkkkk bbbbb ∆−∆−∆+∆+ 3
2

3
1

3
1

3
2 ˆ,ˆ,ˆ,ˆ,ˆ are used, and for the entry ‘n’,

{ } ˆ,ˆ,ˆ 33 k
n

kkk
n

k aaa ∆−∆+ and { }k
n

kkk
n

k bbb ∆−∆+ 33
ˆ,ˆ,ˆ are used. This method gives an

indication of what the effect is of adding each additional set of simulation trajectories.

The plot indicates that the first layer of simulation tracks has a large effect on the system

performance. Additional layers do not have a significant impact on performance, but

they do add significant computation time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9

Layers

Er
ro

r S
co

re

0

5

10

15

20

25

30

35

40

45

50

Ex
ec

ut
io

n
Ti

m
e

Error Time
Figure 5.4: Effects of adding simulation layers on BC performance

 76

5.1.5 Conclusions for BC Method

With the BC method, some design factors need to be selected a priori. The number of

estimation tracks, the number of simulation tracks, and the simulation horizon are all

constrained by the computational resources. The tests above indicate that these three

factors are important up to certain small values, but beyond these values performance

improvements are relatively small. Moreover, in the case of the number of estimation

tracks, having too many tracks has been shown to be not useful because of sensitivity to

noise. In summary, the BC method can result in significant benefits with a reasonable

computational burden, in the range of 0.025 seconds of computation time per time step on

a 2 GHz PC (see Table 5.1).

5.2 LMI Configuration

For the LMI tuning method, the number of estimation tracks and the uncertainty

bounds, ,∆M have to be selected a priori. It should be recalled that the uncertainty

bounds are used when calculating the vertices of the polytope of the LMI system. The

effect of these two parameters on the controller performance has been investigated and

the results are presented in the following subsections. The system (4.2) is used, with

default values of 28 estimation tracks, and a multiplier of 2. When one particular

parameter is investigated the other one is kept at its default value. The system under

study is the one used for examining the configuration of the BC method in section 5.1,

above.

 77

5.2.1 Estimation Tracks

In Figure 5.5 below, the effect of the number of estimation tracks is examined. It was

found that the computation time required is proportional to the number of estimation

tracks, and is significantly larger than for the BC method, at approximately 90 seconds

per estimation track for a 200 time interval simulation (Table 5.1). Similarly to the BC

method, having a large number of estimation tracks can be counterproductive, as shown

in Figure 5.2 due to sensitivity to noise. Also, it was found that as the number of

estimation tracks is increased, the possibility of obtaining infeasible results will be

gradually reduced.

0

1

2

3

4

5

6

7

1 2 9 28 65 126

Estimation Tracks

Er
ro

r S
co

re
 [x

10
] /

 %
 In

fe
as

ab
le

0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

Error Feasible Time
Figure 5.5: Effects of number of estimation tracks on LMI performance

 78

5.2.2 Uncertainty bounds

In Figure 5.6 , the effects of the multiplier ,∆M used in the calculation of the uncertainty

bounds as given by equation (4.3), are studied. The performance effect is small until a

threshold is reached, where the number of ‘infeasible’ results increases rapidly. If an

estimation track has an ‘infeasible’ result, it cannot be evaluated and thus selected at that

time step, even if it would be the true best performing track. The true best performing

track is referred to the one that result in the smallest value of gamma if all model

parameters and disturbances are perfectly known. There is only a small effect on the

computation time. Unlike the BC method, the MatLab LMI solver is iterative, thus the

same number of LMI solutions can take differing amounts of computation time.

0

1

2

3

4

5

6

7

0.01 0.1 0.25 0.67 1 1.5 2 3 4 5

Multiplier for ∆k

Er
ro

r S
co

re
 [x

10
] /

 %
 In

fe
as

ab
le

0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

Error Feasible Time
Figure 5.6: Effects of the multiplier for ∆k on LMI performance

 79

5.2.3 Conclusions for LMI Method

For the LMI method the design parameters that need to be selected a priori are the

number of estimation tracks and the uncertainty multiplier ,∆M . For the first order

linear system under investigation it was found that the multiplier that determines the

uncertainty bounds only has a significant detrimental effect beyond a value that is large

enough to cause an increase in ‘infeasible’ optimization results. Similar to the BC

method, an intermediate range of estimation tracks is ideal. For a first order system with

a grid distribution as used in (4.2) 9 to 28 estimation tracks resulted in the best

performance. For the best range of estimation tracks each step requires approximately 12

seconds per time interval (Table 5.1). For higher order systems the number of parameters

to be estimated increases along with the adaptation gains to be tuned. The dimension of

the matrix used in the LMI increases with the states of the closed loop system and the

number of estimation tracks increase exponentially with the number of adaptation gains.

Thus the LMI evaluation time is longer and more evaluations are required, resulting in a

very large increase in computation time. In an extreme case, the LMI track selection can

be performed once per cycle of the excitation signal, which is the external reference

signal with a period of 20 time intervals in this work.

5.3 Tuning Method Comparison

In this section the performance and computation time of the LMI and BC tuning methods

are compared. Several simulations conducted with arbitrarily chosen tuning parameter

 80

are also included to demonstrate the importance of systematic selection of the adaptation

gains. Without sufficient a priori knowledge the only way to evaluate the adaptation

gains online is through tuning. The systems used for comparison are; i- first order with

Gaussian measurement noise, ii- second order with Gaussian measurement noise, and iii-

first order with an unmeasured deterministic disturbance. The same random seed for

Gaussian noise is used for each simulation.

5.3.1 First Order

The system given in (4.2) is used, along with the default configurations given in sections

5.1 and 5.2 for the BC and LMI tuning methods respectively. Two simulations with

arbitrarily selected parameters are included in the comparison, one that performs well,

and one with poor performance. The control performance measured by either the

bicriteria error score or by the true value for spγ as defined by the inequality

spspsp yyy γ<− used by the LMI method and the execution time for each method are

summarized in Table 5.1. For the LMI method, 99.89% of the calculations returned a

‘feasible’ result, or equivalently only 6 ‘infeasible’ results were evident.

It should be emphasized that for the simulations based on arbitrarily selected tuning

parameters, the performance can be better or worse by chance, as compared to the tuning

parameters systematically selected by the BC or LMI methods as shown in Table 5.1. The

BC tuning method requires, as expected, significantly more computation time than the

simulations using arbitrary tuning parameters. The LMI method provides the best

 81

performance but at the cost of an extremely high computation time. The plant simulation

for all four trials are identical, thus the increase in computation time is almost entirely the

result of the track selection method.

Method Error Score spγ Execution Time (s)

Arbitrary tuning 1 0.335134 0.008489 0.016

Arbitrary tuning 2 0.885266 0.018235 0.015

BC Tuning 0.325586 0.008744 7.08

LMI Tuning 0.277526 0.007469 3449

Table 5.1: Test results for a linear first order system

The overall system response is plotted in Figure 5.7 along with a detailed section of this

later figure shown in Figure 5.8. The detailed section shows the response during a step

change in the parameter ‘b’.

 82

0 20 40 60 80 100 120 140 160 180 200
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
ys

te
m

 O
ut

pu
t

Time Interval

Y - BC
Y - LMI
Y - Arbitrary
Ysp

Figure 5.7: First order system response

 83

150 151 152 153 154 155 156 157 158 159 160
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
S

ys
te

m
 O

ut
pu

t

Time Interval

Y - BC
Y - LMI
Y - Untuned
Ysp

Figure 5.8: First order system response (Detail)

The track selection based on the BC and LMI methodologies is plotted in Figure 5.9. The

LMI based track selection method is more conservative than the BC selection as shown

by the tendency to select tracks with low adaptation gains. For this particular system, this

is an advantage, but for a system with continuously varying parameters, the more

aggressive track switching provided by the BC could be advantageous.

 84

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3
LMI Track Selection

P
ar

am
et

er
 V

al
ue

Ka
Kb
Kd

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3
BC Track Selection

P
ar

am
et

er
 V

al
ue

Time Interval

Ka
Kb
Kd

Figure 5.9: First order system track selection

The response in the estimated values for the parameter ‘a’ and ‘b’ are plotted in Figure

5.10 and Figure 5.11. The estimation track selection changes correspond to jumps in the

value of the estimate. The estimates values calculated by using the controllers based on

the BC and LMI methods reach their true values quickly after each step change, but they

are slightly oscillatory around the true values. One of the simulations conducted with

arbitrary tuning parameters shows very large oscillations, leading to corresponding poor

performance.

 85

0 20 40 60 80 100 120 140 160 180 200

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

P
ar

am
et

er
 V

al
ue

Time Interval

True Value of A
BC estimate
LMI estimate
Arbitrary

Figure 5.10: First order system estimate for the parameter ‘a’

In Figure 5.11 oscillation patterns are visible in the estimated values of the parameter ‘b’

for the arbitrarily tuned system and the RLS algorithm. Most of the parameter adaptation

occurs during the swings of the excitation in the reference signal, suggesting that track

selection could be performed once per excitation cycle to save computation time with

minimal impacts on performance.

 86

0 20 40 60 80 100 120 140 160 180 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar

am
et

er
 V

al
ue

Time Interval

True Value of B
BC estimate
LMI estimate
Arbitrary

Figure 5.11: First order system estimate for the parameter ‘b’

For a first order linear system both tuning methods discussed in this work provide

significant performance improvements over an arbitrarily tuned controller. However, the

extremely large computation time requirements for the LMI based tuning method system

make it a poor choice for linear systems with white noise disturbances where it offers

small potential benefits over other tuning methods. The fact that adaptation mostly

occurs during drastic changes in the excitation signal seems to indicate that changes in

the track are necessary only once per excitation step rather than once per time interval.

This may result in significant savings in computation time.

 87

5.3.2 Higher Order Systems

For the third comparison, a system that is second order in the state is used, with the

following form:

{ }

() ()005.0,0,75.0,1
5.0

1.0
9.0
500,,1

1

,0

,0

1,1,01

Ndd
b
a
a
k
where

xy
ubxaxax

kkk

k

k

k

kkk

kkkkkkk

∈=+−=
=

−=

=
∈

+=

++=

−

−+

ββηβη

η

L

(5.2)

A total of 82 estimation tracks are used, along with 126 simulation trajectories and a

simulation horizon of 2 for the BC method. The uncertainty bounds use a multiplier,

,∆M of 2. The LMI method is evaluated over a number of time steps that are multiple of

10, as suggested in section 5.3.1, to reduce the computation time expected due to the

additional number of parameters in the second order system.

Test results are summarised in Table 5.2. The BC method provides a significant

performance improvement over both the un-tuned, and the LMI tuning method. This test

demonstrates the conservative nature of the LMI tuning method.

Method Error Score spγ Execution Time (s)

Arbitrary tuning 1.241621 0.009198 0.079

BC Tuning 0.574759 0.005864 17.16

 88

LMI Tuning 0.905469 0.007517 6499.9

Table 5.2: Test results for a second order system

The estimates for all three model parameters are shown in Figure 5.12. Both the BC and

LMI tuning methods provide some advantage in the estimation performance before the

50th time interval. After this point the BC method still provides a significant estimation

advantage, but the LMI tuning results in a conservative track selection, and is almost

equivalent to the arbitrarily tuned system, as shown in Figure 5.13.

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
BC Estimate
LMI Estimate
Arbitrary
True Value

Figure 5.12: Second order system parameter estimates

 89

0 50 100 150 200 250 300 350 400
0

1

2

3

K
a0

Default
BC
LMI

0 50 100 150 200 250 300 350 400
0

1

2

3

K
a1

Default
BC
LMI

0 50 100 150 200 250 300 350 400
0

1

2

3

K
b

Default
BC
LMI

0 50 100 150 200 250 300 350 400
0

1

2

3

K
d

Time Interval

Default
BC
LMI

Figure 5.13: Second order system estimation track selection

The advantage of the quick estimation at the beginning of the simulation can be seen in

Figure 5.14. The response of the arbitrarily tuned system lags after the set-point while

the estimation error is large.

 90

18 20 22 24 26 28 30 32 34 36

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y - BC
Y - LMI
Y - Arbitrary
Ysp

Figure 5.14: Second order system response (Detail)

In summary, the performance potential of a tuned adaptive control system is evident for a

system that has higher than first order dynamics.

5.3.3 Deterministic Disturbances

In this section, a situation where the LMI method will offer significant improvement over

the BC tuning method, will be illustrated. This situation corresponds to adaptation in the

presence of a deterministic square wave disturbance where a bound on its amplitude is

assumed to be known a priori but its period is unknown a priori.

 91

The BC selection method is based on prediction of future performance based on the

simulated response in the presence of the disturbance. Clearly, a good estimate of the

disturbance is needed for the prediction to be accurate. If the assumed disturbance is

significantly different from the actual one, the BC method may erroneously select an

estimation track that may correspond to a poor performance for the actual disturbance

occurring in the system. In the LMI selection method, the disturbance can be represented

by an uncertainty parameter, dδ , where bounds on the amplitude are all that is required to

calculate the tuning parameters. Then the uncertainty model for the LMI system with a

bounded disturbance can be accordingly represented as follows:

[] kkddbbaak νδδδ BηAAAAη ++++=+ 01 (5.3)

The disturbance is not considered as an input for the LMI calculations, but is instead

accounted for as an additional source of uncertainty on the parameters of the state

matrix .kA For example; consider a system with a bounded disturbance

kkkk dbuayx ++=+1 (5.4)

Where, kd is assumed to be a periodic squared-wave disturbance with known amplitude

but an unknown period. To accurately model the disturbance by the simulation, used for

the BC method; the period, amplitude and phase are all required to be known a priori,

whereas for the LMI method only the maximal amplitude is required. The LMI method

will find the worst case γ for any disturbance with amplitude less or equal than this

maximal amplitude.

 92

In this example the disturbance is assumed, for the calculation of the BC method, to be a

square wave of period 2, but the actual used disturbance is a square wave with a period of

8. Tuning is restricted to the parameter DK for simplicity and clarity, while the other

adaptation gains, KA and KB, are fixed each at a value of 1.0.

The error score, as given by the observed BC cost function, using different values of DK

for the actual and assumed disturbances is plotted in Figure 5.15. In the parameter space

region examined, it was found that the relation between the error score and the value of

DK to obtain the best performance is very different and show opposite trends for

disturbances with period of 2 and period 8. The simulations used in the BC tuning

method will produce results that are based on the ‘Assumed Disturbance’ line whereas

the actual result obtained is based on the ‘true’ disturbance line.

 93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

Kd

E
rro

r

Assumed Disturbance
True Disturbance
Estimation Track

1

3

2

Figure 5.15: System Error vs. KD value

In principle the best track, i.e. the track that if always selected will result in the smallest

error, is labelled 3, with KD = 1.5, but based on the BC simulations the track selected

most frequently was the one labelled ‘2’ with KD = 0.25. The LMI method consistently

selects track 3, while the BC method leads to frequent switching between tracks and often

selects tracks ‘2’ or ‘1’, as shown in Figure 5.16. The results of these simulations are

summarised in Table 5.3. The execution time for the LMI method is, as expected, much

larger than for the other methods. It should be noted that the LMI method had

‘infeasible’ solutions for 21% of the calculations, which is a notable increase from the

scenario examined in section 5.3. However, despite the longer computation times and

 94

infeasibilities it is clear from the Table that the LMI method results in much better

performance than the BC method.

Method Error Score Gamma SP Time (s)

LMI 0.201 0.0111 1203.15

BC 0.427 0.0251 2.34

Table 5.3: Deterministic disturbance system results

0 10 20 30 40 50 60 70 80 90 100

1

2

3

Time Interval

Tr
ac

k
N

um
be

r

Track - LMI
Track - BC

Figure 5.16: Deterministic disturbance system estimation track selection

 95

The oscillatory effect of the frequent track selection changes in the BC method is clear in

Figure 5.17.

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time Interval

P
ar

am
et

er
 V

al
ue

LMI estimate
BC estimate
True Value

Figure 5.17: Deterministic disturbance system parameter estimates

Figure 5.18 and Figure 5.19, below, show the system output for each method. The BC

method clearly has the worse tracking error. The lag in the LMI response is due to the

slow adaptation for the parameter ‘b’.

 96

0 10 20 30 40 50 60 70 80 90 100
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time Interval

S
ys

te
m

 O
ut

pu
t

Y - LMI
Y - BC
Ysp

Figure 5.18: Deterministic disturbance system response

 97

40 45 50 55

-0.4

-0.2

0

0.2

0.4

0.6

Time Interval

S
ys

te
m

 O
ut

pu
t

Y - LMI
Y - BC
Ysp

Figure 5.19: Deterministic disturbance system response (detail)

The system used in this section demonstrates how the BC method can erroneously select

a track in the presence of an incorrectly modelled disturbance. On the other hand, the

LMI tuning method uses a bound on the magnitude of the disturbance to select the correct

track. Due to the computation time requirements for the LMI method, actual use of the

LMI method would likely be limited to systems of high order for which the improvement

in estimation is expected to be significant.

 98

5.4 Comparison with RLS

The BC and LMI tuning methods are compared with the RLS algorithm using the same

system (4.2) and setup as used in section 5.3.1. The results are summarised in Table 5.4,

together with one of the simulations of the arbitrarily tuned systems. Both the BC and

LMI tuning methods provide significant performance improvements over RLS. The

arbitrarily tuned controller has the potential to perform better if good parameters are

selected by chance. The execution time of the RLS method is similar to the arbitrarily

tuned system, and substantially faster than for the BC method.

Method Error Score spγ Execution Time (s)

Un-tuned 1 0.335134 0.008489 0.016

RLS 0.474401 0.010956 0.047

BC Tuning 0.325586 0.008744 7.08

LMI Tuning 0.277526 0.007469 3449

Table 5.4: Test results for a linear first order system with RLS

The plant model parameter estimates are shown in Figure 5.20 and Figure 5.21. The RLS

estimate responds slowly to step changes but it has very little oscillations. The RLS has a

slower response as the step changes in the parameters occur later in the simulation since

the co-variance matrix Pk slowly converges to zero as explained in Chapter 2, while the

methods used in this work do not have this time dependent deterioration of performance.

 99

0 20 40 60 80 100 120 140 160 180 200
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

P
ar

am
et

er
 V

al
ue

Time Interval

True Value of A
BC estimate
LMI estimate
RLS estimate

Figure 5.20: RLS comparison estimate for the parameter ‘a’

 100

0 20 40 60 80 100 120 140 160 180 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar

am
et

er
 V

al
ue

Time Interval

True Value of B
BC estimate
LMI estimate
RLS estimate

Figure 5.21: RLS comparison estimate for the parameter ‘b’

A detail of the system response is shown in Figure 5.22. The overall system response is

similar to the ones shown in Figure 5.7, and therefore is not shown again for brevity. The

curve corresponding to the RLS method shows a consistent undershoot due to the slow

adaptation of the plant model after the model parameter step change.

 101

100 105 110 115
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ys

te
m

 O
ut

pu
t

Time Interval

Y - BC
Y - LMI
Y - RLS
Ysp

Figure 5.22: RLS comparison system response (detail)

 102

6 Conclusions

A novel adaptive control method was developed. The plant model estimator uses a

gradient descent approach with estimator gains suitable for on-line tuning. The error

filter used was designed to meet the Lyapunov direct stability theory. A method for

avoiding numerical division by zero errors was proposed. Two novel tuning methods

were developed to avoid extensive trial and error simulations for proper tuning.

Performance tests were performed to compare the novel adaptive control scheme and

both tuning methods developed with the well known RLS algorithm.

The stability proofs required that adaptation gains remain constant with respect to time.

A tuning framework using estimation tracks was proposed to meet this constraint. Dual

adaptive control methods in the literature use an excitation signal to adjust the rate of

adaptation, but simultaneous evaluation of the effect of different possible excitation

signals is not possible, thus online tuning methods are limited in the design approaches

that can be used. The tuning framework developed in this work uses multiple

simultaneous estimates of the model parameters based on estimators with different

estimation gains. The potential performance of each of these estimation tracks is

evaluated, and the one with the best performance score is selected, thus adjusting the rate

of adaptation, and meeting the dual adaptive control goals.

Two methods for evaluating and selecting the estimation tracks were developed. The

first uses a prediction of the bicriteria (BC) cost function for each estimation track as a

scoring method. This cost function includes the prediction and feedback errors, and was

 103

developed to explicitly measure the principle design trade-off implicit in dual adaptive

control, i.e. robustness in the face of uncertainty versus fast learning of the process. The

second method uses the linear matrix inequalities (LMI) to find an upper bound on the

feedback error, scored as ,spγ given any admissible reference signal and bounds of the

uncertainty in the model parameters.

The measures of system performance used for comparison were the observed value of the

bicriteria cost function, the observed value of ,spγ and the computation time used. The

bicriteria cost function and spγ were the optimisation criteria used for the BC and LMI

tuning methods respectively, and the computation time is critical for implementation

considerations.

In the first set of tests the configuration parameters for the BC tuning method were

investigated. There was a 20% performance improvement by using 9 estimation tracks

over no-tuning. Performance decreases for more than 28 estimation tracks. The BC

method is equivalent to a certainty equivalence controller when only one step of

simulation is used to predict the BC error score. There is a 63% performance

improvement by using 9 simulations to cover the range of parameter uncertainty instead

of using only the current estimated value, but there is not significant change if more than

9 simulation tracks are used. There is a 9% performance improvement by using a 2 or 3

time step simulation horizon. For longer horizons there is not performance benefit. For

each of these factors, computation time is approximately proportional to the increase in

each one of the tuning parameters, i.e. number of estimation tracks, number of

 104

simulations per track or time horizon for prediction, with a multiplicative effect for

changes in two or more of these factors. It was also found that the spacing of the

simulation trajectory initial parameter values little impact unless the uncertainty

multiplier, ,∆M is greater than 2.

The number of estimation tracks and the uncertainty bounds, as indicated by ,∆M were

investigated for the LMI tuning approach. There was a 20% performance improvement

over the system with arbitrarily chosen tuning parameters when 9 estimation tracks were

used. With 28 or more tracks deterioration in performance was observed due to

sensitivity to measurement noise. The computation time was proportional to the number

of estimation tracks used, and the execution time was approximately 100 times longer for

the LMI tuning than for the BC tuning method when the same number of estimation

tracks was used for both methods. Values of ∆M between 0.25 and 2.0 provided a 15%

performance improvement over a system with arbitrarily chosen parameters. Values

outside this range resulted in decreased performance. The value of ∆M has a small, but

unpredictable effect on computation time.

The BC and LMI tuning methods were compared to each other and to a controller with

arbitrarily selected parameters under three scenarios. For the first scenario a first order

system with step-changes in each parameter and Gaussian measurement noise were used.

The BC and LMI tuning methods were configured to use the best performing

combination of number of estimation tracks, number of simulation tracks, simulation

horizon and uncertainty bounds identified in the previous testing. The BC method

 105

resulted in a 3% and 63% performance improvement compared to the best and worst

arbitrarily tuned systems respectively. It should be remembered that with arbitrarily

selected parameters the performance potential is unknown until after the test is over. The

simulation methods can address many possible combinations of tuning parameters

simultaneously. The LMI tuning method provided an additional 15% performance

improvement over the BC method, at the cost of a 490 times increase in the computation

time. The BC tuning method requires 217 times the computation time of a system with

arbitrarily chosen parameters.

The second scenario examined was a second order linear system. The LMI and BC

methods resulted in a 27% and 53% performance improvements over the system with

arbitrarily chosen parameters used for comparison. Similarly to the first order test, the

LMI method had a computation time that was 380 times longer than the BC method, even

when the optimizations were conducted infrequently, i.e. once per period of the external

periodic set point signal.

The third scenario studied was designed to illustrate a typical scenario where the LMI

tuning method would provide significant performance advantages over the BC method.

The system was first order with an unknown deterministic disturbance being introduced

to the process. For the LMI approach, only the amplitude of the disturbance is required

for track selection. For the BC approach a specific guess of both magnitude and period

of the disturbance signal was required. It was shown that if the guess of the period, phase

or wave-form is inaccurate, the BC prediction will give inaccurate results. Consequently,

 106

for the case study, a 53% performance gain was achieved for the LMI tuning method over

the BC tuning method.

For a final comparison the recursive least squares algorithm was used on the first order

system from the first scenario. Performance improvements of 31% and 41% over the

RLS algorithm were achieved with the BC and LMI tuning methods, respectively. The

RLS algorithm requires some form of resetting or exponential forgetting factor.

Otherwise, adaptation will cease as the covariance matrix, KP , converges to zero.

However, there are no systematic ways to reset the covariance in the presence of frequent

step changes in the model parameters unless the timing of these changes is a priori

known. In this case both the BC criteria and LMI methods proposed in this thesis are

offering a clear advantage over the traditional RLS algorithm.

 The LMI method required a very large computation effort, and thus it is not

recommendable for systems where the BC method provides similar performance. An

example of a system where an LMI based method provides a clear advantage is a system

with the unknown deterministic type disturbances. In summary both tuning methods

offer a systematic approach for selecting tuning parameters, as compared to the trial and

error approach often used by practitioners.

 107

7 Recommendations

1- The cost function used to evaluate performance should include manipulated variable

changes as a new term. The manipulated variable moves are in many practical situations

a key consideration for tuning of the controller. Additionally, penalization of the

manipulated variable moves in the cost functions may help to reduce the oscillatory

behaviour of the parameter estimates but at the cost of a slower response to changes in

the model parameters.

2- Other suitable feedback control laws can be tested in combination with the adaptive

estimator such as pole-placement and model reference controllers.

3- To limit the computational burden of the LMI approach, the track selection method

can be performed less frequently than the sampling frequency of the system. The timing

of the on-line tuning calculations with respect to the excitation signal, and the frequency

of the track selection were not explicitly investigated and may be an interesting subject

for future investigations.

4- To improve performance after the parameter estimates have converged, a dead-zone

approach should be investigated to deal with measurement noise, and to avoid possible

parameter drift problems common when the model structure selected for adaptation is not

sufficiently accurate to model the actual behaviour of the system. This would prevent the

system from using noise to drive the adaptation when there is insufficient excitation.

 108

5- The adaptive control scheme proposed in this study could be extended to multivariable

systems.

6- The adaptive controller studied in this work is suitable as well for a special class of

non-linear system represented by an artificial neural network (ANN) model with linear

gains of the following form:

() ()∑∑
=

−
=

− +=
m

i
ikki

n

i
ikkik ufbxfax

1
,

1
,

(7.1)

where the functions f’s are nonlinear basis functions such as Radial Basis Gaussian

functions or wavelets. These models have been previously used in the literature for

adaptive control of nonlinear systems. Due to the linear dependence of this model with

respect to the model parameters all the developments in the current study are applicable

to nonlinear models of the form given by equation (4.2).

 109

References

[1] Allison B.J., J.E. Cairniello, P.J.C. Tessier and G.A. Dumont, 1995, Dual Adaptive
Control of Chip Refiner Motor Load, Automatica, 31, 1169-1184.

[2] Astrom, K.J., B. Wittenmark, 1989, Adaptive Control, Addison-Wesley

[3] Dumont G.A., and K.J. Astrom, 1987, Wood Chip Refiner Control, American Control
Conference.

[4] Fabri S., K. Kadirkamanathan, 1998, Dual Adaptive Control of Nonlinear Stochastic
Systems using Neural Networks, Automatica, 34, 245-253

[5] Filatov N.M. and H. Unbehauen, 1998, Adaptive control for continuous-time systems:
A simple example. UKACC Intl. Conf. on control, 39-43

[6] Filatov N.M. and H. Unbehauen, 2000, Survey of Adaptive Dual Control Methods,
IEE Proc.-Control Theory Appl., 147, 118-128

[7] Filatov N.M., H. Unbehauen and U. Keuchel, 1997, Dual pole placement controller
with direct adaptation. Automatica, 33, 113-117.

[8] Filatov N.M., U. Keuchel and H. Unbehauen, 1996, Dual Control for an Unstable
Mechanical Plant, Third IEEE Conference on Control Applications.

[9] Gao and Budman (2004) In Proceedings of ADCHEM 2003 (International
Symposium on Advanced Control of Chemical Processes), Hong Kong, January 2004

[10] Goodwin, G.C., K.S. Sin, 1984, Adaptive Filtering Prediction and Control, Prentice-
Hall

[11] Kothare M.V., V. Balakrishnan and M. Morari, 1996, Robust Constrained Model
Predictive Control using Linear Matrix Inequalities, Automatica, 32, 1361-1379.

[12] Kothare M.V., V. Balakrishnan and M. Morari, 1994, Robust Constrained Model
Predictive Control using Linear Matrix Inequalities, American Control Conference,
WM2 – 2:50, 440-444.

[13] Liu, R.W., 1968, Convergent Systems, IEEE Trans. Aut. Control, 13(4), 384-391

[14] Ozkan L., M.V. Kothare and C. Georgakis, 2000, Model Predictive COntrol of
Nonlinear Systems using Piecewise Linear Models, Computers and Chemical
Engineering, 24, 793-799

 110

[15] Sanner R.M. and J-J.E. Slotine, 1992, Gaussian Networks for Direct Adaptive
Control, IEEE Trans. On Neural Networks, 3, 837-862

[16] Seborg, D.E., T.F. Edgar and D.A. Mellichamp, 1989, Process Dynamics and
Control, John Wiley & Sons

[17] Slotine, J-J E. and W. Li, 1991, Applied Nonlinear Control, Prentice hall, New
Jersey.

[18] Sternby J., 1976, A Simple Dual Control Problem with an Analytical Solution, IEEE
Trans. Automatic Control, 840-844

[19] Veres S. M. and H Xia, Dual Predictive Control for Fault Tolerant Control, 1998,
UKACC Intl. Conf. on Control.

 111

Appendix A: Code for Initialization

This section initializes the variables used in the code in appendices B and C. Parameter

sets associated with estimation tracks are picked, as is noise and the reference signal.

function main(done)

% done - number of cycles to evaluate
% Ka, Kb, Kd, - Intial/default values of adpatation parameters
% alpha - damping factor for set point (reference model)
% beta - damping factor on noise - for stability - unknown value
% Areal, Breal - True plant parameters - unknown values, a > 1 is
unstable
% Ainit, Binit, yinit, uinit - initial values for the system

close all;
k_points = 3; % number of points to sample in each parameter
a_points = 3; % number fo points to sample for each estimate
noise = 0.005; % size of one standard deviation of gaussian
noise

Kainit = 1; % default tuning parameters for untuned systems
Kbinit = 1;
Kdinit = 1;
Kainit4 = 4;
Kbinit4 = .25;
Kdinit4 = .5;

alpha = 0.65; % time constant for reference model
beta = 0.75; % time sonstant for Nyquist limit low pass
filter

Areal = 1.05; % true plant
Breal = 0.5;

Ainit = 1; % initialization values
Binit = 1;
yinit = 0;
uinit = 0;

period = 10; % values for reference signal
amp = 0.5;

% parameters for optimizations

horizon = 2; % Future sampples for path following technique
start_cycle = 3; % begin optimization after ___ iterations
std_hor = 20; % number of samples to use for std dev. (max)
multiples = 2; % Standard deviations for estimate bounds
mult_lmi = 2; % same but for LMI
check = 3; % Check first to k_space parameters

 112

% loop control and system order
Vmax = 100000; % break if out of control
n = 1; % order of system
seed = 1; % random seed

% variable initializations
small = 0; % time weighted lyapunov
feedback = 0; % feedback performace index (Bi-criteria)
pred = 0; % prediction performance index (Bi-criteria)
k_weight = 5; %start_cycle;
k_weight_l = 1; % number of cycles to average predictions over
A = ones(1,max(done,400))*Areal;
B = ones(1,max(done,400))*Breal;

% add step changes in parameter values
A(100:400) = A(100:400) - 0.1;
B(150:400) = B(150:400) + 0.1;

% more initialization
Aest = zeros(1,done);
Aest_path = ones(done,k_points^check+1);
Best = zeros(1,done);
Best_path = ones(done,k_points^check+1);
u = zeros(done,1);
y = zeros(done,1);
x = zeros(done,1);
s = zeros(done,1);
s_path = zeros(done,k_points^check+1);
V = zeros(done,1);
Ka = ones(done,1)*Kainit;
Kb = ones(done,1)*Kbinit;
Kd = ones(done,1)*Kdinit;
k_set = zeros(3,k_points^check+1);
ypred_path = zeros(done,k_points^check+1);
ypred_pick = zeros(k_points^check+1);
a_set = zeros(2,a_points^2);
a_set = zeros(2,(a_points*2+1)^2);
a_weight = zeros(1,(a_points*2+1)^2);
ypred_pick = zeros(done,k_points^check+1);
score = zeros(k_points^check+1,a_points^2);
Srun = zeros(k_points^check+1,done);
Save = zeros(k_points^check+1,done);
Sconf = zeros(k_points^check+1,done);
time = (1:(done+1+horizon));
ref = zeros(1,done+1+horizon);

%use same noise set for each run
randn('state',seed);
rand_set1 = randn(done,1);
% filter the noise (low pass filter, weak noise at nyquist frequencies)
rand_set = filter(1-beta,[1, -beta],rand_set1);

% weighting matrix for a
% used for bi-criteria method
a_it = 0;
if a_points == 0

 113

 a_weight = 1;
else
 for aa = 0:(a_points*2)
 for ab = 0:(a_points*2)
 a_it = a_it + 1;
 a_weight(a_it) = normpdf(2*(aa/(a_points*2) -
0.5)*multiples,0,1)*normpdf(2*(ab/(a_points*2) - 0.5)*multiples,0,1);
 end
 end
end

% define sweep space used in prediction.
% versions for checking Ka, and Kb, as well as both plus Kd
% note this starts at column 2, the first one is the default values
k_it = 1;
for aa = 0:(k_points-1)
 for ab = 0:(k_points-1)
 for ad = 0:(k_points-1)
 k_it = k_it + 1;
 k_set(:,k_it) = [aa*(4/k_points) + 1/k_points;
ab*(4/k_points) + 1/k_points; ad*(4/k_points) + 1/k_points];
 end
 end
end
% Add default sweep space
k_set(:,1) = [Ka(1); Kb(1); Kd(1)];

for i = time
 if mod(i,period*2) < period
 ref(i) = yinit + amp;
 else
 ref(i) = yinit - amp;
 end
end

% filter by first order reference model, with time constant, alpha
ysp = filter(1-alpha,[1, -alpha],ref);

 114

Appendix B: Code for LMI Tuning Method

In this section of code the simulation for the plant is performed along with the LMI

tuning block. The LMI tuning calls a function ‘lmi_test’ in Appendix E. After scoring

all estimation values are set to the values associated with the current best track.

Aest(1) = Ainit;
Aest_path(1,:) = Aest_path(1,:)*Ainit;
Best(1) = Binit;
Best_path(1,:) = Best_path(1,:)*Binit;
y(1) = yinit;
x(1) = yinit;
u(1) = uinit;
infeas = zeros(1,done);
counts = 0;
tic;

for i = (n+1):done

 % calcualte y, based on old y and inputs
 x(i) = A(:,i)'*x(i-1) + B(:,i)'*u(i-1);
 y(i) = x(i) + noise*rand_set(i);

 % feedback error
 feedback = feedback + (y(i) - ysp(i))^2;

 % predicted value of current output
 ypred(i) = Aest(:,i-1)'*y(i-1) + Best(:,i-1)'*u(i-1);

 % prediction error
 pred = pred + (y(i) - ypred(i))^2;

 % evaluate all k_set updates.
 for k_eval = 1:size(k_set,2)
 % calualte parameters for next error update
 Sa = -y(i-1)/(1 + k_set(3,k_eval));
 Sb = -u(i-1)/(1 + k_set(3,k_eval));
 Sf = (2*y(i) + (1 - k_set(3,k_eval))*s_path(i-1,k_eval) -
Aest_path(i-1,k_eval)'*y(i-1) - Best_path(i-1,k_eval)'*u(i-1))/(1 +
k_set(3,k_eval));
 As = k_set(1,k_eval)*y(i-1);
 Af = Aest_path(i-1,k_eval) + k_set(1,k_eval)*y(i-1)*s_path(i-
1,k_eval);
 Bs = k_set(2,k_eval)*u(i-1);
 Bf = Best_path(i-1,k_eval) + k_set(2,k_eval)*u(i-1)*s_path(i-
1,k_eval);

 % calualte new error metric
 s_path(i,k_eval) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb);

 % new estimates for A, B

 115

 Aest_path(i,k_eval) = s_path(i,k_eval)*As + Af;
 Best_path(i,k_eval) = s_path(i,k_eval)*Bs + Bf;
 end

 % uncertainty bounds from fitered error
 for m = 1:size(s_path,2)
 Srun(i,m) = s_path(i,m)^2;
 Sconf(m,i) = sqrt(sum(Srun(max(1,i-std_hor):i,m))/(i-max(1,i-
std_hor)+1));
 end

 %%
 %%%% Begin optimisaton block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 for k_eval = 1:size(k_set,2)
 % find lmi score
 ypred_path(i,k_eval) = lmi_test(y(i), Sconf(k_eval,i)*mult_lmi,
Aest_path(i,k_eval), Sconf(k_eval,i)*mult_lmi, Best_path(i,k_eval),
k_set(1,k_eval), k_set(2,k_eval), k_set(3,k_eval), s_path(i,k_eval),
ysp(i+1), alpha);
 counts = counts + 1;
 % weight last k_weight predictions averaged together.
 ypred_pick2(k_eval) = mean(ypred_path(max(1,i-
k_weight_l):i,k_eval));
 end

 % count infeasable results
 if ypred_path(i,k_eval) < 0
 infeas(i) = infeas(i) + 1;
 ypred_path(i,k_eval) = Inf;
 end

 % in tie, select current track
 if i > start_cycle
 ypred_pick2(next_k) = ypred_pick2(next_k)*0.999;
 end
 %%%%%%%%%%% End optimisation block %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%

 % pick next parameters if initialisation time has passed.
 if i > start_cycle
 ypred_pick(i,:) = ypred_path(i,:);
 [score_best, next_k] = min(ypred_pick2(:));
 else
 next_k = 1;
 end
 %%%

 % pick next step parameters
 Ka(i) = k_set(1,next_k);
 Kb(i) = k_set(2,next_k);
 Kd(i) = k_set(3,next_k);

 % new estimates for s, A, B
 s(i) = s_path(i,next_k);
 Aest(:,i) = Aest_path(i,next_k);
 Best(:,i) = Best_path(i,next_k);

 116

 % calulate new output - uses the next set point value - we assume
this
 % is known
 u(i) = (ysp(i+1) - Aest(1,i)*y(i)) / Best(1,i);

 % calulate Lyapunov (for simulation purposes only)
 V(i) = (Aest(:,i) - A(:,i))'*Ka(i)*(Aest(:,i) - A(:,i)) +
(Best(:,i) - B(:,i))'*Kb(i)*(Best(:,i) - B(:,i)) + s(i)^2;

 % Print results
 fprintf('I:%i, V:%12.6f, y:%8.3f, s:%8.3f, Aest:%8.3f, Best:%8.3f,
YSP:%8.3f, u%8.3f\n', i, V(i),y(i), s(i), Aest(:,i), Best(:,i), ysp(i),
u(i));

 %break if runaway condition
 if V(i) > Vmax
 break
 end
end
time1 = toc;

time = (1:i)*1;

% calculate error signals
noise_error1 = noise*rand_set(time)'*rand_set(time)*noise;
sp_error1 = ysp(time)*ysp(time)';
out_error1 = (y(time)-ysp(time)')'*(y(time)-ysp(time)');

 117

Appendix C: Code for BC Tuning Method

In this section of code the simulation for the plant is performed along with the BC tuning

block. The BC tuning calls a function ‘single_opt_run2’ in Appendix F. After scoring

all estimation values are set to the values associated with the current best track. This

code is similar to the code in appendix B, except for the BC evaluation section.

% reinitialize all needed variables - not involved with the paths.
small = 0; % time weighted lyapunov
feedback = 0; % feedback performace index (Bi-criteria)
pred = 0; % prediction performance index (Bi-
criteria)

e = zeros(done,1);
s = zeros(done,1);
V = zeros(done,1);
Ka = ones(done,1)*Kainit;
Kb = ones(done,1)*Kbinit;
Kd = ones(done,1)*Kdinit;
next_k3 = ones(done,1);
Aest(1) = Ainit;
Best(1) = Binit;
Aest_path(1,:) = Aest_path(1,:)*Ainit;
Best_path(1,:) = Best_path(1,:)*Binit;
y(1) = yinit;
x(1) = yinit;
u(1) = uinit;

% time simulation
tic;

%fprintf('\nI:%i, V:%12.6f, y:%8.3f, s:%8.3f, Aest:%8.3f, %8.3f,
Best:%8.3f, %8.3f, YSP:%8.3f, u%8.3f\n', 1, V(1),y(1), s(1), Aest(:,1),
Best(:,1), ysp(1), u(1));

for i = (n+1):done
 fprintf('%i ',i)

 % calcualte y, based on old y and inputs
 x(i) = A(:,i)'*x(i-1) + B(:,i)'*u(i-1);
 y(i) = x(i) + noise*rand_set(i);

 % feedback error
 feedback = feedback + (y(i) - ysp(i))^2;

 % predicted value of current output
 ypred(i) = Aest(:,i-1)'*y(i-1) + Best(:,i-1)'*u(i-1);

 % prediction error

 118

 pred = pred + (y(i) - ypred(i))^2;

 % evaluate all k_set updates.
 for k_eval = 1:size(k_set,2)
 % calualte parameters for next error update
 Sa = -y(i-1)/(1 + k_set(3,k_eval));
 Sb = -u(i-1)/(1 + k_set(3,k_eval));
 Sf = (2*y(i) + (1 - k_set(3,k_eval))*s_path(i-1,k_eval) -
Aest_path(i-1,k_eval)'*y(i-1) - Best_path(i-1,k_eval)'*u(i-1))/(1 +
k_set(3,k_eval));
 As = k_set(1,k_eval)*y(i-1);
 Af = Aest_path(i-1,k_eval) + k_set(1,k_eval)*y(i-1)*s_path(i-
1,k_eval);
 Bs = k_set(2,k_eval)*u(i-1);
 Bf = Best_path(i-1,k_eval) + k_set(2,k_eval)*u(i-1)*s_path(i-
1,k_eval);

 % calualte new error metric
 s_path(i,k_eval) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb);

 % new estimates for A, B
 Aest_path(i,k_eval) = s_path(i,k_eval)*As + Af;
 Best_path(i,k_eval) = s_path(i,k_eval)*Bs + Bf;

 end

 % Calculate confidence interval
 for m = 1:size(s_path,2)
 Srun(i,m) = s_path(i,m)^2;
 Sconf(m,i) = sqrt(sum(Srun(max(1,i-std_hor):i,m))/(i-max(1,i-
std_hor)+1));
 end

 %%
 %%%% Begin optimisaton block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % reset score counter
 score = ones(k_points^check+1,(a_points*2+1)^2);

 for ki = 1:size(k_set,2)
 a_num = 1;

 % calculate the first step of the score - Aest current is not
 % needed for this calculation so the results are the same for
every
 % variation used
 score(ki,:) = score(ki,:)*((y(i) - ysp(i))^2 + (y(i) -
Aest_path(i-1,ki)*y(i-1) + Best_path(i-1,ki)*u(i-1))^2);

 % find combinations of inital values of 'true plant' values to
use
 if horizon > 1
 if a_points == 0
 a_set(1,1) = 0;
 a_set(2,1) = 0;
 else
 for aaa = 1:(a_points*2+1)

 119

 for bbb = 1:(a_points*2+1)
 a_set(1,a_num) = Sconf(ki,i)*(2*((aaa-
1)/(a_points*2))-1)*multiples;
 a_set(2,a_num) = Sconf(ki,i)*(2*((bbb-
1)/(a_points*2))-1)*multiples;
 a_num = a_num+1;
 end
 end
 end

 % calcualte BC cost function prediction
 for ai = 1:size(a_set,1)
 score(ki,ai) = score(ki,ai) + single_opt_run2(horizon,
k_set(:,ki), a_set(1, ai), a_set(2, ai), Aest_path((i-1):i,ki),
Best_path((i-1):i,ki), s_path((i-1):i,ki), y((i-1):i), u(i-1), ysp((i-
1):(i+horizon+1)));
 end

 end

 ypred_pick(i,ki) = score(ki,:)*(a_weight)';
 ypred_pick2(ki) = mean(ypred_pick(max(1,i-k_weight):i,ki));

 end

 if i > start_cycle
 ypred_pick2(next_k3(i)) = ypred_pick2(next_k3(i))*0.999;
 end
 %%%%%%%%%%% End optimisation block %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%

 % pick next parameters if initialisation time has passed.
 if i > start_cycle
 %ypred_pick(i,:) = ypred_path(i,:);
 [score_best, next_k3(i)] = min(ypred_pick2(:));
 else
 next_k(i) = 1;
 end
 %%%

 % pick next step parameters
 Ka(i) = k_set(1,next_k3(i));
 Kb(i) = k_set(2,next_k3(i));
 Kd(i) = k_set(3,next_k3(i));

 % new estimates for s, A, B
 s(i) = s_path(i,next_k3(i));
 Aest(:,i) = Aest_path(i,next_k3(i));
 Best(:,i) = Best_path(i,next_k3(i));

 % calulate new output - uses the next set point value - we assume
this
 % is known
 u(i) = (ysp(i+1) - Aest(1,i)*y(i) + (1-Kd(i))*s(i)) / Best(1,i);

 % calulate Lyapunov (for simulation purposes only)

 120

 V(i) = (Aest(:,i) - A(:,i))'*Ka(i)*(Aest(:,i) - A(:,i)) +
(Best(:,i) - B(:,i))'*Kb(i)*(Best(:,i) - B(:,i)) + s(i)^2;

 %break if runaway condition
 if V(i) > Vmax
 break
 end
end

fprintf('\n');

time3 = toc;

time = (1:i)*1;

% calculate error signals
noise_error3 = noise*rand_set(time)'*rand_set(time)*noise;
sp_error3 = ysp(time)*ysp(time)';
out_error3 = (y(time)-ysp(time)')'*(y(time)-ysp(time)');

 121

Appendix D: Code for Display of Results

Creates plots used in chapters 4 and 5. This particular set was used for the linear

comparison.

figure(5);
subplot(2,1,1)
plot(time, Ka1(time), 'k', time, Kb1(time), 'k:', time, Kd1(time), 'k.-
');
legend('Ka', 'Kb', 'Kd');
title('LMI Track Selection');
ylabel('Parameter Value');
subplot(2,1,2)
plot(time, Ka3(time), 'k', time, Kb3(time), 'k:', time, Kd3(time), 'k.-
');
legend('Ka', 'Kb', 'Kd');
title('BC Track Selection');
ylabel('Parameter Value');
xlabel('Time Interval');

figure(3);
hold on;
plot(time, A(1,time), 'k',time, Aest3(1,time), 'k-.',time,
Aest1(1,time), 'k:',time, Aest0(1,time), 'c', time, Aest4(1,time),
'c');
legend('True Value of A', 'BC estimate', 'LMI estimate', 'Untunded
estimates');
ylabel('Parameter Value');
xlabel('Time Interval');

figure(4);
hold on;
plot(time, B(1,time), 'k',time, Best3(1,time), 'k-.',time,
Best1(1,time), 'k:',time, Best0(1,time), 'c', time, Best4(1,time),
'c');
legend('True Value of B', 'BC estimate', 'LMI estimate', 'Untunded
estimates');
ylabel('Parameter Value');
xlabel('Time Interval');

figure(1);
hold on
plot(time, y3(time), 'k-.',time, y1(time), 'k:',time, y0(time),
'c',time, ysp(time), 'k', time, y4(time), 'c',time, ysp(time),
'k',[1,done],[0,0],'k');
legend('Y - BC','Y - LMI','Y - Untuned','Ysp');
ylabel('System Output');
xlabel('Time Interval');

 122

Appendix E: Code for LMI Function Evaluation

This section is called to evaluate the value of spγ in the LMI tuning method. The C

vector used gives an error equal to spk yy − . A function ‘calc_model1’ is called to obtain

the values for the matrices () BA and iδ .

function tmin = lmi_test(yk, at, ak, bt, bk, ka, kb, kd, sk, rk, alpha)
[Amm, Apm, Amp, App, Bmm, Bpm, Bmp, Bpp] = calc_model1(yk, at, ak, bt,
bk, ka, kb, kd, sk, rk, alpha);

C = [-1,0,0,0,1];
% states are, in order;
% yk, sk, ak, bk, rk

D = [0];

setlmis([]);
r = 1; %inputs
k =1; % outputs
s =max(size(Amm)); % states
% observed = e(k)

P0=lmivar(1,[s 1]);

% positive definite restriction
lmiterm([5 1 1 0],0); %P0 > 0
lmiterm([-5 1 1 P0],1,1);

%vertex 1 of 4 (-delA -delB)
lmiterm([1 1 1 P0],Amm',Amm); % A'PA
lmiterm([1 1 1 P0],-1,1); %-P
lmiterm([1 1 2 P0],Amm',Bmm); %A'PB
lmiterm([1 1 3 0],C'); % C'
lmiterm([1 2 2 P0],Bmm',Bmm); %B'PB
lmiterm([1 2 3 0],D'); %D'
lmiterm([1 3 3 0],-eye(k)); %-I

lmiterm([-1 1 1 0],0.000001*eye(s)); % A'PA
lmiterm([-1 2 2 0],eye(r)); % A'PA
lmiterm([-1 3 3 0],0.000001*eye(k)); % A'PA

%vertex 2 of 4 (+delA -delB)
lmiterm([2 1 1 P0],Apm',Apm); % A'PA
lmiterm([2 1 1 P0],-1,1); %-P
lmiterm([2 1 2 P0],Apm',Bpm); %A'PB
lmiterm([2 1 3 0],C'); % C'
lmiterm([2 2 2 P0],Bpm',Bpm); %B'PB
lmiterm([2 2 3 0],D'); %D'
lmiterm([2 3 3 0],-eye(k)); %-I

 123

lmiterm([-2 1 1 0],0.000001*eye(s)); % A'PA
lmiterm([-2 2 2 0],eye(r)); % A'PA
lmiterm([-2 3 3 0],0.000001*eye(k)); % A'PA

%vertex 3 of 4 (-delA +delB)
lmiterm([3 1 1 P0],Amp',Amp); % A'PA
lmiterm([3 1 1 P0],-1,1); %-P
lmiterm([3 1 2 P0],Amp',Bmp); %A'PB
lmiterm([3 1 3 0],C'); % C'
lmiterm([3 2 2 P0],Bmp',Bmp); %B'PB
lmiterm([3 2 3 0],D'); %D'
lmiterm([3 3 3 0],-eye(k)); %-I

lmiterm([-3 1 1 0],0.000001*eye(s)); % A'PA
lmiterm([-3 2 2 0],eye(r)); % A'PA
lmiterm([-3 3 3 0],0.000001*eye(k)); % A'PA

%vertex 4 of 4 (+delA +delB)
lmiterm([4 1 1 P0],App',App); % A'PA
lmiterm([4 1 1 P0],-1,1); %-P
lmiterm([4 1 2 P0],App',Bpp); %A'PB
lmiterm([4 1 3 0],C'); % C'
lmiterm([4 2 2 P0],Bpp',Bpp); %B'PB
lmiterm([4 2 3 0],D'); %D'
lmiterm([4 3 3 0],-eye(k)); %-I

lmiterm([-4 1 1 0],0.000001*eye(s)); % A'PA
lmiterm([-4 2 2 0],eye(r)); % A'PA
lmiterm([-4 3 3 0],0.000001*eye(k)); % A'PA

lmilio=getlmis;
[tmin,xfeas] = gevp(lmilio,1);

fprintf('tmin: %f, Gamma: %f\n',tmin,sqrt(tmin));
if isempty(tmin)
 tmin = -1;
else
 tmin = sqrt(tmin);
end

 124

Appendix F: Code for BC Function Evaluation

This section is called to evaluate the predicted value of the bicriteria error score for the

BC tuning method. It is coded as a simulation similar to the main function.

function [error] = single_opt_run2(done, k_set, A, B, Ainit, Binit, si,
yi, ui, ysp)
% done is number of steps to execute, 1 will give current conditions
only
% K is thre parameter vector of Ka, Kb, Kd
% A and B are the assumed real values of the parameters
% Ainit and Binit are the inital values of estimates of a and b at i
and
% i-1
% si is 2 vector of s(i-1) and s(i)
% yi is 2 vector of y(i-1) and y(i)
% ui is u(i-1)
% ysp is vector of ysp(i-1:i+done+1)

n = 1;
error = 0;
i = 2;

% Define full sized variables
Aest = zeros(done+1);
Best = zeros(done+1);
u = zeros(done+1);
y = zeros(done+1);
s = zeros(done+1);

% set initial values
s(1:2) = si;
y(1:2) = yi;
u(1) = ui;
Aest(1:2) = Ainit;
Best(1:2) = Binit;
u(2) = (ysp(3) - Aest(2)*y(2)) / Best(2);
feedback = 0;
pred = 0;

for i = (n+2):(done+1)

 % calcualte current y, based on old y and inputs
 y(i) = A*y(i-1) + B*u(i-1);

 % feedback error
 feedback = feedback + (y(i) - ysp(i))^2;

 % prediction error
 pred = pred + (y(i) - Aest(i-1)*y(i-1) + Best(i-1)*u(i-1))^2;

 % calualte parameters for next error update

 125

 Sa = -y(i-1)/(1 + k_set(3));
 Sb = -u(i-1)/(1 + k_set(3));
 Sf = (2*y(i) + (1 - k_set(3))*s(i-1) - Aest(i-1)'*y(i-1) - Best(i-
1)'*u(i-1))/(1 + k_set(3));
 As = k_set(1)*y(i-1);
 Af = Aest(i-1) + k_set(1)*y(i-1)*s(i-1);
 Bs = k_set(2)*u(i-1);
 Bf = Best(i-1) + k_set(2)*u(i-1)*s(i-1);

 % calualte new error metric
 s(i) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb);

 % new estimates for A, B
 Aest(i) = s(i)*As + Af;
 Best(i) = s(i)*Bs + Bf;

 % calulate new output - uses the next set point value - we assume
this
 % is known
 u(i) = (ysp(i+1) - Aest(i)*y(i)) / Best(i);

end

error = feedback + pred;

 126

Appendix G: Code for LMI Symbolic Jacobian Solver

This section is used to create the function ‘calc_model1’, which is called from appendix

E. Symbolic manipulation is much slower than numerical evaluation of the function, thus

this section of code only needs to be executed once.

clear all
file = 'calc_model1.m'
f = fopen(file,'wt')
fprintf(f,'function [Amm, Apm, Amp, App, Bmm, Bpm, Bmp, Bpp] =
calc_model1(yk, at, ak, bt, bk, ka, kb, kd, sk, rk, alpha)\n\n');

digits(6);
syms yk xk a at ak b bt bk ka kb kd sk rk ysp alpha dk noise beta;

rk1 = (alpha)*rk + (1-alpha)*ysp;
dk1 = (beta)*dk + (1-beta)*noise;

uk = (-ak*yk + rk + (1-kd)*sk)/bk;

yk1 = a*yk+b*uk;
%yk = xk %+ dk;
ek = yk - rk;

Af = ak + ka*yk*sk;
As = ka*yk;

Bf = bk + kb*uk*sk;
Bs = kb*uk;

Sf = (2*yk1 - ak*yk - bk*uk + (1-kd)*sk)/(1+kd);
Sa = -yk/(1+kd);
Sb = -uk/(1+kd);

sk1 = (Sf + Sa*Af + Sb*Bf)/(1 - Sa*As - Bs*Sb);
ak1 = Af + As*sk1;
bk1 = Bf + Bs*sk1;

A = [yk1,sk1,ak1,bk1, rk1];
y = length(A); % states
fprintf('Vector of [states at k+1]
k\n___\n');
pretty(A)
Ajs = jacobian(A,[yk,sk,ak,bk, rk]); %dk
Bjs = jacobian(A, ysp);
z = 1; % inputs
Ajs = subs(Ajs,'a','ak-at');
Ajs = subs(Ajs,'b','bk-bt');
%Ajs = subs(Ajs,'xk','yk');

Bjs = subs(Bjs,'a','ak-at');

 127

Bjs = subs(Bjs,'b','bk-bt');
%Bjs = subs(Bjs,'xk','yk');

fprintf(f,'\n%% -At, -Bt terms\n');

Aj0 = subs(Ajs, 'at', '(-at)');
Aj0 = simplify(subs(Aj0,'bt','(-bt)'));
for m = 1:y
 for n = 1:y
 fprintf(f,'Amm(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Aj0(m,n)));
 end
end
fprintf(f,'\n');
Bj0 = subs(Bjs, 'at', '(-at)');
Bj0 = simplify(subs(Bj0,'bt','(-bt)'));
for m = 1:y
 for n = 1:z
 fprintf(f,'Bmm(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Bj0(m,n)));
 end
end

fprintf(f,'\n%% +At, -Bt terms\n');

Aj0 = subs(Ajs, 'at', '(+at)');
Aj0 = simplify(subs(Aj0,'bt','(-bt)'));
for m = 1:y
 for n = 1:y
 fprintf(f,'Apm(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Aj0(m,n)));
 end
end
fprintf(f,'\n');
Bj0 = subs(Bjs, 'at', '(+at)');
Bj0 = simplify(subs(Bj0,'bt','(-bt)'));
for m = 1:y
 for n = 1:z
 fprintf(f,'Bpm(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Bj0(m,n)));
 end
end

fprintf(f,'\n%% -At, +Bt terms\n');

Aj0 = subs(Ajs, 'at', '(-at)');
Aj0 = simplify(subs(Aj0,'bt','(bt)'));
for m = 1:y
 for n = 1:y
 fprintf(f,'Amp(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Aj0(m,n)));
 end
end
fprintf(f,'\n');
Bj0 = subs(Bjs, 'at', '(-at)');

 128

Bj0 = simplify(subs(Bj0,'bt','(bt)'));
for m = 1:y
 for n = 1:z
 fprintf(f,'Bmp(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Bj0(m,n)));
 end
end

fprintf(f,'\n%% +At, +Bt terms\n');

Aj0 = subs(Ajs, 'at', 'at');
Aj0 = simplify(subs(Aj0,'bt','bt'));
for m = 1:y
 for n = 1:y
 fprintf(f,'App(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Aj0(m,n)));
 end
end
fprintf(f,'\n');
Bj0 = subs(Bjs, 'at', 'at');
Bj0 = simplify(subs(Bj0,'bt','bt'));
for m = 1:y
 for n = 1:z
 fprintf(f,'Bpp(%s,%s) =
%s;\n',int2str(m),int2str(n),char(Bj0(m,n)));
 end
end

fclose(f)

 129

Appendix H: Example of one Element of the Jacobian

In this section one element of one possible combination of uncertainties from the function

‘calc_model1’ is shown. The full function is not displayed because it is generated from

the code in Appendix G, and the full file size is 62 kB of plain text for a first order

system with no disturbance, and 387 kB for a second order system.

Amm(4,4) = -(kb^2*sk^4*kd^4-2*kb^2*sk^4*kd^3+2*kb^2*sk^4*kd-
2*kb^2*sk^3*rk+2*kb^2*rk^3*sk+kb^2*ak^4*yk^4-
yk^4*ka^2*bk^4+2*bk^2*kb*sk^2-2*bk^4*yk^2*ka+2*kb*rk*yk*bk^2*at-
12*kb^2*ak*yk*rk*sk^2*kd^2+12*kb^2*ak*yk*rk*sk^2*kd+12*kb^2*ak*yk*rk^2*
sk*kd-12*kb^2*ak^2*yk^2*rk*sk*kd-
2*yk^2*ka*bk^2*kb*sk^2*kd+2*yk^2*ka*bk^2*kb*sk*rk-
2*yk^3*ka*bk^2*kb*sk*ak-2*bk^2*kb*ak*yk*sk*kd-2*bk^4*kd*yk^2*ka-
2*bk^2*kb*sk^2*kd^2-bk^4*kd^2+2*bk^2*kb*rk*sk*kd+2*bk^2*kb*sk*rk-
2*bk^2*kb*sk*ak*yk-2*bk^4*kd-
6*kb^2*ak^2*yk^2*sk^2*kd+6*kb^2*ak^2*yk^2*sk*rk+6*kb^2*ak^2*yk^2*rk^2+4
*kb^2*ak^3*yk^3*sk*kd-2*kb^2*ak^3*yk^3*sk-
4*kb^2*ak^3*yk^3*rk+2*yk^2*ka*bk^2*kb*sk^2-6*kb^2*ak*yk*rk^2*sk-
4*kb^2*ak*yk*rk^3+6*kb^2*ak^2*yk^2*sk^2*kd^2-
6*kb^2*sk^3*ak*yk*kd^2+2*kb^2*sk^3*ak*yk+kb^2*rk^4+4*kb^2*ak*yk*sk^3*kd
^3+6*kb^2*sk^3*rk*kd^2+4*bk*bt*kb*ak^2*yk^2+6*kb^2*rk^2*sk^2*kd^2-
6*kb^2*rk^2*sk^2*kd-4*kb^2*rk^3*sk*kd-
4*kb^2*rk*sk^3*kd^3+8*bk*bt*kb*sk*rk-4*bk*bt*kb*sk^2*kd-
4*bk*bt*kb*sk^2*kd^2+4*bk*bt*kd*kb*ak^2*yk^2-8*bk*bt*kd*kb*ak*yk*rk-
8*bk*bt*kb*ak*yk*rk-
8*bk*bt*kb*sk*ak*yk+4*bk*bt*kb*rk^2+4*bk*bt*kb*sk^2-kb^2*sk^4-
2*kb*ak*yk^2*bk^2*at+2*kb*sk*yk*bk^2*at+2*kb*rk*yk*bk^2*at*kd-bk^4-
2*kb*ak*yk^2*bk^2*at*kd-2*kb*sk*kd^2*yk*bk^2*at+6*sk^3*kd*yk*at*kb^2-
6*sk^3*kd^2*yk*at*kb^2+2*sk^3*kd^3*yk*at*kb^2+4*kb*ak^2*yk^4*bk*bt*ka+2
*kb*sk*yk^3*bk^2*at*ka+8*kb*rk*bk*bt*sk*yk^2*ka-
8*kb*rk*bk*bt*sk*kd*yk^2*ka-
2*kb*ak*yk^4*bk^2*at*ka+2*kb*rk*yk^3*bk^2*at*ka+4*kb*bk*bt*sk^2*yk^2*ka
-8*kb*ak*yk^3*bk*bt*rk*ka+4*kb*sk^2*kd^2*bk*bt*yk^2*ka-
8*kb*ak*yk^3*bk*bt*sk*ka+8*kb*ak*yk^3*bk*bt*sk*kd*ka-
8*kb*bk*bt*sk^2*kd*yk^2*ka-
2*kb*sk*kd*yk^3*bk^2*at*ka+4*kb*bk*bt*rk^2*yk^2*ka+2*ak^3*yk^4*at*kb^2-
6*ak^2*yk^3*at*kb^2*sk+6*ak*yk^2*at*kb^2*sk^2-
6*rk*yk^3*at*kb^2*ak^2+6*rk^2*yk^2*at*kb^2*ak+12*rk*yk^2*at*kb^2*sk*ak-
12*rk*yk^2*at*kb^2*ak*sk*kd-2*rk^3*yk*at*kb^2-
6*rk^2*yk*at*kb^2*sk+6*rk^2*yk*at*kb^2*sk*kd-
6*rk*yk*at*kb^2*sk^2+12*rk*yk*at*kb^2*sk^2*kd-
6*rk*yk*at*kb^2*sk^2*kd^2+6*sk*kd*yk^3*at*kb^2*ak^2-
12*sk^2*kd*yk^2*at*kb^2*ak+6*sk^2*kd^2*yk^2*at*kb^2*ak+8*bk*bt*kd^2*kb*
ak*yk*sk+4*bk*bt*kd*kb*rk^2-8*bk*bt*kd^2*kb*rk*sk-
2*sk^3*yk*at*kb^2+4*bk*bt*kd^3*kb*sk^2)/(bk^2+bk^2*kd+yk^2*ka*bk^2+kb*a
k^2*yk^2-2*kb*ak*yk*rk-
2*kb*sk*ak*yk+2*kb*ak*yk*sk*kd+kb*rk^2+2*kb*sk*rk-
2*kb*rk*sk*kd+kb*sk^2-2*kb*sk^2*kd+kb*sk^2*kd^2)^2;

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

