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Abstract 

A novel adaptive controller, suitable for linear and non-linear systems was developed.  

The controller is a discrete algorithm suitable for computer implementation and is based 

on gradient descent adaptation rules.  Traditional recursive least squares based algorithms 

suffer from performance deterioration due to the continuous reduction of a covariance 

matrix used for adaptation. When this covariance matrix becomes too small, recursive 

least squares algorithms respond slow to changes in model parameters. Gradient descent 

adaptation was used to avoid the performance deterioration with time associated with 

regression based adaptation such as Recursive Least Squares methods.  Stability was 

proven with Lyapunov stability theory, using an error filter designed to fulfill stability 

requirements.  Similarities between the proposed controller with PI control have been 

found. 

 
A framework for on-line tuning was developed using the concept of estimation tracks.  

Estimation tracks allow the estimation gains to be selected from a finite set of possible 

values, while meeting Lyapunov stability requirements.  The trade-off between sufficient 

excitation for learning and controller performance, typical for dual adaptive control 

techniques, are met by properly tuning the adaptation and filter gains to drive the rate of 

adaptation in response to a fixed excitation signal.  Two methods for selecting the 

estimation track were developed.  The first method uses simulations to predict the value 

of the bicriteria cost function that is a combination of prediction and feedback errors, to 

generate a performance score for each estimation track.  The second method uses a linear 

matrix inequality formulation to find an upper bound on feedback error within the range 
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of uncertainty of the plant parameters and acceptable reference signals.  The linear matrix 

inequality approach was derived from a robust control approach. 

 
Numerical simulations were performed to systematically evaluate the performance and 

computational burden of configuration parameters, such as the number of estimation 

tracks used for tuning.  Comparisons were performed for both tuning methods with an 

arbitrarily tuned adaptive controller, with arbitrarily selected tuning parameters as well as 

a common adaptive control algorithm.  
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1 Introduction 

Computer systems supporting advanced control algorithms have advanced to the point 

where high performance controllers beyond the standard PID do not have an onerous 

computational burden.  In general, these high performance control systems rely on a 

mathematical model for controller design.  A common first mathematical approximation 

is a model with linear dynamics, which can be represented as follows: 
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(1.1) 

  

For conventional, non-adaptive control, the controller is constructed such that the closed 

loop combination of the controller and the plant model results in some desired closed 

loop transfer function.  For many processes this calculation is not performed explicitly, 

and instead an empirical tuning method is used, such as the Ziegler and Nichols tuning 

technique (Seborg et. al., 1989).  In the conventional linear control approach, although 

the plant may change over time, the controller parameters are kept constant.  However, 

the changes in the model parameters if severe enough, can cause the closed-loop system 

to perform poorly or even become unstable, even if the original open-loop plant is stable.  

The conventional approach to avoiding this problem is to design the controller with very 

conservative parameter values and manually re-tune the controller periodically. 

 

Adaptive and robust control methods were developed to counteract the problems with 

conventional controllers described above.  In a robust control approach it is assumed that 

even if the model parameters are not known, the uncertainty of the values is known or 
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bounded.  The controller is designed explicitly to take these uncertainties into account, 

and guarantee stability and performance through the range of uncertainty.  In an adaptive 

control approach, parameter estimation methods are used to refine or learn a model of the 

plant over time.  Design relations similar to the ones used for conventional controllers are 

used to calculate the feedback law based on the learned parameters over time.  Some 

adaptive controllers, referred to as cautious controllers, use the uncertainty of the model 

parameters in the feedback law design.  Adaptive controllers require an excitation signal 

to the process for parameter estimation to occur.  One important class of controllers, 

referred to as dual adaptive controllers in the literature, use a combination of cautious 

control in the face of model uncertainty together with an optimal excitation signal to 

optimize the performance of the controller. Thus, the key idea behind the dual control 

concept is to achieve a trade-off between sufficient excitation for model learning and 

cautiousness or robustness of the controller in the presence of model uncertainty. 

 

In the literature, most adaptive controllers have tuneable parameters that greatly affect 

their performance, but the methodology for selecting them has been restricted to rules 

based on a priori knowledge of the true system or ad hoc selection based on extensive 

trial and error simulations.  Neither method is a satisfying solution for a general case. 

 

In chapter two, background material for the current study consisting of brief reviews of 

concepts regarding discrete parameter estimation, feedback control laws, dual adaptive 

control, Lyapunov stability theory, and linear matrix inequalities are presented.  Most of 
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the adaptive control methods found in the literature have tuneable parameters, but no 

systematic methods for selecting these parameters are given. 

 

Chapter three introduces the adaptive control method proposed in this work.  Stability is 

proven using Lyapunov stability theory.  A method for maintaining stability in the event 

of a division by zero situation is also presented.  Parallels with PI control are discussed.  

 

A novel concept of estimation tracks is introduced in chapter four.  Each estimator 

requires a constant value for the estimation gains for stability.  Estimation tracks are used 

to provide the basis for on-line tuning by resetting all estimates and filtered errors to the 

values corresponding to the current best track.  This idea consists of conducting parallel 

closed loop simulations with different set of tuning parameters. Each set is associated to a 

specific track.  The dual adaptive nature of the proposed methods is discussed.  Two new 

tuning methods, that have not been previously reported in the literature but are based on 

concepts reported in different contexts, are proposed in this work.  The first method uses 

the bicriteria cost function, a combination of prediction and feedback errors, to predict 

which track will have the best performance.  The second method draws from robust 

control ideas and uses linear matrix inequalities to find an upper bound on the feedback 

error for each track to find the track with the lowest error in the presence of model 

uncertainty. Simple examples are given to demonstrate each method in operation.  

 

In chapter five detailed results are presented.  First the effects of configuration 

parameters, such as the number of estimation tracks, time horizon for calculation and 
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magnitude of the model uncertainty are examined.  Next the performance and 

computation time of the two proposed tuning methods are compared with an arbitrarily 

tuned system.  This last simulation is explicitly conducted to illustrate the effect of a non-

optimally tuned system.  Finally a comparison with a standard adaptive control method is 

presented. 

 

Finally, conclusions and recommendations for future work are presented in chapter six. 
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2 Literature Review 

High performance control systems rely on a mathematical model for controller design.  

This model can be obtained mechanistically or empirically. A mechanistic model uses the 

chemical, mechanical, electrical or biological properties of the system to derive some 

equation describing the dynamic response of the system to inputs and disturbances.  An 

empirical model uses the observed response of the system to inputs and disturbances to 

provide a prediction of the system behaviour after the model parameters are properly 

adjusted.   

 

For conventional, non-adaptive control, the model of the system is required to design the 

controller.  Once it is designed, it is kept fixed until manual retuning is conducted. One of 

the major difficulties with these conventional control design methods is their sensitivity 

to model errors or mismatch. Model mismatch tends to arise from errors in the initial 

modelling and from changes in the true system over time (e.g. change in feedstock, 

change in operating conditions, heat-exchanger fouling, etc.).  In the presence of model 

mismatch an unstable closed-loop system or low control performance can result.  

Methods commonly used to compensate for these problems are robust and adaptive 

control.  This thesis will focus on the topic of adaptive control. 

 

An adaptive control system can be considered to be one where the controller parameters 

are changed based on observed input-output behaviour of the system. (Astrom and 

Wittenmark, 1989, chapter 1)  Thus, adaptive controllers can clearly be used to deal with 

model errors or model changes with time. 
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The variables in a time varying system can be divided into two classes: the dynamic 

states of the system and model parameters.  For example, in a system of the form: 
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(2.1) 

 

y is the state, u is the control input and a and b are the model parameters.  Dynamic 

states usually can be measured directly, or inferred with an observer, and are time-

varying.  Model parameters determine the response of the states to the control inputs.  

Generally, it is assumed that the model parameters vary slowly with time compared to the 

states, and are not deterministically affected by the control input.  These two types of 

variables give rise to two elements in adaptive control algorithms: estimation and 

feedback. 

 

The inner (or fast acting) loop is the feedback/feedforward control law.  This loop 

resembles traditional control algorithms, and generates a control signal based on an error 

between the observed output and a reference signal.  Common forms of control 

algorithms used are one-step-ahead, pole placement, minimum variance, PID, or 

minimum control effort techniques.   

 

The outer (or slow acting) loop is used for system identification.  This loop is the one that 

provides the adaptation with time.  The model estimates are assumed to change slowly 

compared to the feedback loop, allowing the model estimate to be updated at slower rates 

than the feedback loop control action calculations.   
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If the adaptive element determines the parameters for a model, such as given in equation 

2.1, the algorithm is referred to as indirect or explicit adaptive control (Filatov and 

Unbehauen, 2000).  In this type of adaptive controller the estimation problem is done 

separately from the design problem and the estimation algorithm adapts the parameters of 

the model.  Common types of estimation algorithm are least squares and gradient decent 

estimators.  Based on this adapting model the control law is derived using some design 

rules or algorithm.  Indirect adaptation gives some advantages for analysing and selecting 

alternatives.  Having an explicit estimate model allows for process simulations and easy 

calculation of the prediction error. 

 

If, instead of above, the feedback law parameters are adapted with time as input-output 

data becomes available, then the control is referred to as direct or implicit adaptive 

control. (Ex. Filatov et. al., 1997) In this method the controller’s parameters are updated 

by the process estimator.  The error between the observed closed loop system and a 

reference model is used to drive the adaptation.   

 

Unlike other model estimation methods, the estimation problem in adaptive control is 

done in closed loop.  The selection of the feedback law needs to take into account any 

requirements for sufficient excitation to the system.  Implicit in all forms of adaptive 

control is a trade-off between instantaneous or short-term tracking performance and the 

accuracy of the estimated plant model.  Long-term tracking performance depends on the 

plant model.  In effect a trade-off is sought between short-term performance for long-
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term performance.  For a special kind of adaptive control, referred to as dual adaptive 

control, this trade-off is made explicit as explained in a later section in this chapter. 

   

2.1 Identification of Plant Models 

As stated above, one of the key components of adaptive control is system identification.  

For a linear system, the model used for adaptation is generally given in the Discrete 

Auto-Regressive Moving Average (DARMA) form: 
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(2.2) 

 

The parameter vector to be considered is:  

[ ]nn bbaa ,...,,,..., 11=θ  (2.3) 
 

The vector of parameter estimates at the kth time step is:  

[ ]knkknkk bbaa ,,1,,1
ˆ,...,ˆ,,,...ˆˆ )=θ  (2.4) 

 

This vector can be expressed in the form of deviation variables:  

[ ]knkknkkk bbaa ,,1,,1
~,...,~,~,...,~ˆ~

=−= θθθ  (2.5) 

 

 

Convergence of the estimation requires that the norm of vector kθ
~ goes to 0 as k goes to 

infinity, i.e.  

0~lim =
∞→ kk
θ  (2.6) 
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A regression vector is defined as a function composed of past input-output data up to the 

order of the process model as follows:  

[ ]mkkknkkk uuuyyy −−−−= ,...,,,..., 11X  (2.7) 
 

This work will focus on recursive algorithms, which have a basic form of the parameter 

update equation as follows: (Goodwin and Sin, 1984)  

( )kf kkk ,,ˆˆ
1 Xθθ =+  (2.8) 

 

A widely used special case of this form is the following linear recursive representation:  

kkkkk e111
ˆˆ

−−− += XMθθ  (2.9) 

 

Where, the future value of the estimate vector is an algebraic function of the current value 

of the estimate vector, the current and past input-output data, and the time step.  

Recursive estimation is needed for adaptive control schemes since the new parameter 

value is required to calculate the new control action, and the computation time available 

for this operation relatively short.  A non-recursive method which uses all past data will 

have a computation time that is a monotonically increasing function of k, and will 

eventually require more time to complete the calculations than the step interval available 

for this calculation. 

 

2.1.1 Projection Algorithm 

The projection algorithm is one of the most basic adaptation schemes reported in the 

literature.  It is based on the following parameter update equation:  
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This equation is based on the following recursive form:  

kkkkk e111
ˆˆ

−−− += XMθθ  (2.11)

 

Where,  
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The error ke  is the error in prediction of the current observed value, based on the last 

estimated parameter set.  The basic form of the projection algorithm is prone to division 

by zero.  To avoid this singularity it is modified as follows:  
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(2.13)

 

This algorithm is known as the normalized least-mean-squares (NLMS).  In Goodwin 

(Goodwin and Sin, 1984), proof is provided that 1
ˆ

−kθ is non-increasing, and that the 

parameter set is only guaranteed to converge if the vector 1−kX is orthogonal to kX .  These 

results provide the motivation for the orthogonalized projection algorithm described in 

the next section. 
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2.1.2 Orthogonalized Projection Algorithm (Recursive Least Squares) 
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With 0θ̂ known and 20;0 <<> ac .  The initial covariance matrix, P-1 is positive definite. 

 

If one set c = 1, then the resulting algorithm is referred to as the recursive least-squares 

algorithm (RLS).  The least-squares method has some key advantages.  It may converge 

faster than the projection algorithm, provided that a good initial guess for the covariance 

matrix, P is available.  It is also less sensitive to noise.  The projection algorithm is easier 

to calculate for systems with a large number of states (Astrom and Wittenmark, 1989).  

The disadvantages of RLS are that its performance depends on the initial value of P-1.  

Also, kP tends to 0 as the algorithm converges.  Therefore, the basic form is not suitable 

for time varying systems since no further adaptation occurs after the system converges to 

an initial set of parameters.  There are several variations on the RLS algorithm that can be 

implemented to deal with time varying systems.  Examples are given in the following two 

sections.  However, these methods require a fair amount of trial and error or ad-hoc 

tuning. 
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2.1.3 Exponential Data Weighting (Forgetting Factor) 

This is a variant of the recursive least-squares algorithm, where the newest data is 

assumed to be more important than the old data.  
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(2.17)

With 0θ̂ and 01 >−P known. 

The parameter αk is the forgetting factor and is generally selected ad-hoc.  The excitation 

of the system is particularly important with this method. 

 

2.1.4 Covariance Resetting 

The standard recursive least-squares method is used, in combination with frequent 

resetting of the covariance matrix; Pk, becomes Kk*I.  When the covariance matrix is 

reset at every time interval, this method becomes equivalent to the projection algorithm.  

In both of these variants, the performance depends on the selection of α or the resetting 

time interval. Of course, in the case of time varying parameters, it is not clear when to 

reset the covariance since the times at which the changes occur are unknown a priori. 
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2.2 Feedback Laws for Adaptive Control 

As stated above, in explicit adaptive control methods the model estimator is designed 

separately from the control law.  Although the estimation and control are chosen 

separately, some forms of estimation and control may compliment each other better than 

others.  Traditional forms of feedback use the certainty equivalence (Bar-Shalom and 

Tse, 1974) principle, where the plant model estimate parameters are assumed to be the 

true values of the real system for the purpose of designing the feedback mechanism. 

 

Goodwin (Goodwin and Sin, 1984) identifies several common forms of feedback laws in 

his text and these are further discussed in the following subsections. 

 

2.2.1 One-Step-Ahead Control 

The error criteria to be minimised is the output error at the next step.  This method has 

the advantage of using the model parameters directly in the control law, so no estimation 

algorithm per se needs to be considered. 

The cost function to be minimised is:  

[ ]
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With a standard DARMA model:  
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The control law is given as follows:  
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If the true model parameters are unavailable, the estimated model parameters are used as 

follows: 
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The closed loop equation when (2.19) and (2.21) are combined is:  
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If the estimated values are accurate, iijj aabb == ˆ,ˆ  then the closed loop system follows:  

11 ++ = kk yspy  (2.23)
 

One disadvantage of this method is that it may give excessive control actions if there is a 

step change in the set-point.  To solve this problem with the one-step-ahead control a 

weight is added to the control input in the cost function to be minimised as follows:  

[ ]
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22
1 2

111
λ  

(2.24)

Whereλ  is a tuning parameter that provides the input weighting.   

  

An alternative method to deal with excessive control inputs is to filter the reference signal 

with a desired tracking model as shown in Figure 2.1.   
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Figure 2.1: Schematic of a one-step-ahead controller with a reference model 

 

Figure 2.1 represents the basic idea for model reference control, where the desired 

closed-loop performance is given in the form of a desired transfer function or if pole 

placement control is desired, by a set of desired poles. 

 

2.2.2 Model Reference Control 

For model reference control the reference signal is simultaneously fed to the controller 

with a transfer function C(z), and to a reference model with transfer function G(z) 

(Goodwin and Sin, 1984).  The reference model is a known transfer function that is 

stable, and has a delay at least as long as that of the system to be controlled.  The desired 

controller will give feedback such that the closed loop system of C(z) and the plant P(z) 

gives an output that is identical to the output of G(z); Y*, when both are driven to the 

reference signal, R(z).  The preceding system is illustrated in Figure 2.2, as follows: 

 

Ysp Reference One-Step-Ahead Plant 

Plant 

Ref U Yk 

Â 
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Figure 2.2: Schematic of a model reference controller 

 

In an adaptive control context, the tracking error and the input-output data are used in an 

adaptive mechanism to update the controller C(z).  Usually this is referred to as a direct 

adaptive controller. 

 

2.2.3 Cautious Control 

(Astrom and Wittenmark, 1989) 

If the controller is selected as a one-step-ahead controller, the control action calculation is 

the following control law, from equation (2.20): 
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The certainty equivalence controller is equal to the one-step-ahead controller but it uses 

the parameter estimates instead of the true values as follows: 

Reference G(z) 

Controller - C(z) Plant - P(z)Uk Yk 

Y*
k 

+ 

_ 
Ek 

R(z) 
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On the other hand, for cautious control the uncertainty in the estimates is considered.  For 

example, with a recursive least-squares algorithm, the uncertainty is accounted through 

the covariance matrix, Pk, as follows:  

[ ] [ ][ ]
1,1

2
1,1

11,11211,1

ˆ
0,...,0,1ˆˆ,...,,,...,,0ˆ

++

++−−−−++

+

⋅+⋅−−−⋅
=

kbk

kkknkknkkkk
k pb

byyuuyspb
u

Pθ
 

(2.27)

where 1,1 +kbp is the variance of the parameter 1,1̂ +kb .   

 

When the covariance 0=kP then the cautious controller given in equation (2.27) is 

equivalent to the certainty equivalence controller given in equation (2.26).  The situation 

where 0=kP  indicates that the parameter estimation has converged, and that the adapted 

model is the best estimate of the true plant. 

 

For example, for a pure integrating controller the certainty equivalence controller is:  

k
k

k y
b

u
1

ˆ
1

+

−=  
(2.28)

 

The corresponding cautious controller is:  

 

k
kbk

k
k y

pb
bu

1,
2

1

1

ˆ
ˆ

++

+

+
−=  

(2.29)
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The net effect of accounting for uncertainty with P is a reduction of the controller gain, 

making the performance less aggressive while the uncertainty is large.  The downside to 

this approach is that the input gain decreases as the uncertainty increases.  This can 

become a problem when the new input lacks sufficient excitation to better the estimation 

and consequently, to reduce the uncertainty.  This is called the turn-off phenomenon 

(Astrom and Wittenmark, 1989).  The dual adaptive control methodology presented in the 

sequel, avoids this problem by ensuring sufficient excitation for adaptation. 

 

2.2.4 Dual Control 

Implicit in all forms of adaptive control is a trade-off between instantaneous or short-term 

tracking performance and the accurate long-term estimation of the plant model.  Long-

term tracking performance depends on the plant model, so in effect there is a  trade-off  

between short-term control performance and long-term performance.  For dual adaptive 

control this trade-off is made explicit.  Unfortunately, the optimal dual problem is only 

numerically tractable for very simple examples.  Also, analytical solutions are only 

available for very simple systems.  Thus, suboptimal approximations of optimal dual 

control are used. 

 

Sternby (1976) gives an example of a system where an analytical solution to the optimal 

dual control problem can be found.  The system used is a Markov chain with a finite set 

of states and no system dynamics. 
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Filatov et. al. (1997) introduce the bicriterial approach to a pole placement dual control.  

With the bicriterial approach there are two cost functions to be minimised,  

( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ }k

Ta
k

kn
c
k

kkkyEJ

kykyBEJ

ℑ−+=

ℑ+−+=

|1

,|11
2

22

mp)
 

(2.30)

 

yn represents the nominal or desired trajectory, ( )1+ky represents the output with no 

disturbance, ( )kTp)  is the vector of estimated parameters and ( )km  is the input-output 

data vector.  These two terms represent the expectations of the feedback error and the 

prediction error respectively. 

 

Filatov and Unbehauen (1998) extend dual adaptive control to a continuous system.  A 

dither signal is used for excitation, with an amplitude dependant on the uncertainty of the 

estimate. 

 

Dumont (Dumont and Astrom, 1987, Allison et. al., 1995) reported the implementation of 

a suboptimal dual controller on a wood chip refiner.  The primary purpose of the 

controller is to detect and counteract a process gain sign reversal.  Heuristic elements are 

added to the control algorithm to allow for quick response in the event of a gain reversal. 

 

Veres and Xia (1998) examine the worst case transient performance for adaptive control 

systems.  They use the context of an airplane that is damaged, causing a sudden change in 

the true plant.  In this case the eventual convergence of the adaptive control is insufficient 

to guarantee overall stability of the algorithm; thus, the states of the system must be kept 

stable while adaptation occurs.   
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Filatov et. al. (1996) use a direct dual adaptive control on a laboratory scale mechanical 

example.  They use the bicriterial method for designing a feedback law.  The setup 

demonstrates performance improvements with the dual control over a normal adaptive 

controller for an unstable system.  No tuning guidelines are given for this algorithm. 

 

Sanner and Slotine (1992) introduce a continuous time framework for adaptive control of 

nonlinear systems.  A Gaussian network on a fixed grid is used to approximate the 

nonlinear system.  The network gains are directly updated by the adaptation mechanism.  

For this method to work it is necessary for the system to satisfy assumptions about 

relative smoothness and bandwidth limitations.  A dead-zone around the set-point and 

sliding control at the edge of the modeled region are used to ensure stability using 

Lyapunov stability criteria.  This algorithm, that serves as a basis for the techniques used 

in the current study, includes several tuning parameters that are selected ad-hoc or by trial 

and error.  This is also one of the key disadvantages of dual adaptive algorithms. 

 

Fabri and Kadirkamanathan (1998) demonstrate the applicability of explicit dual control 

to nonlinear systems.  They use a fixed grid mesh of radial basis functions to estimate a 

nonlinear function.  The neuron gains are adapted, but not the spacing or variance of the 

neurons.  The uncertainty of the estimate is taken into account in the design of the 

feedback law; providing this algorithm with dual adaptive control features. 
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2.3 Analysis Techniques of Control 

2.3.1 Linear Matrix Inequalities 

A linear matrix inequality formulation can be used to evaluate the performance of a 

system with uncertain parameters, while taking into account every possible combination 

of parameters within the range of uncertainty. 

 

A Linear Matrix Inequality (LMI) has the form: 

( ) 0110 <+++= nnxxx AAAA K  (2.31)
 

Where 

[ ]nxxx K1= is a vector with unknown values, known as the optimization variable. 

nAA ,,0 K are known symmetric matrices. 

And ( )xA is negative definite (i.e. all eigenvalues of ( )xA are negative, 

or ( ) 0<ηAη xT for all nonzero nℜ∈η  

 

The LMI’s (2.31) can be rearranged to represent ( ) ( ) 0  as  0 <−> xx AA and 

( ) ( ) ( ) ( ) .0  as  <−< xxxx BABA  

 

Note that ( ) ( ) 0
2

  0,0 <⎟
⎠
⎞

⎜
⎝
⎛ +

⇒<<
zyzy AAA , thus, the LMI’s (2.31) is a convex 

constraint on x.  The key properties of the LMI formulation are that its solution set is a 

convex subset of nℜ and if there is a solution to (2.31) finding the solution is a convex 
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optimisation problem.  The important thing to note about a convex optimisation is that 

even though (2.31) has no analytic solution; a numerical solver can be guaranteed to 

converge to a solution, provided a solution exists. 

 

The formulation to be solved that is relevant to this work is the generalized eigenvalue 

problem (GEVP).  The GEVP is to find the minimum value of the maximum generalized 

eigenvalue of a pair of matrices that are affine functions of the LMI optimization 

variable.  The GEVP is formulated as follows: 

Minimize λ subject to: ( ) ( ) ( ) ( ) 0,0,0 >>>− Xxxxλ CBAB  (2.32)
 

Where A, B, C are symmetric matrices that are affine functions of the optimisation 

variable x.  The result of this computation is λmax, the largest eigenvalue of the GEVP, 

after the minimization of (2.32).   

 

In the case that B(x) is positive semi-definite, and not positive definite, the LMI solvers 

available in Matlab may not be able to calculate a feasible solution.  This is important for 

problems where B(x) has the structure 

( ) ( ) ( ) 0,
00
0

1
1 >⎥

⎦

⎤
⎢
⎣

⎡
= x

x
x B

B
B  

(2.33)

 

By replacing the constraints of (2.32), 

( ) ( ) ( ) ( ) 0,0,0 >>>− xxxxλ CBAB  (2.34)
 

with the following constraints: 
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( ) ( ) ( )

YY

BBY
Y

A

=

><⎥
⎦

⎤
⎢
⎣

⎡
<

T

xxλx

 where

0,,
00
0

11  
(2.35)

 

the resulting problem is equivalent to the original GEVP problem as given in equation 

(2.32), and can be solved with the GEVP Matlab function. 

 

Kothare et. al. (1994, 1996) use LMI’s to design a robust model predictive controller 

(MPC).  They use this LMI formulation to design a control law that results in the least 

bad case design.  This provides robust performance for the nonlinear process represented 

by a robust model composed of a nominal model supplemented by a model error 

representation.  

 

Ozkan et. al. (2000) subdivide the control structure of a nonlinear system into pieces 

sufficiently small to be represented by piecewise linear models.  This representation 

proves to be particularly suited to deal with problems with saturation, relays and dead 

zones. 

 

2.3.2 Linear Representations of Non-Linear Systems 

A linear system with structured uncertainties in the parameters can be represented using 

the form of equation (2.31) as follows: 
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( ) ( )
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(2.36)

 

If the values of nδδ ,,1 L are time varying and bounded equation (2.36) describes a time 

varying linear system as follows:  

kkkkk uxx BA +=+1  (2.37)
 

The bounds on nδδ ,,1 L and the structure of (2.36) imply that kk BA  and are bounded 

by a polytope of matrices.  This polytope is structured as follows:  

[ ] [ ]

∑

∑

=

=

=≥

=

L

i
kiki

ii

L

i
kikk

1
,,

1
,

1,0

',',

αα

α BABA
 

(2.38)

 

The state matrices used in (2.36) can be represented as a linear combination of a set of i 

invariant sub-matrices (Kothare et. al., 1994). 

      

Results from Liu (1968) allow us to approximate a non-linear system as a time varying 

linear system. Provided that the Jacobian below is contained in a polytope of matrices, 

where the Jacobian is evaluated using the extreme values of the range of the uncertainty 

in the parameters of the nonlinear system, i.e.:  
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(2.39)

 

The matrices [ ]iii CBA ,,  give us the ‘vertices’ of the parameter space where the true 

system can exist.  The location of the vertices depends on the uncertainty involved in 

estimating the true parameters of the system.   

 

The polytope resulting from the Jacobian of the nonlinear system is in a form that can be 

used in the LMI formulation (2.31). 

 

An example of the Jacobian calculation follows for a simple system: 

max

2
1

0 xx
buxx kkk

≤≤
+=+  

(2.40)

 

The Jacobian (2.40) is: 
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(2.41)

 

Using the known bounds on the system, the polytope that bounds (2.40) is: 

[ ]

[ ] [ ] [ ]bxb
where
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(2.42)
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2.3.3 Lyapunov Stability 

Lyapunov methods are used to mathematically prove the stability of a system.  The two 

Lyapunov methods are linearization of the system or indirect method, and the Lyapunov 

direct method. 

 

The linearization method is used to find the stability in an infinitesimal neighbourhood of 

an equilibrium point.  The theorem relates the local stability of the linearized system with 

the local stability of the non-linear stability, as follows (Slotine and Li, 1991): 

 

• If the linearized system is strictly stable (i.e. 1max <λ ), then the equilibrium point 

of the original non-linear system is asymptotically stable. 

• If the linearized system is unstable (i.e. 1max >λ ), then the equilibrium point of 

the original non-linear system is unstable. 

• If the linearized system is marginally stable (i.e. 1max =λ ), then no conclusion 

regarding the stability of the equilibrium point of the original non-linear system 

can be reached. 

 

The disadvantage to the linearization method is that there is no easy determination of how 

big the stable neighbourhood around the equilibrium point is.  This disadvantage, along 

with the lack of a guarantee of the results for the actual nonlinear system motivates the 

Lyapunov direct method. 
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The Lyapunov direct method uses the concept of physical energy, where stability is 

assured if the energy constantly decreases.  The basis of the direct method is to construct 

a function that gives a scalar value with properties similar to energy, referred to as the 

Lyapunov function, (i.e. there is a unique input that will return a value of zero, and all 

other inputs will return values larger than zero) that monotonically decreases to zero.  

Finding an energy function where this condition is not true does not prove instability; i.e. 

stability may be possible to prove for a different function.  Therefore, the disadvantage of 

this method is that there is no systematic way of selecting the least conservative 

Lyapunov function.  Slotine (Slotine and Li, 1991) has given some techniques that are 

useful for searching for an appropriate Lyapunov function for linear systems.  Given a 

linear time-invariant system of the form ( ) ( )kk Axx =+1 , a quadratic Lyapunov function 

has the form, as follows:  

( ) ( ) ( )kkkV T Pxx=  (2.43)
 

Were ( )kV is the Lyapunov energy and P is a symmetric positive-definite matrix.  The 

Lyapunov direct method for global stability has the requirements (Slotine and Li, 1991): 

 

Assume that there exists a scalar function V of the state x, with continuous first-order 

derivatives such that 

o ( ) ( ) ( )kkkV T Pxx=  is positive-definite 

o ( ) ( ) 01 <−+ kVkV  

o ( ) ( ) ∞→∞→ kaskV x       

Then the equilibrium point at the origin is globally asymptotically stable. 
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In this work the Lyapunov direct method is applied to the stability of the adaptive 

mechanism proposed in chapter 3.  

 

Stability proofs using the quadratic Lyapunov function (2.43) can be referred to as 

quadratic Lyapunov stability proofs.   

 

2.3.4 Quadratic Lyapunov Performance 

To be able to evaluate the performance of a controller a measurement method is needed.  

For control systems, an energy based L2-norm is usually used.  The L2-norm is defined 

as:  

( ) ( )∫
∞

∞−
= dttt T

L
eee

2
 (2.44)

 

The subscript can be omitted for simplicity and the norm is written as e . 

The following system is used for the analysis: 
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kk
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e ν  

(2.45)

where { } n
nk ℜ∈= δδ ,,1 Lδ  is a vector of uncertain but bounded time-varying real 

parameters.   

νK may represent disturbances to the system or alternatively set point changes. 

For the following analysis the following assumptions are used: 

• ki,δ is bounded by known values ii δδ  and , thus [ ]iiki δδδ ,, ∈  
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• The state matrix, ( )kδA  is affinely dependant on the parameters as shown in 

(2.36) 

The assumptions restrict the parameter vector kδ  to existing in a space that forms a 

hyper-cube with 2n vertices, which will be referred to as the parameter space, as follows:  

( ) { }{ }iiin www δδ ,:,,1 ∈= LW  (2.46)

 

 

Quadratic Lyapunov performance is defined as the following (Gao and Budman, 2003): 

 

The system (2.45) has a zero initial state, satisfies quadratic Lyapunov stability and  

22 lL
νe γ<  (2.47)

 

for all L2-bounded inputs ν if there exists TPPP => ,0 and a positive definite 

quadratic Lyapunov function ( ) ( ) ( ) ( ) ,0, >= tVtttV T Pηη  such that 

( ) ( ) ( ) ( ) ( ) ( ) 01 2 <−+−+ tttetetVtV TT ννγ  (2.48)
 

for all admissible uncertainties tδ and for zero initial conditions .0η   

 

Inequality (2.48) is true if and only if  

( ) ( ) ( )
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

IDC
DIPBBδPAB
CPBδAPδPAδA

TT
i

T

TT
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(2.49)
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holds for all admissible trajectories and initial values of the uncertain parameter vector 

tδ .  Evaluating (2.49) is not tractable in general because it imposes an infinite number of 

constraints on P.  Under the affine parameter dependence assumptions, as shown in 

equation (2.36) Gao and Budman (2003) have proposed a theorem that shows that (2.49) 

holds if and only if P satisfies the following system of LMI’s. 

 

Consider the time-varying system (2.45) where ( )tt δAδ , and W  are defined as in 

section 2.3.3.  A sufficient condition for quadratic Lyapunov stability of this system is 

the existence of TPPP => ,0 such that  

( ) ( ) ( )
( ) 02 <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

IDC
DIPBBPAB
CPBAPPAA

TT
i

T

TT
ii

T
i

w
www

γ , for all W∈w  

(2.50)

 

A proof is given in (Gao and Budman, 2003). 

 

Inequality (2.50) can be solved as a general eigenvalues problem (GEVP) as in (2.32), to 

minimise the performance index γ.  This minimisation gives the worst expected effect of 

the disturbance ν  on the error e  for all the models included in the family of models 

defined by equation (2.45). 
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3 Controller and Estimator Design 

In this section a novel discrete adaptive controller is developed, based on the continuous 

time adaptive controller version proposed by Sanner (Sanner and Slotine, 1992).  This 

discrete adaptive controller has not been reported in the literature.  This adaptive 

controller is based on a gradient descent based parameter estimation algorithm combined 

with a cautious one-step-ahead feedback control law.  The one-step-ahead controller is 

used for simplicity of the mathematical development, but the stability and tuning results 

are valid for other forms of feedback laws, such as pole-placement algorithms.  

 

3.1 Definitions 

Given a DARMA (Discrete Autoregressive Moving Average) model of a system that is 

nth order with respect to the state and mth order with respect to the input: 

∑∑
−

=
−

−

=
−+ +=

1

0

1

0
1

m

j
jkj

n

i
ikik ubyay  

(3.1) 

 

The vectors of the parameters ai and bj are defined as follows: 

[ ]Tnaa 10 −= LA  (3.2) 

  

[ ]Tmbb 10 −= LB  (3.3) 

 

The parameter estimate vectors are defined as follows: 

[ ]Tknkk aa ,1,0 ˆˆˆ
−= LA  (3.4) 
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[ ]Tkmkk bb ,1,0
ˆˆˆ

−= LB  (3.5) 

 

Let the values of past input and output data be given by the following vectors:  

[ ]Tnkkk yy 1+−= LY  (3.6) 

   

[ ]Tmkkk uu 1+−= LU  (3.7) 

  

Then, using equations (3.2), (3.3), (3.6) and (3.7), the DARMA model given by equation 

(3.1), can be reformulated in terms of the input and output vectors as follows: 

k
T

k
T

ky UBYA +=+1  (3.8) 
 

Also for the purpose of designing an implementable controller, let  

[ ]Tkmk
old
k bb ,1,1

ˆˆˆ
−= LB  (3.9) 

and, 

[ ]Tmkk
old
k uu 11 +−−= LU  (3.10)

 

A filtered feedback error, to be justified in sections 3.2 and 3.3, is given as follows: 

( )
D

k
T

kk
T

kkDkk
T

kk
T

k
k K

sKy
s

+
−−−++−−

= −−−−−−−

1

ˆˆ12ˆˆ
1111111 UBYAUBYA  

(3.11)

 

 

For simplicity, an adaptive algorithm based on a one-step-ahead controller (equation 

2.18) will be used.  A term proportional to the filtered error, sk, is added, multiplied by a 

tuning parameter DK , as follows: 

( )( ) 1
,0

ˆ1ˆˆ −⋅−+−−= kkD
old
k

Told
kk

T
kspk bsKyu UBYA  (3.12)
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Where 0>DK  
 

The errors in the estimated parameters are defined in the form of deviation variables as 

follows:  

AAA += kk
~ˆ  (3.13)

 

BBB += kk
~ˆ  (3.14)

  

The gradient descent method is used to formulate the parameter update equations where 

the error used for updating is the sum of the current and past value of the filtered 

errors, ( )1−+ kk ss : 

( )111
ˆˆ

−−− ++= kkkkk ssYKAA A  (3.15)

 

( )111
ˆˆ

−−− ++= kkkkk ssUKBB B  (3.16)

 

BA KK , are matrices of adaptation gains, with diagonalstructure as given below: 
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⎥
⎥
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⎡
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AK is invertible and { }1,...,1,0,0,, −∈> niiiAK  

(3.17)

and, 
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⎥
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BK is invertible and { }1,...,1,0,0,, −∈> mjjjBK  

(3.18)
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3.2 Proof of Controller Stability 

To ensure that the controller defined in the previous section is stable and that the 

parameters converge to their true values when the model structure is correct, a Lyapunov 

stability proof is presented.  It should be recalled that Lyapunov methods require a 

positive definite ‘energy’ function.  This implies that the energy is zero at the origin and 

greater than zero at any other state.  If the energy can be shown to be non-increasing with 

time, then the estimate is stable, and if excitation conditions occur such as this energy 

function never converges to a non-zero condition, the estimates will converge to their true 

values.  The error filter, sk, has to be designed to fulfill this Lyapunov criterion. 

 

The Lyapunov function used is a quadratic function made of the combination of the 

squares of the estimation errors and the filtered error as follows: 

211 ~~~~
kkB

T
kk

T
kk sV ++= −− BKBAKA A  (3.19)

  

 Examining the structure of equation (3.19), it can be seen that every term is composed of 

a tuning factor multiplied by the square of the error of each one of the parameter 

estimates, or by the square of sk.  Clearly each term is positive definite with respect to an 

origin that corresponds to zero filtered error and convergence of the parameter estimates 

to their true values. 

Substituting equation (3.12) into the system equation, (3.8) results in the following: 

( )( )kD
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k
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T
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T
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+ 1ˆˆˆ 1
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When the Lyapunov energy converges to zero, .0 and ˆ,ˆ === kkk sBBAA   When these 

values are used in equation (3.20), the equation reduces to the following: 

( )( )

spk

kDspk
old
k

Told
k

old
k

Told
kk

T
kk

T
k
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sKybby

=
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1
,001 1ˆˆˆ UBUBYAYA

 

 
 
 
(3.21)

 

Thus, proof of the convergence of the estimated values, to the true values, ensures that 

the closed loop system tracks the set-point.  It should be noted that any controller that is 

stable when designed with the true system parameters (i.e. pole-placement or model 

reference controllers) will ensure closed loop stability. 

 

Substituting the Lyapunov convergence conditions, and 01 == −kk ss  into equation (3.11) 

results in the following: 

( ) ( ) 1111
ˆˆ5.0ˆˆ5.0 −−−− +++= k

T

kkk

T

kkky UBBYAA  (3.22)

 

The RHS of equation (3.22) is the average prediction for y using the parameter estimates 

at the current time step, and the last time step.  When the estimates have converged, 

1
ˆˆ

−= kk AA and 1
ˆˆ

−= kk BB , which results in the following equation: 

11
ˆˆ

−− += k
T

kk
T

kky UBYA  (3.23)
 

Thus, when the estimators converge, the prediction error for y is zero when there is no 

measurement noise. 

 

After substituting equations (3.13) and (3.14) into equation (3.19):   
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( ) ( ) ( ) ( ) 211 ˆˆˆˆ
k

T

k

T

kk sV +−−+−−= −− BBKBBAAKAA kBkA  (3.24)

 

And expanding terms:  
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KA and KB are symmetric, thus:  

k
TT

k AKAAKA AA
ˆˆ 11 −− =  (3.26)

 

kBBk BKBBKB ˆˆ 11 −− = TT  (3.27)
  

Substituting equations (3.26) and (3.27) into (3.25) gives: 
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(3.28)

 

For Lyapunov stability the ‘energy’ is required to be a non-increasing function as given 

below:   

01 ≤−+ kk VV  (3.29)
 

To satisfy this criteria, equation (3.28) is formulated at interval k+1 and from the 

resulting equation, equation (3.28), is subtracted, resulting in the following expression: 
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(3.30)

  

After collecting like terms: 
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(3.31)

 

Completing the square as follows:   
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( ) ( )kBkBkkkBkkBk BKBKBBBKBBKB ˆˆˆˆˆˆˆˆ 1
1

1
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1
1

1
1

−
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−
+

−
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−
+ +−=−

TTT  (3.33)

 

Equation (3.32) and (3.33) are substituted into (3.31), and then rearranged as follows: 
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(3.34)

  

After calculating equations (3.15) and (3.16) at interval k+1 and substituting the result 

into equation (3.34), the following expression results: 
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(3.35)

 

Finally, after rearranging equation (3.35): 

( ) ( ) ( ) ( )[ ]kk
T

kkk
T

kkkkk ssssVV −+−++−++=− +++++ 11111 2ˆˆ2ˆˆ BBBUAAAY kk

 

(3.36) 

 

The filtered error is defined by the implicit equation given below: 

( ) ( ) ( )[ ] ( )kkDkk
T

kkk
T

k ssKss +−=−+−++−+ ++++ 1111 2ˆˆ2ˆˆ BBBUAAAY kk  (3.37) 
 

Substitute equation (3.37) into (3.36) as given below: 
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( )2
11 kkDkk ssKVV +−=− ++  (3.38)

 

Equation (3.38) satisfies the requirement that the Lyapunov function is decreasing with 

time for any positive value of KD. 

 

3.3 Implementation of the adaptive estimation method 

In this section an implementable and causal version of the control law given in equation 

(3.12) will be presented.  Equation (3.12) is not directly implementable because it 

depends on values available at time k.  The implementable form of uk should be a 

function of values observable at time k-1. 

 

Given equation (3.37) and expanding terms, the following expression is obtained: 
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After substituting equation (3.8) into equation (3.39), 
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After collecting terms in equation (3.40): 

( ) ( ) 1111 11ˆˆ2ˆˆ
++++ +−=−+++−+ kDkD

T
k

T
kkk

T
kk

T
k sKsKy kk BUBUAYAY  (3.41) 

 

Or explicitly, from equation (3.41) in terms of time k: 
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(3.42)

 

From equation (3.42), the following terms are defined: 
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(3.45)

 

And from equation (3.15) and (3.16) define: 

[ ] [ ]1111
ˆˆ

−−−− ⋅++⋅= kkkkkk sAs YKYKA AA  (3.46)

 

[ ]1, −⋅= kkS YKA A  (3.47)
 

[ ]111,
ˆ

−−− ⋅+= kkkkf sYKAA A  (3.48)

 

[ ] [ ]1111
ˆˆ

−−−− ⋅++⋅= kkkkkk ss UKBUKB BB  (3.49)

 

[ ]1, −⋅= kkS UKB B  (3.50)
 

[ ]111,
ˆ

−−− ⋅+= kkkkf sUKBB B  (3.51)
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Substitutions of equations (3.49) and (3.46) into equation (3.42), and use of definitions 

(3.43), (3.44), (3.45), (3.47), (3.48), (3.50) and (3.51), result in the following expression: 

( ) ( ) kfkB
T

kfkSkkA
T

kfkSkk Ssss ,,,,,,, ++++= SBBSAA  (3.52)

 

Or, rearranging equation (3.52): 

[ ] kfkB
T

kfkA
T

kfkB
T

kSkA
T

kSk Ss ,,,,,,,,,1 ++=−− SBSASBSA  (3.53)

 

Finally, solving for sk: 

kB
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kfkB
T

kfkA
T

kf
k

S
s

,,,,

,,,,,

1 SBSA

SBSA

−−

++
=  

(3.54)

 

In the last equation, all the expressions in the right hand side are given by definitions 

(3.43) - (3.51).  All of these definitions are causal, i.e. they are functions of values 

obtained at time k-1, and can be measured or calculated, and therefore can be 

implemented on line.  Using expressions (3.54), (3.49) and (3.46) the control action can 

be calculated online using equation (3.12). 

  

3.4 Avoidance of Division by Zero 

In equation (3.12) there is a division by kb ,0
ˆ .  This is an estimated parameter value, and 

the Lyapunov stability criteria only guarantees that the estimate will converge for ∞→t .  

However, during transients, this parameter estimate may reach a zero value.  When the 

parameter kb ,0
ˆ reaches a value of zero, numerical problems in calculating the next control 

input will arise due to a division by zero in equation (3.12).  To avoid the numerical 
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problems if a division by zero is calculated all estimation values should be reset to the 

last time step. For the algorithm considered in this work the values that would be reset 

are 111 ,ˆˆ,ˆˆ
−−− === kkkkkk uuBBAA and 1−= kk ss . 

 

The question for stability considerations is whether the situation that leads to a division 

by zero error will occur for two or more time intervals, that is:  

[ ] [ ] 0ˆˆ
110,0,110,0, =++= −−−− kkBkkBkk suKbuKsb  (3.55)

 

If 11
ˆ,ˆ

−− kk BA and 1−ks and therefore 1−ku are held constant then the only variable in equation 

(3.55) that can change from one interval to the next is ks . 

 

According to equation (3.54): 

βα += kk ys  (3.56)
 

Whereα  and β  are functions of the variables 11
ˆ,ˆ

−− kk BA , 1−ks and yk is the observed output 

at time k.  

 

Then, it is obvious that for 0,
ˆ

kb  to remain zero, it is necessary yk or sk remain constant 

from interval to interval.  However it is clear that in a dynamic system, yk will change 

with time.  Even in the case that the system is at steady state, yk will always be corrupted 

by random measurement error and therefore will change.  Thus, equation (3.55) will not 

occur for an infinite number of consecutive time steps.  Consequently, Lyapunov function 
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will eventually continue to decrease towards the origin corresponding to convergence of 

the parameters to their actual values and convergence of the feedback error to zero. 

 

3.5 Parallels with PI Control 

In this section, the similarities between the controller algorithm proposed in this study 

and conventional PI controllers will be explained.   

 

A conventional discrete PI controller has been given in the literature (e.g. Seborg, Edgar 

and Mellichamp,1989), as follows:  
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(3.57)

 

The control law consists of a proportional term, ( )zEKC  and an integral term, 

( )zE
z

t

I
⎟
⎠
⎞

⎜
⎝
⎛
−

∆
−11

1
τ

.  The similarities between the controller presented in this section and a 

PI controller may be established by inspection of equation (3.12) as follows:  

( )( ) 1
,0

ˆ1ˆˆ −⋅−+−−= kkD
old
k

Told
kk

T
kspk bsKyu UBYA  

 

The term ( ) 1
,0

ˆ1 −⋅− kkD bsK  is equivalent to a nonlinear proportional action because kb ,0
ˆ  is 

a function of ks .  The term old
k

Told
kk

T
kspy UBYA ˆˆ −−  represents the prediction error, which 

fulfills the function of an integrator as shown in the sequel.  The estimates update 

equation, (3.15): 
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( )111
ˆˆ

−−− ++= kkkAkk ssYKAA  

 

This equation can be represented as a z-transform as follows: 

( ) ( ) ( )[ ]111 ,,
1

1ˆ
−−− ⋅

−
= kkk ssfZ

z
z YKA A  

(3.58)

 

Thus, Â  is the integration of a non-linear function of kk s,1−Y and 1−ks . 
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4 Theory and Methods 

One of the significant features of dual control is the combination of cautious control with 

some form of probing.  As discussed in section 2.2.3, cautious control reduces the 

aggression of the feedback law to take into account the uncertainty and the noise in the 

system, and the probing capability refers to the addition of an excitation signal to the 

control action to ensure the convergence of the parameter estimates.  In most dual control 

studies the control action, which includes the excitation signal for probing, is designed 

where the adaptation gains are selected ad-hoc, or rules of thumb are used to achieve 

optimal control performance.  For this work, the amount of excitation or probing will be 

considered to be fixed, and it is contained in the reference signal.  On the other hand, the 

adaptation gains BA KK  and are used to adjust the rate of adaptation.  Selecting a high 

value for the adaptation gains will tend to speed adaptation, while causing the estimates 

to be more sensitive to measured noise.  The filtered error gain, DK , determines the 

system response to sk.  The trade-off between cautiousness and probing in this work will 

be achieved by adjusting the adaptation and filter gains in an attempt to balance between 

adaptation speed and fast oscillations that may be caused by aggressive adaptation in the 

presence of noise and model uncertainty. 
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4.1 Tuning using tracks 

4.1.1 Rational 

The stability proofs for the discrete adaptive controller developed in section 3.2, as well 

as other adaptive control methods in the literature, require that the tuning parameters be 

constant with respect to time.  Thus, on-line tuning of the parameters is, in principle, not 

allowed.  However, multiple simultaneous estimations of the plant model parameters can 

be calculated with the same input-output data but different tuning parameters.  In this 

chapter a method for switching parameters for the purpose of tuning the controller is 

developed.  Each of these simultaneous calculations will be referred to as an estimation 

track.  At any given time interval, one of the estimation tracks is selected, where the 

criteria for selection is as discussed in section 3.2.  It will be shown in the next section, 

that stability and convergence properties can be still maintained using this method of 

switching between estimation tracks. Then, the values of the plant model parameter 

estimates, and the filtered error, ks  in the selected estimation track can be used to 

calculate the control action.  For conventional adaptive controllers reported in the 

literature, the probing element of the controller is introduced in the control action.  Thus, 

tuning is difficult in these circumstances because alternative tuning parameters, and 

hence control actions cannot be simultaneously calculated and independently 

implemented.   
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4.1.2 Stability of Estimation Tracks 

In this section the stability of the proposed tuning method is explained.  For each 

estimation track, the estimate is guaranteed to be stable and converge only if the tuning 

constants, DBA KKK  and , , are constant with respect to time.  When a new track is 

deemed to be the best according to an optimisation criteria, the parameter estimates 

kk AB ˆ and ˆ and the filtered error sk are reset to the values corresponding to the new track.  

As a result of this, at each time step this switch can cause a local increase in Lyapunov 

energy.  As an example refer to the jump in Lyapunov energy between letters ‘A’ and ‘B’ 

in Figure 4.1.  In this figure the curves labelled ‘1’ through ‘5’ refer to the energy of the 

tracks corresponding to the parameter sets [ ]1,1,1, ,, DBA KKK  through [ ]5,5,5, ,, DBA KKK  

respectively.  Despite the possibility of temporary jumps in Lyapunov energy all the 

tracks eventually converge, as shown in Figure 4.1.  Thus overall stability, i.e. decrease 

of the Lyapunov function is obtained although temporary increases in this function may 

occur. 

 
Figure 4.1: Lyapunov energy of each estimation track with the current value superimposed 
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Also, in section 3.4 a method for avoiding numerical problems caused by division by zero 

was given where all estimation values are frozen until a non-zero estimate of kb ,0
ˆ can be 

found.  When multiple tracks are used as explained above, if at least one track has an 

estimate for kb ,0
ˆ  that is non-zero, then the tracks with a zero estimate can be temporarily 

excluded for consideration for use in designing the control law, at that specific interval.  

Only if all tracks have an estimate of zero for kb ,0
ˆ , then all estimates must be frozen.  It 

should be remembered that the condition for a zero estimate of kb ,0
ˆ  to be calculated for 

two or more intervals is that yk or equivalently sk remain constant from interval to 

interval.  However as explained in section 3.4, this will never happen because either the 

system will be transient, i.e. yk will change, or yk will be corrupted by measurement 

noise.  For this analysis a first order system has been considered, but for a higher order 

system, there are more parameters in the condition equation which must match between 

tracks, making the problem of having all estimates for kb ,0
ˆ  remaining at zero even more 

remote. 

 

4.1.3 Set selection 

Each track has a combination of values for DBA KKK  and , .  There are n tuneable values 

in ,AK  m tuneable values in BK and DK is scalar, for a total of n+ m + 1 tuneable 

parameters.  The parameter sets to be considered are selected to cover the range of likely 
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‘good’ tuning parameters.  An example of computer code for the set selection is given 

below: 

for a = 0 : (tracks_to_check - 1) 
 for b = 0 : (tracks_to_check - 1) 
  for d = 0 : (tracks_to_check - 1) 
   set_number = set_number + 1; 
   set(:,set_number) = [(a*4 + 1) / tracks_to_check); 
    … (b*4 + 1) / tracks_to_check); 
    … (d*4 + 1) / tracks_to_check)]; 
  end 
 end 
end 

(4.1) 

 

This code selects parameters on a grid, evenly spaced between values of 0 and 4, 

excluding these values.  To select the range of parameters, some a priori knowledge of 

the approximate values of the model parameters is required, e.g. an approximate value for 

the time constant for the system.  The amount of computational resources available will 

influence how good this a priori knowledge needs to be. 

  

4.2 Track selection methods  

Ideally, the track with the lowest Lyapunov energy should be selected, but to calculate 

the Lyapunov function the true values of the plant model parameters have to be available.  

Since the parameters are not known, the Lyapunov energy cannot be calculated online.  

In the following sub-sections two methods are discussed to select the proper track.  The 

Bicriteria method attempts to identify the track with the lowest expectation for prediction 

and feedback errors.  The second method is based on an LMI formulation that finds the 

worst case scenario in the range of expected model error or uncertainty for each track.  

The track with the lowest ‘worst-case’ score is used. 
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4.2.1 Bicriteria Method 

The bicriteria error function used by Filatov (Filatov et. al., 1997), given before as 

equation 2.30, is repeated below, in terms of the variables used in the method described 

in this work:   
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(4.2) 

 

These two terms represent the expectations of the feedback or short-term tracking error 

and the prediction or long term error respectively.  Minimising the error is good for short 

term purposes; however, if the error is small, learning of the model will be slower and 

therefore the prediction error will be larger which is detrimental in the long run.  The key 

advantage of using the bicriteria cost functions is that they explicitly describe the trade-

off between short and long-term performance that is required in the design of any 

adaptive controller.  An adaptive controller that produces a sequence of control actions 

that produce the minimum possible value for the combined bicriteria cost functions is 

referred to as an optimal controller in the literature.  It was mentioned in section 2.2.4 

that an analytic solution of the optimisation of (4.2) is not possible for most systems.  

Thus, most adaptive control methods focus on suboptimal control; where the control 

sequence used gives good performance, but not necessarily the best possible 

performance.  For the estimation track tuning method proposed in this work, a finite set 

of valid tuning parameter combinations is considered, and hence a finite set of valid 

control actions at any given time interval can be calculated.  The set of all valid control 
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actions does not include all possible control actions.  Thus this estimation track tuning 

method is expected to be suboptimal.  

 

4.2.1.1 Method 

The bicriteria cost functions are an expectation of the value of the feedback and 

prediction errors at the next time step.  For this work this expected value is calculated by 

simulation.  The initial value of the plant parameters is taken on a grid to cover the range 

of uncertainty in the estimates, and weighted by the likelihood that the estimate is the 

correct one. 

 

The filtered error, ks can be used to measure the uncertainty in the estimated values of the 

parameters.  The ‘energy’ or root-mean-square of recent values of ks will be used as a 

basis for the calculation of the confidence interval of the parameter estimates.  In this 

work a periodic excitation signal of square wave type has been used.  Most adaptation 

occurs when the excitation signal has large jumps, i.e. at the end of the period, so the time 

to consider for calculations will be one period for the excitation signal, as follows: 

( )
5.0

12 1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ −

−=
∑ ps

k

pki
ik  

Where p is the period of the excitation signal used. 

(4.3) 

 

The simulation is initialized with an estimate of the plant parameters.  The initial values 

are chosen on a grid with the current estimate values at the centre, and the corners are 
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chosen to be, e.g. for a first order system, all the combinations of 

,ˆ kk Ma ∆± ∆ kk Mb ∆± ∆
ˆ .  A section of code used to select the points on the grid follows: 

for a = 1:(points*2+1) 
 for b = 1:(points*2+1) 
  sim_set(1,a_num) = DeltaK(k,i)*(2*((a-1)/(points*2))-1); 
  sim_set(2,a_num) = DeltaK(k,i)*(2*((b-1)/(points*2))-1); 
  a_num = a_num+1; 
 end 
end 

(4.4) 

 

A simulation is performed for each point in the simulation set, and a predicted bicriteria 

score is calculated.  To calculate the overall score for each estimation track, the weighted 

sum of all the scores of the simulation runs (i.e. a total of (number of samples for each 

parameter)^2 for a first order system) is used.  Each score is weighted by the likelihood 

that the corresponding simulation used the true parameters.  For this calculation k∆ is 

assumed to be proportional to the standard deviation.  The range of parameters used in 

the calculation is equal to .kM ∆∆   Where ∆M  is the number of standard deviations to 

consider and is referred to as the uncertainty bounds. Thus, the overall score is calculated 

by multiplying the vector of simulation scores that use the parameter estimates in 

equation (4.4) by the vector of weights given in equation (4.6), as follows for the jth 

estimation track: 

( ) ( )( ) weightjsetsimscoresimjscore T *__=  (4.5) 
 

The values for kkk sBA  and ˆ,ˆ are resetted to the values corresponding to the estimation 

track with the lowest score.  A section of code follows: 

for a = 0:(points*2) 
 for b = 0:(points*2) 
  it = it + 1; 
  weight(it) =  
   … normpdf(2*(a/(points*2) - 0.5)*mult,0,1)* 

(4.6) 
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   … normpdf(2*(b/(points*2) - 0.5)*mult,0,1); 
 end 
end 

 

 

4.2.1.2 Results (simple example to illustrate method) 

A simple example in this section is used to illustrate the bicriteria track selection method.  

The system used is as follows: 

( )005.0,05.01.11 Nuyy kkk ++=+  (4.7) 
 

This represents a first order and open loop unstable system, with Gaussian noise centred 

at zero and a standard deviation of 0.005 added.  At time interval 50, b is increased from 

0.5 to 0.6 to test the response of the adaptation method to a time varying parameter step 

change. 
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Figure 4.2: Parameter estimates for the default and tuned adaptive controller 

 

In Figure 4.2 above the parameter estimates are compared for the controller tuned with 

the bicriteria method and a controller with arbitrarily selected parameters Ka and Kb equal 

to 1.  The combined bicriteria error score is 0.254 for the system tuned with the bicriteria 

method and 0.290 for the default system.  The computation time is 10.9 seconds for the 

bicriteria method and .03 seconds for the default system.  Thus an improvement in score 

is achieved but at the cost of significant increase in computation time.  In Figure 4.3, the 

track selection is indicated.  The system tuned with the bicriteria method tends to select 

an aggressive value for Kb, and a more cautious value for Ka.  In this example the initial 

error in the estimate of b is much larger than for a, so this tuning selection result makes 
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sense.  The oscillations for the estimates of b in the tuned system in Figure 4.2 are a 

consequence of the use of an aggressive adaptation gain. 
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Figure 4.3: Estimation track used at each time interval, given by tuning constants 

 

4.2.2 Linear Matrix Inequalities 

Using the bicriteria cost function, an optimisation cost is constructed to identify the 

estimation track which is expected to offer the best performance at that time interval.  

The downside of that method is that when the parameter estimates are not close to their 

true values, or the disturbances are significant, the predictions will be inaccurate and that 

selection criteria can result in selecting an estimation track with poor performance.  For 
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the LMI method the goal is to test the performance for all possible parameter 

combinations in the range of parameter uncertainty considered for calculation.  This is in 

contrast with the bicriteria method, where only a finite number of combinations of 

parameters are considered.  It should be noted that the performance score for the LMI 

method is not weighted by how likely that combination of parameters to occur is, 

whereas for the bicriteria method the expected performance for the current parameter 

estimates is weighted the highest. 

 

4.2.2.1 Method 

The LMI (Linear Matrix Inequality) formulation used in this method is derived from a 

test previously used for robust control design, where the norm of the error in the output 

can be bounded by the damping ratio, γ, times the norm of the input vector ν  which in 

this work corresponds to set-point changes to the process, as follows: 

22
ve γ<  (4.8) 

 

The LMI based test, to be used in this method, requires a system in the form of a linear 

nominal model with a model uncertainty description given as follows: 

[ ] kknnk νδδ BηAAAη ++++=+ L1101  
where, 
{ }nδδ L1 are the set of uncertainties to consider.  In this work 

{ }nδδ L1 represent the elements of { }Dkk ∆,~,~ BA , D∆ is the 
amplitude of dk, a disturbance 

(4.9) 

 

Equation (4.9) can be represented as a time varying linear system, as follows: 
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(4.10)

 

The adaptive controller used in this work is non-linear based on the parameter estimation 

algorithm (equations (4.18) and (4.19)), where states are multiplied together, and the 

control action algorithm (equation (4.16)), where there is a division by kb̂ .  Also, the 

closed loop model is nonlinear with respect to the disturbance.  As shown in the literature 

(Liu, 1968), a nonlinear system can be bounded by a set of time-varying linear systems. 

Thus, Liu showed that if the family of linear time invariant systems satisfy certain 

stability and performance tests, the original nonlinear system is also guaranteed to satisfy 

these properties.  The general nonlinear system representing the model with the adaptive 

control algorithm is given as follows:  
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(4.11)

 

In this work 

krefy ,=ν  (4.12)
 

The actual values of kk BA ~,~ and kd  are not known, but upper and lower bounds are 

known.  As an example, the specific equations used to find ii gf  and for a first order 

system are shown, as follows:  
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kkkk dubyay +⋅+⋅=+1  (4.13)
 

The plant model including the disturbance is given in equation (4.13). The parameters a 

and b are unknown, but the uncertainty in the current estimate for those values can be 

estimated.  Thus equation (4.13) can be represented as follows: 

( ) ( ) kkkkkkkk dubbyaay +−+−=+
~ˆ~ˆ1  (4.14)

 

The reference model, with time constant dτ , used to calculate the set-point, ,1+sp,ky  from 

the reference signal, yref,k, is as follows: 

( ) krefdsp,kdsp,k y-  y  y ,
11

1 1 −−
+ +⋅= ττ  (4.15)

 

The input signal uses the current observed state, the current set-point, the current filtered 

error, sk, and the current values of the parameter estimates kk ba ˆ and ˆ  as follows: 

( )( ) 1
,

ˆ1ˆ −−++−= kkDkspkkk bsKyyau  (4.16)

 

The next value of the filtered error is calculated by the following set of equations: 
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Which all combine to form: 
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SBSA

fBfAf
k BSAS

BSASS
s

−−

++
=+ 11  

 
(4.17)

 

The update equations for 11
ˆ and ˆ ++ kk ba are: 

11ˆ ++ ⋅+= kSfk sAAa  (4.18)
 

11
ˆ

++ ⋅+= kSfk sBBb  (4.19)

 

Equations (4.13)-(4.19) are combined using the Matlab symbolic manipulation package 

and put in terms of observable and measurable variables, such as kspkkkk ybasy ,,ˆ,ˆ,,  

together with the uncertain but bounded variables kkk bad ~ and ~,  to give the following 

equations for : and ,, iiii hgfe  

( )( ) k,,kkksp,1, dˆ1yâ-ya +−++=+ kikiDkki bbsKyy  (4.20)
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With 

( ) kiD sK ,kki,ksp, 1yâ-y: −+=Θ  (4.24)
 

The states that are required for the LMI formulation are: kspkkkk ybasy ,,ˆ,ˆ,,  which can be 

represented altogether as 

[ ]kspkkkkk ybasy ,,ˆ,ˆ,,=η  (4.25)

 

As shown by Kothare et. al. (1994) the nonlinear system defined by equation (4.11) and 

expressions for iiii hgfe  and ,, as given above can be bounded by taking the Jacobian of 

the system with every possible combination of upper and lower bound of the uncertain 

variables, kkkd BA ~ and ~, .  For kk BA ~ and ~  the magnitude of the uncertainty is ,k∆  that is 
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calculated with equation (4.3) whereas the magnitude of the uncertainty for kdist is ,d∆  

which is based on a priori knowledge about the disturbance’s magnitude.  The family of 

models defined by equation (4.10) can be viewed as a hyper-volume with vertices defined 

by the combinations of the extreme values of the uncertainties k∆ and d∆ . As an 

example, for a first order system, kd ∆∆  and are substituted for kkk dba  and ~,~  in 

equations (4.13) through (4.19) to calculate the ith vertex, as follows: 
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(4.26)

 

The Jacobian of the function if in equation (4.11) is taken with respect to the vector of 

states, kη and the input, kν , for each combination of uncertainties shown in (4.26), as 

follows:  
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(4.27)

 

Each set of matrices ( )[ ]iik δ,A  is the ith vertex of a polytope of matrices, where the 

nonlinear system at time k, can be represented as a linear combination of the vertices of 
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the polytope of matrices, with the weights ki ,α .The overall closed loop system equations 

are then given as follows:   
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(4.28)

 

The values of ki ,α  in equation (4.27) are related to the true values of kkk dba  and ~,~  by a 

simple linear transformation.  The linear combination of the polytope resulting from 

equation (4.27) is equivalent to the form required for a LMI in equation (4.10).  As stated 

above, if the set of linear time varying systems satisfy certain robustness properties, the 

original non-linear system will also satisfy the same robustness properties.  The LMI 

formulation used to calculate a score for each estimation track is as follows: 
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Because each element in the linear matrix inequality is either linear or quadratic with 

respect to the parameters δ’s , the space considered for the optimization in equation 

(4.28) is convex with respect to these uncertainty parameters.  Hence, it is sufficient to 

satisfy the test in equation (4.28) only at the vertices of the polytope of matrices. 

The value of γ calculated for each estimation track is the minimum damping ratio which 

satisfies the general eigenvalue problem (GEVP) over the entire range of parameter 

uncertainties and disturbances considered.  This γ is the worst case performance over the 

range of models considered for each track.  The estimation track selected is the one which 

has the lowest value of γ over all the tracks considered. 

 

A first order system has one equation for the output, xk, one for the filtered error, ks , one 

for each of the parameters estimated, ,ˆ and ˆ kk ba and one for the reference 

model, ,,kspy for a total of five dynamic states in the system.  In a general high order 

system there will be 2n + 2m + p states involved, where n is the order of the system with 

respect to the past outputs, m is the order with respect to the inputs and p is the order of 

the reference model.  Each estimated parameter in the vectors kk BA ˆ and ˆ has an error 

associated with it, along with the disturbance, dk, which adds one dimension to the LMI 

formulation.  There are a total of n + m + 1 variables with uncertainty, which require a 

total of 2(n + m + 1) vertices to represent the non-linear system of equation (4.11) by a set of 

linear models as required for the LMI formulation. 

 

The Jacobian at each vertex is calculated using the equation (4.27), as follows: 
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(4.30)

 

This results in a set of equations for ( )[ ]iik δ,A , in terms of variables that can be observed 

or calculated.  These equations are implemented in a Matlab function that takes the 

parameter estimates, past input and output data, sk, the reference model, and the 

uncertainties for one vertex as inputs, and returns the matrices ( )[ ]iik δ,A  corresponding to 

the vertex considered.  An example of one vertex is as follows:  

( )[ ] ( )111, ,,,,,,,,ˆ,,ˆ −−−∆+∆−∆−= kkkkkspdkkkkiik ssuyyybavertexδA  (4.31)

 

Each vertex contributes to the general eigenvalue problem, an inequality of the following 

form:  
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With the vertices ( )[ ]iik δ,A  calculated with (4.31).  The resulting general eigenvalue 

problem in equation (4.29)  is evaluated using the Matlab function ‘gevp’, which returns 

the best value of γ.  The value of γ returned for each track indicates the expected worst-

case possible performance within the range of parameter uncertainty used for the 

calculation.  The track with the lowest value of γ is expected to have the best robust 
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performance out of all the tracks considered, and thus the variables kkk sba  and ˆ,ˆ are reset 

to the values corresponding to this track. 

 

With the LMI method, an individual formulation may have a result that is returned as 

‘infeasible’, which implies that no upper bound can be found for γ with that particular 

estimation track, for that time interval.  Estimation tracks for which this result is obtained 

are excluded from consideration when they have an ‘infeasible’ score.  If all results are 

‘infeasible’ then a track with associated default tuning parameters a priori selected should 

be used.  This tends to happen for the first few time intervals until sufficient data is 

available to get a reasonable estimate for the parameter estimates with corresponding 

small uncertainty values. 

 

4.2.2.2 Results 

The LMI method has the potential to identify performance problems along the entire 

parameter space, whereas the bicriteria method studies the performance for a small 

number of points in the parameter space.  Therefore it is expected that for non-linear 

systems, if the model includes a large number of parameters, there can be large 

performance variations within the parameter space considered that will not be accounted 

for by the bicriteria method. This situation will be clearly illustrated in chapter 5. In the 

remainder of this chapter, a simple example that demonstrates the method is given.  The 

example system used for the LMI method is the same as the one used to demonstrate the 

bicriteria method, as given in equation (4.7) with default tuning parameters set to KA = 4, 

KB = 0.25 and KD = 1. 
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Figure 4.4: Parameter estimates for the default and tuned adaptive controller 

 

In Figure 4.4 the parameter estimates are compared for the controller tuned with the 

bicriteria method and a controller with arbitrarily selected parameters Ka and Kb equal to 

1.  The actual value for γ is 0.0231 for the system tuned with the LMI method and 0.0385 

for the system with arbitrarily selected parameters.  The computation time is 795 seconds 

for the LMI method and 0.016 seconds for the default system.  Thus, although the LMI 

method leads to improvement in control performance, it requires a large amount of 

computation time. Hence, it would only be considered for cases where there is a clear 

performance advantage over other tuning techniques, such as the bicriteria method.  The 

LMI method is design to select the most robust estimation track.  It is possible to find sets 
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of tuning parameters that perform better than the LMI selected tracks for the specific 

system and noise set used, but there is no way to determine what these estimation tracks 

are a priori. 

 

In Figure 4.5 the parameters selected at each interval corresponding to different tracks are 

indicated.  The LMI method, when used for a simple linear system, tends to switch the 

estimation track more often than when using the bicriteria method. 

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Time Interval

Tu
ni

ng
 P

ar
am

et
er

 V
al

ue

Ka
Kb
Default

 

Figure 4.5: track used at each time interval, given by tuning constants 

 

With the LMI selection method there is a significant amount of overlap in the parameter 

space considered for each estimation track, as illustrated in Figure 4.6.  For example, with 
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a first order linear system the performance score changes slowly with changes in the 

estimated parameters.  Hence, the worst case performance calculated (i.e. the score 

calculated for γ) shows minor variations between the estimation tracks, and small 

changes in the noise and estimations can lead to frequent changing of the track.  Also, the 

LMI method tends to select a more conservative set of tuning constants.  This can lead to 

slower adaptation, but there is less of a risk of inducing a large error through high 

frequency oscillations due to overly aggressive tuning. 

 

Figure 4.6: Overlap in parameter space for two tracks in the LMI method 
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5 Results 

In this section results obtained for systems of first and higher order than one, the effect of 

tuning based on the performance tests presented in Chapter 4, and the behaviour of the 

adaptive controller in the presence of deterministic disturbances will be presented.  First 

the BC and LMI methods will be examined in detail.  The two tuning methods will be 

compared with a system tuned with arbitrarily selected parameters for the following 

cases: a first order system with white noise disturbances, a first order system with a 

deterministic disturbance, and for a higher order system.  The BC and LMI tuning 

methods will also be compared with a traditional adaptive control method, the Recursive 

Least Squares (RLS) algorithm.  The following first order system will be used for the 

comparisons: 
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(5.1) 

 

It is assumed that during operation, this process undergoes a step change in each of the 

model parameters, a and b.  The system given by equation (4.2) is open-loop unstable for 

the first 100 time intervals, and open-loop stable for the last 100 time intervals.  The 

measurement noise is low-pass filtered, as noise near or above the Nyquist frequency of a 

discrete type system cannot be dampened effectively due to aliasing. 
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5.1 Bicriteria Tuning (BC) Method 

For the BC tuning method the number of estimation tracks, the number of simulation 

tracks used for each estimation track, the simulation time horizon, and the ranges of 

uncertainty in the model parameters to be considered in the simulations have to be all set 

a priori.  These factors, especially the first three, have major impact on the computation 

time required.  The effect of all these factors has been investigated and the results are 

summarized in the following subsections.  When each one of these factors is individually 

investigated, the other factors are set at the default values as follows: 28 estimation 

tracks, 49 simulation tracks, a simulation time horizon of 2, and an uncertainty bounds 

multiple, ,∆M  of 2. The uncertainty bounds multiple is a scalar that defines the amount 

of model parameter uncertainty for each parameter. For example, for a model parameter 

a, the range of uncertainty in this parameter is defined as follows 

[ ]kkkk MaMa ∆+∆− ∆∆ ˆ,ˆ  

 

5.1.1 Estimation Tracks 

In Figure 5.1, the effect of the number of estimation tracks used is examined.  It should 

be recalled that the estimation tracks are distributed according to the code given in 

equation (4.1), which is a multidimensional numerical grid, with one dimension per 

tuning parameter considered, and a total of ( ) 1k_points 1 +++mn estimation tracks used, 

where n is the order of the input, m is the order of the output, one adaptation gain per 
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parameter to be estimated and the filter gain KD, for a total of n+m+1 tuning parameters.  

The tuning parameters are selected to be evenly spaced in a fixed range ( )4,0 thus, as the 

number of tracks is increased the spacing between the tuning parameter values associated 

with the estimation tracks becomes smaller. 

It should be remembered that the excitation signal is given by the time-varying set-point; 

in this work a periodic signal with a period of 20 intervals is used. The diamonds in 

Figure 5.1 indicate the error in the system when the simulation score, as represented by 

the value of the BC cost function in equation 2.30, is used at each time step and the X’s 

indicate the error in the system when the simulation score results are averaged over one 

excitation period.  Both ways of taking into account the scores, i.e. by considering the 

instantaneous score or the average score, have similar results for up to 28 estimation 

tracks.  Beyond this number of estimation tracks the differences between tuning 

parameter sets associated to the different tracks are becoming small, and differences in 

scores corresponding to the different tracks are very sensitive to measurement noise.  

Between step changes in the square wave excitation signal, i.e. during periods when the 

excitation signal is constant, the simulation scores are very strongly affected by 

measurement noise because there are no significant input changes to drive the adaptation 

process.  Thus, the best track, i.e. the track with the lowest BC score, will change 

frequently, even if the true best performing track does not.  The true best performing 

track is referred to the one that would be selected if one had perfect knowledge of the 

model parameters and disturbances and consequently will result in the lowest BC score.  

By averaging the simulation scores over one excitation period, the random effects of 

measurement noise can be reduced, at the cost of a slower response to a change in model 
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parameters.  The computation time is proportional to the number of tracks used, which 

results in a rapid increase in computation time beyond a small number of estimation 

tracks. 
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Figure 5.1: Effects of the number of estimation tracks on BC performance 

 

5.1.2 Simulation Tracks 

In Figure 5.2, the effects of varying the number of simulation tracks used to predict the 

bicriteria error for each of the estimation tracks are examined.  It should be remembered 

that each track is associated to a specific set of tuning parameters. At any given interval 

of time, certain values of model parameter estimates are computed with some 

corresponding uncertainty in these parameters.  Then the different simulations for that 

track used a specific set of tuning parameters but are conducted for different 
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combinations of model parameter values based on the calculated uncertainty in these 

model parameters.  Thus, the simulations use parameters in the range 

[ ]kkkk MaMa ∆+∆− ∆∆ ˆ,ˆ  and [ ]kkkk MbMb ∆+∆− ∆∆
ˆ,ˆ  where M∆ is constant. 

The score corresponding to ‘1’ simulation track is equivalent to the certainty equivalence 

(CE) principle found in the literature, where the current plant parameter estimates are 

assumed to be the correct ones.   

 Thus increasing the number of simulation tracks increase the density of the parameter 

combinations in this range, but the overall range is constant.  Almost all the benefit of 

simulating different possible combinations of parameter uncertainty is realised by a 

single layer of parameter values (i.e. 9 in Figure 5.2) combinations around the CE design 

trajectory.  Additional combinations do not improve the controller performance much in 

terms of the error as shown in Figure 5.2.  The computation time required is proportional 

to the number of simulation trajectories used. 
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Figure 5.2: Effects of the number of simulation tracks on BC performance 

 

5.1.3 Simulation Horizon 

In Figure 5.3, the effect of varying the number of time steps used for the calculation of 

the bicriteria error for each one of the estimation tracks is examined.  A simulation 

horizon of ‘1’ uses only current time step values, and is equivalent to basing the selection 

on the prediction error only, and not the feedback error.  The reason for this is that the 

feedback error is equal for all tracks at the current time step, so the only difference in the 

calculation for the different tracks is in the prediction error, thus feedback error does not 

contribute to the differences in the BC scores for track selection.  Beyond 3 time steps the 

uncertainty compounds to the point that the estimation track selection is not reliable, thus 

performance is inconsistent for a simulation horizon of more than 3 time steps. 
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The computation time changes corresponding to an increase in the number of estimation 

tracks, the number of simulations tracks per estimation track, or the simulation horizon 

compound with each other in an approximately multiplicative fashion (i.e. if each one of 

the 3 factors is doubled, the overall computation time required increases approximately 

by 8 times).   
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Figure 5.3: Effects of the simulation horizon on BC performance 

 

5.1.4 Effect of the uncertainty bounds (M∆) on the simulations carried 

out around each track  

In Figure 5.4, the effects the uncertainty bounds, ,∆M  are examined.  The entry ‘0’ 

indicates that the only simulation track uses the CE assumptions, as per section 5.1.2.  
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The entry ‘1’ uses all possible combinations of { } ˆ,ˆ,ˆ 3
1

3
1

kkkkk aaa ∆−∆+ and 

{ }kkkkk bbb ∆−∆+ 3
1

3
1 ˆ,ˆ,ˆ as the initial values of the plant models for the simulation.  For 

the entry ‘2’, all possible combinations of 

{ } ˆ,ˆ,ˆ,,ˆ,ˆ 3
2

3
1

3
1

3
2

kkkkkkkkk aaaaa ∆−∆−∆+∆+ and 

{ }kkkkkkkkk bbbbb ∆−∆−∆+∆+ 3
2

3
1

3
1

3
2 ˆ,ˆ,ˆ,ˆ,ˆ are used, and for the entry ‘n’, 

{ } ˆ,ˆ,ˆ 33 k
n

kkk
n

k aaa ∆−∆+ and { }k
n

kkk
n

k bbb ∆−∆+ 33
ˆ,ˆ,ˆ are used.  This method gives an 

indication of what the effect is of adding each additional set of simulation trajectories.  

The plot indicates that the first layer of simulation tracks has a large effect on the system 

performance.  Additional layers do not have a significant impact on performance, but 

they do add significant computation time. 
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Figure 5.4: Effects of adding simulation layers on BC performance 
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5.1.5 Conclusions for BC Method 

With the BC method, some design factors need to be selected a priori.  The number of 

estimation tracks, the number of simulation tracks, and the simulation horizon are all 

constrained by the computational resources.  The tests above indicate that these three 

factors are important up to certain small values, but beyond these values performance 

improvements are relatively small. Moreover, in the case of the number of estimation 

tracks, having too many tracks has been shown to be not useful because of sensitivity to 

noise.  In summary, the BC method can result in significant benefits with a reasonable 

computational burden, in the range of 0.025 seconds of computation time per time step on 

a 2 GHz PC (see Table 5.1). 

 

5.2 LMI Configuration 

For the LMI tuning method, the number of estimation tracks and the uncertainty 

bounds, ,∆M  have to be selected a priori.  It should be recalled that the uncertainty 

bounds are used when calculating the vertices of the polytope of the LMI system.  The 

effect of these two parameters on the controller performance has been investigated and 

the results are presented in the following subsections.  The system (4.2) is used, with 

default values of 28 estimation tracks, and a multiplier of 2. When one particular 

parameter is investigated the other one is kept at its default value.  The system under 

study is the one used for examining the configuration of the BC method in section 5.1, 

above. 
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5.2.1 Estimation Tracks 

In Figure 5.5 below, the effect of the number of estimation tracks is examined.  It was 

found that the computation time required is proportional to the number of estimation 

tracks, and is significantly larger than for the BC method, at approximately 90 seconds 

per estimation track for a 200 time interval simulation (Table 5.1).  Similarly to the BC 

method, having a large number of estimation tracks can be counterproductive, as shown 

in Figure 5.2 due to sensitivity to noise.  Also, it was found that as the number of 

estimation tracks is increased, the possibility of obtaining infeasible results will be 

gradually reduced. 
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Figure 5.5: Effects of number of estimation tracks on LMI performance 
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5.2.2 Uncertainty bounds 

In Figure 5.6 , the effects of the multiplier ,∆M  used in the calculation of the uncertainty 

bounds as given by equation (4.3), are studied.  The performance effect is small until a 

threshold is reached, where the number of ‘infeasible’ results increases rapidly.  If an 

estimation track has an ‘infeasible’ result, it cannot be evaluated and thus selected at that 

time step, even if it would be the true best performing track. The true best performing 

track is referred to the one that result in the smallest value of gamma if all model 

parameters and disturbances are perfectly known.  There is only a small effect on the 

computation time.  Unlike the BC method, the MatLab LMI solver is iterative, thus the 

same number of LMI solutions can take differing amounts of computation time. 
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Figure 5.6: Effects of the multiplier for ∆k on LMI performance 
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5.2.3 Conclusions for LMI Method 

For the LMI method the design parameters that need to be selected a priori are the 

number of estimation tracks and the uncertainty multiplier ,∆M .  For the first order 

linear system under investigation it was found that the multiplier that determines the 

uncertainty bounds only has a significant detrimental effect beyond a value that is large 

enough to cause an increase in ‘infeasible’ optimization results.  Similar to the BC 

method, an intermediate range of estimation tracks is ideal.  For a first order system with 

a grid distribution as used in (4.2) 9 to 28 estimation tracks resulted in the best 

performance.  For the best range of estimation tracks each step requires approximately 12 

seconds per time interval (Table 5.1).  For higher order systems the number of parameters 

to be estimated increases along with the adaptation gains to be tuned.  The dimension of 

the matrix used in the LMI increases with the states of the closed loop system and the 

number of estimation tracks increase exponentially with the number of adaptation gains. 

Thus the LMI evaluation time is longer and more evaluations are required, resulting in a 

very large increase in computation time.  In an extreme case, the LMI track selection can 

be performed once per cycle of the excitation signal, which is the external reference 

signal with a period of 20 time intervals in this work. 

 

5.3 Tuning Method Comparison 

In this section the performance and computation time of the LMI and BC tuning methods 

are compared.  Several simulations conducted with arbitrarily chosen tuning parameter 
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are also included to demonstrate the importance of systematic selection of the adaptation 

gains.  Without sufficient a priori knowledge the only way to evaluate the adaptation 

gains online is through tuning.  The systems used for comparison are; i- first order with 

Gaussian measurement noise, ii- second order with Gaussian measurement noise, and iii- 

first order with an unmeasured deterministic disturbance.  The same random seed for 

Gaussian noise is used for each simulation. 

 

5.3.1 First Order 

The system given in (4.2) is used, along with the default configurations given in sections 

5.1 and 5.2 for the BC and LMI tuning methods respectively.  Two simulations with 

arbitrarily selected parameters are included in the comparison, one that performs well, 

and one with poor performance.  The control performance measured by either the 

bicriteria error score or by the true value for spγ  as defined by the inequality 

spspsp yyy γ<−  used by the LMI method and the execution time for each method are 

summarized in Table 5.1.  For the LMI method, 99.89% of the calculations returned a 

‘feasible’ result, or equivalently only 6 ‘infeasible’ results were evident. 

 

It should be emphasized that for the simulations based on arbitrarily selected tuning 

parameters, the performance can be better or worse by chance, as compared to the tuning 

parameters systematically selected by the BC or LMI methods as shown in Table 5.1. The 

BC tuning method requires, as expected, significantly more computation time than the 

simulations using arbitrary tuning parameters.  The LMI method provides the best 
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performance but at the cost of an extremely high computation time.  The plant simulation 

for all four trials are identical, thus the increase in computation time is almost entirely the 

result of the track selection method. 

 

Method Error Score spγ  Execution Time (s) 

Arbitrary tuning 1 0.335134 0.008489 0.016 

Arbitrary tuning 2 0.885266 0.018235 0.015 

BC Tuning 0.325586 0.008744 7.08 

LMI Tuning 0.277526 0.007469 3449 

Table 5.1: Test results for a linear first order system 

 

The overall system response is plotted in Figure 5.7 along with a detailed section of this 

later figure shown in Figure 5.8.  The detailed section shows the response during a step 

change in the parameter ‘b’.   
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Figure 5.7: First order system response 
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Figure 5.8: First order system response (Detail) 

 

The track selection based on the BC and LMI methodologies is plotted in Figure 5.9.  The 

LMI based track selection method is more conservative than the BC selection as shown 

by the tendency to select tracks with low adaptation gains.  For this particular system, this 

is an advantage, but for a system with continuously varying parameters, the more 

aggressive track switching provided by the BC could be advantageous. 

 



 84

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3
LMI Track Selection

P
ar

am
et

er
 V

al
ue

Ka
Kb
Kd

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3
BC Track Selection

P
ar

am
et

er
 V

al
ue

Time Interval

Ka
Kb
Kd

 
Figure 5.9: First order system track selection 

 

The response in the estimated values for the parameter ‘a’ and ‘b’ are plotted in Figure 

5.10 and Figure 5.11.  The estimation track selection changes correspond to jumps in the 

value of the estimate.  The estimates values calculated by using the controllers based on 

the BC and LMI methods reach their true values quickly after each step change, but they 

are slightly oscillatory around the true values.  One of the simulations conducted with 

arbitrary tuning parameters shows very large oscillations, leading to corresponding poor 

performance. 
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Figure 5.10: First order system estimate for the parameter ‘a’ 

 

In Figure 5.11 oscillation patterns are visible in the estimated values of the parameter ‘b’ 

for the arbitrarily tuned system and the RLS algorithm.  Most of the parameter adaptation 

occurs during the swings of the excitation in the reference signal, suggesting that track 

selection could be performed once per excitation cycle to save computation time with 

minimal impacts on performance. 
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Figure 5.11: First order system estimate for the parameter ‘b’ 

 

For a first order linear system both tuning methods discussed in this work provide 

significant performance improvements over an arbitrarily tuned controller.  However, the 

extremely large computation time requirements for the LMI based tuning method system 

make it a poor choice for linear systems with white noise disturbances where it offers 

small potential benefits over other tuning methods.  The fact that adaptation mostly 

occurs during drastic changes in the excitation signal seems to indicate that changes in 

the track are necessary only once per excitation step rather than once per time interval.  

This may result in significant savings in computation time. 

 



 87

5.3.2 Higher Order Systems 

For the third comparison, a system that is second order in the state is used, with the 

following form: 

{ }
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(5.2) 

 

A total of 82 estimation tracks are used, along with 126 simulation trajectories and a 

simulation horizon of 2 for the BC method.  The uncertainty bounds use a multiplier, 

,∆M of 2.  The LMI method is evaluated over a number of time steps that are multiple of 

10, as suggested in section 5.3.1, to reduce the computation time expected due to the 

additional number of parameters in the second order system.  

 

Test results are summarised in Table 5.2.  The BC method provides a significant 

performance improvement over both the un-tuned, and the LMI tuning method.  This test 

demonstrates the conservative nature of the LMI tuning method. 

 

Method Error Score spγ  Execution Time (s) 

Arbitrary tuning 1.241621 0.009198 0.079 

BC Tuning 0.574759 0.005864 17.16 
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LMI Tuning 0.905469 0.007517 6499.9 

Table 5.2: Test results for a second order system 

 

The estimates for all three model parameters are shown in Figure 5.12.  Both the BC and 

LMI tuning methods provide some advantage in the estimation performance before the 

50th time interval.  After this point the BC method still provides a significant estimation 

advantage, but the LMI tuning results in a conservative track selection, and is almost 

equivalent to the arbitrarily tuned system, as shown in Figure 5.13. 
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Figure 5.12: Second order system parameter estimates 
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Figure 5.13: Second order system estimation track selection 

 

The advantage of the quick estimation at the beginning of the simulation can be seen in 

Figure 5.14.  The response of the arbitrarily tuned system lags after the set-point while 

the estimation error is large. 
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Figure 5.14: Second order system response (Detail) 

 

In summary, the performance potential of a tuned adaptive control system is evident for a 

system that has higher than first order dynamics.   

 

5.3.3 Deterministic Disturbances 

In this section, a situation where the LMI method will offer significant improvement over 

the BC tuning method, will be illustrated. This situation corresponds to adaptation in the 

presence of a deterministic square wave disturbance where a bound on its amplitude is 

assumed to be known a priori but its period is unknown a priori. 
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The BC selection method is based on prediction of future performance based on the 

simulated response in the presence of the disturbance.  Clearly, a good estimate of the 

disturbance is needed for the prediction to be accurate.  If the assumed disturbance is 

significantly different from the actual one, the BC method may erroneously select an 

estimation track that may correspond to a poor performance for the actual disturbance 

occurring in the system.  In the LMI selection method, the disturbance can be represented 

by an uncertainty parameter, dδ , where bounds on the amplitude are all that is required to 

calculate the tuning parameters.  Then the uncertainty model for the LMI system with a 

bounded disturbance can be accordingly represented as follows:  

[ ] kkddbbaak νδδδ BηAAAAη ++++=+ 01  (5.3) 
 

The disturbance is not considered as an input for the LMI calculations, but is instead 

accounted for as an additional source of uncertainty on the parameters of the state 

matrix .kA   For example; consider a system with a bounded disturbance 

kkkk dbuayx ++=+1  (5.4) 
 

Where, kd  is assumed to be a periodic squared-wave disturbance with known amplitude 

but an unknown period.  To accurately model the disturbance by the simulation, used for 

the BC method; the period, amplitude and phase are all required to be known a priori, 

whereas for the LMI method only the maximal amplitude is required.  The LMI method 

will find the worst case γ for any disturbance with amplitude less or equal than this 

maximal amplitude.   
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In this example the disturbance is assumed, for the calculation of the BC method, to be a 

square wave of period 2, but the actual used disturbance is a square wave with a period of 

8.  Tuning is restricted to the parameter DK  for simplicity and clarity, while the other 

adaptation gains, KA and KB, are fixed each at a value of 1.0.   

 

The error score, as given by the observed BC cost function, using different values of DK  

for the actual and assumed disturbances is plotted in Figure 5.15.  In the parameter space 

region examined, it was found that the relation between the error score and the value of 

DK  to obtain the best performance is very different and show opposite trends for 

disturbances with period of 2 and period 8.  The simulations used in the BC tuning 

method will produce results that are based on the ‘Assumed Disturbance’ line whereas 

the actual result obtained is based on the ‘true’ disturbance line. 
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Figure 5.15: System Error vs. KD value 

 

In principle the best track, i.e. the track that if always selected will result in the smallest 

error, is labelled 3, with KD = 1.5, but based on the BC simulations the track selected 

most frequently was the one labelled ‘2’ with KD = 0.25.  The LMI method consistently 

selects track 3, while the BC method leads to frequent switching between tracks and often 

selects tracks ‘2’ or ‘1’, as shown in Figure 5.16.  The results of these simulations are 

summarised in Table 5.3.  The execution time for the LMI method is, as expected, much 

larger than for the other methods.  It should be noted that the LMI method had 

‘infeasible’ solutions for 21% of the calculations, which is a notable increase from the 

scenario examined in section 5.3.  However, despite the longer computation times and 



 94

infeasibilities it is clear from the Table that the LMI method results in much better 

performance than the BC method.   

 

Method Error Score Gamma SP Time (s) 

LMI 0.201 0.0111 1203.15 

BC 0.427 0.0251 2.34 

Table 5.3: Deterministic disturbance system results  

 

0 10 20 30 40 50 60 70 80 90 100

1

2

3

Time Interval

Tr
ac

k 
N

um
be

r

Track - LMI
Track - BC

 
Figure 5.16: Deterministic disturbance system estimation track selection 
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The oscillatory effect of the frequent track selection changes in the BC method is clear in 

Figure 5.17. 
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Figure 5.17: Deterministic disturbance system parameter estimates 

 

Figure 5.18 and Figure 5.19, below, show the system output for each method.  The BC 

method clearly has the worse tracking error.  The lag in the LMI response is due to the 

slow adaptation for the parameter ‘b’. 
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Figure 5.18: Deterministic disturbance system response 
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Figure 5.19: Deterministic disturbance system response (detail) 

 

The system used in this section demonstrates how the BC method can erroneously select 

a track in the presence of an incorrectly modelled disturbance. On the other hand, the 

LMI tuning method uses a bound on the magnitude of the disturbance to select the correct 

track.  Due to the computation time requirements for the LMI method, actual use of the 

LMI method would likely be limited to systems of high order for which the improvement 

in estimation is expected to be significant. 
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5.4 Comparison with RLS 

The BC and LMI tuning methods are compared with the RLS algorithm using the same 

system (4.2) and setup as used in section 5.3.1.  The results are summarised in Table 5.4, 

together with one of the simulations of the arbitrarily tuned systems.  Both the BC and 

LMI tuning methods provide significant performance improvements over RLS.  The 

arbitrarily tuned controller has the potential to perform better if good parameters are 

selected by chance.  The execution time of the RLS method is similar to the arbitrarily 

tuned system, and substantially faster than for the BC method.  

 

Method Error Score spγ  Execution Time (s) 

Un-tuned 1 0.335134 0.008489 0.016 

RLS 0.474401 0.010956 0.047 

BC Tuning 0.325586 0.008744 7.08 

LMI Tuning 0.277526 0.007469 3449 

Table 5.4: Test results for a linear first order system with RLS 

 

The plant model parameter estimates are shown in Figure 5.20 and Figure 5.21.  The RLS 

estimate responds slowly to step changes but it has very little oscillations.  The RLS has a 

slower response as the step changes in the parameters occur later in the simulation since 

the co-variance matrix Pk slowly converges to zero as explained in Chapter 2, while the 

methods used in this work do not have this time dependent deterioration of performance. 
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Figure 5.20: RLS comparison estimate for the parameter ‘a’ 
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Figure 5.21: RLS comparison estimate for the parameter ‘b’ 

 

A detail of the system response is shown in Figure 5.22.  The overall system response is 

similar to the ones shown in Figure 5.7, and therefore is not shown again for brevity.  The 

curve corresponding to the RLS method shows a consistent undershoot due to the slow 

adaptation of the plant model after the model parameter step change. 



 101

100 105 110 115
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ys

te
m

 O
ut

pu
t

Time Interval

Y - BC
Y - LMI
Y - RLS
Ysp

 
Figure 5.22: RLS comparison system response (detail) 
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6 Conclusions 

A novel adaptive control method was developed.  The plant model estimator uses a 

gradient descent approach with estimator gains suitable for on-line tuning.  The error 

filter used was designed to meet the Lyapunov direct stability theory.  A method for 

avoiding numerical division by zero errors was proposed.  Two novel tuning methods 

were developed to avoid extensive trial and error simulations for proper tuning.  

Performance tests were performed to compare the novel adaptive control scheme and 

both tuning methods developed with the well known RLS algorithm. 

 

The stability proofs required that adaptation gains remain constant with respect to time.  

A tuning framework using estimation tracks was proposed to meet this constraint.  Dual 

adaptive control methods in the literature use an excitation signal to adjust the rate of 

adaptation, but simultaneous evaluation of the effect of different possible excitation 

signals is not possible, thus online tuning methods are limited in the design approaches 

that can be used.  The tuning framework developed in this work uses multiple 

simultaneous estimates of the model parameters based on estimators with different 

estimation gains.  The potential performance of each of these estimation tracks is 

evaluated, and the one with the best performance score is selected, thus adjusting the rate 

of adaptation, and meeting the dual adaptive control goals. 

 

Two methods for evaluating and selecting the estimation tracks were developed.  The 

first uses a prediction of the bicriteria (BC) cost function for each estimation track as a 

scoring method.  This cost function includes the prediction and feedback errors, and was 
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developed to explicitly measure the principle design trade-off implicit in dual adaptive 

control, i.e. robustness in the face of uncertainty versus fast learning of the process.  The 

second method uses the linear matrix inequalities (LMI) to find an upper bound on the 

feedback error, scored as ,spγ given any admissible reference signal and bounds of the 

uncertainty in the model parameters. 

 

The measures of system performance used for comparison were the observed value of the 

bicriteria cost function, the observed value of ,spγ and the computation time used.  The 

bicriteria cost function and spγ were the optimisation criteria used for the BC and LMI 

tuning methods respectively, and the computation time is critical for implementation 

considerations.   

 

In the first set of tests the configuration parameters for the BC tuning method were 

investigated.  There was a 20% performance improvement by using 9 estimation tracks 

over no-tuning.  Performance decreases for more than 28 estimation tracks.  The BC 

method is equivalent to a certainty equivalence controller when only one step of 

simulation is used to predict the BC error score.  There is a 63% performance 

improvement by using 9 simulations to cover the range of parameter uncertainty instead 

of using only the current estimated value, but there is not significant change if more than 

9 simulation tracks are used.  There is a 9% performance improvement by using a 2 or 3 

time step simulation horizon.  For longer horizons there is not performance benefit.  For 

each of these factors, computation time is approximately proportional to the increase in 

each one of the tuning parameters, i.e. number of estimation tracks, number of 
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simulations per track or time horizon for prediction, with a multiplicative effect for 

changes in two or more of these factors.  It was also found that the spacing of the 

simulation trajectory initial parameter values little impact unless the uncertainty 

multiplier, ,∆M is greater than 2.   

 

The number of estimation tracks and the uncertainty bounds, as indicated by ,∆M were 

investigated for the LMI tuning approach.  There was a 20% performance improvement 

over the system with arbitrarily chosen tuning parameters when 9 estimation tracks were 

used.  With 28 or more tracks deterioration in performance was observed due to 

sensitivity to measurement noise.  The computation time was proportional to the number 

of estimation tracks used, and the execution time was approximately 100 times longer for 

the LMI tuning than for the BC tuning method when the same number of estimation 

tracks was used for both methods.  Values of ∆M between 0.25 and 2.0 provided a 15% 

performance improvement over a system with arbitrarily chosen parameters.  Values 

outside this range resulted in decreased performance.  The value of ∆M has a small, but 

unpredictable effect on computation time. 

 

The BC and LMI tuning methods were compared to each other and to a controller with 

arbitrarily selected parameters under three scenarios.  For the first scenario a first order 

system with step-changes in each parameter and Gaussian measurement noise were used.  

The BC and LMI tuning methods were configured to use the best performing 

combination of number of estimation tracks, number of simulation tracks, simulation 

horizon and uncertainty bounds identified in the previous testing.  The BC method 
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resulted in a 3% and 63% performance improvement compared to the best and worst 

arbitrarily tuned systems respectively.  It should be remembered that with arbitrarily 

selected parameters the performance potential is unknown until after the test is over.  The 

simulation methods can address many possible combinations of tuning parameters 

simultaneously.  The LMI tuning method provided an additional 15% performance 

improvement over the BC method, at the cost of a 490 times increase in the computation 

time.  The BC tuning method requires 217 times the computation time of a system with 

arbitrarily chosen parameters. 

 

The second scenario examined was a second order linear system.  The LMI and BC 

methods resulted in a 27% and 53% performance improvements over the system with 

arbitrarily chosen parameters used for comparison.  Similarly to the first order test, the 

LMI method had a computation time that was 380 times longer than the BC method, even 

when the optimizations were conducted infrequently, i.e. once per period of the external 

periodic set point signal. 

 

The third scenario studied was designed to illustrate a typical scenario where the LMI 

tuning method would provide significant performance advantages over the BC method.  

The system was first order with an unknown deterministic disturbance being introduced 

to the process.  For the LMI approach, only the amplitude of the disturbance is required 

for track selection.  For the BC approach a specific guess of both magnitude and period 

of the disturbance signal was required.  It was shown that if the guess of the period, phase 

or wave-form is inaccurate, the BC prediction will give inaccurate results.  Consequently, 
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for the case study, a 53% performance gain was achieved for the LMI tuning method over 

the BC tuning method. 

 

For a final comparison the recursive least squares algorithm was used on the first order 

system from the first scenario.  Performance improvements of 31% and 41% over the 

RLS algorithm were achieved with the BC and LMI tuning methods, respectively.  The 

RLS algorithm requires some form of resetting or exponential forgetting factor.  

Otherwise, adaptation will cease as the covariance matrix, KP , converges to zero.  

However, there are no systematic ways to reset the covariance in the presence of frequent 

step changes in the model parameters unless the timing of these changes is a priori 

known.  In this case both the BC criteria and LMI methods proposed in this thesis are 

offering a clear advantage over the traditional RLS algorithm. 

 

 The LMI method required a very large computation effort, and thus it is not 

recommendable for systems where the BC method provides similar performance.  An 

example of a system where an LMI based method provides a clear advantage is a system 

with the unknown deterministic type disturbances.  In summary both tuning methods 

offer a systematic approach for selecting tuning parameters, as compared to the trial and 

error approach often used by practitioners. 
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7 Recommendations 

1- The cost function used to evaluate performance should include manipulated variable 

changes as a new term.  The manipulated variable moves are in many practical situations 

a key consideration for tuning of the controller.  Additionally, penalization of the 

manipulated variable moves in the cost functions may help to reduce the oscillatory 

behaviour of the parameter estimates but at the cost of a slower response to changes in 

the model parameters.   

 

2- Other suitable feedback control laws can be tested in combination with the adaptive 

estimator such as pole-placement and model reference controllers. 

 

3- To limit the computational burden of the LMI approach, the track selection method 

can be performed less frequently than the sampling frequency of the system.  The timing 

of the on-line tuning calculations with respect to the excitation signal, and the frequency 

of the track selection were not explicitly investigated and may be an interesting subject 

for future investigations.   

 

4- To improve performance after the parameter estimates have converged, a dead-zone 

approach should be investigated to deal with measurement noise, and to avoid possible 

parameter drift problems common when the model structure selected for adaptation is not 

sufficiently accurate to model the actual behaviour of the system.  This would prevent the 

system from using noise to drive the adaptation when there is insufficient excitation. 
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5- The adaptive control scheme proposed in this study could be extended to multivariable 

systems.   

 

6- The adaptive controller studied in this work is suitable as well for a special class of 

non-linear system represented by an artificial neural network (ANN) model with linear 

gains of the following form:  

( ) ( )∑∑
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(7.1) 

 

where the functions f’s are nonlinear basis functions such as Radial Basis Gaussian 

functions or wavelets. These models have been previously used in the literature for 

adaptive control of nonlinear systems.  Due to the linear dependence of this model with 

respect to the model parameters all the developments in the current study are applicable 

to nonlinear models of the form given by equation (4.2). 
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Appendix A: Code for Initialization  

This section initializes the variables used in the code in appendices B and C.  Parameter 

sets associated with estimation tracks are picked, as is noise and the reference signal. 

function main(done) 
 
% done - number of cycles to evaluate 
% Ka, Kb, Kd, - Intial/default values of adpatation parameters 
% alpha - damping factor for set point (reference model) 
% beta - damping factor on noise - for stability - unknown value 
% Areal, Breal - True plant parameters - unknown values, a > 1 is 
unstable 
% Ainit, Binit, yinit, uinit - initial values for the system 
 
close all; 
k_points    = 3;        % number of points to sample in each parameter 
a_points    = 3;        % number fo points to sample for each estimate 
noise       = 0.005;    % size of one standard deviation of gaussian 
noise 
 
Kainit      = 1;        % default tuning parameters for untuned systems 
Kbinit      = 1; 
Kdinit      = 1; 
Kainit4     = 4; 
Kbinit4     = .25; 
Kdinit4     = .5; 
 
alpha       = 0.65;     % time constant for reference model 
beta        = 0.75;     % time sonstant for Nyquist limit low pass 
filter 
 
Areal       = 1.05;     % true plant 
Breal       = 0.5; 
 
Ainit       = 1;        % initialization values 
Binit       = 1; 
yinit       = 0; 
uinit       = 0; 
 
period      = 10;       % values for reference signal 
amp         = 0.5; 
 
% parameters for optimizations 
 
horizon     = 2;        % Future sampples for path following technique 
start_cycle = 3;        % begin optimization after ___ iterations 
std_hor     = 20;       % number of samples to use for std dev. (max) 
multiples   = 2;        % Standard deviations for estimate bounds   
mult_lmi    = 2;        % same but for LMI 
check       = 3;        % Check first to k_space parameters  
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% loop control and system order 
Vmax        = 100000;   % break if out of control 
n           = 1;        % order of system 
seed        = 1;        % random seed 
 
% variable initializations 
small       = 0;        % time weighted lyapunov 
feedback    = 0;        % feedback performace index (Bi-criteria) 
pred        = 0;        % prediction performance index (Bi-criteria) 
k_weight    = 5;        %start_cycle;        
k_weight_l  = 1;        % number of cycles to average predictions over 
A           = ones(1,max(done,400))*Areal;   
B           = ones(1,max(done,400))*Breal; 
 
% add step changes in parameter values 
A(100:400)  = A(100:400) - 0.1; 
B(150:400)  = B(150:400) + 0.1; 
 
% more initialization 
Aest        = zeros(1,done); 
Aest_path   = ones(done,k_points^check+1); 
Best        = zeros(1,done); 
Best_path   = ones(done,k_points^check+1); 
u           = zeros(done,1); 
y           = zeros(done,1); 
x           = zeros(done,1); 
s           = zeros(done,1); 
s_path      = zeros(done,k_points^check+1); 
V           = zeros(done,1); 
Ka          = ones(done,1)*Kainit; 
Kb          = ones(done,1)*Kbinit; 
Kd          = ones(done,1)*Kdinit; 
k_set       = zeros(3,k_points^check+1);  
ypred_path  = zeros(done,k_points^check+1); 
ypred_pick  = zeros(k_points^check+1); 
a_set       = zeros(2,a_points^2); 
a_set       = zeros(2,(a_points*2+1)^2); 
a_weight    = zeros(1,(a_points*2+1)^2); 
ypred_pick  = zeros(done,k_points^check+1); 
score       = zeros(k_points^check+1,a_points^2); 
Srun        = zeros(k_points^check+1,done); 
Save        = zeros(k_points^check+1,done); 
Sconf       = zeros(k_points^check+1,done); 
time        = (1:(done+1+horizon)); 
ref         = zeros(1,done+1+horizon); 
 
 
%use same noise set for each run 
randn('state',seed); 
rand_set1    = randn(done,1); 
% filter the noise (low pass filter, weak noise at nyquist frequencies) 
rand_set = filter(1-beta,[1, -beta],rand_set1); 
 
% weighting matrix for a 
% used for bi-criteria method 
a_it = 0; 
if a_points == 0 
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    a_weight = 1; 
else 
    for aa = 0:(a_points*2) 
        for ab = 0:(a_points*2) 
            a_it = a_it + 1; 
            a_weight(a_it) = normpdf(2*(aa/(a_points*2) - 
0.5)*multiples,0,1)*normpdf(2*(ab/(a_points*2) - 0.5)*multiples,0,1); 
        end 
    end 
end 
 
% define sweep space used in prediction. 
% versions for checking Ka, and Kb, as well as both plus Kd 
% note this starts at column 2, the first one is the default values 
k_it = 1;  
for aa = 0:(k_points-1) 
    for ab = 0:(k_points-1) 
        for ad = 0:(k_points-1) 
            k_it = k_it + 1; 
            k_set(:,k_it) = [aa*(4/k_points) + 1/k_points; 
ab*(4/k_points) + 1/k_points; ad*(4/k_points) + 1/k_points]; 
        end 
    end 
end 
% Add default sweep space 
k_set(:,1) = [Ka(1); Kb(1); Kd(1)]; 
 
for i = time 
    if mod(i,period*2) < period 
        ref(i) = yinit + amp; 
    else 
        ref(i) = yinit - amp; 
    end 
end   
 
% filter by first order reference model, with time constant, alpha 
ysp = filter(1-alpha,[1, -alpha],ref); 
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Appendix B: Code for LMI Tuning Method 

In this section of code the simulation for the plant is performed along with the LMI 

tuning block.  The LMI tuning calls a function ‘lmi_test’ in Appendix E.  After scoring 

all estimation values are set to the values associated with the current best track.  

Aest(1)        = Ainit; 
Aest_path(1,:) = Aest_path(1,:)*Ainit; 
Best(1)        = Binit; 
Best_path(1,:) = Best_path(1,:)*Binit; 
y(1)           = yinit; 
x(1)           = yinit; 
u(1)           = uinit; 
infeas         = zeros(1,done); 
counts         = 0; 
tic; 
 
for i = (n+1):done 
     
    % calcualte y, based on old y and inputs 
    x(i) = A(:,i)'*x(i-1) + B(:,i)'*u(i-1); 
    y(i) = x(i) + noise*rand_set(i); 
     
    % feedback error 
    feedback = feedback + (y(i) - ysp(i))^2; 
     
    % predicted value of current output 
    ypred(i) = Aest(:,i-1)'*y(i-1) + Best(:,i-1)'*u(i-1); 
     
    % prediction error  
    pred = pred + (y(i) - ypred(i))^2; 
     
    % evaluate all k_set updates. 
    for k_eval = 1:size(k_set,2) 
        % calualte parameters for next error update 
        Sa = -y(i-1)/(1 + k_set(3,k_eval)); 
        Sb = -u(i-1)/(1 + k_set(3,k_eval)); 
        Sf = (2*y(i) + (1 - k_set(3,k_eval))*s_path(i-1,k_eval) - 
Aest_path(i-1,k_eval)'*y(i-1) - Best_path(i-1,k_eval)'*u(i-1))/(1 + 
k_set(3,k_eval)); 
        As = k_set(1,k_eval)*y(i-1); 
        Af = Aest_path(i-1,k_eval) + k_set(1,k_eval)*y(i-1)*s_path(i-
1,k_eval); 
        Bs = k_set(2,k_eval)*u(i-1); 
        Bf = Best_path(i-1,k_eval) + k_set(2,k_eval)*u(i-1)*s_path(i-
1,k_eval); 
         
        % calualte new error metric 
        s_path(i,k_eval) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb); 
         
        % new estimates for A, B 
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        Aest_path(i,k_eval) = s_path(i,k_eval)*As + Af; 
        Best_path(i,k_eval) = s_path(i,k_eval)*Bs + Bf;         
    end 
     
    % uncertainty bounds from fitered error 
    for m = 1:size(s_path,2) 
        Srun(i,m) = s_path(i,m)^2; 
        Sconf(m,i) = sqrt(sum(Srun(max(1,i-std_hor):i,m))/(i-max(1,i-
std_hor)+1)); 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%% Begin optimisaton block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for k_eval = 1:size(k_set,2) 
        % find lmi score 
        ypred_path(i,k_eval) = lmi_test(y(i), Sconf(k_eval,i)*mult_lmi, 
Aest_path(i,k_eval), Sconf(k_eval,i)*mult_lmi, Best_path(i,k_eval), 
k_set(1,k_eval), k_set(2,k_eval), k_set(3,k_eval), s_path(i,k_eval), 
ysp(i+1), alpha); 
        counts = counts + 1; 
        % weight last k_weight predictions averaged together. 
        ypred_pick2(k_eval) = mean(ypred_path(max(1,i-
k_weight_l):i,k_eval));    
    end 
     
    % count infeasable results 
    if ypred_path(i,k_eval) < 0 
        infeas(i) = infeas(i) + 1; 
        ypred_path(i,k_eval) = Inf; 
    end 
     
    % in tie, select current track 
    if i > start_cycle 
        ypred_pick2(next_k) = ypred_pick2(next_k)*0.999; 
    end 
    %%%%%%%%%%% End optimisation block %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %  pick next parameters if initialisation time has passed. 
    if i > start_cycle    
        ypred_pick(i,:) = ypred_path(i,:); 
        [score_best, next_k] = min(ypred_pick2(:)); 
    else 
        next_k = 1; 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % pick next step parameters 
    Ka(i) = k_set(1,next_k); 
    Kb(i) = k_set(2,next_k); 
    Kd(i) = k_set(3,next_k);    
     
    % new estimates for s, A, B 
    s(i)      = s_path(i,next_k); 
    Aest(:,i) = Aest_path(i,next_k); 
    Best(:,i) = Best_path(i,next_k); 
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    % calulate new output - uses the next set point value - we assume 
this 
    % is known 
    u(i) = (ysp(i+1) - Aest(1,i)*y(i)) / Best(1,i); 
     
    % calulate Lyapunov (for simulation purposes only) 
    V(i) = (Aest(:,i) - A(:,i))'*Ka(i)*(Aest(:,i) - A(:,i)) + 
(Best(:,i) - B(:,i))'*Kb(i)*(Best(:,i) - B(:,i)) + s(i)^2; 
     
    % Print results 
    fprintf('I:%i, V:%12.6f, y:%8.3f, s:%8.3f, Aest:%8.3f, Best:%8.3f, 
YSP:%8.3f, u%8.3f\n', i, V(i),y(i), s(i), Aest(:,i), Best(:,i), ysp(i), 
u(i)); 
     
    %break if runaway condition 
    if V(i) > Vmax 
        break 
    end 
end 
time1 = toc; 
 
time = (1:i)*1; 
 
% calculate error signals 
noise_error1 = noise*rand_set(time)'*rand_set(time)*noise; 
sp_error1 = ysp(time)*ysp(time)'; 
out_error1 = (y(time)-ysp(time)')'*(y(time)-ysp(time)'); 
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Appendix C: Code for BC Tuning Method 

In this section of code the simulation for the plant is performed along with the BC tuning 

block.  The BC tuning calls a function ‘single_opt_run2’ in Appendix F.  After scoring 

all estimation values are set to the values associated with the current best track.  This 

code is similar to the code in appendix B, except for the BC evaluation section. 

% reinitialize all needed variables - not involved with the paths. 
small           = 0;        % time weighted lyapunov 
feedback        = 0;        % feedback performace index (Bi-criteria) 
pred            = 0;        % prediction performance index (Bi-
criteria) 
 
e               = zeros(done,1); 
s               = zeros(done,1); 
V               = zeros(done,1); 
Ka              = ones(done,1)*Kainit; 
Kb              = ones(done,1)*Kbinit; 
Kd              = ones(done,1)*Kdinit; 
next_k3         = ones(done,1); 
Aest(1)         = Ainit; 
Best(1)         = Binit; 
Aest_path(1,:)  = Aest_path(1,:)*Ainit; 
Best_path(1,:)  = Best_path(1,:)*Binit; 
y(1)            = yinit; 
x(1)            = yinit; 
u(1)            = uinit; 
 
% time simulation 
tic; 
 
%fprintf('\nI:%i, V:%12.6f, y:%8.3f, s:%8.3f, Aest:%8.3f, %8.3f, 
Best:%8.3f, %8.3f, YSP:%8.3f, u%8.3f\n', 1, V(1),y(1), s(1), Aest(:,1), 
Best(:,1), ysp(1), u(1)); 
 
for i = (n+1):done 
    fprintf('%i ',i) 
     
    % calcualte y, based on old y and inputs 
    x(i) = A(:,i)'*x(i-1) + B(:,i)'*u(i-1); 
    y(i) = x(i) + noise*rand_set(i); 
     
    % feedback error 
    feedback = feedback + (y(i) - ysp(i))^2; 
     
    % predicted value of current output 
    ypred(i) = Aest(:,i-1)'*y(i-1) + Best(:,i-1)'*u(i-1); 
     
    % prediction error  
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    pred = pred + (y(i) - ypred(i))^2; 
     
    % evaluate all k_set updates. 
    for k_eval = 1:size(k_set,2) 
        % calualte parameters for next error update 
        Sa = -y(i-1)/(1 + k_set(3,k_eval)); 
        Sb = -u(i-1)/(1 + k_set(3,k_eval)); 
        Sf = (2*y(i) + (1 - k_set(3,k_eval))*s_path(i-1,k_eval) - 
Aest_path(i-1,k_eval)'*y(i-1) - Best_path(i-1,k_eval)'*u(i-1))/(1 + 
k_set(3,k_eval)); 
        As = k_set(1,k_eval)*y(i-1); 
        Af = Aest_path(i-1,k_eval) + k_set(1,k_eval)*y(i-1)*s_path(i-
1,k_eval); 
        Bs = k_set(2,k_eval)*u(i-1); 
        Bf = Best_path(i-1,k_eval) + k_set(2,k_eval)*u(i-1)*s_path(i-
1,k_eval); 
         
        % calualte new error metric 
        s_path(i,k_eval) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb); 
         
        % new estimates for A, B 
        Aest_path(i,k_eval) = s_path(i,k_eval)*As + Af; 
        Best_path(i,k_eval) = s_path(i,k_eval)*Bs + Bf; 
         
    end 
     
    % Calculate confidence interval 
    for m = 1:size(s_path,2) 
        Srun(i,m) = s_path(i,m)^2; 
        Sconf(m,i) = sqrt(sum(Srun(max(1,i-std_hor):i,m))/(i-max(1,i-
std_hor)+1)); 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%% Begin optimisaton block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % reset score counter 
    score = ones(k_points^check+1,(a_points*2+1)^2); 
     
    for ki = 1:size(k_set,2) 
        a_num = 1; 
         
        % calculate the first step of the score - Aest current is not 
        % needed for this calculation so the results are the same for 
every 
        % variation used 
        score(ki,:) = score(ki,:)*((y(i) - ysp(i))^2 + (y(i) - 
Aest_path(i-1,ki)*y(i-1) + Best_path(i-1,ki)*u(i-1))^2); 
         
        % find combinations of inital values of 'true plant' values to 
use 
        if horizon > 1 
            if a_points == 0 
                a_set(1,1) = 0; 
                a_set(2,1) = 0; 
            else 
                for aaa = 1:(a_points*2+1) 
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                    for bbb = 1:(a_points*2+1) 
                        a_set(1,a_num) = Sconf(ki,i)*(2*((aaa-
1)/(a_points*2))-1)*multiples; 
                        a_set(2,a_num) = Sconf(ki,i)*(2*((bbb-
1)/(a_points*2))-1)*multiples; 
                        a_num = a_num+1; 
                    end 
                end 
            end 
             
            % calcualte BC cost function prediction 
            for ai = 1:size(a_set,1) 
                score(ki,ai) = score(ki,ai) + single_opt_run2(horizon, 
k_set(:,ki), a_set(1, ai), a_set(2, ai), Aest_path((i-1):i,ki), 
Best_path((i-1):i,ki), s_path((i-1):i,ki), y((i-1):i), u(i-1), ysp((i-
1):(i+horizon+1)));     
            end  
             
        end 
 
        ypred_pick(i,ki) = score(ki,:)*(a_weight)'; 
        ypred_pick2(ki) = mean(ypred_pick(max(1,i-k_weight):i,ki)); 
         
    end 
     
    if i > start_cycle 
        ypred_pick2(next_k3(i)) = ypred_pick2(next_k3(i))*0.999; 
    end 
    %%%%%%%%%%% End optimisation block %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %  pick next parameters if initialisation time has passed. 
    if i > start_cycle    
        %ypred_pick(i,:) = ypred_path(i,:); 
        [score_best, next_k3(i)] = min(ypred_pick2(:)); 
    else 
        next_k(i) = 1; 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % pick next step parameters 
    Ka(i) = k_set(1,next_k3(i)); 
    Kb(i) = k_set(2,next_k3(i)); 
    Kd(i) = k_set(3,next_k3(i)); 
     
    % new estimates for s, A, B 
    s(i)      = s_path(i,next_k3(i)); 
    Aest(:,i) = Aest_path(i,next_k3(i)); 
    Best(:,i) = Best_path(i,next_k3(i)); 
     
    % calulate new output - uses the next set point value - we assume 
this 
    % is known 
    u(i) = (ysp(i+1) - Aest(1,i)*y(i) + (1-Kd(i))*s(i)) / Best(1,i); 
     
    % calulate Lyapunov (for simulation purposes only) 
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    V(i) = (Aest(:,i) - A(:,i))'*Ka(i)*(Aest(:,i) - A(:,i)) + 
(Best(:,i) - B(:,i))'*Kb(i)*(Best(:,i) - B(:,i)) + s(i)^2; 
     
    %break if runaway condition 
    if V(i) > Vmax 
        break 
    end 
end 
 
fprintf('\n'); 
 
time3 = toc; 
 
time = (1:i)*1; 
 
% calculate error signals 
noise_error3 = noise*rand_set(time)'*rand_set(time)*noise; 
sp_error3 = ysp(time)*ysp(time)'; 
out_error3 = (y(time)-ysp(time)')'*(y(time)-ysp(time)'); 
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Appendix D: Code for Display of Results 

Creates plots used in chapters 4 and 5.  This particular set was used for the linear 

comparison. 

figure(5); 
subplot(2,1,1) 
plot(time, Ka1(time), 'k', time, Kb1(time), 'k:', time, Kd1(time), 'k.-
');  
legend('Ka', 'Kb', 'Kd'); 
title('LMI Track Selection'); 
ylabel('Parameter Value'); 
subplot(2,1,2) 
plot(time, Ka3(time), 'k', time, Kb3(time), 'k:', time, Kd3(time), 'k.-
');  
legend('Ka', 'Kb', 'Kd'); 
title('BC Track Selection'); 
ylabel('Parameter Value'); 
xlabel('Time Interval'); 
 
figure(3); 
hold on; 
plot(time, A(1,time), 'k',time, Aest3(1,time), 'k-.',time, 
Aest1(1,time), 'k:',time, Aest0(1,time), 'c', time, Aest4(1,time), 
'c'); 
legend('True Value of A', 'BC estimate', 'LMI estimate', 'Untunded 
estimates'); 
ylabel('Parameter Value'); 
xlabel('Time Interval'); 
 
figure(4); 
hold on; 
plot(time, B(1,time), 'k',time, Best3(1,time), 'k-.',time, 
Best1(1,time), 'k:',time, Best0(1,time), 'c', time, Best4(1,time), 
'c'); 
legend('True Value of B', 'BC estimate', 'LMI estimate', 'Untunded 
estimates'); 
ylabel('Parameter Value'); 
xlabel('Time Interval'); 
 
figure(1); 
hold on 
plot(time, y3(time), 'k-.',time, y1(time), 'k:',time, y0(time), 
'c',time, ysp(time), 'k', time, y4(time), 'c',time, ysp(time), 
'k',[1,done],[0,0],'k'); 
legend('Y - BC','Y - LMI','Y - Untuned','Ysp'); 
ylabel('System Output'); 
xlabel('Time Interval'); 
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Appendix E: Code for LMI Function Evaluation 

This section is called to evaluate the value of spγ in the LMI tuning method.  The C 

vector used gives an error equal to spk yy − . A function ‘calc_model1’ is called to obtain 

the values for the matrices ( ) BA  and iδ . 

function tmin = lmi_test(yk, at, ak, bt, bk, ka, kb, kd, sk, rk, alpha) 
[Amm, Apm, Amp, App, Bmm, Bpm, Bmp, Bpp] = calc_model1(yk, at, ak, bt, 
bk, ka, kb, kd, sk, rk, alpha); 
 
C = [-1,0,0,0,1]; 
% states are, in order; 
% yk, sk, ak, bk, rk 
 
D = [0]; 
 
setlmis([]); 
r = 1; %inputs 
k =1; % outputs 
s =max(size(Amm)); % states 
% observed = e(k) 
 
P0=lmivar(1,[s 1]); 
 
% positive definite restriction 
lmiterm([5 1 1 0],0); %P0 > 0 
lmiterm([-5 1 1 P0],1,1); 
 
%vertex 1 of 4 (-delA -delB) 
lmiterm([1 1 1 P0],Amm',Amm); % A'PA 
lmiterm([1 1 1 P0],-1,1);       %-P 
lmiterm([1 1 2 P0],Amm',Bmm); %A'PB 
lmiterm([1 1 3 0],C');   % C' 
lmiterm([1 2 2 P0],Bmm',Bmm);   %B'PB 
lmiterm([1 2 3 0],D');     %D'   
lmiterm([1 3 3 0],-eye(k));        %-I 
 
lmiterm([-1 1 1 0],0.000001*eye(s)); % A'PA 
lmiterm([-1 2 2 0],eye(r)); % A'PA 
lmiterm([-1 3 3 0],0.000001*eye(k)); % A'PA 
 
 
%vertex 2 of 4 (+delA -delB) 
lmiterm([2 1 1 P0],Apm',Apm); % A'PA 
lmiterm([2 1 1 P0],-1,1);       %-P 
lmiterm([2 1 2 P0],Apm',Bpm); %A'PB 
lmiterm([2 1 3 0],C');   % C' 
lmiterm([2 2 2 P0],Bpm',Bpm);   %B'PB 
lmiterm([2 2 3 0],D');     %D'   
lmiterm([2 3 3 0],-eye(k));        %-I 
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lmiterm([-2 1 1 0],0.000001*eye(s)); % A'PA 
lmiterm([-2 2 2 0],eye(r)); % A'PA 
lmiterm([-2 3 3 0],0.000001*eye(k)); % A'PA 
 
 
%vertex 3 of 4 (-delA +delB) 
lmiterm([3 1 1 P0],Amp',Amp); % A'PA 
lmiterm([3 1 1 P0],-1,1);       %-P 
lmiterm([3 1 2 P0],Amp',Bmp); %A'PB 
lmiterm([3 1 3 0],C');   % C' 
lmiterm([3 2 2 P0],Bmp',Bmp);   %B'PB 
lmiterm([3 2 3 0],D');     %D'   
lmiterm([3 3 3 0],-eye(k));        %-I 
 
lmiterm([-3 1 1 0],0.000001*eye(s)); % A'PA 
lmiterm([-3 2 2 0],eye(r)); % A'PA 
lmiterm([-3 3 3 0],0.000001*eye(k)); % A'PA 
 
 
%vertex 4 of 4 (+delA +delB) 
lmiterm([4 1 1 P0],App',App); % A'PA 
lmiterm([4 1 1 P0],-1,1);       %-P 
lmiterm([4 1 2 P0],App',Bpp); %A'PB 
lmiterm([4 1 3 0],C');   % C' 
lmiterm([4 2 2 P0],Bpp',Bpp);   %B'PB 
lmiterm([4 2 3 0],D');     %D'   
lmiterm([4 3 3 0],-eye(k));        %-I 
 
lmiterm([-4 1 1 0],0.000001*eye(s)); % A'PA 
lmiterm([-4 2 2 0],eye(r)); % A'PA 
lmiterm([-4 3 3 0],0.000001*eye(k)); % A'PA 
 
 
lmilio=getlmis; 
[tmin,xfeas] = gevp(lmilio,1); 
 
fprintf('tmin: %f, Gamma: %f\n',tmin,sqrt(tmin)); 
if isempty(tmin) 
    tmin = -1; 
else 
    tmin = sqrt(tmin); 
end 
 



 124

Appendix F: Code for BC Function Evaluation 

This section is called to evaluate the predicted value of the bicriteria error score for the 

BC tuning method.  It is coded as a simulation similar to the main function. 

function [error] = single_opt_run2(done, k_set, A, B, Ainit, Binit, si, 
yi, ui, ysp) 
% done is number of steps to execute, 1 will give current conditions 
only 
% K is thre parameter vector of Ka, Kb, Kd 
% A and B are the assumed real values of the parameters 
% Ainit and Binit are the inital values of estimates of a and b at i 
and 
% i-1 
% si is 2 vector of s(i-1) and s(i) 
% yi is 2 vector of y(i-1) and y(i) 
% ui is u(i-1) 
% ysp is vector of ysp(i-1:i+done+1) 
 
n = 1; 
error = 0; 
i = 2; 
 
% Define full sized variables 
Aest        = zeros(done+1); 
Best        = zeros(done+1); 
u           = zeros(done+1); 
y           = zeros(done+1); 
s           = zeros(done+1); 
 
% set initial values 
s(1:2) = si; 
y(1:2) = yi; 
u(1)   = ui; 
Aest(1:2) = Ainit; 
Best(1:2) = Binit; 
u(2) = (ysp(3) - Aest(2)*y(2)) / Best(2); 
feedback = 0; 
pred = 0; 
 
for i = (n+2):(done+1) 
     
    % calcualte current y, based on old y and inputs 
    y(i) = A*y(i-1) + B*u(i-1); 
     
    % feedback error 
    feedback = feedback + (y(i) - ysp(i))^2; 
     
    % prediction error  
    pred = pred + (y(i) - Aest(i-1)*y(i-1) + Best(i-1)*u(i-1))^2; 
     
    % calualte parameters for next error update 
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    Sa = -y(i-1)/(1 + k_set(3)); 
    Sb = -u(i-1)/(1 + k_set(3)); 
    Sf = (2*y(i) + (1 - k_set(3))*s(i-1) - Aest(i-1)'*y(i-1) - Best(i-
1)'*u(i-1))/(1 + k_set(3)); 
    As = k_set(1)*y(i-1); 
    Af = Aest(i-1) + k_set(1)*y(i-1)*s(i-1); 
    Bs = k_set(2)*u(i-1); 
    Bf = Best(i-1) + k_set(2)*u(i-1)*s(i-1); 
     
    % calualte new error metric 
    s(i) = (Af*Sa + Bf*Sb + Sf) / (1 - As*Sa - Bs*Sb); 
     
    % new estimates for A, B 
    Aest(i) = s(i)*As + Af; 
    Best(i) = s(i)*Bs + Bf; 
     
     
    % calulate new output - uses the next set point value - we assume 
this 
    % is known 
    u(i) = (ysp(i+1) - Aest(i)*y(i)) / Best(i); 
     
end 
 
error = feedback + pred; 
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Appendix G: Code for LMI Symbolic Jacobian Solver 

This section is used to create the function ‘calc_model1’, which is called from appendix 

E.  Symbolic manipulation is much slower than numerical evaluation of the function, thus 

this section of code only needs to be executed once. 

clear all 
file = 'calc_model1.m' 
f = fopen(file,'wt') 
fprintf(f,'function [Amm, Apm, Amp, App, Bmm, Bpm, Bmp, Bpp] = 
calc_model1(yk, at, ak, bt, bk, ka, kb, kd, sk, rk, alpha)\n\n'); 
 
digits(6); 
syms yk xk a at ak b bt bk ka kb kd sk rk ysp alpha dk noise beta; 
 
rk1 = (alpha)*rk + (1-alpha)*ysp; 
dk1 = (beta)*dk + (1-beta)*noise; 
 
uk = (-ak*yk + rk + (1-kd)*sk)/bk; 
 
yk1 = a*yk+b*uk; 
%yk = xk %+ dk; 
ek = yk - rk; 
 
Af = ak + ka*yk*sk; 
As = ka*yk; 
 
Bf = bk + kb*uk*sk; 
Bs = kb*uk; 
 
Sf = (2*yk1 - ak*yk - bk*uk + (1-kd)*sk)/(1+kd); 
Sa = -yk/(1+kd); 
Sb = -uk/(1+kd); 
 
sk1 = (Sf + Sa*Af + Sb*Bf)/(1 - Sa*As - Bs*Sb); 
ak1 = Af + As*sk1; 
bk1 = Bf + Bs*sk1; 
 
A = [yk1,sk1,ak1,bk1, rk1];  
y = length(A); % states 
fprintf('Vector of [states at k+1] 
k\n_____________________________________________________\n'); 
pretty(A) 
Ajs = jacobian(A,[yk,sk,ak,bk, rk]); %dk 
Bjs = jacobian(A, ysp); 
z = 1; % inputs 
Ajs = subs(Ajs,'a','ak-at'); 
Ajs = subs(Ajs,'b','bk-bt'); 
%Ajs = subs(Ajs,'xk','yk'); 
 
Bjs = subs(Bjs,'a','ak-at'); 
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Bjs = subs(Bjs,'b','bk-bt'); 
%Bjs = subs(Bjs,'xk','yk'); 
 
 
 
fprintf(f,'\n%% -At, -Bt terms\n'); 
 
Aj0 = subs(Ajs, 'at', '(-at)'); 
Aj0 = simplify(subs(Aj0,'bt','(-bt)')); 
for m = 1:y 
    for n = 1:y 
        fprintf(f,'Amm(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Aj0(m,n))); 
    end 
end 
fprintf(f,'\n'); 
Bj0 = subs(Bjs, 'at', '(-at)'); 
Bj0 = simplify(subs(Bj0,'bt','(-bt)')); 
for m = 1:y 
    for n = 1:z 
        fprintf(f,'Bmm(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Bj0(m,n))); 
    end 
end 
 
fprintf(f,'\n%% +At, -Bt terms\n'); 
 
Aj0 = subs(Ajs, 'at', '(+at)'); 
Aj0 = simplify(subs(Aj0,'bt','(-bt)')); 
for m = 1:y 
    for n = 1:y 
        fprintf(f,'Apm(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Aj0(m,n))); 
    end 
end 
fprintf(f,'\n'); 
Bj0 = subs(Bjs, 'at', '(+at)'); 
Bj0 = simplify(subs(Bj0,'bt','(-bt)')); 
for m = 1:y 
    for n = 1:z 
        fprintf(f,'Bpm(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Bj0(m,n))); 
    end 
end 
 
fprintf(f,'\n%% -At, +Bt terms\n'); 
 
Aj0 = subs(Ajs, 'at', '(-at)'); 
Aj0 = simplify(subs(Aj0,'bt','(bt)')); 
for m = 1:y 
    for n = 1:y 
        fprintf(f,'Amp(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Aj0(m,n))); 
    end 
end 
fprintf(f,'\n'); 
Bj0 = subs(Bjs, 'at', '(-at)'); 
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Bj0 = simplify(subs(Bj0,'bt','(bt)')); 
for m = 1:y 
    for n = 1:z 
        fprintf(f,'Bmp(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Bj0(m,n))); 
    end 
end 
 
fprintf(f,'\n%% +At, +Bt terms\n'); 
 
Aj0 = subs(Ajs, 'at', 'at'); 
Aj0 = simplify(subs(Aj0,'bt','bt')); 
for m = 1:y 
    for n = 1:y 
        fprintf(f,'App(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Aj0(m,n))); 
    end 
end 
fprintf(f,'\n'); 
Bj0 = subs(Bjs, 'at', 'at'); 
Bj0 = simplify(subs(Bj0,'bt','bt')); 
for m = 1:y 
    for n = 1:z 
        fprintf(f,'Bpp(%s,%s) = 
%s;\n',int2str(m),int2str(n),char(Bj0(m,n))); 
    end 
end 
 
fclose(f) 
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Appendix H: Example of one Element of the Jacobian 

In this section one element of one possible combination of uncertainties from the function 

‘calc_model1’ is shown.  The full function is not displayed because it is generated from 

the code in Appendix G, and the full file size is 62 kB of plain text for a first order 

system with no disturbance, and 387 kB for a second order system. 

Amm(4,4) = -(kb^2*sk^4*kd^4-2*kb^2*sk^4*kd^3+2*kb^2*sk^4*kd-
2*kb^2*sk^3*rk+2*kb^2*rk^3*sk+kb^2*ak^4*yk^4-
yk^4*ka^2*bk^4+2*bk^2*kb*sk^2-2*bk^4*yk^2*ka+2*kb*rk*yk*bk^2*at-
12*kb^2*ak*yk*rk*sk^2*kd^2+12*kb^2*ak*yk*rk*sk^2*kd+12*kb^2*ak*yk*rk^2*
sk*kd-12*kb^2*ak^2*yk^2*rk*sk*kd-
2*yk^2*ka*bk^2*kb*sk^2*kd+2*yk^2*ka*bk^2*kb*sk*rk-
2*yk^3*ka*bk^2*kb*sk*ak-2*bk^2*kb*ak*yk*sk*kd-2*bk^4*kd*yk^2*ka-
2*bk^2*kb*sk^2*kd^2-bk^4*kd^2+2*bk^2*kb*rk*sk*kd+2*bk^2*kb*sk*rk-
2*bk^2*kb*sk*ak*yk-2*bk^4*kd-
6*kb^2*ak^2*yk^2*sk^2*kd+6*kb^2*ak^2*yk^2*sk*rk+6*kb^2*ak^2*yk^2*rk^2+4
*kb^2*ak^3*yk^3*sk*kd-2*kb^2*ak^3*yk^3*sk-
4*kb^2*ak^3*yk^3*rk+2*yk^2*ka*bk^2*kb*sk^2-6*kb^2*ak*yk*rk^2*sk-
4*kb^2*ak*yk*rk^3+6*kb^2*ak^2*yk^2*sk^2*kd^2-
6*kb^2*sk^3*ak*yk*kd^2+2*kb^2*sk^3*ak*yk+kb^2*rk^4+4*kb^2*ak*yk*sk^3*kd
^3+6*kb^2*sk^3*rk*kd^2+4*bk*bt*kb*ak^2*yk^2+6*kb^2*rk^2*sk^2*kd^2-
6*kb^2*rk^2*sk^2*kd-4*kb^2*rk^3*sk*kd-
4*kb^2*rk*sk^3*kd^3+8*bk*bt*kb*sk*rk-4*bk*bt*kb*sk^2*kd-
4*bk*bt*kb*sk^2*kd^2+4*bk*bt*kd*kb*ak^2*yk^2-8*bk*bt*kd*kb*ak*yk*rk-
8*bk*bt*kb*ak*yk*rk-
8*bk*bt*kb*sk*ak*yk+4*bk*bt*kb*rk^2+4*bk*bt*kb*sk^2-kb^2*sk^4-
2*kb*ak*yk^2*bk^2*at+2*kb*sk*yk*bk^2*at+2*kb*rk*yk*bk^2*at*kd-bk^4-
2*kb*ak*yk^2*bk^2*at*kd-2*kb*sk*kd^2*yk*bk^2*at+6*sk^3*kd*yk*at*kb^2-
6*sk^3*kd^2*yk*at*kb^2+2*sk^3*kd^3*yk*at*kb^2+4*kb*ak^2*yk^4*bk*bt*ka+2
*kb*sk*yk^3*bk^2*at*ka+8*kb*rk*bk*bt*sk*yk^2*ka-
8*kb*rk*bk*bt*sk*kd*yk^2*ka-
2*kb*ak*yk^4*bk^2*at*ka+2*kb*rk*yk^3*bk^2*at*ka+4*kb*bk*bt*sk^2*yk^2*ka
-8*kb*ak*yk^3*bk*bt*rk*ka+4*kb*sk^2*kd^2*bk*bt*yk^2*ka-
8*kb*ak*yk^3*bk*bt*sk*ka+8*kb*ak*yk^3*bk*bt*sk*kd*ka-
8*kb*bk*bt*sk^2*kd*yk^2*ka-
2*kb*sk*kd*yk^3*bk^2*at*ka+4*kb*bk*bt*rk^2*yk^2*ka+2*ak^3*yk^4*at*kb^2-
6*ak^2*yk^3*at*kb^2*sk+6*ak*yk^2*at*kb^2*sk^2-
6*rk*yk^3*at*kb^2*ak^2+6*rk^2*yk^2*at*kb^2*ak+12*rk*yk^2*at*kb^2*sk*ak-
12*rk*yk^2*at*kb^2*ak*sk*kd-2*rk^3*yk*at*kb^2-
6*rk^2*yk*at*kb^2*sk+6*rk^2*yk*at*kb^2*sk*kd-
6*rk*yk*at*kb^2*sk^2+12*rk*yk*at*kb^2*sk^2*kd-
6*rk*yk*at*kb^2*sk^2*kd^2+6*sk*kd*yk^3*at*kb^2*ak^2-
12*sk^2*kd*yk^2*at*kb^2*ak+6*sk^2*kd^2*yk^2*at*kb^2*ak+8*bk*bt*kd^2*kb*
ak*yk*sk+4*bk*bt*kd*kb*rk^2-8*bk*bt*kd^2*kb*rk*sk-
2*sk^3*yk*at*kb^2+4*bk*bt*kd^3*kb*sk^2)/(bk^2+bk^2*kd+yk^2*ka*bk^2+kb*a
k^2*yk^2-2*kb*ak*yk*rk-
2*kb*sk*ak*yk+2*kb*ak*yk*sk*kd+kb*rk^2+2*kb*sk*rk-
2*kb*rk*sk*kd+kb*sk^2-2*kb*sk^2*kd+kb*sk^2*kd^2)^2; 
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