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Abstract 

Electronic imaging technologies are faced with the challenge of power consumption when 

transmitting large amounts of image data from the acquisition imager to the display or 

processing devices. This is especially a concern for portable applications, and becomes more 

prominent in increasingly high-resolution, high-frame rate imagers. Therefore, new sampling 

techniques are needed to minimize transmitted data, while maximizing the conveyed image 

information.  

From this point of view, two approaches have been proposed and implemented in this thesis: 

1) A system-level approach, in which the classical 1D row sampling CMOS imager is 

modified to a 2D ring sampling pyramidal architecture, using the same standard three 

transistor (3T) active pixel sensor (APS).  

2) A device-level approach, in which the classical orthogonal architecture has been 

preserved while altering the APS device structure, to design an expandable 

multiresolution image sensor.  

A new scanning scheme has been suggested for the pyramidal image sensor, resulting in an 

intrascene foveated dynamic range (FDR) similar in profile to that of the human eye. In this 

scheme, the inner rings of the imager have a higher dynamic range than the outer rings. The 

pyramidal imager transmits the sampled image through 8 parallel output channels, allowing 

higher frame rates. The human eye is known to have less sensitivity to oblique contrast. 

Using this fact on the typical oblique distribution of fixed pattern noise, we demonstrate 
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lower perception of this noise than the orthogonal FPN distribution of classical CMOS 

imagers.  

The multiresolution image sensor principle is based on averaging regions of low interest 

from frame-sampled image kernels. One pixel is read from each kernel while keeping pixels 

in the region of interest at their high resolution. This significantly reduces the transferred data 

and increases the frame rate. Such architecture allows for programmability and expandability 

of multiresolution imaging applications. 

 

Index terms: CMOS image sensor, Pyramidal image sensor, Multiresolution image sensor, 

2D sampling, Foveated Dynamic Range (FDR), Videophone, Video communication, Remote 

imaging. 
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Chapter 1 

Introduction to CMOS Image Sensors 

 

1.1 Imaging Evolution 

It is interesting to follow the evolution of imaging technology from chemical imaging (using 

photographic film) to electronic imaging (using solid state sensors). Electronic imaging now 

encompasses two major imaging technologies: Charge-Coupled Device (CCD) imaging, 

which first appeared in the late 1960’s  [1], and Complementary Metal-Oxide-Semiconductor 

(CMOS) imaging, which has developed much attraction since the early 1990’s  [2].  CMOS 

imaging is an especially dynamic field of research and development, with advantages in 

development cost, ease of use and compatibility with surrounding technologies.  

Historically, chemical, CCD and CMOS imaging technologies competed for dominance over 

imaging market share, without completely eliminating each other (as we can see still today 

film cameras on the market).  This co-existence is mainly due to the different physical 

limitations (beside fabrication cost) of each imaging technology. CCDs, for example are well 

suited for low light imaging due to their superior low noise, whereas CMOS imagers perform 

better in high light imaging and integrated applications. These two major electronic imaging 

technologies will be further presented in the next section. 
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1.1.1 CCD and CMOS Image Sensors 

Both imaging technologies use silicon for light transduction into electrical voltage signals. 

However, their main difference lies in their sampling architectures. While CCD imaging is 

based on transporting the integrated photo charges from their pixel sites to the output 

amplifier (where they are converted into voltages), CMOS imagers (based mostly on Active 

Pixel Sensor APS) make the charge-to-voltage conversion at the pixel site. This difference is 

the source of all advantages and disadvantages that divide imaging applications between the 

two technologies. For example, this architectural difference has given CCD imagers better 

noise figure, both temporally and spatially (uniformity), making it the technology of choice 

for imaging applications sensitive to noise, such as astronomical imaging. On the other hand, 

the architecture of CMOS imagers provides them with sampling flexibility, random 

accessibility and high integration. 

1.1.2 Future Prospects and Trends 

It is still unclear which of the two imaging technologies (if either) will dominate the market, 

although there are progressing signs that CMOS imagers are (and will in the near future) 

have the largest share due to their low power and architecture flexibility. However, CCD 

imaging will continue to find application due to its low noise, which makes it the best choice 

for high-quality imaging applications  [3]. 
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1.2 Thesis Objectives 

The objectives of this thesis are presented by the following two statements, which comment 

on the unique performance or characteristic advantages that CMOS imaging technology has 

over CCDs, namely architectural flexibility and random accessibility. These features are used 

to address the two critical and related issues of sensor scanning and spatial sampling, as 

outlined in the philosophical statements below.  

1.2.1 Thesis Philosophical Statements 

1.2.2 Scanning Statement 

Image Scanning should be more adapted to image sampling/acquisition rather than image 

display compatibility.  

 

Since the appearance of CCD (and later CMOS imaging), raster scanning has become the 

adopted scanning technique for sampling integrated images at the imager’s focal plane. This 

is partly due to the lack of random accessibility in CCD imagers’ architecture, and the 

compatibility with the widely used raster scanning technique of contemporary display 

monitors. The flexibility of CMOS imagers has not been fully utilized to optimize scanning, 

nor was exploited to enhance system capabilities. 
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 The second philosophical statement we explored in the present thesis was more relevant to 

the future development of the CMOS image sensor. An important feature in any imaging 

technology is the achieved image resolution. As the image resolution becomes higher and 

higher, the amount of data transmitted from the imager to a display or an image processor 

becomes larger and larger. This will impact power consumption and limit the transmission of 

video signals. In this view we developed our second philosophical statement. 

1.2.3 Image Sampling Statement 

As image resolutions increases and with it the amount of transmitted image data for display 

or processing, new architectures are needed for down-scaling the sampling resolution for 

regions of reduced interest. Innovative architectures are also needed to exploit the Human 

Visual System for transmitting only the most important regions in the acquired image. 

 

 In other words, as the amount of transmitted image data becomes higher, only selected data 

of interest, (regardless of resolution, dynamic range, or any other attribute), should be 

transmitted. This is similar to the strategy used in lossy compression algorithms, such as the 

Joint Photographic Experts Group (JPEG) format, that takes advantage of limitations in 

human vision to produce smaller image files  [61]. 

1.3 Thesis Motivations and Goals 

The main motivations behind the present thesis are to exploit the architectural flexibility of 

the CMOS imager, and to explore the possibilities it may offer. This intention is also 
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influenced by the image processing needs of future imagers, as well as the possibility of 

embedding smart acquisition sampling architectures. Indeed, future imagers are likely to 

have higher resolutions and higher frame rates, so smart architectures that can minimize the 

amount of sampled data while maximizing the amount of information would be desirable. 

Such vision systems are found in biological vision systems, such as human vision, where the 

spatial sampling is not uniform and yet the system has sharp vision and adaptability to 

various light intensities and spatial frequency patterns  [4]. Finally, we note that, in order to 

be adopted for future CMOS imaging development, such novel architectures should conform 

as much as possible to certain principal features and not to be just ad hoc designs. These key 

characteristics are: 

Expandability: refers to the lack of increase in complexity when increasing imager size. This 

means that the suggested architecture is not limited by the size of the imager.  

Programmability: refers to the fact that the imager’s functionality during sampling of the 

integrated image should be programmable (controllable) and flexible.    

1.4 Contributions 

In the context of the motivations mentioned above, a number of contributions have been 

achieved in this work in two principal themes: 

Two-dimensional scanning: We have developed a new and practical architecture based on a 

standard array of pixels, in which the rows of the classical CMOS image sensor are replaced 

by rings, and orthogonal output buses by diagonals. The asymmetric information acquisition 

inherent in raster scanning is thereby replaced by a two-dimensional symmetric image 
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sampling. It is shown that distortion of moving objects is significantly reduced using this 

scheme. A new scanning scheme, called bouncing scanning, has also been demonstrated to 

realize the two integration time profiles for each ring.  Fusing the two frames results in a 

foveated dynamic range (FDR) enhancement. Lastly, it is shown that the dominant form of 

fixed pattern noise in CMOS image sensors (columnar variations) are perceived less by 

human observers in the new sensor owing to the diagonal arrangement of the output buses. 

Multiresolution CMOS imager: In this architecture the multiresolution approach is 

implemented on-pixel. Beside sampling and holding the integrated photo charge, each pixel 

can share charge with neighbouring pixels (given the proper control signals). This charge 

sharing allows a decrease in resolution on regions of less interest, while maintaining 

maximum resolution in regions of interest (ROI) where the charge sharing is disabled. Since 

the multiresolution mechanism (using the charge sharing concept) is implemented at the pixel 

level, the proposed scheme guarantees most of the requested characteristics discussed in the 

motivation section. This architecture is presented and discussed in  Chapter 7. 

1.5 Thesis Organization 

CMOS imaging technology is reviewed in  Chapter 2, with a focus on image acquisition 

processes beside our approach in implementing new imaging architectures and their fields of 

application. Subsequently, the system-level pyramidal architecture design is discussed in 

 Chapter 3. The suggested scanning scheme, supported by the pyramidal architecture and 

known as the bouncing scanning, is also introduced in this chapter, together with its 

implications (particularly the foveated dynamic range). The theoretical framework of the 
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foveated dynamic range is analyzed mathematically in  Chapter 4 before being experimentally 

verified in  Chapter 5, which includes testing and characterization results. The discussion of 

the pyramidal CMOS imager concludes in  Chapter 6 by verifying the reduced perception of 

the pyramidal imager’s Fixed Pattern Noise (FPN) noise when viewed by human observer. 

The implementation and layout of the pixel-based Multiresolution CMOS imager are 

presented in  Chapter 7 before the concluding remarks made in  Chapter 8.     
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Chapter 2 

Background: CMOS imagers and Spatial Sampling 

 

In this chapter we will review some architectures used in CMOS imagers for spatial sampling 

and other objectives, such as dynamic range enhancement and high frame rate. This study 

will help us subsequently to locate where our suggested approach fits within the established 

framework, what it contributes to this research field and finally to be able to suggest the 

future trends for CMOS imager development. Before proceeding with the architectural aspect 

of APS CMOS image sensors, a short introduction of CMOS imaging technology along with 

some of its main characteristics is presented. 

2.1 Introduction to CMOS Image Sensors 

Fig  2.1 shows the construction of a typical CMOS image sensor, from the light sensing 

photodiode to the focal plane pixel active pixel sensor (APS) and finally the sampling 

architecture. Initially, the photodiode is reset to a relatively large reverse bias. Photo-

electrons are generated both in the photodiode depletion region, from which they then drift 

towards the diffusion areas, and in the bulk, from which they diffuse towards the photodiode. 

The photo-generated electrons discharge the photodiode at a rate that is approximately 

proportional to the incident illumination. Pixels are later reset by row reset logic during the 

image sampling. Further details of this process are presented in  Chapter 3. 
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Fig  2.1 From photodiode to CMOS image sensor 

 

The main three types of photodiode pixels widely used in CMOS image sensors technology 

are shown in Fig  2.2 and are discussed below. 

 

 

Fig  2.2 The different types of CMOS imaging pixels 



 

  10

2.1.1 Passive Pixel Sensor (PPS) 

 Fig  2.2.A shows the simplest and earliest (1967) MOS pixel type  [5], built simply of a 

photodiode and a charge-transfer transistor used as a switch. Functionally simple, the passive 

pixel sensor integrates the light at the active region; the photo-generated charge is then 

transferred to the column bus passively through a transfer gate, simply a MOS switch. The 

column bus (COL BUS) is connected to a charge amplifier that keeps it at a constant voltage 

level. When the Transfer Gate (TG) is activated the charge of the photo-diode is transferred 

through the bus to the column charge amplifier which itself transduces it to the subsequent 

processing elements such as Analog-to-Digital Converter ADC or Correlated Double 

Sampling CDS. 

Two main problems are attributed to this type of pixels: readout noise due the charge sharing 

between TG transistor and column bus, and the scalability due to the increased bus 

capacitance. While the Quantum efficiency of the pixel (ratio of collected electrons to 

incident photons) of the passive pixel sensor is much higher than that of the CCDs due to its 

high fill factor and the absence of overlaying layers, it has the read noise of 250 electrons rms 

compared with typical value of less than 20 electrons rms found in CCDs  [6]. 

2.1.2 Photodiode Active Pixel Sensor 

The Active pixel sensor as shown in Fig  2.2.B was firstly suggested by Noble  [7] and later 

investigated further by Andoh at NHK, Japan  [8]. The pixel is initially reset to VDD, then 

after some time, its output is read out through the source follower (SF) transistor in order to 

generate significant pixel output voltage with larger dynamic range. The readout is 
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performed through the row select (RS) transistor, which transfers the photo-generated voltage 

to the column bus. Although its fill factor (ratio of light sensitive to the pixel area) is less 

than that of the PPS sensor in the range of 20%-30%, it is the most used pixel in research as 

well as industry. This is due primarily to its low noise (less than 20 electrons rms), higher 

signal to noise ratio and scalability.   

Finally, it is worthy to mention that the photodiode APS noise performance improves as the 

size of the pixel shrinks down since the reset noise scales as C1/2, where C is the photodiode 

capacitance  [9]. However, other counter effects emerge such as decreasing fill factor and 

sensitivity as the pixel sizes shrinks-down  [10].  

2.1.3 Photogate Active Pixel Sensor  

The photogate APS was introduced first time by JPL in 1993  [11] for high-performance 

scientific imaging and low light applications. The principal structure of the photogate-active 

pixel sensor is based on the integration of the photo-generated carriers in the potential well, 

which is created by applying a large positive voltage to that gate in similar manner with CCD 

technology. Fig  2.2.C shows the structure of this kind of CCD-like active pixel photosensor. 

For readout, the output floating diffusion (FD) is reset and its resultant voltage is measured 

by the source-follower. The photo-generated charge is transferred to the output diffusion by 

pulsing the photogate. The new voltage is then sensed. The difference between the reset level 

and the signal level is the output of the sensor. This correlated double sampling suppresses 

reset noise, 1/f noise, and Fixed Pattern Noise (FPN) due to threshold voltage variations. 

Although this pixel structure has the lowest noise compared to the previous ones (13 
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electrons rms  [12]), it suffers from the reduction of quantum efficiency, particularly in the 

blue due to the overlaying polysilicon photogate, beside its higher operational complexity 

and reduced fill factor.  

2.1.4 Integration Time & Raster Scanning 

In the classical CMOS image sensor architecture, raster scanning was adopted to sample the 

image at the focal plane. Raster scanning was originally implemented for displaying video 

images in cathode ray tubes (CRTs), and was later adopted to be the scanning scheme for 

early solid-state imagers  [13] in order to maintain compatibility between acquisition and 

display systems. This reason is the cause of the statement put forward in section  1.2.2 to 

propose the new pyramidal sensor with 2-D ring scanning that will be discussed further in 

section  3.5.8. In raster scanning, the integrated image is sampled row by row, from the first 

top row until the last bottom row after which the scanning is back to the first row and so on. 

Because the pixel needs to be reset prior to light integration, every row has to be reset after 

being read out. The readout is made by sampling the row voltages to a sample and hold bank 

of capacitors, then the row is reset and sampled again but to another set of sample and hold 

bank of capacitors, then the same process is repeated for the next row and so on as shown in 

Fig  2.3. It should be noted that after sampling the row photo and reset signals into their 

corresponding sampling capacitor banks, the sampled voltages are serially buffered out 

before proceeding to the next row. Integration time is the time between two successive reset 

and readout events corresponding to the lapsed time to discharge the reverse-biased (reset) 

photodiode as a result of light integration. Because of the periodicity of raster scanning, pixel 
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integration time Tint is equal to the frame sampling time Tframe, unless other techniques 

such as the rolling shutter1, are used. We note here that the raster scan results in a scene 

update rate that is faster in the column direction than it is in row direction, potentially 

resulting in spatial distortion in the image capture of moving objects.     

 

 

Fig  2.3 Pixel frame integration time in raster scanning 

                                                 

1 In the rolling shutter scan, the readout (photo signal sampling) signal is applied ahead (by a number of rows) 

of the reset signal. The number of the separation rows defines a window that its integration time plays the same 

role of Tframe in the raster scan.  
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2.1.5 Correlated Double Sampling CDS 

The reason behind sampling both photo signal and the reset signal of every pixel, is to reduce 

residual noise at every pixel by subtracting the photo signal from the reset signal. This 

technique called correlated double sampling (CDS) was originally invented to process CCD 

imager video signals to enhance the signal to noise ratio  [14] by minimizing principally the 

reset noise. In general, all correlated spatial noise sources such as the spatial dark current 

source due to a crystal dislocation at the pixel level are cancelled out (or removed) using 

CDS as they are present in both the photo signal and the reset signal. The KTC noise related 

to the reset process (also called reset noise), however, is not removable by CDS in CMOS 

APS imager whereas it is completely removable in CCD imagers. The reason is the fact that 

in a CCD the output noise node is reset prior to photo signal transfer and hence both signals 

are 100% correlated which makes CDS the solution. In CMOS imagers, on the other hand, 

the photo signal is read first then the reset signal, and thus the reset noise present in the 

present photo signal is not correlated with the present noise present in the reset signal (but 

correlated with the previous frame’s reset signal). That is why the CDS technique used in 

CMOS APS imagers is not a “true” CDS which explains why it is sometimes referred as just 

double sampling (DS)  [15]. Furthermore, noise can also be added by this technique and some 

of the causes of this addition of noise are discussed in  Chapter 6. 

2.1.6 Fixed Pattern Noise (FPN) 

Fixed pattern noise (FPN) is the spatial noise distribution with no illumination of the image 

sensor array that is explicitly time independent, and hence “fixed”. This noise is due to two 
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types of mismatch between the photo-signals; photo-signal generation mismatch and the 

photo-signal transportation mismatch.  

The photo signal mismatch is due to the variation of the photo-sensing areas related to 

process variation and photo-mask errors found also in CCD manufacturing  [16], and to 

mismatched dark currents. The dark current is the accumulation of electrical charge in the 

photodiode from electron-hole pairs that are generated independent of the photo-detection 

process. The primary sources of this are impurities or lattice defects in the silicon substrate. 

Because these defects are localized, the dark current is different for each pixel, leading to a 

fixed pattern noise in the image resembling a starry sky or a dirty window in a dark image at 

long integration times  [17].  

Therefore, if we have to classify the sources of the FPN we can categorize them in two: (i) 

local impurities and silicon crystal imperfections, and (ii) the different paths taken by the 

signals during readout. CCD does not suffer so much from FPN partly because its high 

quality silicon substrate is built on for high transfer efficiency requirement as compared with 

commercially lower quality (and cheaper) CMOS substrate disks. The other principal reason 

of CCD imagers’ relative immunity to FPN compared with CMOS counterparts is because 

the latter have charge-voltage conversion at every pixel whereas the former have a unique 

conversion node for all of its pixels. The topological distribution of the FPN noise is further 

analyzed in section  6.2.   
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2.2 Non Raster Scanning (Sampling) CMOS Imagers 

It is rather interesting to examine the meaning development of the word “scan”  [18]. The 

source of the word “scan” came from the Latin word “scandere” that means “to climb” and 

which is used in this sense in “scanning a verse of poetry”, because one could beat the 

rhythm by tapping one's foot. The Middle English verb “scannen” is, in this sense, derived 

from the Latin word “scandere”. Later in the 16th century other senses of “scan” have been 

developed towards the sense of “looking at searchingly” (first recoded in later 1798  [18]). 

With further developments, “scan” eventually broadened to include looking over a surface 

with or without close scrutiny of details reaching the modern usage of “scan” that means 

“look over quickly”. Therefore, “scan” includes both pattern and speed of the search in 

addition to resolution (scrutiny degree). 

On the technical side, raster scanning was originally proposed for Cathode Ray Tube (CRT) 

displays using the electrical and magnetic fields influence on a finely focused accelerated 

electron beam “scanning” its fall on a phosphorescent screen (that emits light on the fall 

points) for information display purpose. The pattern of the raster scan looks exactly as the 

scan of poetry passages, namely line by line. The first cathode ray tube scanning device was 

invented by the German scientist Karl Ferdinand Braun in 1897. Braun introduced a CRT 

with a fluorescent screen, known as the cathode ray oscilloscope  [19]. This method of display 

was later adopted to be the scanning scheme for early solid-state imagers  [20] in order to 

maintain compatibility between acquisition and display systems in addition to its simplicity 

in storing and transmitting image data. The raster scan is also the scan of choice in image 
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readout at high speed rates since it minimizes discontinuities in reading the image rows, 

therefore increasing frame rate and thereby reducing motion artifacts such as motion blur. 

Recall that the integration time is the discharging period spent between the reset and the 

readout of pixel’s photodiode. Consequently, and because high speed imaging is one of the 

merits of CMOS imagers, few attempts have been tried to deviate from this fundamental 

image scanning to a more complex scanning patterns. One of these attempts suggests scan 

patterns such as the Space Filling Curves (SFC) families  [21] namely the Morton (Z) and 

Peano-Hilbert curves  [22] for fast and efficient mean computation of 2x2, 4x4 kernels 

dedicated mainly for multiresolution imaging. The SFC scanning patterns are essentially 

fractal scan patterns that have the ability to scan the whole 2D image pixels (without missing 

one) and thus achieve the space filling property. Due to their inherently strong locality 

property2, SFCs in general and Peano-Hilbert curves in particular are useful in exploiting the 

spatial coherence of nearby pixels which is very useful for image compression (lossless or 

lossy)  [23] [24] or pattern recognition  [25]. To realize these applications (and others such as 

halftoning…etc), the image is scanned using an SFC scan generating a sequence of data 

which is transmitted through a communication channel before being processed by an 

application, as depicted in Fig  2.4. Using the same SFC scan map the resulting image is 

reconstructed. 

                                                 

2 Due to the recursive nature of the SFC, neighbouring pixels are traversed before moving to more distant ones. 



 

  18

 

Fig  2.4 The scanning process framework 

 

Thus far, SFC based scanning was considered mainly for the processing applications and the 

communication bandwidth needs, rather than image sampling requirements, which make 

these scanning techniques vulnerable to motion and lighting artefacts. Thus, the 

implementation in  [22] will suffer greatly from these sampling conditions beside its intensive 

use of wiring which, in addition to its low fill factor (15%), will make the suggested CMOS 

imager a “light starved” design  [26], mainly due to the vignetting phenomenon  [27].      

In reality, the initial attempt in the implementation of mechanisms allowing flexible scanning 

was suggested originally in  [28] by using individual reset scheme as shown in Fig  2.5. 
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Fig  2.5 Individual pixel reset APS 

 

Using vertical reset (CRST: column reset) and horizontal reset (RRST: row reset) signals the 

random reset is possible to implement. The main drawback of the approach is the Vth drop 

sensed at the gate of the APS pixel reset transistor, beside the fill factor decrease as a result 

of adding an extra transistor. The major drawback can be overcome by using hard reset 

technique in which the RRST gate voltage uses Vdd + Vth instead of Vdd when enabled. One 

may suggest the use of PMOS reset transistor instead of NMOS. However, this technique 
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reduces the fill factor due to the n-well and larger size required for the reset PMOS transistor 

(due to lower hole mobility). Fully realising the random accessibility requires storing the 

sampled photo charge locally inside each pixel using a capacitor and a shutter (switch) 

between it and the photodiode  [29]. Combining the two previous pixel architectures, any 

pixel can be reset individually as well as readout multiple times (without destroying the 

sampled image information). Again, the fill factor is an issue as the number of transistors 

inside each pixel increases. However, this may be solved in the future with CMOS 

technology scaling.  

Another scanning approach suggested integrating motion detection circuitry beside ADC 

conversion at the pixel level in order to implement a quad-tree scan scheme. This avoids the 

redundant cycles3 of raster scanning  [30], thus minimizing energy consumption and 

increasing frame rate especially for high resolution imagers. Quad (means 4 members)-trees4 

 [32] are most often used to partition a two dimensional space by recursively subdividing it 

into four quadrants, and it was primarily proposed for database searches  [31]. This technique 

has been therefore borrowed from graph theory in order to replace raster scanning so that 

only active pixels (determined by the motion detection module inside the pixel) are read by 

jumping from one level to another searching for active nodes. The main drawbacks of this 

technique are the very large pixel pitch (96 µm) and the very low fill factor (3.2%). However, 

                                                 

3 Redundancy in this sense refers to the sampling of pixels that do not change between frames (non active). 

4 Trees in this context are graph theory constructs and are graphs in which any two vertices are connected by 

exactly one path  
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the attempt target is definitely worth it in the future development of CMOS imagers 

especially with their inherent architectural flexibility advantage (over CCDs) especially with 

increasing image resolutions and high frame rate requirements. 

2.3 Our Approach for Image Sampling 

Visions systems found in mammals in general outperform by far silicon based image sensors, 

not only due to their analog yet stable and powerful signal processing cells at both the 

sensing site and the neuronal processing layers, but also due to their hierarchical 

organization. Many attempts have been made to mimic the image processing capabilities of 

the biological vision systems5  [33], however, few attempts have been made to investigate the 

power and influence of sampling architectures on the vision performance. Furthermore, as 

CMOS imaging technology offers the ability to design complex architectures, as compared to 

CCDs, a small but increasing number of imagers are designed to test novel CMOS image 

sensor architectures. Our implementations described in this thesis are an example of this 

trend of CMOS imagers’ development. 

In designing novel CMOS imaging architectures, we focus on parallelism and symmetry in 

order to achieve high speed imaging without much expense in terms of hardware and power. 

Using this architectural view in image sampling we can implement our goal in building an 

optimized CMOS imaging solution that minimizes the sampled data while maximizing 

sampled image information. This is indeed one of the major goals for ever- increasing image 

                                                 

5 Vision systems are imaging based applications encompassing image processing to mimic partly human vision. 
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resolution and high speed transmission needs for future CMOS imagers for a wide range of 

imaging applications from scientific remote imaging to military object tracking.    

2.4 Biological Vision 

In this section a qualitative description of the biological vision in general and human vision 

in particular will be presented. Our interest in this section is to highlight some of the 

powerful mechanisms characterising human vision making it a ‘smart’ vision. It is beyond 

the scope of this section to demonstrate all the vision capabilities of human visual system, but 

only selective properties will be shown as they may be mimicked in our CMOS imagers  [34]. 

To narrow further the scope of human vision analysis, only the retina where the focal plan 

image is being spatially sampled is considered  [35]. 

2.4.1 Spatial Sampling 

The retina is the innermost layer of the human eye which contains light-sensitive 

photoreceptors and their associated neural tissue. There are two kinds of photoreceptors: rods 

(intensity-resolving) and cones (colour-resolving). Their distribution is further detailed in 

section  6.4.3 which principally shows the non-uniformity of the sampling architecture of the 

retina. Finally, it is worth mentioning the roughly circular distribution of the photoreceptors 

around the central region known as fovea which perfectly coincides with the optical axis of 

eye’s lens  [4].  

The plexiform layer is an intermediate interconnection layer that connects between photocells 

and ganglion cells whose axons (neuronal communication extensions) make up the fibers of 
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the optic nerve before reaching the brain visual cortex. Without getting into details of this 

complex layer, this layer serve many visual functions especially visual resolution where it 

maps foveal cones (no rod cells are in the fovea) individually to ganglion cells whereas rods 

are grouped through specific neuron cells before being connected to ganglion cells. This 

explains why the fovea region of the retina has higher spatial resolution than its periphery.   

Retinal ganglion cells are neurons responsible for converting chemical signals received from 

the photocells (cones and rods) into electrical firing pulses to be sent to the visual cortex at 

the brain visual cortex. 

It is clearly visible from this short description that the human biological visual system, at 

least at the spatial sampling level, has great deal of architectural organization allowing it to 

maximize image sampling in one area (fovea) while keeping it low in other retinal areas. The 

second important point to notice is the interconnection between the sampling photocells 

through the plexiform  [4] enabling the visual system to perform intelligent tasks such as 

extracting edges and reducing resolution. The first task is performed in the fovea region by 

the cone photocells and the second is realized by the peripheral rod photocells for motion 

detection  [36]. Both of these two facts may have a great potential influence on future 

development of CMOS image sensors with their architectural flexibility. In fact in the present 

thesis the first observation mentioned herein was exploited to design a central foveated 

architecture called the pyramidal architecture while the second was mainly utilised in 

designing the multiresolution CMOS image sensor discussed further in  Chapter 7. 
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2.5 Previous Foveated Vision CMOS imagers 

Spatial resolution is directly related to the size of the pixel with respect to the system optics, 

which characterizes the detection of fine details of the sensed image, but often simply refers 

to the number of pixels of the acquisition or display device. However, the frame-scanning 

rate, data transfer bandwidth as well as power consumption and sensitivity are also key 

requirements for higher resolutions. Another factor, namely the limitation of the optical 

system, also plays an important role in determining the usefulness of high-resolution image 

sensors. It has been claimed that pixels of sizes much below 5µm pitch are not needed 

because of the diffraction limit of the camera lenses typically used in consumer cameras  [37]. 

Furthermore, for a given technology (CMOS 0.35µm), it has been shown  [38] that dynamic 

range and signal-to-noise ratio (SNR) degrades with the decrease of the pixel size in a square 

root form. On the other hand, smaller pixel sizes increase the spatial resolution by increasing 

the Nyquist-limit spatial frequency, defined as the half of reciprocal of the center-to-center 

pixel spacing. Besides, the Modulation Transfer Function MTF that characterizes the ability 

of the imaging system (CMOS imager in this case), to output the sharpest form of the 

acquired image6, is higher for smaller pixel sizes. Consequently, the optimal pixel size is a 

trade-off between the above conflicting parameters and a given application requirement. 

                                                 

6 The MTF function is defined as the normalized contrast amplitude response of the retransmission 

(imaging) system, as a function of the spatial frequency, below the Nyquist limit. 
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Other alternatives have been suggested to enhance the CMOS image sensor resolution by 

using different architectures while keeping the above-mentioned key-parameters in mind. 

These new architectures are developed in the following section. 

2.5.1 Foveated CMOS Image Sensor  

Biologically speaking, the fovea is the region of highest visual acuity in the human photo-

transducing retina  [4]. It contains no rod cells, which are more sensitive to low light 

intensities, but contains the highest concentration of cones, which detect colors. This explains 

why we cannot see very dim sources, such as weak starlight, when we look straight at them. 

The dim source only becomes visible when it is placed in the periphery and can be detected 

by the rods. Finally, it is worth mentioning that the dense representation of the foveal cones 

suggests that the spatial sampling of the cones must be an important aspect of the visual 

encoding  [4]. This explains why humans vision declines (in spatial resolution power) away 

from the direction of gaze. 

From the CMOS hardware implementation point-of-view, different strategies have been 

suggested in the literature  [33]. Fig  2.6 shows some implemented CMOS image sensors 

adopting the spatial fovea-distributed pixel mapping such as linear-polar sensor (a), log-polar 

sensor (b) and log-polar with Cartesian center CMOS image sensor (c). 
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Fig  2.6 Polar foveated CMOS image sensors  [33] 

 

The above-mentioned image sensors are able to map the Cartesian two-dimensional image to 

polar (circular) (a, b), or mixed coordination (c), facilitating therefore some image processing 

operations such as scaling and rotation invariance assuming the origin at the center of the 

fovea. These processing operations are simply implemented with a simple shift operation in 

the angular axis or the radial axis respectively. Foveated imaging is achieved through the 

high sensor density near the central part of the image sensor, although in practice the number 

of pixels in fovea region rings is usually fewer than that of the outer rings due to the finite 

physical size limits. A significant problem with this type of foveated sensor was the difficulty 

of forming an acceptable colour image at the low pixel densities in the periphery. Another 

approach using rectilinear pixels for the implementation of foveated CMOS image sensor 

was reported recently  [39] and is shown in Fig  2.7. It uses the standard CMOS process and 
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adopts the concept of photo-charge normalization in order to use the same charge amplifier 

with the different pixels sizes and therefore displays a wide dynamic range response to the 

incoming light. A drawback of this architecture is the complexity of the synchronization 

circuitry needed to scan the different image sensor rings.     

 

 

Fig  2.7 All CMOS rectilinear foveal image sensor 

 

Interestingly enough, important properties of such biologically inspired image sensor, namely 

the fast frame (scanning), wide field of view (FOV) and high resolution continue to drive 

interest on this kind of image sensors in low-vision enhancement, communication and target 

tracking applications. The product of these parameters defines the so-called metric of visual 
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information acquisition power. In a foveal system, the metric is computed as the product of 

the peripheral field of view, the spatial resolution at the fovea, and the overall frame rate. 

2.5.2 Multi-Resolution CMOS Image sensors 

Resolution was one of the most important competing factors between CCD technology and 

CMOS technology for the development of high definition image sensors. Although the CCD 

image sensor has attained higher resolutions, the present and future development of CMOS 

technology is leading to smaller and smaller pixel sizes, potentially overcoming the CCD 

lead. Furthermore, the CMOS ability to add processing elements at the pixel level, column 

level and at chip level, is adding an impetus in the race to higher imaging performances.  

Benefiting from this capability, CMOS image sensor can obtain multiple resolutions, and 

together with their addressability, an electronic zoom capability is achieved  [40]. The 

suggested pixel neighbourhood averaging scheme in  [40] (in row and column) is realised at 

the column level. This averaging mechanism is implemented by using switch capacitors and 

by using shift registers to control the required resolution i.e. number or averaged rows and 

columns as shown by Fig  2.8. A dual approach to the previous multiresolution scheme is 

suggested but, instead of voltage averaging, a current averaging strategy has been adopted 

 [41] and a new scheme for current-mode Correlated Double Sampling (CDS) circuitry is 

proposed. The applications of multiple resolution image sensors are very wide especially in 

real world systems that impose some constraints such as format choices, processing speed, 

and bandwidth such as data reduction, robotics and target tracking. 
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Fig  2.8 Programmable multiresolution CMOS active pixel sensor architecture 

 

2.6 Dynamic Range Enhancement Techniques 

Dynamic range (DR) is a term widely used in many fields to describe the ratio of the largest 

measurable or detectable value (of interest) to the smallest value. In imaging systems, the 

physical measure of interest is obviously light intensity of the sampled image. In CMOS or 

CCD image sensors, dynamic range is one of their most significant characteristics because it 

describes their ability to sample bright and dim areas of a sampled scene within one frame. 

The minimum detectable light intensity is the intensity that would create an electrical signal 



 

  30

enough to equal the noise floor of the imaging device. Another definition of dynamic range is 

ratio of the voltage saturation level to the readout noise. Because it uses electrical parameters 

it is referred as the electrical dynamic range and given that the (optical) dynamic range is 

measured in the linear response of the CMOS image sensors, the electrical dynamic range is 

equal to the optical dynamic range (although this distinction is important for non-linear 

devices, such as the logarithmic pixel mentioned in section  2.6.1). 

While natural scenes have a very wide dynamic range from illuminations of 10-3 lux7 for 

night vision to illuminations of 105 lux for bright sunlight (dynamic range of about 108 or 

160dB), typical CMOS or CCD image sensors have dynamic range of 65-75dB. Two 

alternatives are possible to improve DR, either by reducing the noise level of the imager and 

expanding its dynamic range towards darker illuminations, or by extending the saturation 

level of the incident light and thus improving the DR towards brighter scenes. With the 

exception of very few applications such as astronomy, most frequent imaging situations 

correspond to bright light imaging such as automotive night vision or objects tracking in an 

uncontrolled lighting condition such as star tracking and aircraft landing. This explains why 

most of the DR enhancement techniques are mainly for bright light imaging applications. 

Another reason for this trend of DR enhancement could be due to the fact the noise floor of 

the imager is an ultimate limit whereas the saturation level could be expanded to a 

accommodate non-limited bright lighting imaging conditions. Many DR enhancement 

                                                 

7 Lux is an SI illumination unit that is equal to one lumen per square meter. Lumen is an SI unit for luminous 

flux equal to the light emitted in a unit solid angle by a uniform point source of one candle intensity.  
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approaches have been suggested to expand the limited electrical dynamic range of CMOS (or 

CCD) to reach the large optical dynamic range (of natural scenes) and at several levels of the 

imager design and functionality. An extensive review of these attempts is provided in  [46]. 

We will concentrate on CMOS imagers dynamic range enhancement techniques which can 

be clustered into two categories: 

DR enhancement by compressing or transforming the pixel photo-response.  

DR enhancement by manipulating globally or locally pixel integration times. Even further 

development of these approaches includes external or internal (autonomous) control of the 

integration time. 

2.6.1 Dynamic Range Enhancement by Photo-Response Compression 

In the first category, the pixel response is changed from integration mode to continuous mode 

and from linear to logarithmic  [42]  [43] in a technique originally used in CCDs  [44]. This is 

realised by connecting an active resistor (diode connected MOSFET), that is biased to behave 

like a continuously–conducting logarithmic resistor, with a photodiode as shown in Fig  2.9.   



 

  32

 

Fig  2.9 Logarithmic active pixel sensor 

 

Because the NMOS resistor is biased in weak inversion, the NMOS resistor will be biased in 

the subthreshold regime that exhibits a logarithmic behaviour between its source current 

(photo current) and the photodiode voltage as shown by the following equation.  

( )phsatdark IIVV ln=  … (2.1) 

where Vdark is the photodiode dark voltage, Isat is the leakage current and Iph the photocurrent. 

Although the main reason in using MOSFET in resistor configuration was to have a large 

resistor between the photodiode and Vdd due to the small photocurrent (fA to nA), the 

logarithmic behaviour of the pixel looks very similar to human vision response to incident 

light  [45]. The logarithmic pixel suffers mainly from the reduced image contrast. 
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Another biologically analogous alternative is to convert the photo-signal of the pixel in 

modulated pulses  [48]  [49] similar to ganglion cells  [4] neural (spike signals) response. The 

basis of this light-modulated pulse generation is the conversion of the linear photo 

discharging mechanism of the APS photodiode into digital pulses which carry out the light 

intensity information in their pulse width. This means converting the light intensity into time 

domain pulse signal 8  [47] and in order to realise this functionality, a digital feedback is 

realised between the photo diode discharging node and the reset transistor as shown in Fig 

 2.10. The pixel scheme in Fig  2.10.a is used in  [48] while Fig  2.10.b is used by  [49].  Using 

either an external or an internal threshold voltage, a comparison is performed in the digital 

feedback block and if the photodiode voltage drops below the threshold a reset signal is 

applied on the reset MOSFET. Therefore, the higher the light intensity, the faster the 

photodiode discharge will be and thus the shorter the generated pulse is going to be, which 

demonstrates the light modulation of generated pulse. Despite the high dynamic range 

achieved by this technique (120dB  [49]), its main disadvantage is the multiplicative noise 

caused by the feedback path. This can be solved by implementing in-pixel noise cancellation 

circuitry, further reducing the pixel fill factor. This is probably the reason why there is no 

feedback path between ganglion cells and retinal photocells  [4] in the retina.  

                                                 

8 Neural information processing is mainly in time domain because neural responses are discrete in their 

amplitudes but analog in time.  Thus, time plays an essential role in the flow and transformation of information 

in biological systems. 
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In conclusion of this description of these different alternatives of dynamic range 

enhancement, it is apparent that manipulating the pixel photo-response to enhance DR suffers 

mainly from the reduced fill factor, degradation of sampled image contrast and the non-linear 

increase of fixed pattern noise due to the feedback loop with the photodiode  [46]. The 

nonlinearity of FPN noise implies the non applicability of CDS unless it is implemented in 

pixel before light-to-pulse conversion which worsen further fill factor. These factors explain 

why integration time techniques are the dominant players in DR enhancement of CMOS 

imaging. 

 

 

 

 

Fig  2.10 Light to pulses conversion forms 
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2.6.2 Dynamic Range Enhancement using Integration Time Control 

In the second category of DR enhancement, the integration time of the imager is programmed 

globally or locally in order to resolve the scene’s bright and dark spots. The importance of 

using the integration time as a tool to enhance the optical dynamic range, in integration APS 

sensors, come from its equal effect with light intensity on the photo signal as expressed in 

equation (2.2). 

intTLSsV incsignalphoto =− ... (2.2) 

where Ss is the pixel constant sensitivity, Linc is the light intensity on the pixel and Tint is its 

integration time. Therefore, to get the same electrical photo signal, in the APS linear regime, 

we need have the same product Linc Tint and thus short integration time is needed for high 

light intensities and long integration time is needed for low light intensities. This simple 

demonstration explains the use of integration time in extending the optical DR. 

Integration time control has been initially implemented through global control of the frame 

time using an electronic shutter replacing the mechanical iris used to control incident light 

intensity in old film imaging cameras  [50] [51]. A schematic of a typical electronic shutter, 

which will also be used (with minor changes) in our multiresolution CMOS imager in 

 Chapter 7, is shown in Fig  2.11. The only difference between APS with electronic shutter and 

the standard APS sensor is the addition of a shutter transistor between the photodiode and 

source follower (SF) and the extra reset transistor (reset). The capacitance of the drain 

diffusions from the reset and the shutter transistor beside the gate capacitance of SF 

constitutes a storage node (that needs to be shielded from light) where the sampled signal 
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charge will be temporarily stored. The global shutter signal is shared for all the CMOS 

imager pixels and thus comes the global attribute of the shutter. Finally, reset and timer 

transistors are used to reset the storage node and the photodiode respectively. 

 

 

Fig  2.11 Global shutter general schematic 

 

The main disadvantage of using of using the global shutter to control integration time 

emerges in high intrascene dynamic range situations where only bright regions can be 

visualised with shorter integration times and the darker ones using longer integration times 

but not both at once. Therefore, the dynamic range of the imager is limited by the electrical 

dynamic range (~60-75dB) which is substantially less than the optical dynamic range of 

many natural scenes. The most important application of this structure is found in fast imaging 
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applications with intermediate (controlled) light intensities  [52] because of its minimization 

of motion blur  [53]. 

The local integration time technique is based on estimating the integration time 

independently at every pixel in the image sensor  [54]  [55]. This technique, called multiple 

integration time (MIT), is implemented through the automatic selection of integration time 

(from among a predetermined set of values) corresponding to the closest level to saturation.  

This technique is sometimes referred as the time-to-saturation technique. The MIT pixel 

shown in Fig  2.12 is composed of 2 identical photodiodes, a transparent latch, an inverter, 2 

NMOS, 5 PMOS transistors and two capacitors.  

 

Fig  2.12 Pixel schematic of MIT photoreceptor 
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Photodiodes Pd_A and Pd_B are initially reset concurrently and left discharged by the 

impinging light intensity. Pd_A output discharges continuously and is compared to the 

inverter’s threshold whose output will be latched out at specific time intervals corresponding 

to the predetermined integration times T1, T2... TN. Once the photodiode output crosses the 

threshold the inverter output is latched out and the integration gate (IG) is closed sampling 

the photo charge in Cap1 and the corresponding incremental voltage Vrmp, which indicates 

which integration time interval is being used, at Cap2. These two stored voltages will be 

output to Li-out and It-out that carry photo signal and the corresponding integration time 

interval respectively. Although this technique can achieve DR of 120dB, its large pixel size 

of 110 µm pitch reduces the acquisition of high spatial frequency details (resolution) with a 

reduced fill factor. Autonomous control is mentioned in  [55] but again, it suffers from a low 

fill factor and a large pixel area.  

2.6.3 Dynamic Range Enhancement using Variable Light Exposures 

One may alleviate the integration of the control (of integration time) from the pixel site to its 

neighbourhood so that instead of having one single-sensitivity pixel, four (or more) pixels of 

different sensitivities are integrated. Therefore, the pixel of highest sensitivity would 

integrate better low light intensities and the pixel of the lowest sensitivity would integrate 

better the high light intensities. However, the sensitivity is a technology constant parameter 

thus one way to mimic this characteristic is by controlling the exposure  [57] of the pixels and 

to keep all pixels similar. The exposure is varied over a cluster (of pixels) and this cluster 

structure is mapped over the whole imager as shown in Fig  2.13, where the cluster’s pixels 



 

  39

have their exposures so that Ex0 < Ex1 < Ex2 < Ex3. In  [57], the exposures have been assumed 

to be uniformly increasing values such that Ex0 = K Ex1 = K2 Ex2 = K3 Ex3, and K was set to K 

= 4. The exposure control is realised by masking the pixel with cells of different optical 

transparencies or directly etching over the pixel on a solid-state imager (CCD or CMOS 

imager). The idea of using exposure control to extend the dynamic range comes from film 

imaging technology by using the important concept known as the reciprocity principle  [58]. 

The reciprocity law states that within the normal range9 (of intensity and time for the film) 

different choices of aperture and shutter speed that result in identical exposure are equivalent. 

By definition, exposure = light Intensity x integration time, which explains that for the same 

integration time, opacity is reversely proportional to exposure. 

 

 

Fig  2.13 Spatially varying exposure time technique for DR enhancement 

                                                 

9 Normal range refers to the linear range of the film photo-response. 
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By using similar integration time for all pixels to sample an image, a different exposure value 

will result in each pixel of the cluster, hence resulting in this technique being known as the 

spatially varying exposure technique (SVE)  [59]. The DR expansion emerges from the 

assumption that a multiple-exposure cluster shares the same light intensity10 and thus a low 

light intensity would be better imaged with a higher exposure pixel and a higher light 

intensity is well sampled with a lower exposure pixel, thus expanding the original pixel 

optical DR. The importance of the SVE technique in enhancing the imager DR resides in 

manipulating the exposure of the imager pixels either by using different microlenses on the 

array, or using different integration times for different pixels, or embedding pixels of 

different potential well apertures. All these alternatives (we will review some of them 

subsequently) fall under the spatially varying exposures technique for DR enhancement. The 

key feature of the present SVE technique is the simultaneity of spatial dimensions sampling 

and exposure dimensions sampling (through 4 or more exposures per cluster). Two important 

questions arise: how much DR enhancement is achieved, and how is the final image 

reconstructed, using the SVE technique? 

The DR definition is 









=

min

maxlog20
I
I

DR ... (2.3) 

where Imax and Imin correspond to the maximum and minimum gray levels respectively. Imax 

and Imin correspond respectively to the full-well capacity (saturation) and the minimum signal 

                                                 

10 True only in the case of an image with low spatial frequency vis-à-vis the imager spatial resolution.  
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(or read noise) detectable by the imager  [60]. This correspondence is made by the adjustment 

of the gain of the analog-to-digital converter ADC and the number of required image gray 

levels, which has been found to be 8 levels  [62] for false-contour-free images  [61]. In general 

the DR of an imager is equal to number of gray levels necessary to encode the imager analog 

output  [16]. Therefore, an 8-bit CCD or CMOS imager has DR equal to 

( ) dBDR imagerbit 13.48255log208 ==− ... (2.4) 

where, Imin is set to 1 as level Imin=0 represents a non meaningful information. 

Now, using the spatially varying exposure scheme in image sampling will maintain the 

lowest level at 1 but will extend the maximum detectable light intensity level (after ADC 

conversion) to Imax (Exmax/Exmin) consequently expanding the DR of the resulting image to 









=

min

max

min

maxlog20
Ex
Ex

I
I

DR ... (2.5) 

The extension of Imax is due to the fact that the saturation of the lowest exposure pixel (the 

most opaque) requires higher saturating light intensity equal to Imax (Exmax/Exmin). This is 

clarified by the following the mathematical proof where Ss is the pixel sensitivity, Vs the 

pixel photo signal and Ex = Tr Linc Tint its exposure, where Tr is the transmission factor of the 

pixel cell mask, Linc is the incident light intensity and Tint the pixel integration time. Recall 

also that all pixels are using the same Tint and the pixels cluster is postulated to have the same 

Linc.  

ExSsVs =  or intTLTrSsVs inc= ... (2.6) 

At the saturation level the saturation photo signal Vs_sat will be 
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int
max_max_ TLTrSssatVs inc= ... (2.7) 

where Trmax correspond to the most transparent mask transmission rate, and Linc_max is the 

maximum light intensity causing saturation. However, the product of Trmax Linc_max can be 

achieved, in similar way through reciprocity principle, by the product Trmin Linc_max_ext where 

Linc_max_ext is the new (extended) saturation light intensity and Trmin is minimal transmission 

rate corresponding to the most opaque mask.  Therefore, we get 

min

max
max_max__ Tr

Tr
LL incextinc = or 

min

max
max_max__ Ex

Ex
LL incextinc = ... (2.8) 

It is assumed that the cluster pixels share the same incident light intensity and integration 

time. This means the maximum light intensity (saturating the most transparent pixel) has 

been extended by a factor of Exmax/Exmin (saturating the most opaque pixel). Therefore, and 

assuming the minimum light intensity remains the same (read noise), the resulting DR 

becomes 



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DR ... (2.9) 

Hence, using variable exposure technique enhances the uniform exposure imager DR by a 

factor of 








min

maxlog20
Ex
Ex

 and with the present case where Exmax = K3 Exmin, the final dynamic 

range enhancement becomes 

( )3log20 KDR tenhancemen =  or simpler ( )KDR tenhancemen log60= ... (2.10) 
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 Now, the question of how to reconstruct the multi-expose (or SVE) sampled image arises. 

To answer this question let us examine the quantization of the SVE discussed above through 

the examination of Fig  2.14 which represents the quantization of the different exposures. 

 

 

Fig  2.14 The quantization in SVE imager  

 

Uniformly quantizing the different exposures of the SVE cluster pixel (composed of 4 

different exposures) to the same ADC resolution leads to non-uniform quantization of the 

scene radiance. This non-uniform quantization of the scene radiance, apparent from the 

difference in the increasing quantization radiance steps of the different exposures at the X-

axis, is advantageous as it represents a judicious allocation of resources, namely data bits 

 [63]. On the other hand, the contrast of the image is not going to change (in the resulting 
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image) because its definition as the difference of brightness over its average in the Michelson 

definition  [64].  The total number of gray levels (GL) in the case of a uniform scene 

quantization is q Exmax/Exmin, where q is the number of quantization levels in the pixel the 

highest exposure (e0), which is the maximum number of quantization levels coinciding with 

that of the pixel of the lowest exposure (e3). The total number GL of gray levels from the 

above uniform quantization is less than q Exmax/Exmin (due to the overlapping levels) and can 

be evaluated from the following equation assuming K is the number of exposures in a 

cluster11. 

( )∑
−

= −
















−−+=

1

1 1

11
K

k k

k

Ex
Ex

qRoundqGL ... (2.11) 

Round is a function that rounds-off its argument to the closest integer. Applying the above 

formula on the example of Fig  2.13 (4 exposures with 8-bit quantization) will result 829 gray 

levels far from the original 256 original levels but also far less than the uniform scene 

quantization of 256 x 64 or 16384 gray levels.  

Constructing the image from a SVE image sensor needs a mathematical computation to 

normalize or to interpolate the clusters of pixels and generate a uniform high DR image. 

Towards this end two approaches can be used. One approach involves aggregating the pixels 

of each cluster by averaging their response, the second involves ignoring the saturated and 

noisy response of low intensity pixels and interpolating the remaining pixels to estimate the 

resulting image. We will discuss the aggregation method because of it simplicity (despite its 
                                                 

11 Which interestingly coincides in the present case with ratio between subsequent exposure (ex. Ex0 = K Ex1) 
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main limitation of decreasing the spatial frequency of the integrated image). The second 

method is further examined in  [59]. 

In the aggregation method, the resulting image is constructed by convolving the captured 

image with a 2x2 box filter, which yields the average response of the cluster of four pixels. 

Because the assumption of uniform radiation impinging the cluster of pixel adopted, 

therefore the cluster average can be assigned to a single pixel in the resulting image. This 

will lead to a halving of the width and height of the generated image compared to the 

sampled original image. If, instead of averaging, the convolution is made, then the image size 

will be preserved but as the convolving kernel (box filter) passes over the sampled image, it 

will always find all exposures at every computation. However, this will reduce the contrast at 

the edges within the image. Finally, recall that averaging computation involves the 

summation of the cluster’s pixels responses (which were assumed to share the same light 

intensity), the cluster response will be linear piece-wise function of this summation. The 

cluster resulting response function is shown in Fig  2.16. The form of this function is very 

similar to a gamma correction function with gamma greater than 1.  

We have further analysed the piece-wise function of Fig  2.16 and we have demonstrated that 

in fact the constructed function is an exact gamma correction function with γ = K (the ratio of 

between two adjacent exposures Exk-1/Exk).  

To prove this result, note first that, assuming GC(x) the gamma correction function; 

γα /1)( xxGC =  , thus ( ) ( )
x
xGC

x
xGC

γ
=

∂
∂  ... (2.12) 
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Normalizing the exposures maximum intensities by the smallest one (of the highest 

exposure) and calculating the slopes of the generated piece-wise function we get the slopes as 

shown in Fig  2.16. In other words, by assuming that Imax3=1 the slopes shown in Fig  2.16 

were calculated at the horizontal indices x1=1 (at Imax3), x2=K (at Imax2) and x3=K2 (at Imax1) 

whereas the vertical indices were recalled from the maximum gray value of 255 as shown in 

Fig  2.14.  

Table  2-1 shows the different slopes calculated graphically and their corresponding values 

extracted from equation 2.12 assuming γ  = K.  
 

 

 

Table  2-1 Graphical and functional slopes of SVE gamma correction aspect 

HORIZONTAL 

INDEX (X-AXIS) 

GRAPHICAL 

SLOPES 

GAMMA CORRECTION 

FUNCTION SLOPES 

1 (at Imax3) 255/K α/K 

K (at Imax2) 255/K2 α K1/K/K2 

K2 (at Imax1) 255/K3 α K2/K/K3 

 

The graphical slopes are in perfect fit in their denominators as their function-calculated 

counter parts. However, they differ in their nominator values. In order to match the graphical 

and function-calculated nominators, the value of α has to be set equal to 255 (at Imax3), 

255/K1/K (at Imax2) and to 255/K2/K (at Imax1). The practical way would be the reverse where the 

maximum quantization level would be set to be equal to 255 (at Imax3), 255 K1/K (at Imax2) and 
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to finally to 255 K2/K (at Imax1). Thus applying the derivative of the gamma correction 

function shown earlier give us the same slopes shown in Fig  2.16 with the conclusion that the 

resulting piece-wise function is that of a gamma correction function with γ  = K. Fig  2.15 

shows the change of the maximum quantization levels versus K. 

 

 

Fig  2.15 Quantization level adjustment for the SVE exact Gamma correction   

 

Consequently, only one extra bit is necessary in the ADC converter to correct the Gamma 

correction aspect of the SVE technique except when 2 ≤ K ≤ 4.  
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Fig  2.16 SVE cluster aggregation photo-response of the local brightness 

 

We have found indeed an important result that implies the following. It is known that 

monitors and printers (and some scanners) suffer from the non-linear transduction of the 
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analog (or digital) video (or still image) signal into luminous (monitors) signal due to 

physical limitations  [65]. This deviation from linearity was found to follow the profile of a 

gamma function and hence to linearize this response a gamma correction is needed  [66]. This 

is done by reversing the power of the gamma function and by applying the correction to the 

video signal prior to displaying it thereby achieving or at least approaching linearity. The 

correction usually is applied at the video signal source to avoid processing bottleneck at the 

reception site. Therefore, what we found out is that we had achieved two goals with the SVE 

technique. We achieved the enhancement in the dynamic range that follows logarithmically 

the value of K (that is >1) and simultaneously we gamma-correct the constructed image to a 

power of K. In fact the value of gamma (or K) should be dependant on the display 

environment.  

This demonstrates the importance of the exposure ratio K which plays simultaneously two 

roles; first, the logarithmic increase in the dynamic range enhancement and second, the 

gamma correction of the constructed image. The final point is even further important because 

it translates the gamma-correction from off the imager right to the image sampling chip 

increasing further the functional integration capability that is one of main advantages of 

CMOS imagers over CCD counterparts.  

2.6.4 Dynamic Range Enhancement using Multiple Sampling 

To conclude this review of dynamic range enhancement techniques, two more approaches 

need to be mentioned. The first approach is called dual sampling technique  [68] and the 

second is the multiple capture  [69]. Both techniques use varying exposures to extend the DR 
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of CMOS imagers but instead of using light, they use time, which plays a similar role in the 

exposure formulation. Only the dual sampling technique will be discusses in detail 

subsequently.  

The dual sampling technique uses standard CMOS technology with the standard APS pixel 

structure and its architecture schematic is shown in Fig  2.17. 

 

 

Fig  2.17 Architecture schematic of the dual sampling technique  

 

The image sampling is made by rolling two busses of read and reset signals over the imager 

from the top of the imager to its bottom and back thus sampling two rows simultaneously. 
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The control bus (encompassing read and reset) signal at row (n) samples the photo voltages 

of the row into sample and hold capacitors at the bottom of the imager before resetting it and 

moving to the next row (n+1). The second control bus at row n-∆ samples the photo voltages 

of this row into the sample and hold bank of capacitors at the top of the imager before 

resetting it and moving to row (n-∆+1). From the definition of the integration time, namely 

that it is the time difference between consecutive pixels’s reset and sampling readouts, two 

images of different integration time will result. Therefore, the image constructed from the 

imager’s lower sample and hold capacitor bank will have integration time equal to Tlower_spl 

whereas the image constructed from the upper sample and hold capacitor bank will have 

integration time equal to Tupper_spl shown in equations 3.3 and 3.4 respectively.  

( ) rowspllower TNT ∆−=_  ... (2.13) 

rowspluperr TT ∆=_  ... (2.14) 

N is the imager’s number of rows, ∆ the number of rows between the consecutive sampling 

control bus pair as shown in Fig  2.17 and Trow is the time needed to sample one row. In the 

classical photodiode-type CMOS APS  [67] operating in normal mode, image sampling is 

realized by reading row by row (raster scan). The sensor data from the selected row is 

sampled simultaneously for all columns onto a sampling capacitor bank at the bottom of the 

columns. The pixels in the row are then reset and read (all together) a second time, and a new 

integration is started. The capacitor bank is then scanned sequentially for readout. This scan 

completes the readout for the selected row. The next row is then selected and the procedure 

repeated. Thus, the readout of one row is composed of two steps; the row sampling step that 
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takes a period of time Tspl in the range of 1µs to 10µs, and the scanning step to readout 

serially the sampled pixel values Ts, which is in the range of 0.1µs to 1µs  [68]. Assuming the 

imager has M pixels per row, Trow can be estimated through the following equation 2.15 

ssplrow TMTT += 2 ... (2.15) 

Now, two images of two different integration times for the same impinging scene light 

intensity are sampled. Therefore, we have here two exposures of the same scene and thus for 

the DR enhancement estimation we can use the formula in equation 2.9 after image fusion 

(either non linearly by summation or linearly by bit concatenation  [68] or else) as shown by 

equation 2.16 assuming ∆ < N/2. 
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The assumption of ∆ < N/2 is made just to make sure that Tlower_spl > Tupper_spl. Developing 

further equation 2.16 will lead to; 







 −

∆
= 1log20 NDRenh ... (2.17) 

The main drawback of the dual sampling technique in particular and using multi-exposure in 

expanding the DR through the integration time in general is its vulnerability to temporal 

changes in light intensities such as in the case of moving objects. Whereas, using the multi-

exposure through light intensity sense may degrade the spatial resolution of the imager. Any 

solution to overcome these limitations either by integrating multiple (colorless) light filters 

such as the one used for in-pixel color filtering in the FoveonTM X3 pixel  [70], or by the 
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integration of more circuitry inside the pixel (to minimize blur effect) such as the one used in 

the multiple capture technique  [69], is in the right direction to extend further the DR of 

CMOS imagers. We suggested in the present thesis a spatial-varying DR enhancement called 

foveated dynamic range (FDR) based on the same principle of dual sampling but extending 

the sampling dimension from the 1D row (and 2 output channels) sampling to a 2D ring (and 

8 output channels) sampling. The proposed FDR approach is intended to achieve two goals; 

minimizing the blur effect inherent to 1D sampling and realising non-uniform (foveated) DR. 

The spatial variance of the FDR (higher DR enhancement at the imager center area and 

decreasing outwards) is aimed at minimizing the image data throughput while maximizing 

the amount of transmitted image information (through DR), mimicking biological vision.    

2.7 Why Foveated Dynamic Range? 

Before answering the above question let us first consider the importance of foveated imaging 

and why its emergence is getting more and more interest  [71] [72] [73] [74]. This interest 

arises from the fact that most of the human visual system characteristics have been exploited 

to reduce the video communication system requirements (cost) when it is designed for 

information consumption by human observers. First, the temporal contrast sensitivity of the 

human visual system declines at high frequencies creating a temporal resolution cut-off of 

approximately 60Hz. Second, the spatial contrast sensitivity of the human visual system 

declines at high frequencies creating a spatial resolution cut-off of approximately 50 cycles 

per degree (cpd). Third, chromatic information is encoded in the human visual system by 

only three broad-band photoreceptors, with peak sensitivities at 440, 540 and 570 nm. 
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Fourth, the chromatic spatial resolution of the human visual system is lower than the 

luminance spatial resolution by a factor of approximately two.  However, it is well known 

that the human visual sampling is not uniform and in fact the spatial resolution of the human 

visual system reduces to 50% at 2.5º away from the direction of gaze (fixation point) and to 

10% at 20º  [4]. This latter human vision limitation has not been exploited until recently  [74] 

to minimize the bandwidth cost when transmitting video information. This cost reduction 

will be better appreciated with increasing video image resolution with the advent and 

emergence of High Definition TV (HDTV) technology and higher frame rate and image 

resolution video phones. In this regard, suggesting a foveated sampling system would be of 

greater interest as it will reduce the cost of coding/decoding for image transmission. Using 

standard CMOS technology to design a spatial-variant foveated imager is on the other side 

not practical either especially in terms of yield. Therefore, using another foveated imaging 

characteristic is of interest and thus the idea of foveated dynamic range (higher DR for 

central pixels than peripherals) emerges.   
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Chapter 3 

Foveated CMOS Image Sensors Design 

3.1 Brief description of CMOS 0.18µm technology 

Standard complementary metal-oxide-semiconductor (CMOS) 0.18µm technology, which 

has been used to design the CMOS image sensors discussed in this chapter and in  Chapter 7, 

is briefly introduced in this section. 

CMOS 0.18µm technology using 0.18µm as the minimum feature size12 is an N-well process 

technology that uses a P doped substrate. This very large scale integration (VLSI) technology 

is a 6 metal 1 polysilicon (6M1P) Salicide technology that has the capability to use up to 6 

metal layers and only 1 single polycrystalline layer. Salicide refers to the Self-Aligned 

siLICIDE process in which “Self-Aligned” refers to the technique of making the source and 

drain of MOS transistors not extending below the gate when their diffusion junctions are 

formed and “Silicide” refers to the silicon-metal alloys (e.g. TiSi2 (Titanium Silicide) CoSi2 

(Cobalt Silicide) or TaSi2 Tantalum Silicide))  [75]. Silicides are being used mainly for their 

electrical benefit, by lowering the electrical resistively of polysilicon used in MOSFET gate 

and metal contacts, beside their mechanical strength supporting the dry etching in plasma 

reactors (needed during chip fabrication). These metal alloys are also know for their 

immunity of the electro-migration in polysilicon contact  [76]. It is very important to note that 

in the SALICIDE process the silicide alloys are not only deposited on the MOSFET gates 

                                                 

12 Feature size refers to the minimum MOSFET channel length of fabricated MOS transistors.    
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(and in this case the process is called Policide approach  [75]) but also on the source and drain 

beside building diffusion contacts, all for the sake of minimizing their resistivities. In the 

active areas (source and drains), which are used in photodiode structure (N+ diffusing over P 

substrate for example) the silicide is opaque to the incident light (because of the silicide’s 

metal reaction (opacity) to electromagnetic waves). To avoid this drop of quantum efficiency 

(due to the low e-h pairs generation), which will translate into photo-signal drop, a Resist 

Protection Oxide (RPO) layer is used over the photo-sensing area of the pixel photodiode in 

order to avoid depositing the silicide over it during fabrication. This operation has also been 

used for the same reason in  [77].  Finally, the CMOS 0.18µm technology used in designing 

CMOS imager described in this thesis is a dual voltage technology supporting both 1.8V and 

3.3V power supplies. This means, additionally, that it supports the fabrication of both, thin 

oxide MOSFETs of 0.18µm feature size with power supply of 1.8V and thick oxide 

MOSFETs of 0.35µm feature size with power supply of 3.3V power supply. This is a very 

useful feature to be used in designing CMOS imagers so that certain circuitry will be using 

thin MOSFETs and certain ones will be using thick oxide MOSFETs depending on 

individual needs that will be clarified below. The fabrication and design were realised thanks 

to the support of Canadian Microelectronic Corp (CMC) and thus detailed proprietary 

information regarding CMOS 0.18µm technology will not be discussed. However, the reader 

is referred to  [75] for further general information about CMOS technology. All designed 

chips were fabricated at Taiwan Semiconductor Manufacturing Corporation (TSMC).     
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3.2 Foveated Architecture Motivations 

One of the major characteristic of human vision is the foveation of the photocells distribution 

and interconnection (with ganglion cells) in the retina. This gives more emphasis to the 

central area (corresponding to the optical axis) sampling allocating more neuronal resources 

to the vision of this area. Adding to this vision aspect the eye saccadic movements (gazes) 

the human eye can build (over some period of time and saccadic steps) a high resolution 

image over a large spatial field of view. This architectural aspect of human vision is indeed 

important to future high resolution high frame rate CMOS imagers in a verity of applications. 

One of the most important applications of foveated CMOS imagers is video phones which 

are currently available in the market but with slower frame rates. In this application the video 

phone is directed specifically to the area of interest to sample it and transmit it to the other 

end of the communication in a similar way of the human eye vision. The video phone motion 

to track an event or a moving object is therefore equivalent to the eye saccadic movements. 

Yet, the sampling architectures of the current video phone still acquire images with the 

uniform classical imaging architectures suffering therefore from the large amount of 

transmitted vision data. This is why more of mobile videophones use sample video 

information and save it internally before send it to the other communication end. This is 

obviously limited by the relatively small and cost memory impacting the limited recording 

time. Another application that is attracting increasing interest is head-mount cameras needed 

for low vision enhancement application. This application as it mimics the human vision to 

enhance the impaired vision people is a potential application of foveated CMOS imagers.   
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3.3 Design Motivation 

It well known in designing Application-Specific-Integrated-Circuits (ASIC) circuits  [78], that 

the designer may choose one of three methodologies for implementing any microelectronic 

system on a chip (SOC), based on the complexity of the design. These approaches are; 

Top-Down approach: in which the designer starts working at the system or architectural level 

of the microelectronic system without including the lower level building blocks. 

Subsequently, each block increases in details by partitioning it until a structural 

representation is realized.   

Bottom-Up approach: in which the designer starts building the microelectronic system from a 

structural representation and constructing the compositional blocks of the system up to the 

highest level (chip level). This is rather a cumbersome methodology especially with larger 

ASIC designs (larger than 10.000 gates)  [78].    

Bottom-Up and Top-Down approach: in which the designed uses the previously mentioned 

methods by swapping between them in order to meet certain constraints to meet such as 

power, silicon area and speed. 

In the present chapter, the system level design approach has been chosen because a new 

architecture is proposed for sampling the integrated image. Based on the higher level (or 

behavioural level) schematic architecture, the designed chip will be built block by block 

accordingly. While the design level selection for a designer is usually made upon the degree 

of complexity of the design itself and the level of abstraction the designer wants to use, in our 

case the reason is different. The reason behind choosing the system level approach in 
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designing a new architecture is to come up with a scheme that can provide us with some key 

features needed in a CMOS image sensor dedicated primarily to minimize the amount of 

sampled data and maximizing the information carried. This will be further examined in the 

subsequent sections. The suggested architecture, called pyramidal architecture, is based on 

keeping the building block pixel structure the same as the classical active pixel sensor 

(shown in Fig  3.4), while changing the sampling architecture. In the following sections, the 

design constituents will be presented in more detail until the whole pyramidal CMOS image 

sensor chip is constructed.  

The bottom-up approach is an important approach in designing dedicated CMOS image 

sensors when the pixel architecture is the driving force of innovative CMOS imagers. It is 

through this philosophy that the Multiresolution CMOS imager was designed in which the 

classical orthogonal CMOS imager architecture has been adopted. In this case, however, the 

APS architecture has been altered to support more functionality. A summary of this 

architecture is mentioned in section  0 and further details of the multiresolution CMOS 

imager implementation is demonstrated in  Chapter 7. 
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Fig  3.1 Classical sampling architecture of CMOS image sensor 

 

3.4 Pyramidal CMOS Imager Design Tools 

The main tool used to design the pyramidal standard CMOS imager (and the multiresolution 

CMOS imager) is a UNIX-based chip design tool package known as Cadence® supported by 

the Canadian Microelectronics Corporation (CMC). The main tools used in this package are 

Virtuoso® schematic editor and Virtuoso® layout editor. The former tool was used to 
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simulate the schematic view of the different blocks of the imager and the latter used to layout 

the different mask layers used to physically fabricate the whole chip. Virtuoso® layout editor 

was used beside design rule check (DRC) using Dracula® or DivaDRC®, was used to extract 

the physical parameters of the different devices of the blocks beside their parasitic capacitors 

and resistors. All simulations were carried out using Cadence® Analog design environment 

which uses the model files of CMOS 0.18µm process of TSMC foundries where our CMOS 

imagers were fabricated. 

Another tool has also been used to design the decoders called ICCraftman® by translating 

their schematic view and auto place and route then into the layout view. This tool was mainly 

used in the large multiresolution decoders. It never finishes the whole routing so we did 

complete the remaining routes manually. 

After successfully testing each block in the schematic and layout view, all the imager blocks 

were brought together and connected to construct the imager chip. Simulating the whole 

imager chip was not possible because of the difficulty to integrate the optical signal 

interaction with the active silicon areas beside the larger array of pixels. Thus, visual 

inspection as well as Mark-Net command (in the layout editor) testing all the interconnection 

between the blocks was only way to verify the correctness of imager chip. The last 

verification of the design rules was made by streaming out the imager chip and uploading it 

to CMC server were further DRC were carried out. This phase includes (beside basic DRC 

check) the antenna violations caused by long wires which are vulnerable to electric 

discharges and burn out (cut). This problem is remedied by placing diodes on the long wires 
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paths. The final step before submitting the imager for tapeout (fabrication) was to make sure 

the polysilicon and metal filling densities meet the requirements of TSMC foundries.    

3.5 Pyramidal Architecture and Its Building Blocks 

Before further examination of the pyramidal CMOS image sensor design, the architecture 

along with its constituent blocks is first presented. Then, the strategy of how the whole 

design is going to be laid out using the available standard CMOS 0.18µm technology is 

developed. 

3.5.1 Architecture Description 

Before describing the new pyramidal architecture, we first briefly review the operation of the 

conventional active pixel sensor.  

The classical CMOS image sensor shown in Fig  3.1 is usually read out using raster scanning. 

The incident light on every pixel is integrated over a period of time, called the integration 

time, which starts from the (current frame) reset signal until the (next frame) select signal. 

The controlling signals (Reset and Select), which are shared for every row’s pixels in the 

matrix of pixels, are generated from the row reset and select logic block that is made 

typically of shift registers or of decoders. The structure and physical functionality of the pixel 

will be presented in the next section. After the row selection signal is pulsed the whole row’ 

pixels voltages are dumped, through column buses, into the sample and hold (S&H) bank 

capacitors shown in Fig  3.1 via the analog signal processors. Finally, the sampled voltages in 

S&H capacitor bank are serially buffered out either after being digitized, through the column 
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parallel analog-to-digital converters (ADC), or just directly buffered out in their analog form 

through an analog buffer. 

 

 

Fig  3.2 Pyramidal architecture schematic views 
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 In the pyramidal CMOS imager architecture, the sampling unit is a 2D ring instead of the 1D 

row sampling in the classical architecture, as shown in Fig  3.2 and Fig  3.3.  Therefore, all the 

pixels belonging to a ring in the pyramidal CMOS imager share the same reset and select 

signals that are consequently “2D” control signals. The reset rings are connected to a reset 

decoder and the select rings are connected to a select decoder. After the select signal is 

pulsed, the sampled photo-voltages are dumped into the S&H capacitors (not shown in Fig 

 3.2) situated all around the pyramidal imager right after the last ring (outer ring). The 

sampled photo-voltages are transported to the S&H capacitors through diagonal (at 45º and 

135º) busses, as shown in Fig  3.2. The rest of the photo-signal path is similar to the classical 

CMOS imager architecture.  Fig  3.3 recapitulates the major differences between the classical 

architecture and pyramidal architecture of CMOS image sensors.  

 

Fig  3.3 Variations between the classical and pyramidal architectures of CMOS imagers 
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3.5.2 APS Pixel 

The picture sampling unit cell, known as a pixel, used in the pyramidal architecture is the 

same as that used in the classical CMOS imagers, and in particular the active pixel sensor 

that is shown  Fig  3.4.  

 

 

Fig  3.4 The classical structure of active pixel sensor with N+/Psub photodiode 
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The APS used in the design of pyramidal CMOS imager uses an N+/Psub photodiode for 

integrating incident light. The photodiode is first reverse-biased through the reset NMOS 

transistor by PRST signal. The incident light starts discharging the photodiode (PD) right 

after the reset transistor is turned off. At the end of the integration time, the pixel is read out 

(to POUT) though the select transistor activated by the PSEL signal. The pyramidal CMOS 

imager pixel shown in Fig  3.5 is a 16µm by 16 µm pixel and its sensing (or active) area, 

composed of N+ diffusion over the P-type substrate Psub (not shown in the figure) is of 199.66 

µm2. 

 

 

Fig  3.5 Layout of the pyramidal CMOS imager pixel 
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The fill factor that is the ratio of the sensing area over that of the whole pixel is about 78%. 

Note that the pixel output bus (POUT) is diagonally laid out (using metal1) by 45º (others by 

135º), as shown in Fig  3.5, in order to construct the pyramidal imager’s diagonal output 

buses. 

Interestingly, the construction of the focal plane pixels’ array in the pyramidal CMOS imager 

is different from that of the classical CMOS imager architecture because of the difference of 

symmetry between these two architectures. While the classical CMOS imager architecture 

pixel array matrix has the vertical and horizontal axis of symmetry the pyramidal architecture 

has (besides the vertical and horizontal axis) the diagonal axis (45º and 135º) as extra axes of 

symmetry, as shown in Fig  3.3. This symmetry difference between the two architectures has 

an impact on the process of laying down the pixels array. In classical imager architecture, 

translating the pixel (by copying and pasting it) horizontally and vertically, the whole pixels’ 

array can be constructed. As for the pyramidal architecture, the pixels’ array has to be 

constructed from the inner ring towards the outer ring by translating the pixel from one axis 

to another, then by mirroring the constructed ring segment around all the axis of symmetry 

until the whole ring is done before jumping to the next ring and so on. During this process, 

the ring’s shared signals, namely the PSEL and PRST (pixel select and reset signals 

respectively) will be connected, consequently, at the end of pixel ring’s formation. Through 

this point of view, the pyramidal CMOS imager architecture and its pixel along with the 

involving symmetries looks very similar to the crystallographic structures (nets) formation 

with their building blocks (basis) found in nature  [79]. The fact that in order to construct the 
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pyramidal imager rings, one has to start from inner rings towards the outer rings makes the 

layout of the pyramidal CMOS imager similar to how crystals grow in nature. Fig  3.6 shows 

the first two inner rings. 

 

 

Fig  3.6 Layout of the two first inner rings of pyramidal CMOS imager 

 

One may note that the diagonal pixels (that include the inner ring pixels) are shared between 

adjacent segments and hence are sampled by S&H capacitors twice as large as any other 
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pixels. This will lead to two diagonal artefacts in the sampled image as shown in Fig  4.4. The 

remedy to this problem is either by halving the sampling capacitors of these diagonal pixels 

or choosing one segment S&H for these diagonals which creates and irregularity of the 

readout process13.  

Before closing this section it is worth mentioning that the MOSFETs used in building the 

pyramidal pixel were of thick oxide that supports gate voltages of 3.3V that is also the power 

supply Vdd of the pixel. Two reasons are behind this choice. The first is to have higher 

electrical dynamic range (or voltage swing) at the output of the pixel. The second reason is to 

minimize the leakage current through the gates of the RESET and the source-follower 

NMOS transistors (see Fig  3.4). For deep submicron CMOS technology (such as CMOS 

0.18µm), this gate leakage current potentially becomes higher than dark current and even 

comparable to photocurrents under normal lighting conditions  [80]. This gate leakage current 

is mainly due to the decrease of gate oxide thickness into the nanometer range, thus allowing 

direct tunnelling through the gate oxide  [81]. The gate leakage current is also known as the 

Fowler-Nordheim tunnelling current. It is modeled by IFN in the following formulation  [75]: 

oxE
E

oxFN eELWCI
0

2
1

−
= … (1.3) 
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gs
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V
E ≈ , tox is the oxide thickness, W and L are the width and length respectively of the 

MOSFET and C1 and E0 are constants. 

                                                 

13 Because one segment will be larger than the other by one diagonal pixel 
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Consequently, not only the source follower and RESET NMOS transistors are made of the 

thick oxide MOSFETS but also the select transistor as well. Thus, the controlling signals 

namely RESET and SELECT signals take values of 0V and 3.3V corresponding to the 0 and 

1 logic states.  

 

 

 

Table  3-1 shows a summary of the characteristics of the pyramidal pixel. 
 

 

 

 

Table  3-1 Physical characteristics of the pyramidal pixel 

PIXEL CHARACTERISTICS
PHYSICAL 

VALUE 

Pixel pitch 16 µµµµm 

Pixel area 256 µm2 

Active area 199.66 µm2 

Fill factor 78 % 

Active area perimeter 60 µµµµm 

Power supply 3.3 V 
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3.5.3 Voltage Conversion block 

From the previous section, control signals RESET and (pixel) SELECT are chosen to have 

3.3 V as high logic voltage and therefore the controlling logic must be built using thick oxide 

MOSFETs. To minimize the cost of power and area in designing the logic blocks responsible 

of generating RESET and SELECT signals, a voltage converting unit is built. The voltage 

conversion unit is an interface that can convert the high voltage of 1.8 V to 3.3 V while 

passing the low voltage of 0 V unchanged. Therefore, the 1.8V-to-3.3V voltage conversion 

unit will allow us to design the control logic, i.e. decoders, generating RESET and SELECT 

signals using thin-oxide transistors. This way the imager design will benefit from the low 

power and area saving by using thin-oxide transistors in designing the logic blocks as they 

are insensitive (due to their digital nature) to the gate leakage current.  

A circuit diagram of the voltage conversion unit is shown in Fig  3.7 and its layout is shown 

in Fig  3.8.  
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Fig  3.7 Schematic of the 1.8V-to-3.3V voltage conversion block 

 

 

Fig  3.8 Layout of the 1.8V-to-3.3V voltage conversion block 
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In addition to the voltage conversion functionality of the present block, it has another more 

important role that is buffering. It is clear that the control signals (RESET and SELECT) are 

shared among rings that have different lengths. The inner rings are smallest and length 

progressively increases towards the outer rings. These control ring-buses have different 

resistances R and capacitances C that are related to the buses lengths and thus monotonically 

increasing from inner rings towards the outer rings. Therefore, the RC constants, which 

characterize the charging time of the different buses, are increasing with the square of the 

perimeter. This issue is solved by the voltage conversion block because it acts like a buffer 

interface between the logic circuitry, responsible for generating the control signals RESET 

and SELECT, and the rings’ control buses. Thus the RC differences among the control ring 

buses become insignificant.  

3.5.4 Sample and Hold block 

Around the outermost ring, sample and hold (S&H) blocks are laid out and connected to the 

output busses that are shared between the pixels on the same diagonal, as shown in Fig  3.6. 

Each sample and hold block is composed of two metal-insulator-metal (MIM) capacitors 

sharing an NMOS load transistor to bias the active pixel’s source follower. The two 

capacitors, Cs and Cr, are made for sampling and storing Vs (the pixel photo-voltage) and Vr 

(the pixel reset voltage) respectively, as shown in the schematic of Fig  3.9. 
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It is worth mentioning that the power supply used in this circuit block is 3.3V and its 

transistors are therefore thick MOSFETs due to its analog nature, like the pyramidal pixel, 

thus minimizing the gate leakage and preserving the voltage swing of the pixel. 

 

Fig  3.9 Sample and hold circuit schematic 

It is worth mentioning that the sampled voltages Vs and Vr which are held in the capacitors 

Cs and Cr, respectively, are to be buffered out through each PMOS source follower with a 

gain close to unity.   

Cs and Cr are both of 2pF capacitance, occupying each about 2000 µm2 (about 160µm by 

12.5µm) in an elongated shape. The sample and hold circuit layout is shown in Fig  3.10 

below where VOUTS and VOUTR replace Vs and Vr, respectively, and VBIASN replaces 

Vbn. The lengths shown in this figure are in microns. 
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Fig  3.10 Layout of the sample and hold block 

 

 The sample and hold capacitors are made as large as possible in order to minimize the 

charge injection noise or what is commonly called clock feedthrough noise arising from the 

switching activity during the sampling process  [82]. As the photo-transduced current flows 

from the source follower through the output diagonal bus, it passes the NMOS active resistor 

(controlled by Vbn) to be converted into a voltage value. Whether it is Vs or Vr, the 

converted voltage value get sampled into Cs or Cr through SHS or SHR NMOS switches 

respectively. The overlapping capacitances between sampling gates (SHS and SHR) and their 

drains (at Cs and Cr respectively) cause the feedthrough noise which is minimized by using 

large sampling capacitors as mentioned previously. After the sampling is done, decoders are 

used to buffer out Vs and Vr, stored in Cs and Cr respectively, by activating the PMOS 

switches through CS. The buffered voltages Vs and Vr will pass though the output buffer 

before being sampled off chip by the data acquisition system. Similar to the S&H structures 

used in conventional CMOS imagers, the column circuits can contribute significantly to the 
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fixed pattern noise owing to column-to-column mismatch between devices; this will be 

further examined in  Chapter 6. 

3.5.5 Output Buffer 

In reality, the output buffer has been split between the sample and hold circuit, described in 

the previous section, containing the PMOS source follower (just before the CS switch) and a 

PMOS biasing transistor shown schematically in Fig  3.11 (surrounded by polygons for Vs 

and Vr buffering) and in the layout in Fig  3.12.  

This output buffer in the current design of the pyramidal CMOS imager (as for many 

classical CMOS imagers) is used to meet two objectives. First, it provides current driving 

capability to buffer out the sampled voltages; second it compensates (with the S&H source-

follower) for the Vth voltage drop lost in the NMOS source follower in the active pixel 

sensor. The first Vth occurs after the reset transistor that charges the photodiode up to (Vdd- 

Vth) instead of Vdd and the second Vth drop occurs after the select transistor in the APS pixel.  

Finally, following the pixel and sample and hold blocks, the output buffer uses thick 

MOSFET therefore its power supply voltage is 3.3V. The main reason is to maintain the 

power supply voltage rail (Vss to Vdd) from pixel to the off chip output. 
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Fig  3.11 The output buffer split between the S&H block and the shared PMOS bias 
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Fig  3.12 Layout of the output buffer within the S&H blocks 
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3.5.6 Decoders for Column (Diagonal) Select 

At this stage all the components of the pyramidal CMOS imager have been described except 

the decoders, used in ring select or ring reset, which are standard circuits  [83] mainly used in 

memories that are thought to be the closest standard CMOS systems to CMOS imagers14. 

Fig  3.13 shows a simple gate level block diagram of a typical 3 to 8 decoder that can be 

expanded to any m-to-2m decoder. RESET and ENABLE signals are used to control the 

decoder that will have all its output low when RESET=0 (logic), and will have all its output 

high when ENABLE=1, otherwise the output ports will decode the input ports logically  [83]. 

 

 

Fig  3.13. Gate level block diagram of 3 to 8 decoder 

                                                 

14 This is the main reason why a memory manufacturing giant like Micron Corp. established its imaging 

division in Boise, IDAHO and Pasadena, California in the USA. 
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As mentioned in previous sections, the MOSFETs used in the digital logic blocks (decoders) 

are of thin oxide type (due to their gate leakage current immunity) for lower power and area 

consumptions. 

3.5.7 Pyramidal Imager Chip design 

Fig  3.14 shows the structural layout of the designed 64x64 pixel (32 ring) pyramidal CMOS 

image sensor occupying an area of about 4mm x 4mm while Fig  3.15 shows the photo-

micrograph picture of the fabricated imager. 

 

 

 

 

 

 

 

Fig  3.14 Pyramidal CMOS image sensor structural layout 
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Fig  3.15 Optical micrograph image of the pyramidal CMOS image sensor 

 

Finally, the general characteristics of the designed pyramidal CMOS image sensor are shown 

in Table  3-2. 
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Table  3-2 General characteristics of CMOS pyramidal imager 

PYRAMIDAL CMOS IMAGER 

CHARACTERISTICS 

PHYSICAL 

VALUE 

Imager area 3.9898x3.9898 mm2 

Imager resolution (in pixels) 64 x 64 

Design technology 
Standard CMOS 0.18µm 

(1P6M) 

Power supply voltage 3.3V and 1.8V 

Voltage swing 400 mV* 

Dynamic range 56.6 dB* 

Sensitivity 
sW

cmV
µ

2

091.0 * 

  

3.5.8 Bouncing Scanning 

In the previous sections, the pyramidal CMOS imager architecture has been presented along 

with its implementation in standard CMOS 0.18µm technology. In this section, a new control 

mechanism is suggested in sampling images in addition to the implementation of the classical 

raster (rolling) scanning scheme in the pyramidal architecture. The suggested sampling 

                                                 

* This value will be extracted in  Chapter 5 
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scheme, called bouncing, is proposed as an alternative to raster scanning through the 

statements developed in section  1.2.2. 

Fig  3.16 depicts the difference between the raster scanning used in classical CMOS image 

sensor and the bouncing scanning used in the pyramidal CMOS imager. 

 

 

Fig  3.16 Classical imager raster scan and bouncing scan in a pyramidal imager segment 

  

Raster scanning has been introduced earlier in section  2.1.4, and is also called the rolling 

scan because after sampling and resetting the last row, the first row is next in the scan chain 

and so on. In the pyramidal sensor, raster scanning is implemented by starting in the centre of 

the sensor and incrementing the rings; after the outer ring, the scan starts again in the centre. 

The scanning is therefore in the form of concentric circles. In contrast to raster readout of a 

conventional sensor, where the pixel update rate is different in the horizontal and vertical 

directions, raster scanning of the pyramidal sensor is symmetric. This property is very useful 

to minimize motion distortion as demonstrated in section  3.5.9. 
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In bouncing scan, however, the scan is bounced backward after reaching the last row rolling 

the scanning back towards the first row. After reaching the first row the scan is bounced back 

towards the last row and so on as shown in Fig  3.16. In this scanning strategy the integration 

time is not uniform and every row will have two integration times, one integration time for 

the inward scanning (from outer ring towards the inner ring) and another integration time for 

the outward scanning. More analysis of the bouncing scanning is developed in section  4.1.1. 

Although the non uniformity of the integration time might be an issue, fusing the resulting 

two frames (one from inward scanning and the other from the outward scanning) will result 

in a uniform photo response of the imager. This result is shown in section  4.1.2 namely 

through equation (4.6) and Fig  4.4. 

3.5.9 Pyramidal Ring Sampling and Blur Symmetrization 

Motion blur is an artifact affecting images acquired when the object image at the imager 

focal plan moves during image integration15. This image smear is more pronounced when 

spatial sampling speed of the image is relatively close to the motion speed of image at 

imager’s focal plan. The motion of the image over the imager’s integrating pixels will share 

the light intensity over a number of pixels resulting in an apparent smear in the image. The 

most common case of this artifact happens when using rolling shutter in CMOS imagers 

when acquiring fast moving objects or when used with pulsed-illumination  [84]. With higher 

motion speed of the sampled objects in the focal plane, another type of motion artifact known 

                                                 

15 The motion blur could be caused either by imaging moving objects or when the imager itself is moving. 
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as motion distortion takes place. This is mainly due to the missed areas from the sampled 

object in the resulting image. The cause of this artifact is explained by the violation of (or 

approaching) the Nyquist temporal sampling limit  [85]. This sampling limit in its temporal 

domain says that the imager sampling rate should be at least twice as fast as the sampled 

moving object otherwise signal distortion (or temporal aliasing) occurs. An example of 

motion distortion is shown in Fig  3.17 using a Kodak CMOS image sensor in rolling shutter 

mode  [86] acquiring a moving bus. Rolling shutter is typically similar to the dual sampling 

technique in the way how the readout signal follows the reset signal with a predetermined 

time delay determining the integration time of the rolling segment. Once reaching the bottom 

of the imager, the rolling shutter continues with the top rows of the imager as if the imager 

was a cylinder. The main reason to use the rolling shutter is to separate the integration time 

from the frame time during high speed imaging. Note that plain raster scanning is just one 

extreme of the rolling shutter, where the shutter is fully ‘open’.  
 

 

 

 

 

 

Fig  3.17 Impact of rolling-shutter on CMOS sensor causing motion blur  
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The common solution for the motion distortion when imaging moving objects is by using a 

global shutter  [84] and thus the imager (or a ROI) is reset synchronously and after an 

integration time period sampled synchronously as well. The sampled image is separated from 

the photosensitive area (ex. Photodiode) and stored into capacitor to be readout afterward 

sequentially. Fig  3.18 shows how the global shutter solve the motion distortion (a typical 

global shutter pixel circuit diagram is introduced in previous chapter in Fig  2.11). Despite the 

motion distortion is not far less in global shutter sampling (Fig  3.18.B) than in raster scan 

sampling (Fig  3.18.A), the motion blur is more noticeable in the former than in the latter as 

shown in the fan blades edges. This is because the pixels (rows) exposure to incident light is 

longer in the global shutter regime than in the raster scan.     

 

 

Fig  3.18 Global shutter (B) versus rolling shutter (A) and motion blur distortion  [84] 
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The main disadvantage with using global shutter in fast imaging (beside the shutter 

efficiency affected by the shutter leakage and the limited in-pixel sampling capacitance) is its 

limited application to still imaging because of its bottleneck in transferring a large amount of 

2D data at high frame rates. This problem will be more pronounced with increasing 

resolution. Despite good improvement of the shutter efficiency reaching close to 100% which 

has been reported recently ( [87],  [88]), these solutions come at the expense of fill factor.  

It is clearly visible from Fig  3.17, that the cause of the motion blur was the inequality in the 

spatial sampling rate between rows and columns which is faster in the latter than in the 

former. In raster scanning, the whole columns of a row are sampled simultaneously then 

readout serially before sampling the next row, which makes column sampling faster that row 

sampling in classical CMOS imager. Consequently, row motion blur is higher than that of the 

columns which result in a horizontal dislocation of the bus image in Fig  3.17.  

The higher spatial sampling symmetry inherent in the pyramidal sensor serves to minimize 

the motion blur artifact or, at least, to distribute it evenly to minimize the artifact. It is also 

advantageous for architecture to have multiple output channels to increase the acquired 

image transfer speed throughput thereby reducing the need for local storage of the sampled 

image and eliminating the global shutter. The high speed property due to the 2D ring 

sampling property and the 8 output channels of the pyramidal architecture will be extensively 

studied in section  4.3 and  4.4. Here, we will investigate the pyramid scanning and its impact 

on minimizing the motion blur on the acquired image. 
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Shown in Table  3-3, are images acquired by a PixeLINK 1.3 Mega Pixel monochrome PL-

A653 CMOS camera. The moving object is a fan moving at a peed of 1 rotation per second 

and lit from behind. The imager samples a window of 784x784 pixels with a programmable 

exposure (or integration) time of 43.2ms and with a resulting frame rate of 6 frames per 

second (fps) or 1 frame every 166.67ms. 

 

Table  3-3 Standard CMOS image sensor raster scanning motion blur demonstration. 

Fan leaf passing by the 

right side clockwise. (a) 

Fan leaf passing by the 

bottom side clockwise. (b) 

Fan leaf passing by the left 

side clockwise. (c) 

Fan leaf passing by the top 

side clockwise. (d) 
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From the images in Table  3-3, the motion blur is more prominent on the fan leaf passing by 

the right and left side of the fan as seen by the deformation of the fan leaf form. This blur is 

less noticeable when the fan leaf passes by the top and bottom of the fan. Moreover, the 

motion blur is larger when the leaf passes by the right side and shorter when it passes by the 

left side, thus deforming the leaf appearance. This is explained by the fact that, at the focal 

plan when the moving object image is moving on the same direction of vertical sampling 

(row sampling), the relative speed of the object to the imager sampling direction is small thus 

smearing the integrated image in ongoing direction. This effect fact is noticeable with the 

image shown in Table  3-3.a. This fact demonstrates that the PixeLINK CMOS imager is 

scanning the rotating fan from top to bottom. In the other case when the object image is 

moving opposite to the vertical sampling direction, the relative speed of the object looks 

faster with respect to the sampling scan, and hence some portion of the moving image will 

not have enough time to be integrated at the pixels (rows) and the resulted acquired image 

will look smaller. This fact is clearly shown in the figure at Table  3-3.c where the fan leaf is 

moving clockwise from the bottom to the top. Finally, the images Table  3-3.b and Table 

 3-3.d suffered less from the motion blur as the image of the moving object is moving 

orthogonal to the row sampling direction.  

Corresponding images acquired using the pyramidal image sensor under the same lighting 

conditions and fan speed as the previous test are shown in Table  3-4. The integration time the 

64x64 pyramidal CMOS imager was 43.24ms, a difference of 0.04ms from the previous 

imager exposure time. 
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The images acquired with the pyramidal CMOS image sensor shows almost unnoticeable 

motion blur artifact. The is the resulting effect of the ring sampling in which the fan leaf 

image at the imager focal plane is moving orthogonal to ring sampling direction. The moving 

object is moving circular in our test case, however for any arbitrary movement direction; one 

can see the limitation of the architecture. In fact, the pyramidal ring sampling performance is 

still achievable for any arbitrary moving object as long as the horizontal segments of the 

pyramidal imager are used for sampling vertically moving objects and the vertical segmented 

are used for the horizontally moving objects acquisition. However, this scenario could not 

always be verified as no control over moving imaged objects is always possible.  

Despite the above limiting scenarios, the pyramidal imager can still acquire images with 

minimal motion blur and moving objects distortion. At the inner rings area (fovea) the 

horizontal and vertical sampling speeds get closer and closer making the sampling at the 

fovea region of the imager similar to a global shutter regime. Therefore, the pyramidal 

imager fovea is a motion-blur and motion-distortion free sampling zone adding a new 

foveated attribute to the pyramidal imager architecture beside the foveated dynamic range. 
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Table  3-4 Pyramidal CMOS image sensor ring scanning motion blur demonstration. 

Fan leaf passing by 

the east side. (a) 

Fan leaf passing by 

the south side. (b) 

Fan leaf passing by 

the west side. (c) 

Fan leaf passing by 

the north side. (d) 

 

3.5.10 Hardware Cost Scaling of the Pyramidal Imager Design 

One of the main differences between the pyramidal and classical CMOS imagers is the 

hardware and especially regarding the sample and hold blocks. These needed blocks are used 

to sample the 2D rings in the former and to sample the 1D row sampling in the latter. Beside 

these extra blocks, their control logic and output buffers also come as an extra hardware cost. 

For the sake of simplicity the logic blocks and output buffers are neglected compared to the 

relatively large sampling blocks.  
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From the first glance, it is obvious that the pyramidal CMOS imager sampling blocks are 

three times larger than that of the classical CMOS imager. With increasing resolution and 

larger pixel array sizes the hardware cost ratio till remains. However, this cost ratio of the 

sampling circuitry decreases quickly with increasing array size with respect to the imager 

pixel array. To clarify this fact, a simple analysis will be demonstrated for clarification. 

Let us assume a classical CMOS imager of 2R x 2R pixel resolution (pixel array size), thus a 

pyramidal imager of the same resolution would be of R ring size. Consequently, the classical 

imager needs a 2 R sample and hold blocks whereas the pyramidal imager needs 8 R sample 

and hold blocks. This hardware cost estimation is based on the description of both 

architectures in  Chapter 3. The total area occupied by the S&H blocks in the pyramidal 

imager is Pyramid_S&Harea= 8 R S&Harea and the that occupied in classical imager is 

Classic_S&Harea = 2 R S&Harea, were S&Harea is the silicon area used to design a single S&H 

block. For both architectures the pixel array occupies Pixel_arrayarea = 4 R2 Pixelarea of the 

silicon area where Pixelarea is the size of a single pixel. Finally, the ratio between the areas of 

the sampling blocks and the sensing array will be 
area

area

Pixel
HS

R
RatioAreaPyramid

&2__ =  

and 
area

area

Pixel
HS

R
RatioAreaClassic

&
2
1__ =  for the pyramidal and classical imager 

respectively. Fig  3.19 shows the profile of both ratios versus parameter R. 
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Fig  3.19 S&H hardware cost ratios of the classical and pyramidal imagers  

 

It is visible that the difference of the S&H block area ratio between the pyramidal and the 

classical imager for smaller pixel array sizes (or low resolutions). However, this difference 

decreases with increasing resolutions. In fact, at 1 Mega pixel resolution (1024x1024) the 

S&H block area ratios with respect to pixel array is 1.5% and 0.4% for the pyramidal and 

classical imagers respectively.  
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In conclusion, with regular resolutions (of Mega pixels ranges) the hardware cost of the 

pyramidal CMOS imager with respect to the classical CMOS imager becomes insignificant.  

3.6 Multiresolution Imager Design 

The Multiresolution CMOS imager design is based on a bottom-up approach. The new 

architecture is proposed to implement the multiresolution mechanism at the pixel level in 

order to achieve the expandability and  programmability properties that current 

multiresolution CMOS imagers are lacking ( [89],  [90]). In the suggested multiresolution 

architecture, the classical CMOS imager architecture is used and instead of using the 

classical active pixel sensor (APS) architecture a new pixel design is suggested. The 

multiresolution pixel (MP) has the ability, beside the photo-electric conversion and sampling 

to share its stored photo-charge with its next in-row and its next in-column neighbour pixels 

through a simple MOSFET switches network. Further details are developed in   Chapter 7.    

3.7 Summary 

In this chapter two different implementation of foveated CMOS image sensors were 

discusses. The time domain foveated CMOS imager was designed in a top down approach as 

it deals with the sampling architecture at the focal plane level. The spatial domain foveated 

CMOS imager that is the multiresolution imager (detailed in  Chapter 7), on the other side, 

was designed in bottom up approach. This is because it deals with the resolution management 

(programming resolution down-scale) at the pixel level. Both imagers benefited from the 

dual-voltage feature of CMOS 0.18µm technology. 3.3V supply voltage has been used in the 
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APS pixels and their analog chain (until the output buffer) while 1.8V supply voltage has 

been used in the controlling digital blocks. This is mainly due to the high gate leakage 

current of the thin oxide transistors used only in digital (gate-leakage immune) blocks. 

Finally, it has been shown that the extra hardware cost ratio (with respect to the pixels array) 

due to the extra S&H blocks in the pyramidal imager compared to that of the classical imager 

decrease with increasing imager resolution.  
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Chapter 4 

Mathematical Basis of Foveated Dynamic Range & High Speed 

Imaging 

 

4.1 Mathematical Analysis of Foveated Dynamic Range 

In this section we will present the mathematical foundations and aspects of the proposed 

Foveated Dynamic Range (FDR) enhancement. It is important to note that this chapter is not 

including, unless explicitly mentioned, any non-ideal physical parameters of CMOS image 

sensors such as limited electrical dynamic range, dark current, temporal and spatial noise. In 

the following sections an ideal linear, noiseless CMOS image sensor will be assumed. We 

will include some physical limitations towards the end of the chapter in order to evaluate the 

physical reality of our mathematical claims. 

4.1.1 Timing examination of bouncing scanning: 

Firstly, the parameters for assessing the integration time of sampled rings in bouncing 

scanning schemes are discussed. The readout process can be divided into two steps; the row 

sampling step that takes a period of time Tspl (in the range of 1µs to 10µs), and the scanning 

step to readout serially the sampled pixel values Ts (is in the range of 0.1µs to 1µs)  [68]. The 

sampling period Tspl is the time necessary for three operations: the sampling of the ring’s 

photo-signal output, Vs, to the corresponding capacitors in the sample and hold bank, the 
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resetting of the ring to Vdd and finally the sampling of ring’s reset voltage Vr to the 

corresponding capacitors in the sample and hold bank.  

In the pyramidal architecture, the rings contain different numbers of pixels. We take the inner 

ring to be the reference ring, or r =1, the subsequent ring is r = 2, and so on. Secondly, we 

assume the output image is built from the output channels of the sensor’s eight symmetrical 

segments. Therefore, the analysis of the rings’ integration time can be reduced to the analysis 

of any one of the pyramid segments instead of the entire sensor. In other words, since the 

pyramidal imager has eight output channels read out in parallel, frame scanning is based on 

the segment timing. In the following development we will focus on one segment for which 

(from Fig  4.1), there is one pixel in ring r = 1, two pixels in ring r = 2…etc. Hence for the 

ring of order r there are r pixels and the last ring (outer ring) which is of order N/2 there are 

N/2 pixels, where N is the square root of the resolution of the imager, assumed here to be 

square.  
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Fig  4.1 Pyramidal imager readout scheme  

 

Consequently, the time required to read a pyramid ring is: 

 

( ) spls TrTrTr += … (4.1) 

 

For the sake of illustration, the timing diagram of the inner ring (r = 1) and outer ring (r = 4) 

of a 4x4 pyramidal imager using bouncing scanning scheme for image sampling is shown in 

Fig  4.2. The inner ring and outer rings are the bouncing scanning edges where scanning 

direction changes from inward (imager center) scanning to outward (image center) scanning 

or vice versa. The timing diagram in Fig  4.2 will be useful in calculating the integration time 

for each ring in the pyramidal imager when bouncing scanning is used. 
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Fig  4.2 Timing diagram of inward and outward scanning 

4.1.2 Mathematical Analysis 

The integration time for a given ring is the period of time between two consecutive 

samplings of that ring. At each sampling, the ring photo-signal is sampled into one of the two 

capacitors of the CDS circuit, then the ring is reset and sampled again into the other 

capacitor. All these three operations are made during Tspl. Using the timing diagram shown in 

Fig  4.2 a mathematical formulation for integration time for both inward scanning Tin(r) and 

outward scanning Tout(r) will be derived. Because each ring is sampled one time by inward 

scan and the next time by outward scan (or vice versa), the ring integration time will be equal 

to the summation of the time required to read the read the current ring pixels namely (r Ts) 
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plus twice the time needed to scan from current ring r until the outer ring r = N/2. This result 

is shown in equation 4.2. 

( ) ( ) sspl

r

ii
Ri

sspls rTTrRiTTTRrTin +















−+= ∑

+

−→
=

1

1

2,,, … (4.2) 

Similarly, the integration time Tout(r) will be equal to the summation of the time required to 

read the current ring pixels namely (r Ts) plus twice the time needed to scan from current ring 

r until the inner ring r = 1. The final result is shown in equation 4.3. 

( ) ( ) sspl

r

ii
i

sspls rTTriTTTrTout +
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
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The expansion of the equations (4.2) and (4.3) result in the following equations (4.4) and 

(4.5) respectively. 

( ) ( )splsssplsspls RTRTTRrTrTTTRrTin 22,,, 22 +++−−= … (4.4) 

 

( ) splsplsspls TrTrTTTrTout 22,, 2 −+= … (4.5) 

 

Fig  4.3 plots both integration time profiles for 32 rings (a 64 x 64 pixel array) and timing 

parameters Tspl = 3Ts = 3µs based on the ranges mentioned in the previous section. 
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Fig  4.3 Plot of the rings inward and outward scanning integration time 

 

From the above figure and for each ring we have different integration times Tin(r) and 

Tout(r) for the same ring scanned in two directions. An inward scan followed by an outward 

scan will result in two frames. The first frame would have, for an intermediate light intensity, 

the brighter areas in the inner rings which result from the inward scanning or Tin(r) profile. 

The second frame will have the brighter areas in the outer rings resulting from outward 

scanning or Tout(r) profile. This is apparent from the above figure since the maximum 

integration time for Tin(r) is at the inner rings whereas Tout(r) has its highest values at the 

outer ring. In the linear response regime of the pyramidal CMOS imager, the fusion of 
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inward and outward scan frames will lead to a uniform response. In fact, in the linear 

response regime of the imager, the sampled photo signals are linearly proportional to the 

integration time by a constant light-independent, technology dependant parameter called the 

sensitivity. Hence, fusing the generated inward and outward frames will result an image that 

is linearly proportional to the sum Tout(r) + Tin(r) by sensitivity parameter. Using equations 

4.4 and 4.5 we get: 

 

( ) ( ) ( ) splsplsssplsspls TTTRTRTTrToutTTRrTin 22,,,,, 2 −++=+ … (4.6) 

 

The summation in equation 4.6 represent the equivalent integration time of the fused image 

when sampled without bouncing scanning. Note that the fused image integration time is 

independent of r, in the linear regime, which proves the uniformity of the fused image as 

shown in Fig  4.4.c. The two diagonal artifact lines in Fig  4.4 are clarified in section  3.5.2. 

 

Fig  4.4 Bouncing scanning in linear regime: (a) Inward, (b) Outward, (c) Fused images  

 

Fig  4.3 is reproduced in 3D in Fig  4.5. 
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Fig  4.5 3D view of the rings inward and outward scanning integration time profiles 

 

Fusion (by summation) of the resulting images of the two integration time profiles Tin(r) and 

Tout(r) of inward and outward scanning respectively we get a dynamic range enhancement 

DRenh(r) (in decibels) for each ring based on the following formula  [68]: 

 

( ) ( )( )
( ) ( )( )








=

splsspls

splsspls
enh TTrToutTTRrTin

TTrToutTTRrTin
rDR

,,,,,,min
,,,,,,max

log20)( … (4.7) 
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Because the dynamic range enhancement was a result of fusion between two frames, or 

scenes, the enhancement is called intrascene dynamic range enhancement. The DR profile is 

show below for R=32, 3Ts = Tspl =3µs. 

 

 

Fig  4.6 Intrascene foveated dynamic range enhancement 

 

The above figure is shown in 2D in the Fig  4.6. The dynamic range enhancement is higher in 

the inner rings than in the outer ring especially from ring 1 to ring 5 and hence the naming of 

foveated dynamic range enhancement (FDR).  
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Fig  4.7 Intrascene foveated dynamic range enhancement in 3D view 

 

The minimum of the FDR enhancement coincides with the ring order at which the ring’s 

integration time is equal for both the inward scanning and the outward scanning and thus the 

dynamic range enhancement is nil. This ring in question is deduced from Fig  4.6 to be ring 

number 23. From ring 23 until the last ring the foveated dynamic range enhancement 

increases. Two questions now arise. Can we predict a priori the ring at which the FDR 
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enhancement is zero and after which FDR increases? The second question is how to control 

the imager in order to make the ring of zero-dynamic range enhancement the last ring in the 

pyramidal image sensor. In other words how can we achieve monotonic FDR enhancement 

for the entire sensor, i.e. how to pin down the minimum of the FDR enhancement at the outer 

ring of the pyramidal imager instead of having this DR enhancement minimum at ring 23?      

The second question will be answered in the next section. To answer the first question, we 

equate equations (4.4) and (4.5) in order to find the minimum that we will call the fovea 

border. Equating the previously mentioned equations and extracting the parameter r the fovea 

border ring order FOVborder, we get the following equation. 

 

( ) ( ) 







−++++= 111

2
111),( 2 RRRRFOVborder αα

α
α  , where spls TT=α  ... (4.8) 

 

The FOVborder is plotted in Fig  4.8 below as a function of spls TT=α . 
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Fig  4.8 Foveated dynamic range border limit for a 32 ring pyramidal imager 

 

It is clearly noticeable from the above graph that the fovea border approach asymptotically 

ring r = 23 when α approaches infinity. In fact, the ring order of the fovea border approaches 

23 even at as low values of α as 0.5. It is clear that we are interested only on the positive 

values of α as Ts and Tspl are positive values.  

To prove the above limit, let us examine the limit of equation (4.8) when ∞→α  which is 

shown in the below equation: 

( ) ( )
R

RRRRRFOVborder 11
2

111
2
111lim),(lim 2 +=








−++++=

∞→∞→
αα

α
α

αα
… (4.9) 
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As 1>>R the limit in equation (4.9) tends to: 

2
),(lim RRFOVborder =

∞→
α

α
… (4.10) 

 

Hence, the fovea border does not depend on α but depend linearly on the imager ring size 

with a slope of 71.021 ≅ . In other words, the fovea border of our system is at about 71% 

of the ring size of the pyramidal imager. This explains why the fovea border for a 32 ring 

pyramidal imager tends to 23 as 71% of 32 is equal approximately 22.66 or ring number 23. 

An interesting result of the above study of the fovea border would be to make the fovea 

border coincide with the outer ring of the pyramidal imager. This will clean the extra tail of 

the dynamic range enhancement after the minima as stated at the beginning of this chapter.  

4.1.3 The Control of the Fovea Border 

The dynamic range fovea border can be pinned down on the edge of the pyramidal imager by 

scanning the imager (using the bouncing scanning scheme) and assuming that that imager is 

virtually of a larger dimension. This is realized by adding an extra readout period at the end 

of the outward scanning. The size of the virtual pyramidal imager would be of ring size equal 

to 2
^

RR =  because fovea border limit will be, as demonstrated above, at RR =2
^

. This 

virtual ring extension will affect only the inward scanning ring integration time, which is a 

function of R that is the ring size of the pyramidal imager. The outward scanning integration 

time is not affected because it is not dependent on the number of imager rings. This is 



 

  109

obvious because the inward scanning is limited to the total number of rings as it is bounded 

by the inner ring of pyramidal imager, whereas the outward scanning is not so limited. 

The method described above is equivalent to adding an amount of time we call Txd to the 

inward scanning to make it equal to the outward scanning at the outer ring of the pyramidal 

imager. After reaching the outer ring of the pyramidal imager at the end of outward scanning, 

a period of time is spent before starting scanning inward to the imager inner ring. This is the 

practical side of the previous method, but how much is this period of time that we called 

Txd? 

In order to extract mathematically the value of Txd and examine its dependencies, the 

expression of rings’ integration time for the inward scanning will be written assuming the 

extended virtual pyramidal imager (similar to Tin(r) in equation 4.4) and we call it TinVPyr 

by replacing R by R + ∆R in equation (4.4). We will get as a result equation (4.10) shown 

below. 

 

( ) ( ) ( ) ( )( )splsssplsspls TRRTRRTRRrTrTRTTRrTinVPyr ∆∆∆∆ ++++++−−= 22,,,, 22  (4.11) 

 

In equation (4.11), ∆R is the extra rings needed to reach the virtual pyramidal imager’ ring 

size as shown below. 

( )122 −=−=∆ RRRR … (4.12) 
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Next, we will use the mathematical formulation of the inward scanning integration time 

Tin(r) as introduced in equation (4.4), this time without assuming the virtual pyramidal 

imager but instead increasing Tin by Txd, as initially proposed. We get the following 

equation  

 

( ) ( ) TxdTTRrTinTxdTTRrTinTxd splsspls += ,,,,,,, … (4.13) 

 

Equating equations (4.11) and (4.13), we get the expression of Txd and call it Txd_approx. 

 

( ) ( ) ( )splssspls TTRTRTTRapproxTxd 212,,_ 2 +−+=  … (4.14) 

 

It is apparent that Txd_approx is a function of the imager ring size and sampling parameters 

Ts and Tspl. The above equation of Txd_approx is not the exact value of Txd because it has 

used the approximation of the limit in equation (4.11). The exact value of Txd is determined 

by equating equation (4.13) and (4.5) at the outer ring (r = R) and extracting the exact value 

of Txd that we call Txd_exact. The extracted value of Txd_exact is shown in the following 

equation (4.15). 

 

( ) ( ) splssplsspls TRTTTRTTRexactTxd 22,,_ 2 −−+= … (4.15) 
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Fig  4.9 Foveated dynamic range border control technique 

 

From the Fig  4.9, we can see that the introduction of Txd has just shifted up the inward 

scanning ring integration profile Tin(r, R, Ts, Tspl) so that the inward and outward 

integration time profiles cross each other at the outer ring where the FDR border will be 

pinned as shown in Fig  4.10 below. In Fig  4.9 also we can see that TinVPyr (see equation 

4.11) coincides with TinTxd (equation 4.13) when Txd is replace with its approximate value 

(equation 4.14). When Txd is replaced with its exact value (equation 4.15) in the expression 

of TinTxd the later coincides exactly with Tout(r) at the last ring r = 32 in our pyramidal 
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imager whereas Tout(r) coincides with TinVPyr at a ring earlier r = 31 due to the latter 

approximate approach. Although, the approximate approach has been used to introduce the 

concept of the virtual pyramidal imager, however, the exact value Txd_exact (equation 4.15) 

will be used in the subsequent sections. It is visible from Fig  4.9 that the introduced time 

delay to pin FDR border at the outer ring is approximately one frame time and thus halving 

the frame rate of the pyramidal imager. This impact will be further estimated in section  4.5.  

In Fig  4.10 we show the foveated dynamic range enhancement, we call FDRenh, of the 

pyramidal imager as plotted in Fig  4.6. Also shown in the same figure is dynamic range 

enhancement calculated based on the same parameters used in Fig  4.10 but with the inward 

scanning integration time Tin is replaced by TinTxd mentioned in equation 4.15. We will call 

this DR enhancement FDRenhTxd. The figure shows clearly that the fovea border of the 

FDRenhTxd is at the edge of the pyramidal imager. Also shown in the same graph, the 

difference FDRenhTxd-FDRenh which shows that FDRenhTxd is over most of the rings is 

greater than FDRenh. A numerical integration of FDRenhTxd and FDRenh results 588 dB 

and 498 dB respectively which shows that FDRenhTxd is higher that FDRenh over all the 

imager. 
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Fig  4.10 Foveated dynamic range enhancement after border pinning 

 

Fig  4.11 represents a 2Ddisplay of the ring integration times with inward scanning correction 

TinTxd along with the outward scanning Tout(r). The corresponding intrascene foveated 

dynamic range enhancement FDRenhTxd is sketched in 2D as shown in Fig  4.12. The cost of 

achieving the dynamic range in a foveated form is the extra time delay Txd injected on Tin(r) 

which will impact the frame rate of the pyramidal imager. This timing cost will be revisited 

and estimated at the end of the present chapter. 
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Fig  4.11 Bouncing scanning integration times after FDR border pinning in 3D view 

 

Fig  4.12 Foveated dynamic range enhancement after border pinning in 3D view 
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4.1.4 Inverse-Foveated Dynamic Range 

In the previous section, we have manipulated scanning timing for the sake of pinning the 

foveated dynamic range border at the outer ring of the pyramidal imager by extending (or up-

shifting) the rings inward scanning integration times. This manipulation is equivalent to 

breaking the bouncing scan (outward scanning) and the inward scanning at the outer ring (see 

Fig  4.2) and adding a delay time equal to Txd between them before closing it up again (i.e. 

repeat the scan for next frame). Effectively, the manipulation was based on an “assumed” 

bouncing at a virtual pyramidal outer rings and scanning back to reach the real outer ring of 

the existing imager.   

 Now, what will happen when the outward scanning integration time is manipulated the same 

way the inward scanning was manipulated? To answer this question let us examine the plot 

shown in Fig  4.9. The alternative manipulation is realised by up-shifting the outward 

scanning integration time so that the inward and outward scanning coincide at the inner ring. 

The amount of time ToutTxd needed to be added to Tout(r) to achieve this up-shifting is 

extracted in the following: 

 

( ) ( ) ( )splssplsspls TTToutTTRTinTTRToutTxd ,,1,,,1,, −= ,  

Hence, we get: 

 

( ) ( ) splssplssspls TTRTTRTTTRToutTxd 222,, 2 −−++= … (4.16) 
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The result of the outward scanning integration time up-shifting is shown in the plot of Fig 

 4.13. The new outward scanning integration time coincide with the inward scanning 

integration time at the inner ring r = 1. 

 

 

Fig  4.13 Inverse foveated dynamic range enhancement technique 

 

The corresponding dynamic range enhancement we call DRenhRevFov that is due to the new 

outward scanning integration time is calculated based on equation (4.5) and is sketched in 

Fig  4.14. 
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Fig  4.14 The different foveated dynamic range enhancement profiles 

 

Although, the resulting dynamic range enhancement DRenhRevFov is increasing from the 

inner rings to outer rings, that we may call it an inverse-Fovea Dynamic Range Enhancement 

(DRenhRevFov), the new dynamic range profile has not gained similar enhancement like in 

the previous foveated dynamic range when pinned to the pyramid imager borders 

FDRenhTxd. The reason of this fact is quite apparent and is mainly due to the difference in 

pixels between the outer and the inner rings of the pyramidal imager which has led to inward 

scanning integration time being smaller at inner rings than outward at the outer rings  
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4.1.5 Pyramid-bordered FDR Profile Control 

In this last mathematical manipulation of the FDR, we are concerned about the control of the 

FDR that has its border pinned at the outer ring of the pyramidal imager. This manipulation 

is based on a time shift of the ring integration time in both inward and outward scanning 

while preserving the condition of the outer ring integration time being the same for both 

inward and outward scanning schemes, as shown in the Fig  4.15 below. 

 

 
Fig  4.15 Control technique for pinned foveated dynamic range enhancement 
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Fig  4.15 shows the shifting of the inward and outward scanning in a pinned foveated 

dynamic range regime by a time period equal to Tspl (in solid lines) and 100Tspl (in dashed 

lines). In practice the above realization is made by delaying the start of the inward scanning, 

after each outward scanning, with the previously mentioned Txd period of time (see equation 

4.15). The next step is to wait an extra equal delay to the start of the inward and the outward 

scanning and this is what meant by “shift” above (Fig  4.15). Thus for example, 

TinTxdShift(r,R,Ts,Tspl,100Tspl) is the inward scanning ring integration time shifted by 

shift=100Tspl and similarly is ToutShift(r,Ts,Tspl,100Tspl). These definitions are 

mathematically developed.  

 

( ) ( ) ShiftTTRrTinTxdTxdTTRrtTinTxdShif splsspls += ,,,,,,, … (4.17) 

 

( ) ( ) ShiftTTrToutTxdTTRrToutShift splsspls += ,,,,,, … (4.18) 

 

But what is the impact of this time shift? To answer this question let us plot the resulting 

dynamic range using equation 4.5 for shifts of 0s, 50Tspl and 100Tspl. The resulting 

intrascene dynamic range enhancement for the above three case is shown in Fig  4.16.  
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Fig  4.16 Pinned foveated dynamic range enhancement versus shifting time 

 

It is apparent that increasing the shift of the pinned inward and outward scanning integration 

time results in a degradation of the FDR especially at the inner rings where its shows a clear 

change of the FDR shape. To have a clear view of the FDR degradation, the profile of the 

resulting FDR variation is plotted in 3D with respect to the values of the shift. This profile is 

plotted in Fig  4.17 below where shift periods are taken as multiple of Tspl. 
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Fig  4.17 Pinned foveated dynamic range enhancement versus shifting time in 2D 

 

With the change of shape of the FDR near the inner rings as mentioned earlier, the foveation 

property of the FDR fades away. However, an interesting finding can be drawn in this point 

when an intermediary shift of 18Tspl (18x3µs=54us) result an interesting shape of the FDR 

as shown in Fig  4.18.  
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Fig  4.18 Pyramidal dynamic range enhancement profile 

 

An interesting observation from Fig  4.18 is that the pyramidal imager hardware architecture 

supported with bouncing scanning scheme and with some scanning timing manipulation has 

generated a pyramidal dynamic range.  
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4.2 Restrictions of the FDR Mathematical foundations 

The above mentioned methods do not take into account the constraints of the real imager, 

especially the saturation of the photodiode voltage and the impact of various noise sources. 

In the following chapters the physical applicability of foveated dynamic range is examined, 

including the consequence of adding the physical constraints to this model. 

4.3 High Speed Imaging of Pyramidal Imager 

In this section, the sampling speed of the pyramidal CMOS architecture is compared to the 

equivalent (in timing and array size) classical CMOS architecture. First, the frame integration 

time is calculated for both architectures. Then, the ratio of the two integration times is then 

deduced and plotted for different sizes of CMOS imager. Note that we are dealing so far with 

square CMOS imagers and that we are using the parameters defined in the previous chapter 

section  4.1.1. 

We will examine the frame integration time of a rolling scanning of the pyramidal CMOS 

imager in which all rings will have the same integration time. In the rolling scanning, like in 

the raster scanning, the ring sampling will start from either the inner ring or the outer ring 

and will progress successively until the last ring after which it will start over from the first 

ring as shown in Fig  4.19, and hence the name of rolling scanning. This will lead to a 

uniform integration time for all imager pixels. Using the same parameters as in section  4.1.1 

(namely R, Ts and Tspl) and using simple mathematical calculation steps the estimation of 

pyramidal imager frame integration time FrameTintPyr for a rolling scanning will be 

developed. 
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Fig  4.19 Rolling scanning timing diagram 

 

From the timing diagram shown in Fig  4.19 frame integration time FrameTintPyr is estimated 

through the following equation.  

FrameTintPyr ∑
=

+=
R

s
sspl sTTR

1

, that is FrameTintPyr ( )1
2

++= RRTTR sspl  … (4.19) 

After simple mathematical manipulations FrameTintPyr formulation is simplified to:  

FrameTintPyr RTTRT s
spl

s 





 ++=

22
2 ... (4.20) 

It is worth mentioning that FrameTintPyr was calculated for a single segment out of the 8 

segments of the pyramidal imager because all of the segments are sampling the integrated 

image simultaneously. Therefore, frame integration time will the same as the single segment 

integration time.  

Using the same array of pixels with the same scanning timing parameters but with classical 

architecture of CMOS imager, the frame integration time FrameTintClass is extracted. First, 

recall the number of rings in the pyramidal imager is equal to half of the number of pixels in 
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one single row (or column) namely R=N/2 or N=2R. Besides, every row in classical CMOS 

imager will take the same amount of time to sample its data which is equal to Tspl + NTs. 

Multiplying the row sampling time by the number of rows 2R, the total time needed to 

integrate the whole image (FrameTintClass) will be equal to:  

FrameTintClass RTRT spls 24 2 += … (4.21) 

In order to simplify the comparative frame acquisition speed analysis we replace in the above 

two equations the value of Tspl with 3Ts. This replacement if due to the fact that Tspl includes 

3 switching cycles, while Ts include just one switching cycle, all mentioned in previous 

section. After replacement one gets the following two equations. 

FrameTintPyr RTRT ss 2
7

2
1 2 += … (4.22) 

FrameTintClass RTRT ss 64 2 += … (4.23) 

The frame rate is the inverse of the frame integration time, and from this definition we can 

evaluate the ratio of the pyramidal imager frame rate FRPyr over the classical imager frame 

rate FRClass by the following equation:  

( )
7
642

+
+==

R
R

FR
FR

RRatio
Class

Pyr  … (4.24) 

It is clear now from equation (4.24) that that the pyramidal imager is faster than the classical 

CMOS imager in acquiring images using similar timing parameters Ts and Tspl and for a 

similar square size of pixel array imagers. In fact, as the size of the imager increases the ratio 

between the pyramidal and classical imagers frame rates increase to a limit of 8 as shown by 

equation 4.24 and Fig  4.20. It is interesting to note that the ratio between the two frame rates 
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is also independent of the Ts, if we keep the ordinary approach of Tspl=3Ts, as shown in 

equation (4.25).  

8lim =
∞→

Class

Pyr

R FR
FR

 … (4.25) 

 

Fig  4.20 Fame rate ratio between pyramidal and classical imager of size 2R by 2R 

 

From previous analysis, it can be deduced that the high speed acquisition of the pyramidal 

CMOS imager compared to the classical CMOS imager is mainly due to the segmentation of 

the pyramidal imager into eight parallel sampling segments. This is why the ratio of frame 

rate between the pyramidal CMOS imager and the equivalent (in timing and size) CMOS 



 

  127

imager approaches the limit of eight. To generalize this fact, we conclude that any imager 

having N parallel sampling segments will outperform the sampling speed of the classical 

imager N times. This technique of dividing the imager into parallel sampling segments has 

been used previously  [91]  [92] to achieve higher frame rates, however, for the case of 

pyramidal imager the technique was rather a direct result of the 2D sampling (ring sampling) 

than an arrangement to segment the imager acquisition system. In fact, the only way to read 

out the sampled 2D ring is through the diagonal output busses that ultimately will need 8 

sample and hold banks aground the pyramidal imager.    

4.4 Pyramidal Acquisition Speed with Serial readout. 

In this section, the pyramidal frame rate speed is analysed and compared with that of the 

classical CMOS imager, assuming serial readout instead of the 8 segment parallel readout 

studied in the previous section. The serial readout of the pyramidal CMOS imager is made by 

sampling whole frame, ring by ring, into the sample and hold capacitors banks, and then 

reading the sampled values serially pixel by pixel through a single output buffer. 

First, the frame integration time (then frame rate) FrameTintPyrSerial (FRPyrSerial) formula of 

pyramidal imager using the serial readout as described above and the timing parameters 

described in section  4.1.1, is developed. Then, a frame rate ratio between FRatePyrSerial and 

FRClass is calculated and analysed. 

Frame integration is calculated by calculating the time needed to read a given ring (after 

sampling it to sample and hold capacitor bank) serially in circular shape. Summing these 

times will lead us to the whole frame integration time. 
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In order to sample and readout a given ring r, one needs to spend Tspl to sample the ring to 

the sample and hold capacitors to get both Vs and Vr, then to shift serially the (8r - 4) pixels 

of the ring for a period of time of (8r - 4) Ts. Therefore, FrameTintPyrSerial is calculated from 

equation 4.26 below.  

FrameTintPyrSerial ( )( )∑
=

−+=
R

r
sspl TrT

1
48  or FrameTintPyrSerial RTRT spls += 24 … (4.26) 

Knowing that the frame rate is the inverse of frame integration time, and using equations 

4.26 and 4.23, we deduce the ratio SerialRatioPyrSer_Class of FRatePyrSerial (inverse of 

FrameTintPyrSerial) over FRClass as shown in equation 4.27 below. 

( )
RTRT
RTRT

RTToSerialRati
spls

spls
splsClassPyrSer +

+
= 2

2

_ 4
24

,, … (4.27) 

It is clear from equation 4.27 above that for high values of R (imager size) the ratio of 

FRatePyrSerial over FRClass approaches 1. However, for smaller value of R the ratio of 

FRatePyrSerial over FRClass is higher than 1 and hence the pyramidal imager has faster frame 

rate than its equivalent classical imager.  

Recall that Tspl is the time spent for sampling a ring (or a row) into sample and hold capacitor 

banks for both Vs and Vr (after resetting the ring or the row), while Ts is the time needed to 

buffer out the sampled data from the sampling capacitor to off chip. Therefore, it is clear that 

the minimal value of Tspl is 2 Ts and the maximal value is relatively unbounded. Thus let us 

define a variable ( )sspl TT 2=β  in order to determine the impact of the relative sampling 

speed, between the ring (or row) sampling speed and pixel readout speed, on the frame ratio.  
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Fig  4.21 Relative ratio of pyramidal imager rate (serial readout) over classical imager’s 

 

The graph in Fig  4.21 shows plots of relative increase RelRatioIncrPyrSer_Class (in percent) of 

frame rate of pyramidal CMOS imager serially readout over the classical CMOS imager for 

different size of imager resolutions R, versus β. This increase is calculated based on the 

following formula.  

RelRatioIncrPyrSer_Class ( ) ( )( ) %1001,,,, _ −= αα RToSerialRatiRT sClassPyrSers … (4.28) 
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Developing equation 4.28 leads to the following simple equation 4.29 showing the 

independence of RelRatioIncrPyrSer_Class from Ts.  

RelRatioIncrPyrSer_Class ( )
R

RTs 2
,,

+
=

β
ββ … (4.29) 

It is apparent that for any values of β and R, the frame rate of the pyramidal CMOS imager is 

higher than that of the classical CMOS imager because of the positive value of 

RelRatioIncrPyrSer_Class. This relative increase of frame rates gets lower and lower for high 

imager resolutions as R increases until the pyramidal frame rate using serial readout will be 

exactly similar to the classical imager frame rate. Finally, it can be seen that the influence of 

the parameter β becomes apparent only at low resolutions, where it increases the ratio of 

pyramidal imager frame rate over that of the classical imager. This is obvious because as β 

increases, the scanning time will be more dependent on ring (row) sampling than on pixel 

out-buffering. Adding to this the fact the pyramidal imager has a number of rings that is half 

the number of rows in its classical equivalent imager, the influence of β becomes clearer. In 

fact as β increases, the ratio RelRatioIncrPyrSer_Class approaches 100% meaning that the 

pyramidal imager frame rate is two times higher than that of the classical imager.  

 Practically, the values of β is in the range of 1 to 2 leading to a maximum frame rate out 

performance of the pyramidal CMOS imager (using serial readout) that is 20% better than the 

classical CMOS imager for a resolution of 8x8 pixels. While this is clearly too small 

compared to common imager sizes, this result shows that inner rings (up to the 3rd ring for an 

8x8 array for example) are sampled faster using the serial scanning than their equivalent 

classical arrays (by about 20% for up to the 3rd ring for example). Due to the fact that inner 
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rings could be selected (and readout) independently of the remaining rings (for a specific 

imaging needs or applications) shows that even with the serial readout the pyramidal imager 

readout its fovea faster than an equivalent classical imager. This is an important aspect of the 

fovea region (which is the region of interest) of the pyramidal imager as it will possible to 

track (in time) fast moving objects compare to the classical imager. Therefore, this fact is 

another foveated attribute of the pyramidal imager beside the FDR enhancement.  

The present analysis shows that pyramidal CMOS image sensor is always faster than 

classical CMOS imager of equivalent size and scanning timing parameters. However, this 

high speed feature is more prominent in the case of acquisition segmentation into parallel 

readout channels, which is appropriate and original to pyramidal architecture, than in the case 

of serial readout. To conclude this section, its is worth mentioning that parallel segment 

readout scheme of the pyramidal imager is the readout of choice not only because of the fast 

frame rates its achieved, furthermore, because it is the most natural scheme to this 

architecture due to the fact that every segment has its own independent sample and hold 

banks of capacitors 

4.5 FDR Pinning Cost on Frame Rate 

In order to study the impact of the extra time Txd_exact paid for the pinning of foveated 

dynamic range, let us recall its value from equation 4.15 and divide it by the frame 

integration time of the pyramidal image sensor when sampling using bounced scanning here 

called FrameTintPyr_Bsc. In order to estimate the value of FrameTintPyr_Bsc one can use the 

diagram shown in Fig  4.19. Instead of the step back (rolling scan return) from the last (outer) 
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ring to first (inner) ring, the scan has to continue sampling from last ring to the first ring. 

Thus, it is straightforward to estimate FrameTintPyr_Bsc to be;  

FrameTintPyr_Bsc = 2 FrameTintPyr … (4.30) 

Therefore, using equations 4.15, 4.20 and 4.30 the ratio of Txd_exact over FrameTintPyr_Bsc 

will be;  

( )
( )RTTRT

TRTTTR
FrameT
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sspls

splsspls
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−−+

=
2

22
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_
2

2

_

… (4.31) 

From equation 4.31, the limit of the ratio of Txd_exact over FrameTintPyr_Bsc will be 

approaching 1 independently from the scanning parameters Ts and Tspl as shown in equation 

4.32 below. 

1
int

_lim
_

=
∞→

BscPyr
R FrameT

exactTxd … (4.32) 

Equation 4.32 implies that in order to pin the foveated dynamic range the imager has to delay 

the bouncing scan frame integration time by 100% for relatively large pyramidal imager 

array. Causing the bouncing scan frame integration time to double to pin the foveated 

dynamic range, the frame rate of the pinned FDR bouncing scan will be half of the regular 

FDR frame rate. 

Recalling that that bouncing scan frame rate is half of that of the non-bouncing scan (rolling 

scan) as deduced from equation 4.30, and recalling the ratio of the rolling scan of pyramidal 

imager of that of the classical imager frame rate from equation 4.25, one can reach the 

following equations; 
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4lim _ =
∞→

Class

BscPyr
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… (4.33.a) 

2lim _ =
∞→

Class

pFDRPyr

R FR
FR

… (4.33.b) 

FRPyr_Bsc and FRPyr_pFDR are frame rate of regular bouncing scan FDR and pinned FDR 

respectively. In conclusion, the extra delay spent in bouncing scan in order to realize the 

pinned FDR has caused the bouncing scan frame rate to be reduced to half of its regular 

value. Nevertheless, the pinned FDR frame rate is two times the frame rate of the classical 

image sensor frame rate using similar imager size and scanning time constants Ts and Tspl. 

4.6 Benefit of Foveated Dynamic range 

In this section, we will show one particular benefit of FDR in image acquisition if the 

pyramid sensor were to be constructed with analog-to-digital conversion (ADC).  

First, let us introduce the formula that converts dynamic range from decibels into significant 

bits needed in ADC. The formula is shown in equation (4.34). 











= 20

2 10log
dBDR

bitsDR … (4.34) 

Now, all formulae regarding DR in decibels can be converted into binary bits. In particular, 

let us convert the pinned FDR shown in Fig  4.12 and plot the result in the following Fig  4.22.  

Fig  4.22 shows the extra bits achieved due to intrascene dynamic range enhancement 

resulting from image fusion, to be added to the original bits generated from electro-optical 

ADC conversion bits. In uniform DR enhancement schemes such that mentioned in  [68] the 
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extra binary bits generated by DR are identical all over the enhanced image. However, in the 

FDR developed in our work, extra bit generated by DR enhancement is higher (in number) in 

the central region (fovea) and decreases towards the perimeter of the imager. This means, 

FDR actually minimizes the size of the generated images by allocating more resources (data) 

to the fovea region (which is assumed to be centred on the region of interest similar to the 

case of human fovea). That is exactly, the case for the human fovea, which has more 

interconnectivity between its photocells (cones) and the processing neurons (ganglions) than 

that of the peripheral retinal photocells (rods)  [4]. In fact, the former have a many-to-one 

interconnectivity (between photocells and processing neurons) configuration in addition to 

their relatively higher density, which explains their higher light sensitivity dedicating them 

for initiating vision at low light intensities. On the other hand, the cones have a one-to-many 

interconnection configuration with ganglion cells inferring dense representation of cones 

which explains the high contrast of human vision (and many mammalians’ vision) in the 

fovea (central vision) compared with the peripheral vision. In conclusion, as the low light 

vision (scotopic) is initiated at the retina periphery (despite the low contrast) and the high 

light vision (photopic) is well sampled in the fovea, this may implicitly mean the human 

higher DR is made by fusion between the two photocells making the dynamic range appear 

higher at the central region of retina and decreasing at the periphery, analogous to the 

pyramid sensor.    



 

  135

 

Fig  4.22 3D view of the pinned FDR expressed in binary bits 

 

4.7 Summary 

In conclusion, the pyramidal architecture, through its 8 parallel output channels and sample 

and hold banks and thanks to its 2D ring sampling, exhibits high speed acquisition capability 

compared to similar classical image sensors by a factor of up to eight. In fact, the minimum 

value of this ratio of frame rates of pyramidal architecture sampling over the classical imager 
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frame rate is equal to 2.5 in the case of 4 pixels (2 rows and 2 columns in classical imager or 

one ring in pyramidal imager). The value of the previous ratio increases very rapidly as 

shown in Fig  4.20 to reach the limit of 8. Our designed imager of 64x64 pixels is in fact 

about 7 times faster than its equivalent classical version of CMOS image sensor when using 

the same scanning parameters namely Ts and Tspl. Even using serial readout of the 

pyramidal imager, its frame rate performance outperform that of the classical CMOS imager 

again due to the 2D nature of rings sampling compared to the 1D sampling of the classical 

CMOS imager.  

We have also shown that using bouncing scanning in acquiring images by the pyramidal 

image sensor leads to an interesting foveated shape of intrascene dynamic range. Initially the 

border of this fovea was independent of the scanning parameters at about 71% of the ring 

size from the origin inner ring as demonstrated in section  4.1.2. We have suggested a 

practical method of how to pin the foveated dynamic range enhancement outer ring using 

some timing manipulation, as discussed in the section  4.1.3. A similar technique was tried 

out to get an inverse foveated dynamic range in section  4.1.4.  

The cost paid to get pinned FDR is a reduction of the frame rate of the pyramidal 

architecture. Finally, FDR enhancement cost was estimated in terms of memory consumption 

through needed binary bits for DR enhancement information storage. This has unveiled some 

similarity between the designed pyramidal architecture with FDR enhancement (memory) 

cost and the neural interconnectivity configurations in human fovea with its outstanding 

image sampling quality. 
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Chapter 5 

Testing and Characterization 

 

 

 

In the present Chapter we discuss the characterization process of the pyramidal imager 

starting from the experimental setup and continuing to the data analysis and the extraction of 

imager characteristics. The main objective is also to verify the mathematical analysis of the 

foveated dynamic range (FDR) developed in the previous Chapter. To do this, we develop a 

simple empirical model of the sensor photo-response which enables calculation of the output 

of any pixel for arbitrary illumination and integration time. From the model, the dynamic 

range enhancement of the pyramidal image sensor under bouncing scanning can be 

calculated and compared favourably with the ideal value found in the previous chapter.  

 

5.1 Testing Setup 

The setup of the testing apparatus is shown in Fig  5.1.   
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Fig  5.1 Experimental setup for the characterization of Pyramidal CMOS imager 

 

The testing equipment is built around a 500MHz INTEL Pentium III computer in a 

Windows2000 operating system environment. The computer system is used to synthesize and 

control the testing pattern of the different controlling signals to be sent to the imager under 

test. The imager will respond according to the electrical signals sent by the PC and the light 

intensity generated by a light intensity generator through a 540 nm (green) optical filter. To 

achieve an approximately uniform spatial intensity, the illumination is passed through an 

integrating sphere.  Over the entire output aperture of the integrating sphere (approx. 20 mm 

diameter), the uniformity is expected from manufacturer’s specifications to be 98%. Hence, 
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the illumination is assumed to be perfectly uniform for the relatively 4mm x 4mm sensor die. 

We used two Industry Standard Architecture (ISA) Master-Slave 32-bit output cards of the 

CompuGen3250 family of cards to generate electrical signals to control functionality of the 

imager. Analog signals were acquired from the imager, by a 2 channel, 16 bit resolution, 2.5 

MS/s acquisition Peripheral Component Interconnect (PCI) CompuScope1602 card. Both 

cards were made by Gage-Applied technologies corp.  

The signals patterns were generated using Matlab™ and Gagebit software that comes with 

the signal generation card. The latter generates the patterns in ASCII format and the former 

converts them into a binary format before loading them into the generation card. This method 

was later modified to automate the testing by using the Application Program Interface (API) 

that Gage Corp supplies with its card in order to interface them with other programming 

tools. To this end and to automate our acquisition we have chosen the graphical 

programming tool known as Labview™ along with the API’s of CompuGen and 

CompuScope to automate the generation and acquisition of images sampled at the image 

sensor under test, as Fig  5.2 depicts. 
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Fig  5.2 Software and hardware acquisition system 

 

The Labview program loads the digital pattern of the controlling signals into the CompuGen 

card. Among those controlling signals is a pulse (trigger) signal that will be used to 

externally trigger the CompuScope card to start sampling the data coming from the imager. 

Labview also controls the CompuScope card by specifying its sampling rate and number of 

samples to be acquired from the imager. Finally, the Labview program is used to automate 

the sweeping of the sampling frequency and save the acquired data for each sampling 

frequency.  

The pyramidal imager that is under test is a 64x64 pixel imager laid out on a 120 pin chip 

soldered on board and interfaced by 21 digital input signals and 16 analog output channels. 

These 16 analog output channels correspond to the VS and VR signals of the 8 pyramidal 

imager segments (as discussed in chapter 3). The digital signals are used for ring reset and 

select decoders as well as for the diagonal select decoders which output the sampled ring 



 

  141

down to the sample and hold capacitor banks around the imager (see chapter 3). Fig  5.3 

shows the different segments of the pyramidal imager and their corresponding channels 

beside the reset and select busses. Because of the limited number of acquisition channels (2 

channels of CompuScope) we multiplex the imager 16 channels to the 2 channels of the 

acquisition card by using three 16-channel/dual 8-channel (16-to-2) differential high 

performance CMOS analog multiplexers MAX307CPI. This multiplexing scheme is shown 

in Fig  5.4.  

 

 

 

Fig  5.3 Pyramidal imager segments and channels. 
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Fig  5.4 Multiplexing pyramidal imager 16 output channels to 2 acquisition channels 

 

Each multiplexer, Mux1 and Mux2, will select a pair of (VS, VR) corresponding to one of 

the 8 pyramidal imager segments according to the 3-bit binary codes C1 and C2 respectively. 

The output of Mux1 and Mux2 is fed to the input of Mux3 that will finally select from the 

two pairs (VS, VR) provided by Mux1 and Mux2. Based on the 1-bit address code, C3, 

Mux3 multiplexes two possible output pairs (VS1, VS2) or (VR1, VR2). This mechanism of 

multiplexing between the pyramidal imager clusters allows us to scan the imager segment by 

segment and hence we called this type of scanning, segment scanning. As can be seen, 

segment scanning is very flexible and can be circular or random, based on the image 

acquisition need. Furthermore, segment scanning is a kind of imager segmentation (different 

from image segmentation) that will allow the imager user to localize the acquisition to just a 
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part of the imager focal plane. For the pyramidal imager this area is of a triangular shape with 

its tip at the center of the imager. This technique is similar to multiple output tap techniques 

used in standard high-speed systems. 

In the multiplexing scheme described above, Mux3 outputs once (VS1, VS2) or (VR1, VR2) 

and hence two pulses of C3 are needed in order to perform CDS. Another method of 

multiplexing can be made by grouping (VS1, VR1) signals from the output of Mux1 and 

Mux2 at the S1 input of Mux3, respectively, and (VS2, VR2) at the other input port of Mux3. 

In this case we will have (VS1, VR1) or (VS2, VR2) multiplexed at the output of Mux3 

depending on the address code C3. Therefore, we can perform CDS at any given value of C3. 

Thus, we have developed two multiplexing schemes: 

• For one value of C3 VS signals (or VR signals) are available from two segments; to 

make the CDS we need to apply the other value of C3.  

• VS and VR are available simultaneously for one segment at a given value for C3.  

We called the first multiplexing scheme MaxINFO multiplexing and the second we called 

MaxFPN as the first presents two segment values (maximum information from imager) at a 

given time (or a value of C3), whereas the second present the maximum denoising possibility 

of VS from FPN noise by providing VS and VR at the same time.  

In all the subsequent data acquisition we will use MaxFPN multiplexing scheme and scan 

the imager’s 8 clusters one by one. One note worth mentioning in this step is that the frame 

rate is exactly equal to segment rate because all segments can be read out independently and 

in a parallel fashion. The multiplexing is only made for the sake of image reconstruction and 
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due to the limited number of acquisition channels. Fig  5.5 shows the board on which the 

imager was fixed with the multiplexers for the two multiplexing scheme. 

 

 

Fig  5.5 Board of the imager under test with the multiplexing implementation. 

 

5.2 Dynamic Range Calculation 

Dynamic range (DR) is a characteristic evaluation of any acquisition sensor determining the 

ability of the imager to sense low light and high light intensities. Usually DR is the ratio 

between the maximum detectable light intensity and lowest detectable light intensity in 

decibels. The maximum detectable light intensity is the light intensity that will start 

saturating the output voltage at a given integration time. The minimum detectable light 

intensity corresponds to the noise floor inferred light intensity. Corresponding interpretation 
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of these two limits is the maximum and minimum values of light intensity between which the 

imager is linear as shown in Fig  5.6. 

 

 

Fig  5.6 Dynamic range extraction from light intensity transfer function 

 

Here, Vcds refers to the output signal after CDS denoising that is (VR-VS). This parameter is 

used because of the low spatial noise of Vcds (as determined experimentally) and because 

VS represents the discharged voltage of the pixel photodiode, which is decreasing as light 

intensity increases. 
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5.3 Pyramidal Data Structure 

Image sampling using the pyramidal image sensor is different from that of the classical 

image sensor architecture as discussed in chapter 3. Consequently, its image readout is also 

different. Image reconstruction (or interpolation) is closely related to the image sampling 

technique. In the classical imager, the sampled rows are fed continuously to the image 

reconstruction memory locations in a serial fashion. In other words, the data structure 

indexing the classical imager pixels is based on two loops, a column loop inside the row 

loop. So, as the data acquired from the imager comes from raster scan, image reconstruction 

runs the two loops. As soon as column loop finished locating incoming data in the memory 

the column loop increments, and so on until the imager finishes the whole frame acquisition. 

For the pyramidal imager, we are dealing with rings and ring sequence, instead of rows and 

columns, which add more complexity to the pyramidal imager compared with the classical 

imager. In particular, each ring contains a different number of pixels, increasing from the 

inner ring towards the outer ring. This is not the case for the classical imager, in which the 

number of pixels in each row is equal and independent of the order of the sampled row. The 

data structure indexing the two imagers is shown in Fig  5.7. 
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Fig  5.7 Sampled data structure in pyramidal and classical imagers  

 

5.4 Data Analysis  

In this section we will first analyze the photo-response of the non-bouncing scanning before 

repeating the process for the bouncing scanning. We will extract the sensitivity of the imager, 

which is an intrinsic characteristic of the imager. Subsequently, this parameter will be used to 

build a model from which we can extract dynamic range of pyramidal imager and the 

enhancement FDR that bouncing scanning provides. 
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5.4.1 Non-Bouncing Scanning data analysis 

 

Fig  5.8 Vcds in RMS voltage the whole pyramidal imager for 8 integration times 

 

The plots rms1, rms2,…rms7, rms8 in Fig  5.8 represent the root-mean-squared (RMS) values 

of Vcds in millivolts (mV) for the 8 sampling frequencies 10KHz, 20KHz, 25KHz, 50KHz, 

100KHz, 200KHz, 500KHz and 1MHz, corresponding to integration times of 124.8 ms, 

62.4ms, 49.92ms, 24.96ms, 12.48ms, 6.24ms, 2.496ms, and 1.248ms, respectively. 
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5.4.2 Sensitivity 

Sensitivity is an intrinsic imager characteristic that shows the change of the output voltage 

with illumination. From Fig  5.8 we extract the sensitivity of the pyramidal imager by 

calculating the slopes of the different linear regions and plotting these slopes versus their 

corresponding integration times. The sensitivity of the imager (for Vcds) is the slope of the 

curve in Fig  5.9, namely
sW

cmV
µ

2

088.0 . 

 

 

Fig  5.9 Slopes of linear regions of photon transfer curve in Fig  5.8 
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Applying the same procedure on Vs (instead of Vcds) leads to the similar sensitivity value 

of
sW

cmV
µ

2

091.0 . This is a good match confirming that the pyramidal imager sensitivity value 

extracted is correct. 

5.4.3 Photon-response Modeling 

Using the extracted sensitivity value, one can verify the linearity of the imager with a 

simplistic model and hence extract the behaviour of the pyramidal imager in a bouncing 

scanning regime. Furthermore, the effect of the bouncing scanning on the deviation of the 

imager from the model will be discussed. The modeling of the imager is also useful for 

extracting the optical dynamic range of the imager and determining the enhancement that has 

been achieved by using this scanning scheme. These results are compared to the theoretical 

analysis presented in the previous chapter. 

From Fig  5.6, we have developed out our model for the Vcds (called hereafter VCDSout) 

knowing the value of the sensitivity and the by visual inspection of the graph in Fig  5.8 we 

can extract Vmin and Vsat (limits of linear region) and we find: 
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Similarly we get the following for VS (or VSout) 

 

 

 

 

 

 

 

The above model is not the exact model that represent the photo-transfer characteristic of 

CMOS imagers because of the lack of knowledge regarding the exact value of Vmin and 

correspondingly Lmin after which the imager start to linearly follow the light intensity  [2].  

Vmin (and hence also Lmin) correspond to noise floor of the imager which depends on the 

integration time and hence is not fixed. This will be clearer when examining the model plot 

in Fig  5.10 beside the plots shown in Fig  5.8 in the Fig  5.9.  

 

… (5.1) 

 

… (5.2) 
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Fig  5.10 Model plots and exact values of Vcds 

 

It is clear the gradients of the modelled curves follow the experimental photo-response 

curves of Vcds reasonably well, with the exception of some offset. In order to have a better 

vision about how well the model fits we plot the correlation of each Vcds photo transfer 

curve and its corresponding model curve and visualize the result over integration time as 

shown in Fig  5.11. 
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Fig  5.11 Correlation between the model exact curves of Vcds versus integration time. 

 

From above plot in Fig  5.11 we can see good correlation between the model and the Vcds 

curves but this correlation decrease for longer integration times and decreases further with 

short integration times. This means that the Vmin used in the in model was precise only for 

intermediate integration times such as 6.24ms, 12.48ms and 24.96ms. We will estimate later 

how this assumption affects the dynamic range enhancement calculation. 
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5.5 Bouncing Scanning and Dynamic Range calculation 

In this section we will present our method that enables us not only to get the intrascene 

dynamic range enhancement through the experimental data but also the dynamic range of the 

imager itself with the bouncing scanning. Therefore, in the next paragraphs will be dealing 

with the system dynamic range and the enhancement dynamic range. 

In order to calculate the dynamic range, we need to know the maximum light intensity 

detectable without saturation by the pyramidal imager (Lmax) as well as the minimum light 

intensity above which the imager starts its linear conversion of light intensity of electrical 

signal (Lmin). Then by applying the equation 5.2 one can get the value of the imager dynamic 

range that encompasses both the system dynamic range and the enhancement: 

 

( )minmaxlog20 LLDR = … (5.3) 

 

The value of Lmin corresponding to Vmin is not clearly extractable; by visual inspection we 

estimate the Lmin ≈ 5µW. Now, in order to estimate DR we will use the equation 5.1 (or 5.2) 

to calculate Lmax at which Vcds will reach its maximum value before saturation. We get for 

Lmax for both inward and outward scanning and then we choose the maximum between the 

two values and use it in equation 5.3 for determining the system dynamic range.  
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Fig  5.12 The pyramidal imager system and enhancement dynamic ranges 

 

In the graph plotted in Fig  5.12, CalculDR is the calculated dynamic range of the pyramidal 

imager as described in the previous paragraph (equation 5.3), OptDRMx_MnDet is dynamic 

range calculated from equation 5.4 below and finally, Theory_DRenh is the dynamic range 

calculation from equation 4.7.   
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First observation of the plots in Fig  5.12, which have been extracted at sampling frequency of 

1MHz, we can see the Theory_DRenh curve and OptDRMx_MnDet curve coincide. This is 

demonstrates that the intrascene dynamic range enhancement using two  [68] or many  [93] 

integration times primarily relies on expanding  Lmax rather than minimizing Lmin. This comes 

in accordance with the development of the DR enhancement techniques as discussed in 

section  2.6. 

We have seen in section 4.2 that there is no DR enhancement for ring 23 (in fact in between 

ring 22 and 23) and at therefore from the plot in Fig  5.12 we can easily deduce that the 

system dynamic range = 56.6dB which corresponds to the minimum of CalculDR at ring 22. 

Finally, after subtracting this value of the system minimum dynamic range from the imager 

dynamic range CalculDR we get the intrascene dynamic range enhancement plotted with 

square point in Fig  5.12. It is clear that the measured (CalculDR) and calculated 

(OptDRMx_MnDet) foveated dynamic range enhancement is close to the expected foveated 

dynamic range enhancement (Theory_DRenh) demonstrated in  Chapter 4. 

 In the following, some acquired images using bouncing and non bouncing (rolling) scanning 

are shown to demonstrate the foveated dynamic range enhancement achieved with the former 

scanning scheme. Note the dark ring (at ring Nº 23) in the images that is due to a mistake in 

the layout16 disabling the reset of that ring which its Vs values cancels its Vr values after 

                                                 

16 VIA23 between metal layer 2 and 3 connecting the reset decoder and the reset ring (ring No 10) was missing. 
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CDS operation resulting a black ring in the image. Besides, the starry view of the images is 

caused by the fixed pattern noise due to the dark current of localized lattice defects in the 

silicon substrate as mentioned in  2.1.6. 
 

 

 

 

 

Fig  5.13 Demonstration of foveated dynamic range enhancement at the foveal rings 

 

 

 

In Fig  5.13 are shown the inward scanned image (A), the outward scanned image (B), the 

fused image17 of (A) and (B) shown in (C) and the rolling scanned image (D). These images 

were taken with the pyramidal imager sampling the incident scene light intensity of 270 lux. 

For comparison sake, the fused image (built from inward and outward scanned images) and 

the rolling scanned image are sampled both at 8 fps (frame per second), which requires the 

bouncing scanned (the inward and outward) images to be sampled twice as fast as the non 

bouncing image. There sampling rate of the bouncing scanned images is 20 KHz while that 

of the rolling scanned images is 10 KHz. 

                                                 

17 The fused image of (A) and (B) is achieved by averaging their sum. 
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In the central region of the sampled image (or the imager’s fovea) a small light-bulb is set 

over a chair. The shape of bulb is more visible in the fused image (Fig  5.13.C) than in the 

rolling scanned image (Fig  5.13.D) that is faster approaching saturation in the bright region. 

The saturation effect is also visible in the inward scanned image (Fig  5.13.A), whereas its is 

absent in the outward bounced scanned image (Fig  5.13.B) in which the bright spot of the 

bulb is seen as small bright point. This is due to integration time profiles of the inward and 

bounced scanning enabling the latter to sample brighter light intensities than could the former 

(nor the rolling) scanning sample before reaching saturation. This explains the extended 

optical dynamic range of the fused image, in this case at the fovea region of the imager as 

predicted in  Chapter 4.   

The figures shown in Fig  5.14 were taken at a higher light and sampling rate levels in 

contrast to the previous set of acquired images, however, they represent the same nature and 

order of pictures as defined previously but for a different scene. The scene shown in Fig  5.14 

is of the author showing is right hand and back-lighted by a bright lamp. 

 

 

Fig  5.14. Manifestation of foveated dynamic range enhancement at the bouncing rings 
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The light flux at the imager was measured to be at 402 lux delivering frame rates for both 

scanning schemes of around 400 fps and corresponding to a sampling rate of 1MHz in the 

bouncing scanning and 500 KHz in the rolling scanning. Despite the fact of visible noise at 

the boundaries of the rolling scanned image (Fig  5.14.D) and the missed ring (ring Nº 23) 

mentioned earlier, the foveated dynamic range enhancement is more visible than in Fig  5.13. 

This fact is not a surprise recalling that the dynamic range is inversely proportional to the 

integration time and thus its enhancement is therefore more visible. 

The enhancement of range in Fig  5.14 is noticed in both bouncing boundaries, the fovea rings 

(at the central part of the imager) and the imager’s outer rings as anticipated in the previous 

 Chapter 4. For fovea rings, the hand details looks more visible in fused image (Fig  5.14.C) 

than in the rolling scanned image thanks to the inward scanned image extra sampled details 

nearby the bright spot. As for the outer rings dynamic range enhancement, it is visible 

through the details of the left eye noticeable only in the fused image thanks to the same 

argument mentioned earlier for the inner rings. 

It is now concluded that FDR enhancement is visible in measured images, as predicted in the 

previous chapter’s mathematical prediction. It should be noted that the magnitude of the 

optical dynamic range improvement in this sensor is limited to less than the ideal value by 

the high dark currents for this fabrication process. 

5.5.1 Foveated Dynamic range and Video Communications 

Video communication is of crucial importance for current and future image sensors. The 

ability of the imager to sample an image and communicate it in an optimal fashion, in terms 
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of transferred data, dynamic range and frame rate, is critical for this kind of application. 

Video communication has many application areas such as video phones and remote imaging 

such as space imaging and security systems. Our Pyramidal imager is a good example of 

such applications, especially videophones because of the limitation of the human eye in 

temporal sampling enables the use of fast imaging cameras to integrate the image sequences 

at the eye level. The pyramidal imager as seen earlier has the high frame rate property due to 

its high degree of parallelism in terms of video channels as well as the sampling dimension. 

Hence, using this property the bouncing scanning scheme can be adopted for sampling 

images and integrating inward and bounced images at the human eye. This will certainly 

enhance the intrascene dynamic range at the human eye without a need of local memories to 

make the fusion of both acquired images.  

5.6 Summary 

We have shown in this chapter an indirect method in estimating the pyramidal imager 

dynamic range without enhancement. In addition, we have shown the calculated foveated 

intrascene dynamic range enhancement is close to the theoretical foveated dynamic range 

developed in the previous chapter. Finally, based on the inherent high speed image sampling 

of the pyramidal image sensor we suggested to use the human visual system at an integrating 

system for the two frames resulting from the bouncing scanning which will result a foveated 

dynamic range in the observer visual system. 
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Chapter 6 

Pyramidal Imager Fixed Pattern Noise Low Perception by the 

Human Visual System 

 

Exploiting the limitations and characteristics of the human visual system has been widely 

used by image science, image processing and image compression, in order to minimize the 

complexity and hardware cost of many visual communication and display products and even 

lighting products. Examples include the persistence of vision to blend consecutive images in 

one smooth picture for TV and movies. Similar use is made in lighting devices such neon 

lamps. On the other side, and we shall discuss later that the human visual system is known by 

its impressive adaptation capability that takes some time to reach its steady state and this fact 

is actually the key factor the imaging engineers use in order to create the wanted illusion in 

the human observer’s vision. 

In this chapter we explore of the human visual system in discriminating oblique patterns 

(lines tilted by 45° or 135° compared to the cardinal axes at 0° and 90°) for resolving fixed 

pattern noise FPN. Firstly, we will discuss the topology of fixed pattern noise in classical 

image sensor architecture and in pyramidal architecture showing that FPN is distributed 

between columns that are obliquely oriented in the latter architecture. Then, we shall 

construct a novel spatial filter equivalent to the pattern discrimination filter of the human 

visual system in the fovea region of the retina based on empirical data. The resulting filter is 
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applied to the pyramidal image to determine how its FPN noise is perceived by a human 

observer  [94]. 

6.1 Fixed Pattern Noise 

The definition of fixed pattern noise as well as its sources is discussed in section  2.1.6. In the 

next section the topology of this noise is discusses further in both the classical CMOS imager 

and the Pyramidal CMOS imager. 

6.2 Fixed Pattern Noise Topology in Classical CMOS imagers 

The topology of the fixed pattern noise is found by analyzing the path the photo-signal 

undergoes off the imager chip is many caused by the different mismatches between these 

different paths used to buffer out the imager photo signals. The mismatch in the photo-signal 

transportation is due the variations that the generated photo-signal faces on its path off-chip 

such as those in pixel source follower. This particularly includes the mismatch of the offset 

and gain of the column amplifiers, double sampling circuits and other column-based systems. 

In the classical orthogonal CMOS imager architectures these cause a striped noise 

distribution  [95] as shown in the following Fig  6.1.  

Fig  6.1.a and Fig  6.1.c are typical images taken by a 64x64 CMOS image sensor before and 

after correlated double sample denoising respectively  [95]. Transferring the previous images 

into Fourier domain gives a nice picture about the how FPN noise topology is distributed on 

the classical imager’s rows and column. Fig  6.1.b and Fig  6.1.d are the Fourier transform 
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spectrums of Fig  6.1.a and Fig  6.1.c respectively, plotted in log-10 scale to highlight 

frequency spectrum details with emphasis on their high values.   

 

 

Fig  6.1 FPN noise topology in classical CMOS imager sensor 

 

 

 

It is clear that the classical imager output signal without CDS is highly uncorrelated, except 

for a short-narrow band of frequencies on the vertical axis near the DC region. This implies 

some correlation on the horizontal directions of Fig  6.1.a which are basically rows. This 

suggests that there is a short range correlation between pixels on the same row while there is 

almost no correlation between pixels on the same column. We note that Fig  6.1.a and Fig 
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 6.1.b include all the different noise sources present in the imager before CDS de-noising. The 

situation after CDS filtering is the reverse, with a higher degree of correlation between pixels 

on the same column than between adjacent pixels of the same row. This is clearly seen in Fig 

 6.1.d with the highest frequencies being concatenated on the horizontal axis and those of low 

energies scattered around it, which is just the reflection of the vertical stripes of the CDS 

filtered image as shown in Fig  6.1.c. The above frequency analysis is in good agreement with 

the results mentioned in  [95]. 

6.3 FPN Topology in Pyramidal CMOS Imager 

In the pyramidal architecture, diagonals have replaced columns of the classical orthogonal 

CMOS imager. At the base of these diagonals reside the sample and hold circuits. The 

different distribution of the FPN from column stripes in the classical CMOS imager to 

diagonal distribution topology is shown below. We do not show the image of our imager 

FPN before CDS filtering because we are more interested in noise that remain in final image. 
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Fig  6.2 FPN topology in a 64x64 pyramidal CMOS image sensor 

 

 

 

 

 

It is clear from Fig  6.2.a that diagonal stripes remain in the image after CDS even away from 

segment boundaries. This distribution is also shown by the diagonal Fourier spectra shown in 

Fig  6.2.b. This is a very interesting result especially if we consider the limitation of the 

human visual system (HVS) in resolving obliquely distributed contrast, known as the oblique 

effect  [96] (see below). 

6.4 HVS Pattern Sensitivity  

In this section we develop a new model for the HVS, including the relative insensitivity to 

obliquely oriented patterns. This is then applied to the FPN images to evaluate how a human 

see the FPN images of a pyramidal CMOS image sensor. Fig  6.3 shows the oblique effect 

found in the contrast sensitivity of the HVS at relatively high frequencies  [97]. 
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Fig  6.3 Oblique effect in the human visual system 

 

 

6.4.1 HVS Spatial Filter Model 

The human visual system is a complex system with many levels of image acquisition and 

image processing layers. We have restricted our scope to the spatial image acquisition of the 

HVS or what is widely known as the spatial vision. We adopted the spatial filtering modeling 

developed by Hugh R. Wilson  [98] in which the HVS is believed to process spatial patterns 

in parallel, utilizing at least six different ranges of spatial frequencies and perhaps a dozen 

different preferred orientations. This model was based on the assumption that a spatial filter 

for the HVS may be thought of as the psychophysical equivalent of a physiological receptive 

field. Thus, given a psychophysical unit centered at a particular point in the space of vision 

(or a single cell with a receptive field centered at a particular point on the retina), its 2D 

spatial filter determines the sensitivity of the unit to image luminance at each point in the 

visual space. In order to determine the characteristics of the individual filters, which 

correspond to the tuning properties of underlying visual mechanism, a well established 
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technique known as pattern masking  [98] was used. By applying this psychophysical 

measurement technique and analysis on human individuals it has been shown that masking 

data obtained in the fovea over a range of test frequencies from 0.25-22.0 cycle per degree 

(cpd) were consistent with the operation of the six spatial frequency tuned mechanisms 

plotted in Fig  6.4. 

 

 

Fig  6.4 The six human spatial pattern sensitivity filters  [98]  

 

The above graphs have been well fitted  [98] with the following function for the receptive 

fields (or HVS spatial filters in spatial domain). 
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The variables x and y represent spatial coordinates in the fovea in degrees or pixels and Ai, Bi, 

Ci, σ1,2,3i are fitting parameters of the suggested function of the receptive fields response. The 

above function describes a vertically oriented filter centered at the origin. For filters at 

different locations tuned to preferred orientations other than the vertical, one simply uses this 

equation in conjunction with the familiar equations for translation and rotation of 

coordinates. In order to compare this function with the masking data results, one has to use 

the Fourier transform of equation (6.1) which is shown with solid lines in Fig  6.4 in good 

agreement the acquired data.  The parameters shown in equation (6.1) have been discussed in 

 [98] and are shown in table 6.1.  

 

Table  6-1 Fitting parameters of the equation (6.1) for some fovea spatial filters  [98] 

Mechanism 

(Spatial 

Filter) 

Peak 

Frequency 

(cpd) 

Peak 

Sensitivity 
A B C σ1 σ2 σ3 

A 0.8 30.0 123.19 0.267 --- 0.198° 0.593° --- 

B 1.7 70.0 596.59 0.333 --- 0.098° 0.294° --- 

C 2.8 140.0 2046.13 0.894 0.333 0.084° 0.189° 0.253°

D 4.0 150.0 3141.85 0.894 0.333 0.059° 0.132° 0.177°

E 8.0 76.7 5129.43 1.266 0.500 0.038° 0.060° 0.076°

F 16.0 18.4 2457.71 1.266 0.500 0.019° 0.030° 0.038°
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6.4.2 Oblique Effect 

The spatial vision in human visual system as well as in many animal species is not 

anisotropic. It is more sensitive to stimuli (spatial patterns) that are oriented vertically or 

horizontally compared to those obliquely oriented. This effect is also defined as by the 

greater contrast needed by oblique contours to become visible. This reduced effectiveness of 

oblique contours compared to horizontal or vertical ones is referred as oblique effect  [99]. 

This phenomenon has been originally noted by Ernst Mach  [100] and later found in children 

and in numerous animal species  [101]. Although many studies have proven the existence of 

the oblique effect for both detection and discrimination, its origin remains still a mystery. 

The reader can refer to  [99] to review these attempts that tried to understand the functional 

origin of the oblique effect beside those authors’ own attempt in this regard. Despite the 

inability to pinpoint the cause of the oblique effect in the HVS, it is almost evident that the 

oblique effect is a result of an adaptation of the human visual system to match the spatial 

spectrum of most of the scenes human being sees in his everyday life  [102] [103]. Fig  6.5 

shows how anisotropic the spatial frequency power spectrum average of 500 images of 

various scenes such as persons, animals and pastoral landscapes  [103]. It is clear that the 

bandwidth of this averaging power spectrum is wider in the cardinal axis (horizontal and 

vertical) than in its oblique axis (45º and 135º).  
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Fig  6.5. Average spatial power spectrum distribution of about 500 scenes  [103]  

 

6.4.3 HVS Spatial Filter Construction Including Oblique Effect 

The model for building the HVS spatial filter is based on the work done by Wilson and 

published in  [98]. It is based on the assumption that a spatial can be thought as the 

psychophysical equivalent of physiological receptive field. In other words, a given 

psychophysical unit centered as a particular point in a visual space (or a single cell with a 

receptive field centered at a particular point in the retina), its two dimensional spatial filter, 

designed earlier as RF(x,y), determines the sensitivity of the unit to image luminance at each 

point in visual space. Consequently, the linear response of a unit can be calculated simply by 

convolving RF(x,y) by the image luminance or equivalently convolving the Fourier 

transforms of both the filter and the image luminance. Although the response of HVS to 

contrast is non-linear, this fact can be adequately handled by introducing an appropriate 
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nonlinearity following the filtering operation. What we are interested on at this stage is the 

neural image that the human visual cortex receives from the retina where each cell in its 

central region, called fovea, will exhibit the spatial response to the impinging image 

luminance based on the receptive field function RF(x,y) shown in equation 6.1 and using the 

empirical parameters values from in Table  6-1.  

The human retina is a multilayered structure on top another starting by ganglion cells that 

face the incident light and finishing by the photoreceptor cells layer that host the chemical 

photo conversion process converting incident light to a detectable photocurrent  [104] sensed 

by the connecting neurons that convert it into neural pulses. The retina anatomy reveals that 

the human visual acquisition system is composed of two categories of cells, the rods and the 

cones. The distribution of the visual cells (or photocells) is however not uniform, the cones 

being highly dense on the central region of the retina, named the fovea, and the rods being 

spread all over around in an almost circular symmetry  [4]. Fig  6.6 shows the location of the 

fovea in the human eye as well as the distribution density of rods and cones in this part of the 

human eye. 
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Fig  6.6 The distribution of rods and cones photoreceptors in human eye  [4] 

 

Fig  6.7 shows the overall anatomy of the human retina at the fovea region. 
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Fig  6.7 Cross section of the human retina near the fovea region  [4] 

 

To our knowledge, no spatial filter model exists for the oblique effect. Accordingly, the 

model described in previous section is used to construct a HVS spatial filter including the 

oblique effect by combining filters corresponding to filters (D) (E) and (F) from Fig  6.4 using 

their parameters mentioned in Table  6-1. These filters have been chosen because we have 

chosen to model the acquisition of the pyramidal FPN image as if it was viewed by an eye at 

a distance such that it will occupy only a small portion of the fovea that extends only to a 1° 

field of view around the eye visual axis. This region is also called foveola and it about 

350µm wide around the optical axis containing about 120 cones and is shown in Fig  6.7 by 

the retina region that has no layer on it except the photo receptors  [4]. Because our pyramidal 

image sensor is just 64x64 pixels, we need to expand the size of the image to fit the 120 

photocells to cover the 1° extension over the fovea. Hence, the imager picture will be 
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zoomed to double of its size pitch to (64x2)x(64x2), i.e. 128x128. Besides, to have the 

pyramidal imager FPN image laid on the foveola over 1º of expansion, the image needs to be 

put in front of the eye at a distance D and printed with edge equal to H where the two 

parameters must obey the following formula that simply says that the image expansion on 1º 

of fovea is equivalent to a viewing angle of 1º and is shown in Fig  6.8  [4]. 

( ) 017.01tan 0 ==
D
H … (6.2) 

 

 

Fig  6.8 Viewing angle calculation for image construction at the retina 

 

The foveola spatial extension will have significant response only from filters (D) (E) and (F) 

based on their corresponding peak sensitivities. Filters D, E have been rotated by 8 equally 

spaced directions 0º, 22.5º, 45º, 67.5º, 90º, 112.5º, 135º and 157º before being added in 
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spatial domain. Furthermore, and in order to have the oblique effect of the human vision 

included in the human spatial filters, the filter F have been added to the previously 

constructed filter only on cardinal axes (horizontal and vertical axis) before transforming the 

resulting filter in Fourier domain. Filter F will extend the final filter bandwidth on the 

cardinal axes to about two times the bandwidth of the HVS spatial filter at the oblique angles 

namely at 45° and 135°. This corresponds well to the measured response of the human eye to 

contrasting strips at various angles  [96] (see Fig  6.3). The final filter is shown in Fig  6.9 

where ωx and ωy represent the spatial frequency in cycles per degree (cpd). 

 

 

Fig  6.9 Fourier spectrum of the constructed HVS spatial filter 
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6.5 Pyramidal Imager FPN Perceptibility by HVS 

In order to estimate the effect of the HVS spatial filter to the obliquely distributed FPN noise 

of the pyramidal CMOS imager, a comparison is made between the response of the HVS 

spatial filter and a the same filter but tilted by 45º. This tilting is made in Fourier domain 

which is equivalent in the spatial domain as rotating the observed head by the same angle of 

45º following the rotation property of the Fourier transformation  [105]. These two filters and 

their spatial equivalents are shown in Fig  6.10. In this tilted arrangement the diagonals of the 

pyramidal sensor appear to the eye in the same way as a normal raster scan sensor. The 

reason of creating the second filter (HVS filter tilted by 45º) is to verify whether or not the 

HVS spatial filter has truly sensed the FPN noise of the pyramidal imager (see assumption 

below). The tilted HVS filter spectrum as well as its equivalent tilted face are shown in Fig 

 6.10.b2 and Fig  6.10.b1 respectively, while the normal face up HVS system along with its 

equivalent filter spectrum are shown in Fig  6.10.a1 and Fig  6.10.a2 respectively. 
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Fig  6.10 Pyramidal FPN noise perception by HVS experiment 

 

It is assumed that differentiating the response of the original normal HVS filter to pyramidal 

FPN image from that of the tilted HVS filter will show in principle whether or not the 

oblique FPN noise of the pyramidal CMOS imager is perceived less by the HVS. 



 

  178

6.5.1 Results and Conclusion 

Fig  6.11 below shows the steps taken to demonstrate how FPN based on the diagonal 

columns is perceived at a reduced level by the normal HVS. The tilted HVS is used for 

comparison because it effectively acts as if the columns are vertical with respect to the eye. 

Fig  6.11.A is the pyramidal FPN image and both Fig  6.11.D and Fig  6.11.G are its Fourier 

spectrum. Fig  6.11.E and Fig  6.11.I are the HVS normal vertical and 45° tilted filters 

respectively. Fig  6.11.F is the product of normal HVS filter and the FPN image.  

 

 

Fig  6.11 HVS perception verification steps operations. 
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Fig  6.11.J is similarly the product of the tilted HVS filter and the pyramidal FPN image. 

Finally, the figures Fig  6.11.B and Fig  6.11.C are the reverse Fourier transforms of Fig 

 6.11.F and Fig  6.11.J respectively. At first sight, both images Fig  6.11.B and Fig  6.11.C look 

very similar however if we subtract the normal HVS filtered image (Fig  6.11.B) from the 

tilted HVS filtered image (Fig  6.11.C) we get the following image in Fig  6.12. 

 

 

Fig  6.12 The subtraction image of Fig  6.11.B from Fig  6.11.C. 

 

Fig  6.12 shows many positive stripes that are obliquely distributed either along 45° or along 

135° axis that are existing on the tilted HVS filtered imager and absent on the normal HVS 

filtered imager.  
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Fig  6.13 Frequency analysis of oblique FPN suppression by HVS 
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To further analyse this result the above methodology has been applied over images of fixed 

pattern noise acquired at various frequencies and the results are displayed in Fig  6.13. As the 

integration time decreases with increasing sampling frequencies, more FPN noise starts to be 

apparent because of the creasing SNR. The topology of the FPN noise also increases its 

manifestation from vague random at 10 KHz to obliquely distributed above a sampling 

frequency of 50 KHz. In Fig  6.13 for each image the standard deviation std as well as the 

mean m of the image has been calculated. Following the evolution of these characteristic 

numbers, it is clear that very little correlation is observed between the mean or standard 

deviation and the image noise. This low correlation holds true in both the noise amount, as in 

between images of Fig  6.13.A and Fig  6.13.D, and noise topology, as in between Fig  6.13.B 

and Fig  6.13.F. This is to show the image quality quantification is still far from being fully 

solved problem and that confirms why human observation is an important part of image 

processing task  [62]. Finally, to further demonstrate the reduced perception of the pyramidal 

CMOS image FPN, one can notice the positive oblique noise residues remaining after 

subtracting the non tilted HVS spatial pattern filter from the oblique counter part and the 

close-to-zero18 values of the subtraction elsewhere especially visible in Fig  6.13.G and Fig 

 6.13.F. This shows a clear evidence of the absence of the obliquely distributed FPN noise in 

the HVS filtered image and its presence in the tilted filter and hence proves the low 

perception of the pyramidal CMOS image FPN noise by a human observer  [106]. 

                                                 

18 This region corresponds to the similarity in the low frequency content present in both filtered images which is 

expected from the shape of both filters.  
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6.6 Summary 

This chapter is a good example of an interdisciplinary research case namely between the 

electrical engineering responsible of design CMOS image sensors and human vision that 

interacts with the display of the acquired images. The discussion about the pyramidal CMOS 

imager has been developed in previous chapters and in this chapter we mainly discussed 

human vision spatial pattern filtering property. After discussing the physiology of the retina 

we used psychophysical analysis that lead us to the construction of the HVS spatial filter 

including the oblique effect. This inclusion served us later to demonstrate qualitatively the 

low perception of the human visual system to the obliquely distributed FPN noise of out 

pyramidal CMOS imager sensor.  
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Chapter 7 

 Multiresolution CMOS Image Sensor 

 

7.1 Introduction 

Images consist of data representing spatial information (and temporal information in the case 

of video images) which can be analysed by software programs to extract certain information 

for clustering and classification purposes. These image processing tasks go slower and 

consume larger electrical and computational power with increasing image resolution and 

therefore ultimately result in a bottleneck for high speed imaging applications. Consequently, 

data reduction sampling architectures are needed to facilitate image processing without 

compromising the useful information required by image processing algorithms. One 

promising method for achieving selective data reduction is the concept of a multi-resolution 

sensor in which the sampled image contains regions of the highest possible resolution 

covering the region(s)-of-interest (ROI); other regions of less importance can be sampled at 

lower resolutions. Similar vision architectures are found in biological vision systems  [4]. We 

think that CMOS image sensors are the only candidate for such vision systems due to their 

architectural flexibility compared with their CCD counterparts. 

7.2 Multiresolution CMOS Imagers 

A particularly interesting image sampling technique dedicated for low power and high-speed 

imaging, known as multiresolution image acquisition, has recently attracted the interest of 
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many researchers ( [107],  [108],  [109],  [110]). In the previous implementations of 

multiresolution image sensors, averaging of the photo-signals within a cluster of pixels, or 

kernel, was used to reduce resolutions in regions of non-interest while maintaining the 

maximal imager resolution in the area(s) of interest. Multiresolution CMOS image sensors 

were inspired by the pixel binning technique used in CCD technology to enhance the photo-

signal to noise ratio and frame speed of the camera at the expense of reduced spatial 

resolution. Thus, multiresolution imaging is meant for enhancing the temporal resolution at 

the expense of spatial resolution. Adding the advantage of random accessibility found in 

CMOS image sensors, programmable pixel binning (or averaging) over the whole CMOS 

image sensor becomes a relatively straightforward implementation. Multiresolution CMOS 

imaging has been so far implemented at the column and chip (frame) levels, requiring 

relatively large control circuitry. The reason for the high silicon area consumption is because 

pixel averaging is performed outside the pixel, and requires analogue memories, such as 

capacitors, to store pixel-sampled voltage. 

In our implementation, the pixel binning is realized inside the image sensor array in between 

the pixels themselves. This allows the multiresolution decoders to have higher controllability 

over the region-of-interest size and location (instead of using the banks of shift registers as in 

previous designs). The schematic and layout of the suggested multiresolution pixel are shown 

in Fig  7.1 and Fig  7.2 respectively.  
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Fig  7.1 Schematic of the proposed multiresolution pixel19 

                                                 

19 For the description of the multiresolution pixel input and output signals please refer to section  7.4 
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Fig  7.2 Layout of the multiresolution pixel 

 

7.3 Multiresolution Pixel Structure 

As shown in Fig  7.1, the pixel structure comprises eight MOSFETs, two PMOS and six 

NMOS, as well as an NMOS capacitor and an N+/Psub photodiode. Transistor M0 is the 

reset transistor for both the photodiode and the sampling NMOS capacitor M3. The 
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photodiode is separated from the sampling capacitor M3 by a shuttering NMOS switch M2 

that is locally controlled by one of the lateral multiresolution decoders. We revisit these 

decoders later when we discuss the whole system operation. The last classical components of 

the standard CMOS photodiode pixel are M1 and M4, which represent the pixel buffer 

(source follower) and select transistors respectively. Finally, we get to the structure of the 

multiresolution at the pixel level comprising the transistors M5, M6, M7 and M8. The 

NMOS transistor M5 and the PMOS transistor M7 are responsible for column averaging, 

while the PMOS transistor M8 and the NMOS transistor M6 are responsible for row 

averaging.  

7.4 Pixel Averaging and Readout  

Before going further into detail, it is worth mentioning that the photodiode cannot be reset 

above VDD-VT due to VT drop across M0, as can be concluded from the diagram shown in 

figure 4. The multiresolution structure is controlled by three digital signals namely, row 

average (RA) signal, row average support (RA_supp) and column average (CA) signal as 

shown in figure 4. The photodiode and the sampling capacitor M3 are reset first at the 

beginning of the integration time through transistors M2 and M0. Then the shuttering 

transistor M2 is opened to allow the photodiode to integrate the incident light while the 

NMOS capacitor M3 is being reset. At the end of the integration time, the reset transistor M0 

is open while the shuttering transistor M2 is closed, for a short period to allow the sampling 

of the integrated photo signal by the NMOS capacitor. At this stage, the sampled photo 

charge is averaged through the switch network as follows. The kernel to be averaged is 
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programmed though the multiresolution decoders that generate the control signals RA, 

RA_supp and CA as shown in figure 6. When RA signal is high PMOS transistor M8 is OFF 

regardless the signal RA_supp. When RA becomes low and RA_supp is high (VDD), M8 is 

ON and the gate of the NMOS M6 is at VDD enabling it ON, and the photo charge is mixed 

between current pixel NMOS capacitor and the next pixel in the same column (ToNXclP). 

This effect does not happen when RA and RA_supp are both low. This concludes the row 

averaging mechanism. For the column averaging to occur, only the photo-charge of the 

current pixel and that of the next pixel in the same row (ToNXrwP) have to be mixed. This is 

only possible when the NMOS transistor M7 is ON, in which case it can only happen when 

the CA is high and the RA is low. This is a very important result in building the charge 

mixing, and hence voltage averaging, mechanism leading to the implementation of any 

arbitrary kernel size and resulting in a highly flexible multiresolution configuration.  

7.5 Pixel Multiresolution Implementation 

 The proposed multiresolution technique has been implemented in 0.18 µm Salicide CMOS 

technology (briefly described in section  3.1) with 64x64 pixels and three fundamental kernels 

namely 2x2, 4x4 and 8x8. We call them fundamental kernels because of their square shape, 

but this is not a limitation of the proposed multiresolution scheme. Hence, through the 

multiresolution decoders, one can program kernels such as 2x4, 4x2, 2x8, 8x2, 4x8 and 8x4 

of rectangular shapes either horizontally or vertically. This is a specific advantage of the 

present suggested multiresolution scheme over the one suggested earlier  [107]. This 

particular advantage allows different resolution and hence different spatial filtering in the 
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horizontal and the vertical image axes of the sampled image. The high-speed imaging 

property of the multiresolution CMOS image sensor is realized through the sub-sampling of 

the output of the kernels. Therefore, only one pixel of a given averaged kernel is readout in 

the sub-sampling mode without having spatial aliasing in high frequency regions, eliminated 

through the spatial frequency low-pass filtering property of spatial averaging.  

A physical description of the multiresolution CMOS image sensor layout is illustrated in the 

following Table  7-1. 

 

Table  7-1 Physical characteristics of the multiresolution pixel 

PIXEL CHARACTERISTICS
PHYSICAL 

VALUE 

Pixel pitch 15.292 µµµµm 

Pixel area 233.845 µm2 

Active area 79.644 µm2 

Fill factor 34.06 % 

Active area perimeter 35.698 µµµµm 

Power supply voltage 3.3 V 

 

One notable characteristic of the multiresolution APS is its low fill factor due the 

implementation of charge averaging (in addition to electronic shuttering) circuitry in pixel. 

The multiresolution CMOS imager has been under an extensive test for a long period of time 
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however, no satisfactory photo-signal has been recorded to-date. The reason for this is still 

unclear.  

The methodology to test our multiresolution CMOS imager was based increasing 

functionality complexity step by step. This means to acquire the whole sampled image at the 

highest spatial resolution and disabling the use of in-pixel sample and hold circuitry by 

keeping the shutter transistor open all time. With this setting the multiresolution imager was 

exposed to variable lighting conditions at different biasing levels of the imager source 

followers. No dependence between the acquired electrical signal and the incident light 

intensity was found. The nest step that was investigated was to get back to the layout and re-

simulate its constituent blocks and verify their interconnection. This step did not show any 

inconsistencies. Back to the testing setup, all the Printed Circuit Board (PCB) (mounting the 

multiresolution imager) connections were tested with the board input and output ports. Yet 

again, no anomaly was found and all the connections were consistent. The last component of 

the testing setup namely the testing pattern was verified and the signals were exactly what 

they were intended to control in imager under test. All these steps were carried many times 

and unfortunately, no mistake has been found the testing setup and thus the only possibility 

remaining to us was a mistake in the fabrication process of the multiresolution imager. It was 

only lately suggested to send the imager to Ottawa-based professional laboratory known as 

MuAnalysis Incorporation20 specialised failure analysis of integrated circuit using optical 

                                                 

20 http://www.muanalysis.com/ 
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techniques. This remains a future work due to the time and cost limitation of the present 

research programme. 

Nevertheless, some simulated results based on the functionality of the imager have been 

achieved and are shown in the following figures. 

 

 

Fig  7.3 A multiresolution image of centric foveation    
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Fig  7.4 A multiresolution image of random foveation    

 

Fig  7.5 A multiresolution image with a horizontal kernel averaging 
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Fig  7.6 A multiresolution image with a vertical kernel averaging 

 

Fig  7.3 shows simulation results of the multiresolution acquisition with all the available 

averaging kernels of square shapes with decreasing sizes from the outer area towards the 

inner region that does not suffer from any averaging. This is similar to the human fovea that 

is centric in the human vision where charge sharing mimicking in interconnectivity 

configuration of the ganglion cells hooked to the peripheral rod photocells  [4]. The next 

figure, Fig  7.4 shows the programmable foveation capability of the multiresolution imager to 

any region of the imager’s focal plane. The last figures, Fig  7.5 and Fig  7.6 shows the 

importance of averaging kernel shape in preserving or destroying the spatial frequency 

content of the resulting image. Thus, for example, the tie shape was clearer with the vertical 

kernel than with the horizontal kernel averaging because of its vertical shape.        
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Chapter 8 

Conclusion 

 

With increasing market demand for CMOS image sensors with higher resolutions and 

frame rates, data throughput can reach a bottleneck. New sampling architectures and 

scanning schemes are potential methods for minimizing the transferred data without affecting 

(or with minimal effect on) the information carried by this data. Towards this end, benefiting 

from architectural flexibility of CMOS imaging technology, a new sampling architecture 

called the pyramidal architecture has been suggested. Inspired by biological vision, the 

pyramidal CMOS imager was implemented on the basis of 2D ring sampling and diagonal 

output buses instead of the 1D row sampling and vertical buses used in classical CMOS 

image sensors. This hardware transformation of the sampling process has been further 

supported by a new scanning scheme called bouncing scanning to replace the raster scanning 

widely used in classical CMOS imagers. 

This change of sampling paradigms has many consequences that are mathematically 

analysed in  Chapter 4. It has been found that the inherent parallelism in pyramidal image 

sampling results in a high frame rate capability compared to that of the classical CMOS 

imagers. On the other hand, bouncing scanning and fusing the two resulting frames provides 

a dynamic range enhancement that is higher in the inner ring (at central part) of the 

pyramidal imager and decreasing outwards. This shape of dynamic range enhancement is 

analogous to that of the human fovea, so the enhancement is called foveated DR. 
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Practically, fusing two frames to extend the dynamic range is costly in terms of memory to 

store the two frames. A remedy to this problem would be to include a local memory (analog 

or digital) and an adder locally at the pixel level which will somewhat decrease the fill factor 

and the imagers spatial resolution. Further development of CMOS technology will allow in 

future integrating more functionality at the pixel level.  

 Chapter 5 presents the experimental verification of the foveated dynamic range. It did not 

include the noise analysis to determine the dynamic range of the imager either with or 

without the bouncing scanning. Instead an indirect method has been used to estimate the 

dynamic range and its foveated enhancement (when using the bouncing scanning).   While 

this is an acceptable method in CMOS imagers’ characterization, the explicit inclusion of the 

noise would bring more useful insight about the impact of the bouncing scanning on the 

imager noise performance, especially at the bouncing edges. Despite this fact, experimental 

results have shown acceptable matching between theoretical and experimental foveated 

dynamic range enhancement profiles.  

The interaction between the pyramidal imager output and the human visual system has been 

introduced in  Chapter 6. The fixed pattern noise topology of the pyramidal CMOS imager 

was analysed and been demonstrated to follow an oblique distribution. The human visual 

system is known to be less sensitive to oblique patterns compared to the cardinally (i.e. 

horizontal and vertical) distributed spatial frequencies. A model of the HVS pattern 

sensitivity based on empirical data has been constructed and applied on an FPN dominated 

pyramidal CMOS imager sampled data. This analysis was carried out on images acquired at 
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increasing sampling frequencies, with which FPN is known to increase as well. The 

qualitative comparison between the filtering performance of the normal and the tilted (by 

45º) HVS filter was used to verify the presence (or absence) of the FPN noise in the HVS 

filtered image. The analysis has shown that a certain amount of the pyramidal FPN noise was 

present in the tilted HVS spatial filter and absent in the tilted filter, which implies that the 

oblique FPN noise was filtered out by the human vision system spatial pattern filter. The 

reduced perception of the pyramidal imager FPN noise by a normal human observer was 

therefore evident. The present application of HVS modeling to the design of CMOS image 

sensors is, to our knowledge, the first of its kind. By incorporating an understanding of how 

the image is perceived by the viewer, system resources can be deployed optimally. 

While the pyramidal CMOS image sensor was mainly a system level approach to design a 

“more-human-like” imager to maximize the information over data ratio, the multiresolution 

imager was primarily a device level approach to this goal, as discussed in  Chapter 7. This 

architecture, in contrast to previous attempts, was based on implementing the multiresolution 

mechanism at the pixel level. This is to ensure programmability and expandability of the 

multiresolution functionality of the imager for high resolutions. Experimental data analysis of 

this architecture would have brought more useful information regarding the charge sharing 

mechanism used to decrease resolution on programmed areas of less-interest. It would also 

help to get a better picture about how fast (frame rates) this architecture can achieve 

including the dependence of frame rates on averaging kernels and its impact on image 



 

  197

quality. Unfortunately, the chip did not pass the testing phase for unknown reasons and thus 

it remains a future work to be carried on.       

8.1 Future Work and Perspectives 

More work need to be done to benefit from the architecture flexibility of CMOS imaging 

technology either to minimize the drawbacks of using this imaging technology (compared to 

the CCD imaging technology) especially the relatively higher FPN noise, or exploit its 

integration capabilities. Biological vision systems can give a great help in synthesising novel 

architectures exhibiting more adaptability, to light intensity for higher ranges and spatial 

resolving power. The Pyramidal CMOS imager and the multiresolution CMOS imager are 

first steps towards this vision. 
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