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Abstract 

The recent growth in wireless communications presents a new challenge to multimedia 

communications.  Digital image transmission is a very common form of multimedia 

communication.  Due to limited bandwidth and broadcast nature of the wireless medium, it is 

necessary to compress and encrypt images before they are sent.  On the other hand, it is important 

to efficiently utilize the limited energy in wireless devices.  In a wireless device, two major sources 

of energy consumption are energy used for computation and energy used for transmission.  

Computation energy can be reduced by minimizing the time spent on compression and encryption.  

Transmission energy can be reduced by sending a smaller image file that is obtained by 

compressing the original highest quality image.  Image quality is often sacrificed in the 

compression process.  Therefore, users should have the flexibility to control the image quality to 

determine whether such a tradeoff is acceptable.  It is also desirable for users to have control over 

image quality in different areas of the image so that less important areas can be compressed more, 

while retaining the details in important areas.  To reduce computations for encryption, a partial 

encryption scheme can be employed to encrypt only the critical parts of an image file, without 

sacrificing security.  This thesis proposes a scalable and secure image representation scheme that 

allows users to select different image quality and security levels.  The binary space partitioning 

(BSP) tree presentation is selected because this representation allows convenient compression and 

scalable encryption.  The Advanced Encryption Standard (AES) is chosen as the encryption 

algorithm because it is fast and secure.  Our experimental result shows that our new tree 

construction method and our pruning formula reduces execution time, hence computation energy, 

by about 90%.  Our image quality prediction model accurately predicts image quality to within 2-

3dB of the actual image PSNR. 
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Chapter 1 – Introduction 

1.1 Motivation 

With the increasing demand and advances in digital image technology, many cellular 

phones and personal digital assistants (PDAs) are now equipped with colour displays and digital 

lens.  Users can now take and send pictures to share with others very conveniently with these 

embedded devices.  The increasing popularity of wireless digital image communication presents a 

new challenge to image compression and encryption.  This is because the requirements for sending 

images in a wireless environment with handheld portable devices are in many ways different from 

a conventional environment. 

Wireless communication differs from wired communication in several ways.  First, wireless 

communication has a different security requirement.  Wireless medium is physically insecure 

because anyone can receive the signals in open air.  Therefore, to avoid unauthorized access to the 

data, it is necessary to encrypt the data before it is sent.  Also, wireless medium has a much lower 

bandwidth than wired medium.  In addition, wireless communication is often asymmetrical: the 

uplink is often much slower than the downlink.  For example, the latest European Universal 

Mobile Telecommunications System (UMTS) standard for 3G cellular systems can be configured 

in asymmetrical mode to allocate more channels for downlink [1].  Therefore, it is necessary to 

compress the data before transmission to save transmission time, since the uplink may be slow 

even for such “high-speed” wireless systems.  The inherent insecurity and lower bandwidth of the 

wireless medium and limited energy in wireless devices call for the use of a good compression and 

encryption algorithms before an image is transmitted. 

Portable devices run on a limited energy source such as batteries.  Therefore, to prolong 

the time before recharging or replacement of the batteries, energy utilization must be efficient. 

From a software perspective, there are several strategies for optimizing energy [2], [3], [4].  These 

strategies focus on minimizing the energy cost for computations and memory accesses.  For a 

wireless device, in additional to energy costs for computations and memory accesses, energy used 

for RF transmission is also a significant source of energy consumption.  Therefore, the total energy 
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consumption consists of energy used for computations, data accesses, and transmission energy.  

This thesis focuses on reducing the computation energy and transmission energy since they are the 

two most significant sources of energy consumption.  It is found in [5] that a typical CPU for 

PDA consumes about 90-150mW in running mode, 36mW in idle mode, and 0.9mW in sleeping 

mode.  The transceiver consumes about 210-540mW for transmitting and 180-240mW for 

receiving data.  Therefore the power used for computation and transmission is quite significant.  

The energy consumed is equal to the power multiplied by the actual execution/transmission time 

it takes for such tasks; hence, to minimize computation energy, one can reduce the execution time 

of the compression and the encryption algorithm, so that less energy is consumed in the switching 

activities in the processor when computing.  To reduce transmission energy, one can reduce the 

amount of data to be sent, which is achieved by reducing the image file size by compression. 

The compression and encryption system must maintain a good quality for the image.  

There are often tradeoffs between these different goals.  For example, to have a higher quality 

image, the image would often require more storage space, which increases the energy cost for 

encryption and transmission.  As another example, to increase security, it would cost more energy 

to encrypt the image by selecting a more secure key and block length and/or increase the fraction 

of the file to be encrypted.  Although the study of image quality and execution time tradeoff is not 

a novel idea, it deserves special attention for a wireless device because of its limited computation 

power, memory and energy source.  At the time of writing, a typical PC consists of a 2.8GHz 

processor, with 512MB RAM.   A typical PDA (e.g. PalmOne Tungsten T3) consists of a 400MHz 

processor, with 64MB RAM, which is only a fraction of the computation power and memory 

available to a PC.  Therefore, it is especially crucial for the image compression and encryption 

system to be optimized for a wireless PDA. 

Because of these energy/image quality/file size tradeoffs, it is necessary for the image 

representation system to be flexible and scalable.  It is the end user who needs to ultimately decide 

how secure and how good that an image has to be.  Therefore, the user should have the flexibility 

to be able to control the security level and quality level of the image.  In summary, the main 

requirements for wireless devices for image communications are: 
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1. Image Quality – Images should be of acceptable quality to the user.  The perception 

of image quality is important.  The compression system should retain the details of 

the perceptually important areas of the image. 

2. Compression – Images should be compressed to reduce bandwidth requirements 

and save transmission energy costs. 

3. Security – Since anyone can intercept the signals in the wireless medium, images 

should be encrypted to provide privacy.  At the same time, encryption energy costs 

should be minimized by minimizing the amount of data that need to be encrypted. 

4. Scalability – The image representation system should allow flexible compression.  

Since image quality is often compromised in the compression process, the image 

representation system should provide a mechanism to facilitate convenient 

manipulation of the image according to user requirements.  For example, it should 

allow the image to compress at different compression ratios.  It should also allow 

the user to use different compression ratios for different regions of the image such 

that the details in the perceptually important regions of the image are retained. 

5. Energy Efficient – The image representation system should be kept simple so 

that the wireless devices should be able to generate, compress, and encrypt an 

image with a few computations.  This saves computation energy costs in an energy 

constrained wireless device.  Transmission energy cost is reduced by using an 

efficient compression system to reduce the amount of data being sent by the 

transceiver. 

This thesis proposes an image compression and encryption system that is energy efficient, 

provides a mechanism for tradeoffs in image quality, and provides the users the flexibility to adjust 

the image security and quality as desired.  Ideally, the system should be able to adapt to changes in 

the environment.  For example, when the bandwidth is low or when the battery energy is low, the 

application should be able to adjust the image quality and security settings.  The work presented 

here provides the flexibility to accomplish that by allowing user to supply different input 

parameters.  This work can be extended to fit as part of a Quality of Service framework such as 

the one proposed in [6]. 

3 



To provide flexibility and high compression performance, while still being energy efficient, 

this thesis proposes to use the Binary Space Partitioning (BSP) tree structure to represent an image 

[14].  BSP tree representation allows convenient compression to different image quality in 

different regions of the same image.  The tree structure also allows convenient scalable encryption.  

Because of the tree structure representation, only a fraction of the entire image file needs to be 

encrypted while still providing good security.  We have selected the Advanced Encryption 

Standard (AES) as the cryptographic algorithm, although BSP tree representation will support any 

block cipher algorithms such as DES or RC4.  To enhance compression ratio, advanced coding 

techniques can be incorporated into our proposed system. 

1.2 Contribution 

The thesis’s contributions are: 

1. We have presented a simple yet efficient BSP tree construction technique for 

quickly converting an image into the BSP form.  This technique is presented in 

Section 3.2.1. 

2. We have extended an existing BSP greyscale image compression algorithm 

proposed in [14] to work for colour images in Section 2.2.3.  We have also 

proposed a new compression scheme to compress colour images by using a colour 

index table in Section 3.4.3. 

3. We have proposed a new pruning formula for calculating node errors in BSP tree 

lossy compression in Section 3.4.1.  This formula is especially effective with our 

new tree construction method. 

4. We have applied the concept of partial encryption to BSP tree compression.  See 

Section 3.5. 

5. In Section 6.5, we have introduced the concept of selective threshold for images.  Our 

system allows the user to select a different image quality level for different areas of 

the image.  This allows the user to compress the image without losing the details in 
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important areas of the image; thus, the impact on the perception of image quality is 

minimal. 

6. We have analyzed the relationships between image quality and different pruning 

parameters.  Using these relationships, we have introduced an image quality and 

file size prediction model in Section 6.6 and Section 6.7 for predicting the resulting 

image quality before the image is generated. 

1.3 Thesis Outline 

This thesis is organized as follows.  Chapter 2 –Background and Previous Research gives the 

background concepts required to understand this thesis.  It also discusses some previous work on 

related areas.  Chapter 3 –Methodology gives the system overview of the components of the proposed 

system.  Chapter 4 –Experimental Setup and Metrics  shows how the experiments are set up.  Chapter 

5 –Experimental Results shows the experimental results by varying different parameters.  Chapter 6 –

Analysis analyzes the new proposed scheme in detail.  Finally, Chapter 7 –Discussion and Conclusion 

discusses how the results in this thesis compare to from previous work, followed by a summary of 

the advantages and limitations of the new scheme and the concluding remarks.  It will also 

highlight some future directions for the thesis work. 
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Chapter 2 – Background and Previous 

Research 

2.1 Image Compression 

Image compression algorithms reduce image size by removing redundant information.  

Compression can be lossless or lossy.  In lossless compression, no image data is lost.  The 

compressed image looks the same as the original image.  In lossy compression, the compression 

process removes data to compress.  There will be a loss in image quality and the compression 

process is irreversible, meaning that one can never get the original image quality back after the 

compression. 

2.2 Binary Space Partitioning of Images 

2.2.1 Overview 

Binary space partitioning (BSP) tree has been used in several application areas.  First, it is a 

convenient representation for 3D-graphics for representation of spatial relationship between 

objects.  It allows easy determination of which objects should lie in front of or hide from the other 

objects, thus allowing quick rendering of visibility of object surfaces [9],[10].  It also has important 

applications in image processing.  For example, since information that is more important is 

organized closer to the root node, BSP tree structure allows quick recognition of objects [11] and 

quick information retrieval [12], [13]. 

In [14], Radha, Vetterli and Leonardi have proposed the use of a binary space partitioning 

(BSP) tree to represent an image.  In this representation, the image is broken down into simple 

geometric regions using partitioning lines.  The image is divided until the pixels in the region are 

homogenous (for lossless mode) or similar enough (for lossy mode).  Figure 2.1 shows how an 
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image of a square is partitioned into rectangular regions.  Note that BSP tree partitioning lines 

align with the actual object boundaries, resulting in a very efficient and compact storage. 

Unlike our BSP representation, their version of BSP tree supports slanted lines.  The 

advantage of supporting slanted lines is that the partitioning lines will align with actual object 

boundaries better.  The tradeoff is that the number of line candidates considered at each 

partitioning iteration is significantly increased, which resulted in more computations in the line 

selection process.  To reduce the energy cost for computations, our BSP representation only 

allows horizontal and vertical partition lines. 

C1

C3

C3 C2

C1

C4

C4     C2

 

Figure 2.1 – Representation of Image in BSP tree form 

BSP tree technique compresses an image by merging pixels that are homogeneous (lossless 

mode) or similar enough (lossy mode), thus reducing the memory used to store the colour of each 

pixel.  In the final BSP tree, each non-terminal node is associated with a partition line and each leaf 

node is associated to a particular region of the image.  The non-terminal nodes store the line 

parameters while the leaf nodes store the colour of the associated regions.   

2.2.2 Line Selection Criterion 

To select the partitioning lines, Radha, Vetterli and Leonardi propose a Least-Square-Error 

(LSE), recursive method in [15] for greyscale images.  Since this method yields the optimal partition 

line selection, it will be referred to as the “Optimal Line Selection Method” in this thesis.  In this 

method, a LSE Partitioning Line (LPL) transform is calculated for all the potential candidate lines.  

The LPL transform L(h) of a 2-D continuous function I(x,y) over a region R is defined as: 
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The LPL transform of Eq. (2.1) and the condition in Eq. (2.2) eliminate all the candidate 

lines that are certainly not optimal.  For the remaining lines, the total square error is calculated.  At 

any iteration i in the recursive partitioning process, the total square error Ei for a region of 

dimension M×N is defined as: 
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where I(x,y) is the actual pixel value at (x,y) and Î(x,y) is the mean value used to approximate the 

pixels in the region.  The line with the least total error is selected as the partitioning line. 

To reduce the computations for partitioning an image, the partition lines in our work are 

simply either horizontal lines or vertical lines.  Each non-terminal node stores the line coordinate 

and a bit flag indicating whether that line is horizontal or vertical. 
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2.2.3 Extension to Colour Images 

Since Eq. (2.1), (2.2) and (2.4) are all defined for greyscale images only, we have modified 

them for colour images.  Unlike a greyscale image, where each pixel has only one value, a colour 

image has three values for each pixel.  There exist several colour coordinate systems, each with 

their own advantages and disadvantages.  Since the RGB system is the one used for Windows 

Bitmap, it is the system used in the experimental work. 

RGB stands for red, green and blue, and these are the respective colours in each 

coordinate.  Before applying Eq. (2.1), (2.2) and (2.4) to colour images, the RGB colour pixels are 

first converted to the luminance value (Y) according to Eq. (2.5): 

BGRY 114.0587.0299.0 ++=  

(2.5) 

The luminance value is a weighted average of the three colours according to the human 

eye’s sensitivity to each colour [8].  Other than RGB, there are several colour systems, such as 

YCbCr and CMY.  No matter which colour coordinate system is chosen, we can always convert 

them to the luminance value since all the colour coordinate systems are interchangeable [8].  After 

applying Eq. (2.5), we now have a single intensity value for each pixel.  Next, we directly apply the 

line selection algorithm and error calculation formula on the image as if it was a greyscale image. 

Our extension to colour image is very simple compared to other colour thresholding 

schemes such as the one proposed in [7].  Therefore, it is easy to implement and this saves energy 

in execution. 

2.3 Other Common Compression Techniques 

There exist other good compression algorithms, such as JPEG [8], quadtree [39], wavelet 

[37] and fractal compression [27].  Reference [41] gives a good reference on these algorithms. 
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2.3.1 TIFF 

TIFF is an acronym for “Tagged Image File Format” [16].  It is developed by Aldus (now 

merged with Adobe Systems) and Microsoft Corporation in an effort to provide a platform 

independent image format for different image processing applications.  It supports many different 

sets of colour coordinate systems such as RGB, YCbCr and CMYK.  It also supports 

uncompressed or compressed mode.  The most common compression algorithm used in TIFF file 

is the (Lempel-Ziv-Welch) LZW compression, which is the same algorithm used for ZIP files [17]. 

LZW is a lossless data compression algorithm developed for text data [18].  It compresses 

data by substituting frequently occurring data patterns with the set of symbols in the “dictionary” 

that is expanded in vocabulary as the compression algorithm progresses.  However, since this 

algorithm is designed for text data, its compression performance is not as great as other 

specifically designed image compression algorithms.  In our experimental results in Section 6.3.3, 

we found that our BSP tree compression scheme could outperform TIFF for most images.  

2.3.2 JPEG 

JPEG is an acronym for “Joint Photographic Experts Group.”  This international group 

has been working with the International Organization for Standardization (ISO), the International 

Telegraph and Telephone Consultative Committee (CCITT), and the International 

Electrotechnical Commission (IEC) to develop a standard for colour image compression [8].  As 

this standard became popular, the name of the group became attached to the standard itself. 

The assumption behind JPEG compression is that images have smooth transitions (i.e. low 

frequency) in pixel intensities.  Therefore, high frequency details can be removed without much 

sacrifice in image quality.  This is usually true for photographic images.  However, for computer 

graphics or line art images, JPEG compression often results in blurred edges. 

JPEG uses a discrete cosine transform (DCT) to convert the image data from the spatial to 

the frequency domain.  The image is divided into smaller blocks of 8×8 pixels.  Then the values of 

each of the 64 pixels in this 8×8 block are scanned from the top-left corner towards the bottom-

right in a zigzag pattern, as illustrated in Figure 2.2. 
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Figure 2.2 – JPEG zigzag pattern for 8×8 block 

This process converts a two-dimensional 8×8 block into a one-dimensional vector with 64 

values.  Then, DCT is applied to the pixel values.  After DCT, there will be 64 coefficients, with 

the first coefficient representing the DC component (i.e. average value of the block) and the rest 

of the AC coefficients representing the AC components of the block in increasing higher 

frequencies.  The standard JPEG will output 64 coefficients, although one can specified JPEG to 

output fewer coefficients by choosing a smaller virtual block size (VBS).  The DCT coefficients 

are then quantized (divided by a certain value) according to a quantization table.  This quantization 

step has the most significant impact on the final output image quality.  The compression ratio is 

controlled by the values in the quantization table.  If the quantization level is increased, it will 

require fewer bits to represent the image but the image quality will be reduced, and vice versa.  

The results are then further compressed by Huffman coding.  In Huffman coding, the more 

frequently occurring values are represented using fewer bits.  In the case of JPEG, the AC 

coefficients are usually small; therefore, they are represented with fewer bits.  The mapping 

between the actual value and its encoded value is done by looking up a Huffman encoding tree. 

There have been several studies on the effect of varying JPEG parameters on the image 

quality, latency, and energy.  In [19], the authors have studied the effect of varying quantization 

table on image quality and compression ratio.  They have developed a metric for predicting the 

computation cost required to compress an image from estimating the number of DCT blocks and 

predicting the file size by analyzing the image’s chrominance values.  Their idea is to spend time in 
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compressing (i.e. transcoding) the image only if the benefits of compression outweigh the 

computation costs for compressing the image.  [20], [21] have studied the effect of varying 

quantization levels and virtual block size on the impact of image quality.  As smaller VBSs are 

chosen, the image quality and the energy used in DCT decreases.  The communication energy is 

also decreased because of a smaller file size.  However, at the same time, to keep the same image 

quality, one must decrease the quantization levels when the VBS is decreased, which will increase 

the file size and thus the communication energy.  Therefore, the overall energy must be minimized 

by choosing the correct combination of VBS and quantization level.  In their methodology, they 

proposed to use a table to store pre-computed values calculated for a number of images for each 

VBS and quantization level combinations.  This table will be used at runtime to decide the best 

combination of VBS and quantization level that minimizes the overall energy and satisfy the image 

quality constraints.  Although their approach does not require complete decompression to re-scale 

an image to different quality, it still requires re-quantization and re-encoding of entropy parameters, 

which consumes significant energy too.  Our BSP tree compression scheme consumes only a small 

amount of energy when re-scaling because once the error associated with each node is computed, 

no re-computations are necessary when pruning the tree. 

Another difference between JPEG and BSP tree scheme is that since JPEG works in the 

frequency domain, all changes in the compression parameters affect the entire image.  Also, the 

entire image is stored as a single file, making JPEG a less ideal candidate for partial encryption. 

2.3.3 Quadtree Compression 

Quadtree compression [39], [40] is similar to BSP tree compression except in the way of 

how an image is partitioned.  In quadtree compression, the image is split into four quadrants 

(instead of two regions) recursively, until the threshold criterion is reached.  Similar to BSP trees, 

the quadtree image data consists of two parts: the tree structure and the colour leaf nodes.  

However, unlike BSP trees, the quadtree non-terminal nodes do not state partitioning lines 

explicitly.  In a quadtree, the line coordinates are implicit because the region is always split in the 

middle to form new quadrants.  Figure 2.3 shows how the same square image used in Figure 2.1 is 

split into quadrants to build a quadtree.  Note that if the object boundaries do not align with the 
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quadtree partitioning lines, many more nodes are created (compared to the BSP tree in Figure 2.1), 

resulting in a less compact file size. 

 

 

Figure 2.3 – Representation of Image in quadtree form 

Similar to the BSP tree algorithm, the quadtree algorithm can operate in both lossless and 

lossy mode.  In the lossless mode, the leaves contain the homogenous colour regions.  In the lossy 

mode, the four quadrants are merged to form a new leaf if the error is smaller than an acceptable 

threshold. 

2.3.4 Wavelet Compression 

A recent standard, JPEG2000, uses wavelet transforms to compress an image.  In wavelet 

compression [17], [37], the pixels of the image are first serialized into an image function.  Then, 

this image function in spatial domain first goes through a discrete wavelet transform (DWT). A 

wavelet is a function that passes above and below the x-axis and the total area enclosed by this 

function is zero.  The wavelet function is orthonormal to the image function.  By passing the 

image function through a specially designed wavelet function, the image function will be 

decomposed into wavelet coefficients, similar to the case in DCT.  The wavelet coefficients are 

divided into four subbands (i.e. LL, LH, HL, HH) in the 2D wavelet transform, with two 

subbands (lowpass L and highpass H subbands) in each of horizontal and vertical direction.  The 

low-pass subbands represent the low-resolution version of the image, with the high-pass subbands 

adding the residual details of the original image.  The wavelet transform can be performed again 

on the LL subband to refine the details in the image to form higher iterative levels (i.e. transform 

level TL).  Similar to JPEG, the wavelet coefficients are then quantized and entropy encoded. 
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In a class of wavelet-based transforms called Set Partitioning in Hierarchical Tree (SPIHT) 

algorithms [23], the wavelet coefficients are organized in pyramid levels according to importance, 

with each level adding additional details to the image.  Therefore, the wavelet coefficients form a 

tree.  A zerotree is generated to indicate whether the coefficients in the tree are significant and 

needs to be decomposed further.  The resulting image for the SPIHT algorithm consists of two 

parts: the zerotree structure and the wavelet coefficients component. 

Several energy efficient wavelet image compression schemes have been proposed.  In [24], 

[25], the authors have proposed varying parameters such as the transform level, elimination level 

(EL), and the quantization level (QL).  The transform level controls the tradeoff in computation 

energy in DWT and image quality.  The elimination level controls the computation costs and 

image quality by eliminating the computation of the highpass subbands during the DWT stage.  

QL affects the image quality in wavelet transform similarly as in the case for JPEG quantization 

levels.  Again, the authors have used a lookup table for deciding the best combination of 

parameters that minimizes energy while satisfying user constraints.  Similar to the JPEG schemes, 

such schemes requires re-computation of quantization and entropy coding steps, which consumes 

fair amount of energy too.  In [26], a distributed approach to wavelet compression has been 

proposed to distribute energy use in a wireless adhoc network evenly at different nodes.  In such a 

system, the task for the wavelet transform, which consumes the majority of computation energy in 

wavelet compression, is processed in a distributed fashion to the various nodes in the adhoc 

network. 

2.3.5 Fractal Image Compression 

Fractal compression techniques are based on the idea of iterative contractive transformation and 

collage theorem to exploit self-similarities in natural images [27], [29], [41].  Natural images often 

exhibit some self-similarities within the image itself.  For example, the peak of a mountain may 

look similar to a zoom-in version of the entire mountain.  In fractal image compression, the 

algorithm generates a set of building blocks of sub-images called domain cells by examining the 

entire image.  Then, the entire image is partitioned into non-overlapping square cells called range 

cells.  For each range cell, a domain cell is selected to approximate the range cell by applying 

appropriate transformations to the domain cell.  Examples of such transformations includes, but 
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not limited to, scaling, rotating and shifting transformations.  The resulting image is a tree 

structure similar to BSP trees.  However, instead of storing the line parameters, each node is 

associated with the transformation parameters to generate the region the node represents.  It is 

found that fractal image compression can perform well at high compression ratios compared to 

JPEG [28]. 

2.4 Advanced Encryption Standard 

To send an image securely in wireless medium, it is necessary to encrypt the image.  An 

encryption algorithm scrambles the data randomly according to a key so that no other parties can 

observe the data unless they know the key.  At the time of writing, the most common symmetric 

key cryptographic algorithms are the Data Encryption Standard (DES) and the Advanced 

Encryption Standard (AES).  Since the National Institute of Standards and Technology (NIST) 

recommends AES to replace DES, we have chosen AES as the encryption algorithm for images. 

The Advanced Encryption Standard algorithm was a project started to replace the DES 

algorithm [30].  The algorithm is an iterated block cipher which operates on 128, 192 or 256-bit 

data blocks and supports key lengths of 128, 192 and 256 bits.  The key and block lengths can be 

specified independently.  If the actual plaintext data length is not a multiple of the data block size, 

padding bytes must be added before encryption.  The number of rounds of the algorithm depends 

on the key and the block length used.  The AES algorithm begins by XOR-ing the input block 

with the 1st round key and the result of is called a “State” block.  The “State” block is then 

separated into a two-dimensional array with each element being a byte.  Figure 2.4 shows an 

example of an AES state block of 192 bits.  Each element in the state block represents a byte. 
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

Figure 2.4 – AES “State” block 

For each round, four operations are performed on “State”.  The first operation is byte 

substitution where each byte of “State” is transformed using a S-box.  The S-box is formed using 

finite field [30].  The second operation is row shifting where each row of State is cyclic shifted by a 

specific value.  The third operation is MixColumn() where each column of state is operated on by 

a specific matrix operation.  The last operation is KeyAddition() where the round key of the 

next round is XOR-ed with State.  The process continues until the number of required rounds for 

the particular key and block length combination has elapsed, and the result is the cipher text. 

The software implementation of this algorithm was obtained from the NIST AES website 

[30]. It is again separated into three layers where the outermost layer is the main program which 

calls the encrypt or decrypt function.  In this case, it is encryptblock() and 

decryptblock().  These functions call the rijndael_encrypt() and rijndael_decrypt() 

function which performs the operation described above.  Before the main function calls encrypt 

or decrypt, it calls the function KeySchedule() to form the keys for each round.  Since AES 

does not change the data file size (other than the few padding bytes added to make the file size a 

multiple of the block size), encryption size is directly proportional to the input file size.  This is 

consistent with our results in Section 6.4.1. 

2.5 Partial Encryption 

2.5.1 Overview 

Cryptographic computations are often computationally intensive.  Although AES is already 

designed with efficiency in mind, it can be seen that there are still quite a lot of byte shuffling and 
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XOR-ing repeated for multiple rounds.  Therefore, to save energy, the encryption stage should 

minimize the number of cryptographic computations by encrypting only the absolutely necessary 

parts of the file.  This is the concept behind partial encryption, in which only the important parts of 

an image are encrypted, without sacrificing security.  In the case of BSP tree images, only the tree 

(and the line coordinates for additional security) needs to be encrypted.  With only the 

unencrypted colour values, it is difficult to reconstruct the image.  Different partial encryption 

schemes have been proposed for different image compression systems.  These partial encryption 

schemes are examined here. 

2.5.2 JPEG Partial Encryption 

For JPEG, Tang has proposed the use of a random permutation of the coefficients [31].  

His idea is to encrypt the DC coefficients and randomly scramble the AC coefficients according to 

a secret key.  However, it has been shown in [32] that such a scheme is not secure.  First, by 

statistic analysis, it is not difficult to obtain the AC coefficients’ locations by trial and error.  After 

the attacker has gained knowledge about the AC coefficients, it is possible for the attacker to 

reconstruct the image by the AC coefficients alone without the knowledge of the DC coefficients.  

This thesis demonstrates the insecurity of partially encrypting JPEG coefficients in Figure 2.5.   In 

Figure 2.5, we have shown the resulting image after discarding the DC and the first few AC 

coefficients (by setting these coefficients to zero).  An edge detection filter has been used to 

reconstruct the resulting image.  It can be seen that even after encrypting half of the 64 

coefficients, the edges of the original image is still clearly visible in Figure 2.5d. 
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(a) Original Lena Image 

 
(b) DC coefficients discarded 

 
(c) DC and first 8 AC coefficients discarded

 
(d) DC and first 32 AC coefficients discarded

Figure 2.5 – Resulting JPEG image after discarding DC and AC coefficients 

Since partially encrypting the coefficients does not work, a random permutation of the 

Huffman encoding tree has also been proposed in [34] and [35].  This scheme works by permuting 

the Huffman coding tree according to a secret key.  Without knowing the secret key to 

synchronize the Huffman tree, the attacker would not be able to decode the Huffman-coded 

coefficients.  However, randomly permuting the shape of the Huffman table makes compression 

less efficient because the Huffman tree would not be optimal for the data sequence [36].  A 

scalable partial encryption of both the inter-frame and intra-frame data for MPEG is proposed in 

[33].  Their system partially encrypts the first few coefficients of each DCT block too.  Therefore, 

it suffers from the same problems as partially encrypting only the first few JPEG coefficients.  In 
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fact, the authors only claim that this system is only intended to discourage video piracy.  It is not a 

very strong secure system. 

2.5.3 Quadtree Partial Encryption 

In [39] and [40], the authors have proposed a partial encryption scheme for quadtrees.  

Similar to BSP tree partial encryption, their idea is to encrypt only the tree part of the quadtree.  

Their idea does not seem to suffer from major security problems.  However, due to the nature of 

quadtree compression, their method may yield less compact image files.  As we have discussed in 

Section 2.3.3, each split in quadtree generates four children nodes instead of two.  In addition, the 

partition lines are inflexible because the splits must be in the middle.  Therefore, many more nodes 

are generated compared to BSP tree representation of the same image.  As an example, only seven 

nodes are generated for the image in Figure 2.1 using BSP tree representation; in contrast, twenty-

nine nodes are generated in Figure 2.3 using quadtree representation for the same image.  Because 

of these extra nodes, quadtree representation may not be as energy efficient as BSP trees with 

respect to transmission energy. 

2.5.4 Wavelet Partial Encryption 

In [39] and [40], the authors have also extended the partial encryption idea to SPIHT 

zerotrees.  Their idea is to only encrypt the zerotree of the SPIHT zerotree compression.  They 

claim that only the zerotree part of an image needs to be encrypted.  Without the zerotree, it is 

difficult to reconstruct the image without knowing where the coefficients belong to. 

In [37], the author proposed another partial encryption scheme for wavelets.  Since the 

wavelet filter function is needed to decode the wavelet coefficients, they proposed that only the 

wavelet filter function needs to be encrypted for secure transmission.  This scheme requires the 

generation of a unique mother wavelet each time secure image transmission is required, and the 

generation of new wavelets is a time consuming process.  Therefore, this scheme is not energy 

efficient. 

In [38], a different wavelet partial encryption scheme has been proposed.  The encryption 

is performed between the quantization and the entropy encoder stages.  The parts to be encrypted 
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can be selected using three schemes: subband selection, data bit selection, and random selection of 

pixel data.  In their method, the subband to be encrypted is first randomly selected.  Then, the first 

bit of every quantized wavelet coefficient (i.e. quantization indices) in the higher subband is 

encrypted.  Finally, the pixel position to be encrypted is randomly selected using the serial output 

of a Linear Feedback Shift Register (LFSR).  Since this scheme encrypts before the entropy 

encoder, similar to the JPEG Huffman tree permutation encryption scheme, the compression 

performance of the entropy encoder may be less efficient because it is a well-accepted fact in 

cryptography that compression after encryption is less efficient. 

2.6 Summary 

Many of the existing image compression algorithms are designed to aim for the maximum 

compression rate.  However, these high compression algorithms may be too complex for energy 

constrained handheld devices.  To be energy efficient, the compression algorithm should require 

as few computations as possible while still being flexible to user needs and the environment. 

Secondly, although there are several partial encryption schemes for images, many of them 

are either insecure or inefficient.  JPEG partial encryption schemes have major security problems.  

Quadtree partial encryption is similar to the BSP tree scheme.  However, since the partition lines 

are fixed in a quadtree, it may be inefficient in partitioning the image.  For example, the image 

region is always partitioned into four quadrants even if two of the quadrants have the same colour.  

By comparing Figure 2.1 and Figure 2.3, one can see that BSP tree representation generates less 

nodes than quadtrees for the same image.  The wavelet compression scheme in [37] is also too 

computationally intensive because constructing a new mother wavelet is a time consuming process.  

The wavelet encryption scheme in [38] may result in less efficient compression because 

compression is done after encryption.  None of the existing compression and partial encryption 

schemes yields satisfactory performance when efficient energy utilization and convenient re-scaling 

without original image is the main goal. 

The binary tree partitioning image compression scheme is chosen as the candidate for this 

research because it has the following advantages that other image compression techniques do not 

have. 
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1. Data organization allows partial encryption – Compared to transform-based 

compression algorithms such as JPEG, BSP tree algorithm separates the image 

structure, i.e. the tree, from the other less important data such as pixel colours.  

This allows partial encryption because it is difficult for the attacker to reconstruct the 

image by the line and pixel colour values alone.  This saves encryption 

computation energy. 

2. Partitioning is efficient – Unlike the quadtree technique, where the image split is 

implicit in the tree structure, BSP tree partitioning lines can align with actual image 

boundaries.  This can result in a more efficient splitting of the image and a more 

compact file size, hence saving transmission energy. 

3. Tree structure allows convenient pruning and scaling to different image 

quality without original image – The hierarchical structure of the BSP tree 

allows convenient pruning of an image.  If a user wants a smaller file size, he/she 

can set a larger pruning threshold.  Larger threshold allows merging of the nodes at 

the bottom of the tree, which reduces the size of the image (with some tradeoffs in 

image quality).  Since the error are stored at nodes once the BSP tree is constructed, 

the BSP tree can be easily pruned to any arbitrary image quality with the original 

best quality image.  This offers scalability and flexibility by dynamically adjusting 

the image quality according to the user need and environment to save transmission 

energy. 

4. Allows variable thresholds in different focus areas – An  image often has areas 

that are more important than other parts.  The pruning threshold can be set to be 

lower in these important areas to allow a sharper image in these areas.  The user 

has the option of selectively focusing on important areas, while using a higher 

threshold in other less important areas.  This is a capability that wavelet and JPEG 

algorithms do not have.  These algorithms transform the entire image from the 

spatial domain to another domain.  Setting a higher compression ratio for these 

algorithms reduces quality for the entire image.  Since the BSP tree technique 

operates in the spatial domain, it can allow different compression thresholds in 

different areas.  This gives flexibility to the user by allowing the user to retain high 
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image quality in only the important areas of the image while compressing the less 

important areas for efficient transmission. 
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Chapter 3 – Methodology 

This chapter presents the proposed scalable energy efficient image compression and partial 

encryption scheme.  We present the specifics of how the BSP tree representation of the highest 

quality image is constructed, and the specifics of how the security, energy, and image quality 

parameters are used in different modules of the system. 

3.1 System Overview 

Figure 3.1 shows the block diagram for the proposed partial image compression and 

encryption system.  The end user specifies his desired image quality and security levels to the 

system.  From these user parameters, the test bench module generates the threshold for the 

compression and the encryption key length and percentage of nodes encrypted.  The compression 

module then compresses the highest quality image and the resulting image is immediately 

encrypted to generate an encrypted image.  

 

Figure 3.1 – Proposed Image Compression and Encryption System 

Test bench 

Raw Highest 
Quality Image 

Threshold-User security 
level 

Compression -Image quality 
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selected image 
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Encryption 

Intermediate tree file
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Final Output 
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3.2 Generation of the Highest Quality Image Tree 

This step takes a Window Bitmap file as the input and generates the corresponding BSP 

tree representation of the image.  To generate the highest quality image in tree form, the image 

needs to be partitioned into regions using partition lines.  The bitmap image is read and each 

colour channel (red, green, blue) is stored as an array in the memory.  The luminance (Y) for each 

pixel is calculated from the RGB colour and stored in another array.  These luminance values are 

used for mean and error computation used for generating the partitioning lines (for the optimal 

line selection method) and/or pruning in the compression module later.  The output tree image 

from this process is referred to as the “highest quality image” (i.e. no colour information is lost) in 

the rest of this thesis.  Once the highest quality image is converted to the BSP tree format, the 

image can be compressed to different image quality without the need for the original bitmap image. 

3.2.1 Binary Split Tree Construction Method 

Our experimental results Section 5.1 shows that the original optimal line selection method 

in [15] is slow because it requires a lot of computations in the LSE transform and error calculation 

parts.  Therefore, we have proposed a new tree construction method in this thesis.  In this newly 

proposed binary split method, the algorithm simply bisects the longest dimension of the region of 

interest in two equal halves.  This speeds up the line selection process significantly, since it 

eliminates the expensive LSE transform computation for determining the set of candidate lines.  

However, the trade-off is that the file size may not be optimal.  In this method, for a region R with 

endpoints p1 and p2 and x1 and x2 as the x-coordinates (y-coordinates if it is a vertical line) of the 

two points, the midpoint xC of the region is simply selected using Eq. (2.3).  The image is 

partitioned into smaller rectangular regions until the colour of the region is homogenous or until 

the region size is equal to a pixel, in which case no further division is possible. 

Although this splitting method violates the property of optimal alignment of BSP tree 

partitioning lines with the actual object edges, it is found in our experiments that, in practice, this 

new method still performs satisfactorily. 
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3.3 Testbench Module 

The testbench module gives scalability and user flexibility to generate the compression and 

encryption parameters according to the user specified image quality, security requirements, and 

battery power.  It receives the security level (0-5), image quality index (user-specified threshold 

values) from the user, and the battery status from the hardware.  From these parameters, the test 

bench module generates the tree termination criteria threshold values for the compression module, 

the percentage of tree and partition lines encrypted, and the AES key length.  Table 3.1 shows the 

parameter settings for each user security level. 

Table 3.1– Security Level Parameters 

SSeeccuurriittyy  LLeevveell  TTrreeee  EEnnccrryypptteedd  ((%%))  LLiinnee  EEnnccrryypptteedd  ((%%))  KKeeyy  LLeennggtthh  
00  0 0 Not Encrypted 
11  60 0 128 
22  80 0 128 
33  100 0 128 
44  100 50 256 
55  100 100 256 

Image quality is controlled by the pruning threshold.  This pruning threshold is specified as 

a divisor of the image tree’s root node’s total error.  The image quality is predicted using the 

proposed quality metric in this thesis. 

3.4 Compression 

The compression module reduces the size of the image file.  Some of the advantages of a 

smaller file size are: 

1. It takes less energy to transmit a smaller size image. 

2. It takes less time to encrypt the image, thus reducing the energy used for 

cryptographic computations. 

3. It uses less storage space of memory constrained handheld devices. 
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The compression module accepts the pruning threshold from the testbench module.  It 

also reads the highest quality image file, which can be downloaded from a server or generated 

locally.  This best quality raw image is already in the tree form.  The compression module 

compresses the raw image by several means: 

1. It does a lossy compression by pruning the raw image tree according to the pruning 

threshold, which is expressed as a fraction relative to the root node’s error in our 

experiments.  This process reduces the file size by sacrificing the image quality.  

The process is lossy because it is non-reversible. 

2. It can employ a colour table method to store the colours more efficiently if certain 

conditions are satisfied. 

3. It can use a non-standard bit size to store the integers for the line coordinates 

and/or the colour indexes of a colour table. 

There exist some advanced pruning techniques such as [44].  For simplicity, we focus our 

work using a simple error based pruning criterion. 

3.4.1 Error Formula for Pruning 

Before compression, the error associated with each node in the tree must be calculated.    

Informally, error is defined as the amount of deviation from the actual pixel colour if the pixel colour is 

approximated using the mean colour value for the region.  Error is used for determining whether 

to prune the subtrees from each node. 

We now introduce the concept of pruning.  Pruning deletes and merges nodes in a BSP tree 

if the error is smaller than a user specified threshold.  In the best quality image, the leaf nodes 

store the exact colours of the original image.  When pruning this best quality tree, these leaf nodes 

are merged to form new leaf nodes if the merged node’s error is below the pruning threshold, which 

is expressed as a fraction of the root node’s error in this thesis.  After these leaf nodes are merged, the 

mean colour value of the pixels in the region is used to approximate the new leaf node’s colour.  

First, users will specify a relative threshold divisor value.  Then, this value is multiplied by the root 

node’s error value to generate the absolute threshold value that is used for pruning decision.  Note 
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that we specify the threshold value relative to the root node’s error instead of using an absolute 

threshold value.  In our experiments, it is found that relative threshold is more convenient to 

handle for our image quality and file size prediction model described in Section 6.6 and 6.7. 

Traditionally, error for the region is calculated using the total square error in Eq. (2.4).  

However, in our experiment, it is found that this formula is slow for two reasons.  First, the square 

and sum operations in Eq. (2.4) are slow and tedious.  Second, this total square error does not 

reuse previously calculated values.  Error must be recalculated from scratch at each iteration.  

Therefore, we have proposed a new error calculation formula for image pruning.  Our formula 

calculates error in a bottom-up manner and speeds up computation by reusing previously 

calculated error values.  By reusing the results from the previous computations in the subtrees 

from the current node, this formula reduces the error calculation time significantly.  First, at each 

iteration i, two parameters, 1σ  and 2σ , are defined: 
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where: 

  and  are the mean values of the left and right child, respectively. Lm Rm

Lσ  and Rσ  are the previously calculated values of σ  for the left and right child, 
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(3.2) 

where  and  are the area of the left and right child, respectively. LA RA

Finally, the node’s total error Ei is calculated by this formula: 
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3.4.2 Error Representation at Nodes 

The error can be represented at each node in two ways: 

1. Total Error – Each node stores the total error directly.  In other words, the 

computed value from Eq. (2.4) or (3.3) is stored directly at the node.  The total 

error is affected by the amount of deviation of the mean value from the actual 

pixel colour as well as the area of the region. 

2. Average Error – In this representation, the total error of the region is divided by 

the area of the region.  Mathematically, the average error is: 

iE
MN

1  

(3.4) 

where Ei is defined in Eq. (2.4) for the total square error formula or (3.3) for our 

proposed fast error formula.  The average error is independent of the area of the 

region. 

After calculating the error associated with each node, the image tree is pruned.  Pruning 

the tree deletes nodes of the tree and merges the nodes by approximating the region colour with 

the mean value of the region’s pixels. 
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3.4.3 Compression by Use of Colour Table 

This is a new lossless compression technique proposed in this thesis.  Often, the image can 

be compressed more with a colour table without any loss in quality if certain conditions are 

satisfied.  Figure 3.2 illustrates how this method works.  A colour table is first created to store all 

the colours used in the image.  For our example in Figure 3.2, there are three colours in total: C1, 

C2 and C3.  Then, instead of storing the actual colour values, the index values (i.e. 01, 02 and 03 in 

our example) to the colour table are stored at the leaf nodes. 

   C2 C2

C1

C3

03 02

01

02

01 C1

Colour Table

02 C2
03 C3

 

Figure 3.2 – Compression Using Colour Table 

The assumption in colour table compression method is that the index values will require 

fewer bits to encode than the actual 24-bit colour values.  However, the extra overhead of storing 

the colour table may offset the gain in memory savings from the leaf nodes.  The conditions where 

the image will benefit from using a colour table are discussed in Section 6.1.4. 

3.4.4 Using Custom Bit Length for Storing Integers 

There are various integers used in the BSP tree.  Examples of these integers include the 

line coordinates and the colour table indices (if the colour table is used).  The programming 

language C uses standard bit sizes such as 8-bit, 16-bit and 32-bit for integers.  However, the 

integers used in the BSP tree often do not make use of the full range of values available from these 

standard sizes.  Therefore, one can possibly reduce the number of bits used for storing these 

integers by using only the minimum number of bits to represent the range of values that will ever 

be used.  For example, for a 512×512 image, the maximum line coordinate value can only be 511.  
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Therefore, only 9 bits (instead of the standard 16-bit) is needed to represent all the possible values 

of the line coordinates.  Eq. (3.5) shows the formula for finding the minimum number of bits 

required to represent a set of items { : },...,, ddd 21 n

⎡ ⎤}),...,,(max{log 212 ndddnumBits =  

(3.5) 

The trade-off for using a custom bit length is that some bit manipulation operations needs 

to be done because instructions in C can only access data in multiples of 8 bits.  

3.5 Scalable Encryption Module 

After compression, the resulting pruned image will be encrypted by the encryption module.  

The encryption module encrypts the intermediate image tree and/or partition line file from 

compression module according to the test bench generated parameters.  It accepts parameters 

from the test bench such as the percentage of tree file to be encrypted, percentage of partition 

lines to be encrypted and the AES key length.  It also accepts the intermediate image file generated 

by the compression module.  Finally, it outputs the encrypted image file to be transmitted. 

The fraction of file encrypted is first converted to the number of AES blocks encrypted.  

To calculate the total number AES blocks, divide the total number of bytes of the tree or partition 

line file by the AES block size (which can be 16, 24 or 32 bytes).  Since AES requires the file size 

to be a multiple of the AES block size, padding bytes are added if that is not the case.  The 

number of actual blocks that should be encrypted is computed by multiplying the total number of 

AES blocks by the percentages from the testbench.  Then, AES is applied directly to each section 

with the chosen AES key length until the specified number of blocks has been encrypted.  If there 

are remaining data bytes, they are appended after the encrypted section. 

3.6 Final Output Image 

The final output image that is ready for transmission is converted to a binary file, which 

consists of the following: 
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1. Unencrypted header – The header contains the necessary information for the 

receiver to the rest of the image file.  It contains values such as the requested 

security level and the compression mode. 

2. Partially Encrypted Tree – The encrypted tree contains the encrypted tree in the 

first part, and the unencrypted tree part if the entire tree is not encrypted. 

3. Partially Encrypted Partition Line – This part contains the coordinates of the 

partitioning lines stored at the non-terminal nodes of the tree.  This part can be 

unencrypted (for lower security levels), partially encrypted (for medium security 

levels), or fully encrypted (for higher security levels). 

4. Unencrypted Partition Line Orientations – This part contains the orientations 

of the partitioning lines of the non-terminal nodes.  The lines can be either 

horizontal or vertical and is represented using one bit per node. 

5. Unencrypted Colour – This part contains the leave node’s actual colour or the 

colour index if colour compression is used. 

6. Unencrypted Colour Table (optional) – This part contains the colour table if 

colour table compression is used. 

This output image is then serialized into bitstream before it can be encrypted.  It is 

serialized in a pre-order depth first traversal fashion as illustrated in Figure 3.3.  The traversal starts 

at the root node.  The current node is visited first, then the right subtree is visited.  After all the 

nodes in the right subtree are visited, then the left subtree is visited.  The tree structure is stored in 

the tree file, with 1 representing a non-terminal node, and 0 representing a leaf.  If the current 

node is a non-terminal node, the node’s line parameters L1, L2, …, LN are stored in the line 

coordinate file and orientation file.  The leaf colours C1, C2, …, CN are stored in a separate colour 

file.  The header file and the colour table file (if used) are generated to record the image 

parameters. 
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L1

L3

C4 C3

L2

C2 C1

Tree File

Line File

Colour File

1 1 0 0 1 0 0

L1, L2, L3

C1, C2, C3, C4

 

Figure 3.3 – BSP tree traversal order for serializing to file 
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Chapter 4 – Experimental Setup and Metrics 

This chapter describes the platform and image files used for the experiments.  It also 

describes the metrics used in the experiments to measure performance and image quality. 

4.1 Platform 

All source code used for this thesis is written in C and C++ in Microsoft Visual C++ 6.0.  

The program is compiled using the default settings for “Optimize for Speed” in Release mode.  

The program is then run on the target system.  The target system is a Pentium III 700MHz system 

with 192MB RAM running on Microsoft Windows XP. 

4.2 Test Image Files 

The test images are obtained from [45] and shown in Figure 4.1.  We have selected three 

photographic images: a 512×512 peppers image (the image used in [7], [29], [39]), a smaller 

256×256 lena image (used in [14], [29], [40], [41], [13], [42], [43]), a larger 768×512 tulips image.  

In addition, we have selected two computer graphics images: a 512×512 frymire image and 

512×512 serrano image.  This set of test images allows us to observe how image size and types 

affect our system’s performance. 

The image files are originally stored in TIFF format at the website and they are converted 

to Window 24-bit Bitmap format using the Windows Paint application before processing. 
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peppers (512×512 photograph) 

 
lena_small (256×256 photograph) 

 
tulips (768×512 photograph) 

 
frymire (512×512 computer graphics) 

 
serrano (512×512 computer graphics) 

Figure 4.1 – Test Images Used for this Thesis 
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4.3 Measuring Performance 

4.3.1 Execution Time 

The execution time is measured by the C language clock() function.  Just before the 

start of the function whose performance is of interest, the start time is recorded.  And immediately 

at the termination of the function, the clock() function is called again to record the end time.  

The difference between the end time and the start time is the execution time of the function.  

Since the lowest resolution of the clock() function is one millisecond, if the function terminates 

too fast, the function is put inside a “for” loop and the average execution time per iteration is 

computed. 

4.3.2 Compression 

Compression bit rate is a common metric to measure and compare compression 

performance.  It is defined as the total number of bits used to store the entire image divided by the 

total number of pixels in the image.  For a M×N image, the bit rate r is defined as: 

MN
BytesFileSizeInr ⋅

≡
8log10 10  

(4.1) 

4.3.3 Image Quality 

A common way to quantitatively measure image quality is by measuring the Peak Signal to 

Noise Ratio (PSNR).  The formula for calculating the PSNR for a greyscale image [14] is: 

MSE
VPSNR

2

10log10≡  

(4.2) 

where V is the peak-to-peak value of the pixel intensities within the test image and MSE is the 

mean square error for the entire region.  Since in our work the pixel intensities is a weighted 
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average value of the three colour channels according to Eq. (2.5), V=255 in our experiment.  MSE 

is defined as the total square error (Eq. (2.4)) divided by the region area [14]: 

∑∑
−

=

−

=

−≡

⋅≡

1

0

1

0

2)],(),([1

1

M

x

N

y
yxIyxI

MN

TotalError
MN

MSE

)  

(4.3) 

For a colour image, since there are three channels RGB, we have extended Eq. (4.3) such 

that the total square error from each channel is added and the average square error is taken: 
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(4.4) 

where IR, IG, IB and ÎR, ÎG, ÎR and the actual and approximated value of the pixel colour for 

the red, green and blue channels respectively. 

A small utility program was written to compute the PSNR ratio between two bitmap 

images.  The resulting output images in tree format are converted to bitmap format.  Then, these 

output images are compared with the original bitmap for computing the PSNR ratios. 
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Chapter 5 – Experimental Results 

This chapter shows the experiment results of varying different parameters in generating an 

image.  We will investigate the effect of the tree construction mechanism on the execution time 

and compression bit rate.  We will also investigate how the error formula used for pruning affects 

the image quality and how using custom bit length for integers helps to improve the compression 

ratios. 

5.1 Effect of Tree Construction Mechanism 

The tree construction method affects how fast the best quality tree representation of image 

can be generated.  In addition, the shape of the tree affects the pruning characteristics.  This 

section presents the resulting images for the optimal line selection method and the binary split 

method. 

In optimal line selection method, at every line split, the line with the minimum total error 

is selected.  The file size is optimal for the best quality image.  However, this method is 

computationally intensive. 

Since the optimal line selection method is slow, we have proposed a new tree construction 

method, as discussed in Section 3.2.1.  In this new method, the region is simply bisected into two 

halves without considering the error.  Table 5.1 shows the tree construction time and the 

compression bit rates for both methods. 
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Table 5.1 – Tree Construction Time for Various Images 

TTiimmee  ((mmss))  BBiitt  RRaattee  ((bbpppp))    
OOppttiimmaall  
LLiinnee  

BBiinnaarryy  
SSpplliitt  

RRaattiioo  ooff  BBiinnaarryy  SSpplliitt  
ttoo  OOppttiimmaall  SSpplliitt  TTiimmee  

OOppttiimmaall  
LLiinnee  

BBiinnaarryy  
SSpplliitt  

%%  FFiillee  SSiizzee  
IInnccrreeaassee  

ppeeppppeerrss  14120 1552 11% 31.94 34.06 6.6% 
lleennaa__ssmmaallll  3264 360 11% 32.40 33.39 3.1% 
ttuulliippss  20800 2323 11% 32.37 34.41 6.3% 
ffrryymmiirree  10535 951 9% 8.89 20.26 128% 
sseerrrraannoo  11506 791 6.8% 6.86 14.24 107.5% 

It can be seen that the binary split method is significantly faster than the optimal line 

selection method.  It only uses a fraction of the optimal line execution time (about 7-11%) 

required for constructing the tree.  The image quality for the best quality image is indistinguishable 

between the two.  The tradeoff is a slight increase in file size.  The exception is the frymire image 

and serrano image.  For these computer graphics images, the file size doubles because binary 

splitting method splits regions that are otherwise merged using optimal line selection.  This results 

in creating more nodes.  However, the high speed in tree construction for the fast method may 

justify the increase in file size. 

5.2 Effect of Error Calculation Formula on Pruning 

5.2.1 Overview 

Although the compression bit rates are similar in most cases for the two tree construction 

methods, they exhibit a larger difference when we try to prune the tree to compress the image.  

The tree generated by the optimal line selection method is unbalanced.  There are some paths that 

go very deep.  In contrast, the binary split method simply bisects the region at the dimension that 

is longest.  Therefore, the tree generated by the binary split method is relatively balanced.  In this 

section, we will explore the effects of the tree construction method on the results generated by 

different pruning formula. 

As discussed in Section 3.4.1, the error needs to be evaluated at every pruning decision.  

Therefore, the error calculation formula has a major impact on the pruning execution time.  This 

experiment explores how the error formula affects image quality, file size, and execution time. 
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5.2.2 Effect on Image Quality and File Size 

5.2.2.1 Total Square Error Formula 

In this experiment, the total square error formula in (2.4) is used to prune the peppers and 

frymire images.  For both images, we apply the total error formula to prune the two versions of 

the “best quality” images, where one version is generated using the optimal line selection method 

and the other generated using the binary split method. 

The resulting peppers and frymire images at different thresholds are shown in Figure 5.1 

and Figure 5.2, respectively.  The subtle differences between the images are highlighted with 

circles when necessary.  The file sizes for the peppers and frymire image are shown in Table 5.2 

and Table 5.3, respectively.  The file settings for both experiments are compressed line coordinate 

file mode, uncompressed colour table mode, and total error threshold mode. 

It can be seen that there are no major differences for the peppers image generated using 

either tree construction methods.  However, for the frymire image, the optimal line tree version 

has a better image quality to compression ratio. 
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TThhrreesshhoolldd  OOppttiimmaall  LLiinnee  TTrreeee  BBiinnaarryy  SSpplliitt  TTrreeee  
1.00×10-5 

  
8.00×10-5 

  
4.00×10-4 

  

Figure 5.1 – Peppers Image at different thresholds Using Total Square Error Pruning 
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TThhrreesshhoolldd  OOppttiimmaall  LLiinnee  TTrreeee  BBiinnaarryy  SSpplliitt  TTrreeee  
1.00×10-5 

  
8.00×10-5 

  
4.00×10-4 

  

Figure 5.2 – Frymire Image at different thresholds Using Total Square Error Pruning 
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Table 5.2 – Peppers Image Bit Rates Using Total Square Error Pruning 

OOppttiimmaall  LLiinnee  BBiinnaarryy  SSpplliitt  TThhrreesshhoolldd  
BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  

00  31.94 54.46 34.06 56.53 
55..0000××1100--0066  1.07 29.68 1.86 29.55 
11..0000××1100--0055  0.78 28.36 1.40 27.85 
22..0000××1100--0055  0.57 27.03 1.03 26.13 
44..0000××1100--0055  0.42 25.69 0.72 24.33 
88..0000××1100--0055  0.31 24.46 0.45 22.72 
11..0000××1100--0044  0.28 24.06 0.39 22.39 
22..0000××1100--0044  0.21 22.87 0.24 21.37 
44..0000××1100--0044  0.16 21.80 0.14 20.41 

Table 5.3 – Frymire Image Bit Rates Using Total Square Error Pruning 

OOppttiimmaall  LLiinnee  BBiinnaarryy  SSpplliitt  TThhrreesshhoolldd  
BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  

00  8.89 49.66 20.26 52.34 
55..0000××1100--0066  4.45 26.02 7.58 24.15 
11..0000××1100--0055  3.71 23.08 5.96 20.88 
22..0000××1100--0055  2.72 20.24 3.86 18.08 
44..0000××1100--0055  1.87 18.15 2.37 16.42 
88..0000××1100--0055  1.21 16.57 1.37 15.22 
11..0000××1100--0044  1.04 16.16 1.13 14.91 
22..0000××1100--0044  0.64 15.09 0.62 14.08 
44..0000××1100--0044  0.37 14.08 0.34 13.35 

5.2.2.2 Fast Error Formula  

In this experiment, the proposed fast error formula in (3.3) is used to prune the images at 

different thresholds.  Similar to the previous experiment, the fast error formula is used to prune a 

optimal line tree and a binary split tree. 

The resulting peppers and frymire images at different thresholds are shown in Figure 5.3 

and Figure 5.4, respectively.  The file sizes for the peppers and frymire image are shown in Table 

5.4 and Table 5.5, respectively. 
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TThhrreesshhoolldd  OOppttiimmaall  LLiinnee  TTrreeee  BBiinnaarryy  SSpplliitt  TTrreeee  
1.00×10-5 

  
8.00×10-5 

  
4.00×10-4 

  

Figure 5.3 – Peppers Image at different thresholds Using Fast Error Pruning 
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TThhrreesshhoolldd  OOppttiimmaall  LLiinnee  TTrreeee  BBiinnaarryy  SSpplliitt  TTrreeee  
1.00×10-5 

  
8.00×10-5 

  
4.00×10-4 

  

Figure 5.4 – Frymire Image at different thresholds Using Fast Error Pruning 
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Table 5.4 – Peppers Image Bit Rates Using Fast Error Pruning 

OOppttiimmaall  LLiinnee  BBiinnaarryy  SSpplliitt  TThhrreesshhoolldd  
BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  

00  31.94 54.46 34.06 56.53 
55..0000××1100--0066  3.49 34.54 8.82 37.73 
11..0000××1100--0055  2.43 32.94 6.16 35.70 
22..0000××1100--0055  1.67 31.36 4.38 33.76 
44..0000××1100--0055  1.12 29.67 3.13 31.89 
88..0000××1100--0055  0.76 27.91 2.23 29.93 
11..0000××1100--0044  0.66 27.44 2.00 29.17 
22..0000××1100--0044  0.42 24.91 1.45 27.25 
44..0000××1100--0044  0.26 23.10 1.04 25.30 

Table 5.5 – Frymire Image Bit Rates Using Fast Error Pruning 

OOppttiimmaall  LLiinnee  BBiinnaarryy  SSpplliitt  TThhrreesshhoolldd  
BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  BBiitt  RRaattee  ((bbpppp))  PPSSNNRR  ((ddBB))  

00  8.89 49.66 20.26 52.34 
55..0000××1100--0066  5.32 31.51 9.42 30.94 
11..0000××1100--0055  5.02 29.23 8.94 29.07 
22..0000××1100--0055  4.69 27.38 8.36 26.95 
44..0000××1100--0055  4.17 24.82 7.40 24.25 
88..0000××1100--0055  3.17 21.59 5.44 20.56 
11..0000××1100--0044  2.76 20.39 4.58 19.41 
22..0000××1100--0044  1.59 17.55 2.44 16.77 
44..0000××1100--0044  0.81 15.62 1.13 15.08 

The file settings for both experiments are compressed line coordinate file mode, 

uncompressed colour table mode, and total error threshold mode. 

With respect to image quality, it is found that the fast error formula works slightly better 

with binary split generated trees.  The optimal line generated image’s quality degrades quickly as 

the threshold increases.  For example, at a threshold of 5×10-6 of the root node’s error, the bit rate 

decreases quickly to 3.49bbp at 34.54dB, while the binary split tree has a slower drop in bit rate 

(8.82bbp) image quality (37.73dB). The sharp drop in bit rate and image quality for optimal line 

trees is due to the observation that these trees are usually unbalanced.  Therefore, the effect of 

error propagation is less than an unbalanced tree where some paths to the root may be very long.  

As a result, the root’s total error deviates from the actual total square error a lot.  The total square 

formula works better with optimal line generated trees because these trees are highly unbalanced. 
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5.2.3 Effect on Execution Time 

The total execution time spent in computing the errors at each node is shown in Table 5.6. 

Table 5.6 –  Execution Time (ms) for Computing Node Error 

OOppttiimmaall  LLiinnee  TTrreeee  BBiinnaarryy  SSpplliitt  TTrreeee    
TToottaall  SSqquuaarree  

EErrrroorr  
OOuurr  FFaasstt  EErrrroorr  

FFoorrmmuullaa  
TToottaall  SSqquuaarree  

EErrrroorr  
OOuurr  FFaasstt  EErrrroorr  

FFoorrmmuullaa  
ppeeppppeerrss  5939 601 4487 631 
ffrryymmiirree  1282 170 2604 391 

It can be seen that the fast error formula reduces the error computation time significantly.  

For both the peppers and frymire images, the execution time is reduced by almost 90%.  Also, the 

slow error method works slightly better on binary split tree version than the optimal line tree 

version of peppers.  Again, this is due to the unbalanced tree shape of optimal line trees.  

Therefore, a lot of the calculations done at the deeper levels need to be performed again.  For the 

frymire image, the behaviour is opposite.  The binary split tree version is slower.  This is because 

for the frymire image, the best quality image actually has a lot more nodes than the optimal line 

version.  

5.2.4 Average Error versus Total Error Representation 

How the error is represented also has an impact on the pruning results.  In Section 3.4.2, 

we have discussed that the error at each node can be specified as either the average error per unit 

area or the total error for the region.  This section demonstrates the resulting images using the two 

representations. 

Figure 5.5 shows the pruning results using average error representation with the fast error 

formula for a binary split generated peppers image. 
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(a) threshold = 0.05, 16.33 bpp 

 
(b) threshold = 0.01, 10.33 bpp 

 
(c) threshold = 0.2, 6.27 bpp 

 
(d) threshold = 0.4, 3.56 bpp 

Figure 5.5 – Peppers Image at different thresholds Using Average Fast Error Pruning 

It can be seen that the tree sometimes prune at undesirable large regions.  Therefore, we 

see large patches of “blocks” (highlighted with circles) for the images with a larger threshold.  This 

is undesirable because large areas affect the overall image quality more than smaller regions.  Even 

at a low threshold setting of 0.05 if root node’s error at low compression bit rate of 2.04bpp, an 

undesirable block is still visible at the upper right hand corner in Figure 5.5a.  At higher threshold 

settings, a major part of the image is obscured by the “blocking” effect, as shown in Figure 5.5d. 

In the total error case, the region area is implicitly considered.  Larger regions will have a 

larger total error if the mean is different from the actual pixel value.  Therefore, total error 
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representation results in an overall better image.  Figure 5.6 shows the compression bit rates for 

total error versus average error representation. 
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Figure 5.6– PSNR versus Bit Rate for Average and Total Error Representation 

It can be seen that total error threshold representation always has a higher PSNR for the 

same bit rate.  Therefore, total error threshold representation is recommended for BSP tree 

pruning. 

5.3 Data bit Compression 

5.3.1 Line Coordinate File Compression 

In this experiment, the use of a non-standard bit size for representing the line coordinates 

is explored.  In standard C/C++, an integer can be either 8-bit, 16-bit, or 32-bit. As discussed in 

Section 3.4.4, in practice, not the full range of the integer value is used.  This experiment explores 

the use of a minimum length bit size for the numbers.  Table 5.7 shows the file sizes before and 

after this compression. 
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Table 5.7 – Line Coordinate Compression File Sizes for Various Images 

  BBiittss//LLiinnee  
CCoooorrddiinnaattee  

UUnnccoommpprreesssseedd  LLiinnee  
FFiillee  SSiizzee  

CCoommpprreesssseedd  LLiinnee  
FFiillee  SSiizzee  

%%  ooff  
OOrriiggiinnaall  FFiillee  
SSiizzee  

ppeeppppeerrss  9 496030 279017 56% 
lleennaa__ssmmaallll  8 125042 62521 50% 
ttuulliippss  10 731476 457173 63% 
ffrryymmiirree  9 295118 166004 56% 
sseerrrraannoo  9 207426 116678 56% 

It can be seen that file size decreases significantly if the minimum length bit size instead of 

the standard 16-bit length is used to represent the line coordinates.  For a 512×512 image, only 9 

bits are necessary to represent the lines.  In comparison with storing the line coordinates using 

standard 16-bit number, this is a saving of 56%. 

5.3.2 Colour Table Compression 

In this experiment, the colour table compression technique discussed in Section 3.4.3 is 

used on the test images.  Table 5.8 shows the resulting file size using this technique. 

Table 5.8 –  Colour Table Compression File Sizes for Various Images 

  UUnnccoommpprreesssseedd  CCoolloouurr  FFiillee  
SSiizzee  

CCoommpprreesssseedd  CCoolloouurr  FFiillee  
SSiizzee  

CCoolloouurr  
TTaabbllee  
SSiizzee  

%%  ooff  
OOrriiggiinnaall  FFiillee  
SSiizzee  

ppeeppppeerrss  744048 527034 346683 117% 
lleennaa__ssmmaallll  187566 125044 151557 147% 
ttuulliippss  1097217 777196 375828 105% 
ffrryymmiirree  442680 221340 6387 51% 
sseerrrraannoo  311142 142607 3762 47% 

From Table 5.8, it can be seen that some images actually increase in size after applying this 

technique.  This is because the number of colours has to be relatively few compared to number of 

nodes for this technique to be effective.  For the peppers, lena and tulips image, the file size 

increases.  However, for the serrano and frymire images, the file size decreases.  In general, 

photographic images increase and computer graphics images decrease in size.  The conditions for 

this technique to be useful are analyzed in more details in Section 6.1.3 and 6.1.4. 
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5.4 Summary 

From the experimental results, we can draw several conclusions: 

1. Although the optimal line selection algorithm yields a optimal size image tree, it is 

too computationally intensive; therefore, it is not optimal for energy.  On the other 

hand, the binary split method can construct the BSP tree much faster, with a slight 

increase in file size. 

2. Calculating the total square error in the traditional way is too slow.  Hence, we 

have proposed a fast error formula and it yields satisfactory results when pruning 

images, especially for binary split method constructed images.  Therefore, we 

recommend using the fast error pruning formula for binary split images. 

3. We have explored the use of total and average square error representation at nodes.  

We have found that total error representation performs better because region area 

should be taken into consideration when pruning the image tree.  In contrast, the 

region area is not accounted for in the average error representation. 

4. The use of minimal bit length helps to reduce line coordinate file size significantly.  

We have discovered that the use of a colour table may or may not help 

compressing an image depending on the properties of the image.  The condition 

for which the colour table method is useful is analyzed in Section 6.1.4. 
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Chapter 6 – Analysis 

This chapter presents the analysis for the various characteristics of BSP tree representation.  

In particular, we will analyze the image file sizes, performance of the tree construction methods 

and pruning formula, image quality with respect to execution time and file size, and the encryption 

performance with respect to file size and block or key length.  From the results of the analysis, we 

will derive a image quality and file size prediction model. 

6.1 File Sizes 

File size directly affects the encryption time and the storage space.  This section analyzes 

the relationships between file sizes, image quality, and execution time.  First, we will analyze the 

asymptotic bounds on file sizes.  Second, we will derive the conditions for which the image will 

benefit from using the colour table method of compression. 

6.1.1 Tree File and Line Orientation File Size 

The worst-case tree file size can be analyzed by analyzing a binary tree [46].  In the worst-

case scenario, each pixel is a distinct colour.  Hence, no neighbouring pixels can be merged.  For a 

N×N image, the number of pixels is N2.  The maximum number of leaf nodes, denoted as L, is 

equal to N2.  Let n denotes the number of non-terminal nodes.  Since every node except the root 

has a parent, there must be ( parents in the tree because every parent has two children.  

The number of non-terminal nodes is the same as the number of parents.  Hence, 

.  Rearranging gives: 

2/)1−+ nL

2/)1( −+= nLn

Number of non-terminal nodes: . 11 2 −=−= NLn

(6.1) 

The total number of nodes is the sum of all non-terminal nodes and leaf nodes and is 

equal to n+L.  Substitute L and rearrange, we get: 
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Maximum total nodes  12 2 −= N

 (6.2) 

Since each node occupies one bit flag in the tree file, the maximum file size is 

 bytes.  For a 512×512 image, the maximum tree file size is about 65536 bytes. 8/)12( N 2 −

2 −=

⎤
2

2

Similarly, each non-terminal node occupies one bit in the line direction file to indicate 

whether the line is horizontal or vertical, the maximum file size for the line direction file is 

 bytes.  For a 512×512 image, the maximum line direction file size is 32768 

bytes. 

8/)1(8/ Nn

If neighbouring pixels have the same colour, these pixels can be merged according to the 

BSP compression algorithm.  Our experiment results show that photographic images are close to 

the maximum file size.  This is because in natural photographs, neighbouring pixels often differ 

slightly.  However, for computer graphics and line art images, there are usually large homogenous 

regions.  The tree and line direction file size is often a fraction of the maximum file size.  

Therefore, BSP lossless mode works better for computer graphics and line art images. 

6.1.2 Line Coordinate File Size 

The number of bits need to reference the lines in a N×N image is ⎡  bits.  The 

number of non-terminal nodes is .  Therefore, the maximum line coordinate file size is  

 bytes.  For a 512×512 image, the maximum line file size is 294911 bytes. 

N2log

)1( −N

⎡ ⎤ 8/)1(log 2 −NN

6.1.3 Colour File Size 

In the worst-case scenario, the maximum number of leaf nodes is equal to the number of 

pixels, which equals to N2 for a N×N image.   In the non-colour table mode, each leaf stores the 

24-bit colour directly.  Therefore, the maximum colour file size is 3N2 bytes.  In the colour table 

mode, each node stores the index.  If there are K colours in this image, then the number of bits 
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needed to index to this colour array  is ⎡ ⎤2 Klog

2

K

 bits.  The maximum colour file size in colour 

table mode is therefore bytes. ⎡ ⎤ 8/)log( 2 NK

6.1.4 Colour Table Size 

In colour table compression mode, each leaf node stores the index number to the colour 

palette table instead of the actual colour.  Let K denote the number of distinct colours in the 

image.  Assuming 24 bit (3 bytes) colour, the colour table size is 3 ⋅  bytes  The number of bits 

needed to index to this colour table  is ⎡ ⎤2 Klog  bits.  The amount of savings per node is: 

⎡ ⎤ bits/node log24/ 2 KnodeSavings −= . 
(6.3) 

Let L denote the total number of leaf nodes in the tree.  The total number of savings for 

the entire image file is: 

⎡ ⎤ bytes 
8

)log24( 2 KLgsTotalSavin −
= . 

(6.4) 

There is the extra overhead of storing the colour index table.  Therefore, the final effective 

savings by using the colour table method compared to storing the colours directly is: 

Effective Savings ⎡ ⎤ bytes 3
8

)log24( 2 KKL
−

−
= . 

(6.5) 

It can be seen that we can have gain in savings only if: 

⎡ ⎤ KKL 3
8

)log24( 2 >
−

. 

(6.6) 

By rearranging Eq. (6.6), we get  

⎡ ⎤ )1(24log2 L
KK −< . 
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(6.7) 

From Eq. (6.7), it can be seen that images with relatively a few colours compared to 

number of nodes (i.e. small K/L) will benefit the most from colour table compression mode.  This 

is typical of computer graphics and line art images.  Therefore, colour table compression technique 

can compress these types of images better than natural photographic images. 

6.1.5 Summary 

From the analysis in this section, it can be seen that in lossless mode, BSP Tree 

compression algorithm performs better on computer graphics and line art images.  These images 

have relatively few colours and larger homogenous regions.  The larger homogenous regions make 

it possible to merge pixels.  Hence, the image tree is smaller and results in reduction in tree, line 

direction, and line coordinate file size.  The relatively few colours for these types of images allow 

the colour indexing method to store the colour file efficiently.  In our experimental results in Table 

5.8, it can be seen that computer graphics images such as the frymire and serrano images benefits 

from colour indexing technique by a reduction of colour file size of about 50%. 

6.2 Performance 

This section compares and discusses how the tree construction method and the error 

calculation formula affect the execution time, hence the energy consumed by the system.  We will 

estimate the computation energy cost by comparing the number of operations required for the 

optimal line and the binary split tree construction techniques and discuss qualitatively how our 

proposed fast pruning formula help to reduce computation energy. 

6.2.1 Operations required for the Tree Construction Mechanisms 

In the original method, the LSE transform in Eq. (2.1) is calculated for every potential 

partitioning line.  For the top integral in Eq. (2.1), a total of (x2-x1) multiplications and (x2-x1) 

additions is required.  For the denominator, a total of (x2-x1) additions are required.  Therefore, for 
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each LSE transform, if we add up the total number of operations required for the top and bottom 

integral, a total of (x2-x1) multiplications and 2(x2-x1) additions are required. 

AdditionsxxtionsMultiplicaxxrmOpLSETransfo )(2)( 1212 −+−= . 

(6.8) 

For a horizontal line, x1 is the x-coordinate of the beginning of the region and x2 is the x-

coordinate of the endpoint.  Therefore, for any p×q sub-region of the image under consideration, 

(x2-x1) is the x-size (i.e. p) of the region.  For a vertical line, (x2-x1) is the y-size (i.e. q) of the region.  

Substitute p and q into Eq. (6.8), we get: 

⎩
⎨
⎧

⋅+⋅
⋅+⋅

=
 verticalis line candidate if  ,2
horizontal is line candidate if  ,2

AdditionsqtionsMultiplicaq
AdditionsptionsMultiplicap

rmOpLSETransfo . 

(6.9) 

Every potential horizontal and vertical line is tested with LSE transform.  For a p×q 

region, there are q horizontal lines and p vertical lines considered for the LSE transform.  Let Ci 

denotes the total number of operations needed for sub-region i.  The total number of operations is 

the sum of all the operations for the horizontal and vertical candidate lines.  Multiply Eq. (6.9) by 

the total number of horizontal and vertical lines and add, the total number of operations, Ci, 

required for testing all the candidate lines for sub-region i in one iteration is: 

AdditionspqtionsMultiplicapq
AdditionspqtionsMultiplicapqAdditionspqtionsMultiplicapq

AdditionsqtionsMultiplicaqpAdditionsptionsMultiplicapq
rmOpLSETransfoprmOpLSETransfoq

rmOpLSETransfolLinesnumVerticarmOpLSETransfotalLinesnumHorizonCi

⋅+⋅=
⋅+⋅+⋅+⋅=
⋅+⋅⋅+⋅+⋅⋅=

⋅+⋅=
⋅+⋅=

42
22

]2[]2[ . 

(6.10) 

Eq. (6.10) shows the total number of operations required for one iteration of the tree 

partitioning process.  This calculation needs to be repeated when the region has been partitioned 

and new sub-regions are formed. 

For the worst-case scenario of a N×N image, no pixels can be merged and the image 

forms N×N leaf nodes.  Each iteration creates two sub-regions.  Therefore, the number of lines 
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considered in each iteration increases at a rate of 2i.  Therefore the total number of LSE transform 

operations is: 
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(6.11) 

Now we consider the number of pixels considered at each iteration.  Although the number 

of lines considered at each iteration is doubled, the region size is halved at each split.  For a 

horizontal line, the horizontal dimension (i.e. p) stays constant as N while the vertical dimension 

(i.e. q) is halved (divided by 2i) at each iteration.  Substituting value for p and q in Ci into Eq. (6.11), 

the total number of operations spent in LSE transform for a N×N image is: 

)42(log2

)42(2
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4
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(6.12) 

This does not include the time for calculating the total square error for the chosen 

candidate lines.  Calculation of the total square error requires p×q additions and multiplications 

each time.  There is at least one total square error calculation in each split.  Using similar reasoning 

as in deriving Eq. (6.12), the minimum total operations spent in calculating total square error is: 

)(log2

log2
22

2

2

AdditionsNtionsMultiplicaNN

eErrorOpTotalSquarNperationsuareErrorOMinTotalSq

⋅+⋅⋅=

⋅=
. 

(6.13) 
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Adding Eq. (6.11) and (6.13) together, the minimum total number of operations required 

for constructing a optimal line selection BSP tree is: 

)53(log2

log2
22

2

2

AdditionsNtionsMultiplicaNN

eErrorOpTotalSquarNerationsMinTotalOp

⋅+⋅⋅=

⋅=
. 

(6.14) 

This is only the lower bound of the total number of operations required for the optimal 

line selection process.  Usually, more than one line passes the LSE transform condition.  

Therefore, the result in (6.13) is usually significantly greater. 

In the binary split case, for each split, only one addition and one multiplication is needed 

to find the midpoint using Eq. (2.3).  The number of splits is equal to the number of non-terminal 

nodes thus there are N2-1 splits.  Therefore, only N2-1 additions and N2-1 multiplications are 

required.  No calculation of the total square error is needed  

It can be seen that the binary split method is much faster than the optimal line selection 

method.  Although one can argue that neglecting the optimal line may make the tree suffer from 

the same problems of a quadtree, (where if the split lines do not align with the true object 

boundaries will result in a lot of nodes), the binary split method is still better than a quadtree 

because only two children nodes are created instead of four children nodes for each split.  

Therefore, if two neighbouring quadrants are homogenous, it will not split the homogenous nodes 

furthermore.  On the other hand, in the quadtree case, it requires one more split because the 

partitioning will terminate.  From the experimental results, it can be seen that the file size increase 

due to neglecting the optimal line is acceptable.  Therefore, the binary split method is a simple yet 

efficient method to construct the BSP tree.  It has the combined benefits of the efficiency of 

representation of a BSP tree and the efficiency in tree construction of a quadtree. 

6.2.2 Error Calculation Formula 

Error calculation is a bottom-up algorithm.  One needs to traverse all the leaf nodes in 

order to get the exact pixel colour values to calculate the mean and error.  Then, the mean at each 

node can be calculated in a bottom-up fashion.  In the original Radha et al algorithm, the total 

square error needs to be calculated at every level of the tree.  This may yield to better pruning 
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decisions, yet it is not efficient since this calculation needs to be repeated again at the higher levels.  

It is desirable to be able to reuse intermediate results from previous calculations. 

Our proposed formula reuses the partial error previously calculated from the lower nodes.  

This speeds up the pruning exponentially.  Calculation of the total square error requires N2.  

However, the proposed method in Eq. (3.3) reuses the children’s total error and derives the new 

total error by adding a weighted average of the children node’s error and standard deviation.  No 

recalculation of error for the subtree regions is needed. 

Total error is more useful than the average error per pixel because the error selection 

should be proportional to the region’s area.  A larger region cannot tolerate as much error as a 

smaller region because the error is more visible.  The use of total error reflects the importance of 

the area should have on the pruning decision.  A large area should not be pruned if the error is 

huge and a smaller area may be pruned for the same average error. 

6.2.3 Summary 

Execution time directly affects energy.  The proposed algorithm aims to reduce energy 

consumption by cutting down the execution time for constructing the image tree and pruning the 

tree.  In the new binary split tree construction method, the execution time is cut down significantly, 

at the expense of a slight increase in tree file size.  In the fast error calculation method, the 

execution time is reduced by reusing results from previous calculations.  The tradeoff is a slightly 

less accurate pruned image quality.  However, this is justified by the significant decrease in 

execution time. 

6.3 Image Quality 

Image quality is another factor that affects the end user.  This section analyzes the 

different relationships between the image quality and execution time and file size. 
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6.3.1 Execution Time versus Image Quality Threshold 

Image quality threshold has a light effect on execution time.  Figure 6.1 shows a plot of the 

execution time versus the pruning threshold (shown in Table 6.1) for the peppers image.  It can be 

seen that the lower the image quality, the faster it takes to generate the image file.  This is because 

if the pruning threshold is higher, more nodes are pruned at higher level of the tree.  Thus, there 

will be less nodes to be considered for pruning.  Pruning is implemented in a top to bottom 

fashion.  It starts from reading the error values at the root node.  If the threshold is higher, then 

the tree will be pruned at a higher level, hence eliminating the time needed to traversal the subtrees 

from the pruned node.  However, the image quality threshold does not affect the execution time 

as significantly as the error computation formula. 
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Figure 6.1 – Pruning Time versus Pruning Threshold 
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Table 6.1 – Pruning Time at different thresholds 

TThhrreesshhoolldd  TToottaall  PPrruunniinngg  TTiimmee  ((mmss))  
00  0 

55..0000××1100--0066  321 
11..0000××1100--0055  331 
22..0000××1100--0055  341 
44..0000××1100--0055  340 
88..0000××1100--0055  341 
11..0000××1100--0044  351 
22..0000××1100--0044  351 
44..0000××1100--0044  350 

6.3.2 Image Quality versus File Size 

In general, the higher the image quality, the larger the file size is.  Figure 6.2 shows the image 

quality and file size relationship for various test images.  The file size is normalized as a fraction of 

the best quality file size, which is assigned a value of 1.  Figure 6.3 views the same data from a 

slightly different perspective.  The compression is expressed as the bit rate per pixels.  The image 

data are generated without using the colour table compression method. 
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Figure 6.2 – PSNR versus Normalized File Size 
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Figure 6.3 – PSNR versus Bit Rate 

Figure 6.2 shows that at low to medium compression ratio (i.e. file sizes closer to 1), there 

is a linear relationship between the PSNR and file size.  However, at higher compression ratios 

(high thresholds), the PSNR deviates from this linear relationship and behaves like an exponential 

relationship.  This is evident by examining the trend at lower bit rate in Figure 6.3.  This is because 

at higher compression ratios, many of the nodes that represent large region areas are pruned.  

Therefore, the image quality drops significantly as these large region nodes are deleted.  Then, at 

about 20% of the best quality file size or 5bpp in Figure 6.3, the PSNR starts to increase linearly 

with the file size.  This is because at low to medium compression ratios, the nodes that are pruned 

usually represent smaller regions, so the impact on overall quality is less when these nodes are 

merged.  The exceptions to the general trend are the frymire image and the serrano image.  Both 

images are computer graphic images.  Both images do not exhibit the non-linear behaviour at 

lower bit rate. 
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In summary, the compression bit rate should operate in the linear region in order to have a 

relatively consistent image quality.  Below that bit rate, image quality suffers significantly without 

much reduction in file size. 

6.3.3 Comparison to other Image Compression Systems 

Compared to TIFF, if a slight loss in image quality is allowed, then our compression 

method is superior to TIFF for most images.  At a low threshold of 5.00×10-06, the loss in image 

quality is almost not noticeable.  At such threshold, our BSP compression scheme outperforms 

TIFF for most images, as shown in Table 6.2.  Notes that PSNR is not included for TIFF files 

because TIFF LZW compression is lossless; therefore, PSNR for lossless images equal infinity.  In 

Table 6.2, the images are generated in binary split tree construction, no colour table compression 

mode unless specified otherwise.  The exception is the frymire image, which appears to be more 

suited for optimal line tree construction method with colour table compression. 

Table 6.2 –  TIFF and BSP Tree File Sizes for Various Images 

  TTIIFFFF    FFiillee  
SSiizzee  ((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

BBSSPP    FFiillee  
SSiizzee  ((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

PPSSNNRR  
((ddBB))  

ppeeppppeerrss  530764 16.20 289004 8.82 37.73 
ffrryymmiirree  ((bbiinnaarryy  sspplliitt,,  wwiitthh  
ccoolloouurr  ttaabbllee  ccoommpprreessssiioonn))  

181672 5.54 232647 7.10 30.94 

ffrryymmiirree  ((ooppttiimmaall  lliinnee,,  wwiitthh  
ccoolloouurr  ttaabbllee  ccoommpprreessssiioonn))  

181672 5.54 140615 4.29 31.51 

sseerrrraannoo  166576 5.08 151071 4.61 31.36 

JPEG images at the best compression and best quality settings in Adobe Photoshop are 

also generated for comparison.  For the best compression JPEG image, a BSP tree image at a 

comparable bit rate is picked for comparison.  The best quality BSP tree image is compared with 

the best quality JPEG image.  Figure 6.4 shows the “best compression” and the “best quality” 

JPEG and BSP image for the peppers image and Figure 6.5 shows the results for the frymire 

image. 
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TThhrreesshhoolldd  JJPPEEGG  BBSSPP  TTrreeee  
Best 

Compression 

Best Quality 

Figure 6.4 – Peppers JPEG and BSP Tree Image at the best compression and quality 

settings 
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TThhrreesshhoolldd  JJPPEEGG  BBSSPP  TTrreeee  
Best 

Compression 

Best Quality 

Figure 6.5 – Frymire JPEG and BSP Tree Image at the best compression and quality 

settings 

Table 6.3 and Table 6.4 shows the file size, bit rates and the PSNR for the peppers and 

frymire images shown in Figure 6.4 and Figure 6.5, respectively. 
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Table 6.3 –  JPEG and BSP Tree File Sizes for Peppers Image 

  JJPPEEGG    FFiillee  SSiizzee  
((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

PPSSNNRR  
((ddBB))  

BBSSPP    FFiillee  SSiizzee  
((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

PPSSNNRR  
((ddBB))  

BBeesstt  
CCoommpprreessssiioonn  

23308 0.089 32.19 25660 0.098 29.53 

BBeesstt  QQuuaalliittyy  249787 0.953 44.35 1046639 3.99 54.46 

The BSP tree with the bit rate closest to the best compression JPEG is chosen for 

comparison.  The optimal tree peppers image pruned at 10-5 threshold using total square error 

formula, with no colour table compression is chosen for comparison.  The best quality image for 

comparison with the JPEG is the optimal tree image with the colour table compression disabled. 

Table 6.4 – JPEG and BSP Tree File Sizes for Frymire Image 

  JJPPEEGG    FFiillee  SSiizzee  
((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

PPSSNNRR  
((ddBB))  

BBSSPP    FFiillee  SSiizzee  
((bbyytteess))  

BBiitt  RRaattee  
((bbpppp))  

PPSSNNRR  
((ddBB))  

BBeesstt  
CCoommpprreessssiioonn  

88012 0.335 21.13 86006 0.328 20.39 

BBeesstt  QQuuaalliittyy  475277 1.813 47.49 200632 0.765 49.66 

The BSP tree with the bit rate closest to the best compression JPEG is chosen for 

comparison.  The optimal tree frymire image pruned at 10-4 threshold, with colour table 

compression enabled is chosen for comparison.  Whether the error formula is slow or fast error 

does not seem to affect the results a lot.  Therefore, it is not shown here.  The best quality image 

for comparison with the JPEG is the optimal tree image with the colour table compression 

enabled. 

It can be seen that BSP tree compression works better with the frymire image than the 

peppers image.  For the frymire image, with colour compression enabled, the BSP tree 

compression can compress more than 2 times better at the best quality settings in Table 6.4.  Even 

if we set JPEG at the best compression settings, BSP tree compression is still able to match the 

compression ratio of JPEG.  However, for the peppers image, JPEG outperforms the BSP tree 

compression in all categories.  Therefore, it can be concluded that JPEG is more suitable for 

natural photographic images, and BSP trees works better for computer graphics images. 

65 



6.3.4 Summary 

In summary, the higher the image quality, the larger the file size and the pruning time will 

be.  In turn, this translates to using more time for encryption and transmission.  Hence, higher 

image quality consumes more energy.  Our BSP tree scheme can outperform TIFF for most 

images.  Also, BSP trees are more suitable for computer graphics images while JPEG is better for 

photographic images. 

6.4 Scalable Encryption 

The purpose of encryption is to scramble the tree data so that no one can read the data 

without knowledge of the secret key.  Since the tree bits denote the tree structure of the image tree, 

it is not trivial to reconstruct the image just by examining the unencrypted colours.  In lower 

security levels, the line coordinate file is unencrypted.  Although it is theoretically possible to 

reconstruct the first few sections of the regions close to the root node by looking at the line 

coordinate values at the front of the file, the attacker will not be able to know whether the line 

coordinate values are associated with the left sub-tree or as a child at the deeper level.  Therefore, 

the image is still quite reasonably secure without encrypting the lines. 

6.4.1 Encryption Time versus File Size 

The time it takes to encrypt the image file versus the tree file size using partial encryption 

is investigated.  Table 6.5 shows the total encryption time for encrypting the peppers image 

pruned at different thresholds. 
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Table 6.5 – Encryption Time at different thresholds 

TThhrreesshhoolldd  TTrreeee  FFiillee  
SSiizzee  ((bbyytteess))  

LLiinnee  FFiillee  
SSiizzee  ((bbyytteess))  

TToottaall  EEnnccrryypptteedd  
SSiizzee  ((bbyytteess))  

PPeerrcceennttaaggee  ooff  
TToottaall  FFiillee  SSiizzee  

EEnnccrryyppttiioonn  
TTiimmee  ((mmss))  

00  62005 279017 341022 30.56% 250.40 
55..0000××1100--0066  16057 72250 88307 30.56% 63.10 
11..0000××1100--0055  11217 50468 61685 30.56% 47.10 
22..0000××1100--0055  7966 35842 43808 30.56% 31.00 
44..0000××1100--0055  5701 25648 31349 30.56% 24.10 
88..0000××1100--0055  4064 18279 22343 30.56% 18.00 
11..0000××1100--0044  3644 16389 20033 30.56% 15.00 
22..0000××1100--0044  2642 11882 14524 30.56% 12.00 
44..0000××1100--0044  1891 8504 10395 30.56% 8.00 

The results in Table 6.5 are generated using security level 5 parameters for a binary split 

peppers image using the fast error pruning formula.  Figure 6.6 shows the plot of the data in Table 

6.5. 
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Figure 6.6 – Encryption Time versus Encrypted File Size 

It can be seen that encryption time increases linearly as the file size increases.  Since file 

size is related to image quality, it can be inferred that the encryption time increases as image quality 

increases.  Therefore, there is a tradeoff between the encryption energy and the image quality.   
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6.4.2 Encryption Time versus Partial Encryption Percentage 

We have investigated the time it takes to encrypt the tree and line coordinate files versus 

the fraction of file encrypted.  Figure 6.7 shows the results for encrypting different percentages of 

tree file sizes for the different block sizes.  The test image used is the best quality peppers image, 

constructed with binary split method. 
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Figure 6.7 – Encryption Time versus Percentage of Tree File Encrypted 

It can be seen clearly that the encryption time increases linearly as the percentage of files 

encrypted increases.  This is because AES encryption is directly proportional to the number of 

input data blocks to be encrypted.  To conserve energy, one should decrease the fraction of the 

tree file encrypted by selecting a lower security level. 

68 



6.4.3 Encryption Time versus Encryption Key and Block Length 

We have also investigated how the encryption key and block size affects the encryption 

time.  The best quality binary split frymire image is used as the input image for the encryption 

engine for encryption the tree file (36891 bytes). 

Table 6.6 – Encryption Time (ms) for Different Key and Block Length 

KKeeyy  LLeennggtthh  112288  bbiitt  bblloocckk  119922  bbiitt  bblloocckk  225566  bbiitt  bblloocckk  
112288  38.07 82.47 131.20 
119922  44.07 86.13 134.90 
225566  50.07 100.77 151.53 

Figure 6.8 shows the results in graphical form. 
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Figure 6.8 – Encryption Time versus Key and Block Length 

From the results, it seems that key length does not affect the encryption time as strongly as 

the block length.  As the key length increases, the encryption time only increases slightly.  On the 

other hand, as the block length increases, the encryption time increases significantly. 

69 



In Table 6.2 and Table 6.4, the TIFF frymire image and the best quality JPEG frymire 

image file size are 181672 and 475277 bytes, respectively.  For TIFF and JPEG, the entire file 

must be encrypted for it to be secure.  On the other hand, our partial encryption system only 

needs to encrypt the BSP tree part of the frymire image, which is 36891 bytes for the best quality 

image. This is only 20.3% and 7.7% of the amount of data that needs to be encrypted for TIFF 

and JPEG, respectively.  Therefore, we have saved encryption energy significantly. 

6.5 Selective Focus Regions Feature 

One of the major advantages of a BSP tree is the feature of selectively choosing important 

areas of the image to have a higher quality than the less important parts.  For the less important 

areas, one can choose a higher threshold to compress the image more, while in the more 

important areas one needs to keep a higher quality image.  For example, in Figure 6.9a, the lena 

image is pruned with the same threshold for the entire picture.  The facial features and the 

background are pruned with the same quality.  As a result, the facial features are blurred 

(highlighted with circles).  On the other hand, in Figure 6.9b, the facial region is pruned with a 

lower threshold, while the less important background is pruned with a higher threshold.  One can 

see that Figure 6.9b appears to have a higher quality than Figure 6.9a because the important facial 

details are conserved.  Selective focus region feature should theoretically work well for quadtrees 

too, although it has not been suggested in previous research in [39] and [40]. 
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(a) Without Selective Threshold 

 
(b) With Selective Threshold 

Figure 6.9 – Lena Image with Selective Threshold Regions 

6.6 Image Quality Prediction Model 

It is desirable to be able to predict image quality at different thresholds.  In this section, we 

derive a simple image quality model to estimate the image quality given the best quality image’s 

PSNR and the minimum acceptable PSNR. 

From our experiments, we have observed that the image quality decreases exponentially as 

the threshold increases.  Therefore, an exponential model has been used to estimate the image 

quality at different thresholds.  Figure 6.10 shows the plot of the estimated curve and the actual 

curve of the PSNR versus threshold. 
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Figure 6.10 – Estimated PSNR versus threshold 

In Figure 6.10, the solid lines are the average PSNR measured at different pruning 

thresholds, the dotted lines show the estimates according to the empirical formula: 

φλ θ ++− )(
0

0tte  

(6.15) 

where 0λ  is the best quality image’s PSNR, φ  is the minimum acceptable quality’s PSNR, 

θ  is the decaying factor, t is the threshold divisor (expressed as the percentage of the root node’s 

total error) and t0 is the projected y-intercept for the estimated curves. The formula is similar to 

failure intensity formula found in software engineering [47]. 

0λ  scales the estimated curve so that it decays at the same scale as the original curve.  φ  

shifts the curves up so that the asymptotic value of the estimated curves will match the image’s 

asymptotic value as the threshold moves to infinity.  Note that PSNR usually does not approach 
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zero as the threshold moves to infinity because it will approach zero only if the MSE is equal to 

the peak magnitude squared (2552 for 8-bit values).  In other words, only when the approximated 

pixel value is at the extreme of the actual pixel value (i.e. estimated pixel value is black while the 

actual pixel is white).  In practice, this does not happen.  Therefore, φ  is added to compensate for 

this fact.  t0 is added to the threshold to shift the curves to the left so that the estimate curves 

match the actual measurement.  θ determines how quickly the image degrades as the threshold 

value increases.  Although the values for φ , θ and t0 vary for different images, they fall in 

surprisingly close ranges.  It is found that θ is typically between 1.3-1.5×104 and t0 is typically 

between 0.9-1.2×10-4.  Table 6.7 shows the values for θ and t0 and other parameters determined 

empirically in the experiments. 

Table 6.7 – Parameters for Image Quality Prediction Model 

  λλ00  ΘΘ  tt00  ΦΦ  
ppeeppppeerrss  56.53 1.3×104 1.2×10-4 25.30
lleennaa__ssmmaallll  53.76 1.35×104 1.1×10-4 23.42
ttuulliippss  56.62 1.3×104 1.2×10-4 20.79
ffrryymmiirree  52.34 1.35×104 0.9×10-4 15.08
sseerrrraannoo  57.09 1.5×104 1.0×10-4 18.90

Note that the point at zero threshold is an exception.  The y-intercept of the estimated 

curves equals to .  This value lies between 30-40dB for all these images.  However, the 

actual value at the y-intercept should be 

φλ +0e
θ− 0t

0λ .  This should not present major problems since there 

is not much need to estimate the image quality at the zero threshold (it is already at the best 

quality).  In Figure 6.10, it can be seen that the estimated curves quickly converge to the actual 

curves as the threshold moves away from zero.  This simple model predicts the image quality quite 

accurately, usually within 2-3dB of the actual PSNR. 

6.7 File Size Prediction Model 

Similarly, we have also investigated the relationship between the PSNR and file size.  

Figure 6.11 shows the curves for the actual file size and the estimated file size for different PSNR 

for various images.  The file sizes are normalized to the best quality image’s file size to facilitate 

comparison for different images. 
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Figure 6.11 – Estimated PSNR versus File Size 

In Figure 6.11, the solid lines are the average PSNR measured for different file sizes, the 

dotted lines show the estimates according to the empirical formula: 

φλ θ +− − )1(0
se  

(6.16) 

where 0λ  andφ  are the same parameters from Eq. (6.15), θ  is a constant that is determined 

empirically for different image and s is the normalized file size (expressed as the percentage of the 

best quality file size).  Table 6.8 shows the values for the parameters determined empirically in the 

experiments. 
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Table 6.8 – Parameters for File Prediction Model 

  λλ00  ΘΘ  ΦΦ  
ppeeppppeerrss  56.53 0.8 25.30
lleennaa__ssmmaallll  53.76 0.8 23.42
ttuulliippss  56.62 1.2 20.79
ffrryymmiirree  52.34 0.8 15.08
sseerrrraannoo  57.09 0.8 18.90

Note that θ  is the same for most images except the tulips image.  Therefore, this model 

can predict file size for the test images accurately without major adjustments.  This prediction 

model allows users to predict the image file size for a given image quality.  Therefore, users will be 

able to generate an appropriate image file size based on the required image quality and energy 

available. 
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Chapter 7 – Discussion and Conclusion 

7.1 Comparison to Previous Research 

Previous research on BSP compression focuses primarily on the compression aspect rather 

than the energy aspect.  Sometimes even though these algorithms can compress an image at higher 

ratios, the computational cost may be too high for handheld energy-constrained devices to justify 

their use.  Also, many of these researches are done on greyscale images.  This thesis extends the 

idea to colour images in a simple yet effective way. 

Compared to the previous proposed energy efficient schemes for image compression, our 

approach requires only a few overhead for re-scaling.  Both the JPEG [20],[21] and wavelet 

[24],[25] energy efficient schemes require re-computations for the quantization and entropy coding 

stages.  For our approach, once the best-quality BSP tree image representation is built, scaling it to 

any image quality is trivial since no re-computations of the node errors are required. 

Although there are previous researches on partial encryption [31], [37], [38], [39], [40] and 

BSP compression [14], [15], they have not been considered together.  To the best of our 

knowledge, this thesis is the first to use the benefits of a BSP tree to optimize for energy, while 

maintaining scalability and user flexibility. 

This thesis has proposed the idea of selecting a different pruning threshold for different 

areas using a BSP tree.  This allows users to conserve the details in the important parts of the 

image.  After all, it is the end users’ perception of the image that is ultimately important.  

Compression algorithms that affect the image globally do not allow such flexibility.  For example, 

JPEG based systems uses cosine transform based compression techniques, which affects all the 

coefficients in each block.  Thus, they do not allow selectively having different quality levels at 

different regions in the image.  Quadtree system allows partial encryption and selective focus area; 

however, storage wise it is not as efficient as binary trees.  We have proposed a binary split scheme 

in building the BSP tree, which combines the benefits of both worlds: it has the execution 

efficiency of quadtree in splitting the image, but also has the compact storage property of an 

76 



optimal line BSP tree.  Our experiment results show that the file size only increases slightly when 

using a binary split scheme. 

It is desirable to predict the image quality and file size before the image is generated.  

Previous research does not address this issue.  We have presented a simple model for predicting 

image quality and file size.  With such model, users will be able to predict the image quality and file 

size before the image is compressed. 

Regarding the compression performance, we have compared the bit rate with other 

compression systems.  For the data based on 8-bit greyscale images, we have multiplied the bit rate 

by three for a fair comparison to the 24-bit colour used in this system.  Table 7.1 shows the 

comparison to other image compression systems.  The values in parenthesis are the greyscale value 

multiplied by three. 

Table 7.1 – Compression performance compared to other systems 

  QQuuaaddttrreeee  JJPPEEGG  FFrraaccttaall  BBiinnaarryy  TTrreeee  BBSSPP  TTrreeee  
  Bit rate PSNR Bit rate PSNR Bit Rate PSNR Bit Rate PSNR
ppeeppppeerrss  0.516 N/A N/A N/A 0.60 (1.80) 32.5 1.67 31.37 
lleennaa__ssttdd  0.67 (2.01) 30.36 0.125 (0.375) 26.2 0.24 (0.73) 31.0 0.73 26.57 
ffrryymmiirree  N/A N/A 1.813 47.49 N/A N/A 0.765 49.66 

Our BSP tree compression system is comparable to other systems performance for the 

peppers image.  However, for the lena image, other systems work better.  Unfortunately, we are 

unable to find the data for other images from the literature.  It would be helpful if we can compare 

the performance for computer graphics type of images. 

7.2 Limitations, Advantages and Disadvantages 

Our proposed BSP tree compression and encryption scheme is simple and energy efficient.  

It is easy to adjust image quality without many re-computations, thus saving computational costs.  

There is no need for the original image once the BSP tree has been created.  It also gives users 

great flexibility by introducing the idea of variable image quality in different regions.  This allows 

the system to enhance compression without sacrificing the quality for the important areas of the 

image.  Our image quality prediction metric gives users the flexibility to choose a suitable image 

quality or file size that satisfies their needs for the image. 
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With respect to the compression performance, BSP trees are better suited for computer 

graphics images than photographic images when compared to JPEG.  This is because BSP tree 

compression compresses better when there are larger homogenous regions, which is the case for 

computer graphics.  In contrast, photographic images have smooth transitions between pixels.  

Therefore, neighbouring pixels are usually slightly different from each other.  JPEG is more 

specialized in handling such cases.  Our BSP tree scheme is also better than quadtrees in most 

cases because partitioning lines are more flexible and less nodes are created to represent the same 

image. 

With respect to partial encryption performance, BSP is superior to JPEG.  Many of the 

previous JPEG partial encryption schemes are either inefficient or insecure.  BSP tree images only 

need to encrypt a small fraction of the total image size.  Since only part of the data is encrypted, it 

is theoretically less secure than a complete encryption.  However, we do not see our partial 

encryption scheme to suffer from any major weaknesses. 

7.3 Conclusion 

In this thesis, we have proposed a energy efficient system for compressing and encrypting 

images.  Compression is performed to save the energy cost used for transmission.  Encryption is 

performed for ensuring the confidentiality of the image.  To conserve energy, partial encryption is 

performed by only encrypting the tree and line part of the image.  Users are also given the choice 

of different security levels to decide the optimal tradeoffs in security and energy consumption. 

With respect to compression performance, we have found that our proposed scheme 

compresses computer graphics better than photographic images.  Since computer graphics have 

large homogenous regions, our BSP compression algorithm is effective in merging those 

neighbouring pixels together.  Also, the number of colours relative to number of nodes is 

relatively few in computer graphics.  Therefore, our proposed colour table compression scheme is 

very effective. 

With respect to security, our partial encryption system saves energy by only encrypting the 

important parts of an image.  Without the knowledge of the BSP tree structure, it is difficult for 
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the attacker to construct the image using the line coordinates and colours alone.  Therefore, 

security is not compromised while energy is saved. 

Image quality is affected by the compression ratio in a lossy BSP compression.  The higher 

the threshold, the more compressed the image will be, while the image quality is sacrificed at the 

same time.  It is up to the end user to decide whether the sacrifice in image quality is acceptable 

for different images.  Therefore, users should have the flexibility to choose appropriate image 

quality that is acceptable for the particular image.  Our proposed image quality and file size 

prediction model allows users to decide the optimal compression ratio that can generate an 

acceptable image quality.  By letting users to choose the image quality before the image is 

generated, our system have saved energy otherwise spent on encrypting and transmitting the extra 

payload associated with a higher quality image.  

Moreover, the perception of image quality is important too. In an image, there are usually 

areas that are more important than others.  When compressing the image, it is necessary to keep 

the details in these important areas in order to maintain the overall perception of image quality.  

Our proposed BSP tree compression and encryption scheme offers such option by letting users to 

choose different pruning thresholds for different areas of the image.  By choosing a higher 

threshold for the less important areas, while maintaining a lower threshold for the important areas, 

the impact on the perception of image quality is small.  At the same time, energy is saved on 

encryption and transmission because the image file size is smaller. 

7.4 Future Works 

It would be worthwhile to investigate the following areas for future research: 

1. Improved Coding Techniques – Due to time constraints, advanced coding 

techniques were not implemented in this thesis.  Better coding techniques can 

improve the compression ratios without sacrificing image quality.  In our 

experiments, the compression results for photographic images are worse than 

computer graphic images.  The use of more advanced coding technique may help 

to improve that.  From previous BSP tree related researches that make use of a 

more advanced coding technique, compression performance is very good even for 
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photographic images.  We may be able to apply entropy coding techniques to 

enhance the compression of the colours and line coordinates.  It is worthwhile to 

investigate the use of advanced coding techniques and their impact on energy and 

image quality. 

2. Generalized Model for Prediction of Image Quality and File size – In this 

thesis, we have determined the parameters for the image quality and size prediction 

model empirically.  These parameters are slightly different for different images.  It 

would be desirable if these parameters can be determined automatically so that the 

model can be applied to all images. 

3. Deriving an Energy Prediction Metric – Due to limited resources and time 

constraints, we have not ported our compression and encryption scheme to an 

actual embedded wireless hardware.  It would be useful to obtain real energy 

measurements on such portable devices to analyze the energy required for each 

clock cycle in computation and the energy required to transmit each byte of data.  

From that, we can derive an energy model which helps users to predict the energy 

needed to compress and transmit an image at a given security level.  This allows 

users to select an appropriate image quality and security level that is necessary for 

the image. 

4. Integration into an energy-aware pervasive environment – With an energy 

prediction metric, our image compression and encryption scheme can be integrated 

into an energy-aware framework with monitors on battery status and location.  At a 

low-risk environment (e.g. at home), a lower security level can be chosen to save 

encryption energy.  At a high-risk environment, maximum security level needs to 

be chosen to protect the image.  It would be desirable if the security level is a 

function of the location and the battery status.  Therefore, it is worthwhile to 

investigate how our compression and encryption scheme can fit into such 

framework. 
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