
 

 

Multiple Agent Architecture for a Multiple Robot 

System 

 

by 

Bram Aaron Bakst Gruneir 

 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Systems Design Engineering 

 

Waterloo, Ontario, Canada, 2005 

© Bram Gruneir 2005 



 ii 

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

 

I hereby declare that I am the sole author of this thesis.  This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 



 iii 

Abstract 

Controlling systems with multiple robots is quickly becoming the next large hurdle that 

must be overcome for groups of robots to successfully function as a team.  An agent 

oriented approach for this problem is presented in this thesis.  By using an agent oriented 

method, the robots can act independently yet still work together.  To be able to establish 

communities of robots, a basic agent oriented control system for each robot must first be 

implemented.  This thesis introduces a novel method to create Physical Robot Agents, 

promoting a separation of cognitive and reactive behaviours into a two layer system.  

These layers are further abstracted into key subsections that are required for the Physical 

Robot Agents to function.  To test this architecture, experiments are performed with 

physical robots to determine the feasibility of this approach. 

A real-time implementation of a Physical Robot Agent would greatly expand its field of 

use.  The speed of internal communication is analyzed to validate the application of this 

architecture to real-time tasks. 

It is concluded that the Physical Robot Agents are well suited for multiple robot systems 

and that real-time applications are feasible.   
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1 Introduction 

Both multiple agent (multi-agent) systems and multiple robot (multi-robot) systems have 

existed for many years.  However, it is only recently that the integration of these fields is 

being explored.  This thesis delves into the field of multi-agent approaches for multi-

robot systems and presents a framework in which multiple robot systems can be quickly 

programmed and tested.  This first chapter contains an overview of the motivation and 

structure of this thesis. 

1.1 Motivation 

With recent advances in agent oriented languages and frameworks, such as the Java 

Agent DEvelopment Framework (JADE) [1] and Agent-0, it is now possible to both 

design and implement complex multiple agent systems on a wide variety of systems.  A 

list of agent oriented languages can be found in [25].  The application of agent oriented 

approaches to multiple robot systems has focused mainly on robotic simulations or using 

very simple robots.  This work in this thesis is designed to help bridge that gap and foster 

an environment which allows quick implementations of multi-agent, multi-robot system 

on complex mobile robots. 

In current research, no mention is made of the internal software structure of the robots 

and the specifics of this area are left up to each individual implementation.  When 

implementations are robot and system dependant, there is no portability in these systems’ 

software.  By describing in detail the internal structure of the robots and using this 
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information to find a common level of abstraction, all future systems contribute to 

improving portability. 

To accomplish these goals, a new software architecture describing the internal software 

components is presented for the robots.  By structuring and restricting the flow of 

information within it, the robots can be autonomous and co-operative.  The architecture 

allows for the implementation of most types of hierarchies, using different types of 

robots.  The agent level of robots is also standardized and interchangeable.  This 

architecture is described in detail and implemented within this thesis. 

1.2 Thesis Scope 

This thesis covers both the theoretical and implementation aspects of a new architecture 

for multi-robot systems based on an agent oriented design.  This architecture uses a 

multi-agent solution to enable a fully distributed system.  Due to the wide variety of 

possible systems, no single code base is applicable, so implementation guidelines are put 

forward as opposed to hard rules.  As well, a functional implementation is presented.  The 

source code for this implementation and a DVD demonstrating the functioning of the 

experiment can be found in Appendix D. 

With the constraints of real-time systems, the basic requirements of a multi-robot system 

are greatly increased.  This thesis discusses in depth both the methods and requirements 

of the communications in the presented architecture.  A comparison of the speed of the 

communication within the architecture is presented.  
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1.3 Contribution 

The primary goal of this thesis is to present a new architecture for automated multi-robot 

systems based on a multi-agent oriented approach.  It allows for a large variety of 

systems including multiple hierarchies including centralized and distributed systems.  It 

looks not only at the method that the robots use to communicate with each other, but also 

describes the internal software structure of each robot.  This structure allows completely 

different robots to work together; it allows the robot’s lower levels to be treated as a 

“black box” so a robot can be programmed regardless of how its hardware functions.  

This fosters an environment whereby the same code can be used on multiple robots for 

different tasks, greatly increasing portability.  The architecture can be used with small 

(single robot) and large (hundreds of robots) systems.  The internal communications 

between layers is examined for the possible use for real-time applications.   

1.4 Thesis Organization 

This thesis is split into 6 chapters which can be seen as four parts.  The first 2 chapters 

contain the background information for both this thesis and other work in the field.  

Chapter 1 is the introduction in which the motivation, scope and organization of the 

thesis are discussed.  Chapter 2 contains the background information required for the rest 

of the thesis.  This chapter contains basic definitions and some of the important concepts 

addressed throughout the rest of the thesis.  It also contains reviews of relevant research 

in the field.  It examines where other research is currently with respect to the 

contributions made within this thesis. 
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The second part, consisting of 2 chapters, describes the new architecture.  Chapter 3 

describes this architecture in detail including the nature of the communications that are 

required within the architecture.  Chapter 4 details how an implementation of the 

architecture could proceed.   

The third part, chapter 5, is that of experimentation in which two different experiments 

are performed.  The first demonstrates a fully realized version of the architecture with an 

analysis of its performance.  An examination of some of the different communication 

methods for intra-robot communications is presented in the second experiment.   

The conclusions are located in chapter 6.  It contains the conclusions, the limitations of 

architecture and recommendations for future directions and further research.   

The appendices consist of both the source code used to create the architecture and 

communications experiments as well as a DVD video of the architecture experiment 

being performed. 
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2 Background and Literature Review 

This chapter contains definitions and information on the key terms and concepts 

presented within this thesis as well as reviews of relevant literature. 

2.1 Robots 

This section describes some of the challenges in dealing with multiple robot systems 

design and presents a definition of the term ‘robot’. 

2.1.1 Definition 

The following definition of a robot was taken from Wikipedia [28]: 

In practical usage, a robot is a mechanical device which performs 
automated physical tasks, either according to direct human 
supervision, a pre-defined program or, a set of general guidelines 
using artificial intelligence techniques.  Robots are typically used to do 
the tasks that are too dirty, dangerous, difficult, repetitive or dull for 
humans. 

Most research robots are computers with sensors, a means of locomotion and a method of 

communication.  Although the work in this thesis is performed on mobile robots, the 

architecture is applicable to all robot types. 

2.1.2 Multi-Robot Design 

A multi-robot system is a system in which several robots function at the same time to 

achieve a goal.  Typically, the use of more than one robot will either allow the 

completion of said goal, or make a marked improvement over a single robot system.  
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Multi-Robot design does however bring with it the complications of increased 

complexity of communications and the possibility of physical collisions between robots.  

As the number of robots increases, functioning as a team can be daunting.  One way to 

facilitate the programming of multi-robot systems is to use an agent oriented approach.  

An example of a multi-robot system can be found in [23], where two robots try to 

push a box together.  Even when not explicitly mentioned, as in Mataric, Nilsson 

and Simsarian’s paper, a agent oriented design is being presented. Agents and multi-agent 

design are discussed in the following section. 

2.2 Agents and Agent Oriented Design 

This subsection defines agents, examines multi-agent design and some of the more 

common hierarchies.  A specific type of agent is examined and some of the complications 

from real-time systems are discussed. 

2.2.1 Definition 

Before moving forward in this thesis, it is important to establish an understanding on the 

nature of agents.  Agents are a fairly new and highly contested programming abstraction 

and it is difficult to find a consensus of their full definition.  For the purposes of this 

thesis, an agent is defined as an entity that has the following concepts:  it must be 

autonomous; it must have a memory; it must be able to communicate with other agents; it 

requires a method to understand the data communicated to it and finally, it must contain 

some form of a problem solver.  These restrictions are taken from the work of 

Wooldridge, a highly respected researcher in this new field [29].   
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2.2.2 Multi-Agent Design 

Similar to multi-robot design, multi-agent design occurs whenever more than one agent 

works together to complete a task.  In [18], Jennings et al. present a history of multi-agent 

design.  This is the area where agents are designed to be able to function well.  Since each 

agent has a means of communicating with the other agents, they have the ability to solve 

problems collectively.  There are many different schemes for assigning duties to different 

agents, including an auction or by delegation of duties by a captain.  As the number of 

agents grow, more multi-layered structured approaches, or hierarchies, are required.  The 

most common hierarchies are discussed in the following subsection.  The structure of the 

agents themselves is also discussed. 

2.2.2.1 Multi-Agent Hierarchies 

Every multi-agent system needs an overall organizational hierarchy [24].  A two agent 

system can either function as a partnership or as a chief and an assistant.  If one extends 

this example to any number of agents, a system where there is one chief and many 

assistants is known as a centralized system.  A hierarchy where all of the agents derive 

collective decisions is known as a distributed system. 

There are a number of advantages to using a centralized system hierarchy.  By having a 

single controlling agent, co-ordination and co-operation are relatively easy to achieve.  

The managing agent’s primary role is to monitor the overall system and direct the 

subordinate agents’ actions.  All commands must pass through this central agent to ensure 

the stability of the system.  A centralized system is the easiest type of system to program 

but with this advantage also come some disadvantages.  A single agent-dependent system 
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can collapse if the chief agent is disabled or its communications are interrupted.  To 

prevent this from occurring, the leader agent must be designed to handle a large number 

of communications and process large amounts of data.  As the number of agents in the 

system increase, additional responsibility is designated to the chief agent. 

On the other end of the spectrum is a distributed system.  In a true distributed system, no 

one agent is in charge and decisions are based on collective agreements.  Unlike the 

centralized system, the removal of an agent and the addition of a new one is a simple 

process.  Distributed systems can become large but this size should not overwhelm any 

single agent’s ability to communicate or process information.  As well, since decisions 

are not being made by one chief agent, communications will not be as strained and a 

special agent does not need to be created to handle communications between agents.  The 

cost of these benefits occurs within each agent’s complexity.  As each agent must assist 

in the decision making, problem solving abilities must be built into them.  In addition, if 

not create properly, distributed systems can easily become unstable and not solve 

problems, due to agent disagreement (infighting).   

To deal with some of the disadvantages presented in a centralized system, a hierarchical 

system can be used.  It is similar to a centralized system but it does not have a single 

chief, but a full chain, or, more accurately, a tree of command.  A good example of a 

hierarchical system is an army.  Every agent, except for the head one, reports to a chief 

agent to which all questions are sent and from which all orders are received.  The primary 

concept in a hierarchical system is to lessen the amount of work which the head agent has 

to resolve.  This way, the head agent may delegate a full range of tasks to lower level 
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groups.  This type of system solves most of the communication problems with the 

exception of times when an agent is added or removed from the system.  If any agent is 

removed, all agents under its command are suddenly removed from the system as well.  

Using a hierarchical system allows for a much larger number of agents to work together 

than that which could work within a simple centralized system.  However, with this 

added complexity, the agents themselves need to be more complicated to handle giving 

and receiving orders.   

To circumvent some of the problems of distributed systems, a holonic system hierarchy 

can be used [30].  Holonic systems use teams to handle tasks.  When a task needs to be 

performed by more than one agent, a group of agents organize themselves into a team to 

allow decisions to be made faster and to reduce the complexity of using a fully 

distributed system.  An agent can be part of more than one team at the same time with 

completely different agents or even two teams with exactly the same agents.  If more 

agents are required to perform a task, they can be recruited onto the team.  More 

programming complexity is required within a holonic system than a basic distributed one, 

but it ensures faster decision making and quicker response times.   

There are many other examples of systems that can be used from multi-agent systems 

hierarchy, but most are hybrids of the ones already presented.  When choosing which 

type of hierarchy to use, the goals of the systems are paramount.  It may be pointless to 

create an extremely complex holonic system when a hierarchical one will perform 

sufficiently.  Some of the more important factors in making this decision are the number 

of agents being used and the response time of the system.  For the most part, agent 
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oriented design tends to push towards more distributed style systems to allow the agents 

greater autonomy.   

The architecture presented in this thesis allows for all of the aforementioned hierarchies 

to be implemented.  By creating an agent friendly environment, the architecture facilitates 

the development of all types of systems. 

2.2.3 Multi-Agent Robotic Systems 

While there has been extensive research involving multi-agent system hierarchies, there 

is very little on the internal structures of the agents themselves.  This section will present 

systems that have some similarity to the architecture presented in this thesis. 

Tigli’s and Thomas’s paper [27] explores the different agent configurations that can be 

used to control a robot.  The mobile robot agent discussed in the paper is, in essence, the 

Physical Robot Agent (PRA) used in this thesis.  By dividing the internal workings of the 

mobile robot agent, an internal multi-agent system can be used to control each robot.  

This is similar to the work that is performed in this thesis which uses a software multi-

agent system to control each robot’s Cognitive Layer (see chapter 3).  However, it is not 

as structured as the one proposed in this thesis and there are no clear information 

pathways that must be followed.  This could allow for conflicts to occur within the robot, 

making design much more difficult.  See [15] for another multi-agent system that is used 

to control mobile robots, but one in which the tasks are somewhat more defined. 
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Kawamura’s paper [20] looks at using miniature or atomic agents as small components of 

a larger agent.  Kawamura’s system however, is more structured than Tigli’s and 

Thomas’s work mentioned above.  Even though his system is designed for human-robotic 

agent interaction, it could be used for agent-agent interaction as well.  This system is 

similar to the software agents used within the Cognitive Layer.   

Lucidarme, Simonin and Liégeois present a single layer system in [22].  This system 

contains a separation between an interaction element and an action element which is the 

primary difference between the structure demonstrated in their paper and the one 

described in this thesis.  The interaction element is not similar to the Cognitive Layer as it 

does not make any decisions; it just is directed by the action element.  Furthermore, the 

interaction element can only receive messages from the action element, not reply.  By 

taking the interaction away from the decision making, it is more difficult for multi-agent 

systems to come to agreements. 

In Cossentino, Sabatucci and Chella’s paper [4], a very strict methodology is presented to 

streamline the development of multi-agent systems.  One of the main points in the paper 

is to maximize the amount of pattern reuse, as it can greatly decrease the amount of work 

needed to produce new systems.  This can occur by reusing an agent, similar to what is 

discussed in chapter 5, or even better is the use of a repository of tasks, which is 

implemented in the architecture presented in this thesis (see section 4.1.2). 



2.2.4 CIR Agent 

The Coordinated Intelligent Rational Agent (CIR-Agent) model is an agent layout taken 

from work by Kamel, Ghenniwa and Eze [11] [6] in which each agent consists of four 

key blocks:  a knowledge base; a problem solver; an interaction component and a 

communication method.  These can all be seen in Figure 2.1.  This is the main structure 

of an agent that is used throughout this thesis. 

 
Figure 2.1:  CIR Agent 

The knowledge base is where all agent information and memory is stored.  This includes 

its goals, its current state and its history.  This is the pool from which it can access the 

required protocols for communication and which other agents have been contacted. 

The problem solver determines the exact solution and how it should be applied to a 

problem.  In basic agents, this can simply be a state machine; in a more complex agent, 
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the problem solver can construct a goal based strategy which incorporates the cooperation 

of other agents. 

The interaction component is the method that is used for communication with other 

agents.  This includes methods of handshaking, bartering and bidding. 

The communication method is how the agent communicates with other agents using an 

agent communication language (ACL).  There are a few common ACLs such as the 

Foundation for Intelligent Physical Agent’s communication language (FIPA’s ACL) [8] 

and the Knowledge Query and Manipulation Language (KQML) [7].  An introduction to 

ACLs can be found in [10]. 

2.2.5 Real-Time Multi-Agent Design 

When an agent is designed to function in real-time, it must have the ability to guarantee 

meeting specific deadlines.  This further complication to multi-agent design means that 

the system must be able to respond within this constraint, even in the worst-case scenario.  

In order to achieve this, all possible time components of the system must be considered.  

As an experiment in this thesis, some of the communications that occur within the robot 

are examined. 

2.2.6 Agent Oriented Design and Software Agents 

Throughout this thesis, two types of agents are discussed.  The first is the overall agent, 

such as the CIR agent or the Physical Robot Agent discussed in future chapters.  The 

second is a software agent which arises when programming in an agent oriented 
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language.  A software agent is a small amount of code that acts as an agent and is helpful 

when programming an agent oriented system, but it is not representational of a fully 

fledged Physical Robot Agent.  Software agents can be seen as components of these 

larger constructs. 

2.3 Communications 

The exchanging of data between agents is vitally important to the health of a multi-agent 

system.  This section will briefly examine some pertinent literature dealing with methods 

and protocols of communication. 

2.3.1 Agent/Robot Intercommunication 

Berna-Koes et al. in [2], try to improve communication efficiency within a multi-agent 

context by having the agents use a “back-channel” to handle all high load communication 

requests.  Standard methods of communications can handle most requests, but when a 

high load is required, a back-channel that exists between agents can be used.  The result 

is a similar method to shared memory except that requests must be made to receive data.  

For systems that require large amounts of data exchange, as discussed in chapter 4 of this 

thesis, this system should work.  However, unlike shared memory, it uses up large 

amounts of bandwidth, the same bandwidth that is needed for standard communications.  

2.3.2 Communication Protocol Performance 

In Network Protocols for Mobile Robot Systems [13], Harmon and Gage conclude that the 

best communications protocol is UDP.  This is based on the slow throughput of the 
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transport layer protocol and the extra processing power required for it.  This conclusion 

mirrors the conclusions reached in section 5.2, where three types of communication are 

examined.  

Howell et al [14] explore the challenges associated with using the user datagram protocol 

(UDP) in ad hoc networks.  Their results indicate the best packet size to reduce the signal 

to noise ration is 784 bytes.  This result adds to the results found in section 5.2, where an 

exponential relationship between the number of packets sent and the delays associated 

with their transfer is explored. 

Gao, Yan, Ding and Huang [9] attempt to create a new protocol for multi-agent multi-

robot communications.  This protocol can only be used for mobile agents and should only 

be used to transmit specific types of commands.  With many other pre-existing protocols 

that will perform just as well, there does not seem to be a need for its use. 

In [21], Lei Cheng and Yong-Ji Wang examine fault tolerances when trying to get a 

group of mobile robots into a formation.  They use a combination of both UDP and the 

transmission control protocol (TCP) for communication between robots.  For broadcast 

messages, they use UDP and for inter-robot communication TCP is used.  This is a good 

strategy, as when network faults occur, TCP can be used, see section 5.2. 
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3 Architecture of a Physical Robot Agent 

Many issues must be considered when designing a multi-robot system such as autonomy, 

cooperation, communication structure and coordination.  Collective autonomy refers to 

the ability of the robots to work individually and without human intervention.  

Cooperation is the ability of the robots to work with each other and requires 

communication whenever the robots actions depend critically on knowledge that is 

accessible only from another agent.  Coordination addresses the interdependency 

management among the cooperative robots to achieve individual or collective goal(s).  

All of these issues can be addressed using an agent oriented approach.  Taking into 

account that the system deals with physical robots, not simulated ones, a completely 

agent-based solution is difficult due to the lack of low level control (e.g. actuators and 

sensors) in agent-based languages.  In addition, as the agents do not necessarily exist 

within the robot, having the low level controls reside in the agent would not be practical.  

To solve this problem, the concept of Physical Robot Agent (PRA) described in [5] is 

adopted.  As shown in Figure 3.1, a PRA splits up the sensory/action (physical) and 

decision making (cognitive) processes into a two layer system. 

Based on the PRA concept, a new architecture has been developed as shown in Figure 

3.2.  It consists of the Action Layer, which handles all of the sensory and movement 

functions; and the Cognitive Layer, which handles the decision making.  All of the 

internal software components are new concepts presented by this thesis. 



 
Figure 3.1:  Physical Robot Agent 

 

Figure 3.2:  Proposed Architecture 
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This layering system is inspired from ethology, the science of studying animal 

behaviours, where the Cognitive Layer represents the conscious brain and the Action 

Layer represents a combination of both the body and the unconscious brain.  For 

example, when controlling a limb, the Action Layer understands the inner workings of 

the movement as well as the touch and heat sensors, but the overall goal is described by 

the Cognitive Layer.   

The proposed architecture in this thesis has been published in [12].  In this paper, a 

simplified version of the work presented in this thesis is discussed.  The paper includes 

the proposed architecture located in this chapter, and the experiment located in section 

5.1.  The following subsections describe these two layers and their internal elements. 

3.1 Action Layer 

The Action Layer is where the physical actions and sensory parts of the robot are located.  

In this layer, tasks or reactions are controlled and executed.  These tasks and reactions are 

simple programs that are controlled from the Cognitive Layer.  The Action Layer consists 

of three key elements:  the Executor, the Repository and the State Monitor as shown in 

Figure 3.2.  This subsection will briefly describe both the function and importance of 

these three elements.   

3.1.1 Executor 

For a PRA to affect the physical world, it must have the ability to manifest itself in some 

way.  The Executor is responsible for controlling and performing all of the physical 
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actions of the robot.  It manages the actuators and receives feedback from the perception 

modules.  The State Monitor communicates with the Executor negotiation the tasks to be 

executed.  The Repository captures how and action should be performed.  In return, the 

Executor communicates all updated variables to the State Monitor.  The Executor is the 

only element in the PRA that has access to sensors and actuators.  This part of the 

abstraction is critical, as it ensures that all physical manifestations are controlled in the 

same element.  If more than one element has access to the sensors and actuators, then the 

possibility exists, of more than one system trying to control the same component.  By 

having the Executor perform this task, optimizations can occur.  If a control algorithm 

needs adjustment, it must only be changed in a single place.  The worst-case execution 

time of a task in a hard real-time system must be known to determine scheduling.  When 

information is taking multiple paths, it is much more difficult to estimate the time 

required for an operation.  Without the Executor, a robot will not be able to interact with 

its surrounding world as it could not affect it in any way. 

3.1.2 Repository of Tasks 

The Repository is the knowledge base of the Action Layer.  For a single use robot, the 

Repository element is not essential as there are very few tasks that will be required.  

When a PRA becomes more detailed however, the Repository becomes essential.  The 

Repository is a collection of known tasks that can be run by the Executor.  It 

communicates with the State Monitor to determine which tasks are required in the 

Executor and to respond to queries about the available tasks.  In a learning PRA, the 
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Repository should update its tasks or even create new ones, based on feedback from the 

Cognitive Layer (through the State Monitor). 

By having a library of common tasks available, the Repository supports development of 

the system in which the Action Layer can be considered a “black box”.  Development of 

the two layers can be considered independent of each other.  A large repertoire of tasks is 

needed for a truly separated design; nonetheless, with a few basic movement commands 

being stored, very complicated Cognitive Layer designs can be created.  Furthermore, 

when using the Repository as part of the dual layer system, this independent development 

can be extended to robots that are completely different in low level functionality.  As the 

Action Layer provides a universal abstraction for the underlying hardware (e.g. 3 or 4 

wheels for the robot), the Cognitive Layer can be exactly the same on different PRA and 

still achieve the exact same results. 

3.1.3 State Monitor 

The State Monitor is the Action Layer’s communication channel through which is the 

only method that it can communicate with the Cognitive Layer.  The complex nature of 

all the interactions between the layers gives rise to an element in both layers designed to 

handle the intricacies of these communications.  In order for the Executor and the 

Repository to run tasks, they must know which ones are required.  Further, in order for 

the Cognitive Layer to have a full picture of the current status of the PRA, the State 

Monitor must both package the data and inform it of the updates. 
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The State Monitor’s information restriction is important to ensure that data flows through 

the same channels.  This way, all PRAs will have a similar interface with which to 

connect despite the type of robot being used.  For real-time considerations, where the 

worst-case is the most important, variable updates and task command latency can be 

measured through it.  The State Monitor ensures the isolation of the Action Layer and 

allows only the proper Cognitive Layer to contact it.  For these reasons, the State Monitor 

element is required. 

3.2 Cognitive Layer 

Unlike the Action Layer, in which a set of tasks plays the most important role, in the 

Cognitive Layer, all high level decision making is performed.  It is the Cognitive Layer 

that makes the PRA autonomous.  The structure of the Cognitive Layer can be varied, 

however it must be able to control the robot via commands to the Action Layer and 

communicate with the other agents when in a multi-PRA situation.  These two types of 

communication, inter-robot (between PRAs) and intra-robot (or inter-layer within the 

PRA) are the only means that the Cognitive Layer uses to receive information (see 

discussion in chapter 3.5).  It receives status updates from the Action Layer’s State 

Monitor and uses these updates to determine which course of action to pursue.  Even with 

the vastly different requirements for different systems, three main elements are always 

required in the Cognitive Layer:  the Decision Maker, the Negotiator and the Coordinator 

(see Figure 3.2).  The Cognitive Layer is where the agents reside in this system.   

This section will outline the abstracted elements of the Cognitive Layer. 
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3.2.1 Decision Maker 

The Decision Maker represents the problem solver of the PRA.  Everything that occurs 

within the PRA of any consequence must be sanctioned by the Decision Maker.  Without 

this element, the robot would not be autonomous, would not be able to adapt to new 

situations and would not be able to form consensus with other robots.  From the Decision 

Maker, commands are sent to the Action Layer via the Coordinator and inter-robot 

communications are facilitated through the Negotiator.  The Decision Maker is a 

composition of several components including memory and problem solving by 

extrapolating the elements of a CIR Agent.   

3.2.2 Negotiator 

The Negotiator is the element by which the agents interact with other agents.  What 

makes the Negotiator significant is the concept that all communications from other robots 

must pass through the Decision Maker.  This ensures that the Decision Maker is always 

aware of the Action Layer’s status.  Without the Decision Maker’s consent, no external 

command will ever be executed (such as a command from another PRA) and no variable 

update to an external source will ever occur. 

Most robot architectures have a negotiator of within their PRA description; it is typically 

called the interaction component.  What makes this one unique is the restriction on 

information flow; that all information passes through the Decision Maker.   
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3.2.3 Coordinator 

The Coordinator is the element that is in charge of communications with the Action 

Layer.  It should only receive communications from the Action Layer and the Decision 

Maker.  It maintains this single pathway of communications; it ensures that the Decision 

Maker is always in command of all aspects of the PRA.  By emphasizing this element, 

this strict dataflow is enforced.  

Two additional reasons for the existence of the Coordinator as a separate element are to 

mark it as distinct from the Negotiator and emphasize its repetitive nature.  Once the 

Coordinator has been created on a system, it should not need to be changed often, even 

for different tasks.   

3.3 Hierarchies 

The separation between the Cognitive and Action Layers is a buffer that allows most 

types of hierarchies to be used in the system.  The restriction to the types of hierarchies 

allowed occurs when one PRA has control of another.  This is not allowed to occur 

directly as it would remove the autonomous nature of the agent. 

3.4 CIR-Agent 

Even with the dual layer nature of the system, the CIR-Agent is still present within a 

PRA.  However, many components of the CIR-Agent are abstracted slightly differently.  

The knowledge base and problem solver are placed within the Decision Maker and the 

Repository.  The interaction and communication components are moved into the State 
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Monitor, the Coordinator and the Negotiator.  The Executor can be seen as a new 

addition in which the CIR Agent now has the ability to interact with the physical world.  

It is important to note that these components remain essentially intact, but due to the 

nature of the dual layer system, they may be moved into the non-agent Action Layer or 

split up between the layers. 

3.5 Communication 

The role of communication among mobile robots is one of the most important issues in 

multi-agent robot systems design.  Communication is required to ensure cooperation 

between robots.  Each robot’s actions depend critically on knowledge that is accessible 

only from another robot.  The communication structure of a group determines the 

possible modes of inter-agent interaction.  These modes of interaction are sometimes 

classified into interaction via environment, interaction via sensing and interaction via 

communication [3].  In interaction via environment, the surroundings are used as a shared 

medium (or memory) for storing information so that it can be interpreted by other 

cooperating entities.  This method is known as ‘cooperation without communication’ or 

‘stigmergy’.  Like an ant pheromone trail, a stigmergic signal can be picked up by any 

other entity at any time.  This is accomplished by storing the information in a stable 

medium.  Interaction via sensing refers to the local interactions that occur between agents 

as a result of one agent sensing another, but without an explicit communication.  On the 

other hand, interaction via communication involves explicit communication with other 

agents by either directed or broadcast intentional messages.  In the proposed architecture, 

interaction via communication is adopted.  As shown in Figure 3.3, there are two types of 



communication in the system:  inter-layer communication and inter-agent 

communication. 

 
Figure 3.3:  Communication Links 

3.5.1 Inter-Agent (Inter-Robot) 

Communication is essential for multiple agents to work together.  Agents must be able to 

communicate between one another to locate other agents and interact with them.  To 

accomplish this, two main components are required:  a communication protocol for inter-

agent communication and a network protocol in which to send the messages.  Inter-Agent 

 25 



 26 

(or Inter-Robot) communication is how different PRAs correspond.  The most important 

aspect of inter-agent communication is that it should be limited to as small and as few 

messages as possible.  If there is too much data or there are too many messages being 

sent, the load they create can severely slow down a system.  This is precisely where 

network constraints define the total amount of communication that can occur.  Inter-agent 

communication should be concise yet meaningful.  This helps to reduce the amount of 

network traffic. 

The communication between robots is performed between the Negotiator elements in the 

different PRAs.  An agent communication language (ACL) can be used to facilitate 

messaging.  ACLs allow for large groups of robots to be able to communicate with each 

other.  The total number of PRAs that could be used at once is limited only by the 

selected platform. 

3.5.2 Inter-Layer (Intra-Robot) 

The communication between layers is vitally important if this architecture is to be used 

for real time applications.  The maximum speed of the robots and hence the ability for the 

PRAs to function as real-time robots will be restricted by a bottleneck of either 

communication or processing speed.  The processing speed is determined by the speed of 

the processors and the algorithms themselves.  There are only two locations where a 

communication bottleneck can occur.  The first is between PRAs, in inter-agent 

communication, in which network speed and traffic are the main culprits for slower 

speed.  The second location is within a PRA between the two layers.  As the dual layer 

architecture is relatively new, this type of communications has not been examined before. 
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The volume of data transferred between layers is only bounded by the specifics of the 

robot; however, by limiting the amount of data being transmitted, the abstraction and 

separation between the two layers becomes apparent.  For example, there is often no need 

for the Cognitive Layer to receive an image from a camera for processing.  Data intensive 

processing can be handled and large volumes of data passed between tasks in the Action 

Layer, with only the relevant results sent to the higher level. 

3.5.3 Throughput 

When using the architecture describe in this thesis, extremely complicated PRAs can be 

created and they should be able to react quickly.  Most importantly, the worst-case 

completion time at which they can react is essential for any real-time applications.  The 

throughput and latency of inter-layer communication is examined in depth in section 5.2. 
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4 Implementation 

This chapter explores some of the aspects dealing with the implementation of the 

architecture described in the previous chapters.  An example of a fully functional version 

of the architecture can be seen in section 5.1.  This chapter’s contents are all original 

concepts presented by this thesis. 

When implementing the proposed architecture on mobile robots, only a few components 

are required for it to function.  Firstly, the robots must have most of the capabilities of a 

notebook computer.  This includes a hard drive, a quick processor and a network card of 

some sort, (a wireless connection is recommended) to be able to contact other robots.  

The robot also must be able to run Java for the Cognitive Layer implementation.  Java is 

not required, but highly recommended because JADE was designed specifically to work 

within Java [17].  If another agent oriented language is used, it must be able to run on the 

robots.  If a robot has the basic capabilities of a notebook computer than it should already 

be able to run the Java programming language.  Apart from the necessary components, 

this architecture can be used on almost any robot. 

4.1 Action Layer 

This section describes some of the issues dealing with the implementation of the elements 

within the Action Layer.  It is important to note that although they are separate elements, 

they are not necessarily separate programs.  They could be different objects within a 

multi-threaded program to facilitate faster communication within the layer.  Unlike the 
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stricter separation between the two main layers, these elements are more of a guideline 

than a boundary. 

4.1.1 Executor 

Implementation of the Executor will be different on each distinct type of robot.  The 

Executor should be able to run both single and multiple tasks simultaneously or 

concurrently based on the requirements and restrictions of the system. 

The types of tasks that will be required are also varied:  

• Initializers which are run once, at start-up, to initialize some aspect of the robot, 

e.g. resetting the pan and tilt of a camera;  

• Actions or steps which are run as part of a state machine, such as rotating to face a 

target;  

• Alerts which are run and sit idle until a specific condition occurs, e.g. waiting for 

target movement; and 

• Reflexes which are required to react quickly to a situation without consulting the 

Cognitive Layer, such as crash avoidance. 

Multiple tasks should be able to be run at the same time, allowing one to set up a crash 

avoidance task, e.g. sonar detection that activates when the robot is quickly approaching a 
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wall while allowing the robot to perform its other duties.  It is also possible to execute 

complex recognition tasks using sensor data, or sensor fusion.  The results of these tasks 

are sent to the Cognitive Layer.  Although tasks and reactions can perform low-level 

functions autonomously, they are all directed by the higher-level Cognitive Layer.   

4.1.2 Repository of Tasks 

As the Repository is simply a collection of available tasks, implementation can be as 

simple as the tasks available in the code or as complicated as a collection of all tasks that 

could be executed, perhaps stored in a hash table or dynamically linked library.  Even 

though the Repository may not always be a large component, it still is an important one. 

4.1.3 State Monitor 

In the Action Layer, the Communicator is the element that relays information between 

the two layers.  It must be able to both send and receive data from the Cognitive Layer.  

The Communicator must be able to inform the Executor of the tasks that need to be run, 

variables and constraints for those tasks, and how and when to run them.  It also might 

need to assist in finding the index or location of tasks found in the Library, or even 

update or alter the stored tasks.  As well, the Communicator must also send the results of 

these tasks (if any) and updates on a list of internal variables as requested by the 

Cognitive Layer.   
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4.2 Cognitive Layer 

Since two of these key elements of the Cognitive are already included within an agent (by 

definition,) the Decision Maker and the Negotiator, an agent oriented solution is a good 

solution for the problem.  This section details some aspects that should be considered 

when implementing the Cognitive Layer. 

The Cognitive Layer does not necessarily exist on the robot in a PRA.  It could exist on a 

separate machine, or in a combination of machines.  What is important is that there is a 

clearly separate section for each PRA.  This ensures the autonomy of each individual 

PRA. 

4.2.1 Decision Maker 

The way in which the Decision Maker is designed and implemented is determined on a 

per system basis.  Possible examples include a collection of small programs, a collection 

of threads, or a collection of simple software agents.  Each system will have a different 

requirement and thus the resulting Decision Maker will be vastly different, except for the 

methods in which it interacts with the other elements.   

4.2.2 Negotiator 

Assuming an agent oriented design is already being used, this element is already included 

in every agent based in the definition of an agent.  The Negotiator must have the ability to 

communicate with other robots and to understand what is being communicated.  The 
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Negotiator does not only rely on messages, but can also perform any bidding or 

handshaking required for decisions and consensus building.   

4.2.3 Coordinator 

Typically when implementing the Coordinator should be able to start, stop and pause 

tasks in the Action Layer, based on the whim of the Decision Maker.  This includes 

reflexes if required, as a robot may need to actively suppress a reflex to accomplish a 

task.  For example, if a robot needs to pick up an item, it may need to suppress its 

automated obstacle avoidance reflex.  It also may need to be able to receive variable 

updates from the Action Layer’s State Monitor and inform the Decision Maker of these 

new conditions. 

4.3 Communications 

The communications between the robots and agents are very important and this section 

details the crucial aspects of their implementation. 

4.3.1 Inter-Layer (Intra-Robot) 

As the inter-layer communication has not previously been examined, a need existed to 

create a system with which the two layers can interface.  The method with which a 

microprocessor interprets assembly language is chosen as model for the means of 

communication between layers.  This choice is made because of (1) the simplicity of the 

manner in which the communications are processed and (2) it reinforced the idea that the 

communications should be minimized.  Microprocessors have a series of registers for 
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both input and output.  These registers were replaced with monitored variables.  As this is 

now implemented in a software domain, there is no limit on the number of variables 

monitored.  There is, however, a cost associated with monitoring a variable; as more are 

monitored, the slower the system and the slower the transmission.  Secondly, tasks can be 

run on microprocessors and this same system is used for inter-layer communication.  The 

difference is that not only can these tasks be run, but multiple versions of both of the 

same task and others can be run in parallel, again due to less restrictive software domain.  

This allows a reflex, such as an anti-collision detection task, to be run while the robot 

accomplishes its goals. 

The Coordinator element enables communication between layers and resides in the 

Cognitive Layer.  This element receives commands from the Decision Maker and creates 

the messages that will be passed to the Action Layer’s State Monitor.  The main type of 

communication is commands.  With a command, tasks are initiated and halted and 

specific Action Layer variables are requested for higher level processing. 

The most common types of commands issued are: 

• Initiate a task:  tasks can be called by name with parameters 

• Alter a task:  a currently running task’s parameters are changed 

• Cancel a task:  this command stops a task from running 
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• Watch a variable:  this command asks for updates whenever the value of that 

variable is changed 

• Stop watching a variable:  this cancels the watch command 

• Alter variable:  this allows the Cognitive Layer to set a variable that can be used 

by a task 

4.3.2 Message Types 

The speed of communication is vital to knowing the delivery time of the system if this 

architecture is to allow for real-time applications.  Before calculating the latency and 

throughput of the communication, the message requirements had to be determined.  This 

section will briefly discuss the three main types of messages that could be sent between 

the layers.  To design a better system, knowledge of the most common forms of 

communication is required.  In this case, three distinct types of messages can be passed 

between the layers:  commands, variable updates and large data updates.  They are 

explained in detail below. 

4.3.2.1 Commands 

A command message is a very simple communication.  Typically, a command only needs 

to be initiated, occasionally with a variable or two.  This means that the message will be 

very compact.  Typical commands should look like the following: 

• Forward 30 – move 30 units forwards 
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• Pan 100 – pan the camera to 100 degrees 

• Halt 

Commands will typically be sent one or two at a time.  These commands will be sent 

from the Cognitive Layer’s Coordinator to the Action Layer’s State Monitor. 

4.3.2.2 Variable Updates 

Variable updates are sent from the Action Layer to the Cognitive Layer.  These can occur 

in a few different forms.  Firstly, they can be a single variable being updated whenever 

that variable is altered.  Secondly, they can be a timed update of all or most of the 

variables, whether they have changed or not.  Thirdly, they can be a complete update of 

all of the variables whenever any or a number have been altered.  Finally, they can be a 

combination of all of these techniques.  The method utilized is dependant on what 

information is required in the Cognitive Layer.  If only a few updated variables are 

required and the single variable method is used, then these messages look similar to a 

command message. 

Many systems require a large number of variables of differing types to be updated on a 

regular basis.  These messages can be implemented in a stub of some sort that would 

encapsulate the data into a hash table or a similar structure.  Nevertheless, these 

messages, when broken down, can be considered as a number of command messages 

strung together. 
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4.3.2.3 Large Data Updates 

The variables being updated examined so far are in the form of integers and occasionally 

real number and strings.  In a large data update message, large data objects such as 

pictures can be sent.  A well designed system should minimize the number of these 

messages, as they take a long time to process.  However, there are certain cases where 

this type of information is required. 

When multiple robots are mapping a room full of objects, at some point they require each 

other’s maps to find each other.  This can be accomplished, assuming the maps are fairly 

intricate, by sending a large amount of data.  The structure of these messages should 

seem like a stream of bits that would be unrecognizable without prior knowledge of what 

information is contained within them.  Essentially, without knowledge of the data 

structure, they would seem useless.  It is preferred to send only the relevant data to 

minimize this type of communication.  For example, instead of sending a raster image of 

an internal map, a vector representation could be used to substantially reduce the amount 

of data transferred. 
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5 Experimentation 

In this chapter, two experiments are presented.  This first, the application experiment, 

focuses on the implementation of the architecture.   The second examines various 

transmission protocols that can be used for inter-layer communication. 

5.1 Application Experiment 

The first experiment implemented to test the validity of the architecture is the Best-View 

Demonstration in which one or more robots try to encircle a target.  The overall goal of 

this project is to test the feasibility of using the architecture, and to do so, a task is 

required that can be accomplished using a different number of robots.  The chosen 

activity is to have the robots encircle an object.  This section deals with both the 

implementation issues and the results associated with the experimentation. 

The robots’ goal in the experiment is to encircle a target.  In this case, the term ‘encircle’ 

is meant a target object is completely surrounded.  As shown in Figure 5.1, a coloured 

can on top of a basketball is chosen as the target.  The basketball makes the target easy to 

spot from afar and the can allows for a good estimate of distance to be found when up 

close.  The can has four colours evenly placed along its surface.  These colours are used 

by the robots to determine from which angle they are viewing the target.  In this way the 

robots have a common form of perception of the target and can discuss which one should 

move to where to surround it.  The method with which this is achieved is dependant on 

the number of robots participating.  If there is only one robot, it should find the front of 

the target.  The front of the target is an arbitrary point, in this case, the line between the 



yellow and blue colours is chosen.  If there are two robots then they both should be 180 

degrees apart from each other.  With three robots, they should all be 120 degrees apart.  

Figure 5.2 shows the relative positions of the robots with respect to the target for each of 

these situations.  The arrow on the robot represents the front of the robot, and the red 

triangles represent the camera view. 

 
Figure 5.1:  Target 

 
Figure 5.2:  Goal Positions 
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One important aspect of this experiment is that it must be possible to add or remove 

robots from the system.  If one robot is attempting to look at the front of the target when 

another joins, the system should adjust and both robots should now attempt to place 

themselves at 180 degrees apart.  Similarly, if there are three robots encircling the target, 

when one is removed, the remaining two should compensate. 

The tests performed to demonstrate the full functionality of the system are dependant on 

the number of robots present.  The most important tests are “does the system function 

correctly and encircle the target with one, two or three robots?”  At the time of writing 

the maximum number is three due to limited availability of robots.  The key issues in this 

experiment are communication and architecture.  The movements of the robots are not 

reliant on the architecture; it is the coordination that is important.  To this end, the tests 

performed are basic functionality testing, systems of one to three robots and the 

possibility and coordination of adding or removing a robot from the system. 

The robots used for this experiment were the Magellan by the iRobot Corporation, see 

Figure 5.3 and [16].  There ware three identical robots available, which made them ideal 

subjects for this experiment. 



 
Figure 5.3:  Magellan Pro 

The Magellan Pro robot has all of the required components to run the architecture and the 

tests for this experiment.  All of the robots used in this experiment have an installed 

rotating and panning camera, which can be seen on top of the robot in Figure 5.3.  The 

robots are equipped with sonar and other sensors, however the camera is the only sensor 

used in the experiment. 

5.1.1 Layer Implementation 

The main purpose of this thesis is to present a new architecture for multi-robotic systems 

that takes advantage of the benefits of a multi-agent paradigm.  This section will discuss 

the implementation of this system. 

5.1.1.1 Agent Model 

In order to facilitate the implementation of the proposed design, the CIR Agent model 

described in section 2.2.4 is used.  This model can be used to develop an agent which is 

autonomous, has a method of coordination (for both interaction and communication), has 

the ability to cooperate with other agents and it is adaptable to different situations.  The 

PRAs are all based on this model. 
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5.1.1.2 Cognitive Layer 

Ideally, if a large number of known Action Layer tasks exist, then it is possible to write 

the ‘brain’ behind a robot without having to re-write any of the lower level functionality.  

This simplified development process is supported by the Repository element.  This 

intentionality limits the abilities of the Cognitive Layer to help keep the abstraction 

between high and low level tasks.  To enable the Cognitive Layer to communicate with 

other robots yet still be independent, autonomous and cooperative, an agent oriented 

solution is the natural course. 

When conducting experiments using this architecture, the Java Agent DEvelopment 

Framework (JADE) [1] is used.  Any multi-agent environment could be used, but JADE 

is chosen because it is FIPA compliant built for the Java environment (see [17]), which 

supports portability.  This decision is an important one, as it has ramifications throughout 

the design of the entire system. 

To create the Cognitive Layer, a number of software agents are used.  Each robot can 

have as many agents as is required acting collectively as the Cognitive Layer of a 

particular robot.  This collection of software agents make up the PRA.  Currently, only 

two agents per robot are required.  The first software agent is the main ‘brain’ of the 

Cognitive Layer.  It encompasses both the Decision Maker and the Negotiator.  A second 

software agent acts as the Coordinator.  This agent acts as the intermediary between the 

Decision Maker and the Action Layer of the robot.  The reasoning behind this two 

software agent implementation is simply that every robot requires a Coordinator; thus 

incorporating it into the main ‘brain’ agent seemed to be complicating the matter.  In this 
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manner, every robot can have the exact same Coordinator agent, no matter how the rest 

of the Cognitive Layer is designed.  This agent is discussed in detail in below in section 

5.1.2.1.   

The agent that encompasses both the Decision Maker and the Negotiator is again just a 

convenience.  It is possible to separate them, but because most projects require 

completely new negotiators, having the two together inside a software agent seemed the 

sensible answer.  This again is completely up to the designers of the multi-robot system. 

Inter-Agent communication methods are built into JADE and hence they do not require 

their own agents.  There are also a few necessary software agents required by JADE but 

they are only used to enable the agent oriented environment to function. 

Each robot may have completely different software agents or they may all be the same.  

This depends entirely on the project.  For the most part, the Coordinator should be fairly 

independent of the project.  As mentioned previously, all of these agents, including the 

required infrastructure can be placed on one or multiple servers and not actually reside on 

the robots themselves.  This enables robots with limited processing power to still take 

advantage of the proposed multi-level architecture.  This architecture is designed to be 

independent of any specific goal, so that it can be tailored to satisfy each project’s 

requirements.   
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5.1.1.3 Action Layer 

The Action Layer on the robots was primarily designed by Ben Miners, co-author of the 

architecture paper [12].  He has allowed the inclusion of this description on the 

implementation of the Action Layer in the robots: 

The Action Layer serves two important purposes; to abstract variations 
in physical hardware from the Cognitive Layer, and to carry out local 
time-critical tasks.  Abstracting the hardware in this layer is an 
approach to allow the same action logic to be carried out on several 
different hardware platforms.  Latency is minimized using an event-
driven approach to ensure appropriate tasks or reactions are carried 
out for each external stimulus.  

As illustrated in Figure 5.4, the Action Layer communicates with 
physical robot hardware through an abstraction interface.  This 
interface maps each received sensor value to a specific location and 
orientation, and translates generic motion control commands to 
hardware specific values.  All action logic is defined using a set of 
simple concurrent tasks.  Each of these tasks can be in one of two 
states as decided by the Cognitive Layer; passive or active.  Active 
tasks can carry out their actions when triggered, while passive tasks 
do nothing until activated from the Cognitive Layer.  Activation and 
deactivation of tasks is the primary method of control from the 
Cognitive Layer.  



 
Figure 5.4:  Action Layer 

A specific precondition based on external stimuli is defined for each 
task.  Examples of these conditions include the arrival of new a video 
frame, a sonar measurement, or a change in robot position.  Including 
these preconditions outside task logic helps to keep internal logic 
simple and allows a single task to easily respond to different triggers 
or external stimuli.  As soon as a task’s precondition is met, the task is 
executed.  During execution, tasks can process sensor data, control 
robot movement and sensor parameters in addition to exposing high-
level task state as feedback to the Cognitive Layer.  Processing 
sensor data locally in the Action Layer eliminates unnecessary 
communication of low-level data while ensuring relevant high-level 
information is available to the Cognitive Layer.  

5.1.2 Software Agents 

A basic state machine with a small amount of reasoning is all that is necessary to 

complete the exercise.  For the purposes of this experiment, all of the PRAs are identical.  

Each of which consists of three software agents:  the Coordinator agent; the single robot 
 44 
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agent and the multiple robots agent.  In this section, each of these agents is discussed in 

detail. 

5.1.2.1 Coordinator Agent 

The Coordinator software agent performs a few key functions.  It acts as an intermediary 

between the agents representing the cognitive level and the low level functions of the 

Action Layer.  It accepts messages based on a specified format and performs a variety of 

operations.  The most important function is to send a command to initiate a task in the 

Action Layer.  This command is sent to the Action Layer through an open port, a 

computer connection location through which network data can be transmitted, to which 

the Action Layer is sensitive.  This agent can request that a variable be monitored and it 

can also cancel a task.  Meanwhile, whenever a variable being monitored is altered, the 

Action Layer sends an update through a Java stub.  The Coordinator sees this and sends 

an update to the subscribed software agent.  Only the variables to which an agent is 

subscribed are sent through the Java stub.  This means that even though a task may 

expose a variety of variables, only the ones that are needed in the Cognitive Layer are 

actually sent.  Thus, the Repository in the Action Layer tasks can be used in future 

experiments.  The Coordinator agent needs to be quick to allow for seamless operation of 

the robot, however, this agent should only need to be created once and then it can be used 

on all future projects.  The speed of the Coordinator is examined further in the next 

experiment, section 5.2. 
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5.1.2.2 Single Robot Agent 

This software agent was created to determine if the communication between the 

Cognitive Layer and the Action Layer was functioning.  It was also created to prove the 

feasibility of the multi-robot system.  As it was designed for a single robot, only the 

Decision Maker element was included.  This state machine of the agent can be seen in 

Figure 5.5.   

Each bubble represents the current task being run and the arrows represent the transition 

in state based on a monitored variable.  The first task is that of finding the target.  The 

robot rotates until the target is located.  The second task requires the robot to approach 

and then centre in on the target.  Once completed, the robot prepares for pivoting by 

panning the camera 90 degrees while simultaneously backing off from the target.  

Finally, the robot calculates the shortest route to get to the 0 degree mark, the front of the 

target and pivots accordingly.  Once there, the robot remains on alert for any new 

commanders or changes to the target.  If at any time the robot loses site of the target it 

will return to the first state and start searching for the target anew.   



 
 

Figure 5.5:  Single Robot State Machine 

5.1.2.3 Multiple Robots Agent  

This multi-robot agent encompasses both the Decision Maker element and the Negotiator 

element.  This software agent is used on multiple robots communicate not only with the 

Action Layer through the Coordinator Agent, but also with other software agents on other 

robots.  This agent builds upon the single robot version, as well as coordinating its 

actions with the other software agents running in the Cognitive Layers of the other 

robots.  The state machine of this agent can be seen in Figure 5.6.  This state machine is 

similar to that of the single robot version.  The differences lie within the new states 

located between the old states of the previous implementation.  New steps that are 

designed for negotiation with other PRAs were added.  Each of these new steps is a 

Cognitive Layer task and not an Action Layer task.  These steps include: greeting the 

other agents; reporting to the other agent that this PRA is ready to pivot; receiving and 

sending the cost to travel to the different location around the can and telling the other 
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robots that an error has occurred and the whole process needs to be restarted.  It is 

important to note that the Action Layer tasks did not have to be altered for this new agent 

or for the more complicated goal.  For both the signal and multiple robot 

implementations, the Action Layer performs the exact same tasks. 

 
Figure 5.6:  Multiple Robots State Machine 

5.1.3 Results 

After more than 20 tests on each of the three robots, the single robot agent performed as 

expected.  Each robot would find the target, approach it and pivot to the correct location.  

One problem noted with the experiment was in the Action Layer where there were 
 48 
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complications with colour detection under different lighting conditions.  Because of this, 

the PRA’s state machine was observed to function correctly, even when conditions were 

not optimal.  The communication between the layers was fully functional as evidenced by 

the fact that the robots reacted quickly when the target was removed or replaced. 

The multi-robot experiment again responded to the same lighting problems as the single 

robot scenario; nevertheless, the robots were able to function well as a team.  A new 

challenge was noted as occasionally a PRA saw the red colour of another robot and 

mistook it for an extension of the basketball.  This does not seem to adversely affect the 

final outcome of the program as this only occurred at far distances.  Similarly to in the 

single robot implementation, when a robot lost sight of the target, it reacted quickly and 

reset.  Furthermore, the other robots also reacted and reset shortly afterwards having 

received the error message from the lost robot.  Typically, the robots all locate the target 

and encircle it while staying in sync with one another.  Table 5.1 shows the results 

obtained during this experiment and Figure 5.7 is a photograph of the robots in action.  

More than 25 tests were performed for each of the scenarios listed below with no errors 

occurring that could be attributed to the architecture or the communications. 



Table 5.1:  Best-View Results 

Scenario Number of Robots Results 

Encircle Target 1 (find front of 
target only) 

The robots performed as expected.  All three 
robots were individually tested.   

 2 Any two robots performed as expected. 

 3 The robots performed as expected. 

Remove Robot 3 down to 2 The robots performed as expected.  Choice of 
robots did not affect the results. 

 2 down to 1 The robots performed as expected.  Choice of 
robots did not affect the results. 

Add Robot 1 to 2 The robots performed as expected.  Choice of 
robots did not affect the results. 

 2 to 3 The robots performed as expected.  Choice of 
robots did not affect the results. 

 

 
Figure 5.7:  Robots in Action 
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The communication between agents functioned flawlessly and the robots performed as 

expected.  All communications between robots was monitored to ensure that the correct 

messages were being sent and received.  Failures arose due to errors in detection of the 

distance from the target and a robot hitting a piece of furniture or wall (currently there is 

no detection or avoidance for other objects).  When a failure occurred, the robots reset as 

the state machine dictated. 

5.1.4 Conclusions 

This architecture defines clear boundaries between the processes that occur within a robot 

and allows multiple robots with different specifications to communicate with each other 

and perform meaningful tasks.  As was evident by the experiment presented, this 

architecture works well and solved the encircling of an object problem sufficiently.  The 

architecture functions as expect in both a single and a multi-robot scenario. 

5.2 Real-Time Feasibility Experiment 

To test the real-time performance of this architecture, the intra-robot (between layers) and 

inter-robot (between robots) communication time must be examined.  In this experiment, 

intra-robot communication is explored with a variety of message types, methods and 

protocols. 

The primary goal of this experiment is to test the communication delays that occur 

between the Coordinator in the Cognitive Layer and the State Monitor in the Action 

Layer.  Thus this experiment should answer the following:  which method of 
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communication has the lowest latency, has the highest throughput; is the easiest to 

implement; is exportable, not restricted to a single operating system; and is expandable, 

can it be used if the layers are on different systems?  To do this, a few demanding tests 

were created.  This section describes these tests, the nature of the test system and the 

results. 

The tests needed to use different types of messages, different communication styles and a 

different number of transmissions.  Conclusions will be based by weighing both the 

positive and negative aspects of each type of communication. 

Each test has two main aspects.  Randomized messages, which are already in memory, 

are sent from the Cognitive Layer to the Action Layer.  Once fully received, the message 

is returned to the Cognitive Layer using the same communication method to ensure that 

both directions of communication are tested.  This test is then repeated a varying amount 

of times.  The total time for this whole process to occur is then recorded and analysed. 

The system used to perform the testing is contained on a single robot.  This type of robot 

was chosen as it is the same robot that is currently used in the labs for multi-robot 

experiments, including the architecture experiment described in chapter 4.  Thus, all data 

recorded would be relevant for determining delays when these robots are used for real-

time experimentation.  The software used to test the system was a simplified version of 

both of the Action and Cognitive Layers also used in the previous experiment.  The 

following subsections describe the robots and the simplified layers. 
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The robot used for this experiment was the Magellan by the iRobot Corporation, see 

Figure 5.3 and [16].  Only a single robot is required, so one of the robots used in the 

previous experiment, section 5.1, is used for this experiment.  All tests are performed on 

the same robot, to ensure high quality data.  For the purposes of this experiment a 

connection to other robots is not required.   

5.2.1 Layers 

As this experiment is designed to test only the throughput of the different communication 

methods, only the basic communication shell of the layers is required.  A simple test 

application is used in place of the Action Layer and a basic Java program was required 

for the Cognitive Layer.  The code used for this experiment can be found in Appendix B.  

The Cognitive Layer was created in Java to attempt to be similar to the Cognitive Layers 

in fully functioning robotic systems.  In this case, all of the extra functionality in the layer 

was removed leaving only a random message generator as well as sending and receiving 

routines.  By doing so, it is possible to time the period it takes to send and receive the 

messages. 

The Action Layer was programmed in C.  Usually, the Action Layer spends a lot of time 

monitoring the robot and controlling its movements, however, in this case, all of the 

superfluous parts have been removed to accurately measure only the communication 

speed and delays.  To simulate the Action Layer, very simple programs were used.  These 

programs wait for a packet or file and when one is detected, it receives the full packet.  

Once received, it sends the packet or file back along a similar communication channel 
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that it was received in.  Again, these small programs are designed to only have the 

functionality required to perform these communication operations. 

5.2.2 Communication 

If the type of messages described in section 4.3.2, which need to be sent between the 

concurrently running processes in the action and Cognitive Layers are to be tested, then 

the method for sending the messages is of great importance.  This section describes the 

most common types of communication methods and protocols over which these types of 

messages can be sent and received and describes how there were implemented.  Each 

method of communication to be tested has different characteristics and hence, needs a 

slightly different implementation. 

5.2.2.1 User Datagram Protocol 

The following definition of the User Datagram Protocol (UDP) was taken from 

Wikipedia [28]: 

The User Datagram Protocol (UDP) is a minimal message-oriented 
transport layer protocol that is currently documented in IETF RFC 768. 

In the TCP/IP model, UDP provides a very simple interface between a 
network layer below and an application layer above.  UDP provides no 
guarantees for message delivery and a UDP sender retains no state 
on UDP messages once sent onto the network.  UDP adds only 
application multiplexing and data check-summing on top of an IP 
datagram. 
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Lacking reliability, UDP applications must generally be willing to accept some loss, 

errors or duplication.  Most often, UDP applications do not require reliability 

mechanisms and may even be hindered by them.   

UDP packets were implemented by opening two ports.  The Action Layer received 

packets through one port, and once fully received, sent a new packet, with the same 

information as the one received, back to the Cognitive Layer using a secondary port.  The 

total time to perform this operation was recorded for different sizes and numbers of 

messages sent. 

5.2.2.2 Transmission Control Protocol 

The following definition of the Transmission Control Protocol (TCP) was taken from 

Wikipedia [28]: 

Transmission Control Protocol (TCP) is a connection-oriented, reliable 
delivery byte-stream transport layer communication protocol, currently 
documented in IETF RFC 793.  

In the Internet protocol suite, TCP is the intermediate layer between 
the Internet Protocol below it, and an application above it.  
Applications most often need reliable pipe-like connections to each 
other, whereas the Internet Protocol does not provide such streams, 
but rather only unreliable packets. 

TCP checks to make sure that no packets are lost by giving each byte 
a sequence number, which is also used to make sure that the data is 
delivered to the entity at the other end in the correct order.  The TCP 
module at the far end sends back an acknowledgement for bytes 
which have been successfully received; a timer at the sending TCP 
will cause a timeout if an acknowledgement is not received within a 
reasonable round trip time, and the (presumably lost) data will then be 
re-transmitted.  The TCP checks that no bytes are damaged by using 



 56 

a checksum; one is computed at the sender for each block of data 
before it is sent, and checked at the receiver. 

To summarize, unlike UDP, there is a large amount of error checking and the order of the 

messages is guaranteed.  This should add a bit of processing overhead.  As TCP uses a 

handshake method, these handshakes were performed once at the start of each test.  

Overhead should be significantly reduced by allowing the connection to remain open.  

Even though it is possible to send and receive though the same port, two ports were used 

to make the operation similar to the other tests.  Again, similar to the UDP method, only 

once full messages had been received in the Action Layer did they get sent back to the 

Cognitive Layer.  The total time required to perform the sending and receiving 

operations, while varying the number and types of messages and the time spent on the 

handshake was recorded. 

5.2.2.3 File Sharing 

For large amounts of data, files are a viable option.  By writing and reading from a file, 

messages can be passed.  While this may not be the fastest method of message passing, it 

is very reliable.  As well, using a file does not necessarily mean using a hard drive.  To 

increase transfer speed, a random access memory (RAM) drive or memory-mapped files 

could be substituted.  Files are of interest because they can contain huge amounts of data.  

As well, data can be stored in subsections of a file requiring only some of file to be 

altered.  More than one program can read from a file simultaneously and multiple files 

can be worked on concurrently. 
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This communication method is dependant on the speed of the drive being used.  Newer 

drives are faster and larger than older ones.  The type of interface with the drive is 

important (i.e. Small Computer System Interface (SCSI), Parallel Advanced Technology 

Attachment (PATA) or Serial Advanced Technology Attachment (SATA)).  As well, the 

type of partition also plays a significant role.  All of these factors greatly affect 

performance.  In the case of the tests performed, the interface, partition type, age and 

model of the drive were determined by what was present in the robot. 

The implementation for file communication was realized differently.  The Cognitive 

Layer writes to a file, when the file is complete, the Action Layer reads in the file and 

then writes the contents to a new file.  This new file is then fully read in by the Cognitive 

Layer.  The Action Layer only writes to the new file once the old file has been 

completely read to ensure that this has the same restrictions as the UDP and TCP 

communication methods.  Files are deleted after they are read.  The total time required to 

write the message from the Cognitive Layer to the time received, using different sizes 

and number of messages, was recorded. 

5.2.2.4 Inter-Process Communication 

Inter-process communication (IPC) messaging was designed to send messages between 

concurrently running process.  This may seem to be a perfect method of communication 

but it has many limitations.  Firstly, on most operating systems, the messages’ maximum 

size is very restrictive and typically very small.  Secondly, the means used to invoke this 

communication method differ between operating systems.  An additional challenge with 

IPC messaging is that there is no native Java library for it.  There are some libraries that 
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exist for each type of operating system, such as JTux [19].  The methods used in C++ 

also differ between operating systems.  When using files and ports, there is no stringent 

requirement that both processes need to be running on the same machine, but with IPC 

messaging, this would also be required.  This type of messaging was not implemented in 

the current experiment because of the aforementioned issues; it would, however be 

interesting to test this out in the future. 

5.2.2.5 Shared Memory 

Shared memory can be used to send large amounts of data by having both processes look 

at the same area in memory.  Implementing this is not simple.  When using C++, direct 

management of memory is a simplistic task; in Java this is not the case.  Being able to 

directly alter memory is purposely not allowed with Java.  Therefore, as in the IPC 

method, third party libraries [19] are required to be able to affect memory directly.  These 

are again dependant on the operating system and both processes must be running on the 

same computer.  For similar reasons to IPC messaging, difficulty of implementation and 

the inability to have the Cognitive Layer on a separate machine, shared memory was not 

implemented in this experiment. 

5.2.3 Messages 

The three message types, commands, variable updates and large data updates were 

implemented as three different types of tests.  For the purposes of this experiment, to 

simulate the message types, each is constructed of completely random characters with 

varying lengths. 
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Commands were constructed to be between 5 and 10 characters in length.  This was 

designed to be of similar length to a typical command.  Depending on the speed of the 

communication method, between 100 and 100,000 messages were sent and received. 

Variable updates were between 500 and 1,000 characters in length, simulating a large 

number of updated variables.  Depending on the speed of the communication method, 

between 100 and 100,000 messages were sent and received. 

The large data updates were all 64,000 characters in length.  This was to emulate an 8-bit 

per pixel 320x200 greyscale image.  The cameras used on the Magellan Pro capture still 

images of this size which would likely be the largest size of data that would need to be 

sent.  Between 100 and 10,000 of these messages were sent and received based on the 

speed of the communication method. 

5.2.4 Observations 

This section will describe the results achieved by running the tests.  A table of all the 

results can be found in Appendix C. 

In Figure 5.8, the results from using UDP can be seen.  The dashed line (top) shows the 

results for large data update messages and the solid line (bottom) shows the results for the 

command messages.  Clearly, the larger a message, the longer it takes and this appears to 

be an exponential relationship.  Figure 5.9 through Figure 5.11 show an exponential fit 

for each of the packet sizes.  If a PRA was to use this type of communication, 



implementation would be fairly easy and, with 100,000 small messages being transferred 

in under 15,000 ms, probably very efficient. 
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Figure 5.8:  UDP Results 
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Figure 5.9:  UDP Small Exponential Trend 
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Figure 5.10:  UDP Medium Exponential Trend 
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UDP Large
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Figure 5.11:  UDP Large Exponential Trend 

The results achieved for TCP messages, which can be seen in Figure 5.12, are the 

opposite of those obtained for UDP messages.  Again, there appears to be a non-linear 

relationship but clearly, larger messages take less time to process than smaller ones.  The 

largest messages, large data updates (dashed line, but this time at the bottom) seem to 

take significantly less time to process.  This may be due to the length of the buffer in the 

Action Layer.  If the buffer was not filled, the TCP stream may have needed to time-out 

before being processed.  This could be the cause of what appears to be backward results.  

More information on this type of delay can be found in [26].  While noticeably slower 

than the UDP messages, 5,000 message taking over 22,000 ms, if there is a chance of a 

fault between the layers, then this delay could be worth knowing that the message was 

received properly. 
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Figure 5.12:  TCP Results 

File communication seemed to be consistent in time and the differences between large 

and small messages clearly were miniscule compared to the time required to create and 

delete files.  Figure 5.13 demonstrates that although large messages take a slightly longer 

time, the size of the file is not the major determining factor in communication latency.  If 

the PRAs had some type of shared memory resource, this slower method of 

communications could be used, especially if the required messages were very large in 

size.   
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Figure 5.13:  File Sharing Results 

5.2.4.1 Comparison 

When comparing the three types of communication, UDP is clearly the fastest, in bytes 

per second.  All the tests were averaged and the results are presented in Figure 5.14.  File 

communication functioned at an average of 0.21 bytes per second.  TCP functioned at 

2.02 bytes per second and UDP functioned at the very quick throughput of 101 bytes per 

second.  With these speed estimates, the real-time performance of the inter-layer 

communication of a PRA can be calculated. 
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Figure 5.14:  Average Throughput 

These results can be attributed to a number of different factors.  UDP is a bare bones type 

of communication; it does not have any of the error handling features that exist in TCP 

and thus, runs at a much quicker speed.  Even if the TCP packet size was the same size as 

each transmitted message and timeout did not occur, it would still be slower than UDP 

due to the error correction. 

5.2.5 Conclusions 

UDP messages are sent 50 times faster than TCP messages and sent 500 times faster than 

files.  It was expected that file messages would have the worst throughput, but the 

difference between TCP and UDP was not.  The buffer problem greatly affected 

performance of the TCP communications.  When examining most of the messages sent 
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between the layers and both layers existing on the same robot, the order of the messages, 

UDP greatest detriment, does not play an important role.  For the most part, the variable 

updates are typically sent at intervals; the order of the commands received will not be 

important and large data updates would be infrequent.  Clearly, using UDP, perhaps with 

a data structure of some sort, is the best choice of the three examined in this experiment 

for sending messages and is reliable on stable networks.  If network stability is a potential 

problem, TCP messages should be considered instead.  With an average throughput of 

101 bytes per second, it is also possible to calculate, with knowledge of the information 

being sent back and forth between layers, how long it will take for a robot to be able to 

respond to a command in real-time. 
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6 Conclusions, Limitations and 

Recommendations 

This chapter contains the conclusions reached through this thesis.  It also contains the 

limitations of the research and the conclusions as well as recommendations for  

6.1 Conclusions 

Multiple robot system control is a quickly emerging field in which an agent oriented 

solution seems to hold the most potential.  Currently, there is no well known, effective 

architecture that exists that will allow agents to be both independent and control low level 

systems.  The goal of this thesis is to present an agent based architecture that has the 

ability to control both the physical aspects of the robot and coordinate with other robots.  

Furthermore, a secondary goal is to determine the feasibility of using this architecture for 

real-time systems. 

A novel architecture for multiple robot systems was developed.  The architecture is 

designed to help multiple robots cooperate and coordinate with each other using an agent 

oriented solution.  To accomplish this, each robot is designated to be a Physical Robot 

Agent (PRA).  The PRA is then abstracted into two different layers:  the Cognitive and 

Action Layers.  The Action Layer controls all of the sensors and actuators of the robot.  

All of the physical tasks that the PRA will pursue are controlled by this layer.  The 

Cognitive Layer controls all of the planning and coordination and cooperation with the 

other PRAs.  The Cognitive Layer gives commands to the Action Layer, which in turn 

returns status updates to the Cognitive Layer. 
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The Action Layer is further divided into three main components.  The first of these 

components is the Executor.  The Executor has access to all of the sensors and actuator 

on the robot.  It controls exactly how the robot moves and reacts.  It receives all of its 

commands from the State Monitor and exactly how to perform these commands from the 

library of tasks, the Repository element.  The Repository is a collection of tasks that the 

Cognitive Layer can request the Action Layer to perform.  If these tasks are ‘learning’ 

tasks, the optimized versions are updated within the Repository.  The State Monitor tells 

the Executor what tasks to run or stop based on messages received from the Cognitive 

Layer.  It also sends the Cognitive Layer state variable updates as requested. 

Similar to the Action Layer, the Cognitive Layer is split into three elements:  the 

Decision Maker, the Negotiator and the Coordinator.  The Decision Maker is the ‘brain’ 

of the PRA.  It performs all of the planning associated with the robot.  To communicate 

with other robots, the Negotiator element is used.  All messages that are sent to the PRA 

must go through the Negotiator and the Decision Maker to ensure the autonomy of the 

robot.  The Coordinator element handles the communications between the Action Layer 

and the Decision Maker.  It ensures that all variables requested are updated correctly and 

that all the commands given by the Decision Maker are followed. 

To implement the Action Layer, a C++ programme that contained all of the required 

elements was utilized.  The Cognitive Layer was designed using agents.  The Java Agent 

DEvelopment Framework (JADE) was used in conjunction with the Java programming 

language to create two software agents.  The Coordinator is its own software agent and 

the Decision Maker and Negotiator share a software agent. 
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Experiments were conducted in which the architecture performed correctly.  Experiments 

with a single robot proved that the architecture was feasible.  Further experiments with 

multiple robots, some in which robots were added or removed, also demonstrated that the 

multiple robot system functioned perfectly.  Based on these results, it is concluded that 

the architecture is fully functional, robust, portable and practical. 

For the architecture to be considered for real-time applications, the communication delays 

must be tested.  The two locations where these delays can occur are between the two 

layers and between PRAs.  The communication between the layers was tested for latency 

and throughput.  The type of messaging that should be used between them was 

determined. 

To test the communication between layers, a basic setup was used.  Both layers were 

emulated and messages were sent using the transmission control protocol (TCP), the user 

datagram protocol (UDP) and using files on the robot’s hard drive.  File communications 

functioned at an average of 0.21 bytes per second.  TCP functioned at 2.02 bytes per 

second and UDP functioned with a throughput of 101 bytes per second.  Messages sent 

using UDP are 50 times faster than TCP messages and 500 times faster than files.  Based 

on this test, it is concluded that all messages passed between layers should be performed 

using UDP.  The cost of using UDP is the possibility of lower reliability due to the lack 

of error detection.  On most systems, where both layers are on the same robot, this is not 

an issue. 
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Based on the experiments conducted, it is concluded that the architecture proposed in this 

thesis is functional, adaptable and reliable in both a single robot and a multi-robot 

environment.  Furthermore, all communications between layers should be conducted 

using the UDP unless extremely large amounts of data are required.  The architecture 

allows for small and large systems of robots to use many different hierarchies.  The 

abstraction of the two layers and the sub elements allow for the portability of code 

between completely different robots.  The agent level programming can take place 

independently from the needs of a specific robot.  All of these features allow for a shorter 

time between simulation, implementation and realization. 

6.2 Limitations 

The architecture could be limited by the precise definition of ‘agent’ that is required.  

Furthermore, the architecture can potentially increase the amount of data exchange 

needed due to the strict information pipelines between elements within each layer.  These 

pipelines ensure that the autonomy of each PRA is intact, however their existence will 

add some processing time.   

There is also a limitation enforced by the separation of the layers.  Communications 

between layers in the dual-layer architecture require more effort than in a single layer 

system.  This more formal type of communication fosters a better Action Layer design. 

The application experiment presented in section 5.1 was effective at using up to three 

robots.  A constraint on the results was that there were a limited number of available 

robots.  Theoretically, the framework could sustain a large number of robots, but when 
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dealing with very large systems (i.e. swarms) it could break down.  The limit on the 

number of robots that could be used in this specific experiment is based on maximum that 

could fit around the target without colliding. 

6.3 Recommendations and Future Work 

Based on the conclusions drawn from this thesis, the following are recommended: 

1. All future work with mobile robots within the Pattern Analysis and Machine 

Intelligence (PAMI) Lab at the University of Waterloo should be done using this 

dual layer architecture.   

2. A library of tasks, the Repository element, should be built up to allow for faster 

development of new multiple robot experiments. 

3. Different hierarchies should be tested on the robots to ensure that this architecture 

is fully compatible with the robots. 

4. Real-time experiments should be continued, concentrating on the communications 

between robots. 

5. Further communication tests using more protocols and a random access memory 

drive to determine a comparison to the communication methods tested should be 

performed. 
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6. Experiments involving different types of robots should be conducted using this 

architecture to explore portability. 
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Appendix A:  Implementation Application Source 

Code 

This appendix contains the Java source code to the Cognitive Layer software agents from 

section 5.1. 

A.1 Greeter 

import jade.core.Agent; 
import jade.core.behaviours.*; 
import jade.lang.acl.*; 
import jade.core.AID; 
import java.util.*; 
 
public class Greeter extends Agent { 
  public final int Robots = 3; 
   
  protected void setup() { 
    addBehaviour(new  GreetRobot(this)); 
    System.out.println("Greeter has started as " + getName()); 
  } 
   
  class GreetRobot extends CyclicBehaviour { 
    public GreetRobot(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      boolean exitcode = false; 
      boolean exitcode2 = false; 
      LinkedList agentlist = new LinkedList(); 
      agentlist.clear(); 
      ACLMessage hello; 
      System.out.println("Waiting for robots..."); 
       
      while (exitcode == false) { 
        System.out.println("Number of Robots reporting:  " + 
agentlist.size()); 
        ListIterator it2 = agentlist.listIterator(); 
        AID t; 
        int c = 0; 
        while (it2.hasNext()) { 
          c = c + 1; 
          t = (AID)it2.next(); 
          System.out.println("Robot " + c + ":" + t.getLocalName()); 
        } 
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        ACLMessage welcome = myAgent.blockingReceive(); 
        System.out.println("Received message"); 
        if (welcome.getPerformative() == ACLMessage.FAILURE) { 
          System.out.println("Exiting program"); 
          exitcode = true; 
        } else if (welcome.getPerformative() == 
ACLMessage.REJECT_PROPOSAL) { 
          ListIterator it = agentlist.listIterator(); 
          while (it.hasNext()) { 
            if (welcome.getSender().equals((AID)it.next())) { 
              it.remove(); 
              System.out.println("Robot removed: " + 
welcome.getSender().getLocalName()); 
            } 
          } 
        } else if (welcome.getPerformative() == ACLMessage.DISCONFIRM) 
{ 
          System.out.println("Removing all robots."); 
          agentlist.clear(); 
        } else if (welcome.getPerformative() == ACLMessage.CANCEL) { 
          ListIterator it = agentlist.listIterator(); 
          AID you; 
          while (it.hasNext()) { 
            you = (AID)it.next(); 
            if (welcome.getContent().compareTo(you.getLocalName()) == 
0) { 
              ACLMessage goodbye = new ACLMessage(ACLMessage.REFUSE); 
              goodbye.addReceiver(you); 
              myAgent.send(goodbye); 
              System.out.println("Sending goobye to: " + 
you.getLocalName()); 
            } 
          } 
        } else { 
          ListIterator it = agentlist.listIterator(); 
          exitcode2 = false; 
          while ((exitcode2 == false) && (it.hasNext())) { 
            if (welcome.getSender().equals((AID)it.next())) { 
              System.out.println("Already found instance of:  " + 
welcome.getSender().getLocalName()); 
              exitcode2 = true; 
            } 
          } 
          if (exitcode2) 
            it.remove(); 
          agentlist.addFirst(welcome.getSender()); 
          System.out.println("Adding robot "+ agentlist.size() + ":  "+ 
welcome.getSender().getLocalName()); 
          if (agentlist.size() > 1) { 
            ListIterator agentlistit = agentlist.listIterator(); 
            agentlistit.next(); 
            while (agentlistit.hasNext()) { 
              hello = new ACLMessage(ACLMessage.CONFIRM); 
              hello.setContent(Integer.toString(agentlist.size())); 
              hello.clearAllReceiver(); 
              hello.addReceiver(welcome.getSender()); 
              hello.setSender((AID)agentlistit.next()); 
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              System.out.println("Sending message to " + 
welcome.getSender().getLocalName()); 
              myAgent.send(hello); 
            } 
          } 
          hello = new ACLMessage(ACLMessage.DISCONFIRM); 
          hello.setContent("All Robots Reported"); 
          hello.addReceiver(welcome.getSender()); 
          myAgent.send(hello); 
        } 
      } 
    } 
  } 
} 

A.2 Commander 

import jade.core.Agent; 
import jade.core.behaviours.*; 
import jade.lang.acl.*; 
import jade.core.AID; 
import java.util.Iterator; 
import java.util.HashMap; 
 
 
public class Jade2Robot extends Agent { 
  ParallelBehaviour par; 
  AID reportto = null; 
  String RunBeh = ""; 
  private ACLMessage resend = null; 
  private int sentlast; 
  
  private BehaveState bs; 
  private robotMgrStub stub; 
   
  protected void setup() { 
    bs = new BehaveState(); 
    sentlast = 15; 
    stub = new robotMgrStub(this.getLocalName(),7392,0); 
    par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL); 
    par.addSubBehaviour(new RecMsg(this)); 
    par.addSubBehaviour(new Report(this)); 
    addBehaviour(par); 
    System.out.println("Jade 2 Robot (J2R) has started on " + 
getLocalName()); 
  } 
   
  class RecMsg extends CyclicBehaviour { 
    public RecMsg(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      ACLMessage msg = myAgent.receive(); 
      while (msg!=null) { 
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        System.out.println("J2R <- " + msg.getSender().getName() + " (" 
+ ACLMessage.getPerformative(msg.getPerformative()) + "):" + 
msg.getContent() ); 
        if (msg.getPerformative() == ACLMessage.INFORM) 
          par.addSubBehaviour(new SendStub(myAgent, msg)); 
        if (msg.getPerformative() == ACLMessage.SUBSCRIBE) 
          par.addSubBehaviour(new Subscribe(myAgent, msg)); 
        if (msg.getPerformative() == ACLMessage.CANCEL) 
          par.addSubBehaviour(new Unsubscribe(myAgent, msg)); 
        if (msg.getPerformative() == ACLMessage.REQUEST) 
          par.addSubBehaviour(new Monitor(myAgent,msg)); 
        msg = myAgent.receive(); 
      }             
      block(); 
    } 
  } 
   
  class SendStub extends OneShotBehaviour { 
    private ACLMessage msg; 
    public SendStub(Agent a, ACLMessage Mess) { 
      super(a); 
      msg = Mess; 
    } 
    public void action() { 
      int val = 0; 
      String stuff[] = msg.getContent().split(":",2);       
      if (stuff[0].compareTo(RunBeh) == 0) 
      { 
        System.out.println("J2R Maintaining Behaviour:" + stuff[0]); 
      } 
      else 
      { 
        stub.ActivateBehaviour("",""); 
        stub.ActivateBehaviour(stuff[0],stuff[1]); 
        System.out.println("J2R Activate Behaviour: " + stuff[0] + " - 
" + stuff[1]);       
        RunBeh = stuff[0];         
      } 
    } 
  } 
   
  class Subscribe extends OneShotBehaviour { 
    private ACLMessage msg; 
     
    public Subscribe(Agent a, ACLMessage Mess) { 
      super(a); 
      msg = Mess; 
    } 
     
    public void action() { 
      reportto = msg.getSender(); 
      System.out.println("J2R New Subscriber set to:" + 
reportto.getName()); 
      par.addSubBehaviour(new Reply(myAgent,msg,ACLMessage.AGREE)); 
    } 
  } 
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  class Unsubscribe extends OneShotBehaviour { 
    private ACLMessage msg; 
    public Unsubscribe(Agent a, ACLMessage Mess) { 
      super(a); 
      msg = Mess; 
    } 
    public void action() { 
      if (reportto == msg.getSender()) 
        reportto = null; 
      System.out.println("J2R Subscriber removed"); 
    } 
  } 
   
  class Monitor extends OneShotBehaviour { 
    private ACLMessage msg; 
    public Monitor(Agent a, ACLMessage Mess) { 
      super(a); 
      msg=Mess; 
    } 
    public void action() { 
      while (stub.MonitorVariable(msg.getContent()) == false); 
      stub.SetVariable(msg.getContent(),0); 
      System.out.println("J2R Now Monitoring:" + msg.getContent()); 
      par.addSubBehaviour(new Reply(myAgent,msg,ACLMessage.AGREE)); 
    } 
  } 
   
  class Report extends CyclicBehaviour { 
    public Report(Agent a) { 
      super(a); 
    } 
    private ACLMessage msg; 
    private String stuff = new String(); 
    private Integer temp = new Integer(1); 
    public void action() { 
      int i; 
      if (!(reportto == null)) {         
        if ( stub.GetState(bs,1) ) { 
          i = bs.mVariable.size();           
          stuff = i + "!"; 
          for (Iterator it = bs.mVariable.keySet().iterator(); 
it.hasNext(); ) { 
            String key = (String)(it.next());           
            stuff += key + ":" + (Integer)bs.mVariable.get(key) + "!";             
          } 
          stuff = stuff.substring(0,stuff.length()-1); 
          msg = new ACLMessage(ACLMessage.INFORM); 
          resend = new ACLMessage(ACLMessage.INFORM); 
          msg.addReceiver(reportto); 
          resend.addReceiver(reportto); 
          msg.setContent(stuff); 
          resend.setContent(stuff); 
          //System.out.println("J2R Reporting: " + stuff); 
          myAgent.send(msg); 
          sentlast = 0; 
        } 
        else 
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        { 
          sentlast++; 
          if (sentlast == 10) 
            myAgent.send(resend); 
          if (sentlast == 10000) 
            sentlast=11; 
        } 
      } 
    } 
  } 
   
  class Reply extends OneShotBehaviour { 
    ACLMessage msg; 
    int perf; 
    public Reply(Agent a, ACLMessage Mess, int per) { 
      super(a); 
      msg = Mess; 
      perf = per; 
    } 
    public void action() { 
      ACLMessage reply = new ACLMessage(perf); 
      reply.addReceiver(msg.getSender()); 
      myAgent.send(reply); 
    } 
  } 
} 

A.3 Single Robot Implementation 

import jade.core.Agent; 
import jade.core.behaviours.*; 
import jade.lang.acl.*; 
import jade.core.AID; 
 
public class BestView extends Agent { 
  ParallelBehaviour par; 
  SequentialBehaviour seq; 
  private AID j2r = new AID("mag1",AID.ISLOCALNAME); 
   
  protected boolean postFound = false; 
  protected boolean postCentered = false; 
  protected boolean postClose = false; 
  protected boolean panAt90 = false; 
  protected boolean atBestCorner = false; 
  protected int state = 0; 
   
   
  protected void setup() {     
    seq = new SequentialBehaviour(this); 
    seq.addSubBehaviour(new Startup(this)); 
    par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL); 
    par.addSubBehaviour(new RecMsg(this));     
    seq.addSubBehaviour(par); 
    System.out.println("Bestview Agent is running as " + getName()); 
    addBehaviour(seq); 
  } 
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  class Startup extends OneShotBehaviour { 
    public Startup(Agent a) { 
      super(a); 
    } 
    public void action() { 
      SequentialBehaviour seq2 = new SequentialBehaviour(myAgent);       
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postCentered", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postFound", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postClose", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"panAt90", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"atBestCorner", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"", 
ACLMessage.SUBSCRIBE)); 
      par.addSubBehaviour(seq2); 
    }         
  } 
   
  class Send2J2R extends OneShotBehaviour { 
    String var; 
    int perf; 
    public Send2J2R(Agent a, String inside, int type) { 
      super(a); 
      var = inside; 
      perf = type; 
    } 
    public void action() { 
      ACLMessage reply = new ACLMessage(ACLMessage.REFUSE); 
      while (reply.getPerformative() != ACLMessage.AGREE) { 
        ACLMessage msg = new ACLMessage(perf); 
        msg.addReceiver(j2r); 
        msg.setContent(var); 
        myAgent.send(msg); 
        reply = myAgent.blockingReceive(); 
      } 
    } 
  } 
   
  class RecMsg extends CyclicBehaviour { 
    public RecMsg(Agent a) { 
      super(a); 
    } 
    public SequentialBehaviour seq3; 
    public void action() { 
      ACLMessage msg = myAgent.receive();       
      if (msg!=null) { 
        System.out.println(myAgent.getLocalName() + " <- " + 
msg.getSender().getName() + " (" + 
ACLMessage.getPerformative(msg.getPerformative()) + "):" + 
msg.getContent() ); 
        //if (msg.getSender().getName().compareTo(j2r.getName()) == 0) 
{           
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          if (msg.getPerformative() == ACLMessage.INFORM) 
          {             
            seq3 = new SequentialBehaviour(myAgent); 
            seq3.addSubBehaviour(new UpdateVar(myAgent, msg)); 
            seq3.addSubBehaviour(new StateMachine(myAgent)); 
            par.addSubBehaviour(seq3); 
          } 
        //} 
        //else { 
          //This is for later... 
        //} 
      } 
      block(); 
    } 
  } 
   
  class StateMachine extends OneShotBehaviour { 
    public StateMachine(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      System.out.println("State = " + state); 
      switch (state) { 
        case 0: if (postFound) 
                  state++; 
        break; 
        case 1: if (!postFound)           
                  state = 0; 
                else if (postCentered && postClose) 
                  state++; 
        break; 
        case 2: if (!postFound) 
          state = 0; 
        else if (postCentered && panAt90) 
          state++; 
        break; 
        case 3: if (!postFound) 
          state = 0; 
        else if (atBestCorner) 
          state++; 
        break; 
        case 4: if (!postFound) 
          state = 0; 
        else if (!atBestCorner) 
          state--; 
        break; 
      } 
      switch (state) { 
        case 0: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"findPost:0")); break; 
        case 1: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"approachPost:0")); break; 
        case 2: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"readyPivot:0")); break; 
        case 3: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"Pivot:0")); break; 
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        case 4: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"onAlert:0")); break; 
        default: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
":0")); break; 
      } 
    } 
  } 
   
  class SetNewBehaviour extends OneShotBehaviour { 
    private String behave; 
     
    public SetNewBehaviour(Agent a, String beh) { 
      super(a); 
      behave = beh; 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      msg.setContent(behave); 
      //System.out.println("Setting Behaviour to" + behave); 
      myAgent.send(msg); 
    } 
  } 
   
  class Subscribe extends OneShotBehaviour { 
    public Subscribe(Agent a) { 
      super(a); 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.SUBSCRIBE); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      myAgent.send(msg); 
    } 
  } 
   
  class Unsubscribe extends OneShotBehaviour { 
    public Unsubscribe(Agent a, ACLMessage Mess) { 
      super(a); 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.CANCEL); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      myAgent.send(msg); 
    } 
  } 
   
  class UpdateVar extends OneShotBehaviour { 
    private ACLMessage msg; 
    public UpdateVar(Agent a, ACLMessage Mess) { 
      super(a); 
      msg = Mess; 



 85 

    }     
    public void action() { 
      boolean temp; 
      String updates[] = msg.getContent().split("!"); 
      for (int i=1; i <= Integer.parseInt(updates[0]); i++) 
      { 
        String var[] = updates[i].split(":",2);            
        temp = false; 
        if (var[1].compareTo("1") == 0) 
          temp = true;         
        System.out.println(var[0] + "-" + var[1] + "=" + temp); 
        if (var[0].compareTo("postFound") == 0)           
          postFound = temp; 
        if (var[0].compareTo("postClose") == 0) 
          postClose = temp; 
        if (var[0].compareTo("postCentered") == 0) 
          postCentered = temp; 
        if (var[0].compareTo("panAt90") == 0) 
          panAt90 = temp; 
        if (var[0].compareTo("atBestCorner") == 0) 
          atBestCorner = temp; 
      } 
      //System.out.println(myAgent.getLocalName() + ": pf=" + postFound 
+ ", pcent=" + postCentered + ", pc=" + postClose); 
    } 
  } 
} 

A.4 Multiple Robot Implementation 

import jade.core.Agent; 
import jade.core.behaviours.*; 
import jade.lang.acl.*; 
import jade.core.AID; 
import java.math.*; 
import java.io.*; 
import java.util.*; 
 
public class MBestView extends Agent { 
  ParallelBehaviour par; 
  SequentialBehaviour seq; 
  private AID j2r; 
  //private AID friend1 = new AID(); 
  //private AID friend2 = new AID(); 
  private AID Greeter; 
   
  class AIDitem { 
    public AID agent; 
    public boolean playing = false; 
    public boolean ready = false; 
    public boolean degreefound = false; 
    public int degree = -1; 
    public int goodDegree = -1; 
    public AIDitem(ACLMessage msg) { 
      agent = msg.getSender(); 
      ready = false; 
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      degreefound = false; 
      degree = -1; 
      goodDegree = -1; 
    } 
    public AIDitem() { 
      agent = null; 
      ready = false; 
      degreefound = false; 
      degree = -1; 
      goodDegree = -1; 
    } 
  } 
   
  AIDitem findinlist(LinkedList l, AID i) { 
    Iterator it = l.iterator(); 
    AIDitem me = null; 
    AIDitem me2 = null; 
    while (it.hasNext()) { 
      me = (AIDitem)it.next(); 
      if (me.agent.equals(i)) 
        me2 = me; 
    } 
    return me2; 
  } 
   
  private LinkedList friends = new LinkedList(); 
  private LinkedList playFriends = new LinkedList(); 
   
  protected boolean postFound = false; 
  protected boolean postCentered = false; 
  protected boolean postClose = false; 
  protected boolean ready = false; 
  //protected boolean other1ready = false; 
  //protected boolean other2ready = false; 
  protected boolean panAt90 = false; 
  protected boolean atBestCorner = false; 
  protected boolean HALTER; 
  protected boolean QUITER = false; 
  protected boolean RESET = false; 
  protected boolean newAngleRec = false; 
  protected boolean newAngleFound = false; 
  protected int state = 0; 
  protected boolean degreeFound = false; 
  protected int gooddegree = 0; 
  //protected boolean f1degreeFound = false; 
  //protected int friend1degree = -1; 
  //protected boolean f2degreeFound = false; 
  //protected int friend2degree = -1; 
  protected int curdegree = -1; 
   
  protected void setup() { 
    seq = new SequentialBehaviour(this); 
    seq.addSubBehaviour(new Startup(this)); 
    par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL); 
    par.addSubBehaviour(new RecMsg(this)); 
    seq.addSubBehaviour(par); 
    System.out.println("Bestview Agent is running as " + getName()); 
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    HALTER = true;  //This should send a hello to each robot 
    addBehaviour(seq); 
  } 
   
  class Startup extends OneShotBehaviour { 
    public Startup(Agent a) { 
      super(a); 
    } 
    public void action() { 
      SequentialBehaviour seq2 = new SequentialBehaviour(myAgent); 
      seq2.addSubBehaviour(new sendGreeterHello(myAgent)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postCentered", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postFound", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"postClose", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"panAt90", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"atBestCorner", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"degree", 
ACLMessage.REQUEST)); 
      seq2.addSubBehaviour(new Send2J2R(myAgent,"", 
ACLMessage.SUBSCRIBE)); 
      par.addSubBehaviour(seq2); 
    } 
  } 
   
  class sendGreeterHello extends OneShotBehaviour { 
    public sendGreeterHello(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      // Setup J2R 
      try { 
        BufferedReader in = new BufferedReader(new 
FileReader("myname.txt")); 
        String str; 
        str = in.readLine(); 
        j2r = new AID(str,AID.ISLOCALNAME); 
        in.close(); 
        System.out.println("The J2R is " + str); 
      } catch (IOException e) { 
      } 
       
      //Send Message to Greeter 
      ACLMessage msg = new ACLMessage(ACLMessage.CONFIRM); 
      //Read Greeter Corba Address From File 
      Greeter = new 
AID("Greeter@fusion.uwaterloo.ca:1099/JADE",AID.ISGUID); 
      try { 
        BufferedReader in = new BufferedReader(new 
FileReader("Greeter.txt")); 
        String str; 
        str = in.readLine(); 
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        Greeter.addAddresses(str); 
        in.close(); 
      } catch (IOException e) { 
      } 
      msg.addReceiver(Greeter); 
      myAgent.send(msg); 
       
      //Wait for messages from the greeter: 
      ACLMessage welcome = myAgent.blockingReceive(); 
      while (welcome.getPerformative() != ACLMessage.DISCONFIRM) { 
        friends.addLast(new AIDitem(welcome)); 
        System.out.println("Hello new friend:  " + 
welcome.getSender().getName()); 
        welcome = myAgent.blockingReceive(); 
      } 
    } 
  } 
   
  class Send2J2R extends OneShotBehaviour { 
    String var; 
    int perf; 
    public Send2J2R(Agent a, String inside, int type) { 
      super(a); 
      var = inside; 
      perf = type; 
    } 
    public void action() { 
      ACLMessage reply = new ACLMessage(ACLMessage.REFUSE); 
      while (reply.getPerformative() != ACLMessage.AGREE) { 
        ACLMessage msg = new ACLMessage(perf); 
        msg.addReceiver(j2r); 
        msg.setContent(var); 
        myAgent.send(msg); 
        reply = myAgent.blockingReceive(); 
      } 
    } 
  } 
   
  class RecMsg extends CyclicBehaviour { 
    public RecMsg(Agent a) { 
      super(a); 
    } 
    public SequentialBehaviour seq3; 
    public void action() { 
      ACLMessage msg = myAgent.receive(); 
      while (msg!=null) { 
        System.out.println("***************  GOT MESSAGE!:  
********************"); 
        System.out.println(myAgent.getLocalName() + " <- " + 
msg.getSender().getName() + " (" + 
ACLMessage.getPerformative(msg.getPerformative()) + "):" + 
msg.getContent() ); 
        if (msg.getPerformative() == ACLMessage.INFORM) { 
          seq3 = new SequentialBehaviour(myAgent); 
          seq3.addSubBehaviour(new UpdateVar(myAgent, msg)); 
          //          seq3.addSubBehaviour(new StateMachine(myAgent));  
Don't think I need two here. 
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          seq3.addSubBehaviour(new StateMachine(myAgent)); 
          par.addSubBehaviour(seq3); 
        } 
        else if (msg.getPerformative() == ACLMessage.CFP) { 
          RESET = true; 
           
          //Do we know this robot yet? 
          Iterator friendsit = friends.iterator(); 
          AIDitem me = null; 
          AIDitem me2 = null; 
          while (friendsit.hasNext()) { 
            me = (AIDitem)friendsit.next(); 
            if (me.agent.equals(msg.getSender())) 
              me2 = me; 
          } 
          if (me2 == null) { 
            me2 = new AIDitem(msg); 
            friends.addLast(me2); 
             
            ACLMessage hello = new ACLMessage(ACLMessage.CFP); 
            hello.addReceiver(msg.getSender()); 
            hello.setContent("Nice to meet you!"); 
            myAgent.send(hello); 
          } 
           
          //Reset the robot's variables 
          me2.ready = false; 
          me2.degreefound = false; 
          me2.degree = -1; 
           
          //Add robot to working robots 
          Iterator pfit = playFriends.iterator(); 
          AIDitem me3 = null; 
          AIDitem me4 = null; 
          while (pfit.hasNext()) { 
            me3 = (AIDitem)pfit.next(); 
            if (me3.agent.equals(me2.agent)) 
              me4 = me3; 
          } 
          if (me4 == null) { 
            playFriends.addLast(me2); 
          } 
          par.addSubBehaviour(new StateMachine(myAgent)); 
        } 
        else if (msg.getPerformative() == ACLMessage.FAILURE) { 
          HALTER = true; 
          playFriends.clear(); 
          par.addSubBehaviour(new StateMachine(myAgent)); 
        } 
        else if (msg.getPerformative() == ACLMessage.PROPOSE) { 
          Iterator playFriendsit = playFriends.iterator(); 
          AIDitem me = null; 
          AIDitem me2 = null; 
          while (playFriendsit.hasNext()) { 
            me = (AIDitem)playFriendsit.next(); 
            if (me.agent.equals(msg.getSender())) 
              me2 = me; 
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          } 
          if (me2 == null) { 
            System.out.println("ERROR FRIEND NOT FOUND: " + 
msg.getSender().getLocalName()); 
            ACLMessage err = new ACLMessage(ACLMessage.NOT_UNDERSTOOD); 
            err.setContent("You have not registered with me."); 
            err.addReceiver(msg.getSender()); 
            myAgent.send(err); 
          } 
          else { 
            me2.ready = true; 
          } 
          par.addSubBehaviour(new StateMachine(myAgent)); 
        } 
        else if (msg.getPerformative() == ACLMessage.INFORM_REF) { 
           
          Iterator playFriendsit = playFriends.iterator(); 
          AIDitem me = null; 
          AIDitem me2 = null; 
          while (playFriendsit.hasNext()) { 
            me = (AIDitem)playFriendsit.next(); 
            if (me.agent.equals(msg.getSender())) 
              me2 = me; 
          } 
          if (me2 == null) { 
            System.out.println("ERROR FRIEND NOT FOUND: " + 
msg.getSender().getLocalName()); 
            ACLMessage err = new ACLMessage(ACLMessage.NOT_UNDERSTOOD); 
            err.setContent("You have not registered with me."); 
            err.addReceiver(msg.getSender()); 
            myAgent.send(err); 
          } 
          else { 
            me2.degreefound = true; 
            me2.degree = Integer.parseInt(msg.getContent()); 
            System.out.println("GOT DEGREES:  " + msg.getContent() + ": 
Degrees = " + me2.degree); 
            newAngleRec = true; 
          } 
           
          par.addSubBehaviour(new StateMachine(myAgent)); 
        } 
        else if (msg.getPerformative() == ACLMessage.REJECT_PROPOSAL) { 
          //Robot is told that it this other robot is quiting. 
          Iterator friendsit = friends.iterator(); 
          AIDitem me = null; 
          while (friendsit.hasNext()) { 
            me = (AIDitem)friendsit.next(); 
            if (me.agent.equals(msg.getSender())) { 
              friendsit.remove(); 
              playFriends.clear(); 
              HALTER = true; 
            } 
            //Might need to put some check in here. 
            System.out.println("This robot has QUIT the system: " + 
msg.getSender().getLocalName()); 
          } 
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          par.addSubBehaviour(new StateMachine(myAgent)); 
        } 
        else if (msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD) { 
          //Not in their lists, this means we need to resart 
          System.out.println("RESARTING FOR NOT BEING IN ACTIVE LIST"); 
           
          ACLMessage halty = new ACLMessage(ACLMessage.FAILURE); 
          AIDitem me = null; 
          Iterator it = friends.iterator(); 
          while (it.hasNext()) { 
            me = (AIDitem)it.next(); 
            halty.addReceiver(me.agent); 
          } 
          myAgent.send(halty); 
        } 
        else if (msg.getPerformative() == ACLMessage.REFUSE) { 
          //This robot is told to quit. 
          QUITER = true; 
          par.addSubBehaviour(new sendQuit(myAgent)); 
        } 
        msg = myAgent.receive(); 
      } 
      block(); 
    } 
  } 
   
  class sendRobotHello extends OneShotBehaviour { 
    public sendRobotHello(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      ListIterator friendsit = friends.listIterator(); 
      ACLMessage hiRobot = new ACLMessage(ACLMessage.CFP); 
      while (friendsit.hasNext()) { 
        AIDitem robot = (AIDitem)friendsit.next(); 
        hiRobot.addReceiver(robot.agent); 
        hiRobot.setContent("Greetings!"); 
      } 
      myAgent.send(hiRobot); 
    } 
  } 
   
  class StateMachine extends OneShotBehaviour { 
    public StateMachine(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      int oldstate = -1; 
      while (oldstate != state) { 
        oldstate = state; 
        if (HALTER || RESET ) 
          state = 11; 
        if (QUITER) 
          state = 12; 
        switch (state) { 
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          case 0: if (postFound) //Find the post 
            state++; 
          break; 
           
          case 1: if (!postFound) //Centre in on the post and approch 
it 
            state = 0; 
          else if (postCentered && postClose) { 
            state++; 
            par.addSubBehaviour(new sendReady(myAgent)); 
          } 
          break; 
           
          case 2: Iterator it = playFriends.iterator(); 
          AIDitem me = null; 
          boolean friendsready = true; 
          while (it.hasNext()) { 
            me = (AIDitem)it.next(); 
            if (me.ready != true) 
              friendsready = false; 
          } 
          if ((friendsready) && (ready)) 
            state++; 
          break; 
           
          case 3: newAngleFound = false; 
          if (!postFound) 
            state = 10; 
          else if (postCentered && panAt90) { 
            state++; 
            degreeFound = false; 
            par.addSubBehaviour(new sendDegree(myAgent)); 
          } 
          break; 
           
          case 4: newAngleRec = false; 
          if (!postFound) 
            state = 10;           
          else if (newAngleFound) { 
            newAngleFound = false;             
            state = 3; 
          } 
          else if (degreeFound) 
            state++; 
          break; 
           
          case 5: if (!postFound) 
            state = 10; 
          else if (newAngleRec) { 
            newAngleRec = false; 
            degreeFound = false; 
            state = 4; 
          } 
          else if (newAngleFound) { 
            newAngleFound = false;             
            state = 3; 
          } 
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          else if (atBestCorner) 
            state++; 
          break; 
           
          case 6: if (!postFound) 
            state = 10; 
          else if (newAngleRec) { 
            newAngleRec = false; 
            degreeFound = false; 
            state = 4; 
          } 
          else if (newAngleFound) { 
            newAngleFound = false;             
            state = 3; 
          } 
          else if (!atBestCorner) 
            state--;           
          break; 
           
          case 10: par.addSubBehaviour(new sendHalt(myAgent)); 
          state++; 
          break; 
           
           
          //Halt & Reset State 
          case 11: 
            degreeFound = false; 
            ready = false; 
            gooddegree = -1; 
             
            AIDitem me2 = null; 
            Iterator it2 = friends.iterator(); 
            while (it2.hasNext()) { 
              me2 = (AIDitem)it2.next(); 
              me2.ready = false; 
              me2.degree = -1; 
              me2.degreefound = false; 
            } 
            Iterator it3 = playFriends.iterator(); 
            while (it3.hasNext()) { 
              me2 = (AIDitem)it3.next(); 
              me2.ready = false; 
              me2.degree = -1; 
              me2.degreefound = false; 
            } 
             
            if (!RESET) 
              par.addSubBehaviour(new sendRobotHello(myAgent)); 
            HALTER = false; 
            RESET = false; 
            state = 0; 
            break; 
             
          case 12: 
            System.out.println("Robot has quit"); 
            break; 
          default: 
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            System.out.println("Not in normal state."); 
            state = 10; 
            break; 
             
        } 
        switch (state) { 
          case 0: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"findPost:0")); break; 
          case 1: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"approachPost:0")); break; 
          case 3: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"readyPivot:0")); break; 
          case 4: par.addSubBehaviour(new findDegree(myAgent));  break; 
          case 5: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"Pivot:"+Integer.toString(gooddegree))); break; 
          case 6: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"onAlert:0")); break; 
          case 12: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
"stop:0")); break; 
          default: par.addSubBehaviour(new SetNewBehaviour(myAgent, 
":0")); break; 
        }  //Hey Darren, “Heh Heh, Alright.” 
        System.out.println("State = " + state + " Number of Robots = " 
+ playFriends.size() + " GoodDegree = " + gooddegree); 
      } 
    } 
  } 
   
  class SetNewBehaviour extends OneShotBehaviour { 
    private String behave; 
     
    public SetNewBehaviour(Agent a, String beh) { 
      super(a); 
      behave = beh; 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      msg.setContent(behave); 
      System.out.println("Setting Behaviour to" + behave); 
      myAgent.send(msg); 
    } 
  } 
   
  class sendHalt extends OneShotBehaviour { 
    public sendHalt(Agent a) { 
      super(a); 
    } 
    private ACLMessage halty = new ACLMessage(ACLMessage.FAILURE); 
     
    public void action() { 
      AIDitem me = null; 
      Iterator it = friends.iterator(); 
      while (it.hasNext()) { 
        me = (AIDitem)it.next(); 
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        halty.addReceiver(me.agent); 
      } 
      myAgent.send(halty); 
    } 
  } 
   
  class sendQuit extends OneShotBehaviour { 
    public sendQuit(Agent a) { 
      super(a); 
    } 
    private ACLMessage halty = new 
ACLMessage(ACLMessage.REJECT_PROPOSAL); 
     
    public void action() { 
      AIDitem me = null; 
      Iterator it = friends.iterator(); 
      while (it.hasNext()) { 
        me = (AIDitem)it.next(); 
        halty.addReceiver(me.agent); 
      } 
      halty.addReceiver(Greeter); 
      myAgent.send(halty); 
      System.out.println("Robot has quit the system"); 
      while (true); 
    } 
  } 
   
  class sendReady extends OneShotBehaviour { 
    public sendReady(Agent a) { 
      super(a); 
    } 
    private ACLMessage msg = new ACLMessage(ACLMessage.PROPOSE); 
     
    public void action() { 
      ready = true; 
      AIDitem me = null; 
      Iterator it = playFriends.iterator(); 
      while (it.hasNext()) { 
        me = (AIDitem)it.next(); 
        me.degreefound = false; 
        me.degree = -1; 
        msg.addReceiver(me.agent); 
      } 
      myAgent.send(msg); 
    } 
  } 
   
  class sendDegree extends OneShotBehaviour { 
    public sendDegree(Agent a) { 
      super(a); 
    } 
    private ACLMessage msg = new ACLMessage(ACLMessage.INFORM_REF); 
    public void action() { 
      AIDitem me = null; 
      Iterator it = playFriends.iterator(); 
      while (it.hasNext()) { 
        me = (AIDitem)it.next(); 
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        msg.addReceiver(me.agent); 
      } 
      msg.setContent(Integer.toString(curdegree)); 
      System.out.println("SENDING DEGREES:  " + msg.getContent()); 
      System.out.println("CURRENT DEGREES:  " + curdegree); 
      myAgent.send(msg); 
    } 
  } 
   
  class findDegree extends OneShotBehaviour { 
    public findDegree(Agent a) { 
      super(a); 
    } 
     
    public void action() { 
      int tempdegree = curdegree;  //this should lock the variable 
curdegree for processing 
      int numrobots = playFriends.size(); 
       
      boolean friendsready = true; 
      Iterator it = playFriends.iterator(); 
      int i = -1; 
      AIDitem me = null; 
      while (it.hasNext()) { 
        me = (AIDitem)it.next(); 
        i++; 
        if (me.degreefound == false) 
          friendsready = false; 
        System.out.println(me.agent.getLocalName() + " has a degree 
setting of " + me.degree); 
      } 
       
       
      if ((friendsready) && (degreeFound == false)) { 
        //Insertion Sort 
        //Aldash, how about some more white spirit? 
        LinkedList ordfri = new LinkedList(); 
        ListIterator ito; 
        ordfri.clear(); 
        AIDitem pme = new AIDitem(); 
        pme.degree = tempdegree; 
        ordfri.addFirst(pme); 
        it = playFriends.iterator(); 
        AIDitem meo = null; 
        while (it.hasNext()) { 
          me = (AIDitem)it.next(); 
          ito = ordfri.listIterator(); 
          boolean breakout = false; 
          while ((ito.hasNext()) && (!breakout)) { 
            meo = (AIDitem)ito.next(); 
            if (me.degree < meo.degree) 
              breakout = true; 
          } 
          if (breakout) 
            ito.previous(); 
          ito.add(me); 
        } 
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        Iterator errit = ordfri.iterator(); 
        AIDitem errd = null; 
        while (errit.hasNext()) { 
          errd = (AIDitem)errit.next(); 
          if (errd.agent == null) 
            System.out.println("Robot " + "me" + " has a degree setting 
of " + errd.degree); 
          else 
            System.out.println("Robot " + errd.agent.getLocalName() + " 
has a degree setting of " + errd.degree); 
        } 
         
        //Test the 2 solutions 
        int div = (360/(numrobots+1)); 
        int test1 = 0; 
        int test2 = 0; 
        int tempy1 = 0; 
        int tempy2 = 0; 
        int c; 
        ito = ordfri.listIterator(); 
        for (c=0;c<(numrobots+1);c++) { 
          meo = (AIDitem)ito.next(); 
          tempy1 = meo.degree - c*div; 
          tempy2 = meo.degree - (c+1)*div; 
          if (meo.agent == null) { 
            System.out.println("Robot " + "me" + " with a degree of " + 
meo.degree + " going to " + c*div + " = " + tempy1); 
            System.out.println("Robot " + "me" + " with a degree of " + 
meo.degree + " going to " + (c+1)*div + " = " + tempy2); 
          } else { 
            System.out.println("Robot " + meo.agent.getLocalName() + " 
with a degree of " + meo.degree + " going to " + c*div + " = " + 
tempy1); 
            System.out.println("Robot " + meo.agent.getLocalName() + " 
with a degree of " + meo.degree + " going to " + (c+1)*div + " = " + 
tempy2); 
          } 
          if (tempy1 < 0) 
            tempy1 = tempy1 * (-1); 
          if (tempy2 < 0) 
            tempy2 = tempy2 * (-1); 
          test1 = test1 + tempy1; 
          test2 = test2 + tempy2; 
        } 
        System.out.println("Test 1: " + test1 + ", Test 2: " + test2); 
        c = 0; 
        if (test2 > test1) 
          c = c + div; 
        ListIterator ito2 = ordfri.listIterator(); 
        while (ito2.hasNext()) { 
          meo = (AIDitem)ito2.next(); 
          c = c + div; 
          if (c >= 360) 
            c = 0; 
          meo.goodDegree = c; 
        } 
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        gooddegree = pme.goodDegree; 
         
        errit = ordfri.iterator(); 
        errd = null; 
        while (errit.hasNext()) { 
          errd = (AIDitem)errit.next(); 
          if (errd.agent == null) { 
            System.out.println("Robot " + "me" + " should go to " + 
errd.goodDegree); 
            gooddegree = errd.goodDegree; 
          } 
          else 
            System.out.println("Robot " + errd.agent.getLocalName() + " 
has a degree setting of " + errd.goodDegree); 
        } 
        System.out.println("Going to: " + gooddegree); 
        degreeFound = true; 
      } 
      else 
        degreeFound = false; 
    } 
  } 
   
  class Subscribe extends OneShotBehaviour { 
    public Subscribe(Agent a) { 
      super(a); 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.SUBSCRIBE); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      myAgent.send(msg); 
    } 
  } 
   
  class Unsubscribe extends OneShotBehaviour { 
    public Unsubscribe(Agent a, ACLMessage Mess) { 
      super(a); 
    } 
     
    private ACLMessage msg = new ACLMessage(ACLMessage.CANCEL); 
     
    public void action() { 
      msg.addReceiver(j2r); 
      myAgent.send(msg); 
    } 
  } 
  //Maria, she’s just this girl, you know? 
   
  class UpdateVar extends OneShotBehaviour { 
    private ACLMessage msg; 
    public UpdateVar(Agent a, ACLMessage Mess) { 
      super(a); 
      msg = Mess; 
    } 
    public void action() { 
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      boolean temp; 
      int tempdegree; 
      String updates[] = msg.getContent().split("!"); 
 //Jessica & Noah – I’m actually done.  Really.  No Joke. 
      for (int i=1; i <= Integer.parseInt(updates[0]); i++) { 
        String var[] = updates[i].split(":",2); 
        temp = false; 
        if (var[1].compareTo("1") == 0) 
          temp = true; 
        //System.out.println(var[0] + " -- " + var[1] + " = " + temp); 
        if (var[0].compareTo("postFound") == 0) 
          postFound = temp; 
        if (var[0].compareTo("postClose") == 0) 
          postClose = temp; 
        if (var[0].compareTo("postCentered") == 0) 
          postCentered = temp; 
        if (var[0].compareTo("panAt90") == 0) 
          panAt90 = temp; 
        if (var[0].compareTo("atBestCorner") == 0) 
          atBestCorner = temp; 
        if (var[0].compareTo("degree") == 0) { 
          tempdegree = Integer.parseInt(var[1]); 
          if (((curdegree - tempdegree) > 20) ||  
             ((tempdegree - curdegree) > 20)) { 
            newAngleFound = true; 
          } 
          curdegree = tempdegree; 
        } 
      } 
    } 
  } 
} 
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Appendix B:  Real-Time Experiment Source 

Code 

This appendix contains the Java and C++ source code from the experiment conducted in 

section 5.2. 

B.1 Cognitive Layer 

/* 
 * speedtest.java 
 * 
 * Created on August 27, 2004, 12:43 AM 
*/ 
 
/** 
 * 
 * @author  Bram Gruneir 
 */ 
 
import java.util.*; 
import java.lang.*; 
import java.io.*; 
import java.net.*; 
 
public class speedtest extends java.lang.Object { 
   
  static Random r = new Random(); 
  static long ts; 
  static long te; 
  static long total; 
   
  /** Creates a new instance of speedtest */ 
  public speedtest() { 
  } 
   
  /** 
   * @param args the command line arguments 
   */ 
  public static void main(String[] args) { 
    System.out.println("Starting Communications Tester"); 
    r.setSeed(System.currentTimeMillis()); 
    System.out.println("The current time in ms is = " + 
System.currentTimeMillis()); 
 
     if (args[0].equalsIgnoreCase("s")) { 
 System.out.println("Short data"); 
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      } 
      else if (args[0].equalsIgnoreCase("m")) { 
 System.out.println("Medium data"); 
      } 
      else { 
        System.out.println("Long data"); 
   }  
     
    int max = 100; 
    int maxTimes = Integer.parseInt(args[1]); 
 
    System.out.println("Data sent:  " + (max*maxTimes)); 
     
    String[] s = new String[max]; 
     
    int c; 
    int c2; 
 
    for (int c3=0; c3<1; c3++) { 
    for (c = 0; c < max; c++) { 
     if (args[0].equalsIgnoreCase("s")) { 
        s[c] = createshort(); 
      } 
      else if (args[0].equalsIgnoreCase("m")) { 
        s[c] = createmedium(); 
      } 
      else { 
        s[c] = createlong(); 
       } 
    } 
     
    //System.out.println("The Length of the string is:  " + 
s[c].length()); 
    ts = System.currentTimeMillis(); 
    connectTCP(6004,6005); 
    for (c = 0; c < maxTimes; c++) { 
      for (c2 = 0; c2 < max; c2++){ 
        //sendOverFiles(s[c2], "/usr/tmp/outtest.txt", 
"/usr/tmp/intest.txt"); 
        //sendOverUDP(s[c2], 6000, 6001);         
        sendOverTCP(s[c2]); 
      } 
      //System.out.println(c); 
    } 
    disconnectTCP(); 
    te = System.currentTimeMillis(); 
    total = te - ts; 
    System.out.println("The total number of ticks is:  " + total); 
} 
    System.exit(0); 
  } 
   
  /*simulates commands (5-10 characters)*/ 
  public static String createshort() { 
    int l = r.nextInt(6) + 5; 
    byte[] b = new byte[l]; 
    r.nextBytes(b); 
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    String test = new String(b,0,l); 
    //System.out.println("-" + test + "-"); 
    return test; 
  } 
   
  /*variables updates (100-1000) characters*/ 
  public static String createmedium() { 
    int l = r.nextInt(901) + 100; 
    byte[] b = new byte[l]; 
    r.nextBytes(b); 
    String test = new String(b,0,l); 
    //System.out.println("-" + test + "-"); 
    return test; 
  } 
   
  /*simulates a 320x200x256 size image - 64000 bytes*/ 
  public static String createlong() { 
    int l = 64000; 
    byte[] b = new byte[l]; 
    r.nextBytes(b); 
    String test = new String(b,0,l); 
    //System.out.println("-" + test + "-"); 
    return test; 
  } 
   
  // 64000 byte limit on UDP! 
  public static void sendOverUDP(String s, int outPort, int inPort) { 
    try { 
      int l = s.length(); 
      /*Set to local host*/ 
      InetAddress addr = InetAddress.getByName("0.0.0.0"); 
      DatagramSocket din = new DatagramSocket(inPort,addr); 
      DatagramSocket dout = new DatagramSocket(); 
      byte[] bout = s.getBytes(); 
      DatagramPacket pout = new DatagramPacket(bout,l,addr,outPort); 
      dout.send(pout); 
       
      /* This should block */       
      byte[] bin = new byte[l]; 
      DatagramPacket pin = new DatagramPacket(bin,l); 
      din.receive(pin); 
             
      din.close(); 
      dout.close(); 
    } 
    catch (java.net.SocketException e) { 
    } 
    catch (java.io.IOException e2) { 
    } 
  } 
   
  public static ServerSocket tcpServSock; 
  public static Socket tcpOutSock; 
  public static Socket tcpInSock;   
  public static DataInputStream ins; 
  public static PrintStream ps; 
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  public static void connectTCP(int outPort, int inPort) { 
    try {       
      /*Set to local host*/       
      InetAddress addr = InetAddress.getByName("0.0.0.0"); 
      tcpServSock = new ServerSocket(inPort); 
      tcpOutSock = new Socket(addr,outPort);                       
      tcpInSock = tcpServSock.accept(); 
       
      ps = new PrintStream(tcpOutSock.getOutputStream()); 
      ins = new DataInputStream(tcpInSock.getInputStream());                   
    } 
    catch (java.net.SocketException e) { 
    } 
    catch (java.io.IOException e2) { 
    }     
  } 
   
  public static void disconnectTCP() { 
  try { 
    System.out.println("TCP Disconnect");       
    tcpOutSock.close(); 
    tcpInSock.close();     
    tcpServSock.close(); 
  } 
  catch (java.net.SocketException e) { 
    } 
    catch (java.io.IOException e2) { 
    }     
  } 
   
  // No limit on data, but must have handshakes 
  public static void sendOverTCP(String s) { 
    try { 
      int l = s.length(); 
      /*Set to local host*/ 
      //System.out.println("TCP");       
       
      //Send data 
      ps.print(s);                   
       
      //Get Data 
      byte[] bin = new byte[l]; 
      int cur = 0; 
      while (cur < l) 
        cur = cur + ins.read(bin,0,l);       
    } 
    catch (java.net.SocketException e) { 
    } 
    catch (java.io.IOException e2) { 
    } 
  } 
   
  public static void sendOverStub(String s) { 
  } 
   
  /*Possible future implementation*/ 
  public static void sendOverMessaging(String s) { 
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  } 
   
  /*Possible future implementation*/ 
  public static void sendOverSharedMemory(String s) { 
  } 
  
  public static void sendOverFiles(String s, String sendName, String 
getName) { 
    try { 
      File outputFileTEMP = new File("/usr/tmp/tempjava.txt"); 
      File outputFile = new File(sendName); 
      File inputFile = new File(getName); 
      FileWriter out = new FileWriter(outputFileTEMP); 
       
      out.write(s); 
      out.close(); 
      while (!outputFileTEMP.renameTo(outputFile));       
       
       
      int l = s.length(); 
      char[] ch = new char[l]; 
      //System.out.println("File " + sendName + " sent, waiting for 
reply in "+ getName); 
      while (!inputFile.exists()); 
      while (!inputFile.canRead()); 
      FileReader in = new FileReader(inputFile);       
      in.read(ch); 
      in.close(); 
      inputFile.delete(); 
    } 
    catch (java.io.IOException e) { 
    } 
  } 
   
  public static float testshort(int t) { 
    return 0; 
  } 
   
  public static float testmedium(int t) { 
    return 0; 
  } 
   
  public static float testlong(int t) { 
    return 0; 
  } 
} 

B.2 UDP Action Layer 

#include <stdio.h>      /* for printf() and fprintf() */ 
#include <sys/socket.h> /* for socket() and bind() */ 
#include <arpa/inet.h>  /* for sockaddr_in and inet_ntoa() */ 
#include <stdlib.h>     /* for atoi() and exit() */ 
#include <string.h>     /* for memset() */ 
#include <unistd.h>     /* for close() */ 
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#define ECHOMAX 255     /* Longest string to echo */ 
 
void DieWithError(char *errorMessage) 
{  /* External error handling function */ 
 printf(errorMessage); 
 exit (-1); 
} 
 
int main(int argc, char *argv[]) 
{ 
    int insock;                        /* Socket */ 
    struct sockaddr_in inechoServAddr; /* Local address */ 
    struct sockaddr_in remoteechoClntAddr; /* Client address */ 
    unsigned int remotecliAddrLen;         /* Length of incoming 
message */ 
    char echoBuffer[ECHOMAX];        /* Buffer for echo string */ 
    unsigned short inechoServPort;     /* Server port */ 
    int recvMsgSize;                 /* Size of received message */ 
     
    int outsock;                        /* Socket */ 
    struct sockaddr_in outechoServAddr; /* Local address */ 
    unsigned short outechoServPort;     /* Server port */ 
 
    if (argc != 3)         /* Test for correct number of parameters */ 
    { 
        fprintf(stderr,"Usage:  %s <UDP SERVER PORT> <UDP CLIENT 
PORT>\n", argv[0]); 
        exit(1); 
    } 
 
    inechoServPort = atoi(argv[1]);  /* First arg:  local port */ 
    outechoServPort = atoi(argv[2]);  /* First arg:  local port */ 
 
    /* Create socket for sending/receiving datagrams */ 
    if ((insock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) 
        DieWithError("socket() failed"); 
 
    /* Construct local address structure */ 
    memset(&inechoServAddr, 0, sizeof(inechoServAddr));   /* Zero out 
structure */ 
    inechoServAddr.sin_family = AF_INET;                /* Internet 
address family */ 
    inechoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming 
interface */ 
    inechoServAddr.sin_port = htons(inechoServPort);      /* Local port 
*/ 
 
    memset(&outechoServAddr, 0, sizeof(outechoServAddr)); 
    outechoServAddr.sin_family = AF_INET;                /* Internet 
address family */ 
    outechoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any 
incoming interface */ 
    outechoServAddr.sin_port = htons(outechoServPort);      /* Local 
port */ 
 
    /* Bind to the local address */ 
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    if (bind(insock, (struct sockaddr *) &inechoServAddr, 
sizeof(inechoServAddr)) < 0) 
        DieWithError("bind() failed"); 
 
    for (;;) /* Run forever */ 
    { 
        /* Set the size of the in-out parameter */ 
        remotecliAddrLen = sizeof(remoteechoClntAddr); 
 
        /* Block until receive message from a client */ 
        if ((recvMsgSize = recvfrom(insock, echoBuffer, ECHOMAX, 0, 
            (struct sockaddr *) &remoteechoClntAddr, 
&remotecliAddrLen)) < 0) 
            DieWithError("recvfrom() failed"); 
 
        //printf("Handling client %s\n", 
inet_ntoa(remoteechoClntAddr.sin_addr)); 
 
        /* Send received datagram back to the client */ 
        if (sendto(insock, echoBuffer, recvMsgSize, 0,  
           (struct sockaddr *) &outechoServAddr, 
sizeof(outechoServAddr)) != recvMsgSize) 
           DieWithError("sendto() sent a different number of bytes than 
expected"); 
  
  
    } 
    /* NOT REACHED */ 
} 

B.3 TCP Action Layer 

This code could not be located at the time of printing.  Please contact the author for more 

information. 

B.4 File Action Layer 

#include <stdio.h>      /* for printf() and fprintf() */ 
#include <stdlib.h>     /* for atoi() and exit() */ 
#include <string.h>     /* for memset() */ 
#include <unistd.h>     /* for close() */ 
 
 
int main(int argc, char *argv[]) 
{ 
  FILE *infile, *outfile; 
 
  int temp; 
  int eof; 
  char buffer[64001]; 
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  while (1) 
  { 
    while ((infile = fopen(argv[1],"r")) == NULL) { 
    } 
    outfile = fopen("/usr/tmp/tempc.txt","w+"); 
    eof = 0; 
    while (feof(infile) == 0) 
    { 
       temp = fread(buffer,1,64000,infile); 
       fwrite(buffer,1,temp,outfile);   
    }    
    fclose(infile); 
    unlink(argv[1]); 
    fclose(outfile); 
    while (rename ("/usr/tmp/tempc.txt", argv[2]) != 0) {} 
  }  
} 
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Appendix C:  Real-Time Experiment Table of 

Results 

The following tables, Table C.1 to Table C.9 contain the results from the experiment 

conducted in section 5.2.  The results obtained in each trial are in milliseconds. 

Table C.1:  UDP Short Results 

Packets Sent 100 200 500 1000 2000 5000 10000 20000 50000 100000 
Trial 1 79 109 195 345 627 1084 1775 3232 7536 14394 
Trial 2 29 66 141 289 305 723 1458 2819 7107 13968 
Trial 3 29 39 229 136 275 714 1426 2874 7096 13926 
Trial 4 38 84 83 136 307 715 1359 2815 7140 13961 
Trial 5 24 58 54 137 268 693 1405 2793 7099 13958 
Trial 6 21 72 81 164 292 740 1429 2866 7095 13917 
Trial 7 45 33 54 137 277 692 1395 2796 7138 13939 
Trial 8 64 94 55 140 345 710 1413 2815 7095 13899 
Trial 9 18 23 80 133 265 736 1413 2839 7101 13941 
Trial 10 52 22 54 156 288 689 1369 2802 7143 13957 
 

Table C.2:  UDP Medium Results 

Packets Sent 100 200 500 1000 2000 5000 10000 20000 50000 100000 
Trial 1 99 132 252 430 760 1239 2103 3714 8875 20285 
Trial 2 30 73 177 291 334 950 1686 3305 8272 16286 
Trial 3 32 52 255 172 335 843 1655 3355 11289 26842 
Trial 4 29 97 116 176 359 822 3232 3272 8303 16306 
Trial 5 24 71 83 177 325 797 4228 3271 8350 16474 
Trial 6 25 45 83 165 338 822 1658 4314 8566 16281 
Trial 7 51 44 83 173 344 810 1657 6224 8909 25688 
Trial 8 66 103 83 176 331 828 1751 3294 8586 19136 
Trial 9 20 28 84 261 320 914 1675 3426 8299 16302 
Trial 10 24 27 189 167 432 823 1642 3759 8372 16625 
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Table C.3:  UDP Large Results 

Packets Sent 100 200 500 1000 2000 5000 10000 
Trial 1 526 993 2414 4758 9342 22466 44312 
Trial 2 479 928 2354 4569 8732 21659 43201 
Trial 3 464 920 2331 4332 8733 21712 42984 
Trial 4 467 1082 2228 4344 8731 21565 42895 
Trial 5 463 932 2168 4295 8615 21426 42958 
Trial 6 476 936 2176 4350 8664 21598 43003 
Trial 7 468 914 2164 4441 8646 21569 42985 
Trial 8 485 922 2172 4327 8588 21474 43058 
Trial 9 462 885 2160 4312 8620 21478 42968 
Trial 10 475 892 2186 4351 8665 21619 42977 
 

Table C.4:  TCP Short Results 

Packets Sent 100 200 500 1000 2000 5000 10000 
Trial 1 1046 2066 5081 10085 25175 50085 185216 
Trial 2 1074 2084 5082 10064 20089 85183 100094 
Trial 3 1085 2085 5087 10093 20079 85403 100200 
Trial 4 1084 2082 5089 10067 20081 85192 100081 
Trial 5 1085 2088 5083 10075 20083 50093 185178 
 

Table C.5:  TCP Medium Results 

Packets Sent 100 200 500 1000 2000 5000 10000 
Trial 1 1069 2170 5089 10077 20080 50093 100095 
Trial 2 1090 2176 5078 10087 20062 50076 100069 
Trial 3 1085 2117 5087 10083 20105 50089 100095 
Trial 4 1088 2089 5078 10063 20082 50189 100158 
Trial 5 1090 2087 5082 10069 20087 50160 192660 
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Table C.6:  TCP Large Results 

Packets Sent 100 200 500 1000 2000 5000 10000 
Trial 1 613 1179 2614 4947 9565 23302 46353 
Trial 2 622 1166 2601 4888 9569 23461 46333 
Trial 3 632 1186 2573 4936 9528 23236 46409 
Trial 4 642 1194 2598 4908 9531 23203 46367 
Trial 5 628 1176 2552 4902 9560 23295 46431 
 

Table C.7:  File Short Results 

Packets Sent 100 200 500 
Trial 1 10917 20157 53286
Trial 2 11515 21058 52186
Trial 3 10858 20619 51909
Trial 4 9718 21419 50518
Trial 5 10020 19918 51599
Trial 6 10241 19438 51418
Trial 7 10378 20638 49978
Trial 8 10139 20158 51958
Trial 9 9717 19980 50158
Trial 10 10978 20457 51597

 

Table C.8:  File Medium Results 

Packets Sent 100 200 500 
Trial 1 11146 21880 52532
Trial 2 10791 22010 51951
Trial 3 10222 21455 52493
Trial 4 10344 20194 54714
Trial 5 11274 20892 55312
Trial 6 11326 19494 52074
Trial 7 10495 20623 52435
Trial 8 10615 20043 52194
Trial 9 10495 20874 53154
Trial 10 9712 21594 54353
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Table C.9:  File Large Results 

Packets Sent 100 200 500 
Trial 1 10851 21828 54484
Trial 2 11017 22232 54457
Trial 3 10594 21500 54637
Trial 4 10783 22222 54014
Trial 5 10873 21499 54367
Trial 6 10610 21673 54154
Trial 7 10425 21390 54460
Trial 8 10522 21544 53005
Trial 9 10649 21751 54014
Trial 10 10222 21632 53620
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Appendix D:  DVD Video of Implementation 

Experiment 

Attached to the back cover of this thesis is a DVD video demonstrating the fully 

implemented architecture.  The video is region free and will play in all DVD players that 

are compatible with the DVD-R format. 

If this is an electronic copy of this thesis or if this video is damaged or missing, a new 

copy can be obtained by contacting the author of this thesis at 

bgruneir@alumni.uwaterloo.ca.  

Some electronic versions of this thesis may have the video stored with it.  To access it, 

try this link: 

Architecture Demonstration Video  
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