

Multiple Agent Architecture for a Multiple Robot

System

by

Bram Aaron Bakst Gruneir

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2005

© Bram Gruneir 2005

 ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Controlling systems with multiple robots is quickly becoming the next large hurdle that

must be overcome for groups of robots to successfully function as a team. An agent

oriented approach for this problem is presented in this thesis. By using an agent oriented

method, the robots can act independently yet still work together. To be able to establish

communities of robots, a basic agent oriented control system for each robot must first be

implemented. This thesis introduces a novel method to create Physical Robot Agents,

promoting a separation of cognitive and reactive behaviours into a two layer system.

These layers are further abstracted into key subsections that are required for the Physical

Robot Agents to function. To test this architecture, experiments are performed with

physical robots to determine the feasibility of this approach.

A real-time implementation of a Physical Robot Agent would greatly expand its field of

use. The speed of internal communication is analyzed to validate the application of this

architecture to real-time tasks.

It is concluded that the Physical Robot Agents are well suited for multiple robot systems

and that real-time applications are feasible.

 iv

Acknowledgments

I would first off like to thank my supervisors, Dr. Mohamed Kamel and Dr. Hamada

Ghenniwa, for their time, advice and support.

I would like to thank my readers, Dr. Hamid Tizhoosh and Dr. Otman Basir, for their

time reviewing this thesis.

I would like to express my gratitude to the Autonomous Systems and Real Time

Distributed Design Focus Group for being a sounding board for most of the ideas

presented in this thesis. The focus group consists of Alaa Khamis, Ali Tehrani,

Mohamed El-Abd, Ben Miners, Insop Song, Hongwei (Howard) Zhu and others.

I would also like to thank Ben Miners who not only wrote most of the Action Layer code,

but also edited this thesis. I need to thank Alaa Khamis who edited this thesis as well.

I am forever in debt to my parents, Robert and Marilyn Gruneir, who have now stuck by

me for two engineering degrees. They have always supported me and have even edited

very rough drafts of this dissertation. Not an envious task.

And finally, Maria Mammoliti, for editing the thesis, again and again, filming and

rendering the DVD and making the graphics look pretty. That; and she put up with me.

 v

Dedication

I dedicate this thesis to my grandmothers, Ellen Gruneir and Doris Bakst. Without them,

I would not be the person that I am today.

They both will be missed.

 vi

Table of Contents

Abstract .. iii

Acknowledgments.. iv

Dedication.. v

Table of Contents... vi

List of Figures .. ix

List of Tables... x

Table of Acronyms .. xi

1 Introduction... 1
1.1 Motivation ... 1
1.2 Thesis Scope .. 2
1.3 Contribution .. 3
1.4 Thesis Organization .. 3

2 Background and Literature Review.. 5
2.1 Robots.. 5

2.1.1 Definition.. 5
2.1.2 Multi-Robot Design.. 5

2.2 Agents and Agent Oriented Design ... 6
2.2.1 Definition.. 6
2.2.2 Multi-Agent Design.. 7
2.2.3 Multi-Agent Robotic Systems .. 10
2.2.4 CIR Agent... 12
2.2.5 Real-Time Multi-Agent Design.. 13
2.2.6 Agent Oriented Design and Software Agents ... 13

2.3 Communications.. 14
2.3.1 Agent/Robot Intercommunication .. 14
2.3.2 Communication Protocol Performance... 14

3 Architecture of a Physical Robot Agent.. 16
3.1 Action Layer .. 18

3.1.1 Executor.. 18
3.1.2 Repository of Tasks .. 19
3.1.3 State Monitor .. 20

 vii

3.2 Cognitive Layer ... 21
3.2.1 Decision Maker... 22
3.2.2 Negotiator ... 22
3.2.3 Coordinator... 23

3.3 Hierarchies.. 23
3.4 CIR-Agent.. 23
3.5 Communication ... 24

3.5.1 Inter-Agent (Inter-Robot) ... 25
3.5.2 Inter-Layer (Intra-Robot).. 26
3.5.3 Throughput ... 27

4 Implementation ... 28
4.1 Action Layer .. 28

4.1.1 Executor.. 29
4.1.2 Repository of Tasks .. 30
4.1.3 State Monitor .. 30

4.2 Cognitive Layer ... 31
4.2.1 Decision Maker... 31
4.2.2 Negotiator ... 31
4.2.3 Coordinator... 32

4.3 Communications.. 32
4.3.1 Inter-Layer (Intra-Robot).. 32
4.3.2 Message Types ... 34

5 Experimentation.. 37
5.1 Application Experiment ... 37

5.1.1 Layer Implementation... 40
5.1.2 Software Agents ... 44
5.1.3 Results .. 48
5.1.4 Conclusions .. 51

5.2 Real-Time Feasibility Experiment ... 51
5.2.1 Layers ... 53
5.2.2 Communication .. 54
5.2.3 Messages... 58
5.2.4 Observations ... 59
5.2.5 Conclusions .. 65

6 Conclusions, Limitations and Recommendations .. 67
6.1 Conclusions ... 67

 viii

6.2 Limitations... 70
6.3 Recommendations and Future Work ... 71

References ... 73

Appendix A : Implementation Application Source Code.. 76
A.1 Greeter .. 76
A.2 Commander ... 78
A.3 Single Robot Implementation .. 81
A.4 Multiple Robot Implementation ... 85

Appendix B : Real-Time Experiment Source Code.. 100
B.1 Cognitive Layer ... 100
B.2 UDP Action Layer ... 104
B.3 TCP Action Layer.. 106
B.4 File Action Layer... 106

Appendix C : Real-Time Experiment Table of Results ... 108

Appendix D : DVD Video of Implementation Experiment ... 112

 ix

List of Figures

Figure 2.1: CIR Agent... 12
Figure 3.1: Physical Robot Agent... 17
Figure 3.2: Proposed Architecture... 17
Figure 3.3: Communication Links ... 25
Figure 5.1: Target.. 38
Figure 5.2: Goal Positions... 38
Figure 5.3: Magellan Pro .. 40
Figure 5.4: Action Layer... 44
Figure 5.5: Single Robot State Machine .. 47
Figure 5.6: Multiple Robots State Machine... 48
Figure 5.7: Robots in Action... 50
Figure 5.8: UDP Results.. 60
Figure 5.9: UDP Small Exponential Trend ... 61
Figure 5.10: UDP Medium Exponential Trend... 61
Figure 5.11: UDP Large Exponential Trend... 62
Figure 5.12: TCP Results .. 63
Figure 5.13: File Sharing Results ... 64
Figure 5.14: Average Throughput ... 65

 x

List of Tables

Table 5.1: Best-View Results .. 50
Table C.1: UDP Short Results .. 108
Table C.2: UDP Medium Results ... 108
Table C.3: UDP Large Results ... 109
Table C.4: TCP Short Results .. 109
Table C.5: TCP Medium Results ... 109
Table C.6: TCP Large Results.. 110
Table C.7: File Short Results.. 110
Table C.8: File Medium Results... 110
Table C.9: File Large Results ... 111

 xi

Table of Acronyms

• ACL – Agent Communication Language

• CIR-Agent – Coordinated Intelligent Rational Agent

• FIPA – Foundation for Intelligent Physical Agents

• IPC – Inter-Process Communication

• JADE – Java Agent Development Framework

• KQML – Knowledge Query and Manipulation Language

• PAMI Lab – Pattern Analysis and Machine Intelligence Lab

• PATA – Parallel Advanced Technology Attachment

• PRA – Physical Robot Agent

• RAM – Random Access Memory

• SATA – Serial Advanced Technology Attachment

• SCSI – Small Computer System Interface

 xii

• TCP – Transmission Control Protocol

• UDP – User Datagram Protocol

 1

1 Introduction

Both multiple agent (multi-agent) systems and multiple robot (multi-robot) systems have

existed for many years. However, it is only recently that the integration of these fields is

being explored. This thesis delves into the field of multi-agent approaches for multi-

robot systems and presents a framework in which multiple robot systems can be quickly

programmed and tested. This first chapter contains an overview of the motivation and

structure of this thesis.

1.1 Motivation

With recent advances in agent oriented languages and frameworks, such as the Java

Agent DEvelopment Framework (JADE) [1] and Agent-0, it is now possible to both

design and implement complex multiple agent systems on a wide variety of systems. A

list of agent oriented languages can be found in [25]. The application of agent oriented

approaches to multiple robot systems has focused mainly on robotic simulations or using

very simple robots. This work in this thesis is designed to help bridge that gap and foster

an environment which allows quick implementations of multi-agent, multi-robot system

on complex mobile robots.

In current research, no mention is made of the internal software structure of the robots

and the specifics of this area are left up to each individual implementation. When

implementations are robot and system dependant, there is no portability in these systems’

software. By describing in detail the internal structure of the robots and using this

 2

information to find a common level of abstraction, all future systems contribute to

improving portability.

To accomplish these goals, a new software architecture describing the internal software

components is presented for the robots. By structuring and restricting the flow of

information within it, the robots can be autonomous and co-operative. The architecture

allows for the implementation of most types of hierarchies, using different types of

robots. The agent level of robots is also standardized and interchangeable. This

architecture is described in detail and implemented within this thesis.

1.2 Thesis Scope

This thesis covers both the theoretical and implementation aspects of a new architecture

for multi-robot systems based on an agent oriented design. This architecture uses a

multi-agent solution to enable a fully distributed system. Due to the wide variety of

possible systems, no single code base is applicable, so implementation guidelines are put

forward as opposed to hard rules. As well, a functional implementation is presented. The

source code for this implementation and a DVD demonstrating the functioning of the

experiment can be found in Appendix D.

With the constraints of real-time systems, the basic requirements of a multi-robot system

are greatly increased. This thesis discusses in depth both the methods and requirements

of the communications in the presented architecture. A comparison of the speed of the

communication within the architecture is presented.

 3

1.3 Contribution

The primary goal of this thesis is to present a new architecture for automated multi-robot

systems based on a multi-agent oriented approach. It allows for a large variety of

systems including multiple hierarchies including centralized and distributed systems. It

looks not only at the method that the robots use to communicate with each other, but also

describes the internal software structure of each robot. This structure allows completely

different robots to work together; it allows the robot’s lower levels to be treated as a

“black box” so a robot can be programmed regardless of how its hardware functions.

This fosters an environment whereby the same code can be used on multiple robots for

different tasks, greatly increasing portability. The architecture can be used with small

(single robot) and large (hundreds of robots) systems. The internal communications

between layers is examined for the possible use for real-time applications.

1.4 Thesis Organization

This thesis is split into 6 chapters which can be seen as four parts. The first 2 chapters

contain the background information for both this thesis and other work in the field.

Chapter 1 is the introduction in which the motivation, scope and organization of the

thesis are discussed. Chapter 2 contains the background information required for the rest

of the thesis. This chapter contains basic definitions and some of the important concepts

addressed throughout the rest of the thesis. It also contains reviews of relevant research

in the field. It examines where other research is currently with respect to the

contributions made within this thesis.

 4

The second part, consisting of 2 chapters, describes the new architecture. Chapter 3

describes this architecture in detail including the nature of the communications that are

required within the architecture. Chapter 4 details how an implementation of the

architecture could proceed.

The third part, chapter 5, is that of experimentation in which two different experiments

are performed. The first demonstrates a fully realized version of the architecture with an

analysis of its performance. An examination of some of the different communication

methods for intra-robot communications is presented in the second experiment.

The conclusions are located in chapter 6. It contains the conclusions, the limitations of

architecture and recommendations for future directions and further research.

The appendices consist of both the source code used to create the architecture and

communications experiments as well as a DVD video of the architecture experiment

being performed.

 5

2 Background and Literature Review

This chapter contains definitions and information on the key terms and concepts

presented within this thesis as well as reviews of relevant literature.

2.1 Robots

This section describes some of the challenges in dealing with multiple robot systems

design and presents a definition of the term ‘robot’.

2.1.1 Definition

The following definition of a robot was taken from Wikipedia [28]:

In practical usage, a robot is a mechanical device which performs
automated physical tasks, either according to direct human
supervision, a pre-defined program or, a set of general guidelines
using artificial intelligence techniques. Robots are typically used to do
the tasks that are too dirty, dangerous, difficult, repetitive or dull for
humans.

Most research robots are computers with sensors, a means of locomotion and a method of

communication. Although the work in this thesis is performed on mobile robots, the

architecture is applicable to all robot types.

2.1.2 Multi-Robot Design

A multi-robot system is a system in which several robots function at the same time to

achieve a goal. Typically, the use of more than one robot will either allow the

completion of said goal, or make a marked improvement over a single robot system.

 6

Multi-Robot design does however bring with it the complications of increased

complexity of communications and the possibility of physical collisions between robots.

As the number of robots increases, functioning as a team can be daunting. One way to

facilitate the programming of multi-robot systems is to use an agent oriented approach.

An example of a multi-robot system can be found in [23], where two robots try to

push a box together. Even when not explicitly mentioned, as in Mataric, Nilsson

and Simsarian’s paper, a agent oriented design is being presented. Agents and multi-agent

design are discussed in the following section.

2.2 Agents and Agent Oriented Design

This subsection defines agents, examines multi-agent design and some of the more

common hierarchies. A specific type of agent is examined and some of the complications

from real-time systems are discussed.

2.2.1 Definition

Before moving forward in this thesis, it is important to establish an understanding on the

nature of agents. Agents are a fairly new and highly contested programming abstraction

and it is difficult to find a consensus of their full definition. For the purposes of this

thesis, an agent is defined as an entity that has the following concepts: it must be

autonomous; it must have a memory; it must be able to communicate with other agents; it

requires a method to understand the data communicated to it and finally, it must contain

some form of a problem solver. These restrictions are taken from the work of

Wooldridge, a highly respected researcher in this new field [29].

 7

2.2.2 Multi-Agent Design

Similar to multi-robot design, multi-agent design occurs whenever more than one agent

works together to complete a task. In [18], Jennings et al. present a history of multi-agent

design. This is the area where agents are designed to be able to function well. Since each

agent has a means of communicating with the other agents, they have the ability to solve

problems collectively. There are many different schemes for assigning duties to different

agents, including an auction or by delegation of duties by a captain. As the number of

agents grow, more multi-layered structured approaches, or hierarchies, are required. The

most common hierarchies are discussed in the following subsection. The structure of the

agents themselves is also discussed.

2.2.2.1 Multi-Agent Hierarchies

Every multi-agent system needs an overall organizational hierarchy [24]. A two agent

system can either function as a partnership or as a chief and an assistant. If one extends

this example to any number of agents, a system where there is one chief and many

assistants is known as a centralized system. A hierarchy where all of the agents derive

collective decisions is known as a distributed system.

There are a number of advantages to using a centralized system hierarchy. By having a

single controlling agent, co-ordination and co-operation are relatively easy to achieve.

The managing agent’s primary role is to monitor the overall system and direct the

subordinate agents’ actions. All commands must pass through this central agent to ensure

the stability of the system. A centralized system is the easiest type of system to program

but with this advantage also come some disadvantages. A single agent-dependent system

 8

can collapse if the chief agent is disabled or its communications are interrupted. To

prevent this from occurring, the leader agent must be designed to handle a large number

of communications and process large amounts of data. As the number of agents in the

system increase, additional responsibility is designated to the chief agent.

On the other end of the spectrum is a distributed system. In a true distributed system, no

one agent is in charge and decisions are based on collective agreements. Unlike the

centralized system, the removal of an agent and the addition of a new one is a simple

process. Distributed systems can become large but this size should not overwhelm any

single agent’s ability to communicate or process information. As well, since decisions

are not being made by one chief agent, communications will not be as strained and a

special agent does not need to be created to handle communications between agents. The

cost of these benefits occurs within each agent’s complexity. As each agent must assist

in the decision making, problem solving abilities must be built into them. In addition, if

not create properly, distributed systems can easily become unstable and not solve

problems, due to agent disagreement (infighting).

To deal with some of the disadvantages presented in a centralized system, a hierarchical

system can be used. It is similar to a centralized system but it does not have a single

chief, but a full chain, or, more accurately, a tree of command. A good example of a

hierarchical system is an army. Every agent, except for the head one, reports to a chief

agent to which all questions are sent and from which all orders are received. The primary

concept in a hierarchical system is to lessen the amount of work which the head agent has

to resolve. This way, the head agent may delegate a full range of tasks to lower level

 9

groups. This type of system solves most of the communication problems with the

exception of times when an agent is added or removed from the system. If any agent is

removed, all agents under its command are suddenly removed from the system as well.

Using a hierarchical system allows for a much larger number of agents to work together

than that which could work within a simple centralized system. However, with this

added complexity, the agents themselves need to be more complicated to handle giving

and receiving orders.

To circumvent some of the problems of distributed systems, a holonic system hierarchy

can be used [30]. Holonic systems use teams to handle tasks. When a task needs to be

performed by more than one agent, a group of agents organize themselves into a team to

allow decisions to be made faster and to reduce the complexity of using a fully

distributed system. An agent can be part of more than one team at the same time with

completely different agents or even two teams with exactly the same agents. If more

agents are required to perform a task, they can be recruited onto the team. More

programming complexity is required within a holonic system than a basic distributed one,

but it ensures faster decision making and quicker response times.

There are many other examples of systems that can be used from multi-agent systems

hierarchy, but most are hybrids of the ones already presented. When choosing which

type of hierarchy to use, the goals of the systems are paramount. It may be pointless to

create an extremely complex holonic system when a hierarchical one will perform

sufficiently. Some of the more important factors in making this decision are the number

of agents being used and the response time of the system. For the most part, agent

 10

oriented design tends to push towards more distributed style systems to allow the agents

greater autonomy.

The architecture presented in this thesis allows for all of the aforementioned hierarchies

to be implemented. By creating an agent friendly environment, the architecture facilitates

the development of all types of systems.

2.2.3 Multi-Agent Robotic Systems

While there has been extensive research involving multi-agent system hierarchies, there

is very little on the internal structures of the agents themselves. This section will present

systems that have some similarity to the architecture presented in this thesis.

Tigli’s and Thomas’s paper [27] explores the different agent configurations that can be

used to control a robot. The mobile robot agent discussed in the paper is, in essence, the

Physical Robot Agent (PRA) used in this thesis. By dividing the internal workings of the

mobile robot agent, an internal multi-agent system can be used to control each robot.

This is similar to the work that is performed in this thesis which uses a software multi-

agent system to control each robot’s Cognitive Layer (see chapter 3). However, it is not

as structured as the one proposed in this thesis and there are no clear information

pathways that must be followed. This could allow for conflicts to occur within the robot,

making design much more difficult. See [15] for another multi-agent system that is used

to control mobile robots, but one in which the tasks are somewhat more defined.

 11

Kawamura’s paper [20] looks at using miniature or atomic agents as small components of

a larger agent. Kawamura’s system however, is more structured than Tigli’s and

Thomas’s work mentioned above. Even though his system is designed for human-robotic

agent interaction, it could be used for agent-agent interaction as well. This system is

similar to the software agents used within the Cognitive Layer.

Lucidarme, Simonin and Liégeois present a single layer system in [22]. This system

contains a separation between an interaction element and an action element which is the

primary difference between the structure demonstrated in their paper and the one

described in this thesis. The interaction element is not similar to the Cognitive Layer as it

does not make any decisions; it just is directed by the action element. Furthermore, the

interaction element can only receive messages from the action element, not reply. By

taking the interaction away from the decision making, it is more difficult for multi-agent

systems to come to agreements.

In Cossentino, Sabatucci and Chella’s paper [4], a very strict methodology is presented to

streamline the development of multi-agent systems. One of the main points in the paper

is to maximize the amount of pattern reuse, as it can greatly decrease the amount of work

needed to produce new systems. This can occur by reusing an agent, similar to what is

discussed in chapter 5, or even better is the use of a repository of tasks, which is

implemented in the architecture presented in this thesis (see section 4.1.2).

2.2.4 CIR Agent

The Coordinated Intelligent Rational Agent (CIR-Agent) model is an agent layout taken

from work by Kamel, Ghenniwa and Eze [11] [6] in which each agent consists of four

key blocks: a knowledge base; a problem solver; an interaction component and a

communication method. These can all be seen in Figure 2.1. This is the main structure

of an agent that is used throughout this thesis.

Figure 2.1: CIR Agent

The knowledge base is where all agent information and memory is stored. This includes

its goals, its current state and its history. This is the pool from which it can access the

required protocols for communication and which other agents have been contacted.

The problem solver determines the exact solution and how it should be applied to a

problem. In basic agents, this can simply be a state machine; in a more complex agent,

 12

 13

the problem solver can construct a goal based strategy which incorporates the cooperation

of other agents.

The interaction component is the method that is used for communication with other

agents. This includes methods of handshaking, bartering and bidding.

The communication method is how the agent communicates with other agents using an

agent communication language (ACL). There are a few common ACLs such as the

Foundation for Intelligent Physical Agent’s communication language (FIPA’s ACL) [8]

and the Knowledge Query and Manipulation Language (KQML) [7]. An introduction to

ACLs can be found in [10].

2.2.5 Real-Time Multi-Agent Design

When an agent is designed to function in real-time, it must have the ability to guarantee

meeting specific deadlines. This further complication to multi-agent design means that

the system must be able to respond within this constraint, even in the worst-case scenario.

In order to achieve this, all possible time components of the system must be considered.

As an experiment in this thesis, some of the communications that occur within the robot

are examined.

2.2.6 Agent Oriented Design and Software Agents

Throughout this thesis, two types of agents are discussed. The first is the overall agent,

such as the CIR agent or the Physical Robot Agent discussed in future chapters. The

second is a software agent which arises when programming in an agent oriented

 14

language. A software agent is a small amount of code that acts as an agent and is helpful

when programming an agent oriented system, but it is not representational of a fully

fledged Physical Robot Agent. Software agents can be seen as components of these

larger constructs.

2.3 Communications

The exchanging of data between agents is vitally important to the health of a multi-agent

system. This section will briefly examine some pertinent literature dealing with methods

and protocols of communication.

2.3.1 Agent/Robot Intercommunication

Berna-Koes et al. in [2], try to improve communication efficiency within a multi-agent

context by having the agents use a “back-channel” to handle all high load communication

requests. Standard methods of communications can handle most requests, but when a

high load is required, a back-channel that exists between agents can be used. The result

is a similar method to shared memory except that requests must be made to receive data.

For systems that require large amounts of data exchange, as discussed in chapter 4 of this

thesis, this system should work. However, unlike shared memory, it uses up large

amounts of bandwidth, the same bandwidth that is needed for standard communications.

2.3.2 Communication Protocol Performance

In Network Protocols for Mobile Robot Systems [13], Harmon and Gage conclude that the

best communications protocol is UDP. This is based on the slow throughput of the

 15

transport layer protocol and the extra processing power required for it. This conclusion

mirrors the conclusions reached in section 5.2, where three types of communication are

examined.

Howell et al [14] explore the challenges associated with using the user datagram protocol

(UDP) in ad hoc networks. Their results indicate the best packet size to reduce the signal

to noise ration is 784 bytes. This result adds to the results found in section 5.2, where an

exponential relationship between the number of packets sent and the delays associated

with their transfer is explored.

Gao, Yan, Ding and Huang [9] attempt to create a new protocol for multi-agent multi-

robot communications. This protocol can only be used for mobile agents and should only

be used to transmit specific types of commands. With many other pre-existing protocols

that will perform just as well, there does not seem to be a need for its use.

In [21], Lei Cheng and Yong-Ji Wang examine fault tolerances when trying to get a

group of mobile robots into a formation. They use a combination of both UDP and the

transmission control protocol (TCP) for communication between robots. For broadcast

messages, they use UDP and for inter-robot communication TCP is used. This is a good

strategy, as when network faults occur, TCP can be used, see section 5.2.

 16

3 Architecture of a Physical Robot Agent

Many issues must be considered when designing a multi-robot system such as autonomy,

cooperation, communication structure and coordination. Collective autonomy refers to

the ability of the robots to work individually and without human intervention.

Cooperation is the ability of the robots to work with each other and requires

communication whenever the robots actions depend critically on knowledge that is

accessible only from another agent. Coordination addresses the interdependency

management among the cooperative robots to achieve individual or collective goal(s).

All of these issues can be addressed using an agent oriented approach. Taking into

account that the system deals with physical robots, not simulated ones, a completely

agent-based solution is difficult due to the lack of low level control (e.g. actuators and

sensors) in agent-based languages. In addition, as the agents do not necessarily exist

within the robot, having the low level controls reside in the agent would not be practical.

To solve this problem, the concept of Physical Robot Agent (PRA) described in [5] is

adopted. As shown in Figure 3.1, a PRA splits up the sensory/action (physical) and

decision making (cognitive) processes into a two layer system.

Based on the PRA concept, a new architecture has been developed as shown in Figure

3.2. It consists of the Action Layer, which handles all of the sensory and movement

functions; and the Cognitive Layer, which handles the decision making. All of the

internal software components are new concepts presented by this thesis.

Figure 3.1: Physical Robot Agent

Figure 3.2: Proposed Architecture

 17

 18

This layering system is inspired from ethology, the science of studying animal

behaviours, where the Cognitive Layer represents the conscious brain and the Action

Layer represents a combination of both the body and the unconscious brain. For

example, when controlling a limb, the Action Layer understands the inner workings of

the movement as well as the touch and heat sensors, but the overall goal is described by

the Cognitive Layer.

The proposed architecture in this thesis has been published in [12]. In this paper, a

simplified version of the work presented in this thesis is discussed. The paper includes

the proposed architecture located in this chapter, and the experiment located in section

5.1. The following subsections describe these two layers and their internal elements.

3.1 Action Layer

The Action Layer is where the physical actions and sensory parts of the robot are located.

In this layer, tasks or reactions are controlled and executed. These tasks and reactions are

simple programs that are controlled from the Cognitive Layer. The Action Layer consists

of three key elements: the Executor, the Repository and the State Monitor as shown in

Figure 3.2. This subsection will briefly describe both the function and importance of

these three elements.

3.1.1 Executor

For a PRA to affect the physical world, it must have the ability to manifest itself in some

way. The Executor is responsible for controlling and performing all of the physical

 19

actions of the robot. It manages the actuators and receives feedback from the perception

modules. The State Monitor communicates with the Executor negotiation the tasks to be

executed. The Repository captures how and action should be performed. In return, the

Executor communicates all updated variables to the State Monitor. The Executor is the

only element in the PRA that has access to sensors and actuators. This part of the

abstraction is critical, as it ensures that all physical manifestations are controlled in the

same element. If more than one element has access to the sensors and actuators, then the

possibility exists, of more than one system trying to control the same component. By

having the Executor perform this task, optimizations can occur. If a control algorithm

needs adjustment, it must only be changed in a single place. The worst-case execution

time of a task in a hard real-time system must be known to determine scheduling. When

information is taking multiple paths, it is much more difficult to estimate the time

required for an operation. Without the Executor, a robot will not be able to interact with

its surrounding world as it could not affect it in any way.

3.1.2 Repository of Tasks

The Repository is the knowledge base of the Action Layer. For a single use robot, the

Repository element is not essential as there are very few tasks that will be required.

When a PRA becomes more detailed however, the Repository becomes essential. The

Repository is a collection of known tasks that can be run by the Executor. It

communicates with the State Monitor to determine which tasks are required in the

Executor and to respond to queries about the available tasks. In a learning PRA, the

 20

Repository should update its tasks or even create new ones, based on feedback from the

Cognitive Layer (through the State Monitor).

By having a library of common tasks available, the Repository supports development of

the system in which the Action Layer can be considered a “black box”. Development of

the two layers can be considered independent of each other. A large repertoire of tasks is

needed for a truly separated design; nonetheless, with a few basic movement commands

being stored, very complicated Cognitive Layer designs can be created. Furthermore,

when using the Repository as part of the dual layer system, this independent development

can be extended to robots that are completely different in low level functionality. As the

Action Layer provides a universal abstraction for the underlying hardware (e.g. 3 or 4

wheels for the robot), the Cognitive Layer can be exactly the same on different PRA and

still achieve the exact same results.

3.1.3 State Monitor

The State Monitor is the Action Layer’s communication channel through which is the

only method that it can communicate with the Cognitive Layer. The complex nature of

all the interactions between the layers gives rise to an element in both layers designed to

handle the intricacies of these communications. In order for the Executor and the

Repository to run tasks, they must know which ones are required. Further, in order for

the Cognitive Layer to have a full picture of the current status of the PRA, the State

Monitor must both package the data and inform it of the updates.

 21

The State Monitor’s information restriction is important to ensure that data flows through

the same channels. This way, all PRAs will have a similar interface with which to

connect despite the type of robot being used. For real-time considerations, where the

worst-case is the most important, variable updates and task command latency can be

measured through it. The State Monitor ensures the isolation of the Action Layer and

allows only the proper Cognitive Layer to contact it. For these reasons, the State Monitor

element is required.

3.2 Cognitive Layer

Unlike the Action Layer, in which a set of tasks plays the most important role, in the

Cognitive Layer, all high level decision making is performed. It is the Cognitive Layer

that makes the PRA autonomous. The structure of the Cognitive Layer can be varied,

however it must be able to control the robot via commands to the Action Layer and

communicate with the other agents when in a multi-PRA situation. These two types of

communication, inter-robot (between PRAs) and intra-robot (or inter-layer within the

PRA) are the only means that the Cognitive Layer uses to receive information (see

discussion in chapter 3.5). It receives status updates from the Action Layer’s State

Monitor and uses these updates to determine which course of action to pursue. Even with

the vastly different requirements for different systems, three main elements are always

required in the Cognitive Layer: the Decision Maker, the Negotiator and the Coordinator

(see Figure 3.2). The Cognitive Layer is where the agents reside in this system.

This section will outline the abstracted elements of the Cognitive Layer.

 22

3.2.1 Decision Maker

The Decision Maker represents the problem solver of the PRA. Everything that occurs

within the PRA of any consequence must be sanctioned by the Decision Maker. Without

this element, the robot would not be autonomous, would not be able to adapt to new

situations and would not be able to form consensus with other robots. From the Decision

Maker, commands are sent to the Action Layer via the Coordinator and inter-robot

communications are facilitated through the Negotiator. The Decision Maker is a

composition of several components including memory and problem solving by

extrapolating the elements of a CIR Agent.

3.2.2 Negotiator

The Negotiator is the element by which the agents interact with other agents. What

makes the Negotiator significant is the concept that all communications from other robots

must pass through the Decision Maker. This ensures that the Decision Maker is always

aware of the Action Layer’s status. Without the Decision Maker’s consent, no external

command will ever be executed (such as a command from another PRA) and no variable

update to an external source will ever occur.

Most robot architectures have a negotiator of within their PRA description; it is typically

called the interaction component. What makes this one unique is the restriction on

information flow; that all information passes through the Decision Maker.

 23

3.2.3 Coordinator

The Coordinator is the element that is in charge of communications with the Action

Layer. It should only receive communications from the Action Layer and the Decision

Maker. It maintains this single pathway of communications; it ensures that the Decision

Maker is always in command of all aspects of the PRA. By emphasizing this element,

this strict dataflow is enforced.

Two additional reasons for the existence of the Coordinator as a separate element are to

mark it as distinct from the Negotiator and emphasize its repetitive nature. Once the

Coordinator has been created on a system, it should not need to be changed often, even

for different tasks.

3.3 Hierarchies

The separation between the Cognitive and Action Layers is a buffer that allows most

types of hierarchies to be used in the system. The restriction to the types of hierarchies

allowed occurs when one PRA has control of another. This is not allowed to occur

directly as it would remove the autonomous nature of the agent.

3.4 CIR-Agent

Even with the dual layer nature of the system, the CIR-Agent is still present within a

PRA. However, many components of the CIR-Agent are abstracted slightly differently.

The knowledge base and problem solver are placed within the Decision Maker and the

Repository. The interaction and communication components are moved into the State

 24

Monitor, the Coordinator and the Negotiator. The Executor can be seen as a new

addition in which the CIR Agent now has the ability to interact with the physical world.

It is important to note that these components remain essentially intact, but due to the

nature of the dual layer system, they may be moved into the non-agent Action Layer or

split up between the layers.

3.5 Communication

The role of communication among mobile robots is one of the most important issues in

multi-agent robot systems design. Communication is required to ensure cooperation

between robots. Each robot’s actions depend critically on knowledge that is accessible

only from another robot. The communication structure of a group determines the

possible modes of inter-agent interaction. These modes of interaction are sometimes

classified into interaction via environment, interaction via sensing and interaction via

communication [3]. In interaction via environment, the surroundings are used as a shared

medium (or memory) for storing information so that it can be interpreted by other

cooperating entities. This method is known as ‘cooperation without communication’ or

‘stigmergy’. Like an ant pheromone trail, a stigmergic signal can be picked up by any

other entity at any time. This is accomplished by storing the information in a stable

medium. Interaction via sensing refers to the local interactions that occur between agents

as a result of one agent sensing another, but without an explicit communication. On the

other hand, interaction via communication involves explicit communication with other

agents by either directed or broadcast intentional messages. In the proposed architecture,

interaction via communication is adopted. As shown in Figure 3.3, there are two types of

communication in the system: inter-layer communication and inter-agent

communication.

Figure 3.3: Communication Links

3.5.1 Inter-Agent (Inter-Robot)

Communication is essential for multiple agents to work together. Agents must be able to

communicate between one another to locate other agents and interact with them. To

accomplish this, two main components are required: a communication protocol for inter-

agent communication and a network protocol in which to send the messages. Inter-Agent

 25

 26

(or Inter-Robot) communication is how different PRAs correspond. The most important

aspect of inter-agent communication is that it should be limited to as small and as few

messages as possible. If there is too much data or there are too many messages being

sent, the load they create can severely slow down a system. This is precisely where

network constraints define the total amount of communication that can occur. Inter-agent

communication should be concise yet meaningful. This helps to reduce the amount of

network traffic.

The communication between robots is performed between the Negotiator elements in the

different PRAs. An agent communication language (ACL) can be used to facilitate

messaging. ACLs allow for large groups of robots to be able to communicate with each

other. The total number of PRAs that could be used at once is limited only by the

selected platform.

3.5.2 Inter-Layer (Intra-Robot)

The communication between layers is vitally important if this architecture is to be used

for real time applications. The maximum speed of the robots and hence the ability for the

PRAs to function as real-time robots will be restricted by a bottleneck of either

communication or processing speed. The processing speed is determined by the speed of

the processors and the algorithms themselves. There are only two locations where a

communication bottleneck can occur. The first is between PRAs, in inter-agent

communication, in which network speed and traffic are the main culprits for slower

speed. The second location is within a PRA between the two layers. As the dual layer

architecture is relatively new, this type of communications has not been examined before.

 27

The volume of data transferred between layers is only bounded by the specifics of the

robot; however, by limiting the amount of data being transmitted, the abstraction and

separation between the two layers becomes apparent. For example, there is often no need

for the Cognitive Layer to receive an image from a camera for processing. Data intensive

processing can be handled and large volumes of data passed between tasks in the Action

Layer, with only the relevant results sent to the higher level.

3.5.3 Throughput

When using the architecture describe in this thesis, extremely complicated PRAs can be

created and they should be able to react quickly. Most importantly, the worst-case

completion time at which they can react is essential for any real-time applications. The

throughput and latency of inter-layer communication is examined in depth in section 5.2.

 28

4 Implementation

This chapter explores some of the aspects dealing with the implementation of the

architecture described in the previous chapters. An example of a fully functional version

of the architecture can be seen in section 5.1. This chapter’s contents are all original

concepts presented by this thesis.

When implementing the proposed architecture on mobile robots, only a few components

are required for it to function. Firstly, the robots must have most of the capabilities of a

notebook computer. This includes a hard drive, a quick processor and a network card of

some sort, (a wireless connection is recommended) to be able to contact other robots.

The robot also must be able to run Java for the Cognitive Layer implementation. Java is

not required, but highly recommended because JADE was designed specifically to work

within Java [17]. If another agent oriented language is used, it must be able to run on the

robots. If a robot has the basic capabilities of a notebook computer than it should already

be able to run the Java programming language. Apart from the necessary components,

this architecture can be used on almost any robot.

4.1 Action Layer

This section describes some of the issues dealing with the implementation of the elements

within the Action Layer. It is important to note that although they are separate elements,

they are not necessarily separate programs. They could be different objects within a

multi-threaded program to facilitate faster communication within the layer. Unlike the

 29

stricter separation between the two main layers, these elements are more of a guideline

than a boundary.

4.1.1 Executor

Implementation of the Executor will be different on each distinct type of robot. The

Executor should be able to run both single and multiple tasks simultaneously or

concurrently based on the requirements and restrictions of the system.

The types of tasks that will be required are also varied:

• Initializers which are run once, at start-up, to initialize some aspect of the robot,

e.g. resetting the pan and tilt of a camera;

• Actions or steps which are run as part of a state machine, such as rotating to face a

target;

• Alerts which are run and sit idle until a specific condition occurs, e.g. waiting for

target movement; and

• Reflexes which are required to react quickly to a situation without consulting the

Cognitive Layer, such as crash avoidance.

Multiple tasks should be able to be run at the same time, allowing one to set up a crash

avoidance task, e.g. sonar detection that activates when the robot is quickly approaching a

 30

wall while allowing the robot to perform its other duties. It is also possible to execute

complex recognition tasks using sensor data, or sensor fusion. The results of these tasks

are sent to the Cognitive Layer. Although tasks and reactions can perform low-level

functions autonomously, they are all directed by the higher-level Cognitive Layer.

4.1.2 Repository of Tasks

As the Repository is simply a collection of available tasks, implementation can be as

simple as the tasks available in the code or as complicated as a collection of all tasks that

could be executed, perhaps stored in a hash table or dynamically linked library. Even

though the Repository may not always be a large component, it still is an important one.

4.1.3 State Monitor

In the Action Layer, the Communicator is the element that relays information between

the two layers. It must be able to both send and receive data from the Cognitive Layer.

The Communicator must be able to inform the Executor of the tasks that need to be run,

variables and constraints for those tasks, and how and when to run them. It also might

need to assist in finding the index or location of tasks found in the Library, or even

update or alter the stored tasks. As well, the Communicator must also send the results of

these tasks (if any) and updates on a list of internal variables as requested by the

Cognitive Layer.

 31

4.2 Cognitive Layer

Since two of these key elements of the Cognitive are already included within an agent (by

definition,) the Decision Maker and the Negotiator, an agent oriented solution is a good

solution for the problem. This section details some aspects that should be considered

when implementing the Cognitive Layer.

The Cognitive Layer does not necessarily exist on the robot in a PRA. It could exist on a

separate machine, or in a combination of machines. What is important is that there is a

clearly separate section for each PRA. This ensures the autonomy of each individual

PRA.

4.2.1 Decision Maker

The way in which the Decision Maker is designed and implemented is determined on a

per system basis. Possible examples include a collection of small programs, a collection

of threads, or a collection of simple software agents. Each system will have a different

requirement and thus the resulting Decision Maker will be vastly different, except for the

methods in which it interacts with the other elements.

4.2.2 Negotiator

Assuming an agent oriented design is already being used, this element is already included

in every agent based in the definition of an agent. The Negotiator must have the ability to

communicate with other robots and to understand what is being communicated. The

 32

Negotiator does not only rely on messages, but can also perform any bidding or

handshaking required for decisions and consensus building.

4.2.3 Coordinator

Typically when implementing the Coordinator should be able to start, stop and pause

tasks in the Action Layer, based on the whim of the Decision Maker. This includes

reflexes if required, as a robot may need to actively suppress a reflex to accomplish a

task. For example, if a robot needs to pick up an item, it may need to suppress its

automated obstacle avoidance reflex. It also may need to be able to receive variable

updates from the Action Layer’s State Monitor and inform the Decision Maker of these

new conditions.

4.3 Communications

The communications between the robots and agents are very important and this section

details the crucial aspects of their implementation.

4.3.1 Inter-Layer (Intra-Robot)

As the inter-layer communication has not previously been examined, a need existed to

create a system with which the two layers can interface. The method with which a

microprocessor interprets assembly language is chosen as model for the means of

communication between layers. This choice is made because of (1) the simplicity of the

manner in which the communications are processed and (2) it reinforced the idea that the

communications should be minimized. Microprocessors have a series of registers for

 33

both input and output. These registers were replaced with monitored variables. As this is

now implemented in a software domain, there is no limit on the number of variables

monitored. There is, however, a cost associated with monitoring a variable; as more are

monitored, the slower the system and the slower the transmission. Secondly, tasks can be

run on microprocessors and this same system is used for inter-layer communication. The

difference is that not only can these tasks be run, but multiple versions of both of the

same task and others can be run in parallel, again due to less restrictive software domain.

This allows a reflex, such as an anti-collision detection task, to be run while the robot

accomplishes its goals.

The Coordinator element enables communication between layers and resides in the

Cognitive Layer. This element receives commands from the Decision Maker and creates

the messages that will be passed to the Action Layer’s State Monitor. The main type of

communication is commands. With a command, tasks are initiated and halted and

specific Action Layer variables are requested for higher level processing.

The most common types of commands issued are:

• Initiate a task: tasks can be called by name with parameters

• Alter a task: a currently running task’s parameters are changed

• Cancel a task: this command stops a task from running

 34

• Watch a variable: this command asks for updates whenever the value of that

variable is changed

• Stop watching a variable: this cancels the watch command

• Alter variable: this allows the Cognitive Layer to set a variable that can be used

by a task

4.3.2 Message Types

The speed of communication is vital to knowing the delivery time of the system if this

architecture is to allow for real-time applications. Before calculating the latency and

throughput of the communication, the message requirements had to be determined. This

section will briefly discuss the three main types of messages that could be sent between

the layers. To design a better system, knowledge of the most common forms of

communication is required. In this case, three distinct types of messages can be passed

between the layers: commands, variable updates and large data updates. They are

explained in detail below.

4.3.2.1 Commands

A command message is a very simple communication. Typically, a command only needs

to be initiated, occasionally with a variable or two. This means that the message will be

very compact. Typical commands should look like the following:

• Forward 30 – move 30 units forwards

 35

• Pan 100 – pan the camera to 100 degrees

• Halt

Commands will typically be sent one or two at a time. These commands will be sent

from the Cognitive Layer’s Coordinator to the Action Layer’s State Monitor.

4.3.2.2 Variable Updates

Variable updates are sent from the Action Layer to the Cognitive Layer. These can occur

in a few different forms. Firstly, they can be a single variable being updated whenever

that variable is altered. Secondly, they can be a timed update of all or most of the

variables, whether they have changed or not. Thirdly, they can be a complete update of

all of the variables whenever any or a number have been altered. Finally, they can be a

combination of all of these techniques. The method utilized is dependant on what

information is required in the Cognitive Layer. If only a few updated variables are

required and the single variable method is used, then these messages look similar to a

command message.

Many systems require a large number of variables of differing types to be updated on a

regular basis. These messages can be implemented in a stub of some sort that would

encapsulate the data into a hash table or a similar structure. Nevertheless, these

messages, when broken down, can be considered as a number of command messages

strung together.

 36

4.3.2.3 Large Data Updates

The variables being updated examined so far are in the form of integers and occasionally

real number and strings. In a large data update message, large data objects such as

pictures can be sent. A well designed system should minimize the number of these

messages, as they take a long time to process. However, there are certain cases where

this type of information is required.

When multiple robots are mapping a room full of objects, at some point they require each

other’s maps to find each other. This can be accomplished, assuming the maps are fairly

intricate, by sending a large amount of data. The structure of these messages should

seem like a stream of bits that would be unrecognizable without prior knowledge of what

information is contained within them. Essentially, without knowledge of the data

structure, they would seem useless. It is preferred to send only the relevant data to

minimize this type of communication. For example, instead of sending a raster image of

an internal map, a vector representation could be used to substantially reduce the amount

of data transferred.

 37

5 Experimentation

In this chapter, two experiments are presented. This first, the application experiment,

focuses on the implementation of the architecture. The second examines various

transmission protocols that can be used for inter-layer communication.

5.1 Application Experiment

The first experiment implemented to test the validity of the architecture is the Best-View

Demonstration in which one or more robots try to encircle a target. The overall goal of

this project is to test the feasibility of using the architecture, and to do so, a task is

required that can be accomplished using a different number of robots. The chosen

activity is to have the robots encircle an object. This section deals with both the

implementation issues and the results associated with the experimentation.

The robots’ goal in the experiment is to encircle a target. In this case, the term ‘encircle’

is meant a target object is completely surrounded. As shown in Figure 5.1, a coloured

can on top of a basketball is chosen as the target. The basketball makes the target easy to

spot from afar and the can allows for a good estimate of distance to be found when up

close. The can has four colours evenly placed along its surface. These colours are used

by the robots to determine from which angle they are viewing the target. In this way the

robots have a common form of perception of the target and can discuss which one should

move to where to surround it. The method with which this is achieved is dependant on

the number of robots participating. If there is only one robot, it should find the front of

the target. The front of the target is an arbitrary point, in this case, the line between the

yellow and blue colours is chosen. If there are two robots then they both should be 180

degrees apart from each other. With three robots, they should all be 120 degrees apart.

Figure 5.2 shows the relative positions of the robots with respect to the target for each of

these situations. The arrow on the robot represents the front of the robot, and the red

triangles represent the camera view.

Figure 5.1: Target

Figure 5.2: Goal Positions

 38

 39

One important aspect of this experiment is that it must be possible to add or remove

robots from the system. If one robot is attempting to look at the front of the target when

another joins, the system should adjust and both robots should now attempt to place

themselves at 180 degrees apart. Similarly, if there are three robots encircling the target,

when one is removed, the remaining two should compensate.

The tests performed to demonstrate the full functionality of the system are dependant on

the number of robots present. The most important tests are “does the system function

correctly and encircle the target with one, two or three robots?” At the time of writing

the maximum number is three due to limited availability of robots. The key issues in this

experiment are communication and architecture. The movements of the robots are not

reliant on the architecture; it is the coordination that is important. To this end, the tests

performed are basic functionality testing, systems of one to three robots and the

possibility and coordination of adding or removing a robot from the system.

The robots used for this experiment were the Magellan by the iRobot Corporation, see

Figure 5.3 and [16]. There ware three identical robots available, which made them ideal

subjects for this experiment.

Figure 5.3: Magellan Pro

The Magellan Pro robot has all of the required components to run the architecture and the

tests for this experiment. All of the robots used in this experiment have an installed

rotating and panning camera, which can be seen on top of the robot in Figure 5.3. The

robots are equipped with sonar and other sensors, however the camera is the only sensor

used in the experiment.

5.1.1 Layer Implementation

The main purpose of this thesis is to present a new architecture for multi-robotic systems

that takes advantage of the benefits of a multi-agent paradigm. This section will discuss

the implementation of this system.

5.1.1.1 Agent Model

In order to facilitate the implementation of the proposed design, the CIR Agent model

described in section 2.2.4 is used. This model can be used to develop an agent which is

autonomous, has a method of coordination (for both interaction and communication), has

the ability to cooperate with other agents and it is adaptable to different situations. The

PRAs are all based on this model.

 40

 41

5.1.1.2 Cognitive Layer

Ideally, if a large number of known Action Layer tasks exist, then it is possible to write

the ‘brain’ behind a robot without having to re-write any of the lower level functionality.

This simplified development process is supported by the Repository element. This

intentionality limits the abilities of the Cognitive Layer to help keep the abstraction

between high and low level tasks. To enable the Cognitive Layer to communicate with

other robots yet still be independent, autonomous and cooperative, an agent oriented

solution is the natural course.

When conducting experiments using this architecture, the Java Agent DEvelopment

Framework (JADE) [1] is used. Any multi-agent environment could be used, but JADE

is chosen because it is FIPA compliant built for the Java environment (see [17]), which

supports portability. This decision is an important one, as it has ramifications throughout

the design of the entire system.

To create the Cognitive Layer, a number of software agents are used. Each robot can

have as many agents as is required acting collectively as the Cognitive Layer of a

particular robot. This collection of software agents make up the PRA. Currently, only

two agents per robot are required. The first software agent is the main ‘brain’ of the

Cognitive Layer. It encompasses both the Decision Maker and the Negotiator. A second

software agent acts as the Coordinator. This agent acts as the intermediary between the

Decision Maker and the Action Layer of the robot. The reasoning behind this two

software agent implementation is simply that every robot requires a Coordinator; thus

incorporating it into the main ‘brain’ agent seemed to be complicating the matter. In this

 42

manner, every robot can have the exact same Coordinator agent, no matter how the rest

of the Cognitive Layer is designed. This agent is discussed in detail in below in section

5.1.2.1.

The agent that encompasses both the Decision Maker and the Negotiator is again just a

convenience. It is possible to separate them, but because most projects require

completely new negotiators, having the two together inside a software agent seemed the

sensible answer. This again is completely up to the designers of the multi-robot system.

Inter-Agent communication methods are built into JADE and hence they do not require

their own agents. There are also a few necessary software agents required by JADE but

they are only used to enable the agent oriented environment to function.

Each robot may have completely different software agents or they may all be the same.

This depends entirely on the project. For the most part, the Coordinator should be fairly

independent of the project. As mentioned previously, all of these agents, including the

required infrastructure can be placed on one or multiple servers and not actually reside on

the robots themselves. This enables robots with limited processing power to still take

advantage of the proposed multi-level architecture. This architecture is designed to be

independent of any specific goal, so that it can be tailored to satisfy each project’s

requirements.

 43

5.1.1.3 Action Layer

The Action Layer on the robots was primarily designed by Ben Miners, co-author of the

architecture paper [12]. He has allowed the inclusion of this description on the

implementation of the Action Layer in the robots:

The Action Layer serves two important purposes; to abstract variations
in physical hardware from the Cognitive Layer, and to carry out local
time-critical tasks. Abstracting the hardware in this layer is an
approach to allow the same action logic to be carried out on several
different hardware platforms. Latency is minimized using an event-
driven approach to ensure appropriate tasks or reactions are carried
out for each external stimulus.

As illustrated in Figure 5.4, the Action Layer communicates with
physical robot hardware through an abstraction interface. This
interface maps each received sensor value to a specific location and
orientation, and translates generic motion control commands to
hardware specific values. All action logic is defined using a set of
simple concurrent tasks. Each of these tasks can be in one of two
states as decided by the Cognitive Layer; passive or active. Active
tasks can carry out their actions when triggered, while passive tasks
do nothing until activated from the Cognitive Layer. Activation and
deactivation of tasks is the primary method of control from the
Cognitive Layer.

Figure 5.4: Action Layer

A specific precondition based on external stimuli is defined for each
task. Examples of these conditions include the arrival of new a video
frame, a sonar measurement, or a change in robot position. Including
these preconditions outside task logic helps to keep internal logic
simple and allows a single task to easily respond to different triggers
or external stimuli. As soon as a task’s precondition is met, the task is
executed. During execution, tasks can process sensor data, control
robot movement and sensor parameters in addition to exposing high-
level task state as feedback to the Cognitive Layer. Processing
sensor data locally in the Action Layer eliminates unnecessary
communication of low-level data while ensuring relevant high-level
information is available to the Cognitive Layer.

5.1.2 Software Agents

A basic state machine with a small amount of reasoning is all that is necessary to

complete the exercise. For the purposes of this experiment, all of the PRAs are identical.

Each of which consists of three software agents: the Coordinator agent; the single robot
 44

 45

agent and the multiple robots agent. In this section, each of these agents is discussed in

detail.

5.1.2.1 Coordinator Agent

The Coordinator software agent performs a few key functions. It acts as an intermediary

between the agents representing the cognitive level and the low level functions of the

Action Layer. It accepts messages based on a specified format and performs a variety of

operations. The most important function is to send a command to initiate a task in the

Action Layer. This command is sent to the Action Layer through an open port, a

computer connection location through which network data can be transmitted, to which

the Action Layer is sensitive. This agent can request that a variable be monitored and it

can also cancel a task. Meanwhile, whenever a variable being monitored is altered, the

Action Layer sends an update through a Java stub. The Coordinator sees this and sends

an update to the subscribed software agent. Only the variables to which an agent is

subscribed are sent through the Java stub. This means that even though a task may

expose a variety of variables, only the ones that are needed in the Cognitive Layer are

actually sent. Thus, the Repository in the Action Layer tasks can be used in future

experiments. The Coordinator agent needs to be quick to allow for seamless operation of

the robot, however, this agent should only need to be created once and then it can be used

on all future projects. The speed of the Coordinator is examined further in the next

experiment, section 5.2.

 46

5.1.2.2 Single Robot Agent

This software agent was created to determine if the communication between the

Cognitive Layer and the Action Layer was functioning. It was also created to prove the

feasibility of the multi-robot system. As it was designed for a single robot, only the

Decision Maker element was included. This state machine of the agent can be seen in

Figure 5.5.

Each bubble represents the current task being run and the arrows represent the transition

in state based on a monitored variable. The first task is that of finding the target. The

robot rotates until the target is located. The second task requires the robot to approach

and then centre in on the target. Once completed, the robot prepares for pivoting by

panning the camera 90 degrees while simultaneously backing off from the target.

Finally, the robot calculates the shortest route to get to the 0 degree mark, the front of the

target and pivots accordingly. Once there, the robot remains on alert for any new

commanders or changes to the target. If at any time the robot loses site of the target it

will return to the first state and start searching for the target anew.

Figure 5.5: Single Robot State Machine

5.1.2.3 Multiple Robots Agent

This multi-robot agent encompasses both the Decision Maker element and the Negotiator

element. This software agent is used on multiple robots communicate not only with the

Action Layer through the Coordinator Agent, but also with other software agents on other

robots. This agent builds upon the single robot version, as well as coordinating its

actions with the other software agents running in the Cognitive Layers of the other

robots. The state machine of this agent can be seen in Figure 5.6. This state machine is

similar to that of the single robot version. The differences lie within the new states

located between the old states of the previous implementation. New steps that are

designed for negotiation with other PRAs were added. Each of these new steps is a

Cognitive Layer task and not an Action Layer task. These steps include: greeting the

other agents; reporting to the other agent that this PRA is ready to pivot; receiving and

sending the cost to travel to the different location around the can and telling the other

 47

robots that an error has occurred and the whole process needs to be restarted. It is

important to note that the Action Layer tasks did not have to be altered for this new agent

or for the more complicated goal. For both the signal and multiple robot

implementations, the Action Layer performs the exact same tasks.

Figure 5.6: Multiple Robots State Machine

5.1.3 Results

After more than 20 tests on each of the three robots, the single robot agent performed as

expected. Each robot would find the target, approach it and pivot to the correct location.

One problem noted with the experiment was in the Action Layer where there were
 48

 49

complications with colour detection under different lighting conditions. Because of this,

the PRA’s state machine was observed to function correctly, even when conditions were

not optimal. The communication between the layers was fully functional as evidenced by

the fact that the robots reacted quickly when the target was removed or replaced.

The multi-robot experiment again responded to the same lighting problems as the single

robot scenario; nevertheless, the robots were able to function well as a team. A new

challenge was noted as occasionally a PRA saw the red colour of another robot and

mistook it for an extension of the basketball. This does not seem to adversely affect the

final outcome of the program as this only occurred at far distances. Similarly to in the

single robot implementation, when a robot lost sight of the target, it reacted quickly and

reset. Furthermore, the other robots also reacted and reset shortly afterwards having

received the error message from the lost robot. Typically, the robots all locate the target

and encircle it while staying in sync with one another. Table 5.1 shows the results

obtained during this experiment and Figure 5.7 is a photograph of the robots in action.

More than 25 tests were performed for each of the scenarios listed below with no errors

occurring that could be attributed to the architecture or the communications.

Table 5.1: Best-View Results

Scenario Number of Robots Results

Encircle Target 1 (find front of
target only)

The robots performed as expected. All three
robots were individually tested.

 2 Any two robots performed as expected.

 3 The robots performed as expected.

Remove Robot 3 down to 2 The robots performed as expected. Choice of
robots did not affect the results.

 2 down to 1 The robots performed as expected. Choice of
robots did not affect the results.

Add Robot 1 to 2 The robots performed as expected. Choice of
robots did not affect the results.

 2 to 3 The robots performed as expected. Choice of
robots did not affect the results.

Figure 5.7: Robots in Action

 50

 51

The communication between agents functioned flawlessly and the robots performed as

expected. All communications between robots was monitored to ensure that the correct

messages were being sent and received. Failures arose due to errors in detection of the

distance from the target and a robot hitting a piece of furniture or wall (currently there is

no detection or avoidance for other objects). When a failure occurred, the robots reset as

the state machine dictated.

5.1.4 Conclusions

This architecture defines clear boundaries between the processes that occur within a robot

and allows multiple robots with different specifications to communicate with each other

and perform meaningful tasks. As was evident by the experiment presented, this

architecture works well and solved the encircling of an object problem sufficiently. The

architecture functions as expect in both a single and a multi-robot scenario.

5.2 Real-Time Feasibility Experiment

To test the real-time performance of this architecture, the intra-robot (between layers) and

inter-robot (between robots) communication time must be examined. In this experiment,

intra-robot communication is explored with a variety of message types, methods and

protocols.

The primary goal of this experiment is to test the communication delays that occur

between the Coordinator in the Cognitive Layer and the State Monitor in the Action

Layer. Thus this experiment should answer the following: which method of

 52

communication has the lowest latency, has the highest throughput; is the easiest to

implement; is exportable, not restricted to a single operating system; and is expandable,

can it be used if the layers are on different systems? To do this, a few demanding tests

were created. This section describes these tests, the nature of the test system and the

results.

The tests needed to use different types of messages, different communication styles and a

different number of transmissions. Conclusions will be based by weighing both the

positive and negative aspects of each type of communication.

Each test has two main aspects. Randomized messages, which are already in memory,

are sent from the Cognitive Layer to the Action Layer. Once fully received, the message

is returned to the Cognitive Layer using the same communication method to ensure that

both directions of communication are tested. This test is then repeated a varying amount

of times. The total time for this whole process to occur is then recorded and analysed.

The system used to perform the testing is contained on a single robot. This type of robot

was chosen as it is the same robot that is currently used in the labs for multi-robot

experiments, including the architecture experiment described in chapter 4. Thus, all data

recorded would be relevant for determining delays when these robots are used for real-

time experimentation. The software used to test the system was a simplified version of

both of the Action and Cognitive Layers also used in the previous experiment. The

following subsections describe the robots and the simplified layers.

 53

The robot used for this experiment was the Magellan by the iRobot Corporation, see

Figure 5.3 and [16]. Only a single robot is required, so one of the robots used in the

previous experiment, section 5.1, is used for this experiment. All tests are performed on

the same robot, to ensure high quality data. For the purposes of this experiment a

connection to other robots is not required.

5.2.1 Layers

As this experiment is designed to test only the throughput of the different communication

methods, only the basic communication shell of the layers is required. A simple test

application is used in place of the Action Layer and a basic Java program was required

for the Cognitive Layer. The code used for this experiment can be found in Appendix B.

The Cognitive Layer was created in Java to attempt to be similar to the Cognitive Layers

in fully functioning robotic systems. In this case, all of the extra functionality in the layer

was removed leaving only a random message generator as well as sending and receiving

routines. By doing so, it is possible to time the period it takes to send and receive the

messages.

The Action Layer was programmed in C. Usually, the Action Layer spends a lot of time

monitoring the robot and controlling its movements, however, in this case, all of the

superfluous parts have been removed to accurately measure only the communication

speed and delays. To simulate the Action Layer, very simple programs were used. These

programs wait for a packet or file and when one is detected, it receives the full packet.

Once received, it sends the packet or file back along a similar communication channel

 54

that it was received in. Again, these small programs are designed to only have the

functionality required to perform these communication operations.

5.2.2 Communication

If the type of messages described in section 4.3.2, which need to be sent between the

concurrently running processes in the action and Cognitive Layers are to be tested, then

the method for sending the messages is of great importance. This section describes the

most common types of communication methods and protocols over which these types of

messages can be sent and received and describes how there were implemented. Each

method of communication to be tested has different characteristics and hence, needs a

slightly different implementation.

5.2.2.1 User Datagram Protocol

The following definition of the User Datagram Protocol (UDP) was taken from

Wikipedia [28]:

The User Datagram Protocol (UDP) is a minimal message-oriented
transport layer protocol that is currently documented in IETF RFC 768.

In the TCP/IP model, UDP provides a very simple interface between a
network layer below and an application layer above. UDP provides no
guarantees for message delivery and a UDP sender retains no state
on UDP messages once sent onto the network. UDP adds only
application multiplexing and data check-summing on top of an IP
datagram.

 55

Lacking reliability, UDP applications must generally be willing to accept some loss,

errors or duplication. Most often, UDP applications do not require reliability

mechanisms and may even be hindered by them.

UDP packets were implemented by opening two ports. The Action Layer received

packets through one port, and once fully received, sent a new packet, with the same

information as the one received, back to the Cognitive Layer using a secondary port. The

total time to perform this operation was recorded for different sizes and numbers of

messages sent.

5.2.2.2 Transmission Control Protocol

The following definition of the Transmission Control Protocol (TCP) was taken from

Wikipedia [28]:

Transmission Control Protocol (TCP) is a connection-oriented, reliable
delivery byte-stream transport layer communication protocol, currently
documented in IETF RFC 793.

In the Internet protocol suite, TCP is the intermediate layer between
the Internet Protocol below it, and an application above it.
Applications most often need reliable pipe-like connections to each
other, whereas the Internet Protocol does not provide such streams,
but rather only unreliable packets.

TCP checks to make sure that no packets are lost by giving each byte
a sequence number, which is also used to make sure that the data is
delivered to the entity at the other end in the correct order. The TCP
module at the far end sends back an acknowledgement for bytes
which have been successfully received; a timer at the sending TCP
will cause a timeout if an acknowledgement is not received within a
reasonable round trip time, and the (presumably lost) data will then be
re-transmitted. The TCP checks that no bytes are damaged by using

 56

a checksum; one is computed at the sender for each block of data
before it is sent, and checked at the receiver.

To summarize, unlike UDP, there is a large amount of error checking and the order of the

messages is guaranteed. This should add a bit of processing overhead. As TCP uses a

handshake method, these handshakes were performed once at the start of each test.

Overhead should be significantly reduced by allowing the connection to remain open.

Even though it is possible to send and receive though the same port, two ports were used

to make the operation similar to the other tests. Again, similar to the UDP method, only

once full messages had been received in the Action Layer did they get sent back to the

Cognitive Layer. The total time required to perform the sending and receiving

operations, while varying the number and types of messages and the time spent on the

handshake was recorded.

5.2.2.3 File Sharing

For large amounts of data, files are a viable option. By writing and reading from a file,

messages can be passed. While this may not be the fastest method of message passing, it

is very reliable. As well, using a file does not necessarily mean using a hard drive. To

increase transfer speed, a random access memory (RAM) drive or memory-mapped files

could be substituted. Files are of interest because they can contain huge amounts of data.

As well, data can be stored in subsections of a file requiring only some of file to be

altered. More than one program can read from a file simultaneously and multiple files

can be worked on concurrently.

 57

This communication method is dependant on the speed of the drive being used. Newer

drives are faster and larger than older ones. The type of interface with the drive is

important (i.e. Small Computer System Interface (SCSI), Parallel Advanced Technology

Attachment (PATA) or Serial Advanced Technology Attachment (SATA)). As well, the

type of partition also plays a significant role. All of these factors greatly affect

performance. In the case of the tests performed, the interface, partition type, age and

model of the drive were determined by what was present in the robot.

The implementation for file communication was realized differently. The Cognitive

Layer writes to a file, when the file is complete, the Action Layer reads in the file and

then writes the contents to a new file. This new file is then fully read in by the Cognitive

Layer. The Action Layer only writes to the new file once the old file has been

completely read to ensure that this has the same restrictions as the UDP and TCP

communication methods. Files are deleted after they are read. The total time required to

write the message from the Cognitive Layer to the time received, using different sizes

and number of messages, was recorded.

5.2.2.4 Inter-Process Communication

Inter-process communication (IPC) messaging was designed to send messages between

concurrently running process. This may seem to be a perfect method of communication

but it has many limitations. Firstly, on most operating systems, the messages’ maximum

size is very restrictive and typically very small. Secondly, the means used to invoke this

communication method differ between operating systems. An additional challenge with

IPC messaging is that there is no native Java library for it. There are some libraries that

 58

exist for each type of operating system, such as JTux [19]. The methods used in C++

also differ between operating systems. When using files and ports, there is no stringent

requirement that both processes need to be running on the same machine, but with IPC

messaging, this would also be required. This type of messaging was not implemented in

the current experiment because of the aforementioned issues; it would, however be

interesting to test this out in the future.

5.2.2.5 Shared Memory

Shared memory can be used to send large amounts of data by having both processes look

at the same area in memory. Implementing this is not simple. When using C++, direct

management of memory is a simplistic task; in Java this is not the case. Being able to

directly alter memory is purposely not allowed with Java. Therefore, as in the IPC

method, third party libraries [19] are required to be able to affect memory directly. These

are again dependant on the operating system and both processes must be running on the

same computer. For similar reasons to IPC messaging, difficulty of implementation and

the inability to have the Cognitive Layer on a separate machine, shared memory was not

implemented in this experiment.

5.2.3 Messages

The three message types, commands, variable updates and large data updates were

implemented as three different types of tests. For the purposes of this experiment, to

simulate the message types, each is constructed of completely random characters with

varying lengths.

 59

Commands were constructed to be between 5 and 10 characters in length. This was

designed to be of similar length to a typical command. Depending on the speed of the

communication method, between 100 and 100,000 messages were sent and received.

Variable updates were between 500 and 1,000 characters in length, simulating a large

number of updated variables. Depending on the speed of the communication method,

between 100 and 100,000 messages were sent and received.

The large data updates were all 64,000 characters in length. This was to emulate an 8-bit

per pixel 320x200 greyscale image. The cameras used on the Magellan Pro capture still

images of this size which would likely be the largest size of data that would need to be

sent. Between 100 and 10,000 of these messages were sent and received based on the

speed of the communication method.

5.2.4 Observations

This section will describe the results achieved by running the tests. A table of all the

results can be found in Appendix C.

In Figure 5.8, the results from using UDP can be seen. The dashed line (top) shows the

results for large data update messages and the solid line (bottom) shows the results for the

command messages. Clearly, the larger a message, the longer it takes and this appears to

be an exponential relationship. Figure 5.9 through Figure 5.11 show an exponential fit

for each of the packet sizes. If a PRA was to use this type of communication,

implementation would be fairly easy and, with 100,000 small messages being transferred

in under 15,000 ms, probably very efficient.

UDP

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 200 500 1000 2000 5000 10000 20000 50000 100000

Packets Sent

Ti
m

e
(m

s)

UDP s
UDP m
UDP l

Figure 5.8: UDP Results

 60

UDP Small

y = 14.864e0.6665x

R2 = 0.9921

0

2000

4000

6000

8000

10000

12000

14000

16000

100 200 500 1000 2000 5000 10000 20000 50000 100000

Packets Sent

Ti
m

e
(m

s)

UDP s

Expon. (UDP s)

Figure 5.9: UDP Small Exponential Trend

UDP Medium

y = 16.293e0.6892x

R2 = 0.9945

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100 200 500 1000 2000 5000 10000 20000 50000 100000

Packets Sent

Ti
m

e
(m

s)

UDP m

Expon. (UDP m)

Figure 5.10: UDP Medium Exponential Trend

 61

UDP Large

y = 218.05e0.7555x

R2 = 0.9988

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 200 500 1000 2000 5000 10000

Packets Sent

Ti
m

e
(m

s)

UDP l

Expon. (UDP l)

Figure 5.11: UDP Large Exponential Trend

The results achieved for TCP messages, which can be seen in Figure 5.12, are the

opposite of those obtained for UDP messages. Again, there appears to be a non-linear

relationship but clearly, larger messages take less time to process than smaller ones. The

largest messages, large data updates (dashed line, but this time at the bottom) seem to

take significantly less time to process. This may be due to the length of the buffer in the

Action Layer. If the buffer was not filled, the TCP stream may have needed to time-out

before being processed. This could be the cause of what appears to be backward results.

More information on this type of delay can be found in [26]. While noticeably slower

than the UDP messages, 5,000 message taking over 22,000 ms, if there is a chance of a

fault between the layers, then this delay could be worth knowing that the message was

received properly.

 62

TCP

0

10000

20000

30000

40000

50000

60000

70000

80000

100 200 500 1000 2000 5000

Packets Sent

Ti
m

e
(m

s)

TCP s
TCP m
TCP l

Figure 5.12: TCP Results

File communication seemed to be consistent in time and the differences between large

and small messages clearly were miniscule compared to the time required to create and

delete files. Figure 5.13 demonstrates that although large messages take a slightly longer

time, the size of the file is not the major determining factor in communication latency. If

the PRAs had some type of shared memory resource, this slower method of

communications could be used, especially if the required messages were very large in

size.

 63

File

0

10000

20000

30000

40000

50000

60000

100 200 500

Packets Sent

Ti
m

e
(m

s)

File s
File m
File l

Figure 5.13: File Sharing Results

5.2.4.1 Comparison

When comparing the three types of communication, UDP is clearly the fastest, in bytes

per second. All the tests were averaged and the results are presented in Figure 5.14. File

communication functioned at an average of 0.21 bytes per second. TCP functioned at

2.02 bytes per second and UDP functioned at the very quick throughput of 101 bytes per

second. With these speed estimates, the real-time performance of the inter-layer

communication of a PRA can be calculated.

 64

Final Average Speed

0 20 40 60 80 100

UDP

File

TCP

Tr
an

sm
is

si
on

 T
yp

e

Bytes/Second
120

Figure 5.14: Average Throughput

These results can be attributed to a number of different factors. UDP is a bare bones type

of communication; it does not have any of the error handling features that exist in TCP

and thus, runs at a much quicker speed. Even if the TCP packet size was the same size as

each transmitted message and timeout did not occur, it would still be slower than UDP

due to the error correction.

5.2.5 Conclusions

UDP messages are sent 50 times faster than TCP messages and sent 500 times faster than

files. It was expected that file messages would have the worst throughput, but the

difference between TCP and UDP was not. The buffer problem greatly affected

performance of the TCP communications. When examining most of the messages sent

 65

 66

between the layers and both layers existing on the same robot, the order of the messages,

UDP greatest detriment, does not play an important role. For the most part, the variable

updates are typically sent at intervals; the order of the commands received will not be

important and large data updates would be infrequent. Clearly, using UDP, perhaps with

a data structure of some sort, is the best choice of the three examined in this experiment

for sending messages and is reliable on stable networks. If network stability is a potential

problem, TCP messages should be considered instead. With an average throughput of

101 bytes per second, it is also possible to calculate, with knowledge of the information

being sent back and forth between layers, how long it will take for a robot to be able to

respond to a command in real-time.

 67

6 Conclusions, Limitations and

Recommendations

This chapter contains the conclusions reached through this thesis. It also contains the

limitations of the research and the conclusions as well as recommendations for

6.1 Conclusions

Multiple robot system control is a quickly emerging field in which an agent oriented

solution seems to hold the most potential. Currently, there is no well known, effective

architecture that exists that will allow agents to be both independent and control low level

systems. The goal of this thesis is to present an agent based architecture that has the

ability to control both the physical aspects of the robot and coordinate with other robots.

Furthermore, a secondary goal is to determine the feasibility of using this architecture for

real-time systems.

A novel architecture for multiple robot systems was developed. The architecture is

designed to help multiple robots cooperate and coordinate with each other using an agent

oriented solution. To accomplish this, each robot is designated to be a Physical Robot

Agent (PRA). The PRA is then abstracted into two different layers: the Cognitive and

Action Layers. The Action Layer controls all of the sensors and actuators of the robot.

All of the physical tasks that the PRA will pursue are controlled by this layer. The

Cognitive Layer controls all of the planning and coordination and cooperation with the

other PRAs. The Cognitive Layer gives commands to the Action Layer, which in turn

returns status updates to the Cognitive Layer.

 68

The Action Layer is further divided into three main components. The first of these

components is the Executor. The Executor has access to all of the sensors and actuator

on the robot. It controls exactly how the robot moves and reacts. It receives all of its

commands from the State Monitor and exactly how to perform these commands from the

library of tasks, the Repository element. The Repository is a collection of tasks that the

Cognitive Layer can request the Action Layer to perform. If these tasks are ‘learning’

tasks, the optimized versions are updated within the Repository. The State Monitor tells

the Executor what tasks to run or stop based on messages received from the Cognitive

Layer. It also sends the Cognitive Layer state variable updates as requested.

Similar to the Action Layer, the Cognitive Layer is split into three elements: the

Decision Maker, the Negotiator and the Coordinator. The Decision Maker is the ‘brain’

of the PRA. It performs all of the planning associated with the robot. To communicate

with other robots, the Negotiator element is used. All messages that are sent to the PRA

must go through the Negotiator and the Decision Maker to ensure the autonomy of the

robot. The Coordinator element handles the communications between the Action Layer

and the Decision Maker. It ensures that all variables requested are updated correctly and

that all the commands given by the Decision Maker are followed.

To implement the Action Layer, a C++ programme that contained all of the required

elements was utilized. The Cognitive Layer was designed using agents. The Java Agent

DEvelopment Framework (JADE) was used in conjunction with the Java programming

language to create two software agents. The Coordinator is its own software agent and

the Decision Maker and Negotiator share a software agent.

 69

Experiments were conducted in which the architecture performed correctly. Experiments

with a single robot proved that the architecture was feasible. Further experiments with

multiple robots, some in which robots were added or removed, also demonstrated that the

multiple robot system functioned perfectly. Based on these results, it is concluded that

the architecture is fully functional, robust, portable and practical.

For the architecture to be considered for real-time applications, the communication delays

must be tested. The two locations where these delays can occur are between the two

layers and between PRAs. The communication between the layers was tested for latency

and throughput. The type of messaging that should be used between them was

determined.

To test the communication between layers, a basic setup was used. Both layers were

emulated and messages were sent using the transmission control protocol (TCP), the user

datagram protocol (UDP) and using files on the robot’s hard drive. File communications

functioned at an average of 0.21 bytes per second. TCP functioned at 2.02 bytes per

second and UDP functioned with a throughput of 101 bytes per second. Messages sent

using UDP are 50 times faster than TCP messages and 500 times faster than files. Based

on this test, it is concluded that all messages passed between layers should be performed

using UDP. The cost of using UDP is the possibility of lower reliability due to the lack

of error detection. On most systems, where both layers are on the same robot, this is not

an issue.

 70

Based on the experiments conducted, it is concluded that the architecture proposed in this

thesis is functional, adaptable and reliable in both a single robot and a multi-robot

environment. Furthermore, all communications between layers should be conducted

using the UDP unless extremely large amounts of data are required. The architecture

allows for small and large systems of robots to use many different hierarchies. The

abstraction of the two layers and the sub elements allow for the portability of code

between completely different robots. The agent level programming can take place

independently from the needs of a specific robot. All of these features allow for a shorter

time between simulation, implementation and realization.

6.2 Limitations

The architecture could be limited by the precise definition of ‘agent’ that is required.

Furthermore, the architecture can potentially increase the amount of data exchange

needed due to the strict information pipelines between elements within each layer. These

pipelines ensure that the autonomy of each PRA is intact, however their existence will

add some processing time.

There is also a limitation enforced by the separation of the layers. Communications

between layers in the dual-layer architecture require more effort than in a single layer

system. This more formal type of communication fosters a better Action Layer design.

The application experiment presented in section 5.1 was effective at using up to three

robots. A constraint on the results was that there were a limited number of available

robots. Theoretically, the framework could sustain a large number of robots, but when

 71

dealing with very large systems (i.e. swarms) it could break down. The limit on the

number of robots that could be used in this specific experiment is based on maximum that

could fit around the target without colliding.

6.3 Recommendations and Future Work

Based on the conclusions drawn from this thesis, the following are recommended:

1. All future work with mobile robots within the Pattern Analysis and Machine

Intelligence (PAMI) Lab at the University of Waterloo should be done using this

dual layer architecture.

2. A library of tasks, the Repository element, should be built up to allow for faster

development of new multiple robot experiments.

3. Different hierarchies should be tested on the robots to ensure that this architecture

is fully compatible with the robots.

4. Real-time experiments should be continued, concentrating on the communications

between robots.

5. Further communication tests using more protocols and a random access memory

drive to determine a comparison to the communication methods tested should be

performed.

 72

6. Experiments involving different types of robots should be conducted using this

architecture to explore portability.

 73

References

[1] Bellifemine, F.; Poggi, A.; Rimassa, G.; “JADE - A FIPA-compliant Agent
Framework” CSELT internal technical report, part of this report has been also
published in Proceedings of PAAM'99, London, April, 1999, pp 97 - 108.

[2] Berna-Koes, M.; Nourbakhsh, I.; Sycara, K.; “Communication efficiency in multi-
agent systems” International Conference on Robotics and Automation, April 26 -
May 1, 2004, pp 2129 – 2134, Vol.3

[3] Cao, Y.; Fukunaga, A.; Kahng, A.; “Cooperative Mobile Robotics: Antecedents
and Directions” Autonomous Robots, 4, 1-23, Kluwer Academic Publishers (1997)

[4] Cossentino, M.; Sabatucci, L.; Chella, A.; “A possible approach to the development
of robotic multi-agent systems” IEEE/WIC International Conference on Intelligent
Agent Technology, October 13 - 16, 2003, pp 539 – 544

[5] Eze, J.; Ghenniwa, H.; Shen, W.; “Distributed Control Architecture for
Collaborative Physical Robot Agents” IEEE International Conference on Systems,
Man & Cybernetics, Washington DC, 2003, pp 2977 – 2982

[6] Eze, J.; Ghenniwa, H.; Shen, W.; “Integration Framework for Collaborative
Remote Physical Agents” 3rd International Symposium on Robotics and
Automation, 2002, Toluca, Mexico

[7] Finin, Tim; Labrou, Yannis; Mayfield, James; “KQML as an agent communication
language” Software Agents, MIT Press, Cambridge (1997)

[8] FIPA – Foundation for Intelligent Physical Agents, http://www.fipa.org (August,
2005)

[9] Gao Zhijun; Yan Guozheng; Ding Guoqing; Huang Heng; “Research of
communication mechanism of multi-agent robot systems”, International
Symposium on Micromechatronics and Human Science, September 9 – 12, 2001,
pp 75 – 79

[10] Genesereth, M. R.; Ketchpel, S. P.; "Software Agents", Communication of the
ACM, July, 1994, Vol. 37, No. 7

[11] Ghenniwa, H.; Kamel, M.; "Interaction Devices for Coordinating Cooperative
Distributed Systems", Automation and Soft Computing, 2000, pp.173 - 184, Vol 6,
No 2

[12] Gruneir, Bram; Miners, Ben; Khamis, Alaa; Ghenniwa, Hamada; Kamel,
Mohamed; “Agent oriented Design of a Multi-Robot System” International
Workshop on Multi-Agent Robotic Systems, International Conference on
Informatics in Control, Automation and Robotics, 2005

 74

[13] Harmon, Scott Y.; Gage, Douglas W.; “Protocols for Robot Communications:
Transport and Content Layers” International Conference on Cybernetics and
Society, Cambridge Massachusetts, October 8, 1980, pp 1090 – 1097

[14] Howell, Whitney; Patel, Seema; Minten, Brian; “UDP Performance over an Ad
Hoc Network for Mobile Robots” International Conference on Wireless Network,
2004, pp. 520 – 526

[15] Huancheng Zhang; Miaoliang Zhu; “An architecture for outdoor mobile robot
navigation with self-organization” International Control, Automation, Robotics and
Vision Conference, December 6 - 9, 2004, pp 267 – 272, Vol. 1

[16] iRobot Corporation, http://www.irobot.com/home/default.asp (August, 2005)

[17] Java – Java Technology, http://java.sun.com/ (March, 2005)

[18] Jennings, N.; Sycara, K.; Wooldridge, M.; "A roadmap of agent research and
development" Journal of Autonomous Agents and Multi-Agent Systems, 1998, pp
275 – 306, Vol. 1

[19] JTux: Java to Unix Package, http://www.basepath.com/aup/jtux (August, 2005)

[20] Kawamura, K.; “The Role of Cognitive Agent Models in a Multi-Agent Framework
for Human-Humanoid Interaction” 11th IEEE International Workshop on Robot
and Human Interactive Communication, September 25 – 27, 2002, pp 81 – 86

[21] Lei Cheng; Yong-Ji Wang; “Fault tolerance for communication-based multirobot
formation” International Conference on Machine Learning and Cybernetics,
August 26 – 29, 2004, pp 27 – 132, Vol.1

[22] Lucidarme, P.; Simonin, O.; Liégeois, A.; “Implementation and Evaluation of a
Satisfaction/Altruism Based Architecture for Multi-Robot Systems” International
Conference on Robotics and Automation, May, 2002, pp 1007 – 1012

[23] Mataric, M.J.; Nilsson, M.; Simsarian, K.T.; “Cooperative multi-robot box-
pushing”, IEEE/RSJ IROS, 1995, pp 556 - 561

[24] Moulin, B.; Chaib-draa, B.; “An overview of distributed artificial intelligence”,
Foundations of Distributed Artificial intelligence, John Wiley & Sons, New York,
NY, 1996, pp 3 - 55

[25] Multi Agent Systems, http://mas.colognet.org/implementation.html (August, 2005)

[26] Padhye, J.; Firoiu, V.; Towsley, D.; Kurose, J.; “Modeling TCP throughput: a
simple model and its empirical validation” ACMSIGCOMM, September, 1998

 75

[27] Tigli, J. Y.; Thomas, M. C.; “Use of multi agent systems for mobile robotics
control” IEEE International Conference Systems, Man, and Cybernetics: Humans,
Information and Technology, October 2 – 5, 1994, pp 588 – 592, Vol.1

[28] Wikipedia, http://en.wikipedia.org/wiki (February, 2005)

[29] Wooldridge, M.; “An Introduction to MultiAgent Systems”, West Sussex, England:
John Wiley & Sons Ltd. (2002)

[30] Zhang, X., Norrie, D.H.(1999), "Holonic Control at the Production and Controller
Levels", IMS 99, Leuven, Belgium, September 22-24, 1999, pp. 215 - 224.

 76

Appendix A: Implementation Application Source

Code

This appendix contains the Java source code to the Cognitive Layer software agents from

section 5.1.

A.1 Greeter

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.*;
import jade.core.AID;
import java.util.*;

public class Greeter extends Agent {
 public final int Robots = 3;

 protected void setup() {
 addBehaviour(new GreetRobot(this));
 System.out.println("Greeter has started as " + getName());
 }

 class GreetRobot extends CyclicBehaviour {
 public GreetRobot(Agent a) {
 super(a);
 }

 public void action() {
 boolean exitcode = false;
 boolean exitcode2 = false;
 LinkedList agentlist = new LinkedList();
 agentlist.clear();
 ACLMessage hello;
 System.out.println("Waiting for robots...");

 while (exitcode == false) {
 System.out.println("Number of Robots reporting: " +
agentlist.size());
 ListIterator it2 = agentlist.listIterator();
 AID t;
 int c = 0;
 while (it2.hasNext()) {
 c = c + 1;
 t = (AID)it2.next();
 System.out.println("Robot " + c + ":" + t.getLocalName());
 }

 77

 ACLMessage welcome = myAgent.blockingReceive();
 System.out.println("Received message");
 if (welcome.getPerformative() == ACLMessage.FAILURE) {
 System.out.println("Exiting program");
 exitcode = true;
 } else if (welcome.getPerformative() ==
ACLMessage.REJECT_PROPOSAL) {
 ListIterator it = agentlist.listIterator();
 while (it.hasNext()) {
 if (welcome.getSender().equals((AID)it.next())) {
 it.remove();
 System.out.println("Robot removed: " +
welcome.getSender().getLocalName());
 }
 }
 } else if (welcome.getPerformative() == ACLMessage.DISCONFIRM)
{
 System.out.println("Removing all robots.");
 agentlist.clear();
 } else if (welcome.getPerformative() == ACLMessage.CANCEL) {
 ListIterator it = agentlist.listIterator();
 AID you;
 while (it.hasNext()) {
 you = (AID)it.next();
 if (welcome.getContent().compareTo(you.getLocalName()) ==
0) {
 ACLMessage goodbye = new ACLMessage(ACLMessage.REFUSE);
 goodbye.addReceiver(you);
 myAgent.send(goodbye);
 System.out.println("Sending goobye to: " +
you.getLocalName());
 }
 }
 } else {
 ListIterator it = agentlist.listIterator();
 exitcode2 = false;
 while ((exitcode2 == false) && (it.hasNext())) {
 if (welcome.getSender().equals((AID)it.next())) {
 System.out.println("Already found instance of: " +
welcome.getSender().getLocalName());
 exitcode2 = true;
 }
 }
 if (exitcode2)
 it.remove();
 agentlist.addFirst(welcome.getSender());
 System.out.println("Adding robot "+ agentlist.size() + ": "+
welcome.getSender().getLocalName());
 if (agentlist.size() > 1) {
 ListIterator agentlistit = agentlist.listIterator();
 agentlistit.next();
 while (agentlistit.hasNext()) {
 hello = new ACLMessage(ACLMessage.CONFIRM);
 hello.setContent(Integer.toString(agentlist.size()));
 hello.clearAllReceiver();
 hello.addReceiver(welcome.getSender());
 hello.setSender((AID)agentlistit.next());

 78

 System.out.println("Sending message to " +
welcome.getSender().getLocalName());
 myAgent.send(hello);
 }
 }
 hello = new ACLMessage(ACLMessage.DISCONFIRM);
 hello.setContent("All Robots Reported");
 hello.addReceiver(welcome.getSender());
 myAgent.send(hello);
 }
 }
 }
 }
}

A.2 Commander

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.*;
import jade.core.AID;
import java.util.Iterator;
import java.util.HashMap;

public class Jade2Robot extends Agent {
 ParallelBehaviour par;
 AID reportto = null;
 String RunBeh = "";
 private ACLMessage resend = null;
 private int sentlast;

 private BehaveState bs;
 private robotMgrStub stub;

 protected void setup() {
 bs = new BehaveState();
 sentlast = 15;
 stub = new robotMgrStub(this.getLocalName(),7392,0);
 par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL);
 par.addSubBehaviour(new RecMsg(this));
 par.addSubBehaviour(new Report(this));
 addBehaviour(par);
 System.out.println("Jade 2 Robot (J2R) has started on " +
getLocalName());
 }

 class RecMsg extends CyclicBehaviour {
 public RecMsg(Agent a) {
 super(a);
 }

 public void action() {
 ACLMessage msg = myAgent.receive();
 while (msg!=null) {

 79

 System.out.println("J2R <- " + msg.getSender().getName() + " ("
+ ACLMessage.getPerformative(msg.getPerformative()) + "):" +
msg.getContent());
 if (msg.getPerformative() == ACLMessage.INFORM)
 par.addSubBehaviour(new SendStub(myAgent, msg));
 if (msg.getPerformative() == ACLMessage.SUBSCRIBE)
 par.addSubBehaviour(new Subscribe(myAgent, msg));
 if (msg.getPerformative() == ACLMessage.CANCEL)
 par.addSubBehaviour(new Unsubscribe(myAgent, msg));
 if (msg.getPerformative() == ACLMessage.REQUEST)
 par.addSubBehaviour(new Monitor(myAgent,msg));
 msg = myAgent.receive();
 }
 block();
 }
 }

 class SendStub extends OneShotBehaviour {
 private ACLMessage msg;
 public SendStub(Agent a, ACLMessage Mess) {
 super(a);
 msg = Mess;
 }
 public void action() {
 int val = 0;
 String stuff[] = msg.getContent().split(":",2);
 if (stuff[0].compareTo(RunBeh) == 0)
 {
 System.out.println("J2R Maintaining Behaviour:" + stuff[0]);
 }
 else
 {
 stub.ActivateBehaviour("","");
 stub.ActivateBehaviour(stuff[0],stuff[1]);
 System.out.println("J2R Activate Behaviour: " + stuff[0] + " -
" + stuff[1]);
 RunBeh = stuff[0];
 }
 }
 }

 class Subscribe extends OneShotBehaviour {
 private ACLMessage msg;

 public Subscribe(Agent a, ACLMessage Mess) {
 super(a);
 msg = Mess;
 }

 public void action() {
 reportto = msg.getSender();
 System.out.println("J2R New Subscriber set to:" +
reportto.getName());
 par.addSubBehaviour(new Reply(myAgent,msg,ACLMessage.AGREE));
 }
 }

 80

 class Unsubscribe extends OneShotBehaviour {
 private ACLMessage msg;
 public Unsubscribe(Agent a, ACLMessage Mess) {
 super(a);
 msg = Mess;
 }
 public void action() {
 if (reportto == msg.getSender())
 reportto = null;
 System.out.println("J2R Subscriber removed");
 }
 }

 class Monitor extends OneShotBehaviour {
 private ACLMessage msg;
 public Monitor(Agent a, ACLMessage Mess) {
 super(a);
 msg=Mess;
 }
 public void action() {
 while (stub.MonitorVariable(msg.getContent()) == false);
 stub.SetVariable(msg.getContent(),0);
 System.out.println("J2R Now Monitoring:" + msg.getContent());
 par.addSubBehaviour(new Reply(myAgent,msg,ACLMessage.AGREE));
 }
 }

 class Report extends CyclicBehaviour {
 public Report(Agent a) {
 super(a);
 }
 private ACLMessage msg;
 private String stuff = new String();
 private Integer temp = new Integer(1);
 public void action() {
 int i;
 if (!(reportto == null)) {
 if (stub.GetState(bs,1)) {
 i = bs.mVariable.size();
 stuff = i + "!";
 for (Iterator it = bs.mVariable.keySet().iterator();
it.hasNext();) {
 String key = (String)(it.next());
 stuff += key + ":" + (Integer)bs.mVariable.get(key) + "!";
 }
 stuff = stuff.substring(0,stuff.length()-1);
 msg = new ACLMessage(ACLMessage.INFORM);
 resend = new ACLMessage(ACLMessage.INFORM);
 msg.addReceiver(reportto);
 resend.addReceiver(reportto);
 msg.setContent(stuff);
 resend.setContent(stuff);
 //System.out.println("J2R Reporting: " + stuff);
 myAgent.send(msg);
 sentlast = 0;
 }
 else

 81

 {
 sentlast++;
 if (sentlast == 10)
 myAgent.send(resend);
 if (sentlast == 10000)
 sentlast=11;
 }
 }
 }
 }

 class Reply extends OneShotBehaviour {
 ACLMessage msg;
 int perf;
 public Reply(Agent a, ACLMessage Mess, int per) {
 super(a);
 msg = Mess;
 perf = per;
 }
 public void action() {
 ACLMessage reply = new ACLMessage(perf);
 reply.addReceiver(msg.getSender());
 myAgent.send(reply);
 }
 }
}

A.3 Single Robot Implementation

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.*;
import jade.core.AID;

public class BestView extends Agent {
 ParallelBehaviour par;
 SequentialBehaviour seq;
 private AID j2r = new AID("mag1",AID.ISLOCALNAME);

 protected boolean postFound = false;
 protected boolean postCentered = false;
 protected boolean postClose = false;
 protected boolean panAt90 = false;
 protected boolean atBestCorner = false;
 protected int state = 0;

 protected void setup() {
 seq = new SequentialBehaviour(this);
 seq.addSubBehaviour(new Startup(this));
 par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL);
 par.addSubBehaviour(new RecMsg(this));
 seq.addSubBehaviour(par);
 System.out.println("Bestview Agent is running as " + getName());
 addBehaviour(seq);
 }

 82

 class Startup extends OneShotBehaviour {
 public Startup(Agent a) {
 super(a);
 }
 public void action() {
 SequentialBehaviour seq2 = new SequentialBehaviour(myAgent);
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postCentered",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postFound",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postClose",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"panAt90",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"atBestCorner",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"",
ACLMessage.SUBSCRIBE));
 par.addSubBehaviour(seq2);
 }
 }

 class Send2J2R extends OneShotBehaviour {
 String var;
 int perf;
 public Send2J2R(Agent a, String inside, int type) {
 super(a);
 var = inside;
 perf = type;
 }
 public void action() {
 ACLMessage reply = new ACLMessage(ACLMessage.REFUSE);
 while (reply.getPerformative() != ACLMessage.AGREE) {
 ACLMessage msg = new ACLMessage(perf);
 msg.addReceiver(j2r);
 msg.setContent(var);
 myAgent.send(msg);
 reply = myAgent.blockingReceive();
 }
 }
 }

 class RecMsg extends CyclicBehaviour {
 public RecMsg(Agent a) {
 super(a);
 }
 public SequentialBehaviour seq3;
 public void action() {
 ACLMessage msg = myAgent.receive();
 if (msg!=null) {
 System.out.println(myAgent.getLocalName() + " <- " +
msg.getSender().getName() + " (" +
ACLMessage.getPerformative(msg.getPerformative()) + "):" +
msg.getContent());
 //if (msg.getSender().getName().compareTo(j2r.getName()) == 0)
{

 83

 if (msg.getPerformative() == ACLMessage.INFORM)
 {
 seq3 = new SequentialBehaviour(myAgent);
 seq3.addSubBehaviour(new UpdateVar(myAgent, msg));
 seq3.addSubBehaviour(new StateMachine(myAgent));
 par.addSubBehaviour(seq3);
 }
 //}
 //else {
 //This is for later...
 //}
 }
 block();
 }
 }

 class StateMachine extends OneShotBehaviour {
 public StateMachine(Agent a) {
 super(a);
 }

 public void action() {
 System.out.println("State = " + state);
 switch (state) {
 case 0: if (postFound)
 state++;
 break;
 case 1: if (!postFound)
 state = 0;
 else if (postCentered && postClose)
 state++;
 break;
 case 2: if (!postFound)
 state = 0;
 else if (postCentered && panAt90)
 state++;
 break;
 case 3: if (!postFound)
 state = 0;
 else if (atBestCorner)
 state++;
 break;
 case 4: if (!postFound)
 state = 0;
 else if (!atBestCorner)
 state--;
 break;
 }
 switch (state) {
 case 0: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"findPost:0")); break;
 case 1: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"approachPost:0")); break;
 case 2: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"readyPivot:0")); break;
 case 3: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"Pivot:0")); break;

 84

 case 4: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"onAlert:0")); break;
 default: par.addSubBehaviour(new SetNewBehaviour(myAgent,
":0")); break;
 }
 }
 }

 class SetNewBehaviour extends OneShotBehaviour {
 private String behave;

 public SetNewBehaviour(Agent a, String beh) {
 super(a);
 behave = beh;
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

 public void action() {
 msg.addReceiver(j2r);
 msg.setContent(behave);
 //System.out.println("Setting Behaviour to" + behave);
 myAgent.send(msg);
 }
 }

 class Subscribe extends OneShotBehaviour {
 public Subscribe(Agent a) {
 super(a);
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.SUBSCRIBE);

 public void action() {
 msg.addReceiver(j2r);
 myAgent.send(msg);
 }
 }

 class Unsubscribe extends OneShotBehaviour {
 public Unsubscribe(Agent a, ACLMessage Mess) {
 super(a);
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.CANCEL);

 public void action() {
 msg.addReceiver(j2r);
 myAgent.send(msg);
 }
 }

 class UpdateVar extends OneShotBehaviour {
 private ACLMessage msg;
 public UpdateVar(Agent a, ACLMessage Mess) {
 super(a);
 msg = Mess;

 85

 }
 public void action() {
 boolean temp;
 String updates[] = msg.getContent().split("!");
 for (int i=1; i <= Integer.parseInt(updates[0]); i++)
 {
 String var[] = updates[i].split(":",2);
 temp = false;
 if (var[1].compareTo("1") == 0)
 temp = true;
 System.out.println(var[0] + "-" + var[1] + "=" + temp);
 if (var[0].compareTo("postFound") == 0)
 postFound = temp;
 if (var[0].compareTo("postClose") == 0)
 postClose = temp;
 if (var[0].compareTo("postCentered") == 0)
 postCentered = temp;
 if (var[0].compareTo("panAt90") == 0)
 panAt90 = temp;
 if (var[0].compareTo("atBestCorner") == 0)
 atBestCorner = temp;
 }
 //System.out.println(myAgent.getLocalName() + ": pf=" + postFound
+ ", pcent=" + postCentered + ", pc=" + postClose);
 }
 }
}

A.4 Multiple Robot Implementation

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.*;
import jade.core.AID;
import java.math.*;
import java.io.*;
import java.util.*;

public class MBestView extends Agent {
 ParallelBehaviour par;
 SequentialBehaviour seq;
 private AID j2r;
 //private AID friend1 = new AID();
 //private AID friend2 = new AID();
 private AID Greeter;

 class AIDitem {
 public AID agent;
 public boolean playing = false;
 public boolean ready = false;
 public boolean degreefound = false;
 public int degree = -1;
 public int goodDegree = -1;
 public AIDitem(ACLMessage msg) {
 agent = msg.getSender();
 ready = false;

 86

 degreefound = false;
 degree = -1;
 goodDegree = -1;
 }
 public AIDitem() {
 agent = null;
 ready = false;
 degreefound = false;
 degree = -1;
 goodDegree = -1;
 }
 }

 AIDitem findinlist(LinkedList l, AID i) {
 Iterator it = l.iterator();
 AIDitem me = null;
 AIDitem me2 = null;
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 if (me.agent.equals(i))
 me2 = me;
 }
 return me2;
 }

 private LinkedList friends = new LinkedList();
 private LinkedList playFriends = new LinkedList();

 protected boolean postFound = false;
 protected boolean postCentered = false;
 protected boolean postClose = false;
 protected boolean ready = false;
 //protected boolean other1ready = false;
 //protected boolean other2ready = false;
 protected boolean panAt90 = false;
 protected boolean atBestCorner = false;
 protected boolean HALTER;
 protected boolean QUITER = false;
 protected boolean RESET = false;
 protected boolean newAngleRec = false;
 protected boolean newAngleFound = false;
 protected int state = 0;
 protected boolean degreeFound = false;
 protected int gooddegree = 0;
 //protected boolean f1degreeFound = false;
 //protected int friend1degree = -1;
 //protected boolean f2degreeFound = false;
 //protected int friend2degree = -1;
 protected int curdegree = -1;

 protected void setup() {
 seq = new SequentialBehaviour(this);
 seq.addSubBehaviour(new Startup(this));
 par = new ParallelBehaviour(this, ParallelBehaviour.WHEN_ALL);
 par.addSubBehaviour(new RecMsg(this));
 seq.addSubBehaviour(par);
 System.out.println("Bestview Agent is running as " + getName());

 87

 HALTER = true; //This should send a hello to each robot
 addBehaviour(seq);
 }

 class Startup extends OneShotBehaviour {
 public Startup(Agent a) {
 super(a);
 }
 public void action() {
 SequentialBehaviour seq2 = new SequentialBehaviour(myAgent);
 seq2.addSubBehaviour(new sendGreeterHello(myAgent));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postCentered",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postFound",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"postClose",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"panAt90",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"atBestCorner",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"degree",
ACLMessage.REQUEST));
 seq2.addSubBehaviour(new Send2J2R(myAgent,"",
ACLMessage.SUBSCRIBE));
 par.addSubBehaviour(seq2);
 }
 }

 class sendGreeterHello extends OneShotBehaviour {
 public sendGreeterHello(Agent a) {
 super(a);
 }

 public void action() {
 // Setup J2R
 try {
 BufferedReader in = new BufferedReader(new
FileReader("myname.txt"));
 String str;
 str = in.readLine();
 j2r = new AID(str,AID.ISLOCALNAME);
 in.close();
 System.out.println("The J2R is " + str);
 } catch (IOException e) {
 }

 //Send Message to Greeter
 ACLMessage msg = new ACLMessage(ACLMessage.CONFIRM);
 //Read Greeter Corba Address From File
 Greeter = new
AID("Greeter@fusion.uwaterloo.ca:1099/JADE",AID.ISGUID);
 try {
 BufferedReader in = new BufferedReader(new
FileReader("Greeter.txt"));
 String str;
 str = in.readLine();

 88

 Greeter.addAddresses(str);
 in.close();
 } catch (IOException e) {
 }
 msg.addReceiver(Greeter);
 myAgent.send(msg);

 //Wait for messages from the greeter:
 ACLMessage welcome = myAgent.blockingReceive();
 while (welcome.getPerformative() != ACLMessage.DISCONFIRM) {
 friends.addLast(new AIDitem(welcome));
 System.out.println("Hello new friend: " +
welcome.getSender().getName());
 welcome = myAgent.blockingReceive();
 }
 }
 }

 class Send2J2R extends OneShotBehaviour {
 String var;
 int perf;
 public Send2J2R(Agent a, String inside, int type) {
 super(a);
 var = inside;
 perf = type;
 }
 public void action() {
 ACLMessage reply = new ACLMessage(ACLMessage.REFUSE);
 while (reply.getPerformative() != ACLMessage.AGREE) {
 ACLMessage msg = new ACLMessage(perf);
 msg.addReceiver(j2r);
 msg.setContent(var);
 myAgent.send(msg);
 reply = myAgent.blockingReceive();
 }
 }
 }

 class RecMsg extends CyclicBehaviour {
 public RecMsg(Agent a) {
 super(a);
 }
 public SequentialBehaviour seq3;
 public void action() {
 ACLMessage msg = myAgent.receive();
 while (msg!=null) {
 System.out.println("*************** GOT MESSAGE!:
********************");
 System.out.println(myAgent.getLocalName() + " <- " +
msg.getSender().getName() + " (" +
ACLMessage.getPerformative(msg.getPerformative()) + "):" +
msg.getContent());
 if (msg.getPerformative() == ACLMessage.INFORM) {
 seq3 = new SequentialBehaviour(myAgent);
 seq3.addSubBehaviour(new UpdateVar(myAgent, msg));
 // seq3.addSubBehaviour(new StateMachine(myAgent));
Don't think I need two here.

 89

 seq3.addSubBehaviour(new StateMachine(myAgent));
 par.addSubBehaviour(seq3);
 }
 else if (msg.getPerformative() == ACLMessage.CFP) {
 RESET = true;

 //Do we know this robot yet?
 Iterator friendsit = friends.iterator();
 AIDitem me = null;
 AIDitem me2 = null;
 while (friendsit.hasNext()) {
 me = (AIDitem)friendsit.next();
 if (me.agent.equals(msg.getSender()))
 me2 = me;
 }
 if (me2 == null) {
 me2 = new AIDitem(msg);
 friends.addLast(me2);

 ACLMessage hello = new ACLMessage(ACLMessage.CFP);
 hello.addReceiver(msg.getSender());
 hello.setContent("Nice to meet you!");
 myAgent.send(hello);
 }

 //Reset the robot's variables
 me2.ready = false;
 me2.degreefound = false;
 me2.degree = -1;

 //Add robot to working robots
 Iterator pfit = playFriends.iterator();
 AIDitem me3 = null;
 AIDitem me4 = null;
 while (pfit.hasNext()) {
 me3 = (AIDitem)pfit.next();
 if (me3.agent.equals(me2.agent))
 me4 = me3;
 }
 if (me4 == null) {
 playFriends.addLast(me2);
 }
 par.addSubBehaviour(new StateMachine(myAgent));
 }
 else if (msg.getPerformative() == ACLMessage.FAILURE) {
 HALTER = true;
 playFriends.clear();
 par.addSubBehaviour(new StateMachine(myAgent));
 }
 else if (msg.getPerformative() == ACLMessage.PROPOSE) {
 Iterator playFriendsit = playFriends.iterator();
 AIDitem me = null;
 AIDitem me2 = null;
 while (playFriendsit.hasNext()) {
 me = (AIDitem)playFriendsit.next();
 if (me.agent.equals(msg.getSender()))
 me2 = me;

 90

 }
 if (me2 == null) {
 System.out.println("ERROR FRIEND NOT FOUND: " +
msg.getSender().getLocalName());
 ACLMessage err = new ACLMessage(ACLMessage.NOT_UNDERSTOOD);
 err.setContent("You have not registered with me.");
 err.addReceiver(msg.getSender());
 myAgent.send(err);
 }
 else {
 me2.ready = true;
 }
 par.addSubBehaviour(new StateMachine(myAgent));
 }
 else if (msg.getPerformative() == ACLMessage.INFORM_REF) {

 Iterator playFriendsit = playFriends.iterator();
 AIDitem me = null;
 AIDitem me2 = null;
 while (playFriendsit.hasNext()) {
 me = (AIDitem)playFriendsit.next();
 if (me.agent.equals(msg.getSender()))
 me2 = me;
 }
 if (me2 == null) {
 System.out.println("ERROR FRIEND NOT FOUND: " +
msg.getSender().getLocalName());
 ACLMessage err = new ACLMessage(ACLMessage.NOT_UNDERSTOOD);
 err.setContent("You have not registered with me.");
 err.addReceiver(msg.getSender());
 myAgent.send(err);
 }
 else {
 me2.degreefound = true;
 me2.degree = Integer.parseInt(msg.getContent());
 System.out.println("GOT DEGREES: " + msg.getContent() + ":
Degrees = " + me2.degree);
 newAngleRec = true;
 }

 par.addSubBehaviour(new StateMachine(myAgent));
 }
 else if (msg.getPerformative() == ACLMessage.REJECT_PROPOSAL) {
 //Robot is told that it this other robot is quiting.
 Iterator friendsit = friends.iterator();
 AIDitem me = null;
 while (friendsit.hasNext()) {
 me = (AIDitem)friendsit.next();
 if (me.agent.equals(msg.getSender())) {
 friendsit.remove();
 playFriends.clear();
 HALTER = true;
 }
 //Might need to put some check in here.
 System.out.println("This robot has QUIT the system: " +
msg.getSender().getLocalName());
 }

 91

 par.addSubBehaviour(new StateMachine(myAgent));
 }
 else if (msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD) {
 //Not in their lists, this means we need to resart
 System.out.println("RESARTING FOR NOT BEING IN ACTIVE LIST");

 ACLMessage halty = new ACLMessage(ACLMessage.FAILURE);
 AIDitem me = null;
 Iterator it = friends.iterator();
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 halty.addReceiver(me.agent);
 }
 myAgent.send(halty);
 }
 else if (msg.getPerformative() == ACLMessage.REFUSE) {
 //This robot is told to quit.
 QUITER = true;
 par.addSubBehaviour(new sendQuit(myAgent));
 }
 msg = myAgent.receive();
 }
 block();
 }
 }

 class sendRobotHello extends OneShotBehaviour {
 public sendRobotHello(Agent a) {
 super(a);
 }

 public void action() {
 ListIterator friendsit = friends.listIterator();
 ACLMessage hiRobot = new ACLMessage(ACLMessage.CFP);
 while (friendsit.hasNext()) {
 AIDitem robot = (AIDitem)friendsit.next();
 hiRobot.addReceiver(robot.agent);
 hiRobot.setContent("Greetings!");
 }
 myAgent.send(hiRobot);
 }
 }

 class StateMachine extends OneShotBehaviour {
 public StateMachine(Agent a) {
 super(a);
 }

 public void action() {
 int oldstate = -1;
 while (oldstate != state) {
 oldstate = state;
 if (HALTER || RESET)
 state = 11;
 if (QUITER)
 state = 12;
 switch (state) {

 92

 case 0: if (postFound) //Find the post
 state++;
 break;

 case 1: if (!postFound) //Centre in on the post and approch
it
 state = 0;
 else if (postCentered && postClose) {
 state++;
 par.addSubBehaviour(new sendReady(myAgent));
 }
 break;

 case 2: Iterator it = playFriends.iterator();
 AIDitem me = null;
 boolean friendsready = true;
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 if (me.ready != true)
 friendsready = false;
 }
 if ((friendsready) && (ready))
 state++;
 break;

 case 3: newAngleFound = false;
 if (!postFound)
 state = 10;
 else if (postCentered && panAt90) {
 state++;
 degreeFound = false;
 par.addSubBehaviour(new sendDegree(myAgent));
 }
 break;

 case 4: newAngleRec = false;
 if (!postFound)
 state = 10;
 else if (newAngleFound) {
 newAngleFound = false;
 state = 3;
 }
 else if (degreeFound)
 state++;
 break;

 case 5: if (!postFound)
 state = 10;
 else if (newAngleRec) {
 newAngleRec = false;
 degreeFound = false;
 state = 4;
 }
 else if (newAngleFound) {
 newAngleFound = false;
 state = 3;
 }

 93

 else if (atBestCorner)
 state++;
 break;

 case 6: if (!postFound)
 state = 10;
 else if (newAngleRec) {
 newAngleRec = false;
 degreeFound = false;
 state = 4;
 }
 else if (newAngleFound) {
 newAngleFound = false;
 state = 3;
 }
 else if (!atBestCorner)
 state--;
 break;

 case 10: par.addSubBehaviour(new sendHalt(myAgent));
 state++;
 break;

 //Halt & Reset State
 case 11:
 degreeFound = false;
 ready = false;
 gooddegree = -1;

 AIDitem me2 = null;
 Iterator it2 = friends.iterator();
 while (it2.hasNext()) {
 me2 = (AIDitem)it2.next();
 me2.ready = false;
 me2.degree = -1;
 me2.degreefound = false;
 }
 Iterator it3 = playFriends.iterator();
 while (it3.hasNext()) {
 me2 = (AIDitem)it3.next();
 me2.ready = false;
 me2.degree = -1;
 me2.degreefound = false;
 }

 if (!RESET)
 par.addSubBehaviour(new sendRobotHello(myAgent));
 HALTER = false;
 RESET = false;
 state = 0;
 break;

 case 12:
 System.out.println("Robot has quit");
 break;
 default:

 94

 System.out.println("Not in normal state.");
 state = 10;
 break;

 }
 switch (state) {
 case 0: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"findPost:0")); break;
 case 1: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"approachPost:0")); break;
 case 3: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"readyPivot:0")); break;
 case 4: par.addSubBehaviour(new findDegree(myAgent)); break;
 case 5: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"Pivot:"+Integer.toString(gooddegree))); break;
 case 6: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"onAlert:0")); break;
 case 12: par.addSubBehaviour(new SetNewBehaviour(myAgent,
"stop:0")); break;
 default: par.addSubBehaviour(new SetNewBehaviour(myAgent,
":0")); break;
 } //Hey Darren, “Heh Heh, Alright.”
 System.out.println("State = " + state + " Number of Robots = "
+ playFriends.size() + " GoodDegree = " + gooddegree);
 }
 }
 }

 class SetNewBehaviour extends OneShotBehaviour {
 private String behave;

 public SetNewBehaviour(Agent a, String beh) {
 super(a);
 behave = beh;
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

 public void action() {
 msg.addReceiver(j2r);
 msg.setContent(behave);
 System.out.println("Setting Behaviour to" + behave);
 myAgent.send(msg);
 }
 }

 class sendHalt extends OneShotBehaviour {
 public sendHalt(Agent a) {
 super(a);
 }
 private ACLMessage halty = new ACLMessage(ACLMessage.FAILURE);

 public void action() {
 AIDitem me = null;
 Iterator it = friends.iterator();
 while (it.hasNext()) {
 me = (AIDitem)it.next();

 95

 halty.addReceiver(me.agent);
 }
 myAgent.send(halty);
 }
 }

 class sendQuit extends OneShotBehaviour {
 public sendQuit(Agent a) {
 super(a);
 }
 private ACLMessage halty = new
ACLMessage(ACLMessage.REJECT_PROPOSAL);

 public void action() {
 AIDitem me = null;
 Iterator it = friends.iterator();
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 halty.addReceiver(me.agent);
 }
 halty.addReceiver(Greeter);
 myAgent.send(halty);
 System.out.println("Robot has quit the system");
 while (true);
 }
 }

 class sendReady extends OneShotBehaviour {
 public sendReady(Agent a) {
 super(a);
 }
 private ACLMessage msg = new ACLMessage(ACLMessage.PROPOSE);

 public void action() {
 ready = true;
 AIDitem me = null;
 Iterator it = playFriends.iterator();
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 me.degreefound = false;
 me.degree = -1;
 msg.addReceiver(me.agent);
 }
 myAgent.send(msg);
 }
 }

 class sendDegree extends OneShotBehaviour {
 public sendDegree(Agent a) {
 super(a);
 }
 private ACLMessage msg = new ACLMessage(ACLMessage.INFORM_REF);
 public void action() {
 AIDitem me = null;
 Iterator it = playFriends.iterator();
 while (it.hasNext()) {
 me = (AIDitem)it.next();

 96

 msg.addReceiver(me.agent);
 }
 msg.setContent(Integer.toString(curdegree));
 System.out.println("SENDING DEGREES: " + msg.getContent());
 System.out.println("CURRENT DEGREES: " + curdegree);
 myAgent.send(msg);
 }
 }

 class findDegree extends OneShotBehaviour {
 public findDegree(Agent a) {
 super(a);
 }

 public void action() {
 int tempdegree = curdegree; //this should lock the variable
curdegree for processing
 int numrobots = playFriends.size();

 boolean friendsready = true;
 Iterator it = playFriends.iterator();
 int i = -1;
 AIDitem me = null;
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 i++;
 if (me.degreefound == false)
 friendsready = false;
 System.out.println(me.agent.getLocalName() + " has a degree
setting of " + me.degree);
 }

 if ((friendsready) && (degreeFound == false)) {
 //Insertion Sort
 //Aldash, how about some more white spirit?
 LinkedList ordfri = new LinkedList();
 ListIterator ito;
 ordfri.clear();
 AIDitem pme = new AIDitem();
 pme.degree = tempdegree;
 ordfri.addFirst(pme);
 it = playFriends.iterator();
 AIDitem meo = null;
 while (it.hasNext()) {
 me = (AIDitem)it.next();
 ito = ordfri.listIterator();
 boolean breakout = false;
 while ((ito.hasNext()) && (!breakout)) {
 meo = (AIDitem)ito.next();
 if (me.degree < meo.degree)
 breakout = true;
 }
 if (breakout)
 ito.previous();
 ito.add(me);
 }

 97

 Iterator errit = ordfri.iterator();
 AIDitem errd = null;
 while (errit.hasNext()) {
 errd = (AIDitem)errit.next();
 if (errd.agent == null)
 System.out.println("Robot " + "me" + " has a degree setting
of " + errd.degree);
 else
 System.out.println("Robot " + errd.agent.getLocalName() + "
has a degree setting of " + errd.degree);
 }

 //Test the 2 solutions
 int div = (360/(numrobots+1));
 int test1 = 0;
 int test2 = 0;
 int tempy1 = 0;
 int tempy2 = 0;
 int c;
 ito = ordfri.listIterator();
 for (c=0;c<(numrobots+1);c++) {
 meo = (AIDitem)ito.next();
 tempy1 = meo.degree - c*div;
 tempy2 = meo.degree - (c+1)*div;
 if (meo.agent == null) {
 System.out.println("Robot " + "me" + " with a degree of " +
meo.degree + " going to " + c*div + " = " + tempy1);
 System.out.println("Robot " + "me" + " with a degree of " +
meo.degree + " going to " + (c+1)*div + " = " + tempy2);
 } else {
 System.out.println("Robot " + meo.agent.getLocalName() + "
with a degree of " + meo.degree + " going to " + c*div + " = " +
tempy1);
 System.out.println("Robot " + meo.agent.getLocalName() + "
with a degree of " + meo.degree + " going to " + (c+1)*div + " = " +
tempy2);
 }
 if (tempy1 < 0)
 tempy1 = tempy1 * (-1);
 if (tempy2 < 0)
 tempy2 = tempy2 * (-1);
 test1 = test1 + tempy1;
 test2 = test2 + tempy2;
 }
 System.out.println("Test 1: " + test1 + ", Test 2: " + test2);
 c = 0;
 if (test2 > test1)
 c = c + div;
 ListIterator ito2 = ordfri.listIterator();
 while (ito2.hasNext()) {
 meo = (AIDitem)ito2.next();
 c = c + div;
 if (c >= 360)
 c = 0;
 meo.goodDegree = c;
 }

 98

 gooddegree = pme.goodDegree;

 errit = ordfri.iterator();
 errd = null;
 while (errit.hasNext()) {
 errd = (AIDitem)errit.next();
 if (errd.agent == null) {
 System.out.println("Robot " + "me" + " should go to " +
errd.goodDegree);
 gooddegree = errd.goodDegree;
 }
 else
 System.out.println("Robot " + errd.agent.getLocalName() + "
has a degree setting of " + errd.goodDegree);
 }
 System.out.println("Going to: " + gooddegree);
 degreeFound = true;
 }
 else
 degreeFound = false;
 }
 }

 class Subscribe extends OneShotBehaviour {
 public Subscribe(Agent a) {
 super(a);
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.SUBSCRIBE);

 public void action() {
 msg.addReceiver(j2r);
 myAgent.send(msg);
 }
 }

 class Unsubscribe extends OneShotBehaviour {
 public Unsubscribe(Agent a, ACLMessage Mess) {
 super(a);
 }

 private ACLMessage msg = new ACLMessage(ACLMessage.CANCEL);

 public void action() {
 msg.addReceiver(j2r);
 myAgent.send(msg);
 }
 }
 //Maria, she’s just this girl, you know?

 class UpdateVar extends OneShotBehaviour {
 private ACLMessage msg;
 public UpdateVar(Agent a, ACLMessage Mess) {
 super(a);
 msg = Mess;
 }
 public void action() {

 99

 boolean temp;
 int tempdegree;
 String updates[] = msg.getContent().split("!");
 //Jessica & Noah – I’m actually done. Really. No Joke.
 for (int i=1; i <= Integer.parseInt(updates[0]); i++) {
 String var[] = updates[i].split(":",2);
 temp = false;
 if (var[1].compareTo("1") == 0)
 temp = true;
 //System.out.println(var[0] + " -- " + var[1] + " = " + temp);
 if (var[0].compareTo("postFound") == 0)
 postFound = temp;
 if (var[0].compareTo("postClose") == 0)
 postClose = temp;
 if (var[0].compareTo("postCentered") == 0)
 postCentered = temp;
 if (var[0].compareTo("panAt90") == 0)
 panAt90 = temp;
 if (var[0].compareTo("atBestCorner") == 0)
 atBestCorner = temp;
 if (var[0].compareTo("degree") == 0) {
 tempdegree = Integer.parseInt(var[1]);
 if (((curdegree - tempdegree) > 20) ||
 ((tempdegree - curdegree) > 20)) {
 newAngleFound = true;
 }
 curdegree = tempdegree;
 }
 }
 }
 }
}

 100

Appendix B: Real-Time Experiment Source

Code

This appendix contains the Java and C++ source code from the experiment conducted in

section 5.2.

B.1 Cognitive Layer

/*
 * speedtest.java
 *
 * Created on August 27, 2004, 12:43 AM
*/

/**
 *
 * @author Bram Gruneir
 */

import java.util.*;
import java.lang.*;
import java.io.*;
import java.net.*;

public class speedtest extends java.lang.Object {

 static Random r = new Random();
 static long ts;
 static long te;
 static long total;

 /** Creates a new instance of speedtest */
 public speedtest() {
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 System.out.println("Starting Communications Tester");
 r.setSeed(System.currentTimeMillis());
 System.out.println("The current time in ms is = " +
System.currentTimeMillis());

 if (args[0].equalsIgnoreCase("s")) {
 System.out.println("Short data");

 101

 }
 else if (args[0].equalsIgnoreCase("m")) {
 System.out.println("Medium data");
 }
 else {
 System.out.println("Long data");
 }

 int max = 100;
 int maxTimes = Integer.parseInt(args[1]);

 System.out.println("Data sent: " + (max*maxTimes));

 String[] s = new String[max];

 int c;
 int c2;

 for (int c3=0; c3<1; c3++) {
 for (c = 0; c < max; c++) {
 if (args[0].equalsIgnoreCase("s")) {
 s[c] = createshort();
 }
 else if (args[0].equalsIgnoreCase("m")) {
 s[c] = createmedium();
 }
 else {
 s[c] = createlong();
 }
 }

 //System.out.println("The Length of the string is: " +
s[c].length());
 ts = System.currentTimeMillis();
 connectTCP(6004,6005);
 for (c = 0; c < maxTimes; c++) {
 for (c2 = 0; c2 < max; c2++){
 //sendOverFiles(s[c2], "/usr/tmp/outtest.txt",
"/usr/tmp/intest.txt");
 //sendOverUDP(s[c2], 6000, 6001);
 sendOverTCP(s[c2]);
 }
 //System.out.println(c);
 }
 disconnectTCP();
 te = System.currentTimeMillis();
 total = te - ts;
 System.out.println("The total number of ticks is: " + total);
}
 System.exit(0);
 }

 /*simulates commands (5-10 characters)*/
 public static String createshort() {
 int l = r.nextInt(6) + 5;
 byte[] b = new byte[l];
 r.nextBytes(b);

 102

 String test = new String(b,0,l);
 //System.out.println("-" + test + "-");
 return test;
 }

 /*variables updates (100-1000) characters*/
 public static String createmedium() {
 int l = r.nextInt(901) + 100;
 byte[] b = new byte[l];
 r.nextBytes(b);
 String test = new String(b,0,l);
 //System.out.println("-" + test + "-");
 return test;
 }

 /*simulates a 320x200x256 size image - 64000 bytes*/
 public static String createlong() {
 int l = 64000;
 byte[] b = new byte[l];
 r.nextBytes(b);
 String test = new String(b,0,l);
 //System.out.println("-" + test + "-");
 return test;
 }

 // 64000 byte limit on UDP!
 public static void sendOverUDP(String s, int outPort, int inPort) {
 try {
 int l = s.length();
 /*Set to local host*/
 InetAddress addr = InetAddress.getByName("0.0.0.0");
 DatagramSocket din = new DatagramSocket(inPort,addr);
 DatagramSocket dout = new DatagramSocket();
 byte[] bout = s.getBytes();
 DatagramPacket pout = new DatagramPacket(bout,l,addr,outPort);
 dout.send(pout);

 /* This should block */
 byte[] bin = new byte[l];
 DatagramPacket pin = new DatagramPacket(bin,l);
 din.receive(pin);

 din.close();
 dout.close();
 }
 catch (java.net.SocketException e) {
 }
 catch (java.io.IOException e2) {
 }
 }

 public static ServerSocket tcpServSock;
 public static Socket tcpOutSock;
 public static Socket tcpInSock;
 public static DataInputStream ins;
 public static PrintStream ps;

 103

 public static void connectTCP(int outPort, int inPort) {
 try {
 /*Set to local host*/
 InetAddress addr = InetAddress.getByName("0.0.0.0");
 tcpServSock = new ServerSocket(inPort);
 tcpOutSock = new Socket(addr,outPort);
 tcpInSock = tcpServSock.accept();

 ps = new PrintStream(tcpOutSock.getOutputStream());
 ins = new DataInputStream(tcpInSock.getInputStream());
 }
 catch (java.net.SocketException e) {
 }
 catch (java.io.IOException e2) {
 }
 }

 public static void disconnectTCP() {
 try {
 System.out.println("TCP Disconnect");
 tcpOutSock.close();
 tcpInSock.close();
 tcpServSock.close();
 }
 catch (java.net.SocketException e) {
 }
 catch (java.io.IOException e2) {
 }
 }

 // No limit on data, but must have handshakes
 public static void sendOverTCP(String s) {
 try {
 int l = s.length();
 /*Set to local host*/
 //System.out.println("TCP");

 //Send data
 ps.print(s);

 //Get Data
 byte[] bin = new byte[l];
 int cur = 0;
 while (cur < l)
 cur = cur + ins.read(bin,0,l);
 }
 catch (java.net.SocketException e) {
 }
 catch (java.io.IOException e2) {
 }
 }

 public static void sendOverStub(String s) {
 }

 /*Possible future implementation*/
 public static void sendOverMessaging(String s) {

 104

 }

 /*Possible future implementation*/
 public static void sendOverSharedMemory(String s) {
 }

 public static void sendOverFiles(String s, String sendName, String
getName) {
 try {
 File outputFileTEMP = new File("/usr/tmp/tempjava.txt");
 File outputFile = new File(sendName);
 File inputFile = new File(getName);
 FileWriter out = new FileWriter(outputFileTEMP);

 out.write(s);
 out.close();
 while (!outputFileTEMP.renameTo(outputFile));

 int l = s.length();
 char[] ch = new char[l];
 //System.out.println("File " + sendName + " sent, waiting for
reply in "+ getName);
 while (!inputFile.exists());
 while (!inputFile.canRead());
 FileReader in = new FileReader(inputFile);
 in.read(ch);
 in.close();
 inputFile.delete();
 }
 catch (java.io.IOException e) {
 }
 }

 public static float testshort(int t) {
 return 0;
 }

 public static float testmedium(int t) {
 return 0;
 }

 public static float testlong(int t) {
 return 0;
 }
}

B.2 UDP Action Layer

#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket() and bind() */
#include <arpa/inet.h> /* for sockaddr_in and inet_ntoa() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

 105

#define ECHOMAX 255 /* Longest string to echo */

void DieWithError(char *errorMessage)
{ /* External error handling function */
 printf(errorMessage);
 exit (-1);
}

int main(int argc, char *argv[])
{
 int insock; /* Socket */
 struct sockaddr_in inechoServAddr; /* Local address */
 struct sockaddr_in remoteechoClntAddr; /* Client address */
 unsigned int remotecliAddrLen; /* Length of incoming
message */
 char echoBuffer[ECHOMAX]; /* Buffer for echo string */
 unsigned short inechoServPort; /* Server port */
 int recvMsgSize; /* Size of received message */

 int outsock; /* Socket */
 struct sockaddr_in outechoServAddr; /* Local address */
 unsigned short outechoServPort; /* Server port */

 if (argc != 3) /* Test for correct number of parameters */
 {
 fprintf(stderr,"Usage: %s <UDP SERVER PORT> <UDP CLIENT
PORT>\n", argv[0]);
 exit(1);
 }

 inechoServPort = atoi(argv[1]); /* First arg: local port */
 outechoServPort = atoi(argv[2]); /* First arg: local port */

 /* Create socket for sending/receiving datagrams */
 if ((insock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0)
 DieWithError("socket() failed");

 /* Construct local address structure */
 memset(&inechoServAddr, 0, sizeof(inechoServAddr)); /* Zero out
structure */
 inechoServAddr.sin_family = AF_INET; /* Internet
address family */
 inechoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming
interface */
 inechoServAddr.sin_port = htons(inechoServPort); /* Local port
*/

 memset(&outechoServAddr, 0, sizeof(outechoServAddr));
 outechoServAddr.sin_family = AF_INET; /* Internet
address family */
 outechoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any
incoming interface */
 outechoServAddr.sin_port = htons(outechoServPort); /* Local
port */

 /* Bind to the local address */

 106

 if (bind(insock, (struct sockaddr *) &inechoServAddr,
sizeof(inechoServAddr)) < 0)
 DieWithError("bind() failed");

 for (;;) /* Run forever */
 {
 /* Set the size of the in-out parameter */
 remotecliAddrLen = sizeof(remoteechoClntAddr);

 /* Block until receive message from a client */
 if ((recvMsgSize = recvfrom(insock, echoBuffer, ECHOMAX, 0,
 (struct sockaddr *) &remoteechoClntAddr,
&remotecliAddrLen)) < 0)
 DieWithError("recvfrom() failed");

 //printf("Handling client %s\n",
inet_ntoa(remoteechoClntAddr.sin_addr));

 /* Send received datagram back to the client */
 if (sendto(insock, echoBuffer, recvMsgSize, 0,
 (struct sockaddr *) &outechoServAddr,
sizeof(outechoServAddr)) != recvMsgSize)
 DieWithError("sendto() sent a different number of bytes than
expected");

 }
 /* NOT REACHED */
}

B.3 TCP Action Layer

This code could not be located at the time of printing. Please contact the author for more

information.

B.4 File Action Layer

#include <stdio.h> /* for printf() and fprintf() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

int main(int argc, char *argv[])
{
 FILE *infile, *outfile;

 int temp;
 int eof;
 char buffer[64001];

 107

 while (1)
 {
 while ((infile = fopen(argv[1],"r")) == NULL) {
 }
 outfile = fopen("/usr/tmp/tempc.txt","w+");
 eof = 0;
 while (feof(infile) == 0)
 {
 temp = fread(buffer,1,64000,infile);
 fwrite(buffer,1,temp,outfile);
 }
 fclose(infile);
 unlink(argv[1]);
 fclose(outfile);
 while (rename ("/usr/tmp/tempc.txt", argv[2]) != 0) {}
 }
}

 108

Appendix C: Real-Time Experiment Table of

Results

The following tables, Table C.1 to Table C.9 contain the results from the experiment

conducted in section 5.2. The results obtained in each trial are in milliseconds.

Table C.1: UDP Short Results

Packets Sent 100 200 500 1000 2000 5000 10000 20000 50000 100000
Trial 1 79 109 195 345 627 1084 1775 3232 7536 14394
Trial 2 29 66 141 289 305 723 1458 2819 7107 13968
Trial 3 29 39 229 136 275 714 1426 2874 7096 13926
Trial 4 38 84 83 136 307 715 1359 2815 7140 13961
Trial 5 24 58 54 137 268 693 1405 2793 7099 13958
Trial 6 21 72 81 164 292 740 1429 2866 7095 13917
Trial 7 45 33 54 137 277 692 1395 2796 7138 13939
Trial 8 64 94 55 140 345 710 1413 2815 7095 13899
Trial 9 18 23 80 133 265 736 1413 2839 7101 13941
Trial 10 52 22 54 156 288 689 1369 2802 7143 13957

Table C.2: UDP Medium Results

Packets Sent 100 200 500 1000 2000 5000 10000 20000 50000 100000
Trial 1 99 132 252 430 760 1239 2103 3714 8875 20285
Trial 2 30 73 177 291 334 950 1686 3305 8272 16286
Trial 3 32 52 255 172 335 843 1655 3355 11289 26842
Trial 4 29 97 116 176 359 822 3232 3272 8303 16306
Trial 5 24 71 83 177 325 797 4228 3271 8350 16474
Trial 6 25 45 83 165 338 822 1658 4314 8566 16281
Trial 7 51 44 83 173 344 810 1657 6224 8909 25688
Trial 8 66 103 83 176 331 828 1751 3294 8586 19136
Trial 9 20 28 84 261 320 914 1675 3426 8299 16302
Trial 10 24 27 189 167 432 823 1642 3759 8372 16625

 109

Table C.3: UDP Large Results

Packets Sent 100 200 500 1000 2000 5000 10000
Trial 1 526 993 2414 4758 9342 22466 44312
Trial 2 479 928 2354 4569 8732 21659 43201
Trial 3 464 920 2331 4332 8733 21712 42984
Trial 4 467 1082 2228 4344 8731 21565 42895
Trial 5 463 932 2168 4295 8615 21426 42958
Trial 6 476 936 2176 4350 8664 21598 43003
Trial 7 468 914 2164 4441 8646 21569 42985
Trial 8 485 922 2172 4327 8588 21474 43058
Trial 9 462 885 2160 4312 8620 21478 42968
Trial 10 475 892 2186 4351 8665 21619 42977

Table C.4: TCP Short Results

Packets Sent 100 200 500 1000 2000 5000 10000
Trial 1 1046 2066 5081 10085 25175 50085 185216
Trial 2 1074 2084 5082 10064 20089 85183 100094
Trial 3 1085 2085 5087 10093 20079 85403 100200
Trial 4 1084 2082 5089 10067 20081 85192 100081
Trial 5 1085 2088 5083 10075 20083 50093 185178

Table C.5: TCP Medium Results

Packets Sent 100 200 500 1000 2000 5000 10000
Trial 1 1069 2170 5089 10077 20080 50093 100095
Trial 2 1090 2176 5078 10087 20062 50076 100069
Trial 3 1085 2117 5087 10083 20105 50089 100095
Trial 4 1088 2089 5078 10063 20082 50189 100158
Trial 5 1090 2087 5082 10069 20087 50160 192660

 110

Table C.6: TCP Large Results

Packets Sent 100 200 500 1000 2000 5000 10000
Trial 1 613 1179 2614 4947 9565 23302 46353
Trial 2 622 1166 2601 4888 9569 23461 46333
Trial 3 632 1186 2573 4936 9528 23236 46409
Trial 4 642 1194 2598 4908 9531 23203 46367
Trial 5 628 1176 2552 4902 9560 23295 46431

Table C.7: File Short Results

Packets Sent 100 200 500
Trial 1 10917 20157 53286
Trial 2 11515 21058 52186
Trial 3 10858 20619 51909
Trial 4 9718 21419 50518
Trial 5 10020 19918 51599
Trial 6 10241 19438 51418
Trial 7 10378 20638 49978
Trial 8 10139 20158 51958
Trial 9 9717 19980 50158
Trial 10 10978 20457 51597

Table C.8: File Medium Results

Packets Sent 100 200 500
Trial 1 11146 21880 52532
Trial 2 10791 22010 51951
Trial 3 10222 21455 52493
Trial 4 10344 20194 54714
Trial 5 11274 20892 55312
Trial 6 11326 19494 52074
Trial 7 10495 20623 52435
Trial 8 10615 20043 52194
Trial 9 10495 20874 53154
Trial 10 9712 21594 54353

 111

Table C.9: File Large Results

Packets Sent 100 200 500
Trial 1 10851 21828 54484
Trial 2 11017 22232 54457
Trial 3 10594 21500 54637
Trial 4 10783 22222 54014
Trial 5 10873 21499 54367
Trial 6 10610 21673 54154
Trial 7 10425 21390 54460
Trial 8 10522 21544 53005
Trial 9 10649 21751 54014
Trial 10 10222 21632 53620

 112

Appendix D: DVD Video of Implementation

Experiment

Attached to the back cover of this thesis is a DVD video demonstrating the fully

implemented architecture. The video is region free and will play in all DVD players that

are compatible with the DVD-R format.

If this is an electronic copy of this thesis or if this video is damaged or missing, a new

copy can be obtained by contacting the author of this thesis at

bgruneir@alumni.uwaterloo.ca.

Some electronic versions of this thesis may have the video stored with it. To access it,

try this link:

Architecture Demonstration Video

	Title Page
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Table of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Thesis Scope
	1.3 Contribution
	1.4 Thesis Organization

	2 Background and Literature Review
	2.1 Robots
	2.1.1 Definition
	2.1.2 Multi-Robot Design

	2.2 Agents and Agent Oriented Design
	2.2.1 Definition
	2.2.2 Multi-Agent Design
	2.2.2.1 Multi-Agent Hierarchies

	2.2.3 Multi-Agent Robotic Systems
	2.2.4 CIR Agent
	2.2.5 Real-Time Multi-Agent Design
	2.2.6 Agent Oriented Design and Software Agents

	2.3 Communications
	2.3.1 Agent/Robot Intercommunication
	2.3.2 Communication Protocol Performance

	3 Architecture of a Physical Robot Agent
	3.1 Action Layer
	3.1.1 Executor
	3.1.2 Repository of Tasks
	3.1.3 State Monitor

	3.2 Cognitive Layer
	3.2.1 Decision Maker
	3.2.2 Negotiator
	3.2.3 Coordinator

	3.3 Hierarchies
	3.4 CIR-Agent
	3.5 Communication
	3.5.1 Inter-Agent (Inter-Robot)
	3.5.2 Inter-Layer (Intra-Robot)
	3.5.3 Throughput

	4 Implementation
	4.1 Action Layer
	4.1.1 Executor
	4.1.2 Repository of Tasks
	4.1.3 State Monitor

	4.2 Cognitive Layer
	4.2.1 Decision Maker
	4.2.2 Negotiator
	4.2.3 Coordinator

	4.3 Communications
	4.3.1 Inter-Layer (Intra-Robot)
	4.3.2 Message Types
	4.3.2.1 Commands
	4.3.2.2 Variable Updates
	4.3.2.3 Large Data Updates

	5 Experimentation
	5.1 Application Experiment
	5.1.1 Layer Implementation
	5.1.1.1 Agent Model
	5.1.1.2 Cognitive Layer
	5.1.1.3 Action Layer

	5.1.2 Software Agents
	5.1.2.1 Coordinator Agent
	5.1.2.2 Single Robot Agent
	5.1.2.3 Multiple Robots Agent

	5.1.3 Results
	5.1.4Conclusions

	5.2 Real-Time Feasibility Experiment
	5.2.1 Layers
	5.2.2 Communication
	5.2.2.1 User Datagram Protocol
	5.2.2.2 Transmission Control Protocol
	5.2.2.3 File Sharing
	5.2.2.4 Inter-Process Communication
	5.2.2.5 Shared Memory

	5.2.3 Messages
	5.2.4 Observations
	5.2.4.1 Comparison

	5.2.5 Conclusions

	6 Conclusions, Limitations and Recommendations
	6.1 Conclusions
	6.2 Limitations
	6.3 Recommendations and Future Work

	References
	Appendix A: Implementation Application Source Code
	A.1 Greeter
	A.2 Commander
	A.3 Single Robot Implementation
	A.4 Multiple Robot Implementation

	Appendix B: Real-Time Experiment Source Code
	B.1 Cognitive Layer
	B.2 UDP Action Layer
	B.3 TCP Action Layer
	B.4 File Action Layer

	Appendix C: Real-Time Experiment Table of Results
	Appendix D: DVD Video of Implementation Experiment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

